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Preface

Since this is a textbook we biased our selection of references towards easily

accessible work rather than the original references. While this may not be

in the interest of the inventors of these concepts, it greatly simplifies access

to those topics. Hence we encourage the reader to follow the references in

the cited works should they be interested in finding out who may claim

intellectual ownership of certain key ideas.

1
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1

Introduction

Over the past two decades Machine Learning has become one of the main-

stays of information technology and with that, a rather central, albeit usually

hidden, part of our life. With the ever increasing amounts of data becoming

available there is good reason to believe that smart data analysis will become

even more pervasive as a necessary ingredient for technological progress.

The purpose of this chapter is to provide the reader with an overview over

the vast range of applications which have at their heart a machine learning

problem and to bring some degree of order to the zoo of problems. After

that, we will discuss some basic tools from statistics and probability theory,

since they form the language in which many machine learning problems must

be phrased to become amenable to solving. Finally, we will outline a set of

fairly basic yet effective algorithms to solve an important problem, namely

that of classification. More sophisticated tools, a discussion of more general

problems and a detailed analysis will follow in later parts of the book.

1.1 A Taste of Machine Learning

Machine learning can appear in many guises. We now discuss a number of

applications, the types of data they deal with, and finally, we formalize the

problems in a somewhat more stylized fashion. The latter is key if we want to

avoid reinventing the wheel for every new application. Instead, much of the

art of machine learning is to reduce a range of fairly disparate problems to

a set of fairly narrow prototypes. Much of the science of machine learning is

then to solve those problems and provide good guarantees for the solutions.

1.1.1 Applications

Most readers will be familiar with the concept of web page ranking. That

is, the process of submitting a query to a search engine, which then finds

webpages relevant to the query and which returns them in their order of

relevance. See e.g. Figure 1.1 for an example of the query results for “ma-

chine learning”. That is, the search engine returns a sorted list of webpages

given a query. To achieve this goal, a search engine needs to ‘know’ which

3
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pages are relevant and which pages match the query. Such knowledge can be

gained from several sources: the link structure of webpages, their content,

the frequency with which users will follow the suggested links in a query, or

from examples of queries in combination with manually ranked webpages.

Increasingly machine learning rather than guesswork and clever engineering

is used to automate the process of designing a good search engine [RPB06].

A rather related application is collaborative filtering. Internet book-

stores such as Amazon, or video rental sites such as Netflix use this informa-

tion extensively to entice users to purchase additional goods (or rent more

movies). The problem is quite similar to the one of web page ranking. As

before, we want to obtain a sorted list (in this case of articles). The key dif-

ference is that an explicit query is missing and instead we can only use past

purchase and viewing decisions of the user to predict future viewing and

purchase habits. The key side information here are the decisions made by

similar users, hence the collaborative nature of the process. See Figure 1.2

for an example. It is clearly desirable to have an automatic system to solve

this problem, thereby avoiding guesswork and time [BK07].

An equally ill-defined problem is that of automatic translation of doc-

uments. At one extreme, we could aim at fully understanding a text before

translating it using a curated set of rules crafted by a computational linguist

well versed in the two languages we would like to translate. This is a rather

arduous task, in particular given that text is not always grammatically cor-

rect, nor is the document understanding part itself a trivial one. Instead, we

could simply use examples of translated documents, such as the proceedings

of the Canadian parliament or other multilingual entities (United Nations,

European Union, Switzerland) to learn how to translate between the two
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languages. In other words, we could use examples of translations to learn

how to translate. This machine learning approach proved quite successful

[?].

Many security applications, e.g. for access control, use face recognition as

one of its components. That is, given the photo (or video recording) of a

person, recognize who this person is. In other words, the system needs to

classify the faces into one of many categories (Alice, Bob, Charlie, . . . ) or

decide that it is an unknown face. A similar, yet conceptually quite different

problem is that of verification. Here the goal is to verify whether the person

in question is who he claims to be. Note that differently to before, this

is now a yes/no question. To deal with different lighting conditions, facial

expressions, whether a person is wearing glasses, hairstyle, etc., it is desirable

to have a system which learns which features are relevant for identifying a

person.

Another application where learning helps is the problem of named entity

recognition (see Figure 1.4). That is, the problem of identifying entities,

such as places, titles, names, actions, etc. from documents. Such steps are

crucial in the automatic digestion and understanding of documents. Some

modern e-mail clients, such as Apple’s Mail.app nowadays ship with the

ability to identify addresses in mails and filing them automatically in an

address book. While systems using hand-crafted rules can lead to satisfac-

tory results, it is far more efficient to use examples of marked-up documents

to learn such dependencies automatically, in particular if we want to de-

ploy our system in many languages. For instance, while ’bush’ and ’rice’
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Fig. 1.2. Books recommended by Amazon.com when viewing Tom Mitchell’s Ma-
chine Learning Book [Mit97]. It is desirable for the vendor to recommend relevant
books which a user might purchase.

Fig. 1.3. 11 Pictures of the same person taken from the Yale face recognition
database. The challenge is to recognize that we are dealing with the same per-
son in all 11 cases.
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HAVANA (Reuters) - The European Union’s top development aid official
left Cuba on Sunday convinced that EU diplomatic sanctions against
the communist island should be dropped after Fidel Castro’s
retirement, his main aide said.

<TYPE="ORGANIZATION">HAVANA</> (<TYPE="ORGANIZATION">Reuters</>) - The
<TYPE="ORGANIZATION">European Union</>’s top development aid official left
<TYPE="ORGANIZATION">Cuba</> on Sunday convinced that EU diplomatic sanctions
against the communist <TYPE="LOCATION">island</> should be dropped after
<TYPE="PERSON">Fidel Castro</>’s retirement, his main aide said.

Fig. 1.4. Named entity tagging of a news article (using LingPipe). The relevant
locations, organizations and persons are tagged for further information extraction.

are clearly terms from agriculture, it is equally clear that in the context of

contemporary politics they refer to members of the Republican Party.

Other applications which take advantage of learning are speech recog-

nition (annotate an audio sequence with text, such as the system shipping

with Microsoft Vista), the recognition of handwriting (annotate a sequence

of strokes with text, a feature common to many PDAs), trackpads of com-

puters (e.g. Synaptics, a major manufacturer of such pads derives its name

from the synapses of a neural network), the detection of failure in jet en-

gines, avatar behavior in computer games (e.g. Black and White), direct

marketing (companies use past purchase behavior to guesstimate whether

you might be willing to purchase even more) and floor cleaning robots (such

as iRobot’s Roomba). The overarching theme of learning problems is that

there exists a nontrivial dependence between some observations, which we

will commonly refer to as x and a desired response, which we refer to as y,

for which a simple set of deterministic rules is not known. By using learning

we can infer such a dependency between x and y in a systematic fashion.

We conclude this section by discussing the problem of classification,

since it will serve as a prototypical problem for a significant part of this

book. It occurs frequently in practice: for instance, when performing spam

filtering, we are interested in a yes/no answer as to whether an e-mail con-

tains relevant information or not. Note that this issue is quite user depen-

dent: for a frequent traveller e-mails from an airline informing him about

recent discounts might prove valuable information, whereas for many other

recipients this might prove more of an nuisance (e.g. when the e-mail relates

to products available only overseas). Moreover, the nature of annoying e-

mails might change over time, e.g. through the availability of new products

(Viagra, Cialis, Levitra, . . . ), different opportunities for fraud (the Nigerian

419 scam which took a new twist after the Iraq war), or different data types

(e.g. spam which consists mainly of images). To combat these problems we
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Fig. 1.5. Binary classification; separate stars from diamonds. In this example we
are able to do so by drawing a straight line which separates both sets. We will see
later that this is an important example of what is called a linear classifier.

want to build a system which is able to learn how to classify new e-mails.

A seemingly unrelated problem, that of cancer diagnosis shares a common

structure: given histological data (e.g. from a microarray analysis of a pa-

tient’s tissue) infer whether a patient is healthy or not. Again, we are asked

to generate a yes/no answer given a set of observations. See Figure 1.5 for

an example.

1.1.2 Data

It is useful to characterize learning problems according to the type of data

they use. This is a great help when encountering new challenges, since quite

often problems on similar data types can be solved with very similar tech-

niques. For instance natural language processing and bioinformatics use very

similar tools for strings of natural language text and for DNA sequences.

Vectors constitute the most basic entity we might encounter in our work.

For instance, a life insurance company might be interesting in obtaining the

vector of variables (blood pressure, heart rate, height, weight, cholesterol

level, smoker, gender) to infer the life expectancy of a potential customer.

A farmer might be interested in determining the ripeness of fruit based on

(size, weight, spectral data). An engineer might want to find dependencies

in (voltage, current) pairs. Likewise one might want to represent documents

by a vector of counts which describe the occurrence of words. The latter is

commonly referred to as bag of words features.

One of the challenges in dealing with vectors is that the scales and units

of different coordinates may vary widely. For instance, we could measure the

height in kilograms, pounds, grams, tons, stones, all of which would amount

to multiplicative changes. Likewise, when representing temperatures, we

have a full class of affine transformations, depending on whether we rep-

resent them in terms of Celsius, Kelvin or Farenheit. One way of dealing
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with those issues in an automatic fashion is to normalize the data. We will

discuss means of doing so in an automatic fashion.

Lists: In some cases the vectors we obtain may contain a variable number

of features. For instance, a physician might not necessarily decide to perform

a full battery of diagnostic tests if the patient appears to be healthy.

Sets may appear in learning problems whenever there is a large number of

potential causes of an effect, which are not well determined. For instance, it is

relatively easy to obtain data concerning the toxicity of mushrooms. It would

be desirable to use such data to infer the toxicity of a new mushroom given

information about its chemical compounds. However, mushrooms contain a

cocktail of compounds out of which one or more may be toxic. Consequently

we need to infer the properties of an object given a set of features, whose

composition and number may vary considerably.

Matrices are a convenient means of representing pairwise relationships.

For instance, in collaborative filtering applications the rows of the matrix

may represent users whereas the columns correspond to products. Only in

some cases we will have knowledge about a given (user, product) combina-

tion, such as the rating of the product by a user.

A related situation occurs whenever we only have similarity information

between observations, as implemented by a semi-empirical distance mea-

sure. Some homology searches in bioinformatics, e.g. variants of BLAST

[AGML90], only return a similarity score which does not necessarily satisfy

the requirements of a metric.

Images could be thought of as two dimensional arrays of numbers, that is,

matrices. This representation is very crude, though, since they exhibit spa-

tial coherence (lines, shapes) and (natural images exhibit) a multiresolution

structure. That is, downsampling an image leads to an object which has very

similar statistics to the original image. Computer vision and psychooptics

have created a raft of tools for describing these phenomena.

Video adds a temporal dimension to images. Again, we could represent

them as a three dimensional array. Good algorithms, however, take the tem-

poral coherence of the image sequence into account.

Trees and Graphs are often used to describe relations between collec-

tions of objects. For instance the ontology of webpages of the DMOZ project

(www.dmoz.org) has the form of a tree with topics becoming increasingly

refined as we traverse from the root to one of the leaves (Arts→ Animation

→ Anime → General Fan Pages → Official Sites). In the case of gene ontol-

ogy the relationships form a directed acyclic graph, also referred to as the

GO-DAG [ABB+00].

Both examples above describe estimation problems where our observations

www.dmoz.org
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are vertices of a tree or graph. However, graphs themselves may be the

observations. For instance, the DOM-tree of a webpage, the call-graph of

a computer program, or the protein-protein interaction networks may form

the basis upon which we may want to perform inference.

Strings occur frequently, mainly in the area of bioinformatics and natural

language processing. They may be the input to our estimation problems, e.g.

when classifying an e-mail as spam, when attempting to locate all names of

persons and organizations in a text, or when modeling the topic structure

of a document. Equally well they may constitute the output of a system.

For instance, we may want to perform document summarization, automatic

translation, or attempt to answer natural language queries.

Compound structures are the most commonly occurring object. That

is, in most situations we will have a structured mix of different data types.

For instance, a webpage might contain images, text, tables, which in turn

contain numbers, and lists, all of which might constitute nodes on a graph of

webpages linked among each other. Good statistical modelling takes such de-

pendencies and structures into account in order to tailor sufficiently flexible

models.

1.1.3 Problems

The range of learning problems is clearly large, as we saw when discussing

applications. That said, researchers have identified an ever growing number

of templates which can be used to address a large set of situations. It is those

templates which make deployment of machine learning in practice easy and

our discussion will largely focus on a choice set of such problems. We now

give a by no means complete list of templates.

Binary Classification is probably the most frequently studied problem

in machine learning and it has led to a large number of important algorithmic

and theoretic developments over the past century. In its simplest form it

reduces to the question: given a pattern x drawn from a domain X, estimate

which value an associated binary random variable y ∈ {±1} will assume.

For instance, given pictures of apples and oranges, we might want to state

whether the object in question is an apple or an orange. Equally well, we

might want to predict whether a home owner might default on his loan,

given income data, his credit history, or whether a given e-mail is spam or

ham. The ability to solve this basic problem already allows us to address a

large variety of practical settings.

There are many variants exist with regard to the protocol in which we are

required to make our estimation:
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Fig. 1.6. Left: binary classification. Right: 3-class classification. Note that in the
latter case we have much more degree for ambiguity. For instance, being able to
distinguish stars from diamonds may not suffice to identify either of them correctly,
since we also need to distinguish both of them from triangles.

• We might see a sequence of (xi, yi) pairs for which yi needs to be estimated

in an instantaneous online fashion. This is commonly referred to as online

learning.

• We might observe a collection X := {x1, . . . xm} and Y := {y1, . . . ym} of

pairs (xi, yi) which are then used to estimate y for a (set of) so-far unseen

X′ =
{
x′1, . . . , x

′
m′
}

. This is commonly referred to as batch learning.

• We might be allowed to know X′ already at the time of constructing the

model. This is commonly referred to as transduction.

• We might be allowed to choose X for the purpose of model building. This

is known as active learning.

• We might not have full information about X, e.g. some of the coordinates

of the xi might be missing, leading to the problem of estimation with

missing variables.

• The sets X and X′ might come from different data sources, leading to the

problem of covariate shift correction.

• We might be given observations stemming from two problems at the same

time with the side information that both problems are somehow related.

This is known as co-training.

• Mistakes of estimation might be penalized differently depending on the

type of error, e.g. when trying to distinguish diamonds from rocks a very

asymmetric loss applies.

Multiclass Classification is the logical extension of binary classifica-

tion. The main difference is that now y ∈ {1, . . . , n} may assume a range

of different values. For instance, we might want to classify a document ac-

cording to the language it was written in (English, French, German, Spanish,

Hindi, Japanese, Chinese, . . . ). See Figure 1.6 for an example. The main dif-

ference to before is that the cost of error may heavily depend on the type of
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Fig. 1.7. Regression estimation. We are given a number of instances (indicated by
black dots) and would like to find some function f mapping the observations X to
R such that f(x) is close to the observed values.

error we make. For instance, in the problem of assessing the risk of cancer, it

makes a significant difference whether we mis-classify an early stage of can-

cer as healthy (in which case the patient is likely to die) or as an advanced

stage of cancer (in which case the patient is likely to be inconvenienced from

overly aggressive treatment).

Structured Estimation goes beyond simple multiclass estimation by

assuming that the labels y have some additional structure which can be used

in the estimation process. For instance, y might be a path in an ontology,

when attempting to classify webpages, y might be a permutation, when

attempting to match objects, to perform collaborative filtering, or to rank

documents in a retrieval setting. Equally well, y might be an annotation of

a text, when performing named entity recognition. Each of those problems

has its own properties in terms of the set of y which we might consider

admissible, or how to search this space. We will discuss a number of those

problems in Chapter ??.

Regression is another prototypical application. Here the goal is to esti-

mate a real-valued variable y ∈ R given a pattern x (see e.g. Figure 1.7). For

instance, we might want to estimate the value of a stock the next day, the

yield of a semiconductor fab given the current process, the iron content of

ore given mass spectroscopy measurements, or the heart rate of an athlete,

given accelerometer data. One of the key issues in which regression problems

differ from each other is the choice of a loss. For instance, when estimating

stock values our loss for a put option will be decidedly one-sided. On the

other hand, a hobby athlete might only care that our estimate of the heart

rate matches the actual on average.

Novelty Detection is a rather ill-defined problem. It describes the issue

of determining “unusual” observations given a set of past measurements.

Clearly, the choice of what is to be considered unusual is very subjective.

A commonly accepted notion is that unusual events occur rarely. Hence a

possible goal is to design a system which assigns to each observation a rating
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Fig. 1.8. Left: typical digits contained in the database of the US Postal Service.
Right: unusual digits found by a novelty detection algorithm [SPST+01] (for a
description of the algorithm see Section 7.4). The score below the digits indicates
the degree of novelty. The numbers on the lower right indicate the class associated
with the digit.

as to how novel it is. Readers familiar with density estimation might contend

that the latter would be a reasonable solution. However, we neither need a

score which sums up to 1 on the entire domain, nor do we care particularly

much about novelty scores for typical observations. We will later see how this

somewhat easier goal can be achieved directly. Figure 1.8 has an example of

novelty detection when applied to an optical character recognition database.

1.2 Probability Theory

In order to deal with the instances of where machine learning can be used, we

need to develop an adequate language which is able to describe the problems

concisely. Below we begin with a fairly informal overview over probability

theory. For more details and a very gentle and detailed discussion see the

excellent book of [BT03].

1.2.1 Random Variables

Assume that we cast a dice and we would like to know our chances whether

we would see 1 rather than another digit. If the dice is fair all six outcomes

X = {1, . . . , 6} are equally likely to occur, hence we would see a 1 in roughly

1 out of 6 cases. Probability theory allows us to model uncertainty in the out-

come of such experiments. Formally we state that 1 occurs with probability
1
6 .

In many experiments, such as the roll of a dice, the outcomes are of a

numerical nature and we can handle them easily. In other cases, the outcomes

may not be numerical, e.g., if we toss a coin and observe heads or tails. In

these cases, it is useful to associate numerical values to the outcomes. This

is done via a random variable. For instance, we can let a random variable
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X take on a value +1 whenever the coin lands heads and a value of −1

otherwise. Our notational convention will be to use uppercase letters, e.g.,

X, Y etc to denote random variables and lower case letters, e.g., x, y etc to

denote the values they take.

X

weight
he
ig
ht

ξ(x)
x

Fig. 1.9. The random variable ξ maps from the set of outcomes of an experiment
(denoted here by X) to real numbers. As an illustration here X consists of the
patients a physician might encounter, and they are mapped via ξ to their weight
and height.

1.2.2 Distributions

Perhaps the most important way to characterize a random variable is to

associate probabilities with the values it can take. If the random variable is

discrete, i.e., it takes on a finite number of values, then this assignment of

probabilities is called a probability mass function or PMF for short. A PMF

must be, by definition, non-negative and must sum to one. For instance,

if the coin is fair, i.e., heads and tails are equally likely, then the random

variable X described above takes on values of +1 and −1 with probability

0.5. This can be written as

Pr(X = +1) = 0.5 and Pr(X = −1) = 0.5. (1.1)

When there is no danger of confusion we will use the slightly informal no-

tation p(x) := Pr(X = x).

In case of a continuous random variable the assignment of probabilities

results in a probability density function or PDF for short. With some abuse

of terminology, but keeping in line with convention, we will often use density

or distribution instead of probability density function. As in the case of the

PMF, a PDF must also be non-negative and integrate to one. Figure 1.10

shows two distributions: the uniform distribution

p(x) =

{
1
b−a if x ∈ [a, b]

0 otherwise,
(1.2)
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Fig. 1.10. Two common densities. Left: uniform distribution over the interval
[−1, 1]. Right: Normal distribution with zero mean and unit variance.

and the Gaussian distribution (also called normal distribution)

p(x) =
1√

2πσ2
exp

(
−(x− µ)2

2σ2

)
. (1.3)

Closely associated with a PDF is the indefinite integral over p. It is com-

monly referred to as the cumulative distribution function (CDF).

Definition 1.1 (Cumulative Distribution Function) For a real valued

random variable X with PDF p the associated Cumulative Distribution Func-

tion F is given by

F (x′) := Pr
{
X ≤ x′

}
=

∫ x′

−∞
dp(x). (1.4)

The CDF F (x′) allows us to perform range queries on p efficiently. For

instance, by integral calculus we obtain

Pr(a ≤ X ≤ b) =

∫ b

a
dp(x) = F (b)− F (a). (1.5)

The values of x′ for which F (x′) assumes a specific value, such as 0.1 or 0.5

have a special name. They are called the quantiles of the distribution p.

Definition 1.2 (Quantiles) Let q ∈ (0, 1). Then the value of x′ for which

Pr(X < x′) ≤ q and Pr(X > x′) ≤ 1− q is the q-quantile of the distribution

p. Moreover, the value x′ associated with q = 0.5 is called the median.
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p(x)

Fig. 1.11. Quantiles of a distribution correspond to the area under the integral of
the density p(x) for which the integral takes on a pre-specified value. Illustrated
are the 0.1, 0.5 and 0.9 quantiles respectively.

1.2.3 Mean and Variance

A common question to ask about a random variable is what its expected

value might be. For instance, when measuring the voltage of a device, we

might ask what its typical values might be. When deciding whether to ad-

minister a growth hormone to a child a doctor might ask what a sensible

range of height should be. For those purposes we need to define expectations

and related quantities of distributions.

Definition 1.3 (Mean) We define the mean of a random variable X as

E[X] :=

∫
xdp(x) (1.6)

More generally, if f : R → R is a function, then f(X) is also a random

variable. Its mean is mean given by

E[f(X)] :=

∫
f(x)dp(x). (1.7)

Whenever X is a discrete random variable the integral in (1.6) can be re-

placed by a summation:

E[X] =
∑
x

xp(x). (1.8)

For instance, in the case of a dice we have equal probabilities of 1/6 for all

6 possible outcomes. It is easy to see that this translates into a mean of

(1 + 2 + 3 + 4 + 5 + 6)/6 = 3.5.

The mean of a random variable is useful in assessing expected losses and

benefits. For instance, as a stock broker we might be interested in the ex-

pected value of our investment in a year’s time. In addition to that, however,

we also might want to investigate the risk of our investment. That is, how

likely it is that the value of the investment might deviate from its expecta-

tion since this might be more relevant for our decisions. This means that we
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need a variable to quantify the risk inherent in a random variable. One such

measure is the variance of a random variable.

Definition 1.4 (Variance) We define the variance of a random variable

X as

Var[X] := E
[
(X −E[X])2

]
. (1.9)

As before, if f : R→ R is a function, then the variance of f(X) is given by

Var[f(X)] := E
[
(f(X)−E[f(X)])2

]
. (1.10)

The variance measures by how much on average f(X) deviates from its ex-

pected value. As we shall see in Section 2.1, an upper bound on the variance

can be used to give guarantees on the probability that f(X) will be within

ε of its expected value. This is one of the reasons why the variance is often

associated with the risk of a random variable. Note that often one discusses

properties of a random variable in terms of its standard deviation, which is

defined as the square root of the variance.

1.2.4 Marginalization, Independence, Conditioning, and Bayes

Rule

Given two random variables X and Y , one can write their joint density

p(x, y). Given the joint density, one can recover p(x) by integrating out y.

This operation is called marginalization:

p(x) =

∫
y
dp(x, y). (1.11)

If Y is a discrete random variable, then we can replace the integration with

a summation:

p(x) =
∑
y

p(x, y). (1.12)

We say that X and Y are independent, i.e., the values that X takes does

not depend on the values that Y takes whenever

p(x, y) = p(x)p(y). (1.13)

Independence is useful when it comes to dealing with large numbers of ran-

dom variables whose behavior we want to estimate jointly. For instance,

whenever we perform repeated measurements of a quantity, such as when
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Fig. 1.12. Left: a sample from two dependent random variables. Knowing about
first coordinate allows us to improve our guess about the second coordinate. Right:
a sample drawn from two independent random variables, obtained by randomly
permuting the dependent sample.

measuring the voltage of a device, we will typically assume that the individ-

ual measurements are drawn from the same distribution and that they are

independent of each other. That is, having measured the voltage a number

of times will not affect the value of the next measurement. We will call such

random variables to be independently and identically distributed, or in short,

iid random variables. See Figure 1.12 for an example of a pair of random

variables drawn from dependent and independent distributions respectively.

Conversely, dependence can be vital in classification and regression prob-

lems. For instance, the traffic lights at an intersection are dependent of each

other. This allows a driver to perform the inference that when the lights are

green in his direction there will be no traffic crossing his path, i.e. the other

lights will indeed be red. Likewise, whenever we are given a picture x of a

digit, we hope that there will be dependence between x and its label y.

Especially in the case of dependent random variables, we are interested

in conditional probabilities, i.e., probability that X takes on a particular

value given the value of Y . Clearly Pr(X = rain|Y = cloudy) is higher than

Pr(X = rain|Y = sunny). In other words, knowledge about the value of Y

significantly influences the distribution of X. This is captured via conditional

probabilities:

p(x|y) :=
p(x, y)

p(y)
. (1.14)

Equation 1.14 leads to one of the key tools in statistical inference.

Theorem 1.5 (Bayes Rule) Denote by X and Y random variables then



18 1 Introduction

the following holds

p(y|x) =
p(x|y)p(y)

p(x)
. (1.15)

This follows from the fact that p(x, y) = p(x|y)p(y) = p(y|x)p(x). The key

consequence of (1.15) is that we may reverse the conditioning between a

pair of random variables.

1.2.4.1 An Example

We illustrate our reasoning by means of a simple example — inference using

an AIDS test. Assume that a patient would like to have such a test carried

out on him. The physician recommends a test which is guaranteed to detect

HIV-positive whenever a patient is infected. On the other hand, for healthy

patients it has a 1% error rate. That is, with probability 0.01 it diagnoses

a patient as HIV-positive even when he is, in fact, HIV-negative. Moreover,

assume that 0.15% of the population is infected.

Now assume that the patient has the test carried out and the test re-

turns ’HIV-negative’. In this case, logic implies that he is healthy, since the

test has 100% detection rate. In the converse case things are not quite as

straightforward. Denote by X and T the random variables associated with

the health status of the patient and the outcome of the test respectively. We

are interested in p(X = HIV+|T = HIV+). By Bayes rule we may write

p(X = HIV+|T = HIV+) =
p(T = HIV+|X = HIV+)p(X = HIV+)

p(T = HIV+)

While we know all terms in the numerator, p(T = HIV+) itself is unknown.

That said, it can be computed via

p(T = HIV+) =
∑

x∈{HIV+,HIV-}

p(T = HIV+, x)

=
∑

x∈{HIV+,HIV-}

p(T = HIV+|x)p(x)

= 1.0 · 0.0015 + 0.01 · 0.9985.

Substituting back into the conditional expression yields

p(X = HIV+|T = HIV+) =
1.0 · 0.0015

1.0 · 0.0015 + 0.01 · 0.9985
= 0.1306.

In other words, even though our test is quite reliable, there is such a low

prior probability of having been infected with AIDS that there is not much

evidence to accept the hypothesis even after this test.
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age x

test 1

test 2

Fig. 1.13. A graphical description of our HIV testing scenario. Knowing the age of
the patient influences our prior on whether the patient is HIV positive (the random
variable X). The outcomes of the tests 1 and 2 are independent of each other given
the status X. We observe the shaded random variables (age, test 1, test 2) and
would like to infer the un-shaded random variable X. This is a special case of a
graphical model which we will discuss in Chapter ??.

Let us now think how we could improve the diagnosis. One way is to ob-

tain further information about the patient and to use this in the diagnosis.

For instance, information about his age is quite useful. Suppose the patient

is 35 years old. In this case we would want to compute p(X = HIV+|T =

HIV+, A = 35) where the random variable A denotes the age. The corre-

sponding expression yields:

p(T = HIV+|X = HIV+, A)p(X = HIV+|A)

p(T = HIV+|A)

Here we simply conditioned all random variables on A in order to take addi-

tional information into account. We may assume that the test is independent

of the age of the patient, i.e.

p(t|x, a) = p(t|x).

What remains therefore is p(X = HIV+|A). Recent US census data pegs this

number at approximately 0.9%. Plugging all data back into the conditional

expression yields 1·0.009
1·0.009+0.01·0.991 = 0.48. What has happened here is that

by including additional observed random variables our estimate has become

more reliable. Combination of evidence is a powerful tool. In our case it

helped us make the classification problem of whether the patient is HIV-

positive or not more reliable.

A second tool in our arsenal is the use of multiple measurements. After

the first test the physician is likely to carry out a second test to confirm the

diagnosis. We denote by T1 and T2 (and t1, t2 respectively) the two tests.

Obviously, what we want is that T2 will give us an “independent” second

opinion of the situation. In other words, we want to ensure that T2 does

not make the same mistakes as T1. For instance, it is probably a bad idea

to repeat T1 without changes, since it might perform the same diagnostic
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mistake as before. What we want is that the diagnosis of T2 is independent

of that of T2 given the health status X of the patient. This is expressed as

p(t1, t2|x) = p(t1|x)p(t2|x). (1.16)

See Figure 1.13 for a graphical illustration of the setting. Random variables

satisfying the condition (1.16) are commonly referred to as conditionally

independent. In shorthand we write T1, T2 ⊥⊥ X. For the sake of the argument

we assume that the statistics for T2 are given by

p(t2|x) x = HIV- x = HIV+

t2 = HIV- 0.95 0.01

t2 = HIV+ 0.05 0.99
Clearly this test is less reliable than the first one. However, we may now

combine both estimates to obtain a very reliable estimate based on the

combination of both events. For instance, for t1 = t2 = HIV+ we have

p(X = HIV+|T1 = HIV+, T2 = HIV+) =
1.0 · 0.99 · 0.009

1.0 · 0.99 · 0.009 + 0.01 · 0.05 · 0.991
= 0.95.

In other words, by combining two tests we can now confirm with very high

confidence that the patient is indeed diseased. What we have carried out is a

combination of evidence. Strong experimental evidence of two positive tests

effectively overcame an initially very strong prior which suggested that the

patient might be healthy.

Tests such as in the example we just discussed are fairly common. For

instance, we might need to decide which manufacturing procedure is prefer-

able, which choice of parameters will give better results in a regression es-

timator, or whether to administer a certain drug. Note that often our tests

may not be conditionally independent and we would need to take this into

account.

1.3 Basic Algorithms

We conclude our introduction to machine learning by discussing four simple

algorithms, namely Naive Bayes, Nearest Neighbors, the Mean Classifier,

and the Perceptron, which can be used to solve a binary classification prob-

lem such as that described in Figure 1.5. We will also introduce the K-means

algorithm which can be employed when labeled data is not available. All

these algorithms are readily usable and easily implemented from scratch in

their most basic form.

For the sake of concreteness assume that we are interested in spam filter-

ing. That is, we are given a set ofm e-mails xi, denoted by X := {x1, . . . , xm}
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From: "LucindaParkison497072" <LucindaParkison497072@hotmail.com>

To: <kargr@earthlink.net>

Subject: we think ACGU is our next winner

Date: Mon, 25 Feb 2008 00:01:01 -0500

MIME-Version: 1.0

X-OriginalArrivalTime: 25 Feb 2008 05:01:01.0329 (UTC) FILETIME=[6A931810:01C8776B]

Return-Path: lucindaparkison497072@hotmail.com

(ACGU) .045 UP 104.5%

I do think that (ACGU) at it’s current levels looks extremely attractive.

Asset Capital Group, Inc., (ACGU) announced that it is expanding the marketing of bio-remediation fluids and cleaning equipment. After

its recent acquisition of interest in American Bio-Clean Corporation and an 80

News is expected to be released next week on this growing company and could drive the price even higher. Buy (ACGU) Monday at open. I

believe those involved at this stage could enjoy a nice ride up.

Fig. 1.14. Example of a spam e-mail

x1: The quick brown fox jumped over the lazy dog.
x2: The dog hunts a fox.

the quick brown fox jumped over lazy dog hunts a

x1 2 1 1 1 1 1 1 1 0 0
x2 1 0 0 1 0 0 0 1 1 1

Fig. 1.15. Vector space representation of strings.

and associated labels yi, denoted by Y := {y1, . . . , ym}. Here the labels sat-

isfy yi ∈ {spam, ham}. The key assumption we make here is that the pairs

(xi, yi) are drawn jointly from some distribution p(x, y) which represents

the e-mail generating process for a user. Moreover, we assume that there

is sufficiently strong dependence between x and y that we will be able to

estimate y given x and a set of labeled instances X,Y.

Before we do so we need to address the fact that e-mails such as Figure 1.14

are text, whereas the three algorithms we present will require data to be

represented in a vectorial fashion. One way of converting text into a vector

is by using the so-called bag of words representation [Mar61, Lew98]. In its

simplest version it works as follows: Assume we have a list of all possible

words occurring in X, that is a dictionary, then we are able to assign a unique

number with each of those words (e.g. the position in the dictionary). Now

we may simply count for each document xi the number of times a given

word j is occurring. This is then used as the value of the j-th coordinate

of xi. Figure 1.15 gives an example of such a representation. Once we have

the latter it is easy to compute distances, similarities, and other statistics

directly from the vectorial representation.
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1.3.1 Naive Bayes

In the example of the AIDS test we used the outcomes of the test to infer

whether the patient is diseased. In the context of spam filtering the actual

text of the e-mail x corresponds to the test and the label y is equivalent to

the diagnosis. Recall Bayes Rule (1.15). We could use the latter to infer

p(y|x) =
p(x|y)p(y)

p(x)
.

We may have a good estimate of p(y), that is, the probability of receiving

a spam or ham mail. Denote by mham and mspam the number of ham and

spam e-mails in X. In this case we can estimate

p(ham) ≈ mham

m
and p(spam) ≈ mspam

m
.

The key problem, however, is that we do not know p(x|y) or p(x). We may

dispose of the requirement of knowing p(x) by settling for a likelihood ratio

L(x) :=
p(spam|x)

p(ham|x)
=
p(x|spam)p(spam)

p(x|ham)p(ham)
. (1.17)

Whenever L(x) exceeds a given threshold c we decide that x is spam and

consequently reject the e-mail. If c is large then our algorithm is conservative

and classifies an email as spam only if p(spam|x)� p(ham|x). On the other

hand, if c is small then the algorithm aggressively classifies emails as spam.

The key obstacle is that we have no access to p(x|y). This is where we make

our key approximation. Recall Figure 1.13. In order to model the distribution

of the test outcomes T1 and T2 we made the assumption that they are

conditionally independent of each other given the diagnosis. Analogously,

we may now treat the occurrence of each word in a document as a separate

test and combine the outcomes in a naive fashion by assuming that

p(x|y) =

# of words in x∏
j=1

p(wj |y), (1.18)

where wj denotes the j-th word in document x. This amounts to the as-

sumption that the probability of occurrence of a word in a document is

independent of all other words given the category of the document. Even

though this assumption does not hold in general – for instance, the word

“York” is much more likely to after the word “New” – it suffices for our

purposes (see Figure 1.16).

This assumption reduces the difficulty of knowing p(x|y) to that of esti-

mating the probabilities of occurrence of individual words w. Estimates for
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y

word 1 word 2 ... word nword 3

Fig. 1.16. Naive Bayes model. The occurrence of individual words is independent
of each other, given the category of the text. For instance, the word Viagra is fairly
frequent if y = spam but it is considerably less frequent if y = ham, except when
considering the mailbox of a Pfizer sales representative.

p(w|y) can be obtained, for instance, by simply counting the frequency oc-

currence of the word within documents of a given class. That is, we estimate

p(w|spam) ≈

∑m
i=1

∑# of words in xi
j=1

{
yi = spam and wji = w

}
∑m

i=1

∑# of words in xi
j=1 {yi = spam}

Here
{
yi = spam and wji = w

}
equals 1 if and only if xi is labeled as spam

and w occurs as the j-th word in xi. The denominator is simply the total

number of words in spam documents. Similarly one can compute p(w|ham).

In principle we could perform the above summation whenever we see a new

document x. This would be terribly inefficient, since each such computation

requires a full pass through X and Y. Instead, we can perform a single pass

through X and Y and store the resulting statistics as a good estimate of the

conditional probabilities. Algorithm 1.1 has details of an implementation.

Note that we performed a number of optimizations: Firstly, the normaliza-

tion by m−1
spam and m−1

ham respectively is independent of x, hence we incor-

porate it as a fixed offset. Secondly, since we are computing a product over

a large number of factors the numbers might lead to numerical overflow or

underflow. This can be addressed by summing over the logarithm of terms

rather than computing products. Thirdly, we need to address the issue of

estimating p(w|y) for words w which we might not have seen before. One

way of dealing with this is to increment all counts by 1. This method is

commonly referred to as Laplace smoothing. We will encounter a theoretical

justification for this heuristic in Section 2.3.

This simple algorithm is known to perform surprisingly well, and variants

of it can be found in most modern spam filters. It amounts to what is

commonly known as “Bayesian spam filtering”. Obviously, we may apply it

to problems other than document categorization, too.
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Algorithm 1.1 Naive Bayes

Train(X,Y) {reads documents X and labels Y}
Compute dictionary D of X with n words.

Compute m,mham and mspam.

Initialize b := log c+logmham− logmspam to offset the rejection threshold

Initialize p ∈ R2×n with pij = 1, wspam = n, wham = n.

{Count occurrence of each word}
{Here xji denotes the number of times word j occurs in document xi}
for i = 1 to m do

if yi = spam then

for j = 1 to n do

p0,j ← p0,j + xji
wspam ← wspam + xji

end for

else

for j = 1 to n do

p1,j ← p1,j + xji
wham ← wham + xji

end for

end if

end for

{Normalize counts to yield word probabilities}
for j = 1 to n do

p0,j ← p0,j/wspam

p1,j ← p1,j/wham

end for

Classify(x) {classifies document x}
Initialize score threshold t = −b
for j = 1 to n do

t← t+ xj(log p0,j − log p1,j)

end for

if t > 0 return spam else return ham

1.3.2 Nearest Neighbor Estimators

An even simpler estimator than Naive Bayes is nearest neighbors. In its most

basic form it assigns the label of its nearest neighbor to an observation x

(see Figure 1.17). Hence, all we need to implement it is a distance measure

d(x, x′) between pairs of observations. Note that this distance need not even

be symmetric. This means that nearest neighbor classifiers can be extremely
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Fig. 1.17. 1 nearest neighbor classifier. Depending on whether the query point x is
closest to the star, diamond or triangles, it uses one of the three labels for it.

Fig. 1.18. k-Nearest neighbor classifiers using Euclidean distances. Left: decision
boundaries obtained from a 1-nearest neighbor classifier. Middle: color-coded sets
of where the number of red / blue points ranges between 7 and 0. Right: decision
boundary determining where the blue or red dots are in the majority.

flexible. For instance, we could use string edit distances to compare two

documents or information theory based measures.

However, the problem with nearest neighbor classification is that the esti-

mates can be very noisy whenever the data itself is very noisy. For instance,

if a spam email is erroneously labeled as nonspam then all emails which

are similar to this email will share the same fate. See Figure 1.18 for an

example. In this case it is beneficial to pool together a number of neighbors,

say the k-nearest neighbors of x and use a majority vote to decide the class

membership of x. Algorithm 1.2 has a description of the algorithm. Note

that nearest neighbor algorithms can yield excellent performance when used

with a good distance measure. For instance, the technology underlying the

Netflix progress prize [BK07] was essentially nearest neighbours based.

Note that it is trivial to extend the algorithm to regression. All we need

to change in Algorithm 1.2 is to return the average of the values yi instead

of their majority vote. Figure 1.19 has an example.

Note that the distance computation d(xi, x) for all observations can be-
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Algorithm 1.2 k-Nearest Neighbor Classification

Classify(X,Y, x) {reads documents X, labels Y and query x}
for i = 1 to m do

Compute distance d(xi, x)

end for

Compute set I containing indices for the k smallest distances d(xi, x).

return majority label of {yi where i ∈ I}.

Fig. 1.19. k-Nearest neighbor regression estimator using Euclidean distances. Left:
some points (x, y) drawn from a joint distribution. Middle: 1-nearest neighbour
classifier. Right: 7-nearest neighbour classifier. Note that the regression estimate is
much more smooth.

come extremely costly, in particular whenever the number of observations is

large or whenever the observations xi live in a very high dimensional space.

Random projections are a technique that can alleviate the high computa-

tional cost of Nearest Neighbor classifiers. A celebrated lemma by Johnson

and Lindenstrauss [DG03] asserts that a set of m points in high dimensional

Euclidean space can be projected into a O(logm/ε2) dimensional Euclidean

space such that the distance between any two points changes only by a fac-

tor of (1± ε). Since Euclidean distances are preserved, running the Nearest

Neighbor classifier on this mapped data yields the same results but at a

lower computational cost [GIM99].

The surprising fact is that the projection relies on a simple randomized

algorithm: to obtain a d-dimensional representation of n-dimensional ran-

dom observations we pick a matrix R ∈ Rd×n where each element is drawn

independently from a normal distribution with n−
1
2 variance and zero mean.

Multiplying x with this projection matrix can be shown to achieve this prop-

erty with high probability. For details see [DG03].
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w
μ-

μ+

x

Fig. 1.20. A trivial classifier. Classification is carried out in accordance to which of
the two means µ− or µ+ is closer to the test point x. Note that the sets of positive
and negative labels respectively form a half space.

1.3.3 A Simple Classifier

We can use geometry to design another simple classification algorithm [SS02]

for our problem. For simplicity we assume that the observations x ∈ Rd, such

as the bag-of-words representation of e-mails. We define the means µ+ and

µ− to correspond to the classes y ∈ {±1} via

µ− :=
1

m−

∑
yi=−1

xi and µ+ :=
1

m+

∑
yi=1

xi.

Here we used m− and m+ to denote the number of observations with label

yi = −1 and yi = +1 respectively. An even simpler approach than using the

nearest neighbor classifier would be to use the class label which corresponds

to the mean closest to a new query x, as described in Figure 1.20.

For Euclidean distances we have

‖µ− − x‖2 = ‖µ−‖2 + ‖x‖2 − 2 〈µ−, x〉 and (1.19)

‖µ+ − x‖2 = ‖µ+‖2 + ‖x‖2 − 2 〈µ+, x〉 . (1.20)

Here 〈·, ·〉 denotes the standard dot product between vectors. Taking differ-

ences between the two distances yields

f(x) := ‖µ+ − x‖2 − ‖µ− − x‖2 = 2 〈µ− − µ+, x〉+ ‖µ−‖2 − ‖µ+‖2 .
(1.21)

This is a linear function in x and its sign corresponds to the labels we esti-

mate for x. Our algorithm sports an important property: The classification

rule can be expressed via dot products. This follows from

‖µ+‖2 = 〈µ+, µ+〉 = m−2
+

∑
yi=yj=1

〈xi, xj〉 and 〈µ+, x〉 = m−1
+

∑
yi=1

〈xi, x〉 .
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X

φ(x)x

H

Fig. 1.21. The feature map φ maps observations x from X into a feature space H.
The map φ is a convenient way of encoding pre-processing steps systematically.

Analogous expressions can be computed for µ−. Consequently we may ex-

press the classification rule (1.21) as

f(x) =
m∑
i=1

αi 〈xi, x〉+ b (1.22)

where b = m−2
−
∑

yi=yj=−1 〈xi, xj〉−m
−2
+

∑
yi=yj=1 〈xi, xj〉 and αi = yi/myi .

This offers a number of interesting extensions. Recall that when dealing

with documents we needed to perform pre-processing to map e-mails into a

vector space. In general, we may pick arbitrary maps φ : X → H mapping

the space of observations into a feature space H, as long as the latter is

endowed with a dot product (see Figure 1.21). This means that instead of

dealing with 〈x, x′〉 we will be dealing with 〈φ(x), φ(x′)〉.
As we will see in Chapter 6, whenever H is a so-called Reproducing Kernel

Hilbert Space, the inner product can be abbreviated in the form of a kernel

function k(x, x′) which satisfies

k(x, x′) :=
〈
φ(x), φ(x′)

〉
. (1.23)

This small modification leads to a number of very powerful algorithm and

it is at the foundation of an area of research called kernel methods. We

will encounter a number of such algorithms for regression, classification,

segmentation, and density estimation over the course of the book. Examples

of suitable k are the polynomial kernel k(x, x′) = 〈x, x′〉d for d ∈ N and the

Gaussian RBF kernel k(x, x′) = e−γ‖x−x
′‖2 for γ > 0.

The upshot of (1.23) is that our basic algorithm can be kernelized. That

is, we may rewrite (1.21) as

f(x) =

m∑
i=1

αik(xi, x) + b (1.24)

where as before αi = yi/myi and the offset b is computed analogously. As
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Algorithm 1.3 The Perceptron

Perceptron(X,Y) {reads stream of observations (xi, yi)}
Initialize w = 0 and b = 0

while There exists some (xi, yi) with yi(〈w, xi〉+ b) ≤ 0 do

w ← w + yixi and b← b+ yi
end while

Algorithm 1.4 The Kernel Perceptron

KernelPerceptron(X,Y) {reads stream of observations (xi, yi)}
Initialize f = 0

while There exists some (xi, yi) with yif(xi) ≤ 0 do

f ← f + yik(xi, ·) + yi
end while

a consequence we have now moved from a fairly simple and pedestrian lin-

ear classifier to one which yields a nonlinear function f(x) with a rather

nontrivial decision boundary.

1.3.4 Perceptron

In the previous sections we assumed that our classifier had access to a train-

ing set of spam and non-spam emails. In real life, such a set might be difficult

to obtain all at once. Instead, a user might want to have instant results when-

ever a new e-mail arrives and he would like the system to learn immediately

from any corrections to mistakes the system makes.

To overcome both these difficulties one could envisage working with the

following protocol: As emails arrive our algorithm classifies them as spam or

non-spam, and the user provides feedback as to whether the classification is

correct or incorrect. This feedback is then used to improve the performance

of the classifier over a period of time.

This intuition can be formalized as follows: Our classifier maintains a

parameter vector. At the t-th time instance it receives a data point xt, to

which it assigns a label ŷt using its current parameter vector. The true label

yt is then revealed, and used to update the parameter vector of the classifier.

Such algorithms are said to be online. We will now describe perhaps the

simplest classifier of this kind namely the Perceptron [Heb49, Ros58].

Let us assume that the data points xt ∈ Rd, and labels yt ∈ {±1}. As

before we represent an email as a bag-of-words vector and we assign +1 to

spam emails and −1 to non-spam emails. The Perceptron maintains a weight
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w*

wt

w*wt+1

xt xt

Fig. 1.22. The Perceptron without bias. Left: at time t we have a weight vector wt
denoted by the dashed arrow with corresponding separating plane (also dashed).
For reference we include the linear separator w∗ and its separating plane (both
denoted by a solid line). As a new observation xt arrives which happens to be
mis-classified by the current weight vector wt we perform an update. Also note the
margin between the point xt and the separating hyperplane defined by w∗. Right:
This leads to the weight vector wt+1 which is more aligned with w∗.

vector w ∈ Rd and classifies xt according to the rule

ŷt := sign{〈w, xt〉+ b}, (1.25)

where 〈w, xt〉 denotes the usual Euclidean dot product and b is an offset. Note

the similarity of (1.25) to (1.21) of the simple classifier. Just as the latter,

the Perceptron is a linear classifier which separates its domain Rd into two

halfspaces, namely {x| 〈w, x〉+ b > 0} and its complement. If ŷt = yt then

no updates are made. On the other hand, if ŷt 6= yt the weight vector is

updated as

w ← w + ytxt and b← b+ yt. (1.26)

Figure 1.22 shows an update step of the Perceptron algorithm. For simplicity

we illustrate the case without bias, that is, where b = 0 and where it remains

unchanged. A detailed description of the algorithm is given in Algorithm 1.3.

An important property of the algorithm is that it performs updates on w

by multiples of the observations xi on which it makes a mistake. Hence we

may express w as w =
∑

i∈Error yixi. Just as before, we can replace xi and x

by φ(xi) and φ(x) to obtain a kernelized version of the Perceptron algorithm

[FS99] (Algorithm 1.4).

If the dataset (X,Y) is linearly separable, then the Perceptron algorithm
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eventually converges and correctly classifies all the points in X. The rate of

convergence however depends on the margin. Roughly speaking, the margin

quantifies how linearly separable a dataset is, and hence how easy it is to

solve a given classification problem.

Definition 1.6 (Margin) Let w ∈ Rd be a weight vector and let b ∈ R be

an offset. The margin of an observation x ∈ Rd with associated label y is

γ(x, y) := y (〈w, x〉+ b) . (1.27)

Moreover, the margin of an entire set of observations X with labels Y is

γ(X,Y) := min
i
γ(xi, yi). (1.28)

Geometrically speaking (see Figure 1.22) the margin measures the distance

of x from the hyperplane defined by {x| 〈w, x〉+ b = 0}. Larger the margin,

the more well separated the data and hence easier it is to find a hyperplane

with correctly classifies the dataset. The following theorem asserts that if

there exists a linear classifier which can classify a dataset with a large mar-

gin, then the Perceptron will also correctly classify the same dataset after

making a small number of mistakes.

Theorem 1.7 (Novikoff’s theorem) Let (X,Y) be a dataset with at least

one example labeled +1 and one example labeled −1. Let R := maxt ‖xt‖, and

assume that there exists (w∗, b∗) such that ‖w∗‖ = 1 and γt := yt(〈w∗, xt〉+
b∗) ≥ γ for all t. Then, the Perceptron will make at most (1+R2)(1+(b∗)2)

γ2

mistakes.

This result is remarkable since it does not depend on the dimensionality

of the problem. Instead, it only depends on the geometry of the setting,

as quantified via the margin γ and the radius R of a ball enclosing the

observations. Interestingly, a similar bound can be shown for Support Vector

Machines [Vap95] which we will be discussing in Chapter 7.

Proof We can safely ignore the iterations where no mistakes were made

and hence no updates were carried out. Therefore, without loss of generality

assume that the t-th update was made after seeing the t-th observation and

let wt denote the weight vector after the update. Furthermore, for simplicity

assume that the algorithm started with w0 = 0 and b0 = 0. By the update

equation (1.26) we have

〈wt, w∗〉+ btb
∗ = 〈wt−1, w

∗〉+ bt−1b
∗ + yt(〈xt, w∗〉+ b∗)

≥ 〈wt−1, w
∗〉+ bt−1b

∗ + γ.
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By induction it follows that 〈wt, w∗〉+btb∗ ≥ tγ. On the other hand we made

an update because yt(〈xt, wt−1〉+ bt−1) < 0. By using ytyt = 1,

‖wt‖2 + b2t = ‖wt−1‖2 + b2t−1 + y2
t ‖xt‖

2 + 1 + 2yt(〈wt−1, xt〉+ bt−1)

≤ ‖wt−1‖2 + b2t−1 + ‖xt‖2 + 1

Since ‖xt‖2 = R2 we can again apply induction to conclude that ‖wt‖2+b2t ≤
t
[
R2 + 1

]
. Combining the upper and the lower bounds, using the Cauchy-

Schwartz inequality, and ‖w∗‖ = 1 yields

tγ ≤ 〈wt, w∗〉+ btb
∗ =

〈[
wt
bt

]
,

[
w∗

b∗

]〉
≤
∥∥∥∥[ wtbt

]∥∥∥∥ ∥∥∥∥[ w∗b∗
]∥∥∥∥ =

√
‖wt‖2 + b2t

√
1 + (b∗)2

≤
√
t(R2 + 1)

√
1 + (b∗)2.

Squaring both sides of the inequality and rearranging the terms yields an

upper bound on the number of updates and hence the number of mistakes.

The Perceptron was the building block of research on Neural Networks

[Hay98, Bis95]. The key insight was to combine large numbers of such net-

works, often in a cascading fashion, to larger objects and to fashion opti-

mization algorithms which would lead to classifiers with desirable properties.

In this book we will take a complementary route. Instead of increasing the

number of nodes we will investigate what happens when increasing the com-

plexity of the feature map φ and its associated kernel k. The advantage of

doing so is that we will reap the benefits from convex analysis and linear

models, possibly at the expense of a slightly more costly function evaluation.

1.3.5 K-Means

All the algorithms we discussed so far are supervised, that is, they assume

that labeled training data is available. In many applications this is too much

to hope for; labeling may be expensive, error prone, or sometimes impossi-

ble. For instance, it is very easy to crawl and collect every page within the

www.purdue.edu domain, but rather time consuming to assign a topic to

each page based on its contents. In such cases, one has to resort to unsuper-

vised learning. A prototypical unsupervised learning algorithm is K-means,

which is clustering algorithm. Given X = {x1, . . . , xm} the goal of K-means

is to partition it into k clusters such that each point in a cluster is similar

to points from its own cluster than with points from some other cluster.
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Towards this end, define prototype vectors µ1, . . . , µk and an indicator

vector rij which is 1 if, and only if, xi is assigned to cluster j. To cluster our

dataset we will minimize the following distortion measure, which minimizes

the distance of each point from the prototype vector:

J(r, µ) :=
1

2

m∑
i=1

k∑
j=1

rij‖xi − µj‖2, (1.29)

where r = {rij}, µ = {µj}, and ‖ · ‖2 denotes the usual Euclidean square

norm.

Our goal is to find r and µ, but since it is not easy to jointly minimize J

with respect to both r and µ, we will adapt a two stage strategy:

Stage 1 Keep the µ fixed and determine r. In this case, it is easy to see

that the minimization decomposes into m independent problems.

The solution for the i-th data point xi can be found by setting:

rij = 1 if j = argmin
j′
‖xi − µj′‖2, (1.30)

and 0 otherwise.

Stage 2 Keep the r fixed and determine µ. Since the r’s are fixed, J is an

quadratic function of µ. It can be minimized by setting the derivative

with respect to µj to be 0:

m∑
i=1

rij(xi − µj) = 0 for all j. (1.31)

Rearranging obtains

µj =

∑
i rijxi∑
i rij

. (1.32)

Since
∑

i rij counts the number of points assigned to cluster j, we are

essentially setting µj to be the sample mean of the points assigned

to cluster j.

The algorithm stops when the cluster assignments do not change signifi-

cantly. Detailed pseudo-code can be found in Algorithm 1.5.

Two issues with K-Means are worth noting. First, it is sensitive to the

choice of the initial cluster centers µ. A number of practical heuristics have

been developed. For instance, one could randomly choose k points from the

given dataset as cluster centers. Other methods try to pick k points from X

which are farthest away from each other. Second, it makes a hard assignment

of every point to a cluster center. Variants which we will encounter later in
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Algorithm 1.5 K-Means

Cluster(X) {Cluster dataset X}
Initialize cluster centers µj for j = 1, . . . , k randomly

repeat

for i = 1 to m do

Compute j′ = argminj=1,...,k d(xi, µj)

Set rij′ = 1 and rij = 0 for all j′ 6= j

end for

for j = 1 to k do

Compute µj =
∑
i rijxi∑
i rij

end for

until Cluster assignments rij are unchanged

return {µ1, . . . , µk} and rij

the book will relax this. Instead of letting rij ∈ {0, 1} these soft variants

will replace it with the probability that a given xi belongs to cluster j.

The K-Means algorithm concludes our discussion of a set of basic machine

learning methods for classification and regression. They provide a useful

starting point for an aspiring machine learning researcher. In this book we

will see many more such algorithms as well as connections between these

basic algorithms and their more advanced counterparts.

Problems

Problem 1.1 (Eyewitness) Assume that an eyewitness is 90% certain

that a given person committed a crime in a bar. Moreover, assume that

there were 50 people in the restaurant at the time of the crime. What is the

posterior probability of the person actually having committed the crime.

Problem 1.2 (DNA Test) Assume the police have a DNA library of 10

million records. Moreover, assume that the false recognition probability is

below 0.00001% per record. Suppose a match is found after a database search

for an individual. What are the chances that the identification is correct? You

can assume that the total population is 100 million people. Hint: compute

the probability of no match occurring first.

Problem 1.3 (Bomb Threat) Suppose that the probability that one of a

thousand passengers on a plane has a bomb is 1 : 1, 000, 000. Assuming that

the probability to have a bomb is evenly distributed among the passengers,
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the probability that two passengers have a bomb is roughly equal to 10−12.

Therefore, one might decide to take a bomb on a plane to decrease chances

that somebody else has a bomb. What is wrong with this argument?

Problem 1.4 (Monty-Hall Problem) Assume that in a TV show the

candidate is given the choice between three doors. Behind two of the doors

there is a pencil and behind one there is the grand prize, a car. The candi-

date chooses one door. After that, the showmaster opens another door behind

which there is a pencil. Should the candidate switch doors after that? What

is the probability of winning the car?

Problem 1.5 (Mean and Variance for Random Variables) Denote by

Xi random variables. Prove that in this case

EX1,...XN

[∑
i

xi

]
=
∑
i

EXi [xi] and VarX1,...XN

[∑
i

xi

]
=
∑
i

VarXi [xi]

To show the second equality assume independence of the Xi.

Problem 1.6 (Two Dices) Assume you have a game which uses the max-

imum of two dices. Compute the probability of seeing any of the events

{1, . . . , 6}. Hint: prove first that the cumulative distribution function of the

maximum of a pair of random variables is the square of the original cumu-

lative distribution function.

Problem 1.7 (Matching Coins) Consider the following game: two play-

ers bring a coin each. the first player bets that when tossing the coins both

will match and the second one bets that they will not match. Show that even

if one of the players were to bring a tainted coin, the game still would be

fair. Show that it is in the interest of each player to bring a fair coin to the

game. Hint: assume that the second player knows that the first coin favors

heads over tails.

Problem 1.8 (Randomized Maximization) How many observations do

you need to draw from a distribution to ensure that the maximum over them

is larger than 95% of all observations with at least 95% probability? Hint:

generalize the result from Problem 1.6 to the maximum over n random vari-

ables.

Application: Assume we have 1000 computers performing MapReduce [DG08]

and the Reducers have to wait until all 1000 Mappers are finished with their

job. Compute the quantile of the typical time to completion.
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Problem 1.9 Prove that the Normal distribution (1.3) has mean µ and

variance σ2. Hint: exploit the fact that p is symmetric around µ.

Problem 1.10 (Cauchy Distribution) Prove that for the density

p(x) =
1

π(1 + x2)
(1.33)

mean and variance are undefined. Hint: show that the integral diverges.

Problem 1.11 (Quantiles) Find a distribution for which the mean ex-

ceeds the median. Hint: the mean depends on the value of the high-quantile

terms, whereas the median does not.

Problem 1.12 (Multicategory Naive Bayes) Prove that for multicate-

gory Naive Bayes the optimal decision is given by

y∗(x) := argmax
y

p(y)
n∏
i=1

p([x]i|y) (1.34)

where y ∈ Y is the class label of the observation x.

Problem 1.13 (Bayes Optimal Decisions) Denote by y∗(x) = argmaxy p(y|x)

the label associated with the largest conditional class probability. Prove that

for y∗(x) the probability of choosing the wrong label y is given by

l(x) := 1− p(y∗(x)|x).

Moreover, show that y∗(x) is the label incurring the smallest misclassification

error.

Problem 1.14 (Nearest Neighbor Loss) Show that the expected loss in-

curred by the nearest neighbor classifier does not exceed twice the loss of the

Bayes optimal decision.
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Density Estimation

2.1 Limit Theorems

Assume you are a gambler and go to a casino to play a game of dice. As

it happens, it is your unlucky day and among the 100 times you toss the

dice, you only see ’6’ eleven times. For a fair dice we know that each face

should occur with equal probability 1
6 . Hence the expected value over 100

draws is 100
6 ≈ 17, which is considerably more than the eleven times that we

observed. Before crying foul you decide that some mathematical analysis is

in order.

The probability of seeing a particular sequence of m trials out of which n

are a ’6’ is given by 1
6

n 5
6

m−n
. Moreover, there are

(
m
n

)
= m!

n!(m−n)! different

sequences of ’6’ and ’not 6’ with proportions n and m−n respectively. Hence

we may compute the probability of seeing a ’6’ only 11 or less via

Pr(X ≤ 11) =
11∑
i=0

p(i) =
11∑
i=0

(
100

i

)[
1

6

]i [5

6

]100−i
≈ 7.0% (2.1)

After looking at this figure you decide that things are probably reasonable.

And, in fact, they are consistent with the convergence behavior of a sim-

ulated dice in Figure 2.1. In computing (2.1) we have learned something

useful: the expansion is a special case of a binomial series. The first term
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1234 56
0.0

0.1

0.2

0.3

m=20

1234 56
0.0

0.1

0.2

0.3

m=50

1234 56
0.0

0.1

0.2

0.3

m=100

1234 56
0.0

0.1

0.2

0.3

m=200

1234 56
0.0

0.1

0.2

0.3

m=500

Fig. 2.1. Convergence of empirical means to expectations. From left to right: em-
pirical frequencies of occurrence obtained by casting a dice 10, 20, 50, 100, 200, and
500 times respectively. Note that after 20 throws we still have not observed a single

’6’, an event which occurs with only
[
5
6

]20 ≈ 2.6% probability.
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counts the number of configurations in which we could observe i times ’6’ in a

sequence of 100 dice throws. The second and third term are the probabilities

of seeing one particular instance of such a sequence.

Note that in general we may not be as lucky, since we may have con-

siderably less information about the setting we are studying. For instance,

we might not know the actual probabilities for each face of the dice, which

would be a likely assumption when gambling at a casino of questionable

reputation. Often the outcomes of the system we are dealing with may be

continuous valued random variables rather than binary ones, possibly even

with unknown range. For instance, when trying to determine the average

wage through a questionnaire we need to determine how many people we

need to ask in order to obtain a certain level of confidence.

To answer such questions we need to discuss limit theorems. They tell

us by how much averages over a set of observations may deviate from the

corresponding expectations and how many observations we need to draw to

estimate a number of probabilities reliably. For completeness we will present

proofs for some of the more fundamental theorems in Section 2.1.2. They

are useful albeit non-essential for the understanding of the remainder of the

book and may be omitted.

2.1.1 Fundamental Laws

The Law of Large Numbers developed by Bernoulli in 1713 is one of the

fundamental building blocks of statistical analysis. It states that averages

over a number of observations converge to their expectations given a suffi-

ciently large number of observations and given certain assumptions on the

independence of these observations. It comes in two flavors: the weak and

the strong law.

Theorem 2.1 (Weak Law of Large Numbers) Denote by X1, . . . , Xm

random variables drawn from p(x) with mean µ = EXi [xi] for all i. Moreover

let

X̄m :=
1

m

m∑
i=1

Xi (2.2)

be the empirical average over the random variables Xi. Then for any ε > 0

the following holds

lim
m→∞

Pr
(∣∣X̄m − µ

∣∣ ≤ ε) = 1. (2.3)
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Fig. 2.2. The mean of a number of casts of a dice. The horizontal straight line
denotes the mean 3.5. The uneven solid line denotes the actual mean X̄n as a
function of the number of draws, given as a semilogarithmic plot. The crosses denote
the outcomes of the dice. Note how X̄n ever more closely approaches the mean 3.5
are we obtain an increasing number of observations.

This establishes that, indeed, for large enough sample sizes, the average will

converge to the expectation. The strong law strengthens this as follows:

Theorem 2.2 (Strong Law of Large Numbers) Under the conditions

of Theorem 2.1 we have Pr
(
limm→∞ X̄m = µ

)
= 1.

The strong law implies that almost surely (in a measure theoretic sense) X̄m

converges to µ, whereas the weak law only states that for every ε the random

variable X̄m will be within the interval [µ−ε, µ+ε]. Clearly the strong implies

the weak law since the measure of the events X̄m = µ converges to 1, hence

any ε-ball around µ would capture this.

Both laws justify that we may take sample averages, e.g. over a number

of events such as the outcomes of a dice and use the latter to estimate their

means, their probabilities (here we treat the indicator variable of the event

as a {0; 1}-valued random variable), their variances or related quantities. We

postpone a proof until Section 2.1.2, since an effective way of proving Theo-

rem 2.1 relies on the theory of characteristic functions which we will discuss

in the next section. For the moment, we only give a pictorial illustration in

Figure 2.2.

Once we established that the random variable X̄m = m−1
∑m

i=1Xi con-

verges to its mean µ, a natural second question is to establish how quickly it

converges and what the properties of the limiting distribution of X̄m−µ are.

Note in Figure 2.2 that the initial deviation from the mean is large whereas

as we observe more data the empirical mean approaches the true one.
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Fig. 2.3. Five instantiations of a running average over outcomes of a toss of a dice.
Note that all of them converge to the mean 3.5. Moreover note that they all are
well contained within the upper and lower envelopes given by µ±

√
VarX [x]/m.

The central limit theorem answers this question exactly by addressing a

slightly more general question, namely whether the sum over a number of

independent random variables where each of them arises from a different

distribution might also have a well behaved limiting distribution. This is

the case as long as the variance of each of the random variables is bounded.

The limiting distribution of such a sum is Gaussian. This affirms the pivotal

role of the Gaussian distribution.

Theorem 2.3 (Central Limit Theorem) Denote by Xi independent ran-

dom variables with means µi and standard deviation σi. Then

Zm :=

[
m∑
i=1

σ2
i

]− 1
2
[
m∑
i=1

Xi − µi

]
(2.4)

converges to a Normal Distribution with zero mean and unit variance.

Note that just like the law of large numbers the central limit theorem (CLT)

is an asymptotic result. That is, only in the limit of an infinite number of

observations will it become exact. That said, it often provides an excellent

approximation even for finite numbers of observations, as illustrated in Fig-

ure 2.4. In fact, the central limit theorem and related limit theorems build

the foundation of what is known as asymptotic statistics.

Example 2.1 (Dice) If we are interested in computing the mean of the

values returned by a dice we may apply the CLT to the sum over m variables
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which have all mean µ = 3.5 and variance (see Problem 2.1)

VarX [x] = EX [x2]−EX [x]2 = (1 + 4 + 9 + 16 + 25 + 36)/6− 3.52 ≈ 2.92.

We now study the random variable Wm := m−1
∑m

i=1[Xi − 3.5]. Since each

of the terms in the sum has zero mean, also Wm’s mean vanishes. Moreover,

Wm is a multiple of Zm of (2.4). Hence we have that Wm converges to a

normal distribution with zero mean and standard deviation 2.92m−
1
2 .

Consequently the average of m tosses of the dice yields a random vari-

able with mean 3.5 and it will approach a normal distribution with variance

m−
1
2 2.92. In other words, the empirical mean converges to its average at

rate O(m−
1
2 ). Figure 2.3 gives an illustration of the quality of the bounds

implied by the CLT.

One remarkable property of functions of random variables is that in many

conditions convergence properties of the random variables are bestowed upon

the functions, too. This is manifest in the following two results: a variant

of Slutsky’s theorem and the so-called delta method. The former deals with

limit behavior whereas the latter deals with an extension of the central limit

theorem.

Theorem 2.4 (Slutsky’s Theorem) Denote by Xi, Yi sequences of ran-

dom variables with Xi → X and Yi → c for c ∈ R in probability. Moreover,

denote by g(x, y) a function which is continuous for all (x, c). In this case

the random variable g(Xi, Yi) converges in probability to g(X, c).

For a proof see e.g. [Bil68]. Theorem 2.4 is often referred to as the continuous

mapping theorem (Slutsky only proved the result for affine functions). It

means that for functions of random variables it is possible to pull the limiting

procedure into the function. Such a device is useful when trying to prove

asymptotic normality and in order to obtain characterizations of the limiting

distribution.

Theorem 2.5 (Delta Method) Assume that Xn ∈ Rd is asymptotically

normal with a−2
n (Xn − b) → N(0,Σ) for a2

n → 0. Moreover, assume that

g : Rd → Rl is a mapping which is continuously differentiable at b. In this

case the random variable g(Xn) converges

a−2
n (g(Xn)− g(b))→ N(0, [∇xg(b)]Σ[∇xg(b)]>). (2.5)

Proof Via a Taylor expansion we see that

a−2
n [g(Xn)− g(b)] = [∇xg(ξn)]>a−2

n (Xn − b) (2.6)
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Here ξn lies on the line segment [b,Xn]. Since Xn → b we have that ξn → b,

too. Since g is continuously differentiable at b we may apply Slutsky’s the-

orem to see that a−2
n [g(Xn)− g(b)] → [∇xg(b)]>a−2

n (Xn − b). As a con-

sequence, the transformed random variable is asymptotically normal with

covariance [∇xg(b)]Σ[∇xg(b)]>.

We will use the delta method when it comes to investigating properties of

maximum likelihood estimators in exponential families. There g will play the

role of a mapping between expectations and the natural parametrization of

a distribution.

2.1.2 The Characteristic Function

The Fourier transform plays a crucial role in many areas of mathematical

analysis and engineering. This is equally true in statistics. For historic rea-

sons its applications to distributions is called the characteristic function,

which we will discuss in this section. At its foundations lie standard tools

from functional analysis and signal processing [Rud73, Pap62]. We begin by

recalling the basic properties:

Definition 2.6 (Fourier Transform) Denote by f : Rn → C a function

defined on a d-dimensional Euclidean space. Moreover, let x, ω ∈ Rn. Then

the Fourier transform F and its inverse F−1 are given by

F [f ](ω) := (2π)−
d
2

∫
Rn
f(x) exp(−i 〈ω, x〉)dx (2.7)

F−1[g](x) := (2π)−
d
2

∫
Rn
g(ω) exp(i 〈ω, x〉)dω. (2.8)

The key insight is that F−1 ◦ F = F ◦ F−1 = Id. In other words, F and

F−1 are inverses to each other for all functions which are L2 integrable on

Rd, which includes probability distributions. One of the key advantages of

Fourier transforms is that derivatives and convolutions on f translate into

multiplications. That is F [f ◦ g] = (2π)
d
2F [f ] · F [g]. The same rule applies

to the inverse transform, i.e. F−1[f ◦ g] = (2π)
d
2F−1[f ]F−1[g].

The benefit for statistical analysis is that often problems are more easily

expressed in the Fourier domain and it is easier to prove convergence results

there. These results then carry over to the original domain. We will be

exploiting this fact in the proof of the law of large numbers and the central

limit theorem. Note that the definition of Fourier transforms can be extended

to more general domains such as groups. See e.g. [BCR84] for further details.
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We next introduce the notion of a characteristic function of a distribution.1

Definition 2.7 (Characteristic Function) Denote by p(x) a distribution

of a random variable X ∈ Rd. Then the characteristic function φX(ω) with

ω ∈ Rd is given by

φX(ω) := (2π)
d
2F−1[p(x)] =

∫
exp(i 〈ω, x〉)dp(x). (2.9)

In other words, φX(ω) is the inverse Fourier transform applied to the prob-

ability measure p(x). Consequently φX(ω) uniquely characterizes p(x) and

moreover, p(x) can be recovered from φX(ω) via the forward Fourier trans-

form. One of the key utilities of characteristic functions is that they allow

us to deal in easy ways with sums of random variables.

Theorem 2.8 (Sums of random variables and convolutions) Denote

by X,Y ∈ R two independent random variables. Moreover, denote by Z :=

X + Y the sum of both random variables. Then the distribution over Z sat-

isfies p(z) = p(x) ◦ p(y). Moreover, the characteristic function yields:

φZ(ω) = φX(ω)φY (ω). (2.10)

Proof Z is given by Z = X + Y . Hence, for a given Z = z we have

the freedom to choose X = x freely provided that Y = z − x. In terms of

distributions this means that the joint distribution p(z, x) is given by

p(z, x) = p(Y = z − x)p(x)

and hence p(z) =

∫
p(Y = z − x)dp(x) = [p(x) ◦ p(y)](z).

The result for characteristic functions follows form the property of the

Fourier transform.

For sums of several random variables the characteristic function is the prod-

uct of the individual characteristic functions. This allows us to prove both

the weak law of large numbers and the central limit theorem (see Figure 2.4

for an illustration) by proving convergence in the Fourier domain.

Proof [Weak Law of Large Numbers] At the heart of our analysis lies

a Taylor expansion of the exponential into

exp(iwx) = 1 + i 〈w, x〉+ o(|w|)
and hence φX(ω) = 1 + iwEX [x] + o(|w|).

1 In Chapter ?? we will discuss more general descriptions of distributions of which φX is a special
case. In particular, we will replace the exponential exp(i 〈ω, x〉) by a kernel function k(x, x′).
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Fig. 2.4. A working example of the central limit theorem. The top row contains
distributions of sums of uniformly distributed random variables on the interval
[0.5, 0.5]. From left to right we have sums of 1, 2, 4, 8 and 16 random variables. The
bottom row contains the same distribution with the means rescaled by

√
m, where

m is the number of observations. Note how the distribution converges increasingly
to the normal distribution.

Given m random variables Xi with mean EX [x] = µ this means that their

average X̄m := 1
m

∑m
i=1Xi has the characteristic function

φX̄m(ω) =

(
1 +

i

m
wµ+ o(m−1 |w|)

)m
(2.11)

In the limit of m → ∞ this converges to exp(iwµ), the characteristic func-

tion of the constant distribution with mean µ. This proves the claim that in

the large sample limit X̄m is essentially constant with mean µ.

Proof [Central Limit Theorem] We use the same idea as above to prove

the CLT. The main difference, though, is that we need to assume that the

second moments of the random variables Xi exist. To avoid clutter we only

prove the case of constant mean EXi [xi] = µ and variance VarXi [xi] = σ2.
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Let Zm := 1√
mσ2

∑m
i=1(Xi − µ). Our proof relies on showing convergence

of the characteristic function of Zm, i.e. φZm to that of a normally dis-

tributed random variable W with zero mean and unit variance. Expanding

the exponential to second order yields:

exp(iwx) = 1 + iwx− 1

2
w2x2 + o(|w|2)

and hence φX(ω) = 1 + iwEX [x]− 1

2
w2VarX [x] + o(|w|2)

Since the mean of Zm vanishes by centering (Xi − µ) and the variance per

variable is m−1 we may write the characteristic function of Zm via

φZm(ω) =

(
1− 1

2m
w2 + o(m−1 |w|2)

)m
As before, taking limits m → ∞ yields the exponential function. We have

that limm→∞ φZm(ω) = exp(−1
2ω

2) which is the characteristic function of

the normal distribution with zero mean and variance 1. Since the character-

istic function transform is injective this proves our claim.

Note that the characteristic function has a number of useful properties. For

instance, it can also be used as moment generating function via the identity:

∇nωφX(0) = i−nEX [xn]. (2.12)

Its proof is left as an exercise. See Problem 2.2 for details. This connection

also implies (subject to regularity conditions) that if we know the moments

of a distribution we are able to reconstruct it directly since it allows us

to reconstruct its characteristic function. This idea has been exploited in

density estimation [Cra46] in the form of Edgeworth and Gram-Charlier

expansions [Hal92].

2.1.3 Tail Bounds

In practice we never have access to an infinite number of observations. Hence

the central limit theorem does not apply but is just an approximation to the

real situation. For instance, in the case of the dice, we might want to state

worst case bounds for finite sums of random variables to determine by how

much the empirical mean may deviate from its expectation. Those bounds

will not only be useful for simple averages but to quantify the behavior of

more sophisticated estimators based on a set of observations.

The bounds we discuss below differ in the amount of knowledge they

assume about the random variables in question. For instance, we might only
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know their mean. This leads to the Gauss-Markov inequality. If we know

their mean and their variance we are able to state a stronger bound, the

Chebyshev inequality. For an even stronger setting, when we know that

each variable has bounded range, we will be able to state a Chernoff bound.

Those bounds are progressively more tight and also more difficult to prove.

We state them in order of technical sophistication.

Theorem 2.9 (Gauss-Markov) Denote by X ≥ 0 a random variable and

let µ be its mean. Then for any ε > 0 we have

Pr(X ≥ ε) ≤ µ

ε
. (2.13)

Proof We use the fact that for nonnegative random variables

Pr(X ≥ ε) =

∫ ∞
ε

dp(x) ≤
∫ ∞
ε

x

ε
dp(x) ≤ ε−1

∫ ∞
0

xdp(x) =
µ

ε
.

This means that for random variables with a small mean, the proportion of

samples with large value has to be small.

Consequently deviations from the mean are O(ε−1). However, note that this

bound does not depend on the number of observations. A useful application

of the Gauss-Markov inequality is Chebyshev’s inequality. It is a statement

on the range of random variables using its variance.

Theorem 2.10 (Chebyshev) Denote by X a random variable with mean

µ and variance σ2. Then the following holds for ε > 0:

Pr(|x− µ| ≥ ε) ≤ σ2

ε2
. (2.14)

Proof Denote by Y := |X − µ|2 the random variable quantifying the

deviation of X from its mean µ. By construction we know that EY [y] = σ2.

Next let γ := ε2. Applying Theorem 2.9 to Y and γ yields Pr(Y > γ) ≤ σ2/γ

which proves the claim.

Note the improvement to the Gauss-Markov inequality. Where before we had

bounds whose confidence improved with O(ε−1) we can now state O(ε−2)

bounds for deviations from the mean.

Example 2.2 (Chebyshev bound) Assume that X̄m := m−1
∑m

i=1Xi is

the average over m random variables with mean µ and variance σ2. Hence

X̄m also has mean µ. Its variance is given by

VarX̄m [x̄m] =

m∑
i=1

m−2VarXi [xi] = m−1σ2.
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Applying Chebyshev’s inequality yields that the probability of a deviation

of ε from the mean µ is bounded by σ2

mε2
. For fixed failure probability δ =

Pr(|X̄m − µ| > ε) we have

δ ≤ σ2m−1ε−2 and equivalently ε ≤ σ/
√
mδ.

This bound is quite reasonable for large δ but it means that for high levels

of confidence we need a huge number of observations.

Much stronger results can be obtained if we are able to bound the range

of the random variables. Using the latter, we reap an exponential improve-

ment in the quality of the bounds in the form of the McDiarmid [McD89]

inequality. We state the latter without proof:

Theorem 2.11 (McDiarmid) Denote by f : Xm → R a function on X

and let Xi be independent random variables. In this case the following holds:

Pr (|f(x1, . . . , xm)−EX1,...,Xm [f(x1, . . . , xm)]| > ε) ≤ 2 exp
(
−2ε2C−2

)
.

Here the constant C2 is given by C2 =
∑m

i=1 c
2
i where∣∣f(x1, . . . , xi, . . . , xm)− f(x1, . . . , x
′
i, . . . , xm)

∣∣ ≤ ci
for all x1, . . . , xm, x

′
i and for all i.

This bound can be used for averages of a number of observations when

they are computed according to some algorithm as long as the latter can be

encoded in f . In particular, we have the following bound [Hoe63]:

Theorem 2.12 (Hoeffding) Denote by Xi iid random variables with bounded

range Xi ∈ [a, b] and mean µ. Let X̄m := m−1
∑m

i=1Xi be their average.

Then the following bound holds:

Pr
(∣∣X̄m − µ

∣∣ > ε
)
≤ 2 exp

(
− 2mε2

(b− a)2

)
. (2.15)

Proof This is a corollary of Theorem 2.11. In X̄m each individual random

variable has range [a/m, b/m] and we set f(X1, . . . , Xm) := X̄m. Straight-

forward algebra shows that C2 = m−2(b − a)2. Plugging this back into

McDiarmid’s theorem proves the claim.

Note that (2.15) is exponentially better than the previous bounds. With

increasing sample size the confidence level also increases exponentially.

Example 2.3 (Hoeffding bound) As in example 2.2 assume that Xi are

iid random variables and let X̄m be their average. Moreover, assume that
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Xi ∈ [a, b] for all i. As before we want to obtain guarantees on the probability

that |X̄m − µ| > ε. For a given level of confidence 1− δ we need to solve

δ ≤ 2 exp
(
− 2mε2

(b−a)2

)
(2.16)

for ε. Straightforward algebra shows that in this case ε needs to satisfy

ε ≥ |b− a|
√

[log 2− log δ] /2m (2.17)

In other words, while the confidence level only enters logarithmically into the

inequality, the sample size m improves our confidence only with ε = O(m−
1
2 ).

That is, in order to improve our confidence interval from ε = 0.1 to ε = 0.01

we need 100 times as many observations.

While this bound is tight (see Problem 2.5 for details), it is possible to ob-

tain better bounds if we know additional information. In particular knowing

a bound on the variance of a random variable in addition to knowing that it

has bounded range would allow us to strengthen the statement considerably.

The Bernstein inequality captures this connection. For details see [BBL05]

or works on empirical process theory [vdVW96, SW86, Vap82].

2.1.4 An Example

It is probably easiest to illustrate the various bounds using a concrete exam-

ple. In a semiconductor fab processors are produced on a wafer. A typical

300mm wafer holds about 400 chips. A large number of processing steps

are required to produce a finished microprocessor and often it is impossible

to assess the effect of a design decision until the finished product has been

produced.

Assume that the production manager wants to change some step from

process ’A’ to some other process ’B’. The goal is to increase the yield of

the process, that is, the number of chips of the 400 potential chips on the

wafer which can be sold. Unfortunately this number is a random variable,

i.e. the number of working chips per wafer can vary widely between different

wafers. Since process ’A’ has been running in the factory for a very long

time we may assume that the yield is well known, say it is µA = 350 out

of 400 processors on average. It is our goal to determine whether process

’B’ is better and what its yield may be. Obviously, since production runs

are expensive we want to be able to determine this number as quickly as

possible, i.e. using as few wafers as possible. The production manager is risk

averse and wants to ensure that the new process is really better. Hence he

requires a confidence level of 95% before he will change the production.
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A first step is to formalize the problem. Since we know process ’A’ exactly

we only need to concern ourselves with ’B’. We associate the random variable

Xi with wafer i. A reasonable (and somewhat simplifying) assumption is to

posit that all Xi are independent and identically distributed where all Xi

have the mean µB. Obviously we do not know µB — otherwise there would

be no reason for testing! We denote by X̄m the average of the yields of m

wafers using process ’B’. What we are interested in is the accuracy ε for

which the probability

δ = Pr(|X̄m − µB| > ε) satisfies δ ≤ 0.05.

Let us now discuss how the various bounds behave. For the sake of the

argument assume that µB − µA = 20, i.e. the new process produces on

average 20 additional usable chips.

Chebyshev In order to apply the Chebyshev inequality we need to bound

the variance of the random variables Xi. The worst possible variance would

occur if Xi ∈ {0; 400} where both events occur with equal probability. In

other words, with equal probability the wafer if fully usable or it is entirely

broken. This amounts to σ2 = 0.5(200 − 0)2 + 0.5(200 − 400)2 = 40, 000.

Since for Chebyshev bounds we have

δ ≤ σ2m−1ε−2 (2.18)

we can solve for m = σ2/δε2 = 40, 000/(0.05 ·400) = 20, 000. In other words,

we would typically need 20,000 wafers to assess with reasonable confidence

whether process ’B’ is better than process ’A’. This is completely unrealistic.

Slightly better bounds can be obtained if we are able to make better

assumptions on the variance. For instance, if we can be sure that the yield

of process ’B’ is at least 300, then the largest possible variance is 0.25(300−
0)2 + 0.75(300 − 400)2 = 30, 000, leading to a minimum of 15,000 wafers

which is not much better.

Hoeffding Since the yields are in the interval {0, . . . , 400} we have an ex-

plicit bound on the range of observations. Recall the inequality (2.16) which

bounds the failure probably δ = 0.05 by an exponential term. Solving this

for m yields

m ≥ 0.5|b− a|2ε−2 log(2/δ) ≈ 737.8 (2.19)

In other words, we need at lest 738 wafers to determine whether process ’B’

is better. While this is a significant improvement of almost two orders of

magnitude, it still seems wasteful and we would like to do better.
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Central Limit Theorem The central limit theorem is an approximation.

This means that our reasoning is not accurate any more. That said, for

large enough sample sizes, the approximation is good enough to use it for

practical predictions. Assume for the moment that we knew the variance σ2

exactly. In this case we know that X̄m is approximately normal with mean

µB and variance m−1σ2. We are interested in the interval [µ−ε, µ+ε] which

contains 95% of the probability mass of a normal distribution. That is, we

need to solve the integral

1

2πσ2

∫ µ+ε

µ−ε
exp

(
−(x− µ)2

2σ2

)
dx = 0.95 (2.20)

This can be solved efficiently using the cumulative distribution function of

a normal distribution (see Problem 2.3 for more details). One can check

that (2.20) is solved for ε = 2.96σ. In other words, an interval of ±2.96σ

contains 95% of the probability mass of a normal distribution. The number

of observations is therefore determined by

ε = 2.96σ/
√
m and hence m = 8.76

σ2

ε2
(2.21)

Again, our problem is that we do not know the variance of the distribution.

Using the worst-case bound on the variance, i.e. σ2 = 40, 000 would lead to

a requirement of at least m = 876 wafers for testing. However, while we do

not know the variance, we may estimate it along with the mean and use the

empirical estimate, possibly plus some small constant to ensure we do not

underestimate the variance, instead of the upper bound.

Assuming that fluctuations turn out to be in the order of 50 processors,

i.e. σ2 = 2500, we are able to reduce our requirement to approximately 55

wafers. This is probably an acceptable number for a practical test.

Rates and Constants The astute reader will have noticed that all three

confidence bounds had scaling behavior m = O(ε−2). That is, in all cases

the number of observations was a fairly ill behaved function of the amount

of confidence required. If we were just interested in convergence per se, a

statement like that of the Chebyshev inequality would have been entirely

sufficient. The various laws and bounds can often be used to obtain con-

siderably better constants for statistical confidence guarantees. For more

complex estimators, such as methods to classify, rank, or annotate data,

a reasoning such as the one above can become highly nontrivial. See e.g.

[MYA94, Vap98] for further details.
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2.2 Parzen Windows

2.2.1 Discrete Density Estimation

The convergence theorems discussed so far mean that we can use empir-

ical observations for the purpose of density estimation. Recall the case of

the Naive Bayes classifier of Section 1.3.1. One of the key ingredients was

the ability to use information about word counts for different document

classes to estimate the probability p(wj |y), where wj denoted the number

of occurrences of word j in document x, given that it was labeled y. In the

following we discuss an extremely simple and crude method for estimating

probabilities. It relies on the fact that for random variables Xi drawn from

distribution p(x) with discrete values Xi ∈ X we have

lim
m→∞

p̂X(x) = p(x) (2.22)

where p̂X(x) := m−1
m∑
i=1

{xi = x} for all x ∈ X. (2.23)

Let us discuss a concrete case. We assume that we have 12 documents and

would like to estimate the probability of occurrence of the word ’dog’ from

it. As raw data we have:

Document ID 1 2 3 4 5 6 7 8 9 10 11 12

Occurrences of ‘dog’ 1 0 2 0 4 6 3 0 6 2 0 1

This means that the word ‘dog’ occurs the following number of times:

Occurrences of ‘dog’ 0 1 2 3 4 5 6

Number of documents 4 2 2 1 1 0 2

Something unusual is happening here: for some reason we never observed

5 instances of the word dog in our documents, only 4 and less, or alter-

natively 6 times. So what about 5 times? It is reasonable to assume that

the corresponding value should not be 0 either. Maybe we did not sample

enough. One possible strategy is to add pseudo-counts to the observations.

This amounts to the following estimate:

p̂X(x) := (m+ |X|)−1
[
1 +

m∑
i=1

{xi = x} = p(x)
]

(2.24)

Clearly the limit for m → ∞ is still p(x). Hence, asymptotically we do not

lose anything. This prescription is what we used in Algorithm 1.1 used a

method called Laplace smoothing. Below we contrast the two methods:
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Occurrences of ‘dog’ 0 1 2 3 4 5 6

Number of documents 4 2 2 1 1 0 2

Frequency of occurrence 0.33 0.17 0.17 0.083 0.083 0 0.17

Laplace smoothing 0.26 0.16 0.16 0.11 0.11 0.05 0.16

The problem with this method is that as |X| increases we need increasingly

more observations to obtain even a modicum of precision. On average, we

will need at least one observation for every x ∈ X. This can be infeasible for

large domains as the following example shows.

Example 2.4 (Curse of Dimensionality) Assume that X = {0, 1}d, i.e.

x consists of binary bit vectors of dimensionality d. As d increases the size of

X increases exponentially, requiring an exponential number of observations

to perform density estimation. For instance, if we work with images, a 100 ×
100 black and white picture would require in the order of 103010 observations

to model such fairly low-resolution images accurately. This is clearly utterly

infeasible — the number of particles in the known universe is in the order

of 1080. Bellman [Bel61] was one of the first to formalize this dilemma by

coining the term ’curse of dimensionality’.

This example clearly shows that we need better tools to deal with high-

dimensional data. We will present one of such tools in the next section.

2.2.2 Smoothing Kernel

We now proceed to proper density estimation. Assume that we want to

estimate the distribution of weights of a population. Sample data from a

population might look as follows: X = {57, 88, 54, 84, 83, 59, 56, 43, 70, 63,

90, 98, 102, 97, 106, 99, 103, 112}. We could use this to perform a density

estimate by placing discrete components at the locations xi ∈ X with weight

1/|X| as what is done in Figure 2.5. There is no reason to believe that weights

are quantized in kilograms, or grams, or miligrams (or pounds and stones).

And even if it were, we would expect that similar weights would have similar

densities associated with it. Indeed, as the right diagram of Figure 2.5 shows,

the corresponding density is continuous.

The key question arising is how we may transform X into a realistic

estimate of the density p(x). Starting with a ’density estimate’ with only

discrete terms

p̂(x) =
1

m

m∑
i=1

δ(x− xi) (2.25)
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we may choose to smooth it out by a smoothing kernel h(x) such that the

probability mass becomes somewhat more spread out. For a density estimate

on X ⊆ Rd this is achieved by

p̂(x) =
1

m

m∑
i=1

r−dh
(
x−xi
r

)
. (2.26)

This expansion is commonly known as the Parzen windows estimate. Note

that obviously h must be chosen such that h(x) ≥ 0 for all x ∈ X and

moreover that
∫
h(x)dx = 1 in order to ensure that (2.26) is a proper prob-

ability distribution. We now formally justify this smoothing. Let R be a

small region such that

q =

∫
R
p(x) dx.

Out of the m samples drawn from p(x), the probability that k of them fall

in region R is given by the binomial distribution(
m

k

)
qk(1− q)m−k.

The expected fraction of points falling inside the region can easily be com-

puted from the expected value of the Binomial distribution: E[k/m] = q.

Similarly, the variance can be computed as Var[k/m] = q(1 − q)/m. As

m → ∞ the variance goes to 0 and hence the estimate peaks around the

expectation. We can therefore set

k ≈ mq.

If we assume that R is so small that p(x) is constant over R, then

q ≈ p(x) · V,

where V is the volume of R. Rearranging we obtain

p(x) ≈ k

mV
. (2.27)

Let us now set R to be a cube with side length r, and define a function

h(u) =

{
1 if |ui| ≤ 1

2

0 otherwise.

Observe that h
(
x−xi
r

)
is 1 if and only if xi lies inside a cube of size r centered
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around x. If we let

k =

m∑
i=1

h

(
x− xi
r

)
,

then one can use (2.27) to estimate p via

p̂(x) =
1

m

m∑
i=1

r−dh

(
x− xi
r

)
,

where rd is the volume of the hypercube of size r in d dimensions. By symme-

try, we can interpret this equation as the sum over m cubes centered around

m data points xn. If we replace the cube by any smooth kernel function h(·)
this recovers (2.26).

There exists a large variety of different kernels which can be used for the

kernel density estimate. [Sil86] has a detailed description of the properties

of a number of kernels. Popular choices are

h(x) = (2π)−
1
2 e−

1
2
x2 Gaussian kernel (2.28)

h(x) = 1
2e
−|x| Laplace kernel (2.29)

h(x) = 3
4 max(0, 1− x2) Epanechnikov kernel (2.30)

h(x) = 1
2χ[−1,1](x) Uniform kernel (2.31)

h(x) = max(0, 1− |x|) Triangle kernel. (2.32)

Further kernels are the triweight and the quartic kernel which are basically

powers of the Epanechnikov kernel. For practical purposes the Gaussian ker-

nel (2.28) or the Epanechnikov kernel (2.30) are most suitable. In particular,

the latter has the attractive property of compact support. This means that

for any given density estimate at location x we will only need to evaluate

terms h(xi − x) for which the distance ‖xi − x‖ is less than r. Such expan-

sions are computationally much cheaper, in particular when we make use of

fast nearest neighbor search algorithms [GIM99, IM98]. Figure 2.7 has some

examples of kernels.

2.2.3 Parameter Estimation

So far we have not discussed the issue of parameter selection. It should be

evident from Figure 2.6, though, that it is quite crucial to choose a good

kernel width. Clearly, a kernel that is overly wide will oversmooth any fine

detail that there might be in the density. On the other hand, a very narrow

kernel will not be very useful, since it will be able to make statements only

about the locations where we actually observed data.
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Fig. 2.5. Left: a naive density estimate given a sample of the weight of 18 persons.
Right: the underlying weight distribution.
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Fig. 2.6. Parzen windows density estimate associated with the 18 observations of
the Figure above. From left to right: Gaussian kernel density estimate with kernel
of width 0.3, 1, 3, and 10 respectively.
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Fig. 2.7. Some kernels for Parzen windows density estimation. From left to right:
Gaussian kernel, Laplace kernel, Epanechikov kernel, and uniform density.

Moreover, there is the issue of choosing a suitable kernel function. The

fact that a large variety of them exists might suggest that this is a crucial

issue. In practice, this turns out not to be the case and instead, the choice

of a suitable kernel width is much more vital for good estimates. In other

words, size matters, shape is secondary.

The problem is that we do not know which kernel width is best for the

data. If the problem is one-dimensional, we might hope to be able to eyeball

the size of r. Obviously, in higher dimensions this approach fails. A second
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option would be to choose r such that the log-likelihood of the data is

maximized. It is given by

log
m∏
i=1

p(xi) = −m logm+
m∑
i=1

log
m∑
j=1

r−dh
(
xi−xj
r

)
(2.33)

Remark 2.13 (Log-likelihood) We consider the logarithm of the likeli-

hood for reasons of computational stability to prevent numerical underflow.

While each term p(xi) might be within a suitable range, say 10−2, the prod-

uct of 1000 of such terms will easily exceed the exponent of floating point

representations on a computer. Summing over the logarithm, on the other

hand, is perfectly feasible even for large numbers of observations.

Unfortunately computing the log-likelihood is equally infeasible: for decreas-

ing r the only surviving terms in (2.33) are the functions h((xi − xi)/r) =

h(0), since the arguments of all other kernel functions diverge. In other

words, the log-likelihood is maximized when p(x) is peaked exactly at the

locations where we observed the data. The graph on the left of Figure 2.6

shows what happens in such a situation.

What we just experienced is a case of overfitting where our model is too

flexible. This led to a situation where our model was able to explain the

observed data “unreasonably well”, simply because we were able to adjust

our parameters given the data. We will encounter this situation throughout

the book. There exist a number of ways to address this problem.

Validation Set: We could use a subset of our set of observations as an

estimate of the log-likelihood. That is, we could partition the obser-

vations into X := {x1, . . . , xn} and X′ := {xn+1, . . . , xm} and use

the second part for a likelihood score according to (2.33). The second

set is typically called a validation set.

n-fold Cross-validation: Taking this idea further, note that there is no

particular reason why any given xi should belong to X or X′ respec-

tively. In fact, we could use all splits of the observations into sets

X and X′ to infer the quality of our estimate. While this is compu-

tationally infeasible, we could decide to split the observations into

n equally sized subsets, say X1, . . . ,Xn and use each of them as a

validation set at a time while the remainder is used to generate a

density estimate.

Typically n is chosen to be 10, in which case this procedure is
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referred to as 10-fold cross-validation. It is a computationally at-

tractive procedure insofar as it does not require us to change the

basic estimation algorithm. Nonetheless, computation can be costly.

Leave-one-out Estimator: At the extreme end of cross-validation we could

choose n = m. That is, we only remove a single observation at a time

and use the remainder of the data for the estimate. Using the average

over the likelihood scores provides us with an even more fine-grained

estimate. Denote by pi(x) the density estimate obtained by using

X := {x1, . . . , xm} without xi. For a Parzen windows estimate this

is given by

pi(xi) = (m− 1)−1
∑
j 6=i

r−dh
(
xi−xj
r

)
= m

m−1

[
p(xi)− r−dh(0)

]
.

(2.34)

Note that this is precisely the term r−dh(0) that is removed from

the estimate. It is this term which led to divergent estimates for

r → 0. This means that the leave-one-out log-likelihood estimate

can be computed easily via

L(X) = m log m
m−1 +

m∑
i=1

log
[
p(xi)− r−dh(0)

]
. (2.35)

We then choose r such that L(X) is maximized. This strategy is very

robust and whenever it can be implemented in a computationally

efficient manner, it is very reliable in performing model selection.

An alternative, probably more of theoretical interest, is to choose the scale r

a priori based on the amount of data we have at our disposition. Intuitively,

we need a scheme which ensures that r → 0 as the number of observations

increases m → ∞. However, we need to ensure that this happens slowly

enough that the number of observations within range r keeps on increasing in

order to ensure good statistical performance. For details we refer the reader

to [Sil86]. Chapter ?? discusses issues of model selection for estimators in

general in considerably more detail.

2.2.4 Silverman’s Rule

Assume you are an aspiring demographer who wishes to estimate the popu-

lation density of a country, say Australia. You might have access to a limited

census which, for a random portion of the population determines where they

live. As a consequence you will obtain a relatively high number of samples
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Fig. 2.8. Nonuniform density. Left: original density with samples drawn from the
distribution. Middle: density estimate with a uniform kernel. Right: density estimate
using Silverman’s adjustment.

of city dwellers, whereas the number of people living in the countryside is

likely to be very small.

If we attempt to perform density estimation using Parzen windows, we

will encounter an interesting dilemma: in regions of high density (i.e. the

cities) we will want to choose a narrow kernel width to allow us to model

the variations in population density accurately. Conversely, in the outback,

a very wide kernel is preferable, since the population there is very low.

Unfortunately, this information is exactly what a density estimator itself

could tell us. In other words we have a chicken and egg situation where

having a good density estimate seems to be necessary to come up with a

good density estimate.

Fortunately this situation can be addressed by realizing that we do not

actually need to know the density but rather a rough estimate of the latter.

This can be obtained by using information about the average distance of the

k nearest neighbors of a point. One of Silverman’s rules of thumb [Sil86] is

to choose ri as

ri =
c

k

∑
x∈kNN(xi)

‖x− xi‖ . (2.36)

Typically c is chosen to be 0.5 and k is small, e.g. k = 9 to ensure that the

estimate is computationally efficient. The density estimate is then given by

p(x) =
1

m

m∑
i=1

r−di h
(
x−xi
ri

)
. (2.37)

Figure 2.8 shows an example of such a density estimate. It is clear that a

locality dependent kernel width is better than choosing a uniformly constant

kernel density estimate. However, note that this increases the computational

complexity of performing a density estimate, since first the k nearest neigh-

bors need to be found before the density estimate can be carried out.
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2.2.5 Watson-Nadaraya Estimator

Now that we are able to perform density estimation we may use it to perform

classification and regression. This leads us to an effective method for non-

parametric data analysis, the Watson-Nadaraya estimator [Wat64, Nad65].

The basic idea is very simple: assume that we have a binary classification

problem, i.e. we need to distinguish between two classes. Provided that we

are able to compute density estimates p(x) given a set of observations X we

could appeal to Bayes rule to obtain

p(y|x) =
p(x|y)p(y)

p(x)
=

my
m ·

1
my

∑
i:yi=y

r−dh
(
xi−x
r

)
1
m

∑m
i=1 r

−dh
(
xi−x
r

) . (2.38)

Here we only take the sum over all xi with label yi = y in the numerator.

The advantage of this approach is that it is very cheap to design such an

estimator. After all, we only need to compute sums. The downside, similar

to that of the k-nearest neighbor classifier is that it may require sums (or

search) over a large number of observations. That is, evaluation of (2.38) is

potentially an O(m) operation. Fast tree based representations can be used

to accelerate this [BKL06, KM00], however their behavior depends signifi-

cantly on the dimensionality of the data. We will encounter computationally

more attractive methods at a later stage.

For binary classification (2.38) can be simplified considerably. Assume

that y ∈ {±1}. For p(y = 1|x) > 0.5 we will choose that we should estimate

y = 1 and in the converse case we would estimate y = −1. Taking the

difference between twice the numerator and the denominator we can see

that the function

f(x) =

∑
i yih

(
xi−x
r

)∑
i h
(
xi−x
r

) =
∑
i

yi
h
(
xi−x
r

)∑
i h
(
xi−x
r

) =:
∑
i

yiwi(x) (2.39)

can be used to achieve the same goal since f(x) > 0 ⇐⇒ p(y = 1|x) > 0.5.

Note that f(x) is a weighted combination of the labels yi associated with

weights wi(x) which depend on the proximity of x to an observation xi.

In other words, (2.39) is a smoothed-out version of the k-nearest neighbor

classifier of Section 1.3.2. Instead of drawing a hard boundary at the k closest

observation we use a soft weighting scheme with weights wi(x) depending

on which observations are closest.

Note furthermore that the numerator of (2.39) is very similar to the simple

classifier of Section 1.3.3. In fact, for kernels k(x, x′) such as the Gaussian

RBF kernel, which are also kernels in the sense of a Parzen windows den-

sity estimate, i.e. k(x, x′) = r−dh
(
x−x′
r

)
the two terms are identical. This
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Fig. 2.9. Watson Nadaraya estimate. Left: a binary classifier. The optimal solution
would be a straight line since both classes were drawn from a normal distribution
with the same variance. Right: a regression estimator. The data was generated from
a sinusoid with additive noise. The regression tracks the sinusoid reasonably well.

means that the Watson Nadaraya estimator provides us with an alternative

explanation as to why (1.24) leads to a usable classifier.

In the same fashion as the Watson Nadaraya classifier extends the k-

nearest neighbor classifier we also may construct a Watson Nadaraya re-

gression estimator by replacing the binary labels yi by real-valued values

yi ∈ R to obtain the regression estimator
∑

i yiwi(x). Figure 2.9 has an ex-

ample of the workings of both a regression estimator and a classifier. They

are easy to use and they work well for moderately dimensional data.

2.3 Exponential Families

Distributions from the exponential family are some of the most versatile

tools for statistical inference. Gaussians, Poisson, Gamma and Wishart dis-

tributions all form part of the exponential family. They play a key role in

dealing with graphical models, classification, regression and conditional ran-

dom fields which we will encounter in later parts of this book. Some of the

reasons for their popularity are that they lead to convex optimization prob-

lems and that they allow us to describe probability distributions by linear

models.

2.3.1 Basics

Densities from the exponential family are defined by

p(x; θ) := p0(x) exp (〈φ(x), θ〉 − g(θ)) . (2.40)
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Here p0(x) is a density on X and is often called the base measure, φ(x) is

a map from x to the sufficient statistics φ(x). θ is commonly referred to as

the natural parameter. It lives in the space dual to φ(x). Moreover, g(θ) is a

normalization constant which ensures that p(x) is properly normalized. g is

often referred to as the log-partition function. The name stems from physics

where Z = eg(θ) denotes the number of states of a physical ensemble. g can

be computed as follows:

g(θ) = log

∫
X

exp (〈φ(x), θ〉) dx. (2.41)

Example 2.5 (Binary Model) Assume that X = {0; 1} and that φ(x) =

x. In this case we have g(θ) = log
[
e0 + eθ

]
= log

[
1 + eθ

]
. It follows that

p(x = 0; θ) = 1
1+eθ

and p(x = 1; θ) = eθ

1+eθ
. In other words, by choosing

different values of θ one can recover different Bernoulli distributions.

One of the convenient properties of exponential families is that the log-

partition function g can be used to generate moments of the distribution

itself simply by taking derivatives.

Theorem 2.14 (Log partition function) The function g(θ) is convex.

Moreover, the distribution p(x; θ) satisfies

∇θg(θ) = Ex [φ(x)] and ∇2
θg(θ) = Varx [φ(x)] . (2.42)

Proof Note that ∇2
θg(θ) = Varx [φ(x)] implies that g is convex, since the

covariance matrix is positive semidefinite. To show (2.42) we expand

∇θg(θ) =

∫
X
φ(x) exp 〈φ(x), θ〉 dx∫

X
exp 〈φ(x), θ〉

=

∫
φ(x)p(x; θ)dx = Ex [φ(x)] . (2.43)

Next we take the second derivative to obtain

∇2
θg(θ) =

∫
X

φ(x) [φ(x)−∇θg(θ)]> p(x; θ)dx (2.44)

= Ex

[
φ(x)φ(x)>

]
−Ex [φ(x)] Ex [φ(x)]> (2.45)

which proves the claim. For the first equality we used (2.43). For the second

line we used the definition of the variance.

One may show that higher derivatives ∇nθ g(θ) generate higher order cu-

mulants of φ(x) under p(x; θ). This is why g is often also referred as the

cumulant-generating function. Note that in general, computation of g(θ)
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is nontrivial since it involves solving a highdimensional integral. For many

cases, in fact, the computation is NP hard, for instance when X is the do-

main of permutations [FJ95]. Throughout the book we will discuss a number

of approximation techniques which can be applied in such a case.

Let us briefly illustrate (2.43) using the binary model of Example 2.5.

We have that ∇θ = eθ

1+eθ
and ∇2

θ = eθ

(1+eθ)2
. This is exactly what we would

have obtained from direct computation of the mean p(x = 1; θ) and variance

p(x = 1; θ)− p(x = 1; θ)2 subject to the distribution p(x; θ).

2.3.2 Examples

A large number of densities are members of the exponential family. Note,

however, that in statistics it is not common to express them in the dot

product formulation for historic reasons and for reasons of notational com-

pactness. We discuss a number of common densities below and show why

they can be written in terms of an exponential family. A detailed description

of the most commonly occurring types are given in a table.

Gaussian Let x, µ ∈ Rd and let Σ ∈ Rd×d where Σ � 0, that is, Σ is a

positive definite matrix. In this case the normal distribution can be

expressed via

p(x) = (2π)−
d
2 |Σ|−

1
2 exp

(
−1

2
(x− µ)>Σ−1(x− µ)

)
(2.46)

= exp

(
x>
[
Σ−1µ

]
+ tr

([
−1

2
xx>

] [
Σ−1

])
− c(µ,Σ)

)
where c(µ,Σ) = 1

2µ
>Σ−1µ + d

2 log 2π + 1
2 log |Σ|. By combining the

terms in x into φ(x) := (x,−1
2xx

>) we obtain the sufficient statistics

of x. The corresponding linear coefficients (Σ−1µ,Σ−1) constitute the

natural parameter θ. All that remains to be done to express p(x) in

terms of (2.40) is to rewrite g(θ) in terms of c(µ,Σ). The summary

table on the following page contains details.

Multinomial Another popular distribution is one over k discrete events.

In this case X = {1, . . . , k} and we have in completely generic terms

p(x) = πx where πx ≥ 0 and
∑

x πx = 1. Now denote by ex ∈ Rk the

x-th unit vector of the canonical basis, that is 〈ex, ex′〉 = 1 if x = x′

and 0 otherwise. In this case we may rewrite p(x) via

p(x) = πx = exp (〈ex, log π〉) (2.47)

where log π = (log π1, . . . , log πk). In other words, we have succeeded
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in rewriting the distribution as a member of the exponential family

where φ(x) = ex and where θ = log π. Note that in this definition θ

is restricted to a k−1 dimensional manifold (the k dimensional prob-

ability simplex). If we relax those constraints we need to ensure that

p(x) remains normalized. Details are given in the summary table.

Poisson This distribution is often used to model distributions over discrete

events. For instance, the number of raindrops which fall on a given

surface area in a given amount of time, the number of stars in a

given volume of space, or the number of Prussian soldiers killed by

horse-kicks in the Prussian cavalry all follow this distribution. It is

given by

p(x) =
e−λλx

x!
=

1

x!
exp (x log λ− λ) where x ∈ N0 . (2.48)

By defining φ(x) = x we obtain an exponential families model. Note

that things are a bit less trivial here since 1
x! is the nonuniform

counting measure on N0. The case of the uniform measure which

leads to the exponential distribution is discussed in Problem 2.16.

The reason why many discrete processes follow the Poisson distri-

bution is that it can be seen as the limit over the average of a large

number of Bernoulli draws: denote by z ∈ {0, 1} a random variable

with p(z = 1) = α. Moreover, denote by zn the sum over n draws

from this random variable. In this case zn follows the multinomial

distribution with p(zn = k) =
(
n
k

)
αk(1 − α)n−k. Now assume that

we let n→∞ such that the expected value of zn remains constant.

That is, we rescale α = λ
n . In this case we have

p(zn = k) =
n!

(n− k)!k!

λk

nk

(
1− λ

n

)n−k
(2.49)

=
λk

k!

(
1− λ

n

)n [ n!

nk(n− k)!

(
1− λ

n

)k]

For n → ∞ the second term converges to e−λ. The third term con-

verges to 1, since we have a product of only 2k terms, each of which

converge to 1. Using the exponential families notation we may check

that E[x] = λ and that moreover also Var[x] = λ.

Beta This is a distribution on the unit interval X = [0, 1] which is very

versatile when it comes to modelling unimodal and bimodal distri-
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Fig. 2.10. Left: Poisson distributions with λ = {1, 3, 10}. Right: Beta distributions
with a = 2 and b ∈ {1, 2, 3, 5, 7}. Note how with increasing b the distribution
becomes more peaked close to the origin.

butions. It is given by

p(x) = xa−1(1− x)b−1 Γ(a+ b)

Γ(a)Γ(b)
. (2.50)

Taking logarithms we see that this, too, is an exponential families

distribution, since p(x) = exp((a − 1) log x + (b − 1) log(1 − x) +

log Γ(a+ b)− log Γ(a)− log Γ(b)).

Figure 2.10 has a graphical description of the Poisson distribution and the

Beta distribution. For a more comprehensive list of exponential family dis-

tributions see the table below and [Fel71, FT94, MN83]. In principle any

map φ(x), domain X with underlying measure µ are suitable, as long as the

log-partition function g(θ) can be computed efficiently.

Theorem 2.15 (Convex feasible domain) The domain of definition Θ

of g(θ) is convex.

Proof By construction g is convex and differentiable everywhere. Hence the

below-sets for all values c with {x|g(x) ≤ c} exist. Consequently the domain

of definition is convex.

Having a convex function is very valuable when it comes to parameter infer-

ence since convex minimization problems have unique minimum values and

global minima. We will discuss this notion in more detail when designing

maximum likelihood estimators.
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2.4 Estimation

In many statistical problems the challenge is to estimate parameters of in-

terest. For instance, in the context of exponential families, we may want

to estimate a parameter θ̂ such that it is close to the “true” parameter θ∗

in the distribution. While the problem is fully general, we will describe the

relevant steps in obtaining estimates for the special case of the exponential

family. This is done for two reasons — firstly, exponential families are an

important special case and we will encounter slightly more complex variants

on the reasoning in later chapters of the book. Secondly, they are of a suffi-

ciently simple form that we are able to show a range of different techniques.

In more advanced applications only a small subset of those methods may be

practically feasible. Hence exponential families provide us with a working

example based on which we can compare the consequences of a number of

different techniques.

2.4.1 Maximum Likelihood Estimation

Whenever we have a distribution p(x; θ) parametrized by some parameter

θ we may use data to find a value of θ which maximizes the likelihood that

the data would have been generated by a distribution with this choice of

parameter.

For instance, assume that we observe a set of temperature measurements

X = {x1, . . . , xm}. In this case, we could try finding a normal distribution

such that the likelihood p(X; θ) of the data under the assumption of a normal

distribution is maximized. Note that this does not imply in any way that the

temperature measurements are actually drawn from a normal distribution.

Instead, it means that we are attempting to find the Gaussian which fits the

data in the best fashion.

While this distinction may appear subtle, it is critical: we do not assume

that our model accurately reflects reality. Instead, we simply try doing the

best possible job at modeling the data given a specified model class. Later

we will encounter alternative approaches at estimation, namely Bayesian

methods, which make the assumption that our model ought to be able to

describe the data accurately.

Definition 2.16 (Maximum Likelihood Estimator) For a model p(·; θ)
parametrized by θ and observations X the maximum likelihood estimator

(MLE) is

θ̂ML[X] := argmax
θ

p(X; θ). (2.51)
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In the context of exponential families this leads to the following procedure:

given m observations drawn iid from some distribution, we can express the

joint likelihood as

p(X; θ) =
m∏
i=1

p(xi; θ) =
m∏
i=1

exp (〈φ(xi), θ〉 − g(θ)) (2.52)

= exp (m (〈µ[X], θ〉 − g(θ))) (2.53)

where µ[X] :=
1

m

m∑
i=1

φ(xi). (2.54)

Here µ[X] is the empirical average of the map φ(x). Maximization of p(X; θ)

is equivalent to minimizing the negative log-likelihood − log p(X; θ). The

latter is a common practical choice since for independently drawn data,

the product of probabilities decomposes into the sum of the logarithms of

individual likelihoods. This leads to the following objective function to be

minimized

− log p(X; θ) = m [g(θ)− 〈θ, µ[X]〉] (2.55)

Since g(θ) is convex and 〈θ, µ[X]〉 is linear in θ, it follows that minimization

of (2.55) is a convex optimization problem. Using Theorem 2.14 and the first

order optimality condition ∇θg(θ) = µ[X] for (2.55) implies that

θ = [∇θg]−1 (µ[X]) or equivalently Ex∼p(x;θ)[φ(x)] = ∇θg(θ) = µ[X].

(2.56)

Put another way, the above conditions state that we aim to find the distribu-

tion p(x; θ) which has the same expected value of φ(x) as what we observed

empirically via µ[X]. Under very mild technical conditions a solution to

(2.56) exists.

In general, (2.56) cannot be solved analytically. In certain special cases,

though, this is easily possible. We discuss two such choices in the following:

Multinomial and Poisson distributions.

Example 2.6 (Poisson Distribution) For the Poisson distribution1 where

p(x; θ) = 1
x! exp(θx− eθ) it follows that g(θ) = eθ and φ(x) = x. This allows

1 Often the Poisson distribution is specified using λ := log θ as its rate parameter. In this case we
have p(x;λ) = λxe−λ/x! as its parametrization. The advantage of the natural parametrization
using θ is that we can directly take advantage of the properties of the log-partition function as
generating the cumulants of x.



68 2 Density Estimation

us to solve (2.56) in closed form using

∇θg(θ) = eθ =
1

m

m∑
i=1

xi and hence θ = log
m∑
i=1

xi − logm. (2.57)

Example 2.7 (Multinomial Distribution) For the multinomial distri-

bution the log-partition function is given by g(θ) = log
∑N

i=1 e
θi, hence we

have that

∇ig(θ) =
eθi∑N
j=1 e

θj
=

1

m

m∑
j=1

{xj = i} . (2.58)

It is easy to check that (2.58) is satisfied for eθi =
∑m

j=1 {xj = i}. In other

words, the MLE for a discrete distribution simply given by the empirical

frequencies of occurrence.

The multinomial setting also exhibits two rather important aspects of ex-

ponential families: firstly, choosing θi = c+ log
∑m

i=1 {xj = i} for any c ∈ R
will lead to an equivalent distribution. This is the case since the sufficient

statistic φ(x) is not minimal. In our context this means that the coordinates

of φ(x) are linearly dependent — for any x we have that
∑

j [φ(x)]j = 1,

hence we could eliminate one dimension. This is precisely the additional

degree of freedom which is reflected in the scaling freedom in θ.

Secondly, for data where some events do not occur at all, the expression

log
[∑m

j=1 {xj = i}
]

= log 0 is ill defined. This is due to the fact that this

particular set of counts occurs on the boundary of the convex set within

which the natural parameters θ are well defined. We will see how different

types of priors can alleviate the issue.

Using the MLE is not without problems. As we saw in Figure 2.1, conver-

gence can be slow, since we are not using any side information. The latter

can provide us with problems which are both numerically better conditioned

and which show better convergence, provided that our assumptions are ac-

curate. Before discussing a Bayesian approach to estimation, let us discuss

basic statistical properties of the estimator.

2.4.2 Bias, Variance and Consistency

When designing any estimator θ̂(X) we would like to obtain a number of

desirable properties: in general it should not be biased towards a particular

solution unless we have good reason to believe that this solution should

be preferred. Instead, we would like the estimator to recover, at least on
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average, the “correct” parameter, should it exist. This can be formalized in

the notion of an unbiased estimator.

Secondly, we would like that, even if no correct parameter can be found,

e.g. when we are trying to fit a Gaussian distribution to data which is not

normally distributed, that we will converge to the best possible parameter

choice as we obtain more data. This is what is understood by consistency.

Finally, we would like the estimator to achieve low bias and near-optimal

estimates as quickly as possible. The latter is measured by the efficiency

of an estimator. In this context we will encounter the Cramér-Rao bound

which controls the best possible rate at which an estimator can achieve this

goal. Figure 2.11 gives a pictorial description.

Fig. 2.11. Left: unbiased estimator; the estimates, denoted by circles have as mean
the true parameter, as denoted by a star. Middle: consistent estimator. While the
true model is not within the class we consider (as denoted by the ellipsoid), the
estimates converge to the white star which is the best model within the class that
approximates the true model, denoted by the solid star. Right: different estimators
have different regions of uncertainty, as made explicit by the ellipses around the
true parameter (solid star).

Definition 2.17 (Unbiased Estimator) An estimator θ̂[X] is unbiased

if for all θ where X ∼ p(X; θ) we have EX[θ̂[X]] = θ.

In other words, in expectation the parameter estimate matches the true pa-

rameter. Note that this only makes sense if a true parameter actually exists.

For instance, if the data is Poisson distributed and we attempt modeling it

by a Gaussian we will obviously not obtain unbiased estimates.

For finite sample sizes MLE is often biased. For instance, for the normal

distribution the variance estimates carry bias O(m−1). See problem 2.19

for details. In general, under fairly mild conditions, MLE is asymptotically

unbiased [DGL96]. We prove this for exponential families. For more general

settings the proof depends on the dimensionality and smoothness of the

family of densities that we have at our disposition.
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Theorem 2.18 (MLE for Exponential Families) Assume that X is an

m-sample drawn iid from p(x; θ). The estimate θ̂[X] = g−1(µ[X]) is asymp-

totically normal with

m−
1
2 [θ̂[X]− θ]→ N(0,

[
∇2
θg(θ)

]−1
). (2.59)

In other words, the estimate θ̂[X] is asymptotically normal, it converges to

the true parameter θ, and moreover, the variance at the correct parameter

is given by the inverse of the covariance matrix of the data, as given by the

second derivative of the log-partition function ∇2
θg(θ).

Proof Denote by µ = ∇θg(θ) the true mean. Moreover, note that ∇2
θg(θ) is

the covariance of the data drawn from p(x; θ). By the central limit theorem

(Theorem 2.3) we have that n−
1
2 [µ[X]− µ]→ N(0,∇2

θg(θ)).

Now note that θ̂[X] = [∇θg]−1 (µ[X]). Therefore, by the delta method

(Theorem 2.5) we know that θ̂[X] is also asymptotically normal. Moreover,

by the inverse function theorem the Jacobian of g−1 satisfies∇µ [∇θg]−1 (µ) =[
∇2
θg(θ)

]−1
. Applying Slutsky’s theorem (Theorem 2.4) proves the claim.

Now that we established the asymptotic properties of the MLE for exponen-

tial families it is only natural to ask how much variation one may expect in

θ̂[X] when performing estimation. The Cramer-Rao bound governs this.

Theorem 2.19 (Cramér and Rao [Rao73]) Assume that X is drawn from

p(X; θ) and let θ̂[X] be an asymptotically unbiased estimator. Denote by I

the Fisher information matrix and by B the variance of θ̂[X] where

I := Cov [∇θ log p(X; θ)] and B := Var
[
θ̂[X]

]
. (2.60)

In this case det IB ≥ 1 for all estimators θ̂[X].

Proof We prove the claim for the scalar case. The extension to matrices is

straightforward. Using the Cauchy-Schwarz inequality we have

Cov2
[
∇θ log p(X; θ), θ̂[X]

]
≤ Var [∇θ log p(X; θ)] Var

[
θ̂[X]

]
= IB. (2.61)

Note that at the true parameter the expected log-likelihood score vanishes

EX[∇θ log p(X; θ)] = ∇θ
∫
p(X; θ)dX = ∇θ1 = 0. (2.62)
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Hence we may simplify the covariance formula by dropping the means via

Cov
[
∇θ log p(X; θ), θ̂[X]

]
= EX

[
∇θ log p(X; θ)θ̂[X]

]
=

∫
p(X; θ)θ̂(X)∇θ log p(X; θ)dθ

= ∇θ
∫
p(X; θ)θ̂(X)dX = ∇θθ = 1.

Here the last equality follows since we may interchange integration by X

and the derivative with respect to θ.

The Cramér-Rao theorem implies that there is a limit to how well we may

estimate a parameter given finite amounts of data. It is also a yardstick by

which we may measure how efficiently an estimator uses data. Formally, we

define the efficiency as the quotient between actual performance and the

Cramér-Rao bound via

e := 1/det IB. (2.63)

The closer e is to 1, the lower the variance of the corresponding estimator

θ̂(X). Theorem 2.18 implies that for exponential families MLE is asymptot-

ically efficient. It turns out to be generally true.

Theorem 2.20 (Efficiency of MLE [Cra46, GW92, Ber85]) The max-

imum likelihood estimator is asymptotically efficient (e = 1).

So far we only discussed the behavior of θ̂[X] whenever there exists a true θ

generating p(θ; X). If this is not true, we need to settle for less: how well θ̂[X]

approaches the best possible choice of within the given model class. Such

behavior is referred to as consistency. Note that it is not possible to define

consistency per se. For instance, we may ask whether θ̂ converges to the

optimal parameter θ∗, or whether p(x; θ̂) converges to the optimal density

p(x; θ∗), and with respect to which norm. Under fairly general conditions

this turns out to be true for finite-dimensional parameters and smoothly

parametrized densities. See [DGL96, vdG00] for proofs and further details.

2.4.3 A Bayesian Approach

The analysis of the Maximum Likelihood method might suggest that in-

ference is a solved problem. After all, in the limit, MLE is unbiased and it

exhibits as small variance as possible. Empirical results using a finite amount

of data, as present in Figure 2.1 indicate otherwise.

While not making any assumptions can lead to interesting and general
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theorems, it ignores the fact that in practice we almost always have some

idea about what to expect of our solution. It would be foolish to ignore such

additional information. For instance, when trying to determine the voltage

of a battery, it is reasonable to expect a measurement in the order of 1.5V

or less. Consequently such prior knowledge should be incorporated into the

estimation process. In fact, the use of side information to guide estimation

turns out to be the tool to building estimators which work well in high

dimensions.

Recall Bayes’ rule (1.15) which states that p(θ|x) = p(x|θ)p(θ)
p(x) . In our con-

text this means that if we are interested in the posterior probability of θ

assuming a particular value, we may obtain this using the likelihood (often

referred to as evidence) of x having been generated by θ via p(x|θ) and our

prior belief p(θ) that θ might be chosen in the distribution generating x.

Observe the subtle but important difference to MLE: instead of treating θ

as a parameter of a density model, we treat θ as an unobserved random

variable which we may attempt to infer given the observations X.

This can be done for a number of different purposes: we might want to

infer the most likely value of the parameter given the posterior distribution

p(θ|X). This is achieved by

θ̂MAP(X) := argmax
θ

p(θ|X) = argmin
θ
− log p(X|θ)− log p(θ). (2.64)

The second equality follows since p(X) does not depend on θ. This estimator

is also referred to as the Maximum a Posteriori, or MAP estimator. It differs

from the maximum likelihood estimator by adding the negative log-prior

to the optimization problem. For this reason it is sometimes also referred

to as Penalized MLE. Effectively we are penalizing unlikely choices θ via

− log p(θ).

Note that using θ̂MAP(X) as the parameter of choice is not quite accurate.

After all, we can only infer a distribution over θ and in general there is no

guarantee that the posterior is indeed concentrated around its mode. A more

accurate treatment is to use the distribution p(θ|X) directly via

p(x|X) =

∫
p(x|θ)p(θ|X)dθ. (2.65)

In other words, we integrate out the unknown parameter θ and obtain the

density estimate directly. As we will see, it is generally impossible to solve

(2.65) exactly, an important exception being conjugate priors. In the other

cases one may resort to sampling from the posterior distribution to approx-

imate the integral.

While it is possible to design a wide variety of prior distributions, this book
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focuses on two important families: norm-constrained prior and conjugate

priors. We will encounter them throughout, the former sometimes in the

guise of regularization and Gaussian Processes, the latter in the context of

exchangeable models such as the Dirichlet Process.

Norm-constrained priors take on the form

p(θ) ∝ exp(−λ ‖θ − θ0‖dp) for p, d ≥ 1 and λ > 0. (2.66)

That is, they restrict the deviation of the parameter value θ from some guess

θ0. The intuition is that extreme values of θ are much less likely than more

moderate choices of θ which will lead to more smooth and even distributions

p(x|θ).
A popular choice is the Gaussian prior which we obtain for p = d = 1

and λ = 1/2σ2. Typically one sets θ0 = 0 in this case. Note that in (2.66)

we did not spell out the normalization of p(θ) — in the context of MAP

estimation this is not needed since it simply becomes a constant offset in

the optimization problem (2.64). We have

θ̂MAP[X] = argmin
θ

m [g(θ)− 〈θ, µ[X]〉] + λ ‖θ − θ0‖dp (2.67)

For d, p ≥ 1 and λ ≥ 0 the resulting optimization problem is convex and it

has a unique solution. Moreover, very efficient algorithms exist to solve this

problem. We will discuss this in detail in Chapter 3. Figure 2.12 shows the

regions of equal prior probability for a range of different norm-constrained

priors.

As can be seen from the diagram, the choice of the norm can have profound

consequences on the solution. That said, as we will show in Chapter ??, the

estimate θ̂MAP is well concentrated and converges to the optimal solution

under fairly general conditions.

An alternative to norm-constrained priors are conjugate priors. They are

designed such that the posterior p(θ|X) has the same functional form as the

prior p(θ). In exponential families such priors are defined via

p(θ|n, ν) = exp (〈nν, θ〉 − ng(θ)− h(ν, n)) where (2.68)

h(ν, n) = log

∫
exp (〈nν, θ〉 − ng(θ)) dθ. (2.69)

Note that p(θ|n, ν) itself is a member of the exponential family with the

feature map φ(θ) = (θ,−g(θ)). Hence h(ν, n) is convex in (nν, n). Moreover,

the posterior distribution has the form

p(θ|X) ∝ p(X|θ)p(θ|n, ν) ∝ exp (〈mµ[X] + nν, θ〉 − (m+ n)g(θ)) . (2.70)
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Fig. 2.12. From left to right: regions of equal prior probability in R2 for priors using
the `1, `2 and `∞ norm. Note that only the `2 norm is invariant with regard to the
coordinate system. As we shall see later, the `1 norm prior leads to solutions where
only a small number of coordinates is nonzero.

That is, the posterior distribution has the same form as a conjugate prior

with parameters mµ[X]+nν
m+n and m+n. In other words, n acts like a phantom

sample size and ν is the corresponding mean parameter. Such an interpreta-

tion is reasonable given our desire to design a prior which, when combined

with the likelihood remains in the same model class: we treat prior knowl-

edge as having observed virtual data beforehand which is then added to the

actual set of observations. In this sense data and prior become completely

equivalent — we obtain our knowledge either from actual observations or

from virtual observations which describe our belief into how the data gen-

eration process is supposed to behave.

Eq. (2.70) has the added benefit of allowing us to provide an exact nor-

malized version of the posterior. Using (2.68) we obtain that

p(θ|X) = exp
(
〈mµ[X] + nν, θ〉 − (m+ n)g(θ)− h

(
mµ[X]+nν
m+n ,m+ n

))
.

The main remaining challenge is to compute the normalization h for a range

of important conjugate distributions. The table on the following page pro-

vides details. Besides attractive algebraic properties, conjugate priors also

have a second advantage — the integral (2.65) can be solved exactly:

p(x|X) =

∫
exp (〈φ(x), θ〉 − g(θ))×

exp
(
〈mµ[X] + nν, θ〉 − (m+ n)g(θ)− h

(
mµ[X]+nν
m+n ,m+ n

))
dθ

Combining terms one may check that the integrand amounts to the normal-
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ization in the conjugate distribution, albeit φ(x) added. This yields

p(x|X) = exp
(
h
(
mµ[X]+nν+φ(x)

m+n+1 ,m+ n+ 1
)
− h

(
mµ[X]+nν
m+n ,m+ n

))
Such an expansion is very useful whenever we would like to draw x from

p(x|X) without the need to obtain an instantiation of the latent variable θ.

We provide explicit expansions in appendix 2. [GS04] use the fact that θ

can be integrated out to obtain what is called a collapsed Gibbs sampler for

topic models [BNJ03].

2.4.4 An Example

Assume we would like to build a language model based on available doc-

uments. For instance, a linguist might be interested in estimating the fre-

quency of words in Shakespeare’s collected works, or one might want to

compare the change with respect to a collection of webpages. While mod-

els describing documents by treating them as bags of words which all have

been obtained independently of each other are exceedingly simple, they are

valuable for quick-and-dirty content filtering and categorization, e.g. a spam

filter on a mail server or a content filter for webpages.

Hence we model a document d as a multinomial distribution: denote by

wi for i ∈ {1, . . . ,md} the words in d. Moreover, denote by p(w|θ) the

probability of occurrence of word w, then under the assumption that the

words are independently drawn, we have

p(d|θ) =

md∏
i=1

p(wi|θ). (2.71)

It is our goal to find parameters θ such that p(d|θ) is accurate. For a given

collection D of documents denote by mw the number of counts for word w

in the entire collection. Moreover, denote by m the total number of words

in the entire collection. In this case we have

p(D|θ) =
∏
i

p(di|θ) =
∏
w

p(w|θ)mw . (2.72)

Finding suitable parameters θ given D proceeds as follows: In a maximum

likelihood model we set

p(w|θ) =
mw

m
. (2.73)

In other words, we use the empirical frequency of occurrence as our best

guess and the sufficient statistic ofD is φ(w) = ew, where ew denotes the unit

vector which is nonzero only for the “coordinate” w. Hence µ[D]w = mw
m .
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We know that the conjugate prior of the multinomial model is a Dirichlet

model. It follows from (2.70) that the posterior mode is obtained by replacing

µ[D] by mµ[D]+nν
m+n . Denote by nw := νw · n the pseudo-counts arising from

the conjugate prior with parameters (ν, n). In this case we will estimate the

probability of the word w as

p(w|θ) =
mw + nw
m+ n

=
mw + nνw
m+ n

. (2.74)

In other words, we add the pseudo counts nw to the actual word counts mw.

This is particularly useful when the document we are dealing with is brief,

that is, whenever we have little data: it is quite unreasonable to infer from

a webpage of approximately 1000 words that words not occurring in this

page have zero probability. This is exactly what is mitigated by means of

the conjugate prior (ν, n).

Finally, let us consider norm-constrained priors of the form (2.66). In this

case, the integral required for

p(D) =

∫
p(D|θ)p(θ)dθ

∝
∫

exp
(
−λ ‖θ − θ0‖dp +m 〈µ[D], θ〉 −mg(θ)

)
dθ

is intractable and we need to resort to an approximation. A popular choice

is to replace the integral by p(D|θ∗) where θ∗ maximizes the integrand. This

is precisely the MAP approximation of (2.64). Hence, in order to perform

estimation we need to solve

minimize
θ

g(θ)− 〈µ[D], θ〉+
λ

m
‖θ − θ0‖dp . (2.75)

A very simple strategy for minimizing (2.75) is gradient descent. That is for

a given value of θ we compute the gradient of the objective function and take

a fixed step towards its minimum. For simplicity assume that d = p = 2 and

λ = 1/2σ2, that is, we assume that θ is normally distributed with variance

σ2 and mean θ0. The gradient is given by

∇θ [− log p(D, θ)] = Ex∼p(x|θ)[φ(x)]− µ[D] +
1

mσ2
[θ − θ0] (2.76)

In other words, it depends on the discrepancy between the mean of φ(x)

with respect to our current model and the empirical average µ[X], and the

difference between θ and the prior mean θ0.

Unfortunately, convergence of the procedure θ ← θ − η∇θ [. . .] is usually

very slow, even if we adjust the steplength η efficiently. The reason is that

the gradient need not point towards the minimum as the space is most likely
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distorted. A better strategy is to use Newton’s method (see Chapter 3 for

a detailed discussion and a convergence proof). It relies on a second order

Taylor approximation

− log p(D, θ + δ) ≈ − log p(D, θ) + 〈δ,G〉+
1

2
δ>Hδ (2.77)

where G and H are the first and second derivatives of − log p(D, θ) with

respect to θ. The quadratic expression can be minimized with respect to δ

by choosing δ = −H−1G and we can fashion an update algorithm from this

by letting θ ← θ−H−1G. One may show (see Chapter 3) that Algorithm 2.1

is quadratically convergent. Note that the prior on θ ensures that H is well

conditioned even in the case where the variance of φ(x) is not. In practice this

means that the prior ensures fast convergence of the optimization algorithm.

Algorithm 2.1 Newton method for MAP estimation

NewtonMAP(D)

Initialize θ = θ0

while not converged do

Compute G = Ex∼p(x|θ)[φ(x)]− µ[D] + 1
mσ2 [θ − θ0]

Compute H = Varx∼p(x|θ)[φ(x)] + 1
mσ2 1

Update θ ← θ −H−1G

end while

return θ

2.5 Sampling

So far we considered the problem of estimating the underlying probability

density, given a set of samples drawn from that density. Now let us turn to

the converse problem, that is, how to generate random variables given the

underlying probability density. In other words, we want to design a random

variable generator. This is useful for a number of reasons:

We may encounter probability distributions where optimization over suit-

able model parameters is essentially impossible and where it is equally im-

possible to obtain a closed form expression of the distribution. In these cases

it may still be possible to perform sampling to draw examples of the kind

of data we expect to see from the model. Chapter ?? discusses a number of

graphical models where this problem arises.

Secondly, assume that we are interested in testing the performance of a

network router under different load conditions. Instead of introducing the

under-development router in a live network and wreaking havoc, one could
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estimate the probability density of the network traffic under various load

conditions and build a model. The behavior of the network can then be

simulated by using a probabilistic model. This involves drawing random

variables from an estimated probability distribution.

Carrying on, suppose that we generate data packets by sampling and see

an anomalous behavior in your router. In order to reproduce and debug

this problem one needs access to the same set of random packets which

caused the problem in the first place. In other words, it is often convenient

if our random variable generator is reproducible; At first blush this seems

like a contradiction. After all, our random number generator is supposed

to generate random variables. This is less of a contradiction if we consider

how random numbers are generated in a computer — given a particular

initialization (which typically depends on the state of the system, e.g. time,

disk size, bios checksum, etc.) the random number algorithm produces a

sequence of numbers which, for all practical purposes, can be treated as iid.

A simple method is the linear congruential generator [PTVF94]

xi+1 = (axi + b) mod c.

The performance of these iterations depends significantly on the choice of the

constants a, b, c. For instance, the GNU C compiler uses a = 1103515245, b =

12345 and c = 232. In general b and c need to be relatively prime and a− 1

needs to be divisible by all prime factors of c and by 4. It is very much

advisable not to attempt implementing such generators on one’s own unless

it is absolutely necessary.

Useful desiderata for a pseudo random number generator (PRNG) are that

for practical purposes it is statistically indistinguishable from a sequence of

iid data. That is, when applying a number of statistical tests, we will accept

the null-hypothesis that the random variables are iid. See Chapter ?? for

a detailed discussion of statistical testing procedures for random variables.

In the following we assume that we have access to a uniform RNG U [0, 1]

which draws random numbers uniformly from the range [0, 1].

2.5.1 Inverse Transformation

We now consider the scenario where we would like to draw from some dis-

tinctively non-uniform distribution. Whenever the latter is relatively simple

this can be achieved by applying an inverse transform:

Theorem 2.21 For z ∼ p(z) with z ∈ Z and an injective transformation

φ : Z → X with inverse transform φ−1 on φ(Z) it follows that the random
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Fig. 2.13. Left: discrete probability distribution over 5 possible outcomes. Right:
associated cumulative distribution function. When sampling, we draw x uniformly
at random from U [0, 1] and compute the inverse of F .

variable x := φ(z) is drawn from
∣∣∇xφ−1(x)

∣∣ · p(φ−1(x)). Here
∣∣∇xφ−1(x)

∣∣
denotes the determinant of the Jacobian of φ−1.

This follows immediately by applying a variable transformation for a mea-

sure, i.e. we change dp(z) to dp(φ−1(x))
∣∣∇xφ−1(x)

∣∣. Such a conversion strat-

egy is particularly useful for univariate distributions.

Corollary 2.22 Denote by p(x) a distribution on R with cumulative distri-

bution function F (x′) =
∫ x′
−∞ dp(x). Then the transformation x = φ(z) =

F−1(z) converts samples z ∼ U [0, 1] to samples drawn from p(x).

We now apply this strategy to a number of univariate distributions. One of

the most common cases is sampling from a discrete distribution.

Example 2.8 (Discrete Distribution) In the case of a discrete distribu-

tion over {1, . . . , k} the cumulative distribution function is a step-function

with steps at {1, . . . , k} where the height of each step is given by the corre-

sponding probability of the event.

The implementation works as follows: denote by p ∈ [0, 1]k the vector of

probabilities and denote by f ∈ [0, 1]k with fi = fi−1 + pi and f1 = p1 the

steps of the cumulative distribution function. Then for a random variable z

drawn from U [0, 1] we obtain x = φ(z) := argmini {fi ≥ z}. See Figure 2.13

for an example of a distribution over 5 events.
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Fig. 2.14. Left: Exponential distribution with λ = 1. Right: associated cumulative
distribution function. When sampling, we draw x uniformly at random from U [0, 1]
and compute the inverse.

Example 2.9 (Exponential Distribution) The density of a Exponential-

distributed random variable is given by

p(x|λ) = λ exp(−λx) if λ > 0 and x ≥ 0. (2.78)

This allows us to compute its cdf as

F (x|λ) = 1− exp(−λx)if λ > 0 for x ≥ 0. (2.79)

Therefore to generate a Exponential random variable we draw z ∼ U [0, 1]

and solve x = φ(z) = F−1(z|λ) = −λ−1 log(1 − z). Since z and 1 − z are

drawn from U [0, 1] we can simplify this to x = −λ−1 log z.

We could apply the same reasoning to the normal distribution in order to

draw Gaussian random variables. Unfortunately, the cumulative distribution

function of the Gaussian is not available in closed form and we would need

resort to rather nontrivial numerical techniques. It turns out that there exists

a much more elegant algorithm which has its roots in Gauss’ proof of the

normalization constant of the Normal distribution. This technique is known

as the Box-Müller transform.

Example 2.10 (Box-Müller Transform) Denote by X,Y independent Gaus-

sian random variables with zero mean and unit variance. We have

p(x, y) =
1√
2π
e−

1
2
x2 1√

2π
e−

1
2
y2 =

1

2π
e−

1
2

(x2+y2) (2.80)
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Fig. 2.15. Red: true density of the standard normal distribution (red line) is con-
trasted with the histogram of 20,000 random variables generated by the Box-Müller
transform.

The key observation is that the joint distribution p(x, y) is radially symmet-

ric, i.e. it only depends on the radius r2 = x2 + y2. Hence we may perform

a variable substitution in polar coordinates via the map φ where

x = r cos θ and y = r sin θ hence (x, y) = φ−1(r, θ). (2.81)

This allows us to express the density in terms of (r, θ) via

p(r, θ) = p(φ−1(r, θ))
∣∣∇r,θφ−1(r, θ)

∣∣ =
1

2π
e−

1
2
r2
∣∣∣∣[ cos θ sin θ

−r sin θ r cos θ

]∣∣∣∣ =
r

2π
e−

1
2
r2 .

The fact that p(r, θ) is constant in θ means that we can easily sample θ ∈
[0, 2π] by drawing a random variable, say zθ from U [0, 1] and rescaling it with

2π. To obtain a sampler for r we need to compute the cumulative distribution

function for p(r) = re−
1
2
r2:

F (r′) =

∫ r′

0
re−

1
2
r2dr = 1− e−

1
2
r′2 and hence r = F−1(z) =

√
−2 log(1− z).

(2.82)

Observing that z ∼ U [0, 1] implies that 1 − z ∼ U [0, 1] yields the following

sampler: draw zθ, zr ∼ U [0, 1] and compute x and y by

x =
√
−2 log zr cos 2πzθ and y =

√
−2 log zr sin 2πzθ.

Note that the Box-Müller transform yields two independent Gaussian ran-

dom variables. See Figure 2.15 for an example of the sampler.
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Example 2.11 (Uniform distribution on the disc) A similar strategy

can be employed when sampling from the unit disc. In this case the closed-

form expression of the distribution is simply given by

p(x, y) =

{
1
π if x2 + y2 ≤ 1

0 otherwise
(2.83)

Using the variable transform (2.81) yields

p(r, θ) = p(φ−1(r, θ))
∣∣∇r,θφ−1(r, θ)

∣∣ =

{
r
π if r ≤ 1

0 otherwise
(2.84)

Integrating out θ yields p(r) = 2r for r ∈ [0, 1] with corresponding CDF

F (r) = r2 for r ∈ [0, 1]. Hence our sampler draws zr, zθ ∼ U [0, 1] and then

computes x =
√
zr cos 2πzθ and y =

√
zr sin 2πzθ.

2.5.2 Rejection Sampler

All the methods for random variable generation that we looked at so far re-

quire intimate knowledge about the pdf of the distribution. We now describe

a general purpose method, which can be used to generate samples from an

arbitrary distribution. Let us begin with sampling from a set:

Example 2.12 (Rejection Sampler) Denote by X ⊆ X a set and let p be

a density on X. Then a sampler for drawing from pX(x) ∝ p(x) for x ∈ X
and pX(x) = 0 for x 6∈ X, that is, pX(x) = p(x|x ∈ X) is obtained by the

procedure:

repeat

draw x ∼ p(x)

until x ∈ X
return x

That is, the algorithm keeps on drawing from p until the random variable is

contained in X. The probability that this occurs is clearly p(X). Hence the

larger p(X) the higher the efficiency of the sampler. See Figure 2.16.

Example 2.13 (Uniform distribution on a disc) The procedure works

trivially as follows: draw x, y ∼ U [0, 1]. Accept if (2x − 1)2 + (2y − 1)2 ≤ 1

and return sample (2x− 1, 2y− 1). This sampler has efficiency 4
π since this

is the surface ratio between the unit square and the unit ball.

Note that this time we did not need to carry out any sophisticated measure
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Fig. 2.16. Rejection sampler. Left: samples drawn from the uniform distribution on
[0, 1]2. Middle: the samples drawn from the uniform distribution on the unit disc
are all the points in the grey shaded area. Right: the same procedure allows us to
sample uniformly from arbitrary sets.
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Fig. 2.17. Accept reject sampling for the Beta(2, 5) distribution. Left: Samples are
generated uniformly from the blue rectangle (shaded area). Only those samples
which fall under the red curve of the Beta(2, 5) distribution (darkly shaded area)
are accepted. Right: The true density of the Beta(2, 5) distribution (red line) is
contrasted with the histogram of 10,000 samples drawn by the rejection sampler.

transform. This mathematical convenience came at the expense of a slightly

less efficient sampler — about 21% of all samples are rejected.

The same reasoning that we used to obtain a hard accept/reject procedure

can be used for a considerably more sophisticated rejection sampler. The

basic idea is that if, for a given distribution p we can find another distribution

q which, after rescaling, becomes an upper envelope on p, we can use q to

sample from and reject depending on the ratio between q and p.

Theorem 2.23 (Rejection Sampler) Denote by p and q distributions on

X and let c be a constant such that such that cq(x) ≥ p(x) for all x ∈ X.
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Then the algorithm below draws from p with acceptance probability c−1.

repeat

draw x ∼ q(x) and t ∼ U [0, 1]

until ct ≤ p(x)
q(x)

return x

Proof Denote by Z the event that the sample drawn from q is accepted.

Then by Bayes rule the probability Pr(x|Z) can be written as follows

Pr(x|Z) =
Pr(Z|x) Pr(x)

Pr(Z)
=

p(x)
cq(x) · q(x)

c−1
= p(x) (2.85)

Here we used that Pr(Z) =
∫

Pr(Z|x)q(x)dx =
∫
c−1p(x)dx = c−1.

Note that the algorithm of Example 2.12 is a special case of such a rejection

sampler — we majorize pX by the uniform distribution rescaled by 1
p(X) .

Example 2.14 (Beta distribution) Recall that the Beta(a, b) distribution,

as a member of the Exponential Family with sufficient statistics (log x, log(1−
x)), is given by

p(x|a, b) =
Γ(a+ b)

Γ(a)Γ(b)
xa−1(1− x)b−1, (2.86)

For given (a, b) one can verify (problem 2.25) that

M := argmax
x

p(x|a, b) =
a− 1

a+ b− 2
. (2.87)

provided a > 1. Hence, if we use as proposal distribution the uniform distri-

bution U [0, 1] with scaling factor c = p(M |a, b) we may apply Theorem 2.23.

As illustrated in Figure 2.17, to generate a sample from Beta(a, b) we first

generate a pair (x, t), uniformly at random from the shaded rectangle. A

sample is retained if ct ≤ p(x|a, b), and rejected otherwise. The acceptance

rate of this sampler is 1
c .

Example 2.15 (Normal distribution) We may use the Laplace distri-

bution to generate samples from the Normal distribution. That is, we use

q(x|λ) =
λ

2
e−λ|x| (2.88)

as the proposal distribution. For a normal distribution p = N(0, 1) with zero
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mean and unit variance it turns out that choosing λ = 1 yields the most

efficient sampling scheme (see Problem 2.27) with

p(x) ≤
√

2e

π
q(x|λ = 1)

As illustrated in Figure 2.18, we first generate x ∼ q(x|λ = 1) using the

inverse transform method (see Example 2.9 and Problem 2.21) and t ∼
U [0, 1]. If t ≤

√
2e/πp(x) we accept x, otherwise we reject it. The efficiency

of this scheme is
√

π
2e .

−4 −2 0 2 4
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0.6

√
2e
π g(x|0, 1)

p(x)

Fig. 2.18. Rejection sampling for the Normal distribution (red curve). Samples are

generated uniformly from the Laplace distribution rescaled by
√

2e/π. Only those
samples which fall under the red curve of the standard normal distribution (darkly
shaded area) are accepted.

While rejection sampling is fairly efficient in low dimensions its efficiency is

unsatisfactory in high dimensions. This leads us to an instance of the curse of

dimensionality [Bel61]: the pdf of a d-dimensional Gaussian random variable

centered at 0 with variance σ2 1 is given by

p(x|σ2) = (2π)−
d
2σ−de−

1
2σ2
‖x‖2

Now suppose that we want to draw from p(x|σ2) by sampling from another

Gaussian q with slightly larger variance ρ2 > σ2. In this case the ratio

between both distributions is maximized at 0 and it yields

c =
q(0|σ2)

p(0|ρ2)
=
[ρ
σ

]d
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If suppose ρ
σ = 1.01, and d = 1000, we find that c ≈ 20960. In other words,

we need to generate approximately 21,000 samples on the average from q to

draw a single sample from p. We will discuss a more sophisticated sampling

algorithms, namely Gibbs Sampling, in Section ??. It allows us to draw from

rather nontrivial distributions as long as the distributions in small subsets

of random variables are simple enough to be tackled directly.

Problems

Problem 2.1 (Bias Variance Decomposition {1}) Prove that the vari-

ance VarX [x] of a random variable can be written as EX [x2]−EX [x]2.

Problem 2.2 (Moment Generating Function {2}) Prove that the char-

acteristic function can be used to generate moments as given in (2.12). Hint:

use the Taylor expansion of the exponential and apply the differential oper-

ator before the expectation.

Problem 2.3 (Cumulative Error Function {2})

erf(x) =
√

2/π

∫ x

0
e−x

2
dx. (2.89)

Problem 2.4 (Weak Law of Large Numbers {2}) In analogy to the proof

of the central limit theorem prove the weak law of large numbers. Hint: use

a first order Taylor expansion of eiωt = 1 + iωt+o(t) to compute an approx-

imation of the characteristic function. Next compute the limit m → ∞ for

φX̄m. Finally, apply the inverse Fourier transform to associate the constant

distribution at the mean µ with it.

Problem 2.5 (Rates and confidence bounds {3}) Show that the rate

of hoeffding is tight — get bound from central limit theorem and compare to

the hoeffding rate.

Problem 2.6 Why can’t we just use each chip on the wafer as a random

variable? Give a counterexample. Give bounds if we actually were allowed to

do this.

Problem 2.7 (Union Bound) Work on many bounds at the same time.

We only have logarithmic penalty.

Problem 2.8 (Randomized Rounding {4}) Solve the linear system of

equations Ax = b for integral x.
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Problem 2.9 (Randomized Projections {3}) Prove that the random-

ized projections converge.

Problem 2.10 (The Count-Min Sketch {5}) Prove the projection trick

Problem 2.11 (Parzen windows with triangle kernels {1}) Suppose

you are given the following data: X = {2, 3, 3, 5, 5}. Plot the estimated den-

sity using a kernel density estimator with the following kernel:

k(u) =

{
0.5− 0.25 ∗ |u| if |u| ≤ 2

0 otherwise.

Problem 2.12 Gaussian process link with Gaussian prior on natural pa-

rameters

Problem 2.13 Optimization for Gaussian regularization

Problem 2.14 Conjugate prior (student-t and wishart).

Problem 2.15 (Multivariate Gaussian {1}) Prove that Σ � 0 is a nec-

essary and sufficient condition for the normal distribution to be well defined.

Problem 2.16 (Discrete Exponential Distribution {2}) φ(x) = x and

uniform measure.

Problem 2.17 Exponential random graphs.

Problem 2.18 (Maximum Entropy Distribution) Show that exponen-

tial families arise as the solution of the maximum entropy estimation prob-

lem.

Problem 2.19 (Maximum Likelihood Estimates for Normal Distributions)

Derive the maximum likelihood estimates for a normal distribution, that is,

show that they result in

µ̂ =
1

m

m∑
i=1

xi and σ̂2 =
1

m

m∑
i=1

(xi − µ̂)2 (2.90)

using the exponential families parametrization. Next show that while the

mean estimate µ̂ is unbiased, the variance estimate has a slight bias of O( 1
m).

To see this, take the expectation with respect to σ̂2.
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Problem 2.20 (cdf of Logistic random variable {1}) Show that the cdf

of the Logistic random variable (??) is given by (??).

Problem 2.21 (Double-exponential (Laplace) distribution {1}) Use

the inverse-transform method to generate a sample from the double-exponential

(Laplace) distribution (2.88).

Problem 2.22 (Normal random variables in polar coordinates {1})

If X1 and X2 are standard normal random variables and let (R, θ) de-

note the polar coordinates of the pair (X1, X2). Show that R2 ∼ χ2
2 and

θ ∼ Unif[0, 2π].

Problem 2.23 (Monotonically increasing mappings {1}) A mapping

T : R→ R is one-to-one if, and only if, T is monotonically increasing, that

is, x > y implies that T (x) > T (y).

Problem 2.24 (Monotonically increasing multi-maps {2}) Let T : Rn →
Rn be one-to-one. If X ∼ pX(x), then show that the distribution pY (y) of

Y = T (X) can be obtained via (??).

Problem 2.25 (Argmax of the Beta(a, b) distribution {1}) Show that

the mode of the Beta(a, b) distribution is given by (2.87).

Problem 2.26 (Accept reject sampling for the unit disk {2}) Give at

least TWO different accept-reject based sampling schemes to generate sam-

ples uniformly at random from the unit disk. Compute their efficiency.

Problem 2.27 (Optimizing Laplace for Standard Normal {1}) Optimize

the ratio p(x)/g(x|µ, σ), with respect to µ and σ, where p(x) is the standard

normal distribution (??), and g(x|µ, σ) is the Laplace distribution (2.88).

Problem 2.28 (Normal Random Variable Generation {2}) The aim

of this problem is to write code to generate standard normal random vari-

ables (??) by using different methods. To do this generate U ∼ Unif[0, 1]

and apply

(i) the Box-Muller transformation outlined in Section ??.

(ii) use the following approximation to the inverse CDF

Φ−1(α) ≈ t− a0 + a1t

1 + b1t+ b2t2
, (2.91)
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where t2 = log(α−2) and

a0 = 2.30753, a1 = 0.27061, b1 = 0.99229, b2 = 0.04481

(iii) use the method outlined in example 2.15.

Plot a histogram of the samples you generated to confirm that they are nor-

mally distributed. Compare these different methods in terms of the time

needed to generate 1000 random variables.

Problem 2.29 (Non-standard Normal random variables {2}) Describe

a scheme based on the Box-Muller transform to generate d dimensional nor-

mal random variables p(x|0, I). How can this be used to generate arbitrary

normal random variables p(x|µ,Σ).

Problem 2.30 (Uniform samples from a disk {2}) Show how the ideas

described in Section ?? can be generalized to draw samples uniformly at ran-

dom from an axis parallel ellipse: {(x, y) :
x21
a2

+
x22
b2
≤ 1}.
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Optimization

Optimization plays an increasingly important role in machine learning. For

instance, many machine learning algorithms minimize a regularized risk

functional:

min
f

J(f) := λΩ(f) +Remp(f), (3.1)

with the empirical risk

Remp(f) :=
1

m

m∑
i=1

l(f(xi), yi). (3.2)

Here xi are the training instances and yi are the corresponding labels. l the

loss function measures the discrepancy between y and the predictions f(xi).

Finding the optimal f involves solving an optimization problem.

This chapter provides a self-contained overview of some basic concepts and

tools from optimization, especially geared towards solving machine learning

problems. In terms of concepts, we will cover topics related to convexity,

duality, and Lagrange multipliers. In terms of tools, we will cover a variety

of optimization algorithms including gradient descent, stochastic gradient

descent, Newton’s method, and Quasi-Newton methods. We will also look

at some specialized algorithms tailored towards solving Linear Programming

and Quadratic Programming problems which often arise in machine learning

problems.

3.1 Preliminaries

Minimizing an arbitrary function is, in general, very difficult, but if the ob-

jective function to be minimized is convex then things become considerably

simpler. As we will see shortly, the key advantage of dealing with convex

functions is that a local optima is also the global optima. Therefore, well

developed tools exist to find the global minima of a convex function. Conse-

quently, many machine learning algorithms are now formulated in terms of

convex optimization problems. We briefly review the concept of convex sets

and functions in this section.

91
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3.1.1 Convex Sets

Definition 3.1 (Convex Set) A subset C of Rn is said to be convex if

(1− λ)x+ λy ∈ C whenever x ∈ C, y ∈ C and 0 < λ < 1.

Intuitively, what this means is that the line joining any two points x and y

from the set C lies inside C (see Figure 3.1). It is easy to see (Exercise 3.1)

that intersections of convex sets are also convex.

Fig. 3.1. The convex set (left) contains the line joining any two points that belong
to the set. A non-convex set (right) does not satisfy this property.

A vector sum
∑

i λixi is called a convex combination if λi ≥ 0 and
∑

i λi =

1. Convex combinations are helpful in defining a convex hull:

Definition 3.2 (Convex Hull) The convex hull, conv(X), of a finite sub-

set X = {x1, . . . , xn} of Rn consists of all convex combinations of x1, . . . , xn.

3.1.2 Convex Functions

Let f be a real valued function defined on a set X ⊂ Rn. The set

{(x, µ) : x ∈ X,µ ∈ R, µ ≥ f(x)} (3.3)

is called the epigraph of f . The function f is defined to be a convex function

if its epigraph is a convex set in Rn+1. An equivalent, and more commonly

used, definition (Exercise 3.5) is as follows (see Figure 3.2 for geometric

intuition):

Definition 3.3 (Convex Function) A function f defined on a set X is

called convex if, for any x, x′ ∈ X and any 0 < λ < 1 such that λx + (1 −
λ)x′ ∈ X, we have

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′). (3.4)
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A function f is called strictly convex if

f(λx+ (1− λ)x′) < λf(x) + (1− λ)f(x′) (3.5)

whenever x 6= x′.

In fact, the above definition can be extended to show that if f is a convex

function and λi ≥ 0 with
∑

i λi = 1 then

f

(∑
i

λixi

)
≤
∑
i

λif(xi). (3.6)

The above inequality is called the Jensen’s inequality (problem ).
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Fig. 3.2. A convex function (left) satisfies (3.4); the shaded region denotes its epi-
graph. A nonconvex function (right) does not satisfy (3.4).

If f : X → R is differentiable, then f is convex if, and only if,

f(x′) ≥ f(x) +
〈
x′ − x,∇f(x)

〉
for all x, x′ ∈ X. (3.7)

In other words, the first order Taylor approximation lower bounds the convex

function universally (see Figure 3.4). Here and in the rest of the chapter

〈x, y〉 denotes the Euclidean dot product between vectors x and y, that is,

〈x, y〉 :=
∑
i

xiyi. (3.8)

If f is twice differentiable, then f is convex if, and only if, its Hessian is

positive semi-definite, that is,

∇2f(x) � 0. (3.9)

For twice differentiable strictly convex functions, the Hessian matrix is pos-

itive definite, that is, ∇2f(x) � 0. We briefly summarize some operations

which preserve convexity:
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Addition If f1 and f2 are convex, then f1 + f2 is also convex.
Scaling If f is convex, then αf is convex for α > 0.

Affine Transform If f is convex, then g(x) = f(Ax+ b) for some matrix
A and vector b is also convex.

Adding a Linear Function If f is convex, then g(x) = f(x)+〈a, x〉 for some vector
a is also convex.

Subtracting a Linear Function If f is convex, then g(x) = f(x)−〈a, x〉 for some vector
a is also convex.

Pointwise Maximum If fi are convex, then g(x) = maxi fi(x) is also convex.
Scalar Composition If f(x) = h(g(x)), then f is convex if a) g is convex,

and h is convex, non-decreasing or b) g is concave, and
h is convex, non-increasing.
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Fig. 3.3. Left: Convex Function in two variables. Right: the corresponding convex
below-sets {x|f(x) ≤ c}, for different values of c. This is also called a contour plot.

There is an intimate relation between convex functions and convex sets.

For instance, the following lemma show that the below sets (level sets) of

convex functions, sets for which f(x) ≤ c, are convex.

Lemma 3.4 (Below-Sets of Convex Functions) Denote by f : X → R
a convex function. Then the set

Xc := {x |x ∈ X and f(x) ≤ c}, for all c ∈ R, (3.10)

is convex.

Proof For any x, x′ ∈ Xc, we have f(x), f(x′) ≤ c. Moreover, since f is

convex, we also have

f(λx+ (1− λ)x′) ≤ λf(x) + (1− λ)f(x′) ≤ c for all 0 < λ < 1. (3.11)

Hence, for all 0 < λ < 1, we have (λx + (1 − λ)x′) ∈ Xc, which proves the

claim. Figure 3.3 depicts this situation graphically.
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As we hinted in the introduction of this chapter, minimizing an arbitrary

function on a (possibly not even compact) set of arguments can be a difficult

task, and will most likely exhibit many local minima. In contrast, minimiza-

tion of a convex objective function on a convex set exhibits exactly one global

minimum. We now prove this property.

Theorem 3.5 (Minima on Convex Sets) If the convex function f : X →
R attains its minimum, then the set of x ∈ X, for which the minimum value

is attained, is a convex set. Moreover, if f is strictly convex, then this set

contains a single element.

Proof Denote by c the minimum of f on X. Then the set Xc := {x|x ∈
X and f(x) ≤ c} is clearly convex.

If f is strictly convex, then for any two distinct x, x′ ∈ Xc and any 0 <

λ < 1 we have

f(λx+ (1− λ)x′) < λf(x) + (1− λ)f(x′) = λc+ (1− λ)c = c,

which contradicts the assumption that f attains its minimum on Xc. There-

fore Xc must contain only a single element.

As the following lemma shows, the minimum point can be characterized

precisely.

Lemma 3.6 Let f : X → R be a differentiable convex function. Then x is

a minimizer of f , if, and only if,〈
x′ − x,∇f(x)

〉
≥ 0 for all x′. (3.12)

Proof To show the forward implication, suppose that x is the optimum

but (3.12) does not hold, that is, there exists an x′ for which〈
x′ − x,∇f(x)

〉
< 0.

Consider the line segment z(λ) = (1 − λ)x + λx′, with 0 < λ < 1. Since X

is convex, z(λ) lies in X. On the other hand,

d

dλ
f(z(λ))

∣∣∣∣
λ=0

=
〈
x′ − x,∇f(x)

〉
< 0,

which shows that for small values of λ we have f(z(λ)) < f(x), thus showing

that x is not optimal.

The reverse implication follows from (3.7) by noting that f(x′) ≥ f(x),

whenever (3.12) holds.
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One way to ensure that (3.12) holds is to set ∇f(x) = 0. In other words,

minimizing a convex function is equivalent to finding a x such that ∇f(x) =

0. Therefore, the first order conditions are both necessary and sufficient

when minimizing a convex function.

3.1.3 Subgradients

So far, we worked with differentiable convex functions. The subgradient is a

generalization of gradients appropriate for convex functions, including those

which are not necessarily smooth.

Definition 3.7 (Subgradient) Suppose x is a point where a convex func-

tion f is finite. Then a subgradient is the normal vector of any tangential

supporting hyperplane of f at x. Formally µ is called a subgradient of f at

x if, and only if,

f(x′) ≥ f(x) +
〈
x′ − x, µ

〉
for all x′. (3.13)

The set of all subgradients at a point is called the subdifferential, and is de-

noted by ∂xf(x). If this set is not empty then f is said to be subdifferentiable

at x. On the other hand, if this set is a singleton then, the function is said

to be differentiable at x. In this case we use ∇f(x) to denote the gradient

of f . Convex functions are subdifferentiable everywhere in their domain. We

now state some simple rules of subgradient calculus:

Addition ∂x(f1(x) + f2(x)) = ∂xf1(x) + ∂xf2(x)
Scaling ∂xαf(x) = α∂xf(x), for α > 0

Affine Transform If g(x) = f(Ax + b) for some matrix A and vector b,
then ∂xg(x) = A>∂yf(y).

Pointwise Maximum If g(x) = maxi fi(x) then ∂g(x) = conv(∂xfi′) where
i′ ∈ argmaxi fi(x).

The definition of a subgradient can also be understood geometrically. As

illustrated by Figure 3.4, a differentiable convex function is always lower

bounded by its first order Taylor approximation. This concept can be ex-

tended to non-smooth functions via subgradients, as Figure 3.5 shows.

By using more involved concepts, the proof of Lemma 3.6 can be extended

to subgradients. In this case, minimizing a convex nonsmooth function en-

tails finding a x such that 0 ∈ ∂f(x).
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3.1.4 Strongly Convex Functions

When analyzing optimization algorithms, it is sometimes easier to work with

strongly convex functions, which generalize the definition of convexity.

Definition 3.8 (Strongly Convex Function) A convex function f is σ-

strongly convex if, and only if, there exists a constant σ > 0 such that the

function f(x)− σ
2 ‖x‖

2 is convex.

The constant σ is called the modulus of strong convexity of f . If f is twice

differentiable, then there is an equivalent, and perhaps easier, definition of

strong convexity: f is strongly convex if there exists a σ such that

∇2f(x) � σI. (3.14)

In other words, the smallest eigenvalue of the Hessian of f is uniformly

lower bounded by σ everywhere. Some important examples of strongly con-

vex functions include:

Example 3.1 (Squared Euclidean Norm) The function f(x) = λ
2 ‖x‖

2

is λ-strongly convex.

Example 3.2 (Negative Entropy) Let ∆n = {x s.t.
∑

i xi = 1 and xi ≥ 0}
be the n dimensional simplex, and f : ∆n → R be the negative entropy:

f(x) =
∑
i

xi log xi. (3.15)

Then f is 1-strongly convex with respect to the ‖·‖1 norm on the simplex

(see Problem 3.7).

If f is a σ-strongly convex function then one can show the following prop-

erties (Exercise 3.8). Here x, x′ are arbitrary and µ ∈ ∂f(x) and µ′ ∈ ∂f(x′).

f(x′) ≥ f(x) +
〈
x′ − x, µ

〉
+
σ

2

∥∥x′ − x∥∥2
(3.16)

f(x′) ≤ f(x) +
〈
x′ − x, µ

〉
+

1

2σ

∥∥µ′ − µ∥∥2
(3.17)〈

x− x′, µ− µ′
〉
≥ σ

∥∥x− x′∥∥2
(3.18)〈

x− x′, µ− µ′
〉
≤ 1

σ

∥∥µ− µ′∥∥2
. (3.19)
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3.1.5 Convex Functions with Lipschitz Continous Gradient

A somewhat symmetric concept to strong convexity is the Lipschitz conti-

nuity of the gradient. As we will see later they are connected by Fenchel

duality.

Definition 3.9 (Lipschitz Continuous Gradient) A differentiable con-

vex function f is said to have a Lipschitz continuous gradient, if there exists

a constant L > 0, such that∥∥∇f(x)−∇f(x′)
∥∥ ≤ L∥∥x− x′∥∥ ∀x, x′. (3.20)

As before, if f is twice differentiable, then there is an equivalent, and perhaps

easier, definition of Lipschitz continuity of the gradient: f has a Lipschitz

continuous gradient strongly convex if there exists a L such that

LI � ∇2f(x). (3.21)

In other words, the largest eigenvalue of the Hessian of f is uniformly upper

bounded by L everywhere. If f has a Lipschitz continuous gradient with

modulus L, then one can show the following properties (Exercise 3.9).

f(x′) ≤ f(x) +
〈
x′ − x,∇f(x)

〉
+
L

2

∥∥x− x′∥∥2
(3.22)

f(x′) ≥ f(x) +
〈
x′ − x,∇f(x)

〉
+

1

2L

∥∥∇f(x)−∇f(x′)
∥∥2

(3.23)〈
x− x′,∇f(x)−∇f(x′)

〉
≤ L

∥∥x− x′∥∥2
(3.24)〈

x− x′,∇f(x)−∇f(x′)
〉
≥ 1

L

∥∥∇f(x)−∇f(x′)
∥∥2
. (3.25)

3.1.6 Fenchel Duality

The Fenchel conjugate of a function f is given by

f∗(x∗) = sup
x
{〈x, x∗〉 − f(x)} . (3.26)

Even if f is not convex, the Fechel conjugate which is written as a supremum

over linear functions is always convex. Some rules for computing Fenchel

duals are summarized in Table 3.1.6. If f is convex and its epigraph (3.3) is

a closed convex set, then f∗∗ = f . If f and f∗ are convex, then they satisfy

the so-called Fenchel-Young inequality

f(x) + f∗(x∗) ≥ 〈x, x∗〉 for all x, x∗. (3.27)
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Fig. 3.4. A convex function is always lower bounded by its first order Taylor ap-
proximation. This is true even if the function is not differentiable (see Figure 3.5)

4 3 2 1 0 1 2 3 4
1

0

1

2

3

4

5

Fig. 3.5. Geometric intuition of a subgradient. The nonsmooth convex function
(solid blue) is only subdifferentiable at the “kink” points. We illustrate two of its
subgradients (dashed green and red lines) at a “kink” point which are tangential to
the function. The normal vectors to these lines are subgradients. Observe that the
first order Taylor approximations obtained by using the subgradients lower bounds
the convex function.

This inequality becomes an equality whenever x∗ ∈ ∂f(x), that is,

f(x) + f∗(x∗) = 〈x, x∗〉 for all x and x∗ ∈ ∂f(x). (3.28)

Strong convexity (Section 3.1.4) and Lipschitz continuity of the gradient
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Table 3.1. Rules for computing Fenchel Duals
Scalar Addition If g(x) = f(x) + α then g∗(x∗) = f∗(x∗)− α.

Function Scaling If α > 0 and g(x) = αf(x) then g∗(x∗) = αf∗(x∗/α).
Parameter Scaling If α 6= 0 and g(x) = f(αx) then g∗(x∗) = f∗(x∗/α)

Linear Transformation If A is an invertible matrix then (f ◦A)∗ = f∗◦(A−1)∗.
Shift If g(x) = f(x− x0) then g∗(x∗) = f∗(x∗) + 〈x∗, x0〉.
Sum If g(x) = f1(x) + f2(x) then g∗(x∗) =

inf {f∗1 (x∗1) + f∗2 (x∗2) s.t. x∗1 + x∗2 = x∗}.
Pointwise Infimum If g(x) = inf fi(x) then g∗(x∗) = supi f

∗
i (x∗).

(Section 3.1.5) are related by Fenchel duality according to the following

lemma, which we state without proof.

Lemma 3.10 (Theorem 4.2.1 and 4.2.2 [HUL93])

(i) If f is σ-strongly convex, then f∗ has a Lipschitz continuous gradient

with modulus 1
σ .

(ii) If f is convex and has a Lipschitz continuous gradient with modulus

L, then f∗ is 1
L -strongly convex.

Next we describe some convex functions and their Fenchel conjugates.

Example 3.3 (Squared Euclidean Norm) Whenever f(x) = 1
2 ‖x‖

2 we

have f∗(x∗) = 1
2 ‖x

∗‖2, that is, the squared Euclidean norm is its own con-

jugate.

Example 3.4 (Negative Entropy) The Fenchel conjugate of the negative

entropy (3.15) is

f∗(x∗) = log
∑
i

exp(x∗i ).

3.1.7 Bregman Divergence

Let f be a differentiable convex function. The Bregman divergence defined

by f is given by

∆f (x, x′) = f(x)− f(x′)−
〈
x− x′,∇f(x′)

〉
. (3.29)

Also see Figure 3.6. Here are some well known examples.

Example 3.5 (Square Euclidean Norm) Set f(x) = 1
2 ‖x‖

2. Clearly,

∇f(x) = x and therefore

∆f (x, x′) =
1

2
‖x‖2 − 1

2

∥∥x′∥∥2 −
〈
x− x′, x′

〉
=

1

2

∥∥x− x′∥∥2
.
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f(x′ )

f(x)

f(x′ ) +
〈
x−x′ ,∇f(x′ )

〉
∆f(x,x

′ )

Fig. 3.6. f(x) is the value of the function at x, while f(x′)+〈x− x′,∇f(x′)〉 denotes
the first order Taylor expansion of f around x′, evaluated at x. The difference
between these two quantities is the Bregman divergence, as illustrated.

Example 3.6 (Relative Entropy) Let f be the un-normalized entropy

f(x) =
∑
i

(xi log xi − xi) . (3.30)

One can calculate ∇f(x) = log x, where log x is the component wise loga-

rithm of the entries of x, and write the Bregman divergence

∆f (x, x′) =
∑
i

xi log xi −
∑
i

xi −
∑
i

x′i log x′i +
∑
i

x′i −
〈
x− x′, log x′

〉
=
∑
i

(
xi log

(
xi
x′i

)
+ x′i − xi

)
.

Example 3.7 (p-norm) Let f be the square p-norm

f(x) =
1

2
‖x‖2p =

1

2

(∑
i

xpi

)2/p

. (3.31)



102 3 Optimization

We say that the q-norm is dual to the p-norm whenever 1
p + 1

q = 1. One can

verify (Problem 3.12) that the i-th component of the gradient ∇f(x) is

∇xif(x) =
sign(xi) |xi|p−1

‖x‖p−2
p

. (3.32)

The corresponding Bregman divergence is

∆f (x, x′) =
1

2
‖x‖2p −

1

2

∥∥x′∥∥2

p
−
∑
i

(xi − x′i)
sign(x′i) |x′i|

p−1

‖x′‖p−2
p

.

The following properties of the Bregman divergence immediately follow:

• ∆f (x, x′) is convex in x.

• ∆f (x, x′) ≥ 0.

• ∆f may not be symmetric, that is, in general ∆f (x, x′) 6= ∆f (x′, x).

• ∇x∆f (x, x′) = ∇f(x)−∇f(x′).

The next lemma establishes another important property.

Lemma 3.11 The Bregman divergence (3.29) defined by a differentiable

convex function f satisfies

∆f (x, y) + ∆f (y, z)−∆f (x, z) = 〈∇f(z)−∇f(y), x− y〉 . (3.33)

Proof

∆f (x, y) + ∆f (y, z) = f(x)− f(y)− 〈x− y,∇f(y)〉+ f(y)− f(z)− 〈y − z,∇f(z)〉
= f(x)− f(z)− 〈x− y,∇f(y)〉 − 〈y − z,∇f(z)〉
= ∆f (x, z) + 〈∇f(z)−∇f(y), x− y〉 .

3.2 Unconstrained Smooth Convex Minimization

In this section we will describe various methods to minimize a smooth convex

objective function.

3.2.1 Minimizing a One-Dimensional Convex Function

As a warm up let us consider the problem of minimizing a smooth one di-

mensional convex function J : R→ R in the interval [L,U ]. This seemingly
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Algorithm 3.1 Interval Bisection

1: Input: L, U , precision ε

2: Set t = 0, a0 = L and b0 = U

3: while (bt − at) · J ′(U) > ε do

4: if J ′(at+bt2 ) > 0 then

5: at+1 = at and bt+1 = at+bt
2

6: else

7: at+1 = at+bt
2 and bt+1 = bt

8: end if

9: t = t+ 1

10: end while

11: Return: at+bt
2

simple problem has many applications. As we will see later, many optimiza-

tion methods find a direction of descent and minimize the objective function

along this direction1; this subroutine is called a line search. Algorithm 3.1

depicts a simple line search routine based on interval bisection.

Before we show that Algorithm 3.1 converges, let us first derive an im-

portant property of convex functions of one variable. For a differentiable

one-dimensional convex function J (3.7) reduces to

J(w) ≥ J(w′) + (w − w′) · J ′(w′), (3.34)

where J ′(w) denotes the gradient of J . Exchanging the role of w and w′ in

(3.34), we can write

J(w′) ≥ J(w) + (w′ − w) · J ′(w). (3.35)

Adding the above two equations yields

(w − w′) · (J ′(w)− J ′(w′)) ≥ 0. (3.36)

If w ≥ w′, then this implies that J ′(w) ≥ J ′(w′). In other words, the gradient

of a one dimensional convex function is monotonically non-decreasing.

Recall that minimizing a convex function is equivalent to finding w∗ such

that J ′(w∗) = 0. Furthermore, it is easy to see that the interval bisection

maintains the invariant J ′(at) < 0 and J ′(bt) > 0. This along with the

monotonicity of the gradient suffices to ensure that w∗ ∈ (at, bt). Setting

w = w∗ in (3.34), and using the monotonicity of the gradient allows us to

1 If the objective function is convex, then the one dimensional function obtained by restricting
it along the search direction is also convex (Exercise 3.10).
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write for any w′ ∈ (at, bt)

J(w′)− J(w∗) ≤ (w′ − w∗) · J ′(w′) ≤ (bt − at) · J ′(U). (3.37)

Since we halve the interval (at, bt) at every iteration, it follows that (bt−at) =

(U − L)/2t. Therefore

J(w′)− J(w∗) ≤ (U − L) · J ′(U)

2t
, (3.38)

for all w′ ∈ (at, bt). In other words, to find an ε-accurate solution, that is,

J(w′)− J(w∗) ≤ ε we only need log(U −L) + log J ′(U) + log(1/ε) < t itera-

tions. An algorithm which converges to an ε accurate solution in O(log(1/ε))

iterations is said to be linearly convergent.

For multi-dimensional objective functions, one cannot rely on the mono-

tonicity property of the gradient. Therefore, one needs more sophisticated

optimization algorithms, some of which we now describe.

3.2.2 Coordinate Descent

Coordinate descent is conceptually the simplest algorithm for minimizing a

multidimensional smooth convex function J : Rn → R. At every iteration

select a coordinate, say i, and update

wt+1 = wt − ηtei. (3.39)

Here ei denotes the i-th basis vector, that is, a vector with one at the i-th co-

ordinate and zeros everywhere else, while ηt ∈ R is a non-negative scalar step

size. One could, for instance, minimize the one dimensional convex function

J(wt− ηei) to obtain the stepsize ηt. The coordinates can either be selected

cyclically, that is, 1, 2, . . . , n, 1, 2, . . . or greedily, that is, the coordinate which

yields the maximum reduction in function value.

Even though coordinate descent can be shown to converge if J has a Lip-

schitz continuous gradient [LT92], in practice it can be quite slow. However,

if a high precision solution is not required, as is the case in some machine

learning applications, coordinate descent is often used because a) the cost

per iteration is very low and b) the speed of convergence may be acceptable

especially if the variables are loosely coupled.

3.2.3 Gradient Descent

Gradient descent (also widely known as steepest descent) is an optimization

technique for minimizing multidimensional smooth convex objective func-

tions of the form J : Rn → R. The basic idea is as follows: Given a location
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wt at iteration t, compute the gradient ∇J(wt), and update

wt+1 = wt − ηt∇J(wt), (3.40)

where ηt is a scalar stepsize. See Algorithm 3.2 for details. Different variants

of gradient descent depend on how ηt is chosen:

Exact Line Search: Since J(wt − η∇J(wt)) is a one dimensional convex

function in η, one can use the Algorithm 3.1 to compute:

ηt = argmin
η

J(wt − η∇J(wt)). (3.41)

Instead of the simple bisecting line search more sophisticated line searches

such as the More-Thuente line search or the golden bisection rule can also

be used to speed up convergence (see [NW99] Chapter 3 for an extensive

discussion).

Inexact Line Search: Instead of minimizing J(wt − η∇J(wt)) we could

simply look for a stepsize which results in sufficient decrease in the objective

function value. One popular set of sufficient decrease conditions is the Wolfe

conditions

J(wt+1) ≤ J(wt) + c1ηt 〈∇J(wt), wt+1 − wt〉 (sufficient decrease) (3.42)

〈∇J(wt+1), wt+1 − wt〉 ≥ c2 〈∇J(wt), wt+1 − wt〉 (curvature) (3.43)

with 0 < c1 < c2 < 1 (see Figure 3.7). The Wolfe conditions are also called

the Armijio-Goldstein conditions. If only sufficient decrease (3.42) alone is

enforced, then it is called the Armijio rule.

acceptable stepsize acceptable stepsize

Fig. 3.7. The sufficient decrease condition (left) places an upper bound on the
acceptable stepsizes while the curvature condition (right) places a lower bound on
the acceptable stepsizes.
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Algorithm 3.2 Gradient Descent

1: Input: Initial point w0, gradient norm tolerance ε

2: Set t = 0

3: while ‖∇J(wt)‖ ≥ ε do

4: wt+1 = wt − ηt∇J(wt)

5: t = t+ 1

6: end while

7: Return: wt

Decaying Stepsize: Instead of performing a line search at every itera-

tion, one can use a stepsize which decays according to a fixed schedule, for

example, ηt = 1/
√
t. In Section 3.2.4 we will discuss the decay schedule and

convergence rates of a generalized version of gradient descent.

Fixed Stepsize: Suppose J has a Lipschitz continuous gradient with mod-

ulus L. Using (3.22) and the gradient descent update wt+1 = wt−ηt∇J(wt)

one can write

J(wt+1) ≤ J(wt) + 〈∇J(wt), wt+1 − wt〉+
L

2
‖wt+1 − wt‖ (3.44)

= J(wt)− ηt ‖∇J(wt)‖2 +
Lη2

t

2
‖∇J(wt)‖2 . (3.45)

Minimizing (3.45) as a function of ηt clearly shows that the upper bound on

J(wt+1) is minimized when we set ηt = 1
L , which is the fixed stepsize rule.

Theorem 3.12 Suppose J has a Lipschitz continuous gradient with modu-

lus L. Then Algorithm 3.2 with a fixed stepsize ηt = 1
L will return a solution

wt with ‖∇J(wt)‖ ≤ ε in at most O(1/ε2) iterations.

Proof Plugging in ηt = 1
L and rearranging (3.45) obtains

1

2L
‖∇J(wt)‖2 ≤ J(wt)− J(wt+1) (3.46)

Summing this inequality

1

2L

T∑
t=0

‖∇J(wt)‖2 ≤ J(w0)− J(wT ) ≤ J(w0)− J(w∗),

which clearly shows that ‖∇J(wt)‖ → 0 as t → ∞. Furthermore, we can

write the following simple inequality:

‖∇J(wT )‖ ≤
√

2L(J(w0)− J(w∗))

T + 1
.
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Solving for √
2L(J(w0)− J(w∗))

T + 1
= ε

shows that T is O(1/ε2) as claimed.

If in addition to having a Lipschitz continuous gradient, if J is σ-strongly

convex, then more can be said. First, one can translate convergence in

‖∇J(wt)‖ to convergence in function values. Towards this end, use (3.17) to

write

J(wt) ≤ J(w∗) +
1

2σ
‖∇J(wt)‖2 .

Therefore, it follows that whenever ‖∇J(wt)‖ < ε we have J(wt)− J(w∗) <

ε2/2σ. Furthermore, we can strengthen the rates of convergence.

Theorem 3.13 Assume everything as in Theorem 3.12. Moreover assume

that J is σ-strongly convex, and let c := 1 − σ
L . Then J(wt) − J(w∗) ≤ ε

after at most

log((J(w0)− J(w∗))/ε)

log(1/c)
(3.47)

iterations.

Proof Combining (3.46) with ‖∇J(wt)‖2 ≥ 2σ(J(wt)− J(w∗)), and using

the definition of c one can write

c(J(wt)− J(w∗)) ≥ J(wt+1)− J(w∗).

Applying the above equation recursively

cT (J(w0)− J(w∗)) ≥ J(wT )− J(w∗).

Solving for

ε = cT (J(w0)− J(w∗))

and rearranging yields (3.47).

When applied to practical problems which are not strongly convex gra-

dient descent yields a low accuracy solution within a few iterations. How-

ever, as the iterations progress the method “stalls” and no further increase

in accuracy is obtained because of the O(1/ε2) rates of convergence. On

the other hand, if the function is strongly convex, then gradient descent

converges linearly, that is, in O(log(1/ε)) iterations. However, the number
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of iterations depends inversely on log(1/c). If we approximate log(1/c) =

− log(1− σ/L) ≈ σ/L, then it shows that convergence depends on the ratio

L/σ. This ratio is called the condition number of a problem. If the problem

is well conditioned, i.e., σ ≈ L then gradient descent converges extremely

fast. In contrast, if σ � L then gradient descent requires many iterations.

This is best illustrated with an example: Consider the quadratic objective

function

J(w) =
1

2
w>Aw − bw, (3.48)

where A ∈ Rn×n is a symmetric positive definite matrix, and b ∈ Rn is any

arbitrary vector.

Recall that a twice differentiable function is σ-strongly convex and has a

Lipschitz continuous gradient with modulus L if and only if its Hessian sat-

isfies LI � ∇2J(w) � σI (see (3.14) and (3.21)). In the case of the quadratic

function (3.48) ∇2J(w) = A and hence σ = λmin and L = λmax, where λmin

(respectively λmax) denotes the minimum (respectively maximum) eigen-

value of A. One can thus change the condition number of the problem by

varying the eigen-spectrum of the matrix A. For instance, if we set A to

the n × n identity matrix, then λmax = λmin = 1 and hence the problem is

well conditioned. In this case, gradient descent converges very quickly to the

optimal solution. We illustrate this behavior on a two dimensional quadratic

function in Figure 3.8 (right).

On the other hand, if we choose A such that λmax � λmin then the

problem (3.48) becomes ill-conditioned. In this case gradient descent exhibits

zigzagging and slow convergence as can be seen in Figure 3.8 (left). Because

of these shortcomings, gradient descent is not widely used in practice. A

number of different algorithms we described below can be understood as

explicitly or implicitly changing the condition number of the problem to

accelerate convergence.

3.2.4 Mirror Descent

One way to motivate gradient descent is to use the following quadratic ap-

proximation of the objective function

Qt(w) := J(wt) + 〈∇J(wt), w − wt〉+
1

2
(w − wt)>(w − wt), (3.49)

where, as in the previous section, ∇J(·) denotes the gradient of J . Mini-

mizing this quadratic model at every iteration entails taking gradients with
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Fig. 3.8. Convergence of gradient descent with exact line search on two quadratic
problems (3.48). The problem on the left is ill-conditioned, whereas the problem
on the right is well-conditioned. We plot the contours of the objective function,
and the steps taken by gradient descent. As can be seen gradient descent converges
fast on the well conditioned problem, while it zigzags and takes many iterations to
converge on the ill-conditioned problem.

respect to w and setting it to zero, which gives

w − wt := −∇J(wt). (3.50)

Performing a line search along the direction −∇J(wt) recovers the familiar

gradient descent update

wt+1 = wt − ηt∇J(wt). (3.51)

The closely related mirror descent method replaces the quadratic penalty

in (3.49) by a Bregman divergence defined by some convex function f to

yield

Qt(w) := J(wt) + 〈∇J(wt), w − wt〉+ ∆f (w,wt). (3.52)

Computing the gradient, setting it to zero, and using∇w∆f (w,wt) = ∇f(w)−
∇f(wt), the minimizer of the above model can be written as

∇f(w)−∇f(wt) = −∇J(wt). (3.53)

As before, by using a stepsize ηt the resulting updates can be written as

wt+1 = ∇f−1(∇f(wt)− ηt∇J(wt)). (3.54)

It is easy to verify that choosing f(·) = 1
2 ‖·‖

2 recovers the usual gradient

descent updates. On the other hand if we choose f to be the un-normalized

entropy (3.30) then ∇f(·) = log and therefore (3.54) specializes to

wt+1 = exp(log(wt)− ηt∇J(wt)) = wt exp(−ηt∇J(wt)), (3.55)

which is sometimes called the Exponentiated Gradient (EG) update.
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Theorem 3.14 Let J be a convex function and J(w∗) denote its minimum

value. The mirror descent updates (3.54) with a σ-strongly convex function

f satisfy

∆f (w∗, w1) + 1
2σ

∑
t η

2
t ‖∇J(wt)‖2∑

t ηt
≥ min

t
J(wt)− J(w∗).

Proof Using the convexity of J (see (3.7)) and (3.54) we can write

J(w∗) ≥ J(wt) + 〈w∗ − wt,∇J(wt)〉

≥ J(wt)−
1

ηt
〈w∗ − wt, f(wt+1)− f(wt)〉 .

Now applying Lemma 3.11 and rearranging

∆f (w∗, wt)−∆f (w∗, wt+1) + ∆f (wt, wt+1) ≥ ηt(J(wt)− J(w∗)).

Summing over t = 1, . . . , T

∆f (w∗, w1)−∆f (w∗, wT+1) +
∑
t

∆f (wt, wt+1) ≥
∑
t

ηt(J(wt)− J(w∗)).

Noting that ∆f (w∗, wT+1) ≥ 0, J(wt) − J(w∗) ≥ mint J(wt) − J(w∗), and

rearranging it follows that

∆f (w∗, w1) +
∑

t ∆f (wt, wt+1)∑
t ηt

≥ min
t
J(wt)− J(w∗). (3.56)

Using (3.17) and (3.54)

∆f (wt, wt+1) ≤ 1

2σ
‖∇f(wt)−∇f(wt+1)‖2 =

1

2σ
η2
t ‖∇J(wt)‖2 . (3.57)

The proof is completed by plugging in (3.57) into (3.56).

Corollary 3.15 If J has a Lipschitz continuous gradient with modulus L,

and the stepsizes ηt are chosen as

ηt =

√
2σ∆f (w∗, w1)

L

1√
t

then (3.58)

min
1≤t≤T

J(wt)− J(w∗) ≤ L
√

2∆f (w∗, w1)

σ

1√
T
.

Proof Since ∇J is Lipschitz continuous

min
1≤t≤T

J(wt)− J(w∗) ≤
∆f (w∗, w1) + 1

2σ

∑
t η

2
tL

2∑
t ηt

.
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Plugging in (3.58) and using Problem 3.15

min
1≤t≤T

J(wt)− J(w∗) ≤ L
√

∆f (w∗, w1)

2σ

(1 +
∑

t
1
t )∑

t
1√
t

≤ L
√

∆f (w∗, w1)

2σ

1√
T
.

3.2.5 Conjugate Gradient

Let us revisit the problem of minimizing the quadratic objective function

(3.48). Since ∇J(w) = Aw− b, at the optimum ∇J(w) = 0 (see Lemma 3.6)

and hence

Aw = b. (3.59)

In fact, the Conjugate Gradient (CG) algorithm was first developed as a

method to solve the above linear system.

As we already saw, updating w along the negative gradient direction may

lead to zigzagging. Therefore CG uses the so-called conjugate directions.

Definition 3.16 (Conjugate Directions) Non zero vectors pt and pt′ are

said to be conjugate with respect to a symmetric positive definite matrix A

if p>t′Apt = 0 if t 6= t′.

Conjugate directions {p0, . . . , pn−1} are linearly independent and form a

basis. To see this, suppose the pt’s are not linearly independent. Then there

exists non-zero coefficients σt such that
∑

t σtpt = 0. The pt’s are conjugate

directions, therefore p>t′A(
∑

t σtpt) =
∑

t σtp
>
t′Apt = σt′p

>
t′Apt′ = 0 for all t′.

Since A is positive definite this implies that σt′ = 0 for all t′, a contradiction.

As it turns out, the conjugate directions can be generated iteratively as

follows: Starting with any w0 ∈ Rn define p0 = −g0 = b−Aw0, and set

αt = − g>t pt

p>t Apt
(3.60a)

wt+1 = wt + αtpt (3.60b)

gt+1 = Awt+1 − b (3.60c)

βt+1 =
g>t+1Apt

p>t Apt
(3.60d)

pt+1 = −gt+1 + βt+1pt (3.60e)
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The following theorem asserts that the pt generated by the above procedure

are indeed conjugate directions.

Theorem 3.17 Suppose the t-th iterate generated by the conjugate gradient

method (3.60) is not the solution of (3.59), then the following properties

hold:

span{g0, g1, . . . , gt} = span{g0, Ag0, . . . , A
tg0}. (3.61)

span{p0, p1, . . . , pt} = span{g0, Ag0, . . . , A
tg0}. (3.62)

p>j gt = 0 for all j < t (3.63)

p>j Apt = 0 for all j < t. (3.64)

Proof The proof is by induction. The induction hypothesis holds trivially

at t = 0. Assuming that (3.61) to (3.64) hold for some t, we prove that they

continue to hold for t+ 1.

Step 1: We first prove that (3.63) holds. Using (3.60c), (3.60b) and (3.60a)

p>j gt+1 = p>j (Awt+1 − b)
= p>j (Awt + αtpt − b)

= p>j

(
Awt −

g>t pt

p>t Apt
Apt − b

)
= p>j gt −

p>j Apt

p>t Apt
g>t pt.

For j = t, both terms cancel out, while for j < t both terms vanish due to

the induction hypothesis.

Step 2: Next we prove that (3.61) holds. Using (3.60c) and (3.60b)

gt+1 = Awt+1 − b = Awt + αtApt − b = gt + αtApt.

By our induction hypothesis, gt ∈ span{g0, Ag0, . . . , A
tg0}, while Apt ∈

span{Ag0, A
2g0, . . . , A

t+1g0}. Combining the two we conclude that gt+1 ∈
span{g0, Ag0, . . . , A

t+1g0}. On the other hand, we already showed that gt+1

is orthogonal to {p0, p1, . . . , pt}. Therefore, gt+1 /∈ span{p0, p1, . . . , pt}. Thus

our induction assumption implies that gt+1 /∈ span{g0, Ag0, . . . , A
tg0}. This

allows us to conclude that span{g0, g1, . . . , gt+1} = span{g0, Ag0, . . . , A
t+1g0}.
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Step 3 We now prove (3.64) holds. Using (3.60e)

p>t+1Apj = −g>t+1Apj + βt+1p
>
t Apj .

By the definition of βt+1 (3.60d) the above expression vanishes for j = t. For

j < t, the first term is zero because Apj ∈ span{p0, p1, . . . , pj+1}, a subspace

orthogonal to gt+1 as already shown in Step 1. The induction hypothesis

guarantees that the second term is zero.

Step 4 Clearly, (3.61) and (3.60e) imply (3.62). This concludes the proof.

A practical implementation of (3.60) requires two more observations:

First, using (3.60e) and (3.63)

−g>t pt = g>t gt − βtg>t pt−1 = g>t gt.

Therefore (3.60a) simplifies to

αt =
g>t gt

p>t Apt
. (3.65)

Second, using (3.60c) and (3.60b)

gt+1 − gt = A(wt+1 − wt) = αtApt.

But gt ∈ span{p0, . . . , pt}, a subspace orthogonal to gt+1 by (3.63). Therefore

g>t+1Apt = 1
αt

(g>t+1gt+1). Substituting this back into (3.60d) and using (3.65)

yields

βt+1 =
g>t+1gt+1

g>t gt
. (3.66)

We summarize the CG algorithm in Algorithm 3.3. Unlike gradient descent

whose convergence rates for minimizing the quadratic objective function

(3.48) depend upon the condition number of A, as the following theorem

shows, the CG iterates converge in at most n steps.

Theorem 3.18 The CG iterates (3.60) converge to the minimizer of (3.48)

after at most n steps.

Proof Let w denote the minimizer of (3.48). Since the pt’s form a basis

w − w0 = σ0p0 + . . .+ σn−1pn−1,

for some scalars σt. Our proof strategy will be to show that the coefficients
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Algorithm 3.3 Conjugate Gradient

1: Input: Initial point w0, residual norm tolerance ε

2: Set t = 0, g0 = Aw0 − b, and p0 = −g0

3: while ‖Awt − b‖ ≥ ε do

4: αt =
g>t gt
p>t Apt

5: wt+1 = wt + αtpt
6: gt+1 = gt + αtApt

7: βt+1 =
g>t+1gt+1

g>t gt
8: pt+1 = −gt+1 + βt+1pt
9: t = t+ 1

10: end while

11: Return: wt

σt coincide with αt defined in (3.60a). Towards this end premultiply with

p>t A and use conjugacy to obtain

σt =
p>t A(w − w0)

p>t Apt
. (3.67)

On the other hand, following the iterative process (3.60b) from w0 until wt
yields

wt − w0 = α0p0 + . . .+ αt−1pt−1.

Again premultiplying with p>t A and using conjugacy

p>t A(wt − w0) = 0. (3.68)

Substituting (3.68) into (3.67) produces

σt =
p>t A(w − wt)

p>t Apt
= − g>t pt

p>t Apt
, (3.69)

thus showing that σt = αt.

Observe that the gt+1 computed via (3.60c) is nothing but the gradient of

J(wt+1). Furthermore, consider the following one dimensional optimization

problem:

min
α∈R

φt(α) := J(wt + αpt).

Differentiating φt with respect to α

φ′t(α) = p>t (Awt + αApt − b) = p>t (gt + αApt).
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The gradient vanishes if we set α = − g>t pt
p>t Apt

, which recovers (3.60a). In other

words, every iteration of CG minimizes J(w) along a conjugate direction pt.

Contrast this with gradient descent which minimizes J(w) along the negative

gradient direction gt at every iteration.

It is natural to ask if this idea of generating conjugate directions and

minimizing the objective function along these directions can be applied to

general convex functions. The main difficulty here is that Theorems 3.17 and

3.18 do not hold. In spite of this, extensions of CG are effective even in this

setting. Basically the update rules for gt and pt remain the same, but the

parameters αt and βt are computed differently. Table 3.2 gives an overview

of different extensions. See [NW99, Lue84] for details.

Table 3.2. Non-Quadratic modifications of Conjugate Gradient Descent

Generic Method Compute Hessian Kt := ∇2J(wt) and update αt
and βt with

αt = − g>t pt
p>t Ktpt

and βt = − g
>
t+1Ktpt

p>t Ktpt

Fletcher-Reeves Set αt = argminα J(wt + αpt) and βt =
g>t+1gt+1

g>t gt
.

Polak-Ribière Set αt = argminα J(wt +αpt), yt = gt+1− gt, and

βt =
y>t gt+1

g>t gt
.

In practice, Polak-Ribière tends to be better than
Fletcher-Reeves.

Hestenes-Stiefel Set αt = argminα J(wt +αpt), yt = gt+1− gt, and

βt =
y>t gt+1

y>t pt
.

3.2.6 Higher Order Methods

Recall the motivation for gradient descent as the minimizer of the quadratic

model

Qt(w) := J(wt) + 〈∇J(wt), w − wt〉+
1

2
(w − wt)>(w − wt),

The quadratic penalty in the above equation uniformly penalizes deviation

from wt in different dimensions. When the function is ill-conditioned one

would intuitively want to penalize deviations in different directions differ-

ently. One way to achieve this is by using the Hessian, which results in the
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Algorithm 3.4 Newton’s Method

1: Input: Initial point w0, gradient norm tolerance ε

2: Set t = 0

3: while ‖∇J(wt)‖ > ε do

4: Compute pt := −∇2J(wt)
−1∇J(wt)

5: Compute ηt = argminη J(wt + ηpt) e.g., via Algorithm 3.1.

6: wt+1 = wt + ηtpt
7: t = t+ 1

8: end while

9: Return: wt

following second order Taylor approximation:

Qt(w) := J(wt) + 〈∇J(wt), w − wt〉+
1

2
(w − wt)>∇2J(wt)(w − wt).

(3.70)

Of course, this requires that J be twice differentiable. We will also assume

that J is strictly convex and hence its Hessian is positive definite and in-

vertible. Minimizing Qt by taking gradients with respect to w and setting it

zero obtains

w − wt := −∇2J(wt)
−1∇J(wt), (3.71)

Since we are only minimizing a model of the objective function, we perform

a line search along the descent direction (3.71) to compute the stepsize ηt,

which yields the next iterate:

wt+1 = wt − ηt∇2J(wt)
−1∇J(wt). (3.72)

Details can be found in Algorithm 3.4.

Suppose w∗ denotes the minimum of J(w). We say that an algorithm

exhibits quadratic convergence if the sequences of iterates {wk} generated

by the algorithm satisfies:

‖wk+1 − w∗‖ ≤ C ‖wk − w∗‖2 (3.73)

for some constant C > 0. We now show that Newton’s method exhibits

quadratic convergence close to the optimum.

Theorem 3.19 (Quadratic convergence of Newton’s Method) Suppose

J is twice differentiable, strongly convex, and the Hessian of J is bounded

and Lipschitz continuous with modulus M in a neighborhood of the so-

lution w∗. Furthermore, assume that
∥∥∇2J(w)−1

∥∥ ≤ N . The iterations
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wt+1 = wt−∇2J(wt)
−1∇J(wt) converge quadratically to w∗, the minimizer

of J .

Proof First notice that

∇J(wt)−∇J(w∗) =

∫ 1

0
∇2J(wt + t(w∗ − wt))(wt − w∗)dt. (3.74)

Next using the fact that ∇2J(wt) is invertible and the gradient vanishes at

the optimum (∇J(w∗) = 0), write

wt+1 − w∗ = wt − w∗ −∇2J(wt)
−1∇J(wt)

= ∇2J(wt)
−1[∇2J(wt)(wt − w∗)− (∇J(wt)−∇J(w∗))]. (3.75)

Using (3.75), (3.74), and the Lipschitz continuity of ∇2J∥∥∇J(wt)−∇J(w∗)−∇2J(wt)(wt − w∗)
∥∥

=

∥∥∥∥∫ 1

0
[∇2J(wt + t(wt − w∗))−∇2J(wt)](wt − w∗)dt

∥∥∥∥
≤
∫ 1

0

∥∥[∇2J(wt + t(wt − w∗))−∇2J(wt)]
∥∥ ‖(wt − w∗)‖ dt

≤ ‖wt − w∗‖2
∫ 1

0
Mtdt =

M

2
‖wt − w∗‖2 . (3.76)

Finally use (3.75) and (3.76) to conclude that

‖wt+1 − w∗‖ ≤
M

2

∥∥∇2J(wt)
−1
∥∥ ‖wt − w∗‖2 ≤ NM

2
‖wt − w∗‖2.

Newton’s method as we described it suffers from two major problems.

First, it applies only to twice differentiable, strictly convex functions. Sec-

ond, it involves computing and inverting of the n × n Hessian matrix at

every iteration, thus making it computationally very expensive. Although

Newton’s method can be extended to deal with positive semi-definite Hes-

sian matrices, the computational burden often makes it unsuitable for large

scale applications. In such cases one resorts to Quasi-Newton methods.

3.2.6.1 Quasi-Newton Methods

Unlike Newton’s method, which computes the Hessian of the objective func-

tion at every iteration, quasi-Newton methods never compute the Hessian;

they approximate it from past gradients. Since they do not require the ob-

jective function to be twice differentiable, quasi-Newton methods are much
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Fig. 3.9. The blue solid line depicts the one dimensional convex function J(w) =
w4 + 20w2 + w. The green dotted-dashed line represents the first order Taylor
approximation to J(w), while the red dashed line represents the second order Taylor
approximation, both evaluated at w = 2.

more widely applicable. They are widely regarded as the workhorses of

smooth nonlinear optimization due to their combination of computational ef-

ficiency and good asymptotic convergence. The most popular quasi-Newton

algorithm is BFGS, named after its discoverers Broyde, Fletcher, Goldfarb,

and Shanno. In this section we will describe BFGS and its limited memory

counterpart LBFGS.

Suppose we are given a smooth (not necessarily strictly) convex objective

function J : Rn → R and a current iterate wt ∈ Rn. Just like Newton’s

method, BFGS forms a local quadratic model of the objective function, J :

Qt(w) := J(wt) + 〈∇J(wt), w − wt〉+
1

2
(w − wt)>Ht(w − wt). (3.77)

Unlike Newton’s method which uses the Hessian to build its quadratic model

(3.70), BFGS uses the matrix Ht � 0, which is a positive-definite estimate

of the Hessian. A quasi-Newton direction of descent is found by minimizing

Qt(w):

w − wt = −H−1
t ∇J(wt). (3.78)

The stepsize ηt > 0 is found by a line search obeying the Wolfe conditions
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(3.42) and (3.43). The final update is given by

wt+1 = wt − ηtH−1
t ∇J(wt). (3.79)

Given wt+1 we need to update our quadratic model (3.77) to

Qt+1(w) := J(wt+1) + 〈∇J(wt+1), w − wt+1〉+
1

2
(w − wt+1)>Ht+1(w − wt+1).

(3.80)

When updating our model it is reasonable to expect that the gradient of

Qt+1 should match the gradient of J at wt and wt+1. Clearly,

∇Qt+1(w) = ∇J(wt+1) +Ht+1(w − wt+1), (3.81)

which implies that ∇Qt+1(wt+1) = ∇J(wt+1), and hence our second con-

dition is automatically satisfied. In order to satisfy our first condition, we

require

∇Qt+1(wt) = ∇J(wt+1) +Ht+1(wt − wt+1) = ∇J(wt). (3.82)

By rearranging, we obtain the so-called secant equation:

Ht+1st = yt, (3.83)

where st := wt+1−wt and yt := ∇J(wt+1)−∇J(wt) denote the most recent

step along the optimization trajectory in parameter and gradient space,

respectively. Since Ht+1 is a positive definite matrix, pre-multiplying the

secant equation by st yields the curvature condition

s>t yt > 0. (3.84)

If the curvature condition is satisfied, then there are an infinite number

of matrices Ht+1 which satisfy the secant equation (the secant equation

represents n linear equations, but the symmetric matrix Ht+1 has n(n+1)/2

degrees of freedom). To resolve this issue we choose the closest matrix to

Ht which satisfies the secant equation. The key insight of the BFGS comes

from the observation that the descent direction computation (3.78) involves

the inverse matrix Bt := H−1
t . Therefore, we choose a matrix Bt+1 := H−1

t+1

such that it is close to Bt and also satisfies the secant equation:

min
B
‖B −Bt‖ (3.85)

s. t. B = B> and Byt = st. (3.86)

If the matrix norm ‖·‖ is appropriately chosen [NW99], then it can be shown

that

Bt+1 = (1−ρtsty>t )Bt(1−ρtyts>t ) + ρtsts
>
t , (3.87)
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Algorithm 3.5 LBFGS

1: Input: Initial point w0, gradient norm tolerance ε > 0

2: Set t = 0 and B0 = I

3: while ‖∇J(wt)‖ > ε do

4: pt = −Bt∇J(wt)

5: Find ηt that obeys (3.42) and (3.43)

6: st = ηtpt
7: wt+1 = wt + st
8: yt := ∇J(wt+1)−∇J(wt)

9: if t = 0 : Bt :=
s>t yt
y>t yt

I

10: ρt = (s>t yt)
−1

11: Bt+1 = (I − ρtsty>t )Bt(I − ρtyts>t ) + ρtsts
>
t

12: t = t+ 1

13: end while

14: Return: wt

where ρt := (y>t st)
−1. In other words, the matrix Bt is modified via an

incremental rank-two update, which is very efficient to compute, to obtain

Bt+1.

There exists an interesting connection between the BFGS update (3.87)

and the Hestenes-Stiefel variant of Conjugate gradient. To see this assume

that an exact line search was used to compute wt+1, and therefore s>t ∇J(wt+1) =

0. Furthermore, assume that Bt = 1, and use (3.87) to write

pt+1 = −Bt+1∇J(wt+1) = −∇J(wt+1) +
y>t ∇J(wt+1)

y>t st
st, (3.88)

which recovers the Hestenes-Stiefel update (see (3.60e) and Table 3.2).

Limited-memory BFGS (LBFGS) is a variant of BFGS designed for solv-

ing large-scale optimization problems where the O(d2) cost of storing and

updating Bt would be prohibitively expensive. LBFGS approximates the

quasi-Newton direction (3.78) directly from the last m pairs of st and yt via

a matrix-free approach. This reduces the cost to O(md) space and time per

iteration, with m freely chosen. Details can be found in Algorithm 3.5.

3.2.6.2 Spectral Gradient Methods

Although spectral gradient methods do not use the Hessian explicitly, they

are motivated by arguments very reminiscent of the Quasi-Newton methods.

Recall the update rule (3.79) and secant equation (3.83). Suppose we want
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a very simple matrix which approximates the Hessian. Specifically, we want

Ht+1 = αt+1I (3.89)

where αt+1 is a scalar and I denotes the identity matrix. Then the secant

equation (3.83) becomes

αt+1st = yt. (3.90)

In general, the above equation cannot be solved. Therefore we use the αt+1

which minimizes ‖αt+1st − yt‖2 which yields the Barzilai-Borwein (BB) step-

size

αt+1 =
s>t yt

s>t st
. (3.91)

As it turns out, αt+1 lies between the minimum and maximum eigenvalue of

the average Hessian in the direction st, hence the name Spectral Gradient

method. The parameter update (3.79) is now given by

wt+1 = wt −
1

αt
∇J(wt). (3.92)

A practical implementation uses safeguards to ensure that the stepsize αt+1

is neither too small nor too large. Given 0 < αmin < αmax <∞ we compute

αt+1 = min

(
αmax,max

(
αmin,

s>t yt

s>t st

))
. (3.93)

One of the peculiar features of spectral gradient methods is their use

of a non-monotone line search. In all the algorithms we have seen so far,

the stepsize is chosen such that the objective function J decreases at every

iteration. In contrast, non-monotone line searches employ a parameter M ≥
1 and ensure that the objective function decreases in every M iterations. Of

course, setting M = 1 results in the usual monotone line search. Details can

be found in Algorithm 3.6.

3.2.7 Bundle Methods

The methods we discussed above are applicable for minimizing smooth, con-

vex objective functions. Some regularized risk minimization problems involve

a non-smooth objective function. In such cases, one needs to use bundle

methods. In order to lay the ground for bundle methods we first describe

their precursor the cutting plane method [Kel60]. Cutting plane method is

based on a simple observation: A convex function is bounded from below by
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Algorithm 3.6 Spectral Gradient Method

1: Input: w0, M ≥ 1, αmax > αmin > 0, γ ∈ (0, 1), 1 > σ2 > σ1 > 0,

α0 ∈ [αmin, αmax], and ε > 0

2: Initialize: t = 0

3: while ‖∇J(wt)‖ > ε do

4: λ = 1

5: while TRUE do

6: dt = − 1
αt
∇J(wt)

7: w+ = wt + λdt
8: δ = 〈dt,∇J(wt)〉
9: if J(w+) ≤ min0≤j≤min(t,M−1) J(xt−j) + γλδ then

10: wt+1 = w+

11: st = wt+1 − wt
12: yt = ∇J(wt+1)−∇J(wt)

13: break

14: else

15: λtmp = −1
2λ

2δ/(J(w+)− J(wt)− λδ)
16: if λtmp > σ1 and λtmp < σ2λ then

17: λ = λtmp

18: else

19: λ = λ/2

20: end if

21: end if

22: end while

23: αt+1 = min(αmax,max(αmin,
s>t yt
s>t st

))

24: t = t+ 1

25: end while

26: Return: wt

its linearization (i.e., first order Taylor approximation). See Figures 3.4 and

3.5 for geometric intuition, and recall (3.7) and (3.13):

J(w) ≥ J(w′) +
〈
w − w′, s′

〉
∀w and s′ ∈ ∂J(w′). (3.94)

Given subgradients s1, s2, . . . , st evaluated at locations w0, w1, . . . , wt−1, we

can construct a tighter (piecewise linear) lower bound for J as follows (also

see Figure 3.10):

J(w) ≥ JCP
t (w) := max

1≤i≤t
{J(wi−1) + 〈w − wi−1, si〉}. (3.95)
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Given iterates {wi}t−1
i=0, the cutting plane method minimizes JCP

t to obtain

the next iterate wt:

wt := argmin
w

JCP
t (w). (3.96)

This iteratively refines the piecewise linear lower bound JCP and allows us

to get close to the minimum of J (see Figure 3.10 for an illustration).

If w∗ denotes the minimizer of J , then clearly each J(wi) ≥ J(w∗) and

hence min0≤i≤t J(wi) ≥ J(w∗). On the other hand, since J ≥ JCP
t it fol-

lows that J(w∗) ≥ JCP
t (wt). In other words, J(w∗) is sandwiched between

min0≤i≤t J(wi) and JCP
t (wt) (see Figure 3.11 for an illustration). The cutting

plane method monitors the monotonically decreasing quantity

εt := min
0≤i≤t

J(wi)− JCP
t (wt), (3.97)

and terminates whenever εt falls below a predefined threshold ε. This ensures

that the solution J(wt) is ε optimum, that is, J(wt) ≤ J(w∗) + ε.

Fig. 3.10. A convex function (blue solid curve) is bounded from below by its lin-
earizations (dashed lines). The gray area indicates the piecewise linear lower bound
obtained by using the linearizations. We depict a few iterations of the cutting plane
method. At each iteration the piecewise linear lower bound is minimized and a new
linearization is added at the minimizer (red rectangle). As can be seen, adding more
linearizations improves the lower bound.

Although cutting plane method was shown to be convergent [Kel60], it is
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Fig. 3.11. A convex function (blue solid curve) with four linearizations evaluated at
four different locations (magenta circles). The approximation gap ε3 at the end of
fourth iteration is indicated by the height of the cyan horizontal band i.e., difference
between lowest value of J(w) evaluated so far and the minimum of JCP

4 (w) (red
diamond).

well known (see e.g., [LNN95, Bel05]) that it can be very slow when new

iterates move too far away from the previous ones (i.e., causing unstable

“zig-zag” behavior in the iterates). In fact, in the worst case the cutting

plane method might require exponentially many steps to converge to an ε

optimum solution.

Bundle methods stabilize CPM by augmenting the piecewise linear lower

(e.g., JCP
t (w) in (3.95)) with a prox-function (i.e., proximity control func-

tion) which prevents overly large steps in the iterates [Kiw90]. Roughly

speaking, there are 3 popular types of bundle methods, namely, proximal

[Kiw90], trust region [SZ92], and level set [LNN95]. All three versions use
1
2 ‖·‖

2 as their prox-function, but differ in the way they compute the new

iterate:

proximal: wt := argmin
w
{ζt

2
‖w − ŵt−1‖2 + JCP

t (w)}, (3.98)

trust region: wt := argmin
w
{JCP

t (w) | 1

2
‖w − ŵt−1‖2 ≤ κt}, (3.99)

level set: wt := argmin
w
{1

2
‖w − ŵt−1‖2 | JCP

t (w) ≤ τt}, (3.100)

where ŵt−1 is the current prox-center, and ζt, κt, and τt are positive trade-

off parameters of the stabilization. Although (3.98) can be shown to be

equivalent to (3.99) for appropriately chosen ζt and κt, tuning ζt is rather

difficult while a trust region approach can be used for automatically tuning
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κt. Consequently the trust region algorithm BT of [SZ92] is widely used in

practice.

3.3 Constrained Optimization

So far our focus was on unconstrained optimization problems. Many ma-

chine learning problems involve constraints, and can often be written in the

following canonical form:

min
w

J(w) (3.101a)

s. t. ci(w) ≤ 0 for i ∈ I (3.101b)

ei(w) = 0 for i ∈ E (3.101c)

where both ci and ei are convex functions. We say that w is feasible if and

only if it satisfies the constraints, that is, ci(w) ≤ 0 for i ∈ I and ei(w) = 0

for i ∈ E.

Recall that w is the minimizer of an unconstrained problem if and only if

‖∇J(w)‖ = 0 (see Lemma 3.6). Unfortunately, when constraints are present

one cannot use this simple characterization of the solution. For instance, the

w at which ‖∇J(w)‖ = 0 may not be a feasible point. To illustrate, consider

the following simple minimization problem (see Figure 3.12):

min
w

1

2
w2 (3.102a)

s. t. 1 ≤ w ≤ 2. (3.102b)

Clearly, 1
2w

2 is minimized at w = 0, but because of the presence of the con-

straints, the minimum of (3.102) is attained at w = 1 where ∇J(w) = w is

equal to 1. Therefore, we need other ways to detect convergence. In Section

3.3.1 we discuss some general purpose algorithms based on the concept of or-

thogonal projection. In Section 3.3.2 we will discuss Lagrange duality, which

can be used to further characterize the solutions of constrained optimization

problems.

3.3.1 Projection Based Methods

Suppose we are interested in minimizing a smooth convex function of the

following form:

min
w∈Ω

J(w), (3.103)
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Fig. 3.12. The unconstrained minimum of the quadratic function 1
2w

2 is attained
at w = 0 (red circle). But, if we enforce the constraints 1 ≤ w ≤ 2 (illustrated by
the shaded area) then the minimizer is attained at w = 1 (green diamond).

where Ω is a convex feasible region. For instance, Ω may be described by

convex functions ci and ei as in (3.101). The algorithms we describe in this

section are applicable when Ω is a relatively simple set onto which we can

compute an orthogonal projection. Given a point w′ and a feasible region

Ω, the orthogonal projection PΩ(w′) of w′ on Ω is defined as

PΩ(w′) := argmin
w∈Ω

∥∥w′ − w∥∥2
. (3.104)

Geometrically speaking, PΩ(w′) is the closest point to w′ in Ω. Of course, if

w′ ∈ Ω then PΩ(w′) = w′.

We are interested in finding an approximate solution of (3.103), that is,

a w ∈ Ω such that

J(w)−min
w∈Ω

J(w) = J(w)− J∗ ≤ ε, (3.105)

for some pre-defined tolerance ε > 0. Of course, J∗ is unknown and hence the

gap J(w)− J∗ cannot be computed in practice. Furthermore, as we showed

in Section 3.3, for constrained optimization problems ‖∇J(w)‖ does not

vanish at the optimal solution. Therefore, we will use the following stopping
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Algorithm 3.7 Basic Projection Based Method

1: Input: Initial point w0 ∈ Ω, and projected gradient norm tolerance

ε > 0

2: Initialize: t = 0

3: while ‖PΩ(wt −∇J(wt))− wt‖ > ε do

4: Find direction of descent dt
5: wt+1 = PΩ(wt + ηtdt)

6: t = t+ 1

7: end while

8: Return: wt

criterion in our algorithms

‖PΩ(wt −∇J(wt))− wt‖ ≤ ε. (3.106)

The intuition here is as follows: If wt − ∇J(wt) ∈ Ω then PΩ(wt −
∇J(wt)) = wt if, and only if, ∇J(wt) = 0, that is, wt is the global minimizer

of J(w). On the other hand, if wt−∇J(wt) /∈ Ω but PΩ(wt−∇J(wt)) = wt,

then the constraints are preventing us from making any further progress

along the descent direction −∇J(wt) and hence we should stop.

The basic projection based method is described in Algorithm 3.7. Any

unconstrained optimization algorithm can be used to generate the direction

of descent dt. A line search is used to find the stepsize ηt. The updated

parameter wt − ηtdt is projected onto Ω to obtain wt+1. If dt is chosen to

be the negative gradient direction −∇J(wt), then the resulting algorithm

is called the projected gradient method. One can show that the rates of

convergence of gradient descent with various line search schemes is also

preserved by projected gradient descent.

3.3.2 Lagrange Duality

Lagrange duality plays a central role in constrained convex optimization.

The basic idea here is to augment the objective function (3.101) with a

weighted sum of the constraint functions by defining the Lagrangian:

L(w,α, β) = J(w) +
∑
i∈I

αici(w) +
∑
i∈E

βiei(w) (3.107)

for αi ≥ 0 and βi ∈ R. In the sequel, we will refer to α (respectively β) as the

Lagrange multipliers associated with the inequality (respectively equality)

constraints. Furthermore, we will call α and β dual feasible if and only if



128 3 Optimization

αi ≥ 0 and βi ∈ R. The Lagrangian satisfies the following fundamental

property, which makes it extremely useful for constrained optimization.

Theorem 3.20 The Lagrangian (3.107) of (3.101) satisfies

max
α≥0,β

L(w,α, β) =

{
J(w) if w is feasible

∞ otherwise.

In particular, if J∗ denotes the optimal value of (3.101), then

J∗ = min
w

max
α≥0,β

L(w,α, β).

Proof First assume that w is feasible, that is, ci(w) ≤ 0 for i ∈ I and

ei(w) = 0 for i ∈ E. Since αi ≥ 0 we have∑
i∈I

αici(w) +
∑
i∈E

βiei(w) ≤ 0, (3.108)

with equality being attained by setting αi = 0 whenever ci(w) < 0. Conse-

quently,

max
α≥0,β

L(w,α, β) = max
α≥0,β

J(w) +
∑
i∈I

αici(w) +
∑
i∈E

βiei(w) = J(w)

whenever w is feasible. On the other hand, if w is not feasible then either

ci′(w) > 0 or ei′(w) 6= 0 for some i′. In the first case simply let αi′ →∞ to

see that maxα≥0,β L(w,α, β) → ∞. Similarly, when ei′(w) 6= 0 let βi′ → ∞
if ei′(w) > 0 or βi′ → −∞ if ei′(w) < 0 to arrive at the same conclusion.

If define the Lagrange dual function

D(α, β) = min
w
L(w,α, β), (3.109)

for α ≥ 0 and β, then one can prove the following property, which is often

called as weak duality.

Theorem 3.21 (Weak Duality) The Lagrange dual function (3.109) sat-

isfies

D(α, β) ≤ J(w)

for all feasible w and α ≥ 0 and β. In particular

D∗ := max
α≥0,β

min
w
L(w,α, β) ≤ min

w
max
α≥0,β

L(w,α, β) = J∗. (3.110)
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Proof As before, observe that whenever w is feasible∑
i∈I

αici(w) +
∑
i∈E

βiei(w) ≤ 0.

Therefore

D(α, β) = min
w
L(w,α, β) = min

w
J(w) +

∑
i∈I

αici(w) +
∑
i∈E

βiei(w) ≤ J(w)

for all feasible w and α ≥ 0 and β. In particular, one can choose w to be

the minimizer of (3.101) and α ≥ 0 and β to be maximizers of D(α, β) to

obtain (3.110).

Weak duality holds for any arbitrary function, not-necessarily convex. When

the objective function and constraints are convex, and certain technical con-

ditions, also known as Slater’s conditions hold, then we can say more.

Theorem 3.22 (Strong Duality) Supposed the objective function f and

constraints ci for i ∈ I and ei for i ∈ E in (3.101) are convex and the

following constraint qualification holds:

There exists a w such that ci(w) < 0 for all i ∈ I.

Then the Lagrange dual function (3.109) satisfies

D∗ := max
α≥0,β

min
w
L(w,α, β) = min

w
max
α≥0,β

L(w,α, β) = J∗. (3.111)

The proof of the above theorem is quite technical and can be found in

any standard reference (e.g., [BV04]). Therefore we will omit the proof and

proceed to discuss various implications of strong duality. First note that

min
w

max
α≥0,β

L(w,α, β) = max
α≥0,β

min
w
L(w,α, β). (3.112)

In other words, one can switch the order of minimization over w with max-

imization over α and β. This is called the saddle point property of convex

functions.

Suppose strong duality holds. Given any α ≥ 0 and β such that D(α, β) >

−∞ and a feasible w we can immediately write the duality gap

J(w)− J∗ = J(w)−D∗ ≤ J(w)−D(α, β),

where J∗ and D∗ were defined in (3.111). Below we show that if w∗ is primal

optimal and (α∗, β∗) are dual optimal then J(w∗) − D(α∗, β∗) = 0. This

provides a non-heuristic stopping criterion for constrained optimization: stop

when J(w)−D(α, β) ≤ ε, where ε is a pre-specified tolerance.
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Suppose the primal and dual optimal values are attained at w∗ and

(α∗, β∗) respectively, and consider the following line of argument:

J(w∗) = D(α∗, β∗) (3.113a)

= min
w
J(w) +

∑
i∈I

α∗i ci(w) +
∑
i∈E

β∗i ej(w) (3.113b)

≤ J(w∗) +
∑
i∈I

α∗i ci(w
∗) +

∑
i∈E

β∗i ei(w
∗) (3.113c)

≤ J(w∗). (3.113d)

To write (3.113a) we used strong duality, while (3.113c) obtains by setting

w = w∗ in (3.113c). Finally, to obtain (3.113d) we used the fact that w∗ is

feasible and hence (3.108) holds. Since (3.113) holds with equality, one can

conclude that the following complementary slackness condition:∑
i∈I

α∗i ci(w
∗) +

∑
i∈E

β∗i ei(w
∗) = 0.

In other words, α∗i ci(w
∗) = 0 or equivalently α∗i = 0 whenever ci(w) < 0.

Furthermore, since w∗ minimizes L(w,α∗, β∗) over w, it follows that its

gradient must vanish at w∗, that is,

∇J(w∗) +
∑
i∈I

α∗i∇ci(w∗) +
∑
i∈E

β∗i∇ei(w∗) = 0.

Putting everything together, we obtain

ci(w
∗) ≤ 0 ∀i ∈ I (3.114a)

ej(w
∗) = 0 ∀i ∈ E (3.114b)

α∗i ≥ 0 (3.114c)

α∗i ci(w
∗) = 0 (3.114d)

∇J(w∗) +
∑
i∈I

α∗i∇ci(w∗) +
∑
i∈E

β∗i∇ei(w∗) = 0. (3.114e)

The above conditions are called the KKT conditions. If the primal problem is

convex, then the KKT conditions are both necessary and sufficient. In other

words, if ŵ and (α̂, β̂) satisfy (3.114) then ŵ and (α̂, β̂) are primal and dual

optimal with zero duality gap. To see this note that the first two conditions

show that ŵ is feasible. Since αi ≥ 0, L(w,α, β) is convex in w. Finally the

last condition states that ŵ minimizes L(w, α̂, β̂). Since α̂ici(ŵ) = 0 and
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ej(ŵ) = 0, we have

D(α̂, β̂) = min
w
L(w, α̂, β̂)

= J(ŵ) +
n∑
i=1

α̂ici(ŵ) +
m∑
j=1

β̂jej(ŵ)

= J(ŵ).

3.3.3 Linear and Quadratic Programs

So far we discussed general constrained optimization problems. Many ma-

chine learning problems have special structure which can be exploited fur-

ther. We discuss the implication of duality for two such problems.

3.3.3.1 Linear Programming

An optimization problem with a linear objective function and (both equality

and inequality) linear constraints is said to be a linear program (LP). A

canonical linear program is of the following form:

min
w

c>w (3.115a)

s. t. Aw = b, w ≥ 0. (3.115b)

Here w and c are n dimensional vectors, while b is a m dimensional vector,

and A is a m× n matrix with m < n.

Suppose we are given a LP of the form:

min
w

c>w (3.116a)

s. t. Aw ≥ b, (3.116b)

we can transform it into a canonical LP by introducing non-negative slack

variables

min
w,ξ

c>w (3.117a)

s. t. Aw − ξ = b, ξ ≥ 0. (3.117b)

Next, we split w into its positive and negative parts w+ and w− respec-

tively by setting w+
i = max(0, wi) and w−i = max(0,−wi). Using these new
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variables we rewrite (3.117) as

min
w+,w−, ξ

 c

−c
0

>  w+

w−

ξ

 (3.118a)

s. t.
[
A −A −I

]  w+

w−

ξ

 = b,

 w+

w−

ξ

 ≥ 0, (3.118b)

thus yielding a canonical LP (3.115) in the variables w+, w− and ξ.

By introducing non-negative Lagrange multipliers α and β one can write

the Lagrangian of (3.115) as

L(w, β, s) = c>w + β>(Aw − b)− α>w. (3.119)

Taking gradients with respect to the primal and dual variables and setting

them to zero obtains

A>β − α = c (3.120a)

Aw = b (3.120b)

α>w = 0 (3.120c)

w ≥ 0 (3.120d)

α ≥ 0. (3.120e)

Condition (3.120c) can be simplified by noting that both w and α are con-

strained to be non-negative, therefore α>w = 0 if, and only if, αiwi = 0 for

i = 1, . . . , n.

Using (3.120a), (3.120c), and (3.120b) we can write

c>w = (A>β − α)>w = β>Aw = β>b.

Substituting this into (3.115) and eliminating the primal variable w yields

the following dual LP

max
α,β

b>β (3.121a)

s.t. A>β − α = c, α ≥ 0. (3.121b)

As before, we let β+ = max(β, 0) and β− = max(0,−β) and convert the
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above LP into the following canonical LP

max
α,β+,β−

 b

−b
0

>  β+

β−

α

 (3.122a)

s.t.
[
A> −A> −I

]  β+

β−

α

 = c,

 β+

β−

α

 ≥ 0. (3.122b)

It can be easily verified that the primal-dual problem is symmetric; by taking

the dual of the dual we recover the primal (Problem 3.17). One important

thing to note however is that the primal (3.115) involves n variables and

n + m constraints, while the dual (3.122) involves 2m + n variables and

4m+ 2n constraints.

3.3.3.2 Quadratic Programming

An optimization problem with a convex quadratic objective function and lin-

ear constraints is said to be a convex quadratic program (QP). The canonical

convex QP can be written as follows:

min
w

1

2
w>Gx+ w>d (3.123a)

s.t. a>i w = bi for i ∈ E (3.123b)

a>i w ≤ bi for i ∈ I (3.123c)

Here G � 0 is a n× n positive semi-definite matrix, E and I are finite set of

indices, while d and ai are n dimensional vectors, and bi are scalars.

As a warm up let us consider the arguably simpler equality constrained

quadratic programs. In this case, we can stack the ai into a matrix A and

the bi into a vector b to write

min
w

1

2
w>Gw + w>d (3.124a)

s.t. Aw = b (3.124b)

By introducing non-negative Lagrange multipliers β the Lagrangian of the

above optimization problem can be written as

L(w, β) =
1

2
w>Gw + w>d+ β(Aw − b). (3.125)

To find the saddle point of the Lagrangian we take gradients with respect
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to w and β and set them to zero. This obtains

Gw + d+A>β = 0

Aw = b.

Putting these two conditions together yields the following linear system of

equations [
G A>

A 0

] [
w

β

]
=

[
−d
b

]
. (3.126)

The matrix in the above equation is called the KKT matrix, and we can use

it to characterize the conditions under which (3.124) has a unique solution.

Theorem 3.23 Let Z be a n× (n−m) matrix whose columns form a basis

for the null space of A, that is, AZ = 0. If A has full row rank, and the

reduced-Hessian matrix Z>GZ is positive definite, then there exists a unique

pair (w∗, β∗) which solves (3.126). Furthermore, w∗ also minimizes (3.124).

Proof Note that a unique (w∗, β∗) exists whenever the KKT matrix is

non-singular. Suppose this is not the case, then there exist non-zero vectors

a and b such that [
G A>

A 0

] [
a

b

]
= 0.

Since Aa = 0 this implies that a lies in the null space of A and hence there

exists a u such that a = Zu. Therefore[
Zu 0

] [ G A>

A 0

] [
Zu

0

]
= u>Z>GZu = 0.

Positive definiteness of Z>GZ implies that u = 0 and hence a = 0. On the

other hand, the full row rank of A and A>b = 0 implies that b = 0. In

summary, both a and b are zero, a contradiction.

Let w 6= w∗ be any other feasible point and ∆w = w∗ − w. Since Aw∗ =

Aw = b we have that A∆w = 0. Hence, there exists a non-zero u such that

∆w = Zu. The objective function J(w) can be written as

J(w) =
1

2
(w∗ −∆w)>G(w∗ −∆w) + (w∗ −∆w)>d

= J(w∗) +
1

2
∆w>G∆w − (Gw∗ + d)>∆w.

First note that 1
2∆w>G∆w = 1

2u
>Z>GZu > 0 by positive definiteness of

the reduced Hessian. Second, since w∗ solves (3.126) it follows that (Gw∗ +
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d)>∆w = β>A∆w = 0. Together these two observations imply that J(w) >

J(w∗).

If the technical conditions of the above theorem are met, then solving the

equality constrained QP (3.124) is equivalent to solving the linear system

(3.126). See [NW99] for a extensive discussion of algorithms that can be

used for this task.

Next we turn our attention to the general QP (3.123) which also contains

inequality constraints. The Lagrangian in this case can be written as

L(w, β) =
1

2
w>Gw + w>d+

∑
i∈I

αi(a
>
i w − bi) +

∑
i∈E

βi(a
>
i w − bi). (3.127)

Let w∗ denote the minimizer of (3.123). If we define the active set A(w∗) as

A(w∗) =
{
i s.t. i ∈ I and a>i w

∗ = bi

}
,

then the KKT conditions (3.114) for this problem can be written as

a>i w − bi < 0 ∀i ∈ I \A(w∗) (3.128a)

a>i w − bi = 0 ∀i ∈ E ∪A(w∗) (3.128b)

α∗i ≥ 0 ∀i ∈ A(w∗) (3.128c)

Gw∗ + d+
∑

i∈A(w∗)

α∗i ai +
∑
i∈E

βiai = 0. (3.128d)

Conceptually the main difficulty in solving (3.123) is in identifying the active

set A(w∗). This is because α∗i = 0 for all i ∈ I \ A(w∗). Most algorithms

for solving (3.123) can be viewed as different ways to identify the active set.

See [NW99] for a detailed discussion.

3.4 Stochastic Optimization

Recall that regularized risk minimization involves a data-driven optimization

problem in which the objective function involves the summation of loss terms

over a set of data to be modeled:

min
f

J(f) := λΩ(f) +
1

m

m∑
i=1

l(f(xi), yi).

Classical optimization techniques must compute this sum in its entirety for

each evaluation of the objective, respectively its gradient. As available data

sets grow ever larger, such “batch” optimizers therefore become increasingly

inefficient. They are also ill-suited for the incremental setting, where partial

data must be modeled as it arrives.
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Stochastic gradient-based methods, by contrast, work with gradient esti-

mates obtained from small subsamples (mini-batches) of training data. This

can greatly reduce computational requirements: on large, redundant data

sets, simple stochastic gradient descent routinely outperforms sophisticated

second-order batch methods by orders of magnitude.

The key idea here is that J(w) is replaced by an instantaneous estimate

Jt which is computed from a mini-batch of size k comprising of a subset of

points (xti, y
t
i) with i = 1, . . . , k drawn from the dataset:

Jt(w) = λΩ(w) +
1

k

k∑
i=1

l(w, xti, y
t
i). (3.129)

Setting k = 1 obtains an algorithm which processes data points as they

arrive.

3.4.1 Stochastic Gradient Descent

Perhaps the simplest stochastic optimization algorithm is Stochastic Gradi-

ent Descent (SGD). The parameter update of SGD takes the form:

wt+1 = wt − ηt∇Jt(wt). (3.130)

If Jt is not differentiable, then one can choose an arbitrary subgradient from

∂Jt(wt) to compute the update. It has been shown that SGD asymptotically

converges to the true minimizer of J(w) if the stepsize ηt decays as O(1/
√
t).

For instance, one could set

ηt =

√
τ

τ + t
, (3.131)

where τ > 0 is a tuning parameter. See Algorithm 3.8 for details.

3.4.1.1 Practical Considerations

One simple yet effective rule of thumb to tune τ is to select a small subset

of data, try various values of τ on this subset, and choose the τ that most

reduces the objective function.

In some cases letting ηt to decay as O(1/t) has been found to be more

effective:

ηt =
τ

τ + t
. (3.132)

The free parameter τ > 0 can be tuned as described above. If Ω(w) is σ-

strongly convex, then dividing the stepsize ηt by σλ yields good practical

performance.
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Algorithm 3.8 Stochastic Gradient Descent

1: Input: Maximum iterations T , batch size k, and τ

2: Set t = 0 and w0 = 0

3: while t < T do

4: Choose a subset of k data points (xti, y
t
i) and compute ∇Jt(wt)

5: Compute stepsize ηt =
√

τ
τ+t

6: wt+1 = wt − ηt∇Jt(wt)
7: t = t+ 1

8: end while

9: Return: wT

3.5 Nonconvex Optimization

Our focus in the previous sections was on convex objective functions. Some-

times non-convex objective functions also arise in machine learning applica-

tions. These problems are significantly harder and tools for minimizing such

objective functions are not as well developed. We briefly describe one algo-

rithm which can be applied whenever we can write the objective function as

a difference of two convex functions.

3.5.1 Concave-Convex Procedure

Any function with a bounded Hessian can be decomposed into the difference

of two (non-unique) convex functions, that is, one can write

J(w) = f(w)− g(w), (3.133)

where f and g are convex functions. Clearly, J is not convex, but there

exists a reasonably simple algorithm namely the Concave-Convex Procedure

(CCP) for finding a local minima of J . The basic idea is simple: In the

tth iteration replace g by its first order Taylor expansion at wt, that is,

g(wt) + 〈w − wt,∇g(wt)〉 and minimize

Jt(w) = f(w)− g(wt)− 〈w − wt,∇g(wt)〉 . (3.134)

Taking gradients and setting it to zero shows that Jt is minimized by setting

∇f(wt+1) = ∇g(wt). (3.135)

The iterations of CCP on a toy minimization problem is illustrated in Figure

3.13, while the complete algorithm listing can be found in Algorithm 3.9.
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Fig. 3.13. Given the function on the left we decompose it into the difference of two
convex functions depicted on the right panel. The CCP algorithm generates iterates
by matching points on the two convex curves which have the same tangent vectors.
As can be seen, the iterates approach the solution x = 2.0.

Algorithm 3.9 Concave-Convex Procedure

1: Input: Initial point w0, maximum iterations T , convex functions f ,g

2: Set t = 0

3: while t < T do

4: Set wt+1 = argminw f(w)− g(wt)− 〈w − wt,∇g(wt)〉
5: t = t+ 1

6: end while

7: Return: wT

Theorem 3.24 Let J be a function which can be decomposed into a differ-

ence of two convex functions e.g., (3.133). The iterates generated by (3.135)

monotically decrease J . Furthermore, the stationary point of the iterates is

a local minima of J .

Proof Since f and g are convex

f(wt) ≥ f(wt+1) + 〈wt − wt+1,∇f(wt+1)〉
g(wt+1) ≥ g(wt) + 〈wt+1 − wt,∇g(wt)〉 .

Adding the two inequalities, rearranging, and using (3.135) shows that J(wt) =

f(wt)− g(wt) ≥ f(wt+1)− g(wt+1) = J(wt+1), as claimed.

Let w∗ be a stationary point of the iterates. Then ∇f(w∗) = ∇g(w∗),

which in turn implies that w∗ is a local minima of J because ∇J(w∗) = 0.

There are a number of extensions to CCP. We mention only a few in the

passing. First, it can be shown that all instances of the EM algorithm (Sec-

tion ??) can be shown to be special cases of CCP. Second, the rate of con-
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vergence of CCP is related to the eigenvalues of the positive semi-definite

matrix ∇2(f + g). Third, CCP can also be extended to solve constrained

problems of the form:

min
w

f0(w)− g0(w)

s.t. fi(w)− gi(w) ≤ ci for i = 1, . . . , n.

where, as before, fi and gi for i = 0, 1, . . . , n are assumed convex. At every

iteration, we replace gi by its first order Taylor approximation and solve the

following constrained convex problem:

min
w

f0(w)− g0(wt) + 〈w − wt,∇g0(wt)〉

s.t. fi(w)− gi(wt) + 〈w − wt,∇gi(wt)〉 ≤ ci for i = 1, . . . , n.

3.6 Some Practical Advice

The range of optimization algorithms we presented in this chapter might be

somewhat intimidating for the beginner. Some simple rules of thumb can

alleviate this anxiety

Code Reuse: Implementing an efficient optimization algorithm correctly

is both time consuming and error prone. Therefore, as far as possible use

existing libraries. A number of high class optimization libraries both com-

mercial and open source exist.

Unconstrained Problems: For unconstrained minimization of a smooth

convex function LBFGS (Section 3.2.6.1 is the algorithm of choice. In many

practical situations the spectral gradient method (Section 3.2.6.2) is also

very competitive. It also has the added advantage of being easy to imple-

ment. If the function to be minimized is non-smooth then Bundle methods

(Section 3.2.7) are to be preferred. Amongst the different formulations, the

Bundle Trust algorithm tends to be quite robust.

Constrained Problems: For constrained problems it is very important

to understand the nature of the constraints. Simple equality (Ax = b) and

box (l ≤ x ≤ u) constraints are easier to handle than general non-linear

constraints. If the objective function is smooth, the constraint set Ω is simple,

and orthogonal projections PΩ are easy to compute, then spectral projected

gradient (Section 3.3.1) is the method of choice. If the optimization problem

is a QP or an LP then specialized solvers tend to be much faster than general

purpose solvers.
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Large Scale Problems: If your parameter vector is high dimensional then

consider coordinate descent (Section 3.2.2) especially if the one dimensional

line search along a coordinate can be carried out efficiently. If the objective

function is made up of a summation of large number of terms, consider

stochastic gradient descent (Section 3.4.1). Although both these algorithms

do not guarantee a very accurate solution, practical experience shows that

for large scale machine learning problems this is rarely necessary.

Duality: Sometimes problems which are hard to optimize in the primal

may become simpler in the dual. For instance, if the objective function is

strongly convex but non-smooth, its Fenchel conjugate is smooth with a

Lipschitz continuous gradient.

Problems

Problem 3.1 (Intersection of Convex Sets {1}) If C1 and C2 are con-

vex sets, then show that C1 ∩ C2 is also convex. Extend your result to show

that
⋂n
i=1Ci are convex if Ci are convex.

Problem 3.2 (Linear Transform of Convex Sets {1}) Given a set C ⊂
Rn and a linear transform A ∈ Rm×n, define AC := {y = Ax : x ∈ C}. If

C is convex then show that AC is also convex.

Problem 3.3 (Convex Combinations {1}) Show that a subset of Rn is

convex if and only if it contains all the convex combination of its elements.

Problem 3.4 (Convex Hull {2}) Show that the convex hull, conv(X) is

the smallest convex set which contains X.

Problem 3.5 (Epigraph of a Convex Function {2}) Show that a func-

tion satisfies Definition 3.3 if, and only if, its epigraph is convex.

Problem 3.6 Prove the Jensen’s inequality (3.6).

Problem 3.7 (Strong convexity of the negative entropy {3}) Show that

the negative entropy (3.15) is 1-strongly convex with respect to the ‖·‖1 norm

on the simplex. Hint: First show that φ(t) := (t − 1) log t − 2 (t−1)2

t+1 ≥ 0 for

all t ≥ 0. Next substitute t = xi/yi to show that∑
i

(xi − yi) log
xi
yi
≥ ‖x− y‖21 .
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Problem 3.8 (Strongly Convex Functions {2}) Prove 3.16, 3.17, 3.18

and 3.19.

Problem 3.9 (Convex Functions with Lipschitz Continuous Gradient {2})

Prove 3.22, 3.23, 3.24 and 3.25.

Problem 3.10 (One Dimensional Projection {1}) If f : Rd → R is

convex, then show that for an arbitrary x and p in Rd the one dimensional

function Φ(η) := f(x+ ηp) is also convex.

Problem 3.11 (Quasi-Convex Functions {2}) In Section 3.1 we showed

that the below-sets of a convex function Xc := {x | f(x) ≤ c} are convex. Give

a counter-example to show that the converse is not true, that is, there exist

non-convex functions whose below-sets are convex. This class of functions is

called Quasi-Convex.

Problem 3.12 (Gradient of the p-norm {1}) Show that the gradient of

the p-norm (3.31) is given by (3.32).

Problem 3.13 Derive the Fenchel conjugate of the following functions

f(x) =

{
0 if x ∈ C
∞ otherwise.

where C is a convex set

f(x) = ax+ b

f(x) =
1

2
x>Ax where A is a positive definite matrix

f(x) = − log(x)

f(x) = exp(x)

f(x) = x log(x)

Problem 3.14 (Convergence of gradient descent {2}) Suppose J has

a Lipschitz continuous gradient with modulus L. Then show that Algorithm

3.2 with an inexact line search satisfying the Wolfe conditions (3.42) and

(3.43) will return a solution wt with ‖∇J(wt)‖ ≤ ε in at most O(1/ε2) iter-

ations.

Problem 3.15 Show that

1 +
∑T

t=1
1
t∑T

t=1
1√
t

≤ 1√
T
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Problem 3.16 (Coordinate Descent for Quadratic Programming {2})

Derive a projection based method which uses coordinate descent to generate

directions of descent for solving the following box constrained QP:

min
w∈Rn

1

2
w>Qw + c>w

s.t. l ≤ w ≤ u.

You may assume that Q is positive definite and l and u are scalars.

Problem 3.17 (Dual of a LP {1}) Show that the dual of the LP (3.122)

is (3.115). In other words, we recover the primal by computing the dual of

the dual.



4

Online Learning and Boosting

So far the learning algorithms we considered assumed that all the training

data is available before building a model for predicting labels on unseen data

points. In many modern applications data is available only in a streaming

fashion, and one needs to predict labels on the fly. To describe a concrete

example, consider the task of spam filtering. As emails arrive the learning

algorithm needs to classify them as spam or ham. Tasks such as these are

tackled via online learning. Online learning proceeds in rounds. At each

round a training example is revealed to the learning algorithm, which uses

its current model to predict the label. The true label is then revealed to

the learner which incurs a loss and updates its model based on the feedback

provided. This protocol is summarized in Algorithm 4.1. The goal of online

learning is to minimize the total loss incurred. By an appropriate choice

of labels and loss functions, this setting encompasses a large number of

tasks such as classification, regression, and density estimation. In our spam

detection example, if an email is misclassified the user can provide feedback

which is used to update the spam filter, and the goal is to minimize the

number of misclassified emails.

4.1 Halving Algorithm

The halving algorithm is conceptually simple, yet it illustrates many of the

concepts in online learning. Suppose we have access to a set of n experts,

that is, functions fi which map from the input space X to the output space

Y = {±1}. Furthermore, assume that one of the experts is consistent, that

is, there exists a j ∈ {1, . . . , n} such that fj(xt) = yt for t = 1, . . . , T . The

halving algorithm maintains a set Ct of consistent experts at time t. Initially

C0 = {1, . . . , n}, and it is updated recursively as

Ct+1 = {i ∈ Ct s.t. fi(xt+1) = yt+1} . (4.1)

The prediction on a new data point is computed via a majority vote amongst

the consistent experts: ŷt = majority(Ct).

Lemma 4.1 The Halving algorithm makes at most log2(n) mistakes.
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Algorithm 4.1 Protocol of Online Learning

1: for t = 1, . . . , T do do

2: Get training instance xt
3: Predict label ŷt
4: Get true label yt
5: Incur loss l(ŷt, xt, yt)

6: Update model

7: end for

Proof Let M denote the total number of mistakes. The halving algorithm

makes a mistake at iteration t if at least half the consistent experts Ct predict

the wrong label. This in turn implies that

|Ct+1| ≤
|Ct|
2
≤ |C0|

2M
=

n

2M
.

On the other hand, since one of the experts is consistent it follows that

1 ≤ |Ct+1|. Therefore, 2M ≤ n. Solving for M completes the proof.

4.2 Weighted Majority

We now turn to the scenario where none of the experts is consistent. There-

fore, the aim here is not to minimize the number mistakes but to minimize

regret.

In this chapter we will consider online methods for solving the following

optimization problem:

min
w∈Ω

J(w) where J(w) =

T∑
t=1

ft(w). (4.2)

Suppose we have access to a function ψ which is continuously differentiable

and strongly convex with modulus of strong convexity σ > 0 (see Section

3.1.4 for definition of strong convexity), then we can define the Bregman

divergence (3.29) corresponding to ψ as

∆ψ(w,w′) = ψ(w)− ψ(w′)−
〈
w − w′,∇ψ(w′)

〉
.

We can also generalize the orthogonal projection (3.104) by replacing the

square Euclidean norm with the above Bregman divergence:

Pψ,Ω(w′) = argmin
w∈Ω

∆ψ(w,w′). (4.3)
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Algorithm 4.2 Stochastic (sub)gradient Descent

1: Input: Initial point x1, maximum iterations T

2: for t = 1, . . . , T do

3: Compute ŵt+1 = ∇ψ∗ (∇ψ(wt)− ηtgt) with gt = ∂wft(wt)

4: Set wt+1 = Pψ,Ω (ŵt+1)

5: end for

6: Return: wT+1

Denote w∗ = Pψ,Ω(w′). Just like the Euclidean distance is non-expansive, the

Bregman projection can also be shown to be non-expansive in the following

sense:

∆ψ(w,w′) ≥ ∆ψ(w,w∗) + ∆ψ(w∗, w′) (4.4)

for all w ∈ Ω. The diameter of Ω as measured by ∆ψ is given by

diamψ(Ω) = max
w,w′∈Ω

∆ψ(w,w′). (4.5)

For the rest of this chapter we will make the following standard assumptions:

• Each ft is convex and revealed at time instance t.

• Ω is a closed convex subset of Rn with non-empty interior.

• The diameter diamψ(Ω) of Ω is bounded by F <∞.

• The set of optimal solutions of (4.2) denoted by Ω∗ is non-empty.

• The subgradient ∂wft(w) can be computed for every t and w ∈ Ω.

• The Bregman projection (4.3) can be computed for every w′ ∈ Rn.

• The gradient ∇ψ, and its inverse (∇ψ)−1 = ∇ψ∗ can be computed.

The method we employ to solve (4.2) is given in Algorithm 4.2. Before

analyzing the performance of the algorithm we would like to discuss three

special cases. First, Euclidean distance squared which recovers projected

stochastic gradient descent, second Entropy which recovers Exponentiated

gradient descent, and third the p-norms for p > 2 which recovers the p-norm

Perceptron. BUGBUG TODO.

Our key result is Lemma 4.3 given below. It can be found in various guises

in different places most notably Lemma 2.1 and 2.2 in [?], Theorem 4.1 and

Eq. (4.21) and (4.15) in [?], in the proof of Theorem 1 of [?], as well as Lemma

3 of [?]. We prove a slightly general variant; we allow for projections with

an arbitrary Bregman divergence and also take into account a generalized

version of strong convexity of ft. Both these modifications will allow us to

deal with general settings within a unified framework.
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Definition 4.2 We say that a convex function f is strongly convex with

respect to another convex function ψ with modulus λ if

f(w)− f(w′)−
〈
w − w′, µ

〉
≥ λ∆ψ(w,w′) for all µ ∈ ∂f(w′). (4.6)

The usual notion of strong convexity is recovered by setting ψ(·) = 1
2 ‖·‖

2.

Lemma 4.3 Let ft be strongly convex with respect to ψ with modulus λ ≥ 0

for all t. For any w ∈ Ω the sequences generated by Algorithm 4.2 satisfy

∆ψ(w,wt+1) ≤ ∆ψ(w,wt)− ηt 〈gt, wt − w〉+
η2
t

2σ
‖gt‖2 (4.7)

≤ (1− ηtλ)∆ψ(w,wt)− ηt(ft(wt)− ft(w)) +
η2
t

2σ
‖gt‖2 . (4.8)

Proof We prove the result in three steps. First we upper bound ∆ψ(w,wt+1)

by ∆ψ(w, ŵt+1). This is a consequence of (4.4) and the non-negativity of the

Bregman divergence which allows us to write

∆ψ(w,wt+1) ≤ ∆ψ(w, ŵt+1). (4.9)

In the next step we use Lemma 3.11 to write

∆ψ(w,wt) + ∆ψ(wt, ŵt+1)−∆ψ(w, ŵt+1) = 〈∇ψ(ŵt+1)−∇ψ(wt), w − wt〉 .

Since ∇ψ∗ = (∇ψ)−1, the update in step 3 of Algorithm 4.2 can equivalently

be written as ∇ψ(ŵt+1) − ∇ψ(wt) = −ηtgt. Plugging this in the above

equation and rearranging

∆ψ(w, ŵt+1) = ∆ψ(w,wt)− ηt 〈gt, wt − w〉+ ∆ψ(wt, ŵt+1). (4.10)

Finally we upper bound ∆ψ(wt, ŵt+1). For this we need two observations:

First, 〈x, y〉 ≤ 1
2σ ‖x‖

2 + σ
2 ‖y‖

2 for all x, y ∈ Rn and σ > 0. Second, the σ

strong convexity of ψ allows us to bound ∆ψ(ŵt+1, wt) ≥ σ
2 ‖wt − ŵt+1‖2.

Using these two observations

∆ψ(wt, ŵt+1) = ψ(wt)− ψ(ŵt+1)− 〈∇ψ(ŵt+1), wt − ŵt+1〉
= −(ψ(ŵt+1)− ψ(wt)− 〈∇ψ(wt), ŵt+1 − wt〉) + 〈ηtgt, wt − ŵt+1〉
= −∆ψ(ŵt+1, wt) + 〈ηtgt, wt − ŵt+1〉

≤ −σ
2
‖wt − ŵt+1‖2 +

η2
t

2σ
‖gt‖2 +

σ

2
‖wt − ŵt+1‖2

=
η2
t

2σ
‖gt‖2 . (4.11)

Inequality (4.7) follows by putting together (4.9), (4.10), and (4.11), while

(4.8) follows by using (4.6) with f = ft and w′ = wt and substituting into
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(4.7).

Now we are ready to prove regret bounds.

Lemma 4.4 Let w∗ ∈ Ω∗ denote the best parameter chosen in hindsight,

and let ‖gt‖ ≤ L for all t. Then the regret of Algorithm 4.2 can be bounded

via
T∑
t=1

ft(wt)− ft(w∗) ≤ F
(

1

ηT
− Tλ

)
+
L2

2σ

T∑
t=1

ηt. (4.12)

Proof Set w = w∗ and rearrange (4.8) to obtain

ft(wt)− ft(w∗) ≤
1

ηt
((1− ληt)∆ψ(w∗, wt)−∆ψ(w∗, wt+1)) +

ηt
2σ
‖gt‖2 .

Summing over t

T∑
t=1

ft(wt)− ft(w∗) ≤
T∑
t=1

1

ηt
((1− ηtλ)∆ψ(w∗, wt)−∆ψ(w∗, wt+1))︸ ︷︷ ︸

T1

+
T∑
t=1

ηt
2σ
‖gt‖2︸ ︷︷ ︸

T2

.

Since the diameter of Ω is bounded by F and ∆ψ is non-negative

T1 =

(
1

η1
− λ
)

∆ψ(w∗, w1)− 1

ηT
∆ψ(w∗, wT+1) +

T∑
t=2

∆ψ(w∗, wt)

(
1

ηt
− 1

ηt−1
− λ

)

≤
(

1

η1
− λ
)

∆ψ(w∗, w1) +
T∑
t=2

∆ψ(w∗, wt)

(
1

ηt
− 1

ηt−1
− λ

)

≤
(

1

η1
− λ
)
F +

T∑
t=2

F

(
1

ηt
− 1

ηt−1
− λ

)
= F

(
1

ηT
− Tλ

)
.

On the other hand, since the subgradients are Lipschitz continuous with

constant L it follows that

T2 ≤
L2

2σ

T∑
t=1

ηt.

Putting together the bounds for T1 and T2 yields (4.12).

Corollary 4.5 If λ > 0 and we set ηt = 1
λt then

T∑
t=1

ft(xt)− ft(x∗) ≤
L2

2σλ
(1 + log(T )),



148 4 Online Learning and Boosting

On the other hand, when λ = 0, if we set ηt = 1√
t

then

T∑
t=1

ft(xt)− ft(x∗) ≤
(
F +

L2

σ

)√
T .

Proof First consider λ > 0 with ηt = 1
λt . In this case 1

ηT
= Tλ, and

consequently (4.12) specializes to

T∑
t=1

ft(wt)− ft(w∗) ≤
L2

2σλ

T∑
t=1

1

t
≤ L2

2σλ
(1 + log(T )).

When λ = 0, and we set ηt = 1√
t

and use problem 4.2 to rewrite (4.12) as

T∑
t=1

ft(wt)− ft(w∗) ≤ F
√
T +

L2

σ

T∑
t=1

1

2
√
t
≤ F
√
T +

L2

σ

√
T .

Problems

Problem 4.1 (Generalized Cauchy-Schwartz {1}) Show that 〈x, y〉 ≤
1

2σ ‖x‖
2 + σ

2 ‖y‖
2 for all x, y ∈ Rn and σ > 0.

Problem 4.2 (Bounding sum of a series {1}) Show that
∑b

t=a
1

2
√
t
≤

√
b− a+ 1. Hint: Upper bound the sum by an integral.
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Conditional Densities

A number of machine learning algorithms can be derived by using condi-

tional exponential families of distribution (Section 2.3). Assume that the

training set {(x1, y1), . . . , (xm, ym)} was drawn iid from some underlying

distribution. Using Bayes rule (1.15) one can write the likelihood

p(θ|X,Y ) ∝ p(θ)p(Y |X, θ) = p(θ)

m∏
i=1

p(yi|xi, θ), (5.1)

and hence the negative log-likelihood

− log p(θ|X,Y ) = −
m∑
i=1

log p(yi|xi, θ)− log p(θ) + const. (5.2)

Because we do not have any prior knowledge about the data, we choose a

zero mean unit variance isotropic normal distribution for p(θ). This yields

− log p(θ|X,Y ) =
1

2
‖θ‖2 −

m∑
i=1

log p(yi|xi, θ) + const. (5.3)

Finally, if we assume a conditional exponential family model for p(y|x, θ),
that is,

p(y|x, θ) = exp (〈φ(x, y), θ〉 − g(θ|x)) , (5.4)

then

− log p(θ|X,Y ) =
1

2
‖θ‖2 +

m∑
i=1

g(θ|xi)− 〈φ(xi, yi), θ〉+ const. (5.5)

where

g(θ|x) = log
∑
y∈Y

exp (〈φ(x, y), θ〉) , (5.6)

is the log-partition function. Clearly, (5.5) is a smooth convex objective

function, and algorithms for unconstrained minimization from Chapter 3
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can be used to obtain the maximum aposteriori (MAP) estimate for θ. Given

the optimal θ, the class label at any given x can be predicted using

y∗ = argmax
y

p(y|x, θ). (5.7)

In this chapter we will discuss a number of these algorithms that can be

derived by specializing the above setup. Our discussion unifies seemingly

disparate algorithms, which are often discussed separately in literature.

5.1 Logistic Regression

We begin with the simplest case namely binary classification1. The key ob-

servation here is that the labels y ∈ {±1} and hence

g(θ|x) = log (exp (〈φ(x,+1), θ〉) + exp (〈φ(x,−1), θ〉)) . (5.8)

Define φ̂(x) := φ(x,+1) − φ(x,−1). Plugging (5.8) into (5.4), using the

definition of φ̂ and rearranging

p(y = +1|x, θ) =
1

1 + exp
(〈
−φ̂(x), θ

〉) and

p(y = −1|x, θ) =
1

1 + exp
(〈
φ̂(x), θ

〉) ,
or more compactly

p(y|x, θ) =
1

1 + exp
(〈
−yφ̂(x), θ

〉) . (5.9)

Since p(y|x, θ) is a logistic function, hence the name logistic regression. The

classification rule (5.7) in this case specializes as follows: predict +1 when-

ever p(y = +1|x, θ) ≥ p(y = −1|x, θ) otherwise predict −1. However

log
p(y = +1|x, θ)
p(y = −1|x, θ)

=
〈
φ̂(x), θ

〉
,

therefore one can equivalently use sign
(〈
φ̂(x), θ

〉)
as our prediction func-

tion. Using (5.9) we can write the objective function of logistic regression

as

1

2
‖θ‖2 +

m∑
i=1

log
(

1 + exp
(〈
−yiφ̂(xi), θ

〉))
1 The name logistic regression is a misnomer!
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To minimize the above objective function we first compute the gradient.

∇J(θ) = θ +

m∑
i=1

exp
(〈
−yiφ̂(xi), θ

〉)
1 + exp

(〈
−yiφ̂(xi), θ

〉)(−yiφ̂(xi))

= θ +
m∑
i=1

(p(yi|xi, θ)− 1)yiφ̂(xi).

Notice that the second term of the gradient vanishes whenever p(yi|xi, θ) =

1. Therefore, one way to interpret logistic regression is to view it as a method

to maximize p(yi|xi, θ) for each point (xi, yi) in the training set. Since the

objective function of logistic regression is twice differentiable one can also

compute its Hessian

∇2J(θ) = I −
m∑
i=1

p(yi|xi, θ)(1− p(yi|xi, θ))φ̂(xi)φ̂(xi)
>,

where we used y2
i = 1. The Hessian can be used in the Newton method

(Section 3.2.6) to obtain the optimal parameter θ.

5.2 Regression

5.2.1 Conditionally Normal Models

fixed variance

5.2.2 Posterior Distribution

integrating out vs. Laplace approximation, efficient estimation (sparse greedy)

5.2.3 Heteroscedastic Estimation

explain that we have two parameters. not too many details (do that as an

assignment).

5.3 Multiclass Classification

5.3.1 Conditionally Multinomial Models

joint feature map
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5.4 What is a CRF?

• Motivation with learning a digit example

• general definition

• Gaussian process + structure = CRF

5.4.1 Linear Chain CRFs

• Graphical model

• Applications

• Optimization problem

5.4.2 Higher Order CRFs

• 2-d CRFs and their applications in vision

• Skip chain CRFs

• Hierarchical CRFs (graph transducers, sutton et. al. JMLR etc)

5.4.3 Kernelized CRFs

• From feature maps to kernels

• The clique decomposition theorem

• The representer theorem

• Optimization strategies for kernelized CRFs

5.5 Optimization Strategies

5.5.1 Getting Started

• three things needed to optimize

– MAP estimate

– log-partition function

– gradient of log-partition function

• Worked out example (linear chain?)

5.5.2 Optimization Algorithms

- Optimization algorithms (LBFGS, SGD, EG (Globerson et. al))

5.5.3 Handling Higher order CRFs

- How things can be done for higher order CRFs (briefly)



5.6 Hidden Markov Models 153

5.6 Hidden Markov Models

• Definition

• Discuss that they are modeling joint distribution p(x, y)

• The way they predict is by marginalizing out x

• Why they are wasteful and why CRFs generally outperform them

5.7 Further Reading

What we did not talk about:

• Details of HMM optimization

• CRFs applied to predicting parse trees via matrix tree theorem (collins,

koo et al)

• CRFs for graph matching problems

• CRFs with Gaussian distributions (yes they exist)

5.7.1 Optimization

issues in optimization (blows up with number of classes). structure is not

there. can we do better?

Problems

Problem 5.1 Poisson models

Problem 5.2 Bayes Committee Machine

Problem 5.3 Newton / CG approach
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Kernels and Function Spaces

Kernels are measures of similarity. Broadly speaking, machine learning al-

gorithms which rely only on the dot product between instances can be “ker-

nelized” by replacing all instances of 〈x, x′〉 by a kernel function k(x, x′).

We saw examples of such algorithms in Sections 1.3.3 and 1.3.4 and we will

see many more examples in Chapter 7. Arguably, the design of a good ker-

nel underlies the success of machine learning in many applications. In this

chapter we will lay the ground for the theoretical properties of kernels and

present a number of examples. Algorithms which use these kernels can be

found in later chapters.

6.1 The Basics

Let X denote the space of inputs and k : X × X → R be a function which

satisfies

k(x, x′) = 〈Φ(x),Φ(x)〉 (6.1)

where Φ is a feature map which maps X into some dot product space H. In

other words, kernels correspond to dot products in some dot product space.

The main advantage of using a kernel as a similarity measure are threefold:

First, if the feature space is rich enough, then simple estimators such as

hyperplanes and half-spaces may be sufficient. For instance, to classify the

points in Figure BUGBUG, we need a nonlinear decision boundary, but

once we map the points to a 3 dimensional space a hyperplane suffices.

Second, kernels allow us to construct machine learning algorithms in the

dot product space H without explicitly computing Φ(x). Third, we need not

make any assumptions about the input space X other than for it to be a

set. As we will see later in this chapter, this allows us to compute similarity

between discrete objects such as strings, trees, and graphs. In the first half

of this chapter we will present some examples of kernels, and discuss some

theoretical properties of kernels in the second half.
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6.1.1 Examples

6.1.1.1 Linear Kernel

Linear kernels are perhaps the simplest of all kernels. We assume that x ∈ Rn

and define

k(x, x′) =
〈
x, x′

〉
=
∑
i

xix
′
i.

If x and x′ are dense then computing the kernel takes O(n) time. On the

other hand, for sparse vectors this can be reduced to O(|nnz(x)∩nnz(x′)|),
where nnz(·) denotes the set of non-zero indices of a vector and | · | de-

notes the size of a set. Linear kernels are a natural representation to use for

vectorial data. They are also widely used in text mining where documents

are represented by a vector containing the frequency of occurrence of words

(Recall that we encountered this so-called bag of words representation in

Chapter 1). Instead of a simple bag of words, one can also map a text to the

set of pairs of words that co-occur in a sentence for a richer representation.

6.1.1.2 Polynomial Kernel

Given x ∈ Rn, we can compute a feature map Φ by taking all the d-th

order products (also called the monomials) of the entries of x. To illustrate

with a concrete example, let us consider x = (x1, x2) and d = 2, in which

case Φ(x) =
(
x2

1, x
2
2, x1x2, x2x1

)
. Although it is tedious to compute Φ(x)

and Φ(x′) explicitly in order to compute k(x, x), there is a shortcut as the

following proposition shows.

Proposition 6.1 Let Φ(x) (resp. Φ(x′)) denote the vector whose entries

are all possible d-th degree ordered products of the entries of x (resp. x′).

Then

k(x, x′) =
〈
Φ(x),Φ(x′)

〉
=
(〈
x, x′

〉)d
. (6.2)

Proof By direct computation〈
Φ(x),Φ(x′)

〉
=
∑
j1

. . .
∑
jd

xj1 . . . xjd · x
′
j1 . . . x

′
jd

=
∑
j1

xj1 · x′j1 . . .
∑
jd

xjd · x
′
jd

=

∑
j

xj · x′j

d

=
(〈
x, x′

〉)d
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The kernel (6.2) is called the polynomial kernel. An useful extension is the

inhomogeneous polynomial kernel

k(x, x′) =
(〈
x, x′

〉
+ c
)d
, (6.3)

which computes all monomials up to degree d (problem 6.2).

6.1.1.3 Radial Basis Function Kernels

6.1.1.4 Convolution Kernels

The framework of convolution kernels is a general way to extend the notion

of kernels to structured objects such as strings, trees, and graphs. Let x ∈ X

be a discrete object which can be decomposed into P parts xp ∈ Xp in many

different ways. As a concrete example consider the string x = abc which can

be split into two sets of substrings of size two namely {a, bc} and {ab, c}.
We denote the set of all such decompositions as R(x), and use it to build a

kernel on X as follows:

[k1 ? . . . ? kP ] (x, x′) =
∑

x̄∈R(x),x̄′∈R(x′)

P∏
p=1

kp(x̄p, x̄
′
p). (6.4)

Here, the sum is over all possible ways in which we can decompose x and

x′ into x̄1, . . . , x̄P and x̄′1, . . . , x̄
′
P respectively. If the cardinality of R(x) is

finite, then it can be shown that (6.4) results in a valid kernel. Although

convolution kernels provide the abstract framework, specific instantiations

of this idea lead to a rich set of kernels on discrete objects. We will now

discuss some of them in detail.

6.1.1.5 String Kernels

The basic idea behind string kernels is simple: Compare the strings by

means of the subsequences they contain. More the number of common sub-

sequences, the more similar two strings are. The subsequences need not have

equal weights. For instance, the weight of a subsequence may be given by the

inverse frequency of its occurrence. Similarly, if the first and last characters

of a subsequence are rather far apart, then its contribution to the kernel

must be down-weighted.

Formally, a string x is composed of characters from a finite alphabet Σ

and |x| denotes its length. We say that s is a subsequence of x = x1x2 . . . x|x|
if s = xi1xi2 . . . xi|s| for some 1 ≤ i1 < i2 < . . . < i|s| ≤ |x|. In particular, if

ii+1 = ii+1 then s is a substring of x. For example, acb is not a subsequence

of adbc while abc is a subsequence and adc is a substring. Assume that there

exists a function #(x, s) which returns the number of times a subsequence
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s occurs in x and a non-negative weighting function w(s) ≥ 0 which returns

the weight associated with s. Then the basic string kernel can be written as

k(x, x′) =
∑
s

#(x, s) #(x′, s) w(s). (6.5)

Different string kernels are derived by specializing the above equation:

All substrings kernel: If we restrict the summation in (6.5) to sub-

strings then [VS04] provide a suffix tree based algorithm which allows one

to compute for arbitrary w(s) the kernel k(x, x′) in O(|x| + |x′|) time and

memory.

k-Spectrum kernel: The k-spectrum kernel is obtained by restricting

the summation in (6.5) to substrings of length k. A slightly general variant

considers all substrings of length up to k. Here k is a tuning parameter

which is typically set to be a small number (e.g., 5). A simple trie based

algorithm can be used to compute the k-spectrum kernel in O((|x|+ |x′|)k)

time (problem 6.3).

Inexact substring kernel: Sometimes the input strings might have

measurement errors and therefore it is desirable to take into account inexact

matches. This is done by replacing #(x, s) in (6.5) by another function

#(x, s, ε) which reports the number of approximate matches of s in x. Here

ε denotes the number of mismatches allowed, typically a small number (e.g.,

3). By trading off computational complexity with storage the kernel can be

computed efficiently. See [LK03] for details.

Mismatch kernel: Instead of simply counting the number of occurrences

of a substring if we use a weighting scheme which down-weights the contribu-

tions of longer subsequences then this yields the so-called mismatch kernel.

Given an index sequence I = (i1, . . . , ik) with 1 ≤ i1 < i2 < . . . < ik ≤ |x|
we can associate the subsequence x(I) = xi1xi2 . . . xik with I. Furthermore,

define |I| = ik − i1 + 1. Clearly, |I| > k if I is not contiguous. Let λ ≤ 1 be

a decay factor. Redefine

#(x, s) =
∑
s=x(I)

λ|I|, (6.6)

that is, we count all occurrences of s in x but now the weight associated with

a subsequence depends on its length. To illustrate, consider the subsequence

abc which occurs in the string abcebc twice, namely, abcebc and abcebc. The

first occurrence is counted with weight λ3 while the second occurrence is

counted with the weight λ6. As it turns out, this kernel can be computed

by a dynamic programming algorithm (problem BUGBUG) in O(|x| · |x′|)
time.
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6.1.1.6 Graph Kernels

There are two different notions of graph kernels. First, kernels on graphs

are used to compare nodes of a single graph. In contrast, kernels between

graphs focus on comparing two graphs. A random walk (or its continuous

time limit, diffusion) underlie both types of kernels. The basic intuition is

that two nodes are similar if there are a number of paths which connect

them while two graphs are similar if they share many common paths. To

describe these kernels formally we need to introduce some notation.

A graph G consists of an ordered set of n vertices V = {v1, v2, . . . , vn},
and a set of directed edges E ⊂ V ×V . A vertex vi is said to be a neighbor

of another vertex vj if they are connected by an edge, i.e., if (vi, vj) ∈ E;

this is also denoted vi ∼ vj . The adjacency matrix of a graph is the n × n
matrix A with Aij = 1 if vi ∼ vj , and 0 otherwise. A walk of length k on G

is a sequence of indices i0, i1, . . . ik such that vir−1 ∼ vir for all 1 ≤ r ≤ k.

The adjacency matrix has a normalized cousin, defined Ã := D−1A, which

has the property that each of its rows sums to one, and it can therefore

serve as the transition matrix for a stochastic process. Here, D is a diag-

onal matrix of node degrees, i.e., Dii = di =
∑

j Aij . A random walk on

G is a process generating sequences of vertices vi1 , vi2 , vi3 , . . . according to

P(ik+1|i1, . . . ik) = Ãik,ik+1
. The tth power of Ã thus describes t-length walks,

i.e., (Ãt)ij is the probability of a transition from vertex vj to vertex vi via

a walk of length t (problem BUGBUG). If p0 is an initial probability dis-

tribution over vertices, then the probability distribution pt describing the

location of our random walker at time t is pt = Ãtp0. The jth component of

pt denotes the probability of finishing a t-length walk at vertex vj . A random

walk need not continue indefinitely; to model this, we associate every node

vik in the graph with a stopping probability qik . The overall probability of

stopping after t steps is given by q>pt.

Given two graphs G(V,E) and G′(V ′, E′), their direct product G× is a

graph with vertex set

V× = {(vi, v′r) : vi ∈ V, v′r ∈ V ′}, (6.7)

and edge set

E× = {((vi, v′r), (vj , v
′
s)) : (vi, vj) ∈ E ∧ (v′r, v

′
s) ∈ E′}. (6.8)

In other words, G× is a graph over pairs of vertices from G and G′, and

two vertices in G× are neighbors if and only if the corresponding vertices

in G and G′ are both neighbors; see Figure 6.1 for an illustration. If A and

A′ are the respective adjacency matrices of G and G′, then the adjacency
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G1

1

2

3

G2

1’ 2’

3’4’

G×

11’ 21’ 31’

34’ 12’

24’ 22’

14’ 32’

33’ 23’ 13’

Fig. 6.1. Two graphs (G1 & G2) and their direct product (G×). Each node of the
direct product graph is labeled with a pair of nodes (6.7); an edge exists in the
direct product if and only if the corresponding nodes are adjacent in both original
graphs (6.8). For instance, nodes 11′ and 32′ are adjacent because there is an edge
between nodes 1 and 3 in the first, and 1′ and 2′ in the second graph.

matrix of G× is A× = A⊗A′. Similarly, Ã× = Ã⊗ Ã′. Performing a random

walk on the direct product graph is equivalent to performing a simultaneous

random walk on G and G′. If p and p′ denote initial probability distributions

over the vertices of G and G′, then the corresponding initial probability

distribution on the direct product graph is p× := p ⊗ p′. Likewise, if q and

q′ are stopping probabilities (that is, the probability that a random walk

ends at a given vertex), then the stopping probability on the direct product

graph is q× := q ⊗ q′.
To define a kernel which computes the similarity between G and G′, one

natural idea is to simply sum up q>×Ã
t
×p× for all values of t. However, this

sum might not converge, leaving the kernel value undefined. To overcome

this problem, we introduce appropriately chosen non-negative coefficients

µ(t), and define the kernel between G and G′ as

k(G,G′) :=

∞∑
t=0

µ(t) q>×Ã
t
×p×. (6.9)

This idea can be extended to graphs whose nodes are associated with labels

by replacing the matrix Ã× with a matrix of label similarities. For appro-

priate choices of µ(t) the above sum converges and efficient algorithms for

computing the kernel can be devised. See [?] for details.

As it turns out, the simple idea of performing a random walk on the prod-
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uct graph can be extended to compute kernels on Auto Regressive Moving

Average (ARMA) models [VSV07]. Similarly, it can also be used to define

kernels between transducers. Connections between the so-called rational ker-

nels on transducers and the graph kernels defined via (6.9) are made explicit

in [?].

6.2 Kernels

6.2.1 Feature Maps

give examples, linear classifier, nonlinear ones with r2-r3 map

6.2.2 The Kernel Trick

6.2.3 Examples of Kernels

gaussian, polynomial, linear, texts, graphs

- stress the fact that there is a difference between structure in the input

space and structure in the output space

6.3 Algorithms

6.3.1 Kernel Perceptron

6.3.2 Trivial Classifier

6.3.3 Kernel Principal Component Analysis

6.4 Reproducing Kernel Hilbert Spaces

As it turns out, this class of functions coincides with the class of positive

semi-definite functions. Intuitively, the notion of a positive semi-definite

function is an extension of the familiar notion of a positive semi-definite

matrix (also see Appendix BUGBUG):

Definition 6.2 A real n× n symmetric matrix K satisfying∑
i,j

αiαjKi,j ≥ 0 (6.10)

for all αi, αj ∈ R is called positive semi-definite. If equality in (6.10) occurs

only when α1, . . . , αn = 0, then K is said to be positive definite.

Definition 6.3 Given a set of points x1, . . . , xn ∈ X and a function k, the

matrix

Ki,j = k(xi, xj) (6.11)
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is called the Gram matrix or the kernel matrix of k with respect to x1, . . . , xn.

Definition 6.4 Let X be a nonempty set, k : X × X → R be a function. If

k gives rise to a positive (semi-)definite Gram matrix for all x1, . . . , xn ∈ X

and n ∈ N then k is said to be positive (semi-)definite.

Clearly, every kernel function k of the form (6.1) is positive semi-definite.

To see this simply write∑
i,j

αiαjk(xi, xj) =
∑
i,j

αiαj 〈xi, xj〉 =

〈∑
i

αixi,
∑
j

αjxj

〉
≥ 0.

We now establish the converse, that is, we show that every positive semi-

definite kernel function can be written as (6.1). Towards this end, define a

map Φ from X into the space of functions mapping X to R (denoted RX) via

Φ(x) = k(·, x). In other words, Φ(x) : X→ R is a function which assigns the

value k(x′, x) to x′ ∈ X. Next construct a vector space by taking all possible

linear combinations of Φ(x)

f(·) =
n∑
i=1

αiΦ(xi) =
n∑
i=1

αik(·, xi), (6.12)

where i ∈ N, αi ∈ R, and xi ∈ X are arbitrary. This space can be endowed

with a natural dot product

〈f, g〉 =

n∑
i=1

n′∑
j=1

αiβjk(xi, x
′
j). (6.13)

To see that the above dot product is well defined even though it contains

the expansion coefficients (which need not be unique), note that 〈f, g〉 =∑n′

j=1 βjf(x′j), independent of αi. Similarly, for g, note that 〈f, g〉 =
∑n

i=1 αif(xi),

this time independent of βj . This also shows that 〈f, g〉 is bilinear. Symme-

try follows because 〈f, g〉 = 〈g, f〉, while the positive semi-definiteness of k

implies that

〈f, f〉 =
∑
i,j

αiαjk(xi, xj) ≥ 0. (6.14)

Applying (6.13) shows that for all functions (6.12) we have

〈f, k(·, x)〉 = f(x). (6.15)

In particular 〈
k(·, x), k(·, x′)

〉
= k(x, x′). (6.16)
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In view of these properties, k is called a reproducing kernel. By using (6.15)

and the following property of positive semi-definite functions (problem 6.1)

k(x, x′)2 ≤ k(x, x) · k(x′, x′) (6.17)

we can now write

|f(x)|2 = | 〈f, k(·, x)〉 | ≤ k(x, x) · 〈f, f〉 . (6.18)

From the above inequality, f = 0 whenever 〈f, f〉 = 0, thus establishing

〈·, ·〉 as a valid dot product. In fact, one can complete the space of functions

(6.12) in the norm corresponding to the dot product (6.13), and thus get a

Hilbert space H, called the reproducing kernel Hilbert Space (RKHS).

An alternate way to define a RKHS is as a Hilbert space H on functions

from some input space X to R with the property that for any f ∈ H and

x ∈ X, the point evaluations f → f(x) are continuous (in particular, all

points values f(x) are well defined, which already distinguishes an RKHS

from many L2 Hilbert spaces). Given the point evaluation functional, one

can then construct the reproducing kernel using the Riesz representation

theorem. The Moore-Aronszajn theorem states that, for every positive semi-

definite kernel on X× X, there exists a unique RKHS and vice versa.

We finish this section by noting that 〈·, ·〉 is a positive semi-definite func-

tion in the vector space of functions (6.12). This follows directly from the

bilinearity of the dot product and (6.14) by which we can write for functions

f1, . . . , fp and coefficients γ1, . . . , γp

∑
i

∑
j

γiγj 〈fi, fj〉 =

〈∑
i

γifi,
∑
j

γjfj

〉
≥ 0. (6.19)

6.4.1 Hilbert Spaces

evaluation functionals, inner products

6.4.2 Theoretical Properties

Mercer’s theorem, positive semidefiniteness

6.4.3 Regularization

Representer theorem, regularization
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6.5 Banach Spaces

6.5.1 Properties

6.5.2 Norms and Convex Sets

- smoothest function (L2) - smallest coefficients (L1) - structured priors

(CAP formalism)

Problems

Problem 6.1 Show that (6.17) holds for an arbitrary positive semi-definite

function k.

Problem 6.2 Show that the inhomogeneous polynomial kernel (6.3) is a

valid kernel and that it computes all monomials of degree up to d.

Problem 6.3 (k-spectrum kernel {2}) Given two strings x and x′ show

how one can compute the k-spectrum kernel (section 6.1.1.5) in O((|x| +
|x′|)k) time. Hint: You need to use a trie.
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Linear Models

A hyperplane in a space H endowed with a dot product 〈·, ·〉 is described by

the set

{x ∈ H| 〈w, x〉+ b = 0} (7.1)

where w ∈ H and b ∈ R. Such a hyperplane naturally divides H into two

half-spaces: {x ∈ H| 〈w, x〉 + b ≥ 0} and {x ∈ H| 〈w, x〉 + b < 0}, and

hence can be used as the decision boundary of a binary classifier. In this

chapter we will study a number of algorithms which employ such linear

decision boundaries. Although such models look restrictive at first glance,

when combined with kernels (Chapter 6) they yield a large class of useful

algorithms.

All the algorithms we will study in this chapter maximize the margin.

Given a set X = {x1, . . . , xm}, the margin is the distance of the closest point

in X to the hyperplane (7.1). Elementary geometric arguments (Problem 7.1)

show that the distance of a point xi to a hyperplane is given by | 〈w, xi〉 +

b |/ ‖w‖, and hence the margin is simply

min
i=1,...,m

| 〈w, xi〉+ b |
‖w‖

. (7.2)

Note that the parameterization of the hyperplane (7.1) is not unique; if we

multiply both w and b by the same non-zero constant, then we obtain the

same hyperplane. One way to resolve this ambiguity is to set

min
i=1,...m

| 〈w, xi〉+ b| = 1.

In this case, the margin simply becomes 1/‖w‖. We postpone justification

of margin maximization for later and jump straight ahead to the description

of various algorithms.

7.1 Support Vector Classification

Consider a binary classification task, where we are given a training set

{(x1, y1), . . . , (xm, ym)} with xi ∈ H and yi ∈ {±1}. Our aim is to find

a linear decision boundary parameterized by (w, b) such that 〈w, xi〉+ b ≥ 0

165
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x1

w

x2

yi = −1

yi = +1

{x | 〈w, x〉+ b = −1}
{x | 〈w, x〉+ b = 1}

{x | 〈w, x〉+ b = 0}

〈w, x1〉+ b = +1
〈w, x2〉+ b = −1
〈w, x1 − x2〉 = 2〈
w
‖w‖ , x1 − x2

〉
= 2
‖w‖

Fig. 7.1. A linearly separable toy binary classification problem of separating the
diamonds from the circles. We normalize (w, b) to ensure that mini=1,...m | 〈w, xi〉+
b | = 1. In this case, the margin is given by 1

‖w‖ as the calculation in the inset shows.

whenever yi = +1 and 〈w, xi〉+b < 0 whenever yi = −1. Furthermore, as dis-

cussed above, we fix the scaling of w by requiring mini=1,...m | 〈w, xi〉+b | = 1.

A compact way to write our desiderata is to require yi(〈w, xi〉 + b) ≥ 1 for

all i (also see Figure 7.1). The problem of maximizing the margin therefore

reduces to

max
w,b

1

‖w‖
(7.3a)

s.t. yi(〈w, xi〉+ b) ≥ 1 for all i, (7.3b)

or equivalently

min
w,b

1

2
‖w‖2 (7.4a)

s.t. yi(〈w, xi〉+ b) ≥ 1 for all i. (7.4b)

This is a constrained convex optimization problem with a quadratic objec-

tive function and linear constraints (see Section 3.3). In deriving (7.4) we

implicitly assumed that the data is linearly separable, that is, there is a

hyperplane which correctly classifies the training data. Such a classifier is

called a hard margin classifier. If the data is not linearly separable, then

(7.4) does not have a solution. To deal with this situation we introduce
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non-negative slack variables ξi to relax the constraints:

yi(〈w, xi〉+ b) ≥ 1− ξi.

Given any w and b the constraints can now be satisfied by making ξi large

enough. This renders the whole optimization problem useless. Therefore, one

has to penalize large ξi. This is done via the following modified optimization

problem:

min
w,b,ξ

1

2
‖w‖2 +

C

m

m∑
i=1

ξi (7.5a)

s.t. yi(〈w, xi〉+ b) ≥ 1− ξi for all i (7.5b)

ξi ≥ 0, (7.5c)

where C > 0 is a penalty parameter. The resultant classifier is said to be a

soft margin classifier. By introducing non-negative Lagrange multipliers αi
and βi one can write the Lagrangian (see Section 3.3)

L(w, b, ξ, α, β) =
1

2
‖w‖2 +

C

m

m∑
i=1

ξi +
m∑
i=1

αi(1− ξi − yi(〈w, xi〉+ b))−
m∑
i=1

βiξi.

Next take gradients with respect to w, b and ξ and set them to zero.

∇wL = w −
m∑
i=1

αiyixi = 0 (7.6a)

∇bL = −
m∑
i=1

αiyi = 0 (7.6b)

∇ξiL =
C

m
− αi − βi = 0. (7.6c)

Substituting (7.6) into the Lagrangian and simplifying yields the dual ob-

jective function:

−1

2

∑
i,j

yiyjαiαj 〈xi, xj〉+

m∑
i=1

αi, (7.7)

which needs to be maximized with respect to α. For notational convenience

we will minimize the negative of (7.7) below. Next we turn our attention

to the dual constraints. Recall that αi ≥ 0 and βi ≥ 0, which in conjunc-

tion with (7.6c) immediately yields 0 ≤ αi ≤ C
m . Furthermore, by (7.6b)∑m

i=1 αiyi = 0. Putting everything together, the dual optimization problem
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boils down to

min
α

1

2

∑
i,j

yiyjαiαj 〈xi, xj〉 −
m∑
i=1

αi (7.8a)

s.t.
m∑
i=1

αiyi = 0 (7.8b)

0 ≤ αi ≤
C

m
. (7.8c)

If we let H be a m ×m matrix with entries Hij = yiyj 〈xi, xj〉, while e, α,

and y be m-dimensional vectors whose i-th components are one, αi, and yi
respectively, then the above dual can be compactly written as the following

Quadratic Program (QP) (Section 3.3.3):

min
α

1

2
α>Hα− α>e (7.9a)

s.t. α>y = 0 (7.9b)

0 ≤ αi ≤
C

m
. (7.9c)

Before turning our attention to algorithms for solving (7.9), a number of

observations are in order. First, note that computing H only requires com-

puting dot products between training examples. If we map the input data to

a Reproducing Kernel Hilbert Space (RKHS) via a feature map φ, then we

can still compute the entries of H and solve for the optimal α. In this case,

Hij = yiyj 〈φ(xi), φ(xj)〉 = yiyjk(xi, xj), where k is the kernel associated

with the RKHS. Given the optimal α, one can easily recover the decision

boundary. This is a direct consequence of (7.6a), which allows us to write w

as a linear combination of the training data:

w =

m∑
i=1

αiyiφ(xi),

and hence the decision boundary as

〈w, x〉+ b =
m∑
i=1

αiyik(xi, x) + b. (7.10)

By the KKT conditions (Section 3.3) we have

αi(1− ξi − yi(〈w, xi〉+ b)) = 0 and βiξi = 0.

We now consider three cases for yi(〈w, xi〉 + b) and the implications of the

KKT conditions (see Figure 7.2).



7.1 Support Vector Classification 169

{x | 〈w, x〉+ b = −1}
{x | 〈w, x〉+ b = 1}

Fig. 7.2. The picture depicts the well classified points (yi(〈w, xi〉+ b) > 1 in black,
the support vectors yi(〈w, xi〉+b) = 1 in blue, and margin errors yi(〈w, xi〉+b) < 1
in red.

yi(〈w,xi〉+ b) < 1: In this case, ξi > 0, and hence the KKT conditions

imply that βi = 0. Consequently, αi = C
m (see (7.6c)). Such points

are said to be margin errors.

yi(〈w,xi〉+ b) > 1: In this case, ξi = 0, (1−ξi−yi(〈w, xi〉+b)) < 0, and by

the KKT conditions αi = 0. Such points are said to be well classified.

It is easy to see that the decision boundary (7.10) does not change

even if these points are removed from the training set.

yi(〈w,xi〉+ b) = 1: In this case ξi = 0 and βi ≥ 0. Since αi is non-negative

and satisfies (7.6c) it follows that 0 ≤ αi ≤ C
m . Such points are said

to be on the margin. They are also sometimes called support vectors.

Since the support vectors satisfy yi(〈w, xi〉+ b) = 1 and yi ∈ {±1} it follows

that b = yi − 〈w, xi〉 for any support vector xi. However, in practice to

recover b we average

b = yi −
∑
i

〈w, xi〉 . (7.11)

over all support vectors, that is, points xi for which 0 < αi <
C
m . Because

it uses support vectors, the overall algorithm is called C-Support Vector

classifier or C-SV classifier for short.
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7.1.1 A Regularized Risk Minimization Viewpoint

A closer examination of (7.5) reveals that ξi = 0 whenever yi(〈w, xi〉+b) > 1.

On the other hand, ξi = 1 − yi(〈w, xi〉 + b) whenever yi(〈w, xi〉 + b) <

1. In short, ξi = max(0, 1 − yi(〈w, xi〉 + b)). Using this observation one

can eliminate ξi from (7.5), and write it as the following unconstrained

optimization problem:

min
w,b

1

2
‖w‖2 +

C

m

m∑
i=1

max(0, 1− yi(〈w, xi〉+ b)). (7.12)

Writing (7.5) as (7.12) is particularly revealing because it shows that a

support vector classifier is nothing but a regularized risk minimizer. Here

the regularizer is the square norm of the decision hyperplane 1
2‖w‖

2, and

the loss function is the so-called binary hinge loss (Figure 7.3):

l(w, x, y) = max(0, 1− y(〈w, x〉+ b)). (7.13)

It is easy to verify that the binary hinge loss (7.13) is convex but non-

differentiable (see Figure 7.3) which renders the overall objective function

(7.12) to be convex but non-smooth. There are two different strategies to

minimize such an objective function. If minimizing (7.12) in the primal, one

can employ non-smooth convex optimizers such as bundle methods (Section

3.2.7). This yields a d dimensional problem where d is the dimension of x.

On the other hand, since (7.12) is strongly convex because of the presence

of the 1
2‖w‖

2 term, its Fenchel dual has a Lipschitz continuous gradient

(see Lemma 3.10). The dual problem is m dimensional and contains linear

constraints. This strategy is particularly attractive when the kernel trick is

used or whenever d � m. In fact, the dual problem obtained via Fenchel

duality is very related to the Quadratic programming problem (7.9) obtained

via Lagrange duality (problem 7.4).

7.1.2 An Exponential Family Interpretation

Our motivating arguments for deriving the SVM algorithm have largely

been geometric. We now show that an equally elegant probabilistic interpre-

tation also exists. Assuming that the training set {(x1, y1), . . . , (xm, ym)}
was drawn iid from some underlying distribution, and using the Bayes rule

(1.15) one can write the likelihood

p(θ|X,Y ) ∝ p(θ)p(Y |X, θ) = p(θ)
m∏
i=1

p(yi|xi, θ), (7.14)
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y(〈w, x〉+ b)

loss

Fig. 7.3. The binary hinge loss. Note that the loss is convex but non-differentiable
at the kink point. Furthermore, it increases linearly as the distance from the decision
hyperplane y(〈w, x〉+ b) decreases.

and hence the negative log-likelihood

− log p(θ|X,Y ) = −
m∑
i=1

log p(yi|xi, θ)− log p(θ) + const. (7.15)

In the absence of any prior knowledge about the data, we choose a zero

mean unit variance isotropic normal distribution for p(θ). This yields

− log p(θ|X,Y ) =
1

2
‖θ‖2 −

m∑
i=1

log p(yi|xi, θ) + const. (7.16)

The maximum aposteriori (MAP) estimate for θ is obtained by minimizing

(7.16) with respect to θ. Given the optimal θ, we can predict the class label

at any given x via

y∗ = argmax
y

p(y|x, θ). (7.17)

Of course, our aim is not just to maximize p(yi|xi, θ) but also to ensure

that p(y|xi, θ) is small for all y 6= yi. This, for instance, can be achieved by

requiring

p(yi|xi, θ)
p(y|xi, θ)

≥ η, for all y 6= yi and some η ≥ 1. (7.18)

As we saw in Section 2.3 exponential families of distributions are rather flex-

ible modeling tools. We could, for instance, model p(yi|xi, θ) as a conditional

exponential family distribution. Recall the definition:

p(y|x, θ) = exp (〈φ(x, y), θ〉 − g(θ|x)) . (7.19)
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Here φ(x, y) is a joint feature map which depends on both the input data x

and the label y, while g(θ|x) is the log-partition function. Now (7.18) boils

down to

p(yi|xi, θ)
maxy 6=yi p(y|xi, θ)

= exp

(〈
φ(xi, yi)−max

y 6=yi
φ(xi, y), θ

〉)
≥ η. (7.20)

If we choose η such that log η = 1, set φ(x, y) = y
2φ(x), and observe that

y ∈ {±1} we can rewrite (7.20) as〈yi
2
φ(xi)−

(
−yi

2

)
φ(xi), θ

〉
= yi 〈φ(xi), θ〉 ≥ 1. (7.21)

By replacing − log p(yi|xi, θ) in (7.16) with the condition (7.21) we obtain

the following objective function:

min
θ

1

2
‖θ‖2 (7.22a)

s.t. yi 〈φ(xi), θ〉 ≥ 1 for all i, (7.22b)

which recovers (7.4), but without the bias b. The prediction function is

recovered by noting that (7.17) specializes to

y∗ = argmax
y∈{±1}

〈φ(x, y), θ〉 = argmax
y∈{±1}

y

2
〈φ(x), θ〉 = sign(〈φ(x), θ〉). (7.23)

As before, we can replace (7.21) by a linear penalty for constraint viola-

tion in order to recover (7.5). The quantity log p(yi|xi,θ)
maxy 6=yi p(y|xi,θ)

is sometimes

called the log-odds ratio, and the above discussion shows that SVMs can

be interpreted as maximizing the log-odds ratio in the exponential family.

This interpretation will be developed further when we consider extensions of

SVMs to tackle multiclass, multilabel, and structured prediction problems.

7.1.3 Specialized Algorithms for Training SVMs

The main task in training SVMs boils down to solving (7.9). The m × m
matrix H is usually dense and cannot be stored in memory. Decomposition

methods are designed to overcome these difficulties. The basic idea here

is to identify and update a small working set B by solving a small sub-

problem at every iteration. Formally, let B ⊂ {1, . . . ,m} be the working set

and αB be the corresponding sub-vector of α. Define B̄ = {1, . . . ,m} \ B
and αB̄ analogously. In order to update αB we need to solve the following
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sub-problem of (7.9) obtained by freezing αB̄:

min
αB

1

2

[
α>B α>

B̄

] [ HBB HBB̄

HB̄B HB̄B̄

] [
αB
αB̄

]
−
[
α>B α>

B̄

]
e (7.24a)

s.t.
[
α>B α>

B̄

]
y = 0 (7.24b)

0 ≤ αi ≤
C

m
for all i ∈ B. (7.24c)

Here,

[
HBB HBB̄

HB̄B HB̄B̄

]
is a permutation of the matrix H. By eliminating

constant terms and rearranging, one can simplify the above problem to

min
αB

1

2
α>BHBBαB + α>B(HB̄BαB̄ − e) (7.25a)

s.t. α>ByB = −α>B̄yB̄ (7.25b)

0 ≤ αi ≤
C

m
for all i ∈ B. (7.25c)

An extreme case of a decomposition method is the Sequential Minimal Op-

timization (SMO) algorithm of Platt [Pla99], which updates only two coef-

ficients per iteration. The advantage of this strategy as we will see below is

that the resultant sub-problem can be solved analytically. Without loss of

generality let B = {i, j}, and define s = yi/yj ,
[
ci cj

]
= (HB̄BαB̄ − e)>

and d = (−α>
B̄
yB̄/yj). Then (7.25) specializes to

min
αi,αj

1

2
(Hiiα

2
i +Hjjα

2
j + 2Hijαjαi) + ciαi + cjαj (7.26a)

s.t. sαi + αj = d (7.26b)

0 ≤ αi, αj ≤
C

m
. (7.26c)

This QP in two variables has an analytic solution.

Lemma 7.1 (Analytic solution of 2 variable QP) Define bounds

L =

{
max(0,

d− C
m
s ) if s > 0

max(0, ds ) otherwise
(7.27)

H =

{
min(Cm ,

d
s ) if s > 0

min(Cm ,
d− C

m
s ) otherwise,

(7.28)
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and auxiliary variables

χ = (Hii +Hjjs
2 − 2sHij) and (7.29)

ρ = (cjs− ci −Hijd+Hjjds). (7.30)

The optimal value of (7.26) can be computed analytically as follows: If χ = 0

then

αi =

{
L if ρ < 0

H otherwise.

If χ > 0, then αi = max(L,min(H, ρ/χ)). In both cases, αj = (d− sαi).

Proof Eliminate the equality constraint by setting αj = (d− sαi). Due to

the constraint 0 ≤ αj ≤ C
m it follows that sαi = d − αj can be bounded

via d − C
m ≤ sαi ≤ d. Combining this with 0 ≤ αi ≤ C

m one can write

L ≤ αi ≤ H where L and H are given by (7.27) and (7.28) respectively.

Substituting αj = (d−sαi) into the objective function, dropping the terms

which do not depend on αi, and simplifying by substituting χ and ρ yields

the following optimization problem in αi:

min
αi

1

2
α2
iχ− αiρ

s.t. L ≤ αi ≤ H.

First consider the case when χ = 0. In this case, αi = L if ρ < 0 otherwise

αi = H. On other hand, if χ > 0 then the unconstrained optimum of the

above optimization problem is given by ρ/χ. The constrained optimum is

obtained by clipping appropriately: max(L,min(H, ρ/χ)). This concludes

the proof.

To complete the description of SMO we need a valid stopping criterion as

well as a scheme for selecting the working set at every iteration. In order

to derive a stopping criterion we will use the KKT gap, that is, the extent

to which the KKT conditions are violated. Towards this end introduce non-

negative Lagrange multipliers b ∈ R, λ ∈ Rm and µ ∈ Rm and write the

Lagrangian of (7.9).

L(α, b, λ, µ) =
1

2
α>Hα− α>e+ bα>y − λ>α+ µ>(α− C

m
e). (7.31)

If we let J(α) = 1
2α
>Hα − α>e be the objective function and ∇J(α) =

Hα− e its gradient, then taking gradient of the Lagrangian with respect to

α and setting it to 0 shows that

∇J(α) + by = λ− µ. (7.32)
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Furthermore, by the KKT conditions we have

λiαi = 0 and µi(
C

m
− αi) = 0, (7.33)

with λi ≥ 0 and µi ≥ 0. Equations (7.32) and (7.33) can be compactly

rewritten as

∇J(α)i + byi ≥ 0 if αi = 0 (7.34a)

∇J(α)i + byi ≤ 0 if αi =
C

m
(7.34b)

∇J(α)i + byi = 0 if 0 < αi <
C

m
. (7.34c)

Since yi ∈ {±1}, we can further rewrite (7.34) as

−yi∇J(α)i ≤ b for all i ∈ Iup
−yi∇J(α)i ≥ b for all i ∈ Idown,

where the index sets Iup and Idown are defined as

Iup = {i : αi <
C

m
, yi = 1 or αi > 0, yi = −1} (7.35a)

Idown = {i : αi <
C

m
, yi = −1 or αi > 0, yi = 1}. (7.35b)

In summary, the KKT conditions imply that α is a solution of (7.9) if and

only if

m(α) ≤M(α)

where

m(α) = max
i∈Iup

−yi∇J(α)i and M(α) = min
i∈Idown

−yi∇J(α)i. (7.36)

Therefore, a natural stopping criterion is to stop when the KKT gap falls

below a desired tolerance ε, that is,

m(α) ≤M(α) + ε. (7.37)

Finally, we turn our attention to the issue of working set selection. The

first order approximation to the objective function J(α) can be written as

J(α+ d) ≈ J(α) +∇J(α)>d.

Since we are only interested in updating coefficients in the working set B

we set d> =
[
d>B 0

]
, in which case we can rewrite the above first order
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approximation as

∇J(α)>BdB ≈ J(α+ d)− J(α).

From among all possible directions dB we wish to choose one which decreases

the objective function the most while maintaining feasibility. This is best

expressed as the following optimization problem:

min
dB
∇J(α)>BdB (7.38a)

s.t. y>BdB = 0 (7.38b)

di ≥ 0 if αi = 0 and i ∈ B (7.38c)

di ≤ 0 if αi =
C

m
and i ∈ B (7.38d)

− 1 ≤ di ≤ 1. (7.38e)

Here (7.38b) comes from y>(α + d) = 0 and y>α = 0, while (7.38c) and

(7.38d) comes from 0 ≤ αi ≤ C
m . Finally, (7.38e) prevents the objective

function from diverging to −∞. If we specialize (7.38) to SMO, we obtain

min
i,j
∇J(α)idi +∇J(α)jdj (7.39a)

s.t. yidi + yjdj = 0 (7.39b)

dk ≥ 0 if αk = 0 and k ∈ {i, j} (7.39c)

dk ≤ 0 if αk =
C

m
and k ∈ {i, j} (7.39d)

− 1 ≤ dk ≤ 1 for k ∈ {i, j}. (7.39e)

At first glance, it seems that choosing the optimal i and j from the set

{1, . . . ,m}×{1, . . .m} requires O(m2) effort. We now show that O(m) effort

suffices.

Define new variables d̂k = ykdk for k ∈ {i, j}, and use the observation

yk ∈ {±1} to rewrite the objective function as

(−yi∇J(α)i + yj∇J(α)j) d̂j .

Consider the case −∇J(α)iyi ≥ −∇J(α)jyj . Because of the constraints

(7.39c) and (7.39d) if we choose i ∈ Iup and j ∈ Idown, then d̂j = −1 and

d̂i = 1 is feasible and the objective function attains a negative value. For

all other choices of i and j (i, j ∈ Iup; i, j ∈ Idown; i ∈ Idown and j ∈ Iup)
the objective function value of 0 is attained by setting d̂i = d̂j = 0. The

case −∇J(α)jyj ≥ −∇J(α)iyi is analogous. In summary, the optimization
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problem (7.39) boils down to

min
i∈Iup,j∈Idown

yi∇J(α)i − yj∇J(α)j = min
i∈Iup

yi∇J(α)i − max
j∈Idown

yj∇J(α)j ,

which clearly can be solved in O(m) time. Comparison with (7.36) shows

that at every iteration of SMO we choose to update coefficients αi and αj
which maximally violate the KKT conditions.

7.2 Extensions

7.2.1 The ν trick

In the soft margin formulation the parameter C is a trade-off between two

conflicting requirements namely maximizing the margin and minimizing the

training error. Unfortunately, this parameter is rather unintuitive and hence

difficult to tune. The ν-SVM was proposed to address this issue. As Theorem

7.3 below shows, ν controls the number of support vectors and margin errors.

The primal problem for the ν-SVM can be written as

min
w,b,ξ,ρ

1

2
‖w‖2 − ρ+

1

νm

m∑
i=1

ξi (7.40a)

s.t. yi(〈w, xi〉+ b) ≥ ρ− ξi for all i (7.40b)

ξi ≥ 0, and ρ ≥ 0. (7.40c)

As before, if we write the Lagrangian by introducing non-negative Lagrange

multipliers, take gradients with respect to the primal variables and set them

to zero, and substitute the result back into the Lagrangian we obtain the

following dual:

min
α

1

2

∑
i,j

yiyjαiαj 〈xi, xj〉 (7.41a)

s.t.
m∑
i=1

αiyi = 0 (7.41b)

m∑
i=1

αi ≥ 1 (7.41c)

0 ≤ αi ≤
1

νm
. (7.41d)

It turns out that the dual can be further simplified via the following lemma.
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Lemma 7.2 Let ν ∈ [0, 1] and (7.41) be feasible. Then there is at least one

solution α which satisfies
∑

i αi = 1. Furthermore, if the final objective value

of (7.41) is non-zero then all solutions satisfy
∑

i αi = 1.

Proof The feasible region of (7.41) is bounded, therefore if it is feasible

then there exists an optimal solution. Let α denote this solution and assume

that
∑

i αi > 1. In this case we can define

ᾱ =
1∑
j αj

α,

and easily check that ᾱ is also feasible. As before, let H denote a m × m
matrix with Hij = yiyj 〈xi, xj〉. Since α is the optimal solution of (7.41) it

follows that

1

2
α>Hα ≤ 1

2
ᾱ>Hᾱ =

(
1∑
j αj

)2
1

2
α>Hα ≤ 1

2
α>Hα.

This implies that either 1
2α
>Hα = 0, in which case ᾱ is an optimal solution

with the desired property or 1
2α
>Hα 6= 0, in which case all optimal solutions

satisfy
∑

i αi = 1.

In view of the above theorem one can equivalently replace (7.41) by the

following simplified optimization problem with two equality constraints

min
α

1

2

∑
i,j

yiyjαiαj 〈xi, xj〉 (7.42a)

s.t.
m∑
i=1

αiyi = 0 (7.42b)

m∑
i=1

αi = 1 (7.42c)

0 ≤ αi ≤
1

νm
. (7.42d)

The following theorems, which we state without proof, explain the signif-

icance of ν and the connection between ν-SVM and the soft margin formu-

lation.

Theorem 7.3 Suppose we run ν-SVM with kernel k on some data and

obtain ρ > 0. Then

(i) ν is an upper bound on the fraction of margin errors, that is points

for which yi (〈w, xi〉+ bi) < ρ.
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(ii) ν is a lower bound on the fraction of support vectors, that is points

for which yi (〈w, xi〉+ bi) = ρ.

(iii) Suppose the data (X,Y ) were generated iid from a distribution p(x, y)

such that neither p(x, y = +1) or p(x, y = −1) contain any discrete

components. Moreover, assume that the kernel k is analytic and non-

constant. With probability 1, asympotically, ν equals both the fraction

of support vectors and fraction of margin errors.

Theorem 7.4 If (7.40) leads to a decision function with ρ > 0, then (7.5)

with C = 1
ρ leads to the same decision function.

7.2.2 Squared Hinge Loss

In binary classification, the actual loss which one would like to minimize is

the so-called 0-1 loss

l(w, x, y) =

{
0 if y(〈w, x〉+ b) ≥ 1

1 otherwise .
(7.43)

This loss is difficult to work with because it is non-convex (see Figure 7.4). In

y(〈w, x〉+ b)

loss

Fig. 7.4. The 0-1 loss which is non-convex and intractable is depicted in red. The
hinge loss is a convex upper bound to the 0-1 loss and shown in blue. The square
hinge loss is a differentiable convex upper bound to the 0-1 loss and is depicted in
green.

fact, it has been shown that finding the optimal (w, b) pair which minimizes

the 0-1 loss on a training dataset of m labeled points is NP hard [BDEL03].

Therefore various proxy functions such as the binary hinge loss (7.13) which

we discussed in Section 7.1.1 are used. Another popular proxy is the square
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hinge loss:

l(w, x, y) = max(0, 1− y(〈w, x〉+ b))2. (7.44)

Besides being a proxy for the 0-1 loss, the squared hinge loss, unlike the

hinge loss, is also differentiable everywhere. This sometimes makes the opti-

mization in the primal easier. Just like in the case of the hinge loss one can

derive the dual of the regularized risk minimization problem and show that

it is a quadratic programming problem (problem 7.5).

7.2.3 Ramp Loss

The ramp loss

l(w, x, y) = min(1− s,max(0, 1− y(〈w, x〉+ b))) (7.45)

parameterized by s ≤ 0 is another proxy for the 0-1 loss (see Figure 7.5).

Although not convex, it can be expressed as the difference of two convex

functions

lconc(w, x, y) = max(0, 1− y(〈w, x〉+ b)) and

lcave(w, x, y) = max(0, s− y(〈w, x〉+ b)).

Therefore the Convex-Concave procedure (CCP) we discussed in Section

Fig. 7.5. The ramp loss depicted here with s = −0.3 can be viewed as the sum
of a convex function namely the binary hinge loss (left) and a concave function
min(0, 1− y(〈w, x〉+ b)) (right). Viewed alternatively, the ramp loss can be written
as the difference of two convex functions.

3.5.1 can be used to solve the resulting regularized risk minimization problem

with the ramp loss. Towards this end write

J(w) =
1

2
‖w‖2 +

C

m

m∑
i=1

lconc(w, xi, yi)︸ ︷︷ ︸
Jconc(w)

− C

m

m∑
i=1

lcave(w, xi, yi)︸ ︷︷ ︸
Jcave(w)

. (7.46)
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Recall that at every iteration of the CCP we replace Jcave(w) by its first

order Taylor approximation, computing which requires

∂wJ(w) =
C

m

m∑
i=1

∂wlcave(w, xi, yi). (7.47)

This in turn can be computed as

∂wlcave(w, xi, yi) = δiyixi with δi =

{
−1 if s > y(〈w, x〉+ b)

0 otherwise.
(7.48)

Ignoring constant terms, each iteration of the CCP algorithm involves solv-

ing the following minimization problem (also see (3.134))

J(w) =
1

2
‖w‖2 +

C

m

m∑
i=1

lconc(w, xi, yi)−

(
C

m

m∑
i=1

δiyixi

)
w. (7.49)

Let δ denote a vector in Rm with components δi. Using the same notation

as in (7.9) we can write the following dual optimization problem which is

very closely related to the standard SVM dual (7.9) (see problem 7.6)

min
α

1

2
α>Hα− α>e (7.50a)

s.t. α>y = 0 (7.50b)

− C

m
δ ≤ αi ≤

C

m
(e− δ). (7.50c)

In fact, this problem can be solved by a SMO solver with minor modifica-

tions. Putting everything together yields Algorithm 7.1.

Algorithm 7.1 CCP for Ramp Loss

1: Initialize δ0 and α0

2: repeat

3: Solve (7.50) to find αt+1

4: Compute δt+1 using (7.48)

5: until δt+1 = δt

7.3 Support Vector Regression

As opposed to classification where the labels yi are binary valued, in re-

gression they are real valued. Given a tolerance ε, our aim here is to find a
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y − (〈w, x〉+ b)

loss

ε

Fig. 7.6. The ε insensitive loss. All points which lie within the ε tube shaded in
gray incur zero loss while points outside incur a linear loss.

hyperplane parameterized by (w, b) such that

|yi − (〈w, xi〉+ b)| ≤ ε. (7.51)

In other words, we want to find a hyperplane such that all the training data

lies within an ε tube around the hyperplane. We may not always be able to

find such a hyperplane, hence we relax the above condition by introducing

slack variables ξ+
i and ξ−i and write the corresponding primal problem as

min
w,b,ξ+,ξ−

1

2
‖w‖2 +

C

m

m∑
i=1

(ξ+
i + ξ−i ) (7.52a)

s.t. yi − (〈w, xi〉+ b) ≤ ε+ ξ+
i for all i (7.52b)

(〈w, xi〉+ b)− yi ≤ ε+ ξ−i for all i (7.52c)

ξ+
i ≥ 0, and ξ−i ≥ 0. (7.52d)

The Lagrangian can be written by introducing non-negative Lagrange mul-

tipliers α+
i , α−i , β+

i and β−i :

L(w, b, ξ+, ξ−, α+, α−, β+, β−) =
1

2
‖w‖2 +

C

m

m∑
i=1

(ξ+
i + ξ−i )−

m∑
i=1

(β+
i ξ

+
i + β−i ξ

−
i )

+
m∑
i=1

α+
i (yi − (〈w, xi〉+ b)− ε− ξ+)

+
m∑
i=1

α−i ((〈w, xi〉+ b)− yi − ε− ξ−).
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Taking gradients with respect to the primal variables and setting them to

0, we obtain the following conditions:

w =
m∑
i=1

(α+
i − α

−
i )xi (7.53)

m∑
i=1

α+
i =

m∑
i=1

α−i (7.54)

α+
i + β+

i =
C

m
(7.55)

α−i + β−i =
C

m
. (7.56)

Noting that α
{+,−}
i , β

{+,−}
i ≥ 0 and substituting the above conditions into

the Lagrangian yields the dual

min
α+,α−

1

2

∑
i,j

(α+
i − α

−
i )(α+

j − α
−
j ) 〈xi, xj〉 (7.57a)

+ ε

m∑
i=1

(α+
i + α−i )−

m∑
i=1

yi(α
+
i − α

−
i )

s.t.

m∑
i=1

α+
i =

m∑
i=1

α−i (7.57b)

0 ≤ α+
i ≤

C

m
(7.57c)

0 ≤ α−i ≤
C

m
. (7.57d)

This is a quadratic programming problem with one equality constraint, and

hence a SMO like decomposition method can be derived for finding the

optimal coefficients α+ and α− (Problem 7.7).

As a consequence of (7.53), analogous to the classification case, one can

map the data via a feature map φ into an RKHS with kernel k and recover

the decision boundary f(x) = 〈w, φ(x)〉+ b via

f(x) =

m∑
i=1

(α+
i − α

−
i ) 〈φ(x)i, φ(x)〉+ b =

m∑
i=1

(α+
i − α

−
i )k(xi, x) + b. (7.58)

Finally, the KKT conditions(
C

m
− α+

i

)
ξ+
i = 0

(
C

m
− α−i

)
ξ−i = 0 and

α−i ((〈w, xi〉+ b)− yi − ε− ξ−) = 0 α+
i (yi − (〈w, xi〉+ b)− ε− ξ+) = 0,
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allow us to draw many useful conclusions:

• Whenever |yi − (〈w, xi〉 + b)| < ε, this implies that ξ+
i = ξ−i = α+

i =

α−i = 0. In other words, points which lie inside the ε tube around the

hyperplane 〈w, x〉 + b do not contribute to the solution thus leading to

sparse expansions in terms of α.

• If (〈w, xi〉+b)−yi > ε we have ξ−i > 0 and therefore α−i = C
m . On the other

hand, ξ+ = 0 and α+
i = 0. The case yi − (〈w, xi〉 + b) > ε is symmetric

and yields ξ− = 0, ξ+
i > 0, α+

i = C
m , and α−i = 0.

• Finally, if (〈w, xi〉 + b) − yi = ε we have ξ−i = 0 and 0 ≤ α−i ≤
C
m , while

ξ+ = 0 and α+
i = 0. Similarly, when yi − (〈w, xi〉 + b) = ε we obtain

ξ+
i = 0, 0 ≤ α+

i ≤
C
m , ξ− = 0 and α−i = 0.

Note that α+
i and α−i are never simultaneously non-zero.

7.3.1 Incorporating General Loss Functions

Using the same reasoning as in Section 7.1.1 we can deduce from (7.52) that

the loss function of support vector regression is given by

l(w, x, y) = max(0, |y − 〈w, x〉 | − ε). (7.59)

It turns out that the support vector regression framework can be easily

extended to handle other, more general, convex loss functions such as the

ones found in Table 7.1. Different losses have different properties and hence

lead to different estimators. For instance, the square loss leads to penalized

least squares (LS) regression, while the Laplace loss leads to the penalized

least absolute deviations (LAD) estimator. Huber’s loss on the other hand is

a combination of the penalized LS and LAD estimators, and the pinball loss

with parameter τ ∈ [0, 1] is used to estimate τ -quantiles. Setting τ = 0.5

in the pinball loss leads to a scaled version of the Laplace loss. If we define

ξ = y−〈w, x〉, then it is easily verified that all these losses can all be written

as

l(w, x, y) =


l+(ξ − ε) if ξ > ε

l−(−ξ − ε) if ξ < ε

0 if ξ ∈ [−ε, ε].
(7.60)

For all these different loss functions, the support vector regression formu-
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lation can be written in a unified fashion as follows

min
w,b,ξ+,ξ−

1

2
‖w‖2 +

C

m

m∑
i=1

l+(ξ+
i ) + l−(ξ−i ) (7.61a)

s.t. yi − (〈w, xi〉+ b) ≤ ε+ ξ+
i for all i (7.61b)

(〈w, xi〉+ b)− yi ≤ ε+ ξ−i for all i (7.61c)

ξ+
i ≥ 0, and ξ−i ≥ 0. (7.61d)

The dual in this case is given by

min
α+,α−

1

2

∑
i,j

(α+
i − α

−
i )(α+

j − α
−
j ) 〈xi, xj〉 (7.62a)

− C

m

m∑
i=1

T+(ξ+) + T−(ξ−) + ε

m∑
i=1

(α+
i + α−i )−

m∑
i=1

yi(α
+
i − α

−
i )

s.t.

m∑
i=1

α+
i =

m∑
i=1

α−i (7.62b)

0 ≤ α{+,−}i ≤ C

m
∂ξl
{+,−}(ξ

{+,−}
i ) (7.62c)

0 ≤ ξ{+,−}i (7.62d)

ξ
{+,−}
i = inf

{
ξ{+,−} | C

m
∂ξl
{+,−} ≥ α{+,−}i

}
. (7.62e)

Here T+(ξ) = l+(ξ)− ξ∂ξl+(ξ) and T−(ξ) = l−(ξ)− ξ∂ξl−(ξ). We now show

how (7.62) can be specialized to the pinball loss. Clearly, l+(ξ) = τξ while

l−(−ξ) = (τ−1)ξ, and hence l−(ξ) = (1−τ)ξ. Therefore, T+(ξ) = (τ−1)ξ−
ξ(τ − 1) = 0. Similarly T−(ξ) = 0. Since ∂ξl

+(ξ) = τ and ∂ξl
−(ξ) = (1− τ)

for all ξ ≥ 0, it follows that the bounds on α{+,−} can be computed as

0 ≤ α+
i ≤

C
mτ and 0 ≤ α−i ≤

C
m(1 − τ). If we denote α = α+ − α− and

Table 7.1. Various loss functions which can be used in support vector

regression. For brevity we denote y − 〈w, x〉 as ξ and write the loss

l(w, x, y) in terms of ξ.

ε-insensitive loss max(0, |ξ| − ε)
Laplace loss |ξ|
Square loss 1

2 |ξ|
2

Huber’s robust loss

{
1
2σ ξ

2 if |ξ| ≤ σ
|ξ| − σ

2 otherwise

Pinball loss

{
τξ if ξ ≥ 0

(τ − 1)ξ otherwise.
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observe that ε = 0 for the pinball loss then (7.62) specializes as follows:

min
α

1

2

∑
i,j

αiαj 〈xi, xj〉 −
m∑
i=1

yiαi (7.63a)

s.t.
m∑
i=1

αi = 0 (7.63b)

C

m
(τ − 1) ≤ αi ≤

C

m
τ. (7.63c)

Similar specializations of (7.62) for other loss functions in Table 7.1 can be

derived.

7.3.2 Incorporating the ν Trick

One can also incorporate the ν trick into support vector regression. The

primal problem obtained after incorporating the ν trick can be written as

min
w,b,ξ+,ξ−,ε

1

2
‖w‖2 +

(
ε+

1

νm

m∑
i=1

(ξ+
i + ξ−i )

)
(7.64a)

s.t. (〈w, xi〉+ b)− yi ≤ ε+ ξ+
i for all i (7.64b)

yi − (〈w, xi〉+ b) ≤ ε+ ξ−i for all i (7.64c)

ξ+
i ≥ 0, ξ−i ≥ 0, and ε ≥ 0. (7.64d)

Proceeding as before we obtain the following simplified dual

min
α+,α−

1

2

∑
i,j

(α−i − α
+
i )(α−j − α

+
j ) 〈xi, xj〉 −

m∑
i=1

yi(α
−
i − α

+
i ) (7.65a)

s.t.

m∑
i=1

(α−i − α
+
i ) = 0 (7.65b)

m∑
i=1

(α−i + α+
i ) = 1 (7.65c)

0 ≤ α+
i ≤

1

νm
(7.65d)

0 ≤ α−i ≤
1

νm
. (7.65e)

7.4 Novelty Detection

The large margin approach can also be adapted to perform novelty detection

or quantile estimation. Novelty detection is an unsupervised task where one
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is interested in flagging a small fraction of the input X = {x1, . . . , xm} as

atypical or novel. It can be viewed as a special case of the quantile estimation

task, where we are interested in estimating a simple set C such that Pr(x ∈
C) ≥ µ for some µ ∈ [0, 1]. One way to measure simplicity is to use the

volume of the set. Formally, if |C| denotes the volume of a set, then the

quantile estimation task is to estimate

arginf{|C| s.t. Pr(x ∈ C) ≥ µ}. (7.66)

Given the input data X one can compute the empirical density

p̂(x) =

{
1
m if x ∈ X
0 otherwise,

and estimate its (not necessarily unique) µ-quantiles. Unfortunately, such

estimates are very brittle and do not generalize well to unseen data. One

possible way to address this issue is to restrict C to be simple subsets such

as spheres or half spaces. In other words, we estimate simple sets which

contain µ fraction of the dataset. For our purposes, we specifically work

with half-spaces defined by hyperplanes. While half-spaces may seem rather

restrictive remember that the kernel trick can be used to map data into

a high-dimensional space; half-spaces in the mapped space correspond to

non-linear decision boundaries in the input space. Furthermore, instead of

explicitly identifying C we will learn an indicator function for C, that is, a

function f which takes on values −1 inside C and −1 elsewhere.

With 1
2‖w‖

2 as a regularizer, the problem of estimating a hyperplane such

that a large fraction of the points in the input data X lie on one of its sides

can be written as:

min
w,ξ,ρ

1

2
‖w‖2 +

1

νm

m∑
i=1

ξi − ρ (7.67a)

s.t. 〈w, xi〉 ≥ ρ− ξi for all i (7.67b)

ξi ≥ 0. (7.67c)

Clearly, we want ρ to be as large as possible so that the volume of the half-

space 〈w, x〉 ≥ ρ is minimized. Furthermore, ν ∈ [0, 1] is a parameter which

is analogous to ν we introduced for the ν-SVM earlier. Roughly speaking,

it denotes the fraction of input data for which 〈w, xi〉 ≤ ρ. An alternative

interpretation of (7.67) is to assume that we are separating the data set X

from the origin (See Figure 7.7 for an illustration). Therefore, this method

is also widely known as the one-class SVM.
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Fig. 7.7. The novelty detection problem can be viewed as finding a large margin
hyperplane which separates ν fraction of the data points away from the origin.

The Lagrangian of (7.67) can be written by introducing non-negative

Lagrange multipliers αi, and βi:

L(w, ξ, ρ, α, β) =
1

2
‖w‖2 +

1

νm

m∑
i=1

ξi − ρ+
m∑
i=1

αi(ρ− ξi − 〈w, xi〉)−
m∑
i=1

βiξi.

By taking gradients with respect to the primal variables and setting them

to 0 we obtain

w =
m∑
i=1

αixi (7.68)

αi =
1

νm
− βi ≤

1

νm
(7.69)

m∑
i=1

αi = 1. (7.70)

Noting that αi, βi ≥ 0 and substituting the above conditions into the La-

grangian yields the dual

min
α

1

2

∑
i,j

αiαj 〈xi, xj〉 (7.71a)

s.t. 0 ≤ αi ≤
1

νm
(7.71b)

m∑
i=1

αi = 1. (7.71c)
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This can easily be solved by a straightforward modification of the SMO

algorithm (see Section 7.1.3 and Problem 7.7). Like in the previous sections,

an analysis of the KKT conditions shows that 0 < α if and only if 〈w, xi〉 ≤ ρ;

such points are called support vectors. As before, we can replace 〈xi, xj〉 by

a kernel k(xi, xj) to transform half-spaces in the feature space to non-linear

shapes in the input space. The following theorem explains the significance

of the parameter ν.

Theorem 7.5 Assume that the solution of (7.71) satisfies ρ 6= 0, then the

following statements hold:

(i) ν is an upper bound on the fraction of support vectors, that is points

for which 〈w, xi〉 ≤ ρ.

(ii) Suppose the data X were generated independently from a distribution

p(x) which does not contain discrete components. Moreover, assume

that the kernel k is analytic and non-constant. With probability 1,

asympotically, ν equals the fraction of support vectors.

7.5 Margins and Probability

discuss the connection between probabilistic models and linear classifiers.

issues of consistency, optimization, efficiency, etc.

7.6 Beyond Binary Classification

In contrast to binary classification where there are only two possible ways

to label a training sample, in some of the extensions we discuss below each

training sample may be associated with one or more of k possible labels.

Therefore, we will use the decision function

y∗ = argmax
y∈{1,...,k}

f(x, y) where f(x, y) = 〈φ(x, y), w〉 . (7.72)

Recall that the joint feature map φ(x, y) was introduced in section 7.1.2.

One way to interpret the above equation is to view f(x, y) as a compatibility

score between instance x and label y; we assign the label with the highest

compatibility score to x. There are a number of extensions of the binary

hinge loss (7.13) which can be used to estimate this score function. In all

these cases the objective function is written as

min
w
J(w) :=

λ

2
‖w‖2 +

1

m

m∑
i=1

l(w, xi, yi). (7.73)
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Here λ is a scalar which trades off the regularizer 1
2 ‖w‖

2 with the empirical

risk 1
m

∑m
i=1 l(w, xi, yi). Plugging in different loss functions yields classifiers

for different settings. Two strategies exist for finding the optimal w. Just

like in the binary SVM case, one can compute and maximize the dual of

(7.73). However, the number of dual variables becomes m|Y|, where m is the

number of training points and |Y| denotes the size of the label set. The second

strategy is to optimize (7.73) directly. However, the loss functions we discuss

below are non-smooth, therefore non-smooth optimization algorithms such

as bundle methods (section 3.2.7) need to be used.

7.6.1 Multiclass Classification

In multiclass classification a training example is labeled with one of k pos-

sible labels, that is, Y = {1, . . . , k}. We discuss two different extensions of

the binary hinge loss to the multiclass setting. It can easily be verified that

setting Y = {±1} and φ(x, y) = y
2φ(x) recovers the binary hinge loss in both

cases.

7.6.1.1 Additive Multiclass Hinge Loss

A natural generalization of the binary hinge loss is to penalize all labels

which have been misclassified. The loss can now be written as

l(w, x, y) =
∑
y′ 6=y

max
(
0, 1− (

〈
φ(x, y)− φ(x, y′), w

〉
)
)
. (7.74)

7.6.1.2 Maximum Multiclass Hinge Loss

Another variant of (7.13) penalizes only the maximally violating label:

l(w, x, y) := max

(
0,max

y′ 6=y
(1−

〈
φ(x, y)− φ(x, y′), w

〉
)

)
. (7.75)

Note that both (7.74) and (7.75) are zero whenever

f(x, y) = 〈φ(x, y), w〉 ≥ 1 + max
y′ 6=y

〈
φ(x, y′), w

〉
= 1 + max

y′ 6=y
f(x, y′). (7.76)

In other words, they both ensure an adequate margin of separation, in this

case 1, between the score of the true label f(x, y) and every other label

f(x, y′). However, they differ in the way they penalize violators, that is, la-

bels y′ 6= y for which f(x, y) ≤ 1 + f(x, y′). In one case we linearly penalize

the violators and sum up their contributions while in the other case we lin-

early penalize only the maximum violator. In fact, (7.75) can be interpreted
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as the log odds ratio in the exponential family. Towards this end choose η

such that log η = 1 and rewrite (7.20):

log
p(y|x,w)

maxy′ 6=y p(y′|x,w)
=

〈
φ(x, y)−max

y′ 6=y
φ(x, y′), w

〉
≥ 1.

Rearranging yields (7.76).

7.6.2 Multilabel Classification

In multilabel classification one or more of k possible labels are assigned to

a training example. Just like in the multiclass case two different losses can

be defined.

7.6.2.1 Additive Multilabel Hinge Loss

If we let Yx ⊆ Y denote the labels assigned to x, and generalize the hinge

loss to penalize all labels y′ /∈ Yx which have been assigned higher score than

some y ∈ Yx, then the loss can be written as

l(w, x, y) =
∑

y∈Yx and y′ /∈Yx

max
(
0, 1− (

〈
φ(x, y)− φ(x, y′), w

〉
)
)
. (7.77)

7.6.2.2 Maximum Multilabel Hinge Loss

Another variant only penalizes the maximum violating pair. In this case the

loss can be written as

l(w, x, y) = max

(
0, max
y∈Yx,y′ /∈Yx

[
1−

(〈
φ(x, y)− φ(x, y′), w

〉)])
. (7.78)

One can immediately verify that specializing the above losses to the mul-

ticlass case recovers (7.74) and (7.75) respectively, while the binary case

recovers (7.13). The above losses are zero only when

min
y∈Yx

f(x, y) = min
y∈Yx
〈φ(x, y), w〉 ≥ 1 + max

y′ /∈Yx

〈
φ(x, y′), w

〉
= 1 + max

y′ /∈Yx
f(x, y′).

This can be interpreted as follows: The losses ensure that all the labels

assigned to x have larger scores compared to labels not assigned to x with

the margin of separation of at least 1.

Although the above loss functions are compatible with multiple labels,

the prediction function argmaxy f(x, y) only takes into account the label

with the highest score. This is a significant drawback of such models, which

can be overcome by using a multiclass approach instead. Let |Y| be the

size of the label set and z ∈ R|Y| denote a vector with ±1 entries. We set
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zy = +1 if the y ∈ Yx and zy = −1 otherwise, and use the multiclass loss

(7.75) on z. To predict we compute z∗ = argmaxz f(x, z) and assign to x

the labels corresponding to components of z∗ which are +1. Since z can

take on 2|Y| possible values, this approach is not feasible if |Y| is large. To

tackle such problems, and to further reduce the computational complexity

we assume that the labels correlations are captured via a |Y| × |Y| positive

semi-definite matrix P , and φ(x, y) can be written as φ(x) ⊗ Py. Here ⊗
denotes the Kronecker product. Furthermore, we express the vector w as

a n × |Y| matrix W , where n denotes the dimension of φ(x). With these

assumptions 〈φ(x)⊗ P (z − z′), w〉 can be rewritten as〈
φ(x)>WP, (z − z′)

〉
=
∑
i

[
φ(x)>WP

]
i
(zi − z′i),

and (7.78) specializes to

l(w, x, z) := max

(
0,

(
1−

∑
i

min
z′i 6=zi

[
φ(x)>WP

]
i
(zi − z′i)

))
. (7.79)

A analogous specialization of (7.77) can also be derived wherein the mini-

mum is replaced by a summation. Since the minimum (or summation as the

case may be) is over |Y| possible labels, computing the loss is tractable even

if the set of labels Y is large.

7.6.3 Ordinal Regression and Ranking

We can generalize our above discussion to consider slightly more general

ranking problems. Denote by Y the set of all directed acyclic graphs on N

nodes. The presence of an edge (i, j) in y ∈ Y indicates that i is preferred

to j. The goal is to find a function f(x, i) which imposes a total order on

{1, . . . , N} which is in close agreement with y. Specifically, if the estimation

error is given by the number of subgraphs of y which are in disagreement

with the total order imposed by f , then the additive version of the loss can

be written as

l(w, x, y) =
∑

G∈A(y)

max
(i,j)∈G

(0, 1− (f(x, i)− f(x, j))) , (7.80)

where A(y) denotes the set of all possible subgraphs of y. The maximum

margin version, on the other hand, is given by

l(w, x, y) = max
G∈A(y)

max
(i,j)∈G

(0, 1− (f(x, i)− f(x, j))) . (7.81)
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In other words, we test for each subgraph G of y if the ranking imposed by G

is satisfied by f . Selecting specific types of directed acyclic graphs recovers

the multiclass and multilabel settings (problem 7.9).

7.7 Large Margin Classifiers with Structure

7.7.1 Margin

define margin pictures

7.7.2 Penalized Margin

different types of loss, rescaling

7.7.3 Nonconvex Losses

the max - max loss

7.8 Applications

7.8.1 Sequence Annotation

7.8.2 Matching

7.8.3 Ranking

7.8.4 Shortest Path Planning

7.8.5 Image Annotation

7.8.6 Contingency Table Loss

7.9 Optimization

7.9.1 Column Generation

subdifferentials

7.9.2 Bundle Methods

7.9.3 Overrelaxation in the Dual

when we cannot do things exactly
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7.10 CRFs vs Structured Large Margin Models

7.10.1 Loss Function

7.10.2 Dual Connections

7.10.3 Optimization

Problems

Problem 7.1 (Deriving the Margin {1}) Show that the distance of a

point xi to a hyperplane H = {x| 〈w, x〉+ b = 0} is given by | 〈w, xi〉 +

b |/ ‖w‖.

Problem 7.2 (SVM without Bias {1}) A homogeneous hyperplane is one

which passes through the origin, that is,

H = {x| 〈w, x〉 = 0}. (7.82)

If we devise a soft margin classifier which uses the homogeneous hyperplane

as a decision boundary, then the corresponding primal optimization problem

can be written as follows:

min
w,ξ

1

2
‖w‖2 + C

m∑
i=1

ξi (7.83a)

s.t. yi 〈w, xi〉 ≥ 1− ξi for all i (7.83b)

ξi ≥ 0, (7.83c)

Derive the dual of (7.83) and contrast it with (7.9). What changes to the

SMO algorithm would you make to solve this dual?

Problem 7.3 (Deriving the simplified ν-SVM dual {2}) In Lemma 7.2

we used (7.41) to show that the constraint
∑

i αi ≥ 1 can be replaced by∑
i αi = 1. Show that an equivalent way to arrive at the same conclusion is

by arguing that the constraint ρ ≥ 0 is redundant in the primal (7.40). Hint:

Observe that whenever ρ < 0 the objective function is always non-negative.

On the other hand, setting w = ξ = b = ρ = 0 yields an objective function

value of 0.

Problem 7.4 (Fenchel and Lagrange Duals {2}) We derived the La-

grange dual of (7.12) in Section 7.1 and showed that it is (7.9). Derive the

Fenchel dual of (7.12) and relate it to (7.9). Hint: See theorem 3.3.5 of

[BL00].
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Problem 7.5 (Dual of the square hinge loss {1}) The analog of (7.5)

when working with the square hinge loss is the following

min
w,b,ξ

1

2
‖w‖2 +

C

m

m∑
i=1

ξ2
i (7.84a)

s.t. yi(〈w, xi〉+ b) ≥ 1− ξi for all i (7.84b)

ξi ≥ 0, (7.84c)

Derive the Lagrange dual of the above optimization problem and show that

it a Quadratic Programming problem.

Problem 7.6 (Dual of the ramp loss {1}) Derive the Lagrange dual of

(7.49) and show that it the Quadratic Programming problem (7.50).

Problem 7.7 (SMO for various SVM formulations {2}) Derive an SMO

like decomposition algorithm for solving the dual of the following problems:

• ν-SVM (7.41).

• SV regression (7.57).

• SV novelty detection (7.71).

Problem 7.8 (Novelty detection with Balls {2}) In Section 7.4 we as-

sumed that we wanted to estimate a halfspace which contains a major frac-

tion of the input data. An alternative approach is to use balls, that is, we

estimate a ball of small radius in feature space which encloses a majority of

the input data. Write the corresponding optimization problem and its dual.

Show that if the kernel is translation invariant, that is, k(x, x′) depends only

on ‖x− x′‖ then the optimization problem with balls is equivalent to (7.71).

Explain why this happens geometrically.

Problem 7.9 (Multiclass and Multilabel loss from Ranking Loss {1})

Show how the multiclass (resp. multilabel) losses (7.74) and (7.75) (resp.

(7.77) and (7.79)) can be derived as special cases of (7.80) and (7.81) re-

spectively.

Problem 7.10 Invariances (basic loss)

Problem 7.11 Polynomial transformations - SDP constraints





Appendix 1

Linear Algebra and Functional Analysis

A1.1 Johnson Lindenstrauss Lemma

Lemma 1.1 (Johnson Lindenstrauss) Let X be a set of n points in Rd

represented as a n× d matrix A. Given ε, β > 0 let

k ≥ 4 + 2β

ε2/2− ε3/3
log n (1.1)

be a positive integer. Construct a d× k random matrix R with independent

standard normal random variables, that is, Rij ∼ N(0, 1), and let

E =
1√
k
AR. (1.2)

Define f : Rd → Rk as the function which maps the rows of A to the rows

of E. With probability at least 1− n−β, for all u, v ∈ X we have

(1− ε) ‖u− v‖2 ≤ ‖f(u)− f(v)‖2 ≤ (1 + ε) ‖u− v‖2 . (1.3)

Our proof presentation by and large follows [?]. We first show that

Lemma 1.2 For any arbitrary vector α ∈ Rd let qi denote the i-th compo-

nent of f(α). Then qi ∼ N(0, ‖α‖2 /k) and hence

E
[
‖f(α)‖2

]
=

k∑
i=1

E
[
q2
i

]
= ‖α‖2 . (1.4)

In other words, the expected length of vectors are preserved even after em-

bedding them in a k dimensional space. Next we show that the lengths of

the embedded vectors are tightly concentrated around their mean.

Lemma 1.3 For any ε > 0 and any unit vector α ∈ Rd we have

Pr
(
‖f(α)‖2 > 1 + ε

)
< exp

(
−k

2

(
ε2/2− ε3/3

))
(1.5)

Pr
(
‖f(α)‖2 < 1− ε

)
< exp

(
−k

2

(
ε2/2− ε3/3

))
. (1.6)
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Corollary 1.4 If we choose k as in (1.1) then for any α ∈ Rd we have

Pr
(

(1− ε) ‖α‖2 ≤ ‖f(α)‖2 ≤ (1 + ε) ‖α‖2
)
≥ 1− 2

n2+β
. (1.7)

Proof Follows immediately from Lemma 1.3 by setting

2 exp

(
−k

2

(
ε2/2− ε3/3

))
≤ 2

n2+β
,

and solving for k.

There are
(
n
2

)
pairs of vectors u, v in X, and their corresponding distances

‖u− v‖ are preserved within 1 ± ε factor as shown by the above lemma.

Therefore, the probability of not satisfying (1.3) is bounded by
(
n
2

)
· 2
n2+β <

1/nβ as claimed in the Johnson Lindenstrauss Lemma. All that remains is

to prove Lemma 1.2 and 1.3.

Proof (Lemma 1.2). Since qi = 1√
k

∑
j Rijαj is a linear combination of stan-

dard normal random variables Rij it follows that qi is normally distributed.

To compute the mean note that

E [qi] =
1√
k

∑
j

αj E [Rij ] = 0.

SinceRij are independent zero mean unit variance random variables, E [RijRil] =

1 if j = l and 0 otherwise. Using this

E
[
q2
i

]
=

1

k
E

 d∑
j=1

Rijαj

2

=
1

k

d∑
j=1

d∑
l=1

αjαl E [RijRil] =
1

k

d∑
j=1

α2
j =

1

k
‖α‖2 .

Proof (Lemma 1.3). Clearly, for all λ

Pr
[
‖f(α)‖2 > 1 + ε

]
= Pr

[
exp

(
λ ‖f(α)‖2

)
> exp(λ(1 + ε))

]
.
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Using Markov’s inequality (Pr[X ≥ a] ≤ E[X]/a) we obtain

Pr
[
exp

(
λ ‖f(α)‖2

)
> exp(λ(1 + ε))

]
≤

E
[
exp

(
λ ‖f(α)‖2

)]
exp(λ(1 + ε))

=
E
[
exp

(
λ
∑k

i=1 q
2
i

)]
exp(λ(1 + ε))

=
E
[∏k

i=1 exp
(
λq2

i

)]
exp(λ(1 + ε))

=

(
E
[
exp

(
λq2

i

)]
exp

(
λ
k (1 + ε)

))k . (1.8)

The last equality is because the qi’s are i.i.d. Since α is a unit vector, from

the previous lemma qi ∼ N(0, 1/k). Therefore, kq2
i is a χ2 random variable

with moment generating function

E
[
exp

(
λq2

i

)]
= E

[
exp

(
λ

k
kq2
i

)]
=

1√
1− 2λ

k

.

Plugging this into (1.8)

Pr
[
exp

(
λ ‖f(α)‖2

)
> exp (λ(1 + ε))

]
≤

exp
(
−λ
k (1 + ε)

)√
1− 2λ

k

k

.

Setting λ = kε
2(1+ε) in the above inequality and simplifying

Pr
[
exp

(
λ ‖f(α)‖2

)
> exp(λ(1 + ε))

]
≤ (exp(−ε)(1 + ε))k/2 .

Using the inequality

log(1 + ε) < ε− ε2/2 + ε3/3

we can write

Pr
[
exp

(
λ ‖f(α)‖2

)
> exp(λ(1 + ε))

]
≤ exp

(
−k

2

(
ε2/2− ε3/3

))
.

This proves (1.5). To prove (1.6) we need to repeat the above steps and use

the inequality

log(1− ε) < −ε− ε2/2.

This is left as an exercise to the reader.
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A1.2 Spectral Properties of Matrices

A1.2.1 Basics

A1.2.2 Special Matrices

unitary, hermitean, positive semidefinite

A1.2.3 Normal Forms

Jacobi

A1.3 Functional Analysis

A1.3.1 Norms and Metrics

vector space, norm, triangle inequality

A1.3.2 Banach Spaces

normed vector space, evaluation functionals, examples, dual space

A1.3.3 Hilbert Spaces

symmetric inner product

A1.3.4 Operators

spectrum, norm, bounded, unbounded operators

A1.4 Fourier Analysis

A1.4.1 Basics

A1.4.2 Operators
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Binomial — Beta

φ(x) = x

eh(nν,n) =
Γ(nν + 1)Γ(n(1− ν) + 1)

Γ(n+ 2)
= B(nν + 1, n(1− ν) + 1)

In traditional notation one represents the conjugate as

p(z;α, β) =
Γ(α+ β)

Γ(α)Γ(β)
zα−1(1− z)β−1

where α = nν + 1 and β = n(1− bν) + 1.

Multinomial — Dirichlet

φ(x) = ex

eh(nν,n) =

∏d
i=1 Γ(nνi + 1)

Γ(n+ d)

In traditional notation one represents the conjugate as

p(z;α) =
Γ(
∑d

i=1 αi)∏d
i=1 Γ(αi)

d∏
i=1

zαi−1
i

where αi = nνi + 1

Poisson — Gamma

φ(x) = x

eh(nν,n) = n−nνΓ(nν)

In traditional notation one represents the conjugate as

p(z;α) = β−αΓ(α)zα−1e−βx

where α = nν and β = n.

• Multinomial / Binomial

• Gaussian

• Laplace

• Poisson

• Dirichlet

• Wishart

• Student-t

• Beta

• Gamma



Appendix 3

Loss Functions

A3.1 Loss Functions

A multitude of loss functions are commonly used to derive seemingly differ-

ent algorithms. This often blurs the similarities as well as subtle differences

between them, often for historic reasons: Each new loss is typically accompa-

nied by at least one publication dedicated to it. In many cases, the loss is not

spelled out explicitly either but instead, it is only given by means of a con-

strained optimization problem. A case in point are the papers introducing

(binary) hinge loss [BM92, CV95] and structured loss [TGK04, TJHA05].

Likewise, a geometric description obscures the underlying loss function, as

in novelty detection [SPST+01].

In this section we give an expository yet unifying presentation of many

of those loss functions. Many of them are well known, while others, such

as multivariate ranking, hazard regression, or Poisson regression are not

commonly used in machine learning. Tables A3.1 and A3.1 contain a choice

subset of simple scalar and vectorial losses. Our aim is to put the multitude

of loss functions in an unified framework, and to show how these losses

and their (sub)gradients can be computed efficiently for use in our solver

framework.

Note that not all losses, while convex, are continuously differentiable. In

this situation we give a subgradient. While this may not be optimal, the

convergence rates of our algorithm do not depend on which element of the

subdifferential we provide: in all cases the first order Taylor approximation

is a lower bound which is tight at the point of expansion.

In this setion, with little abuse of notation, vi is understood as the i-th

component of vector v when v is clearly not an element of a sequence or a

set.

A3.1.1 Scalar Loss Functions

It is well known [Wah97] that the convex optimization problem

min
ξ

ξ subject to y 〈w, x〉 ≥ 1− ξ and ξ ≥ 0 (3.1)
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takes on the value max(0, 1 − y 〈w, x〉). The latter is a convex function in

w and x. Likewise, we may rewrite the ε-insensitive loss, Huber’s robust

loss, the quantile regression loss, and the novelty detection loss in terms of

loss functions rather than a constrained optimization problem. In all cases,

〈w, x〉 will play a key role insofar as the loss is convex in terms of the scalar

quantity 〈w, x〉. A large number of loss functions fall into this category,

as described in Table A3.1. Note that not all functions of this type are

continuously differentiable. In this case we adopt the convention that

∂x max(f(x), g(x)) =

{
∂xf(x) if f(x) ≥ g(x)

∂xg(x) otherwise .
(3.2)

Since we are only interested in obtaining an arbitrary element of the subd-

ifferential this convention is consistent with our requirements.

Let us discuss the issue of efficient computation. For all scalar losses we

may write l(x, y, w) = l̄(〈w, x〉 , y), as described in Table A3.1. In this case a

simple application of the chain rule yields that ∂wl(x, y, w) = l̄′(〈w, x〉 , y) ·x.

For instance, for squared loss we have

l̄(〈w, x〉 , y) = 1
2(〈w, x〉 − y)2 and l̄′(〈w, x〉 , y) = 〈w, x〉 − y.

Consequently, the derivative of the empirical risk term is given by

∂wRemp(w) =
1

m

m∑
i=1

l̄′(〈w, xi〉 , yi) · xi. (3.3)

This means that if we want to compute l and ∂wl on a large number of

observations xi, represented as matrix X, we can make use of fast linear

algebra routines to pre-compute the vectors

f = Xw and g>X where gi = l̄′(fi, yi). (3.4)

This is possible for any of the loss functions listed in Table A3.1, and many

other similar losses. The advantage of this unified representation is that im-

plementation of each individual loss can be done in very little time. The

computational infrastructure for computing Xw and g>X is shared. Eval-

uating l̄(fi, yi) and l̄′(fi, yi) for all i can be done in O(m) time and it is

not time-critical in comparison to the remaining operations. Algorithm 3.1

describes the details.

An important but often neglected issue is worth mentioning. Computing f

requires us to right multiply the matrixX with the vector w while computing

g requires the left multiplication of X with the vector g>. If X is stored in a

row major format then Xw can be computed rather efficiently while g>X is
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Algorithm 3.1 ScalarLoss(w,X, y)

1: input: Weight vector w, feature matrix X, and labels y

2: Compute f = Xw

3: Compute r =
∑

i l̄(fi, yi) and g = l̄′(f, y)

4: g ← g>X

5: return Risk r and gradient g

expensive. This is particularly true if X cannot fit in main memory. Converse

is the case when X is stored in column major format. Similar problems are

encountered when X is a sparse matrix and stored in either compressed row

format or in compressed column format.

A3.1.2 Structured Loss

In recent years structured estimation has gained substantial popularity in

machine learning [TJHA05, TGK04, BHS+07]. At its core it relies on two

types of convex loss functions: logistic loss:

l(x, y, w) = log
∑
y′∈Y

exp
(〈
w, φ(x, y′)

〉)
− 〈w, φ(x, y)〉 , (3.5)

and soft-margin loss:

l(x, y, w) = max
y′∈Y

Γ(y, y′)
〈
w, φ(x, y′)− φ(x, y)

〉
+ ∆(y, y′). (3.6)

Here φ(x, y) is a joint feature map, ∆(y, y′) ≥ 0 describes the cost of mis-

classifying y by y′, and Γ(y, y′) ≥ 0 is a scaling term which indicates by how

much the large margin property should be enforced. For instance, [TGK04]

choose Γ(y, y′) = 1. On the other hand [TJHA05] suggest Γ(y, y′) = ∆(y, y′),

which reportedly yields better performance. Finally, [McA07] recently sug-

gested generic functions Γ(y, y′).

The logistic loss can also be interpreted as the negative log-likelihood of

a conditional exponential family model:

p(y|x;w) := exp(〈w, φ(x, y)〉 − g(w|x)), (3.7)

where the normalizing constant g(w|x), often called the log-partition func-

tion, reads

g(w|x) := log
∑
y′∈Y

exp
(〈
w, φ(x, y′)

〉)
. (3.8)
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As a consequence of the Hammersley-Clifford theorem [Jor08] every expo-

nential family distribution corresponds to a undirected graphical model. In

our case this implies that the labels y factorize according to an undirected

graphical model. A large number of problems have been addressed by this

setting, amongst them named entity tagging [LMP01], sequence alignment

[TJHA05], segmentation [RSS+07] and path planning [RBZ06]. It is clearly

impossible to give examples of all settings in this section, nor would a brief

summary do this field any justice. We therefore refer the reader to the edited

volume [BHS+07] and the references therein.

If the underlying graphical model is tractable then efficient inference al-

gorithms based on dynamic programming can be used to compute (3.5) and

(3.6). We discuss intractable graphical models in Section A3.1.2.1, and now

turn our attention to the derivatives of the above structured losses.

When it comes to computing derivatives of the logistic loss, (3.5), we have

∂wl(x, y, w) =

∑
y′ φ(x, y′) exp 〈w, φ(x, y′)〉∑

y′ exp 〈w, φ(x, y′)〉
− φ(x, y) (3.9)

= Ey′∼p(y′|x)

[
φ(x, y′)

]
− φ(x, y). (3.10)

where p(y|x) is the exponential family model (3.7). In the case of (3.6) we

denote by ȳ(x) the argmax of the RHS, that is

ȳ(x) := argmax
y′

Γ(y, y′)
〈
w, φ(x, y′)− φ(x, y)

〉
+ ∆(y, y′). (3.11)

This allows us to compute the derivative of l(x, y, w) as

∂wl(x, y, w) = Γ(y, ȳ(x)) [φ(x, ȳ(x))− φ(x, y)] . (3.12)

In the case where the loss is maximized for more than one distinct value ȳ(x)

we may average over the individual values, since any convex combination of

such terms lies in the subdifferential.

Note that (3.6) majorizes ∆(y, y∗), where y∗ := argmaxy′ 〈w, φ(x, y′)〉
[TJHA05]. This can be seen via the following series of inequalities:

∆(y, y∗) ≤ Γ(y, y∗) 〈w, φ(x, y∗)− φ(x, y)〉+ ∆(y, y∗) ≤ l(x, y, w).

The first inequality follows because Γ(y, y∗) ≥ 0 and y∗ maximizes 〈w, φ(x, y′)〉
thus implying that Γ(y, y∗) 〈w, φ(x, y∗)− φ(x, y)〉 ≥ 0. The second inequal-

ity follows by definition of the loss.

We conclude this section with a simple lemma which is at the heart of

several derivations of [Joa05]. While the proof in the original paper is far

from trivial, it is straightforward in our setting:
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Lemma 3.1 Denote by δ(y, y′) a loss and let φ(xi, yi) be a feature map for

observations (xi, yi) with 1 ≤ i ≤ m. Moreover, denote by X,Y the set of

all m patterns and labels respectively. Finally let

Φ(X,Y ) :=

m∑
i=1

φ(xi, yi) and ∆(Y, Y ′) :=

m∑
i=1

δ(yi, y
′
i). (3.13)

Then the following two losses are equivalent:

m∑
i=1

max
y′

〈
w, φ(xi, y

′)− φ(xi, yi)
〉

+ δ(yi, y
′) and max

Y ′

〈
w,Φ(X,Y ′)− Φ(X,Y )

〉
+ ∆(Y, Y ′).

This is immediately obvious, since both feature map and loss decompose,

which allows us to perform maximization over Y ′ by maximizing each of its

m components. In doing so, we showed that aggregating all data and labels

into a single feature map and loss yields results identical to minimizing

the sum over all individual losses. This holds, in particular, for the sample

error loss of [Joa05]. Also note that this equivalence does not hold whenever

Γ(y, y′) is not constant.

A3.1.2.1 Intractable Models

We now discuss cases where computing l(x, y, w) itself is too expensive. For

instance, for intractable graphical models, the computation of
∑

y exp 〈w, φ(x, y)〉
cannot be computed efficiently. [WJ03] propose the use of a convex majoriza-

tion of the log-partition function in those cases. In our setting this means

that instead of dealing with

l(x, y, w) = g(w|x)− 〈w, φ(x, y)〉 where g(w|x) := log
∑
y

exp 〈w, φ(x, y)〉

(3.14)

one uses a more easily computable convex upper bound on g via

sup
µ∈MARG(x)

〈w, µ〉+HGauss(µ|x). (3.15)

Here MARG(x) is an outer bound on the conditional marginal polytope

associated with the map φ(x, y). Moreover, HGauss(µ|x) is an upper bound

on the entropy by using a Gaussian with identical variance. More refined

tree decompositions exist, too. The key benefit of our approach is that the

solution µ of the optimization problem (3.15) can immediately be used as a

gradient of the upper bound. This is computationally rather efficient.
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Likewise note that [TGK04] use relaxations when solving structured esti-

mation problems of the form

l(x, y, w) = max
y′

Γ(y, y′)
〈
w, φ(x, y′)− φ(x, y)

〉
+ ∆(y, y′), (3.16)

by enlarging the domain of maximization with respect to y′. For instance,

instead of an integer programming problem we might relax the setting to

a linear program which is much cheaper to solve. This, again, provides an

upper bound on the original loss function.

In summary, we have demonstrated that convex relaxation strategies are

well applicable for bundle methods. In fact, the results of the corresponding

optimization procedures can be used directly for further optimization steps.

A3.1.3 Scalar Multivariate Performance Scores

We now discuss a series of structured loss functions and how they can be

implemented efficiently. For the sake of completeness, we give a concise rep-

resentation of previous work on multivariate performance scores and ranking

methods. All these loss functions rely on having access to 〈w, x〉, which can

be computed efficiently by using the same operations as in Section A3.1.1.

A3.1.3.1 ROC Score

Denote by f = Xw the vector of function values on the training set. It is

well known that the area under the ROC curve is given by

AUC(x, y, w) =
1

m+m−

∑
yi<yj

I(〈w, xi〉 < 〈w, xj〉), (3.17)

where m+ and m− are the numbers of positive and negative observations

respectively, and I(·) is indicator function. Directly optimizing the cost 1−
AUC(x, y, w) is difficult as it is not continuous in w. By using max(0, 1 +

〈w, xi − xj〉) as the surrogate loss function for all pairs (i, j) for which yi < yj
we have the following convex multivariate empirical risk

Remp(w) =
1

m+m−

∑
yi<yj

max(0, 1 + 〈w, xi − xj〉) =
1

m+m−

∑
yi<yj

max(0, 1 + fi − fj).

(3.18)

Obviously, we could compute Remp(w) and its derivative by an O(m2) op-

eration. However [Joa05] showed that both can be computed in O(m logm)

time using a sorting operation, which we now describe.

Denote by c = f − 1
2y an auxiliary variable and let i and j be indices such
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Algorithm 3.2 ROCScore(X, y,w)

1: input: Feature matrix X, labels y, and weight vector w

2: initialization: s− = m− and s+ = 0 and l = 0m and c = Xw − 1
2y

3: π ← {1, . . . ,m} sorted in ascending order of c

4: for i = 1 to m do

5: if yπi = −1 then

6: lπi ← s+ and s− ← s− − 1

7: else

8: lπi ← −s− and s+ ← s+ + 1

9: end if

10: end for

11: Rescale l← l/(m+m−) and compute r = 〈l, c〉 and g = l>X.

12: return Risk r and subgradient g

that yi = −1 and yj = 1. It follows that ci − cj = 1 + fi − fj . The efficient

algorithm is due to the observation that there are at most m distinct terms

ck, k = 1, . . . ,m, each with different frequency lk and sign, appear in (3.18).

These frequencies lk can be determined by first sorting c in ascending order

then scanning through the labels according to the sorted order of c and

keeping running statistics such as the number s− of negative labels yet to

encounter, and the number s+ of positive labels encountered. When visiting

yk, we know ck should appears s+ (or s−) times with positive (or negative)

sign in (3.18) if yk = −1 (or yk = 1). Algorithm 3.2 spells out explicitly how

to compute Remp(w) and its subgradient.

A3.1.3.2 Ordinal Regression

Essentially the same preference relationships need to hold for ordinal re-

gression. The only difference is that yi need not take on binary values any

more. Instead, we may have an arbitrary number of different values yi (e.g.,

1 corresponding to ’strong reject’ up to 10 corresponding to ’strong accept’,

when it comes to ranking papers for a conference). That is, we now have

yi ∈ {1, . . . , n} rather than yi ∈ {±1}. Our goal is to find some w such that

〈w, xi − xj〉 < 0 whenever yi < yj . Whenever this relationship is not satis-

fied, we incur a cost C(yi, yj) for preferring xi to xj . For examples, C(yi, yj)

could be constant i.e., C(yi, yj) = 1 [Joa06] or linear i.e., C(yi, yj) = yj−yi.
Denote by mi the number of xj for which yj = i. In this case, there are

M̄ = m2 −
∑n

i=1m
2
i pairs (yi, yj) for which yi 6= yj ; this implies that there

are M = M̄/2 pairs (yi, yj) such that yi < yj . Normalizing by the total
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number of comparisons we may write the overall cost of the estimator as

1

M

∑
yi<yj

C(yi, yj)I(〈w, xi〉 > 〈w, xj〉) where M =
1

2

[
m2 −

n∑
i

m2
i

]
. (3.19)

Using the same convex majorization as above when we were maximizing the

ROC score, we obtain an empirical risk of the form

Remp(w) =
1

M

∑
yi<yj

C(yi, yj) max(0, 1 + 〈w, xi − xj〉) (3.20)

Now the goal is to find an efficient algorithm for obtaining the number of

times when the individual losses are nonzero such as to compute both the

value and the gradient of Remp(w). The complication arises from the fact

that observations xi with label yi may appear in either side of the inequality

depending on whether yj < yi or yj > yi. This problem can be solved as

follows: sort f = Xw in ascending order and traverse it while keeping track

of how many items with a lower value yj are no more than 1 apart in terms

of their value of fi. This way we may compute the count statistics efficiently.

Algorithm 3.3 describes the details, generalizing the results of [Joa06]. Again,

its runtime is O(m logm), thus allowing for efficient computation.

A3.1.3.3 Preference Relations

In general, our loss may be described by means of a set of preference relations

j � i for arbitrary pairs (i, j) ∈ {1, . . .m}2 associated with a cost C(i, j)

which is incurred whenever i is ranked above j. This set of preferences may

or may not form a partial or a total order on the domain of all observations.

In these cases efficient computations along the lines of Algorithm 3.3 exist.

In general, this is not the case and we need to rely on the fact that the set

P containing all preferences is sufficiently small that it can be enumerated

efficiently. The risk is then given by

1

|P |
∑

(i,j)∈P

C(i, j)I(〈w, xi〉 > 〈w, xj〉) (3.21)
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Algorithm 3.3 OrdinalRegression(X, y,w,C)

1: input: Feature matrix X, labels y, weight vector w, and score matrix C

2: initialization: l = 0n and ui = mi ∀i ∈ [n] and r = 0 and g = 0m
3: Compute f = Xw and set c = [f − 1

2 , f + 1
2 ] ∈ R2m (concatenate the

vectors)

4: Compute M = (m2 −
∑n

i=1m
2
i )/2

5: Rescale C ← C/M

6: π ← {1, . . . , 2m} sorted in ascending order of c

7: for i = 1 to 2m do

8: j = πi mod m

9: if πi ≤ m then

10: for k = 1 to yj − 1 do

11: r ← r − C(k, yj)ukcj
12: gj ← gj − C(k, yj)uk
13: end for

14: lyj ← lyj + 1

15: else

16: for k = yj + 1 to n do

17: r ← r + C(yj , k)lkcj+m
18: gj ← gj + C(yj , k)lk
19: end for

20: uyj ← uyj − 1

21: end if

22: end for

23: g ← g>X

24: return: Risk r and subgradient g

Again, the same majorization argument as before allows us to write a convex

upper bound

Remp(w) =
1

|P |
∑

(i,j)∈P

C(i, j) max (0, 1 + 〈w, xi〉 − 〈w, xj〉) (3.22)

where ∂wRemp(w) =
1

|P |
∑

(i,j)∈P

C(i, j)

{
0 if 〈w, xj − xi〉 ≥ 1

xi − xj otherwise

(3.23)

The implementation is straightforward, as given in Algorithm 3.4.
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Algorithm 3.4 Preference(X,w,C, P )

1: input: Feature matrix X, weight vector w, score matrix C, and prefer-

ence set P

2: initialization: r = 0 and g = 0m
3: Compute f = Xw

4: while (i, j) ∈ P do

5: if fj − fi < 1 then

6: r ← r + C(i, j)(1 + fi − fj)
7: gi ← gi + C(i, j) and gj ← gj − C(i, j)

8: end if

9: end while

10: g ← g>X

11: return Risk r and subgradient g

A3.1.3.4 Ranking

In webpage and document ranking we are often in a situation similar to that

described in Section A3.1.3.2, however with the difference that we do not

only care about objects xi being ranked according to scores yi but moreover

that different degrees of importance are placed on different documents.

The information retrieval literature is full with a large number of differ-

ent scoring functions. Examples are criteria such as Normalized Discounted

Cumulative Gain (NDCG), Mean Reciprocal Rank (MRR), Precision@n, or

Expected Rank Utility (ERU). They are used to address the issue of evaluat-

ing rankers, search engines or recommender sytems [Voo01, JK02, BHK98,

BH04]. For instance, in webpage ranking only the first k retrieved docu-

ments that matter, since users are unlikely to look beyond the first k, say

10, retrieved webpages in an internet search. [LS07] show that these scores

can be optimized directly by minimizing the following loss:

l(X, y,w) = max
π

∑
i

ci
〈
w, xπ(i) − xi

〉
+ 〈a− a(π), b(y)〉 . (3.24)

Here ci is a monotonically decreasing sequence, the documents are assumed

to be arranged in order of decreasing relevance, π is a permutation, the

vectors a and b(y) depend on the choice of a particular ranking measure, and

a(π) denotes the permutation of a according to π. Pre-computing f = Xw

we may rewrite (3.24) as

l(f, y) = max
π

[
c>f(π)− a(π)>b(y)

]
− c>f + a>b(y) (3.25)
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Algorithm 3.5 Ranking(X, y,w)

1: input: Feature matrix X, relevances y, and weight vector w

2: Compute vectors a and b(y) according to some ranking measure

3: Compute f = Xw

4: Compute elements of matrix Cij = cifj − biaj
5: π = LinearAssignment(C)

6: r = c>(f(π)− f) + (a− a(π))>b

7: g = c(π−1)− c and g ← g>X

8: return Risk r and subgradient g

and consequently the derivative of l(X, y,w) with respect to w is given by

∂wl(X, y,w) = (c(π̄−1)− c)>X where π̄ = argmax
π

c>f(π)− a(π)>b(y).

(3.26)

Here π−1 denotes the inverse permutation, such that π◦π−1 = 1. Finding the

permutation maximizing c>f(π)−a(π)>b(y) is a linear assignment problem

which can be easily solved by the Hungarian Marriage algorithm, that is,

the Kuhn-Munkres algorithm.

The original papers by [Kuh55] and [Mun57] implied an algorithm with

O(m3) cost in the number of terms. Later, [Kar80] suggested an algorithm

with expected quadratic time in the size of the assignment problem (ignor-

ing log-factors). Finally, [OL93] propose a linear time algorithm for large

problems. Since in our case the number of pages is fairly small (in the order

of 50 to 200 per query) the scaling behavior per query is not too important.

We used an existing implementation due to [JV87].

Note also that training sets consist of a collection of ranking problems,

that is, we have several ranking problems of size 50 to 200. By means of

parallelization we are able to distribute the work onto a cluster of worksta-

tions, which is able to overcome the issue of the rather costly computation

per collection of queries. Algorithm 3.5 spells out the steps in detail.

A3.1.3.5 Contingency Table Scores

[Joa05] observed that Fβ scores and related quantities dependent on a con-

tingency table can also be computed efficiently by means of structured es-

timation. Such scores depend in general on the number of true and false

positives and negatives alike. Algorithm 3.6 shows how a corresponding em-

pirical risk and subgradient can be computed efficiently. As with the pre-

vious losses, here again we use convex majorization to obtain a tractable

optimization problem.
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Given a set of labels y and an estimate y′, the numbers of true positives

(T+), true negatives (T−), false positives (F+), and false negatives (F−) are

determined according to a contingency table as follows:

y > 0 y < 0

y′ > 0 T+ F+

y′ < 0 F− T−

In the sequel, we denote by m+ = T+ +F− and m− = T−+F+ the numbers

of positives and negative labels in y, respectively. We note that Fβ score can

be computed based on the contingency table [Joa05] as

Fβ(T+, T−) =
(1 + β2)T+

T+ +m− − T− + β2m+
. (3.27)

If we want to use 〈w, xi〉 to estimate the label of observation xi, we may use

the following structured loss to “directly” optimize w.r.t. Fβ score [Joa05]:

l(X, y,w) = max
y′

[
(y′ − y)>f + ∆(T+, T−)

]
, (3.28)

where f = Xw, ∆(T+, T−) := 1 − Fβ(T+, T−), and (T+, T−) is determined

by using y and y′. Since ∆ does not depend on the specific choice of (y, y′)

but rather just on which sets they disagree, l can be maximized as follows:

Enumerating all possible m+m− contingency tables in a way such that given

a configuration (T+, T−), T+ (T−) positive (negative) observations xi with

largest (lowest) value of 〈w, xi〉 are labeled as positive (negative). This is

effectively implemented as a nested loop hence run in O(m2) time. Algorithm

3.6 describes the procedure in details.

A3.1.4 Vector Loss Functions

Next we discuss “vector” loss functions, i.e., functions where w is best de-

scribed as a matrix (denoted by W ) and the loss depends on Wx. Here, we

have feature vector x ∈ Rd, label y ∈ Rk, and weight matrix W ∈ Rd×k. We

also denote feature matrix X ∈ Rm×d as a matrix of m feature vectors xi,

and stack up the columns Wi of W as a vector w.

Some of the most relevant cases are multiclass classification using both

the exponential families model and structured estimation, hierarchical mod-

els, i.e., ontologies, and multivariate regression. Many of those cases are

summarized in Table A3.1.
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Algorithm 3.6 Fβ(X, y,w)

1: input: Feature matrix X, labels y, and weight vector w

2: Compute f = Xw

3: π+ ← {i : yi = 1} sorted in descending order of f

4: π− ← {i : yi = −1} sorted in ascending order of f

5: Let p0 = 0 and pi = 2
∑m+

k=i fπ+
k
, i = 1, . . . ,m+

6: Let n0 = 0 and ni = 2
∑m−

k=i fπ−k
, i = 1, . . . ,m−

7: y′ ← −y and r ← −∞
8: for i = 0 to m+ do

9: for j = 0 to m− do

10: rtmp = ∆(i, j)− pi + nj
11: if rtmp > r then

12: r ← rtmp

13: T+ ← i and T− ← j

14: end if

15: end for

16: end for

17: y′
π+
i

← 1, i = 1, . . . , T+

18: y′
π−i
← −1, i = 1, . . . , T−

19: g ← (y′ − y)>X

20: return Risk r and subgradient g

A3.1.4.1 Unstructured Setting

The simplest loss is multivariate regression, where l(x, y,W ) = 1
2(y−x>W )>M(y−

x>W ). In this case it is clear that by pre-computing XW subsequent calcu-

lations of the loss and its gradient are significantly accelerated.

A second class of important losses is given by plain multiclass classification

problems, e.g., recognizing digits of a postal code or categorizing high-level

document categories. In this case, φ(x, y) is best represented by ey⊗x (using

a linear model). Clearly we may view 〈w, φ(x, y)〉 as an operation which

chooses a column indexed by y from xW , since all labels y correspond to

a different weight vector Wy. Formally we set 〈w, φ(x, y)〉 = [xW ]y. In this

case, structured estimation losses can be rewritten as

l(x, y,W ) = max
y′

Γ(y, y′)
〈
Wy′ −Wy, x

〉
+ ∆(y, y′) (3.29)

and ∂W l(x, y,W ) = Γ(y, y∗)(ey∗ − ey)⊗ x. (3.30)

Here Γ and ∆ are defined as in Section A3.1.2 and y∗ denotes the value of y′
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for which the RHS of (3.29) is maximized. This means that for unstructured

multiclass settings we may simply compute xW . Since this needs to be per-

formed for all observations xi we may take advantage of fast linear algebra

routines and compute f = XW for efficiency. Likewise note that comput-

ing the gradient over m observations is now a matrix-matrix multiplication,

too: denote by G the matrix of rows of gradients Γ(yi, y
∗
i )(ey∗i − eyi). Then

∂WRemp(X, y,W ) = G>X. Note that G is very sparse with at most two

nonzero entries per row, which makes the computation of G>X essentially

as expensive as two matrix vector multiplications. Whenever we have many

classes, this may yield significant computational gains.

Log-likelihood scores of exponential families share similar expansions. We

have

l(x, y,W ) = log
∑
y′

exp
〈
w, φ(x, y′)

〉
− 〈w, φ(x, y)〉 = log

∑
y′

exp
〈
Wy′ , x

〉
− 〈Wy, x〉

(3.31)

∂W l(x, y,W ) =

∑
y′(ey′ ⊗ x) exp

〈
Wy′ , x

〉∑
y′ exp

〈
Wy′ , x

〉 − ey ⊗ x. (3.32)

The main difference to the soft-margin setting is that the gradients are

not sparse in the number of classes. This means that the computation of

gradients is slightly more costly.

A3.1.4.2 Ontologies

Fig. A3.1. Two ontologies. Left: a binary hierarchy with internal nodes {1, . . . , 7}
and labels {8, . . . 15}. Right: a generic directed acyclic graph with internal nodes
{1, . . . , 6, 12} and labels {7, . . . , 11, 13, . . . , 15}. Note that node 5 has two parents,
namely nodes 2 and 3. Moreover, the labels need not be found at the same level of
the tree: nodes 14 and 15 are one level lower than the rest of the nodes.

Assume that the labels we want to estimate can be found to belong to

a directed acyclic graph. For instance, this may be a gene-ontology graph
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[ABB+00] a patent hierarchy [CH04], or a genealogy. In these cases we have a

hierarchy of categories to which an element x may belong. Figure A3.1 gives

two examples of such directed acyclic graphs (DAG). The first example is

a binary tree, while the second contains nodes with different numbers of

children (e.g., node 4 and 12), nodes at different levels having children (e.g.,

nodes 5 and 12), and nodes which have more than one parent (e.g., node 5).

It is a well known fundamental property of trees that they have at most as

many internal nodes as they have leaf nodes.

It is now our goal to build a classifier which is able to categorize observa-

tions according to which leaf node they belong to (each leaf node is assigned

a label y). Denote by k + 1 the number of nodes in the DAG including the

root node. In this case we may design a feature map φ(y) ∈ Rk [CH04] by

associating with every label y the vector describing the path from the root

node to y, ignoring the root node itself. For instance, for the first DAG in

Figure A3.1 we have

φ(8) = (1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0) and φ(13) = (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0)

Whenever several paths are admissible, as in the right DAG of Figure A3.1

we average over all possible paths. For example, we have

φ(10) = (0.5, 0.5, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0) and φ(15) = (0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1).

Also note that the lengths of the paths need not be the same (e.g., to

reach 15 it takes a longer path than to reach 13). Likewise, it is natural to

assume that ∆(y, y′), i.e., the cost for mislabeling y as y′ will depend on the

similarity of the path. In other words, it is likely that the cost for placing

x into the wrong sub-sub-category is less than getting the main category of

the object wrong.

To complete the setting, note that for φ(x, y) = φ(y) ⊗ x the cost of

computing all labels is k inner products, since the value of 〈w, φ(x, y)〉 for a

particular y can be obtained by the sum of the contributions for the segments

of the path. This means that the values for all terms can be computed by

a simple breadth first traversal through the graph. As before, we may make

use of vectorization in our approach, since we may compute xW ∈ Rk to

obtain the contributions on all segments of the DAG before performing the

graph traversal. Since we have m patterns xi we may vectorize matters by

pre-computing XW .

Also note that φ(y)−φ(y′) is nonzero only for those edges where the paths

for y and y′ differ. Hence we only change weights on those parts of the graph

where the categorization differs. Algorithm 3.7 describes the subgradient and

loss computation for the soft-margin type of loss function.
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Algorithm 3.7 Ontology(X, y,W )

1: input: Feature matrix X ∈ Rm×d, labels y, and weight matrix W ∈
Rd×k

2: initialization: G = 0 ∈ Rm×k and r = 0

3: Compute f = XW and let fi = xiW

4: for i = 1 to m do

5: Let Di be the DAG with edges annotated with the values of fi
6: Traverse Di to find node y∗ that maximize sum of fi values on the

path plus ∆(yi, y
′)

7: Gi = φ(y∗)− φ(yi)

8: r ← r + zy∗ − zyi
9: end for

10: g = G>X

11: return Risk r and subgradient g

The same reasoning applies to estimation when using an exponential fam-

ilies model. The only difference is that we need to compute a soft-max

over paths rather than exclusively choosing the best path over the ontol-

ogy. Again, a breadth-first recursion suffices: each of the leaves y of the

DAG is associated with a probability p(y|x). To obtain Ey∼p(y|x) [φ(y)] all

we need to do is perform a bottom-up traversal of the DAG summing over

all probability weights on the path. Wherever a node has more than one

parent, we distribute the probability weight equally over its parents.
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