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Chapter 1.
Surreal Numbers. 
Sequences and their limits.
Integers
Fractions
Proper Fractions
Improper Fractions
Sequence 
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Real Numbers = Sequences of Fractions
Infinite Integer Number 
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  is a number which is more of any integer: 
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We postulate that exist one infinite integer Leibniz number
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Number 
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 is an Infinitesimal number if for any integer N:
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Leibniz infinitesimal number is  
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Proper Infinitesimal Fraction:  
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Improper Infinitesimal Fractions 
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Surreal Number is a sum of three part numbers: 

infinite integer number, real number and infinitesimal number

Types of surreal numbers:

infinitesimal number
real number
infinite integer
real number + infinitesimal number (finite surreal number)
infinite integer + infinitesimal number
infinite integer + infinitesimal number
infinite integer + real number
infinite integer + real number  + infinitesimal number
Last  four types = infinite numbers
Surreal Numbers Field is non-Archimedean

Definition of Hyper extension 
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of the real number set  
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Number set 
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 is limited if its hyper extension 
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 has no Infinite numbers

Number set 
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 is a closed set if for any number 
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 real part of 
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 belongs to A
Sequence 
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 is finite surreal number
Number 
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 is the limit point of sequence
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 such that  
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Limit of sequence 
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Number 
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 is the limit of sequence
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Chapter 2.
Continuous and Discontinuous Functions.
Their derivatives and antiderivatives
.
Function definition. 
Function 
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Examples of continuous functions
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Discontinuous functions definition. 
Function 
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 is discontinuous in finite real point 
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Examples of discontinuous functions
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The function 
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 are also infinitely close
Differential of the independent variable 
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Examples:
Function derivative definition.
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Examples:
Function antiderivative.
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Integral 
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Chapter 3.
Polynomials in one variable.
Definition of polynomial in one variable
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Examples:
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Polynomial addition and multiplication 
Polynomial roots

Polynomial differentiation. 
Min / max of the polynomial. 
Second derivative.
Graph of the polynomial
Antiderivative of the polynomial.
Integral as an area under the graph
Fundamental theorem of analysis
Orthogonal polynomials 
Polynomial in complex argument
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Chapter 4.
Polynomials in two variables. Scalar fields.
Definition of polynomial 
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Examples:
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Interpretation of the polynomial as a scalar field
Interpretation of the polynomial as a surface on the plane X0Y
Interpretation of the polynomial as a transform of 
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Interpretation of the two polynomials as a transform of 
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Polynomials Addition and multiplication 
Partial derivatives of a polynomial 
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Gradient:
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Second partial derivatives of a polynomial:
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Implicit function 
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Chapter 5.
 Fractional rational functions.
Definition of fractional rational function:
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Examples:
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Addition:
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Multiplication
Limits
Differentiation
Superposition 
Antiderivatives
Integrals
Definition of fractional rational function in two variables:
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Chapter 6.
Step functions. Delta function.
Step function definition:
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Where
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  is the number of breakpoints

 
[image: image92.wmf]0

1

0

0

)

sgn(

0

1

>

=

=

<

-

x

if

x

if

x

x

if


     
[image: image93.wmf]1

+

<

i

i

B

B


Examples:

Heviside step function 
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Another name is “unit step function”
Boxcar function
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Rectangular function
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[image: image97.wmf]
The unit step function is level in all places except for a discontinuity at t = 0. For this reason, the derivative of the unit step function is 0 at all points t, except where t = 0. Where t = 0, the derivative of the unit step function is infinite. 
The derivative of a unit step function is called an impulse function.

In the real world, an impulse function is a pulse that is much shorter than the time response of the system. The system's response to an impulse can be used to determine the output of a system to any input using the time-slicing technique called convolution.
https://lpsa.swarthmore.edu/BackGround/ImpulseFunc/ImpFunc.html
The Derivative of a Delta Function:
If a Dirac delta function is a distribution, then the derivative of a Dirac delta function is, not surprisingly, the derivative of a distribution. We have not yet defined the derivative of a distribution, but it is defined in the obvious way.
https://tutorial.math.lamar.edu/classes/de/diracdeltafunction.aspx
the derivative of the Heaviside function is the Dirac Delta function
https://tutorial.math.lamar.edu/classes/de/StepFunctions.aspx
Chapter 7.
 Piecewise linear functions
Definition of piecewise linear function:
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where 
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Examples:
Module of x:
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Chapter 8.
Exponents and Logarithms
Chapter 9.
Trigonometric functions.

Sine and cosine function definition (based on  ,,, triangles)
Trigonometric circumference 

Chapter 10.
 Power series. 
Their differentiation and integration
Power series definition.

[image: image102]Chapter 11.
Trigonometric series and integrals.
Their differentiation and integration.
Chapter 12. 
Fractional rational series.  Elliptic functions.
Chapter 13.
Step function series
Chapter 14.  
Piecewise linear function series
Chapter XX. 
???
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