
Learn Keras for
Deep Neural
Networks

A Fast-Track Approach to Modern
Deep Learning with Python
—
Jojo Moolayil

Learn Keras for Deep
Neural Networks
A Fast-Track Approach

to Modern Deep Learning
with Python

Jojo Moolayil

Learn Keras for Deep Neural Networks

ISBN-13 (pbk): 978-1-4842-4239-1 ISBN-13 (electronic): 978-1-4842-4240-7
https://doi.org/10.1007/978-1-4842-4240-7

Library of Congress Control Number: 2018965596

Copyright © 2019 by Jojo Moolayil

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-4239-1.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Jojo Moolayil
Vancouver, BC, Canada

https://doi.org/10.1007/978-1-4842-4240-7

iii

About the Author ��vii

About the Technical Reviewer ���ix

Acknowledgments ���xi

Introduction ���xiii

Table of Contents

Chapter 1: An Introduction to Deep Learning and Keras ����������������������1

Introduction to DL ���1

Demystifying the Buzzwords ���2

What Are Some Classic Problems Solved by DL in Today’s Market? ���������������5

Decomposing a DL Model ��5

Exploring the Popular DL Frameworks ��8

Low-Level DL Frameworks ��9

High-Level DL Frameworks ���11

A Sneak Peek into the Keras Framework ��13

Getting the Data Ready ��15

Defining the Model Structure ��15

Training the Model and Making Predictions ��15

Summary���16

Chapter 2: Keras in Action ��17

Setting Up the Environment ��17

Selecting the Python Version ���17

Installing Python for Windows, Linux, or macOS ���18

Installing Keras and TensorFlow Back End ��19

iv

Getting Started with DL in Keras ���21

Input Data ��21

Neuron ���23

Activation Function ��24

Sigmoid Activation Function ��25

Model ���28

Layers ��28

The Loss Function ���32

Optimizers ���35

Metrics ��39

Model Configuration ��39

Model Training ���40

Model Evaluation ���43

Putting All the Building Blocks Together ���45

Summary���52

Chapter 3: Deep Neural Networks for Supervised Learning:
Regression ��53

Getting Started ��53

Problem Statement ���55

Why Is Representing a Problem Statement with a Design Principle
Important? ���56

Designing an SCQ ��57

Designing the Solution ��59

Exploring the Data ���60

Looking at the Data Dictionary ��63

Finding Data Types ��66

Working with Time ���67

Predicting Sales ���69

Table of ConTenTsTable of ConTenTs

v

Exploring Numeric Columns ��70

Understanding the Categorical Features ���74

Data Engineering ���78

Defining Model Baseline Performance ��84

Designing the DNN ��85

Testing the Model Performance ���89

Improving the Model ��89

Increasing the Number of Neurons ��93

Plotting the Loss Metric Across Epochs ��97

Testing the Model Manually ���98

Summary���99

Chapter 4: Deep Neural Networks for Supervised Learning:
Classification ��101

Getting Started ��101

Problem Statement ���102

Designing the SCQ ���103

Designing the Solution ��103

Exploring the Data ���104

Data Engineering ���110

Defining Model Baseline Accuracy ��118

Designing the DNN for Classification ��119

Revisiting the Data ��124

Standardize, Normalize, or Scale the Data ��124

Transforming the Input Data ��126

DNNs for Classification with Improved Data ���127

Summary���134

Table of ConTenTsTable of ConTenTs

vi

Chapter 5: Tuning and Deploying Deep Neural Networks �����������������137

The Problem of Overfitting ��137

So, What Is Regularization?���139

L1 Regularization ���140

L2 Regularization ���140

Dropout Regularization ��141

Hyperparameter Tuning ���142

Hyperparameters in DL ��143

Approaches for Hyperparameter Tuning ��147

Model Deployment ��152

Tailoring the Test Data ���152

Saving Models to Memory ���154

Retraining the Models with New Data ���155

Online Models ��156

Delivering Your Model As an API ��157

Putting All the Pieces of the Puzzle Together ��158

Summary���159

Chapter 6: The Path Ahead ���161

What’s Next for DL Expertise? ���161

CNN��162

RNN ���167

CNN + RNN ��170

Why Do We Need GPU for DL? ���171

Other Hot Areas in DL (GAN) ��174

Concluding Thoughts ��176

Index ���177

Table of ConTenTsTable of ConTenTs

vii

About the Author

Jojo Moolayil is an artificial intelligence, deep

learning, machine learning, and decision

science professional and the author of the

book Smarter Decisions: The Intersection of

IoT and Decision Science (Packt, 2016). He has

worked with industry leaders on several high-

impact and critical data science and machine

learning projects across multiple verticals.

He is currently associated with Amazon Web

Services as a Research Scientist–AI.

Jojo was born and raised in Pune, India and graduated from the

University of Pune with a major in Information Technology Engineering.

He started his career with Mu Sigma Inc., the world’s largest pure-play

analytics provider, and worked with the leaders of many Fortune 50 clients.

He later worked with Flutura, an IoT analytics startup, and GE, the pioneer

and leader in industrial AI.

He currently resides in Vancouver, BC. Apart from authoring books

on deep learning, decision science, and IoT, Jojo has also been technical

reviewer for various books on the same subject with Apress and Packt

Publishing. He is an active data science tutor and maintains a blog at

http://blog.jojomoolayil.com.

Jojo’s personal website: www.jojomoolayil.com

Business e-mail: mail@jojomoolayil.com

http://blog.jojomoolayil.com/
http://www.jojomoolayil.com/

ix

About the Technical Reviewer

Manohar Swamynathan is a data science

practitioner and an avid programmer, with

over 13 years of experience in various data

science–related areas that include data

warehousing, business intelligence (BI),

analytical tool development, ad hoc analysis,

predictive modeling, data science product

development, consulting, formulating

strategy, and executing analytics programs.

He’s had a career covering the life cycles of

data across different domains such as US

mortgage banking, retail/e-commerce, insurance, and industrial IoT. He

has a bachelor’s degree with a specialization in physics, mathematics, and

computers, and a master’s degree in project management. He currently

lives in Bengaluru, the Silicon Valley of India.

He has authored the book Mastering Machine Learning with Python

in Six Steps (Apress, 2017). You can learn more about his various other

activities on his website, http://www.mswamynathan.com.

https://urldefense.proofpoint.com/v2/url?u=http-3A__www.mswamynathan.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=KBdAFnYmDxoFKGFv3o8nz0lug9UIhLBSHbiZ2JANXOo&m=b1mSbXsdLmEAsdPEfFL_0rPwoNTOL6CSPQHqtnLMEzM&s=P2BBPOCrYC17_-p_T5iG3RBtp0KhXZxSFD3m7bmIpRA&e=#_blank

xi

Acknowledgments

I would like to thank my parents, my brother Tijo, and my sister Josna for

their constant support and love.

xiii

Introduction

This book is intended to gear the readers with a superfast crash course on

deep learning. Readers are expected to have basic programming skills in

any modern-day language; Python experience would be great, but is not

necessary. Given the limitations on the size and depth of the subject we can

cover, this short guide is intended to equip you as a beginner with sound

understanding of the topic, including tangible practical experience in model

development that will help develop a foundation in the deep learning domain.

This guide is not recommended if you are already above the beginner

level and are keen to explore advanced topics in deep learning like

computer vision, speech recognition, and so on. The topics of CNN, RNN,

and modern unsupervised learning algorithms are beyond the scope

of this guide. We provide only a brief introduction to these to keep the

readers aware contextually about more advanced topics and also provide

recommended sources to explore these topics in more detail.

 What will you learn from this guide?
The book is focused on a fast-paced approach to exploring practical deep

learning concepts with math and programming-friendly abstractions.

You will learn to design, develop, train, validate, and deploy deep neural

networks using the industry’s favorite Keras framework. You will also

learn about the best practices for debugging and validating deep learning

models and briefly learn about deploying and integrating deep learning

as a service into a larger software service or product. Finally, with the

experience gained in building deep learning models with Keras, you will

also be able to extend the same principles into other popular frameworks.

xiv

 Who is this book for?
The primary target audience for this book consists of software engineers

and data engineers keen on exploring deep learning for a career move

or an upcoming enterprise tech project. We understand the time crunch

you may be under and the pain of assimilating new content to get started

with the least amount of friction. Additionally, this book is for data science

enthusiasts and academic and research professionals exploring deep

learning as a tool for research and experiments.

 What is the approach to learning
in the book?
We follow the lazy programming approach in this guide. We start with a

basic introduction, and then cater to the required context incrementally

at each step. We discuss how each building block functions in a lucid way

and then learn about the abstractions available to implement them.

 How is the book structured?
The book is organized into three sections with two chapters each.

Section 1 equips you with all the necessary gear to get started on the

fast-track ride into deep learning. Chapter 1 introduces the topic of deep

learning, details its differences from similar fields, and explores the choices

of frameworks for deep learning with a deeper look at the Keras ecosystem.

Chapter 2 will help you get started with a hands-on exercise in Keras,

understanding the basic building blocks of deep learning and developing

the first basic DNN.

Section 2 embraces the fundamentals of deep learning in simple, lucid

language while abstracting the math and complexities of model training

InTroduCTIonInTroduCTIon

xv

and validation with the least amount of code without compromising on

flexibility, scale, and the required sophistication. Chapter 3 explores a

business problem that can be solved by supervised learning algorithms

with deep neural networks. We tackle one use case for regression and

another for classification, leveraging popular Kaggle datasets. Chapter 4

delves into the craft of validating deep neural networks (i.e., measuring

performance and understanding the shortcomings and the means to

circumvent them).

Section 3 concludes the book with topics on further model

improvement and the path forward. Chapter 5 discusses an interesting and

challenging part of deep learning (i.e., hyperparameter tuning). Finally,

Chapter 6—the conclusion—discusses the path ahead for the reader to

further hone his or her skills in deep learning and discusses a few areas of

active development and research in deep learning.

At the end of this crash course, the reader will have gained a thorough

understanding of the deep learning principles within the shortest possible

time frame and will have obtained practical hands-on experience in

developing enterprise-grade deep learning solutions in Keras.

InTroduCTIonInTroduCTIon

1© Jojo Moolayil 2019
J. Moolayil, Learn Keras for Deep Neural Networks,
https://doi.org/10.1007/978-1-4842-4240-7_1

CHAPTER 1

An Introduction
to Deep Learning
and Keras
In this chapter, we will explore the field of deep learning (DL) with a

brief introduction and then move to have a look at the popular choices of

available frameworks for DL development. We will also take a closer look

at the Keras ecosystem to understand why it is special and have a look at a

sample code to understand how easy the framework is for developing DL

models.

Let’s get started.

 Introduction to DL
We’ll first start with a formal definition and then tackle a simple way of

delineating the topic.

DL is a subfield of machine learning (ML) in artificial intelli-
gence (AI) that deals with algorithms inspired from the bio-
logical structure and functioning of a brain to aid machines
with intelligence.

2

Maybe this was too high level or probably difficult to consume, so let’s

break it down step by step. We see three important terms in the definition,

in a specific order: DL, ML, and AI. Let’s first tackle these buzzwords

individually, starting with AI.

 Demystifying the Buzzwords
AI in its most generic form can be defined as the quality of intelligence

being introduced into machines. Machines are usually dumb, so to make

them smarter we induce some sort of intelligence in them where they can

take a decision independently. One example would be a washing machine

that can decide on the right amount of water to use and on the required

time for soaking, washing, and spinning; that is, it makes a decision

when specific inputs are provided and therefore works in a smarter

way. Similarly, an ATM could make a call on disbursing the amount you

want with the right combination of notes available in the machine. This

intelligence is technically induced in the machine in an artificial way, thus

the name AI.

Another point to note is that the intelligence here is explicitly

programmed, say a comprehensive list of if-else rules . The engineer

who designed the system carefully thought through all the combinations

possible and designed a rule-based system that can make decisions by

traversing through the defined rule path. What if we need to introduce

intelligence in a machine without explicit programming, probably

something where the machine can learn on its own? That’s when we touch

base with ML.

Machine learning can be defined as the process of inducing
intelligence into a system or machine without explicit
programming.

—Andrew NG, Stanford Adjunct Professor

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

3

Examples for ML could be a system that could predict whether

a student will fail or pass in a test by learning from the historical test

results and student attributes. Here, the system is not encoded with a

comprehensive list of all possible rules that can decide whether a student

will pass or fail; instead, the system learns on its own based on the patterns

it learned from the historical data.

So, where does DL stand within this context? It happens that while ML

works very well for a variety of problems, it fails to excel in some specific

cases that seem to be very easy for humans: say, classifying an image as a

cat or dog, distinguishing an audio clip as of a male or female voice, and

so on. ML performs poorly with image and other unstructured data types.

Upon researching the reasons for this poor performance, an inspiration

led to the idea of mimicking the human brain’s biological process, which

is composed of billions of neurons connected and orchestrated to adapt

to learning new things. On a parallel track, neural networks had already

been a research topic for several years, but only limited progress had been

made due to the computational and data limitations at the time. When

researchers reached the cusp of ML and neural networks, there came the

field of DL, which was framed by developing deep neural networks (DNNs),

that is, improvised neural networks with many more layers. DL excelled at

the new frontiers where ML was falling behind. In due course, additional

research and experimentation led to the understanding of where we could

leverage DL for all ML tasks and expect better performance, provided there

was surplus data availability. DL, therefore, became a ubiquitous field

to solve predictive problems rather than just being confined to areas of

computer vision, speech, and so on.

Today, we can leverage DL for almost all use cases that were earlier

solved using ML and expect to outperform our previous achievements,

provided that there is a surplus of data. This realization has led to

distinguishing the order of the fields based on data. A new rule of thumb

was established: ML would not be able to improve performance with

increased training data after a certain threshold, whereas DL was able to

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

4

leverage the surplus data more effectively for improved performance. The

same was true a few years back in the debate between statistical models

and ML. The following chart is an illustration to represent the overall idea

of model performance with data size for the three aforementioned fields.

Now, if we revisit the formal definition, you can probably make a

better sense of the statement that the AI subfield of ML is inspired by the

biological aspects of a human brain. We can simplify the three fields using

a simple Venn diagram, as shown in the following.

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

5

Putting it all together, we can say that AI is the field of inducing

intelligence into a machine or system artificially, with or without explicit

programming. ML is a subfield in AI where intelligence is induced without

explicit programming. Lastly, DL is a field within ML where intelligence is

induced into systems without explicit programming using algorithms that

have been inspired by the biological functioning of the human brain.

 What Are Some Classic Problems Solved by DL
in Today’s Market?
Today, we can see the adoption of DL in a variety of day-to-day aspects of

our life in the digital world. If you are active on social media, you might

have noticed Facebook suggesting tagging your friends when you upload

a picture. Also note the self-driving mode in Tesla’s cars, predictions of the

next word in the messaging system on your iOS or Android phone, Alexa,

Siri, and Google Assistant responding to you as a human, and so on. If we

try to analyze the type of use cases we can solve using DL, we can already

witness the power of DL in almost any system you use in today’s world.

 Decomposing a DL Model
In its most basic form, DL models are designed using neural network

architecture. A neural network is a hierarchical organization of neurons

(similar to the neurons in the brain) with connections to other neurons.

These neurons pass a message or signal to other neurons based on

the received input and form a complex network that learns with some

feedback mechanism.

The following is a simplistic representation of a basic neural network.

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

6

As you can see in the preceding figure, the input data is consumed by

the neurons in the first hidden layer, which then provides an output to the

next layer and so on, eventually resulting in the final output. Each layer

can have one or many neurons, and each of them will compute a small

function (e.g., activation function). The connection between two neurons

of successive layers would have an associated weight. The weight defines

the influence of the input to the output for the next neuron and eventually

for the overall final output. In a neural network, the initial weights would

all be random during the model training, but these weights are updated

iteratively to learn to predict a correct output. Decomposing the network,

we can define few logical building blocks like neuron, layer, weight, input,

output, an activation function inside the neuron to compute a learning

process, and so on.

For an intuitive understanding, let’s take an example of how a human

brain learns to identify different people. When you meet a person for the

second time, you will be able to identify him. How does this happen?

People have a resemblance in overall structure; two eyes, two ears, a

nose, lips, and so on. Everyone has the same structure, yet we are able to

distinguish between people quite easily, right?

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

7

The nature of the learning process in the brain is quite intuitive. Rather

than learning the structure of the face to identify people, the brain learns

the deviation from a generic face (e.g., how different an individual’s eyes

are from the reference eye), which can then be quantified as an electrical

signal with a defined strength. Similarly, it learns deviations from all parts

of the face from a reference base, combines these deviations into new

dimensions, and finally gives an output. All of this happens so quickly that

none of us realizes what our subconscious mind has actually done.

Similarly, the neural network showcased in the preceding illustration

tries to mimic the same process using a mathematical approach. The

input is consumed by neurons in the first layer and an activation function

is calculated within each neuron. Based on a simple rule, it forwards an

output to the next neuron, similar to the deviations learned by the human

brain. The larger the output of a neuron, the larger the significance of that

input dimension will be. These dimensions are then combined in the next

layer to form additional new dimensions, which we probably can’t make

sense of. But the system learns it intuitively. The process, when multiplied

several times, develops a complex network with several connections.

Now that the structure of the neural network is understood, let’s

understand how the learning happens. When we provide the input data

to the defined structure, the end output would be a prediction, which

could be either correct or incorrect. Based on the output, if we provide

a feedback to the network to adapt better by using some means to make

a better prediction, the system learns by updating the weight for the

connections. To achieve the process of providing feedback and defining

the next step to make changes in the correct way, we use a beautiful

mathematical algorithm called “backpropagation.” Iterating the process

several times step by step, with more and more data, helps the network

update the weights appropriately to create a system where it can make a

decision for predicting output based on the rules it has created for itself

through the weights and connections.

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

8

The name “deep neural networks” evolved from the use of many more

hidden layers, making it a “deep” network to learn more complex patterns.

The success stories of DL have only surfaced in the last few years because

the process of training a network is computationally heavy and needs large

amounts of data. The experiments finally saw the light of the day only

when computer and data storage became more available and affordable.

 Exploring the Popular DL Frameworks
Given that the adoption of DL has proceeded at an alarming pace, the

maturity of the ecosystem has also shown phenomenal improvement.

Thanks to many large tech organizations and open source initiatives,

we now have a plethora of options to choose from. Before we delve into

the specifics of various frameworks, let us understand why would we

essentially need a framework and what could be used as an alternative.

Let’s start by understanding how the software industry evolved in

frameworks.

If you observe the evolution of the software industry, you will

understand that today it is far easier to develop high-end software than it

was a few years back. Credit for this goes to the available tools that have

automated or abstracted complex problems in a way that’s simple use.

The tech-fraternity has been benevolent and innovative in contributing

great ideas. We build new services that are built on top of the previous

ones and will ultimately create a complex service that will be capable

of orchestrating the collection of services while being secure as well as

scalable. Given the maturity of software tools available today, we can

afford to abstract several complexities that happen in the background.

These tools are nothing but building blocks for software systems. You

technically don’t need to start from scratch; you can instead rely on

available powerful tools that have matured significantly to take care of

several software-building services.

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

9

Similarly, in DL, there are a set of code blocks that can be reused

for different types of use cases. The same algorithm with a different

parameter value can be used for a different use case, so why not package

the algorithm as a simple function or a class? Several aspects of DL have

been developed as reusable codes that can today be directly used from

frameworks that do an excellent job of abstracting the idea. Building blocks

in a DL model include the neurons, activation functions, optimization

algorithms, data augmentation tools, and so on. You could indeed develop

a DNN from scratch, say in C++, Java, or Python, with ~1000 lines of code,

or probably use a framework and reuse available tools with maybe 10–15

lines of code. That being said, let’s have a look at the popular choices of DL

frameworks used in the industry today.

 Low-Level DL Frameworks
Given the level of abstraction a framework provides, we can classify it as a

low-level or high-level DL framework. While this is by no means industry-

recognized terminology, we can use this segregation for a more intuitive

understanding of the frameworks. The following are a few of the popular

low-level frameworks for DL.

 Theano

Theano was one of the first DL libraries to gain popularity. It was

developed by the Montreal Institute for Learning Algorithms (MILA) at the

University of Montreal. Theano is an open source Python library that was

made available in 2007; the last main release was published in late 2017 by

MILA.

Additional details are available at

http://deeplearning.net/software/theano/

https://github.com/Theano/Theano/

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

http://deeplearning.net/software/theano/
https://github.com/Theano/Theano/

10

 Torch

Torch is another popular ML and DL framework based on the

Lua programming language. It was initially developed by Ronan

Collobert, Koray Kavukcuoglu, and Clement Farabet but was later

improved by Facebook with a set of extension modules as open source

software.

Additional details are available at

http://torch.ch/

 PyTorch

PyTorch is an open source ML and DL library for Python and was

developed by the Facebook AI research team. PyTorch has become more

popular than Torch, since anyone with a basic understanding of Python

can get started on developing DL models. Moreover, PyTorch was far easier

and transparent to use for DL development.

Additional details are available at

https://pytorch.org/

 MxNet

Pronounced “mix-net,” MxNet stands for both “mix” and “maximize” and

was developed by researchers from CMU, NYU, NUS, MIT, and others. The

idea was simplified to combine declarative and imperative programming

together (mix) to maximize efficiency and productivity. It supports the use

of multiple GPUs and is widely supported by major cloud providers like

AWS and Azure.

Additional details are available at

https://mxnet.apache.org/

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

http://torch.ch/
https://pytorch.org/
https://mxnet.apache.org/

11

 TensorFlow

TensorFlow is undoubtedly one of the most popular and widely used DL

frameworks in the DL fraternity. It was developed and open sourced by

Google and supports deployment across CPUs, GPUs, and mobile and

edge devices as well. It was released in November 2015 and then saw a

huge increase in its adoption within the industry.

www.tensorflow.org/

The list of DL frameworks is a long one, and discussing all of them is

beyond the scope of our book. A few other popular frameworks you could

additionally research are Caffe, Microsoft CNTK, Chainer, PaddlePaddle, and

so on. Discussing the pros and cons of one framework over other is another

interesting and never-ending debate. I would highly recommend that you

explore and understand what improvements each framework has to offer.

This would be a good starting point:

https://blogs.technet.microsoft.com/

machinelearning/2018/03/14/comparing-deep-

learning-frameworks-a-rosetta-stone- approach/

 High-Level DL Frameworks
The previously mentioned frameworks can be defined as the first level of

abstraction for DL models. You would still need to write fairly long codes

and scripts to get your DL model ready, although much less so than using

just Python or C++. The advantage of using the first-level abstraction is the

flexibility it provides in designing a model.

However, to simplify the process of DL models, we have frameworks

that work on the second level of abstraction; that is, rather than using

the previously mentioned frameworks directly, we can use a new

framework on top of an existing framework and thereby simplify DL model

development even further.

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

http://www.tensorflow.org/
https://blogs.technet.microsoft.com/machinelearning/2018/03/14/comparing-deep-learning-frameworks-a-rosetta-stone-approach/
https://blogs.technet.microsoft.com/machinelearning/2018/03/14/comparing-deep-learning-frameworks-a-rosetta-stone-approach/
https://blogs.technet.microsoft.com/machinelearning/2018/03/14/comparing-deep-learning-frameworks-a-rosetta-stone-approach/

12

The most popular high-level DL framework that provides a second-

level abstraction to DL model development is Keras. Other frameworks like

Gluon, Lasagne, and so on are also available, but Keras has been the most

widely adopted one.

Note While gluon works on top of Mxnet, and Lasagne on top of
theano, Keras can work on top of tensorFlow, theano, Mxnet, and
Microsoft CntK. the list has been aggressively expanding, and quite
possibly by the time you read this book many more will have been
added.

Keras is a high-level neural network API written in Python and can

help you in developing a fully functional DL model with less than 15 lines

of code. Since it is written in Python, it has a larger community of users

and supporters and is extremely easy to get started with. The simplicity

of Keras is that it helps users quickly develop DL models and provides

a ton of flexibility while still being a high-level API. This really makes

Keras a special framework to work with. Moreover, given that it supports

several other frameworks as a back end, it adds the flexibility to leverage a

different low-level API for a different use case if required. By far the most

widely adopted usage of Keras is with TensorFlow as a back end (i.e., Keras

as a high-level DL API and TensorFlow as its low-level API back end). In a

nutshell, the code you write in Keras gets converted to TensorFlow, which

then runs on a compute instance.

You can read more about Keras and its recent developments here:

https://keras.io/

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

https://keras.io/

13

 A Sneak Peek into the Keras Framework
Now that we have an understanding of the different frameworks available

for DL as well as the need to use one of them, we can take a sneak peek

into why Keras has an unfair advantage in DL development before we

conclude the chapter. We will definitely take a deeper look at what Keras

has to offer in the next chapter, but it is interesting to look at the beauty of

Keras in action before we end this chapter.

Have a look at the DNN showcased in the following.

Yes, this is the same figure we saw earlier while exploring the topic

“Decomposing a DL Model.” If we try to define the network, we can say

that it is a DNN that has two hidden layers with five and four neurons,

respectively. The first hidden layer accepts an input data that has three

dimensions and gives an output in the output layer with two neurons.

To have this make more intuitive sense, we can assume that this is a

simple DNN for a problem like predicting whether a student will pass or

fail based on some input data.

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

14

Say we have the age, the number of hours studied, and the average

score out of 100 for all the previous tests for which he appeared as the

input data point.

Building a neural network in Keras is as simple as the following script.

It is absolutely fine not to understand the whole code that follows at

the moment; we will explore this step by step in more detail in the next

chapter.

#Import required packages

from keras.models import Sequential

from keras.layers import Dense

import numpy as np

Getting the data ready

Generate train dummy data for 1000 Students and dummy test

for 500

#Columns :Age, Hours of Study &Avg Previous test scores

np.random.seed(2018). #Setting seed for reproducibility

train_data, test_data = np.random.random((1000, 3)), np.random.

random((500, 3))

#Generate dummy results for 1000 students : Whether Passed (1)

or Failed (0)

labels = np.random.randint(2, size=(1000, 1))

#Defining the model structure with the required layers, # of

neurons, activation function and optimizers

model = Sequential()

model.add(Dense(5, input_dim=3, activation='relu'))

model.add(Dense(4, activation='relu'))

model.add(Dense(1, activation='sigmoid'))

model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

15

#Train the model and make predictions

model.fit(train_data, labels, epochs=10, batch_size=32)

#Make predictions from the trained model

predictions = model.predict(test_data)

The preceding code can be divided into three sections.

 Getting the Data Ready
Normally, we would spend some time with the data by importing and

exploring the content and making necessary augmentations to the data

as the model’s input. Here, since this is a dummy use case, we are just

using a random number generator in Python’s numpy package to create a

dummy training dataset for 1000 students, another dummy test dataset

for 500 students, and lastly, the labels or actual outputs for the students

(i.e., whether they passed or failed).

 Defining the Model Structure
Once we have the data ready in the necessary format, we would need to

first design the structure of the DNN. We define the number and types

of layers, the number of neurons in each layer, the required activation

function, the optimizer to use, and few other network attributes.

 Training the Model and Making Predictions
Once the network is defined, we can use the training data with the correct

predictions to train the network using the “fit” method for the model.

Finally, once the model is trained, we can use the trained model to make

predictions on the new test dataset.

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

16

I hope this example, though oversimplified, will give you an

understanding of how easy it to use the Keras framework to develop DL

models. If understanding the code was overwhelming at this point, it’s

absolutely fine. We will tackle codes step by step in detail in the next

chapter.

 Summary
In this chapter, we have learned the basics of DL with a simple

introduction and also explored a few examples of common use cases that

leverage DL in our day-to-day digital lives. We then studied the need for

using a DL framework for developing models and explored a few low-level

as well as high-level frameworks available in the industry. We then looked

at Keras, our preferred framework for this book, with a simple dummy

example in order to see the simplicity of creating DL models.

In the next chapter, we will take a deeper look at Keras and the various

building blocks it offers. We will try developing a simple DL model with

hands-on exercises using Keras and Python.

Chapter 1 an IntroduCtIon to deep LearnIng and Keras

17© Jojo Moolayil 2019
J. Moolayil, Learn Keras for Deep Neural Networks,
https://doi.org/10.1007/978-1-4842-4240-7_2

CHAPTER 2

Keras in Action
In this chapter, we will explore the Keras framework and get started with

hands-on exercises to learn the basics of Keras along with a bit of Python

and the necessary DL topics. A word of caution, given that this a fast-track

guide: we will not have the scope to talk in detail about exhaustive topics in

DL. Instead, we will start with a simple topic, explore the basic idea behind

it, and add references where you can dive deeper for a more foundational

understanding of the topic.

 Setting Up the Environment
As discussed earlier, we will be developing DL models with the Keras stack

using TensorFlow as a back end in Python. Hence, to get started we need to

set up our playground environment by installing Python, a few important

Python packages, TensorFlow, and finally Keras.

Let’s get started.

 Selecting the Python Version
Python is currently available in two major versions: 2.7.x and 3.x. Although

Python 3.x is the most recent version and the future of Python, there have

been a series of conflicts due to backward incapability in the developer

community with regard to the transition from 2.7 to 3.x. Unfortunately,

many developers are still connected with the Python 2.7.x version.

18

However, for our use case, I highly recommend getting started with Python 3.x,

given that it is the future. Some may be reluctant to start with Python 3,

assuming there will be issues with many packages in the 3.x version, but

for almost all practical use cases, we have all major DL, ML, and other

useful packages already updated for 3.x.

 Installing Python for Windows, Linux, or macOS
There are many distributions of Python available in the market. You could

either download and install Python from the official python.org website or

choose any popular distribution. For ML and DL, the most recommended

distribution of Python is the Anaconda distribution from Continuum

Analytics. Anaconda is a free and open source distribution of Python,

especially for ML and DL large-scale processing. It simplifies the entire

package management and deployment process and comes with a very easy

to use virtual environment manager and a couple of additional tools for

coding like Jupyter Notebooks and the Spyder IDE.

To get started with Anaconda, you can go to www.anaconda.com/

download/ and select an appropriate version based on the OS (Mac/

Windows/Linux) and architecture (32 bit/64 bit) of your choice. At the time

of writing this book, the most recent version of Python 3 is 3.6. By the time

you read this book, there might be a newer version available. You should

comfortably download and install the most updated version of Anaconda

Python.

Once you have downloaded the installer, please install the application.

For Windows users, this will be a simple executable file installation.

Double-click the .exe file downloaded from Anaconda’s website and follow

the visual onscreen guidelines to complete the installation process.

Linux users can use the following command after navigating to the

downloaded folder:

bash Anaconda-latest-Linux-x86_64.sh

Chapter 2 Keras in aCtion

http://www.anaconda.com/download/
http://www.anaconda.com/download/

19

Mac users can install the software by double-clicking the downloaded

.pkg file and then following the onscreen instructions.

The Anaconda distribution of Python eases out the process for DL and

ML by installing all major Python packages required for DL.

 Installing Keras and TensorFlow Back End
Now that Python is set up, we need to install TensorFlow and Keras.

Installing packages in Python can be done easily using the pip, a package

manager for Python. You can install any Python package with the command

pip install package-name in the terminal or command prompt.

So, let’s install our required packages (i.e., TensorFlow and Keras).

pip install keras

followed by

pip install tensorflow

In case you face any issues in setting Anaconda Python with TensorFlow

and Keras, or you want to experiment only within a Python virtual

environment, you can explore a more detailed installation guide here:

https://medium.com/@margaretmz/anaconda-jupyter-notebook-

tensorflow-and-keras-b91f381405f8

Also, you might want to install TensorFlow with GPU support if your

system has any NVIDIA CUDA–compatible GPUs. Here is a link to a

step-by-step guide to install TensorFlow with GPU support on Windows,

Mac and Linux:

www.tensorflow.org/install/

To check if your GPU is CUDA compatible, please explore the list

available on NVIDIA’s official website:

https://developer.nvidia.com/cuda-gpus

Chapter 2 Keras in aCtion

https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8
https://medium.com/@margaretmz/anaconda-jupyter-notebook-tensorflow-and-keras-b91f381405f8
http://www.tensorflow.org/install/
https://developer.nvidia.com/cuda-gpus

20

To write codes and develop models, you can choose the IDE provided

by Anaconda (i.e., Spyder), the native terminal or command prompt, or a

web-based notebook IDE called Jupyter Notebooks. For all data science–

related experiments, I would highly recommend using Jupyter Notebooks

for the convenience it provides in exploratory analysis and reproducibility.

We will be using Jupyter Notebooks for all experiments in our book.

Jupyter Notebooks comes preinstalled with Anaconda Python; in case

you are using a virtual environment, you might have to install it using the

package manager or just the command

conda install jupyter

To start Jupyter Notebooks, you can use the Anaconda Navigator or just

enter the command

jupyter notebook

inside your command prompt or terminal; then, Jupyter should start in

your default browser on localhost. The following screenshot shows when

Jupyter is running in the browser.

Click the ‘New’ button at the extreme right and select Python from the

drop-down menu. If you have installed one or more virtual environments,

all of them will show up in the drop-down; please select the Python

environment of your choice.

Once selected, your Jupyter notebook should open and should

be ready to get started. The following screenshot showcases a Jupyter

notebook up and running in the browser.

Chapter 2 Keras in aCtion

21

The green highlighted cell is where you write your code, and Ctrl +

Enter will execute the selected cell. You can add more cells with the ‘+’

icon in the control bar or explore additional options from the Menu bar.

If this is your first time with Jupyter, I recommend the available options in

the navigation menu.

Now that we have all the required tools set up and running, let’s start

with simple DL building blocks with Keras.

 Getting Started with DL in Keras
Let’s start by studying the DNN and its logical components, understanding

what each component is used for and how these building blocks are

mapped in the Keras framework.

If you recall the topic “Decomposing a DL Model” from Chapter 1,

we had defined the logical components in a DNN as input data, neurons,

activation functions, layer (i.e., group of neurons), connections between

neurons or edges, a learning procedure (i.e., the backpropagation

algorithm), and the output layer.

Let’s look at at these logical components one by one.

 Input Data
Input data for a DL algorithm can be of a variety of types. Essentially,

the model understands data as “tensors”. Tensors are nothing but a

generic form for vectors, or in computer engineering terms, a simple

n-dimensional matrix. Data of any form is finally represented as a

Chapter 2 Keras in aCtion

22

homogeneous numeric matrix. So, if the data is tabular, it will be a two-

dimensional tensor where each column represents one training sample

and the entire table/matrix will be m samples. To understand this better,

have a look at the following visual illustration.

You could also reverse the representation of training samples

(i.e., each row could be one training sample), so in the context of the

student passing/failing in the test example, one row would indicate all

the attributes of one student (his marks, age, etc.). And for n rows, we

would have a dataset with n training samples. But in DL experiments,

it is common notation to use one training sample in a column. Thus, m

columns would denote m samples.

Additionally, DL models can interpret only numeric data. If the dataset

has any categorical data like “gender” with values of “male” and “female,”

we will need to convert them to one-hot encoded variables (i.e., simply

representing the columns with a value of 0 or 1, where 0 would represent

“male” and 1 would represent “female” or vice versa).

Chapter 2 Keras in aCtion

23

Image data also needs to be transformed into an n-dimensional tensor.

We will not cover DL models for image data in this book but I do want to

keep you aware of its representation as input data. An image is stored in

data as a three-dimensional tensor where two dimensions define the pixel

values on a 2D plane and a third dimension defines the values for RGB

color channels. So essentially, one image becomes a three-dimensional

tensor and n images will be a four-dimensional tensor, where the fourth

dimension will stack a 3D tensor image as a training sample. Therefore,

if we have 100 images with a 512 × 512-pixel resolution, they will be

represented as a 4D tensor with shape 512 × 512 × 3 × 100.

Lastly, it is a good practice to normalize, standardize, or scale the input

values before training. Normalizing the values will bring all values in the

input tensor into a 0–1 range, and standardization will bring the values

into a range where the mean is 0 and the standard deviation is 1. This helps

to reduce computation, as the learning improves by a great margin and so

does performance, as the activation functions (covered in the following)

behave more appropriately.

 Neuron
At the core of the DNN, we have neurons where computation for an output

is executed. A neuron receives one or more inputs from the neurons in

the previous layer. If the neurons are in the first hidden layer, they will

receive the data from the input data stream. In the biological neuron,

an electric signal is given as an output when it receives an input with a

higher influence. To map that functionality in the mathematical neuron,

we need to have a function that operates on the sum of input multiplied

by the corresponding weights (denoted as f(z) in the following visual)

and responds with an appropriate value based on the input. If a higher-

influence input is received, the output should be higher, and vice versa. It

is in a way analogous to the activation signal (i.e., higher influence -> then

activate, otherwise deactivate). The function that works on the computed

input data is called the activation function.

Chapter 2 Keras in aCtion

24

 Activation Function
An activation function is the function that takes the combined input z as

shown in the preceding illustration, applies a function on it, and passes

the output value, thus trying to mimic the activate/deactivate function.

The activation function, therefore, determines the state of a neuron by

computing the activation function on the combined input.

A quick thought crossing your mind might be as follows: why do we

really need an activation function to compute the combined output z,

when we could just pass the value of z as the final output? There are several

problems here. Firstly, the range of the output value would be -Infinity

to + Infinity, where we won’t have a clear way of defining a threshold

where activation should happen. Secondly, the network will in a way be

Chapter 2 Keras in aCtion

25

rendered useless, as it won’t really learn. This is where a bit of calculus and

derivatives come into the picture. To simplify the story, we can say that if

your activation function is a linear function (basically no activation), then

the derivative of that function becomes 0; this becomes a big issue because

training with the backpropagation algorithm helps give feedback to the

network about wrong classifications and thereby helps a neuron to adjust

its weights by using a derivative of the function. If that becomes 0, the

network loses out on this learning ability. To put it another way, we can say

there is really no point of having the DNN, as the output of having just one

layer would be similar to having n layers. To keep things simple, we would

always need a nonlinear activation function (at least in all hidden layers)

to get the network to learn properly.

There are a variety of choices available to use as an activation function.

The most common ones are the sigmoid function and the ReLU (rectified

linear unit).

 Sigmoid Activation Function
A sigmoid function is defined as

1

1+()-e z
, which renders the output

between 0 and 1 as shown in the following illustration. The nonlinear

output (s shaped as shown) improves the learning process very well, as it

closely resembles the following principle—lower influence: low output and

higher influence: higher output—and also confines the output within the

0-to-1 range.

In Keras, the sigmoid activation function is available as keras.

activations.sigmoid(x).

We can import this into Python simply with the import command:

import keras.activations.sigmoid

Chapter 2 Keras in aCtion

26

 ReLU Activation Function

Similarly, the ReLU uses the function f(z) = max(0,z), which means that

if the output is positive it would output the same value, otherwise it would

output 0. The function’s output range is shown in the following visual.

Keras provides ReLU as

keras.activations.relu(x, alpha=0.0, max_value=None)

The function may look linear, but it isn’t. ReLU is a valid nonlinear

function and in fact works really well as an activation function. It not

only improves the performance but significantly helps the number of

Chapter 2 Keras in aCtion

27

computations to be reduced during the training phase. This is a direct

result of the 0 value in the output when z is negative, thereby deactivating

the neuron.

But because of the horizontal line with 0 as the output, we can face

serious issues sometimes. For instance, in the previous section we

discussed a horizontal line, which is a constant with a derivative of 0 and

therefore may become a bottleneck during training, as the weights will not

easily get updated. To circumvent the problem, there was a new activation

function proposed: Leaky ReLU, where the negative value outputs a slightly

slanting line instead of a horizontal line, which helps in updating the

weights through backpropagation effectively.

Leaky ReLU is defined as

f(z) = z ; when z >0

f(z) = ∝z ; when z<0 and where ∝ is a parameter that

is defined as a small constant, say 0.005

Keras provides Leaky ReLU as follows:

keras.layers.LeakyReLU(X, alpha=0.0, max_value=None).

We can directly use the activation function by setting the value of alpha

with a small constant.

Chapter 2 Keras in aCtion

28

There are many more activation functions that can be used in a DNN

and are available in Keras. A few other popular ones are tanh (hyperbolic

tan activation), swish activation, elu (exponential linear unit), selu (scaled

elu), and so on.

 Model
The overall structure of a DNN is developed using the model object in

Keras. This provides a simple way to create a stack of layers by adding new

layers one after the other.

The easiest way to define a model is by using the sequential model,

which allows easy creation of a linear stack of layers.

The following example showcases the creation of a simple sequential

model with one layer followed by an activation. The layer would have 10

neurons and would receive an input with 15 neurons and be activated with

the ReLU activation function.

from keras.models import Sequential

from keras.layers import Dense, Activation

model = Sequential()

model.add(Dense(10, input_dim=15))

model.add(Activation('relu'))

 Layers
A layer in the DNN is defined as a group of neurons or a logically separated

group in a hierarchical network structure. As DL became more and

more popular, there were several experiments conducted with network

architectures to improve performance for a variety of use cases. The use

cases centered around regular supervised algorithms like classification

and regression, computer vision experiments, extending DL for natural

language processing and understanding, speech recognition, and

Chapter 2 Keras in aCtion

29

combinations of different domains. To simplify the model development

process, Keras provides us with several types of layers and various means

to connect them. Discussing all of them would be beyond the scope of the

book. However, we will take a close look at a few layers and also glance

through some important layers for other advanced use cases, which you

can explore later.

 Core Layers

There are a few important layers that we will be using in most use cases.

Dense Layer

A dense layer is a regular DNN layer that connects every neuron in the

defined layer to every neuron in the previous layer. For instance, if Layer 1

has 5 neurons and Layer 2 (dense layer) has 3 neurons, the total number

of connections between Layer 1 and Layer 2 would be 15 (5 × 3). Since it

accommodates every possible connection between the layers, it is called a

“dense” layer.

Keras offers the dense layer with the following default parameters.

keras.layers.Dense(units, activation=None, use_bias=True,

 kernel_initializer='glorot_uniform',

 bias_initializer='zeros',

 kernel_regularizer=None,

 bias_regularizer=None,

 activity_regularizer=None,

 kernel_constraint=None,

 bias_constraint=None)

It offers a lot of customization for any given layer. We can specify the

number of units (i.e., neurons for the layer), the activation type, the type

initialization for kernel and bias, and other constraints. Most often, we just

use parameters like units and activation. The rest can be left to the defaults

Chapter 2 Keras in aCtion

30

for simplicity. These additional parameters become important when

we are working in specialized use cases where the importance of using

specific types of constraints and initializers for a given layer is paramount.

We also need to define the input shape for the Keras layer. The input

shape needs to be defined for only the first layer. Subsequent layers just

need the number of neurons defined. We can use the input_dim attribute

to define how many dimensions the input has. For instance, if we have a

table with 10 features and 1000 samples, we need to provide the input_dim

as 10 for the layer to understand the shape of input data.

Example: A network with one hidden layer and the output layer for

simple binary classification.

Layer 1 has 5 neurons and expects an input with 10 features; therefore,

input_dim =10. The final layer is the output, which has one neuron.

model = Sequential()

model.add(Dense(5,input_dim=10,activation = "sigmoid"))

model.add(Dense(1,activation = "sigmoid"))

 Dropout Layer

The dropout layer in DL helps reduce overfitting by introducing

regularization and generalization capabilities into the model. In the literal

sense, the dropout layer drops out a few neurons or sets them to 0 and

reduces computation in the training process. The process of arbitrarily

dropping neurons works quite well in reducing overfitting. We will take up

this topic in more depth and understand the rationale behind overfitting,

model generalization in Chapter 5.

Keras offers a dropout layer with the following default parameters:

keras.layers.Dropout(rate, noise_shape=None, seed=None)

Chapter 2 Keras in aCtion

31

We add the dropout layer after a regular layer in the DL model

architecture. The following codes show a sample:

model = Sequential()

model.add(Dense(5,input_dim=10,activation = "sigmoid"))

model.add(Dropout(rate = 0.1,seed=100))

model.add(Dense(1,activation = "sigmoid"))

 Other Important Layers

Considering the diversity of use cases, Keras has inbuilt defined layers

for most. In computer vision use cases, the input is usually an image.

There are special layers to extract features from images; they are called

convolutional layers. Similarly, for natural language processing and similar

use cases, there is an advanced DNN called recurrent neural network (RNN).

Keras has provided several different types of recurrent layers for its

development.

The list is quite long, and we won’t cover the other advanced layers

now. However, in order to keep you updated, here are some of the other

important layers in Keras that will be handy for you for advanced use cases

in the future:

• Embedding layers - https://keras.io/layers/

embeddings/

• Convolutional layers - https://keras.io/layers/

convolutional/

• Pooling layers - https://keras.io/layers/pooling/

• Merge layers - https://keras.io/layers/merge/

• Recurrent layers - https://keras.io/layers/

recurrent/

• Normalization layers and many more - https://keras.

io/layers/normalization/

Chapter 2 Keras in aCtion

https://keras.io/layers/embeddings/
https://keras.io/layers/embeddings/
https://keras.io/layers/convolutional/
https://keras.io/layers/convolutional/
https://keras.io/layers/pooling/
https://keras.io/layers/merge/
https://keras.io/layers/recurrent/
https://keras.io/layers/recurrent/
https://keras.io/layers/normalization/
https://keras.io/layers/normalization/

32

You can also write your own layers in Keras for a different type of use

case. More details can be explored here: https://keras.io/layers/

writing-your-own-keras-layers/

 The Loss Function
The loss function is the metric that helps a network understand whether

it is learning in the right direction. To frame the loss function in simple

words, consider it as the test score you achieve in an examination. Say you

appeared for several tests on the same subject: what metric would you use to

understand your performance on each test? Obviously, the test score. Assume

you scored 56, 60, 78, 90, and 96 out of 100 in five consecutive language tests.

You would clearly see that the improving test scores are an indication of how

well you are performing. Had the test scores been decreasing, then the verdict

would be that your performance is decreasing and you would need to change

your studying methods or materials to improve.

Similarly, how does a network understand whether it is improving

its learning process in each iteration? It uses the loss function, which is

analogous to the test score. The loss function essentially measures the

loss from the target. Say you are developing a model to predict whether a

student will pass or fail and the chance of passing or failing is defined by

the probability. So, 1 would indicate that he will pass with 100% certainty

and 0 would indicate that he will definitely fail.

The model learns from the data and predicts a score of 0.87 for the

student to pass. So, the actual loss here would be 1.00 – 0.87 = 0.13. If it

repeats the exercise with some parameter updates in order to improve and

now achieves a loss of 0.40, it would understand that the changes it has

made are not helping the network to appropriately learn. Alternatively,

a new loss of 0.05 would indicate that the updates or changes from the

learning are in the right direction.

Based on the type of data outcome, we have several standard loss

functions defined in ML and DL. For regression use cases (i.e., where the

end prediction would be a continuous number like the marks scored by a

Chapter 2 Keras in aCtion

https://keras.io/layers/writing-your-own-keras-layers/
https://keras.io/layers/writing-your-own-keras-layers/

33

student, the number of product units sold by a shop, the number of calls

received from customers in a contact center, etc.), here are some popular

loss functions available:

• Mean Squared Error - Average squared difference

between the actual and predicted value. The squared

difference makes it easy to penalize the model more for

a higher difference. So, a difference of 3 would result in

a loss of 9, but difference of 9 would return a loss of 81.

• The mathematical equivalent would be

n

k Actual Predicted

k=
å

-()
1

2

• Keras equivalent

keras.losses.mean_squared_error(y_actual,

 y_pred)

• Mean Absolute Error – The average absolute error

between actual and predicted.

• The mathematical equivalent would be

n

k

Actual Predicted
=
å -

1

• Keras equivalent

keras.losses.mean_absolute_error

(y_actual, y_pred)

• Similarly, few other variants are

• MAPE – Mean absolute percentage error

keras.losses.mean_absolute_percentage_error

• MSLE – Mean square logarithmic error

keras.losses.mean_squared_logarithmic_error

Chapter 2 Keras in aCtion

34

For categorical outcomes, your prediction would be for a class, like

whether a student will pass (1) or fail (0), whether the customer will make

a purchase or not, whether the customer will default on payment or not,

and so on. Some use cases may have multiple classes as an outcome, like

classifying types of disease (Type A, B, or C), classifying images as cats,

dogs, cars, horses, landscapes, and so on.

In such cases, the losses defined in the preceding cannot be used due

to obvious reasons. We would need to quantify the outcome of the class

as probability and define losses based on the probability estimates as

predictions.

A few popular choices for losses for categorical outcomes in Keras are

as follows:

• Binary cross-entropy: Defines the loss when the

categorical outcomes is a binary variable, that is, with

two possible outcomes: (Pass/Fail) or (Yes/No)

• The mathematical form would be

Loss = − [y * log(p) + (1−y) * log(1−p)]

• Keras equivalent

keras.losses.binary_crossentropy(y_

actual, y_predicted)

• Categorical cross-entropy: Defines the loss when the

categorical outcomes is a nonbinary, that is, >2 possible

outcomes: (Yes/No/Maybe) or (Type 1/ Type 2/… Type n)

• The mathematical form would be

Loss = -å
i

n

i iy y‘log2

• Keras equivalent

keras.losses.categorical_crossentropy

(y_actual, y_predicted)

Chapter 2 Keras in aCtion

35

 Optimizers
The most important part of the model training is the optimizer. Up

to this point, we have addressed the process of giving feedback to the

model through an algorithm called backpropagation; this is actually an

optimization algorithm.

To add more context, imagine the model structure that you have

defined to classify whether a student will pass or fail. The structure

created by defining the sequence of layers with the number of neurons,

the activation functions, and the input and output shape is initialized

with random weights in the beginning. The weights that determined the

influence of a neuron on the next neuron or the final output are updated

during the learning process by the network.

In a nutshell, a network with randomized weights and a defined

structure is the starting point for a model. The model can make a

prediction at this point, but it would almost always be of no value. The

network takes one training sample and uses its values as inputs to the

neurons in the first layer, which then produces an output with the defined

activation function. The output now becomes an input for the next layer,

and so on. The output of the final layer would be the prediction for the

training sample. This is where the loss function comes into the picture. The

loss function helps the network understand how well or poorly the current

set of weights has performed on the training sample. The next step for

the model is to reduce the loss. How does it know what steps or updates it

should perform on the weights to reduce the loss? The optimizer function

helps it understand this step. The optimizer function is a mathematical

algorithm that uses derivatives, partial derivatives, and the chain rule

in calculus to understand how much change the network will see in the

loss function by making a small change in the weight of the neurons. The

change in the loss function, which would be an increase or decrease, helps

Chapter 2 Keras in aCtion

36

in determining the direction of the change required in the weight of the

connection. The computation of one training sample from the input layer

to the output layer is called a pass. Usually, training would be done in

batches due to memory constraints in the system. A batch is a collection

of training samples from the entire input. The network updates its weights

after processing all samples in a batch. This is called an iteration (i.e., a

successful pass of all samples in a batch followed by a weight update in the

network). The computing of all training samples provided in the input data

with batch-by-batch weight updates is called an epoch. In each iteration,

the network leverages the optimizer function to make a small change to

its weight parameters (which were randomly initialized at the beginning)

to improve the end prediction by reducing the loss function. Step by step,

with several iterations and then several epochs, the network updates its

weights and learns to make a correct prediction for the given training

samples.

The mathematical explanation for the functioning of the optimizer

function was abstracted in a simple way for you to understand and

appreciate the background operations that happen in the DNN during

the training process. The in-depth math equations and the reasoning

for the optimization process are beyond the scope of this book. In case

you are supercurious about learning math and the actual process of the

optimization algorithm, I would recommend reading a chapter from the

book Pro Deep Learning with TensorFlow by Santanu Pattanayak (Apress,

2017). The book does an amazing job of explaining the math behind DL

with a very intuitive approach. I highly recommend this book to all PhD

students exploring DL.

Given that you have a fair understanding of the overall optimization

process, I would like to take a minute to discuss various optimization

algorithms available in Keras.

Chapter 2 Keras in aCtion

37

 Stochastic Gradient Descent (SGD)

SGD performs an iteration with each training sample (i.e., after the pass of

every training sample, it calculates the loss and updates the weight). Since

the weights are updated too frequently, the overall loss curve would be

very noisy. However, the optimization is relatively fast compared to others.

The formula for weight updates can be expressed in a simple way as

follows:

Weights = Weights – learning rate * Loss

Where learning rate is a parameter we define in the

network architecture.

Say, for learning rate =0.01

Keras provides SGD with

keras.optimizers.SGD(lr=0.01, momentum=0.0, decay=0.0,

nesterov=False)

For updates with every training sample, we would need to use batch_

size=1 in the model training function.

To reduce high fluctuations in the SGD optimizations, a better

approach would be to reduce the number of iterations by providing a

minibatch, which would then enable averaging the loss for all samples in

a batch and updating the weights at the end of the batch. This approach

has been more successful and results in a smoother training process. Batch

size is usually set in powers of 2 (i.e., 32, 64, 128, etc.).

 Adam

Adam, which stands for Adaptive Moment Estimation, is by far the most

popular and widely used optimizer in DL. In most cases, you can blindly

choose the Adam optimizer and forget about the optimization alternatives.

This optimization technique computes an adaptive learning rate for each

Chapter 2 Keras in aCtion

38

parameter. It defines momentum and variance of the gradient of the loss

and leverages a combined effect to update the weight parameters. The

momentum and variance together help smooth the learning curve and

effectively improve the learning process.

The math representation can be simplified in the following way:

Weights = Weights – (Momentum and Variance

combined)

Keras provides the Adam optimizer as

keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999,

epsilon=None, decay=0.0, amsgrad=False)

The parameters beta_1 and beta_2 are used in computing the

momentum and variance, respectively. The default values work quite

effectively and doesn’t need to be changed for most use cases.

 Other Important Optimizers

There are many other popular optimizers that can also be used for

different DL models. Discussing all of them would be beyond the scope of

this book. In the interest of keeping you well informed about the available

options, I would like to list a few of the other popular optimization

alternatives used and available within Keras:

• Adagrad

• Adadelta

• RMSProp

• Adamax

• Nadam

Chapter 2 Keras in aCtion

39

Each of the optimization techniques has its own pros and cons. A

major problem which we often face in DL is the vanishing gradient and

saddle point problem. You can explore these problems in more detail while

choosing the best optimizer for your problem. But for most use cases,

Adam always works fine.

 Metrics
Similar to the loss function, we also define metrics for the model in Keras.

In a simple way, metrics can be understood as the function used to judge

the performance of the model on a different unseen dataset, also called

the validation dataset. The only difference between metrics and the loss

function is that the results from metrics are not used in training the model

with respect to optimization. They are only used to validate the test results

while reporting.

A few available options for metrics in Keras are as follows:

• Binary Accuracy - keras.metrics.binary_accuracy

• Categorical Accuracy - keras.metrics.caetogrical_

accuracy

• Sparse Categorical Accuracy - keras.metrics.sparse_

categorical_accuracy

You can also define custom functions for your model metrics. Keras

provides you with the ability to easily configure a model with user-defined

metrics.

 Model Configuration
Now that we understand the most fundamental building blocks of a DNN

in Keras, we can take a look at the final model configuration step, which

orchestrates all the preceding components together.

Chapter 2 Keras in aCtion

40

Once you have designed your network, Keras provides you with an

easy one-step model configuration process with the ‘compile’ command.

To compile a model, we need to provide three parameters: an optimization

function, a loss function, and a metric for the model to measure

performance on the validation dataset.

The following example builds a DNN with two hidden layers, with

32 and 16 neurons, respectively, with a ReLU activation function. The

final output is for a binary categorical numeric output using a sigmoid

activation. We compile the model with the Adam optimizer and define

binary cross-entropy as the loss function and “accuracy” as the metric for

validation.

from keras.models import Sequential

from keras.layers import Dense, Activation

model = Sequential()

model.add(Dense(32, input_dim=10,activation = "relu"))

model.add(Dense(16,activation = "relu"))

model.add(Dense(1,activation = "sigmoid"))

model.compile(optimizer='Adam',loss='binary_crossentropy',

metrics=['accuracy'])

 Model Training
Once we configure a model, we have all the required pieces for the model

ready. We can now go ahead and train the model with the data. While

training, it is always a good practice to provide a validation dataset for us

to evaluate whether the model is performing as desired after each epoch.

The model leverages the training data to train itself and learn the patterns,

and at the end of each epoch, it will use the unseen validation data to make

predictions and compute metrics. The performance on the validation

dataset is a good cue for the overall performance.

Chapter 2 Keras in aCtion

41

For validation data, it is a common practice to divide your available

data into three parts with a 60:20:20 ratio. We use 60% for training, 20% for

validation, and the last 20% for testing. This ratio is not a mandate. You

have the flexibility to change the ratio as per your choice. In general, when

you have really large training datasets, say n>1MN samples, it is fine to take

95% for training, 2% for validation, and 3% for testing. Again, the ratio is a

choice you make based on your judgment and available data.

Keras provides a fit function for the model object to train with the

provided training data.

Here is a sample model invoking its fit method. At this point, it is

assumed that you have the model architecture defined and configured

(compiled) as discussed in the preceding.

model.fit(x_train, y_train, batch_size=64, epochs=3,

validation_data=(x_val, y_val))

We have a model being trained on a training dataset named x_train with

the actual labels in y_train. We choose a batch size of 64. Therefore, if there

were 500 training samples, the model would intake and process 64 samples

at a time in a batch before it updates the model weights. The last batch may

have <64 training sample if unavailable. We have set the number of epochs

to three; therefore, the whole process of training 500 sample in batches of 64

will be repeated thrice. Also, we have provided the validation dataset as x_val

and y_val. At the end of each epoch, the model would use the validation data

to make predictions and compute the performance metrics as defined in the

metrics parameter of the model configuration.

Now that we have all the pieces required for the model to be designed,

configured, and trained, let’s put all pieces of the puzzle together and see it

in action.

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, Activation

Chapter 2 Keras in aCtion

42

Generate dummy training dataset

np.random.seed(2018)

x_train = np.random.random((6000,10))

y_train = np.random.randint(2, size=(6000, 1))

Generate dummy validation dataset

x_val = np.random.random((2000,10))

y_val = np.random.randint(2, size=(2000, 1))

Generate dummy test dataset

x_test = np.random.random((2000,10))

y_test = np.random.randint(2, size=(2000, 1))

#Define the model architecture

model = Sequential()

model.add(Dense(64, input_dim=10,activation = "relu")) #Layer 1

model.add(Dense(32,activation = "relu")) #Layer 2

model.add(Dense(16,activation = "relu")) #Layer 3

model.add(Dense(8,activation = "relu")) #Layer 4

model.add(Dense(4,activation = "relu")) #Layer 5

model.add(Dense(1,activation = "sigmoid")) #Output

Layer

#Configure the model

model.compile(optimizer='Adam',loss='binary_crossentropy',metri

cs=['accuracy'])

#Train the model

model.fit(x_train, y_train, batch_size=64, epochs=3,

validation_data=(x_val,y_val))

Chapter 2 Keras in aCtion

43

The output while training the model is showcased in the following:

We can see that after every epoch, the model prints the mean training

loss and accuracy as well as the validation loss and accuracy. We can use

these intermediate results to make a judgment on the model performance.

In most large DL use cases, we would have several epochs for training. It is

a good practice to keep a track of the model performance with the metrics

we have configured at intervals to see the results after a few epochs. If the

results don’t seem in your favor, it might be a good idea to stop the training

and revisit the model architecture and configuration.

 Model Evaluation
In all of the preceding examples, we have looked into a specific portion of

the model development step or we have concluded with model training.

We haven’t discussed model performance so far. Understanding how

effectively your model is performing on an unseen test dataset is of

paramount importance.

Keras provides the model object equipped with inbuilt model

evaluation and another function to predict the outcome from a test

dataset. Let’s have a look at both of these using the trained model and

dummy test data generated in the preceding example.

The method provided by Keras for the sequential model is as shown in

the following:

evaluate(x=None, y=None, batch_size=None, verbose=1, sample_

weight=None, steps=None)

Chapter 2 Keras in aCtion

44

We provide the test data and the test labels in the parameters x and y.

In cases where the test data is also huge and expected to consume a

significant amount of memory, you can use the batch size to tell the Keras

model to make predictions batch-wise and then consolidate all results.

print(model.evaluate(x_test,y_test))

[0.6925005965232849, 0.521]

In the evaluate method, the model returns the loss value and all

metrics defined in the model configuration. These metric labels are

available in the model property metrics_names.

print(model.metrics_names)

['loss', 'acc']

We can therefore see that the model has an overall accuracy of 52%

on the test dataset. This is definitely not a good model result, but it was

expected given that we used just a dummy dataset.

Alternatively, you could use the predict method of the model and

leverage the actual predictions that would be probabilities (for this use

case, since binary classification):

#Make predictions on the test dataset and print the first 10

predictions

pred = model.predict(x_test)

pred[:10]

Output

Chapter 2 Keras in aCtion

45

This output can be used to make even more refined final predictions.

A simple example is that the model would use 0.5 as the threshold for the

predictions. Therefore, any predicted value above 0.5 is classified as 1 (say,

Pass), and others as 0 (Fail).

Depending on your use case, you might want to slightly tweak your

prediction for more aggressive correct prediction for 1 (Pass), so you might

choose a threshold at 0.6 instead of 0.5, or vice versa.

 Putting All the Building Blocks Together
I hope you can now make sense of the first DNN model we saw in the last

section of Chapter 1. Before understanding all the basic building blocks, it

would have been overwhelming to grasp the reasoning for the code used in

the model development.

Now that we have all the basic necessary ingredients ready, let’s look at

more tangible use case before we conclude this chapter. To do so, let’s take

a better dataset and see what things look like. Keras also provides a few

datasets to play with. These are real datasets and are usually used by most

beginners during their initial experiments with ML and DL.

For our experiment, let’s select a popular Keras dataset for developing

a model. We can start with the Boston House Prices dataset. It is taken

from the StatLib library, which is maintained at Carnegie Mellon

University. The data is present in an Amazon S2 bucket, which we can

download by using simple Keras commands provided exclusively for the

datasets.

#Download the data using Keras; this will need an active

internet connection

from keras.datasets import boston_housing

(x_train, y_train), (x_test, y_test) = boston_housing.load_

data()

Chapter 2 Keras in aCtion

46

The dataset is directly downloaded into the Python environment and is

ready to use. Let’s have a look at what the data looks like. We will use basic

Python commands to look at the type of data, its length and breadth, and a

preview of the content.

#Explore the data structure using basic python commands

print("Type of the Dataset:",type(y_train))

print("Shape of training data :",x_train.shape)

print("Shape of training labels :",y_train.shape)

print("Shape of testing data :",type(x_test))

print("Shape of testing labels :",y_test.shape)

Output

Type of the Dataset: <class 'numpy.ndarray'>

Shape of training data : (404, 13)

Shape of training labels : (404,)

Shape of testing data : <class 'numpy.ndarray'>

Shape of testing labels : (102,)

We can see that the training and test datasets are Python numpy

arrays. Numpy is a Python library to handle large multidimensional arrays.

We have 404 rows of data with 13 features in the training dataset and 102

rows with the same number of features in the test dataset. Overall, it’s

approximately an 80:20 ratio between train and test. We can further divide

the 402 rows of training data into 300 for training and 102 for validation.

Alright, the data structure and its shape look great. Let’s have a quick

look at the contents of the dataset. The preceding code showcased that

we have 13 columns in the data. To understand the actual column names,

we would need to refer to the data dictionary provided by CMU. You can

find more details about the dataset here: http://lib.stat.cmu.edu/

datasets/boston.

Chapter 2 Keras in aCtion

http://lib.stat.cmu.edu/datasets/boston
http://lib.stat.cmu.edu/datasets/boston

47

The description for the features in the data is showcased in the

following list. The last row in the list refers to the label or the actual house

price in our use case.

Column Name Description

CriM per capita crime rate by town

 Zn proportion of residential land zoned for lots over 25,000 sq. ft.

 inDUs proportion of nonretail business acres per town

 Chas Charles river dummy variable (= 1 if tract bounds river; 0

otherwise)

 noX nitric oxide concentration (parts per 10 million)

 rM average number of rooms per dwelling

 aGe proportion of owner-occupied units built prior to 1940

 Dis weighted distances to five Boston employment centers

 raD index of accessibility to radial highways

 taX full-value property tax rate per $10,000

 ptratio pupil-teacher ratio by town

 B 1000(Bk – 0.63)^2, where Bk is the proportion of blacks by

town

 Lstat % lower status of the population

 MeDV median value of owner-occupied homes in $1000’s

To look at the contents of the training dataset, we can use the

index-slicing option provided by Python’s numpy library for the numpy

n-dimensional arrays.

x_train[:3,:]

Chapter 2 Keras in aCtion

48

Output

array([[1.23247e+00, 0.00000e+00, 8.14000e+00, 0.00000e+00,

5.38000e-01, 6.14200e+00, 9.17000e+01, 3.97690e+00,

 4.00000e+00, 3.07000e+02, 2.10000e+01, 3.96900e+02,

1.87200e+01],

 [2.17700e-02, 8.25000e+01, 2.03000e+00, 0.00000e+00,

4.15000e-01, 7.61000e+00, 1.57000e+01, 6.27000e+00,

2.00000e+00, 3.48000e+02, 1.47000e+01, 3.95380e+02,

 3.11000e+00],

 [4.89822e+00, 0.00000e+00, 1.81000e+01, 0.00000e+00,

6.31000e-01, 4.97000e+00, 1.00000e+02, 1.33250e+00,

 2.40000e+01, 6.66000e+02, 2.02000e+01, 3.75520e+02,

 3.26000e+00]])

All columns have numeric values, so there is no need for data

transformation. Usually, once we have imported the dataset, we will need

to extensively explore the data and will almost always clean, process, and

augment it before we can start developing the models.

But for now, we will directly go ahead with a simple model and see

what the results look like.

import numpy as np

from keras.models import Sequential

from keras.layers import Dense, Activation

#Extract the last 100 rows from the training data to create the

validation datasets.

x_val = x_train[300:,]

y_val = y_train[300:,]

Chapter 2 Keras in aCtion

49

#Define the model architecture

model = Sequential()

model.add(Dense(13, input_dim=13, kernel_initializer='normal',

activation='relu'))

model.add(Dense(6, kernel_initializer='normal',

activation='relu'))

model.add(Dense(1, kernel_initializer='normal'))

Compile model

model.compile(loss='mean_squared_error', optimizer='adam',

metrics=['mean_absolute_percentage_error'])

#Train the model

model.fit(x_train, y_train, batch_size=32, epochs=3,

validation_data=(x_val,y_val))

Output

Train on 404 samples, validate on 104 samples

Epoch 1/3

404/404 [==============================] - 2s 4ms/step - loss:

598.8595 - mean_absolute_percentage_error: 101.7889 - val_loss:

681.4912 - val_mean_absolute_percentage_error: 100.0789

Epoch 2/3

404/404 [==============================] - 0s 81us/step - loss:

583.6991 - mean_absolute_percentage_error: 99.7594 - val_loss:

674.8345 - val_mean_absolute_percentage_error: 99.2616

Epoch 3/3

404/404 [==============================] - 0s 94us/step - loss:

573.6101 - mean_absolute_percentage_error: 98.3180 - val_loss:

654.3787 - val_mean_absolute_percentage_error: 96.9662

Chapter 2 Keras in aCtion

50

We have created a simple two-hidden-layer model for the regression

use case. We have chosen MAPE as the metric. Generally, this is not the

best metric to choose for studying model performance, but its advantage

is simplicity in terms of comprehending the results. It gives a simple

percentage value for the error, say 10% error. So, if you know the average

range of your prediction, you can easily estimate what the predictions are

going to look like.

Let’s now train the model and use the evaluate function to study the

results of the model.

results = model.evaluate(x_test, y_test)

for i in range(len(model.metrics_names)):

 print(model.metrics_names[i]," : ", results[i])

Output

102/102 [==============================] - 0s 87us/step

loss : 589.7658882889093

mean_absolute_percentage_error : 96.48218611174939

We can see that MAPE is around 96%, which is actually not a great

number to have for model performance. This would translate into our

model predictions at around 96% error. So, in general, if a house was

priced at 10K, our model would have predicted ~20K.

In DL, the model updates weight after every iteration and evaluates

after every epoch. Since the updates are quite small, it usually takes a fairly

higher number of epochs for a generic model to learn appropriately. To

test the performance once again, let’s increase the number of epochs to 30

instead of 3. This would increase the computation significantly and might

take a while to execute. But since this is a fairly small dataset, training with

30 epochs should not be a problem. It should execute in ~1 min on your

system.

Chapter 2 Keras in aCtion

51

#Train the model

model.fit(x_train, y_train, batch_size=32, epochs=30,

validation_data=(x_val,y_val))

Output

Train on 404 samples, validate on 104 samples

Epoch 1/1000

404/404 [==============================] - 0s 114us/step -

loss: 536.6662 - mean_absolute_percentage_error: 93.4381 - val_

loss: 580.3155 - val_mean_absolute_percentage_error: 88.6968

Epoch 2/1000

404/404 [==============================] - 0s 143us/step -

loss: 431.7025 - mean_absolute_percentage_error: 79.0697 - val_

loss: 413.4064 - val_mean_absolute_percentage_error: 67.0769

Skipping the output for in-between epochs.
(Adding output for only the last three epochs, i.e., 28 to 30)

Epoch 28/30

404/404 [==============================] - 0s 111us/step -

loss: 6.0758 - mean_absolute_percentage_error: 9.5185 - val_

loss: 5.2524 - val_mean_absolute_percentage_error: 8.3853

Epoch 29/30

404/404 [==============================] - 0s 100us/step -

loss: 6.2895 - mean_absolute_percentage_error: 10.1037 - val_

loss: 6.0818 - val_mean_absolute_percentage_error: 8.9386

Epoch 30/30

404/404 [==============================] - 0s 111us/step -

loss: 6.0761 - mean_absolute_percentage_error: 9.8201 - val_

loss: 7.3844 - val_mean_absolute_percentage_error: 8.9812

Chapter 2 Keras in aCtion

52

If we take a closer look at the loss and MAPE for the validation datasets,

we can see a significant improvement. It has reduced from 96% in the

previous example to 8.9% now.

Let’s have a look at the test results.

results = model.evaluate(x_test, y_test)

for i in range(len(model.metrics_names)):

 print(model.metrics_names[i]," : ", results[i])

Output

102/102 [==============================] - 0s 92us/step

loss : 22.09559840782016

mean_absolute_percentage_error : 16.22196163850672

We can see that the results have improved significantly, but there still

seems to be a significant gap between the MAPE for validation dataset

and the test dataset. As discussed earlier, this gap is an indicator that the

model has overfit, or in simple terms, has overcomplicated the process of

learning. We will look in detail at the steps to reduce overfitting in DNNs

in the next chapter for a bigger and better use case. For now, we have

successfully explored Keras on a real dataset (though a small one) and

used our learnings on the building blocks of DL in Keras.

 Summary
In this chapter, we explored Keras in depth with hands-on exercises as

well as contextual depth of topics. We studied the basic building blocks of

DL and its implementation in Keras. We looked at how we can combine

the different building blocks together in using Keras to develop DNN

models. In the next chapter, we will start exploring a real use case step

by step by exploring, cleaning, extracting, and applying the necessary

transformations to get the data ready for developing DL models.

Chapter 2 Keras in aCtion

53© Jojo Moolayil 2019
J. Moolayil, Learn Keras for Deep Neural Networks,
https://doi.org/10.1007/978-1-4842-4240-7_3

CHAPTER 3

Deep Neural Networks
for Supervised
Learning: Regression
In Chapters 1 and 2, we explored the topic of DL and studied how DL

evolved from ML to solve an interesting area of problems. We discussed the

need for DL frameworks and briefly explored a few popular frameworks

available in the market. We then studied why Keras is special and spent

some time playing around with its basic building blocks provided to develop

DNNs and also understood the intuition behind a DL model holistically. We

then put together all our learnings from the practical exercises to develop a

baby neural network for the Boston house prices use case.

Now that we have a fair understanding of the different DL building

blocks and the associated science, let’s explore a practical DNN for a

regression use case in this chapter.

 Getting Started
The evolution of AI as a field and the increasing number of researchers

and practitioners in the field have created a mature and benevolent

community. Today, it’s fairly easy to access tools, research papers, datasets,

and in fact even infrastructure to practice DL as a field. For our first use

54

case, we would need a dataset and a business problem to get started. Here

are a few popular choices.

• Kaggle: www.kaggle.com/

Kaggle is the world’s largest community of data

scientists and machine learners. It started off as an

online ML competition forum and later evolved into

a mature platform that is highly recommended for

every individual in data science. It still hosts ML

competitions and also provides ML datasets, kernels

or community-developed scripts for solving ML

problems, ML jobs, and a platform to develop and

execute ML models for the hosted competitions and

public datasets.

• US Government Open Data: www.data.gov/

Provides access to thousands of datasets on

agriculture, climate, finance, and so on.

• Indian Government Open Data: https://data.gov.in/

Provides open datasets for India’s demography,

education, economy, industries, and so on.

• Amazon Web Service Datasets: https://registry.
opendata.aws/

Provides a few large datasets from NASA NEX and

Openstreetmap, the Deutsche Bank public dataset,

and so on.

• Google Dataset Search: https://toolbox.google.
com/datasetsearch

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

http://www.kaggle.com/
https://www.data.gov/
https://data.gov.in/
https://registry.opendata.aws/
https://registry.opendata.aws/
https://toolbox.google.com/datasetsearch
https://toolbox.google.com/datasetsearch

55

This is relatively new and still in beta (at the

writing of this book), but very promising. It

provides access to thousands of public datasets for

research experiments with a simple search query.

It aggregates datasets from several public dataset

repositories.

• UCI ML Repository: https://archive.ics.uci.edu/ml/

Another popular repository to explore datasets for

ML and DL.

We will use the Kaggle public data repository for getting datasets for

our DL use case. We will use the Rossmann Store sales dataset, which is

available at www.kaggle.com/c/rossmann-store-sales/data. This was

a very popular competition hosted a couple of years ago and has a fairly

large dataset. You would need to register with Kaggle and accept the

competition rules to be able to download the data. In case you have not

already registered with Kaggle, I would highly recommend doing it. Every

data science professional should keep a close watch on Kaggle for its great

learning, experimentation, and discussion platform for data science.

From the datasets, you need only train.csv and store.csv, which are

around 38MB and 45KB, respectively. Please download the data and keep

it ready in a separate folder.

 Problem Statement
Rossmann is one of the largest drugstore chains in Germany, with

operations across Europe. As of 2018, they have well over 3,900 stores in

Europe with an annual turnover of 9 billion euros. Our task is to predict the

sales for a few identified stores on a given day.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

https://archive.ics.uci.edu/ml/
https://www.kaggle.com/c/rossmann-store-sales/data

56

Now, let’s look at the problem from a pure business perspective.

The first question you would need to ask is: who is the end stakeholder

for the business problem and how is he going to utilize the solution? Well,

given that this was an online data science competition, we won’t have a

validated answer for this question, but we can more or less figure out what

one would look like.

First, we need to reframe the problem statement in a slightly strategic

way to be able to represent the problem statement as a design solution.

There are several problem-solving frameworks recognized by the market

to help define and represent a problem statement in a standard way

to be more effective in solving the problem. McKinsey’s “Situation–

Complication–Resolution” (SCR) and Mu Sigma Inc.’s “Situation

Complication Question” (SCQ) are among the most popular frameworks.

We will leverage one of the aforementioned frameworks to represent our

problem statement in a more effective and concise way. But let us first

understand why this would be important.

 Why Is Representing a Problem Statement
with a Design Principle Important?
Most large, complex problems need detailed design, peer reviews,

validation of approach and strategy, a ton of brainstorming, and probably

even a small proof of concept before getting started. Enterprise software

development is a classic example. You would have a team defining the

business requirements and documenting them for future reference,

designing a high-level diagram followed by a low-level design and

eventually detailing the specifics for each software component and how

the end solution would look. At any point in time, if a new engineer joins

the team to collaborate, the design documents, approach, and business

requirements would help him understand the larger picture without the

need for individual discussions. Also, at any point in time the design and

approach help in the smooth execution of the overall objective.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

57

Problems in data science and ML/DL need a similar approach before

any work is started. While it may not be possible for the entire solution to

be drafted at the beginning, given that the entire process is iterative and

exploratory, we could still do a better job of representing the problem and

a high-level approach to the solution. To understand a problem definition

framed with design principles, let’s have a look at one.

 Designing an SCQ
The SCQ framework designed and published by Mu Sigma Inc. is

a popular framework used to represent a problem in consulting

companies. It divides the problem into three simple groups, expands

each group with the right question, and finally connects with the

desired future state.

The four components can be defined as follows:

• Desired Future State

The end state we want to reach when the problem is

solved.

• Situation

A brief narrative of the overall problem statement

that details the problem faced by the stakeholder.

This is usually wrapped in two lines at most.

• Complication

Defines the major roadblock that hinders the

stakeholder’s transition from the current situation to

the desired future situation.

• Question

The key question that needs to be answered in order

to mitigate the roadblock.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

58

For our use case, we can define the SCQ as showcased in the following

illustration.

With the SCQ, we now have a more holistic understanding of the

problem statement. We know that there is a marketing team designing

store-specific promotional campaigns to target customers and increase the

overall revenue while using resources more judiciously. Therefore, they

don’t want to provide promotions to stores that would be outperforming

anyway irrespective of the promotions. If they have visibility into estimated

future sales, they can classify a few stores as “low,” “medium,” and “high”

based on a defined threshold for the required discount and promotions to

achieve the expected targets.

The team hit a roadblock, as they have no means to estimate the future

sales for a given store. Therefore, to solve the problem, we ask the following

question: “How can we estimate future sales for a store?” Given that the

roadblock has been overcome, the marketing team now has the means

to study and estimate future store sales and thus design more effective

promotional campaigns.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

59

 Designing the Solution
The answer to the key question of the business problem is probably easy to

guess now. We are going to develop an ML model that can learn the sales

for a store as a function of internal, external, and temporal (time-based)

attributes and then predict future sales given the attributes available.

This might seem like a time-series forecasting problem, a scenario

where we purely define sales or a similar target as a function of time (i.e.,

considering historic weekly or daily sales and projecting the future data

points by simulating the trend and patterns). But this is feasible only for

scenarios where we have to make estimates for just 1 store. For 1000 stores,

manually studying weekly sales and developing models to estimate future

sales is a laborious and mostly nonviable solution. Alternatively, we can

approach this problem using a global time-series model (i.e., just develop

one single model that will be used for all stores). While this is definitely

possible, the results of the forecast will add no value to the stakeholder, as

it will most likely be way off the mark.

We could instead develop a more effective model by transforming

this problem from a time-series forecasting problem into a regression

problem. In case this is difficult to comprehend, let’s make it simple using

an example. The data available for any use case can be classified as time-

series or cross-sectional. In time-series data, every training sample (i.e.,

one row of data) has a relationship with another sample associated with

the time sequence. Daily or weekly sales are an appropriate example

for time-series data, as one week’s sales have a relationship with those

of the previous weeks. In cross-sectional data, each training sample is

independent and has no time-based relationship with other samples. Ad

clicks by customers or transactions made by credit customers through

a credit card provider are examples of cross-sectional data. There isn’t a

time-based relation between the two samples.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

60

In our use case, we can consider the data in way that it can be

represented as

sales as a function of store + other attributes

Instead of a time-series based model defined as

Sales as a function of time

In this way, we can define a model that can learn the patterns from various

stores and other external attributes (which we will explore with the data) to

predict the expected sales. The process will be clear as we explore the data

and get closer to model development. Let us now get started by exploring

the data.

 Exploring the Data
I hope you have already downloaded the dataset from the Kaggle link after

registering an account and accepting the competition rules. In case you

have not, here are the steps in detail:

 1. Go to Kaggle’s homepage: www.kaggle.com

 2. Create a new account using “Signup” or sign in

using an existing account.

Go to Rossmann Store Sales Competition:

www.kaggle.com/c/rossmann-store-sales/data

 3. Navigate to the middle of the page to find the

“Download All” option. You will get a Competition

Rules page, which you will have to read and then

accept the conditions. Once they are accepted, the

download will be available.

 4. Unzip and move the downloaded datasets to a new

folder for the exercise.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

https://www.kaggle.com/
https://www.kaggle.com/c/rossmann-store-sales/data

61

There are two important files that you need:

• train.csv

• store.csv

Once the data is ready, we can get started with Python to explore

and analyze the data. You can open Jupyter Notebooks, which is already

installed with Anaconda as discussed in Chapter 2. Please use the

command 'jupyter notebook' in your terminal or command prompt

and press Enter; then, Jupyter should open in your default browser. You

can create a new notebook for our DL exercise. Alternatively, you can also

use any Python IDE or Spyder IDE from Anaconda; however, Jupyter is

highly recommended.

To explore data, we need basic Python commands. We will use the lazy

programming approach to learn data exploration with Python; that is, we

will discuss the nuances of a code block or a new package as and when we

encounter it. In case you are new to Python, just reading through the code

blocks along with the comments and then going through the explanation

for the code block should suffice.

Let us first import the data into our system to start analyzing. The

following code snippet imports the Python package ‘pandas’, which

provides readily available functions to import, explore, manipulate,

transform, visualize, and also export data in the required forms.

import pandas as pd

df = pd.read_csv("/Users/jojomoolayil/Book/Ch3/Data/train.csv")

The data is imported into the variable df. Since Python is object

oriented, we can now use the pandas-associated functions as the method

of the object.

Once we have the data imported, the first thing we need to explore

is the length, breadth, and type of data. The following snippet prints the

shape of the data as length × breadth and then showcases the first five rows

of the dataset.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

62

print("Shape of the Dataset:",df.shape)

#the head method displays the first 5 rows of the data

df.head(5)

Output

Shape of the Dataset: (1017209, 9)

Similarly, let us import the second dataset, store.csv, and have a look at

its length, breadth, and the first 5 rows.

store = pd.read_csv("/Users/jojomoolayil/Book/Ch3/Data/store.csv")

print("Shape of the Dataset:",store.shape)

#Display the first 5 rows of data using the head method of

pandas dataframe

store.head(5)

Output

Shape of the Dataset: (1115, 10)

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

63

As you can see, the train dataset has 1,017,209 rows and 9 columns.

The head method showcases the first 5 rows of the dataframe, and we

can have a look at the contents in the data by glancing through the self-

explanatory column names. In the train dataset, we have data for stores on

different days. We have the total sales for the particular day and a couple of

additional attributes.

Likewise, the store data has 1,115 rows and 10 columns of data. It gives

us additional store attributes that describe store features like assortment

type, presence of competition, and promotion-related attributes.

 Looking at the Data Dictionary
Let us have a look at the data dictionary provided in the competition page

on Kaggle. In case you missed it, you can read through some definitions

here.

• Store: a unique ID for each store

• Sales: the turnover for a given day (our target y

variable)

• Customers: the number of customers on a given day

• Open: an indicator for whether the store was open:

0 = closed, 1 = open

• StateHoliday: indicates a state holiday. Normally

all stores, with few exceptions, are closed on state

holidays. Note that all schools are closed on public

holidays and weekends. a = public holiday, b = Easter

holiday, c = Christmas, 0 = none

• SchoolHoliday: indicates if the (Store, Date) was

affected by the closure of public schools

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

64

• StoreType: differentiates between four different store

models: a, b, c, d

• Assortment: describes an assortment level: a = basic,

b = extra, c = extended

• CompetitionDistance: distance in meters to the

nearest competitor store

• CompetitionOpenSince[Month/Year]: gives the

approximate year and month of the time the nearest

competitor was opened

• Promo: indicates whether a store is running a promo

on that day

• Promo2: Promo2 is a continuing and consecutive

promotion for some stores: 0 = store is not

participating, 1 = store is participating

• Promo2Since[Year/Week]: describes the year and

calendar week when the store started participating in

Promo2

• PromoInterval: describes the consecutive intervals

at which Promo2 is started, naming the months the

promotion is started anew (e.g., “Feb, May, Aug, Nov”

means each round starts in February, May, August, and

November of any given year for that store)

To have all the data points together, we need to create one single

dataframe with the store and promotion features. We can achieve this by

joining the two dataframes on the ‘store’ column, which represents the

store ID. Pandas provides a ‘merge’ function that is analogous to the join

statement in SQL. We can perform left, right, inner, and full outer joins on

one or more dataframes using one or more columns as the joining key.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

65

The following code snippet joins the train and store dataframe to

create a new dataframe.

df_new = df.merge(store,on=["Store"], how="inner")

print(df_new.shape)

Output

(1017209, 18)

The shape shows us that we have all the columns from the two

dataframes in one unified dataframe. A simple check on the number of

rows, which in our case is consistent, helps us understand that the join

worked in the expected way.

Now that we have the data in a unified form, let us start exploring the

dataset to understand a few important questions like the following: How

many stores do we have the data for? How long do we have the data for?

What do the average sales for a day look like? are the stores very different

from each other in daily sales? Let’s find out.

We will start by finding the number of unique stores in the data, the

number of unique days for which we have data, and the average sales for

all stores.

print("Distinct number of Stores :", len(df_new["Store"].

unique()))

print("Distinct number of Days :", len(df_new["Date"].

unique()))

print("Average daily sales of all stores : ",round(df_new

["Sales"].mean(),2))

Output

Distinct number of Stores : 1115

Distinct number of Days : 942

Average daily sales of all stores : 5773.82

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

66

We can see that there are in total 1,115 unique stores with data for 942

unique days, with an average daily sale of 5,773.

The unique method of the pandas dataframe returns the list of unique

elements for the selected column, and the len function returns the total

number of elements in the list. The mean method of the dataframe returns

the average for the selected column, in our case the sales.

As you probably have noticed, playing around with Python is extremely

simple. For almost every mainstream task that can be performed on

data, pandas provides a simple method that can be leveraged with a few

parameters. Let’s continue exploring the dataset to understand the other

columns.

 Finding Data Types
We need to know what kind of data type each element in the dataframe

has. So far, we have only seen the actual content in the dataset; a column

which appears numerical might internally be stored as a character. Let’s

take a look at the data type of each column in the final merged dataset.

df_new.dtypes

Output

Store int64

DayOfWeek int64

Date object

Sales int64

Customers int64

Open int64

Promo int64

StateHoliday object

SchoolHoliday int64

StoreType object

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

67

Assortment object

CompetitionDistance float64

CompetitionOpenSinceMonth float64

CompetitionOpenSinceYear float64

Promo2 int64

Promo2SinceWeek float64

Promo2SinceYear float64

PromoInterval object

dtype: object

We see a mix of data types here, mostly int and the rest as object or

float. Object in Python is a form of the character data type. Technically, we

have to understand each and very column or feature in the dataset to be

able to develop effective models. In model development, the majority of

the time is consumed in data engineering, cleansing, and exploring.

 Working with Time
We now have a fair understanding of the Store column; let’s have a look at

the DayOfWeek feature.

df_new["DayOfWeek"].value_counts()

Output

5 145845

4 145845

3 145665

2 145664

7 144730

6 144730

1 144730

Name: DayOfWeek, dtype: int64

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

68

As we would expect, we can see seven distinct values, with similar

numbers of records in each, for the “day of the week” feature. Given that

we already have the date as a feature, we could have directly used the date

column to create the day of the week and also create a few other features.

Let’s create additional features that will help our model learn patterns

better. We will create the week number, month, day, quarter, and year as

features from the date variable. Similarly, since we are already creating

time-related features, we can add a new feature based on climate and

seasons. Considering that the stores are in Europe, we can refer to the

standard season cycles and create a new season feature with values of

Spring, Summer, Fall, and Winter. Pandas provides easy-to-use functions

to extract date-related features; the season-related feature can be created

with a simple ‘if else’ equivalent convention.

#We can extract all date properties from a datetime datatype

import numpy as np

df_new['Date'] = pd.to_datetime(df_new['Date'], infer_datetime_

format=True)

df_new["Month"] = df_new["Date"].dt.month

df_new["Quarter"] = df_new["Date"].dt.quarter

df_new["Year"] = df_new["Date"].dt.year

df_new["Day"] = df_new["Date"].dt.day

df_new["Week"] = df_new["Date"].dt.week

df_new["Season"] = np.where(df_new["Month"].isin([3,4,5]),"Spring",

 np.where(df_new["Month"].isin([6,7,8]),

"Summer",

 np.where(df_new["Month"].isin

([9,10,11]),"Fall",

 np.where(df_new["Month"].isin

([12,1,2]),"Winter","None"))))

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

69

#Using the head command to view (only) the data and the newly

engineered features

 print(df_new[["Date","Year","Month","Day","Week","Quarter",

"Season"]].head())

Output

 Date Year Month Day Week Quarter Season

0 2015-07-31 2015 7 31 31 3 Summer

1 2015-07-30 2015 7 30 31 3 Summer

2 2015-07-29 2015 7 29 31 3 Summer

3 2015-07-28 2015 7 28 31 3 Summer

4 2015-07-27 2015 7 27 31 3 Summer

 Predicting Sales
The next feature in the list is the Sales column. This is our target variable

(i.e., we are developing the model to predict the variable).

#Import matplotlib, python most popular data visualizing

library

import matplotlib.pyplot as plt

%matplotlib inline

#Create a histogram to study the Daily Sales for the stores

plt.figure(figsize=(15,8))

plt.hist(df_new["Sales"])

plt.title("Histogram for Store Sales")

plt.xlabel("bins")

plt.xlabel("Frequency")

plt.show()

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

70

Output

The histogram helps us understand the distribution of the data at a

high level. From the preceding plot, we can see that the data range is from

0 to 40,000, but there is barely any data after 20,000. This indicates that

most of the stores have sales in the range 0–20,000, and just a few stores

have sales greater than 20,000. It might be worthwhile to remove these

outliers, as it helps the model learn better.

 Exploring Numeric Columns
Moving on, we have few more numeric columns to explore. To save

time, we can use the hist function provided within pandas. Pandas also

provides a plotting functionality by internally encompassing matplotlib.

The following command helps us visualize a histogram for all numeric

columns within the dataset.

#Use the histogram function provided by the Pandas object

#The function returns a cross-tab histogram plot for all

numeric columns in the data

df_new.hist(figsize=(20,10))

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

71

Output

Let’s analyze the results from the histogram showcased in the

preceding illustration. We can see that the features Promo, Promo2, School

Holiday, and Open are actually binary categorical features: they represent

two possible values similar to gender: Male or Female. Therefore, these

are actually categorical features but already encoded as numeric columns.

This is great; we won’t need to further process them, as DL models

understand only numeric values.

Promo2 is well distributed between the two distinct values, whereas

Promo has more records for ‘1’ and Open has most of the store records

as ‘1’. The distribution between the values for ‘Open’ makes sense, as the

stores will be open for most days except state holidays.

Customer numbers range from 0 to 2,000 for most stores. A few stores

have as many as 7000 daily customers, but these are outliers and we might

need to fix them before modeling.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

72

The next set of numeric variables are Promo2SinceWeek and

Promo2SinceYear; these show a relatively well-distributed feature. The rest

of the histograms are pretty much self-explanatory.

We have missed checking on one important aspect: is there any

missing data in the dataset? The preceding plots usually don’t account for

missing values; instead, they exclude the null values in the plot.

Let’s have a look at the number of missing data points in each column

(if any) in its associated percentage form.

The isnull() command for the dataframe returns a matrix with the

truth value for all data points, whether it is null or not. Passing this output

into the sum function counts the number of nulls within each group.

We have further divided this number by the total number of rows and

multiplied it by 100 to get the final number in percentage form.

df_new.isnull().sum()/df_new.shape[0] * 100

Output

Store 0.000000

DayOfWeek 0.000000

Date 0.000000

Sales 0.000000

Customers 0.000000

Open 0.000000

Promo 0.000000

StateHoliday 0.000000

SchoolHoliday 0.000000

StoreType 0.000000

Assortment 0.000000

CompetitionDistance 0.259730

CompetitionOpenSinceMonth 31.787764

CompetitionOpenSinceYear 31.787764

Promo2 0.000000

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

73

Promo2SinceWeek 49.943620

Promo2SinceYear 49.943620

PromoInterval 49.943620

Month 0.000000

Quarter 0.000000

Year 0.000000

Day 0.000000

Week 0.000000

dtype: float64

The highlighted rows showcase the high number of missing data

points in the respective columns. We can see that Promo2SinceWeek,

Promo2SinceYear, PromoInterval, CompetitionOpenSinceMonth, and

CompetitionOpenSinceYear have over 30% null values. This is a big

loss and there is nothing much we can do to fix this. As a rule of thumb,

if there is a loss of anything between 0% and 10%, we can make a few

attempts to fill the missing points and use the feature. But, 30% technically

becomes beyond the usable range. On the other hand, we can see

CompetitionDistance has around 0.25% missing values. This would much

easier to handle and fix.

There are several ways we can treat missing data points. The most

common methods, like replace with mean and replace with mode, are easy

to use and work relatively well. However, this would completely depend on

your feature. If there is a 2% loss in a very crucial feature, you might want to

leverage a better estimation approach to fill in the gaps. Popular techniques

in such scenarios are clustering for missing value treatment, developing

smaller regression models for estimating the missing values, and so on.

For now, in this use case, we will use the mode to fill in the gaps where

we have missing values. This is as simple as finding the mode (the most

frequent value in the columns) for the column, ignoring the nulls and

replacing all nulls with the mode. The following code snippet showcases

the approach in Python.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

74

#Replace nulls with the mode

df_new["CompetitionDistance"]=df_new["CompetitionDistance"].

fillna(df_new["CompetitionDistance"].mode()[0])

#Double check if we still see nulls for the column

df_new["CompetitionDistance"].isnull().sum()/df_new.shape[0] * 100

Output

0.0

 Understanding the Categorical Features
Now that we have a basic understanding of all numeric features, let us

now have a look at the categorical features. All in all, we have StoreType,

Assortment, and the newly created Season feature as the categorical

features. Though ‘Open’, ‘Promo’, ‘Promo2’, and so on are binary categorical

variables, they have been stored as numeric values and already have been

showcased in the histogram for our study. Let’s now spend some time

with the remaining three features. The best way to study a categorical

variable is to study the impact on the target variable from its individual

classes. We can do this by plotting the mean sales across different values of

the classes in the feature. To accomplish this, we can leverage “seaborn,”

another powerful and easy-to-use Python visualization library, similar to

matplotlib but providing much more beautiful visuals.

import seaborn as sns #Seaborn is another powerful

visualization library for Python

sns.set(style="whitegrid")

#Create the bar plot for Average Sales across different Seasons

ax = sns.barplot(x="Season", y="Sales", data=df_new)

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

75

#Create the bar plot for Average Sales across different

Assortments

ax = sns.barplot(x="Assortment", y="Sales", data=df_new)

#Create the bar plot for Average Sales across different Store

Types

ax = sns.barplot(x="StoreType", y="Sales", data=df_new)

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

76

As you can see, the seaborn package has internally calculated the

average sales across its classes for the provided categorical column and

displayed a beautiful bar plot showcasing the relationship with our

target variable. We can change the aggregation function to a different

one if required; this can be changed by using the ‘estimator’ parameter

within the barplot function. Sales across seasons barely seem to

differ; however, there seems to be an increasing trend for sales across

assortments. Stores with assortment “b” generally have the highest sales.

Store type also shows a unique relationship with sales across store types.

We can see fairly higher sales for “b” store types also. However, before we

conclude our observations, there is one more sanity check required to

validate these hypotheses. What if the number of stores in the different

types mentioned in the preceding is disproportionate or skewed?

In such a scenario, our observation might be flawed. To cement our

understanding about the observation, we can simply check the number

of data points across each category using the same barplot function with

one additional parameter setting. We will use a new aggregation function

to showcase the counts as the metric for bar charts. The following code

snippet visualizes the bar plots for the same set of categorical variables

we studied earlier, albeit for counts.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

77

ax = sns.barplot(x="Season", y="Sales", data=df_new,

estimator=np.size)

ax = sns.barplot(x="Assortment", y="Sales", data=df_new,

estimator=np.size)

ax = sns.barplot(x="StoreType", y="Sales", data=df_new,

estimator=np.size)

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

78

We can notice that the distribution of data points across different

classes within a category is skewed. A simple check on StoreType and

Assortment reveals that b has a significantly lower number of stores or

data points in the dataset. Therefore, our initial understanding of the

relationships observed is not true.

So, given that we have explored the length, breadth, content, nature,

and summary of the dataset and further studied the continuous (numeric)

as well as categorical features individually to get a good sense of the data,

we can now proceed to prepare the data for developing DL models.

 Data Engineering
As already mentioned, DL models understand only numeric data.

Therefore, all categorical features stored as text columns need to be

converted to a one-hot encoded form for the model training data.

One-hot encoding is a simple process of representing a categorical

column as an expanded binary labeled matrix. So, a categorical feature

with three distinct values, say “Class A,” “Class B,” and “Class C,” can be

represented with three columns instead of one, where each column would

represent a binary flag for an individual category value. This is further

summarized in the following example.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

79

In our dataset, we have three categorical variables that need

transformation; they are Season, Store Type, and Assortment. However,

in the context of categorical variables, the day of the week, month, day,

quarter, and in fact the store ID can also be defined as categorical. This

may seem counterintuitive at first go, but in reality, these features have

a definite number of distinct classes; for example, the day of the week

can be a value only between 1 and 7. Representing them as just a column

with a number might be a bad idea in cases where there are significant

differences expected on different classes. For example, sales on Sunday

and Monday are completely different, but internally if Sunday = 0 and

Monday = 1, Tuesday = 2 and so on, a step increase from Sunday to

Monday is not the same as a step increase from Monday to Tuesday. In

that context, it is a good practice to represent a categorical column in its

one-hot encoded version. But where do we stop? There are cases where

there are a finite but very large number of classes for a feature, say 1,000

as for the store number in our example. Will it be useful to represent store

number as 1,000 features or just as 1 feature with numeric values?

The answer to this is not straightforward. The best case would

definitely be to represent the store number in its one-hot encoded version,

but that brings in a huge problem with the size of the data. After expanding

all necessary columns, we might have a training dataset with ~1,200 wide

columns and 1 million rows. This would be a dataset of 10GB. Developing

a model with training data of this size might be a challenge in a normal

machine with limited RAM.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

80

To overcome this dilemma, you can revert to a simple rule of thumb:

if you have good hardware resources (GPU, RAM, and computing power),

go ahead with one-hot encoded transformation. But if your resources

are limited, transform only those that seem most important and have a

fairly small number of distinct classes. Then later, iteratively validate if

the experiment was effective with model performance results. If there

is a serious trade-off, you might need to reconsider the training data

augmentation and the hardware infrastructure to use.

In this use case, we will start with treating Season, Assortment, Month,

Year, Quarter, DayOfWeek, and StoreType in one-hot encoded form and

keep aside Day, Week, and Store as continuous for the time being. We will

revisit this after we build a few models and study their performance.

To transform a categorical column into a one-hot encoded version,

Python provides the preprocessing module in the sklearn package with

rich and easy-to-use functions. The following code snippet engineers the

training dataframe into the final required form for model development.

#Define a variable for each type of feature

from sklearn.preprocessing import LabelEncoder

from sklearn.preprocessing import OneHotEncoder

target = ["Sales"]

numeric_columns = ["Customers","Open","Promo","Promo2",

"StateHoliday","SchoolHoliday","CompetitionDistance"]

categorical_columns = ["DayOfWeek","Quarter","Month","Year",

"StoreType","Assortment","Season"]

#Define a function that will intake the raw dataframe and the

column name and return a one hot encoded DF

def create_ohe(df, col):

 le = LabelEncoder()

 a=le.fit_transform(df_new[col]).reshape(-1,1)

 ohe = OneHotEncoder(sparse=False)

 column_names = [col+ "_"+ str(i) for i in le.classes_]

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

81

return(pd.DataFrame(ohe.fit_transform(a),columns =column_names))

#Since the above function converts the column, one at a time

#We create a loop to create the final dataset with all features

temp = df_new[numeric_columns]

for column in categorical_columns:

 temp_df = create_ohe(df_new,column)

 temp = pd.concat([temp,temp_df],axis=1)

The output of the preceding data engineering step can be double-

checked with the shape command and the distinct data types within the

dataset. If there is any noninteger column, we will be left with a final step

of converting it into numeric before moving ahead.

print("Shape of Data:",temp.shape)

print("Distinct Datatypes:",temp.dtypes.unique())

Output

Shape of Data: (1017209, 44)

Distinct Datatypes: [dtype('int64') dtype('O')

dtype('float64')]

As you can see, the shape of the data looks good with the new one-

hot encoded form of data, but there is at least one column that has object

as the data type within our dataframe. Let’s check which column is still

pending for data treatment.

print(temp.columns[temp.dtypes=="object"])

Output

Index(['StateHoliday'], dtype='object')

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

82

We can see that there is just one column that we missed for data

treatment. Let’s have a look at the contents of the feature before converting

it to numeric or one-hot encoded form.

temp["StateHoliday"].unique()

Output

array(['0', 'a', 'b', 'c', 0], dtype=object)

The feature seems to have incorrect values. Ideally, StateHoliday

should have either a 0 or 1 as the possible values to indicate whether it is a

holiday or not. Let’s repair the feature by replacing all values of “a,” “b,” and

“c” with 1 and the rest with 0, therefore converting the variable as numeric.

temp["StateHoliday"]= np.where(temp["StateHoliday"]== '0',0,1)

#One last check of the data type

temp.dtypes.unique()

Output

array([dtype('int64'), dtype('float64')], dtype=object)

Now that we have all columns in the integer form, let’s proceed to build

our training and test datasets. As discussed earlier, we should divide train,

validation, and test datasets in a ratio of 60:20:20. Given that we have a

fairly large training dataset, we reduce the size of validation if required to

keep the majority for training. This step is not necessary, but it is an option.

We will first create train and test datasets with an 80:20 ratio. Then,

we will use the train dataset to further split into training and validation

datasets at a 90:10 ratio. These ratios can be further adjusted based on your

judgment. We can use the train_test_split function provided by the

scikit-learn package to divide the datasets.

from sklearn.cross_validation import train_test_split

#Create train and test dataset with an 80:20 split

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

83

x_train, x_test, y_train, y_test = train_test_split(temp,

df_new[target],test_size=0.2,random_state=2018)

#Further divide training dataset into train and validation

dataset with an 90:10 split

x_train, x_val, y_train, y_val = train_test_split(x_train,

y_train,test_size=0.1,random_state=2018)

#Check the sizes of all newly created datasets

print("Shape of x_train:",x_train.shape)

print("Shape of x_val:",x_val.shape)

print("Shape of x_test:",x_test.shape)

print("Shape of y_train:",y_train.shape)

print("Shape of y_val:",y_val.shape)

print("Shape of y_test:",y_test.shape)

Output

Shape of x_train: (732390, 44)

Shape of x_val: (81377, 44)

Shape of x_test: (203442, 44)

Shape of y_train: (732390, 1)

Shape of y_val: (81377, 1)

Shape of y_test: (203442, 1)

The shapes of all the required datasets look to be in good shape. Now

that we have the dataset in the required form for the model development

and training, we need to design the DNN architecture. Unlike the previous

small networks, we now need improved architectures for the model to

appropriately learn and predict. Also, we will later need to measure the

model performance and validate if it is performing well.

How do we determine whether our model is performing well?

This is an important question to tackle even before we begin designing

the model performance. For each model we will develop, we will need to

create a baseline score as the bare minimum score to consider the model

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

84

useful. In most cases, we assume what predictions can be made without a

model. For a regression model, if we assume the mean value of sales in the

training dataset to be the prediction for all samples in the test dataset, we

would have a basic benchmark score. The DL model should at least score

better than this score to be considered as useful.

 Defining Model Baseline Performance
To define the model baseline performance, we should consider the mean

of the target variable in the training dataset as the prediction for all test

samples. The metric we shall use to perform this test is MAE (mean

absolute error).

#calculate the average score of the train dataset

mean_sales = y_train.mean()

print("Average Sales :",mean_sales)

Output

Average Sales : Sales 5773.099997

dtype: float64

Now, if we assume the average sales as the prediction for all samples in

the test dataset, what does the MAE metric look like?

#Calculate the Mean Absolute Error on the test dataset

print("MAE for Test Data:",abs(y_test - mean_sales).mean()[0])

Output

MAE for Test Data: 2883.587604303215

So, our baseline performance is 2,883.58.

If our DL model doesn’t deliver results better (i.e., lower) than the

baseline score, then it would barely add any value.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

85

 Designing the DNN
While designing a DNN, we need to consider a few important aspects.

We have limited computing power and time, so the luxury of testing all

possible combinations of architectures is simply ruled out. DL models

consume significantly larger amounts of data and computing time for

training. We need to judiciously design network architectures that can

learn as quickly as possible.

Here are a few guidelines.

• Rule 1: Start with small architectures.

In the case of DNNs, it is always advised to

start with a single-layer network with around

100–300 neurons. Train the network and measure

performance using the defined metrics (while

defining the baseline score). If the results are not

encouraging, try adding one more layer with the

same number of neurons and repeating the process.

• Rule 2: When small architectures (with two layers)
fail, increase the size.

When the results from small networks are not

great, you need to increase the number of neurons

in layers by three to five times (i.e., around 1,000

neurons in each layer). Also, increase regularization

(to be covered in depth in Chapter 5) to 0.3, 0.4,

or 0.5 for both layers and repeat the process for

training and performance measurement.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

86

• Rule 3: When larger networks with two layers fail, go
deeper.

Try increasing the depth of the network with more

and more layers while maintaining regularization with

dropout layers (if required) after each dense (or your

selected layer) with a dropout rate between 0.2 and 0.5.

• Rule 4: When larger and deeper networks also fail, go
even larger and even deeper.

In case large networks with ~1000 neurons and five

or six layers also don’t give the desired performance,

try increasing the width and depth of the network.

Try adding layers with 8,000–10,000 neurons per

layer and a dropout of 0.6 to 0.8.

• Rule 5: When everything fails, revisit the data.

If all the aforementioned rules fail, revisit the

data for improved feature engineering and

normalization, and then you will need to try other

ML alternatives.

So, let’s get started. The following code snippet creates a DNN with just

one layer of 150 neurons.

#Create Deep Neural Network Architecture

from keras.models import Sequential

from keras.layers import Dense, Dropout

model = Sequential()

model.add(Dense(150,input_dim = 44,activation="relu"))

#The input_dim =44, since the width of the training data=44

(refer data engg section)

model.add(Dense(1,activation = "linear"))

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

87

#Configure the model

model.compile(optimizer='adam',loss="mean_absolute_error",

metrics=["mean_absolute_error"])

#Train the model

model.fit(x_train.values,y_train.values, validation_data=

(x_val,y_val),epochs=10,batch_size=64)

Output

Train on 732390 samples, validate on 81377 samples

Epoch 1/10

732390/732390 [==============================] - 14s 19us/

step - loss: 2484443.9857 - mean_absolute_error: 982.3168 -

val_loss: 1705817.0064 - val_mean_absolute_error: 866.8005

Epoch 2/10

732390/732390 [==============================] - 15s 20us/

step - loss: 1556789.8048 - mean_absolute_error: 851.0444 -

val_loss: 1513560.3941 - val_mean_absolute_error: 880.7449

Epoch 3/10

732390/732390 [==============================] - 14s 19us/

step - loss: 1365229.7217 - mean_absolute_error: 823.4470 -

val_loss: 1354828.9200 - val_mean_absolute_error: 843.5079

Epoch 4/10

732390/732390 [==============================] - 15s 20us/

step - loss: 1264298.7544 - mean_absolute_error: 800.4497 -

val_loss: 1176297.4208 - val_mean_absolute_error: 775.9128

Epoch 5/10

732390/732390 [==============================] - 14s 20us/

step - loss: 1191949.2337 - mean_absolute_error: 776.4975 -

val_loss: 1118038.9334 - val_mean_absolute_error: 754.8027

Epoch 6/10

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

88

732390/732390 [==============================] - 15s 21us/

step - loss: 1145511.8379 - mean_absolute_error: 757.7596 -

val_loss: 1077273.3024 - val_mean_absolute_error: 737.5510

Epoch 7/10

732390/732390 [==============================] - 15s 21us/

step - loss: 1115707.3112 - mean_absolute_error: 744.6207 -

val_loss: 1110957.5719 - val_mean_absolute_error: 747.7849

Epoch 8/10

732390/732390 [==============================] - 14s 19us/

step - loss: 1096126.8665 - mean_absolute_error: 734.5611 -

val_loss: 1056226.5925 - val_mean_absolute_error: 721.077873 -

ETA: 0s - loss: 1096330.8107 - mean_absolute_error: 73

Epoch 9/10

732390/732390 [==============================] - 14s 20us/

step - loss: 1077081.6034 - mean_absolute_error: 723.8428 -

val_loss: 1043093.3088 - val_mean_absolute_error: 712.8212an_

absolute_error: 7

Epoch 10/10

732390/732390 [==============================] - 14s 19us/

step - loss: 1064185.7429 - mean_absolute_error: 715.7054 -

val_loss: 1028792.2388 - val_mean_absolute_error: 697.6917

The preceding output is showcased in progression as the model trains

the DNN. It takes a batch of 64 training samples in an iteration, passes

each sample through the network, and measures the loss metric that we

defined. It uses the optimization technique we configured to update the

model weights and repeats till the last batch for one epoch. The entire

process is repeated ten times, since we set number of epochs as ten. At the

end of each epoch, the model uses the validation dataset to evaluate and

report the metrics we configured.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

89

From the initial results, we can see a positive performance. The model

performance on the validation dataset was 697, which is way better than

our baseline score.

 Testing the Model Performance
Let us now test the model performance on the test dataset.

#Use the model's evaluate method to predict and evaluate the

test datasets

result = model.evaluate(x_test.values,y_test.values)

#Print the results

for i in range(len(model.metrics_names)):

 print("Metric ",model.metrics_names[i],":",str(round(result

[i],2)))

Output

203442/203442 [==============================] - 2s 10us/step

Metric loss : 810.1835326664134

Metric mean_absolute_error : 674.5

And there we go: we got a relatively consistent performance on the test

dataset too.

 Improving the Model
Let us now try further improving the model performance by experimenting

with a couple of more complicated architectures. In the previous network,

we used mean_absolute_error as the loss function. To improve learning in

sync with our use case, we can use mean_squared_error. The squaring of

the error helps to penalize higher error rates even more.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

90

In the following network, we have added two more layers with similar

numbers of neurons. We will update our loss function to mean squared

error instead of MAE. Let’s train the network and have a look at the

performance on the test dataset.

model = Sequential()

model.add(Dense(150,input_dim = 44,activation="relu"))

model.add(Dense(150,activation="relu"))

model.add(Dense(150,activation="relu"))

model.add(Dense(1,activation = "linear"))

model.compile(optimizer='adam',loss="mean_squared_

error",metrics=["mean_absolute_error"])

history = model.fit(x_train,y_train, validation_data=(x_val,

y_val),epochs=10,batch_size=64)

#result = model.evaluate(x_test,y_test)

for i in range(len(model.metrics_names)):

 print("Metric ",model.metrics_names[i],":",str(round(result

[i],2)))

Output

Train on 732390 samples, validate on 81377 samples

Epoch 1/10

732390/732390 [==============================] - 23s 32us/

step - loss: 1708038.6039 - mean_absolute_error: 848.4737 -

val_loss: 1138718.0817 - val_mean_absolute_error: 713.3368

Epoch 2/10

732390/732390 [==============================] - 23s 31us/

step - loss: 1145557.5467 - mean_absolute_error: 718.0267 -

val_loss: 1019385.8800 - val_mean_absolute_error: 679.1929

Epoch 3/10

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

91

732390/732390 [==============================] - 23s 31us/

step - loss: 1075842.6427 - mean_absolute_error: 695.9032 -

val_loss: 1066319.3633 - val_mean_absolute_error: 698.5687

Epoch 4/10

732390/732390 [==============================] - 23s 31us/

step - loss: 1053733.9089 - mean_absolute_error: 688.2615 -

val_loss: 996584.2376 - val_mean_absolute_error: 672.7340

Epoch 5/10

732390/732390 [==============================] - 23s 31us/

step - loss: 1028932.4075 - mean_absolute_error: 681.4085 -

val_loss: 963295.3702 - val_mean_absolute_error: 662.4607

Epoch 6/10

732390/732390 [==============================] - 23s 31us/

step - loss: 1004636.7859 - mean_absolute_error: 673.8713 -

val_loss: 985398.1829 - val_mean_absolute_error: 678.7933

Epoch 7/10

732390/732390 [==============================] - 24s 33us/

step - loss: 980104.8595 - mean_absolute_error: 667.2302 -

val_loss: 914751.1625 - val_mean_absolute_error: 651.7794

Epoch 8/10

732390/732390 [==============================] - 23s 32us/

step - loss: 963304.7831 - mean_absolute_error: 662.4571 -

val_loss: 955510.7847 - val_mean_absolute_error: 669.5784

Epoch 9/10

732390/732390 [==============================] - 23s 31us/

step - loss: 944079.1561 - mean_absolute_error: 656.3804 -

val_loss: 886288.1656 - val_mean_absolute_error: 639.5075

Epoch 10/10

732390/732390 [==============================] - 23s 31us/

step - loss: 924452.3857 - mean_absolute_error: 650.0512 -

val_loss: 911133.2878 - val_mean_absolute_error: 643.0542

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

92

203442/203442 [==============================] - 4s 19us/step

Metric loss : 909847.03

Metric mean_absolute_error : 638.72

We can see that as we created a deeper model, its performance on the

test dataset improved further. The current result is much better than that

from our previous model.

Let’s try a couple of more experiments to see if we can expect further

improved performance. We can develop another deeper model with five

hidden layers having 150 neurons each. In this case, we have increased the

number of epochs from 10 to 15. This would therefore increase computation.

model = Sequential()

model.add(Dense(150,input_dim = 44,activation="relu"))

model.add(Dense(150,activation="relu"))

model.add(Dense(150,activation="relu"))

model.add(Dense(150,activation="relu"))

model.add(Dense(150,activation="relu"))

model.add(Dense(1,activation = "linear"))

model.compile(optimizer='adam',loss="mean_squared_

error",metrics=["mean_absolute_error"])

model.fit(x_train,y_train, validation_data=(x_val,y_val),

epochs=15,batch_size=64)

result = model.evaluate(x_test,y_test)

for i in range(len(model.metrics_names)):

 print("Metric ",model.metrics_names[i],":",str(round(result

[i],2)))

Output

732390/732390 [==============================] - 30s 41us/

step - loss: 1101835.3958 - mean_absolute_error: 702.2829 -

val_loss: 1010836.5122 - val_mean_absolute_error: 678.2764

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

93

 --Skipping output for in between epochs--

Epoch 14/15

732390/732390 [==============================] - 30s 41us/

step - loss: 891425.8829 - mean_absolute_error: 635.5511 -

val_loss: 844685.8285 - val_mean_absolute_error: 620.1237

Epoch 15/15

732390/732390 [==============================] - 30s 41us/

step - loss: 883631.1386 - mean_absolute_error: 632.5584 -

val_loss: 871893.6526 - val_mean_absolute_error: 638.8337

203442/203442 [==============================] - 5s 23us/step

Metric loss : 872514.05

Metric mean_absolute_error : 635.84

We can now see a saturation point. The accuracy on the test dataset

of 635.8; although this is a small improvement in the overall performance,

it’s not as much as we expected. Creating deeper networks might not be

as useful for this size. Let us try increasing the number of neurons and

starting with one or two layers.

 Increasing the Number of Neurons
The following code snippet designs a neural network with two hidden

layers having 350 neurons each and uses a model configuration similar to

the previous architecture.

model = Sequential()

model.add(Dense(350,input_dim = 44,activation="relu"))

model.add(Dense(350,activation="relu"))

model.add(Dense(1,activation = "linear"))

 model.compile(optimizer='adam',loss="mean_squared_

error",metrics=["mean_absolute_error"])

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

94

model.fit(x_train,y_train, validation_data=(x_val,y_val),

epochs=15,batch_size=64)

result = model.evaluate(x_test,y_test)

for i in range(len(model.metrics_names)):

 print("Metric ",model.metrics_names[i],":",

str(round(result[i],2)))

Output

Train on 732390 samples, validate on 81377 samples

Epoch 1/15

732390/732390 [==============================] - 38s 52us/

step - loss: 1697413.8672 - mean_absolute_error: 854.0277 -

val_loss: 1467867.2202 - val_mean_absolute_error: 832.8275

Epoch 2/15

732390/732390 [==============================] - 39s 54us/

step - loss: 1154938.1155 - mean_absolute_error: 725.5312 -

val_loss: 1007847.0574 - val_mean_absolute_error: 685.1245

Epoch 3/15

732390/732390 [==============================] - 39s 53us/

step - loss: 1085253.5922 - mean_absolute_error: 700.4208 -

val_loss: 1050960.9477 - val_mean_absolute_error: 689.2257

 --Skipping output for in between epochs--

Epoch 14/15

732390/732390 [==============================] - 44s 60us/

step - loss: 889136.7336 - mean_absolute_error: 637.8075 -

val_loss: 832445.6279 - val_mean_absolute_error: 621.5381

Epoch 15/15

732390/732390 [==============================] - 42s 57us/

step - loss: 883337.1976 - mean_absolute_error: 635.5014 -

val_loss: 844103.7393 - val_mean_absolute_error: 626.2723

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

95

203442/203442 [==============================] - 7s 33us/step

Metric loss : 847824.59

Metric mean_absolute_error : 623.83

We can see quite a bit of improvement when we use an architecture

that was built with a higher number of neurons. This was a considerable

improvement for the model. Let us now try deeper models for the same

architecture. Additionally, we add a new [optional] configuration to the

model to record the history of various metrics during the training process.

This can be done by adding the callbacks parameter, as shown in the

following example. We can use the history, post training, to visualize and

understand the model’s learning curve.

from keras.callbacks import History

history = History()

model = Sequential()

model.add(Dense(350,input_dim = 44,activation="relu"))

model.add(Dense(350,activation="relu"))

model.add(Dense(350,activation="relu"))

model.add(Dense(350,activation="relu"))

model.add(Dense(350,activation="relu"))

model.add(Dense(1,activation = "linear"))

model.compile(optimizer='adam',loss="mean_squared_

error",metrics=["mean_absolute_error"])

model.fit(x_train,y_train, validation_data=(x_val,y_val),

epochs=15,batch_size=64,callbacks=[history])

result = model.evaluate(x_test,y_test)

for i in range(len(model.metrics_names)):

 print("Metric ",model.metrics_names[i],":",str(round(result

[i],2)))

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

96

Output

Train on 732390 samples, validate on 81377 samples

Epoch 1/15

732390/732390 [==============================] - 83s 113us/

step - loss: 1652045.7426 - mean_absolute_error: 842.9293 -

val_loss: 1176475.4327 - val_mean_absolute_error: 722.2341

Epoch 2/15

732390/732390 [==============================] - 78s 107us/

step - loss: 1166282.9895 - mean_absolute_error: 723.2949 -

val_loss: 1200598.2506 - val_mean_absolute_error: 741.1529

Epoch 3/15

732390/732390 [==============================] - 78s 107us/

step - loss: 1107753.5017 - mean_absolute_error: 704.6886 -

val_loss: 1014423.8244 - val_mean_absolute_error: 685.8464

 --Skipping output for in between epochs--

Epoch 14/15

732390/732390 [==============================] - 72s 99us/

step - loss: 867543.7561 - mean_absolute_error: 626.8261 -

val_loss: 909483.9017 - val_mean_absolute_error: 639.9942

Epoch 15/15

732390/732390 [==============================] - 84s 115us/

step - loss: 856165.2330 - mean_absolute_error: 622.1622 -

val_loss: 823340.0147 - val_mean_absolute_error: 614.6816

203442/203442 [==============================] - 12s 59us/step

Metric loss : 825525.53

Metric mean_absolute_error : 612.01

As you may have noticed, we have seen a further improvement in the

overall test performance for the model with deeper architectures. We can

keep exploring various architectures given the computation and training

time we can afford for the experiments. I strongly encourage you to explore a

couple of more DNN architectures to understand how performance varies.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

97

 Plotting the Loss Metric Across Epochs
The model also stores the history of a few important parameters and

metrics we configured for the model. To see what the model training

process looked like, we can plot the loss metric across epochs and see the

amount of reduction the model achieved with each epoch.

The following code snippet showcases the training as well as the

validation loss across epochs for the model.

plt.plot(history.history['loss'])

plt.plot(history.history['val_loss'])

plt.title("Model's Training & Validation loss across epochs")

plt.ylabel('Loss')

plt.xlabel('Epochs')

plt.legend(['Train', 'Validation'], loc='upper right')

plt.show()

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

98

We can see that after a point the net decrease in loss was quite low but

still relatively good. We could probably increase the number of epochs

to test whether model performance is improving further. Of course, this

comes with a significant amount of computation time for training, but

once you have finalized the architecture for your model, you can increase

the number of epochs for training and check if there was any further

improvement.

 Testing the Model Manually
We could also test the model’s performance on the test dataset manually,

instead of using the model’s evaluate function. The following snippet

calculates the model’s mean squared error on the test dataset by using

manual prediction on the test dataset.

#Manually predicting from the model, instead of using model's

evaluate function

y_test["Prediction"] = model.predict(x_test)

y_test.columns = ["Actual Sales","Predicted Sales"]

print(y_test.head(10))

#Manually predicting from the model, instead of using model's

evaluate function

from sklearn.metrics import mean_squared_error, mean_absolute_error

print("MSE :",mean_squared_error(y_test["Actual Sales"].

values,y_test["Predicted Sales"].values))

print("MAE :",mean_absolute_error(y_test["Actual Sales"].

values,y_test["Predicted Sales"].values))

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

99

Output

 Actual Sales Predicted Sales

115563 0 0.103189

832654 0 0.103189

769112 2933 3073.666748

350588 8602 7848.280762

84435 9239 8838.069336

53018 0 0.103189

262419 0 0.103189

702267 5885 5651.779297

981431 0 0.103189

MSE : 825525.5321821237

MAE : 612.0117530558458

 Summary
In this chapter, we have explored a supervised regression problem for DNN

from end to end. We started with the problem statement and defined it

using industry standard frameworks to get an intuitive understanding of

why we are solving this problem. We then explored the data to understand

the available features and different data types. We studied basic Python

skills to help us ingest, manipulate, visualize, and transform data into the

required form for DNNs. We then leveraged the building blocks of DNNs

and Keras we saw in Chapter 2 to design, build, and iterate over various DL

architectures. We saw how we can measure the performance and further

improve it using DNNs.

In the next chapter, we will look at another business problem that we

can solve using a DNN for classification in supervised learning.

Chapter 3 Deep Neural Networks for superviseD learNiNg: regressioN

101© Jojo Moolayil 2019
J. Moolayil, Learn Keras for Deep Neural Networks,
https://doi.org/10.1007/978-1-4842-4240-7_4

CHAPTER 4

Deep Neural Networks
for Supervised
Learning: Classification
In Chapter 3, we explored a DL use case for regression. We explored the

entire problem-solving approach with a business-forward strategy. We

leveraged all our learning from Chapters 1 and 2 in foundational DL and

the Keras framework to develop DNNs for a regression use case. In this

chapter, we will take our learning one step further and design a network for

a classification use case. The approach overall remains the same, but there

are a few nuances we need to keep in mind while solving a classification

use case. Moreover, we will take our learning in this chapter one step

ahead with extensive DNN architectures. Let’s get started.

 Getting Started
Similar to Chapter 3, we will consider Kaggle for our use case’s data source.

From the available options, we will use the dataset provided for the “Red

Hat Business Value” competition. This competition was hosted on Kaggle

a few years back, and the dataset is a really good business use case for

our study. The archived competition is available at www.kaggle.com/c/

predicting-red-hat-business-value. Just as in the previous use case,

https://www.kaggle.com/c/predicting-red-hat-business-value
https://www.kaggle.com/c/predicting-red-hat-business-value

102

we need to read and accept the competition rules before downloading

the dataset for our experiments. Once you have accepted the competition

rules, you can download the dataset from the “Data” tab or www.kaggle.

com/c/predicting-red-hat-business-value/data. The data will be

downloaded as a zip file. After unzipping, you will have four different

datasets. We will need only two of them: act_train.csv and people.csv.

You can copy these two datasets and keep them in a new folder for the

current chapter’s experiments. We will use the same environment for the

use case, but before we begin, let’s have a look at the problem statement and

define the SCQ and the solution approach, just like we did in Chapter 3.

 Problem Statement
The high-level problem statement is mentioned in the competition’s

description page. It highlights the problem that deals with predicting high-

value customers for their business based on the operational interaction

data and thereby helping the company effectively prioritize resources to

generate more business and serve its customers better.

Let’s have a look at the problem statement from a more business-

centric view. We will start by understanding the customer better. The

organization is an American multinational software company that

provides open source software products to the enterprise community.

Their primary product is Red Hat Enterprise Linux, the most popular

distribution of Linux OS, used by various large enterprises. In its services, it

helps organizations align their IT strategies by providing enterprise-grade

solutions through an open business model and an affordable, predictable

subscription model. These subscriptions from large enterprise customers

create a substantial part of their revenue, and therefore it is of paramount

importance for them to understand their valuable customers and serve

them better by prioritizing resources and strategies to drive improved

business value.

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

http://www.kaggle.com/c/predicting-red-hat-business-value/data
http://www.kaggle.com/c/predicting-red-hat-business-value/data

103

 Designing the SCQ
The end stakeholder in this problem could be the sales team or the

business development team; both of these teams are at the forefront

of the company’s operations to provide the best of services to their

most valued customers. To achieve this objective more effectively, the

business development team has now explored a data-driven solution

to the problem. Given the vast operational interaction data and several

customer attributes, they want to develop data-driven techniques to

predict potential high-value customers for the business. With this context,

let us now draft the SCQ for the business problem, just like we did for the

regression use case in Chapter 3.

 Designing the Solution
The SCQ showcased in the preceding illustration clearly defines the

current situation and the desired future situation, while elucidating the

roadblocks and the question that needs an answer in order to overcome

impediments in achieving the larger objective. To design the solution, we

need to start with the key question and work backward.

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

104

 How Can We Identify a Potential Customer?

Red Hat has been in existence for over 25 years. In the long stint of

business, they have accumulated and captured a vast amount of data from

customer interactions and their descriptive attributes. This rich source

of data could be a gold mine of patterns that can help in identifying a

potential customer by studying the vast and complex historical patterns in

the interaction data.

With the ever-growing popularity and prowess of DL, we can develop

a DNN that can learn from historic customer attributes and operational

interaction data to understand the deep patterns and predict whether

a new customer will potentially be a high-value customer for various

business services.

Therefore, we will develop and train a DNN to learn the chances that a

customer will be a potential high-value customer, using various customer

attributes and operational interaction attributes.

 Exploring the Data
Now that we have the business problem clearly drafted and the high-level

solution in place, let’s start exploring the data. The process to download

the data from Kaggle for Red Hat Business Value competition is the same

as showcased earlier in Chapter 3. The required datasets are available

to download here: www.kaggle.com/c/predicting-red-hat-business-

value/data. Please follow the five steps demonstrated in the previous

chapter to download the data.

Now, let’s open Jupyter Notebooks and create a new notebook for the

current experiments.

#Import the necessary packages

import pandas as pd

import numpy as np

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

http://www.kaggle.com/c/predicting-red-hat-business-value/data
http://www.kaggle.com/c/predicting-red-hat-business-value/data

105

import matplotlib.pyplot as plt

import seaborn as sns

%matplotlib inline

#Import the 2 datasets provided in the Zip Folder

df = pd.read_csv("/Users/jojomoolayil/Book/Chapter4/Data/

act_train.csv")

people = pd.read_csv("/Users/jojomoolayil/Book/Chapter4/Data/

people.csv")

#Explore the shape of the datasets

print("Shape of DF:",df.shape)

print("Shape of People DF:",people.shape)

Output

Shape of DF: (2197291, 15)

Shape of People DF: (189118, 41)

A final line of code:

#Explore the contents of the first dataset

df.head()

Output

We can see that the train data provided for the competition has over 2

million rows and 15 columns and the people dataset has around 190K rows

and 41 columns. Exploring the contents of the training dataset, we can see

that it mostly has customer interaction data but is completely anonymized.

Given the confidentiality of customers and their attributes, the entire

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

106

data is anonymized, and this leaves us with little knowledge about its true

nature. This is a common problem in data science. Quite often, the team

that develops DL models faces the challenge of the data confidentiality

of the end customer and is therefore provided only anonymized and

sometimes encrypted data. This still shouldn’t be a roadblock. It is

definitely best to have a data dictionary and complete understanding

of the dataset, but nevertheless, we can still develop models with the

provided information.

The act_train.csv (henceforth to be addressed as Activity data) has

many null data points. At a high level, the dataset captures customer

activity and provides some activity attributes, a few customer attributes

(which are shown as null in the preceding output), another categorical

feature named ‘char_10’ that we don’t know much about, and finally the

outcome variable.

Let’s have a look at how many nulls the activity data has.

#Calculating the % of Null values in each column for activity data

df.isnull().sum()/df.shape[0]

Output

people_id 0.000000

activity_id 0.000000

date 0.000000

activity_category 0.000000

char_1 0.928268

char_2 0.928268

char_3 0.928268

char_4 0.928268

char_5 0.928268

char_6 0.928268

char_7 0.928268

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

107

char_8 0.928268

char_9 0.928268

char_10 0.071732

outcome 0.000000

dtype: float64

Around nine features have more than 90% null values. We can’t do

much to fix these features. Let’s move ahead and have a look at the people

dataset.

#Explore the contents of People dataset

people.head()

Output

We already know that the people dataset (henceforth to be addressed

as customer data) has around 41 columns; when we into the contents

(which are only partially displayed in the preceding illustration due to

the large number of columns), we see that we are provided with a lot

of customer attributes, though we can’t make any sense out of them.

Moreover, the column names are same as the ones in the activity data. We

need to change them before joining to avoid name clashes.

Let’s check how many missing data points the customer dataset has.

Since the customer dataset has around 40+ features, we can combine the

missing value percentages for all columns together with the preceding

code, instead of looking at each column individually.

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

108

#Calculate the % of null values in for the entire dataset

people.isnull().sum().sum()

Output

0

And we see that none of the columns in the customer dataset has

missing values.

To create a consolidated dataset, we need to join the activity and

customer data on the people_id key. But before we do that, we need to take

care of a few things. We need to drop the columns in the activity data that

have 90% missing values, as they cannot be fixed. Secondly, the “date” and

“char_10” columns are present in both datasets. In order to avoid a name

clash, let us rename the “date” column in the activity dataset to “activity_

date” and “char_10” in the activity data as “activity_type.” Next, we also

need to fix the missing values in the “activity_type” column. Once these

two tasks are accomplished, we will join the two datasets and explore the

consolidated data.

#Create the list of columns to drop from activity data

columns_to_remove = ["char_"+str(x) for x in np.arange(1,10)]

print("Columns to remove:",columns_to_remove)

#Remove the columns from the activity data

df = df[list(set(df.columns) - set(columns_to_remove))]

#Rename the 2 columns to avoid name clashes in merged data

df = df.rename(columns={"date":"activity_

date","char_10":"activity_type"})

#Replace nulls in the activity_type column with the mode

df["activity_type"] = df["activity_type"].fillna(df["activity_

type"].mode()[0])

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

109

#Print the shape of the final activity dataset

print("Shape of DF:",df.shape)

Output

Columns to remove: ['char_1', 'char_2', 'char_3', 'char_4',

'char_5', 'char_6', 'char_7', 'char_8', 'char_9']

Shape of DF: (2197291, 6)

We can now join the two datasets to create a consolidate activity and

customer attributes dataset.

#Merge the 2 datasets on 'people_id' key

df_new = df.merge(people,on=["people_id"],how="inner")

print("Shape before merging:",df.shape)

print("Shape after merging :",df_new.shape)

Output

Shape before merging: (2197291, 6)

Shape after merging : (2197291, 46)

The consistent number of rows and the increase in the number of

columns helps us validate that the join operation worked as expected.

Let us now study the target (i.e., the variable we want to predict), named

“outcome” in the dataset. We can check the distribution between potential

vs. nonpotential customers.

print("Unique values for outcome:",df_new["outcome"].unique())

print("\nPercentage of distribution for outcome-")

print(df_new["outcome"].value_counts()/df_new.shape[0])3

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

110

Outcome

Unique values for outcome: [0 1]

Percentage of distribution for outcome-

0 0.556046

1 0.443954

Name: outcome, dtype: float64

We can see that there is a good mix in the distribution of potential

customers, as around 45% are potential customers.

 Data Engineering
Next, given that we have 45 columns altogether to explore and transform,

let’s expedite the process by automating a few things. Let’s have a look at

the different data types in the consolidated dataframe.

#Checking the distinct datatypes in the dataset

print("Distinct DataTypes:",list(df_new.dtypes.unique()))

Output

Distinct DataTypes: [dtype('int64'), dtype('O'), dtype('bool')]

We have numeric, categorical (Object), and Boolean features in the

dataset. Boolean in Python represents a True or False value; we need to

convert this into numeric (1 and 0) for the model to process the data. The

following snippet of code converts the Boolean columns in the dataframe

into numeric (1 and 0)–based values.

#Create a temp dataset with the datatype of columns

temp = pd.DataFrame(df_new.dtypes)

temp.columns = ["DataType"]

#Create a list with names of all Boolean columns

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

111

boolean_columns = temp.index[temp["DataType"] == 'bool'].values

print("Boolean columns - \n",boolean_columns)

#Convert all boolean columns to Binary numeric values

for column in boolean_columns:

 df_new[column] = np.where(df_new[column] == True,1,0)

print("\nDistinct DataTypes after processing:",df.dtypes.

unique())

Output

Boolean columns -

['char_10"char_11"char_12"char_13"char_14"char_15"char_16'

'char_17"char_18"char_19"char_20"char_21"char_22"char_23'

'char_24"char_25"char_26"char_27"char_28"char_29"char_30'

'char_31"char_32"char_33"char_34"char_35"char_36"char_37']

Distinct DataTypes after processing: [dtype('int64')

dtype('O')]

Let us now have a look at the categorical features. We will first do

a sanity check to understand the number of distinct values in each of

the categorical features. If there are categorical features where there are

unusually high numbers of distinct values, we have to decide if we can

really convert them to a one-hot encoded structure for further processing.

#Extracting the object columns from the above dataframe

categorical_columns = temp.index[temp["DataType"] == 'O'].

values

#Check the number of distinct values in each categorical column

for column in categorical_columns:

 print(column+" column has :",str(len(df_new[column].

unique()))+" distinct values")

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

112

Output

activity_category column has : 7 distinct values

activity_id column has : 2197291 distinct values

people_id column has : 151295 distinct values

activity_type column has : 6516 distinct values

activity_date column has : 411 distinct values

char_1 column has : 2 distinct values

group_1 column has : 29899 distinct values

char_2 column has : 3 distinct values

date column has : 1196 distinct values

char_3 column has : 43 distinct values

char_4 column has : 25 distinct values

char_5 column has : 9 distinct values

char_6 column has : 7 distinct values

char_7 column has : 25 distinct values

char_8 column has : 8 distinct values

char_9 column has : 9 distinct values

The five highlighted columns as shown in the output have high

numbers of distinct values. It would be difficult to convert them into a

one-hot encoded form, as they will consume too much memory during

processing. In case you have the luxury of surplus RAM, feel free to convert

them to a one-hot encoded data form.

For now, we can have a look at the content in these categorical

columns to understand the approach by which we can convert them into

numeric. Also, the date and activity_date columns are date values;

therefore, we can convert them into data-related features like we did in the

previous chapter. Let’s first fix the date-related columns and then huddle

with the remaining categorical columns. The following code snippet

converts the date values to new features and then deletes the actual

column.

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

113

#Create date related features for 'date' in customer data

df_new["date"] = pd.to_datetime(df_new["date"])

df_new["Year"] = df_new["date"].dt.year

df_new["Month"] = df_new["date"].dt.month

df_new["Quarter"] = df_new["date"].dt.quarter

df_new["Week"] = df_new["date"].dt.week

df_new["WeekDay"] = df_new["date"].dt.weekday

df_new["Day"] = df_new["date"].dt.day

#Create date related features for 'date' in activity data

df_new["activity_date"] = pd.to_datetime(df_new["activity_date"])

df_new["Activity_Year"] = df_new["activity_date"].dt.year

df_new["Activity_Month"] = df_new["activity_date"].dt.month

df_new["Activity_Quarter"] = df_new["activity_date"].dt.quarter

df_new["Activity_Week"] = df_new["activity_date"].dt.week

df_new["Activity_WeekDay"] = df_new["activity_date"].dt.weekday

df_new["Activity_Day"] = df_new["activity_date"].dt.day

#Delete the original date columns

del(df_new["date"])

del(df_new["activity_date"])

print("Shape of data after create Date Features:",df_new.shape)

Output

Shape of data after create Date Features: (2197291, 56)

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

114

Let us now have a look at the remaining categorical columns, which

have very high numbers of distinct values.

print(df_new[["people_id","activity_type","activity_id",

"group_1"]].head())

Output

people_id activity_type activity_id group_1

0 ppl_100 type 76 act2_1734928 group 17304

1 ppl_100 type 1 act2_2434093 group 17304

2 ppl_100 type 1 act2_3404049 group 17304

3 ppl_100 type 1 act2_3651215 group 17304

4 ppl_100 type 1 act2_4109017 group 17304

It seems that we can convert all of the preceding categorical columns

into numeric by extracting the relevant numeric ID from each of them,

since each of these columns has values in the form of someText_

someNumber. Rather than converting these categorical columns into

a bloated one-hot encoded dataset, we can temporarily use them as

numeric features. However, if the performance of the model doesn’t reach

our desired expectations after several experiments, we might have to revisit

these features and try our best to incorporate them differently. But for now,

we can consider them as numeric features.

The following code snippet extracts the numeric portion of the

columns and converts the columns from a string to a numeric feature.

#For people ID, we would need to extract values after '_'

df_new.people_id = df_new.people_id.apply(lambda x:x.split("_")[1])

df_new.people_id = pd.to_numeric(df_new.people_id)

#For activity ID also, we would need to extract values after '_'

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

115

df_new.activity_id = df_new.activity_id.apply(lambda

x:x.split("_")[1])

df_new.activity_id = pd.to_numeric(df_new.activity_id)

#For group_1 , we would need to extract values after "

df_new.group_1 = df_new.group_1.apply(lambda x:x.split("")[1])

df_new.group_1 = pd.to_numeric(df_new.group_1)

#For activity_type , we would need to extract values after "

df_new.activity_type = df_new.activity_type.apply(lambda

x:x.split("")[1])

df_new.activity_type = pd.to_numeric(df_new.activity_type)

#Double check the new values in the dataframe

print(df_new[["people_id","activity_type","activity_id",

"group_1"]].head())

Output

people_id activity_type activity_id group_1

0 100.0 76 1734928.0 17304

1 100.0 1 2434093.0 17304

2 100.0 1 3404049.0 17304

3 100.0 1 3651215.0 17304

4 100.0 1 4109017.0 17304

We now have the Boolean columns converted to numeric and also the

categorical columns with large numbers of distinct values also converted

to numeric. (Just a note: this categorical-to-numeric conversion is not

always possible.) Next, let’s convert the remaining categorical columns,

which have relatively low numbers of distinct values, to one-hot encoded

form and render the final consolidated dataset.

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

116

from sklearn.preprocessing import LabelEncoder, OneHotEncoder

#Define a function that will intake the raw dataframe and the

column name and return a one hot encoded DF

def create_ohe(df, col):

 le = LabelEncoder()

 a=le.fit_transform(df_new[col]).reshape(-1,1)

 ohe = OneHotEncoder(sparse=False)

 column_names = [col+ "_"+ str(i) for i in le.classes_]

 return(pd.DataFrame(ohe.fit_transform(a),columns =column_names))

#Since the above function converts the column, one at a time

#We create a loop to create the final dataset with all features

target = ["outcome"]

numeric_columns = list(set(temp.index[(temp.DataType =="float64") |

 (temp.DataType =="int64")].values) - set(target))

temp = df_new[numeric_columns]

for column in categorical_columns:

 temp_df = create_ohe(df_new,column)

 temp = pd.concat([temp,temp_df],axis=1)

print("\nShape of final df after onehot encoding:",temp.shape)

Output

Shape of final df after onehot encoding: (2197291, 183)

We now have the final form of the dataset ready for the model

development. In this exercise, we have converted and kept the date-

related features, as they are in their numeric form and not converted into

the one-hot encoded form. This choice is optional. I considered the size

of the dataset, with ~180 columns, as large enough to start with. We will

conduct a few basic experiments, and if we don’t see good performance,

we will then need to revisit the data. In such a scenario, we need to look

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

117

at improved strategies for how we can extract the best information from

the vast selection of features in the most memory- and computation-

efficient way.

Finally, before we begin with the model development, we need to split

our datasets into train, validation, and test, just as we did in Chapter 3 for

the regression use case. The following code snippet leverages the “train_

test_split” from the sklearn package in Python to split the final dataset

created in the preceding into train and test, and then further divide the

train into train and validation.

from sklearn.model_selection import train_test_split

#split the final dataset into train and test with 80:20

x_train, x_test, y_train, y_test = train_test_split(temp,

df_new[target], test_size=0.2,random_state=2018)

#split the train dataset further into train and validation

with 90:10

x_train, x_val, y_train, y_val = train_test_split(x_train,

y_train, test_size=0.1, random_state=2018)

#Check the shape of each new dataset created

print("Shape of x_train:",x_train.shape)

print("Shape of x_test:",x_test.shape)

print("Shape of x_val:",x_val.shape)

print("Shape of y_train:",y_train.shape)

print("Shape of y_test:",y_test.shape)

print("Shape of y_val:",y_val.shape)

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

118

Output

Shape of x_train: (1582048, 183)

Shape of x_test: (439459, 183)

Shape of x_val: (175784, 183)

Shape of y_train: (1582048, 1)

Shape of y_test: (439459, 1)

Shape of y_val: (175784, 1)

For now, we have the training data in the desired form for building DL

models for classification. We need to define a baseline benchmark that will

help us set the threshold performance we should expect from our models

for them to be considered useful and acceptable.

 Defining Model Baseline Accuracy
In Chapter 3, while we were working with the regression use case, we

defined the baseline accuracy by using the mean of the training dataset

as the final prediction for all the values in the test dataset. However, in the

classification use case, we need a slightly different approach.

For all supervised classification use cases, our target variable would

be a binary or multiclass (more than two classes) outcome. In our use

case, we have the outcome as either 0 or 1. To validate the usefulness of a

model, we should compare the result to what would have happened if we

never had a model. In that case, we would make the largest class as the

prediction for all customers and check what the accuracy looks like.

If you remember, the target in our use case (i.e., the outcome variable)

has a good distribution of 1’s and 0’s. Here is the distribution of the

outcome variable between 1 and 0.

#Checking the distribution of values in the target

df_new["outcome"].value_counts()/df_new.shape[0]

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

119

Output
0 0.556046

1 0.443954

Name: outcome, dtype: float64

So, with the preceding distribution, we can say that if we do not

have any model and make all predictions as 0 (the largest class)—that

is, predicting that none of the customers are potential high-value

customers—then we would end up with at least 55.6% accuracy either

way. This is our baseline accuracy. If we build a model that delivers us

an overall accuracy anywhere below our benchmark, then it would be of

practically no use.

 Designing the DNN for Classification
For this use case, we have somewhat larger datasets. The training process

might be more time-consuming than that of the regression use case. To

save our time and be able to quickly get a well-functioning architecture in

place, we will use a simple strategy. We will start with just three epochs for

each kind of network we will experiment with, and once we find promising

results, we will retrain the best architecture with the desired number of

epochs for improved results.

To start with, let’s follow the same guideline for the architecture

development that we learned in Chapter 3. That is, let’s follow Rule 1: Start

small.

The following code snippet builds a DNN with just one layer and

256 neurons. We have used binary_crossentropy (since this a binary

classification problem) as the loss function and accuracy as the metric

to monitor. For classification problems, we can use several other metrics

available within Keras, but accuracy is simple and fairly straightforward

to comprehend. We will train the network for just three epochs and keep

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

120

monitoring the loss as well as the accuracy on the training and validation

dataset. If we don’t see promising results, we might have to try a new

architecture.

from keras.models import Sequential

from keras.layers import Dense

#Design the deep neural network [Small + 1 layer]

model = Sequential()

model.add(Dense(256,input_dim = x_train.shape[1],activation=

"relu"))

model.add(Dense(256,activation="relu"))

model.add(Dense(1,activation = "sigmoid")) #activation =

sigmoid for binary classification

model.compile(optimizer = "Adam",loss="binary_crossentropy",

metrics=["accuracy"])

model.fit(x_train,y_train, validation_data = (x_val,y_val),

epochs=3, batch_size=64)

Output

Using TensorFlow backend.

Train on 1582048 samples, validate on 175784 samples

Epoch 1/3

1582048/1582048 [==============================] - 112s 71us/

step - loss: 8.8505 - acc: 0.4449 - val_loss: 8.8394 -

val_acc: 0.4455

Epoch 2/3

1582048/1582048 [==============================] - 111s 70us/

step - loss: 8.8669 - acc: 0.4438 - val_loss: 8.8394 -

val_acc: 0.4455

Epoch 3/3

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

121

1582048/1582048 [==============================] - 110s 69us/

step - loss: 8.8669 - acc: 0.4438 - val_loss: 8.8394 -

val_acc: 0.4455

If you closely observe the results from the training output, you will

see that the overall accuracy for training as well as validation datasets was

around 0.44 (44%), which is way lower than our baseline accuracy. We can

therefore conclude that training this model further might not be a fruitful

idea.

Let’s try a deeper network for the same number of neurons. So, we

keep everything the same but add one more layer with the same number of

neurons.

#Design the deep neural network [Small + 2 layers]

model = Sequential()

model.add(Dense(256,input_dim = x_train.shape[1],activation=

"relu"))

model.add(Dense(256,activation="relu"))

model.add(Dense(1,activation = "sigmoid"))

model.compile(optimizer = "Adam",loss="binary_crossentropy",

metrics=["accuracy"])

model.fit(x_train,y_train, validation_data = (x_val,y_val),

epochs=3, batch_size=64)

Output

Train on 1582048 samples, validate on 175784 samples

Epoch 1/3

1582048/1582048 [==============================] - 124s 79us/

step - loss: 8.8669 - acc: 0.4438 - val_loss: 8.8394 -

val_acc: 0.4455

Epoch 2/3

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

122

1582048/1582048 [==============================] - 125s 79us/

step - loss: 8.8669 - acc: 0.4438 - val_loss: 8.8394 -

val_acc: 0.4455

Epoch 3/3

1582048/1582048 [==============================] - 124s 78us/

step - loss: 8.8669 - acc: 0.4438 - val_loss: 8.8394 -

val_acc: 0.4455

Again, as we can see, the initial results are not at all promising. The

training and validation accuracy from the deeper network are not anywhere

close to what we would expect. Instead of trying another deeper network

with, say, three to five layers, let us try training with a bigger (medium-sized)

network. We shall use a new architecture with just one layer but 512 neurons

this time. Let us again train for three epochs and have a look at the metrics to

check whether it is in line with what we would expect.

#Design the deep neural network [Medium + 1 layers]

model = Sequential()

model.add(Dense(512,input_dim = x_train.shape[1],activation=

"relu"))

model.add(Dense(1,activation = "sigmoid"))

model.compile(optimizer = "Adam",loss="binary_crossentropy",

metrics=["accuracy"])

model.fit(x_train,y_train, validation_data = (x_val,y_val),

epochs=3, batch_size=64)

Output

Train on 1582048 samples, validate on 175784 samples

Epoch 1/3

1582048/1582048 [==============================] - 113s 71us/

step - loss: 8.8669 - acc: 0.4438 - val_loss: 8.8394 -

val_acc: 0.4455

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

123

Epoch 2/3

1582048/1582048 [==============================] - 112s 71us/

step - loss: 8.8669 - acc: 0.4438 - val_loss: 8.8394 -

val_acc: 0.4455

Epoch 3/3

1582048/1582048 [==============================] - 112s 71us/

step - loss: 8.8669 - acc: 0.4438 - val_loss: 8.8394 -

val_acc: 0.4455

The medium-sized network too returned disappointing results. The

training and validation accuracy from the medium-sized network are not

really close to what we would expect. Let’s now try increasing the depth for

the medium-sized network to see if the results improve.

#Design the deep neural network [Medium + 2 layers]

model = Sequential()

model.add(Dense(512,input_dim = x_train.shape[1],

activation="relu"))

model.add(Dense(512,activation="relu"))

model.add(Dense(1,activation = "sigmoid"))

model.compile(optimizer = "Adam",loss="binary_crossentropy",

metrics=["accuracy"])

model.fit(x_train,y_train, validation_data = (x_val,y_val),

epochs=3, batch_size=64)

Output

Train on 1582048 samples, validate on 175784 samples

Epoch 1/3

1582048/1582048 [==============================] - 135s 86us/

step - loss: 7.1542 - acc: 0.5561 - val_loss: 7.1813 -

val_acc: 0.5545

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

124

Epoch 2/3

1582048/1582048 [==============================] - 134s 85us/

step - loss: 7.1534 - acc: 0.5562 - val_loss: 7.1813 -

val_acc: 0.5545

Epoch 3/3

1582048/1582048 [==============================] - 135s 85us/

step - loss: 7.1534 - acc: 0.5562 - val_loss: 7.1813 -

val_acc: 0.5545

We can see that the results have improved, but only by just a bit. We see

an accuracy of around 55% for the training and validation datasets, but these

results are again not great, though better than what we previously had.

 Revisiting the Data
The initial attempts to build a model with decent results have failed. We

can further increase the size and the depth of the network, but this would

only marginally increase the network performance. As discussed earlier,

we might have to consider improving the data for training. We have two

primary options here. We have discussed both of these points during the

course of Chapter 2’s “Input Data” section and Chapter 3’s “Exploring the

Data” section. We can standardize the input data with a ‘Standardscaler’ or

a ‘Minmaxscaler’ using Python’s sklearn package’s tools or we can explore

the options to revisit the one-hot encoding exercise for the categorical

features we encoded as numeric. From these two options, the easiest and

the least time-consuming would be standardizing or normalizing the data.

 Standardize, Normalize, or Scale the Data
If you recollect, in the “Input Data” section under ‘Getting Started with

DL in Keras” in Chapter 2, we discussed that it is a good practice to

standardize or normalize the data before providing it as training data

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

125

for the DL models. We didn’t use this as an option in Chapter 3 for the

regression use case, as the model performed well on the regular data.

However, in our classification use case, we can see that the performance is

very poor on the raw data. To improve our model performance, let us try

standardizing our data. (Alternatively, you can normalize the data too.)

In standardization, we transform the data into a form where the mean

is 0 and the standard deviation is 1. The distribution of the data in this

form is a great input candidate for our neuron’s activation function and

therefore improves the ability to learn more appropriately.

In its simplest form, standardization can be explained by the following

example using a dummy input dataset. We perform standard scaling; look

at the transformed values, the mean, and its standard deviation; and finally

inverse transform the output to its original form.

#Create a dummy input

dummy_input = np.arange(1,10)

print("Dummy Input = ",dummy_input)

from sklearn.preprocessing import StandardScaler

#Create a standardscaler instance and fit the data

scaler = StandardScaler()

output = scaler.fit_transform(dummy_input.reshape(-1,1))

print("Output =\n ",list(output))

print("Output's Mean = ",output.mean())

print("Output's Std Dev = ",output.std())

print("\nAfter Inverse Transforming = \n",list(scaler.inverse_

transform(output)))

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

126

Output

Dummy Input = [1 2 3 4 5 6 7 8 9]

Output =

[array([-1.54919334]), array([-1.161895]),

array([-0.77459667]),

array([-0.38729833]), array([0.]), array([0.38729833]),

array([0.77459667]), array([1.161895]), array([1.54919334])]

Output's Mean = 0.0

Output's Std Dev = 1.0

After Inverse Transforming =

[array([1.]), array([2.]), array([3.]), array([4.]),

array([5.]),

array([6.]), array([7.]), array([8.]), array([9.])]

 Transforming the Input Data
To transform the input data for the development of the model, please note

that we should only use the training data to fit the scaler transformation

and use the same fitted object to transform the validation and test input

data. The following code snippet uses the x_train dataset to fit and

transform the scaled values for all three datasets (i.e., x_train and x_val

as well as x_test).

from sklearn.preprocessing import StandardScaler

scaler = StandardScaler()

scaler.fit(x_train)

x_train_scaled = scaler.transform(x_train)

x_val_scaled = scaler.transform(x_val)

x_test_scaled = scaler.transform(x_test)

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

127

Now that we have the standard scaled datasets, we can provide this

newly augmented data for training. Please note that we haven’t made any

transformations to the labels or the target.

 DNNs for Classification with Improved Data
Let us now start with a medium-sized network to see if we get improved

results. We will start with just three epochs.

from keras import Sequential

from keras.layers import Dense

model = Sequential()

model.add(Dense(512,input_dim = x_train_scaled.

shape[1],activation="relu"))

model.add(Dense(1,activation = "sigmoid"))

model.compile(optimizer = "Adam",loss="binary_crossentropy",

metrics=["accuracy"])

model.fit(x_train_scaled,y_train, validation_data =

(x_val_scaled,y_val), epochs=3, batch_size=64)

Output

Train on 1582048 samples, validate on 175784 samples

Epoch 1/3

1582048/1582048 [==============================] - 109s 69us/

step - loss: 0.2312 - acc: 0.8994 - val_loss: 0.1894 -

val_acc: 0.9225

Epoch 2/3

1582048/1582048 [==============================] - 108s 68us/

step - loss: 0.1710 - acc: 0.9320 - val_loss: 0.1558 -

val_acc: 0.9387

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

128

Epoch 3/3

1582048/1582048 [==============================] - 108s 68us/

step - loss: 0.1480 - acc: 0.9444 - val_loss: 0.1401 -

val_acc: 0.9482

Now, there we go!

We can see the drastic improvement in the performance of the network

in providing the standardized datasets. We have an almost 95% accuracy

on the training and validation datasets. Let’s use this model to evaluate the

model performance on the test datasets we created earlier.

result = model.evaluate(x_test_scaled,y_test)

for i in range(len(model.metrics_names)):

 print("Metric ",model.metrics_names[i],":",

str(round(result[i],2)))

Output

439459/439459 [==============================] - 34s 76us/step

Metric loss : 0.1

Metric acc : 0.96

We see great results on the test dataset. Let’s try improving the

architecture a bit and see. We can a medium-sized deeper network to see if

the results are better than with the medium-sized network.

#Designing the Deep Neural Network [Medium – 2 Layers]

model = Sequential()

model.add(Dense(512,input_dim = x_train_scaled.shape[1],

activation="relu"))

model.add(Dense(512,activation="relu"))

model.add(Dense(1,activation = "sigmoid"))

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

129

model.compile(optimizer = "Adam",loss="binary_crossentropy",

metrics=["accuracy"])

model.fit(x_train_scaled,y_train, validation_data = (x_val_scaled,

y_val),epochs=3, batch_size=64)

Output

Train on 1582048 samples, validate on 175784 samples

Epoch 1/3

1582048/1582048 [==============================] - 131s 83us/

step - loss: 0.1953 - acc: 0.9141 - val_loss: 0.1381 -

val_acc: 0.9421

Epoch 2/3

1582048/1582048 [==============================] - 130s 82us/

step - loss: 0.1168 - acc: 0.9529 - val_loss: 0.1051 -

val_acc: 0.9578

Epoch 3/3

1582048/1582048 [==============================] - 131s 83us/

step - loss: 0.0911 - acc: 0.9646 - val_loss: 0.0869 -

val_acc: 0.9667

The training and validation accuracy has improved even further to

96%. This small increase with just 3 epochs is awesome. We can now be

confident of the performance for the model with the architecture. We can

definitely try many more architectures and check the results, but let’s take

a final shot with a larger and deeper network and see the results with 3

epochs. In case we see only small improvements, we will use the same

architecture for 15 epochs and use the model for our final predictions.

#Designing the network Deep Neural Network – [Large + 2 Layers]

model = Sequential()

model.add(Dense(1024,input_dim = x_train_scaled.shape[1],

activation="relu"))

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

130

model.add(Dense(1024,activation = "relu"))

model.add(Dense(1,activation = "sigmoid"))

model.compile(optimizer = "Adam",loss="binary_crossentropy",

metrics=["accuracy"])

model.fit(x_train_scaled,y_train, validation_data =

(x_val_scaled,y_val),epochs=3, batch_size=64)

Output

Train on 1582048 samples, validate on 175784 samples

Epoch 1/3

1582048/1582048 [==============================] - 465s 294us/

step - loss: 0.2014 - acc: 0.9099 - val_loss: 0.1438 -

val_acc: 0.9390

Epoch 2/3

1582048/1582048 [==============================] - 483s 305us/

step - loss: 0.1272 - acc: 0.9469 - val_loss: 0.1184 -

val_acc: 0.9524

Epoch 3/3

1582048/1582048 [==============================] - 487s 308us/

step - loss: 0.1015 - acc: 0.9593 - val_loss: 0.1011 -

val_acc: 0.9605

We see an overall accuracy on the validation dataset as 96% and

a similar score for the training dataset. So, there really isn’t a lot of

improvement in the performance of the model due to increasing the size

from a medium (512-neuron) to a larger (1024-neuron) architecture.

With these results validating our experiments, let’s train a medium-sized

(512-neuron) deep network with two layers for 15 epochs, look at the

final training and validation accuracy, and then use the trained model to

evaluate the test datasets.

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

131

#Designing the network Deep Neural Network – [Medium + 2 Layers]

model = Sequential()

model.add(Dense(512,input_dim = x_train_scaled.

shape[1],activation="relu"))

model.add(Dense(512,activation = "relu"))

model.add(Dense(1,activation = "sigmoid"))

model.compile(optimizer = "Adam",loss="binary_crossentropy",

metrics=["accuracy"])

model.fit(x_train_scaled,y_train, validation_data = (x_val_

scaled,y_val),epochs=15, batch_size=64)

Output

Train on 1582048 samples, validate on 175784 samples

Epoch 1/15

1582048/1582048 [==============================] - 133s 84us/

step - loss: 0.1949 - acc: 0.9142 - val_loss: 0.1375 -

val_acc: 0.9426

Epoch 2/15

1582048/1582048 [==============================] - 133s 84us/

step - loss: 0.1173 - acc: 0.9527 - val_loss: 0.1010 -

val_acc: 0.9599

Epoch 3/15

1582048/1582048 [==============================] - 133s 84us/

step - loss: 0.0911 - acc: 0.9643 - val_loss: 0.0887 -

val_acc: 0.9660

 ----Skipping output from intermediate epochs -----

Epoch 14/15

1582048/1582048 [==============================] - 133s 84us/step -

loss: 0.0402 - acc: 0.9863 - val_loss: 0.0614 - val_acc: 0.9821

Epoch 15/15

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

132

1582048/1582048 [==============================] - 133s 84us/

step - loss: 0.0394 - acc: 0.9869 - val_loss: 0.0629 -

val_acc: 0.9818

The final model with a medium-size architecture of 512 neurons and

two layers gave great performance results on the training and validation

datasets. We have an accuracy of ~98% for both datasets. Let us now

validate the model performance on the test dataset.

result = model.evaluate(x_test_scaled,y_test)

for i in range(len(model.metrics_names)):

 print("Metric ",model.metrics_names[i],":",

str(round(result[i],2)))

Output

439459/439459 [==============================] - 20s 45us/step

Metric loss : 0.06

Metric acc : 0.98

The performance on the unseen test dataset is also great and

consistent. Our model is performing really well on the test dataset. Let

us have a look at the loss curve for the model, just like we did for the

regression use case. We will plot the loss in each epoch (15 in total for this

mode) for the training and validation datasets. The following code snippet

leverages the model history and plots these metrics.

import matplotlib.pyplot as plt

%matplotlib inline

plt.plot(model.history.history['loss'])

plt.plot(model.history.history['val_loss'])

plt.title("Model's Training & Validation loss across epochs")

plt.ylabel('Loss')

plt.xlabel('Epochs')

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

133

plt.legend(['Train', 'Validation'], loc='upper right')

plt.show()

We can see decreasing loss across both datasets. Similarly, let’s have a

look at the accuracy metric during the model training. The accuracy metric

for the training and validation datasets is also stored in the model history.

plt.plot(model.history.history['acc'])

plt.plot(model.history.history['val_acc'])

plt.title("Model's Training & Validation Accuracy across epochs")

plt.ylabel('Accuracy')

plt.xlabel('Epochs')

plt.legend(['Train', 'Validation'], loc='upper right')

plt.show()

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

134

The accuracy, as we can see, has consistently increased with each

epoch. In scenarios where we observe a huge gap between the training

and the validation data for any metric, it would be an indication of

an overfitting model. In such cases, the model performs very well on

the training dataset but performs very poorly on the unseen data

(i.e., validation as well as test dataset).

 Summary
In this chapter, we have explored a business use case and solved it by

leveraging a DNN for classification. We started by understanding the

business essence of the problem statement, explored the provided data,

and augmented into a suitable form for DNNs. We experimented with

a few architectures, keeping in mind the rule of thumb we learned in

Chapter 3, and we saw a major shortcoming in model performance. We

then revisited the data and used standardization to represent the data in

a more DL-friendly form and architecture for a few DNNs, and we saw

amazing results. Overall, we reinforced our learning in data engineering,

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

135

data exploration, DL, and with Keras and Python. In the next chapter, we

will explore additional strategies to improve model performance with

hyperparameter tuning, understand transfer learning, and explore a high-

level process of model deployment for a large software.

Chapter 4 Deep Neural Networks for superviseD learNiNg: ClassifiCatioN

137© Jojo Moolayil 2019
J. Moolayil, Learn Keras for Deep Neural Networks,
https://doi.org/10.1007/978-1-4842-4240-7_5

CHAPTER 5

Tuning and Deploying
Deep Neural Networks
So far in the journey of this book, we have primarily talked about how to

develop a DNN for a given use case and looked at a few strategies and

rules of thumb to bypass roadblocks we could face in the process. In this

chapter, we will discuss the journey onward after developing the initial

model by exploring the methods and approaches you need to implement

when the model developed doesn’t perform to your expectations. We

will discuss regularization and hyperparameter tuning, and toward the

end of the chapter, we will also have a high-level view of the process to

deploy a model after tuning. However, we won’t actually discuss the

implementation specifics of deploying; this will just be an overview

offering guidelines to achieve success in the process. Let’s get started.

 The Problem of Overfitting
In the process of developing and training ML and DL models, you will

often come across a scenario where the trained model seems to perform

well on the training dataset but fails to perform similarly on the test

dataset. In data science, this phenomenon is called “overfitting.” In a literal

sense, your model overfits the data. Although you have crossed paths with

this term previously in this book, we haven’t discussed this topic in detail

so far. Let’s try to understand this phenomenon in a more simplified way.

138

The process of training a model is called “fitting the data”; the neural

network learns the latent patterns within the data and mathematically

improves the model weights/structure to suit the patterns it discovers

in the learning process. In a nutshell, training the model adapts the

its structure (weights) to fit the data (patterns) and thereby improves

its performance. This beautiful process gets complicated at the point

when the pattern it discovers turns out to be merely noise in reality.

Unfortunately, the mathematical equation doesn’t have the prowess to

always distinguish between a signal and a noise (by noise, we mean a data

point that doesn’t represent the training sample but comes about due to

random chance). When it fails, it learns the noise too and adjusts its weight

to accommodate the new signal, which was noise in reality.

To understand this process, let’s take a simple example. Say a five-year-

old loves to eat cakes baked by his mother. He demands cakes to be baked

every day at home. His mother politely denies these demands, but assures

him that she will bake cakes on certain occasions. The little boy now looks

forward to each new day, hoping that it will be one of those occasions

when his mother will bake a cake. His mother, on the other hand, had no

real intention to find occasions to bake cakes. She would simply bake a

cake every Sunday when she had time off from work. The five-year-old

continues to watch every day and slowly learns that his mom will bake

a cake on every Sunday. So, he learns the following pattern: “If day ==

Sunday, then Mother will bake cakes.” One fine Sunday, his mother had to

travel for an errand and was left with no time to bake a cake. The five-year-

old couldn’t understand his pattern breaking down. So, to accommodate

the new event, he modified his rules by formulating the new pattern as

follows: “If day == Sunday, then Mother will bake a cake, but if the day is in

the last week of the month, then no cake.” In reality, the Sunday his mother

missed baking the cake was a noise. He should have ideally ignored that

and kept his previously learned pattern intact. But unfortunately, he failed

to distinguish between signal and noise and thereby overcomplicated his

rules and overfit the data.

Chapter 5 tuning and deploying deep neural networks

139

Similarly, when a DL model learns from the noise and accommodates

by adjusting the weights to suit the noise, it overfits the data. This

problem becomes serious, since learning noise results in a significant

decrease in model performance. That is the reason you would observe a

large gap between the performance of a model on training data and the

performance on unseen data. Circumventing this problem and tailoring a

model’s learning process to accommodate only signals (or real patterns)

instead of noise can be achieved to a great extent (though not fully) with

regularization.

 So, What Is Regularization?
In simplest terms, regularization is a process to reduce overfitting. It is a

mathematical way of inducing a warning into the model’s learning process

when it accommodates noise. To give a more realistic definition, it is a

method to penalize the model weights in the event of overfitting.

Let’s understand this process in a very simple way. In DL, the weights

of the neuron connections are updated after each iteration. When the

model encounters a noisy sample and assumes the sample is a valid one, it

tries to accommodate the pattern by updating the weights aligned with the

noise. In realistic data samples, noisy data points don’t resemble anything

close to a regular data point; they are far off from them. So, the weight

updates will also be in sync with the noise (i.e., the change in weight will

be huge). The process of regularization adds the weights of the edges to

the defined loss function and holistically represents a higher loss. The

network then tunes itself to reduce the loss and thereby makes the weight

updates in the right direction; this works by ignoring the noise rather than

accommodating it in the learning process.

The process of regularization can be demonstrated as

Cost Function = Loss (as defined for the model) + Hyperparameter ×

[Weights]

Chapter 5 tuning and deploying deep neural networks

140

The hyperparameter is represented as l
2m

 and the value of λ is

defined by the user.

Based on how the weights are added to the loss function, we have two

different types of regularization techniques: L1 and L2.

 L1 Regularization
In L1 regularization, the absolute weights are added to the loss function. To

make the model more generalized, the values of the weights are reduced

to 0, and therefore this method is strongly preferred when we are trying to

compress the model for faster computation.

The equation can be represented as

Cost Function = Loss (as defined) +
l
2m

Weights*å
In Keras, the L1 loss can be added to a layer by providing the ‘regularizer’

object to the ‘kernel regularizer’ parameter. The following code snippet

demonstrates adding an L1 regularizer to a dense layer in Keras.

from keras import regularizers

from keras import Sequential

model = Sequential()

model.add(Dense(256, input_dim=128,

kernel_regularizer=regularizers.l1(0.01))

The value of 0.01 is the hyperparameter value we set for λ.

 L2 Regularization
In L2 regularization, the squared weights are added to the loss function. To

make the model more generalized, the values of the weights are reduced to

near 0 (but not actually 0), and hence this is also called the “weight decay”

method. In most cases, L2 is highly recommended over L1 for reducing

overfitting.

Chapter 5 tuning and deploying deep neural networks

141

The equation can be represented as

Cost Function = Loss (as defined) +
l
2

2

m
Weights*

We can add an L2 regularizer to a DL model just like L1. The following

code snippet demonstrates adding an L2 regularizer to the dense layer.

model = Sequential()

model.add(Dense(256, input_dim=128,

kernel_regularizer=regularizers.l2(0.01))

The value of 0.01 is the hyperparameter value we set for λ.

 Dropout Regularization
In addition to L1 and L2 regularization, there is another popular technique

in DL to reduce overfitting. This technique is to use a dropout mechanism.

In this method, the model arbitrarily drops or deactivates a few neurons

for a layer during each iteration. Therefore, in each iteration the model

looks at a slightly different structure of itself to optimize (as a couple

of neurons and the connections would be deactivated). Say we have

two successive layers, H1 and H2, with 15 and 20 neurons, respectively.

Applying the dropout technique between these two layers would result

in randomly dropping a few neurons (based on a defined percentage) for

H1, which therefore reduces the connections between H1 and H2. This

process repeats for each iteration with randomness, so if the model has

learned for a batch and updated the weights, the next batch might have a

fairly different set of weights and connections to train. The process is not

only efficient due to the reduced computation but also works intuitively in

reducing the overfitting and therefore improving the overall performance.

The idea of dropout can be visually understood using the following

figure. We can see that the regular network has all neurons and connections

between two successive layers intact. With dropout, each iteration induces a

certain defined degree of randomness by arbitrarily deactivating or dropping

a few neurons and their associated weight connections.

Chapter 5 tuning and deploying deep neural networks

142

In Keras, we can use dropout to a layer with the following convention:

keras.layers.Dropout(rate, noise_shape=None, seed=None)

The following code snippet showcases dropout added to the dense

hidden layer. The parameter value of 0.25 indicates the dropout rate

(i.e., the percentage of the neurons to be dropped).

from keras import Sequential

from keras.layers.core import Dropout, Dense

model = Sequential()

model.add(Dense(100, input_dim= 50, activation='relu'))

model.add(Dropout(0.25))

model.add(Dense(1,activation="linear"))

 Hyperparameter Tuning
Hyperparameters are the parameters that define a model’s

holistic structure and thus the learning process. We can also relate

hyperparameters as the metaparameter for a model. It differs from a

model’s actual parameters, which it learns during the training process (say,

the model weights). Unlike model parameters, hyperparameters cannot be

learned; we need to tune them with different approaches to get improved

performance.

Chapter 5 tuning and deploying deep neural networks

143

To understand this topic better, let us look at the definition in a more

simplified way. When we design a DNN, the architecture of the model is

defined by a few high-level artifacts. These artifacts could be the number

of neurons in a layer, the number of hidden layers, the activation function,

the optimizer, the learning rate of the architecture, the number of epochs,

batch size, and so on. All of these parameters are collectively used to

design a network, and they have a huge impact on the model’s learning

process and its end performance. These parameters cannot be trained; in

fact, they need to be selected with experience and judgment, just like the

rules we learned in Chapter 3 to decide the size of the architecture to start

with. Parameters that define the model’s holistic architecture overall are

collectively called hyperparameters. Choosing the right hyperparameters

is an intensive and iterative process, but it becomes easier with experience.

The process of experimenting with different values for hyperparameters

to improve the overall model process is called model tuning or

hyperparameter tuning.

 Hyperparameters in DL
Let’s have a look at the different hyperparameters available for a DL

model and study the available options to choose from. We will then look

at various approaches for selecting the right set of hyperparameters for a

model.

 Number of Neurons in a Layer

For most classification and regression use cases using tabular cross-

sectional data, DNNs can be made robust by playing around with the

width of the network (i.e., the number of neurons in a layer). Generally,

a simple rule of thumb for selecting the number of neurons in the first

layer is to refer to the number of input dimensions. If the final number of

input dimensions in a given training dataset (this includes the one-hot

Chapter 5 tuning and deploying deep neural networks

144

encoded features also) is x, we should use at least the closest number to 2x

in the power of 2. Let’s say you have 100 input dimensions in your training

dataset: preferably start with 2 × 100 = 200, and take the closest power of 2,

so 256. It is good to have the number of neurons in the power of 2, as it

helps the computation of the network to be faster. Also, good choices for

the number of neurons would be 8, 16, 32, 64, 128, 256, 512, 1024, and so

on. Based on the number of input dimensions, take the number closest to

2 times the size. So, when you have 300 input dimensions, try using 512

neurons.

 Number of Layers

It is true that just adding a few more layers will generally increase the

performance, at least marginally. But the problem is that with an increased

number of layers, the training time and computation increase significantly.

Moreover, you would need a higher number of epochs to see promising

results. Not using deeper networks is not an always an option; in cases

when you have to, try using a few best practices.

In case you are using a very large network, say more than 20 layers,

try using a tapering size architecture (i.e., gradually reduce the number

of neurons in each layer as the depth increases). So, if you are using an

architecture of 30 layers with 512 neurons in each layer, try reducing the

number of neurons in the layers slowly. An improved architecture would

be with the first 8 layers having 512 neurons, the next 8 with 256, the next

8 with 128, and so on. For the last hidden layer (not the output layer), try

keeping the number of neurons to at least around 30–40% of the input size.

Alternatively, if you are using wider networks (i.e., not reducing the

number of neurons in the lower layers), always use L2 regularization or

dropout layers with a drop rate of around 30%. The chances of overfitting

are highly reduced.

Chapter 5 tuning and deploying deep neural networks

145

 Number of Epochs

Sometimes, just increasing the number of epochs for model training

delivers better results, although this comes at the cost of increased

computation and training time.

 Weight Initialization

Initializing the weights for your network also has a tremendous impact

on the overall performance. A good weight initialization technique not

only speeds up the training process but also circumvents deadlocks in

the model training process. By default, the Keras framework uses glorot

uniform initialization, also called Xavier uniform initialization, but this

Chapter 5 tuning and deploying deep neural networks

146

can be changed as per your needs. We can initialize the weights for a layer

using the kernel initializer parameter as well as bias using a bias initializer.

Other popular options to select are ‘He Normal’ and ‘He Uniform’

initialization and ‘lecun normal’ and ‘lecun uniform’ initialization.

There are quite a few other options available in Keras too, but the

aforementioned choices are the most popular.

The following code snippet showcases an example of initializing

weights in a layer of a DNN with random_uniform.

from keras import Sequential

from keras.layers import Dense

model = Sequential()

model.add(Dense(64,activation="relu", input_dim = 32, kernel_

initializer = "random_uniform",bias_initializer = "zeros"))

model.add(Dense(1,activation="sigmoid"))

 Batch Size

Using a moderate batch size always helps achieve a smoother learning

process for the model. A batch size of 32 or 64, irrespective of the dataset

size and the number of samples, will deliver a smooth learning curve in

most cases. Even in scenarios where your hardware environment has

large RAM memory to accommodate a bigger batch size, I would still

recommend staying with a batch size of 32 or 64.

 Learning Rate

Learning rate is defined in the context of the optimization algorithm. It

defines the length of each step or, in simple terms, how large the updates

to the weights in each iteration can be made. Throughout this book, we

have ignored setting or changing the learning rate, as we have used the

default values for the respective optimization algorithms, in our case

Adam. The default value is 0.001, and this is a great choice for most

Chapter 5 tuning and deploying deep neural networks

147

scenarios. However, in some special cases, you might cross paths with a

use case where it might be better to go with a lower learning rate or maybe

slightly higher.

 Activation Function

We have a generous choice of activation functions for the neurons. In most

cases, ReLU works perfectly. You could almost always go ahead with ReLU

as an activation for any use case and get favorable results. In cases where

ReLU might not be delivering great results, experimenting with PReLU is a

great option.

 Optimization

Similar to activation functions, we also have a fairly generous number of

choices available for the optimization algorithm of the network. While

the most recommended is Adam, in scenarios where Adam might not

be delivering the best results for your architecture, you could explore

Adamax as well as Nadam optimizers. Adamax has mostly been a better

choice for architectures that have sparsely updated parameters like word

embeddings, which are mostly used in natural language processing

techniques. We have not covered these advanced topics in the book, but it

is good to keep these points in mind while exploring various architectures.

 Approaches for Hyperparameter Tuning
So far, we have discussed various hyperparameters that are available

for our DL models and also studied the most recommended options for

generic situations. However, selecting the most appropriate value for

a hyperparameter based on the data and the type of problem is more

of an art. The art is also arduous and painfully slow. The process of

hyperparameter tuning in DL is almost always slow and resource intensive.

However, based on the style of selecting a value for hyperparameter and

Chapter 5 tuning and deploying deep neural networks

148

further tuning model performance, we can roughly divide the different

types of approaches into four broad categories:

• Manual Search

• Grid Search

• Random Search

• Bayesian Optimization

Out of the four aforementioned approaches, we will have a brief look

into the first three. Bayesian optimization is altogether a long and difficult

topic that is beyond the scope for our book. Let’s have a brief look at the

first three approaches.

 Manual Search

Manual search, as the name implies, is a completely manual way of

selecting the best candidate value for the desired hyperparameters

in a DL model. This approach requires phenomenal experience in

training networks to get the right set of candidate values for all desired

hyperparameters using the least number of experiments. Often this

approach is highly efficient, provided you have sound experience in using

them. The best approach to start with manual search is simply to leverage

all the recommended values for a given hyperparameter and then to start

training the network. The results may not be the best, but would definitely

not be the worst. It’s a good starting point for any newbie in the field to

experiment with a few lowest-risk hyperparameter candidates.

 Grid Search

In the grid search approach, you literally experiment with all possible

combinations for a defined set of values of a hyperparameter. The name “grid”

is actually derived from the gridlike combinations for the provided values of

each hyperparameter. The following is a sample view of how a logical grid

would look for three hyperparameters with three distinct values in each.

Chapter 5 tuning and deploying deep neural networks

149

The approach is to try to develop a model for each of the combinations

as shown in the preceding. The “x” indicates a model that will be

developed with that particular hyperparameter value. For example, for

learning rate (0.1), the vertical column shows the different models that

will be developed with different values for optimizer and the batch size.

Similarly, if you take a look at the horizontal row for the hyperparameter

“batch-size” = 32, the “x” in all cells in the row indicates the different

models that will be developed with different learning rate and optimizer

values. So, in a grid with just three hyperparameters and three values

each, we are looking at developing too many models. This process will be

painfully long if we are developing fairly large networks and using larger

training data samples.

The advantage of this approach is that it gives the best model for the

defined grid of hyperparameters. However, the downside is that if your

grid doesn’t have great selections, your model will also not be the best

one. It is simply assumed that the scientist working on the model has a

fair idea of which ones could possibly be the best candidates for a given

hyperparameter.

Keras doesn’t directly provide the means to perform grid search tuning

on the models. We can however use a custom for loop with the defined

values for training or alternatively use the sklearn wrapper provided by

Keras to package the model in an sklearn type object and then leverage

Chapter 5 tuning and deploying deep neural networks

150

the grid search method in sklearn to accomplish the results. The following

code snippet showcases the means to use grid search from the sklearn

package by using the Keras wrapper for a dummy model.

from keras import Sequential

from sklearn.model_selection import GridSearchCV

from keras.wrappers.scikit_learn import KerasClassifier

from keras.layers import Dense

import numpy as np

#Generate dummy data for 3 features and 1000 samples

x_train = np.random.random((1000, 3))

#Generate dummy results for 1000 samples: 1 or 0

y_train = np.random.randint(2, size=(1000, 1))

#Create a python function that returns a compiled DNN model

def create_dnn_model():

 model = Sequential()

 model.add(Dense(12, input_dim=3, activation='relu'))

 model.add(Dense(1, activation='sigmoid'))

 model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

 return model

#Use Keras wrapper to package the model as an sklearn object

model = KerasClassifier(build_fn=create_dnn_model)

define the grid search parameters

batch_size = [32,64,128]

epochs = [15, 30, 60]

#Create a list with the parameters

param_grid = {"batch_size":batch_size, "epochs":epochs}

#Invoke the grid search method with the list of hyperparameters

Chapter 5 tuning and deploying deep neural networks

151

grid_model = GridSearchCV(estimator=model, param_grid=param_

grid, n_jobs=-1)

#Train the model

grid_model.fit(x_train, y_train)

#Extract the best model grid search

best_model = grid_model.best_estimator_

 Random Search

An improved alternative to grid search is random search. In a random

search, rather than selecting a value for the hyperparameter from a defined

list of numbers, like learning rate, we can instead choose randomly from a

distribution. This is, however, only possible for numeric hyperparameters.

So, instead of trying a learning rate of 0.1, 0.01, or 0.001, it can alternatively

pick up a random value for learning rate from a distribution we define

with some properties. The parameter now has a larger range of values

to experiment with and also much higher chances of getting better

performance. It overcomes the disadvantage of a human guessing the

best value for the hyperparameter confined within the defined range

by inducing randomness to bring the chance for better hyperparameter

selection. In reality, for most practical cases, random search mostly

outperforms grid search.

 Further Reading

To explore some more concrete examples and a brief guide toward

Bayesian Optimization, please refer the following:

• https://towardsdatascience.com/a-conceptual-

explanation-of-bayesian-model-based-

hyperparameter-optimization-for-machine-

learning-b8172278050f

Chapter 5 tuning and deploying deep neural networks

https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f
https://towardsdatascience.com/a-conceptual-explanation-of-bayesian-model-based-hyperparameter-optimization-for-machine-learning-b8172278050f

152

• https://blog.floydhub.com/guide-to-

hyperparameters-search-for-deep-learning-

models/

 Model Deployment
Now, we can finally discuss a few important pointers on model

deployment. We started with learning Keras and DL, experimented with

actual DNNs for regression and classification, and then discussed tuning

hyperparameters for improved model performance. We can now discuss a

few guidelines for deploying a DL model in a production environment.

I want to clarify that we won’t actually be learning the process of deploying

a model in production as a software engineer or discuss the DL software

pipeline and architecture for a large enterprise project. We will instead

focus on a couple of important aspects to be kept in mind while deploying

the actual model.

 Tailoring the Test Data
Throughout the course of this book, we have seen the test data exactly in

sync with the train data. In this book and for that matter in any ML/DL

learning guide, the experiments will always have the test data ready before

model training begins. We generally split the existing data into train and

test samples and then use the test data at our end to validate the model’s

real performance. This is a fair process as long as your objective ends with

training and developing a model. Once your trained model goes live in a

software, you don’t really have access to the test data. To actually make

use of the model, the data needs to be tailored in the expected format

so that the model can predict and return the predictions. This process is

actually arduous and requires carefully designing the data wrangling and

transformation pipeline for production software.

Chapter 5 tuning and deploying deep neural networks

https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-learning-models/
https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-learning-models/
https://blog.floydhub.com/guide-to-hyperparameters-search-for-deep-learning-models/

153

Let’s understand this process with an example. Assume that you have

designed and developed a DNN to predict a credit card transaction as

“genuine” or “fraudulent” using a supervised classification model. While

developing the model, you have access to customer data, transactions, point-

of-sale attributes, time-related attributes, geographical attributes, and so

on. All these data points exist in different sources. For development of the

model, you would make the effort to get the data from these different sources

and bring it in a unified form. For your experiment, this would actually be a

one-time effort. In reality, once the model is live, this entire process needs

to be designed in a way that it can replicate the ingestion of data for a given

customer along with all other necessary attributes from different sources,

unify and transform it into the required form for the model to predict, and

then make inferences at scale. Think about a large bank, where the real-time

application is catering to thousands of transactions at the same time across the

globe. Getting the data tailored for inferencing from the model requires really

sound engineering principles to enable the model to work without glitches.

The design principles of setting up the database or a cluster/node that will

compute the query request in real time need to consider the data engineering

and transformations that you have done on your training dataset, because that

exact same process needs to be executed every time a prediction is supposed

to be made using the model. This process of tailoring the data on the fly

to make inferences is a totally different art on its own and requires careful

engineering to build up. Usually, data scientists are least worried about this

part of the puzzle. We dispose of it under the assumption that it is a software

and data engineer’s job and that we can just stop bothering with it. This myth

will eventually be exploded, as there is a serious harmony that needs to be

established to get this part of the puzzle in place. The two teams, namely, data

scientists and software engineers, need to work hand in hand to accomplish

this task. The difficulty faced by a data scientist in understanding a software

engineer’s requirements and vice versa led to the rise of a new role in the

industry called ML engineer. An ML engineer is a candidate who has a great

understanding of the intersection of the two fields.

Chapter 5 tuning and deploying deep neural networks

154

 Saving Models to Memory
Another useful point we didn’t discuss during the course of this chapter is

saving the model as a file into memory and reusing it at some other point

in time. The reason this becomes extremely important in DL is the time

consumed in training large models. You shouldn’t be surprised when

you encounter DL engineers who have been training models for weeks

at a stretch on a supercomputer. Modern DL models that encompass

image, audio, and unstructured text data consume a significant amount

of time for training. A handy practice in such scenarios would be to have

the ability to pause and resume training for a DL model and also save the

intermediate results so that the training performed up to a certain point

of time doesn’t go to waste. This can be achieved with a simple callback (a

procedure in Keras that can be applied to the model at different stages of

training) that would save the weights of the model to a file along with the

model structure after a defined milestone. This saved model can later be

imported again whenever you want to resume the training. The process

continues just like you would want it to. All we need to do is take care of

saving the model structure as well as the weights after an epoch or when

we have the best model in place. Keras provides the ability to save models

after every epoch or save the best model during training for multiple

epochs.

An example of saving the best weights of a model during training for a

large number of epochs is shown in the following snippet.

from keras.callbacks import ModelCheckpoint

filepath = "ModelWeights-{epoch:.2f}-{val_acc:.2f}.hdf5"

checkpoint = ModelCheckpoint(filepath, save_best_only=True,

monitor="val_acc")

model.fit(x_train, y_train, callbacks=[checkpoint],epochs=100,

batch_size=64)

Chapter 5 tuning and deploying deep neural networks

155

As you can see in this code snippet, we define a callbacks object

with the desired parameters. We define when to save the model and what

metric to measure and where to save the model. The file path uses a

naming convention where it stores the model weights into a file with the

file name depicting the epoch number and the corresponding accuracy

metric. Finally, the callbacks object is passed into the model fit method

as a list.

Alternatively, you can also save a model in its entire form after

finishing training using the save_model method and later load it into

memory (maybe the next day) using the load_model method. An example

is shown in the following code snippet.

from keras.models import load_model

#Train a model for defined number of epochs

model.fit(x_train, y_train, epochs=100, batch_size=64)

Saves the entire model into a file named as 'dnn_model.h5'

model.save('dnn_model.h5')

Later, (maybe another day), you can load the trained model

for prediction.

model = load_model('dnn_model.h5')

 Retraining the Models with New Data
When you deploy your model into production, the ecosystem will continue

to generate more data, which can be used for training your models again.

Say, for the credit card fraud use case, you trained your model with 100K

samples and got a performance of 93% accuracy. You feel the performance

is good enough to get started, so you deploy your model into production.

Over a period of one month, an additional 10K samples are available from

the new transactions made by customers. Now you would want your model

to leverage this newly available data and improve its performance even

Chapter 5 tuning and deploying deep neural networks

156

further. To achieve this, you don’t need to retrain the entire model again;

you could instead use the pause-and-resume approach. All you need to do

is use the weights of the model already trained and provide additional data

with a few epochs to pass and iterate over the new samples. The weights

it has already learned don’t need to be disposed; you can simply use the

pause-and-resume formula and continue with the incremental data.

 Online Models
An immediate question you may ponder after understanding the process

of retraining the model is how frequently should you do this: is it a

good approach to retrain every day, every week, or every month? The

right answer is to retrain as frequently as you want. There is no harm

in incrementally training your models every time a new data point is

available as long as the computation required is not a bottleneck. A good

practice would be to iterate a training instance as soon as a new batch

of samples is available. So, if you have set a batch_size of 64, you could

automate the model training to ingest the newly available batch of data

and further improve performance on future predictions by automating

the software infrastructure to train the model for every new batch of data

samples. An extremely aggressive way to keep the model performance at

the best would be to incrementally train with every new data point and

add previous samples as the remainder of the batch. This approach is

extremely computation intensive and also less rewarding. This approach of

becoming ultra-real-time and incrementally training for every new sample

instead of a batch is usually not recommended.

Such models, which are always learning as and when a new batch of

data is available, are called online models. The most popular examples

of online models can be seen on your phone. Features like predictive text

and autocorrect improve dramatically over time. If you generally type in

a specific style, say combining two languages or shortening few words or

using slang and so on, you will notice that the mobile phone quite actively

Chapter 5 tuning and deploying deep neural networks

157

tends to adapt to your style. This happens purely because the phone’s

operating system in the background initiates the mechanism for online

models to learn constantly and improve.

 Delivering Your Model As an API
The best practice today in delivering your model as a service to a larger

software stack is by delivering it as an API. This is extremely useful and

effective, as it completely gets rid of the tech-stack requirements. Your

model can easily collaborate between a diverse and complex set of

components in a software ecosystem where you can worry less about the

language or framework you used to develop the model. Often, when you

develop an ML or DL model, the choices to deliver the model are solely

driven by two simple points:

• Build the model in a language that the software

engineer understands

or

• Use an API

While Python and Keras are almost universal in today’s modern

tech stack, we can still expect a few exceptions where this choice might

not be an easy option to integrate. Therefore, we can always choose API

as the preferred mode of deployment for a DL model and define the

requirements for data and calling style of the API appropriately.

There are two extremely useful and easy-to-operate options for

deploying your service as an API. You could either use Flask (a lightweight

Python web framework) or Amazon Sagemaker (available on AWS). There

are other options too, and I encourage you to explore them. There is an

extremely well-written article on Keras Blogs on deploying your DL model

using Flask.

Chapter 5 tuning and deploying deep neural networks

158

You can explore more on this here: https://blog.keras.io/

building-a-simple-keras-deep-learning-rest-api.html.

Also, you can explore how to deploy your model as an API using

AWS Sagemaker in a few steps here: https://docs.aws.amazon.com/

sagemaker/latest/dg/how-it-works-hosting.html.

 Putting All the Pieces of the Puzzle Together
Well, to conclude, we can gather all these small components we learned in

the last section and put them together into a simple (small) architecture as

shown in the following figure.

This is definitely an oversimplified explanation for producing your

model; I recommend you to explore improved architectures for your use

case in a more appropriate way. A ton of things will change the moment

you have the scale, data volume, security, and availability at increased

levels. The preceding visual showcases an architecture that works for small

software. Once you are done with the model-building process, you can

set up most of your logic to predict, tailor the data, measure performance

periodically, automate online learning, logging, and so on into a small

Flask app and run it on a server and deploy it as an API. The software

client, which could be a web client or another service running on the same

Chapter 5 tuning and deploying deep neural networks

https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html
https://blog.keras.io/building-a-simple-keras-deep-learning-rest-api.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html
https://docs.aws.amazon.com/sagemaker/latest/dg/how-it-works-hosting.html

159

server, could leverage the model just by calling the API in the defined

format. This architecture is okay for just small Proof of Concept (POC)

and not recommended for production enterprise applications. Discussing

large-scale deployment of DL models, the art of tailoring data on the fly,

enabling online learning, and scaling the entire service would basically

require a few more books.

 Summary
In this chapter, we discussed the methods and strategies to look forward

to when the model performance doesn’t align with your expectations. In

a nutshell, we studied the methods to incorporate when your DL model

is not working well. We discussed regularization and hyperparameter

tuning and also explored different strategies you could use to tune the

hyperparameters and get an improved model. Lastly, we discussed a

few principles we would need to address while deploying the model. We

looked into an overview of the data-tailoring process for model prediction,

understood how models can be trained using a pause-and-resume

approach, and studied online models and the approaches to retrain them.

Finally, we also looked at the options we can use to deploy the model and

looked into a baby architecture for deploying the model using Flask.

Chapter 5 tuning and deploying deep neural networks

161© Jojo Moolayil 2019
J. Moolayil, Learn Keras for Deep Neural Networks,
https://doi.org/10.1007/978-1-4842-4240-7_6

CHAPTER 6

The Path Ahead
This fast-track introductory guide was designed to get you acquainted with

the field of DL using Keras in the fastest yet most effective way. I hope you

had a great time on this journey. In this final chapter, we will take a brief

look at the path ahead. We will try to answer the following question: what

additional topics are important for a data scientist to ace the DL journey?

Let’s get started.

 What’s Next for DL Expertise?
We have covered the fundamentals in DL with DNNs for classification and

regression. The most interesting part and in fact the major reason why DL

gained its popularity and momentum in 2012 was DL for computer vision.

A few years back, designing an algorithm that could help a computer in

making sense out of an image was almost impossible. The idea of using

algorithms to extract meanings from an image or classifying the image

into a particular class was unimaginable. As time passed, ML became

popular and the approach of using handcrafted features in images and

then using a classifier for training the algorithm showcased improved

results, but this was nowhere what we would want it to be. In 2012,

Alexnet (an architecture developed by Alex Krizhevsky, Ilya Sutskever,

and Geoffrey Hinton) was used to compete in the “ImageNet Large

Scale Visual Recognition Challenge.” This was a competition hosted for

developing algorithms that could learn and predict on classifying images

162

into a defined set of classes. Alexnet achieved a top-five error of 15.3%;

this was almost 11% lower than the previous best score and set a historic

record in the challenge. The architecture was a type of DNN architecture

especially used for image classification. That is when DL got noticed and

immediately became a hot topic for research. The journey of DL from there

onward skyrocketed. With more research and experiments on DL, the

field got extended to video, audio, text, and pretty much any form of data.

Today, DL is ubiquitous. Almost every major tech company has embraced

DL in its entire stack of offerings.

A small step for you as a DL enthusiast in exploring advanced DL

topics would be to first start with DL for computer vision. This is where you

will explore convolutional neural networks (CNNs).

 CNN
CNNs are the class of DL algorithms used for computer vision use cases

like classifying an image or a video and detecting an object within an

image or even a region within an image. CNN algorithms were a huge

breakthrough in the field of computer vision, as it required a bare

minimum of image processing compared to the other prevalent techniques

of the time and also performed exceptionally well. The performance

improvement with CNN for image classification was phenomenal. The

process of building CNN is also simplified in Keras, where all the logical

components are neatly abstracted. Keras provides CNN layers, and the

overall process of developing CNN models is quite similar to what we

learned while developing regression and classification models.

To give a brief understanding of the process, we will use a small

example with its implementation. The following code snippet showcases a

‘hello world’ equivalent implementation for CNN. We will use the MNIST

data (i.e., a collection of images with handwritten digits). The objective

would be to classify the image as one of the digits from [0,1,2,3,4,5,6,7,8,9].

The data is already available in the Keras dataset module. Though the topic

Chapter 6 the path ahead

163

is entirely new, the comments within the code snippet will provide you

with a basic idea of the model design.

#Importing the necessary packages

import numpy as np

import matplotlib.pyplot as plt

from keras.datasets import mnist

from keras.models import Sequential

from keras.layers import Dense, Dropout, Flatten

#Importing the CNN related layers as described in Chapter 2

from keras.layers.convolutional import Conv2D, MaxPooling2D

from keras.utils import np_utils

#Loading data from Keras datasets

(x_train, y_train), (x_test, y_test) = mnist.load_data()

#Defining the height and weight and number of samples

#Each Image is a 28 x 28 with 1 channel matrix

training_samples, height, width = x_train.shape

testing_samples,_,_ = x_test.shape

print("Training Samples:",training_samples)

print("Testing Samples:",testing_samples)

print("Height: "+str(height)+" x Width:"+ str(width))

Output

Training Samples: 60000

Testing Samples: 10000

Height: 28 x Width:28

The code continues:

#Lets have a look at a sample image in the training data

plt.imshow(x_train[0],cmap='gray', interpolation='none')

Chapter 6 the path ahead

164

#We now have to engineer the image data into the right form

#For CNN, we would need the data in Height x Width X Channels

form Since the image is in grayscale, we will use channel = 1

channel =1

x_train = x_train.reshape(training_samples, height,

width,channel).astype('float32')

x_test = x_test.reshape(testing_samples, height, width,

channel).astype('float32')

#To improve the training process, we would need to standardize

or normalize the values We can achieve this using a simple

divide by 256 for all values

x_train = x_train/255

x_test =x_test/255

#Total number of digits =10

target_classes = 10

numbers 0-9, so ten classes

n_classes = 10

convert integer labels into one-hot vectors

y_train = np_utils.to_categorical(y_train, n_classes)

y_test = np_utils.to_categorical(y_test, n_classes)

#Designing the CNN Model

model = Sequential()

model.add(Conv2D(64, (5, 5), input_shape=(height,width ,1),

activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(64, (3, 3), activation='relu'))

model.add(MaxPooling2D(pool_size=(2, 2)))

Chapter 6 the path ahead

165

model.add(Dropout(0.25))

model.add(Flatten())

model.add(Dense(128, activation='relu'))

model.add(Dense(n_classes, activation='softmax'))

Compile model

model.compile(loss='categorical_crossentropy',

optimizer='adam', metrics=['accuracy'])

Fit the model

model.fit(x_train, y_train, validation_data=(x_test, y_test),

epochs=10, batch_size=200)

Output

Train on 60000 samples, validate on 10000 samples

Epoch 1/10

60000/60000 [==============================] - 61s 1ms/step -

loss: 0.2452 - acc: 0.9266 - val_loss: 0.0627 - val_acc: 0.9806

Epoch 2/10

60000/60000 [==============================] - 64s 1ms/step -

loss: 0.0651 - acc: 0.9804 - val_loss: 0.0414 - val_acc: 0.9860

Epoch 3/10

60000/60000 [==============================] - 62s 1ms/step -

loss: 0.0457 - acc: 0.9858 - val_loss: 0.0274 - val_acc: 0.9912

 --- Skipping intermediate output----

Epoch 9/10

60000/60000 [==============================] - 58s 963us/step -

loss: 0.0172 - acc: 0.9943 - val_loss: 0.0284 - val_acc: 0.9904

Epoch 10/10

60000/60000 [==============================] - 56s 930us/step -

loss: 0.0149 - acc: 0.9949 - val_loss: 0.0204 - val_acc: 0.9936

Chapter 6 the path ahead

166

Finally, let’s evaluate the model performance:

metrics = model.evaluate(x_test, y_test, verbose=0)

for i in range(0,len(model.metrics_names)):

 print(str(model.metrics_names[i])+" = "+str(metrics[i]))

Output

loss = 0.02039033946258933

acc = 0.9936

We can see that we have an overall accuracy of ~99% on the test

dataset. This was a rather simple example. Complications come in as and

when the size of the image and the number of classes to predict increase.

To have a high-level understanding of how CNN works, you can refer to

a couple of interesting blogs:

• https://adeshpande3.github.io/adeshpande3.

github.io/A-Beginner's-Guide-To-Understanding-

Convolutional- Neural-Networks/

• https://medium.freecodecamp.org/an-intuitive-

guide- to-convolutional-neural-networks-

260c2de0a050

To experiment more and study some really cool and simple-to-

understand examples, you can check out a few popular git repositories for

CNN-related use cases.

Here are a few:

• https://github.com/pranoyr/image-classification

• https://github.com/lrogar/distracted-driver-

detection

Chapter 6 the path ahead

https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://adeshpande3.github.io/adeshpande3.github.io/A-Beginner's-Guide-To-Understanding-Convolutional-Neural-Networks/
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-neural-networks-260c2de0a050
https://github.com/pranoyr/image-classification
https://github.com/lrogar/distracted-driver-detection
https://github.com/lrogar/distracted-driver-detection

167

 RNN
The next step in DL after having explored CNN is to start exploring RNN,

popularly known as “sequence models.” This name became popular

because RNN makes use of sequential information. So far, all the DNNs

that we have explored process training data with the assumption that

there is no relationship between any two training samples. However, this

is an issue for many problems that we can solve using data. Consider

the predictive text feature in your iOS or Android phone; the prediction

of the next word is highly dependent on the last few words you already

typed. That’s where the sequential model comes into the picture. RNNs

can also be understood as neural networks with memory. It connects

a layer to itself and thereby gets simultaneous access to two or more

consecutive input samples to process the end output. This property is

unique to RNN, and with its rise in research, it delivered amazing success

in the field of natural language understanding. All the legacy natural

language processing techniques could now be significantly improved

with RNNs. The rise of chatbots, improved autocorrect in text messaging,

suggested reply in e-mail clients and other apps, and machine translation

(i.e., translating text from a source language to a target language, Google

Translate being the classic example) have all been propelled with the

adoption of RNN. There are again different types of LSTM (long short-term

memory) networks that overcome the limitations within the existing RNN

architecture and take performance for natural language processing–related

tasks a notch higher. The most popular versions of RNN are LSTM and

GRU (gated recurrent unit) networks.

Similar to what we did for CNN, we will have a look at a simple (hello

world equivalent) sample implementation for RNN/LSTM networks.

The following code snippet performs a binary classification on the IMDB

reviews dataset within Keras. It is a use case where we are provided with

user reviews (text date) and an associated outcome as Positive or Negative.

Chapter 6 the path ahead

168

#Import the necessary packages

from keras.datasets import imdb

from keras.models import Sequential

from keras.layers import Dense, LSTM

from keras.layers.embeddings import Embedding

from keras.preprocessing import sequence

#Setting a max cap for the number of distinct words

top_words = 5000

#Loading the training and test data from keras datasets

(x_train, y_train), (x_test, y_test) = imdb.load_data(num_

words=top_words)

#Since the length of each text will be varying

#We will pad the sequences (i.e. text) to get a uniform length

throughout

max_text_length = 500

x_train = sequence.pad_sequences(x_train, maxlen=max_text_

length)

x_test = sequence.pad_sequences(x_test, maxlen=max_text_length)

#Design the network

embedding_length = 32

model = Sequential()

model.add(Embedding(top_words, embedding_length, input_

length=max_text_length))

model.add(LSTM(100))

model.add(Dense(1, activation='sigmoid'))

#Compile the model

model.compile(loss='binary_crossentropy', optimizer='adam',

metrics=['accuracy'])

Chapter 6 the path ahead

169

#Fit the model

model.fit(x_train, y_train, validation_data=(x_test, y_test),

epochs=3, batch_size=64)

Output

Train on 25000 samples, validate on 25000 samples

Epoch 1/3

25000/25000 [==============================] - 222s 9ms/step -

loss: 0.5108 - acc: 0.7601 - val_loss: 0.3946 - val_acc: 0.8272

Epoch 2/3

25000/25000 [==============================] - 217s 9ms/step -

loss: 0.3241 - acc: 0.8707 - val_loss: 0.3489 - val_acc: 0.8517

Epoch 3/3

25000/25000 [==============================] - 214s 9ms/step -

loss: 0.3044 - acc: 0.8730 - val_loss: 0.5213 - val_acc: 0.7358

Evaluate the accuracy on the test dataset:

scores = model.evaluate(x_test, y_test, verbose=0)

print("Accuracy:",scores[1])

Output

Accuracy: 0.73584

The accuracy improved with an increased number of epochs for

training and improved architectures. To get an overall understanding of

how RNN works, you can explore a few blogs:

• https://colah.github.io/posts/2015-08-

Understanding- LSTMs/

• https://medium.com/mlreview/understanding-lstm-

and-its-diagrams-37e2f46f1714

Chapter 6 the path ahead

https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714
https://medium.com/mlreview/understanding-lstm-and-its-diagrams-37e2f46f1714

170

• https://towardsdatascience.com/illustrated-

guide- to-lstms-and-gru-s-a-step-by-step-

explanation-44e9eb85bf21

To experiment more and study some really cool examples, you can

check out a few popular git repositories for LSTM-related use case. Here

are a few:

• https://github.com/philiparvidsson/LSTM-Text-

Generation

• https://github.com/danielefranceschi/lstm-

climatological- time-series

• https://github.com/shashankbhatt/Keras-LSTM-

Sentiment-Classification

 CNN + RNN
Another interesting area to explore within DL is the intersection of CNN

and RNN. Sounds confusing? Just imagine you could combine the power

of CNN (i.e., understanding images) and that of RNN (i.e., understanding

natural text); what could the intersection or combination look like? You

could describe a picture with words. That’s right, by combining RNN and

CNN together, we could help computers describe an image with natural-

style text. The process is called image captioning. Today, if you search on

google.com, a query like “yellow cars,” your results will actually return a

ton of yellow cars. If you imagine that the captioning for these images was

done by humans, which could then be indexed by search engines, you are

absolutely wrong. With humans, we can’t scale the process of captioning

images to billions of images per day. The process is simply not viable. You

would need a smarter way to do that. Image captioning with CNN+RNN

has brought a breakthrough not only in an image search for search engines

but several other products we use in our day-to-day lives. The most

Chapter 6 the path ahead

https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://towardsdatascience.com/illustrated-guide-to-lstms-and-gru-s-a-step-by-step-explanation-44e9eb85bf21
https://github.com/philiparvidsson/LSTM-Text-Generation
https://github.com/philiparvidsson/LSTM-Text-Generation
https://github.com/danielefranceschi/lstm-climatological-time-series
https://github.com/danielefranceschi/lstm-climatological-time-series
https://github.com/shashankbhatt/Keras-LSTM-Sentiment-Classification
https://github.com/shashankbhatt/Keras-LSTM-Sentiment-Classification

171

important and revolutionary outcome that was delivered to mankind by

the intersection of RNN and CNN was smart glasses (called duLight by

Baidu): a camera equipped to reading glasses that could describe what the

surroundings looked like. This was a great product for visually impaired

people. Today, we have a smaller version of that implemented in a few

apps that can be installed on the phone and works with the phone camera.

If you are interested in reading more, you can explore the following blogs:

• https://towardsdatascience.com/image-

captioning-in- deep-learning-9cd23fb4d8d2

• https://machinelearningmastery.com/

introduction- neural- machine-translation/

• https://towardsdatascience.com/neural-machine-

translation-with-python-c2f0a34f7dd

Showcasing examples of image captioning is out of the scope of

this book. However, here are a few github repositories that you can start

exploring:

• https://github.com/yashk2810/Image-Captioning

• https://github.com/danieljl/keras-image-

captioning

 Why Do We Need GPU for DL?
While exploring the environment set up in Chapter 2, we came across

installing TensorFlow for GPU. I am sure you have already heard a lot

about GPU being used for DL and companies like NVIDIA launching GPUs

specially designed for DL. In general, the question anyone would first ask

is what GPU has to do anything with DL. We’ll try getting answers to this

and other questions right away.

Chapter 6 the path ahead

https://towardsdatascience.com/image-captioning-in-deep-learning-9cd23fb4d8d2
https://towardsdatascience.com/image-captioning-in-deep-learning-9cd23fb4d8d2
https://machinelearningmastery.com/introduction-neural-machine-translation/
https://machinelearningmastery.com/introduction-neural-machine-translation/
https://towardsdatascience.com/neural-machine-translation-with-python-c2f0a34f7dd
https://towardsdatascience.com/neural-machine-translation-with-python-c2f0a34f7dd
https://github.com/yashk2810/Image-Captioning
https://github.com/danieljl/keras-image-captioning
https://github.com/danieljl/keras-image-captioning

172

Given the exposure with DL you obtained in this guide, I presume

you are already aware that DL is computationally intensive. It does take a

lot of CPU power and time to get the models trained for a specific task. If

you go one step deeper and try to understand what actually happens in a

DL model’s training process, it would boil down to one simple task (i.e.,

matrix multiplication). You have the input data in the form of a tensor

(say, a three-dimensional matrix), the test data are in a similar form, the

weights of the neuron connections are also stored in a matrix form, and

in fact everything about a DNN of any form, say CNN, RNN, DNN, or the

combination of all of them, are internally largely represented as matrices of

different dimensions. The learning process with backpropagation also gets

executed with matrix multiplication.

Interestingly, a large part of matrix multiplication can be processed in

parallel. Therefore, to speed up the training process, the number of cores

in your CPU can further improve the training time required for the model.

Unfortunately, while the level of parallel processing achieved by CPUs

is great, it’s not the best. Especially for large matrix multiplication, the

process is not as effective as we would want it to be.

However, we have GPUs that already available in the market. The

primary purpose of using a GPU was for the enhanced video performance

(i.e., higher screen refresh rate). In general, the screen of your laptop or

computer is an image of a defined size, say 1920 × 1080 pixels. This image

is again a three-dimensional matrix of the size 1920 × 1080 × 3. The third

dimension represents the color channel ‘RGB’. So, in a nutshell, what you

see on your screen at any point in time is an image displayed using a 1920

× 1080 × 3 matrix. This matrix when refreshed (computed) 30 times a

second becomes a smooth video, and you see the objects moving with no

lag. So, to display something on the screen for just a second, the computer

internally computes the values for the 1920 × 1080 × 3 matrix at least

30 times. That’s quite a lot of computation. Also, when you are playing

games or performing any task that requires high-end graphics (tasks like

video editing or designing images in Photoshop), the refresh rate needs

Chapter 6 the path ahead

173

a dramatic increment. A good estimate would be a screen refresh rate

of 60 per second instead of 30. Now, to display this high graphic content

there is an unusual extra load on the CPU and it might not be able to

deliver the required performance. To solve this problem, we have GPUs

that are specially designed for rendering high-end graphics by helping

the computer in processing the computations required to refresh the

screen 60 times. The GPU takes up the entire responsibility of processing

the computation for screen refresh. This processing is done with massive

parallel processing. The modern-day GPUs we use in a normal laptop

would come with at least 400 cores, and the ones on the desktop are

far more powerful. These cores help in massively parallel processing to

display high-definition graphic content with high refresh rates.

It happens that the same tech can be embraced to solve the problems

we face in DL. The massive parallel processing on matrices to render

smooth graphic content on the screen can instead be used for processing

the computation in the DL model’s training process. In the wake of

the moment, NVIDIA developed CUDA, which is a parallel processing

interface model created for GPUs. It allows developers to use a CUDA-

enabled graphics processing unit for general-purpose processing. This

technology brought a huge breakthrough in training DL models. To

describe it in numbers, a model that gets trained on my laptop on the

CPU in 40 minutes gets trained within 2 minutes with the GPU. It is almost

20 times faster. You can imagine what we can achieve with even more

powerful GPUs. Today, most DL libraries have support for GPUs. Once

you install and set up the CUDA drivers for your GPU and install a GPU-

compatible DL library, you are all set. The rest is completely abstracted

for you. All you need to do is train the models the usual way and the

framework takes care of seamlessly using resources from GPU as well as

CPU.

The same process can also be achieved with GPUs from other

manufacturers, like AMD with OpenGL. But NVIDAs GPUs are far superior

and are at least five years ahead of any other competitor. If you are

Chapter 6 the path ahead

174

planning to invest in hardware for researching DL, I highly recommend

buying a laptop or desktop (preferred) with an NVIDIA CUDA–compatible

GPU. You will save a massive amount of time in your experiments.

 Other Hot Areas in DL (GAN)
We explored the path forward for you to ace advanced DL topics. But this

discussion would be incomplete without talking about the hottest areas

for active research in DL. We will briefly talk about generative adversarial

networks (GANs), though there are many more.

GANs are at the forefront of disruptions in DL and have been an active

research topic recently. In a nutshell, a GAN allows a network to learn from

images that represent a real-world entity (say, a cat or dog; when we simply

develop a DL model to classify between a cat and a dog) and then generate

a new image using the same features it has learned in the process; that

is, it can generate a new image of a cat that looks (almost) authentic and

is completely different from the set of images you provided for training.

We can simplify the entire explanation for GAN into one simple task (i.e.,

image generation). If the training time and the sample images provided

during train are sufficiently large, it can learn a network that can generate

new images that are not identical to the ones you provided while training;

it generates new images.

In case you are wondering about the applications of image generation,

there are a whole new bunch of possibilities that had not been thought

of until recently. Before, most DL models only Inference (relatively easy)

and barely generated (very hard). If you look at the Mona Lisa, it is easy to

classify it as a painting of a woman, but it would be really difficult to make

one. If it were possible to do so, however, then a whole new generation of

applications could be developed. To give you one great example, Indian

Chapter 6 the path ahead

175

online fashion retailer Myntra uses GAN to create new t-shirt designs.

It trains a GAN network with a bunch of t-shirt designs and the model

generates new designs. Out of 100 new designs generated by the system,

even if 50 can be considered as good designs that they can manufacture,

then the wonders in this field would be endless. The same idea can be

extended to any other field. In the previous section, we talked about image

captioning (i.e., generating natural text like descriptions from an image).

That was already a cool application, now think about the reverse; think

about providing a natural text description to a system and it generating

a picture in return. The idea may sound too futuristic, but we are quite

near to that possibility. Just imagine, you saw a criminal on the road and

the police need your help in sketching his face to investigate further; with

future GAN systems, we can imagine a system where you describe the

details of the face of the criminal and the system sketches the face for you.

The applications of GAN are too futuristic, but research is still in progress.

As of now, GAN networks designed by researchers are able to render/

generate images in high definition, and there are continuous experiments

and research in the field to develop GAN networks that are capable of

generating high-definition videos too.

You can read more about GAN and its applications here:

• https://medium.com/@awjuliani/generative-

adversarial- networks-explained-with-a-classic-

spongebob- squarepants-episode-54deab2fce39

• https://medium.com/ai-society/gans-from-

scratch- 1-a-deep-introduction-with-code-in-

pytorch-and-tensorflow-cb03cdcdba0f

• https://towardsdatascience.com/understanding-

generative- adversarial-networks-4dafc963f2ef

Chapter 6 the path ahead

https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39
https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39
https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f
https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f
https://medium.com/ai-society/gans-from-scratch-1-a-deep-introduction-with-code-in-pytorch-and-tensorflow-cb03cdcdba0f
https://towardsdatascience.com/understanding-generative-adversarial-networks-4dafc963f2ef
https://towardsdatascience.com/understanding-generative-adversarial-networks-4dafc963f2ef

176

 Concluding Thoughts
The agenda of this chapter was to highlight how promising the field of DL

is and what a good time it is to start learning its foundations. I hope you

now have a fair idea about the advanced topics in the field and the next

steps you can take immediately to explore the DL frontier further. This

book was designed to get you started in the fastest yet most effective way as

an introductory guide to modern DL with DNNs.

We started this guide with a simple introduction to the topic of DL and

understood its rationale and differences from the buzzwords in the market.

We studied the necessity of using frameworks for developing DL models,

explored a few popular choices in the market today, and understood why

Keras has the strongest claim to be the preferred framework for a beginner.

In later chapters, we explored the Keras framework by studying the logical

abstractions it provides and mapping its equivalent in the DL ecosystem

in small, incremental steps and then stitched together all the learnings

with two foundational business-centric use cases in classification

and regression. We then studied tips and tricks to design a network, a

few workarounds in scenarios where getting started was difficult, and

the process of model tuning with regularization and hyperparameter

optimization. We also studied a few guidelines we should adhere to while

deploying a DL model in production and finally took a sneak peek into

the advanced offerings in DL with CNN, RNN, CNN+RNN, and the hottest

research area in DL (i.e., GAN).

I thoroughly enjoyed the process of delivering the contents of this

guide in an accelerated mode and I hope you enjoyed this journey too.

With that, it is now time to sign off and wish you all phenomenal luck in

your journey with DL. I wish you all a very happy and enjoyable learning

path in developing your DL skills.

Chapter 6 the path ahead

177© Jojo Moolayil 2019
J. Moolayil, Learn Keras for Deep Neural Networks,
https://doi.org/10.1007/978-1-4842-4240-7

Index

A
Activation function, 24
Adaptive Moment Estimation

(Adam), 37
Amazon Web Service Datasets, 54
Artificial intelligence (AI)

ATM, 2
definition, 2
evolution, 53
if-else rules, 2

B
Baseline accuracy, 118–119

C
Convolutional neural networks

(CNNs), 162, 166, 170
CUDA-enabled graphics

processing, 173

D, E, F
Data dictionary

Assortment, 64
CompetitionDistance, 64

CompetitionOpenSince
[Month/Year], 64

Customers, 63
dataframes, 64–65
mainstream task, 66
Open, 63
Promo, 64
Promo2, 64
Promo2Since[Year/Week], 64
PromoInterval, 64
Sales, 63
SchoolHoliday, 63
StateHoliday, 63
Store, 63
StoreType, 64
unique method, 66

Data engineering
Boolean columns, 110–111, 115
categorical columns,

111–112, 114
data types, 110
date-related features, 116
date values, 112–113
numeric feature, 114–115
one-hot encoding, 115–116
train, validation, and

test, 117–118

https://doi.org/10.1007/978-1-4842-4240-7

178

Data exploration
categorical features

barplot function, 76–77
seaborn package, 74–76
StoreType and Assortment,

74, 78
data dictionary, 63–66
data types, 66–67
variable df, 61
import pandas, 61
Jupyter Notebooks, 61
Kaggle, account registration, 60
length and breadth,

dataset, 61–63
numeric columns, 70–74
Python commands, 61
sales prediction, 69–70
store.csv, 62
working with time, 67–69

Deep learning (DL), 21
AI, 2, 5
definition, 1
frameworks

building blocks, 9
high-level, 11–12
low-level, 9–11
software industry, 8
software tools, 8
use cases, 9

messaging system, 5
ML, 2–5
model performance and

data size, 4

neural network
activation function, 6
backpropagation, 7
deep neural networks, 8
hidden layers, 6
input data, 6–7
learning process in brain, 7
logical building blocks, 6
mathematical approach, 7
message/signal passing, 5
output of, 7

social media, 5
Venn diagram, 4

Deep neural network (DNN)
activation function, 24
building blocks, 45–46,

48, 50, 52
evaluation, 43–45
input data, 21, 23
layers, 28, 30, 32
model configuration, 40
models, 28
neurons, 23
ReLU function, 26–28
training, 40–43

Designing DNN
classification

binary_crossentropy,
119–120

deeper network, 121–122
medium-sized network,

123–124
number of neurons, 121

Index

179

training process, 119
validation datasets, 121

coding, 86–88
computing power and time, 85
increasing neurons, 93–96
larger networks, 86
manual prediction, 98–99
model performance

improving, 89–93
testing, 89

optimization technique, 88
revisiting data, 86
small architectures, 85
training and validation loss,

epochs, 97–98
Dropout regularization

mechanism, 141–142

G
Gated recurrent unit (GRU), 167
Generative adversarial networks

(GANs), 174
Gluon, 12
Google Dataset Search, 54–55
GPUs, 171–173
Grid search, 148–151

H
High-level DL frameworks

first level of abstraction, 11
Gluon, 12

Keras, 12
Lasagne, 12
second level of abstraction, 11

Hyperparameter tuning
approaches

grid search, 148–151
manual search, 148
random search, 151

DL model
activation function, 147
batch size, 146
epochs, 145
learning rate, 146–147
number of neurons, 143–144
number of layers, 144–145
optimization, 147
weight initialization, 145–146

I, J
Indian Government Open Data, 54

K
Kaggle, 54–55
Keras framework

building, neural network, 14
data, 15
DNN, 13
dummy training dataset, 15
model structure, 15
trained model and predictions,

15–16

Index

180

L
Lasagne, 12
Long short-term memory (LSTM)

networks, 167
Loss function, 32–34
Low-level DL frameworks

MxNet, 10
PyTorch, 10
TensorFlow, 11
Theano, 9
Torch, 10

M
Machine learning (ML)

data availability, 3
definition, 2
historical test results and

student attributes, 3
neural networks, 3
performance, 3
statistical models, 4
unstructured data types, 3

Mean absolute error (MAE), 84, 90
Metrics, 39
Minmaxscaler, 124
Model-building process, 158
Model deployment

delivering API, 157–158
online models, 156–157
retraining, 155–156
saving models to memory,

154–155

test data, 152–153
Model evaluation, 43–45
Model training, 40–43
Montreal Institute for Learning

Algorithms (MILA), 9
MxNet, 10

N
Numeric columns

clustering, 73
CompetitionDistance, 73
customers, 71
hist function, 70
histogram, 70–71
isnull() command, 72, 73
missing data points, 73
Promo2, 71
Promo2SinceWeek and

Promo2SinceYear, 72
replacing nulls with

mode, 73

O
Online models, 156
Optimization

algorithm, 147
Optimizers, 35–36

Adam, 37
SGD, 37
techniques, 39

Overfitting, 137–139

Index

181

P, Q
Pause-and-resume

approach, 156
Python

installation in Windows, Linux
and macOS, 18

TensorFlow, 17, 19, 21
versions, 17

PyTorch, 10

R
Rectified linear unit

(ReLU), 26
Recurrent neural network

(RNN), 31, 167, 169–170
Red Hat Business Value

archived competition, 101
baseline accuracy, 118–119
data engineering (see Data

engineering)
data exploration

activity data, 108
consolidate activity and

customer attributes
dataset, 109

customer activity, 106
download, datasets, 104
Jupyter Notebooks, 104
missing data points, 107
null values, 106
people dataset, 107

potential vs. nonpotential
customers, 109

train.csv, 106
training dataset, 105

download, 102
input data

standardization, 125–126
transformation, 126–127

medium-sized network,
127–129

problem statement
enterprise-grade

solutions, 102
high-value customers, 102
open source software

products, 102
potential customer, 104
SCQ, 103

training and validation
accuracy

epochs and predictions,
129–130

larger and deeper
network, 129

medium-sized deep
network, 130

model history and plots,
132–134

overfitting model, 134
test datasets, 130–132

Regularization, 139
L1, 140
L2, 140–141

Index

182

Rossmann Store sales dataset
data engineering and one-hot

encoding
contents, 82
hardware resources, 80
predictions, 84
preprocessing module, 80
Season, Store Type, and

Assortment, 79
shape command and data

types, 81
shapes, 83
size of data, 79
StateHoliday, 82
training data, 79, 80
train_test_split function,

82–83
train, validation, and test

datasets, 82
exploring data (see Data

exploration)
MAE, 84
problem statement

cross-sectional data, 59
design principle, 56–57
online data science

competition, 56
Rossmann, 55
SCQ, 57–58

SCR, 56
stakeholder, 56
time-series forecasting

problem, 59–60

S
Sigmoid function, 25
Situation Complication Question

(SCQ), 57–58, 103
Situation–Complication–

Resolution (SCR), 56
Standardscaler, 124
Stochastic gradient descent

(SGD), 37

T
TensorFlow, 11–12, 19, 36
Tesla’s cars, 5
Theano, 9
Time-series forecasting

problem, 59–60
Torch, 10

U, V, W, X, Y, Z
UCI ML Repository, 55
US Government Open Data, 54

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: An Introduction to Deep Learning and Keras
	Introduction to DL
	Demystifying the Buzzwords
	What Are Some Classic Problems Solved by DL in Today’s Market?
	Decomposing a DL Model

	Exploring the Popular DL Frameworks
	Low-Level DL Frameworks
	Theano
	Torch
	PyTorch
	MxNet
	TensorFlow

	High-Level DL Frameworks

	A Sneak Peek into the Keras Framework
	Getting the Data Ready
	Defining the Model Structure
	Training the Model and Making Predictions

	Summary

	Chapter 2: Keras in Action
	Setting Up the Environment
	Selecting the Python Version
	Installing Python for Windows, Linux, or macOS
	Installing Keras and TensorFlow Back End

	Getting Started with DL in Keras
	Input Data
	Neuron
	Activation Function
	Sigmoid Activation Function
	ReLU Activation Function

	Model
	Layers
	Core Layers
	Dense Layer

	Dropout Layer
	Other Important Layers

	The Loss Function
	Optimizers
	Stochastic Gradient Descent (SGD)
	Adam
	Other Important Optimizers

	Metrics
	Model Configuration
	Model Training
	Model Evaluation

	Putting All the Building Blocks Together
	Summary

	Chapter 3: Deep Neural Networks for Supervised Learning: Regression
	Getting Started
	Problem Statement
	Why Is Representing a Problem Statement with a Design Principle Important?
	Designing an SCQ
	Designing the Solution

	Exploring the Data
	Looking at the Data Dictionary
	Finding Data Types
	Working with Time
	Predicting Sales
	Exploring Numeric Columns
	Understanding the Categorical Features

	Data Engineering
	Defining Model Baseline Performance
	Designing the DNN
	Testing the Model Performance
	Improving the Model
	Increasing the Number of Neurons
	Plotting the Loss Metric Across Epochs
	Testing the Model Manually

	Summary

	Chapter 4: Deep Neural Networks for Supervised Learning: Classification
	Getting Started
	Problem Statement
	Designing the SCQ
	Designing the Solution
	How Can We Identify a Potential Customer?

	Exploring the Data
	Data Engineering
	Defining Model Baseline Accuracy
	Designing the DNN for Classification
	Revisiting the Data
	Standardize, Normalize, or Scale the Data
	Transforming the Input Data

	DNNs for Classification with Improved Data
	Summary

	Chapter 5: Tuning and Deploying Deep Neural Networks
	The Problem of Overfitting
	So, What Is Regularization?
	L1 Regularization
	L2 Regularization
	Dropout Regularization

	Hyperparameter Tuning
	Hyperparameters in DL
	Number of Neurons in a Layer
	Number of Layers
	Number of Epochs
	Weight Initialization
	Batch Size
	Learning Rate
	Activation Function
	Optimization

	Approaches for Hyperparameter Tuning
	Manual Search
	Grid Search
	Random Search
	Further Reading

	Model Deployment
	Tailoring the Test Data
	Saving Models to Memory
	Retraining the Models with New Data
	Online Models
	Delivering Your Model As an API
	Putting All the Pieces of the Puzzle Together

	Summary

	Chapter 6: The Path Ahead
	What’s Next for DL Expertise?
	CNN
	RNN
	CNN + RNN

	Why Do We Need GPU for DL?
	Other Hot Areas in DL (GAN)
	Concluding Thoughts

	Index

