
DjVu: Analyzing and Compressing Scanned Documents for Internet Distribution

Patrick Haffner, Léon Bottou, Paul G. Howard, and Yann LeCun
AT&T Labs-Research

100 Schultz Drive
Red Bank, NJ 07701-7033�

haffner,leonb,pgh,yann � @research.att.com

Abstract

DjVu is an image compression technique specifically
geared towards the compression of scanned documents in
color at high resolution. Typical magazine pages in color
scanned at 300dpi are compressed to between 40 and 80
KB, or 5 to 10 times smaller than with JPEG for a similar
level of subjective quality. The foreground layer, which con-
tains the text and drawings and requires high spatial reso-
lution, is separated from the background layer, which con-
tains pictures and backgrounds and requires less resolution.
The foreground is compressed with a bi-tonal image com-
pression technique that takes advantage of character shape
similarities. The background is compressed with a new pro-
gressive, wavelet-based compression method. A real-time,
memory efficient version of the decoder is available as a
plug-in for popular web browsers.

1. Introduction

Document images have often become easier and cheaper
to manipulate in electronic form than in paper form. Tra-
ditional libraries are becoming increasingly digital as the
costs of scanning and storage are declining. With the gen-
eralized use of email and the Internet, the preferred way
to communicate documents is electronic, and the preferred
display medium is fast becoming the computer screen.

The most computer-friendly representation of a docu-
ment is symbolic: a string of ASCII text with tags such
as SGML/HTML, or a page description language such as
Adobe’s PDF. Unfortunately, while these formats are ap-
propriate for digitally produced documents, they are not
appropriate for scanned documents with significant visual
content. Even if Optical Character Recognition (OCR) ac-
curacy were perfect, the visual aspect would be lost in the
translated document. Visual details, including font irregu-
larities, paper color, and paper texture, are particularly im-
portant for historical documents, but visual content is also

crucial in documents with tables, illustrations, mathemat-
ical or chemical formulae, and handwritten text. A sim-
ple alternative would be to scan the original page and sim-
ply compress the image. Several authors have proposed
image-based approaches to digital libraries [9, 10] that are
restricted to black-and-white images. What is required is
a format for efficient storage, retrieval, and transmission of
high-quality document images in color. A standard color
image compression algorithm produces very large files if
one wants to preserve the readability of the text. Com-
pressed with JPEG, a color image of a typical magazine
page scanned at 100dpi (dots per inch) would be around 100
KB to 200 KB, and would be barely readable. The same
page at 300dpi would be of acceptable quality, but would
occupy around 500 KB.

Pages must appear on the screen after only a few seconds
delay. Assuming a 56 kilobits per second (kbps) connec-
tion, this means that the most relevant parts of the document
(the text) must be compressed down to about 20 to 30 KB.
With a progressive compression technique, the text would
be transmitted and displayed first. Then the pictures, draw-
ings, and backgrounds would be transmitted and displayed,
improving the quality of the image as more bits arrive. The
overall size of the file should be on the order of 50 to 100
KB to keep the overall transmission time and storage re-
quirements within reasonable bounds.

Another peculiarity of document images, their large size,
makes current image compression techniques inappropri-
ate. A magazine-size page at 300dpi is 3300 pixels high
and 2500 pixels wide. Uncompressed, it occupies 25 MB
of memory; more than what the average PC can properly
handle. A practical document image viewer would need to
keep the image in a compressed form in the memory of the
machine and only decompress on-demand the pixels that are
being displayed on the screen.

The DjVu document image compression technique [2]
responds to all the problems mentioned above. With DjVu,
pages scanned at 300dpi in full color can be compressed
down to 30 to 80 KB files from 25 MB originals with ex-

1



cellent quality. This puts the size of high-quality scanned
pages in the same order of magnitude as an average HTML
page (44 KB according to the latest statistics). DjVu pages
are displayed within the browser window through a plug-in,
which allows easy panning and zooming of very large im-
ages. This is made possible by an on-the-fly decompression
method that allows images that would normally require 25
MB of RAM once decompressed to require only 2 MB of
RAM.

This paper gives a brief overview of the DjVu technique,
which is described in more details in [2]. Sections 2. and
3. show how DjVu makes a highly efficient use of the fore-
ground/background representation of the image, especially
for Internet applications that require extremely high com-
pression ratio and progressive decoding. This paper also
presents new contributions to DjVu: Section 4. describes
a new MDL based post-segmentation filter and Section 6.
shows how the combination of DjVu and OCR allows for
complex indexing tasks.

2. The DjVu Compression Method

The basic idea behind DjVu is to separate the text from
the backgrounds and pictures and to use different techniques
to compress each of those components. Traditional methods
are either designed to compress natural images with few
edges (JPEG), or to compress black and white document
images almost entirely composed of sharp edges (CCITT
G3, G4, and JBIG1). The DjVu technique improves on
both and combines the best of both approaches. A fore-
ground/background separation algorithm generates and en-
codes three images separately from which the original im-
age can be reconstructed: the background image, the fore-
ground image and the mask image. The first two are low-
resolution color images (generally 100dpi), and the latter
is a high-resolution bi-level image (300dpi). A pixel in
the decoded image is constructed as follows: if the cor-
responding pixel in the mask image is 0, the output pixel
takes the value of the corresponding pixel in the appropri-
ately upsampled background image. If the mask pixel is
1, the pixel color is chosen as the color of the connected
component (or taken from the foreground image). The fore-
ground/background representation is also a key element of
the MRC/T.44 standard[7].

The mask image can be encoded with a bi-level im-
age compression algorithm. The bi-level image compres-
sion algorithm used by DjVu to encode the mask is dubbed
JB2. It is a variation on AT&T’s proposal to the upcoming
JBIG2 fax standard. The key to the compression method is
a method for making use of the information in previously
encountered characters (marks) without risking the intro-
duction of character substitution errors that is inherent in
the use of OCR [1]. The marks are clustered hierarchically.
Some marks are compressed and coded directly using arith-

metic coding (this is similar to the JBIG1 standard). Others
marks are compressed and coded indirectly based on previ-
ously coded marks, also using a statistical model and arith-
metic coding. The previously coded mark used to help in
coding a given mark may have been coded directly or indi-
rectly. There are many ways to achieve the clustering and
the conditional encoding of marks, the algorithm that we
currently use is called “soft pattern matching” [5].

The background image can be encoded with a method
suitable for continuous-tone images. DjVu uses a progres-
sive, wavelet-based compression algorithm called IW44 for
this purpose. In addition, a new masking technique based on
multiscale successive projections [4] is used to avoid spend-
ing bits to code areas of the background that are covered by
foreground characters or drawings. Both JB2 and IW44 rely
on a new type of adaptive binary arithmetic coder called the
ZP-coder[3], that squeezes out any remaining redundancy
to within a few percent of the Shannon limit. The ZP-coder
is adaptive and faster than other approximate binary arith-
metic coders.

3. The DjVu Browser

The digital library user experience depends critically on
the performance of the browsing tools. Much more time is
spent viewing documents than formulating queries. As a
consequence, browsers must provide a very fast response,
smooth zooming and scrolling abilities, good color repro-
duction and sharp text and pictures. These requirements
impose stringent constraints on the browsing software. The
full resolution color image of a page requires about 25
MBytes of memory. Decompressing such images before
displaying them would exceed the memory limits of aver-
age desktop computers.

We developed a plug-in for Netscape Navigator and In-
ternet Explorer. Downloaded images are first pre-decoded
into an internal memory data structure that occupies approx-
imately 2MB per page. The piece of the image displayed in
the browser window is decoded on-the-fly from this data
structure as the user pans around the page. Unlike many
document browsers, each page of a DjVu document is as-
sociated with a single URL. Behind the scenes, the plug-in
implements information caching and sharing. This design
allows the digital library designer to set up a navigation
interface using well-known Web technologies like HTML,
JavaScript, or Java. This provides more flexibility than
other document browsing systems where multi-page doc-
uments are treated as a single entity, and the viewer handles
the navigation between the pages. The DjVu plug-in sup-
ports hyperlinks in DjVu documents by allowing the con-
tent designer to specify active regions on the image which
links to a given URL when clicked upon.



4. The Foreground/Background Separation

The first phase of the foreground/background separation
is described in [2]. This hierarchical color clustering al-
gorithm attempts to retain as much information as possible
about the original image while quantizing the colors on two
levels only: background for the light colors and foreground
for the dark colors. This is not exactly our objective, since
the foreground is the part of the image where a high resolu-
tion is necessary for visual understanding. For example, the
separation algorithm may erroneously put highly-contrasted
pieces of photographs in the foreground. A variety of filters
must be applied to the resulting foreground image so as to
eliminate the most obvious mistakes.

The main filter is designed to be as general as possi-
ble and avoids heuristics that would have to be tuned on
hundreds of different kinds of documents. Since the goal
is compression, the problem is to decide, for each fore-
ground blob found by the previous algorithm, whether it
is preferable to actually code it as foreground or as back-
ground. Two competing strategies are associated with data-
generating models. Using a Minimum Description Length
(MDL) approach [8, 6], the preferred strategy is the one
that yields the lowest overall coding cost, which is the sum
of the cost of coding the model parameters and the cost of
coding the error with respect to this “ideal” model. Like
most MDL approaches used for segmentation [6], the mo-
tivation is to obtain a system with very few parameters to
hand-tune. However, the MDL principle is used here to
make only one assymetrical decision, thus avoiding the time
consuming minimization of a complex objective function.

To code the blob as part of the “smooth” background
only requires a background model. To code the blob as a
piece of foreground that sticks out of the background re-
quires a foreground model, a background model and a mask
model.

The background model assumes that the color of a pixel
is the average of the colors of the closest background pixels
that can be found up and to the left. This model ignores seg-
mentation: in regions which are masked by the foreground,
the background color must be interpolated in a way to min-
imize the background reconstruction error. The foreground
model assumes that the color of a blob is uniform. For both
models, the noise around the estimated pixel values can be
either Gaussian or Laplacian. To use the same type of noise
with identical covariances is preferable to allow small per-
turbations and dithering effects to cancel out when compar-
ing the models. What remain to be coded are the boundaries
of the mask: the model we use tends to favor horizontal and
vertical boundaries.

In summary, in the main filter, the background model al-
lows a slow drift in the color, whereas the foreground model
assumes the color to be constant in a connected component.
This difference is critical to break the symmetry between

JPEG at 100dpi. DjVu.

Figure 1. Comparison of JPEG at 100dpi (left) with
quality factor 30% and DjVu (right). The file sizes for
the complete pages are 82 KB for JPEG and 67 KB
for DjVu

the foreground and the background. Occasionally, the text
segmented by the separation algorithm will appear inverted
in the foreground image (as holes of a large connected com-
ponent). Another filter detects those occurrences and cor-
rects them.

5. Compression Results

Figure 1 shows a comparison between DjVu and JPEG
applied to 100dpi images on a segment of an image. Note
that the rendering of the photographs is also better with
DjVu than with JPEG, even though DjVu uses the same
100dpi for the background image.

More results are available in our experimen-
tal digital library which is available online at
http://www.djvu.att.com . This page shows
the performance of the algorithm on a large variety of
document types (it is important to stress that no hand-
correction was applied to any of these images). From the
feedback of users, we are in the process of gathering typical
segmentation errors that result in artifacts. For instance, in
a photograph of a person, the eyes or the eyebrows may
be classified as foreground. It is fair to say that, on the
data we have collected so far, these segmentation errors are
infrequent.

To test bi-level document images, we downloaded
a standard benchmark for bi-level document im-
ages, the OCR Lab 10 sample images (available at
http://imagebiz.com/PaperWeb/ocrla b.htm ).
This benchmark has been designed to test various methods
to digitize bi-level images, mostly with the help of OCR.
On bi-level images, DjVu has only one layer: the mask
coded with JB2. DjVu requires 268 KBytes to code the
10 images: this is one fourth of what G4 requires (1056



Color Image

Bilevel Mask

DESIGN SLEEP AL-I AL-i ALARM ON/OFF ON/OFF

SOUNDS SU TV STEREO SOUND SOOTHER

OCR output

Figure 2. Foreground separation followed by OCR

KBytes) and half of what PDF with Acrobat Capture 2.0
requires (498 KBytes).

In summary, on bi-level and color images, the DjVu com-
pression rate is 4 to 10 times higher than traditional tech-
niques such as CCITT-G4 or JPEG, at the same level of
readability. Typical magazine or catalog pages in color at
300dpi compressed with DjVu occupy 40 to 80 KB. Black
and white pages such as technical papers, are between to 15
and 40 KB. Ancient books, where most of the color is on
the background, occupy 30 to 60 KB.

6. Indexing DjVu Documents

This section shows that it is possible to apply commer-
cial OCR solutions to the compressed mask with satisfac-
tory retrieval performances, and discusses how to further
improve this OCR. Good OCR performance relies on the
facts that the foreground/backgroundalgorithm properly ex-
tracts the text, without omissions, and that lossy JB2 trans-
forms characters in ways that do not affect their readability.
In fact, testing the quality of the OCR is another way to
check that DjVu achieves its goals.

Figure 2 shows how the foreground/background algo-
rithm is able to segment characters on the photograph of
the product itself. This enables to retrieve the document by
using the product name “STEREO SOUND SOOTHER”.
Recognition experiments were also carried on the Univer-
sity of Washington database. 125 pages of scientific jour-
nals were scanned and thresholded to bilevel images. Using
a widely available commercial software package, the word
substitution rate is around 1% (mostly words that are not
found in the standard English dictionary). Lossy JB2 com-
pression increased this error rate to 1.5%, which is accept-
able.

7. Conclusion

DjVu, a new compression technique for color document
images is described. It fills the gap between the world of
paper and the world of bits by allowing scanned document
to be easily published on the Internet. With the same level
of legibility (300 dots per inch), DjVu achieves compres-
sion ratios 5 to 10 times higher than JPEG. DjVu can also
be considered as an enabling technology for many docu-
ment analysis techniques. To achieve optimal compression,
it justifies the development of complex text/image separa-
tion algorithms. The addition of text layout analysis and
optical character recognition (OCR) will make it possible
to index and edit text extracted from DjVu-encoded doc-
uments. The DjVu compression software is available free
for research, evaluation and non-commercial use on vari-
ous UNIX platforms at http://www.djvu.att.com .
The DjVu reference library is available in source form at the
same URL. The DjVu plug-in is available for Linux, Win-
dows 95, NT, Mac, and various UNIX platforms. The above
web site also contains a digital library with over 800 pages
of scanned documents from various origins.

References
[1] R. N. Ascher and G. Nagy. A means for achieving a high

degree of compaction on scan-digitized printed text. IEEE
Trans. Comput., C-23:1174–1179, November 1974.

[2] L. Bottou, P. Haffner, P. G. Howard, P. Simard, Y. Bengio,
and Y. LeCun. High quality document image compression
with djvu. Journal of Electronic Imaging, 7(3):410–428,
1998.

[3] L. Bottou, P. G. Howard, and Y. Bengio. The Z-coder adap-
tive binary coder. In Proceedings of IEEE Data Compres-
sion Conference, pages 13–22, Snowbird, UT, 1998.

[4] L. Bottou and S. Pigeon. Lossy compression of partially
masked still images. In Proceedings of IEEE Data Com-
pression Conference, Snowbird, UT, March-April 1998.

[5] P. G. Howard. Text image compression using soft pattern
matching. Computer Journal, 40(2/3):146–156, 1997.

[6] W. N. J. Sheinvald, B. Dom and D. Steele. Unsupervised
image segmentation using the minimum description length
principle. In Proceedings of ICPR 92, 1992.

[7] MRC. Mixed rater content (MRC) mode. ITU Recommen-
dation T.44, 1997.

[8] J. Rissanen. Stochastic complexity and modeling. Annals of
Statistics, 14:1080–1100, 1986.

[9] G. Story, L. O’Gorman, D. Fox, L. Shaper, and H. Jagadish.
The RightPages image-based electronic library for alerting
and browsing. IEEE Computer, 25(9):17–26, 1992.

[10] I. H. Witten, A. Moffat, and T. C. Bell. Managing Giga-
bytes: Compressing and Indexing Documents and Images.
Van Nostrand Reinhold, New York, 1994.


