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Formulas from Geometry
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Area of circle: A = 7r? (r = radius)

Area of trapezoid: A = Jh(a + b)
Area of triangle: A = 1bh
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Formulas from Analytic Geometry

Y2— )1
Xy — X1

Slope of line: m =

(two points (x;, y;) and (x2, y2))

Equation of line: y —y;, =m(x —x)

Distance formula: d = \/(xz —x)?+ (2 —y)?

Circle:  (x —x0)> + (y — yo)> =12 (r = radius, (xo, Yo) center)

(x —x0)? N (y — y0)? _

Ellipse: 2 e

1 (a and b semiaxes)

Definitions from Calculus

The limit statement lim f(x) = L means that for any ¢ > 0, there is a § > 0 such that | f(x) — L| < ¢

whenever 0 < |x — a| < 6.

A function f is continuous at x if %in(l) fx+h)= f(x).

1 d
If lllin(l) Z[ f(x + h) — f(x)] exists, it is denoted by f”(x) or Ir f(x) and is termed the derivative of f at x.
- X

Formulas from Differential Calculus
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Preface

In preparing the sixth edition of this book, we have adhered to the basic objective of the
previous editions—namely, to acquaint students of science and engineering with the po-
tentialities of the modern computer for solving numerical problems that may arise in their
professions. A secondary objective is to give students an opportunity to hone their skills in
programming and problem solving. A final objective is to help students arrive at an under-
standing of the important subject of errors that inevitably accompany scientific computing,
and to arm them with methods for detecting, predicting, and controlling these errors.

Much of science today involves complex computations built upon mathematical soft-
ware systems. The users may have little knowledge of the underlying numerical algorithms
used in these problem-solving environments. By studying numerical methods one can be-
come a more informed user and be better prepared to evaluate and judge the accuracy of
the results. What this implies is that students should study algorithms to learn not only how
they work but also how they can fail. Critical thinking and constant skepticism are attitudes
we want students to acquire. Any extensive numerical calculation, even when carried out
by state-of-the-art software, should be subjected to independent verification, if possible.

Since this book is to be accessible to students who are not necessarily advanced in their
formal study of mathematics and computer sciences, we have tried to achieve an elementary
style of presentation. Toward this end, we have provided numerous examples and figures
for illustrative purposes and fragments of pseudocode, which are informal descriptions of
computer algorithms.

Believing that most students at this level need a survey of the subject of numerical
mathematics and computing, we have presented a wide diversity of topics, including some
rather advanced ones that play an important role in current scientific computing. We rec-
ommend that the reader have at least a one-year study of calculus as a prerequisite for our
text. Some knowledge of matrices, vectors, and differential equations is helpful.

Features in the Sixth Edition

Following suggestions and comments by a dozen reviewers, we have revised all sections of
the book to some degree, and a number of major new features have been added as follows:

¢ We have moved some items (especially computer codes) from the text to the website so
that they are easily accessible without tedious typing. This endeavor includes all of the
Matlab, Mathematica, and Maple computer codes as well as the Appendix on Overview
of Mathematical Software available on the World Wide Web.

¢ We have added more figures and numerical examples throughout, believing that concrete
codes and visual aids are helpful to every reader.
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e New sections and material have been added to many topics, such as the modified false
position method, the conjugate gradient method, Simpson’s method, and some others.

* More exercises involving applications are presented throughout.

¢ There are additional citations to recent references and some older references have been
replaced.

* We have reorganized the appendices, adding some new ones and omitting some older
ones.

Suggestions for Use

Numerical Mathematics and Computing, Sixth Edition, can be used in a variety of ways,
depending on the emphasis the instructor prefers and the inevitable time constraints. Prob-
lems have been supplied in abundance to enhance the book’s versatility. They are divided
into two categories: Problems and Computer Problems. In the first category, there are more
than 800 exercises in analysis that require pencil, paper, and possibly a calculator. In the
second category, there are approximately 500 problems that involve writing a program and
testing it on a computer. Students can be asked to solve some problems using advanced
software systems such as Matlab, Mathematica, or Maple. Alternatively, students can be
asked to write their own code. Readers can often follow a model or example in the text
to assist them in working out exercises, but in other cases they must proceed on their own
from a mathematical description given in the text or in the problems.

In some of the computer problems, there is something to be learned beyond simply
writing code—a moral, if you like. This can happen if the problem being solved and the
code provided to do so are somehow mismatched. Some computing problems are designed
to give experience in using either mathematical software systems, precoded programs, or
black-box library codes.

A Student’s Solution Manual is sold as a separate publication. Also, teachers who adopt
the book can obtain from the publisher the Instructor’s Solution Manual. Sample programs
based on the pseudocode displayed in this text have been coded in several programming
languages. These codes and additional material are available on the textbook websites:

www.thomsonedu.com/math/cheney
www.ma.utexas.edu/CNA/NMC6/

The arrangement of chapters reflects our own view of how the material might best
unfold for a student new to the subject. However, there is very little mutual dependence
among the chapters, and the instructor can order the sequence of presentation in various
ways. Most courses will certainly have to omit some sections and chapters for want of time.

Our own recommendations for courses based on this text are as follows:

* A one-term course carefully covering Chapters 1 through 11 (possibly omitting Chapters 5
and 8 and Sections 4.2, 9.3, 10.3, and 11.3, for example), followed by a selection of
material from the remaining chapters as time permits.

e A one-term survey rapidly skimming over most of the chapters in the text and omitting
some of the more difficult sections.

* A two-term course carefully covering all chapters.


www.thomsonedu.com/math/cheney
www.ma.utexas.edu/CNA/NMC6/
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Student Research Projects

Throughout the book there are some computer problems designated as Student Research
Projects. These suggest opportunities for students to explore topics beyond the scope of
the textbook. Many of these involve application areas for numerical methods. The projects
should include programming and numerical experiments. A favorable aspect of these as-
signments is to allow students to choose a topic of interest to them, possibly something
that may arise in their future profession or their major study area. For example, any topic
suggested by the chapters and sections in the book may be delved into more deeply by
consulting other texts and references on that topic. In preparing such a project, the students
have to learn about the topic, locate the significant references (books and research papers),
do the computing, and write a report that explains all this in a coherent way. Students can
avail themselves of mathematical software systems such as Matlab, Maple, or Mathematica,
or do their own programming in whatever language they prefer.
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Introduction

The Taylor series for the natural logarithm In(1 + x) is

In 2=1 1+1 1—i—1 1+1 1—i—
B 2 3 4 5 6 7 8
Adding together the eight terms shown, we obtain In 2 ~ 0.63452*, which
is a poor approximationto In 2 = 0.69315. ... On the other hand, the Taylor

series for In[(1 + x)/(1 — x)] gives us (vvith X = %)

3-3 3-5 37 )

By adding the four terms shown between the parentheses and multiplying
by 2, we obtain In 2 ~ 0.69313. This illustrates the fact that rapid conver-
gence of a Taylor series can be expected near the point of expansion but
not at remote points. Evaluating the series In[(1 + x) /(1 — x)] at x = % isa
mechanism for evaluating In 2 near the point of expansion. It also gives an
example in which the properties of a function can be exploited to obtain a
more rapidly convergent series. Examples like this will become clearer after
the reader has studied Section 1.2. Taylor series and Taylor's Theorem are
two of the principal topics we discuss in this chapter. They are ubiquitous
features in much of numerical analysis.

1.1 Preliminary Remarks

The objective of this text is to help the reader in understanding some of the many methods
for solving scientific problems on a modern computer. We intentionally limit ourselves to
the typical problems that arise in science, engineering, and technology. Thus, we do not
touch on problems of accounting, modeling in the social sciences, information retrieval,
artificial intelligence, and so on.

*The symbol ~ means “approximately equal to.”
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Usually, our treatment of problems will not begin at the source, for that would take
us far afield into such areas as physics, engineering, and chemistry. Instead, we consider
problems after they have been cast into certain standard mathematical forms. The reader is
therefore asked to accept on faith the assertion that the chosen topics are indeed important
ones in scientific computing.

To survey many topics, we must treat some in a superficial way. But it is hoped that
the reader will acquire a good bird’s-eye view of the subject and therefore will be better
prepared for a further, deeper study of numerical analysis.

For each principal topic, we list good current sources for more information. In any
realistic computing situation, considerable thought should be given to the choice of method
to be employed. Although most procedures presented here are useful and important, they
may not be the optimum ones for a particular problem. In choosing among available methods
for solving a problem, the analyst or programmer should consult recent references.

Becoming familiar with basic numerical methods without realizing their limitations
would be foolhardy. Numerical computations are almost invariably contaminated by errors,
and it is important to understand the source, propagation, magnitude, and rate of growth
of these errors. Numerical methods that provide approximations and error estimates are
more valuable than those that provide only approximate answers. While we cannot help
but be impressed by the speed and accuracy of the modern computer, we should temper
our admiration with generous measures of skepticism. As the eminent numerical analyst
Carl-Erik Froberg once remarked:

Never in the history of mankind has it been possible to produce so many wrong
answers so quickly!

Thus, one of our goals is to help the reader arrive at this state of skepticism, armed with
methods for detecting, estimating, and controlling errors.

The reader is expected to be familiar with the rudiments of programming. Algorithms
are presented as pseudocode, and no particular programming language is adopted.

Some of the primary issues related to numerical methods are the nature of numerical
errors, the propagation of errors, and the efficiency of the computations involved, as well
as the number of operations and their possible reduction.

Many students have graphing calculators and access to mathematical software systems
that can produce solutions to complicated numerical problems with minimal difficulty.
The purpose of a numerical mathematics course is to examine the underlying algorithmic
techniques so that students learn how the software or calculator found the answer. In this
way, they would have a better understanding of the inherent limits on the accuracy that must
be anticipated in working with such systems.

One of the fundamental strategies behind many numerical methods is the replacement
of a difficult problem with a string of simpler ones. By carrying out an iterative process,
the solutions of the simpler problems can be put together to obtain the solution of the
original, difficult problem. This strategy succeeds in finding zeros of functions (Chapter 3),
interpolation (Chapter 4), numerical integration (Chapters 5-6), and solving linear systems
(Chapters 7-8).

Students majoring in computer science and mathematics as well as those majoring in
engineering and other sciences are usually well aware that numerical methods are needed
to solve problems that they frequently encounter. It may not be as well recognized that
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scientific computing is quite important for solving problems that come from fields other
than engineering and science, such as economics. For example, finding zeros of functions
may arise in problems using the formulas for loans, interest, and payment schedules. Also,
problems in areas such as those involving the stock market may require least-squares solu-
tions (Chapter 12). In fact, the field of computational finance requires solving quite complex
mathematical problems utilizing a great deal of computing power. Economic models rou-
tinely require the analysis of linear systems of equations with thousands of unknowns.

Significant Digits of Precision: Examples

Significant digits are digits beginning with the leftmost nonzero digit and ending with the
rightmost correct digit, including final zeros that are exact.

In a machine shop, a technician cuts a 2-meter by 3-meter rectangular sheet of metal into
two equal triangular pieces. What is the diagonal measurement of each triangle? Can these
pieces be slightly modified so the diagonals are exactly 3.6 meters?

Since the piece is rectangular, the Pythagorean Theorem can be invoked. Thus, to compute
the diagonal, we write 2> + 3% = d?, where d is the diagonal. It follows that

d =+v4+9 = +13 =3.60555 1275

This last number is obtained by using a hand-held calculator. The accuracy of d as given
can be verified by computing (3.60555 1275) * (3.60555 1275) = 13. Is this value for the
diagonal, d, to be taken seriously? Certainly not. To begin with, the given dimensions of
the rectangle cannot be expected to be precisely 2 and 3. If the dimensions are accurate to
one millimeter, the dimensions may be as large as 2.001 and 3.001. Using the Pythagorean
Theorem again, one finds that the diagonal may be as large as

d =/2.0012 4 3.0012 = +/4.00400 1 + 9.00600 1 = +/13.01002 =~ 3.6069

Similar reasoning indicates that d may be as small as 3.6042. These are both worst cases.
We can conclude that

3.6042 < d < 3.6069

No greater accuracy can be claimed for the diagonal, d.
If we want the diagonal to be exactly 3.6, we require

B-—c)’4+2-0)?*=36
For simplicity, we reduce each side by the same amount. This leads to
¢*—=5¢+0.02=0
Using the quadratic formula, we obtain the smaller root
¢ =2.5—+6.23 ~ 0.00400
By cutting off 4 millimeters from the two perpendicular sides, we have triangular pieces of

sizes 1.996 by 2.996 meters. Checking, we obtain (1.996)% 4 (2.996)? ~ 3.62. ]

To show the effect of the number of significant digits used in a calculation, we consider
the problem of solving a linear system of equations.
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FIGURE 1.1
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conditioned and
ill-conditioned
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Introduction

Let us concentrate on solving for the variable y in this linear system of equations in two
variables

(1)

0.1036 x +0.2122 y = 0.7381
0.2081 x + 0.4247y = 0.9327

First, carry only three significant digits of precision in the calculations. Second, repeat with
four significant digits throughout. Finally, use ten significant digits.

In the first task, we round all numbers in the original problem to three digits and round
all the calculations, keeping only three significant digits. We take a multiple « of the first
equation and subtract it from the second equation to eliminate the x-term in the second
equation. The multiplier is « = 0.208/0.104 ~ 2.00. Thus, in the second equation, the
new coefficient of the x-term is 0.208 — (2.00)(0.104) ~ 0.208 — 0.208 = 0 and the
new y-term coefficient is 0.425 — (2.00)(0.212) ~ 0.425 — 0.424 = 0.001. The right-
hand side is 0.933 — (2.00)(0.738) = 0.933 — 1.48 = —0.547. Hence, we find that
y = —0.547/(0.001) ~ —547.

We decide to keep four significant digits throughout and repeat the calculations. Now
the multiplier is « = 0.2081/0.1036 = 2.009. In the second equation, the new coefficient
of the x-term is 0.2081 — (2.009)(0.1036) ~ 0.2081 — 0.2081 = 0, the new coefficient of
the y-term is 0.4247 — (2.009)(0.2122) =~ 0.4247 — 0.4263 = —0.00160 0, and the new
right-hand side is 0.9327 — (2.009)(0.7381) ~ 0.9327 — 1.483 ~ —0.5503. Hence, we find
y = —0.5503/(—.001600) ~ 343.9. We are shocked to find that the answer has changed
from —547 to 343.9, which is a huge difference!

In fact, if we repeat this process and carry ten significant decimal digits, we find that
even 343.9 is not accurate, since we obtain 356.29071 99. The lesson learned in this example
is that data thought to be accurate should be carried with full precision and not be rounded
off prior to each of the calculations. [ |

In most computers, the arithmetic operations are carried out in a double-length ac-
cumulator that has twice the precision of the stored quantities. However, even this may
not avoid a loss of accuracy! Loss of accuracy can happen in various ways such as from
roundoff errors and subtracting nearly equal numbers. We shall discuss loss of precision in
Chapter 2, and the solving of linear systems in Chapter 7.

Figure 1.1 shows a geometric illustration of what can happen in solving two equations
in two unknowns. The point of intersection of the two lines is the exact solution. As is shown
by the dotted lines, there may be a degree of uncertainty from errors in the measurements
or roundoff errors. So instead of a sharply defined point, there may be a small trapezoidal
area containing many possible solutions. However, if the two lines are nearly parallel, then
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this area of possible solutions can increase dramatically! This is related to well-conditioned
and ill-conditioned systems of linear equations, which are discussed more in Chapter 8.

Errors: Absolute and Relative

Suppose that « and B are two numbers, of which one is regarded as an approximation to
the other. The error of 8 as an approximation to « is & — f; that is, the error equals the
exact value minus the approximate value. The absolute error of 8 as an approximation to
« is | — B]. The relative error of 8 as an approximation to « is |o — B|/|«/|. Notice that in
computing the absolute error, the roles of « and 8 are the same, whereas in computing the
relative error, it is essential to distinguish one of the two numbers as correct. (Observe that
the relative error is undefined in the case &« = 0.) For practical reasons, the relative error is
usually more meaningful than the absolute error. For example, if oy = 1.333, g; = 1.334,
and o, = 0.001, B, = 0.002, then the absolute error of B; as an approximation to ¢; is
the same in both cases—namely, 10~3. However, the relative errors are % x 1073 and 1,
respectively. The relative error clearly indicates that §; is a good approximation to o but
that B, is a poor approximation to «. In summary, we have

absolute error = |exact value — approximate value|

|exact value — approximate value|

relative error =
|exact value|

Here the exact value is the true value. A useful way to express the absolute error and relative
error is to drop the absolute values and write

(relative error)(exact value) = exact value — approximate value

approximate value = (exact value)[1 + (relative error)]

So the relative error is related to the approximate value rather than to the exact value because
the true value may not be known.

Consider x = 0.00347 rounded to X = 0.0035 and y = 30.158 rounded to y = 30.16.
In each case, what are the number of significant digits, absolute errors, and relative errors.
Interpret the results.

Case 1. X = 0.35 x 1072 has two significant digits, absolute error 0.3 x 1074, and relative
error 0.865 x 1072, Case 2. 3 = 0.3016 x 10? has four significant digits, absolute error
0.2 x 1072, and relative error 0.66 x 10~*. Clearly, the relative error is a better indication
of the number of significant digits than the absolute error. |

Accuracy and Precision

Accurate to n decimal places means that you can trust n digits to the right of the decimal
place. Accurate to n significant digits means that you can trust a total of n digits as being
meaningful beginning with the leftmost nonzero digit.

Suppose you use a ruler graduated in millimeters to measure lengths. The measurements
will be accurate to one millimeter, or 0.001 m, which is three decimal places written in
meters. A measurement such as 12.345 m would be accurate to three decimal places. A
measurement such as 12.34567 89 m would be meaningless, since the ruler produces only
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three decimal places, and it should be 12.345 m or 12.346 m. If the measurement 12.345 m
has five dependable digits, then it is accurate to five significant figures. On the other hand,
a measurement such as 0.076 m has only two significant figures.

When using a calculator or computer in a laboratory experiment, one may get a false
sense of having higher precision than is warranted by the data. For example, the result

(1.2) 4 (3.45) = 4.65

actually has only two significant digits of accuracy because the second digit in 1.2 may be
the effect of rounding 1.24 down or rounding 1.16 up to two significant figures. Then the
left-hand side could be as large as

(1.249) + (3.454) = (4.703)
or as small as
(1.16) + (3.449) = (4.609)

There are really only two significant decimal places in the answer! In adding and subtracting
numbers, the result is accurate only to the smallest number of significant digits used in
any step of the calculation. In the above example, the term 1.2 has two significant digits;
therefore, the final calculation has an uncertainty in the third digit.

In multiplication and division of numbers, the results may be even more mislead-
ing. For instance, perform these computations on a calculator: (1.23)(4.5) = 5.535 and
(1.23)/(4.5) = 0.27333 3333. You think that there are four and nine significant digits in
the results, but there are really only two! As a rule of thumb, one should keep as many
significant digits in a sequence of calculations as there are in the least accurate number
involved in the computations.

Rounding and Chopping

Rounding reduces the number of significant digits in a number. The result of rounding is
a number similar in magnitude that is a shorter number having fewer nonzero digits. There
are several slightly different rules for rounding. The round-to-even method is also known
as statistician’s rounding or bankers’ rounding. It will be discussed below. Over a large set
of data, the round-to-even rule tends to reduce the total rounding error with (on average) an
equal portion of numbers rounding up as well as rounding down.

We say that a number x is chopped to n digits or figures when all digits that follow
the nth digit are discarded and none of the remaining n digits are changed. Conversely, x is
rounded to n digits or figures when x is replaced by an n-digit number that approximates x
with minimum error. The question of whether to round up or down an (n + 1)-digit decimal
number that ends with a 5 is best handled by always selecting the rounded n-digit number
with an even nth digit. This may seem strange at first, but remarkably, this is essentially
what computers do in rounding decimal calculations when using the standard floating-point
arithmetic! (This is a topic discussed in Chapter 2.)

For example, the results of rounding some three-decimal numbers to two digits are
0.217 = 0.22, 0.365 ~ 0.36, 0.475 ~ 0.48, and 0.592 ~ 0.59, while chopping them gives
0.217 =~ 0.21, 0.365 =~ 0.36, 0.475 ~ 0.47, and 0.592 = 0.59. On the computer, the user
sometimes has the option to have all arithmetic operations done with either chopping or
rounding. The latter is usually preferable, of course.
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Nested Multiplication

We will begin with some remarks on evaluating a polynomial efficiently and on rounding
and chopping real numbers. To evaluate the polynomial

px) =ao+aix +ax’ + -+ a,1x" + a,x" 2)
we group the terms in a nested multiplication:
p(x) =ao+ x(a + x(a + - - + x(ay—1 + x(an)) - --))

The pseudocode’ that evaluates p(x) starts with the innermost parentheses and works out-
ward. It can be written as

integer i, n; real p, x; real array (a;)o.,

p < a

fori =n—1to0do
p < ai +xp

end for

Here we assume that numerical values have been assigned to the integer variable n, the
real variable x, as well as the coefficients ag, ai, . .., a,, which are stored in a real linear
array. (Throughout, we use semicolons between these declarative statements to save space.)
The left-pointing arrow (<—) means that the value on the right is stored in the location
named on the left (i.e., “overwrites” from right to left). The for-loop index i runs backward,
taking values n — 1,n — 2, ..., 0. The final value of p is the value of the polynomial at
x. This nested multiplication procedure is also known as Horner’s algorithm or synthetic
division.

In the pseudocode above, there is exactly one addition and one multiplication each time
the loop is traversed. Consequently, Horner’s algorithm can evaluate a polynomial with only
n additions and n multiplications. This is the minimum number of operations possible. A
naive method of evaluating a polynomial would require many more operations. For example,
p(x) = 5+ 3x — 7x? + 2x3 should be computed as p(x) = 5+ x(3 + x(=7 + x(2)))
for a given value of x. We have avoided all the exponentiation operations by using nested
multiplication!

The polynomial in Equation (1) can be written in an alternative form by utilizing the
mathematical symbols for sum »_ and product [ ], namely,

px) = Zaixi = Z(a,- Hx)
i=0

i=0 j=1

A pseudocode is a compact and informal description of an algorithm that uses the conventions of a programming
language but omits the detailed syntax. When convenient, it may be augmented with natural language.
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Recall that if n <m, we write

DX =X K

k=n

and

m
H Xk = XpXn+41 """ Xm
k=n

By convention, whenever m < n, we define

m m
Zxk =0 and ka =1
k=n k=n
Horner’s algorithm can be used in the deflation of a polynomial. This is the process of
removing a linear factor from a polynomial. If r is a root of the polynomial p, then x — r
is a factor of p. The remaining roots of p are the n — 1 roots of a polynomial g of degree 1
less than the degree of p such that

p(x) = (x —r)q(x) + p(r) 3)
where
q(x) =b0+b1x+b2x2+...+bn71xn—1 (4)

The pseudocode for Horner’s algorithm can be written as follows:

integer i,n; real p,r; real array (a;)o.., (bi)on_1
bn,1 < a,
fori =n—1to0do
bi_y < a; +rb;
end for

Notice that b_; = p(r) in this pseudocode. If f isanexactroot,thenb_; = p(r) = 0.If the
calculation in Horner’s algorithm is to be carried out with pencil and paper, the following
arrangement is often used:

a, a,_q ay_o2 ... aj ap
r) rb,_1 rb,_» ... rb rby
bii byy byz ... by b_;

EXAMPLE 4 Use Horner’s algorithm to evaluate p(3), where p is the polynomial
p(x) =xt -4+ 7x2—5x =2
Solution We arrange the calculation as suggested above:

1 —4 7 =5 =2
3) 3 -3 12 21
1 -1 4 7 19
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Thus, we obtain p(3) = 19, and we can write
p(xX)=(x =3 —x*+4x+7)+19 ]

In the deflation process, if r is a zero of the polynomial p, then x — r is a factor of p,
and conversely. The remaining zeros of p are the n — 1 zeros of g(x).

Deflate the polynomial p of the preceding example, using the fact that 2 is one of its zeros.

We use the same arrangement of computations as explained previously:
1 -4 7 -5 =2
2) 2 -4 6 2
1 -2 3 1 0

Thus, we have p(2) = 0, and

XA I =5k —2=(x =) = 2x2+3x + 1) [ |

Pairs of Easy/Hard Problems

In scientific computing, we often encounter a pair of problems, one of which is easy and
the other hard and they are inverses of each other. This is the main idea in cryptology, in
which multiplying two numbers together is trivial but the reverse problem (factoring a huge
number) verges on the impossible.

The same phenomenon arises with polynomials. Given the roots, we can easily find
the power form of the polynomial as in Equation (2). Given the power form, it may be a
difficult problem to compute the roots (and it may be an ill-conditioned problem). Computer
Problem 1.1.24 calls for the writing of code to compute the coefficients in the power form
of a polynomial from its roots. It is a do-loop with simple formulas. One adjoins one factor
(x —r) at a time. This theme arises again in linear algebra, in which computing b = Ax is
trivial but finding x from A and b (the inverse problem) is hard. (See Section 7.1.)

Easy/hard problems come up again in two-point boundary value problems. Finding Df
and f(0) and f(1) when f is given and D is a differential operator is easy, but finding f
from knowledge of Df, f(0) and f(1) is hard. (See Section 14.1.)

Likewise, computing the eigenvalues of a matrix is a hard problem. Given the eigen-
values Ay, Aa, ..., A, of an n X n matrix and corresponding eigenvectors vy, vy, ..., v, of
an n X n matrix, we can get A by putting the eigenvalues on the diagonal of a diagonal
matrix D and the eigenvectors as columns in a matrix V. Then AV = V D, and we can get
A from this by solving the equation for A. But finding X; and v; from A itself is difficult.
(See Section 8.3.)

The reader may think of other examples.

First Programming Experiment

We conclude this section with a short programming experiment involving numerical com-
putations. Here we consider, from the computational point of view, a familiar operation in
calculus—namely, taking the derivative of a function. Recall that the derivative of a function
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f atapoint x is defined by the equation
fx+h)— f(x)
h

A computer has the capacity of imitating the limit operation by using a sequence of numbers
h such as

fix) = lim

h=471 472473 4" ...

for they certainly approach zero rapidly. Of course, many other simple sequences are pos-
sible, such as 1/n, 1/n%, and 1/10". The sequence 1/4" consists of machine numbers in a
binary computer and, for this experiment on a 32-bit computer, will be sufficiently close to
zero when n is 10.

The following is pseudocode to compute f”(x) at the point x = 0.5, with f(x) = sinx:

program First
integer i, imax, n < 30
real error, y, x <— 0.5, h < 1, emax < 0
fori = 1tondo
h < 0.25h
y < [sin(x 4+ h) — sin(x)]/h
error < |cos(x) — y|; outputi, i, y, error
if error > emax then emax < error; imax < i end if
end for
output i max, emax
end program First

We have neither explained the purpose of the experiment nor shown the output from this
pseudocode. We invite the reader to discover this by coding and running it (or one like it)
on a computer. (See Computer Problems 1.1.1 through 1.1.3.)

Mathematical Software

The algorithms and programming problems in this book have been coded and tested in a
variety of ways, and they are available on the website for this book as given in the Pref-
ace. Some are best done by using a scientific programming language such as C, C++,
Fortran, or any other that allows for calculations with adequate precision. Sometimes it
is instructive to utilize mathematical software systems such as Matlab, Maple, Mathemat-
ica, or Octave, since they contain built-in problem-solving procedures. Alternatively, one
could use a mathematical program library such as IMSL, NAG, or others when locally
available. Some numerical libraries have been specifically optimized for the processor such
as Intel and AMD. Software systems are particularly useful for obtaining graphical results
as well as for experimenting with various numerical methods for solving a difficult prob-
lem. Mathematical software packages containing symbolic-manipulation capabilities, such
as in Maple, Mathematica, and Macsyma, are particularly useful for obtaining exact as
well as numerical solutions. In solving the computer problems, students should focus on
gaining insights and better understandings of the numerical methods involved. Appendix A
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offers advice on computer programming for scientific computations. The suggestions are
independent of the particular language being used.

With the development of the World Wide Web and the Internet, good mathematical
software has become easy to locate and to transfer from one computer to another. Browsers,
search engines, and URL addresses may be used to find software that is applicable to a
particular area of interest. Collections of mathematical software exist, ranging from large
comprehensive libraries to smaller versions of these libraries for PCs; some of these are
interactive. Also, references to computer programs and collections of routines can be found
in books and technical reports. The URL of the website for this book, as given in the
Preface, contains an overview of available mathematical software as well as other supporting
material.

Summary

(1) Use nested multiplication to evaluate a polynomial efficiently:

p(x) =ap+ax +ax®+ -+ a, 1 x" +a,x"
=ao+x(a +x(@+---+x(@-1 +x@))- )
A segment of pseudocode for doing this is

p <~ al’t
for k = 1ton do

D <= Xp+ay
end for

(2) Deflation of the polynomial p(x) is removing a linear factor:
p(x) = (x =r)q(x) + p(r)
where
gx) =by+bix +byx’> + -+ b,_x"!

The pseudocode for Horner’s algorithm for deflation of a polynomial is

bn—l <~ a,

fori =n—1to0do
bi—y < a; +rb;

end for

Here b_; = p(r).

Additional References

Two interesting papers containing numerous examples of why numerical methods are criti-
cally important are Forsythe [1970] and McCartin [1998]. See Briggs [2004] and Friedman
and Littman [1994] for many industrial and real-world problems.
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Problems 1.1*

1. In high school, some students have been misled to believe that 22/7 is either the
actual value of 7 or an acceptable approximation to 7. Show that 355/113 is a better
approximation in terms of both absolute and relative errors. Find some other simple
rational fractions n/m that approximate 7. For example, ones for which |7 —n/m| <
107°. Hint: See Problem 1.1.4.

“2. A real number x is represented approximately by 0.6032, and we are told that the
relative error is at most 0.1%. What is x?

“3. What is the relative error involved in rounding 4.9997 to 5.000?

“4. The value of = can be generated by the computer to nearly full machine precision by
the assignment statement

pi < 4.0arctan(1.0)

Suggest at least four other ways to compute 7 using basic functions on your computer
system.

5. A given doubly subscripted array (a;;),x, can be added in any order. Write the pseu-
docode segments for each of the following parts. Which is best?

‘a. Yol Z?:l aij b. 22:1 Do) Gij
. -
¢ D (le=1 aij + 37 aji)
—1 2
“d. 37 Zli—j\:k aij e >l ?+j=k aij

“6. Count the number of operations involved in evaluating a polynomial using nested
multiplication. Do not count subscript calculations.

7. For small x, show that (1 4+ x)? can sometimes be more accurately computed from
(x + 2)x + 1. Explain. What other expressions can be used to compute it?

8. Show how these polynomials can be efficiently evaluated:
“a, p(x) = x> b. p(x) =3(x = 1) +7(x — 1)°
“e. p(x) =6(x +2)* +9(x +2) +3(x +2)P — (x +2)*
d. p(x) =x"7 —5x% 4+ 10x"7 — 3x7

9. Using the exponential function exp(x), write an efficient pseudocode segment for the
statement y = 5¢3* 4 7e?* 4 9¢* + 11.

“10. Write a pseudocode segment to evaluate the expression

n i
= E bi_IHaj
i=1 j=1

where (ay, az, ..., a,) and (by, b, ..., b,) are linear arrays containing given values.

*Problems marked with ¢ have answers in the back of the book.
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11. Write segments of pseudocode to evaluate the following expressions efficiently:

a. p(x) = Z;(l) kack ‘b z=371, H_i/‘zl Xt
¢ z=[], Z_ij:l Xj d pH=Y a H;;ll(l‘ —Xxj)

12. Using summation and product notation, write mathematical expressions for the follow-
ing pseudocode segments:

a. integeri,n; realv,x; realarray (a;)o.,
UV <— Qg
fori = 1tondo
V< U+ xa;
end for

“b. integeri,n; realv,x; realarray (a;)o.,
v < a,
fori = 1tondo
V<—vx+a,;
end for

c. integer i, n; real v, x; real array (q;)o.,
UV <— Qg
fori = 1tondo
V< vx +aq;
end for

d. integeri,n; realwv, x,z; realarray ().,
UV < do
7 <X
fori = 1tondo
V< v+ za;
7 <Xz
end for

“e. integer i, n; real v; real array (a;)o.,
v < a,
fori = 1tondo
v < (V+a,_;)x
end for

“13. Express in mathematical notation without parentheses the final value of z in the fol-
lowing pseudocode segment:

integer k, n; real z; real array (b;)o.,

z<b,+1
fork=1ton —2do
Z(_anfk'i_l

end for
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“14. How many multiplications occur in executing the following pseudocode segment?

integer i, j, n; real x; realarray (a;;)o.nxon, (bij)o:nxon
x < 0.0
for j = 1tondo

fori =1to j do

X <X+ aijb,-j

end for

end for

15. Ceriticize the following pseudocode segments and write improved versions:

a. integer i,n; real x,z; real array (;)o.,
fori = 1tondo
x < 72457
a; < x/i
end for

“b. integer i, j, n; real array (a;;)o.nxo:n
fori = 1tondo
for j = 1tondo
aj < 1/G+j—1)
end for
end for

c. integer i, j, n; real array (a;;)o.nx0:n
for j = 1tondo
fori =1tondo
aj < 1/G+j—1
end for
end for
3.5713 2.1426 | 7.2158
10.714 6.4280 | 1.3379
and two unknowns x and y. Repeat Example 2 for this system. Can small changes in
the data lead to massive change in the solution?

16. The augmented matrix is for a system of two equations

17. A base 60 approximation circa 1750 B.C. is
24 51 10
Vimigp st 1o
+ 60 + 602 + 603
Determine how accurate it is. See Sauer [2006] for additional details.

Computer Problems 1.1

1. Write and run a computer program that corresponds to the pseudocode program First
described in the text (p. 10) and interpret the results.

2. (Continuation) Select a function f and a point x and carry out a computer experiment
like the one given in the text. Interpret the results. Do not select too simple a function.
For example, you might consider 1/x, log x, e*, tan x, cosh x, or x3 —23x.



3.

“4,

1.1 Preliminary Remarks 15

As we saw in the first computer experiment, the accuracy of a formula for numerical
differentiation may deteriorate as the step-size & decreases. Study the following central
difference formula:

oo SR — fx—h)

fx)~ 7

as i — 0. We will learn in Chapter 4 that the truncation error for this formula is
—éhz f" (&) for some £ in the interval (x — &, x 4+ h). Modify and run the code for
the experiment First so that approximate values for the rounding error and truncation
error are computed. On the same graph, plot the rounding error, the truncation error,
and the total error (sum of these two errors) using a log-scale; that is, the axes in the
plot should be — log, |error| versus log,, /. Analyze these results.

The limite = lim,_, (14 1/n)" defines the number e in calculus. Estimate e by taking
the value of this expression for n = 8, 82, 8%, ..., 8!°. Compare with e obtained from
e < exp(1.0). Interpret the results.

. It is not difficult to see that the numbers p, = fol x"e* dx satisfy the inequalities

p1 > p» > p3 > --- > 0. Establish this fact. Next, use integration by parts to show
that p,,+1 = e — (n+ 1) p, and that p; = 1. In the computer, use the recurrence relation
to generate the first 20 values of p, and explain why the inequalities above are violated.
Do not use subscripted variables. (See Dorn and McCracken [1972], pp. 120-129.)

(Continuation) Let pyy = % and use the formula in the preceding computer problem
to compute pjg, pis, - - -, P2, and p;. Do the numbers generated obey the inequalities
1= p; > p, > p3 > --- > 0?7 Explain the difference in the two procedures. Repeat
with pyy = 20 or pyy = 100. Explain what happens.

. Write an efficient routine that accepts as input a list of real numbers ay, a,, . .., a, and

then computes the following:

l n
Arithmetic mean m= — Z a
-

1 n
Variance v = E (a, —m)?
P

n—1
Standard deviation o = .,/v

Test the routine on a set of data of your choice.

. (Continuation) Show that another formula is

1 n
Variance v = . > " a; —nm’
n—
k=1

Of the two given formulas for v, which is more accurate in the computer? Verify on the
computer with a data set. Hint: Use a large set of real numbers that vary in magnitude
from very small to very large.
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9.

“10.

11.

“12.

13.

14.

15.

16.

17.

Let a; be given. Write a program to compute for 1 <n < 1000 the numbers b, = na,_;
anda, = b, /n.Printthe numbers a;g0, d200, - - - , A1000- Do not use subscripted variables.
What should a, be? Account for the deviation of fact from theory. Determine four
values for a; so that the computation does deviate from theory on your computer.
Hint: Consider extremely small and large numbers and print to full machine precision.

In a computer, it can happen that @ + x = a@ when x # 0. Explain why. Describe the
set of n for which 1 427" = 1 in your computer. Write and run appropriate programs
to illustrate the phenomenon.

Write a program to test the programming suggestion concerning the roundoff error in
the computation of t < r + h versus t <« fy + ih. For example, use h = % and
compute ¢ < t + h in double precision for the correct single-precision value of #; print
the absolute values of the differences between this calculation and the values of the
two procedures. What is the result of the test when % is a machine number, such as
h = ﬁ, on a binary computer (with more than seven bits per word)?

The Russian mathematician P. L. Chebyshev (1821-1894) spelled his name Yeobnies.
Many transliterations from the Cyrillic to the Latin alphabet are possible. Cheb can
alternatively be rendered as Ceb, Tscheb, or Tcheb. The y can be rendered as i. Shev
can also be rendered as schef, cev, cheff, or scheff. Taking all combinations of these

variants, program a computer to print all possible spellings.

Compute n! using logarithms, integer arithmetic, and double-precision floating-point
arithmetic. For each part, print a table of values for 0 < n < 30, and determine the largest
correct value.

Given two arrays, a real array v = (vy, v2, ..., V,) and an integer permutation array
p = (p1, p2, ..., py) of integers 1,2, ..., n, can we form a new permuted array
vV = (Vp,, Up,s - .., Up,) by overwriting v and not involving another array in memory?

If so, write and test the code for doing it. If not, use an additional array and test.

Casel. v=1(6.3,42,93,6.7,7.8,2.4,3.8,9.7), p =(2,3,8,7,1,4,6,5)
Case2. v=(0.7,0.6,0.1,0.3,0.2,0.5,04), p = (3,5,4,7,6,2, 1)

Using a computer algebra system (e.g., Maple, Derive, Mathematica), print 200 decimal

digits of +/10.

a. Repeat the example (1) on loss of significant digits of accuracy but perform the
calculations with twice the precision before rounding them. Does this help?

b. Use Maple or some other mathematical software system in which you can set the
number of digits of precision. Hint: In Maple, use Digits.

In 1706, Machin used the formula

1 1
=1 t — | —4arct —
T 6 arctan <5> arctan (239)

to compute 100 digits of . Derive this formula. Reproduce Machin’s calculations
by using suitable software. Hint: Let tanf = and use standard trigonometric
identities.

1
30
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18. Using a symbol-manipulating program such as Maple, Mathematica or Macsyma, carry
out the following tasks. Record your work in some manner, for example, by using a
diary or script command.

a. Find the Taylor series, up to and including the term x'°, for the function (tanx)?,
using O as the point x.

Find the indefinite integral of (cos x)~*.

Find the definite integral fol log |log x| dx.

Find the first prime number greater than 27448.

Obtain the numerical value of fol V1 +sin® x dx.

Find the solution of the differential equation y' +y = (1 + ¢*)~!.

w© -0 &0 F

Define the function f(x, y) = 9x* — y* +2y? — 1. You want to know the value of
f (40545, 70226). Compute this in the straightforward way by direct substitution
of x = 40545 and y = 70226 in the definition of f(x, y), using first six-decimal
accuracy, then seven, eight, and so on up to 24-decimal digits of accuracy. Next,
prove by means of elementary algebra that

f, ) =0Gx" =y + DG +y* = 1)

Use this formula to compute the same value of f(x, y), again using different pre-
cisions, from six-decimal to 24-decimal. Describe what you have learned. To force
the program to do floating-point operations instead of integer arithmetic, write your
numbers in the form 9.0, 40545.0, and so forth.

19. Consider the following pseudocode segments:

a. integeri; realx,y,z
for i = 1to 20 do
x < 2+1.0/8
y < arctan(x) — arctan(2)
7 < 8y
output x, y, z
end for

b. real epsi < 1
while 1 < 1 + epsi do
epsi < epsi/2
output epsi
end while

What is the purpose of each program? Is it achieved? Explain. Code and run each one
to verify your conclusions.

20. Consider some oversights involving assignment statements.

“a. What is the difference between the following two assignment statements? Write a
code that contains them and illustrate with specific examples to show that sometimes
x = y and sometimes x # y.
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integer m, n; realx,y
x < real(m/n)

y <« real(m)/real(n)
output x, y

b. What value will n receive?

integer n; real x, y
x <74

y <« 3.8

n<x+y

output n

What happens when the last statement is replaced with the following?
n < integer(x) + integer(y)

21. Write a computer code that contains the following assignment statements exactly as
shown. Analyze the results.

a. Print these values first using the default format and then with an extremely large
format field:

real p,q,u,v,w,x,y,z

x < 0.1

y < 0.01

Z<x—Yy

p < 1.0/3.0

q < 3.0p

u<~1756

v <29

W< u—v

output x, y, z, p,q,u, v, w

b. What values would be computed for x, y, and z if this code is used?

integer n; real x,y,z
forn = 1to 10 do
x <~ m—-1)/2
y < n?/3.0
7z« 1.0+4+1/n
output x, y, z
end for

c. What values would the following assignment statements produce?

integer i, j; realc, f, x, half
x < 10/3

i < integer(x + 1/2)

half < 1/2

J < integer(half)
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c < 5/9H(f —32)
f < 9/5¢+32
output x, i, half, j, c, f

d. Discuss what is wrong with the following pseudocode segment:

real area, circum, radius
radius < 1

area <— (22/7)(radius)?
circum < 2(3.1416)radius
output area, circum

Criticize the following pseudocode for evaluating lim, ¢ arctan(|x| ) /x. Code and run
it to see what happens.

integer i; realx,y

x <« 1

fori =1to24 do
x < x/2.0
y < arctan(|x]|)/x
output x, y

end for

Carry out some computer experiments to illustrate or test the programming suggestions
in Appendix A. Specific topics to include are these: (a) when to avoid arrays, (b) when
to limit iterations, (¢) checking for floating-point equality, (d) ways for taking equal
floating-point steps, and (e) various ways to evaluate functions. Hint: Comparing single
and double precision results may be helpful.

(Easy/Hard Problem Pairs) Write a computer program to obtain the power form of
a polynomial from its roots. Let the roots be ry, r;, ..., r,. Then (except for a scalar
factor) the polynomial is the product

px)=x—r)(x —r) - (x —ry).

Find the coefficients in the expression p(x) = Z_V,l-:o ajx’. Test your code on the
Wilkinson polynomials in Computer Problems 3.1.10 and 3.3.9. Explain why this task
of getting the power form of the polynomial is trivial, whereas the inverse problem of

finding the roots from the power form is quite difficult.

A prime number is a positive integer that has no integer factors other than itself and 1.
How many prime numbers are there in each of these open intervals: (1, 40), (1, 80),
(1, 160), and (1, 2000)? Make a guess as to the percentage of prime numbers among
all numbers.

Mathematical software systems such as Maple and Mathematica do both numerical cal-
culations and symbolic manipulations. Verify symbolically that a nested multiplication
is correct for a general polynomial of degree ten.
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1.2 Review of Taylor Series

Most students will have encountered infinite series (particularly Taylor series) in their
study of calculus without necessarily having acquired a good understanding of this topic.
Consequently, this section is particularly important for numerical analysis, and deserves
careful study.

Once students are well grounded with a basic understanding of Taylor series, the Mean-
Value Theorem, and alternating series (all topics in this section) as well as computer number
representation (Section 2.2), they can proceed to study the fundamentals of numerical
methods with better comprehension.

Taylor Series

Familiar (and useful) examples of Taylor series are the following:

2 ooxk
eX:1+x+—+—+ o (<o (D
k=0 "
. RN o0 e
sinx =x = 50+ 5 - =k§<—>—(2k+l)! (Ix] < o0) (2)
xz  x* - , X
Cosx=1_2_1+4_!_m:,§(_l) Y (lx] < 00) (3)
1 o0
—1_x=1+x+x2+x3+-~=zxk (x| < 1) ()
2 o0
1n(1+x)—x—%+—— Z 1)k] (=l<x<D ©)

For each case, the series represents the given function and converges in the interval specified.
Series (1)—(5) are Taylor series expanded about ¢ = 0. A Taylor series expanded about
c=1is

Inx) =(x—1) —

(x—21)2+(x—1)3 =§: 1)kl(x D)k
k=1

where 0 < x < 2. The reader should recall the factorial notation
M=1:2.3.4.....n

for n > 1 and the special definition of 0! = 1.
Series of this type are often used to compute good approximate values of complicated
functions at specific points.
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EXAMPLE1 Use five terms in Series (5) to approximate In(1.1).

Solution Taking x = 0.1 in the first five terms of the series for In(1 + x) gives us
0.01 0.001 0.0001 0.00001

In(1.1) 0.1 — — =0.09531 03333....

n(-D 2 T3 i s
where ~ means “approximately equal.” This value is correct to six decimal places of
accuracy. [ |

On the other hand, such good results are not always obtained in using series.

EXAMPLE 2 Try to compute e® by using Series (1).

Solution The result is

68—1+8+%+2+@+@
B 26 24 120
It is apparent that many terms will be needed to compute e® with reasonable precision. By
repeated squaring, we find e? = 7.38905 6, e* = 54.5981500, and e® = 2980.95798 7. The

first six terms given above yield 570.06666 5. |

These examples illustrate a general rule:

A Taylor series converges rapidly near the point of expansion and slowly (or not
at all) at more remote points.

A graphical depiction of the phenomenon can be obtained by graphing a few partial
sums of a Taylor series. In Figure 1.2, we show the function

y = sinx
y
Sl
2+
] -
\\
\\
\\ SS
I I I 0 I I Pasin x
=3 -2 -1 1 2 3
N
N
N
\\
~ Lk
FIGURE 1.2 L
Approximations S5
to sin x
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and the partial-sum functions

Sl—x

x3
S}ZX—E

x3 XS
Se—m x — 4+
S=Y TS T 0

which come from Series (2). While §; may be an acceptable approximation to sin x when
x =~ 0, the graphs for S; and S5 match that of sin x on larger intervals about the origin.
All of the series illustrated above are examples of the following general series:

FORMAL TAYLOR SERIES FOR f ABOUT ¢

f ( )( —C)2+f3$6)

(k)
Z f ( ) . k (6)

f&x) ~ flo)+ fox—c) + (x—c)P +--

Here, rather than using =, we have written ~ to indicate that we are not allowed to assume
that f(x) equals the series on the right. All we have at the moment is a formal series that
can be written down provided that the successive derivatives f’, f”, f”, ... exist at the
point c. Series (6) is called the “Taylor series of f at the point ¢.”

In the special case ¢ = 0, Series (6) is also called a Maclaurin series:

e~ 10+ ot P g Loy
©rH)((
roo~ Y @

k=0
The first term is f(0) when k = 0.
What is the Taylor series of the function
fx) =3x" = 2x* +15x* + 13x> — 12x — 5
at the point ¢ = 2?
To compute the coefficients in the series, we need the numerical values of f®(2) for
k > 0. Here are the details of the computation:

fx) =3x"—2x*+15x3 +13x2 - 12x =5 f@2) =207

fl(x) = 15x* — 8x3 +45x> 4+ 26x — 12 f'(2) =396
f"(x) = 60x3 —24x2 4+ 90x + 26 £'2) =590
f(x) = 180x* — 48x + 90 @) =714
@ (x) =360x — 48 @) =672
FO(x) =360 £9(2) = 360

fPx) =0 FR@2) =0
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for k > 6. Therefore, we have

f(x) ~ 207 + 396(x — 2) +295(x — 2)*
+ 119(x —2)° +28(x —2)* +3(x —2)°

In this example, it is not difficult to see that ~ may be replaced by =. Simply expand all the
terms in the Taylor series and collect them to get the original form for f. Taylor’s Theorem,
discussed soon, will allow us to draw this conclusion without doing any work! |

Complete Horner's Algorithm

An application of Horner’s algorithm is that of finding the Taylor expansion of a polynomial
about any point. Let p(x) be a given polynomial of degree n with coefficients g, as in
Equation (2) in Section 1.1, and suppose that we desire the coefficients ¢, in the equation

p(x) - anxn _'_an—lxn_1 + - +a0
=c,(x =1+ (x ="+ o (x —71) + oo

Of course, Taylor’s Theorem asserts that ¢; = p® (r)/k!, but we seek a more efficient
algorithm. Notice that p(r) = co, so this coefficient is obtained by applying Horner’s
algorithm to the polynomial p with the point r. The algorithm also yields the polynomial

‘I(X) = =C,,(x—r)"_1—|—cn,](x —r)”_2_|_...+c]

Pe) = p)
r

This shows that the second coefficient, ¢y, can be obtained by applying Horner’s algorithm
to the polynomial ¢ with point r, because ¢; = ¢(r). (Notice that the first application of
Horner’s algorithm does not yield g in the form shown but rather as a sum of powers of x.
(See Equations (3)—(4) in Section 1.1.) This process is repeated until all coefficients ¢, are
found.

We call the algorithm just described the complete Horner’s algorithm. The pseu-
docode for executing it is arranged so that the coefficients c¢; overwrite the input coeffi-
cients ay.

integer n, k, j; realr; realarray (a;)o.,
fork =0ton — 1do
for j =n—1tokdo
aj <—aj+raj
end for
end for

This procedure can be used in carrying out Newton’s method for finding roots of a poly-
nomial, which we discuss in Chapter 3. Moreover, it can be done in complex arithmetic to
handle polynomials with complex roots or coefficients.

Using the complete Horner’s algorithm, find the Taylor expansion of the polynomial
px) =x* —4x° + 7x* = 5x 42

about the point r = 3.
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Solution The work can be arranged as follows:

1 -4 7 =5 2
3) 3 -3 12 21
1 -1 4 7 23
3 6 30
I 2 10 37
3 15
1 5 25
3
1 8
The calculation shows that
p(x) = (x —3)* +8(x —3)> +25(x —3)> +37(x —3) +23 u

Taylor's Theorem in Terms of (x — ¢)

B THEOREM 2 TAYLOR'S THEOREM FOR £(x)

If the function f possesses continuous derivatives of orders 0, 1,2,...,(n + 1) ina
closed interval I = [a, b], then for any ¢ and x in /,
~ [P -

fx) = kz; =0 + Eng ()

where the error term E, ;; can be given in the form
FO0E)

BRCESY

Here £ is a point that lies between ¢ and x and depends on both.

n+1 (x __c)n+l

In practical computations with Taylor series, it is usually necessary to fruncate the
series because it is not possible to carry out an infinite number of additions. A series is
said to be truncated if we ignore all terms after a certain point. Thus, if we truncate the
exponential Series (1) after seven terms, the result is

2 x3 x4 xS x6

X
ex%1+x+i+§+z+§+a

This no longer represents e* except when x = 0. But the truncated series should approximate

e*. Here is where we need Taylor’s Theorem. With its help, we can assess the difference

between a function f and its truncated Taylor series.

The explicit assumption in this theorem is that f(x), f'(x), f"(x), ..., f"*D(x) are
all continuous functions in the interval I = [a, b]. The final term E, ;| in Equation (8) is the
remainder or error term. The given formula for E, . is valid when we assume only that
£ +D exists at each point of the open interval (a, b). The error term is similar to the terms
preceding it, but notice that f"*D must be evaluated at a point other than c. This point
& depends on x and is in the open interval (c, x) or (x, ¢). Other forms of the remainder
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are possible; the one given here is Lagrange’s form. (We do not prove Taylor’s Theorem
here.)

Derive the Taylor series for e* at ¢ = 0, and prove that it converges to e* by using Taylor’s
Theorem.

If f(x) =e*, then f®(x) = e for k > 0. Therefore, f®(c) = f®(0) = ¢ =1 for all k.
From Equation (8), we have

=
>~

X + eé n+1 (9)
e = — X
(n+ 1!

| =

Now let us consider all the values of x in some symmetric interval around the origin, for
example, —s < x <s. Then |x| <s, |€] <5, and €° < e°. Hence, the remainder term satisfies
this inequality:

s
n+l __

X< lim ——
(n+ 1! n—oo (n + 1)!
Thus, if we take the limit as n — oo on both sides of Equation (9), we obtain
ok

,,ILHJOZ k' - X!

k=0 u

n—o0

This example illustrates how we can establish, in specific cases, that a formal Taylor
Series (6) actually represents the function. Let’s examine another example to see how the
formal series can fail to represent the function.

Derive the formal Taylor series for f(x) = In(1 + x) at ¢ = 0, and determine the range of
positive x for which the series represents the function.

We need f®(x) and £%(0) for k > 1. Here is the work:

Sfx) =In1+x) fO) =0
fx) =0+x" 10 =1
f'x) =—=(1+x)7 £7(0) =—1
f(x) =2(1+x)73 £7(0) =2
fO@) =—6(1+x)"* F®0) = -6

fO@ = DR = DA+ fO0) = (=D k- 1!

Hence by Taylor’s Theorem, we obtain

— - _ k=Dl (=Dl &) .
ln(1+x)—;( 1) e m

_Z( 1)]( 1x ( 1): (1+%_)—n 1 ng1 (10)
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For the infinite series to represent In(1 + x), it is necessary and sufficient that the error
term converge to zero as n — 00. Assume that 0 < x < 1. Then 0 £ & < x (because zero is
the point of expansion); thus, 0 <x/(1 4+ &) < 1. Hence, the error term converges to zero
in this case. If x > 1, the terms in the series do not approach zero, and the series does not
converge. Hence, the series represents In(1 + x) if 0 <x < 1 but not if x > 1. (The series
also represents In(1 + x) for —1 <x < Obutnotifx < — 1.) [ |

Mean-Value Theorem

The special case n = 0 in Taylor’s Theorem is known as the Mean-Value Theorem. It is
usually stated, however, in a somewhat more precise form.

B THEOREM 3 MEAN-VALUE THEOREM

If f is a continuous function on the closed interval [a, b] and possesses a derivative
at each point of the open interval (a, b), then

f®) = f@+®G-a)f'E)

for some & in (a, b).

Hence, the ratio [ f(b) — f(a)]/(b — a) is equal to the derivative of f at some point &
between a and b; that is, for some & € (a, b),
/ f () — f(a)
1) = T
—a
The right-hand side could be used as an approximation for f’(x) at any x within the interval
(a, b). The approximation of derivatives is discussed more fully in Section 4.3.

Taylor's Theorem in Terms of h

Other forms of Taylor’s Theorem are often useful. These can be obtained from the basic
Formula (8) by changing the variables.

B COROLLARY 1 TAYLOR'S THEOREM FOR f(x + h)

If the function f possesses continuous derivatives of order 0, 1,2,...,(n + 1) in a
closed interval I = [a, b], then for any x in /,
~ P,
f(x+h)=kz; ot B (11)
where 4 is any value such that x + £ is in / and where
(n+1)
PO i pye
(n+1)!

for some & between x and x + 4.
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The form (11) is obtained from Equation (8) by replacing x by x + & and replacing c by x.
Notice that because / can be positive or negative, the requirement on £ means x <& <
x+hifh>0o0orx+h <& <xifh <O.

The error term E,,; depends on & in two ways: First, i"*! is explicitly present;
second, the point & generally depends on 4. As h converges to zero, E, | converges to zero
with essentially the same rapidity with which #"*! converges to zero. For large n, this is
quite rapid. To express this qualitative fact, we write

E, = O(hn+1)
as h — 0. This is called big O notation, and it is shorthand for the inequality
|Eyii| < ClRI™!

where C is a constant. In the present circumstances, this constant could be any number for
which | f#+D(t)|/(n 4+ 1)! £ C, for all ¢ in the initially given interval, /. Roughly speaking,

E,.1 = O(h"™") means that the behavior of E,,; is similar to the much simpler expression
hn+1 .

It is important to realize that Equation (11) corresponds to an entire sequence of the-
orems, one for each value of n. For example, we can write out the cases n = 0, 1,2 as
follows:

fx+h) = f@)+ f'¢EDh
= f(x)+Oh)

a4 = F@ + Fh+ o, fEN
= 1) + /@) + O
PR = FO)+ F+ 3 1G4 30 S G’
= FO)+ £+ 5 /@R + O
The importance of the error term in Taylor’s Theorem cannot be stressed too much. In

later chapters, many situations require an estimate of errors in a numerical process by use
of Taylor’s Theorem. Here are some elementary examples.

Expand +/1 + A in powers of h. Then compute +/1.00001 and +/0.99999.

Let f(x) = x"/2. Then f'(x) = 3x7'2, f"(x) = —3x 2, f”(x) = 3x~/?, and so on.
Now use Equation (11) with x = 1. Taking n = 2 for illustration, we have
1 1 1
«/1+h=1+§h—§h2+ﬁh3s‘5/2 (12)

where £ is an unknown number that satisfies 1 < & < 1 4 h, if 1 > 0. It is important to
notice that the function f(x) = /x possesses derivatives of all orders at any point x > 0.
In Equation (12), let 7 = 107>, Then

A/1.00001 ~ 14+ 0.5 x 107> — 0.125 x 10~'% = 1.00000 49999 87500
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By substituting —# for & in the series, we obtain
1 1 1

«/1—h=1—§h——h2—

B3E5/2
8 16 §

Hence, we have

+/0.99999 = 0.99999 49999 87500

Since 1 < & < 1 + h, the absolute error does not exceed

1 5. sp Lo s
Eh 3 < RIO = 0.00000 00000 00000 0625

and both numerical values are correct to all 15 decimal places shown. [ |

Alternating Series

Another theorem from calculus is often useful in establishing the convergence of a series
and in estimating the error involved in truncation. From it, we have the following important
principle for alternating series:

If the magnitudes of the terms in an alternating series converge monotonically to
zero, then the error in truncating the series is no larger than the magnitude of the
first omitted term.

This theorem applies only to alternating series—that is, series in which the successive
terms are alternately positive and negative.

B THEOREM 4 ALTERNATING SERIES THEOREM

Ifayza,>--- >2a,> ---0forall n and lim,_. o, a, = 0, then the alternating series
a) —a2+a3—a4+---

converges; that is,

o0 n

> (=Dg = lim Y (-1)*'gy = lim S, = S

n—o0 n—o00

k=1 k=1

where S is its sum and S, is the nth partial sum. Moreover, for all n,

[S — Sul £ apyy

EXAMPLE 8 If the sine series is to be used in computing sin 1 with an error less than % x 107°, how
many terms are needed?

Solution From Series (2), we have
1 1 1

51n1=1—§+§_ﬁ+...
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If we stop at 1/(2n — 1)!, the error does not exceed the first neglected term, which is
1/(2n 4 1)!. Thus, we should select n so that
1 1

- < _—x10"°

n+ 1! 2
Using logarithms to base 10, we obtain log(2n + 1)! > log2 + 6 = 6.3. With a calcula-
tor, we compute a table of values for logn! and find that log 10! ~ 6.6. Hence, if n > 5,
the error will be acceptable. |

If the logarithmic Series (5) is to be used for computing In2 with an error of less than

% x 107°, how many terms will be required?

To compute In2, we take x = 1 in the series, and using ~ to mean approximate equality,
we have
S—ma~io Lyl b e
2 3 4 n
By the Alternating Series Theorem, the error involved when the series is truncated with n
terms is

S

1
[§ — Spl £ ——
n+1
We select n so that
1 1
<-x10"°
n+1 2

Hence, more than two million terms would be needed! We conclude that this method
of computing In2 is not practical. (See Problems 1.2.10 through 1.2.12 for several good
alternatives.) [ |

A word of caution is needed about this technique of calculating the number of terms
to be used in a series by just making the (n + 1)st term less than some tolerance. This
procedure is valid only for alternating series in which the terms decrease in magnitude to
zero, although it is occasionally used to get rough estimates in other cases. For example,
it can be used to identify a nonalternating series as one that converges slowly. When this
technique cannot be used, a bound on the remaining terms of the series has to be established.
Determining such a bound may be somewhat difficult.

It is known that

7.[4

—2174 274 374
%0 +270 4370+

How many terms should we take to compute 774/90 with an error of at most % x 10767
A naive approach is to take

142 437
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where 7 is chosen so that the next term, (n + 1)7%, is less that % x 107, This value of 7 is
37, but this is an erroneous answer because the partial sum

37
S37 = Z Kt
k=1

differs from 7#/90 by approximately 6 x 10~°. What we should do, of course, is to select
n so that all the omitted terms add up to less than % x 107°; that is,

o0

1
Z Kt <=~ x10°
2

k=n+1
By a technique familiar from calculus (see Figure 1.3), we have

3|

Z k’4</ xtdx = -
n 3

k=n+1 o

T 2,3
N 3n

Thus, it suffices to select n so that (3n*)™' < 1 x 107, or n > 88. (A more sophisticated
analysis will improve this considerably.)

y=x"*
(n+1)~*
n+2)~*4
n+3)~4
etc.
X
n n+l n+2 n+3 [}

Summary

(1) The Taylor series expansion about ¢ for f(x) is

n (k)
f(x) = Z f (C) (-x - C)k + En+l

—~ k!
with error term
fUE) 0
Epp="——c(x—o)""!
(n+1)!
A more useful form for us is the Taylor series expansion for f(x + /), which is

" (k)
rerm=3 1y,
k=0 ’
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with error term

f(n+1)(é§)

n+1 = (n T 1)‘ h’H—l = O(hVH—l)

(2) An alternating series

§=) (=D""a
k=1

converges when the terms ¢, converge downward to zero. Furthermore, the partial sums S,
differ from S by an amount that is bounded by

|S_ Sn| §an+1

Additional References

For additional study, see the following references found in the Bibliography: Atkinson [1988,
1993], Burden and Faires [2001], Conte and de Boor [1980], Dahlquist and Bjorck [1974],
Forsythe, Malcolm, and Moler [1977], Froberg [1969], Gautschi [1997], Gerald and
Wheatley [1999], Golub and Ortega [1993], Golub and Van Loan [1996], Himmerlin and
Hoffmann [1991], Heath [2002], Higham and Higham [2006], Hildebrand [1974], Isaacson
and Keller [1966], Kahaner, Moler, and Nash [1989], Kincaid and Cheney [2002], Maron
[1991], Moler [2004], Nievergelt, Farra, and Reingold [1974], Oliveira and Stewart [2006],
Ortega [1990a], Phillips and Taylor [1973], Ralston [1965], Ralston and Rabinowitz [2001],
Rice [1983], Scheid [1968], Skeel and Keiper [1992], Van Loan [1997, 2000], Wood [1999],
and Young and Gregory [1988].

Some other numerical methods books with an emphasis on a particular mathematical
software system or computer language are Chapman [2000], Devitt [1993], Ellis and Lodi
[1991], Ellis, Johnson, Lodi, and Schwalbe [1997], Garvan [2002], Knight [2000], Lindfield
and Penny [2000], Press, Teukolsky, Vetterling, and Flannery [2002], Recktenwald [2000],
Schilling and Harris [2000], and Szabo [2002].

Problems 1.2

1. The Maclaurin series for (1 4+ x)" is also known as the binomial series. It states that

(n—1) nn—1)n-—2)
o v 3! x e

Derive this series. Then give its particular forms in summation notation by letting

n=2n=3andn = % Next use the last form to compute +/1.0001 correct to

15 decimal places (rounded).

n n 2
I1+x)'"=1+nx+ x“ <1

2. (Continuation) Use the series in the preceding problem to obtain Series (4). How
could this series be used on a computing machine to produce x/y if only addition and
multiplication are built-in operations?

3. (Continuation) Use the previous problem to obtain a series for (1 + x2)~'.
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4. Why do the following functions not possess Taylor series expansions at x = 0?

‘a. f(x) =./x “b. f(x)=|x| c. f(x)=arcsin(x — 1)
d. f(x)=cotx ‘e. f(x)=logx f. f(x)=x"

“5. Determine the Taylor series for cosh x about zero. Evaluate cosh(0.7) by summing four
terms. Compare with the actual value.

6. Determine the first two nonzero terms of the series expansion about zero for the
following:

COS X

‘a, ¢ h. sin(cos x) c. (cosx)?(sinx)

“7. Find the smallest nonnegative integer m such that the Taylor series about m for
(x — 1)!'/? exists. Determine the coefficients in the series.

“8. Determine how many terms are needed to compute e correctly to 15 decimal places
(rounded) using Series (1) for e*.

“9. (Continuation) If x < 0 in the preceding problem, what are the signs of the terms in
the series? Loss of significant digits can be a serious problem in using the series. Will
the formula e™ = 1/¢* be helpful in reducing the error? Explain. (See Section 2.3
for further discussion.) Try high-precision computer arithmetic to see how bad the
floating-point errors can be.

10. Show how the simple equation In2 = In[e(2/e)] can be used to speed up the calculation
of In 2 in Series (10).

“11. What is the series for In(1 — x)? What is the series for In[(1 + x)/(1 — x)]?

“12. (Continuation) In the series for In[(1 + x)/(1 — x)], determine what value of x to use if
we wish to compute In 2. Estimate the number of terms needed for ten digits (rounded)
of accuracy. Is this method practical?

13. Use the Alternating Series Theorem to determine the number of terms in Series (5)
needed for computing In 1.1 with error less than % x 1078,

14. Write the Taylor series for the function f(x) = x* —2x% +4x — 1, using x = 2 as the
point of expansion; that is, write a formula for f(2 + h).

15. Determine the first four nonzero terms in the series expansion about zero for

“a. f(x) = (sinx) + (cosx) and find an approximate value for f(0.001)
“b. g(x) = (sinx)(cos x) and find an approximate value for g(0.0006).

Compare the accuracy of these approximations to those obtained from tables or via a
calculator.

“16. Verify this Taylor series and prove that it converges on the interval —e < x <e.
2 3 4

n(e+x)=1+>— 4 % 4 1+i(_l)k_l(x)k
n(e xX) = [ — R R _
e 2e2  3e3  4et — k e

“17. How many terms are needed in Series (3) to compute cos x for |x| < % accurate to
12 decimal places (rounded)?



“18.

19.

“20.
21.

22,

“23.
“24.
25.

26.

27.

“28.

29.

30.

31.

“32.

33.

34.
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A function f is defined by the series

00 k
Fo) =Y =1k (’;4)

k=1

Determine the minimum number of terms needed to compute f(1) with error less
than 1078,

Verify that the partial sums s, = Zf:o x'/i! in the series for ¢*, Series (1), can be
written recursively as sy = sx_1 + f;, where so = 1,1y = x,and t, = (x/k)t;_;.

What is the fifth term in the Taylor series of (1 — 24)'/2?

Show that if E = O(h"), then E = O(h™) for any nonnegative integer m < n. Here
h — 0.

Show how p(x) = 6(x +3) + 9(x + 3)> — 5(x + 3)® — (x + 3)'! can be efficiently
evaluated.

What is the second term in the Taylor series of «/4x — 1 about 4.25?
How would you compute a table of logn! for 1 <n < 1000?

For small x, the approximation sinx & x is often used. For what range of x is this
good to a relative accuracy of % x 107142

In the Taylor series for the function 3x> — 7 4 cos x (expanded in powers of x), what
is the coefficient of x2?

In the Taylor series (about 77 /4) for the function sinx + cos x, find the third nonzero
term.

By using Taylor’s Theorem, one can be sure that for all x that satisfy |x| < 1, [cos x —
(1 — x2/2)| is less than or equal to what numerical value?

Find the value of & that serves in Taylor’s Theorem when f(x) = sinx, withx = 7 /4,
¢c=0,and n = 4.

Use Taylor’s Theorem to find a linear function that approximates cosx best in the
vicinity of x = 57/6.

For the alternating series S, = ZZZO(—I)"ak, with ¢y > a; > --- > 0, show by
induction that Sy > S > S4 > ---, that §; < S35 < S5 < ---, and that 0 < S,, —
Sont1 = Qouy1.

What is the Maclaurin series for the function f(x) = 3 + 7x — 1.33x% + 19.2x*?
What is the Taylor series for this function about ¢ = 2?

In the text, it was asserted that 22=0 x*/ k! represents e* only at the point x = 0. Prove
this.

Determine the first three terms in the Taylor series in terms of & for ¢*~". Using three
terms, one obtains ¢*%*° &~ Ce, where C is a constant. Determine C.
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“35.

36.

37.

“38.

“39.

40.

41.

“42,

43.

44.

45.

46.

“47.

48.

49.

Introduction

What is the least number of terms required to compute 7 as 3.14 (rounded) using the
series
4 4 n 4 4 n
T=d4— - .
35 7

Using the Taylor series expansion in terms of /4, determine the first three terms in
the series for ¢*"@*+"_ Evaluate ¢*"?0%" accurately to ten decimal places as Ce for
constant C.

Develop the first two terms and the error in the Taylor series in terms of / for In(3 —2#h).

Determine a Taylor series to represent cos(rr/3 + k). Evaluate cos(60.001°) to eight
decimal places (rounded). Hint: 7 radians equal 180 degrees.

Determine a Taylor series to represent sin(;w/4 + h). Evaluate sin(45.0005°) to nine
decimal places (rounded).

Establish the first three terms in the Taylor series for csc(w/6 + h). Compute
¢sc(30.00001°) to the same accuracy as the given data.

Establish the Taylor series in terms of / for the following:
a. et b. sin(x — 3h) c. In[(x —h?)/(x + h?)]
Determine the first three terms in the Taylor series in terms of & for (x — /)™, where

m is an integer constant.

Given the series
1427t =34t
how many terms are needed to obtain four decimal places (chopped) of accuracy?

How many terms are needed in the series

3 X X

t — SN — —_— e e .
arccox_2 x+3 5+7

to compute arccot x for x> < 1 accurate to 12 decimal places (rounded)?

Determine the first three terms in the Taylor series to represent sinh(x + %). Evaluate
sinh(0.0001) to 20 decimal places (rounded) using this series.

Determine a Taylor series to represent C* " for constant C. Use the series to find an
approximate value of 10'°%! to five decimal places (rounded).

Stirling’s formula states that n! is greater than, and very close to, ~/27nn"e™. Use
this to find an n for which 1/n! < 1 x 1074,

Develop the first two nonzero terms and the error term in the Taylor series in powers
of h for In[1 — (h/2)]. Approximate In(0.9998) using these two terms.

L’Hopital’s rule states that under suitable conditions,

_fx) @
1m =
voa g(x)  gla)
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It is true, for instance, when f and g have continuous derivatives in an open interval
containing a, and f(a) = g(a) = 0 # g'(a). Establish L’Hopital’s rule using the
Mean-Value Theorem.

(Continuation) Evaluate the following numerically and use the previous problem to
show that

. sin x . arctan x ) cosx + 1
a. lim,_o——=1 “b. lim,_¢ =1 “c. limy_,, ——— =0
X

sinx

Verify that if we take only the terms up to and including x?"~'/(2n — 1)! in Series (2)
for sinx and if |x| < +/6, then the error involved does not exceed |x|¥**'/(2n + 1)!.
How many terms are needed to compute sin(23) with an error of at most 10782 What
problems do you foresee in using the series to compute sin(23)? Show how to use
periodicity to compute sin(23). Show that each term in the series can be obtained from
the preceding one by a simple arithmetic operation.

Expand the error function

2 R
erf(x) = \/—7?/ e dt
0

in a series by using the exponential series and integrating. Obtain the Taylor series
of erf(x) about zero directly. Are the two series the same? Evaluate erf(1) by adding
four terms of the series and compare with the value erf(1) &~ 0.8427, which is correct
to four decimal places. Hint: Recall from the Fundamental Theorem of Calculus
that

d X
d_/ f@de = f(x)
X Jo

Establish the validity of the Taylor series

2k—1

tanx = e —1<x<1
arctan x ;( ) 1 (—-1<x<1)

Is it practical to use this series directly to compute arctan(1l) if ten decimal places
(rounded) of accuracy are required? How many terms of the series would be needed?
Will loss of significance occur? Hint: Start with the series for 1/(1 4+ x?) and integrate
term by term. Note that this procedure is only formal; the convergence of the resulting
series can be proved by appealing to certain theorems of advanced calculus.

It is known that

T=4-8) (16K — 1)

k=1
Discuss the numerical aspects of computing 7 by means of this formula. How many
terms would be needed to yield ten decimal places (rounded) of accuracy?

Taylor’s Theorem for f(x) expanded about ¢ concerns this equation:
! 1 "
fx) = f(C)+(x—C)f(C)+§(x—C)2f e+

1 n— n— 1 n g
e A AR OB e TEE OO



36 Chapter 1 Introduction

56.

Use this to determine how many terms in the series for ¢* are needed to compute e with
error at most 1071°. Hint: Use these approximate values of n!: 9! = 3.6 x 10°, 11! =
4.0 x 107, 12! = 4.8 x 103, 13! = 6.2 x 10%, 14! = 8.7 x 10'°, and 15! = 1.3 x 10'%.
a. Repeat Example 3 using the complete Horner’s algorithm.

b. Repeat Example 4 using the Taylor series of the polynomial p(x).

Computer Problems 1.2

“1.

10.

Everyone knows the quadratic formula (—b + +/b*> — 4ac)/(2a) for the roots of the
quadratic equation ax? + bx + ¢ = 0. Using this formula, by hand and by computer,
solve the equation x* + 108x + ¢ = 0 when ¢ = 1 and 10®. Interpret the results.

. Use a computer algebra system to obtain graphs of the first five partial sums of the

series

2k—1

o0 X —
arctan x = Z(—l)k“—
2 2d—1

. Use a graphical computer package to reproduce the graphs in Figure 1.2 as well as the

next two partial sums—that is, Sy and Ss. Analyze the results.

. Use a computer algebra system to obtain the Taylor series given in Equations (1)—(5),

obtaining the final form at once without displaying all the derivatives.

. Use two or more computer algebra systems to carry out Example 6 to 50 decimal

places. Are their answers the same and correct to all digits obtained? Repeat using /x
expanded about xy = 1.

. Use a computer algebra system to verify the results in Examples 7 and 9.

. Design and carry out an experiment to check the computation of x” on your computer.

Hint: Compare the computations of some examples, such as 3223 and 81", to their
correct values. A more elaborate test can be made by comparing single-precision results
to double-precision results in various cases.

. Verify that x* = ¢”"*. Try to find values of x and y for which these two expressions

differ in your computer. Interpret the results.

. (Continuation) For cos(x — y) = (cosx)(cos y) + (sin x)(sin y), repeat the preceding

computer problem.

The number of combinations of n distinct items taken m at a time is given by the
binomial coefficient

(1) = mro=;

for integers m and n, with 0 <m <n. Recall that () = () = 1.
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a. Write
integer function ibin(n, m)
which uses the definition above to compute ().
b. Verify the formula
(n ) _ mm(ﬁm)[n —k+ 1}
m/ P k
for computing the binomial coefficients. Write

integer function jbin(n, m)

that is based on this formula.
¢. Verify the formulas (Pascal’s triangle)
ajo=a; =1 0<izn)
aij =ai—1,j-1 tai-1,j gizgn, 1<jsi—1

Using Pascal’s triangle, compute the binomial coefficients

(’.) —a,; (0<i jsn)
J

and store them in the lower triangular part of the array (a;;),x,. Write
integer function kbin(n, m)
that does an array look-up after first allocating and computing entries in the array.

11. The length of the curved part of a unit semicircle is 7. We can approximate 7 by using
triangles and elementary mathematics. Consider the semicircle with the arc bisected as
in Figure (a). The hypotenuse of the right triangle is /2. Hence, a rough approximation
to 7 is given by 2+/2 & 2.8284. In Figure (b), we consider an angle 6 that is a fraction
1/ k of the semicircle. The secant shown has length 2 sin(6/2), and so an approximation
to 7 is 2k sin(6/2). From trigonometry, we have

1 sin 0
sin —9——(1—0059)——( — V1 —sin? 9)
2 4+24/1 — sin?

Now let 8, be the angle that results from division of the semicircular arc into 2"~! pieces.
Next let S, = sin®6, and P, = 2"/S,;,. Show that S, = S,/(2 + 2T =S5, ) and
P, is an approximation to 7. Starting with S, = 1 and P; = 2, compute S,,; and P,
recursively for 2 <n <20.

12. The irrational number 7 can be computed by approximating the area of a unit circle as
the limit of a sequence py, p», ... described as follows. Divide the unit circle into 2"
sectors. (The figure shows the case n = 3.) Approximate the area of the sector by the
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area of the isosceles triangle. The angle 6, is 27 /2". The area of the triangle is % sSin6,.
(Verify.) The nth approximation to 7 is then p, = 2" 'sin6,. Prove that sinf, =
sin6,_;/{2[14 (1 —sin*§,_,)"/?]}'/2 by means of well-known trigonometric identities.
Use this recurrence relation to generate the sequences sin 6, and p,, (3 < n <20) starting
with sin 6, = 1. Compare with the computation 4.0 arctan(1.0).

On

13. (Continuation) Calculate 7 by a metho

d similar to that of the preceding computer

problem, where the area of the unit circle is approximated by a sequence of trapezoids

as illustrated by the figure.

|

\

~— |

i

“14. Write a routine in double or extended precision to implement the following algorithm

for computing .

integer k; reala,b,c,d,e, f, g
a<0
b« 1
c<—1/V2
d < 0.25
e <1
for k = 1to 5 do
a<b
b« (b+c)/2
c < \Jca
d <d—e(b—a)
e < 2e
f < b*/d
g < (b+¢)?*/(4d)
outputk, f, |f — 7|, g lg—7
end for
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Which converges faster, f or g? How accurate are the final values? Also compare with
the double- or extended-precision computation of 4.0 arctan(1.0). Hint: The value of
7 correct to 36 digits is

3.1415926535 89793 23846 26433 83279 50288

Note: A new formula for computing & was discovered in the early 1970s. This algorithm
is based on that formula, which is a direct consequence of a method developed by Gauss
for calculating elliptic integrals and of Legendre’s elliptic integral relation, both known
for over 150 years! The error analysis shows that rapid convergence occurs in the compu-
tation of 7, and the number of significant digits doubles after each step. (The interested
reader should consult Brent [1976], Borwein and Borwein [1987], and Salamin [1976].)

Another quadratically convergent scheme for computing 7 was discovered by Borwein
and Borwein [1984] and can be written as

integer k; reala,b,t, x
a<« 2
b <0
X <2442
for k = 1to5do
t < Ja
b<—t(l1+b)/(a+Db)
a < %(t~|— 1/1)
x <~ xb(l1+a)/(1+Db)
output k, x, |x — 7|
end for

Numerically verify that |x — 7| < 1072, Note: Ludolf van Ceulen (1540-1610) was
able to calculate 7 to 36 digits. With modern mathematical software packages such as
Matlab, Maple, and Mathematica, anyone can easily compute 7 to tens of thousands
of digits in seconds!

The Fibonacci sequence 1, 1,2, 3,5, 8, 13, 21, ... is defined by the linear recurrence

relation

rM=1 =1
Ap = dp1+ Aua (I’l 2 3)

A formula for the nth Fibonacci number is
Ay = l(1+f5)n— 1(1—\/§)n
J5 L2 2

Compute 1, (1 £n £50), using both the recurrence relation and the formula. Write three
programs that use integer, single-precision, and double-precision arithmetic, respec-
tively. For each n, print the results using integer, single-precision, and double-precision
formats, respectively.
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“17.

18.

19.

20.

21.

(Continuation) Repeat the experiment, using the sequence given by the recurrence
relation

N

{al:l 012=1<1+\/§)

Oy = 0y + 02 (l’l 2 3)

A closed-form formula is
1 n
o, = 5 (1 + \/§>

(Continuation) Change ++/5 to —+/5, and repeat the computation of «,. Explain the
results.

The Bessel functions J, are defined by
1 [ .
J.(x) = —/ cos(x sin® — n6) do
T Jo

Establish that | J,,(x)| < 1.

a. It is known that J,;(x) = 2nx~'J,(x) — J,_;(x). Use this equation to com-
pute Jo(1), Ji(1), ..., J(l), starting from known values Jy(1) ~ 0.76519 76865
and J;(1) &~ 0.44005 05857. Account for the fact that the inequality |J,(x)| <1 is
violated.

b. Another recursive relation is J,_;(x) = 2nx~'J,(x) — J,41(x). Starting with the
known values Joo(1) &~ 3.873503009 x 1072 and J;9(1) ~ 1.54847 8441 x 10723,
use this equation to compute Jig(1), Ji7(1), ..., Ji(1), Jo(1). Analyze the results.

A calculus student is asked to determine lim,_, (100" /n!) and writes a program to
evaluate xg, X1, X2, ..., X, as follows:

integer parameter n < 100
integer i; realx; x <« 1
fori = 1tondo

x < 100x/1i

output i, x
end for

The numbers printed become ever larger, and the student concludes that
lim,,_, o X, = 00. What is the moral here?

(Maclaurin Series Function Approximations) By using the truncated Maclaurin se-
ries, a function f(x) with n continuous derivatives can be approximated by an nth-
degree polynomial

fO) % py(x) =) cx!
i=0

where ¢; = f9(0)/i!.
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a. Produce and compare computer plots for f(x) = e* and the polynomials p;(x),
P3(X), pa(x), ps(x). Do the higher-order polynomials approximate the exponential
function e* satisfactorily on increasing intervals about zero?

b. Repeat for g(x) = In(1 + x).

22. (Continuation, Rational Padé Approximations) Padé rational approximation is the
best approximation of a function by a rational function of a given order. Often it gives a
better approximation of the function than truncating its Taylor series, and it may work
even when the Taylor series does not converge! Consequently, the Padé rational approx-
imations are frequently used in computer calculations such as for the basic function sin x
as discussed in Computer Problem 2.2.17. Rather than using high-order polynomials,
we use ratios of low-order polynomials. These are called rational approximations. Let

P (X) _ Z:n:o aixi
qk(x) Z];-=0 bjxf

f(x) ~ = Rm,k(x)

where by = 1. Here we have normalized with respect to by # 0 and the values of m
and k are modest. We choose the k coefficients b; and the m + 1 coefficients a; in R, x
to match f and a specified number of its derivatives at the fixed point x = 0. First,
we construct the truncated Maclaurin series >, ¢;x’ in which ¢; = f©(0)/i! and
¢; = 0fori < 0. Next, we match the first m + k + 1 derivatives of R, ; with respect to
x at x = 0 to the first m 4+ k + 1 coefficients ¢;. This leads to the following displayed

equations. Since by = 1, we solve this k x k system of equations for by, bs, ..., by
Cm Cmn—1 o Cp—(k=2)  Cm—(k—1) by —Cm+1
Cmn+1 Cm o Cm—(k=3)  Cm—(k-2) b, —Cm42
Cmtk=2) Cm+(k=3) *°° Cm Cm—1 br—1 —Crmt(k—1)
Cnt(k—1)  Cm4Gk-2) *°° Cm+l Cm by —Cmntk

(Solving systems of linear equations numerically is discussed in Chapters 7 and 8.)
Finally, we evaluate these m + 1 equations for ag, ay, .. ., a,.

J
ajZZC‘[,gbg (]:Oglyim)
=0

Notethata; = Ofor j > mandb; = Ofor j > k. Also,ifk = 0, then R,, ¢ is a truncated
Maclaurin series for f. Moreover, the Padé approximations may contain singularities.

a. Determine the rational functions R; ;(x) and R,,(x). Produce and compare com-
puter plots for f(x) = e*, R, and R,,. Do these low-order rational functions
approximate the exponential function e¢* satisfactorily within [—1, 1]? How do they
compare to the truncated Maclaurin polynomials of the preceding problem?

b. Repeat using R;»(x) and R; ;(x) for the function g(x) = In(1 + x).
Information on the life and work of the French mathematician Herni Eugéne Padé

(1863-1953) can be found in Wood [1999]. This reference also has examples and
exercises similar to these. Further examples of Padé approximation can be seen.
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23. (Continuation) Repeat for the Bessel function Jy(2x), whose Maclaurin series is

4 6 o i

e RS ()

=l

Then determine R, ,(x), R43(x), and R, 4(x) as well as comparing plots.

24. Carry out the details in the introductory example to this chapter by first deriving the
Taylor series for In(1 4 x) and computing In2 ~ 0.63452 using the first eight terms.
Then establish the series In[(1 + x)/(1 — x)] and calculate In2 =~ 0.69313 using
the terms shown. Determine the absolute error and relative errors for each of these
answers.

25. Reproduce Figure 1.2 using your computer as well as adding the curve for Sy.

26. Use a mathematical software system that does symbolic manipulations such as Maple
or Mathematica to carry out

a. Example 3 b. Example 6
27. Can you obtain the following numerical results?

4/1.00001 = 1.00000 49999 87500 06249 96093 77734 37500 0000
4/0.99999 = 0.99999 49999 87499 93749 96093 72265 62500 00000

Are these answers accurate to all digits shown?



Floating-Point Representation
and Errors

Computers usually do not use base-10 arithmetic for storage or computa-
tion. Numbers that have a finite expression in one number system may
have an infinite expression in another system. This phenomenon is illus-
trated when the familiar decimal number 1/10 is converted into the binary
system:

(0.1)10 = (0.000110011001100110011001100110011 ...)2

In this chapter, we explain the floating-point number system and develop
basic facts about roundoff errors. Another topic is loss of significance,
which occurs when nearly equal numbers are subtracted. It is studied and
shown to be avoidable by various programming techniques.

2.1 Floating-Point Representation

The standard way to represent a nonnegative real number in decimal form is with an in-
teger part, a fractional part, and a decimal point between them—for example, 37.21829,
0.00227 1828, and 30 00527.11059. Another standard form, often called normalized
scientific notation, is obtained by shifting the decimal point and supplying appropriate
powers of 10. Thus, the preceding numbers have alternative representations as

37.21829 = 0.3721829 x 10?
0.00227 1828 = 0.2271828 x 1072
3000527.11059 = 0.300052711059 x 10’
In normalized scientific notation, the number is represented by a fraction multiplied by 10",
and the leading digit in the fraction is not zero (except when the number involved is zero).

Thus, we write 79325 as 0.79325 x 10°, not 0.079325 x 10° or 7.9325 x 10* or some
other way.

43
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Normalized Floating-Point Representation

In the context of computer science, normalized scientific notation is also called normalized
floating-point representation. In the decimal system, any real number x (other than zero)
can be represented in normalized floating-point form as

X = io.d1d2d3 ... x 10"

where d; # 0 and 7 is an integer (positive, negative, or zero). The numbers d;, d,, . .. are
the decimal digits 0, 1, 2, 3,4, 5,6, 7, 8, and 9.

Stated another way, the real number x, if different from zero, can be represented in
normalized floating-point decimal form as

x ==£r x 10" (%§r<1)

This representation consists of three parts: a sign that is either 4+ or —, a number r in
the interval 5, 1), and an integer power of 10. The number r is called the normalized
mantissa and n the exponent.

The floating-point representation in the binary system is similar to that in the decimal
system in several ways. If x 0, it can be written as

X =d4q x2" (%§q<1)

The mantissa ¢ would be expressed as a sequence of zeros or ones in the form g =
(0.b1byb5 . . .),, where by # 0. Hence, b; = 1 and then necessarily g > %

A floating-point number system within a computer is similar to what we have just
described, with one important difference: Every computer has only a finite word length and
a finite total capacity, so only numbers with a finite number of digits can be represented.
A number is allotted only one word of storage in the single-precision mode (two or more
words in double or extended precision). In either case, the degree of precision is strictly
limited. Clearly, irrational numbers cannot be represented, nor can those rational numbers
that do not fit the finite format imposed by the computer. Furthermore, numbers may be
either too large or too small to be representable. The real numbers that are representable in
a computer are called its machine numbers.

Since any number used in calculations with a computer system must conform to the
format of numbers in that system, it must have a finite expansion. Numbers that have a
nonterminating expansion cannot be accommodated precisely. Moreover, a number that has
a terminating expansion in one base may have a nonterminating expansion in another. A
good example of this is the following simple fraction as given in the introductory example
to this chapter:

1
0= (0.1)10 = (0.06314 631463146314 .. .)s
= (0.000110011001100110011001100110011 ...),

The important point here is that most real numbers cannot be represented exactly in a
computer. (See Appendix B for a discussion of representation of numbers in difference
bases.)

The effective number system for a computer is not a continuum but a rather peculiar
discrete set. To illustrate, let us take an extreme example, in which the floating-point numbers
must be of the form x = £(0.b,b,b3), x 2%*, where by, by, bs, and m are allowed to have
only the value O or 1.
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List all the floating-point numbers that can be expressed in the form
x = £+(0.b,byb3), x 2% (k,b; € {0, 1})

Solution There are two choices for the 4, two choices for b;, two choices for b,, two choices for b3,

FIGURE 2.1
Positive
machine

numbers in

Example 1

and three choices for the exponent. Thus, at first, one would expect2 x 2 x 2 x 2 x 3 =48
different numbers. However, there is some duplication. For example, the nonnegative num-
bers in this system are as follows:

0.000 x 2° =0 0.000 x 2' =0 0.000 x 271 =0

| | 1
0001 x2°=—~ 000l x2'=- 0001 x2~! = —
x 8 x 4 x 16

2 2 2

0010x2° ==  0010x2' ==  0010x2" ==
8 4 16
0011x20=>  0011x2 =>  00l1x21="
8 4 16

4 4 4
0100x2° == 0.100x2' =—  0100x2 = —
8 4 16

5 5 5

0101 x2°=2>  0101x2' =2 010l x2-1 = >
8 4 16

6 6 6
0110x2°=2  0110x2' =~  0110x2"! = —
x 8 x 4 x 16
0111x2 ="  o1l1x2' =1  olllx2'=_"
8 4 16

Altogether there are 31 distinct numbers in the system. The positive numbers obtained are
shown on a line in Figure 2.1. Observe that the numbers are symmetrically but unevenly

distributed about zero. [ |
0 1 1 3 1 5 3 7 1 5 3 7 1 5 3 A
16 8 16 4 16 8 16 2 8 g 3 7 2 7

If, in the course of a computation, a number x is produced of the form ¢ x 2", where m
is outside the computer’s permissible range, then we say that an overflow or an underflow
has occurred or that x is outside the range of the computer. Generally, an overflow results
in a fatal error (or exception), and the normal execution of the program stops. An underflow,
however, is usually treated automatically by setting x to zero without any interruption of
the program but with a warning message in most computers.

In a computer whose floating-point numbers are restricted to the form in Example 1,
any number closer to zero than % would underflow to zero, and any number outside the
range —1.75 to +1.75 would overflow to machine infinity.

If, in Example 1, we allow only normalized floating-point numbers, then all our numbers
(with the exception of zero) have the form

x = +(0.1byb3), x 2%

This creates a phenomenon known as the hole at zero. Our nonnegative machine numbers

are now distributed as in Figure 2.2. There is a relatively wide gap between zero and the
smallest positive machine number, which is (0.100), x 27! = 41.
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FIGURE 2.2
Normalized
machine
numbers in
Example 1
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Floating-Point Representation

A computer that operates in floating-point mode represents numbers as described earlier
except for the limitations imposed by the finite word length. Many binary computers have
a word length of 32 bits (binary digits). We shall describe a machine of this type whose
features mimic many workstations and personal computers in widespread use. The internal
representation of numbers and their storage is standard floating-point form, which is used
in almost all computers. For simplicity, we have left out a discussion of some of the details
and features. Fortunately, one need not know all the details of the floating-point arithmetic
system used in a computer to use it intelligently. Nevertheless, it is generally helpful in
debugging a program to have a basic understanding of the representation of numbers in
your computer.

By single-precision floating-point numbers, we mean all acceptable numbers in a
computer using the standard single-precision floating-point arithmetic format. (In this dis-
cussion, we are assuming that such a computer stores these numbers in 32-bit words.) This
set is a finite subset of the real numbers. It consists of +0, £00, normal and subnormal
single-precision floating-point numbers, but not NotaNumber (NaN) values. (More detail
on these subjects are in Appendix B and in the references.) Recall that most real numbers
cannot be represented exactly as floating-point numbers, since they have infinite decimal
or binary expansions (all irrational numbers and some rational numbers); for example,
7, e, %, 0.1 and so on.

Because of the 32-bit word-length, as much as possible of the normalized floating-point
number

+q x 2"
must be contained in those 32 bits. One way of allocating the 32 bits is as follows:

sign of ¢ 1 bit
integer |m| 8 bits
number ¢ 23 bits

Information on the sign of m is contained in the eight bits allocated for the integer |m|.
In such a scheme, we can represent real numbers with |m| as large as 27 — 1 = 127. The
exponent represents numbers from —127 through 128.

Single-Precision Floating-Point Form

We now describe a machine number of the following form in standard single-precision
floating-point representation:
(=1 x 27177 x (1.f),

The leftmost bit is used for the sign of the mantissa, where s = 0 corresponds to + and s = 1
corresponds to —. The next eight bits are used to represent the number c in the exponent



FIGURE 2.3
Partitioned
floating-point
single-precision
computer word
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Sign of mantissa —ts|biased exponent ¢ f from one-plus mantissa (1.f),

9 bits 23 bits

radix point

of 27127 which is interpreted as an excess-127 code. Finally, the last 23 bits represent
f from the fractional part of the mantissa in the 1-plus form: (1.f),. Each floating-point
single-precision word is partitioned as in Figure 2.3.

In the normalized representation of a nonzero floating-point number, the first bit in the
mantissa is always 1 so that this bit does not have to be stored. This can be accomplished by
shifting the binary point to a “1-plus” form (1.f),. The mantissa is the rightmost 23 bits and
contains f with an understood binary point as in Figure 2.3. So the mantissa (significand)
actually corresponds to 24 binary digits since there is a hidden bit. (An important exception
is the number £0.)

We now outline the procedure for determining the representation of a real number x. If
X is zero, it is represented by a full word of zero bits with the possible exception of the sign
bit. For a nonzero x, first assign the sign bit for x and consider |x|. Then convert both the
integer and fractional parts of |x| from decimal to binary. Next one-plus normalize (|x|), by
shifting the binary point so that the first bit to the left of the binary pointis a 1 and all bits to
the left of this 1 are 0. To compensate for this shift of the binary point, adjust the exponent
of 2; that is, multiply by the appropriate power of 2. The 24-bit one-plus-normalized
mantissa in binary is thus found. Now the current exponent of 2 should be set equal to
¢ — 127 to determine c, which is then converted from decimal to binary. The sign bit of
the mantissa is combined with (c), and (f),. Finally, write the 32-bit representation of x as
eight hexadecimal digits.

The value of ¢ in the representation of a floating-point number in single precision is
restricted by the inequality

O<c<I111111), =255

The values 0 and 255 are reserved for special cases, including £0 and 400, respectively.
Hence, the actual exponent of the number is restricted by the inequality

—126<c—127<127
Likewise, we find that the mantissa of each nonzero number is restricted by the inequality

1<(1.f),<(.111111 111111111 11111111), =2 —27%

The largest number representable is therefore (2 — 2723)2127 ~ 2128 ~ 3.4 x 10®. The
smallest positive number is 27126 ~ 1.2 x 10738,

The binary machine floating-point number ¢ = 272 is called the machine epsilon when
using single precision. It is the smallest positive machine number & such that 1 + & # 1.
Because 272 &~ 1.2 x 1077, we infer that in a simple computation, approximately six
significant decimal digits of accuracy may be obtained in single precision. Recall that
23 bits are allocated for the mantissa.



48

Chapter 2 Floating-Point Representation and Errors

EXAMPLE 2

Solution

Double-Precision Floating-Point Form

When more precision is needed, double precision can be used, in which case each double-
precision floating-point number is stored in two computer words in memory. In double
precision, there are 52 bits allocated for the mantissa. The double precision machine epsilon
is 2792 ~ 2.2 x 10716, so approximately 15 significant decimal digits of precision are
available. There are 11 bits allowed for the exponent, which is biased by 1023. The exponent
represents numbers from —1022 through 1023. A machine number in standard double-
precision floating-point form corresponds to

(—1)° x 271023 % (1.1),

The leftmost bit is used for the sign of the mantissa with s = 0 for + and s = 1 for —.
The next eleven bits are used to represent the exponent ¢ corresponding to 2¢~1°2%, Finally,
52 bits represent f from the fractional part of the mantissa in the one-plus form: (1.f),.

The value of ¢ in the representation of a floating-point number in double precision is
restricted by the inequality

0<c<(1111111111); = 2047

As in single precision, the values at the ends of this interval are reserved for special cases.
Hence, the actual exponent of the number is restricted by the inequality

—1022<c—1023<1023
We find that the mantissa of each nonzero number is restricted by the inequality
1<(1f) <1111 11 -+ 111111111 1), =2 — 272

Because 2732 ~ 1.2 x 107!%, we infer that in a simple computation approximately 15
significant decimal digits of accuracy may be obtained in double precision. Recall that
52 bits are allocated for the mantissa. The largest double-precision machine number is
(2 — 2792)21023 » 21024 ~ 1.8 x 10°%8. The smallest double-precision positive machine
number is 27192 &~ 2.2 x 10730,

Single precision on a 64-bit computer is comparable to double precision on a 32-bit
computer, whereas double precision on a 64-bit computer gives four times the precision
available on a 32-bit computer.

In single precision, 31 bits are available for an integer because only 1 bit is needed for
the sign. Consequently, the range for integers is from —(23' —1) to (23! — 1) = 21474 83647.
In double precision, 63 bits are used for integers giving integers in the range —(2% — 1) to
(2% —1). In using integer arithmetic, accurate calculations can result in only approximately
nine digits in single precision and 18 digits in double precision! For high accuracy, most
computations should be done by using double-precision floating-point arithmetic.

Determine the single-precision machine representation of the decimal number —52.23437 5
in both single precision and double precision.

Converting the integer part to binary, we have (52.);p = (64.)s = (110 100.),. Next, con-
verting the fractional part, we have (.234375);o = (.17)g = (.001 111),. Now

(52.234375)10 = (110100.001 111), = (1.101000011 110), x 23
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is the corresponding one-plus form in base 2, and (.101 000011 110), is the stored man-
tissa. Next the exponent is (5) ¢, and since ¢ — 127 = 5, we immediately see that (132)9 =
(204)s = (10000 100), is the stored exponent. Thus, the single-precision machine repre-
sentation of —52.234375 is

[110000 100101000011 110000000 00000], =
[110000100101 0000 1111 0000 0000 0000], = [C250F000]4
In double precision, for the exponent (5) 9, weletc—1023 = 5, and we have (1028) ;o =
(2004)s = (10000000 100),, which is the stored exponent. Thus, the double-precision
machine representation of —52.234375 is
[1 10000000 100101000011 110000 --- 00], =
[1100 00000100 10100001 11100000 - - - 0000], = [CO4ATE00000000001;4

Here [- - -], is the bit pattern of the machine word(s) that represents floating-point numbers,
which is displayed in base-k. |

EXAMPLE 3 Determine the decimal numbers that correspond to these machine words:
[45DE4000],6 [BA390000],6
Solution The first number in binary is
[01000101 1101 11100100 0000 0000 00001,

The stored exponent is (10001011), = (213)g = (139)49, so 139 — 127 = 12. The man-
tissa is positive and represents the number

(1.101111001), x 2'2 = (1101 111001 000.),
= (15710.)3
=0x14+1x8+7x8+5x8+1x8*
=8(1+8(7+8(5+8(1))))
=7112

Similarily, the second word in binary is
[1011 10100011 1001 0000 0000 0000 0000],

The exponential part of the word is (01 110100), = (164)s = 116, so the exponent is
116 — 127 = —11. The mantissa is negative and corresponds to the following floating-
point number:

—(1.011 100 100), x 2~"" = —(0.000 000000010 111 001),
= —(0.00027 1)g
=-2x8*—-7x8°—-1x8°
= —87°(1 + 8(7+8(2)))

185

=— ~ —7.05718 1074
262144 99 x -
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FIGURE 2.4
A possible
relationship
between

X_, X4, and x.

Computer Errors in Representing Numbers

We turn now to the errors that can occur when we attempt to represent a given real number x
in the computer. We use a model computer with a 32-bit word length. Suppose first that we let
x = 25321897 or x = 2732591 The exponents of these numbers far exceed the limitations of the
machine (as described above). These numbers would overflow and underflow, respectively,
and the relative error in replacing x by the closest machine number will be very large. Such
numbers are outside the range of a 32-bit word-length computer.

Consider next a positive real number x in normalized floating-point form

x=qx2" (%§q<l, —126§m§127)

The process of replacing x by its nearest machine number is called correct rounding, and
the error involved is called roundoff error. We want to know how large it can be. We
suppose that ¢ is expressed in normalized binary notation, so

X = (01b2b3b4 . b24b25b26 .. .)2 x 2"

One nearby machine number can be obtained by rounding down or by simply dropping the
excess bits bysbyg . . ., since only 23 bits have been allocated to the stored mantissa. This
machine number is

X_ = (01b2b2b4 e b24)2 x 2™

It lies to the left of x on the real-number axis. Another machine number, x, is just to the
right of x on the real axis and is obtained by rounding up. It is found by adding one unit to
b,4 in the expression for x_. Thus,

xy = [(0.1bybsby . . . byy)y +27%] x 2"

The closer of these machine numbers is the one chosen to represent x.
The two situations are illustrated by the simple diagrams in Figure 2.4. If x lies closer
to x_ than to x., then

x—x_|<txy —x_| =27
2 A+

In this case, the relative error is bounded as follows:
—25+m -25
2 < 2— =2 =y
(0.1b2b3b4 .. .)2 x 2m = %

X — X_

IIA

X

where u = 272* is the unit roundoff error for a 32-bit binary computer with standard
floating-point arithmetic. Recall that the machine epsilonis & = 2723, sou = %8. Moreover,
u = 2%, where k is the number of binary digits used in the mantissa, including the hidden
bit (k = 24 in single precision and k = 53 in double precision). On the other hand, if x lies

closer to x, than to x_, then

I
lx —xp| S 5l — x|

and the same analysis shows that the relative error is no greater than 2~2* = u. So in the case
of rounding to the nearest machine number, the relative error is bounded by . We note in




2.1 Floating-Point Representation 51

passing that when all excess digits or bits are discarded, the process is called chopping. If a
32-bit word-length computer has been designed to chop numbers, the relative error bound
would be twice as large as above, or 2u =273 = ¢.

Notation fl(x) and Backward Error Analysis

Next let us turn to the errors that are produced in the course of elementary arithmetic oper-
ations. To illustrate the principles, suppose that we are working with a five-place decimal
machine and wish to add numbers. Two typical machine numbers in normalized floating-
point form are

x =0.37218 x 10*  y =0.71422 x 107!

Many computers perform arithmetic operations in a double-length work area, so let us
assume that our computer will have a ten-place accumulator. First, the exponent of the
smaller number is adjusted so that both exponents are the same. Then the numbers are
added in the accumulator, and the rounded result is placed in a computer word:

x = 0.37218 00000 x 10*
y = 0.0000071422 x 10*
x +y =0.3721871422 x 10*

The nearest machine number is z = 0.37219 x 10*, and the relative error involved in this
machine addition is

4
lx +y—z| _ 0.0000028578 x 10 ~ 077 x 10-5
lx + vl 0.37218 71422 x 10*
This relative error would be regarded as acceptable on a machine of such low precision.
To facilitate the analysis of such errors, it is convenient to introduce the notation fl(x)
to denote the floating-point machine number that corresponds to the real number x.
Of course, the function fl depends on the particular computer involved. The hypothetical
five-decimal-digit machine used above would give

f1(0.37218 71422 x 10*) = 0.37219 x 10*

For a 32-bit word-length computer, we established previously that if x is any real number
within the range of the computer, then

lx — fl(x)]

x|

IIA

u (u = 2’24) (1)

Here and throughout, we assume that correct rounding is used. This inequality can also be
expressed in the more useful form

i) =x(1+8) (18127

To see that these two inequalities are equivalent, simply let § = [fl(x) — x]/x. Then, by
Inequality (1), we have |8| < 272* and solving for fl(x) yields fl(x) = x(1 + §).

By considering the details in the addition 1 + &, we see that if £>2723, then
fi(1 + &) > 1, while if ¢ < 2723, then fi(1 + &) = 1. Consequently, if machine epsilon is
the smallest positive machine number ¢ such that

fil4+e)>1
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EXAMPLE 4

Solution

then ¢ = 2723, Sometimes it is necessary to furnish the machine epsilon to a program.
Since it is a machine-dependent constant, it can be found by either calling a system routine
or by writing a simple program that finds the smallest positive number x = 2" such that
1 4+ x > 1 in the machine.

Now let the symbol © denote any one of the arithmetic operations 4, —, X, or —+.
Suppose a 32-bit word-length computer has been designed so that whenever two machine
numbers x and y are to be combined arithmetically, the computer will produce fl(x © y)
instead of x © y. We can imagine that x © y is first correctly formed, then normalized, and
finally rounded to become a machine number. Under this assumption, the relative error will
not exceed 272* by the previous analysis:

Ax0y)=x0o0yA+9) (181<27)
Special cases of this are, of course,

filx £y) =& £y)A+9)
flixy) = xy(1 +6)

()= ()oes

In these equations, § is variable but satisfies —272* <§ <272*. The assumptions that we
have made about a model 32-bit word-length computer is not quite true for a real computer.
For example, it is possible for x and y to be machine numbers and for x © y to overflow or
underflow. Nevertheless, the assumptions should be realistic for most computing machines.

The equations given above can be written in a variety of ways, some of which suggest
alternative interpretations of roundoff. For example,

lx +y) =x(1 +6) + y(1 +6)

This says that the result of adding machine numbers x and y is not in general x + y but is
the true sum of x(1 + §) and y(1 + §). We can think of x(1 + §) as the result of slightly
perturbing x. Thus, the machine version of x + y, which is fl(x + y), is the exact sum of a
slightly perturbed x and a slightly perturbed y. The reader can supply similar interpretations
in the examples given in the problems.

This interpretation is an example of backward error analysis. It attempts to determine
what perturbation of the original data would cause the computer results to be the exact
results for a perturbed problem. In contrast, a direct error analysis attempts to determine
how computed answers differ from exact answers based on the same data. In this aspect
of scientific computing, computers have stimulated a new way of looking at computational
ITOrS.

If x, y, and z are machine numbers in a 32-bit word-length computer, what upper bound
can be given for the relative roundoff error in computing z(x + y)?

In the computer, the calculation of x + y will be done first. This arithmetic operation pro-
duces the machine number fl(x + y), which differs from x + y because of roundoff. By the
principles established above, there is a §; such that

Ax+y) =@+nA+8)  (16127%)
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Now z is already a machine number. When it multiplies the machine number fl(x + y), the
result is the machine number fi[z fl(x + y)]. This, too, differs from its exact counterpart,
and we have, for some §,,

Azfiee + )] =zl + )0 +8)  (16127%)
Putting both of our equations together, we have

Az filx + )] = z(x + ) A +8) (1 +8)
=z(x +y)(A 4+ 81 + 6+ 6162)
~z(x +y)(1 4681 + 82)
=zx+y(1+8  (I5]=27%)

In this calculation, 8,8, <27*%, and so we ignore it. Also, we put § = 8, + 8, and then
reason that |8] = |8 + 85| < |8;] + 82| <272 + 2724 = 2723, [ ]

Critique the following attempt to estimate the relative roundoff error in computing the sum
of two real numbers, x and y. In a 32-bit word-length computer, the calculation yields

z = fi[fi(x) + fi(y)]
= [x(1+38) + y(1 +8)I(1 + )
= (x+y)(1+98)*
~ (x + y)(1 +296)
Therefore, the relative error is bounded as follows:
x+y)—z 28(x +y)
(x+y) (x+y)

Why is this calculation not correct?

= (25| <27%

The quantities § that occur in such calculations are not, in general, equal to each other. The
correct calculation is
z = i[fl(x) + f(y)]
= [x(1+381) + y(1 4+ 8)1(1 + 83)
= [(x +y) +81x + y](1 +83)
= (x +y)+8ix + 8y + 8x + d3y + 8183x + 8283y
A (x +y) +x(81 +83) + y(62 + 83)

Therefore, the relative roundoff error is

(x+y)—z| |x(81 +8)+ y(b2+33)
(x+y) (x+y)
|G+ )8+ x81 + yho
(x+)
x81 + ydy
= |5y 4 TR
(x+y)
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This cannot be bounded, because the second term has a denominator that can be zero or
close to zero. Notice that if x and y are machine numbers, then §; and §, are zero, and a
useful bound results—namely, é;. But we do not need this calculation to know that! It has
been assumed that when machine numbers are combined with any of the four arithmetic
operations, the relative roundoff error will not exceed 2= in magnitude (on a 32-bit word-
length computer). u

Historical Notes

In the 1991 Gulf War, a failure of the Patriot missile defense system was the result of a
software conversion error. The system clock measured time in tenths of a second, but it
was stored as a 24-bit floating-point number, resulting in rounding errors. Field data had
shown that the system would fail to track and intercept an incoming missile after being
on for 20 consecutive hours and would need to be rebooted. After it had been on for
100 hours, a system failure resulted in the death of 28 American soldiers in a barracks in
Dhahran, Saudi Arabia, because it failed to intercept an incoming Iraqi Scud missile. Since
the number 0.1 has an infinite binary expansion, the value in the 24-bit register was in error
by (1.1001100...), x 272* ~ 0.95 x 1077. The resulting time error was approximately
thirty-four one-hundreds of a second after running for 100 hours.

In 1996, the Ariane 5 rocket launched by the European Space Agency exploded 40 sec-
onds after lift-off from Kourou, French Guiana. An investigation determined that the hori-
zontal velocity required the conversion of a 64-bit floating-point number to a 16-bit signed
integer. It failed because the number was larger than 32,767, which was the largest inte-
ger of this type that could be stored in memory. The rocket and its cargo were valued at
$500 million.

Additional details about these disasters can be found by searching the World Wide
Web. There are other interesting accounts of calamities that could have been averted by
more careful computer programming, especially in using floating-point arithmetic.

Summary

(1) A single-precision floating-point number in a 32-bit word-length computer with stan-
dard floating-point representation is stored in a single word with the bit pattern

b1b2b3 o b9b10b11 o 'b32

which is interpreted as the real number
(—1)br x 2b2bsb92 5 D127 o (1 byobyy . .. b3)s

(2) A double-precision floating-point number in a 32-bit word-length computer with
standard floating-point representation is stored in two words with the bit pattern

blb2b3 e b9b10b11b12b13 e b32b33b34b35 """ b64

which is interpreted as the real number

(—l)bl X 2(b2b3"'b12)2 X 271023 X (1.b13b14 . b64)2
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(3) The relationship between a real number x and the floating-point machine number fl(x)
can be written as
i) =x(1+8) (18127
If © denotes any one of the arithmetic operations, then we write
filx ©y) = (x O y)(1+46)

In these equations, § depends on x and y.

Problems 2.1

1. Determine the machine representation in single precision on a 32-bit word-length com-
puter for the following decimal numbers.

a. 273 b. 64.015625 de. —8 x 27

2. Determine the single-precision and double-precision machine representation in a 32-bit
word-length computer of the following decimal numbers:

a. 0.5,-0.5 b. 0.125,—-0.125 c. 0.0625,—-0.0625 4d. 0.03125,—-0.03125
3. Which of these are machine numbers?
a. 10 b 1+272 el do e

4. Determine the single-precision and double-precision machine representation of the
following decimal numbers:

a. 1.0,-1.0 b. +0.0, -0.0 c. —9876.54321  “d. 0.234375
“e. 492.78125 f. 64.37109 375 g. —285.75 h. 102

5. Identify the floating-point numbers corresponding to the following bit strings:
a. | 0 00000000 00000000000000000000000 |
b. | 1 00000000 00000000000000000000000 |
c. | 011111111 00000000000000000000000 |
“d. | 111111111 00000000000000000000000 |
e. | 000000001 00000000000000000000000 |
f. | 0 10000001 01100000000000000000000 |
g. | 001111111 00000000000000000000000 |
h. | 001111011 10011001100110011001100 |

6. What are the bit-string machine representations for the following subnormal numbers?

a. 2127 4 p-128 b. 2-127 4 2-150 c. 2127 4 p-130 d. Z/iom 2~k
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7.

8.

9.

10.

11.

12.

13.

14.

“15.

16.

“17.

“18.

“19.

Determine the decimal numbers that have the following machine representations:
a. [3F27E520];6 b. [3BCDCAO00];6 c. [BF4F9680];6 d. [CB187ABC];6
Determine the decimal numbers that have the following machine representations:

“a. [CA3F2900],6 b. [C705A700],6 c. [494F96A0],¢  “d. [4B187ABCl]¢
e. [45223000];6 f. [45607000];6 “g. [C553E000]6 h. [437F0000];6

Are these machine representations? Why or why not?

a. [4BAB2BEB];6 b. [1ATAIA1A]6
c¢. [FADEDEAD]¢ d. [CABE6GY%4];6

The computer word associated with the variable A appears as [7F7FFFFF] ¢, which is
the largest representable floating-point single-precision number. What is the decimal
value of A? The variable ¢ appears as [00800000],¢, which is the smallest positive
number. What is the decimal value of &?

Enumerate the set of numbers in the floating-point number system that have binary
representations of the form £(0.5,b,) x 2%, where

a. ke {-1,0} b. ke {—1,1} “c. ke {—-1,0,1}

What are the machine numbers immediately to the right and left of 2”? How far is each
from 2™?

Generally, when a list of floating-point numbers is added, less roundoff error will
occur if the numbers are added in order of increasing magnitude. Give some examples
to illustrate this principle.

(Continuation) The principle of the preceding problem is not universally valid. Consider
a decimal machine with two decimal digits allocated to the mantissa. Show that the
four numbers 0.25, 0.0034, 0.00051, and 0.061 can be added with less roundoff error
if not added in ascending order.

In the case of machine underflow, what is the relative error involved in replacing a
number x by zero?

Consider a computer that operates in base § and carries n digits in the mantissa of
its floating-point numbers. Show that the rounding of a real number x to the nearest
machine number X involves a relative error of at most %ﬁ 1= Hint: Imitate the argument
in the text.

Consider a decimal machine in which five decimal digits are allocated to the mantissa.
Give an example, avoiding overflow or underflow, of a real number x whose closest
machine number X involves the greatest possible relative error.

In a five-decimal machine that correctly rounds numbers to the nearest machine number,
what real numbers x will have the property fi(1.0 4+ x) = 1.0?

Consider a computer operating in base B. Suppose that it chops numbers instead of
correctly rounding them. If its floating-point numbers have a mantissa of n digits, how
large is the relative error in storing a real number in machine format?



20.

“21.

22,

23.

24.

a25.

“26.

27.

28.

29.

“30.

31.

32.

33.
34.
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What is the roundoff error when we represent 2~! 42725 by a machine number? Note:
This refers to absolute error, not relative error.

(Continuation) What is the relative roundoff error when we round off 2~! 42726 to get
the closest machine number?

If x is a real number within the range of a 32-bit word-length computer that is rounded
and stored, what can happen when x? is computed? Explain the difference between
fi[fl(x)fA(x)] and fl(x x).

A binary machine that carries 30 bits in the fractional part of each floating-point number
is designed to round a number up or down correctly to get the closest floating-point
number. What simple upper bound can be given for the relative error in this rounding
process?

A decimal machine that carries 15 decimal places in its floating-point numbers
is designed to chop numbers. If x is a real number in the range of this machine
and X is its machine representation, what upper bound can be given for
lx —x|/1x[?

If x and y are real numbers within the range of a 32-bit word-length computer and if
xYy is also within the range, what relative error can there be in the machine computation
of xy? Hint: The machine produces fl[fl(x)fl(y)].

Let x and y be positive real numbers that are not machine numbers but are within the
exponent range of a 32-bit word-length computer. What is the largest possible relative
error in the machine representation of x + y*? Include errors made to get the numbers
in the machine as well as errors in the arithmetic.

Show that if x and y are positive real numbers that have the same first n digits in their
decimal representations, then y approximates x with relative error less than 10!, Is
the converse true?

Show that a rough bound on the relative roundoff error when » machine numbers are
multiplied in a 32-bit word-length computer is (n — 1)2724.

Show that fi(x + y) = y on a 32-bit word-length computer if x and y are positive
machine numbers and x < y x 272,

If 1000 nonzero machine numbers are added in a 32-bit word-length computer, what
upper bound can be given for the relative roundoff error in the result? How many
decimal digits in the answer can be trusted?

Suppose that x = Z:’ | a;27", where q; € {—1,0, 1} is a positive number. Show that

x can also be written in the form >, b;27, where b; € {0, 1}.

If x and y are machine numbers in a 32-bit word-length computer and if fl(x/y) =
x/[y(1 + 8)], what upper bound can be placed on |§|?

How big is the hole at zero in a 32-bit word-length computer?

How many machine numbers are there in a 32-bit length computer? (Consider only
normalized floating-point numbers.)
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35.

36.

“37.

“38.

“39.

40.

41.

“42.

43.

4.

45.

46.

How many normalized floating-point numbers are available in a binary machine if n
bits are allocated to the mantissa and m bits are allocated to the exponent? Assume that
two additional bits are used for signs, as in a 32-bit length computer.

Show by an example that in computer arithmetic a + (b +c¢) may differ from
(a +b)+c.

Consider a decimal machine in which floating-point numbers have 13 decimal places.
Suppose that numbers are correctly rounded up or down to the nearest machine number.
Give the best bound for the roundoff error, assuming no underflow or overflow. Use
relative error, of course. What if the numbers are always chopped?

Consider a computer that uses five-decimal-digit numbers. Let fl(x) denote the
floating-point machine number closest to x. Show that if x =0.5321487513 and
y=0.53213 04421, then the operation fl(x) — fl(y) involves a large relative error.
Compute it.

Two numbers x and y that are not machine numbers are read into a 32-bit word-length
computer. The machine computes xy?. What sort of relative error can be expected?
Assume no underflow or overflow.

Let x, y, and z be three machine numbers in a 32-bit word-length computer. By ana-
lyzing the relative error in the worst case, determine how much roundoff error should
be expected in forming (xy)z.

Let x and y be machine numbers in a 32-bit word-length computer. What relative
roundoff error should be expected in the computation of x + y ? If x is around 30 and
y is around 250, what absolute error should be expected in the computation of x + y ?

Every machine number in a 32-bit word-length computer can be interpreted as the
correct machine representation of an entire interval of real numbers. Describe this
interval for the machine number g x 2.

Is every machine number on a 32-bit word-length computer the average of two other
machine numbers? If not, describe those that are not averages.

Let x and y be machine numbers in a 32-bit word-length computer. Let # and v be
real numbers in the range of a 32-bit word-length computer but not machine numbers.
Find a realistic upper bound on the relative roundoff error when u# and v are read into
the computer and then used to compute (x + y)/(uv). As usual, ignore products of
two or more numbers having magnitudes as small as 27>*, Assume that no overflow or
underflow occurs in this calculation.

Interpret the following:

a. flix) =x(1—-96) b. fi(xy) =[x(1+ )]y

e fixy) =x[y(1+8)]  d. fi(xy) = (x/TF38) (yWT+9)

e. ﬂ<f> Gl ﬂ(5> AT ﬂ(5> N
y y ) y/NT+$ y)  yd=9)

Let x and y be real numbers that are not machine numbers for a 32-bit word-length
computer and have to be rounded to get them into the machine. Assume that there is
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no overflow or underflow in getting their (rounded) values into the machine. (Thus, the
numbers are within the range of a 32-bit word-length computer, although they are not
machine numbers.) Find a rough upper bound on the relative error in computing x2y?.
Hint: We say rough upper bound because you may use (1 +8,)(1+6) = 1+ 68, + 8,
and similar approximations. Be sure to include errors involved in getting the numbers
into the machine as well as errors that arise from the arithmetic operations.

47. (Student Research Project) Write a research paper on the standard floating-point
number system providing additional details on

a. types of rounding b. subnormal floating-point numbers

c¢. extended precision d. handling exceptional situations

Computer Problems 2.1

1. Print several numbers, both integers and reals, in octal format and try to explain the
machine representation used in your computer. For example, examine (0.1),0 and
compare to the results given at the beginning of this chapter.

2. Use your computer to construct a table of three functions f, g, and & defined as follows.
For each integer n in the range 1 to 50, let f(n) = 1/n. Then g(n) is computed by
adding f (n) toitself n — 1 times. Finally, set 2(n) = nf (n). We want to see the effects
of roundoff error in these computations. Use the function real(n) to convert an integer
variable n to its real (floating-point) form. Print the table with all the precision of which
your computer is capable (in single-precision mode).

3. Predict and then show what value your computer will print for /2 computed in single
precision. Repeat for double or extended precision. Explain.

4. Write a program to determine the machine epsilon ¢ within a factor of 2 for single,
double, and extended precision.

5. Let A denote the set of positive integers whose decimal representation does not contain
the digit 0. The sum of the reciprocals of the elements in .4 is known to be 23.10345.
Can you verify this numerically?

6. Write a computer code
integer function nDigit(n, x)

which returns the nth nonzero digit in the decimal expression for the real number x.

7. The harmonic series 1 +  + 1 + ; + - - - is known to diverge to 4-c0. The nth partial
sum approaches +oo at the same rate as In(n). Euler’s constant is defined to be

n—00
k=1

"1
y = lim [Z 0 ln(n)‘| ~ 0.57721
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10.

11.

12.

If your computer ran a program for a week based on the pseudocode

real s, x
x < 1.0; s < 1.0
repeat
x<«<x+10; s« s+1.0/x
end repeat

what is the largest value of s it would obtain? Write and test a program that uses a
loop of 5000 steps to estimate Euler’s constant. Print intermediate answers at every
100 steps.

. (Continuation) Prove that Euler’s constant, y, can also be represented by

) m 1 1
y = lim [Z%—ln(m—i-E)

k=1

Write and test a program thatuses m = 1, 2, 3, ..., 5000 to compute y by this formula.
The convergence should be more rapid than that in the preceding computer problem.
(See the article by De Temple [1993].)

. Determine the binary form of % What is the correctly rounded machine representation

in single precision on a 32-bit word-length computer? Check your answer on an actual
machine with the instructions

x < 1.0/3.0; output x

using a long format of 16 digits for the output statement.

Owing to its gravitational pull, the earth gains weight and volume slowly over time
from space dust, meteorites, and comets. Suppose the earth is a sphere. Let the radius be
r, = 7000 kilometers at the beginning of the year 1900, and let r;, be its radius at the end
of the year 2000. Assume that r, = r, +-0.000001, an increase of 1 millimeter. Using a
computer, calculate how much the earth’s volume and surface area has increased during
the last century by the following three procedures (exactly as given):

a. V,=3mr), Vy = 3mrj, 8, =V, — V, (difference in spherical volume)
b. 8, = ‘-; 7 (ry — ro)(r} + rpra +r2)  (difference in spherical volume)
¢. h=ry,—r, 8 =4mwr’h (difference in spherical surface area)

First use single precision and then double precision. Compare and analyze your results.
(This problem was suggested by an anonymous reviewer.)

(Student Research Project) Explore recent developments in floating-point arithmetic.
In particular, learn about extended precision for both real numbers and integers as well
as for complex numbers.

What is the largest integer your computer can handle?
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2.2 Loss of Significance

In this section, we show how loss of significance in subtraction can often be reduced or
eliminated by various techniques, such as the use of rationalization, Taylor series, trigono-
metric identities, logarithmic properties, double precision, and/or range reduction. These
are some of the techniques that can be used when one wants to guard against the degradation
of precision in a calculation. Of course, we cannot always know when a loss of significance
has occurred in a long computation, but we should be alert to the possibility and take steps
to avoid it, if possible.

Significant Digits

We first address the elusive concept of significant digits in a number. Suppose that x is a
real number expressed in normalized scientific notation in the decimal system

x = +r x 10" (%§r<l)

For example, x might be
x =0.3721498 x 107°

The digits 3, 7, 2, 1,4, 9, 8 used to express r do not all have the same significance because
they represent different powers of 10. Thus, we say that 3 is the most significant digit, and
the significance of the digits diminishes from left to right. In this example, 8 is the least
significant digit.

If x is a mathematically exact real number, then its approximate decimal form can be
given with as many significant digits as we wish. Thus, we may write

;T_O ~ (0.31415 92653 58979

and all the digits given are correct. If x is a measured quantity, however, the situation is quite
different. Every measured quantity involves an error whose magnitude depends on the nature
of the measuring device. Thus, if a meter stick is used, it is not reasonable to measure any
length with precision better than 1 millimeter. Therefore, the result of measuring, say, a plate
glass window with a meter stick should not be reported as 2.73594 meters. That would be
misleading. Only digits that are believed to be correct or in error by at most a few units should
be reported. It is a scientific convention that the least significant digit given in a measured
quantity should be in error by at most five units; that is, the result is rounded correctly.
Similar remarks pertain to quantities computed from measured quantities. For example,
if the side of a square is reported to be s = 0.736 meter, then one can assume that the error
does not exceed a few units in the third decimal place. The diagonal of that square is then

s+/2 2 0.10408 61182 x 10’

but should be reported as 0.1041 x 10" or (more conservatively) 0.104 x 10'. The infinite
precision available in V2,

V2 = 1.41421 35623 73095 . . .

does not convey any more precision to s+/2 than was already present in s.
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EXAMPLE 1

Solution

Computer-Caused Loss of Significance

Perhaps it is surprising that a loss of significance can occur within the computer. It is
essential to understand this process so that blind trust will not be placed in numerical output
from a computer. One of the most common causes for a deterioration in precision is the
subtraction of one quantity from another nearly equal quantity. This effect is potentially
quite serious and can be catastrophic. The closer these two numbers are to each other, the
more pronounced is the effect.

To illustrate this phenomenon, let us consider the assignment statement

y < x — sin(x)

and suppose that at some point in a computer program this statement is executed with an x
value of % Assume further that our computer works with floating-point numbers that have
ten decimal digits. Then

x < 0.66666 66667 x 107!

sin(x) < 0.6661729492 x 107!

x — sin(x) < 0.0004937175 x 107!
x — sin(x) < 0.4937175000 x 10~*

In the last step, the result has been shifted to normalized floating-point form. Three zeros
have then been supplied by the computer in the three least significant decimal places. We
refer to these as spurious zeros; they are not significant digits. In fact, the ten-decimal-digit
correct value is

1 1
— —sin — A 0.4937174327 x 10~*
15 15

Another way of interpreting this is to note that the final digit in x — sin(x) is derived from
the tenth digits in x and sin(x). When the eleventh digit in either x or sin(x) is 5, 6, 7, 8, or
9, the numerical values are rounded up to ten digits so that their tenth digits may be altered

by plus one unit. Since these tenth digits may be in error, the final digit in x — sin(x) may
also be in error—which it is!

If x =0.3721448693 and y = 0.37202 14371, what is the relative error in the computation
of x — y in a computer that has five decimal digits of accuracy?

The numbers would first be rounded to x = 0.37214 and y = 0.37202. Then we have
X —y = 0.00012, while the correct answer is x — y = 0.00012 34322. The relative error
involved is

l(x —y) — @ =) _ 0.0000034322 _

= ~3x 1072
Ix — yl 0.00012 34322

This magnitude of relative error must be judged quite large when compared with the relative
error of x and y. (They cannot exceed % x 107* by the coarsest estimates, and in this
example, they are, in fact, approximately 1.3 x 1075.) [ |
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It should be emphasized that this discussion pertains not to the operation
flix —y) < x—y
but rather to the operation
fiffi(x) — ()] < x—y

Roundoff error in the former case is governed by the equation

filx —y) =& -0+

where || <272* on a 32-bit word-length computer, and on a five-decimal-digit computer
in the example above [§| < 1 x 107*,

In Example 1, we observe that the computed difference of 0.00012 has only two
significant figures of accuracy, whereas in general, one expects the numbers and calculations
in this computer to have five significant figures of accuracy.

The remedy for this difficulty is first to anticipate that it may occur and then to re-
program. The simplest technique may be to carry out part of a computation in double- or
extended-precision arithmetic (that means roughly twice as many significant digits), but
often a slight change in the formulas is required. Several illustrations of this will be given,
and the reader will find additional ones among the problems.

Consider Example 1, but imagine that the calculations to obtain x, y, and x — y are being
done in double precision. Suppose that single-precision arithmetic is used thereafter. In the
computer, all ten digits of x, y, and x —y will be retained, but at the end, x — y will be rounded
to its five-digit form, which is 0.12343 x 1073, This answer has five significant digits of
accuracy, as we would like. Of course, the programmer or analyst must know in advance
where the double-precision arithmetic will be necessary in the computation. Programming
everything in double precision is very wasteful if it is not needed. This approach has another
drawback: There may be such serious cancellation of significant digits that even double
precision might not help.

Theorem on Loss of Precision

Before considering other techniques for avoiding this problem, we ask the following ques-
tion: Exactly how many significant binary digits are lost in the subtraction x — y when x is
close to y? The closeness of x and y is conveniently measured by |1 — (y/x)|. Here is the
result:

LOSS OF PRECISION THEOREM

Let x and y be normalized floating-point machine numbers, where x >y > 0. If
277 <1 — (y/x) £277 for some positive integers p and ¢, then at most p and at least
q significant binary bits are lost in the subtraction x — y.

Proof We prove the second part of the theorem and leave the first as an exercise. To this end, let

x=rx2"and y=s x 2", where % <r, s < 1. (This is the normalized binary floating-point
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EXAMPLE 2

Solution

form.) Since y < x, the computer may have to shift y before carrying out the subtraction. In
any case, y must first be expressed with the same exponent as x. Hence, y = (s2"™") x 2"
and

x—y=@—s2"")x2"

The mantissa of this number satisfies the equations and inequality

2”‘[
r—s2'"_"=r(1—s >=r(1—2)<2_q
r2n X

Hence, to normalize the representation of x — y, a shift of at least g bits to the left is necessary.
Then at least g (spurious) zeros are supplied on the right-hand end of the mantissa. This
means that at least ¢ bits of precision have been lost. [ |

In the subtraction 37.59362 1 — 37.58421 6, how many bits of significance will be lost?
Let x denote the first number and y the second. Then

1—2 =0.0002501754
X

This lies between 2712 and 2. These two numbers are 0.00024 4 and 0.00048 8. Hence,
at least 11 but not more than 12 bits are lost. [ |

Here is an example in decimal form: let x = .6353 and y = .6311. These are close,
and 1 — y/x = .00661 < 1072, In the subtraction, we have x — y = .0042. There are two
significant figures in the answer, although there were four significant figures in x and y.

Avoiding Loss of Significance in Subtraction

Now we take up various techniques that can be used to avoid the loss of significance that
may occur in subtraction. Consider the function

) =vx2+1-1 1)

whose values may be required for x near zero. Since +/x?> + 1 &~ 1 when x ~ 0, we see
that there is a potential loss of significance in the subtraction. However, the function can be
rewritten in the form

/ 2
fo) = (Va2 + —1)< x2+1+1> = 2)

Vx24+141 Z\/x2+1+1

by rationalizing the numerator—that is, removing the radical in the numerator. This proce-
dure allows terms to be canceled and thereby removes the subtraction. For example, if we
use five-decimal-digit arithmetic and if x = 1073, then f(x) will be computed incorrectly
as zero by the first formula but as % x 1076 by the second. If we use the first formula to-
gether with double precision, the difficulty is ameliorated but not circumvented altogether.
For example, in double precision, we have the same problem when x = 107°.
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As another example, suppose that the values of
f(x) =x —sinx 3)

are required near x = 0. A careless programmer might code this function just as indicated
in Equation (3), not realizing that serious loss of accuracy will occur. Recall from calculus
that
. sinx

lim — =1

x—0 Xx
to see that sin x ~ x when x ~ 0. One cure for this problem is to use the Taylor series for
sinx:

This series is known to represent sin x for all real values of x. For x near zero, it converges
quite rapidly. Using this series, we can write the function f as
[UCI B [ I

f(X)Zx—(X—a—Fg—ﬂ—"')25—54—%—'“ 4)
We see in this equation where the original difficulty arose; namely, for small values of x,
the term x in the sine series is much larger than x3/3! and thus more important. But when
f(x) is formed, this dominant x term disappears, leaving only the lesser terms. The series
that starts with x*/3! is very effective for calculating f(x) when x is small.

In this example, further analysis is needed to determine the range in which Series (4)
should be used and the range in which Formula (3) can be used. Using the Theorem on Loss
of Precision, we see that the loss of bits in the subtraction of Formula (3) can be limited
to at most one bit by restricting x so that % <1 —sinx/x. (Here we are considering only
the case when sinx > 0.) With a calculator, it is easy to see that x must be at least 1.9.
Thus, for |x| < 1.9, we use the first few terms in the Series (4), and for |x| > 1.9, we use
f(x) = x — sinx. One can verify that for the worst case (x = 1.9), ten terms in the series
give f(x) with an error of at most 107!, (That is good enough for double precision on a
32-bit word-length computer.)

To construct a function procedure for f(x), notice that the terms in the series can be
obtained inductively by the algorithm

X3

= —
6
—t,x2

b S oy anty 2D

Then the partial sums can be obtained inductively by

S| =1
Sp+1 = Sy + tn+1 (n 2 1)

so that

n n " K2k
Snzglkzg(—l) [m}
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EXAMPLE 3

Solution

EXAMPLE 4

Suitable pseudocode for a function is given here:

real function f(x)
integer i, n < 10; reals,?, x
if |x| > 1.9 then
§ < x —sinx
else
t < x3/6
s <t
fori =2 ton do
t <« —tx?/[(2i +2)(2i +3)]
S < S+t
end for
end if
f<s
end function f

How can accurate values of the function

fx)=e' —e
be computed in the vicinity of x = 0?
—2x

Since ¢* and e~ are both equal to 1 when x = 0, there will be a loss of significance
because of subtraction when x is close to zero. Inserting the appropriate Taylor series, we

obtain
_ (4 x2 X3 s 4x>  8x3
A L T T Al G TR TR
3 3
=3y — —x2 4 T3 ...
X 2x +2x
An alternative is to write

fx)=e (e —1)

9 27
e (3x i s e )

2! 3!

By using the Theorem on Loss of Precision, we find that at most one bit is lost in the
subtraction e* — e~2* when x > 0 and

e —2x

1—

lIN

N =

ex
This inequality is valid when x > 1 In2 = 0.23105. Similar reasoning when x < 0 shows

that for x < — 0.23105, at most one bit is lost. Hence, the series should be used for |x| <
0.23105. [ |

Criticize the assignment statement

y < cos’(x) — sin®(x)
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EXAMPLE 5

Solution

EXAMPLE 6

Solution
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When cos?(x) — sin®(x) is computed, there will be a loss of significance at x = 7 /4 (and
other points). The simple trigonometric identity

c0s 20 = cos” 6 — sin* 0
should be used. Thus, the assignment statement should be replaced by

y < cos(2x) [ |

Criticize the assignment statement

y <« In(x) — 1

If the expression Inx — 1 is used for x near e, there will be a cancellation of digits and
a loss of accuracy. One can use elementary facts about logarithms to overcome the diffi-
culty. Thus, we have y = Inx — 1 = Inx — Ine = In(x/e). Here is a suitable assignment
statement

X
y <—ln(—) [
e

Range Reduction

Another cause of loss of significant figures is the evaluation of various library functions
with very large arguments. This problem is more subtle than the ones previously discussed.
We illustrate with the sine function.

A basic property of the function sin x is its periodicity:

sinx = sin(x + 2nm)

for all real values of x and for all integer values of n. Because of this relationship, one needs
to know only the values of sinx in some fixed interval of length 27 to compute sin x for
arbitrary x. This property is used in the computer evaluation of sinx and is called range
reduction.

Suppose now that we want to evaluate sin(12532.14). By subtracting integer multiples
of 27r, we find that this equals sin(3.47) if we retain only two decimal digits of accuracy. From
sin(12532.14) = sin(12532.14 — 2km), we want 12532 = 2k and k = 3989/2m ~ 1994.
Consequently, we obtain 12532.14 — 2(1994)7r = 3.49 and sin(12532.14) = sin(3.49).
Thus, although our original argument 12532.14 had seven significant figures, the reduced
argument has only three. The remaining digits disappeared in the subtraction of 3988x.
Since 3.47 has only three significant figures, our computed value of sin(12532.14) will
have no more than three significant figures. This decrease in precision is unavoidable if
there is no way of increasing the precision of the original argument. If the original argument
(12532.14 in this example) can be obtained with more significant figures, these additional
figures will be present in the reduced argument (3.47 in this example). In some cases,
double- or extended-precision programming will help.

For sin x, how many binary bits of significance are lost in range reduction to the interval
[0, 27)?

Given an argument x >2m, we determine an integer n that satisfies the inequality
0<x —2nm <2m. Then in evaluating elementary trigonometric functions, we use



68 Chapter 2 Floating-Point Representation and Errors

f(x) = f(x — 2nm). In the subtraction x — 2nm, there will be a loss of significance.
By the Theorem on Loss of Precision, at least g bits are lost if

1_211—7'[§2_q
P

Since
2nm x —2nmw 21
l-— =< —
X X X

we conclude that at least g bits are lost if 277/x <279. Stated otherwise, at least ¢ bits are
lostif 27 <x/2m. [ ]

Summary

(1) Toavoid loss of significance in subtraction, one may be able to reformulate the expression
using rationalizing, series expansions, or mathematical identities.

(2) If x and y are positive normalized floating-point machine numbers with

2P <y -2 <o

X

then at most p and at least ¢ significant binary bits are lost in computing x — y. Note that
it is permissible to leave out the hypothesis x > y here.

Additional References

For supplemental study and reading of material related to this chapter, see Appendix B as
well as the following references: Acton [1996], Bornemann, Laurie, Wagon, and Waldvogel
[2004], Goldberg [1991], Higham [2002], Hodges [1983], Kincaid and Cheney [2002],
Overton [2001], Salamin [1976], Wilkinson [1963], and others listed in the Bibliography.

Problems 2.2

1. How can values of the function f(x) = +/x + 4 — 2 be computed accurately when x
is small?

2. Calculate f(107?) for the function f(x) = ¢* — x — 1. The answer should have five
significant figures and can easily be obtained with pencil and paper. Contrast it with
the straightforward evaluation of £(1072) using %' 2 1.0101.

3. What is a good way to compute values of the function f(x) = ¢* — e if full machine
precision is needed? Note: There is some difficulty when x = 1.

“4. What difficulty could the following assignment cause?
y <1 —sinx

Circumvent it without resorting to a Taylor series if possible.
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. The hyperbolic sine function is defined by sinh x = % (e* —e™). What drawback could

there be in using this formula to obtain values of the function? How can values of sinh x
be computed to full machine precision when |x| < %?

Determine the first two nonzero terms in the expansion about zero for the function
tanx — sinx
x —A/1+x2

Give an approximate value for f(0.0125).

fx) =

. Find a method for computing

1
y < —(sinhx — tanh x)
X

that avoids loss of significance when x is small. Find appropriate identities to solve
this problem without using Taylor series.

Find a way to calculate accurate values for

J14+x2 -1 x2sinx
fx) = e -

Determine lim, .o f(x).

X —tanx

. For some values of x, the assignment statement y <— 1 — cosx involves a difficulty.

What is it, what values of x are involved, and what remedy do you propose?

For some values of x, the function f(x) = +/x2 + 1 —x cannot be accurately computed
by using this formula. Explain and find a way around the difficulty.

The inverse hyperbolic sine is given by f(x) = In (x ++/x>+ 1 ). Show how to avoid
loss of significance in computing f(x) when x is negative. Hint: Find and exploit the
relationship between f(x) and f(—x).

On most computers, a highly accurate routine for cos x is provided. It is proposed to
base a routine for sin x on the formula sin x = ++/1 — cos? x. From the standpoint of
precision (not efficiency), what problems do you foresee and how can they be avoided
if we insist on using the routine for cos x?

Criticize and recode the assignment statement z <— +/x* 4+ 4 — 2 assuming that z will
sometimes be needed for an x close to zero.

How can values of the function f(x) = +/x + 2 — \/x be computed accurately when
x is large?

Write a function that computes accurate values of f(x) = +/x + 4 —/x for positive x.

Find a way to calculate f(x) = (cosx — e~ ¥)/sinx correctly. Determine f(0.008)
correctly to ten decimal places (rounded).
Without using series, how could the function
sin x
X)) = ————
A x—+/x2-1

be computed to avoid loss of significance?
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18. Write a function procedure that returns accurate values of the hyperbolic tangent
function
tanhx = coe”
er e
for all values of x. Notice the difficulty when |x| < %

19. Find a good way to compute sin x + cos x — 1 for x near zero.
“20. Find a good way to compute arctan x — x for x near zero.

21. Find a good bound for | sinx — x| using Taylor series and assuming that |x| < %
22, How would you compute (¢** — 1)/(2x) to avoid loss of significance near zero?

23. For any xy > —1, the sequence defined recursively by

Xpgp = 2" (\/1 +2-nx, — 1) (n=0)

converges to In(xp + 1). Arrange this formula in a way that avoids loss of significance.

24. Indicate how the following formulas may be useful for arranging computations to avoid
loss of significant digits.

“a, sinx —siny = 2sin %(x — y)cos %(x + nny)

b. logx —logy =log(x/y) ¢ eV =¢/¢’ d.1—cosx =2sin’(x/2)

Y —
e. arctanx — arctan y = arctan ( >
+ xy

25. What is a good way to compute tan x — x when x is near zero?

26. Find ways to compute these functions without serious loss of significant figures:

a. ¢ —sinx — cosx “h. In(x) — 1 c. logx —log(1/x)
ad. x2(sinx —e* 4+ 1) e. x — arctanhx
27. Let
alx) = 1 - cos x b(x) — sin x o) = o x_3
sin x 14+ cosx 2 24

Show that b(x) is identical to a(x) and that c(x) approximates a(x) in a neighborhood
of zero.

“28. On your computer determine the range of x for which (sin x)/x & 1 with full machine
precision. Hint: Use Taylor series.

“29. Use of the familiar quadratic formula

1
x= o (<bE Vb —dac)
2a
will cause a problem when the quadratic equation x> — 10°x 4+ 1 = 0 is solved with
a machine that carries only eight decimal digits. Investigate the example, observe the
difficulty, and propose a remedy. Hint: An example in the text is similar.
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“30. When accurate values for the roots of a quadratic equation are desired, some loss of
significance may occur if b> ~ 4ac. What (if anything) can be done to overcome this
when writing a computer routine?

31. Refer to the discussion of the function f(x) = x — sinx given in the text. Show that
when 0 < x < 1.9, there will be no undue loss of significance from subtraction in
Equation (3).

32. Discuss the problem of computing tan(10'%). (See Gleick [1992], p. 178.)

33. Let x and y be two normalized binary floating-point machine numbers. Assume that
x=gx2",y=rx2""1, % <r,q < l,and 2¢q — 1 > r. How much loss of significance
occurs in subtracting x — y? Answer the same question when 2g — 1 < r. Observe that
the Theorem on Loss of Precision is not strong enough to solve this problem precisely.

34. Prove the first part of the Theorem on Loss of Precision.

35. Show that if x is a machine number on a 32-bit computer that satisfies the inequality
x > 2%, then sin x will be computed with no significant digits.

36. Let x and y be two positive normalized floating-point machine numbers in a 32-bit
computer. Let x = ¢ x 2" and y = r x 2" with % <r,q < 1.Show thatif n = m, then
at least one bit of significance is lost in the subtraction x — y.

37. (Student Research Project) Read about and discuss the difference between cancella-
tion error, a bad algorithm, and an ill-conditioned problem. Suggestion: One example
involves the quadratic equation. Read Stewart [1996].

38. On a three-significant-digit computer, calculate 4+/9.01 — 3.00, with as much accuracy
as possible.

Computer Problems 2.2

“1. Write a routine for computing the two roots x; and x; of the quadratic equation f(x) =
ax? + bx + ¢ = 0 with real constants a, b, and ¢ and for evaluating f(x;) and f(x).
Use formulas that reduce roundoff errors and write efficient code. Test your routine on
the following (a, b, c¢) values: (0, 0, 1); (0, 1, 0); (1, 0, 0); (0, 0, 0); (1, 1, 0); (2, 10, 1);
(1, —4,3.99999); (1, —8.01, 16.004); (2 x 10'7, 10'3, 10'7); and (107, —10"7, 10'7).

2. (Continuation) Write and test a routine for solving a quadratic equation that may have
complex roots.

3. Alter and test the pseudocode in the text for computing x — sinx by using nested
multiplication to evaluate the series.

4. Write a routine for the function f(x) = e* — ™2

guidance.

using the examples in the text for

5. Write code using double or extended precision to evaluate f(x) = cos(10%x) on the
interval [0, 1]. Determine how many significant figures the values of f(x) will have.
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“10.

11.

12.

13.

. Write a procedure to compute f(x) = sinx — 1 + cos x. The routine should produce

nearly full machine precision for all x in the interval [0, 7 /4]. Hint: The trigonometric
identity sin’ 6 = %(1 — cos 260) may be useful.

. Write a procedure to compute f(x, y) = |, lx t” dt for arbitrary x and y. Note: Notice

the exceptional case y = —1 and the numerical problem near the exceptional case.

. Suppose that we wish to evaluate the function f(x) = (x — sinx)/x> for values of x

close to zero.

a. Write a routine for this function. Evaluate f(x) sixteen times. Initially, let x < 1,
and then let x <« ll—ox fifteen times. Explain the results. Note: L’Hopital’s rule
indicates that f(x) should tend to % Test this code.

b. Write a function procedure that produces more accurate values of f(x) for all
values of x. Test this code.

. Write a program to print a table of the function f(x) =5 — /25 + x> forx =0to |

with steps of 0.01. Be sure that your program yields full machine precision, but do not
program the problem in double precision. Explain the results.

Write a routine that computes e* by summing n terms of the Taylor series until the
n + st term ¢ is such that || < & = 107°. Use the reciprocal of e* for negative values
of x. Test on the following data: 0, +1, —1, 0.5, —0.123, —25.5, —1776, 3.14159.
Compute the relative error, the absolute error, and n for each case, using the exponential
function on your computer system for the exact value. Sum no more than 25 terms.

(Continuation) The computation of e* can be reduced to computing e” for |u| < (In2)/2
only. This algorithm removes powers of 2 and computes e" in a range where the series
converges very rapidly. It is given by
eX — 2}11 eu

where m and u are computed by the steps

7z < x/In2; m <« integer (z £ 1)

w <z —m; u <~ wlin2
Here the minus sign is used if x < 0 because z < 0. Incorporate this range reduction
technique into the code.

(Continuation) Write a routine that uses range reduction ¢* = 2"¢" and computes "
from the even part of the Gaussian continued fraction; that is,

2520 + 28u?
15120 + 420u? 4 u*

s +u
s —u

elt

where s=2+u2(

Test on the data given in Computer Problem 2.2.10. Note: Some of the computer
problems in this section contain rather complicated algorithms for computing various
intrinsic functions that correspond to those actually used on a large mainframe computer
system. Descriptions of these and other similar library functions are frequently found
in the supporting documentation of your computer system.

Quite important in many numerical calculations is the accurate computation of the
absolute value |z| of a complex number z = a + bi. Design and carry out a computer
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experiment to compare the following three schemes:

wh2]12
a. |z| = (@® + b)) b. |z| = v{l i (7) ]
v

1 w2112
C. =2v|— (—)
|z] v[4 + 7 ]

where v = max {|a|, |b|} and w = min {|a|, |b|}. Use very small and large numbers
for the experiment.

For what range of x is the approximation (¢* — 1)/2x & 0.5 correct to 15 decimal
digits of accuracy? Using this information, write a function procedure for (¢* —1)/2x,
producing 15 decimals of accuracy throughout the interval [—10, 10].

In the theory of Fourier series, some numbers known as Lebesgue constants play a
role. A formula for them is

Pn= 2n+1 *Zf 2n+1

Write and run a program to compute py, o, ..., P10 With eight decimal digits of
accuracy. Then test the validity of the inequality

4
0<—In@n+1)+1 - p, <0.0106
T

Compute in double or extended precision the following number:

1 2
x = |— In(640320° + 744)
T

What is the point of this problem? (See Good [1972].)

Write a routine to compute sin x for x in radians as follows. First, using properties of
the sine function, reduce the range so that —7/2 <x <7 /2. Then if |x| < 1078, set
sinx ~ x;if |x| > 7 /6, set u = x/3, compute sinu by the formula below, and then
set sinx ~ [3 — 4sin’ u]sinu; if |x| < /6, set u = x and compute sin u as follows:

- ( 29593 )u2+ ( 34911 >u4_ ( 479249 >u6
207636 76 13320 11511339840
NETEE R
69212 351384 1644477120

Try to determine whether the sine function on your computer system uses this algorithm.
Note: This is the Padé rational approximation for sine.

sinu ~ u

Write a routine to compute the natural logarithm by the algorithm outlined here based
on telescoped rational and Gaussian continued fractions for In x and test for several
values of x. First check whether x = 1 and return zero if so. Reduce the range of
x by determining n and r such that x = r x 2" with %gr < 1. Next, set u =

(r —/2/2)/(r + ~/2/2), and compute In[(1 + u)/(1 — u)] by the approximation

! I+u 20790 — 21545.27u® + 4223.9187u*
n A
10395 — 14237.635u? 4+ 4778.8377u* — 230.41913u®

1—u
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19.

20.

21.

22,

which is valid for |u| < 3 — 2/2. Finally, set

1 1
nx~ (n—-)n2+In| "
2 1—u

Write a routine to compute the tangent of x in radians, using the algorithm below. Test
the resulting routine over a range of values of x. First, the argument x is reduced to
|x| < /2 by adding or subtracting multiples of 7. If we have 0 < |x| < 1.7 x 1077, set
tanx ~ x. If |x| > 7 /4, set u = w/2 — x; otherwise, set u = x. Now compute the
approximation

<135135 — 17336.106u* + 379.23564u* — 1.01186 25u6>
tanu ~ u

135135 — 62381.106u? 4 3154.9377u* + 28.17694u’

Finally, if |x| > /4, settanx = 1/tanu; if [x| <7 /4, set tanx ~ tanu. Note: This
algorithm is obtained from the felescoped rational and Gaussian continued fraction
for the tangent function.

Write a routine to compute arcsin x based on the following algorithm, using telescoped
polynomials for the arcsine. If |x| < 1078, set arcsinx & x. Otherwise, if 0 < x < %
setu =x,a =0andb = 1;if 1 < x<1/3,setu = 2x* — 1, a = 7/4, and
b = %;if% 3 < xg%\/2+«/§,setu =8x*—8x>+1,a =3n/8,and b = i;if

V243 <x<l,setu = /21 —x),a = /2, and b = —2. Now compute the

approximation

arcsinu ~ u (1.0 + tu® + 0.075u* + 0.04464 286u° -+ 0.03038 182u"
+0.02237 5u'® 4+ 0.01731276u'? + 0.01433 124u™
+ 0.00934 2806u'® + 0.01835667u'® — 0.01186 224u*°
+ 0.03162712u%)

Finally, set arcsinx =~ a + b arcsin u. Test this routine for various values of x.

Write and test a routine to compute arctan x for x in radians as follows. If 0 <x < 1.7 x
1079, set arctan x ~ x. If 1.7 x 107 < x <2 x 1072, use the series approximation

x3 x5 X7

t XX ——+ — — —
arctan x ~ x 3+5 7

Otherwise,sety = x,a = 0,andb = 1if0<x < 1;sety = 1/x,a =7 /2,andb = —1
if 1 < x. Thensetc = n/16 and d = tanc if 0<y<+/2 — 1 and ¢ = 37/16 and
d=tancif/2—1 < y<1. Compute u = (y —d)/(1 + dy) and the approximation

< 135135 + 171962.46u> + 52490.4832u* + 2218.1u° )
arctan u ~ u

135135 4 217007.46u> + 97799.3033u* + 10721.3745u°

Finally, set arctan x & a + b(c + arctan u). Note: This algorithm uses telescoped
rational and Gaussian continued fractions.

A fast algorithm for computing arctan x to n-bit precision for x in the interval (0, 1] is
as follows: Seta =272, b = x /(1 + /1 +x2),c = 1, and d = 1. Then repeatedly
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update these variables by these formulas (in order from left to right and top to bottom):

reala, b, c,d

- 2c J < 2ab d d

c ; T < T

1+a 1 4 b2 1+ 1—d2
b+d d 2/a

d <~ ——; b+ ———; a <~ ——
1—bd 1+V1+d2 l+a

Aftereach sweep, print f = cIn[(1+b)/(1—b)]. Stopwhen 1 —a <27". Write adouble-
precision routine to implement this algorithm and test it for various values of x. Compare
the results to those obtained from the arctangent function on your computer system.
Note: This fast multiple-precision algorithm depends on the theory of elliptic integrals,
using the arithmetic-geometric mean iteration and ascending Landen transformations.
Other fast algorithms for trigonometric functions are discussed in Brent [1976].

On your computer, show that in single precision, you have only six decimal digits of
accuracy if you enter 20 digits. Show that going to double precision is effective only
if all work is done in double precision. For example, if you use pi = 3.14 or pi =
22/7, you will lose all the precision that you have gained by using double precision.
Remember that the number of significant digits in the final results is what counts!

In some programming languages such as Java and C++, show that mixed-mode arith-
metic can lead to results such as (4/3)*pi=pi when pi is a floating-point number
because the fraction inside the parentheses is computed in integer mode.

(Student Research Project) Investigate interval arithmetic, which has the goal of
obtaining results with a guaranteed precision.
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An electric power cable is suspended (at points of equal height) from two
towers that are 100 meters apart. The cable is allowed to dip 10 meters in
the middle. How long is the cable?

=50 0 50

It is known that the curve assumed by a suspended cable is a catenary.
When the y-axis passes through the lowest point, we can assume an equa-
tion of the form y = A cosh(x/A). Here A is a parameter to be determined.
The conditions of the problem are that y(50) = y(0) +10. Hence, we obtain

kcosh(i—o) =1+10
By the methods of this chapter, the parameter is found to be A = 126.632.

After this value is substituted into the arc length formula of the catenary, the
length is determined to be 102.619 meters. (See Computer Problem 5.1.4.)

3.1 Bisection Method

Introduction

Let f be a real- or complex-valued function of a real or complex variable. A number r,
real or complex, for which f(r) = 0 is called a root of that equation or a zero of f. For
example, the function

fx)=6x>—Tx+2

76
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has % and % as zeros, as can be verified by direct substitution or by writing f in its factored
form:

f(x)=2x—1DBx—-2)
For another example, the function
g(x) =cos3x —cos7x

has not only the obvious zero x = 0, but every integer multiple of /5 and of 7 /2 as well,
which we discover by applying the trigonometric identity

1 1
cos A — cos B = 2sin {E(a + b)] sin {E(b — a)]

Consequently, we find
g(x) = 2sin(5x) sin(2x)

Why is locating roots important? Frequently, the solution to a scientific problem is a
number about which we have little information other than that it satisfies some equation.
Since every equation can be written so that a function stands on one side and zero on the
other, the desired number must be a zero of the function. Thus, if we possess an arsenal of
methods for locating zeros of functions, we shall be able to solve such problems.

We illustrate this claim by use of a specific engineering problem whose solution is the
root of an equation. In a certain electrical circuit, the voltage V and current / are related by
two equations of the form

I =a( -1
c=dl+V

in which a, b, ¢, and d are constants. For our purpose, these four numbers are assumed to
be known. When these equations are combined by eliminating / between them, the result
is a single equation:

c=ad@E” —1)+V
In a concrete case, this might reduce to
12=143*" -1+ V

and its solution is required. (It turns out that V' ~ 0.299 in this case.)

In some problems in which a root of an equation is sought, we can perform the required
calculation with a hand calculator. But how can we locate zeros of complicated functions
such as these?

f(x) =3.24x% — 2.42x7 4+ 10.34x° + 11.01x* + 47.98
g(x) =27 —10x + 1
h(x) = cosh (\/x2 +1- ex) + log |sin x|

What is needed is a general numerical method that does not depend on special properties of
our functions. Of course, continuity and differentiability are special properties, but they are
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common attributes of functions that are usually encountered. The sort of special property that
we probably cannot easily exploit in general-purpose codes is typified by the trigonometric
identity mentioned previously.

Hundreds of methods are available for locating zeros of functions, and three of the
most useful have been selected for study here: the bisection method, Newton’s method, and
the secant method.

Let f be a function that has values of opposite sign at the two ends of an interval.
Suppose also that f is continuous on that interval. To fix the notation, let a < b and
f(a) f(b) < 0. It then follows that f has a root in the interval (a, b). In other words, there
must exist a number r that satisfies the two conditionsa < r < b and f(r) = 0. How is this
conclusion reached? One must recall the Intermediate-Value Theorem.” If x traverses an
interval [a, b], then the values of f(x) completely fill out the interval between f(a) and
f(b). No intermediate values can be skipped. Hence, a specific function f must take on the
value zero somewhere in the interval (a, b) because f(a) and f(b) are of opposite signs.

Bisection Algorithm and Pseudocode

The bisection method exploits this property of continuous functions. At each step in this
algorithm, we have an interval [a, b] and the values u = f(a) and v = f(b). The numbers
u and v satisfy uv < 0. Next, we construct the midpoint of the interval, ¢ = %(a + b),
and compute w = f(c). It can happen fortuitously that f(c) = 0. If so, the objective of
the algorithm has been fulfilled. In the usual case, w # 0, and either wu < 0 or wv < 0.
(Why?) If wu < 0, we can be sure that aroot of f exists in the interval [a, c]. Consequently,
we store the value of ¢ in » and w in v. If wu > 0, then we cannot be sure that f has a root
in [a, c], but since wv < 0, f must have a root in [c, b]. In this case, we store the value of
¢ in a and w in u. In either case, the situation at the end of this step is just like that at the
beginning except that the final interval is half as large as the initial interval. This step can
now be repeated until the interval is satisfactorily small, say | — a| < % x 107°, At the
end, the best estimate of the root would be (a 4 b)/2, where [a, b] is the last interval in the
procedure.

Now let us construct pseudocode to carry out this procedure. We shall not try to create
a piece of high-quality software with many “bells and whistles,” but we will write the
pseudocode in the form of a procedure for general use. This will afford the reader an
opportunity to review how a main program and one or more procedures can be connected.

As a general rule, in programming routines to locate the roots of arbitrary functions,
unnecessary evaluations of the function should be avoided because a given function may
be costly to evaluate in terms of computer time. Thus, any value of the function that may
be needed later should be stored rather than recomputed. A careless programming of the
bisection method might violate this principle.

The procedure to be constructed will operate on an arbitrary function f. An interval
[a, b] is also specified, and the number of steps to be taken, nmax, is given. Pseudocode to

*A formal statement of the Intermediate-Value Theorem is as follows: If the function f is continuous on the
closed interval [a, b], and if f(a) Sy < f(b) or f(b) <y < f(a), then there exists a point ¢ such thata S ¢ < b
and f(c) = y.
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perform nmax steps in the bisection algorithm follows:

procedure Bisection(f, a, b, nmax, €)
integer n, nmax; reala,b,c, fa, fb, fc, error
fa < f(a)
fo < f(b)
if sign(fa) = sign(fb) then
output a, b, fa, fb
output “function has same signs at a and b”
return
end if
error < b —a
for n = 0 to nmax do
error < error/2
Cc < a + error
fe < f(©)
output n, c, fc, error
if |error| < € then
output “convergence”
return
end if
if sign(fa) # sign(fc) then
b <« c
fb < fc
else
a<c
fa < fc
end if
end for
end procedure Bisection

Many modifications are incorporated to enhance the pseudocode. For example, we use
fa, fb, fc as mnemonics for u, v, w, respectively. Also, we illustrate some techniques of
structured programming and some other alternatives, such as a test for convergence. For
example, if u, v, or w is close to zero, then uv or wu may underflow. Similarly, an overflow
situation may arise. A test involving the intrinsic function sign could be used to avoid these
difficulties, such as a test that determines whether sign(u) = sign(v). Here, the iterations
terminate if they exceed nmax or if the error bound (discussed later in this section) is less
than e. The reader should trace the steps in the routine to see that it does what is claimed.

Examples

Now we want to illustrate how the bisection pseudocode can be used. Suppose that we have
two functions, and for each, we seek a zero in a specified interval:

fx) =x3=3x+1 on [0, 1]
g(x) = x> —2sinx on [0.5, 2]



80

Chapter 3

Locating Roots of Equations

First, we write two procedure functions to compute f (x) and g(x). Then we input the initial
intervals and the number of steps to be performed in a main program. Since this is a rather
simple example, this information could be assigned directly in the main program or by way
of statements in the subprograms rather than being read into the program. Also, depending
on the computer language being used, an external or interface statement is needed to tell
the compiler that the parameter f in the bisection procedure is not an ordinary variable
with numerical values but the name of a function procedure defined externally to the main
program. In this example, there would be two of these function procedures and two calls to
the bisection procedure.

A call program or main program that calls the second bisection routine might be written
as follows:

program Test_Bisection
integer n, nmax < 20

reala, b, e < ;107

external function f, g

a < 0.0

b<~1.0

call Bisection(f, a, b, nmax, €)
a <05

b <20

call Bisection(g, a, b, nmax, €)
end program 7est_Bisection

real function f(x)
real x

A< —3xi1
end function f

real function g(x)
real x

g < x3 —2sinx
end function g

The computer results for the iterative steps of the bisection method for f(x):

n fo f(cn) error

0 0.5 —0.375 0.5

1 0.25 0.266 0.25

2 0.375 —7.23 x 1072 0.125

3 0.3125 9.30 x 1072 6.25 x 1072
4 0.34375 9.37 x 1073 3.125 x 1072
19 0.34729 67 —9.54 x 1077 9.54 x 1077

20 0.34729 62 3.58 x 1077 4.77 x 1077
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Also, the results for g(x) are as follows:

n fol g(cy) error

0 1.25 5.52 x 1072 0.75

1 0.875 —0.865 0.375

2 1.0625 —0.548 0.188

3 1.15625 —0.285 9.38 x 1072
4 1.203125 —0.125 4.69 x 1072
19 1.2361827 —4.88 x 107 1.43 x 107
20 1.23618 34 —2.15x 107 7.15 x 1077

To verify these results, we use built-in procedures in mathematical software such as
Matlab, Mathematica, or Maple to find the desired roots of f and g to be 0.34729 63553
and 1.23618 3928, respectively. Since f is a polynomial, we can use a routine for finding
numerical approximations to all the zeros of a polynomial function. However, when more
complicated nonpolynomial functions are involved, there is generally no systematic pro-
cedure for finding all zeros. In this case, a routine can be used to search for zeros (one at
a time), but we have to specify a point at which to start the search, and different starting
points may result in the same or different zeros. It may be particularly troublesome to find
all the zeros of a function whose behavior is unknown.

Convergence Analysis

Now let us investigate the accuracy with which the bisection method determines a root of
a function. Suppose that f is a continuous function that takes values of opposite sign at the
ends of an interval [ag, by]. Then there is a root r in [ao, by], and if we use the midpoint
co = (ag + by)/2 as our estimate of r, we have

by —ag

2

[r —col <

as illustrated in Figure 3.1. If the bisection algorithm is now applied and if the computed
quantities are denoted by ay, by, co, ai, by, ¢; and so on, then by the same reasoning,

bn —day
2

|r_Cn|§

(nz0)

Since the widths of the intervals are divided by 2 in each step, we conclude that

by — ag
|V—C,,|§ 2n+1 (l)
(bo — ag)/2
Ir — col
-
aw v ) By
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B THEOREM 1

EXAMPLE 1

Solution

To summarize:

BISECTION METHOD THEOREM

If the bisection algorithm is applied to a continuous function f on an interval [a, b],
where f(a) f(b) < 0, then, after n steps, an approximate root will have been computed
with error at most (b — a) /2"

If an error tolerance has been prescribed in advance, it is possible to determine the
number of steps required in the bisection method. Suppose that we want [r — ¢, | < ¢. Then
it is necessary to solve the following inequality for 7:

b—a
2n+1

By taking logarithms (with any convenient base), we obtain

log(b — a) — log(2¢)
>

log?2 @

How many steps of the bisection algorithm are needed to compute aroot of f to full machine
single precision on a 32-bit word-length computer if a = 16 and b = 177

The root is between the two binary numbers a = (10000.0), and b = (10001.0),. Thus, we
already know five of the binary digits in the answer. Since we can use only 24 bits altogether,
that leaves 19 bits to determine. We want the last one to be correct, so we want the error
to be less than 27 or 2720 (being conservative). Since a 32-bit word-length computer has
a 24-bit mantissa, we can expect the answer to have an accuracy of only 2%, From the
equation above, we want (b — a)/2"*! < ¢. Since b —a = 1 and ¢ = 272, we have
1/2"*t! < 2720 Taking reciprocals gives 2"*! > 220 or n > 20. Alternatively, we can use
Equation (2), which in this case is

log1 —log2~"

n> —————

log?2

Using a basic property of logarithms (logxY =ylogx), we find that n>20. In this
example, each step of the algorithm determines the root with one additional binary digit of
precision. [ |

A sequence {x,} exhibits linear convergence to a limit x if there is a constant C in the
interval [0, 1) such that
[Xn41 — x| < Clx, — x| (nz1) (3
If this inequality is true for all n, then
st = x| < Cloxy = x| C?xuy = x[< - <Cxy —x
Thus, it is a consequence of linear convergence that

X1 —x|AC"  (0sC < 1) “4)



FIGURE 3.2
False position
method

3.1 Bisection Method 83

The sequence produced by the bisection method obeys Inequality (4), as we see from
Equation (1). However, the sequence need not obey Inequality (3).

The bisection method is the simplest way to solve a nonlinear equation f(x) = 0. It
arrives at the root by constraining the interval in which a root lies, and it eventually makes
the interval quite small. Because the bisection method halves the width of the interval at
each step, one can predict exactly how long it will take to find the root within any desired
degree of accuracy. In the bisection method, not every guess is closer to the root than the
previous guess because the bisection method does not use the nature of the function itself.
Often the bisection method is used to get close to the root before switching to a faster
method.

False Position (Regula Falsi) Method and Modifications

The false position method retains the main feature of the bisection method: that a root is
trapped in a sequence of intervals of decreasing size. Rather than selecting the midpoint of
each interval, this method uses the point where the secant lines intersect the x-axis.

(b,f'(b))

~
[}
S

<
(a, f(a))

In Figure 3.2, the secant line over the interval [a, b] is the chord between (a, f(a)) and
(b, f(b)). The two right triangles in the figure are similar, which means that

b—c c—a

NOREEI)

It is easy to show that

c=b—f(b)[ a—b }za_f(a){ b—a }:af(b)—bf(a)

fla) = f(b) f(b) = fla) f(b) = fla)

We then compute f(c) and proceed to the next step with the interval [a, c] if f(a) f(c) <O
or to the interval [c, b] if f(c) f(b) < O.

In the general case, the false position method starts with the interval [ag, by] contain-
ing aroot: f(ap) and f(by) are of opposite signs. The false position method uses intervals
[ak, bi] that contain roots in almost the same way that the bisection method does. How-
ever, instead of finding the midpoint of the interval, it finds where the secant line joining
(ax, f(ay)) and (b, f(by)) crosses the x-axis and then selects it to be the new endpoint.
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FIGURE 3.3
Modified false
position
method

At the kth step, it computes

_agf(by) = b f(a)
) — f(ar)

Ci =

If f(ax) and f(c,) have the same sign, then set a1, = ¢ and by, = by; otherwise, set
ay+1 = ai and by = ¢,. The process is repeated until the root is approximated sufficiently
well.

For some functions, the false position method may repeatedly select the same endpoint,
and the process may degrade to linear convergence. There are various approaches to rectify
this. For example, when the same endpoint is to be retained twice, the modified false
position method uses

ai f (by) — 2by f(ar)
o _ S br) =2 f(ar)
¢ 2ay f (br) — b f (ar)
2f(b) — far)

, if fla) f(by) <0

. if fla) f(b) > 0

So rather than selecting points on the same side of the root as the regular false position
method does, the modified false position method changes the slope of the straight line so
that it is closer to the root. See Figure 3.3.

(br—1s [(Br—1))

(a 3f(ar)

(@—15 flag-1)

The bisection method uses only the fact that f (a) f(b) < O for each new interval [a, b],
but the false position method uses the values of f(a) and f(b). This is an example showing
how one can include additional information in an algorithm to build a better one. In the next
section, Newton’s method uses not only the function but also its first derivative.

Some variants of the modified false position procedure have superlinear convergence,
which we discuss in Section 3.3. See, for example, Ford [1995]. Another modified false
position method replaces the secant lines by straight lines with ever-smaller slope until the
iterate falls to the opposite side of the root. (See Conte and de Boor [1980].) Early versions
of the false position method date back to a Chinese mathematical text (200 B.C.E. to 100 C.E.)
and an Indian mathematical text (3 B.C.E.).
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Summary

(1) For finding a zero r of a given continuous function f in an interval [a, b], n steps of the
bisection method produce a sequence of intervals [a, b] = [ao, bol, [a1, b1], (a2, Da], . . .,
[a,, b,] each containing the desired root of the function. The midpoints of these intervals
Cos €15 €2, - - ., ¢, form a sequence of approximations to the root, namely, ¢; = %(ai + b;).
On each interval [a;, b;], the error e; = r — ¢; obeys the inequality

1
il <5 (bi —a;
leil < 5 (b — )
and after n steps we have

len| <

= ﬁ(bo — ap)

(2) For an error tolerance ¢ such that |e,| < &, n steps are needed, where n satisfies the
inequality

log(b — a) — log 2e
>
log?2

(3) For the kth step of the false position method over the interval [ay, by ], let

_arf(b) = b f(ar)
Jbr) — fa)

Cr =
If f(ak)f(ck) > 0, set a1 = ¢k and bk+1 = bk; otherwise, set a1 = ay and bk+1 = Ck-

Problems 3.1

“1. Find where the graphs of y = 3x and y = e* intersect by finding roots of ¢* —3x =0
correct to four decimal digits.

2. Give a graphical demonstration that the equation tanx = x has infinitely many roots.
Determine one root precisely and another approximately by using a graph. Hint: Use
the approach of the preceding problem.

3. Demonstrate graphically that the equation 507 + sinx = 100 arctan x has infinitely
many solutions.

“4, By graphical methods, locate approximations to all roots of the nonlinear equation
In(x 4+ 1) + tan(2x) = 0.

5. Give an example of a function for which the bisection method does not converge
linearly.

6. Draw a graph of a function that is discontinuous yet the bisection method converges.
Repeat, getting a function for which it diverges.

7. Prove Inequality (1).
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8. Ifa = 0.1 and b = 1.0, how many steps of the bisection method are needed to determine
the root with an error of at most % x 10782

49, Find all the roots of f(x) = cosx — cos 3x. Use two different methods.
410. (Continuation) Find the root or roots of In[(1 + x)/(1 — x%)] = 0.

11. If f has an inverse, then the equation f(x) = 0 can be solved by simply writing
x = f710). Does this remark eliminate the problem of finding roots of equations?
Illustrate with sinx = 1/m.

“12. How many binary digits of precision are gained in each step of the bisection method?
How many steps are required for each decimal digit of precision?

13. Try to devise a stopping criterion for the bisection method to guarantee that the root is
determined with relative error at most €.

14. Denote the successive intervals that arise in the bisection method by [ao, bol, [a1, b1],
[as, by], and so on.

a. Show thatag<a;<a, < ---andthatby>by >by > ---.

b. Show that b, — a, = 27" (by — ay).

¢. Show that, for all n, a,b,, + a,_1b,—1 = a,_1b, + a,b,_;.
15. (Continuation) Can it happen thatag = a; = a, = - - -

16. (Continuation) Let ¢, = (a, + b,)/2. Show that

lim ¢, = lim a, = lim b,
n—o0 n—oQ n— 00

“17. (Continuation) Consider the bisection method with the initial interval [ag, by]. Show
that after ten steps with this method,

1 1
E(alo + byg) — 5(09 + bo)| = 27" (by — ap)

Also, determine how many steps are required to guarantee an approximation of a root
to six decimal places (rounded).

18. (True—False) If the bisection method generates intervals [ag, bol, [@1, b1], and so on,
which of these inequalities are true for the root r that is being calculated? Give proofs
or counterexamples in each case.

a. [r —a,| £2|r — byl “b. |r —a,| <27 (by — ap)
¢ |r—3(ay +by)| <277 (by — ag)
“d. 0<r —a, <27 (by — ap) e. |r—b,| <27 Y(by — ap)

19. (True—False) Using the notation of the text, determine which of these assertions are
true and which are generally false:
‘a. |r —c,| < |r —cp_1] b. a,<r<c, c. ¢, <r<b,
d. |r—a, <27 “e. |r —b,| <27"(by — ap)

20. Prove that |c, — cpy1| = 27""2(by — ap).
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“21. If the bisection method is applied with starting interval [a, a + 1] and a > 2™, where
m >0, what is the correct number of steps to compute the root with full machine
precision on a 32-bit word-length computer?

22. Ifthe bisection method is applied with starting interval [2", 2”+1], where m is a positive
or negative integer, how many steps should be taken to compute the root to full machine
precision on a 32-bit word-length computer?

¢23. Every polynomial of degree n has n zeros (counting multiplicities) in the complex
plane. Does every real polynomial have n real zeros? Does every polynomial of infinite
degree f(x) =) 7 a,x" have infinitely many zeros?

Computer Problems 3.1

1. Using the bisection method, determine the point of intersection of the curves given by
y=x>—2x4+1landy = x%

2. Find aroot of the following equation in the interval [0, 1] by using the bisection method:
9x* + 18x3 4+ 38x2 — 57x + 14 = 0.

3. Find a root of the equation tanx = x on the interval [4, 5] by using the bisection
method. What happens on the interval [1, 2]?

4. Find a root of the equation 6(¢* — x) = 6 + 3x? + 2x> between —1 and +1 using the
bisection method.

5. Use the bisection method to find a zero of the equation A cosh(50/1) = A + 10 that
begins this chapter.

6. Program the bisection method as a recursive procedure and test it on one or two of the
examples in the text.

7. Usethe bisection method to determine roots of these functions on the intervals indicated.
Process all three functions in one computer run.
fx)=x34+3x—-1 on [0, 1]
g(x) = x3 — 2sinx on [0.5, 2]
h(x) = x 4+ 10 — x cosh(50/x) on [120, 130]

Find each root to full machine precision. Use the correct number of steps, at least
approximately. Repeat using the false position method.

8. Test the three bisection routines on f(x) = x* + 2x? + 10x — 20, with @ = 1 and
b = 2. The zero is 1.36880 8108. In programming this polynomial function, use nested
multiplication. Repeat using the modified false position method.

9. Write a program to find a zero of a function f in the following way: In each step, an
interval [a, b] is given and f(a) f (b) < 0. Then c is computed as the root of the linear
function that agrees with f at a and b. We retain either [a, c] or [c, b], depending on
whether f(a)f(c) < Oor f(c)f(b) < 0. Test your program on several functions.
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“10.

“11.

12.

13.

14.

15.

Select a routine from your program library to solve polynomial equations and use it to
find the roots of the equation

x® —36x7 + 546x° — 4536x° 4 22449x* — 67284x3
+118124x% — 109584x + 40320 = 0

The correct roots are the integers 1, 2, ..., 8. Next, solve the same equation when the
coefficient of x7 is changed to —37. Observe how a minor perturbation in the coeffi-
cients can cause massive changes in the roots. Thus, the roots are unstable functions
of the coefficients. (Be sure to program the problem to allow for complex roots.) Cul-
tural Note: This is a simplified version of Wilkinson’s polynomial, which is found in
Computer Problem 3.3.9.

A circular metal shaft is being used to transmit power. It is known that at a certain
critical angular velocity w, any jarring of the shaft during rotation will cause the shaft
to deform or buckle. This is a dangerous situation because the shaft might shatter under
the increased centrifugal force. To find this critical velocity w, we must first compute
a number x that satisfies the equation

tanx + tanhx = 0

This number is then used in a formula to obtain w. Solve for x (x > 0).

Using built-in routines in mathematical software systems such as Matlab, Mathematica,
or Maple, find the roots for f(x) = x> —3x + 1 on [0, 1] and g(x) = x> — sinx on
[0.5, 2] to more digits of accuracy than shown in the text.

(Engineering problem) Nonlinear equations occur in almost all fields of engineering.
For example, suppose a given task is expressed in the form f(x) = 0 and the objective
is to find values of x that satisfy this condition. It is often difficult to find an explicit
solution and an approximate solution is sought with the aid of mathematical software.
Find a solution of

fx)= Le—a/z)ﬁ + i sin(7r x)
V2 10
Plot the curve in the range [—3.5, 3.5] for x values and [—0.5,0.5] for y = f(x)
values.

(Circuit problem) A simple circuit with resistance R, capacitance C in series with a
battery of voltage V is given by Q@ = CV[l — e /(RO where Q is the charge of
the capacitor and T is the time needed to obtain the charge. We wish to solve for the
unknown C. For example, solve this problem

f @) = [10x (1 — ¢~ CX0D) — 0.00001]
Plot the curve. Hint: You may wish to magnify the vertical scale by using y = 10° f (x).

(Engineering polynomials) Equations such as A+ Bx?e“*=0 and A+ Bx+
Cx?+ Dx? + Ex* =0 occur in engineering problems. Using mathematical software,
find one or more solutions to the following equations and plot their curves:

a. 2 —x2e 03 = b. 1 —32x + 160x? — 256x> + 128x* =0
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20.
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(Reinforced concrete) In the design of reinforced concrete with regard to stress, one
needs to solve numerically a quadratic equation such as
2414707.2x[450 — 0.822x(225)] — 265,000,000 = 0

Find approximate values of the roots.

(Board in hall problem) In a building, two intersecting halls with widths w; = 9 feet
and w, = 7 feet meet at an angle o = 125°, as shown:

=1
S 5

|

Assuming a two-dimensional situation, what is the longest board that can negotiate the
turn? Ignore the thickness of the board. The relationship between the angles 6 and the
length of the board ¢ = £, 4 £, is €} = w;csc(B), £, = wocsc(y), f=m7 —a —y
and £ = w; csc(m — o — y) + w; csc(y). The maximum length of the board that can
make the turn is found by minimizing ¢ as a function of y. Taking the derivative and
setting d¢/dy = 0, we obtain

wycot(m —a — y)esc(m —a — y) —wycot(y)csc(y) =0

Substitute in the known values and numerically solve the nonlinear equation. This
problem is similar to an example in Gerald and Wheatley [1999].

Find the rectangle of maximum area if its vertices are at (0, 0), (x,0), (x,cosx),
(0, cos x). Assume that 0 < x < /2.

Program the false position algorithm and test it on some examples such as some of the
nonlinear problems in the text or in the computer problems. Compare your results with
those given for the bisection method.

Program the modified false position method, test it, and compare it to the false position
method when using some sample functions.

3.2 Newton’s Method

The procedure known as Newton’s method is also called the Newton-Raphson iteration.
It has a more general form than the one seen here, and the more general form can be used
to find roots of systems of equations. Indeed, it is one of the more important procedures
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FIGURE 3.4
Newton'’s
method

in numerical analysis, and its applicability extends to differential equations and integral
equations. Here it is being applied to a single equation of the form f(x) = 0. As before,
we seek one or more points at which the value of the function f is zero.

Interpretations of Newton’s Method

In Newton’s method, it is assumed at once that the function f is differentiable. This implies
that the graph of f has a definite slope at each point and hence a unique tangent line. Now
let us pursue the following simple idea. At a certain point (xg, f(x¢)) on the graph of f,
there is a tangent, which is a rather good approximation to the curve in the vicinity of that
point. Analytically, it means that the linear function

I(x) = f'(x0)(x — x0) + f(x0)

is close to the given function f near x,. At xo, the two functions / and f agree. We take the
zero of [ as an approximation to the zero of f. The zero of [ is easily found:

S (x0)
1'(x0)
Thus, starting with point x, (which we may interpret as an approximation to the root sought),
we pass to a new point x; obtained from the preceding formula. Naturally, the process can
be repeated (iterated) to produce a sequence of points:
S (xr) S (x2)
X) = X — s X3 = Xp — s etc.
J'(xn) J'(x2)
Under favorable conditions, the sequence of points will approach a zero of f.
The geometry of Newton’s method is shown in Figure 3.4. The line y = [(x) is tangent
to the curve y = f(x). It intersects the x-axis at a point x;. The slope of /(x) is f'(xo)-

X1 = Xg —

, Tangent line
y=1lw

7

There are other ways of interpreting Newton’s method. Suppose again that x, is an
initial approximation to a root of f. We ask: What correction h should be added to x to
obtain the root precisely? Obviously, we want

fxo+h) =0
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If f is a sufficiently well-behaved function, it will have a Taylor series at x, [see Equa-
tion (11) in Section 1.2]. Thus, we could write

hz
f(xo0) + hf' (x0) + ?f”(xo) +...=0

Determining / from this equation is, of course, not easy. Therefore, we give up the expec-
tation of arriving at the true root in one step and seek only an approximation to 4. This can
be obtained by ignoring all but the first two terms in the series:

f(xo) +hf'(xo) =0

The h that solves this is not the & that solves f(xo 4+ h) = 0, but it is the easily computed
number

__f&o)
J'(x0)

Our new approximation is then

S (x0)
S (x0)

.X1=)C0+h=)C()—

and the process can be repeated. In retrospect, we see that the Taylor series was not needed
after all because we used only the first two terms. In the analysis to be given later, it is
assumed that f” is continuous in a neighborhood of the root. This assumption enables us
to estimate the errors in the process.

If Newton’s method is described in terms of a sequence xg, X1, . . ., then the following
recursive or inductive definition applies:

ey SO
n+1 n f ; (Xn)
Naturally, the interesting question is whether
lim x, =r

n— 00

where r is the desired root.

If f(x) =x*—x 4+ 1and xo, = 1, what are x; and x, in the Newton iteration?

From the basic formula, x; = xo — f(x0)/f’(x0). Now f'(x) = 3x>—1,andso f'(1) = 2.
Also, we find f(1) = 1. Hence, we have x; = 1 — 1 = 1. Similarly, we obtain f (1)

f/(%) = —}—‘,andxz = 3.

3
8

)
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Pseudocode

A pseudocode for Newton’s method can be written as follows:

procedure Newton(f, f', x, nmax, €, §)
integer n, nmax; real x, fx, fp, €, §
external function f, [’
S < f(x)
output 0, x, fx
for n = 1 to nmax do
< f(x)
if | fp| < & then
output “small derivative”
return
end if
d < fx/fp
x < x—d
Jx < f(x)
output n, x, fx
if |d| < e then
output “convergence”
return
end if
end for
end procedure Newton

Using the initial value of x as the starting point, we carry out a maximum of nmax iterations
of Newton’s method. Procedures must be supplied for the external functions f(x) and f”(x).
The parameters ¢ and § are used to control the convergence and are related to the accuracy
desired or to the machine precision available.

lHlustration

Now we illustrate Newton’s method by locating a root of x* + x = 2x? + 3. We apply the
method to the function f(x) = x> — 2x? + x — 3, starting with xy = 3. Of course, f'(x) =
3x2 — 4x + 1, and these two functions should be arranged in nested form for efficiency:

f)=((x—=2)x+Dx -3
f(x) = Gx —d)x + 1

To see in greater detail the rapid convergence of Newton’s method, we use arithmetic with
double the normal precision in the program and obtain the following results:

n Xn f )

0 3.0 9.0

1 2.4375 2.04

2 2.213032722473144 5 0.256

3 2.17555 49386 14368 4 6.46 x 1073
4 2.17456 01006 55071 4 4.48 x 107
5 2.1745594102 93284 1 1.97 x 10712
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Notice the doubling of the accuracy in f(x) (and also in x) until the maximum precision
of the computer is encountered. Figure 3.5 shows a computer plot of three iterations of
Newton’s method for this sample problem.

Using mathematical software that allows for complex roots such as in Matlab, Maple,
or Mathematica, we find that the polynomial has a single real root, 2.17456, and a pair of
complex conjugate roots, —0.0872797 4+ 1.17131i.

Convergence Analysis

Anyone who has experimented with Newton’s method—for instance, by working some of
the problems in this section—will have observed the remarkable rapidity in the convergence
of the sequence to the root. This phenomenon is also noticeable in the example just given.
Indeed, the number of correct figures in the answer is nearly doubled at each successive
step. Thus in the example above, we have first 0 and then 1,2, 3, 6, 12, 24, ... accurate
digits from each Newton iteration. Five or six steps of Newton’s method often suffice to
yield full machine precision in the determination of a root. There is a theoretical basis for
this dramatic performance, as we shall now see.

Let the function f, whose zero we seek, possess two continuous derivatives f’ and
f”, and let r be a zero of f. Assume further that  is a simple zero; that is, f'(r) # 0.
Then Newton’s method, if started sufficiently close to r, converges quadratically to . This
means that the errors in successive steps obey an inequality of the form

2
[r — Xpp1| S clr — x|

We shall establish this fact presently, but first, an informal interpretation of the inequality
may be helpful.

Suppose, for simplicity, that ¢ = 1. Suppose also that x,, is an estimate of the root r
that differs from it by at most one unit in the kth decimal place. This means that

Ir —x,| <107F
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B THEOREM 1

Proof

The two inequalities above imply that
|r = Xpa 107

In other words, x,,, differs from r by at most one unit in the (2k)th decimal place. So x,, 4,
has approximately twice as many correct digits as x,! This is the doubling of significant
digits alluded to previously.

NEWTON'S METHOD THEOREM

If f, f/, and f” are continuous in a neighborhood of a root r of f and if f'(r) # 0,
then there is a positive § with the following property: If the initial point in Newton’s
method satisfies |[r — xo| < §, then all subsequent points x, satisfy the same inequality,
converge to r, and do so quadratically; that is,

Ir = Xas1] S c@)Ir — x,

where c(§) is given by Equation (2) below.

To establish the quadratic convergence of Newton’s method, let ¢, = r — x,,. The formula
that defines the sequence {x,} then gives

fe) L f ) e ) + )

fr) o) JHED)

By Taylor’s Theorem (see Section 1.2), there exists a point &, situated between x,, and r for
which

en+1:r_xn+1:r_xn+

1
0=f(r)=fl,+e) = fx)+ enf,(xn) + Eeﬁfﬁ(éﬂ)

(The subscript on &, emphasizes the dependence on x,,.) This last equation can be rearranged
to read

1
enf (X)) + f(x,) = —Ee,%f”(sn)

and if this is used in the previous equation for e, 1, the result is
L7 "G
en+1=——(,— e ()
2\ f'(x)

This is, at least qualitatively, the sort of equation we want. Continuing the analysis, we
define a function

| max (£
@ =12 550 @
¢ 2 min 100l

By virtue of this definition, we can assert that, for any two points x and & within distance
8 of the root r, the inequality %| &)/ f (x)| £c(8) is true. Now select § so small that
8¢(8) < 1. This is possible because as § approaches 0, ¢(8) converges to %|f”(r)/f/(r)|,
and so 8¢(8) converges to 0. Recall that we assumed that f/(r) #£ 0. Let p = 8¢(8). In the
remainder of this argument, we hold §, ¢(8), and p fixed with p < 1.
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Suppose now that some iterate x, lies within distance § from the root r. We have
les| =1r —xy/<6  and & —r|<8

By the definition of ¢(§), it follows that %|f”("§n)|/|f’(x,,)| < ¢(8). From Equation (1), we
now have

LG
|€n+1| - 5

2] f1(xn)

Consequently, x, is also within distance § of » because

er <c(8)e; <8c(d)le,| = ple,|

n n =

[F — Xus1l = leasil S plesl Sle | £6
If the initial point x; is chosen within distance 6§ of r, then
lenl < plen-il < p*len1] < -+ < p"leo]
Since 0 < p < 1,1lim,_, o p" = 0 and lim,,_, o, ¢, = 0. In other words, we obtain

lim x, =r
n— o0

In this process, we have |e,.1| < c(8)e?. [ ]

In the use of Newton’s method, consideration must be given to the proper choice of a
starting point. Usually, one must have some insight into the shape of the graph of the function.
Sometimes a coarse graph is adequate, but in other cases, a step-by-step evaluation of the
function at various points may be necessary to find a point near the root. Often several steps
of the bisection method is used initially to obtain a suitable starting point, and Newton’s
method is used to improve the precision.

Although Newton’s method is truly a marvelous invention, its convergence depends
upon hypotheses that are difficult to verify a priori. Some graphical examples will show what
can happen. In Figure 3.6(a), the tangent to the graph of the function f at x, intersects the
x-axis at a point remote from the root r, and successive points in Newton’s iteration recede

| f »
| / r\L/

¢  — X s

X

<)

=
=

N

FIGURE 3.6
Failure of
Newton’s

method due to
bad starting
points (¢) Cycle
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FIGURE 3.7
Curves py and
p3 with
multiplicity
2and3

from r instead of converging to r. The difficulty can be ascribed to a poor choice of the initial
point xo; it is not sufficiently close to . In Figure 3.6(b), the tangent to the curve is parallel
to the x-axis and x; = =00, or it is assigned the value of machine infinity in a computer. In
Figure 3.6(c), the iteration values cycle because x, = x. In a computer, roundoff errors or
limited precision may eventually cause this situation to become unbalanced such that the
iterates either spiral inward and converge or spiral outward and diverge.

The analysis that establishes the quadratic convergence discloses another troublesome
hypothesis; namely, f'(r) # 0. If f'(r) = 0, then r is a zero of f and f’. Such a zero is
termed a multiple zero of f—in this case, at least a double zero. Newton’s iteration for a
multiple zero converges only linearly! Ordinarily, one would not know in advance that the
zero sought was a multiple zero. If one knew that the multiplicity was m, however, Newton’s
method could be accelerated by modifying the equation to read

J (xn)
ma—n
f,(xn)

in which m is the multiplicity of the zero in question. The multiplicity of the zero r is the
least m such that f® (r) = 0 for 0<k < m, but f™ (r) s 0. (See Problem 3.2.35.)

As is shown in Figure 3.7, the equation p,(x) = x> —2x + 1 = 0 has a root at
1 of multiplicity 2, and the equation p3(x) = x> — 3x> +3x — 1 = 0 has a root at 1
of multiplicity 3. It is instructive to plot these curves. Both curves are rather flat at the
roots, which slows down the convergence of the regular Newton’s method. Also, the figures
illustrate the curves of two nonlinear functions with multiplicities as well as their regions
of uncertainty about the curves. So the computed solutions could be anywhere within the
indicated intervals on the x-axis. This is an indication of the difficulty in obtaining precise
solutions of nonlinear functions with multiplicities.

Xntl = Xp —

@) pyx) =x2—2x + 1 () p3(x) = x3 = 3x2 +3x — 1

Systems of Nonlinear Equations

Some physical problems involve the solution of systems of N nonlinear equations in N
unknowns. One approach is to linearize and solve, repeatedly. This is the same strategy
used by Newton’s method in solving a single nonlinear equation. Not surprisingly, a natural
extension of Newton’s method for nonlinear systems can be found. The topic of systems
of nonlinear equations requires some familiarity with matrices and their inverses. (See
Appendix D.)



3.2 Newton's Method 97

In the general case, a system of N nonlinear equations in N unknowns x; can be
displayed in the form

.fl(x17-x27"'7-xN) = 0

f2(xl9x2’ ...,XN) = O

0

S, xo, 000, xN)

Using vector notation, we can write this system in a more elegant form:
FX)=0
by defining column vectors as

F:[fhfzvn'ﬂfN]T

T
XZ[X],XZ,...,.XN]

The extension of Newton’s method for nonlinear systems is
X*+D — x®) _ [F/<X(k))]_1F(X(k))

where F/(X®) is the Jacobian matrix, which will be defined presently. It comprises
partial derivatives of F evaluated at X*) = [xl(k), xék) s xl(f)] " This formula is similar to
the previously seen version of Newton’s method except that the derivative expression is not
in the denominator but in the numerator as the inverse of a matrix. In the computational
form of the formula, X©@ = [xfo), xéo), e, x}\?)] ’ is an initial approximation vector, taken
to be close to the solution of the nonlinear system, and the inverse of the Jacobian matrix is
not computed but rather a related system of equations is solved.
We illustrate the development of this procedure using three nonlinear equations

fitx, x2,x3) = 0
f2(.x1,.x2,.x3) - 0 (3)
filx1,x2,x3) = 0

Recall the Taylor expansion in three variables fori = 1, 2, 3:

af; af; af;
filxr +hy, x0 4+ ho, x3 4+ h3) = fi(xy, x2, x3) + hy J + hy f: + h3 J/:
0x 0x7 0x3

e @

where the partial derivatives are evaluated at the point (x;, x,, x3). Here only the linear
terms in step sizes h; are shown. Suppose that the vector X© = (x,(o), xéo), xéo))T is an
approximate solution to (3). Let H = [hl, hy, h3] "bea computed correction to the initial
guess so that X© +H = [x{” + 71, x3” + ho, x3” + h3] " is a better approximate solution.
Discarding the higher-order terms in the Taylor expansion (4), we have in vector notation

0~F(X? +H)~F(X?)+F' (X?)H (5)
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where the Jacobian matrix is defined by

o of oA
8)61 8)62 3)63
F/(X(O)): 3_fz 3_fz 3_f2
8)C1 8x2 8X3
L0x; 0xp 0x3]

Here all of the partial derivatives are evaluated at X©'; namely,
afi af; (X(O))
0x; B 0x;

Also, we assume that the Jacobian matrix F’ (X((”) is nonsingular, so its inverse exists.
Solving for H in (5), we have

H~ —[F/(X?)] 'F(X©)

Let XV = X©@ 4 H be the better approximation after the correction; we then arrive at the
first iteration of Newton’s method for nonlinear systems

X0 = xO _ [F/(X<°>)]’IF(X(°>)
In general, Newton’s method uses this iteration:
X(k+1) — X(k) _ [F/(X(k))]’]F(X(k))

In practice, the computational form of Newton’s method does not involve inverting the
Jacobian matrix but rather solves the Jacobian linear systems

[F/(X®)JHY = —F(X®) (6)
The next iteration of Newton’s method is then
X*+h — x4 g® (7)

This is Newton’s method for nonlinear systems. The linear system (6) can be solved by
procedures Gauss and Solve as discussed in Chapter 7. Small systems of order 2 can be
solved easily. (See Problem 3.2.39.)

EXAMPLE 2 As an illustration, we can write a pseudocode to solve the following nonlinear system of
equations using a variant of Newton’s method given by (6) and (7):
x+y+z =3
Pty =5 (8)
e +xy—xz =1

Solution  With a sharp eye, the reader immediately sees that the solution of this systemis x =0, y =
1, z = 2. But in most realistic problems, the solution is not so obvious. We wish to develop
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a numerical procedure for finding such a solution. Here is a pseudocode:

x=[o01, 12, 25]
for k = 1 to 10 do
X1+ x+x3—3

F = xP+x3+x3—5
e+ x1xp —xx3 — 1
1 1 1
J == 2X1 2x2 ZX3
e +x—x3 X —Xx;
solve JH = F
X=X-H
end for

When programmed and executed on a computer, we found that it converges tox = (0, 1, 2),
but when we change to a different starting vector, (1, 0, 1), it converges to another root,
(1.2244, —0.0931, 1.8687). (Why?) [ |

We can use mathematical software such as in Matlab, Maple, or Mathematica and their
built-in procedures for solving the system of nonlinear equations (8). The important appli-
cation area of solving systems of nonlinear equations is used in Chapter 16 on minimization
of functions.

Fractal Basins of Attraction

The applicability of Newton’s method for finding complex roots is one of its outstanding
strengths. One need only program Newton’s method using complex arithmetic.

The frontiers of numerical analysis and nonlinear dynamics overlap in some intriguing
ways. Computer-generated displays with fractal patterns, such as in Figure 3.8, can easily
be created with the help of the Newton iteration. The resulting pictures show intricately
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interwoven sets in the plane that are quite beautiful if displayed on a color computer monitor.
One begins with a polynomial in the complex variable z. For example, p(z) = z* — 1 is
suitable. This polynomial has four zeros, which are the fourth roots of unity. Each of these
zeros has a basin of attraction, that is, the set of all points z, such that Newton’s iteration,
started at zo, will converge to that zero. These four basins of attraction are disjoint from each
other, because if the Newton iteration starting at z, converges to one zero, then it cannot
also converge to another zero. One would naturally expect each basin to be a simple set
surrounding the zero in the complex plane. But they turn out to be far from simple. To see
what they are, we can systematically determine, for a large number of points, which zero
of p the Newton iteration converges to if started at z. Points in each basin can be assigned
different colors. The (rare) points for which the Newton iteration does not converge can be
left uncolored. Computer Problem 3.2.27 suggests how to do this.

Summary

(1) For finding a zero of a continuous and differentiable function f, Newton’s method is
given by

Xnpl = Xn S &) (n=0)

)

It requires a given initial value x( and two function evaluations (for f and f) per step.

, =_1<f”<s,,)>62
T2\ )

2
|

(2) The errors are related by

which leads to the inequality
lear1| <cle,

This means that Newton’s method has quadratic convergence behavior for x, sufficiently
close to the root r.

(3) For an N x N system of nonlinear equations F(X) = 0, Newton’s method is written as
XED = X® _ [F/(XO)]TF(XP) (k=20

which involves the Jacobian matrix F'(X®) = J = [(af; (X?)/dx;)] . - In practice,
one solves the Jacobian linear system

[F/(X(k))]H(k) — _F(X(k))
using Gaussian elimination and then finds the next iterate from the equation

X+ — x® 4 g®

Additional References

For additional details and sample plots, see Kincaid and Cheney [2002] or Epureanu and
Greenside [1998]. For other references on fractals, see Crilly, Earnshall, and Jones [1991],
Feder [1998], Hastings and Sugihara [1993], and Novak [1998].



3.2 Newton's Method 101

Moreover, an expository paper by Ypma [1995] traces the historical development of

Newton’s method through notes, letters, and publications by Isaac Newton, Joseph Raphson,
and Thomas Simpson.

Problems 3.2

1.

“3.

ag,

“7.

“9,
10.

“11.

Verify that when Newton’s method is used to compute ~/R (by solving the equation
x2 = R), the sequence of iterates is defined by

1 R
Xnt1 = 5 xn+;

. (Continuation) Show that if the sequence {x,} is defined as in the preceding problem,

then

2 2
2 Xn — R
x ., —R=
n+1 |: zxn :|
Interpret this equation in terms of quadratic convergence.

Write Newton’s method in simplified form for determining the reciprocal of the square
root of a positive number. Perform two iterations to approximate 1/ = +/5, starting with
Xo = 1 aHdX() =—1.

Two of the four zeros of x* + 2x3 — 7x? 4 3 are positive. Find them by Newton’s
method, correct to two significant figures.

. The equation x — Rx~! = 0 has x = £R'/? for its solution. Establish Newton’s

iterative scheme, in simplified form, for this situation. Carry out five steps for R = 25
and xo = 1.

Using a calculator, observe the sluggishness with which Newton’s method converges
in the case of f(x) = (x — 1) with m = 8 or 12. Reconcile this with the theory. Use
Xo = 1.1.

What linear function y = ax + b approximates f(x) = sinx best in the vicinity of
x = /4?7 How does this problem relate to Newton’s method?

. In Problems 1.2.11 and 1.2.12, several methods are suggested for computing In 2.

Compare them with the use of Newton’s method applied to the equation e* = 2.
Define a sequence x,,; = x, — tanx, with xo = 3. What is lim,,_, », x,,?

The iteration formula x,,; = x, — (cos x,)(sinx,) + R cos® x,,, where R is a positive
constant, was obtained by applying Newton’s method to some function f(x). What
was f(x)? What can this formula be used for?

Establish Newton’s iterative scheme in simplified form, not involving the reciprocal of
x, for the function f(x) = xR — x~!. Carry out three steps of this procedure using
R =4and xo = —1.
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Consider the following procedures:
1 r 1 1
A Xyq = 3 <2xn - _’%> b. Xny1 = Exn + ;
Do they converge for any nonzero initial point? If so, to what values?
Each of the following functions has +/R as a zero for any positive real number R.
Determine the formulas for Newton’s method for each and any necessary restrictions
on the choice for x.
“a, a(x) =x>*—R b. b(x) =1/x>—=1/R “c. c(x) =x>—R/x
d. d(x) =x — R/x? ‘e, e(x) =1— R/x> f. f(x)=1/x —x*/R
‘g, g(x)=1/x*—x/R h. h(x) =1—-x3/R
Determine the formulas for Newton’s method for finding a root of the function f(x) =
x — e/x. What is the behavior of the iterates?

If Newton’s method is used on f(x) = x* — x + 1 starting with x, = 1, what will x,
be?

Locate the root of f(x) = e~ — cos x that is nearest 77 /2.
If Newton’s method is used on f(x) = x> — x> 4+ 3 and if x,, = 1, what is x,,,;?

Determine Newton’s iteration formula for computing the cube root of N /M for nonzero
integers N and M.

For what starting values will Newton’s method converge if the function f is f(x) =
x2/(1 +x2)?

Starting at x = 3, x < 3, or x > 3, analyze what happens when Newton’s method is
applied to the function f(x) = 2x* — 9x? + 12x + 15.

(Continuation) Repeat for f(x) = /|x], starting with x < O or x > 0.

To determine x = ~/ R, we can solve the equation x> = R by Newton’s method. Write
the loop that carries out this process, starting from the initial approximation xo = R.

The reciprocal of anumber R can be computed without division by the iterative formula
Xn41 = Xp (2 - an)

Establish this relation by applying Newton’s method to some f(x). Beginning with
xo = 0.2, compute the reciprocal of 4 correct to six decimal digits or more by this rule.
Tabulate the error at each step and observe the quadratic convergence.

On a certain modern computer, floating-point numbers have a 48-bit mantissa. More-
over, floating-point hardware can perform addition, subtraction, multiplication, and
reciprocation, but not division. Unfortunately, the reciprocation hardware produces a
result accurate to less than full precision, whereas the other operations produce results
accurate to full floating-point precision.

a. Show that Newton’s method can be used to find a zero of the function f(x) =
1 — 1/(ax). This will provide an approximation to 1/a that is accurate to full
floating-point precision. How many iterations are required?



25.

26.

a217.

28.

“29.

30.

“31.

“32.

33.

3.2 Newton's Method 103

b. Show how to obtain an approximation to b/a that is accurate to full floating-point
precision.

Newton’s method for finding \/E is

1 R
-xn+1:E xn+;

Perform three iterations of this scheme for computing /2, starting with x, = 1, and
of the bisection method for /2, starting with interval [1, 2]. How many iterations are
needed for each method in order to obtain 10~® accuracy?

(Continuation) Newton’s method for finding ~/R, where R = AB, gives this approxi-
mation:

A+ B AB
vVAB ~
4 +A—|—B

Show that if x, = A or B, then two iterations of Newton’s method are needed to obtain
this approximation, whereas if xo = %(A + B), then only one iteration is needed.

Show that Newton’s method applied to x™ — R and to 1 — (R/x™) for determining
%/R results in two similar yet different iterative formulas. Here R > 0, m > 2. Which
formula is better and why?

Using a handheld calculator, carry out three iterations of Newton’s method using xp = 1
and f(x) =3x° + x> — 15x + 3.

What happens if the Newton iteration is applied to f(x) = arctan x with x, = 2? For
what starting values will Newton’s method converge? (See Computer Problem 3.2.7.)

Newton’s method can be interpreted as follows: Suppose that f(x + #) = 0. Then
')~ [f(x+h)— f(x)]/h = —f(x)/h. Continue this argument.

Derive a formula for Newton’s method for the function F(x) = f(x)/f’(x), where
f(x) is a function with simple zeros that is three times continuously differentiable.
Show that the convergence of the resulting method to any zero » of f(x) is at least
quadratic. Hint: Apply the result in the text to F', making sure that F has the required
properties.

The Taylor series for a function f looks like this:

h? h?
fG+h) = f@&)+hf'(x)+ 3f”(x) + gf/”(X) +--

Suppose that f(x), f'(x), and f”(x) are easily computed. Derive an algorithm like
Newton’s method that uses three terms in the Taylor series. The algorithm should take
as input an approximation to the root and produce as output a better approximation to
the root. Show that the method is cubically convergent.

To avoid computing the derivative at each step in Newton’s method, it has been proposed
to replace f'(x,) by f’(xo). Derive the rate of convergence for this method.
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Refer to the discussion of Newton’s method and establish that
, - LIf"(r)
lim (e,11¢,°) = —=
n—00 2 f’ (r)
How can this be used in a practical case to test whether the convergence is quadratic?

Devise an example in which r, f'(r), and f”(r) are all known, and test numerically
the convergence of e, e, >.

Show that in the case of a zero of multiplicity m, the modified Newton’s method
Xpy] = X, — M J )
T T )

is quadratically convergent. Hint: Use Taylor series for each of f (r+e¢,) and f'(r+e,).

The Steffensen method for solving the equation f(x) = 0 uses the formula
)
n+l — An —
' g(x,)

in which g(x) = {f[x + f(x)] — f(x)}/f(x). It is quadratically convergent, like
Newton’s method. How many function evaluations are necessary per step? Using
Taylor series, show that g(x) ~ f’(x) if f(x) is small and thus relate Steffensen’s
iteration to Newton’s. What advantage does Steffensen’s have? Establish the quadratic
convergence.

A proposed Generalization of Newton’s method is
o O
n+l — An —
’ G

where the constant w is an acceleration factor chosen to increase the rate of convergence.
For what range of values of w is a simple root r of f(x) a point of attraction; that is,
lg'(r)| < 1, where g(x) = x — of (x)/f’(x)? This method is quadratically convergent
only if w = 1 because g'(r) # 0 when w # 1.

Suppose that r is a double root of f(x) = 0; thatis, f(r) = f'(r) = 0but f"(r) # 0,
and suppose that f and all derivatives up to and including the second are continuous
in some neighborhood of r. Show that e, ~ %e,, for Newton’s method and thereby
conclude that the rate of convergence is linear near a double root. (If the root has
multiplicity m, then e, 1 = [(m — 1)/m]e,.)

(Simultaneous nonlinear equations) Using the Taylor series in two variables (x, y)
of the form
FO+hy+k)=fxy) +hfelx,y) +kfi(x, )+

where f, = 9f/dx and f, = df/0dy, establish that Newton’s method for solving the
two simultaneous nonlinear equations

fx,y)=0
gx,y) =0
can be described with the formulas
ot =, — /8y~ 8l Soer = vy — fig— 8 f
8y — &Sy Jx8y — &ty

Here the functions f, f,, and so on are evaluated at (x,, y,).
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40. Newton’s method can be defined for the equation f(z) = g(x, y) + ih(x, y), where
f(z) is an analytic function of the complex variable z = x 4+ iy (x and y real) and
g(x,y) and h(x, y) are real functions for all x and y. The derivative f’(z) is given by
f'(2) = g« +ihy = h, — ig, because the Cauchy-Riemann equations g, = /, and
h, = —g, hold. Here the partial derivatives are defined as g, = 0g/dx, g, = dg/dy,
and so on. Show that Newton’s method

e = 2 — S (zn)
J'(zn)
can be written in the form
an:xn_m’ ynH:yn_M
gxhy - gyhx gxhy - gyhx

Here all functions are evaluated at z,, = x,, + i y,.

“41. Consider the algorithm of which one step consists of two steps of Newton’s method.
What is its order of convergence?

42. (Continuation) Using the idea of the preceding Problem, show how we can easily create
methods of arbitrarily high order for solving f(x) = 0. Why is the order of a method
not the only criterion that should be considered in assessing its merits?

43. If we want to solve the equation 2 — x = ¢* using Newton’s iteration, what are the
equations and functions that must be coded? Give a pseudocode for doing this problem.
Include a suitable starting point and a suitable stopping criterion.

44. Suppose that we want to compute /2 by using Newton’s Method on the equation
x2 = 2 (in the obvious, straightforward way). If the starting point is xo = %, what is
the numerical value of the correction that must be added to x, to get x;? Hint: The
arithmetic is quite easy if you do it using ratios of integers.

45. Apply Newton’s method to the equation f(x) = 0 with f(x) as given below. Find out
what happens and why.

a. f(x)=¢e" b. f(x) =" + x?

46. Consider Newton’s method x,, 1 = x, — f(x,)/f (x,). If the sequence converges then
the limit point is a solution. Explain why or why not.

Computer Problems 3.2

1. Using the procedure Newton and a single computer run, test your code on these exam-
ples: f(¢t) = tant — ¢t with xo = 7 and g(t) = ¢’ — +/t +9 with xo = 2. Print each
iterate and its accompanying function value.

2. Write a simple, self-contained program to apply Newton’s method to the equation
x> 4+ 2x? + 10x = 20, starting with x, = 2. Evaluate the appropriate f(x) and f'(x),
using nested multiplication. Stop the computation when two successive points differ by
% x 107 or some other convenient tolerance close to your machine’s capability. Print
all intermediate points and function values. Put an upper limit of ten on the number of
steps.
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(Continuation) Repeat using double precision and more steps.
Find the root of the equation
(1l =x24+x)Inx =x*—1

in the interval [0, 1] by Newton’s method using double precision. Make a table that
shows the number of correct digits in each step.

In 1685, John Wallis published a book called Algebra, in which he described a method
devised by Newton for solving equations. In slightly modified form, this method was
also published by Joseph Raphson in 1690. This form is the one now commonly
called Newton’s method or the Newton-Raphson method. Newton himself discussed
the method in 1669 and illustrated it with the equation x> — 2x — 5 = 0. Wallis used
the same example. Find a root of this equation in double precision, thus continuing the
tradition that every numerical analysis student should solve this venerable equation.

In celestial mechanics, Kepler’s equation is important. It reads x = y — esiny, in
which x is a planet’s mean anomaly, y its eccentric anomaly, and ¢ the eccentricity of
its orbit. Taking ¢ = 0.9, construct a table of y for 30 equally spaced values of x in the
interval 0 < x < 7. Use Newton’s method to obtain each value of y. The y corresponding
to an x can be used as the starting point for the iteration when x is changed slightly.

. In Newton’s method, we progress in each step from a given point x to a new point x — 1/,

where h = f(x)/f'(x). A refinement that is easily programmed is this: If | f(x — h)|
is not smaller than | f(x)|, then reject this value of 4 and use /2 instead. Test this
refinement.

Write a brief program to compute a root of the equation x* = x? + x + 1, using
Newton’s method. Be careful to select a suitable starting value.

Find the root of the equation 5(3x* — 6x2 + 1) = 2(3x° — 5x7%) that lies in the interval
[0, 1] by using Newton’s method and a short program.

For each equation, write a brief program to compute and print eight steps of Newton’s
method for finding a positive root.

“a, x = 2sinx . x3=sinx +7 % sinx=1—x
ad. xS+ x*2=1+7x3forx>2
Write and test a recursive procedure for Newton’s method.

Rewrite and test the Newton procedure so that it is a character function and
returns key words such as iterating, success, near-zero, max-iteration. Then
a case statement can be used to print the results.

Would you like to see the number 0.55887 766 come out of a calculation? Take three
steps in Newton’s method on 10 + x* — 12 cos x = 0 starting with xo = 1.

Write a short program to solve for a root of the equation e = cosx + 1 on [0, 4].
What happens in Newton’s method if we start with xo = 0 or with xo = 1?

Find the root of the equation %xz +x 4+ 1 —¢* = 0 by Newton’s method, starting with
xo = 1, and account for the slow convergence.
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Using f(x) = x> — 9x* — x3 + 17x? — 8x — 8 and xy = 0, study and explain the
behavior of Newton’s method. Hint: The iterates are initially cyclic.

Find the zero of the function f(x) = x — tanx that is closest to 99 (radians) by both
the bisection method and Newton’s method. Hint: Extremely accurate starting values
are needed for this function. Use the computer to construct a table of values of f(x)
around 99 to determine the nature of this function.

Using the bisection method, find the positive root of 2x(1 + x?)~! = arctan x. Using
the root as x(, apply Newton’s method to the function arctan x. Interpret the results.

If the root of f(x) = 01is a double root, then Newton’s method can be accelerated by
using
SACD)

1! ()
Numerically compare the convergence of this scheme with Newton’s method on a
function with a known double root.

Xpn+1 = Xp —

Program and test Steffensen’s method, as described in Problem 3.2.36.

Consider the nonlinear system
{f(x,y) =x+y?=25=0
g, y)=x*—y—-2=0
Using a software package that has 2D plotting capabilities, illustrate what is going on
in solving such a system by plotting f(x, y), g(x, y), and show their intersection with

the (x, y)-plane. Determine approximate roots of these equations from the graphical
results.

Solve this pair of simultaneous nonlinear equations by first eliminating y and then solv-
ing the resulting equation in x by Newton’s method. Start with the initial value x, = 1.0.

x> =2xy+y' —4x}y =5
ysinx 4+ 3x%y +tanx = 4

Using Equations (7) and (8), code Newton’s methods for nonlinear systems. Test your
program by solving one or more of the following systems:

a. System in Computer Problem 3.2.21.

b. System in Computer Problem 3.2.22.

c. System (3) using starting values (0, 0, 0).

d. Using starting values (% % —%), solve
x+y+z=0
x4y 4+2=2
x(y+2)=-1

e. Using starting values (—0.01, —0.01), solve

4y +4y +52x —19=0
169x% 4+ 3y? + 111x — 10y — 10 =0
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f. Select starting values, and solve

sin(x +y) =e* ™
cos(x + 6) = x2y?

Investigate the behavior of Newton’s method for finding complex roots of polynomials
with real coefficients. For example, the polynomial p(x) = x? + 1 has the complex
conjugate pair of roots =i and Newton’s method is x,, . = %(x,1 —1/x,). First, program
this method using real arithmetic and real numbers as starting values. Second, modify
the program using complex arithmetic but still using only real starting values. Finally,
use complex numbers as starting values. Observe the behavior of the iterates in each
case.

Using Problem 3.2.40, find a complex root of each of the following:
a. 2 —z-1=0 b. z* — 272 —2iz> +4iz =0
c. 23 —6(1+)2—6(1—-i)=0 d z=¢

Hint: For the last part, use Euler’s relation ¢’ = cos y + i sin y.

In the Newton method for finding aroot r of f(x) = 0, we start with xy and compute the
sequence x|, X, . . . using the formula x,.; = x, — f(x,)/f’(x,). To avoid computing
the derivative at each step, it has been proposed to replace f’(x,) with f’(xg) in all
steps. It has also been suggested that the derivative in Newton’s formula be computed
only every other step. This method is given by

f(x2n)

Xon41 = Xon — f/(x )

2n
X —x f(-x2n+1)
2n+2 — A2n+1 — T 0 o
T )

Numerically compare both proposed methods to Newton’s method for several simple
functions that have known roots. Print the error of each method on every iteration to
monitor the convergence. How well do the proposed methods work?

(Basin of attraction) Consider the complex polynomial z> — 1, whose zeros are the three
cube roots of unity. Generate a picture showing three basins of attraction in the complex
plane in the square region defined by —1 < Real(z) < 1 and —1 < Imaginary(z) < 1. To
do this, use a mesh of 1000 x 1000 pixels inside the square. The center point of each
pixel is used to start the iteration of Newton’s method. Assign a particular basin color
to each pixel if convergence to a root is obtained with nmax = 10 iterations. The large
number of iterations suggested can be avoided by doing some analysis with the aid
of Theorem 1, since the iterates get within a certain neighborhood of the root and the
iteration can be stopped. The criterion for convergence is to check both |z,+; — z,| < €
and |z, — 1| < & with a small value such as ¢ = 10~ as well as a maximum number
of iterations. Hint: It is best to debug your program and get a crude picture with only
a small number of pixels such as 10 x 10.

(Continuation) Repeat for the polynomial z* — 1 = 0.

Write real function Sgrt(x) to compute the square root of a real argument x by the
following algorithm: First, reduce the range of x by finding a real number r and an
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integer m such that x = 22my with él—t <r < 1.Next, compute x, by using three iterations
of Newton’s method given by
1 " r
Xpg1 = | X —
n+1 ) n )

with the special initial approximation

1.02966 039

xo = 1.27235367 + 0.24269 3281r —
147

Then set /x &~ 2™ x,. Test this algorithm on various values of x. Obtain a listing of the
code for the square-root function on your computer system. By reading the comments,
try to determine what algorithm it uses.

The following method has third-order convergence for computing ~/R:

X, (x2 4+ 3R)
3x2+R

Xn+1 =

Carry out some numerical experiments using this method and the method of the pre-
ceding problem to see whether you observe a difference in the rate of convergence. Use
the same starting procedures of range reduction and initial approximation.

Write real function CubeRoot(x) to compute the cube root of a real argument x by
the following procedure: First, determine a real number r and an integer m such that
x = r2¥" with % <r < 1. Compute x4 using four iterations of Newton’s method:

2 n r
Xn =\ Xn
173 2x2

8.045125(r +0.3877552)
(r +4.612244)(r + 0.3877552) — 0.35984 96

with the special starting value

xo = 2.502926 —

Then set </x A~ 2™ x,. Test this algorithm on a variety of x values.

Use mathematical software such as in Maple or Mathematica to compute ten iterates
of Newton’s method starting with xo = 0 for f(x) = x> — 2x?> + x — 3. With 100
decimal places of accuracy and after nine iterations, show that the value of x is

2.17455 9410292980 07420 23189 88695 65392 56759 48725 33708
2498336733 9203023647 6479275760 66115 28969 38832 0640

Show that the values of the function at each iteration are 9.0, 2.0, 0.26, 0.0065, 0.45 x
107°,0.22x1071,0.50x 10724,0.27x 107%°,0.1 x 1078, and 0.1 x 10~°%. Again notice
that the number of digits of accuracy in Newton’s method doubles (approximately) with
each iteration once they are sufficiently close to the root. (Also, see Bornemann, Wagon,
and Waldvogel [2004] for a 100-Digit Challenge, which is a study in high-accuracy
numerical computing.)
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(Continuation) Use Maple or Mathematica to discover that this root is exactly

79 1

ot N e+ =
M0 00/ 2+ L7
54 6

Clearly, the decimal results are of more interest to us in our study of numerical methods.
(Continuation) Find all the roots including complex roots.

Numerically, find all the roots of the following systems of nonlinear equations. Then
plot the curves to verify your results:

oy =2x243x -4, y=x>+2x+3

. Y+ x+3=0,x24+y>=17

. y:%x—S,y:xz—i—Zx—lS

cxy=lLx4+y=2

L y=x2 x4+ (y—=2)?=4

L 3x2 +2y2 =35,4x2 —3y? =24

L xZ—xy+yrP =21, x> +2xy —8y? =0

P - O 2 6 T O

Apply Newton’s method on these test problems:

a. f(x) = x%. Hint: The first derivative is zero at the root and convergence may not
be quadratic.

b. f(x) = x 4+ x*3. Hint: There is no second derivative at the root and convergence
may fail to be quadratic.

c. f(x)=x4x%sin(2/x) for x % 0and f(0) = 0and f'(x) = 1 + 2xsin(2/x) —
2cos(2/x) for x # 0 and f'(0) = 1. Hint: The derivative of this function is not
continuous at the root and convergence may fail.

xI—xy+c¢ 0
X3 —x;+ c] N [0
0 describes a parabola. Any point (x*, y*) where these two parabolas intersect is a
solution to the nonlinear system of equations. Using Newton’s method for systems
of nonlinear equations, find the solutions for each of these values of the parameter
c = %, }—P —%, —1. Give the Jacobian matrix for each. Also for each of these values,
plot the resulting curves showing the points of intersection. (Heath 2000, p. 218)

X7 4+2x, —2
x;+4x3 —4
(1, 2). Give the Jacobian matrix. Also plot the resulting curves showing the point(s) of
intersection.

LetF(X) = [ . Each component equation f;(x) = Oand f>(x) =

Let F(X) = [ } = {8] . Solve this nonlinear system starting with X =

Using Newton’s method, find the zeros of f(z) = z* — z with these starting values
2O =1415,1+1.1i, 1+ 1.2i, 1 +1.3i.

Use Halley’s method to produce a plot of the basins of attraction for p(z) = z° — 1.
Compare to Figure 3.8.
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41. (Global positioning system project) Each time a GPS is used, a system of nonlinear
equations of the form

(x—a)’+ (@ —b)*+ (z—c) =[(CHt — D))
(x—a)’ 4+ —b)+ (@ —c¢) =[(C(ty— D))
(x —a3)* + (y —b3)* + (z — ¢))* = [(C(ts — D)
(x —an)* + (v —b)* + (z — ¢))* = [(C(ts — D)?

is solved for the (x, y, z) coordinates of the receiver. For each satellite i, the locations
are (a;, b;, ¢;), and 1; is the synchronized transmission time from the satellite. Further,
C is the speed of light, and D is the difference between the synchronized time of the
satellite clocks and the earth-bound receiver clock. While there are only two points
on the intersection of three spheres (one of which can be determined to be the desired
location), a fourth sphere (satellite) must be used to resolve the inaccuracy in the
clock contained in the low-cost receiver on earth. Explore various ways for solving
such a nonlinear system. See Hofmann-Wellenhof, Lichtenegger, and Collins [2001],
Sauer [2006], and Strang and Borre [1997].

[

42. Use mathematical software such as in Matlab, Maple, or Mathematica and their built-in
procedures to solve the system of nonlinear equations (8) in Example 2. Also, plot the
given surfaces and the solution obtained. Hinz: You may need to use a slightly perturbed
starting point (0.5, 1.5, 0.5) to avoid a singularity in the Jacobian matrix.

3.3 Secant Method

We now consider a general-purpose procedure that converges almost as fast as Newton’s
method. This method mimics Newton’s method but avoids the calculation of derivatives.
Recall that Newton’s iteration defines x,; in terms of x, via the formula

fGu)

1 (xn)
In the secant method, we replace f’(x,) in Formula (1) by an approximation that is easily
computed. Since the derivative is defined by

fx+h) = fx)
h

ey

Xn+1 = Xp

f'(x) = lim
we can say that for small A,

_fx+h)— fx)
)y~ e T I

£ -
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FIGURE 3.9
Secant method

(In Section 4.3, we revisit this subject and learn that this is a finite difference approximation
to the first derivative.) In particular, if x = x,, and & = x,,_; — x,,, we have
, S @n—1) = f ()
T 2)

Xn—1 — Xn

When this is used in Equation (1), the result defines the secant method:

— _ Xn — Xn—1 3
X1 = Xn <f(-xn) — f(-xn—l)> S Gxn) (3)
The secant method (like Newton’s) can be used to solve systems of equations as well.

The name of the method is taken from the fact that the right member of Equation (2)
is the slope of a secant line to the graph of f (see Figure 3.9). Of course, the left member
is the slope of a tangent line to the graph of f. (Similarly, Newton’s method could be called
the “tangent method.”)

~ Secant line

A few remarks about Equation (3) are in order. Clearly, x,; depends on fwo previous
elements of the sequence. So to start, two points (xo and x;) must be provided. Equation (3)
can then generate x;, x3, . ... In programming the secant method, we could calculate and
test the quantity f(x,) — f (x,_1). If it is nearly zero, an overflow can occur in Equation (3).
Of course, if the method is succeeding, the points x, will be approaching a zero of f, so
f(x,) will be converging to zero. (We are assuming that f is continuous.) Also, f(x,_;)
will be converging to zero, and, a fortiori, f(x,) — f(x,_;) will approach zero. If the terms
f(x,) and f(x,_1) have the same sign, additional significant digits are canceled in the
subtraction. So we could perhaps halt the iteration when | f (x,) — f(x,—1)| £ 8| f (x,)| for
some specified tolerance §, such as % x 107, (See Computer Problem 3.3.18.)

Secant Algorithm

A pseudocode for nmax steps of the secant method applied to the function f starting with
the interval [a, b] = [xy, x] can be written as follows:

procedure Secant(f, a, b, nmax, €)
integer n, nmax; reala,b,fa,fb,¢e,d
external function f

fa < f(a)

fbo < f(b)



EXAMPLE 1

Solution

if |fa| > |fb| then
a<—b
fa <— fb
end if
output 0, a, fa
output 1, b, fb
for n = 2 to nmax do
if |[fa| > |fb| then
a<—b
fa <— fb
end if

d <~ (b—a)/(fb— fa)

b<a
fb < fa
d<d-fa

if |d| < ¢ then
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output “convergence”

return
end if
a<a—d
fa < f(a)
output n, a, fa
end for

end procedure Secant

Here <— means interchange values. The endpoints [a, b] are interchanged, if necessary, to
keep | f(a)| £|f(b)|. Consequently, the absolute values of the function are nonincreasing;
thllS, we have |f(xn)| 2 |f(xn+l)| forn 2 L.

If the secant method is used on p(x) = x> + x> 4+ 3 with xo = —1 and x; = 1, what is xg?

The output from the computer program corresponding to the pseudocode for the secant
method is as follows. (We used a 32-bit word-length computer.)

01NN kAW —=O 3

Xn p(xn)
—1.0 1.0

1.0 5.0
—15 —7.97
—1.05575 0.512
—1.11416 —9.991 x 1072
—1.10462 7.593 x 1073
—1.10529 1.011 x 1074
—1.10530 2.990 x 1077
—1.10530 2.990 x 1077

We can use mathematical software to find the single real root, —1.1053, and the two pairs
of complex roots, —0.319201 £ 1.35008; and 0.871851 =+ 0.806311:. [ |
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Convergence Analysis

The advantages of the secant method are that (after the first step) only one function evaluation
is required per step (in contrast to Newton’s iteration, which requires two) and that it is almost
as rapidly convergent. It can be shown that the basic secant method defined by Equation (3)
obeys an equation of the form

1/ f"&) 1/ f"(r)
Cnyl = — % ; €6y X —— ; €n€n—1 (4)
2\ f'(&w) 2\ f(r)
where &, and ¢, are in the smallest interval that contains r, x,, and x,,_;. Thus, the ratio
eny1(ene,_1)~! converges to —% f"(r)/f (r). The rapidity of convergence of this method
is, in general, between those for bisection and for Newton’s method.

To prove the second part of Equation (4), we begin with the definition of the secant
method in Equation (3) and the error

Cny1 =T — Xpgi
S)xa1 — f—)x,
S ) — fxa)
e — flx—1)e,
) = fa)

f(-xn) _ f(xn—l)

Ao 7 A €n [
B 5
|:f(xn) - f(xn_l)} Xp — Xp_1 €n€n—1 ( )

By Taylor’s Theorem, we establish

1
FG) = For—e) = f0)—ef )+ 56 ") +O(e;)
Since f(r) = 0, this gives us

L5 — —p) + Seas ")+ 0(&)

n

Changing the index to n — 1 yields

— ’ 1 "
FG)) _ iy Setf () +0(e)y)

n—1

By subtraction between these equations, we arrive at

: 1 .
fZ - fi:—ll) =5 —enf'(N+0(e)

Since x,, — x,,_; = e,_1 — e,, we reach the equation

f(xn) _ f(xn—l)

€n €n—1

~ 1 1
N—Ef (r)

Xp — Xn—1
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The first bracketed expression in Equation (5) can be written as

Xn — Xn—1 ~ 1
J@an) = fQ)  f(0)

Hence, we have shown the second part of Equation (4).

We leave the establishment of the first part of Equation (4) as a problem because it
depends on some material to be covered in Chapter 4. (See Problem 3.3.18.)

From Equation (4), the order of convergence for the secant method can be expressed
in terms of the inequality

|en+1| §C|en|a (6)

wherea = % (1 +/5 ) ~ 1.62is the golden ratio. Since « > 1, we say that the convergence
is superlinear. Assuming that Inequality (6) is true, we can show that the secant method
converges under certain conditions.

Letc = ¢(8) be defined as in Equation (2) of Section 3.2. If |r —x,| £§ and |r —x,,_| £ 8,
for some root r, then Equation (4) yields

|en+l| §C|en||en71| (7)

Suppose that the initial points x( and x; are sufficiently close to r that cleg| < D and cle;| £ D
for some D < 1. Then

cle)| < D, clegl <D
cles| < cley| clegl < D*
cles| < clex| clei| < D*
cles| < cles|cles| < D’
cles| < cles| cles| < D

etc.
In general, we have
len| < c7' DM ®)
where inductively,

{M:l, A =1 )

Ap = Ay + A2 (l’l 2 3)

This is the recurrence relation for generating the famous Fibonacci sequence, 1, 1,2, 3, 5,
8, .... It can be shown to have the surprising explicit form

1
= —= (" = p") (10)
5
where a = %(1—}—«/5) and g = %(1—\/5).SinceD < land A,, — 00, we conclude from

Inequality (8) that e, — 0. Hence, x,, — r as n — 00, and the secant method converges to
the root r if xy and x, are sufficiently close to it.
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Next, we show that Inequality (6) is in fact reasonable—not a proof. From Equations (7),
we now have

|en+l| < C|en||en71|

1—
C|en|a|en| a|en—l|

_ 1— _
c|e,,|°‘(c 1D)\”*‘) Ol(c lD’\”)
a_lD)\rz+l(1_a)+)\n

X

len]“c
— |€n|aCa71 D)»n+2*0!)~n+|

by using an approximation to Inequality (8). In the last line, we used the recurrence relation
(9). Now A,» — ah,41 converges to zero. (See Problem 3.3.6.). Hence, ¢~ D+~ %1 jg
bounded, say, by C, as a function of n. Thus, we have

lenti] ~ Cle,|®

which is a reasonable approximation to Inequality (6).
Another derivation (with a bit of hand waving) for the order of convergence of the
secant method can be given by using a general recurrence relation. Equation (4) gives us

enr1 ~ Keye,_
where K = —1 f”(r)/ f'(r). We can write this as
|Kens1| ~ |Key| |Kep|
Let z; = log | Ke;|. Then we want to solve the recurrence equation
Znt1 = Zn + Zu—1

where z( and z; are arbitrary. This is a linear recurrence relation with constant coefficients
similar to the one for the Fibonacci numbers (9) except that the first two values zy and z,
are unknown. The solution is of the form

7z, = Aa" + BB" (11)

where o« = 1 (1++/5) and B = 1(1 — v/5). These are the roots of the quadratic equation

22— —1=0. Since |«| > |B], the term A" dominates, and we can say that
Z, ~ Ad"
for large n and for some constant A. Consequently, we have
|Ke,| ~ 104"
Then it follows that

|Keyi| ~ 107"

= (10*")" = |Ke,|*
Hence, we have
|en+l| ~ C|en|a (12)

for large n and for some constant C. Again, Inequality (6) is essentially established! A
rigorous proof of Inequality (6) is tedious and quite long.
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Comparison of Methods

In this chapter, three primary methods for solving an equation f(x) = 0 have been pre-
sented. The bisection method is reliable but slow. Newton’s method is fast but often only
near the root and requires f’. The secant method is nearly as fast as Newton’s method
and does not require knowledge of the derivative f’, which may not be available or may
be too expensive to compute. The user of the bisection method must provide two points
at which the signs of f(x) differ, and the function f need only be continuous. In using
Newton’s method, one must specify a starting point near the root, and f must be differ-
entiable. The secant method requires two good starting points. Newton’s procedure can
be interpreted as the repetition of a two-step procedure summarized by the prescription
linearize and solve. This strategy is applicable in many other numerical problems, and its
importance cannot be overemphasized. Both Newton’s method and the secant method fail
to bracket a root. The modified false position method can retain the advantages of both
methods.

The secant method is often faster at approximating roots of nonlinear functions in
comparison to bisection and false position. Unlike these two methods, the intervals [ay, D]
do not have to be on opposite sides of the root and have a change of sign. Moreover, the
slope of the secant line can become quite small, and a step can move far from the current
point. The secant method can fail to find a root of a nonlinear function that has a small slope
near the root because the secant line can jump a large amount.

For nice functions and guesses relatively close to the root, most of these methods require
relatively few iterations before coming close to the root. However, there are pathological
functions that can cause troubles for any of those methods. When selecting a method for
solving a given nonlinear problem, one must consider many issues such as what you know
about the behavior of the function, an interval [a, b] satisfying f(a) f(b) < 0, the first
derivative of the function, a good initial guess to the desired root, and so on.

Hybrid Schemes

In an effort to find the best algorithm for finding a zero of a given function, various hybrid
methods have been developed. Some of these procedures combine the bisection method
(used during the early iterations) with either the secant method or the Newton method. Also,
adaptive schemes are used for monitoring the iterations and for carrying out stopping rules.
More information on some hybrid secant-bisection methods and hybrid Newton-bisection
methods with adaptive stopping rules can be found in Bus and Dekker [1975], Dekker [1969],
Kahaner, Moler, and Nash [1989], and Novak, Ritter, and WozZniakowski [1995].

Fixed-Point Iteration

For a nonlinear equation f(x) = 0, we seek a point where the curve f intersects the x-axis
(y = 0). An alternative approach is to recast the problem as a fixed-point problem x = g(x)
for a related nonlinear function g. For the fixed point problem, we seek a point where the
curve g intersects the diagonal line y = x. A value of x such that x = g(x) is a fixed point
of g because x is unchanged when g is applied to it. Many iterative algorithms for solving
anonlinear equation f(x) = 0 are based on a fixed-point iterative method x ") = g(x™)
where g has fixed points that are solutions of f(x) = 0. An initial starting value x©
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EXAMPLE 2

Solution

FIGURE 3.10
Fixed point
iterations for
f(x) = x2—x—2

is selected, and the iterative method is applied repeatedly until it converges sufficiently
well.

Apply the fixed-point procedure, where g(x) = 1 +2/x, starting with x@ = 1, to compute
a zero of the nonlinear function f(x) = x?> — x — 2. Graphically, trace the convergence
process.

The fixed-point method is

2
x(")

XD — 1 4

Eight steps of the iterative algorithm are x©@ = 1, x = 3, x® = 5/3, x® = 11/5,
x® =21/11,x® =43/21,x© = 85/43,x7 = 171/85,and x® = 341/171 ~ 1.99415.
In Figure 3.10, we see that these steps spiral into the fixed point 2.

y
y—1+% y=x
3_ _________
|
: |
| |
| — |
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¢ 1 1 X
0 1 2 3 [ ]

For a given nonlinear equation f(x) = 0, there may be many equivalent fixed-point
problems x = g(x) with different functions g, some better than others. A simple way to
characterize the behavior of an iterative method x "™ = ¢(x™) is locally convergent for
x*if x* = g(x*) and | g’ (x*)| < 1. By locally convergent, we mean that there is an interval
containing x© such that the fixed-point method converges for any starting value x® within
that interval. If |g’(x*)| > 1, then the fixed-point method diverges for any starting point x @
other than x*. Fixed-point iterative methods are used in standard practice for solving many
science and engineering problems. In fact, the fixed-point theory can simplify the proof of
the convergence of Newton’s method.

Summary

(1) The secant method for finding a zero r of a function f(x) is written as

N <X—XI> £
) = f )
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for n > 1, which requires two initial values x¢ and x;. After the first step, only one new
function evaluation per step is needed.

(2) After n + 1 steps of the secant method, the error iterates ¢; = r — x; obey the equation

, :_1<ﬂ@vee
n+1 ) f/(é'n) n€n—1

which leads to the approximation

leni1] & Cle,|'?(HY5) x Cle, |62

Therefore, the secant method has superlinear convergence behavior.

Additional References

For supplemental reading and study, see Barnsley [2006], Bus and Dekker [1975], Dekker
[1969], Dennis and Schnabel [1983], Epureanu and Greenside [1998], Fauvel, Flood,
Shortland, and Wilson [1988], Feder [1988], Ford [1995], Householder [1970], Kelley
[1995], Lozier and Olver [1994], Nerinckx and Haegemans [1976], Novak, Ritter, and
Wozniakowski [1995], Ortega and Rheinboldt [1970], Ostrowski [1966], Rabinowitz [1970],
Traub [1964], Westfall [1995], and Ypma [1995].

Problems 3.3

1. Calculate an approximate value for 4% using one step of the secant method with xo = 3
and x; = 2.

2. If we use the secant method on f(x) = x3 — 2x + 2 starting with xy = 0 and x; = 1,
what is x,?

3, If the secant method is used on f(x) = x> +x*+3 and if x,_, = O and x,_; = 1,
what is x,,?

“4, M xp01 = x, + 2 —e™)(x, — x,_1)/(e™ — ') with xo = 0 and x; = 1, what is
lim,,_, o0 X,,?

5. Using the bisection method, Newton’s method, and the secant method, find the largest
positive root correct to three decimal places of x* — 5x + 3 = 0. (All roots are in
[-3,+3])

6. Prove that in the first analysis of the secant method, A, — oA, converges to zero as
n— oo.

7. Establish Equation (10).

8. Write out the derivation of the order of convergence of the secant method that uses
recurrence relations; that is, find the constants A and B in Equation (11), and fill in the
details in arriving at Equation (12).
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9.

10.

11.

“12.

13.

14.

“15.

“16.

“17.

18.

What is the appropriate formula for finding square roots using the secant method?
(Refer to Problem 3.2.1.)

The formula for the secant method can also be written as

xn—lf(xn) - xnf(xn—l)
f(xn) - f(xnfl)

Xnt1 =

Establish this, and explain why it is inferior to Equation (3) in a computer program.

Show that if the iterates in Newton’s method converge to a point » for which f/(r) # 0,
then f(r) = 0. Establish the same assertion for the secant method. Hint: In the latter,
the Mean-Value Theorem of Differential Calculus is useful. This is the case n = 0 in
Taylor’s Theorem.

A method of finding a zero of a given function f proceeds as follows. Two initial
approximations x, and x; to the zero are chosen, the value of x is fixed, and successive
iterations are given by

_ . Xp — Xo
e = <f(xn) - f(xO)> 7o)

This process will converge to a zero of f under certain conditions. Show that the rate
of convergence to a simple zero is linear under some conditions.

Test the following sequences for different types of convergence (i.e., linear, superlinear,
or quadratic), wheren = 1,2,3....

“a, x, =n? b. x, =27" ac, x, =27%
d. x, =2 withagy=a; =1landa,,1 =a, +a,_ forn>2

This problem and the next three deal with the method of functional iteration. The
method of functional iteration is as follows: Starting with any x,, we define x,,.; =
f(x,), wheren = 0, 1,2, .... Show that if f is continuous and if the sequence {x,}
converges, then its limit is a fixed point of f.

(Continuation) Show that if f is a function defined on the whole real line whose
derivative satisfies | f'(x)| < ¢ with a constant c less than 1, then the method of functional
iteration produces a fixed point of f. Hint: In establishing this, the Mean-Value Theorem
from Section 1.2 is helpful.

(Continuation) With a calculator, try the method of functional iteration with f(x) =
x/2 + 1/x, taking xo = 1. What is the limit of the resulting sequence?

(Continuation) Using functional iteration, show that the equation 10 — 2x +sinx =0
has a root. Locate the root approximately by drawing a graph. Starting with your
approximate root, use functional iteration to obtain the root accurately by using a
calculator. Hint: Write the equation in the form x =5 + % sinx.

Establish the first part of Equation (4) using Equation (5). Hint: Use the relationship
between divided differences and derivatives from Section 4.2.
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Computer Problems 3.3

1. Use the secant method to find the zero near —0.5 of f(x) = e* — 3x2. This function
also has a zero near 4. Find this positive zero by Newton’s method.

2. Write

procedure Secant( f, x1, x2, epsi, delta, maxf, x, ierr)

which uses the secant method to solve f(x) = 0. The input parameters are as follows:
f is the name of the given function; x 1 and x2 are the initial estimates of the solution;
epsi is a positive tolerance such that the iteration stops if the difference between two
consecutive iterates is smaller than this value; delta is a positive tolerance such that
the iteration stops if a function value is smaller in magnitude than this value; and maxf
is a positive integer bounding the number of evaluations of the function allowed. The
output parameters are as follows: x is the final estimate of the solution, and ierr is an
integer error flag that indicates whether a tolerance test was violated. Test this routine
using the function of Computer Problem 3.3.1. Print the final estimate of the solution
and the value of the function at this point.

3. Find a zero of one of the functions given in the introduction of this chapter using one
of the methods introduced in this chapter.

4. Write and test a recursive procedure for the secant method.
5. Rerun the example in this section with xy = 0 and x; = 1. Explain any unusual results.

6. Write a simple program to compare the secant method with Newton’s method for
finding a root of each function.

“a. x* —3x + 1 withxg =2 b. x* — 2sinx with xo = 1

Use the x; value from Newton’s method as the second starting point for the secant
method. Print out each iteration for both methods.

7. Write a simple program to find the root of f(x) = x> + 2x% 4+ 10x — 20 using the
secant method with starting values x, = 2 and x; = 1. Let it run at most 20 steps,
and include a stopping test as well. Compare the number of steps needed here to the
number needed in Newton’s method. Is the convergence quadratic?

8. Test the secant method on the set of functions fi(x) = 2e*x + 1 — 3e ™ for k =
1,2,3,...,10. Use the starting points 0 and 1 in each case.

“9, An example by Wilkinson [1963] shows that minute alterations in the coefficients of a
polynomial may have massive effects on the roots. Let

f@) =@@x—-Dx—=2)--(x —20)

which has become known as the Wilkinson polynomial. The zeros of f are, of course,
the integers 1, 2, ..., 20. Try to determine what happens to the zero r = 20 when the
function is altered to f(x) — 1078x!. Hint: The secant method in double precision
will locate a zero in the interval [20, 21].
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10.

11.

12.

13.

14.

15.

Test the secant method on an example in which r, f'(r), and f”(r) are known in ad-
vance. Monitor the ratios e, / (e, e,_1) to see whether they converge to — % )/ f'(r).
The function f(x) = arctan x is suitable for this experiment.

Using a function of your choice, verify numerically that the iterative method
~ f@x)
VI ) = f Ga) £ ()

is cubically convergent at a simple root but only linearly convergent at a multiple root.

Xn+1 = Xp

Test numerically whether Olver’s method, given by
_fm»_lfua{ﬂ%qz
JrGa) 2 1) L Cen)

is cubically convergent to a root of f. Try to establish that it is.

Xn+1 = Xp

(Continuation) Repeat for Halley’s method

. . S 1 {f”(xn)}
Xpi1 =X, — — with a, = - =
a SG) 2 L ()

(Moler-Morrison algorithm) Computing an approximation for y/x2 + y? does not
require square roots. It can be done as follows:

real function f(x, y)
integer n; reala,b,c,x,y
S < max{|x], [y[}
a < min{|x|, |y[}
forn =1to3do
b < (a/f)?
c < b/(4+Db)
[ f+2f
a < ca
end for
end function f

Test the algorithm on some simple cases such as (x, y) = (3, 4), (-5, 12),and (7, —24).
Then write a routine that uses the function f(x, y) for approximating the Euclidean

norm of a vector x = (xy, Xz, ..., X,); that is, the nonnegative number || x|| = (xlz +
1/2

2t ax2)2

Study the following functions by starting with any initial value of x; in the domain

[0, 2] and iterating x,,+; = F(x,). First use a calculator and then a computer. Explain
the results.

a. Use the tent function

2x if2x <1
F(x) = .
2x — 1 if2x >1

b. Repeat using the function

F(x) = 10x (modulo 1)



16.

17.

18.

19.

20.

21.

22.

23.

3.3 Secant Method 123

Hint: Don’t be surprised by chaotic behavior. The interested reader can learn more
about the dynamics of one-dimensional maps by reading papers such as the one by
Bassien [1998].

Show how the secant method can be used to solve systems of equations such as those
in Computer Problems 3.2.21-3.2.23.

(Student research project) Muller’s method is an algorithm for computing solutions
of an equation f(x) = 0. It is similar to the secant method in that it replaces f locally
by a simple function, and finds a root of it. Naturally, this step is repeated. The simple
function chosen in Muller’s method is a quadratic polynomial, p, that interpolates f
at the three most recent points. After p has been determined, its roots are computed,
and one of them is chosen as the next point in the sequence. Since this quadratic
function may have complex roots, the algorithm should be programmed with this in
mind. Suppose that points x,_», x,,_1, and x,, have been computed. Set

p(x) =alx —x)(x — x,-1) + b(x —x,) +¢

where a, b, and ¢ are determined so that p interpolates f at the three points mentioned
previously. Then find the roots of p and take x,, to be the root of p closest to x,,. At the
beginning, three points must be furnished by the user. Program the method, allowing
for complex numbers throughout. Test your program on the example

p(x) =x>+x%>—10x — 10

If the first three points are 1, 2, 3, then you should find that the polynomial is p(x) =
T(x —3)(x —2) + 14(x — 3) — 4 and x4, = 3.17971 086. Next, test your code on a
polynomial having real coefficients but some complex roots.

Program and test the code for the secant algorithm after incorporating the stopping
criterion described in the text.

Using mathematical software such as Matlab, Mathematica, and Maple, find the real
zero of the polynomial p(x) = x> 4+ x3 4 3. Attain more digits of accuracy than shown
in the solution to Example 1 in the text.

(Continuation) Using mathematical software that allows for complex roots, find all
zeros of the polynomial.

Program a hybrid method for solving several of the nonlinear problems given as exam-
ples in the text, and compare your results with those given.

Find the fixed points for each of the following functions:

a e*+1 b. e —x c. x> —4sinx d. x*+6x2+11x—6 e. sinx

For the nonlinear equation f(x) = x> — x — 2 = 0 with roots 1 and 2, write four

fixed-point problems x = g(x) that are equivalent. Plot all of these, and show that they
all intersect the line x = y. Also, plot the convergence steps of each of these fixed-point
iterations for different starting values x©. Show that the behavior of these fixed-point
schemes can vary wildly: slow convergence, fast convergence, and divergence.



Interpolation and Numerical
Differentiation

The viscosity of water has been experimentally determined at different
temperatures, as indicated in the following table:

Temperature | 0° | 5 | 10° | 15°
Viscosity | 1.792 | 1.519 | 1.308 | 1.140

From this table, how can we estimate a reasonable value for the viscosity
at temperature 8°7

The method of polynomial interpolation, described in Section 4.1, can
be used to create a polynomial of degree 3 that assumes the values in the
table. This polynomial should provide acceptable intermediate values for
temperatures not tabulated. The value of that polynomial at the point 8°
turns out to be 1.386.

41 Polynomial Interpolation

Preliminary Remarks

We pose three problems concerning the representation of functions to give an indication
of the subject matter in this chapter, in Chapter 9 (on splines), and in Chapter 12 (on least
squares).

First, suppose that we have a table of numerical values of a function:

all I L I
)’|}’0|)’1|"'|)’n
Is it possible to find a simple and convenient formula that reproduces the given points

exactly?

The second problem is similar, but it is assumed that the given table of numerical values
is contaminated by errors, as might occur if the values came from a physical experiment.
Now we ask for a formula that represents the data (approximately) and, if possible, filters
out the errors.

As a third problem, a function f is given, perhaps in the form of a computer procedure,
but it is an expensive function to evaluate. In this case, we ask for another function g that
is simpler to evaluate and produces a reasonable approximation to f. Sometimes in this
problem, we want g to approximate f with full machine precision.

124
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In all of these problems, a simple function p can be obtained that represents or
approximates the given table or function f. The representation p can always be taken
to be a polynomial, although many other types of simple functions can also be used. Once
a simple function p has been obtained, it can be used in place of f in many situations. For
example, the integral of f could be estimated by the integral of p, and the latter should
generally be easier to evaluate.

In many situations, a polynomial solution to the problems outlined above will be unsat-
isfactory from a practical point of view, and other classes of functions must be considered.
In this book, one other class of versatile functions is discussed: the spline functions (see
Chapter 9). The present chapter concerns polynomials exclusively, and Chapter 12 dis-
cusses general linear families of functions, of which splines and polynomials are important
examples.

The obvious way in which a polynomial can fail as a practical solution to one of the
preceding problems is that its degree may be unreasonably high. For instance, if the table
considered contains 1,000 entries, a polynomial of degree 999 may be required to represent
it. Polynomials also may have the surprising defect of being highly oscillatory. If the table
is precisely represented by a polynomial p, then p(x;) = y; for 0 <i < n. For points other
than the given x;, however, p(x) may be a very poor representation of the function from
which the table arose. The example in Section 4.2 involving the Runge function illustrates
this phenomenon.

Polynomial Interpolation
We begin again with a table of values:

il I I e

ylyO‘yl""‘yn

and assume that the x;’s form a set of n + 1 distinct points. The table represents n + 1
points in the Cartesian plane, and we want to find a polynomial curve that passes through
all points. Thus, we seek to determine a polynomial that is defined for all x, and takes on
the corresponding values of y; for each of the n + 1 distinct x;’s in this table. A polynomial
p for which p(x;) = y; when 0 <i <n is said to interpolate the table. The points x; are
called nodes.

Consider the first and simplest case, n = 0. Here, a constant function solves the prob-
lem. In other words, the polynomial p of degree O defined by the equation p(x) = y, repro-
duces the one-node table.

The next simplest case occurs when n = 1. Since a straight line can be passed through
two points, a linear function is capable of solving the problem. Explicitly, the polynomial

p defined by
X — X1 X — Xo
plx) = Yo+ Vi
Xo — X1 X1 — Xo

=Y+ (u)(x — Xo)

X1 — Xo

is of first degree (at most) and reproduces the table. That means (in this case) that p(xp) = yo
and p(x;) = yi, as is easily verified. This p is used for linear interpolation.
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EXAMPLE 1 Find the polynomial of least degree that interpolates this table:
x| 14| 125
y | 371 39
Solution By the equation above, the polynomial that is sought is
x —1.25 x—14
plx) = <1.4—1.25>3'7 + (1.25—1.4)3'9

3.9-3.7
=37+ (2 Y- 14
37+<1.25—1.4>(x )

4
=37 (=14 .

As we can see, an interpolating polynomial can be written in a variety of forms; among
these are those known as the Newton form and the Lagrange form. The Newton form is
probably the most convenient and efficient; however, conceptually, the Lagrange form has
several advantages. We begin with the Lagrange form, since it may be easier to understand.

Interpolating Polynomial: Lagrange Form

Suppose that we wish to interpolate arbitrary functions at a set of fixed nodes xg, x1, . .., X,.
We first define a system of n 4 1 special polynomials of degree n known as cardinal
polynomials in interpolation theory. These are denoted by ¢, €, ..., ¢, and have the

property
0 ifij
Li(x;) =6; = .
x7) = % {1 ifi=j

Once these are available, we can interpolate any function f by the Lagrange form of the
interpolation polynomial:

Pux) =D Li(x) f(xi) (1)

i=0

This function p,, being a linear combination of the polynomials ¢;, is itself a polynomial
of degree at most n. Furthermore, when we evaluate p, at x;, we get f(x;):

Pa(xp) =3 ) ) =€) f(x)) = f(x))

i=0

Thus, p, is the interpolating polynomial for the function f atnodes xo, xi, . .., x,,. [tremains
now only to write the formula for the cardinal polynomial ¢;, which is
S (x— X
li(x) = : 0<is 2
() H(xi_x]) O<i<n) 2)
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This formula indicates that ¢, (x) is the product of n linear factors:

Z(X) (x_x0>(x_xl) (x_Xi_l>(x_xi+l) (x_xn>
; —
Xi — Xo Xi — X1 Xi — Xi—1 Xi — Xi41 Xi — Xp

(The denominators are just numbers; the variable x occurs only in the numerators.) Thus,
¢; is a polynomial of degree n. Notice that when ¢; (x) is evaluated at x = x;, each factor in
the preceding equation becomes 1. Hence, ¢;(x;) = 1. But when ¢;(x) is evaluated at any
other node, say, x;, one of the factors in the above equation will be 0, and ¢;(x;) = 0, for
i #j.

Figure 4.1 shows the first few Lagrange cardinal polynomials: £y(x), €;(x), £>(x),
l3(x), £4(x), and £5(x).

] i I I I I I I I i L > 5
-1 -08 -06 —04 —02 0 02 04 06 038 1

Write out the cardinal polynomials appropriate to the problem of interpolating the following
table, and give the Lagrange form of the interpolating polynomial:

* ls|w |t

fo |2 -1]7

Using Equation (2), we have

N
o= S (e
S )

Therefore, the interpolating polynomial in Lagrange’s form is

1 1 1 1
pz(x)=—36<x—4)(x—l)—l6<x—3)(x—1)+14<x—3) <x—4) [ ]
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Existence of Interpolating Polynomial

The Lagrange interpolation formula proves the existence of an interpolating polynomial for
any table of values. There is another constructive way of proving this fact, and it leads to a
different formula.

Suppose that we have succeeded in finding a polynomial p that reproduces part of the
table. Assume, say, that p(x;) = y; for 0 <i < k. We shall attempt to add to p another term
that will enable the new polynomial to reproduce one more entry in the table. We consider

p(x) +clx —xo)(x —xp) -+ (x — x)

where c is a constant to be determined. This is surely a polynomial. It also reproduces the
first k points in the table because p itself does so, and the added portion takes the value 0
at each of the points xg, xy, ..., x;. (Its form is chosen for precisely this reason.) Now we
adjust the parameter c¢ so that the new polynomial takes the value y;.; at x;,;. Imposing
this condition, we obtain

P (Xea1) + e — X0) (kg1 — X1) -+ (kg1 — X)) = Vet

The proper value of ¢ can be obtained from this equation because none of the factors
Xp+1 — X;, for 0 <i <k, can be zero. Remember our original assumption that the x;’s are all
distinct.

This analysis is an example of inductive reasoning. We have shown that the process
can be started and that it can be continued. Hence, the following formal statement has been
partially justified:

THEOREM ON EXISTENCE OF POLYNOMIAL INTERPOLATION

If points xq, x1, . .., x,, are distinct, then for arbitrary real values yy, y1, . .., Y., there
is a unique polynomial p of degree at most n such that p(x;) = y; for 0 <i <n.

Two parts of this formal statement must still be established. First, the degree of the poly-
nomial increases by at most 1 in each step of the inductive argument. At the beginning, the
degree was at most 0, so at the end, the degree is at most n.

Second, we establish the uniqueness of the polynomial p. Suppose that another poly-
nomial ¢ claims to accomplish what p does; that is, ¢ is also of degree at most n and satisfies
q(x;) = y; for 0<i <n. Then the polynomial p — ¢ is of degree at most n and takes the
value O at x, x1, . .., x,. Recall, however, that a nonzero polynomial of degree n can have
at most n roots. We conclude that p = ¢, which establishes the uniqueness of p.

Interpolating Polynomial: Newton Form

In Example 2, we found the Lagrange form of the interpolating polynomial:

1 1 1 1
pg(x)=—36(x—z>(x—l)—lé(x—§>(x—1)+14(x—§> (X_Z>

It can be simplified to

79 349
pa(x) = v + ?x — 38x?
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We will now learn that this polynomial can be written in another form called the nested

Newton form:
1 1
pa(x) =2+ <x — 3) {36+ <x — 4> (—38)}

It involves the fewest arithmetic operations and is recommended for evaluating p,(x). It
can not be overemphasized that the Newton and Lagrange forms are just two different
derivations for precisely the same polynomial. The Newton form has the advantage of easy
extensibility to accommodate additional data points.

The preceding discussion provides a method for constructing an interpolating polyno-
mial. The method is known as the Newton algorithm, and the resulting polynomial is the
Newton form of the interpolating polynomial.

Using the Newton algorithm, find the interpolating polynomial of least degree for this table:
x| O| 1| —1| 2|—2
v|-=s|-3]-15]39] -9

In the construction, five successive polynomials will appear; these are labeled pg, p1, p2, ps,
and py4. The polynomial py is defined to be

po(x) = =5
The polynomial p; has the form
p1(x) = po(x) +c(x —x9) = =5+ c(x = 0)

The interpolation condition placed on p; is that p;(1) = —3. Therefore, we have —5 +
c(1 —0) = —3. Hence, ¢ = 2, and p; is

pi(x) =—=5+2x
The polynomial p, has the form
p2(x) = pr1(x) +c(x —xo)(x —x1) = =5+ 2x +ex(x — 1)

The interpolation condition placed on p, is that p,(—1) = —15. Hence, we have —5 +
2(=1) 4+ c(—1)(—1 — 1) = —15. This yields ¢ = —4, so

p2(x) =—=54+2x —4x(x—1)

The remaining steps are similar, and the final result is the Newton form of the interpolating
polynomial:

pax)==54+2x —4dx(x—D+8xx—Dx+D+3xEx—-1Dx+Dx—-2) m

Later, we will develop a better algorithm for constructing the Newton interpolating
polynomial. Nevertheless, the method just explained is a systematic one and involves
very little computation. An important feature to notice is that each new polynomial in the
algorithm is obtained from its predecessor by adding a new term. Thus, at the end, the final
polynomial exhibits all the previous polynomials as constituents.
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Nested Form

Before continuing, let us rewrite the Newton form of the interpolating polynomial for
efficient evaluation.

Write the polynomial p, of Example 3 in nested form and use it to evaluate p4(3).

We write p, as
pax) ==5+x2+x -4+ x+ 1D+ (x —2)3)))
Therefore,

ps(3) = —5+3Q2+2(—4+4@8+3)))
=241

Another solution, also in nested form, is
pa(x) = =5+ x(@ + x(=7+x(2+ 3x)))
from which we obtain
pa(3) =—-5+3@+3(-7+32+3-3)) =241

This form is obtained by expanding and systematic factoring of the original polynomial. It
is also known as a nested form and its evaluation is by nested multiplication. [ |

To describe nested multiplication in a formal way (so that it can be translated into a
code), consider a general polynomial in the Newton form. It might be
p(x) =ap+ai(x —xp) + ax(x —xp)(x —x1) + -+
+ an(x - )C())()C - )C]) o ()C - xn—l)

The nested form of p(x) is

px)=ao+ x —xp)(a+ & —x)(a+-+ & —=x,-1)a,) ---))
= (- ((ay(x —xp—1) +ay_1)(x — X42) +ay-2) - ) (X — X0) + ag

The Newton interpolation polynomial can be written succinctly as

n i—

1
pax)=> a: [[(x—x)) 3)
i=0 J

i—0

Here H,_:lo (x — x;) is interpreted to be 1. Also, we can write it as

pa(x) = aimi(x)
i=0

where
i1
mix) =[x = x)) (4)
Jj=0
Figure 4.2 shows the first few Newton polynomials: 77y (x), 771 (x), 72 (x), w3(x), w4(x), and
T5(x).
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0.5

0¢

—05 I I I I I I I I I I
-1 —-08 —-0.6 —04 —0.2 0 02 04 06 038 1

In evaluating p(¢) for a given numerical value of ¢, we naturally start with the innermost
parentheses, forming successively the following quantities:
Vg = ay
vy = U()(t - xn—l) + an—

Vo =Vt — Xy—2) + a2

v, = V1 (t — Xp) + ag

The quantity v, is now p(¢). In the following pseudocode, a subscripted variable is not
needed for v;. Instead, we can write

integer i, n; realz, v; real array (a;)o.., (Xi)on
v < a,
fori =n —1to0step —1 do
v<—v(t—x;)+a
end for

Here, the array (a;)o., contains the n + 1 coefficients of the Newton form of the interpolating
polynomial (3) of degree at most n, and the array (x;)o., contains the n + 1 nodes x;.

Calculating Coefficients a; Using Divided Differences

‘We turn now to the problem of determining the coefficients ay, ay, . . ., a, efficiently. Again
we start with a table of values of a function f:

X | X0 | X | Xo | e | X,
fo | f@o | fa | fa | ] foo)
The points xg, X1, ..., x, are assumed to be distinct, but no assumption is made about their

positions on the real line.



132

Chapter 4

Interpolation and Numerical Differentiation

Previously, we established that foreachn = 0, 1, . . ., there exists a unique polynomial
pn such that

e The degree of p, is at most n.
e pu(x;)) = f(x;)fori =0,1,...,n.
It was shown that p, can be expressed in the Newton form
Pn(X) = ap + ar(x — xo) + aa(x — x0)(x —x1) + -~
+ an(x - )C()) e (X - xn—l)
A crucial observation about p,, is that the coefficients ay, a;, . . . do not depend on . In other
words, p, is obtained from p,,_; by adding one more term, without altering the coefficients

already present in p,_; itself. This is because we began with the hope that p, could be
expressed in the form

pn(-x) = pnfl(-x) + an(-x —Xg) - ()C — Xu—1)

and discovered that it was indeed possible.

A way of systematically determining the unknown coefficients ay, a;, . . ., a, is to set
x equal in turn to xg, X1, ..., X, in the Newton form (3) and to write down the resulting
equations:
J(x0) = ag
Jf(x) = ao + ai(x — xo) 5)
f(x2) = ag + ay(xz — xo) + ax(x2 — xo) (x2 — x1)
etc.
The compact form of Equations (5) is
kool
o= a]Je—x)  O<ksn (©)
=0 j=0

Equations (5) can be solved for the a;’s in turn, starting with ay. Then we see that ay depends
on f(xg), that a; depends on f(x¢) and f(x;), and so on. In general, a; depends on f(xo),
f(x1), ..., f(x). In other words, a; depends on the values of f at the nodes x¢, Xy, ..., X.
The traditional notation is

asz[x()axh""xk] (7)
This equation defines f[xo, X1, . .., x¢]. The quantity f[xg, x1, ..., x¢] is called the divided
difference of order k for f. Notice also that the coefficients ag, ay, ..., a; are uniquely

determined by System (6). Indeed, there is no possible choice for @, other than ag = f(xo).
Similarly, there is now no choice for a; other than [ f(x;) — ag]/(x; — xo) and so on. Using
Equations (5), we see that the first few divided differences can be written as

ap = f(xo)
P fx1) —ao _ Sxr) — f(xo)
! X1 — Xo X1 — Xo

J) = flx)  f(x) = fxo)
_ S (x2) —ao — ai(x2 — xo) _ Xy — X x| — Xo
ay; = =
(x2 — x0) (x2 — x1) X3 — Xo
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EXAMPLES For the table
x 1[40
fo 3] 3] -2

determine the quantities f[xo], f[xo, x1], and f[xo, X1, x2].

Solution  We write out the system of Equations (5) for this concrete case:
3=uap
13 =ag + a;(—5)
=23 =ap+ ai(=1) + ax(=1)(4)

The solution is ag = 3, @y = —2, and a; = 7. Hence, for this function, f[1] = 3,
fll,—4] = =2, and f[1,—4,0] =7. -

With this new notation, the Newton form of the interpolating polynomial takes the
form

n

i—1
p4m=§:{ﬂmmh“”mIkx—@% ®)
j=0

i=0

with the usual convention that HJ;IO (x — x;) = 1. Notice that the coefficient of x" in p, is
fIxo, X1, ..., x,] because the term x" occurs only in H’};(l)(x — x;). It follows that if f is
a polynomial of degree <n — 1, then f[xq, x1,...,x,] =0.

We return to the question of how to compute the required divided differences
flxo, x1, ..., x¢]. From System (5) or (6), it is evident that this computation can be per-

formed recursively. We simply solve Equation (6) for a; as follows:

k—1 k—1 -1
feo =a [Jee—x)+ > a [[ew—xp
j=0 i=0  j=0

and

k—1 i—1
fe) = a [Jea—x)

i=0  j=0

=1
H(xk —Xj)
=0

ap =

Using Equation (7), we have
k-1

i—1
) — Zf[)m,x], R ’xi]H(xk - Xx;)
Slxo, X1, ..., xk ] = =0 j=0 ©

K1
[ —xp
j=0

B ALGORITHM1 An Algorithm for Computing the Divided Differences of f

* Set flxo] = f(x0)-

10
e Fork =1,2,...,n,compute f[xg, X1, ..., xx] by Equation (9). (10)
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Using Algorithm (10), write out the formulas for f[x¢l, f[xo,x1], f[xo,x1,x2], and
Sflxo, x1, x2, x3].

Sflxol = f(x0)
S = flxl
Sflxo, x1]1 = e
S(x2) = flxol = flxo, x11(x2 — xo)
(x2 — x0) (x2 — x1)
f(x3) = flxol — flxo, x11(x3 — x0) — fx0, X1, X2](x3 — X0) (X3 — x1)

(x3 — x0)(x3 — x1)(x3 — Xx2)

Sflxo, x1, x2] =

Sflxo, X1, X2, x3] =

Algorithm (10) is easily programmed and is capable of computing the divided dif-
ferences f[xol, f[xo0,x1],..., flxo0,Xx1,...,x,] at the cost of %n(3n + 1) additions,
(n — 1)(n — 2) multiplications, and n divisions excluding arithmetic operations on the
indices. A more refined method will now be presented for which the pseudocode requires
only three statements (!) and costs only %n(n + 1) divisions and n(n + 1) additions.

At the heart of the new method is the following remarkable theorem:

RECURSIVE PROPERTY OF DIVIDED DIFFERENCES

The divided differences obey the formula

f[xo’x1’ '..’Xk] — f[x17x2, "‘7xki_ f-)::x()ax]»"',xk—l] (ll)
k — A0

Since f[xo, x1, ..., x;] was defined to be equal to the coefficient q; in the Newton form
of the interpolating polynomial p; of Equation (3), we can say that f[xo, xi, ..., x;] is the
coefficient of x* in the polynomial p; of degree < k, which interpolates f at xg, X1, ..., Xi.
Similarly, f[xi, X2, ..., x¢] is the coefficient of x*~! in the polynomial g of degree <k — 1,
which interpolates f at xy, x,, ..., x;. Likewise, f[xo, X1, ..., xx—1] is the coefficient of
x*~"in the polynomial p,_; of degree < k — 1, which interpolates f at xo, x1, . .., Xx—;. The
three polynomials py, g, and p;_, are intimately related. In fact,

pi(x) = gqx) +

X — Xk
[q(x) = pre—1(x)] (12)
Xk X0

To establish Equation (12), observe that the right side is a polynomial of degree at most k.
Evaluating it at x;, for 1 <i <k — 1, results in f(x;):

ST g () = pr )] = F) +
T

= f(x:)

Similarly, evaluating it at x, and x; gives f (xo) and f(x;), respectively. By the uniqueness of
interpolating polynomials, the right side of Equation (12) must be p,(x), and Equation (12)
is established.

Xi — X

“LF) = f]
X0

q(x;) +

Xk Xk —
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Completing the argument to justify Equation (11), we take the coefficient of x* on both
sides of Equation (12). The result is Equation (11). Indeed, we see that f[x;, xa, ..., x¢] is
the coefficient of x*~' in ¢, and f[xo, x1, ..., Xx_1] is the coefficient of x* ' in p;,_,. M

Notice that f[xg, X1, ..., x;] is not changed if the nodes x, xi, . .., x; are permuted:
thus, for example, f[xo, x1, X2] = f[x1, X2, xo]. The reason s that f[xo, x1, x,]1is the coeffi-
cient of x? in the quadratic polynomial interpolating f at x, x;, X», whereas f[x;, x,, Xo] is
the coefficient of x? in the quadratic polynomial interpolating f atx;, x, xo. These two poly-
nomials are, of course, the same. A formal statement in mathematical language is as follows:

INVARIANCE THEOREM
The divided difference f[xg, x1, ..., X;] is invariant under all permutations of the
arguments xo, X, ..., Xk.

Since the variables x, xi, ..., x; and k are arbitrary, the recursive Formula (11) can

also be written as
Flxivn, Xivo, oo X1 — flxi, Xipr, o0, xj-1]
f[xi,x,-+1,...,xj_1,xj]: ! ! J AR / (13)
Xj — X;

The first three divided differences are thus

flxil = f(x)
flxisxip] = p—
SIxit1, xig2] — flxi, xi1]

Slxi, Xig1, Xig2] =
Xig2 — X

Using Formula (13), we can construct a divided-difference table for a function f. It is
customary to arrange it as follows (here n = 3):

x | S S, ] fl..1 | fLL, L]
xo | flxol

flxo, x1]
x| Sflxal Slxo, x1, x2]

Sflxi, x2] Sflxo, x1, X2, x3]
x2 | flxa] Slx1, x2, x3]

Slx2, x3]
x3 | flxs]

In the table, the coefficients along the top diagonal are the ones needed to form the Newton
form of the interpolating polynomial (3).

Construct a divided-difference diagram for the function f given in the following table, and

write out the Newton form of the interpolating polynomial.
3
x | 1 | 2 ‘ 0 ‘ 2

fo 3] 23]

wlwn
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Solution  The first entry is f[xo, x] = (£ —3)/(3 — 1) = 1. After completion of column 3, the
first entry in column 4 is
flx, ) = flxo.xi] ¢ —3

= = =1
f[-x()’-xlaXZ] - X2 — Xo 0—1 3

The complete diagram is

RS I 0 P O A PO B B i PR
1 3
1
3| g 1
2 4 |
s S —2
0 3 , -3
3
21 3
Thus, we obtain
p3) =3+ —-D+ix—-DE-3) -2 —=D(x - )x o
Algorithms and Pseudocode
Turning next to algorithms, we suppose that a table for f is given at points xg, x1, .. ., X, and
that all the divided differences a;; = f[x;, X;41, ..., x;] are to be computed. The following

pseudocode accomplishes this:

integer iv j» n; real array (aij)O:nXO:na (xi)O:n
fori = 0tondo
aio < f(x;)
end for
forj = 1ton do
fori =0ton — j do
ajj < (Qip1, j—1 — @i, j—1) [ Kigj — Xi)
end for
end for

Observe that the coefficients of the interpolating polynomial (3) are stored in the first row
of the array (aij )O:n x0:n -

If the divided differences are being computed for use only in constructing the Newton
form of the interpolation polynomial

n i—

1
Pn(x) = ZaiH(x —Xj)
i=0  j=0

wherea; = f[xo, X1, ..., x;], thereisnoneed to store all of them. Only f[xo], f[xo, x1], ...,
f[xo, x1, ..., x,] need to be stored.

When a one-dimensional array (a; )., is used, the divided differences can be overwritten
each time from the last storage location backward so that, finally, only the desired coefficients
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remain. In this case, the amount of computing is the same as in the preceding case, but the
storage requirements are less. (Why?) Here is a pseudocode to do this:

integer i, j, n; real array (a;)o.., (X;)on
fori = 0tondo
a; < f(x)
end for
for j = 1tondo
fori =nto j step —1 do
a; < (a; —aj—)/(x; — xi_j)
end for
end for

This algorithm is more intricate, and the reader is invited to verify it—say, in the case n = 3.

For the numerical experiments suggested in the computer problems, the following two
procedures should be satisfactory. The first is called Coef. It requires as input the number
n and tabular values in the arrays (x;) and (y;). Remember that the number of points in
the table is n + 1. The procedure then computes the coefficients required in the Newton
interpolating polynomial, storing them in the array (a;).

procedure Coef (n, (x;), (i), (a:))
integer i, j, n; real array (x;)o.., (Vi)om, (@i)on
fori = 0tondo
a; < i
end for
for j = 1tondo
fori = n to j step —1 do
th <= (@5 = G))/(C5 = 25=p)
end for
end for
end procedure Coef

The second is function Eval. It requires as input the array (x;) from the original table and
the array (a;), which is output from Coef. The array (a;) contains the coefficients for the
Newton form of the interpolation polynomial. Finally, as input, a single real value for ¢ is
given. The function then returns the value of the interpolating polynomial at 7.

real function Eval(n, (x;), (a;), 1)
integer i, n; realr, temp; real array (x;)o.., (@;)on
temp < a,
fori =n —1to0step —1 do
temp <— (temp)(t — x;) + a;
end for
Eval < temp
end function Eval
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Since the coefficients of the interpolating polynomial need be computed only once, we call
Coef first, and then all subsequent calls for evaluating this polynomial are accomplished
with Eval. Notice that only the ¢ argument should be changed between successive calls to
function Eval.

Write pseudocode for the Newton form of the interpolating polynomial p for sinx at
ten equidistant points in the interval [0, 1.6875]. The code finds the maximum value of
| sinx — p(x)| over a finer set of equally spaced points in the same interval.

If we take ten points, including the ends of the interval, then we create nine subintervals,
each of length 4 = 0.1875. The points are then x; = ih fori =0, 1, ..., 9. After obtaining
the polynomial, we divide each subinterval into four panels, and we evaluate | sin x — p(x)|
at 37 points (called ¢ in the pseudocode). These are t; = jh/4for j =0, 1, ..., 36. Here is
a suitable main program in pseudocode that calls the procedures Coef and Eval previously
given:

program Test_Coef_Eval
integer j, k, n, jmax; Treale,n, P, €max, Pmax, fmaxs
real array (-xi)O:na (yi)O:ny (ai)O:n
n<9
h < 1.6875/n
for k = 0 ton do
X < kh
Yk <= sin(x;)
end for
call Coef (n, (x;), (i), (a;))
output (a;); emax < 0
for j = 0to 4n do
t < jh/4
p < Eval(n, (x;)n, (@i)n, 1)
e < |sin(?) — p|
output j, 1, p, e
if ¢ > e, then
Jmax <= J5 fmax <= 5 Pmax <= P €max < €
end if
end for
OutPUt jmax» Imax> Pmaxs €max
end program Test_Coef Eval

The first coefficient in the Newton form of the interpolating polynomial is O (why?), and the
others range in magnitude from approximately 0.99 to 0.18 x 10~°. The deviation between
sinx and p(x) is practically zero at each interpolation node. (Because of roundoff errors,
they are not precisely zero.) From the computer output, the largest error is at jp,, = 35,
where sin(1.64062 5) &~ 0.99756 31 with an error of 1.19 x 10~". [ |
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Vandermonde Matrix

Another view of interpolation is that for a given set of n + 1 data points (xo, o), (x1, ¥1),
.o, (xn, yu), we want to express an interpolating function f(x) as a linear combination of
a set of basis functions ¢y, @1, ¢2, . . ., @, o that

F(x) & copo(x) + c191(x) + c202(x) + - - + 0, (x)

Here the coefficients cy, ¢y, ¢3, ..., ¢, are to be determined. We want the function f to
interpolate the data (x;, y;). This means that we have linear equations of the form

S xi) = copo(xi) + cro1(xi) + c202(x) + - - + @ (X)) = Vi
foreachi =0, 1,2, ..., n. This is a system of linear equations
Ac=y

Here, the entries in the coefficient matrix A are given by a;; = ¢;(x;), which is the value of
the jth basis function evaluated at the ith data point. The right-hand side vector y contains
the known data values y;, and the components of the vector ¢ are the unknown coefficients
¢;. Systems of linear equations are discussed in Chapters 7 and 8.

Polynomials are the simplest and most common basis functions. The natural basis for
P, consists of the monomials

Po(x) = L, g1(x) = x, g2 (x) = x7, ..., @, (x) = x"

Figure 4.3 shows the first few monomials: 1, x, x2, x*, x*, and x°.

- I I I I I I I I I Ly &
-1 —-08 —-06 —04 —0.2 0 02 04 06 08 1

Consequently, a given polynomial p, has the form

pn(x) =cCo+Ci1x +C2x2 + .- +cnx”
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FIGURE 4.4
First few
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The corresponding linear system Ac = y has the form

1 xo xg oo xg] Teol M vo ]
1 x; xf - Xt g yi
1 x x22 R ol — | »
1 x, x> - x" c y
L n n n-4 LCnl L Vn
The coefficient matrix is called a Vandermonde matrix. It can be shown that this matrix is
nonsingular provided that the points xg, xy, X», ..., x, are distinct. So we can, in theory,

solve the system for the polynomial interpolant. Although the Vandermonde matrix is non-
singular, it is ill-conditioned as 7 increases. For large n, the monomials are less distinguish-
able from one another, as shown in Figure 4.4. Moreover, the columns of the Vandermonde
become nearly linearly dependent in this case. High-degree polynomials often oscillate
wildly and are highly sensitive to small changes in the data.

y

YA

0.5

-0.5

-1 I
-1 —-0.5

As Figures 4.1, 4.2, and 4.3 show, we have discussed three choices for the basis func-
tions: the Lagrange cardinal polynomials ¢;(x), the Newton polynomials 7;(x), and the
monomials. It turns out that there are better choices for the basis functions; namely, the
Chebyshev polynomials have more desirable features.

The Chebyshev polynomials play an important role in mathematics because they have
several special properties such as the recursive relation

I(x)=1Tx)=x
Ti(x) = 2xTi_ 1 (x) — Ti—2(x)
fori = 2, 3,4, and so on. Thus, the first five Chebyshev polynomials are
Tox)=1, T\(x)=x, Th(x)=2x>—1, Tix)=4x>—3x
Tu(x) = 8x* —8x2 4+ 1, Ts(x) = 16x° —20x> + 5x

These curves for these polynomials, as is shown in Figure 4.4, are quite different from
one another. The Chebyshev polynomials are usually employed on the interval [—1, 1].
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With changes of variable, they can be used on any interval, but the results will be more
complicated.

One of the important properties of the Chebyshev polynomials is the equal oscillation
property. Notice in Figure 4.4 that successive extreme points of the Chebyshev polynomials
are equal in magnitude and alternate in sign. This property tends to distribute the error
uniformly when the Chebyshev polynomials are used as the basis functions. In polynomial
interpolation for continuous functions, it is particularly advantageous to select as the inter-
polation points the roots or the extreme points of a Chebyshev polynomial. This causes the
maximum error over the interval of interpolation to be minimized. An example of this is
given in Section 4.2. In Section 12.2, we discuss Chebyshev polynomials in more detail.

Inverse Interpolation

A process called inverse interpolation is often used to approximate an inverse function.

Suppose that values y; = f(x;) have been computed at xg, xy, ..., x,,. Using the table
Y Yo [y ]|
SRR

we form the interpolation polynomial
n i—1
p(y) = Z Ci H(y =)
i=0  j=0
The original relationship, y = f(x), has an inverse, under certain conditions. This inverse
is being approximated by x = p(y). Procedures Coef and Eval can be used to carry out the
inverse interpolation by reversing the arguments x and y in the calling sequence for Coef.
Inverse interpolation can be used to find where a given function f has a root or zero.
This means inverting the equation f(x) = 0. We propose to do this by creating a table of
values (f(x;), x;) and interpolating with a polynomial, p. Thus, p(y;) = x;. The points x;
should be chosen near the unknown root, . The approximate root is then given by » ~ p(0).
See Figure 4.5 for an example of function y = f(x) and its inverse function x = g(y) with
the root r = g(0).

y X
y =)

p
0 A =0 0

For a concrete case, let the table of known values be
y | —0.57892 00 | —0.3626370 | —0.18491 60 | —0.03406 42 | 0.09698 58
x| 10 | 20 | 30 | 40 | 50

Find the inverse interpolation polynomial.




142

Chapter 4

Solution

Interpolation and Numerical Differentiation
The nodes in this problem are the points in the row of the table headed y, and the function
values being interpolated are in the x row. The resulting polynomial is
p(y) = 0.25y* + 1.2y +3.69y* 4 7.39y + 4.24747 0086
and p(0) = 4.247470086. Only the last coefficient is shown with all the digits carried in

the calculation, as it is the only one needed for the problem at hand. [ |

Polynomial Interpolation by Neville’s Algorithm
Another method of obtaining a polynomial interpolant from a given table of values

il L L I

y|y0|yl""‘yn

was given by Neville. It builds the polynomial in steps, just as the Newton algorithm does.
The constituent polynomials have interpolating properties of their own.

Let P, ;.. s(x) be the polynomial interpolating the given data at a sequence of nodes
Xay Xp, - .., Xg. We start with constant polynomials P;(x) = f(x;). Selecting two nodes x;
and x; with i > j, we define recursively

X

X — Xi—X
Py, o(x) = < ! > Py, j—t1js1.0() + ( ) Py, i—vitt,..0(X)

Xi — Xj Xi — Xj

Using this formula repeatedly, we can create an array of polynomials:

Xo | Po(x)

x| Pi(x)  Poi(x)

Xy | Po(x)  Pia(x)  Poia(x)

X3 | P3(x) Po3(x) Pras(x)  Poi23(x)

X4 | Po(x) P3a(x) Prza(x) Proza(x) Poi234(x)

Here, each successive polynomial can be determined from two adjacent polynomials in the
previous column.
We can simplify the notation by letting

Sij(x) = Pi_ji—ji1,..i-1i(X)
where §;;(x) fori > j denotes the interpolating polynomial of degree j on the j + 1 nodes
Xi—j,Xi—j41, .-, Xi—1, X;. Next we can rewrite the recurrence relation above as
X — Xi—j Xi — X
Sij@)=| ——)Sij-1x)+{ ——— | Si—1,j-1(x)
Xi —)C,‘,j Xi —x,',j

So the displayed array becomes

Xo | Soo(x)

x| Sio(x)  Sux)

Xy | S(x)  Sar(x)  Sn(x)

X3 | S30(x)  S3(x)  S;lx)  Skx)

X4 | Sa0(x) Su(x) Sp(x) Sp(x)  Su(x)
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To prove some theoretical results, we change the notation by making the superscript
the degree of the polynomial. At the beginning, we define constant polynomials (i.e., poly-
nomials of degree 0) as P°(x) = y; for 0<i <n. Then we define

it § xi_j_ ) P () + (7)@ = )Pij_ll(x)

Xi — Xi—j Xi — Xi—j
In this equation, the superscripts are simply indices, not exponents. The range of j is
1 £ j <n, while that of i is j <i <n. Formula (14) will be seen again, in slightly different
form, in the theory of B splines in Section 9.3.
The interpolation properties of these polynomials are given in the next result.

INTERPOLATION PROPERTIES

The polynomials Pl-j defined above interpolate as follows:

P/ (x) = ( (14)

P/ (x0) = w

O<i—jsksisn)

We use induction on j. When j = 0, the assertion in Equation (15) reads

P =y (O<isksi

IINA
IIA
IIA

n)

In other words, Pl.O (x;) = yi, which is true by the definition of Pio.
Now assume, as an induction hypothesis, that for some j > 1,
Py =y  (O<i—j+1<k<i<n)

To prove the next case in Equation (15), we begin by verifying the two extreme cases for k,
namely, k =i — j and k = i. We have, by Equation (14),

Xi — Xi—j

Pij(xi—j) = ( >Pij11(xij)

i—1
= P,J_1 (xi—j) = Yi—j

i T Xiej

The last equality is justified by the induction hypothesis. It is necessary to observe that
0<i—1—j+4+1<i—j<i—1<n. Inthe same way, we compute

Here, in using the induction hypothesis, observe that 0 <i — j + 1<i <i <.
Now leti — j <k < i. Then

P/ (xp) = (M) P/ () + <

Xi — Xk
Xi —xi_J i i

- )Px'_‘f(m

Xi Xi—j
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In this equation, Pij ! (xx) = y by the induction hypothesis, because 0 <i—j+1 <k <i <n.
Likewise, P/ ' (x;) = yi because 0<i — 1 — j + 1<k <i — 1 <n. Thus, we have

: X — Xi—j Xi — X
P/ (xp) = (k’>yk + (k)yk = Y m

Xi = Xiej

Xi = Xi—j
An algorithm follows in pseudocode to evaluate P (t) when a table of values is given:

integer i, j, n; real array (x;)o.., (Vi)omus (Sij)o:nxon
fori =0ton
Sio < Vi
end for
for j=1ton
fori = jton
Sij <= [(l = X )8 j-1 + O — f)Si—l,j—l] /(xi — X )
end for
end for
return S,

We begin the algorithm by finding the node nearest the point ¢ at which the evaluation is to
be made. In general, interpolation is more accurate when this is done.

Interpolation of Bivariate Functions

The methods we have discussed for interpolating functions of one variable by polynomials
extend to some cases of functions of two or more variables. An important case occurs when
a function (x, y) — f(x,y) is to be approximated on a rectangle. This leads to what is
known as tensor-product interpolation. Suppose the rectangle is the Cartesian product of
two intervals: [a, b] x [«, B]. That is, the variables x and y run over the intervals [a, b], and
[«, B1, respectively. Select n nodes x; in [a, b], and define the Lagrangian polynomials

to == asizn

J#i
J=1

Similarly, we select m nodes y; in [«, 8] and define

=] >=2 aszizm

i Yi — Y

j=1
Then the function

Pe,y) =Y 3 O yli(0)T(y)
i=1 j=1

is a polynomial in two variables that interpolates f at the grid points (x;, y;). There are nm
such points of interpolation. The proof of the interpolation property is quite simple because
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¢;(x,) = 8y and €;(y,) = §,,. Consequently,

Py, yp) = Y3 (i y i) T (3,)

i=1 j=1

n m

=3 F @ y8ig8i, = [, ¥p)

i=1 j=1

The same procedure can be used with spline interpolants (or indeed any other type of
function).

Summary

(1) The Lagrange form of the interpolation polynomial is

Pa(x) =>4 f(x)

i=0

with cardinal polynomials

t =11 (;‘:’;’) O<i<m
i J

J#i
=0

that obey the Kronecker delta equation
0 ifi+#j
Ei X;) = (Si' = .
() = 8y { 1 ifi=j
(2) The Newton form of the interpolation polynomial is

n i—1

P => a []x—xp

i=0  j=0
with divided differences
_ f[xlax27"'5~xi] _f[.x(),XI, "-7xi71]
Xi — X

a; = flxo, x1, ..., ;]
These are two different forms of the unique polynomial p of degree n that interpolates a
table of n + 1 pairs of points (x;, f(x;)) for0<i <n.
(3) We can illustrate this with a small table for n = 2:
X | X0 | X1 | Xo
r@ | reo | ran | ra

The Lagrange interpolating polynomial is

(x=x)x—x (x —x0)(x —x

_ 2) 2)
Pax) = (xo — x1)(xg — x2) S o) + (x1 — x0)(x1 — xz)f(XI)

(x —x)(x — x1) Fn)

(X2 — x0) (X2 — x1)
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Clearly, p,(x9) = f(x0), p2(x1) = f(x1), and po(x) = f(x). Next, we form the divided-
difference table:

xo | f(x0)
flxo, x1]

x| fxn) Slxo, x1, x2]
flxi, x2]

X2 | f(x2)

Using the divided-difference entries from the top diagonal, we have
pa(x) = f(x0) + flxo, x11(x — x0) + flxo0, x1, x2](x — x0) (x — x1)

Again, it can be easily shown that p,(x¢) = f(x0), p2(x1) = f(x1), and pr(x) = f(x2).
(4) We can use inverse polynomial interpolation to find an approximate value of a root r of
the equation f(x) = 0 from a table of values (x;, y;) for 1 <i <n. Here we are assuming
that the table values are in the vicinity of this zero of the function f. Flipping the table
values, we use the reversed table values (y;, x;) to determine the interpolating polynomial
called p,(y). Now evaluating it at 0, we find a value that approximates the desired zero,
namely, r % p,(0) and f(p,(0)) = f(r) = 0.

(5) Other advanced polynomial interpolation methods discussed are Neville’s algorithm
and bivariate function interpolation.

Problems 4.1

“1. Use the Lagrange interpolation process to obtain a polynomial of least degree that
assumes these values:

O[22 3|4
y|7]11]28]63

2. (Continuation) Rearrange the points in the table of the preceding problem and find the
Newton form of the interpolating polynomial. Show that the polynomials obtained are
identical, although their forms may differ.

“3. For the four interpolation nodes —1, 1, 3, 4, what are the ¢; Functions (2) required in
the Lagrange interpolation procedure? Draw the graphs of these four functions to show
their essential properties.

4. Verify that the polynomials
p(x) =5x7 —27x* +45x — 21,  q(x) =x* —5x’ +8x* — 5x +3
interpolate the data
X | 1 | 2 | 3 | 4
ylalilela

and explain why this does not violate the uniqueness part of the theorem on existence
of polynomial interpolation.
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5. Verify that the polynomials
px) =342 — D +4x - Dx+2),  qx)=4x"+6x—7

are both interpolating polynomials for the following table, and explain why this does
not violate the uniqueness part of the existence theorem for polynomial interpolation.

x| 1]=2] 0
y |3‘ —3‘ =7

6. Find the polynomial p of least degree that takes these values: p(0) = 2, p(2) = 4,
p(3) = —4, p(5) = 82. Use divided differences to get the correct polynomial. It is not
necessary to write the polynomial in the standard form ag + a;x + apx> + - - -.

7. Complete the following divided-difference tables, and use them to obtain polynomials
of degree 3 that interpolate the function values indicated:

aa' X f[] f[’] f[vv] f[?vv]
-1 2
1| -4 2
3 6
2
5 10
b. x| fI1| L1 S 1| fLL s ]
-1 2
1 —4
3 46
53.5
41 99.5

Write the final polynomials in a form most efficient for computing.
“8. Find an interpolating polynomial for this table:
X | 1 | 2 | 2.5 | 3 | 4

9. Given the data

foo | 1]9]23]93] 259
do the following.
“a, Construct the divided-difference table.

“b. Using Newton’s interpolation polynomial, find an approximation to f(4.2). Hint:
Use polynomials starting with 9 and involving factors (x — 1).
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10.

11.

“12.

13.

“14.

15.

“16.

17.

“18.

a. Construct Newton’s interpolation polynomial for the data shown.
X | 0 | 2 | 3 | 4
y|7]11]28]63

b. Without simplifying it, write the polynomial obtained in nested form for easy
evaluation.

From census data, the approximate population of the United States was 150.7 million
in 1950, 179.3 million in 1960, 203.3 million in 1970, 226.5 million in 1980, and
249.6 million in 1990. Using Newton’s interpolation polynomial for these data, find
an approximate value for the population in 2000. Then use the polynomial to estimate
the population in 1920 based on these data. What conclusion should be drawn?
The polynomial p(x) = x* — x3 + x2 — x + 1 has the following values:

X 21 -110]1 2] 3

px) | 31 501 ]1]11]6e6l
Find a polynomial ¢ that takes these values:
X 2 1-110]1] 2| 3

gx) | 31 511 (111130
Hint: This can be done with little work.

Use the divided-difference method to obtain a polynomial of least degree that fits the
values shown.
“a.x|0|1|2|—1|3 b.x|l|3|—2|4|5
yl—f—rl—]—7]s ylalel-1]-4]2
Find the interpolating polynomial for these data:

X | 1.0 | 2.0 | 2.5 | 3.0 | 4.0

fx) | -15]-05]00]05]15
It is suspected that the table

x|—2|—l| O| l| 2| 3

v 1] alnlie]13] -4
comes from a cubic polynomial. How can this be tested? Explain.

There exists a unique polynomial p(x) of degree 2 or less such that p(0) = 0, p(1) = 1,
and p’(a) = 2 for any value of o between 0 and 1 (inclusive) except one value of «,
say, op. Determine o, and give this polynomial for o # «.

Determine by two methods the polynomial of degree 2 or less whose graph passes
through the points (0, 1.1), (1, 2), and (2, 4.2). Verify that they are the same.

Develop the divided-difference table from the given data. Write down the interpolating
polynomial, and rearrange it for fast computation without simplifying.
X | 0 | 1 | 3 | 2 | 5
fol2[1]s5]e6] -183
Checkpoint: f[1,3,2,5] = —7.
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20.

21.

“22.

23.

24.

a25.

26.

a217.

“28.
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Let f(x) = x* +2x% 4+ x + 1. Find the polynomial of degree 4 that interpolates the
values of f atx = —2, —1, 0, 1, 2. Find the polynomial of degree 2 that interpolates
the values of f atx = —1,0, 1.

Without using a divided-difference table, derive and simplify the polynomial of least
degree that assumes these values:

x|—2|—1|0|1|2

vl 2fafaf2]2
(Continuation) Find a polynomial that takes the values shown in the preceding problem

and has at x = 3 the value 10. Hint: Add a suitable polynomial to the p(x) of the
previous problem.

Find a polynomial of least degree that takes these values:

X | 1.73 | 1.82 | 2.61 | 5.22 | 8.26

vyl o[ o788 o] o
Hint: Rearrange the table so that the nonzero value of y is the last entry, or think of
some better way.

Form a divided-difference table for the following and explain what happened.

X | 1 | 2 | 3 | 1

yl3ls]s]7
Simple polynomial interpolation in two dimensions is not always possible. For example,
suppose that the following data are to be represented by a polynomial of first degree in
x and y, p(t) = a + bx + cy, where t = (x, y):

f D [ (,2) ] 653)
ol 3| 2] 6

Show that it is not possible.
Consider a function f(x) such that f(2) = 1.5713, f(3) = 1.5719, f(5) = 1.5738,
and f(6) = 1.5751. Estimate f(4) using a second-degree interpolating polynomial

and a third-degree polynomial. Round the final results off to four decimal places. Is
there any advantage here in using a third-degree polynomial?

Use inverse interpolation to find an approximate value of x such that f(x) = 0 given
the following table of values for f. Look into what happens and draw a conclusion.

x| -2 -1[1] 2] 3
fao | =3t s ]e

Find a polynomial p(x) of degree at most 3 such that p(0) = 1, p(1) =0, p’(0) =0,
and p'(—1) = —1.

From a table of logarithms, we obtain the following values of log x at the indicated
tabular points:

o115 |2 3 135 |4
logx | 0| 0.17609 | 0.30103 | 0.47712 | 0.54407 | 0.60206
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29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Form a divided-difference table based on these values. Interpolate forlog 2.4 and log 1.2
using third-degree interpolation polynomials in Newton form.

Show that the divided differences are linear maps; that is,
(af + BYlxo, x1, ..., x5 ] = af[xo, X1, ..., X, ]+ Bglxo, x1, ..., x,]
Hint: Use induction.

Show that another form for the polynomial p, of degree at most n that takes values
Y0, V1, - - - » Y At abscissas xg, Xy, ..., X, 18

n i—1
Zf[xnvxnfla-~~7x117i]H(x_-xn7j)
i=0 j=0

Use the uniqueness of the interpolating polynomial to verify that
n n i—1
S feti) =" flxo,x,..xl [ —x))
i=0 i=0 j=0
(Continuation) Show that the following explicit formula is valid for divided differences:
flxoxi o xd =Y foa) [T —xp™
i=0 j#
j=0
Hint: If two polynomials are equal, the coefficients of x" in each are equal.

Verify directly that

i:e,-(x) =1
i=0

for the case n = 1. Then establish the result for arbitrary values of n.

Write the Lagrange form (1) of the interpolating polynomial of degree at most 2 that
interpolates f(x) at xo, x1, and x,, where xp < x| < x».

(Continuation) Write the Newton form of the interpolating polynomial p;,(x), and show
that it is equivalent to the Lagrange form.

(Continuation) Show directly that
Py (x) = 2 f[xo, X1, x2]

(Continuation) Show directly for uniform spacing 4 = x; — xo = x, — x; that
A A?
Slxo, x1] = % and  f[xo, x1, x2] = Zh];o

where Afi = fir1 — fi, A’ fi = Afiy — Afi,and f; = f(x;).

(Continuation) Establish Newton’s forward-difference form of the interpolating poly-
nomial with uniform spacing

pa(x) = fo + (j) Afy+ (;) A fy
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“40.

41.

“42.
43.

44.

“45.

46.
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where x = xo + sh. Here, (}) is the binomial coefficient [s!]/[(s — m)!m!], and
sl/(s —m)! =s(s — 1)(s —2)--- (s —m + 1) because s can be any real number and
m! has the usual definition because m is an integer.

(Continuation) From the following table of values of Inx, interpolate to obtain
In2.352 and In2.387 using the Newton forward-difference form of the interpolating
polynomial:

x ) Af A f

2.35 | 0.85442
0.00424

2.36 | 0.85866 —0.00001
0.00423

2.37 | 0.86289 —0.00002
0.00421

2.38 | 0.86710 —0.00002
0.00419

2.39 | 0.87129

Using the correctly rounded values In2.352 &~ 0.85527 and In 2.387 ~ 0.87004, show
that the forward-difference formula is more accurate near the top of the table than it is
near the bottom.

Count the number of multiplications, divisions, and additions/subtractions in the gen-
eration of the divided-difference table that has n 4 1 points.

Verify directly that for any three distinct points x, x;, and x»,

flxo, x1, 21 = flx2, x0, x1]1 = flx1, X2, Xo]

Compare this argument to the one in the text.
Let p be a polynomial of degree n. What is p[xg, x1, ..., X,11]?

Show that if f is continuously differentiable on the interval [x¢, x;], then f[xo, x;] =
f'(c) for some c in (xg, x1).

If f is a polynomial of degree n, show that in a divided-difference table for f, the nth

column has a single constant value—a column containing entries f[X;, Xi11, ..., Xitn].
Determine whether the following assertion is true or false. If x¢, x, .. ., x, are distinct,
then for arbitrary real values yo, v, . . ., ¥», there is a unique polynomial p,; of degree

<n+ 1 suchthat p,,(x;) = y; foralli =0, 1,...,n.

Show that if a function g interpolates the function f at xo, x1, ..., x,_; and & interpo-
lates f at xy, x3, ..., x,, then
Xo — X
g(x) + [g(x) — h(x)]
Xn — Xo

interpolates f at xg, Xy, ..., X,.
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47. (Vandermonde determinant) Using f; = f(x;), show the following:

I x0 fo
‘ 1 fO 1 X1 f1
1 fi 1x
a. flxo,xi] = b. flxo, X1, X2] = ;fz
’ Xo 1 xo x¢
1 x 1 x; x}
1 x; x3

Computer Problems 4.1

“1. Testthe procedure given in the text for determining the Newton form of the interpolating
polynomial. For example, consider this table:

X | 1 | 2 | 3 | —4 | 5
y|2]48]272] 1182 | 2262
Find the interpolating polynomial and verify that p(—1) = 12.

2. Find the polynomial of degree 10 that interpolates the function arctan x at 11 equally
spaced points in the interval [1, 6]. Print the coefficients in the Newton form of the
polynomial. Compute and print the difference between the polynomial and the function
at 33 equally spaced points in the interval [0, 8]. What conclusion can be drawn?

3. Write a simple program using procedure Coef that interpolates e¢* by a polynomial of
degree 10 on [0, 2] and then compares the polynomial to exp at 100 points.

4. Use as input data to procedure Coef the annual rainfall in your town for each of the last
5 years. Using function Eval, predict the rainfall for this year. Is the answer reasonable?

5. A table of values of a function f is given at the points x; = i /10 for 0 <i <100. In
order to obtain a graph of f with the aid of an automatic plotter, the values of f are
required at the points z; = /20 for 0 <i <200. Write a procedure to do this, using
a cubic interpolating polynomial with nodes x;, x; 1, X;42, and x; ;3 to compute f at
%(xiﬂ + x;42). For z; and z,99, use the cubic polynomial associated with z3 and z;97,
respectively. Compare this routine to Coef for a given function.

6. Write routines analogous to Coef and Eval using the Lagrange form of the interpolation
polynomial. Test on the example given in this section at 20 points with % /2. Does the
Lagrange form have any advantage over the Newton form?

7. (Continuation) Design and carry out a numerical experiment to compare the
accuracy of the Newton and Lagrange forms of the interpolation polynomials at values
throughout the interval [xo, x,,].

8. Rewrite and test routines Coef and Eval so that the array (a;) is not used. Hint: When
the elements in the array (y;) are no longer needed, store the divided differences in
their places.

9. Write a procedure for carrying out inverse interpolation to solve equations of the form
f(x) = 0. Test it on the introductory example at the beginning of this chapter.
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10. For Example 8, compare the results from your code with that in the text. Redo using
linear interpolation based on the ten equidistant points. How do the errors compare at
intermediate points? Plot curves to visualize the difference between linear interpolation
and a higher-degree polynomial interpolation.

11. Use mathematical software such as Matlab, Maple, or Mathematica to find an interpo-
lation polynomial for the points (0, 0), (1, 1), (2, 2.001), (3, 3), (4, 4), (5,5). Evaluate
the polynomial at the point x = 14 or x = 20 to show that slight roundoff errors in the
data can lead to suspicious results in extrapolation.

12. Use symbolic mathematical software such as Matlab, Maple, or Mathematica to gener-
ate the interpolation polynomial for the data points in Example 3. Plot the polynomial
and the data points.

13. (Continuation.) Repeat these instructions using Example 7.

14. Carry out the details in Example 8 by writing a computer program that plots the data
points and the curve for the interpolation polynomial.

15. (Continuation.) Repeat the instructions for Problem 14 on Example 9.

16. Using mathematical software, carry out the details and verify the results in the intro-
ductory example to this chapter.

17. (Padé interpolation) Find a rational function of the form

a+ bx
1+ cx

gx) =

that interpolates the function f(x) = arctan (x) at the points xo = 1, x; = 2, and
X, = 3. On the same axes, plot the graphs of f and g, using dashed and dotted lines,
respectively.

4.2 Errors in Polynomial Interpolation

EXAMPLE 1

When a function f is approximated on an interval [a, b] by means of an interpolating
polynomial p, the discrepancy between f and p will (theoretically) be zero at each node of
interpolation. A natural expectation is that the function f will be well approximated at all
intermediate points and that as the number of nodes increases, this agreement will become
better and better.

In the history of numerical mathematics, a severe shock occurred when it was realized
that this expectation was ill-founded. Of course, if the function being approximated is not
required to be continuous, then there may be no agreement at all between p(x) and f(x)
except at the nodes.

Consider these five data points: (0, 8), (1, 12), (3, 2), (4, 6), (8, 0). Construct and plot the
interpolation polynomial using the two outermost points. Repeat this process by adding
one additional point at a time until all the points are included. What conclusions can you
draw?
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FIGURE 4.6
Interpolant
polynomials
over data points

Solution

Interpolation and Numerical Differentiation

The first interpolation polynomial is the line between the outermost points (0, 8) and
(8, 0). Then we added the points (3, 2), (4, 5), and (1, 12) in that order and plotted a
curve for each additional point. All of these polynomials are shown in Figure 4.6. We were
hoping for a smooth curve going through these points without wide fluctuations, but this did
not happen. (Why?) It may seem counterintuitive, but as we added more points, the situation
became worse instead of better! The reason for this comes from the nature of high-degree
polynomials. A polynomial of degree n has n zeros. If all of these zero points are real, then
the curve crosses the x-axis n times. The resulting curve must make many turns for this to
happen, resulting in wild oscillations. In Chapter 9, we discuss fitting the data points with
spline curves. [ |

Dirichlet Function

As a pathological example, consider the so-called Dirichlet function f, defined to be 1 at
each irrational point and O at each rational point. If we choose nodes that are
rational numbers, then p(x) = 0 and f(x) — p(x) = O for all rational values of x, but
f(x) — p(x) = 1 for all irrational values of x.

However, if the function f is well-behaved, can we not assume that the differences
|f(x) — p(x)| will be small when the number of interpolating nodes is large? The
answer is still no, even for functions that possess continuous derivatives of all orders on the
interval!

Runge Function

A specific example of this remarkable phenomenon is provided by the Runge function:
Fy=(1+x7)" (1)

on the interval [—5, 5]. Let p, be the polynomial that interpolates this function at n + 1

equally spaced points on the interval [—5, 5], including the endpoints. Then

nlggo _5H§I§X<5 /@) = pul)] = 00
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Thus, the effect of requiring the agreement of f and p, at more and more points is to
increase the error at nonnodal points, and the error actually increases beyond all bounds!

The moral of this example, then, is that polynomial interpolation of high degree with
many nodes is a risky operation; the resulting polynomials may be very unsatisfactory as
representations of functions unless the set of nodes is chosen with great care.

The reader can easily observe the phenomenon just described by using the pseudocodes
already developed in this chapter. See Computer Problem 4.2.1 for a suggested numerical
experiment. In a more advanced study of this topic, it would be shown that the divergence
of the polynomials can often be ascribed to the fact that the nodes are equally spaced.
Again, contrary to intuition, equally distributed nodes are usually a very poor choice in
interpolation. A much better choice for n 4+ 1 nodes in [—1, 1] is the set of Chebyshev

nodes:
2i +1
;= 0<i<
X cos{(zn_i_z)n} 0<i<n)

The corresponding set of nodes on an arbitrary interval [a, b] would be derived from a linear
mapping to obtain

1 1 2i +1 .
xi=E(a—l—b)—l—E(b—a)cos[(2n+2)n] 0<i<n)

Notice that these nodes are numbered from right to left. Since the theory does not depend
on any particular ordering of the nodes, this is not troublesome.

A simple graph illustrates this phenomenon best. Again, consider Equation (1) on the
interval [—35, 5]. First, we select nine equally spaced nodes and use routines Coef and Eval
with an automatic plotter to graph ps. As shown in Figure 4.7, the resulting curve assumes
negative values, which, of course, f (x) does not have! Adding more equally spaced nodes—
and thereby obtaining a higher-degree polynomial—only makes matters worse with wilder
oscillations. In Figure 4.8, nine Chebyshev nodes are used, and the resulting polynomial
curve is smoother. However, cubic splines (discussed in Chapter 9) produce an even better
curve fit.

y
1
-5 —4 B 4 5
[ 1 1 1 1 I 1 1 | I IR R T S S SN W B ] x
\/ -3 -2 -1 0 1 2 3 \/
_1_
y
1
M—V\L/ M | X
-5 -4 -3 -2 -1 0 1 2 3 4 5
71_
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FIGURE 4.9
Interpolation
with Chebyshev
points

B THEOREM 1

Proof

Interpolation and Numerical Differentiation

The Chebyshev nodes are obtained by taking equally-spaced points on a semicircle and
projecting them down onto the horizontal axis, as in Figure 4.9.

Theorems on Interpolation Errors

It is possible to assess the errors of interpolation by means of a formula that involves the
(n + 1)st derivative of the function being interpolated. Here is the formal statement:

INTERPOLATION ERRORS |

If p is the polynomial of degree at most n that interpolates f at the n + 1 distinct
nodes X, X1, . .., X, belonging to an interval [a, b] and if £**! is continuous, then
for each x in [a, b], there is a & in (a, b) for which

1

f&)—pl) = EERY

£o@ [ —x0 )
i=0

Observe first that Equation (2) is obviously valid if x is one of the nodes x; because then
both sides of the equation reduce to zero. If x is not a node, let it be fixed in the remainder
of the discussion, and define

n

w(t) = H(t —X;) (polynomial in the variable #)
i=0
_ 3
c= M (constant) v
w(x)

o) = f@)— p) —cw(t) (function in the variable ¢)

Observe that ¢ is well defined because w(x) # 0 (x is not a node). Note also that ¢ takes
the value O at the n + 2 points x, X, . . ., X,, and x. Now invoke Rolle’s Theorem,* which
states that between any two roots of ¢, there must occur a root of ¢’. Thus, ¢ has at least
n + 1 roots. By similar reasoning, ¢” has at least n roots, ¢” has at least n — 1 roots, and
so on. Finally, it can be inferred that ¢“*! must have at least one root. Let & be a root of

*Rolle’s Theorem: Let f be a function that is continuous on [a, b] and differentiable on (a, b). If
f(a) = f(b) =0, then f'(c) = 0 for some point c in (a, b).
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@ +D_ All the roots being counted in this argument are in (a, b). Thus,

0= E) = f"0@E) = p"E) — cw" PV E)

In this equation, p"+" (£) = 0 because p is a polynomial of degree < n. Also, w""*V(£) =
(n + 1)! because w(t) = t"*'+ (lower-order terms in ). Thus, we have

(n+ D!
w(x)

This equation is a rearrangement of Equation (2). |

0= f"@E) —ctn+ D= U E) -

Lf(x) = p@)]

A special case that often arises is the one in which the interpolation nodes are equally
spaced.

UPPER BOUND LEMMA

Suppose that x; = a +ihfori =0, 1,...,n and that h = (b — a)/n. Then for any
X € [a, b]

" 1
lx — x;| < A" "'n! 4)
= 4

To establish this inequality, fix x and select j so that x; <x <x;4;. It is an exercise in
calculus (Problem 4.2.2) to show that

h2
|x_xj||x_xj+1|§z )
Using Equation (5), we have
"2 i1
Hlx—x1|<—H(x—x,) H (x; —x)
i=j+2

The sketch in Figure 4.10, showing a typical case of equally spaced nodes, may be helpful.
Since x; < x < x4, we have further

211

H|x—x,|<—]'[<x]+] — X)) ]‘[ (i — x))

i=j+2

X

-—

a=xp X Xy X3 Xi—1 X X4l X2 Xp—1 Xp = b
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B THEOREM 2

Proof

EXAMPLE 2

Solution
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Now use the fact that x; = a +ih. Then we have x;,; —x; = (j —i + Dhand x; — x; =
(i — j)h. Therefore,

A

" o i "
[Tl —xl s n 02 ]G —i+D [[ G0
i=0

4
i=0 i=j+2

IIA

1 1
WG4+ D= HI <=kl
I G+ D! J)_4 n

In the last step, we use the fact that if 0 < j <n — 1, then (j + 1)!(n — j)! <n!. This, too,
is left as an exercise (Problem 4.2.3). Hence, Inequality (4) is established. [ |

We can now find a bound on the interpolation error.

INTERPOLATION ERRORS Il

Let f be afunction such that £+ is continuous on [a, b] and satisfies | £+ (x)| < M.
Let p be the polynomial of degree < n that interpolates f at n 4+ 1 equally spaced
nodes in [a, b], including the endpoints. Then on [a, b],

|f(x) — p(x)| < Mh"*! (6)

1
4(n+ 1)
where h = (b — a)/n is the spacing between nodes.

Use Theorem 1 on interpolation errors and Inequality (4) in Lemma 1. [ |

This theorem gives loose upper bounds on the interpolation error for different values of
n. By other means, one can find tighter upper bounds for small values of n. (Cf. Problem
4.2.5.) If the nodes are not uniformly spaced then a better bound can be found by use of the
Chebyshev nodes.

Assess the error if sinx is replaced by an interpolation polynomial that has ten equally
spaced nodes in [0, 1.6875]. (See the related Example 8 in Section 4.1.)

We use Theorem 2 on interpolation errors, taking f(x) = sinx,n = 9,a = 0, and
b = 1.6875. Since f19(x) = —sinx, | f19(x)| < 1. Hence, in Equation (6), we can let
M = 1. The result is

lsinx — p(x)| <1.34 x 107°

Thus, p(x) represents sinx on this interval with an error of at most two units in the ninth
decimal place. Therefore, the interpolation polynomial that has ten equally spaced nodes
on the interval [0, 1.6875] approximates sin x to at least eight decimal digits of accuracy.
In fact, a careful check on a computer would reveal that the polynomial is accurate to even
more decimal places. (Why?) [ |
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The error expression in polynomial interpolation can also be given in terms of divided
differences:

INTERPOLATION ERRORS IlI

If pis the polynomial of degree n thatinterpolates the function f atnodes xg, xy, . . ., X,
then for any x that is not a node,

fG) = p) = flxo, x1, o, %, x] [ = x0)
i =0

Let ¢ be any point, other than a node, where f(¢) is defined. Let ¢ be the polynomial of
degree < n + 1 that interpolates f at xo, x1, ..., X,, . By the Newton form of the interpola-
tion formula [Equation (8) in Section 4.1], we have

q(x) = p(x)+ flxo, X1, ..., X, t] H(x —X;)
i=0
Since g (t) = f(t), this yields at once

F@) = p)+ flxo, %1, oo (1 [ = x) n
i=0

The following theorem shows that there is a relationship between divided differences
and derivatives.

B THEOREM 4 DIVIDED DIFFERENCES AND DERIVATIVES

Proof

If £™ is continuous on [a, b] and if x¢, x;, ..., X, are any n + 1 distinct points in
[a, b], then for some & in (a, b),

1
flxo,xis ey x] = = fO8)
Il

Let p be the polynomial of degree <n — 1 that interpolates f at xo, Xy, ..., X,—1. By
Theorem 1 on interpolation errors, there is a point £ such that

1 n—1
FO) = o) = —f0@ [ [ —x)

i=0

By Theorem 3 on interpolation errors, we obtain
n—1
F) = plen) = flxo.xr, o xmn x] [ [ = x0) ]
i=0

As an immediate consequence of this theorem, we observe that all high-order divided
differences are zero for a polynomial.



160 Chapter 4 Interpolation and Numerical Differentiation

B COROLLARY 1 DIVIDED DIFFERENCES COROLLARY

If f is a polynomial of degree n, then all of the divided differences f[xo, X1, ..., x;]
are zero fori >n + 1.

EXAMPLE 3 Ts there a cubic polynomial that takes these values?
x|1|—2|0|3|—1| 7
v|-2]-s6|-2]4]-16]376

Solution  If such a polynomial exists, its fourth-order divided differences f[, , , , ] would all be
zero. We form a divided-difference table to check this possibility:

x | SOV ST AL T AL T ]
1] -2
18
-2 | =56 -9
27 2
0 -2 =5 0
2 2
3 4 -3 0
5 2
-1 -16 11
49
7| 376

The data can be represented by a cubic polynomial because the fourth-order divided dif-

ferences f[ , , , , ] are zero. From the Newton form of the interpolation formula, this
polynomial is

p3x)==24+18x—-1)—9x —Dx+2)+2(x — D(x +2)x [
Summary

(1) The Runge function f(x) = 1/(1 + x?) on the interval [—5, 5] shows that high-degree
polynomial interpolation and uniform spacing of nodes may not be satisfactory. The Cheby-
shev nodes for the interval [a, b] are given by

1 1 2i +1
Xi = E(a +b) + E(b —a)cos[(%)n]

(2) There is a relationship between differences and derivatives:

1
f[x09 X1y onn 9-xn] = _'f(n)(%-)
n:
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(3) Expressions for errors in polynomial interpolation are

1
(n+ 1)

fO0) = plx) = RGN [EEED
i=0

f) = pa) = flxo, xi, % X1 [ [ = x)
i=0

(4) For n + 1 equally spaced nodes, an upper bound on the error is given by

n+1
() = p(o)] £ —— (—b_“)
4n+1) n

Here M is an upper bound on | £ (x)| whena <x <b.

(5) If f is a polynomial of degree n, then all of the divided differences f[xg, x, ..., x;] are
zero fori >n + 1.

Problems 4.2

“1.

“6.

7.

Use a divided-difference table to show that the following data can be represented by a
polynomial of degree 3:

x|—2|—1| 0| 1| 2| 3
vl 1] ajufie]13] -4
Fill in a detail in the proof of Inequality (4) by proving Inequality (5).

. (Continuation) Fill in another detail in the proof of Inequality (4) by showing that

G+ D!n—j)H!<nlif0< j <n—1.Induction and a symmetry argument can be used.

For nonuniformly distributed nodes a = xop < x; < --- < x, = b, where h =
max; <; <,{(x; — x;_1)}, show that Inequality (4) is true.

. Using Theorem 1, show directly that the maximum interpolation error is bounded by

the following expressions and compare them to the bounds given by Theorem 2:

a. %h2M for linear interpolation, where 7 = x; — xo and M = max,, < <y, | f"(x)].

b. 9%/5113M for quadratic interpolation, where 7 = x; — xy = x, — x; and M =
MaXy, <y <x, | [/ (X)].

c. = h*M for cubic interpolation, where 7 = x; — xp = x, — x; = x3 = X, and

128
M = maXy,<x<ax; |f”()C)|.

How accurately can we determine sin x by linear interpolation, given a table of sin x
to ten decimal places, for x in [0, 2] with 7 = 0.01?

(Continuation) Given the data

X | sin x | COS X
0.70 | 0.6442176872 | 0.7648421873
0.71 | 0.65183 37710 | 0.75836 18760

find approximate values of sin 0.705 and cos 0.702 by linear interpolation. What is the
error?
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“8.

9.

“10.

11.

12.

“13.

“14.

15.

“16.

17.

18.

Linear interpolation in a table of function values means the following: If yo = f(x¢)
and y; = f(x;) are tabulated values, and if xy) < x < xi, then an interpolated value of
f(x)is yo+[(y1 —yo0)/(x1 —x0)](x — x0), as explained at the beginning of Section 4.1.
A table of values of cos x is required so that the linear interpolation will yield five-
decimal-place accuracy for any value of x in [0, r]. Assume that the tabular values are
equally spaced, and determine the minimum number of entries needed in this table.

Aninterpolating polynomial of degree 20 is to be used to approximate e ~* on the interval
[0, 2]. How accurate will it be? (Use 21 uniform nodes, including the endpoints of the
interval. Compare results, using Theorems 1 and 2.)

Let the function f(x) = In x be approximated by an interpolation polynomial of degree
9 with ten nodes uniformly distributed in the interval [1, 2]. What bound can be placed
on the error?

In the first theorem on interpolation errors, show that if xo < x; < --- < x, and
Xo < X < X, then xyp < & < x,,.

(Continuation) In the same theorem, considering & as a function of x, show that
f™[&(x)]is a continuous function of x. Note: £(x) need not be a continuous function
of x.

Suppose cos x is to be approximated by an interpolating polynomial of degree n, using
n + 1 equally spaced nodes in the interval [0, 1]. How accurate is the approximation?
(Express your answer in terms of n.) How accurate is the approximation when n = 9?
For what values of n is the error less than 10772

In interpolating with n + 1 equally spaced nodes on an interval, we could use x; =
a+ (2i + 1)h/2, where 0<i<n — 1 and h = (b — a)/n. What bound can be given
now for [[_ [x — x;| when a < x <b? Note: We are not requiring the endpoints to be
nodes.

Using Equation (3), show that

n

wn=> [[e-xp woe)=]]ei-xp
i=0 j#i j#i
j=0 j=0

Does every polynomial p of degree at most n obey the following equation? Explain
why or why not.

n i—1
px) =Y plxo, x1, ..., x1 [ Jx = x;)
i=0 j=0

Hint: Use the uniqueness of the interpolating polynomial.

Find a polynomial p that takes these values: p(1) = 3, p(2) = 1, p(0) = —5. You
may use any method you wish. You may leave the polynomial in any convenient form,
not necessarily in the standard form, y_;_, cxx*. Next, find a new polynomial ¢ that
takes those same three values and g(3) = 7.

For the case n = 2, establish Theorem 4 and Corollory 1 directly.
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Computer Problems 4.2

1. Using 21 equally spaced nodes on the interval [—5, 5], find the interpolating polynomial
p of degree 20 for the function f(x) = (x>+1)~'. Print the values of f(x) and p(x) at
41 equally spaced points, including the nodes. Observe the large discrepancy between
f(x) and p(x).

2. (Continuation) Perform the experiment in the preceding computer problem, using
Chebyshev nodes x; = 5cos(i/20), where 0 <i <20, and nodes x; = 5cos[(2i +
1)m/42], where 0 <i £ 20. Record your conclusions.

3. Using procedures corresponding to the pseudocode in the text, find a polynomial of
degree 13 that interpolates f(x) = arctanx on the interval [—1, 1]. Test numerically
by taking 100 points to determine how accurate the polynomial approximation is.

4. (Continuation) Write a function for arctan x that uses the polynomial of the preceding
computer problem. If x is not in the interval [—1, 1], use the formula 1/ tan6 = cotf =
tan(mw /2 — 6).

5. Approximate arcsin x on the interval [ —1/3/2,1/3/2 ] by an interpolating polynomial
of degree 15. Determine how accurate the approximation is by numerical tests. Use
equally spaced nodes.

6. (Continuation) Write a function for arcsin x, using the polynomial of the previous

computer problem. Use sin(77/2 — 0) = cos® = /1 —sin? 0 if x is in the interval
x| > 1/4/2.

7. Let f(x) = max{0, 1 — x}. Sketch the function f. Then find interpolating polynomials
p of degrees 2, 4, 8, 16, and 32 to f on the interval [—4, 4], using equally spaced

nodes. Print out the discrepancy f(x) — p(x) at 128 equally spaced points. Then redo
the problem using Chebyshev nodes.

8. Using Coef and Eval and an automatic plotter, fit a polynomial through the following
data:
X | 0.0 | 0.60 | 1.50 | 1.70 | 1.90 | 2.1 | 2.30 | 2.60 | 2.8 | 3.00
y | —08]—-034]059]050]023]01]028]1.03]15]1.44
Does the resulting curve look like a good fit? Explain.

9. Find the polynomial p of degree < 10 that interpolates |x| on [—1, 1] at 11 equally
spaced points. Print the difference |x| — p(x) at 41 equally spaced points. Then do the
same with Chebyshev nodes. Compare.

10. Why are the Chebyshev nodes generally better than equally spaced nodes in polynomial
interpolation? The answer lies in the term [ [/_ (x —x;) that occurs in the error formula.
If x; = cos[(2i 4+ 1)wr/(2n + 2)], then

[Te—x
i=0

for all x in [—1, 1]. Carry out a numerical experiment to test the given inequality for
n=3,7,15.

<27
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11. (Student research project) Explore the topic of interpolation of multivariate scattered
data, such as arise in geophysics and other areas.

12. Use mathematical software such as found in Matlab, Maple, or Mathematica to repro-
duce Figures 4.7 and 4.8.

13. Use symbolic mathematical software such as Maple or Mathematica to generate the
interpolation polynomial for the data points in Example 2. Plot the polynomial and the
data points.

14. Use graphical software to plot four or five points that happen to generate an interpolating
polynomial that exhibits a great deal of oscillations. This piece of software should let
you use your computer mouse to click on three or four points that visually appear to
be part of a smooth curve. Next it uses Newton’s interpolating polynomial to sketch
the curve through these points. Then add another point that is somewhat remote from
the curve and refit all the points. Repeat, adding other points. After a few points have
been added in this way, you should have evidence that polynomials can oscillate wildly.

4.3 Estimating Derivatives and Richardson Extrapolation

A numerical experiment outlined in Chapter 1 (at the end of Section 1.1, p. 10) showed that
determining the derivative of a function f at a point x is not a trivial numerical problem.
Specifically, if f(x) canbe computed with only n digits of precision, itis difficult to calculate
f'(x) numerically with n digits of precision. This difficulty can be traced to the subtraction
between quantities that are nearly equal. In this section, several alternatives are offered for
the numerical computation of f’(x) and f”(x).

First-Derivative Formulas via Taylor Series

First, consider again the obvious method based on the definition of f’(x). It consists of
selecting one or more small values of & and writing

1
f'(X)%E[f(x-lrh)—f(X)] ey

What error is involved in this formula? To find out, use Taylor’s Theorem from Section 1.2:

1
fx+h) = f&)+hf'(x)+ Ehzf”(é)

Rearranging this equation gives
1 1
)= ﬁ[f(x +h) - f0)] - Ehf"(é) 2)

Hence, we see that approximation (1) has error term — %h f"(&) = O(h), where & is in the
interval having endpoints x and x + h.

Equation (2) shows that in general, as & — 0, the difference between f’(x) and the
estimate 2~ '[ f (x +h) — f(x)] approaches zero at the same rate that 7 does—that is, O (h).
Of course, if f”(x) = 0, then the error term will be éhz f"”(y), which converges to zero
somewhat faster at O(h?). But usually, f”(x) is not zero.
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Equation (2) gives the truncation error for this numerical procedure, namely,
—%h f"(&). This error is present even if the calculations are performed with infinite preci-
sion; it is due to our imitating the mathematical limit process by means of an approximation
formula. Additional (and worse) errors must be expected when calculations are performed
on a computer with finite word length.

In Section 1.1, the program named First used the one-sided rule (1) to approximate the first
derivative of the function f(x) = sinx at x = 0.5. Explain what happens when a large
number of iterations are performed, say n = 50.

There is a total loss of all significant digits! When we examine the computer output closely,
we find that, in fact, a good approximation f’(0.5) ~ 0.87758 was found, but it deteriorated
as the process continued. This was caused by the subtraction of two nearly equal quantities
S (x+h)and f(x), resulting in a loss of significant digits as well as a magnification of this
effect from dividing by a small value of 4. We need to stop the iterations sooner! When to
stop an iterative process is a common question in numerical algorithms. In this case, one can
monitor the iterations to determine when they settle down, namely, when two successive
ones are within a prescribed tolerance. Alternatively, we can use the truncation error term.
If we want six significant digits of accuracy in the results, we set
1 ” 1 —n 1 —6
‘ Shf'(E)] £ 547" < 510

since | f"(x)] < land h = 1/4". We find n > 6/log4 ~ 9.97. So we should stop after
about ten steps in the process. (The least error of 3.1 x 10~° was found at iteration 14.) M

As we saw in Newton’s method (Chapter 3) and will see in the Romberg method
(Chapter 5), it is advantageous to have the convergence of numerical processes occur with
higher powers of some quantity approaching zero. In the present situation, we want an
approximation to f’(x) in which the error behaves like O (h?). One such method is easily
obtained with the aid of the following two Taylor series:

, 12// 13/// 14(4)
f(x+h)=f(x)+hf(x)+ihf(x)+§hf (x)+th () +---

1 1 1 )
FOe =)= [ =hf'(0) 4 S0 f100) = b @) + P00 — -
By subtraction, we obtain
’ 2 3 o 2 5 £(5)
f(X+h)—f(x—h)=2hf(X)+§hf(X)+§hf (x)+---
This leads to a very important formula for approximating f'(x):
/ 1 hz " h4 (@)
f(X)=ﬂ[f(X+h)—f(x—h)]—§f (x)—yf (x)—--- “)
Expressed otherwise,
1
f/(X)%E[f(X+h)—f(x—h)] ®)

with an error whose leading term is — %hz f”(x), which makes it O(h?).
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By using Taylor’s Theorem with its error term, we could have obtained the following
two expressions:

1 1
fx+h)= @) +hf'(x)+ =h*f"(x) + -k [ (&)

2 6
1 1
flx—h)= f@x)—hf'(x)+ §h2f”(x) - 6h3f’”<sz>

Then the subtraction would lead to

o) = o Lo [TED) + (&)
Fi0) = UGt = fe == <h [—2 ]

The error term here can be simplified by the following reasoning: The expression % [f"(&)+
f"(&)] is the average of two values of f” on the interval [x — h, x 4 h]. It therefore lies
between the least and greatest values of f” on this interval. If f” is continuous on this
interval, then this average value is assumed at some point £&. Hence, the formula with its
error term can be written as

/ _i _ _ _l 2 pm
f(X)—Zh[f(erh) fx—h)] 6hf(E)

This is based on the sole assumption that f”” is continuous on [x — A, x + h]. This formula
for numerical differentiation turns out to be very useful in the numerical solution of certain
differential equations, as we shall see in Chapter 14 (on boundary value problems) and
Chapter 15 (on partial differential equations).

Modify program First in Section 1.1 so that it uses the central difference formula (5) to
approximate the first derivative of the function f(x) = sinx atx = 0.5.

Using the truncation error term for the central difference formula (5), we set

1 1 1
—— W2 fE)| <-4 < 21070
6 Fr@)| = ; <3
orn > (6—log3)/log 16 ~4.59. We obtain a good approximation after about five iterations
with this higher-order formula. (The least error of 3.6 x 107! was at step 9.) [ |

Richardson Extrapolation

Returning now to Equation (4), we write it in a simpler form:

1
flx) = S =[x =]+ ah* + ash* + agh® + - - - (6)

in which the constants a,, a4, ... depend on f and x. When such information is available
about a numerical process, it is possible to use a powerful technique known as Richardson
extrapolation to wring more accuracy out of the method. This procedure is now explained,
using Equation (6) as our model.

Holding f and x fixed, we define a function of / by the formula

1
gh) = [f(x+h) = f(x = h)] (7

From Equation (6), we see that ¢ (k) is an approximation to f’(x) with error of order O(h?).
Our objective is to compute lim;,_,o ¢ (/) because this is the quantity f’(x) that we wanted
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in the first place. If we select a function f and plot ¢(h) forh =1, 3, 1, 3. ..., then we

get a graph (Computer Problem 4.3.5). Near zero, where we cannot actually calculate the
value of ¢ from Equation (7), ¢ is approximately a quadratic function of #, since the higher-
order terms from Equation (6) are negligible. Richardson extrapolation seeks to estimate
the limiting value at O from some computed values of ¢ (k) near 0. Obviously, we can take
any convenient sequence %, that converges to zero, calculate ¢(h,,) from Equation (7), and
use these as approximations to f’(x).

But something much more clever can be done. Suppose we compute ¢ (k) for some &
and then compute ¢(h/2). By Equation (6), we have

oh) = f'(x) — aph* — ayh* — agh® — - - -

o2) - rio-al() -o(2) (3 -

We can eliminate the dominant term in the error series by simple algebra. To do so, multiply
the second equation by 4 and subtract it from the first equation. The result is

(h) —4 ") = 3f(x) . h* b h®
@ 4 7= X 4114 16a6
We divide by —3 and rearrange this to get
h 1 h 1 5
- Z )=o) = Zaht + —ah® + ...
‘P(z) +3 [‘P<2> @( )} f(x)+4a4 + 16616 +

This is a marvelous discovery. Simply by adding %[(p(h /2) — @(h)] to ¢(h/2), we have

apparently improved the precision to O(h*) because the error series that accompanies this

new combination begins with %a4h4. Since h will be small, this is a dramatic improvement.
We can repeat this process by letting

4 h 1
D(h) = 390(2) - gfp(h)

Then we have from the previous derivation that
®(h) = f'(x) + byh* + bgh® + - - -

o) Y g b Y b A}
<§>—f(x)+ 4<§> + 6<5> + -

We can combine these equations to eliminate the first term in the error series
h , 3. 6
®d(h) — 16D 5= —le(x)+Zb6h + -
Hence, we have

h\ L[ (h L 1

This is yet another apparent improvement in the precision to O(h®). And now, to top it off,
note that the same procedure can be repeated over and over again to kill higher and higher
terms in the error. This is Richardson extrapolation.
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Essentially the same situation arises in the derivation of Romberg’s algorithm in Chap-
ter 5. Therefore, it is desirable to have a general discussion of the procedure here. We start
with an equation that includes both situations. Let ¢ be a function such that

o) =L—> ayh™ ®)
k=1

where the coefficients ay; are not known. Equation (8) is not interpreted as the definition of
@ but rather as a property that ¢ possesses. It is assumed that ¢ (/) can be computed for any
h > 0 and that our objective is to approximate L accurately using ¢.

Select a convenient 4, and compute the numbers

h
D(n, 0) =¢<2—n> (n=0) ©)

Because of Equation (8), we have

[ee] h 2k
D(n,0) =L + Z Ak, 0) <2—>
k=1

where A(k, 0) = —ay;. These quantities D (n, 0) give a crude estimate of the unknown num-
ber L = lim,_, ¢(x). More accurate estimates are obtained via Richardson extrapolation.
The extrapolation formula is

m

D(n,m) = D(n,m—1) —

4m —1 4m — 1

RICHARDSON EXTRAPOLATION THEOREM

The quantities D(n, m) defined in the Richardson extrapolation process (10) obey the
equation

Dn—1,m—1) (1<m<n) (10)

00 2k
D.m)=L+ »_ A(k,m)(zh—n> O<m<n) (11)

k=m+1

Equation (11) is true by hypothesis if m = 0. For the purpose of an inductive proof, we
assume that Equation (11) is valid for an arbitrary value of m — 1, and we prove that Equation
(11) is then valid for m. Now from Equations (10) and (11) for a fixed value m, we have

m

e’} h 2k
D(n,m)=4m_1 L+ZA(k,m—1)(?> ]
k=m
1 [e%s) h 2k
- L Alk,m — 1
y— +; (k,m )<2n_1> ]

After simplification, this becomes

e8] 4m_4k 2k
D(n,m):L—i—ZA(k,m—l)(M_l)(z}l—n> (12)

k=m
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Thus, we are led to define

4m_4k
MhmzAmm—n<M_l>

At the same time, we notice that A(m, m) = 0. Hence, Equation (12) can be written as

00 h 2k
Dn,m) =L+ Z Ak, m) (2—n>

k=m+1

Equation (11) is true for m, and the induction is complete. |

The significance of Equation (11)is that the summation begins with the term (h/2")"+2.
Since i /2" is small, this indicates that the numbers D(n, m) are approaching L very rapidly,
namely,

J20m+D)
Dn,m)=L+QO (7>

22n(m+1)

In practice, one can arrange the quantities in a two-dimensional triangular array as
follows:

D(0,0)

D(1,0) D, 1)

D(2,0) DQ2,1) D(2,2) (13)
D(N,0) D(N,1) D(N,2) --- D(N,N)

The main tasks to generate such an array are as follows:

B ALGORITHM 2 Richardson Extrapolation

EXAMPLE 3

Solution

Write a function for ¢.
Decide on suitable values for N and #.
Fori =0,1,..., N, compute D(i,0) = ¢(h/2").
For0<i £ j <N, compute

D@, j))=D@, j— D)+ @& —D7'[DG,j—1)—DGi—1,j—1D]
Notice that in this algorithm, the computation of D(i, j) follows Equation (10) but
has been rearranged slightly to improve its numerical properties.

= R

Write a procedure to compute the derivative of a function at a point by using Equation (5)
and Richardson extrapolation.

The input to the procedure will be a function f, a specific point x, a value of 4, and a
number n signifying how many rows in the array (13) are to be computed. The output will
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be the array (13). Here is a suitable pseudocode:

procedure Derivative(f, x, n, h, (d;;))
integer i, j,n; real h,x; real array (dij)o.nxon
external function f
fori = 0ton do
dio < [f(x +h) — f(x —h)]/(2h)
for j =1toido
dij < dijo1+ (dijo1 — dizy, j—1) /@ — 1)
end for
h < h/2
end for
end procedure Derivative

To test the procedure, choose f(x) = sinx, where xo = 1.2309594154 and 4 = 1. Then
f'(x) = cosx and f'(xg) = % A pseudocode is written as follows:

program Test_Derivative

real array (d;;)onxo.; external function f
integer n <— 10; realh < 1; x < 1.2309594154
call Derivative(f, x, n, h, (d;;))

output (d;;)

end program Test_Derivative

real function f(x)
real x

f < sin(x)

end function f

We invite the reader to program the pseudocode and execute it on a computer. The computer
output is the triangular array (d;;) with indices 0 < j <i <10. The most accurate value
is (ds,1) = 0.3333333433. The values d;y, which are obtained solely by Equations (7)
and (9) without any extrapolation, are not as accurate, having no more than four correct
digits. [ |

Mathematical software is now available with algebraic manipulation capabilities. Using
them, we could write a computer program to find derivatives symbolically for a rather
large class of functions—probably all those you would encounter in a calculus course.
For example, we could verify the numerical results above by first finding the derivative
exactly and then evaluating the numerical answer cos(1.2309594154) ~ 0.33333 33355
since arccos(%) ~ 1.23095 941543. Of course, the procedures discussed in this section are
for approximating derivatives that cannot be determined exactly.

First-Derivative Formulas via Interpolation Polynomials

An important general stratagem can be used to approximate derivatives (as well as integrals
and other quantities). The function f is first approximated by a polynomial p so that
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f =~ p. Then we simply proceed to the approximation f'(x) &~ p’(x) as a consequence. Of
course, this strategy should be used very cautiously because the behavior of the interpolating
polynomial can be oscillatory.

In practice, the approximating polynomial p is often determined by interpolation at
a few points. For example, suppose that p is the polynomial of degree at most 1 that
interpolates f at two nodes, xy and x;. Then from Equation (8) in Section 4.1 withn = 1,
we have

pi(x) = f(xo) + flxo, x1]1(x — xo)
Consequently,

, , (x1) — f(x0)

f(X)%pl(x)=f[xO,x1]=M (14)
X1 — Xo

If xp = x and x; = x + h (see Figure 4.11), this formula is one previously considered,

namely, Equation (1):

1

f/(X)%E[f(erh)—f(X)] (15)
X0 X1
X x+h

If xo = x — h and x; = x + h (see Figure 4.12), the resulting formula is Equation (5):

1
f'(X)%ﬁ[f(erh)—f(X—h)] (16)

X0

X1
+h

=0

x—h X

Now consider interpolation with three nodes, xy, x;, and x,. The interpolating polyno-
mial is obtained from Equation (8) in Section 4.1:

p2(x) = f(xo) + flxo, x11(x — x0) + flxo0, X1, X2](x — x0)(x — x1)

and its derivative is

Py(x) = flxo, x11+ flxo, x1, x21(2x — xo — x1) (17)

Here the right-hand side consists of two terms. The first is the previous estimate in Equa-
tion (14), and the second is a refinement or correction term.

If Equation (17) is used to evaluate f'(x) when x = %(xo + x1), as in Equation (16),
then the correction term in Equation (17) is zero. Thus, the first term in this case must be
more accurate than those in other cases because the correction term adds nothing. This is
why Equation (16) is more accurate than (15).

An analysis of the errors in this general procedure goes as follows: Suppose that p,, is
the polynomial of least degree that interpolates f atthe nodes xg, xi, ..., x,,. Then according
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to the first theorem on interpolating errors in Section 4.2,
1
_ _ (n+1)
f@x) = pa(x) = T 1)!f &wx)
where £ is dependent on x, and w(x) = (x — xg)(x —x;) - - - (x — x,,). Differentiating gives

1
ugﬁgf“+”@)+-—————f“*”@)w%x) (18)

J ) = p,(x) = R

1
n+

Here, we had to assume that f+D (&) is differentiable as a function of x, a fact that is
known if f*2 exists and is continuous.

The first observation to make about the error formula in Equation (18) is that w(x)
vanishes at each node, so if the evaluation is at a node x;, the resulting equation is simpler:

1
(n+1)!

For example, taking just two points xy and x;, we obtain withn = 1 and i = 0,

f(x) = ph(xi) + FrEW (x)

1 d
f'(x0) = flxo, x11+ —f”(é)a[(x — x0)(x — x1)]

2 X=Xx0

1
= flxo, x:]1+ Ef”@)(xO —x1)

This is Equation (2) in disguise when xy = x and x; = x + h. Similar results follow with
n=1andi =1.

The second observation to make about Equation (18) is that it becomes simpler if x is
chosen as a point where w’(x) = 0. For instance, if n = 1, then w is a quadratic function
that vanishes at the two nodes xy and x;. Because a parabola is symmetric about its axis,
w'[(xg + x1)/2] = 0. The resulting formula is

1 d
f’(xo-;m) = flxo, x1] — g(x' _XO)ZEJM(S)

As a final example, consider four interpolation points: x, X1, X2, and x3. The interpo-
lating polynomial from Equation (8) in Section 4.1 with n = 3 is

p3(x) = f(x0) + flxo, x11(x — x0) + flx0, X1, x2](x — x0)(x — xy)
+ flxo, x1, X2, x3]1(x — x0)(x — x1)(x — x2)
Its derivative is
Py(x) = flxo. x11+ flxo, x1, x2]1(2x — x9 — x1)

+ flxo, x1, X2, x3]((x — x)(x — x2)
+ (x —x0)(x — x2) + (x — x0)(x — x1))

A useful special case occurs if xo = x —h, x; = x +h,x, = x —2h,and x3 = x + 2h (see
Figure 4.13). The resulting formula is

L2 1
faym =g Pt h) = fe =] = 2 L+ 20) = f(x = 2h)]
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X2 X0 X1 X3

x—2h x—h x x+h x+2h

This can be arranged in a form in which it probably should be computed with a principal
term plus a correction or refining term:

N
f(X)~ﬂ[f(X+h)—f(x—h)]

1
—ﬁ{f(x+2h)—2[f(X+h)—f(x—h)]—f(x—2h)} 19)

The error term is —5h* ) (§) = O(h*).

Second-Derivative Formulas via Taylor Series

In the numerical solution of differential equations, it is often necessary to approximate
second derivatives. We shall derive the most important formula for accomplishing this.
Simply add the two Taylor series (3) for f(x + &) and f(x — h). The result is

FOt )+ Fr—h) = 2£(0) + 12 () +2 [%hw«x) ;.. }
When this is rearranged, we get
F10) = L f B =2+ fe— ]+ E
where the error series is
E=-2 %hzf(‘”(x) + %h“f@(x) + - }

By carrying out the same process using Taylor’s formula with a remainder, one can show
that E is also given by

1
E=——hf®
o @)
for some & in the interval (x — &, x + h). Hence, we have the approximation
1
) ~ ﬁ[f(erh) =2f(x)+ fx=h)] (20)
with error O (h?).

Repeat Example 2, using the central difference formula (20) to approximate the second
derivative of the function f(x) = sinx at the given point x = 0.5.

Using the truncation error term, we set
1 1
—47 < —107°
12 2
and we obtain n > (6 — log6)/log 16 &~ 4.34. Hence, the modified program First finds a

good approximation of f”(0.5) ~ —0.47942 after about four iterations. (The least error of
3.1 x 10~ was obtained at iteration 6.) [ ]

<

_i 2f@
‘ AN
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Approximate derivative formulas of high order can be obtained by using unequally
spaced points such as at Chebyshev nodes. Recently, software packages have been developed
for automatic differentiation of functions that are expressible by a computer program. They
produce true derivatives with only rounding errors and no discretization errors.

Noise in Computation

An interesting question is how noise in the evaluation of f(x) affects the computation of
derivatives when using the standard formulas.

The formulas for derivatives are derived with the expectation that evaluation of the
function at any point is possible, with complete precision. Then the approximate derivative
produced by the formula differs from the actual derivative by a quantity called the error
term, which involves the spacing of the sample points and some higher derivative of the
function.

If there are errors in the values of the function (noise), they can vitiate the whole
process! Those errors could overwhelm the error inherent in the formulas. The inherent
error arises from the fact that in deriving the formulas a Taylor series was truncated after
only a few terms. It is called the truncation error. It is present even if the evaluation of the
function at the required sample points is absolutely correct.

For example, consider the formula

J+h) —fx—h
2h

]’l2
)= - gfm(é)
The term with /? is the error term. The point £ is a nearby point (unknown). If f(x + h)
and f(x — h) are in error by at most d, then one can see that the formula will produce a
value for f’(x) that is in error by d/h, which is large when £ is small. Noise completely
spoils the process if d is large.

For a specific numerical case, suppose that 1 = 1072 and | f”(s)| < 6. Then the trunca-
tion error, E, satisfies | E| < 107*. The derivative computed from the formula with complete
precision is within 10~ of the actual derivative. Suppose, however, that there is noise in the
evaluation of f(x /) of magnitude d = h. The correct value of [ f (x+h)— f(x —h)]/(2h)
may differ from the noisy value by (2d)/(2h) = 1.

Summary

(1) We have derived formulas for approximating first and second derivatives. For f'(x), a
one-sided formula is

1
)~ PLASREORPAC)

with error term — %h f"(&). A central difference formula is

) A C -
F'@)~ ) = (= h)]
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with error — éhz £ (&) = O(h*). A central difference formula with a correction term is
, 1
fx) = ﬁ[f(X+h)—f(x—h)]

1
=g G20 = 2f (b )+ 2f (v = ) = f(x = 21)]

with error term —5h* ) (&) = O(h*).
(2) For f”(x), a central difference formula is

1
f"(X)%ﬁ[f(X+h)—2f(x)+f(x—h)]

with error term —5h? £ (§)

(3) If ¢ (h) is one of these formulas with error series a,h? + ash* + agh® + - - -, then we can
apply Richardson extrapolation as follows

D(n,0) = ¢ (h/2")
D(n,m)=Dn,m—1)+[Dm,m—1)—Dn —1,m—1)]/@" — 1)

with error terms

h2(m+1)

Additional References for Chapter 4

For additional study, see Gautschi [1990], Goldstine [1977], Griewark [2000], Groetsch
[1998], Rivlin [1990], and Whittaker and Robinson [1944].

Problems 4.3

¢1. Determine the error term for the formula
, 1
fx) =~ E[f(X+3h)—f(x —h)]

“2. Using Taylor series, establish the error term for the formula

|
f Oy~ 211 2h) = f(O)]

3. Derive the approximation formula
1
F1) ~ AL (k) = 3f () = f(x +21)]

and show that its error term is of the form %hz ().

4, Can you find an approximation formula for f’(x) that has error term O(h*) and involves
only two evaluations of the function f? Prove or disprove.

5. Averaging the forward-difference formula f'(x) ~ [f(x + h) — f(x)]/h and the
backward-difference formula f'(x) =~ [f(x) — f(x — h)]/h, each with error term
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O(h), results in the central-difference formula f'(x) ~ [f(x + h) — f(x — h)]/(2h)
with error O(h?). Show why. Hint: Determine at least the first term in the error series
for each formula.

“6. Criticize the following analysis. By Taylor’s formula, we have
h? h3
fx+h) = f(x)=hf'(x)+ Ef”(x) + gf/”(é’)

h? h?
flx—h)— f&x) = —hf'(x) + Tf"(X) - gf”/(é)
So by adding, we obtain an exact expression for f”(x):
faAm) + fx—h) =2f(x) =hf"(x)

7. Criticize the following analysis. By Taylor’s formula, we have
h? h?
fx+h) = f&x)=hf'(x)+ 7f”()6) + gf”’(él)

h? n?
fx—h)— f(x) =—hf'(x)+ Ef”(x) - gf/”(éz)
Therefore,
1 h
n [fx+h)=2f(x)+ flx —m)] = f"(x)+ g[f/”(fl) A ()

The error in the approximation formula for f” is thus O(h).

8. Derive the two formulas
1
‘a. fi(x)~ E[f(x +2h) — f(x —2h)]
1
4h?
and establish formulas for the errors in using them.

b. f"(x) & —=[f(x +2h) = 2f(x) + f(x = 2h)]

9. Derive the following rules for estimating derivatives:

! [f(x+2h) —2f(x +h) +2f(x —h) — f(x — 2h)]

‘a. f”'(x) ~ W

“b. fD(x) ~ %[f(x +2h) —4f(x+h)+6f(x)—4f(x —h)+ fx —2h)]

and their error terms. Which is more accurate? Hint: Consider the Taylor series for
D)= f(x+h)— f(x—h)and S(h) = f(x +h) + f(x —h).

10. Establish the formula

ven o 2| fGo)  f(x) f(x2)
PO~ 0t~ « a@rl



“11.

“12.

“13.

14.

15.
“16.

17.

18.

19.

“20.
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in the following two ways, using the unevenly spaced points xo < x; < x;, where
X1 — xo = h and x, — x; = «ah. Notice that this formula reduces to the standard
central-difference formula (20) when a = 1.

a. Approximate f(x) by the Newton form of the interpolating polynomial of degree 2.

b. Calculate the undetermined coefficients A, B, and C in the expression f”(x) =~
Af (x0) + Bf (x1) + Cf (x,) by making it exact for the three polynomials 1, x — xy,
and (x — x;)? and thus exact for all polynomials of degree < 2.

(Continuation) Using Taylor series, show that

S (x2) = f(x0) "

X2 — Xo

h
[ = (a — 1)§f"(x|) + 0

Establish that the error for approximating f(x;) by [ f(x2) — f (x0)1/(x2 — xo) is O (h?)
when x; is midway between x, and x, but only O(h) otherwise.

A certain calculation requires an approximation formula for f'(x) + f”(x). How well
does the expression

24+ h " 2 2—h n
<2W)f@+)—<ﬁ>ﬂw+<2w)fw—)

serve? Derive this approximation and its error term.

The values of a function f are given at three points x¢, x;, and x,. If a quadratic
interpolating polynomial is used to estimate f'(x) at x = %(xo + x1), what formula
will result?

Consider Equation (19).

a. Fill in the details in its derivation.

b. Using Taylor series, derive its error term.
Show how Richardson extrapolation would work on Formula (20).

If (h) = L — cih — ¢c;h* — c3h® — - - -, then what combination of ¢(h) and ¢(h/2)
should give an accurate estimate of L?

(Continuation) State and prove a theorem analogous to the theorem on Richardson
extrapolation for the situation of the preceding problem.

If o(h) = L — ¢ h'? — ¢,h*? — c3h*? — - .., then what combination of (k) and
¢(h/2) should give an accurate estimate of L?

Show that Richardson extrapolation can be carried out for any two values of /. Thus,
if o(h) = L — O(h?), then from ¢(h) and ¢(h,), a more accurate estimate of L is
given by

P

h
——%ﬁwm»—wmm
—

@(hy) +
hy

Consider a function ¢ such that lim,_o@(h) = L and L — ¢(h) ~ ce™"/" for some
constant ¢. By combining ¢(h), ¢(h/2), and ¢ (h/3), find an accurate estimate of L.
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21. Consider the approximate formula

! 3 "
[~ %/_hl‘f(x+t)dt

Determine its error term. Does the function f have to be differentiable for the for-
mula to be meaningful? Hint: This is a novel method of doing numerical differentia-
tion. The interested reader can read more about Lanczos’ generalized derivative in
Groetsch [1998].

22. Derive the error terms for D(3, 0), D(3, 1), D(3,2) and D(3, 3).

23. Differentiation and integration are mutual inverse processes. Differentiation is an in-
herently sensitive problem in which small changes in the data can cause large changes
in the results. Integration is a smoothing process and is inherently stable. Display two
functions that have very different derivatives but equal definite integrals and vice versa.

24. Establish the error terms for these rules:

B f7(0) ~ 1 Bf G+ ) — 10£(0) + 12£(x —h) — 6 (x = 2h) + £(x = 3)]

2h3
h 1
b @48 R — f00]
o £~ | S0 3 6704 20+ 1274 )i 00 = 7 =0

Computer Problems 4.3

1. Test procedure Derivative on the following functions at the points indicated in a single
computer run. Interpret the results.

a. f(x) =cosxatx =0 b. f(x) =arctanx atx =1
c. f(x)=|x|atx=0

2. (Continuation) Write and test a procedure similar to Derivative that computes f”(x)
with repeated Richardson extrapolation.

“3. Find f’(0.25) as accurately as possible, using only the function corresponding to the
pseudocode below and a method for numerical differentiation:

real function f(x)
integer i; reala,b,c,x
a < 1;b < cos(x)
fori = 1to5do
c<b
b < Jab
a<(a+c)2
end for
f < 2arctan(1)/a
end function f
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. Carry out a numerical experiment to compare the accuracy of Formulas (5) and (19) on
a function f whose derivative can be computed precisely. Take a sequence of values
for i, such as 47" with 0 <n < 12.

. Using the discussion of the geometric interpretation of Richardson extrapolation, pro-
duce a graph to show that ¢ (/) looks like a quadratic curve in A.

. Use symbolic mathematical software such as Maple or Mathematica to establish the
first term in the error series for Equation (19).

. Use mathematical software such as found in Matlab, Maple, or Mathematica to redo
Example 1.



Numerical Integration

In electrical field theory, it is proved that the magnetic field induced by a
current flowing in a circular loop of wire has intensity

H(x) = r24—/rx2 /071/2[1 — (;)2sin2 0}1/2 ab

where [ is the current, r is the radius of the loop, and x is the distance from
the center to the point where the magnetic intensity is being computed
(O<x<r). If I, r,and xare given, we have a formidable integral to evaluate.
It is an elliptic integral and not expressible in terms of familiar functions.
But H can be computed precisely by the methods of this chapter. For
example, if | = 15.3, r = 120, and x = 84, we find H = 1.35566 1135
accurate to nine decimals.

5.1 Lower and Upper Sums

Elementary calculus focuses largely on two important processes of mathematics: differen-
tiation and integration. In Section 1.1, numerical differentiation was considered briefly; it
was taken up again in Section 4.3. In this chapter, the process of integration is examined
from the standpoint of numerical mathematics.

Definite and Indefinite Integrals

It is customary to distinguish two types of integrals: the definite and the indefinite integral.
The indefinite integral of a function is another function or a class of functions, whereas
the definite integral of a function over a fixed interval is a number. For example,

Indefinite integral: / x2dx =

2
Definite integral: / x2dx =
0

Actually, a function has not just one but many indefinite integrals. These differ from
each other by constants. Thus, in the preceding example, any constant value may be assigned

180
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to C, and the result is still an indefinite integral. In elementary calculus, the concept of an
indefinite integral is identical with the concept of an antiderivative. An antiderivative of a
function f is any function F having the property that F' = f.

The definite and indefinite integrals are related by the Fundamental Theorem of
Calculus,” which states that fah f(x) dx can be computed by first finding an antiderivative
F of f and then evaluating F'(b) — F(a). Thus, using traditional notation, we have

3
- (G-9-(-9-4

/IB(x2 —2)dx = (%3 — 2x>

As another example of the Fundamental Theorem of Calculus, we can write

b
/ F'(x)dx = F(b) — F(a)

/x F'(t)dt = F(x) — F(a)

If this second equation is differentiated with respect to x, the result is (and here we have
put f = F')

d X
o / F@ydi = ()
X Ja

This last equation shows that fax f () dt must be an antiderivative (indefinite integral) of f.

The foregoing technique for computing definite integrals is virtually the only one
emphasized in elementary calculus. The definite integral of a function, however, has an
interpretation as the area under a curve, and so the existence of a numerical value for
fab f(x) dx should not depend logically on our limited ability to find antiderivatives. Thus,

for instance,
! 2
/ e dx
0

has a precise numerical value despite the fact that there is no elementary function F such
2 . 2 . . . . .
that F'(x) = ¢*". By the preceding remarks, ¢*" does have antiderivatives, one of which is

F(x) = / e dt
0

However, this form of the function F is of no help in determining the numerical value
sought.

Lower and Upper Sums

The existence of the definite integral of a nonnegative function f on a closed interval [a, b]
is based on an interpretation of that integral as the area under the graph of f. The definite
integral is defined by means of two concepts, the lower sums of f and the upper sums of
f; these are approximations to the area under the graph.

*Fundamental Theorem of Calculus: If f is continuous on the interval [a, b] and F is an antiderivative of f,
then

b
/ f(x)dx = F(b) — F(a)
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FIGURE 5.1
Illustrating
lower and
upper sums

EXAMPLE 1

Let P be a partition of the interval [a, D] given by
P={a=xo<x1<x<--<Xx,1 <X,=0b}

with partition points xg, X1, X2, ..., X, that divide the interval [a, b] into n subintervals
[x;, x;+1]. Now denote by m; the greatest lower bound (infimum or inf) of f(x) on the
subinterval [x;, x;1]. In symbols,

m; =inf{f(x) : x; £x <xi41})

Likewise, we denote by M, the least upper bound (supremum or sup) of f(x) on [x;, X;41].
Thus,

M; =sup{f(x) : x; £x <X}

The lower sums and upper sums of f corresponding to the given partition P are defined
to be

n—1
L(f;P) = Zmi(xi+1 - Xi)
i—0

n—1
U(fs P) =Y Mi(xis1 — x)
i=0

If f is a positive function, these two quantities can be interpreted as estimates of the area
under the curve for f. These sums are shown in Figure 5.1.

a=x, X1 Xy X3 X4 xs=0>b

(a) Lower sums

a=x, X Xy X3 X4 xs=0>b

(b) Upper sums

What are the numerical values of the upper and lower sums for f(x) = x? on the interval
[0, 1] if the partitionis P = {0, 1,1, 3,1}?

» 4020 40
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Solution We want the value of

B THEOREM 1

U(f;P) = My(x) —x0) + M (x2 — x1) + My(x3 — x2) + M3(x4 — x3)

Since f is increasing on [0, 1], My = f(x)) = 11—6. Similarly, M} = f(x;) = }T’ M, =
f(x3) = 1z.and M3 = f(x4) = 1. The widths of the subintervals are all equal to ;. Hence,

Cpy __1(1 1,9 _ 15
UfiP)=1(+1+5+1) =5

In the same way, we find that my = f(x9) =0, m; = my = J—t, and m; = % Hence,

1
E’

. 1 1 1 9 _ 17
L(fiP)=;0++i+7)=5%

If we had no other way of calculating fol x2dx, we would take a value halfway between

U(f; P)and L(f; P) as the best estimate. This number is ;—; The correct value is %, and
T R ;

the error is 37 — 3 = 5. |

It is intuitively clear that the upper sum overestimates the area under the curve, and the

lower sum underestimates it. Therefore, the expression fa b f(x) dx, which we are trying to

define, is required to satisfy the basic inequality

b
L(f;P)§/ FE)dx<US: P) ()

for all partitions P. It turns out that if f is a continuous function defined on [a, b], then
Inequality (1) does indeed define the integral. That is, there is one and only one real number
that is greater than or equal to all lower sums of f and less than or equal to all upper sums
of f. This unique number (depending on f, a, and b) is defined to be fa b f(x)dx. The
integral also exists if f is monotone increasing on [a, b] or monotone decreasing on [a, b].

Riemann-Integrable Functions

We consider the least upper bound (supremum) of the set of all numbers L(f; P) obtained
when P is allowed to range over all partitions of the interval [a, b]. This is abbreviated
supp L(f; P). Similarly, we consider the greatest lower bound (infimum) of U (f; P) when
P ranges over all partitions of [a, b]. This is denoted by infp U(f; P). Now if these two
numbers are the same—that is, if

infU(f; P) = sup L(f3 P) 2
P

then we say that f is Riemann-integrable on [a, b] and define fab f(x) dx tobe the common
value obtained in Equation (2). The important result mentioned above can be stated formally
as follows:

THEOREM ON RIEMANN INTEGRAL

Every continuous function defined on a closed and bounded interval of the real line
is Riemann-integrable.
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There are plenty of functions that are not Riemann-integrable. The simplest is known
as the Dirichlet function:

0 if x is rational
d(x) = e
1 if x is irrational

For any interval [a, b] and for any partition P of [a, b],wehave L(d; P) = 0and U (d; P) =
b — a. Hence,

0=supL(d; P) <iII}fU(d;P):b—a
P

In calculus, it is proved not only that the Riemann integral of a continuous function on
[a, b] exists but also that it can be obtained by two limits:

b
lim L(f;Pn):/ f(x)dx = lim U(f; P,)

in which Py, Py, ... is any sequence of partitions with the property that the length of the
largest subinterval in P, converges to zero as n — oo. Furthermore, if it is so arranged that
P, 11 s obtained from P, by adding new points (and not deleting points), then the lower sums
converge upward to the integral and the upper sums converge downward to the integral.
From the numerical standpoint, this is a desirable feature of the process because at each
step, an interval that contains the unknown number fab f (x) dx will be available. Moreover,
these intervals shrink in width at each succeeding step.

Examples and Pseudocode

The process just described can easily be carried out on a computer. To illustrate, we select
. 2 . . .
the function f(x) = e~ and the interval [0, 1]; that is, we consider

1
/ e dx (3)
0

This function is of great importance in statistics, but its indefinite integral cannot be obtained
by the elementary techniques of calculus. For partitions, we take equally spaced points in
[0, 1]. Thus, if there are to be n subintervals in P,, then we define P, = {x¢, x1, ..., X,.},
where x; =ih forO<i<nandh = 1/n. Since e is decreasing on [0, 1], the least value
of f on the subinterval [x;, x;,1] occurs at x;, ;. Similarly, the greatest value occurs at x;.
Hence, m; = f(x;41) and M; = f(x;). Putting this into the formulas for the upper and
lower sums, we obtain for this function

n—1 n—1
L(f;P) = th(xi+l) =h Ze_xfzﬂ

i=0 i=0

n—1 n—1
U(fiP) =Y hf)=hY e

i=0 i=0

Since these sums are almost the same, it is more economical to compute L(f; P,) by the
given formula and to obtain U (f; P,) by observing that

U(f3 P) = hf(x0) + L(f; P.) = hf (x,) = L(f; P) +h(1 —e7")
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The last equation also shows that the interval defined by Inequality (1) is of width A(1—e~")
for this problem.
Here is a pseudocode to carry out this experiment with n = 1000:

program Sums
integer i; real i, sum, sum_lower, sum_upper, x
integer n < 1000; reala < 0, b < 1
h < (b—a)/n
sum < 0
for i = nto 1 step —1 do
X <—a+ih
sum <— sum + f(x)
end for
sum_lower < (sum)h
sum_upper < sum_lower + h[ f (a) — f(b)]
output sum_lower, sum_upper
end program Sums

real function f(x)
real x
fee™

end function f

A few comments about this pseudocode may be helpful. First, a subscripted variable
is not needed for the points x;. Each point is labeled x. After it has been defined and used,
it need not be saved. Next, observe that the program has been written so that only one line
of code must be changed if another value of n is required. Finally, the numbers e~ are
added in order of ascending magnitude to reduce roundoff error. However, roundoff errors
in the computer are negligible compared to the error in our final estimation of the integral.
This code can be used with any function that is decreasing on [a, b] because with that
assumption, U (f; P) can be easily obtained from L(f; P) (see Problem 5.1.4).

The computer program corresponding to the pseudocode produces as output the fol-
lowing values of the lower and upper sums:

sum_lower = 0.74651, sum_upper = 0.74714

At this juncture, the reader is urged to program this experiment or one like it. The
experiment shows how the computer can mimic the abstract definition of the Riemann
integral, at least in cases in which the numbers m; and M; can be obtained easily. Another
conclusion that can be drawn from the experiment is that the direct translation of a definition
into a computer algorithm may leave much to be desired in precision. With 999 evaluations of
the function, the absolute error is still about 0.0003. We shall soon see that more sophisticated
algorithms (such as Romberg’s) improve this situation dramatically.

A good approximate value for the integral in Equation (3) can be computed from
knowing that this integral is related to the error function

2 T
erf(x) = ﬁ/ e_t dt
0
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EXAMPLE 2

Solution

Using appropriate mathematical software, we obtain
1
1
/ e dx = Eﬁerf(l) ~ (0.74682 41330
0

Mathematical software systems such as Maple and Matlab contain the error function. How-
ever, we are interested in learning about algorithms for approximating integrals that can
only be evaluated numerically.

In the problems of this chapter, we have used various well-known integrals to illus-
trate numerical integration. Many of these integrals have been thoroughly investigated and
tabulated. Examples are elliptic integrals, the sine integral, the Fresnel integral, the logarith-
mic integral, the error function, and Bessel functions. In the real world, when one is faced
with a daunting integral, the first question to raise is whether the integral has already been
studied and perhaps tabulated. The first place to look is in the Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz
and I. Stegun [1964]. In modern numerical analysis, such tables are of limited use because
of the ready availability of software packages such as Matlab, Maple, and Mathematica.
Nevertheless, on rare occasions, problems have been found for which one obtains the wrong
answer when using such packages.

If the integral

b4
/ %Y dx
0

is to be computed with absolute error less than % x 1072, and if we are going to use upper
and lower sums with a uniform partition, how many subintervals are needed?

The integrand, f(x) = €°**, is a decreasing function on the interval [0, 7 ]. Hence, in the
formulas for U(f; P) and L(f; P), we have

m; = f(Xi+1) and M; = f(x;)

Let P denote the partition of [0, ] by n + 1 equally spaced points, 0=xp < -+ <x, =7.
Then there will be n subintervals, all of width 7 /n. Hence,

n—1 n—1

L(FP) =23 mi= 2% flxi) 4)
i=0 i=0
n—1 n—1

UfiP) =23 M=% o) 5)
i=0 i=0

The correct value of the integral lies in the interval between L(f; P) and U(f; P). We
take the midpoint of the interval as the best estimate, thus obtaining an error of at most
%[U (f; P) — L(f; P)]—that is, the length of half the interval. To meet the error criterion
imposed in the problem, we must have

SIS P) = L(fs Pl < 5 x 107°

From Formulas (4) and (5), we can calculate the difference between the upper and lower
sums. This leads to (/n)(e! — e™') < 1073, With the aid of a calculator, we determine
that n must be at least 7385. [ |
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For historical reasons, formulas for approximating definite integrals are called rules.
The lower and upper sums give rise to the left and right rectangle rules, the midpoint rule,
the trapezoid rule, and many other rules, some of which are found in the problems and
subsequent chapters of this book. A large collection of these quadrature rules can be
found in Abramowitz and Stegun [1964], Standard Mathematical Tables, which had its
origins in a U.S. government work project conducted during the Depression of the 1930s.

The word quadrature has several meanings both in mathematics and in astronomy. In
the dictionary, the first mathematical meaning is the process of finding a square whose area
is equal to the area enclosed by a given curve. The general mathematical meaning is the
process of determining the area of a surface, especially one bounded by a curve. We use it
primarily to mean the approximation of the area under a curve using a numerical integration
procedure.

Summary

MLetP ={a=xy)<x3 <x<--+<x,_1 <x, = b} be a partition of the interval
[a, b], which divides the interval [a, b] into n subintervals [x;, x;+]. The lower sums and
upper sums of f corresponding to the given partition P are

n—1
L(f;P)= Zmi(xH—l —X;)
i—0

n—1
U(fs P) =Y Mi(xiz1 — x)
i=0
where m; is the greatest lower bound and M; is the least upper bound of f(x) on the

subinterval [x;, x;;], namely,

m; = inf{f(x) : x; £x < xi41}
M; = sup{f(x) : x; £x < xi11}

(2) We have

b
L(f;P)é/ f@)dx<U(f;P)

Problems 5.1

“1. If we estimate fol (x2 4+2)""dx by means of a lower sum using the partition P =
{0, 1,1}, what is the result?

2. Whatis the result if we estimate || 12 x~! dx by means of the upper sum using the partition
P={1,32}?
“3. Calculate an approximate value of fom [(e* — 1)/x] dx for a = 10~ correct to 14
decimal places (rounded). Hint: Use Taylor series.
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4. For a decreasing function f(x) over an interval [a, b] with n uniform subintervals,
show that the difference between the upper sum and the lower sum is given by the

expression [(b — a)/n][ f(a) — f(b)].
5. (Continuation) Repeat the preceding problem for an increasing function.

“6. Ifupper and lower sums are used with regularly spaced points to compute f; (dx/logx),
how many points are needed if one is to achieve an accuracy of % x 10742

“7. Let f be an increasing function. If the integral fol f(x)dx is to be estimated by using
the method of upper and lower sums, taking n equally spaced points, what is the worst
possible error?

8. If f is a (strictly) increasing function on [a, b], and if « = f(a) and B = f(b), then
f71(x) is well defined for a < x < B. Discover the relationship between fab f(x)dx
and ff F N (x) dx.

9. Show thatif; >0and > " ,6; = 1,then ) ;_ 6;a; lies between the least and the great-
est of the numbers q;.

10. Establish the composite midpoint rule for estimating an integral:

b n—1
1
dx ~ i1 T X 5 (X i
/a fx)dx ;(xﬂ x) f [2<x+1 +x )]
“11. (Continuation) Find the relationship between the midpoint rule and the upper and lower

sums.

12. (Continuation) Establish that the composite midpoint rule for equal subintervals is
given by

b n—1 1
/a fx)dx ~ h;f(x,- + Eh)

=l

where h = (b —a)/n,x; =a+ih,and 0<i <n.

Computer Problems 5.1

1. Write a general-purpose procedure to estimate integrals of decreasing functions by
the method of upper and lower sums with a uniform partition. Give the procedure the
calling sequence

real function Integral(f, a, b, €, n, sum_lower, sum_upper)

where f is the function name, a and b are the endpoints of the interval, and ¢ is the
tolerance. The procedure determines n so that sum_upper — sum_lower < 2¢. The
procedure returns the average of sum_upper and sum_lower. Test it on the sine integral
of the next computer problem, using & = % x 1073,
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Estimate the definite integral fol x~!sin x dx by computing the upper and lower sums,
using 800 points in the interval. The integrand is defined to be 1 at x = 0. The function
is decreasing, and this fact should be shown by calculus. (For a decreasing function f,
f' < 0.) Note: The function

Si(x):/ t~'sint dt
0

is an important special function known as the sine integral. It is represented by a
Taylor series that converges for all real or complex values of x. The easiest way to
obtain this series is to start with the series for sin¢, divide by #, and integrate term by
term:

X x 00 t2n
Si(x) = t_lsintdtz/ —)'—dr
*x) /0 0;( Va0
0 x2n+l x3 x5 x7
— —1)" — 4 _
D Vo Dian D - T 18 T 600 35280 T

n=0

This series is rapidly convergent. For example, from only the terms shown, Si(1)
is computed to be 0.94608 27 with an error of at most four units in the last digit
shown.

. The logarithmic integral is a special mathematical function defined by the equation

. *dt
li(x) = —
2 Inz
For large x, the number of prime integers less than or equal to x is closely approximated
by li(x). For example, there are 46 primes less than 200, and 1i(200) is around 50. Find
1i(200) with three significant figures by means of upper and lower sums. Determine
the number of partition points needed prior to executing the program.

From calculus, the length of a curve is fa b1+ [f"(x)]?>dx, where f is a function
whose graph is the curve on the interval a < x < b.
a. Find the length of the ellipse y*> + 4x? = 1. Use the symmetry of the ellipse.

b. Verify the numerical approximation given for the arc length in the introductory
example at the beginning of Chapter 3.

. Using a mathematical software system that contains the error function erf, find a

numerical approximation of fol e dx to the full precision available. Also, plot the
error function.

. . . 1 . . . .
. (Continuation) Evaluate the integral fo e dx using a numerical integration rou-

tine in a mathematical software system such as Matlab. Compare the results to those
obtained previously.
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52 Trapezoid Rule

FIGURE 5.2
Trapezoid rule

FIGURE 5.3
Typical
trapezoid

The next method considered is an improvement over the coarse method of the preceding
section. Moreover, it is an important ingredient of the Romberg algorithm of the next section.

This method is called the trapezoid rule and is based on an estimation of the area
beneath a curve using trapezoids. Again, the estimation of fgb f(x)dx is approached by
first dividing the interval [a, b] into subintervals according to the partition P = {a = xy <
X1 < X < -+ < x, = b}. For each such partition of the interval (the partition points x; need
not be uniformly spaced), an estimation of the integral by the trapezoid rule is obtained.
We denote itby 7'(f; P). Figure 5.2 shows what the trapezoids are. A typical trapezoid has
the subinterval [x;, x;,1] as its base, and the two vertical sides are f(x;) and f(x;,1) (see
Figure 5.3). The area is equal to the base times the average height, and we have the basic
trapezoid rule for the subinterval [x;, x;11]:

Xit+1

1
fx)dx ~ E(xi+l —x)Lf () + f(xip)]

Xi

Hence, the total area of all the trapezoids is

b 1 n—1
/a fodx~ 5 ;(xm —x)Lf () + fxig)]

/-

a = x, X1 Xy X3 X4 x5 =1b
\\‘
T
fx) f(xiep)
Xi i+l
Xiv1 T A
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This formula is called the composite trapezoid rule. The composite trapezoid rule is easy
to understand: on each subinterval [x;, x; 1], we multiply (x;; — x;) times the average of

S(x;) and f(xig1).

Uniform Spacing

In practice and in the Romberg algorithm (discussed in the next section), the trapezoid rule
is used with a uniform partition of the interval. This means that the division points x; are
equally spaced: x; = a + ih, where h = (b — a)/n and 0 <i <n. Think of & as the step
size in the process. In this case, the formula for 7(f; P) can be given in simpler form
because x;;; — x; = h. Thus, we obtain

h n—1

T(fiP) =2 D> LA+ f )]
i=0

It should be emphasized that to economize the amount of arithmetic, the computationally
preferable formula for the composite trapezoid rule is

b n—1
/ f(X)dxQ«’T(f;P)=h{;[f(x())+f(xn)]+2f(xi)} ey

a i=1
Here, we have expanded the summation and gathered similar terms in the new summation.

To illustrate, we consider the integral
! 2
/ e " dx
0

which was approximated in Section 5.1 by lower and upper sums. Here is a pseudocode for
Equation (1) with n = 60 and f(x) = e

program Trapezoid
integer i; real i, sum, x
integer n <— 60; reala <— 0, b < 1
h < (b—a)/n
sum < 3[f(@) + f(b)]
fori =1ton—1do

X <«<a+ih

sum < sum ~+ f(x)
end for
sum < (sum)h
output sum
end Trapezoid

real function f(x)
real x

f <1 /e)‘2

end function f

The computer output for the approximate value of the integral is 0.74681.
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EXAMPLE 1

Solution

B THEOREM 1

Proof

Compute
1
/ (sinx/x) dx
0
by using the composite trapezoid rule with six uniform points (cf. Computer Problem 5.1.2).

The function values are arranged in a table as follows:

X S(x)

0.0 | 1.00000
0.2 ] 0.99335
0.4 ] 0.97355
0.6 | 0.94107
0.8 | 0.89670
1.0 1 0.84147

Notice that we have assigned the value sinx/x = 1 at x = 0. Then

4
T(f;P)= 0.22 Fxi) +0.D[f (x0) + f(x5)]
i=1

= (0.2)(3.80467) + (0.1)(1.84147)

= 0.94508
This result is not accurate to all the digits shown, as might be expected because only five
subintervals were used. Using mathematical software, we obtain Si(1) =~ 0.94608 30704.

(Refer to Computer Problem 5.1.2.) We shall see later how to determine a suitable value
for n to obtain a desired accuracy using the trapezoid rule. [ |

Error Analysis

The next task is to analyze the error incurred in using the trapezoid rule to estimate an
integral. We shall establish the following result.

THEOREM ON PRECISION OF TRAPEZOID RULE

If f” exists and is continuous on the interval [a, b] and if the composite trapezoid
rule 7' with uniform spacing A is used to estimate the integral / = | b f(x)dx, then
for some ¢ in (a, b),

[=T==%0b-ahf'¢) = O0h?)

The first step in the analysis is to prove the above result whena = 0,b = 1,and 7 = 1. In
this case, we have to show that

! 1 1
/ f(X)dx—E[f(0)+f(1)]=—ﬁf”(§) @
0

This is easily established with the aid of the error formula for polynomial interpolation (see
Section 4.2). To use this formula, let p be the polynomial of degree 1 that interpolates f at
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0 and 1. Then p is given by
p(x)=fO) +[f1) = fO)]x

Hence,

1
1
/O px)dx = f(O) + SLf (1) = f(O)]

1
SO+ F ]

By the error formula that governs polynomial interpolation [Equation (2) in Section 4.2],
we have (here, of course,n =1, xg = 0,and x; = 1)

f) = px) =3 f'IE@]Ix(x = 1) (3)
where &(x) depends on x in (0, 1). From Equation (3), it follows that

1 1 1 /!
/ f(X)dx—/ p(x)dx = 5/ FIE@x(x — 1) dx
0 0 0

That f”[£(x)] is continuous can be proved by solving Equation (3) for f”[£(x)] and veri-
fying the continuity. (See Problem 4.2.12.) Notice that x (x — 1) does not change sign in the
interval [0, 1]. Hence, by the Mean-Value Theorem for Integrals,” there is a pointx = s
for which

1 1
/ fIE@x(x — Ddx = f”[s(s)]/ x(x — 1) dx
0 0

_ l ”
=/ ©

By putting all these equations together, we obtain Equation (2). From Equation (2), by
making a change of variable, we obtain the basic trapezoid rule with its error term:

b b—a 1 3 pn
/ f(X)dx=T[f(a)+f(b)]—§(b—a) 1) “)

The details of this are as follows: Let g(r) = f(a +t(b —a)) and x = a + (b — a)t.
Thus, as ¢ traverses the interval [0, 1], x traverses the interval [a, b]. Also, dx = (b —a) dt,
gt = flla+1t(b —a)l —a) and g"(t) = f’la + t(b — a)](b — a)*. Hence, by
Equation (2),

b 1
/f(x)dx=(b—a)/ fla+1(b—a)lde
a 0
1
:<b—a>/ o) dt
0

1 I,
=((b-a) {2[8(0) +el- 58 (s“)}

_b—a ) b—a) .,
—T[f(a)-l-f( )]_Tf &)

*Mean-Value Theorem for Integrals: Let f be continuous on [a, b] and assume th}e)xt g is Riemann-integrable
on [a, b]. If g(x) =0 on [a, b], then there exists a point & such that a < & < b and f; f)gx)dx =

£ [7 g0 dx.
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EXAMPLE 2

Solution

This is the trapezoid rule and error term for the interval [a, b] with only one subinterval,
which is the entire interval. Thus, the error term is O(h%), where h = b — a. Here, £ is
in (a, b).

Now let the interval [a, b] be divided into n equal subintervals by points xg, Xy, ..., X,
with spacing h. Applying Formula (4) to subinterval [x;, x; ], we have

Xit1 h 1
/ fx)dx = E[f(xi) + f(xip)] = Eh3f”(éi) (5)

i

where x; < & < x;.1. We use this result over the interval [a, b], obtaining the composite
trapezoid rule

b nol ey
/ f(x)dx =Z/ Fx)dx

n—1 3nl

_h
= Z[f(x,) + (il = 3 Z MG (6)

The final term in Equation (6) is the error term, and it can be simplified in the following
way: Since h = (b — a)/n, the error term for the composite trapezoid rule is

gnl

Zf”(&) = ——h2 l Zf”(& ] = ——hzf”(é)

Here, we have reasoned that the average [1/n] Z, _o f"(&) lies between the least and
greatest values of f” on the interval (a, b). Hence, by the Intermediate-Value Theorem,*
itis f”(¢) for some point ¢ in (a, b). This completes our proof of the error formula. [ |

Use Taylor series to represent the error in the basic trapezoid rule by an infinite series.
Equation (4) is equivalent to
a+h h 1 3
/ fx)dx = E[f(a) + fla+m]— ﬁh 1)
Let
t
F@) = / f(x)dx

The Taylor series for F is

h? h?
Fla+h)=F(a)+hF'(a) + ?F”(a) + gF”'(a) + ...

*Intermediate-Value Theorem: If the function g is continuous on an interval [a, b], then for each ¢ between
g(a) and g(b), there is a point & in [a, b] for which g(§) = c.
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Solution

EXAMPLE 4
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By the Fundamental Theorem of Calculus (p. 181), F’ = f, and we observe that F (a) = 0,
F" = f’, F” = f”, and so on. Hence, we have

/ fx)dx —hf(a)+ f( )+ f”(a)+
The Taylor series for f is
h? h3
fla+h) = f(a)+hf'(a) + jf”(a) + ;f/”(a) +---
Adding f(a) to both sides of this equation and then multiplying by /2, we get

h h* o,
E[f(a)-i-f(a-irh)]=hf(a)+7f(a)+zf (@)+---

Subtracting, we have

a+h h 1
/ Fedx = S1f@ + flat b=~ @)+ o

Applying the Error Formula

How can an error formula like the one just derived be used? Our first application is in
predicting how small # must be to attain a specified precision in the trapezoid rule.

If the composite trapezoid rule is to be used to compute

1
42
/exdx
0

with an error of at most % x 107*, how many points should be used?
The error formula is
—a
_ h2 ”
@)

In this example, f(x) = e, f'(x) = —2xe™, and f"(x) = (4x? — 2)e~*". Thus,
| f”(x)] £2 on the interval [0, 1], and the error in absolute value will be no greater than
¢£h?. To have an error of at most § x 107*, we require

1 2 1 —4
P4 X107 or h<001732

In this example, & = 1/n, so we require n > 58. Hence, 59 or more points will certainly
produce the desired accuracy. |

How many subintervals are needed to approximate

/ smx

with error not to exceed % x 1073 using the composite trapezoid rule? Here, the integrand,
f(x) = x"!sinx, is defined to be 1 when x is 0.
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Solution We wish to establish a bound on f”(x) for x in the range [0, 1]. Taking derivatives in the
usual way is not satisfactory because each term contains x with a negative power, and it is
difficult to find an upper bound on | f”(x)|. However, using Taylor series, we have

2 4 6 8
F@ ==

2x  4x3 6x°  8x7

f’(x)=—§+?—7+ﬁ—-~-
. 2 3x4x? 5x6xt 7 x8x°
PO==3+t =5~ T
Thus, on the interval [0, 1], | f”(x)| cannot exceed % because
2,804, 3x6, 708, L 1 1 11y ]
3! 5! 7! 9! 3 10 24\2 4 8 2

Therefore, the error term |(b — a)h? f(¢) /12| cannot exceed k2 /24. For this to be less than
1 x 1073, it suffices to take 1 < +/1.2 x 1072 or n > (1/+/1.2)10* = 91.3. This analysis
induces us to take 92 subintervals. [ |

Recursive Trapezoid Formula for Equal Subintervals

In the next section, we require a formula for the composite trapezoid rule when the interval
[a, b] is subdivided into 2" equal parts. By Formula (1), we have

n—1

h
T(fiP)=hY_ )+ SLf (o) + f ()]
i=1

n—1 h
=hY fla+ih)+ S @+ f)]
i=1

If we now replace n by 2" and use 2 = (b — a)/2", the preceding formula becomes

2"—1

h
R(n,O):hZf(a+ih)+§[f(a)+f(b)] (7
i=1

Here, we have introduced the notation that will be used in Section 5.3 on the Romberg
algorithm, namely, R(n, 0). It denotes the result of applying the composite trapezoid rule
with 2" equal subintervals.

In the Romberg algorithm, it will also be necessary to have a means of computing
R(n,0) from R(n — 1,0) without involving unneeded evaluations of f. For example,
the computation of R(2, 0) utilizes the values of f at the five points a, a + (b — a)/4,
a+2(b—a)/4,a+3(b—a)/4,and b. In computing R(3, 0), we need values of f at these
five points, as well as at four new points: a+ (b —a)/8,a+3(b—a)/8,a+5(b—a)/8, and
a+7(b—a)/8 (see Figure 5.4). The computation should take advantage of the previously
computed result. The manner of doing so is now explained.

If R(n — 1, 0) has been computed and R(n, 0) is to be computed, we use the identity

R(n,0)={R(n —1,0)+ |R(n,0) — 3R(n — 1,0)



5.2 Trapezoid Rule 197

Subintervals Array
a b
2 . o R(0,0)
21 o o o R(1,0)
FIGURE 5.4 22 o ° ° . e R(2,0)
2" equal
subintervals 23 o o o . . o o o o R(,0)

It is desirable to compute the bracketed expression with as little additional work as possible.
Fixing h = (b — a) /2" for the analysis and putting

h
C=35lf@+ f0)]

we have, from Equation (7),

2"—1

R(n,0)=hY  fla+ih)+C ®)
i=1
21—
R(n—1,0) =2h Z fla+2jh)+2C )

j=1
Notice that the subintervals for R(n — 1, 0) are twice the size of those for R(n, 0). Now
from Equations (8) and (9), we have
1 2"—1 2n 11
R(n,0) = SR —1,0) = h;f(a +ih)—h ; fla+2jh)
2n—]

=hy_ fla+ k= Dh]

k=1
Here, we have taken account of the fact that each term in the first sum that corresponds
to an even value of i is canceled by a term in the second sum. This leaves only terms that
correspond to odd values of i.

To summarize:

B THEOREM 2 RECURSIVE TRAPEZOID FORMULA

If R(n — 1, 0) is available, then R(n, 0) can be computed by the formula

on—1
R(n,0)=%R(n—1,0)+h2f[a+(2k—1)h] n=1) (10)

k=1

using h = (b — a)/2". Here, R(0, 0) = %(b —a)[f(a)+ f(D)]

This formula allows us to compute a sequence of approximations to a definite integral using
the trapezoid rule without reevaluating the integrand at points where it has already been
evaluated.
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Multidimensional Integration

Here, we give a brief account of multidimensional numerical integration. For simplicity, we
illustrate with the trapezoid rule for the interval [0, 1], using n + 1 equally spaced points.
The step size is therefore 4 = 1/n. The composite trapezoid rule is then

! 1
/0 f@ydx~ o

We write this in the form

i
n

o425 F(5)+rm
i=1

/01 F)dx %Z_;Cf(i)

where
1/2h), i=0
Ci=<1/h, O<i<n
1/2h), i=n

The error is O(h?) = O(n~?) for functions having a continuous second derivative.
If one is faced with a two-dimensional integration over the unit square, then the
trapezoid rule can be applied twice:

1 1 ~ 1 n o
| [ rwsasay> [ cor(%y)as

a;=0

=) G, /Olf(%,y)dy
DR RCES

a;=0 ar=0
The error here is again O(h?), because each of the two applications of the trapezoid rule
entails an error of O(h?).

In the same way, we can integrate a function of k variables. Suitable notation is the
vector x = (X1, X3, ..., x;)! for the independent variable. The region now is taken to be the
k-dimensional cube [0, 1]¥ = [0, 1] x [0, 1] x -- - x [0, 1]. Then we obtain a multidimen-
sional numerical integration rule

f(x)dx%ZZ~-~ZCQICQ2-~-Cukf(%,%,...,%)

[O’I]k a1=0 ar=0 =0

The error is still O(h?) = On2), provided that f has continuous partial derivatives
92 f/ox}.

Besides the error involved, one must consider the effort, or work, required to attain a
desired level of accuracy. The work in the one-variable case is O(n). In the two-variable
case, it is O(n?), and it is O (n*) for k variables. The error, now expressed as a function of
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the number of nodes N = n*, is

Oh?) = Omn?) = (’)((nk)’z/k) — O(N-¥)

Thus, the quality of the numerical approximation of the integral declines very quickly as the
number of variables, k, increases. Expressed in other terms, if a constant order of accuracy is
to be retained while the number of variables, k, goes up, the number of nodes must go up like
n*. These remarks indicate why the Monte Carlo method for numerical integration becomes
more attractive for high-dimensional integration. (This subject is discussed in Chapter 13.)

Summary

(1) To estimate ﬁ f f(x)dx, divide the interval [a, b] into subintervals according to the
partition P = {a = xo < x; < x, < --- < x, = b}. The basic trapezoid rule for the
subinterval [x;, x; 1] is

Xit1

1
f)dx ~ A; = E(xi+1 —x)Lf () + fxig)]

Xi
where the error is — é (xi41 — %) f"(&). The composite trapezoid rule is

n—1

b n—1 1
/ FOdx X T(fiP) =) A= (ia =) () + ()]
a i=0 i=0

where the error is —ﬁ S (isr — X)) f(E).

(2) For uniform spacing of nodes in the interval [a, b], we let x; = a + ih, where h =
(b —a)/n and 0 <i < n. The composite trapezoid rule with uniform spacing is

b N . h n—1
/a Sy dx ~T(f; P) = 51f (o) + f (xa)] +hYy [

i=1
: 1 "
where the error is — 5 (b — a)’ f"(0).

(3) For uniform spacing of nodes in the interval [a, b] with 2" subintervals, we let h =
(b — a)/2", and we have

R(0,0) = 1(b—a)f(a)+ ()]
2" —1

R(n,0) ZhZf(aJrih)ng[f(a)va(b)]

i=1
We can compute the first column of the array R(n, 0) recursively by the Recursive Trape-
zoid Formula:

on—1

R(n,0) = %R(n —1L.O)+hY fla+ 2k — 1]

k=1
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(4) For two-dimensional integration over the unit square, the trapezoid rule can be applied
twice:

/l/lf( Vdrd iz":c c f(al az)
X,y X y% o [0 Ty T
0 0 a1=0 ar=0 1 ’ n n

with error O(h?). For a k-dimensional cube [0, 11¥ = [0,1] x [0, 1] x --- x [0, 1], a
multidimensional numerical integration rule is

S 323 Cuu o Cuf (5 )

[0,17% a1=0ar=0 ap=0

with error O(h%) = O(n?).

Problems 5.2

“1. What is the numerical value of the composite trapezoid rule applied to the reciprocal

function f(x) = x~' using the points 1, %, and 2?

¢2. Compute an approximate value of fol (x? + 1)~! dx by using the composite trapezoid
rule with three points. Then compare with the actual value of the integral. Next, deter-
mine the error formula and numerically verify an upper bound on it.

3. (Continuation) Having computed R(1, 0) in the preceding problem, compute R (2, 0)
by using Formula (10).

4. Obtain an upper bound on the absolute error when we compute f06 sinx? dx by means
of the composite trapezoid rule using 101 equally spaced points.

5. If the composite trapezoid rule is used to compute ffl sinx dx with h = 0.01, give a
realistic bound on the error.

“6. Consider the function f(x) = |x| on the interval [—1, 1]. Calculate the results of
applying the following rules to approximate f_ll f(x)dx. Account for the differences
in the results and compare with the true solution. Use the

a. lower sums b. upper sums ¢. composite trapezoid rule

with uniform spacings 7 = 2, 1, %, %.
7. How large must n be if the composite trapezoid rule in Equation (1) is being used to

estimate [; sinx dx with error < 107122 Will the estimate be too big or too small?

8. What formula results from using the composite trapezoid rule on f(x) = x2, with
interval [0, 1] and n 4 1 equally spaced points? Simplify your result by using the fact
that 17 +22+3% 4+ +n? = tn(2n+1)(n+1). Show thatas n — oo, the trapezoidal
estimate converges to the correct value, %

9. Prove that if a function is concave downward, then the trapezoid rule underestimates

the integral.



10.

11.

“12.

“13.
“14.

“15.

“16.

17.

18.

19.
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Compute two approximate values for | 12 dx/x* using h = % with lower sums and the
composite trapezoid rule.

Consider |, 12 dx/x*. What is the result of using the composite trapezoid rule with the

partition points 1, 2, and 2?

If the composite trapezoid rule is used with 2 = 0.01 to compute f25 sin x dx, what
numerical value will the error not exceed? (Use the absolute value of error.) Give the
best answer based on the error formula.

Approximate f02 2* dx using the composite trapezoid rule with & = %

Consider fol dx/(x*+2). What is the result of using the composite trapezoid rule with
0, %, and 1 as partition points?
What is a reasonable bound on the error when we use the composite trapezoid rule on
f04 cos x* dx taking 201 equally spaced points (including endpoints)?
We want to approximate | 12 f(x) dx given the table of values
5137
r | Vs[5 ]s]2
fo|10]s]7]6]s

Compute an estimate by the composite trapezoid rule. Can upper and lower sums be
computed from the given data?

Consider the integral 1 (h) = ﬁ l”+h f(x) dx. Establish an expression for the error term
for each of the following rules:

“a, I(h) ~ hf(a+h) “b. I(h) ~ hf(a+h)— 1h*f'(a)
¢. 1(h) ~ hf(a) d. I(h)~ hf(a) — 3h*f'(a)

For each, determine the corresponding general rule and error terms for the integral
fab f (x) dx, where the partition is uniform; thatis, x; = a +ih and h = (b —a)/n for
0<i<n.

Obtain the following expressions for the midpoint rule error terms

a+h 1
“a. / fx)dx ~ hf (a + Eh) (one subinterval)
b n—1 1
“b. / f(x)ydx = Z hi f (-xi + Eh’) (n unequal subintervals)
¢ i=0

b n—1
1
“c. /a fx)dx~nh ; f [a + (i + E)h] (n uniform subintervals)

where h; = x;4; — x; and h = (b — a)/n. (The midpoint rule was introduced in
Problems 5.1.10-5.1.12.)

Show that there exist coefficients wy, wy, ..., w, depending on xy, Xy, ..., x, and on
a, b such that

b n
/ POy dx = wip(x)
¢ i=0
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20.

21.

22,

23.

“24.

a25.

“26.

27.

28.

“29.

for all polynomials p of degree <n. Hint: Use the Lagrange form of the interpolating
polynomials from Section 4.1.

Show that when the composite trapezoid rule is applied to fab e* dx using equally spaced
points, the relative error is exactly 1 — (h/2) — [h/(e" — D)].

Let f be a decreasing function on [a, b]. Let P be a partition of the interval. Show
that

T(f;P)=3[L(f; P)+U(f;P)]

where T, L, and U are the trapezoid rule, the lower sums, and the upper sums, respec-
tively.

Show that for any function f and any partition P,
L(f;P)ST(fsP)SU(Sf; P)

Let f be a continuous function and let P,, forn =0, 1, ..., be partitions of [a, b] such
that the width of the largest subinterval in P, converges to zero as n — 0o. Show that
T (f; P,) converges to fa b f(x)dx as n — oo. Hint: Use the preceding problem and
known facts about upper and lower sums.

Give an example of a function f and a partition P for which L( f; P) is a better estimate
of [V f(x)dx than'is T(f; P).

A function is said to be convex if its graph between any two points lies beneath the
chord drawn between those two points. What is the relationship of L(f; P), U(f; P),
T(f;P), and f: f(x) dx for such a function?

How large must n be if the composite trapezoid rule with equal subintervals is to
estimate f02 e~ dx with an error not exceeding 107°? First find a crude estimate of n
by using the error formula. Then determine the least possible value for 7.

Show that
b b—a k-2
dx — —— b)] = — b—a)* f&
/Qf(x) ¥ = ——f@+ fb) ;hk!( o) V(@)
The composite (left) rectangle rule for numerical integration is like the upper and

lower sums but simpler:

n—1

b
/ fO)ydx =Y (xipn — x) f(x:)

i=0

Here, the partition is P ={a =x9 <x; <x <---<Xx, =b}. Show that the rectangle
rule converges to the integral as n — oo.

(Continuation) The composite rectangle rule with uniform spacing reads as follows:

b n—1
/ fydx ~hY " fx)
a i=0
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where h = (b — a)/n and x; = a + ih for 0 <i <n. Find an expression for the error
involved in this latter formula.

“30. From the previous two problems, the basic rectangle rule for a single interval is given
by

b
1 !
[ rwdx=6-as@+ 56-a2r'@
Establish the rectangle rule and its error term when the interval [a, b] is partitioned
into 2" uniform subintervals, each of width 4. Simplify the results.

31. Inthe composite trapezoid rule, the spacing need not be uniform. Establish the formula

’ dx ~ ! S h h ! h h
/a £ x~5;( R PG 3o f () + 1 f ()

where h; = x; —x;anda = xg <X <X, < --- < Xx, =b.

32. (Continuation) Establish the following error formula for the composite trapezoid rule
with unequal spacing of points:

b ™ 1
/a f(x)dx = ; E[f(xi) + fxirD)] — ﬁ(b —a)h* (&)

where & € (a, D), h; = x;41 — x;, and min; h; <h < max; h;. (The composite trapezoid
rule with nonuniform spacing was introduced in the preceding problem.)

33. How many points should we use in the trapezoid rule in computing an approximate
value of fol ¢*’ dx if the answer is to be within 107 of the correct value? Hint: Recall
the error formula for the trapezoid rule: —l—lzhz(b — a) f"(£). You may use coarse
estimates, such as 2 < e < 3. Explain what you are doing. In the end, we want a suit-
able value of n, the number of points.

Computer Problems 5.2

1. Write

real function Trapezoid_Uniform(f, a, b, n)

to calculate fa b f(x) dx using the composite trapezoid rule with n equal subintervals.

2. (Continuation) Test the code written in the preceding computer problem on the follow-
ing functions. In each case, compare with the correct answer.

T 1 1
“a. / sinx dx "b./ e dx “c./ arctan x dx
0 0 0

3. Compute 7 from an integral of the form ¢ fab dx /(1 + x?).

4. Compute an approximate value for the integral foo'g(sin x/x)dx.
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5. Compute these integrals by using small and large values for the lower and upper limits

and applying a numerical method. Then compute them by first making the indicated
change of variable.

a. / e dx = 1/ %, using x = —Int (Gaussian/probability integral)
0

o
T
b. / x 'sinxdx = 5 using x = ¢! (sine integral)
0

1

o0 |
C. / sinx?dx = N7 using x = tant (Fresnel sine integral)
0

Here and elsewhere, we have used various well-known integrals as examples in testing
numerical integration schemes. Some of these integrals are tabulated and can be found
in tables in Abramowitz and Stegun [1964].

. Using a numerical integration routine in a mathematical software system such as

Matlab, find an approximate value for the sine integral fol (sinx/x) dx. Compare the
approximate value obtained to the value of Si(1) if the system contains this function.
Make a plot of the integrand.

. Use the composite trapezoid rule with 59 subintervals to verify numerically that the

approximation obtained agrees with results from Example 3.

. Using a mathematical software system, verify the numerical approximation to the

integral given in the introductory example at the beginning of this chapter.

5.3 Romberg Algorithm

Description

The Romberg algorithm produces a triangular array of numbers, all of which are numerical
estimates of the definite integral fa b f(x)dx. The array is denoted here by the notation

R(0, 0)
R(1,0) R(1,1)

R(2,0) R(2,1) R(2,2)
R(3,0) R(3,1) R(3,2) R(3,3)

R(n',O) R(n., 1) R(n‘,2) R(n‘,3) R(n,n)

The first column of this table contains estimates of the integral obtained by the recursive
trapezoid formula with decreasing values of the step size. Explicitly, R(n, 0) is the result of
applying the trapezoid rule with 2" equal subintervals. The first of them, R (0, 0), is obtained
with just one trapezoid:

R(0,0) = 5(b —a)[f(a) + f(b)]
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Similarly, R(1, 0) is obtained with two trapezoids:
a+b

0.0 Lo+ ()] o af(“

)+ 1)

a+b)

=l(b—a)[f(a)+f(b)]+%(b—a)f( 2

4

1 1 a+b
=§R(0,O)+§(b—a)f( : )

These formulas agree with those developed in the preceding section. In particular, note that
R(n, 0) is obtained easily from R(n — 1, 0) if Equation (10) in Section 5.2 is used; that is,
2n—l
1 ,
R@JD:EMn—Lm+h§:fm+Qk—DM (1)
k=1
where h = (b —a)/2" andn > 1.
The second and successive columns in the Romberg array are generated by the extrap-
olation formula

R(n,m)=R(n,m—1)+ [Rm,m —1)— R(n—1,m — 1)] )

4m — 1
with n > 1 and m > 1. This formula will be derived later using the theory of Richardson
extrapolation from Section 4.3.

If R(4,2) =8 and R(3,2) = 1, whatis R(4, 3)?
From Equation (2), we have
R(4,3)=R(4,2) + é[R(4, 2) — R(3,2)]
=8+508-1H=7% n

Pseudocode

The objective now is to develop computational formulas for the Romberg algorithm. By
replacing n with i and m with j in Equation (2), we obtain, fori > 1 and j > 1,

R, j)=RG, j—1)+ [RG,j—1)—R(G—1,j—1)]

4; —1
and
2i—]
. 1.
R(i,0)= R —1,00+h > fla+ (2k — 1)h]
2 k=1
The range of the summationis 1 <k <2/~! sothat 1 <2k —1<2" — 1.

One way to generate the Romberg array is to compute a reasonable number of terms
in the first column, R(0, 0) up to R(n, 0), and then use the extrapolation Formula (2) to
construct columns 1, 2, ..., n in order. Another way is to compute the array row by row.
Observe, for example, that R(1, 1) can be computed by the extrapolation formula as soon
as R(1, 0) and R(0, 0) are available. The procedure Romberg computes, row by row, n rows
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and columns of the Romberg array for a function f and a specified interval [a, b]:

procedure Romberg(f, a, b, n, (r;;))
integer i, j, k,n; reala,b, h, sum; realarray (ri;)o.x0:n
external function f
h<b—a
roo < (h/2)[f(a) + f(D)]
fori = 1tondo
h < h/2
sum < 0
for k = 1to 2" — 1 step 2 do
sum < sum + f(a + kh)
end for
Tip < %ri—l,o + (sum)h
for j =1toi do
rij < rijo1 +(rijo1 — ficy,j-)/@ — 1)
end for
end for
end procedure Romberg

This procedure is used with a main program and a function procedure (for computing
values of the function f). In the main program and perhaps in the procedure Romberg,
some language-specific interface must be included to indicate that the first argument is an
external function. Remember that in the Romberg algorithm as described, the number of
subintervals is 2". Thus, a modest value of n should be chosen—for example, n = 5. A more
sophisticated program would include automatic tests to terminate the calculation as soon
as the error reaches a preassigned tolerance.

As an example, one can approximate 7 by using the procedure Romberg withn = 5
to obtain a numerical approximation for the integral

/1
d.x
0 1+X

We obtain the following results:

3.00000 00000 000

3.0999999046 326 3.1333332061 768

3.1311764717102 3.14156 86607 361 3.14211 77387238

3.13898 84948 730 3.1415925025940 3.1415941715240 3.14158 58268 738

3.14094 16198 730 3.1415927410126 3.1415927410126 3.1415927410126 3.1415927410 126

Euler-Maclaurin Formula

Here we explain the source of Equation (2), which is used for constructing the successive
columns of the Romberg array. We begin with a formula that expresses the error in the
trapezoid rule over 2"~! subintervals:

b
/ f(x)dx = R(n — 1,0) + ayh* + ash* + agh® + - - - (3)
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Here, h = (b — a)/2"~" and the coefficients a; depend on f but not on /. This equation
is one form of the Euler-Maclaurin formula and is given here without proof. (See Young
and Gregory [1972].) In this equation, R(n — 1, 0) denotes a typical element of the first
column in the Romberg array; hence, it is one of the trapezoidal estimates of the integral.
Notice particularly that the error is expressed in powers of 42, and the error series is O(h?).
For our purposes, it is not necessary to know the coefficients, but, in fact, they have definite
expressions in terms of f and its derivatives. For the theory to work smoothly, it is assumed
that f possesses derivatives of all orders on the interval [a, D].

The reader should now recall the theory of Richardson extrapolation as outlined in
Section 4.3. That theory is applicable because of Equation (3). In Equation (8) of Section 4.3,
L =¢(h)+ > -, axh*. Here, L is the value of the integral and ¢ () is R(n — 1, 0), the
trapezoidal estimate of L using subintervals of size k. Equation (10) of Section 4.3 gives
the approximate extrapolation formula, which in this situation is Equation (2).

We briefly review this procedure. Replacing n with n+ 1 and / with /2/2 in Equation (3),
we have

b 1 1 1
/a f(x)dx = R(n,0) + Za2h2 + Bmh“ + aasfﬁ 4 (4)

Subtract Equation (3) from 4 times Equation (4) to obtain

/b () dx = R(1, 1) — ~aih* — aght — - (5)
’ f(x)dx = R(n, 4(14 16a6 ;

where
R(n, 1) =R(n,O)~|—%[R(n,O)—R(n—1,0)] (nz1)

Note that this is the first case (m = 1) of the extrapolation Formula (2). Now R(n, 1)
should be considerably more accurate than R(n, 0) or R(n — 1, 0) because its error formula
begins with an 42* term. Hence, the error series is now O (h*). This process can be repeated
using Equation (5) slightly modified as the starting point—that is, with n replaced by n — 1
and with % replaced by 2A. Then combine the two equations appropriately to eliminate
the h* term. The result is a new combination of elements from column 2 in the Romberg
array:

b 1o 21
f(x)dx = R(n,2)+ 4—3a6h + Eagh + .- (6)

where
R(n,?2) =R(n,1)+11—5[R(n,1)—R(n— 1, D] n=2)

which agrees with Equation (2) when m = 2. Thus, R(n,2) is an even more accurate
approximation to the integral because its error series is O (h°).

The basic assumption on which of all this analysis depends is that Equation (3) is valid
for the function f being integrated. Of course, in practice, we will use a modest number of
rows in the Romberg algorithm, and only this number of terms in Equation (3) is needed.
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Here is the theorem that governs the situation:

B THEOREM 1 EULER-MACLAURIN FORMULA AND ERROR TERM

If £@™ exists and is continuous on the interval [a, b], then
n—1

b
h
/a feydx =2 ;[ﬂxo + f)I+ E

where h = (b —a)/n,x; =a +ih for0<i <n, and
m—1

E = ZAzkhzk[ka—l)(a) _ f(2k—1)(b)] — Ag(b — a)hsz(zm)(f)

k=1

for some & in the interval (a, b).

In this theorem, the A;’s are constants (related to the Bernoulli numbers) and & is some
point in the interval (a, b). The interested reader should refer to Young and Gregory [1972,
vol. 1, p. 374]. It turns out that the A;’s can be defined by the equation

X o0
i) DEICY %)
k=0

Observe that in the Euler-Maclaurin formula, the right-hand side contains the trapezoid rule
and an error term, E. Furthermore, E can be expressed as a finite sum in ascending powers
of h?. This theorem gives the formal justification (and the details) of Equation (3).

If the integrand f does not possess a large number of derivatives but is at least Riemann-
integrable, then the Romberg algorithm still converges in the following sense: The limit of
each column in the array equals the integral:

b
nlin.}oR(n,m) :/ f(x)dx (m=0)
The convergence of the first column is easily justified by referring to the upper and lower
sums. (See Problem 5.2.23.) After the convergence of the first column has been established,
the convergence of the remaining columns can be proved by using Equation (2). (See
Problems 5.3.24 and 5.3.25.)

In practice, we may not know whether the function f whose integral we seek satisfies
the smoothness criterion upon which the theory depends. Then it would not be known
whether Equation (3) is valid for f. One way of testing this in the course of the Romberg
algorithm is to compute the ratios

R(n,m) — R(n —1,m)
R(n+1,m)— R(n,m)

and to note whether they are close to 4m+1 Let us verify, at least for the case m = 0, that
this ratio is near 4 for a function that obeys Equation (3).
If we subtract Equation (4) from (3), the result is

R(n,0) — R(n —1,0) = Ja:h° + 2ash* + Sagh® + - - 8)
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If we write down the same equation for the next value of n, then the & of that equation is
half the value of / used in Equation (8). Hence,

3 15 63
RlORO—hz—h“—hG 9
(n+1,0) — R(n,0) Wh™+ Jah” + caash” + ©))
Equations (8) and (9) are now used to express the ratio mentioned previously:
5 21
1 )i+ ( )h4
R(n,0) = R(n —1,0) _ +4(a2 16
R(n+1,0)— R(n,0) 5( ) 5 21( ) .
1 h ..
+ 42 162 +

=i (G ]

For small values of £, this expression is close to 4.

General Extrapolation

In closing, we return to the extrapolation process that is the heart of the Romberg algorithm.
The process is Richardson extrapolation, which was discussed in Section 4.3. It is an example
of a general dictum in numerical mathematics that if anything is known about the errors in
a process, then that knowledge can be exploited to improve the process.

The only type of extrapolation illustrated so far (in this section and Section 4.3) has
been the so-called h? extrapolation. It applies to a numerical process in which the error
series is of the form

E = a2h2 + 614]’14 + a6h6 +

In this case, the errors behave like O(h?) as h — 0, but the basic idea of Richardson
extrapolation has much wider applicability. We could apply extrapolation if we knew, for
example, that

E =ah® +bh? +ch? + ...

provided that 0 < o < B < y < ---. It is sufficient to see how to annihilate the first term
of the error expansion because the succeeding steps would be similar.
Suppose therefore that

L = ¢(h) + ah® + bh? + ch? + .. (10

Here, L is a mathematical entity that is approximated by a formula ¢ (/) depending on &
with the error series ah® + bh? + - - -. It follows that

L=o(8) o) o) ) -

Hence, if we multiply this by 2%, we get

2L = 2"‘(p(§) +ah® Jrz%(g)'s +2ac(§)y +o

By subtracting Equation (10) from this equation, we rid ourselves of the 7 term:

Q@ — 1)L = 2“(,0(%) — () + (2°7F — D)bh? + (2*7 — I)ch” +
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We rewrite this as

L= 2 (h) Loty + 50 +n” + (11)
T 1%\3) T 1? ¢

Thus, the special linear combination

2¢ h 1 i h 1 h i B
2&—1‘0<2) 1% )_"’(2>+2a—1["’(2> o] (12)
should be a more accurate approximation to L than either ¢ () or ¢ (h/2) because their error
series, in Equations (10) and (11), improve from O(h*) to O(hf) ash — Oand 8 > a > 0.
Notice that when o = 2, the combination in Equation (12) is the one we have already used
for the second column in the Romberg array.
Extrapolation of the same type can be used in still more general situations, as is illus-
trated next (and in the problems).

EXAMPLE 2 If ¢ is a function with the property
ox) =L+ ax " taxttax 4+
how can L be estimated using Richardson extrapolation?

Solution  Obviously, L = lim,_, o, ¢(x); thus, L can be estimated by evaluating ¢ (x) for a succession
of ever-larger values of x. To use extrapolation, we write
o) =L+ax"+ax +ax 3+
eQ2x) =L4+2'ax " +2%ax 2 +2%ax P 4
2002x) =2L +a;x '+ 2 aox P42 2asx P 4
2@(2)0 — (p(x) =L — 2_1a2x_2 —3. 2_2a3x_3 — ...
Thus, having computed ¢(x) and ¢(2x), we can compute a new function ¥ (x) = 2¢(2x) —

@(x). It should be a better approximation to L because its error series begins with x~2 and
is O(x~?) as x — oo. This process can be repeated, as in the Romberg algorithm. [ |

Here is a concrete illustration of the preceding example. We want to estimate
lim, _, o @(x) from the following table of numerical values:

x |1 |2 E 8 |16 |32 |64 128
d(x) | 21.1100 | 16.4425 | 14.3394 | 13.3455 | 12.8629 | 12.6253 | 12.5073 | 12.4486

A tentative hypothesis is that ¢ has the form in the preceding example. When we compute
the values of the function ¥ (x) = 2¢(2x) — ¢(x), we get a new table of values:

NE | 2 | 4 E | 16 | 32 | 64
v(x) | 117750 | 12.2363 | 12.3516 | 12.3803 | 12.3877 | 12.3893 | 12.3899

It therefore seems reasonable to believe that the value of lim,_., ¢(x) is approximately
12.3899. If we do another extrapolation, we should compute 0 (x) = [4¢¥ (2x) — ¥ (x)]/3;
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values for this table are

x |1 | 2 | 4 | 8 | 16 | 32
0(x) | 12.3901 | 12.3900 | 12.3899 | 12.3902 | 12.3898 | 12.3901

For the precision of the given data, we conclude that lim,_, , ¢(x) = 12.3900 to within
roundoff error.

Summary

(1) By using the Recursive Trapezoid Rule, we find that the first column of the Romberg
algorithm is

1 2n71
R(n,0) = §R(n -1,0) +hZf[a+ 2k — Dh]

k=1

where h = (b —a)/2" and n > 1. The second and successive columns in the Romberg array
are generated by the Richardson extrapolation formula and are

R(n,m)=Rn,m—1) + [Rm,m —1)— R(n—1,m —1)]

4m — 1

with n > 1 and m > 1. The error is O (h?) for the first column, O (h*) for the second column,
O(h®) for the third column, and so on. Check the ratios

R(n,m)— R(n —1,m) o gt
R(n+1,m) — R(n,m)

to test whether the algorithm is working.

(2) If the expression L is approximated by ¢ () and if these entities are related by the error
series

L = @(h) +ah® +bh? +ch? +--.

then a more accurate approximation is

L Mp(%) + 2«1—1 [‘p@) _‘p(h)}

with error O(h#).

Additional References

For additional study, see Abramowitz and Stegun [1964], Clenshaw and Curtis [1960],
Davis and Rabinowitz [1984], de Boor [1971], Dixon [1974], Fraser and Wilson [1966],
Gentleman [1972], Ghizetti and Ossiccini [1970], Havie [1969], Kahaner [1971], Krylov
[1962], O’Hara and Smith [1968], Stroud [1974], and Stroud and Secrest [1966].
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Problems 5.3

a,
2.
a3,
4.

5.

7.

8.

“10.

11.

12.

Whatis R(5, 3) if R(5,2) = 12 and R(4, 2) = —51, in the Romberg algorithm?
If R(3,2) = —54 and R(4,2) = 72, what is R(4, 3)?
Compute R(5,2) from R(3,0) = R(4,0) = 8 and R(5,0) = —4.

Let f(x) = 2. Approximate f04 f(x)dx by the trapezoid rule using partition points
0, 2, and 4. Repeat by using partition points 0, 1, 2, 3, and 4. Now apply Romberg
extrapolation to obtain a better approximation.

By the Romberg algorithm, approximate f02 4dx /(1 + x?) by evaluating R(1, 1).

. Using the Romberg scheme, establish a numerical value for the approximation

1
/ e 1% gy~ R(1, 1)
0

Compute the approximation to only three decimal places of accuracy.

We are going to use the Romberg method to estimate fol /X cos x dx. Will the method
work? Will it work well? Explain.

By combining R(0, 0) and R(1, 0) for the partition P = {—h < 0 < h}, determine
R(1,1).

. In calculus, a technique of integration by substitution is developed. For example, if

the substitution x = z? is made in the integral [, (¢*//X) dx, the resultis 2 [ ¢*’ dz.
Verify this and discuss the numerical aspects of this example. Which form is likely to
produce a more accurate answer by the Romberg method?

How many evaluations of the function (integrand) are needed if the Romberg array
with n rows and n columns is to be constructed?

Using Equation (2), fill in the circles in the following diagram with coefficients used
in the Romberg algorithm:
R(0,0)
O
RALO) O—= raL1 —
O O -
R2,00 — O —= R2,1) — O — R(2,2)

~ ~ ~
R(3,0) :O — R(3,1) :O —> R(3,2) :O — R(3,3) —
O O O @)
R(4,0) — O = R4,1) — O = R(4,2) — O = R(4,3) — O = R(4,4)

Derive the quadrature rule for R(1, 1) in terms of the function f evaluated at partition
points a, a + h, and a + 2h, where h = (b — a)/2. Do the same for R(n, 1) with
h=(®-a)/2".
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“14.

“15.

16.

“17.

“18.

19.

20.

21.

a22.

“23.

“24.
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(Continuation) Derive the quadrature rule R(2, 2) in terms of the function f evaluated
ata,a+ h,a + 2h,a + 3h, and b, where h = (b — a) /4.

We want to compute X = lim,,_, o, S,,, and we have already computed the two numbers
u = S;pand v = Sy. Itis known that X = S, + Cn 3. What is X in terms of u and v?

Suppose that we want to estimate Z = lim,,_,o f (k) and that we calculate £ (1), f(27"),
27, f(273),..., £(2719. Then suppose also that it is known that Z = f(h) +
ah? 4+ bh* 4+ ch®. Show how to obtain an improved estimate of Z from the 11 numbers
already computed. Show how Z can be determined exactly from any 4 of the 11
computed numbers.

Show how Richardson extrapolation works on a sequence x, x5, X3, . . . that converges
to L asn — ooinsuchawaythat L — x, = an > +asn > +an*+---

Let x, be a sequence that converges to L as n — oo. If L — x,, is known to be of
the form azn=> + asn™* + - - - (in which the coefficients are unknown), how can the
convergence of the sequence be accelerated by taking combinations of x, and x,,,?

If the Romberg algorithm is operating on a function that possesses continuous deriva-
tives of all orders on the interval of integration, then what is a bound on the quantity
|fab f(x)dx — R(n, m)| in terms of h?

Show that the precise form of Equation (5) is

b 2 47— .
— _ . Jj+2
| rmar =R = 35557 e

Derive Equation (6), and show that its precise form is

b 00 j i—1
47 —1 4771 —1 Y
— E . j+2
/a oo dx = Rn,2)+ = <3 X 41') (15 x 47-1 )a2/+2h
Use the fact that the coefficients in Equation (3) have the form

ar = ol f*V ) — V(@)

to prove that fab f(x)dx = R(n,m) if f is a polynomial of degree <2m — 2.

In the Romberg algorithm, R (%, 0) denotes an estimate of fab f (x) dx with subintervals
of size h = (b — a)/2". If it were known that

b
/ f(x)dx = R(n,0) + ash® + agh® + - - -

how would we have to modify the Romberg algorithm?

Show that if f” is continuous, then the first column in the Romberg array converges to
the integral in such a way that the error at the nth step is bounded in magnitude by a
constant times 47"

Assuming that the first column of the Romberg array converges to fa b f(x)dx, show
that the second column does also.
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25. (Continuation) In the preceding problem, we established the elementary property that
if lim, o R(n,0) = [V f(x)dx, then lim, o, R(n,1) = [” f(x)dx. Show that

a

b
lim R(n,2) = lim R(n,3) =---= lim R(n,n) = / f(x)dx
26. a. Using Formula (7), prove Euler-Maclaurin coefficients can be generated recursively.
k
A
Ay =1, Ay =— —
’ == G+ D!

j=1
b. Determine A; for 1 <k <6.

“27. Evaluate E in the theorem on the Euler-Maclaurin formula for this special case: a = 0,
b=2m, f(x) =14 cosdx, n =4, and m arbitrary.

Computer Problems 5.3

“1. Compute eight rows and columns in the Romberg array for || 12.'319 x~!sinxdx.

2. Design and carry out an experiment using the Romberg algorithm. Suggestions: For a
function that possesses many continuous derivatives on the interval, the method should
work well. Try such a function first. If you choose one whose integral you can compute
by other means, you will acquire a better understanding of the accuracy in the Romberg
algorithm. For example, try definite integrals for

/(1+x)_1dx=1n(1+x) /exdxzex
and

/(1 +x2)'dx = arctanx

3. Test the Romberg algorithm on a bad function, such as \/x on [0, 1]. Why is it bad?

4. The transcendental number 7 is the area of a circle whose radius is 1. Show that

V2
8/ WV1=-x2—=x)dx=m
0

with the help of a diagram, and use this integral to approximate 7 by the Romberg
method.

“5. Apply the Romberg method to estimate foﬂ (2 + sin2x)~" dx. Observe the high preci-
sion obtained in the first column of the array, that is, by the simple trapezoidal estimates.

“6. Compute fon x cos 3x dx by the Romberg algorithm using n = 6. What is the correct
answer?

“7. An integral of the form f0°° f(x)dx can be transformed into an integral on a finite
interval by making a change of variable. Verify, for instance, that the substitution
x = —Iny changes the integral [~ f(x)dx into fol y~ ' f(=Iny)dy. Use this idea
to compute fooo [e™/(1 + x*)]dx by means of the Romberg algorithm, using 128
evaluations of the transformed function.
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. By the Romberg algorithm, calculate

o0
/ e "1 —sinxdx
0

. Calculate

Usinx

0o VX

by the Romberg algorithm. Hint: Consider making a change of variable.

dx

Compute log 2 by using the Romberg algorithm on a suitable integral.

The Bessel function of order 0 is defined by the equation

1 ¥
Jo(x) = —/ cos(x sind) d6
T Jo
Calculate Jy(1) by applying the Romberg algorithm to the integral.

Recode the Romberg procedure so that all the trapezoid rule results are computed first
and stored in the first column. Then in a separate procedure,

procedures Extrapolate(n, (r;))

carry out Richardson extrapolation, and store the results in the lower triangular part of
the (7;) array. What are the advantages and disadvantages of this procedure over the
routine given in the text? Test on the two integrals f04 dx /(14 x) and f_ll e* dx using
only one computer run.

(Student research project) Study the Clenshaw-Curtis method for numerical quadra-
ture. If possible, read the original paper by Clenshaw and Curtis [1960] and then pro-
gram the method. If programmed well, it should be superior to the Romberg method
in many cases. For further information on it, consult papers by Dixon [1974], Fraser
and Wilson [1966], Gentleman [1972], Havie [1969] Kahaner [1971], and O’Hara and
Smith [1968].

(Student research project) Numerical integration is an ideal problem for use on a
parallel computer, since the interval of integration can be subdivided into subintervals
on each of which the integral can be approximated simultaneously and independently
of each other. Investigate how numerical integration can be done in parallel. If you
have access to a parallel computer or can simulate a parallel computer on a collection
of PCs, write a parallel program to approximate 7 by using the standard example

1
/ (1 +xHldx
0

with a basic rule such as the midpoint rule. Vary the number of processors used and
the number of subintervals. You can read about parallel computing in books such as
Pacheco [1997], Quinn [1994], and others or at any of the numerous sites on the Internet.

Use a mathematical software system with symbolic capabilities such as Mathematica
to verify the relationship between A; and the Bernoulli numbers for k = 6.
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Some interesting test integrals (for which numerical values are known) are

1 00 1
d.X / e dx / x|sin(1/x)| dx
0 +/sinx 0 0

An important feature that is desirable in a numerical integration scheme
is the capability of dealing with functions that have peculiarities, such as
becoming infinite at some point or being highly oscillatory on certain subin-
tervals. Another special case arises when the interval of integration is infi-
nite. In this chapter, additional methods for numerical integration are intro-
duced: the Gaussian quadrature formulas and an adaptive scheme based on
Simpson’s Rule. Gaussian formulas can often be used when the integrand
has a singularity at an endpoint of the interval. The adaptive Simpson code
is robust in the sense that it can concentrate the calculations on trouble-
some parts of the interval, where the integrand may have some unexpected
behavior. Robust quadrature procedures automatically detect singularities
or rapid fluctuations in the integrand and deal with them appropriately.

6.1 Simpson’s Rule and Adaptive Simpson’s Rule

Basic Simpson’s Rule

The basic trapezoid rule for approximating fub f(x)dx is based on an estimation of the area
beneath the curve over the interval [a, b] using a trapezoid. The function of integration f (x)
is taken to be a straight line between f(a) and f(b). The numerical integration formula is
of the form

b
/ f(x)dx ~ Af(a) + Bf(b)

where the values of A and B are selected so that the resulting approximate formula will
correctly integrate any linear function. It suffices to integrate exactly the two functions 1
and x because a polynomial of degree at most one is a linear combination of these two
monomials. To simplify the calculations, let ¢ = 0 and b = 1 and find a formula of the
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FIGURE 6.1
Basic Trapezoid
Rule
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following type:

1

/ f)dx~Af(0)+ Bf(1)

0
Thus, these equations should be fulfilled:
1
fx)=1: / dx =A+B
0 |

fx)=x: / xdx=—-=RB
0 2

The solution is A = B = 3, and the integration formula is

1

27
! 1

/0 fx)dx ~ E[f(O) + f()]

By alinear mapping y = (b — a)x + a from [0, 1] to [a, b], the basic Trapezoid Rule for
the interval [a, b] is obtained:

b 1
/ f(x)dx ~ E(b —a)f(a)+ f(b)]

See Figure 6.1 for a graphical illustration.
fx)

f(b)
pix)

fla

The next obvious generalization is to take two subintervals [a, “I2] and [“£%, b] and

to approximate fab f(x)dx by taking the function of integration f(x) to be a quadratic
polynomial passing through the three points f(a), f (“$2),and f (b). Letus seek anumerical
integration formula of the following type:

b
/ F)dx ~ Af(a) + Bf(#) +Cf(b)

The function f is assumed to be continuous on the interval [a, b]. The coefficients A, B,
and C will be chosen such that the formula above will give correct values for the integral
whenever f is a quadratic polynomial. It suffices to integrate correctly the three functions
1, x, and x? because a polynomial of degree at most 2 is a linear combination of those
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3 monomials. To simplify the calculations, leta = —1 and b = 1 and consider the equation

1
/lf(X)dx ~ Af(=1)+ Bf(0)+Cf (D)

Thus, these equations should be fulfilled:

1
fx)=1: / dx =2=A+B+C
-1

1
fx)=x: /xdx:O:—A+C

1

1
2
flx) =x2: / xzdx=§=A+C

1

The solutionis A = },C = §,and B = ‘—; The resulting formula is

/ fx)ydx ~ f( D4+470) + f(D]

Using a linear mapping y = E(b —a)+ E(a + b) from [—1, 1] to [a, b], we obtain the
basic Simpson’s Rule over the interval [a, b]:

b 1 b
/ f@dx~ b -a {f(a) +4f(%) + f(b)}

See Figure 6.2 for an illustration.

atb
743 )’Z'N% &)

P« Pa)

FIGURE 6.2
Basic Simpson’s 7 s b x
Rule .
Figure 6.3 shows graphically the difference between the Trapezoid Rule and the Simp-
son’s Rule.
\ S _Simpson
FIGURE 6.3 Trapezoid
Example of
Trapezoid Rule

vs. Simpson’s
Rule

N



EXAMPLE 1

Solution
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Find approximate values for the integral

1
_.2
/ e ds
-1

using the basic Trapezoid Rule and the basic Simpson’s Rule. Carry five significant digits.

Leta = 0 and b = 1. For the basic Trapezoid Rule (1), we obtain

: —x? Lo -1
et ds~ 3 [€”+ e ~0.5[1 4 0.36788] = 0.68394
0

which is correct to only one significant decimal place (rounded). For the basic Simpson’s
Rule (2), we find

1
1
/ e ds ~ — [eo +4e70B 4 e’l}
0 6
~ 0.16667[1 + 4(0.77880) + 0.36788] = 0.7472

which is correct to three significant decimal places (rounded). Recall that fol e dx =
%ﬁerf(l) ~ (0.74682. |

Simpson’s Rule

A numerical integration rule over two equal subintervals with partition points a, a + h, and
a + 2h = b is the widely used basic Simpson’s Rule:

a+2h h
/ f(x)dx%g[f(a)+4f(a+h)+f(a+2h)] )]

Simpson’s Rule computes exactly the integral of an interpolating quadratic polynomial over
an interval of length 2/ using three points; namely, the two endpoints and the middle point.
It can be derived by integrating over the interval [0, 2k ] the Lagrange quadratic polynomial
p through the points (0, £(0)), (k, f(h)), and 2h, f(2h)):

2h 2h h
/0 fx)dx = /0 p(x)dx = g[f(O) +4f(h) + f2h)]
where

1 1 1
px) =55 =) =20 f(O) = -2x(x = 2h) f(h) + 5. 5x(x = h) f(2h)

The error term in Simpson’s rule can be established by using the Taylor series from
Section 1.2:

1 1 1
flathy = fHhf 5" 4 g’ 7 gt O

where the functions f, f', f”, ... on the right-hand side are evaluated at a. Now replacing
h by 2h, we have

4 24
fla+2h) = f+2hf" +20°f" + S f7 4 ht fO
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Using these two series, we obtain

/ 2 p1 3 pm 20 4 r£(4)
f@+4f@+h) + f@+2h) =6f+06hf +4n* "+ 207 "+ J0h* [9 + -

and, thereby, we have

h 4
5[f(a) +4f(@+h)+ fla+2h)] =2hf +2h*f + g/13f”
2 20
_h4 " _hS “4) 2
I T+ )
Hence, we have a series for the right-hand side of Equation (1). Now let’s find one for the
left-hand side. The Taylor series for F(a + 2h) is
4
F(a +2h) = F(a) +2hF'(a) + 2h*F"(a) + gh3F”’(a)
2 4 -4 2 50
Let
F(x) = / f)dt

By the Fundamental Theorem of Calculus, F' = f. We observe that F(a) = 0 and
F(a + 2h) is the integral on the left-hand side of Equation (1). Since F” = f/, F"" = f”,
and so on, we have

a+2h 5
2 pr 4 3 rn 2 4 pm 2 5 £(4)
f(x)dx:th+2hf+§h~f +§hf +ﬁhf 4. (3)

a

Subtracting Equation (2) from Equation (3), we obtain

a+2h h h5
/ f(x)dx=g[f(a)+4f(a+h)+f(a+2h)]—%f(“)_...

A more detailed analysis will show that the error term for the basic Simpson’s Rule (1) is
—(h°/90) f® (&) = O(h’) as h — 0, for some £ between a and a + 2h. We can rewrite
the basic Simpson’s Rule over the interval [a, b] as

(b—a)
6

b
/ £ dx ~ [f(a) +4f<#> 4 f(b)]

with error term

1 /b—a\’
——( 2“) )

for some & in (a, b).

Composite Simpson’s Rule

Suppose that the interval [a, b] is subdivided into an even number of subintervals, say n,
each of width 2 = (b — a)/n. Then the partition points are x; = a +ih for 0 <i < n, where
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n is divisible by 2. Now from basic calculus, we have

b n/2  La42ih
/ f(x)dx = Z/ f(x)dx
a i=1 a

+2(i—Dh
Using the basic Simpson’s Rule, we have, for the right-hand side,

n/2
~y U @+26G = D) +4f(@+ Qi = Dh) + f(a+2ih)

i=1

h (n/2)—1 n/2
=3 {f(a)+ Z f(a+2ih)+4Zf(a+ (2i — Dh)

i=1 i=1

(n/2)—1
+ Y f(a+2ih)+f(b)}

i=1

Thus, we obtain

i=1

b h n/2 (n—2)/2
/ faydx~ 3 {[f(a) + £ (b)] +4Z fla+ (i — )h] +2 Z f(a+2ih)
a i=1
where h = (b — a)/n. The error term is

_L _ 4r@
oL n rO®)

Many formulas for numerical integration have error estimates that involve derivatives
of the function being integrated. An important point that is frequently overlooked is that such
error estimates depend on the function having derivatives. So if a piecewise function is being
integrated, the numerical integration should be broken up over the region to coincide with
the regions of smoothness of the function. Another important point is that no polynomial
ever becomes infinite in the finite plane, so any integration technique that uses polynomials
to approximate the integrand will fail to give good results without extra work at integrable
singularities.

An Adaptive Simpson’s Scheme

Now we develop an adaptive scheme based on Simpson’s Rule for obtaining a numerical
approximation to the integral
b
/ f(x)dx

In this adaptive algorithm, the partitioning of the interval [a, b] is not selected beforehand
but is automatically determined. The partition is generated adaptively so that more and
smaller subintervals are used in some parts of the interval and fewer and larger subintervals
are used in other parts.

In the adaptive process, we divide the interval [a, b] into two subintervals and then
decide whether each of them is to be divided into more subintervals. This procedure is
continued until some specified accuracy is obtained throughout the entire interval [a, b].
Since the integrand f may vary in its behavior on the interval [a, b], we do not expect the
final partitioning to be uniform but to vary in the density of the partition points.
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It is necessary to develop the test for deciding whether subintervals should continue to
be divided. One application of Simpson’s Rule over the interval [a, b] can be written as

b
1 E/ f(x)dx = S(a,b) + E(a, b)

where

(b—a)

. {f(a)+4f <a+b) —i—f(b)]

S((l,b)z T

and

Eah=—+ (229) 0w+
=90\ 2 a
Letting 7 = b — a, we have

I=85V4+E®D 4)
where
SU = §(a, b)
and
1 /h\°
EOL— _ (2 “
5 (5) 1@+

1 (Y c
90 \2
Here we assume that f® remains a constant value C throughout the interval [a, b]. Now

two applications of Simpson’s Rule over the interval [a, b] give

=8P+ E® (5)
where
§@ = S(a,c) + S(c, b)
where ¢ = (a + b)/2, as in Figure 6.4, and

5 5
E® — _L(%) @) +--- _9‘_0<%> fP%0 +---

0\ 2 2
1 (h)2\°
=% (7) Y@+ fO@] +---
LN\ [(hY 20) 1l 1 /h\ c
To90\25)\2 16| 90\ 2
I h I
. . Fy One Simpson’s Rule
a c=(a+ b2 b
| h2 | hi2 |
FIGURE 6.4 . . R o . Two Simpson’s Rules
Simpson’s rule a ¢ b
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Again, we use the assumption that £ remains a constant value C throughout the interval
[a, b]. We find that

16E® = ED
Subtracting Equation (5) from (4), we have
SO _gh M _p@ _15g®
From this equation and Equation (4), we have
I =SP4+ E@ = 5@ 1 (S<2) S(l))
This value of I is the best we have at this step, and we use the inequality
L|s® — 50| <¢ (©6)

to guide the adaptive process.

If Test (6) is not satisfied, the interval [a, b] is split into two subintervals, [a, c] and
[c, b], where c is the midpoint ¢ = (a + b)/2. On each of these subintervals, we again
use Test (6) with ¢ replaced by €/2 so that the resulting tolerance will be ¢ over the entire
interval [a, b]. A recursive procedure handles this quite nicely.

To see why we take & /2 on each subinterval, recall that

b c b
- / Fx)dx = / Fe)dx + / FO)dx = s + T

If S is the sum of approximations Sl(efl over [a, c] and Srlght over [c, b], we have

2 2
[ -S| = ‘I]eﬂ + Iright - Sl(ef)t - Sr(lg)ht|

A

‘Ileft lefl| + |Ir1ghl Srlght|

_ 1@ (1) @ )
— 15 |Sleft - Sleft| + 5 15 ‘Srlght Srlghl|
using Equation (6). Hence, if we require
@ _ g ©) o) €
IG |Sleft left’ <z and IG ’Sright - Srighl| < 5

then |/ — S| < ¢ over the entire 1nterva1 [a, b].

We now describe an adaptive Simpson recursive procedure. The interval [a, b] is parti-
tioned into four subintervals of width (b — a) /4. Two Simpson approximations are computed
by using two double-width subintervals and four single-width subintervals; that is,

) h a+b
one_simpson <— 3 [f(a) +4f (2> + f(b)}

wo szmps0n<—— {f(a)+4f< )+2f( )+4f< _;b>+f(b)}

where h =b —aandc = (a + b)/2.

According to Inequality (6), if one_simpson and two_simpson agree to within 15¢, then
the interval [a, b] does not need to be subdivided further to obtain an accurate approximation
to the integral f f(x) dx.Inthis case, the value of [16 (two_simpson) — (one_simpson)]/15
is used as the approximate value of the integral over the interval [a, b]. If the desired accu-
racy for the integral has not been obtained, then the interval [a, b] is divided in half. The
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FIGURE 6.5
Adaptive
Integration of

5
fo“”cos(ZX)/eX dx
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subintervals [a, c] and [c, b], where ¢ = (a + b)/2, are used in a recursive call to the
adaptive Simpson procedure with tolerance ¢/2 on each. This procedure terminates when-
ever all subintervals satisfy Inequality (6). Alternatively, a maximum number of allowable
levels of subdividing intervals is used as well to terminate the procedure prematurely. The
recursive procedure provides an elegant and simple way to keep track of which subintervals
satisfy the tolerance test and which need to be divided further.

Example Using Adaptive Simpson Procedure

The main program for calling the adaptive Simpson procedure can best be presented in
terms of a concrete example. An approximate value for the integral

5
47 [cos(2x)
dx (7
0 et
is desired with accuracy % x 1073,
1e¢
0.8 -
0.6 -
04
02
0 T —o .
Ll W
| | | | | | | |

0 05 1 1.5 2 25 3 35 4

The graph of the integrand function is shown in Figure 6.5. We see that this function has many
turns and twists, so accurately determining the area under the curve may be difficult. A func-
tion procedure f is written for the integrand. Its name is the first argument in the procedure,
and necessary interface statements are needed here and in the main program. Other argu-
ments are the values of the upper and lower limits @ and b of the integral, the desired accuracy
&, the level of the current subinterval, and the maximum level depth. Here is the pseudocode:

recursive real function Simpson(f, a, b, ¢, level, level_max)
result(simpson_result)

integer level, level max; reala,b,c,d,e, h

external function f

level < level 4+ 1

h<b—a

c< (a+b))2

one_simpson < h[ f(a) +4f(c) + f(b)]/6

d<~(a+c)/2

e < (c+b))2
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two_simpson <— h[f(a) +4f(d)+2f(c)+4f(e)+ f(b)]/12
if level > level_max then

simpson_result <— two_simpson

output “maximum level reached”
else

if |two_simpson — one_simpson| < 15¢ then

simpson_result <— two_simpson + (two_simpson — one_simpson) /15

else
left_simpson <— Simpson(f, a, c, €/2, level, level_max)
right_simpson < Simpson(f, c, b, /2, level, level_max)
simpson_result <— left_simpson + right_simpson
end if
end if
end function Simpson

225

By writing a driver computer program for this pseudocode and executing it on a computer, we
obtain an approximate value of 0.208 for the integral (7). The adaptive Simpson procedure
uses a different number of panels for different parts of the curve as shown in Figure 6.5.

Newton-Cotes Rules

Newton-Cotes quadrature formulas for approximating fab f(x) dx are obtained by approx-
imating the function of integration f(x) by interpolating polynomials. The rules are closed
when they involve function values at the ends of the interval of integration. Otherwise, they

are said to be open.

Some closed Newton-Cotes rules with error terms are as follows. Here,a = x(, b = x,,,
h=®-—-a)/n,x; =xy+ih,fori =0,1,...,n,where h = (b —a)/n, fi = f(x;), and

a = xg < & < x, = b in the error terms.

Trapezoid Rule:
g 1 1

/X0 fx)dx = Eh[fo + fil - Eh3f”(§)

Simpson’s 1 Rule:
" 1 ! 5 £4)

fx)dx = gh[fo +4fi+ fal = %h ;&)

Simpson’s % Rule:
3 3 3
/ f(x)dx = gh[fo +3fi+3L+ f31— %th(“)(S)

Boole’s Rule:

X4 2 8
/XO fx)dx = Eh[7fo +32A4+12H4+32/4+T7f]— %Wf@(é)
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Six-Point Newton-Cotes Closed Rule:

X5 5

275
_ L F©
12096 FoE)

Some of the open Newton-Cotes rules are as follows:
Midpoint Rule:

X2 l
/ f(x)dx =2hfi + ﬂfﬁf”(é)
X0
Two-Point Newton-Cotes Open Rule:

3 s
| reoar=Jhifi+ s g0
X0
Three-Point Newton-Cotes Open Rule:
“ 4 28 5
f&)dx = Zh(2fi = fa+2/]1+ —h f7(§)
Xo 3 90
Four-Point Newton-Cotes Open Rule:
= 5 95
dx = —h[11 11 S
A} S(x)dx 24[ hf+h+6+ f4]+144 SE)

Five-Point Newton-Cotes Open Rule:

/be(x)dx = Eh[llf — 145 4+26f —14f, + 11 f5] — ﬂ/ﬂf(é)(s)
X0 20 ! 2 /3 4 5 140

Over the years, many Newton-Cotes formulas have been derived and are compiled in
the handbook by Abramowitz and Stegun [1964], which is available online. Rather than
using high-order Newton-Cotes rules that are derived by using a single polynomial over
the entire interval, it is preferable to use a composite rule based on a low-order basic
Newton-Cotes rule. There is seldom any advantage to using an open rule instead of a closed
rule involving the same number of nodes. Nevertheless, open rules do have applications in
integrating a function with singularities at the endpoints and in the numerical solution of
ordinary differential equations as discussed in Chapter 10 and 11.

Before the widespread use of computers, the Newton-Cotes rules were the most com-
monly used quadrature rules, since they involved fractions that were easy to use in hand
calculations. The Gaussian quadrature rules of the next section use fewer function evalu-
ations with higher-order error terms. The fact that they involve nodes involving irrational
numbers is no longer a drawback on modern computers.

Summary

(1) Over the interval [a, b], the basic Simpson’s Rule is

b b— b
/ f(x)dx =~ S(a,b) = (661)[f(a)+4f<a;> +f(b)}
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with error term — i[5 (b —a)]° f @ (§) for some £ in (a, b). Letting h = (b — a)/2, another
form for the basic Simpson’s Rule is

a+2h h
/ f(x)dx%5[f(a)+4f(a+h)+f(a+2h)]

. I
with error term — g5 h® @ (§).

(2) The composite Simpson’s % Rule over n (even) subintervals

n/2

b h 4h .
f&x)dx = Z[f(a)+ f(b)]+ —Zf[a + (2i — Dh]
a 3 3o
5 1212
+5 ; fa+2ih)
where h = (b — a)/n and the general error term is — 135 (b — a)h* f @ (§).
(3) On the interval [a, b] with ¢ = %(a + b), the test
=1S(a, )+ S(c,b) — S(a,b)| < &

can be used in an adaptive Simpson’s algorithm.

(4) Newton-Cotes quadrature rules encompass many common quadrature rules, such as the
Trapezoid Rule, Simpson’s Rule, and the Midpoint Rule.

Problems 6.1

“1. Compute fol (1 + x2)~! dx by the basic Simpson’s Rule, using the three partition points
x =0,0.5, and 1. Compare with the true solution.

2. Consider the integral fol sin(rx2/2) dx. Suppose that we wish to integrate numerically,
with an error of magnitude less than 1073,

“a. What width /4 is needed if we wish to use the composite Trapezoid Rule?
“b. Composite Simpson’s Rule? ¢. Composite Simpson’s % Rule?

3. A function f has the values shown.
X | 1|1.25|1.5|1.75|2
folwols |7 |6 |s

“a. Use Simpson’s Rule and the function values at x = 1, 1.5, and 2 to approximate
2
Ji f(x)dx.
“b. Repeat the preceding part, using x = 1, 1.25, 1.5, 1.75, and 2.

“c. Use the results from parts a and b along with the error terms to establish an improved
approximation. Hint: Assume constant error term Ch*.
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4,

7.

“8.

10.
11.

12.

d. Repeat the previous parts using lower sums, upper sums, and the Trapezoid Rule.
Compare these results to that from Simpson’s Rule.

Find an approximate value of | lzx" dx using composite Simpson’s Rule with & =
0.25. Give a bound on the error.

. Use Simpson’s Rule and its error formula to prove that if a cubic polynomial and a

quadratic polynomial cross at three equally spaced points, then the two areas enclosed
are equal.

. For the composite Simpson’s % Rule over n (even) subintervals, derive the general

€rror term

_L _ 4r@
T LA

for some & € (a, b).

(Continuation) The composite Simpson’s Rule for calculating fab f(x) dx can be writ-
ten as

h
Sp—1 = g[f(xo) +4f ) +2f(x2) + -+ 4f(xmr) + fx)]

where x;, = a+ihfor0<i <mnandh = (b —a)/n with n even. Its error is of the form
Ch*. Show how two values of S; can be combined to obtain a more accurate estimate
of the integral.

A numerical integration scheme that is not as well known is the basic Simpson’s %
Rule over three subintervals:

a+3h
/ f(x)dx%%[f(a)+3f(a+h)+3f(a+2h)+f(a+3h)]

Establish the error term for this rule, and explain why this rule is overshadowed by
Simpson’s Rule.

. (Continuation) Using the preceding problem, establish the composite Simpson’s % Rule

over n (divisible by 3) subintervals. Derive the general error term.
Write out the details in the derivation of Simpson’s Rule.

Find a formula of the type

1
/0 fx)dx = af(0)+ Bf(1)

that gives correct values for f(x) = 1 and f(x) = x2. Does your formula give the
correct value when f(x) = x?

If possible, find a formula

1
/ fx)dx = af(=1) + Bf(0)+yf(1)
~1
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that gives the correct value for f(x) = x, x2, and x*. Does it correctly integrate the
functions x — 1, x*, and x°.

13. Use linear mappings from [0, 1] to [a, b] and from [—1, 1] to [a, D] to justify the basic
Trapezoid Rule and the basic Simpson’s Rule in general terms, respectively.

Computer Problems 6.1

1. Find approximate values for the two integrals

Uy 1/v2
4/ 8/ (V1 —x%—x)dx
0 0

14+ x2

Use recursive function Simpson withe = % x 107> and level_max = 4. Sketch the curves
of the integrand f (x) in each case, and show how Simpson partitions the intervals. You
may want to print the intervals at which new values are added to simpson_result in
function Simpson and also to print values of f(x) over the entire interval [a, b] in order

to sketch the curves.

2. Discover how to save function evaluations in function Simpson so that the integrand
f(x) is evaluated only once at each partition point. Test the modified code using the
example in the text; that is,

21
/ cos(2x)e " dx
0

with & = 5.0 x 107 and level_max = 4.

3. Modify and test the pseudocode in this section so that it stores the partition points and
function values. Using an automatic plotter and the modified code, repeat the preceding
computer problem, and plot the resulting partition points and function values.

4. Write and test code similar to that in this section but based on a different Newton-Cotes
rule.

5. Using mathematical software such as Matlab, Maple, or Mathematica, write and execute
a computer program for finding an approximate value for the integral in Equation (7).
Interpret warning messages. Try to obtain a more accurate approximation with more
digits of precision by using additional (optional) parameters in the procedure.

6. Code and execute the recursive Simpson algorithm. Use integral (7) for one test.

7. Consider the integral

1
1
/ LIS
—1 1— X 2
Because it has singularities at the endpoints of the interval [—1, 1], closed rules cannot

be used. Apply all of the Newton-Cote open rules. Compare and explain these numerical
results to the true solution, which is f_ll(l —x2)712dx = arcsinx|' | = 7.
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6.2 Gaussian Quadrature Formulas

EXAMPLE 1

Solution

Description

Most numerical integration formulas conform to the following pattern:

b
/ f)ydx = Agf(xo) + A1 f(x1) + -+ Ay f(x0) 1)

In this section, every numerical integration formula is of this form. To use such a formula, it
is necessary only to know the nodes x, x1, ..., x, and the weights A, Ay, ..., A,. There
are tables that list the numerical values of the nodes and weights for important special cases.

Where do formulas such as Formula (1) come from? One major source is the theory of
polynomial interpolation as presented in Chapter 4. If the nodes have been fixed, then there
is a corresponding Lagrange interpolation formula:

px) = Zf(xi)ﬁ,-(x) where  ¢;(x) = H (x' — X )

i=0 j=0

This formula [Equations (1) and (2) from Section 4.1] provides a polynomial p of degree
at most n that interpolates f at the nodes; that is, p(x;) = f(x;) for 0<i <n. If the
circumstances are favorable, p will be a good approximation to f, and fa b p(x) dx will be
a good approximation to f: f(x) dx. Therefore,

b b n b n
/ fx)dx ~ / pydx =Y f(x) / Gx)dx =Y A f(x) 2)
a a i=0 a i=0

where we have put

b
A,~=/ £;(x)dx

From the way in which Formula (2) has been derived, we know that it will give correct
values for the integral of every polynomial of degree at most 7.

Determine the quadrature formula of the form (1) when the interval is [—2, 2] and the nodes
are —1,0, and 1.

The functions ¢; are given above. Thus, we have

2
_ X —X;j _l _
E"(’C)_H(xo—xj) = Jx@ =1

j=1

Similarly, ¢;(x) = —(x + 1)(x — 1) and £»(x) = %x(x + 1). The weights are obtained by
integrating these functions. For example,

2 1 /2 8
Aoz/ Eo(x)dxzf/ (x> =x)dx = =
-2 2 -2 3



6.2 Gaussian Quadrature Formulas 231

Similarly, A} = —% and A, = . Therefore, the quadrature formula is

2 8 4 8
/_zf(X)dx S SFED = S FO S

As a check on the work, one can verify that the formula gives exact values for the three
functions f(x) = 1, x, and x°. By linear algebra, the formula provides correct values for
any quadratic polynomial. |

Change of Intervals

Gaussian rules for numerical integration are usually given on an interval such as [0, 1] or
[—1, 1]. Often, we want to use these rules over a different interval! We can derive a formula
for any other interval by making a linear change of variables. If the first formula is exact
for polynomials of a certain degree, the same is true of the second. Let us see how this is
accomplished.

Suppose that a numerical integration formula is given:

d n
/ fyde =Y A f(t)
¢ i=0

It does not matter where this formula comes from; however, let us assume that it is exact
for all polynomials of degree at most m. If a formula is needed for some other interval, say,
[a, b], we first define a linear function A of ¢ such that if ¢ traverses [c, d], then A(¢) will
traverse [a, b]. The function X is given explicitly by

b—a ad — bc
Mt)z(d—c)t—i_( d—c )

b
/ f(x)dx

we change the variable, x = A(¢). Then dx = X' (t)dt = (b — a)(d — ¢)~' dt, and so we

have
b . d
/ fx)dx = (Z—a) / FO)) di
a —C c

b—a n
~ (d_c) ;Aimm))

Now in the integral

Hence, we have

b b—a\ < b—a ad — bc
dx ~ A; 14
[ () onr (=0 (=)
Observe that because A is linear, f(A(¢)) is a polynomial in 7 if f is a polynomial, and

the degrees are the same. Hence, the new formula is exact for polynomials of degree at
most m.




232 Chapter 6 Additional Topics on Numerical Integration

B THEOREM 1

Proof

Gaussian Nodes and Weights

In the preceding discussion, the nodes were arbitrary, although for practical reasons, they
should belong to the interval in which the integration is to be carried out. The great mathe-
matician Karl Friedrich Gauss (1777-1855) discovered that by a special placement of the
nodes, the accuracy of the numerical integration process could be greatly increased. Here
is Gauss’s remarkable result.

GAUSSIAN QUADRATURE THEOREM

Let g be a nontrivial polynomial of degree n + 1 such that

b
/ xfg(x)dx =0 O<k<n)

Let xo, x1, ..., x, be the zeros of g. Then the formula
b n b
/ fdx~> Aif(x) where A; = / 0;(x)dx (3)
a i=0 a

with these x;’s as nodes will be exact for all polynomials of degree at most 2n + 1.
Furthermore, the nodes lie in the open interval (a, b).

(We prove only the first assertion.) Let f be any polynomial of degree <2n + 1. Dividing
f by g, we obtain a quotient p and a remainder r, both of which have degree at most n. So

f=prqg+r

By our hypothesis, fab q(x)p(x)dx = 0. Furthermore, because each x; is a root of g, we
have f(x;) = p(x;)q(x;)+7r(x;) = r(x;). Finally, since r has degree at most n, Formula (3)
will give f: r(x) dx precisely. Hence,

b b b b
/ f(x)dx:/ p(x)q(x)dx—l—/ r(x)dx:/ r(x)dx
=Y Ar(x) =Y Aif(x) m
i=0 i=0

To summarize: With arbitrary nodes, Formula (3) will be exact for all polynomials
of degree < n. With the Gaussian nodes, Formula (3) will be exact for all polynomials of
degree <2n + 1.

The quadrature formulas that arise as applications of this theorem are called Gaussian or
Gauss-Legendre quadrature formulas. There is a different formula for each interval [a, b]
and each value of n. There are also more general Gaussian formulas to give approximate
values of integrals, such as

o0 1 00
/f(x)e’xdx /f(x)(l—xz)l/zdx /f(x)e’xzdx etc.
0 —1 o

Next we derive a Gaussian formula that is not very complicated.
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Solution
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Determine the Gaussian quadrature formula with three Gaussian nodes and three weights
for the integral f_ll fx)dx.

We must find the polynomial g referred to in the Gaussian Quadrature Theorem and then
compute its roots. The degree of ¢ is 3, so ¢ has the form

q(x) =co+cix + x4+ e3x°

The conditions that ¢ must satisfy are

1 1 1
/ q(x)dx = / xg(x)dx = / x2q(x)dx =0
-1 -1 -1

If we let cg = ¢, = 0, then g (x) = ¢;x + c3x3, and so

1 1
/ q(x)dx = / xzq(x) dx =0
-1 -1

because the integral of an odd function over a symmetric interval is 0. To obtain ¢; and c3,
we impose the condition

1
/ x(cix +c3x)dx =0
-1

A convenient solution of this is ¢; = —3 and ¢; = 5. (Because it is a homogeneous equa-
tion, any multiple of a solution is another solution. We take the smallest integers that work.)
Hence, we obtain

q(x) = 5x3 — 3x

The roots of g are —+/3/5, 0, and /3/5. These, then, are the Gaussian nodes for the desired
quadrature formula.

To obtain the weights Ay, Aj, and A,, we use a procedure known as the method of
undetermined coefficients. We want to select Ag, A, and A, in the formula

1
/ fx)ydx ~ Aof (—@) + A f(0)+ Asf <\/§>
—1

so that the approximate equality (=) is an exact equality (=) whenever f is of the form
ax® + bx + c. Since integration is a linear process, Formula (4) will be exact for all
polynomials of degree <2 if it is exact for these three: 1, x, and x>. We arrange the
calculations in a tabular form.

“4)

f | Left-hand side
1
i Ao+ Ar+ A
-1
X /lxdxzo —\/§A0+\/§A2
1 5 5
3 3

1
2
2 Zdx == | ZAp+ A
* /_xx 3 | st

Right-hand side

dx =2
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EXAMPLE 3

Solution

The left-hand side of Equation (4) will equal the right-hand side for all quadratic polynomials
when Ay, A}, and A, satisfy the equations

Ao+ A +A, =2
Ao — A, =
Ao + Ay =

ez @

The weights are Ag = A, = 3 and A; = §. Therefore, the final formula is

! 5 3 8 5 3
/_lf(x)dX~§f<—\/;>+§f(0)+§f<\/;> (5)

It will integrate correctly all polynomials up to and including quintic ones. For example,
f _]1 x*dx = % and the formula also yields the value % for this function. [ |

With the transformation t = [2x — (b +a)]/(b — a), a Gaussian quadrature rule of the

form
1 n
/ Jwdi D Aif @)
- i=0

can be used over the interval [a, b]; that is,
b 1 LT 1
f(x)dx:i(b—a) f E(b—a)t—i-i(b—i-a) dt (6)
a -1

Use Formulas (5) and (6) to approximate the integral

1
/e_xzdx
0
Since a = 0 and b = 1, we have
/lf()d 1/1f 1t+1 dt
x)dx = - — —
0 2/ 2 2
115 1 1 /3 8 1 5 1 1 /3
2 [a‘(ri §>+§f(z>+§f<5+5 5)]
Letting f(x) = e*)‘z, we have
/1 e—xz dx ~ 36—0.1127016652 + ‘le—o.s2 + 36—0.8872983352
0

18 9 18
~ 0.74681 4584

Comparing against the true solution %ﬁerf(l) ~ 0.74682 41330, we find that the error
in the computed solution is approximately 107>, which is excellent, considering that there
were only three function evaluations. [ |

Legendre Polynomials

Much more could be said about Gaussian quadrature formulas. In particular, there are
efficient methods for generating the special polynomials whose roots are used as nodes in



6.2 Gaussian Quadrature Formulas 235

the quadrature formula. If we specialize to the integral fjl f(x) dx and standardize ¢, so
that g, (1) = 1, then these polynomials are called Legendre polynomials. Thus, the roots
of the Legendre polynomials are the nodes for Gaussian quadrature on the interval [—1, 1].
The first few Legendre polynomials are

qo(x) =1
qi(x) =x
g (x) = 3x2 — 1

2
5.3 _3
g3(x) = 3x7 — 35x

They can be generated by a three-term recurrence relation:

2n — 1 n—1
qn(x) = < )an—l(X) - (T>qn—z(X) (nz2) @)

With no new ideas, we can treat integrals of the form fab f(x)w(x)dx. Here, w(x)

should be a fixed positive function on (a, b) for which the integrals fa b x"w(x) dx all exist,
forn = 0,1,2,.... Important examples for the interval [—1, 1] are given by w(x) =
(1 —x%)7"2 and w(x) = (1 — x?)"/2. The corresponding theorem is as follows:

B THEOREM 2 WEIGHTED GAUSSIAN QUADRATURE THEOREM

Let g be a nonzero polynomial of degree n + 1 such that

b
/xkq(x)w(x)dxzo 0<k<n)

Let xo, x1, ..., x, be the roots of g. Then the formula
b n
/1ﬂmwuwx~§:mfwﬂ
C i=0

where

n o b
o= 2 ad A= / €0 w(x) dx
o Xi — Xj a

i

will be exact whenever f is a polynomial of degree at most 2n + 1.

The nodes and weights for several values of n in the Gaussian quadrature formula

1 n
//mwa&mn
- i=0

are given in Table 6.1. The numerical values of nodes and weights for various values of
n up to 95 can be found in Abramowitz and Stegun [1964]. See also Stroud and Secrest
[1966]. Since these nodes and weights are mostly irrational numbers, they are not used in
computations by hand as much as are simpler rules that involve integer and rational values.
However, in programs for automatic computation, it does not matter whether a formula
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TABLE 6.1 Gaussian Quadrature Nodes and Weights

n Nodes x; Weights A;
1
1 —/= 1
3
+ ! 1
3
3 5
5 9
8
0 _
9
N 3 5
5 9
1 1 1 [10
—1/ = (3 = 440. — =
3 7(3 v0.3) 2+12 3
1 1 1 [10
— /= 44/0. =
\/7(3+ 03) 2 12V 3
1 1 1 [10
—(3 — 44/0. oy =
+ 7(3 v0.3) 2+12 3
1 1 1 /10
—Z 44/0. Z 4=
+ 7(3+ v0.3) >~V 3
1 10 —0.7 + 54/0.7
4 —l=[5=2¢/—= 03 22/ F2vOT
9 7 24507
1 10 0.7 + 5/0.7
— = [5+2y/= 0.3 &7 H5v0T)
9 7 245407
128
O _
225
1 [10 —0.7 4+ 54/0.7
+.0=15=-24/—= 03 2L 2vIT
9 7 —2+4540.7
1 10 0.7 4+ 54/0.7
+ =542/ = 3 (2L HoVOT
9 7 2 +540.7
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looks elegant, and the Gaussian quadrature formulas usually give greater accuracy with
fewer function evaluations. The choice of quadrature formulas depends on the specific
application being considered, and the reader should consult more advanced references for
guidelines. See, for example, Davis and Rabinowitz [1984], Ghizetti and Ossiccini [1970],
or Krylov [1962].

Integrals with Singularities

If either the interval of integration is unbounded or the function of integration is unbounded,

then special procedures must be used to obtain accurate approximations to the integrals.
One approach for handling a singularity in the function of integration is to change

variables to remove the singularity and then use a standard approximation technique. For

example, we obtain
/ U dx ) U dt
0 exﬁ o 0 6,2

and
/2 COS X A T/2 5
dx =2 cost-dt
0o WX 0
using x = ¢2. Some other useful transformations are x = —log¢, x =t/(1 —t), x = tant,

and x = /(1 +1)/(1 —1).

An important case where Gaussian formulas have an advantage occurs in integrating a
function that is infinite at one end of the interval. The reason for this advantage is that the
nodes in Gaussian quadrature are always inferior points of the interval. Thus, for example,

in computing
l .
sin x
—dx
0 X

we can safely use the statement y <— sin x/x with a Gaussian formula because the value at
x = 0 will not be required. More difficult integrals such as

——dx

/0 Jsin(e¥ — 1)

can be computed directly with a Gaussian formula in spite of the singularity at 0. Of course,
we are referring to integrals that are well defined and finite in spite of a singularity. A typical

case is
/1 dx
0 VX

Summary

(1) Gaussian Quadrature Rules with nodes x; and weights A; are of the form

b n
/ fydx =~ Aif(x)
a i=0
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where the weights are

b “ X —Xj
A= | Lix)dx  Li(x) = | | —
a N Xi — Xj
j=0 ’
JF#i

If g is a nontrivial polynomial of degree n + 1 such that

b
/ xfg(x)dx =0  (0<k<n)

then the nodes xg, xi, ..., x, are the zeros of ¢g. Furthermore, the nodes lie in the open
interval (a, b). The rule is exact for all polynomials of degree at most 2n + 1.

(2) Use the following formula to change an integration rule from the interval [c, d] to [a, b]:

b b—a ‘ b—a ad — bc
[ rwa~ (=) L ((7=0)=+ (=)

(3) Some Gaussian integration rules are

[ i) +1(5)
/_llfu)dwgf(—\/g) +§f(0)+gf<\/§>

(4) The Weighted Gaussian Quadrature Rules are of the form

b n
/ fOwE)dx ~ Y A f(x)
@ i=0
where the weights are
b
A; :/ L (x)w(x)dx

If g is a nonzero polynomial of degree n + 1 such that

b
/xkq(x)w(x)dx=0 0<k<n)

then nodes xy, x1, ..., x, are the roots of ¢. The rule is exact whenever f is a polynomial
of degree at most 2n + 1.

(5) If we have a basic numerical integration formula for the interval [—1, 1] such as

1 m
/ fyde~>" A f)
-1 i=0

it can be employed on an arbitrary interval [c, d] by using a change of variables. To convert
to the interval [c, d], change variables by writing x = ¢ + «, where o = %(c + d) and
B = %(d — ¢). Notice that when t = —1 then x = ¢ and when t = +1 then x = d. Also,
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we must use dx = f dt. Putting this together, we have the following formulas:

d 1 m
/ f(x)dx=/3/1f(ﬂt+a)dt%ﬂZAif(ﬂtﬁa)
¢ - i=0

If we want to find a composite rule for the interval [a, b] with m /2 applications of the basic
rule, we use

n/2

b X2
[ rwax =3[ sewa
a =1 Y xi-n

and determine
n/2 m

b
/ f)ydx~hY > A f Tt + 1]

j=1 i=0

where h = ty; — thi_| = hi—1 — tyi_2.

Additional References

For additional reading, see the following: Abell and Braselton [1993], Abramowitz and
Stegun [1964], Acton [1990], Atkinson [1993], Clenshaw and Curtis [1960], Davis and
Rabinowitz [1984], de Boor [1971], Dixon [1974], Fraser and Wilson [1966], Gander and
Gautschi [2000], Gentleman [1972], Ghizetti and Ossiccini [1970], Havie [1969], Kahaner
[1971], Krylov [1962], O’Hara and Smith [1968], Stroud [1974], and Stroud and Secrest
[1966].

Problems 6.2

“1. A Gaussian quadrature rule for the interval [—1, 1] can be used on the interval [a, b]
by applying a suitable linear transformation. Approximate

2 2
/ e dx
0

using the transformed rule from Table 6.1 withn = 1.

2. Using Table 6.1, show directly that the Gaussian quadrature rule is exact for the poly-

nomials 1, x, x2, ..., x*"*! when
a.n=1 b. n=3 c.n=4

3. For how high a degree of polynomial is Formula (5) exact? Verify your answer by
continuing the method of undetermined coefficients until an equation is not satisfied.

4. Verify parts of Table 6.1 by finding the roots of ¢, and using the method of undetermined
coefficients to establish the Gaussian quadrature formula on the interval [—1, 1] for the
following:

‘a. n=1 “bh. n =3 c.n=4
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8.

“6.

7.

9.

“10.

“11.

“12.

Construct a rule of the form

1
/ fydx ~af (=) +BfO) +vf (3)
-1

that is exact for all polynomials of degree < 2; that is, determine values for «, §, and
y. Hint: Make the relation exact for 1, x, and x2 and find a solution of the result-
ing equations. If it is exact for these polynomials, it is exact for all polynomials of
degree <2.

Establish a numerical integration formula of the form

b
/ f(x)dx ~ Af(a) + Bf'(b)
that is accurate for polynomials of as high a degree as possible.

Derive a formula for j; ath f(x)dx in terms of function evaluations f(a), f(a + h),
and f(a + 2h) that is correct for polynomials of as high a degree as possible. Hint:
Use polynomials 1, x —a, (x — a)?, and so on.

. Derive a formula of the form

b
/ fx)dx = wo f(a) +wi f(b) + wa f(a) + ws f'(b)

that is exact for polynomials of the highest degree possible.

Derive the Gaussian quadrature rule of the form

1
/ f)x*dx ~ af (—a) + bf (0) + cf (@)
—1

that is exact for all polynomials of as high a degree as possible; that is, determine «, a,
b, and c.

Determine a formula of the form

h
/ f(x)dx ~ wo f(0) + wi f(h) + wa f(0) + ws f"(h)
0

that is exact for polynomials of as high a degree as possible.

Derive a numerical integration formula of the form

Xn+1

f)dx ~ Af (x,) + Bf'(xu-1) + Cf" (xu41)

Xn—1

for uniformly spaced points x,_1, x,,, and x,; with spacing 4. The formula should be
exact for polynomials of as high a degree as possible. Hint: Consider

h
/ fx)dx =~ Af(0) + Bf'(=h) + Cf"(h)
—h

By the method of undetermined coefficients, derive a numerical integration formula of
the form

+2
/ x| f(x)dx =~ Af(=1) + Bf(0) + Cf(+1)

2
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that is exact for polynomials of degree < 2. Is it exact for polynomials of degree greater
than 27

413. Determine A, B, C, and D for a formula of the form

h
Af(=h)+ Bf(0) + Cf(h) = hDf'(h) + / fx)de
—h

that is accurate for polynomials of as high a degree as possible.

“14. The numerical integration rule

3h

3h
; foydx~ == 1f0)+3f(h) +3f2h) + fGh)]

is exact for polynomials of degree < n. Determine the largest value of n for which this
assertion is true.

15. (Adams-Bashforth-Moulton formulas) Verify that the numerical integration formulas

t+h
a. / g(s)ds =~ 2h—4 [55g(t) —59g(t — h) + 37g(t —2h) — 9g(t — 3h)]

t+h
b. / g(s)ds ~ 2”—4 [9g(t + h) + 19g(t) — 5g(t — h) + g(t — 2h)]

are exact for polynomials of third degree. Note: These two formulas can also be derived
by replacing the two integrands g with two interpolating polynomials from Chapter 4
using nodes (¢, — h,t —2h,t — 3h) ornodes (t + h, t,t — h, t — 2h), respectively.

16. Let a quadrature formula be given in the form

1 n
/l fdx =~ wi f(x)
- i=1

What is the corresponding formula for fol f(x)dx?

17. Using the rules in Table 6.1, determine the general rules for approximating integrals of
the form fah f(x)dx.

Computer Problems 6.2

1. Write a program to evaluate an integral fa b f(x) dx using Formula (5).

2. (Continuation) By use of the same program, compute approximate values of the
integrals

1 2
aq, / dx/Jx b / e dx
0 0

3. (Continuation) Compute folx‘l sinxdx by the Gaussian Formula (5) suitably
modified.
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. Write a procedure for evaluating fab f(x)dx by first subdividing the interval into n

equal subintervals and then using the three-point Gaussian Formula (5) modified to
apply to the n different subintervals. The function f and the integer n will be furnished
to the procedure.

. (Continuation) Test the procedure written in the preceding computer problem on these

examples:

1 1
a. / Xdx (n=1,2,10) b./ x“'sinxdx (n=1,2,34)
0 0

. Apply and compare the composite rules for Trapezoid, Midpoint, Two-Point Gaussian,

and Simpson’s % Rule for approximating the integral

2
/ e " cosx dx ~ 0.49906 62786 34
0

using 32 applications of each basic rule.

. Code and test an adaptive two-point Gaussian integration procedure to approximate

the integral

3
/ 100x " sin(10x ") dx ~ —18.79829 68367 8703
1

Write three procedures using double precision:

a. two-point Gauss procedure Gauss( f, a, b)

b. nonrecursive procedure Adaptive Initial( f, a, b) that initializes variables sum and
depth to zero and calls recursive procedure Adaptive( f, sum, a, b, depth)

c¢. recursive procedure Adaptive( f, sum, a, b, depth) that checks to see whether the
maximum depth is exceeded; if so, it prints an error message and stops; if not, it
continues by dividing the interval [a, b] in half and calling procedure Gauss on
the left subinterval, the right subinterval, and the whole interval, then checking to
see whether the tolerance test is accepted; if it is, it adds the approximate value
over the whole interval to the variable sum; otherwise it calls recursive procedure
Adaptive on the left and right subintervals in addition to increasing the value of the
depth variable. The tolerance test checks to see if the difference in absolute value
between the approximate value over the whole interval and the sum of the approx-
imate values over the left subinterval and right subinterval is less than the variable
tolerance.

Print out the contribution of each subinterval and the depth at which the approximate
value over the subinterval is accepted. Use a maximum depth of 100 subintervals, and
stop subdividing subintervals when the tolerance is less than 1077,

. Compute the three integrals that were mentioned as test cases in the introduction to

this chapter:

ag /l dx ah /Oo ~dx /1 |sin(1/x)|d
. . e - X . X X X
0 /sinx 0 0
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To determine whether the computed results are accurate, use two different programs
from Matlab, Maple, and/or Mathematica to do these calculations.

. (Continuation) Another approach to computing the integral fol x|sin(1/x)|dx is by

a change of variables. Turn it into the integral || loo |'sin(r)|/t* dt and then write it
as the sum of the integrals from 1 to 7, 7 to 27, and 2kz to 2(k + 1)z, for k =
1,2,3,.... To get 12-decimal places of accuracy, let k run to 112,536. Adding up the
subintegrals in order of smallest to largest, should give better roundoff errors. Taking
10,000 steps may require about five minutes of machine time, but the error should be
no more than about two digits in the tenth decimal place. The first two partial integrals
should be computed outside the loop and then added into the sum at the end. Using
Matlab program quad, integrate the original integral, and then program this alternative
approach.

Use Gaussian quadrature formulas on these test cases:

"log(1 — 2 "log(1 2
&/L%L;ﬁmz_z, h/_%giﬁﬂzz_
0 0

X 6 X 12
11 1 2 2
&/B&LQMZL
0 X 24

This problem illustrates integrals with singularities at the endpoint. The integrals can
be computed numerically by using Gaussian quadrature. The known values enable one
to test the process. (See Haruki and Haruki [1983] and Jeffrey [2000].)

Suppose we want to compute fab f(x)dx. We divide the interval [a, b] into n subin-
tervals of uniform size & = (b — a)/n, where n is divisible by 2. Let the nodes be
Xx; = a +ih for 0 <i <n. Consider the following numerical integration rules.

Composite Trapezoid Rule (2 need not be even)

n—1

b
1
[ rwdx~ Shtr@-+ son+ny s
a i=1
Composite Simpson’s % Rule (n even)

b 1 4
/ fx)dx ~ gh[f(a)+f(b)]+ ghf(b—h)
%n—l

2
+ gh z:; [2f (x2i—1) + f(x20)]

Composite Gaussian Three-Point Rule (n even)

5 3
§f <x2il —h 5)
5 3 8
+ §f (xzil + h\/;> + §f(X2i1)]

Write and run computer programs for obtaining the numerical approximation to the
integral foh [cos(2x)/e*] dx using these rules with n = 120. Use the true solution

n/2

b
/ fydx~h>
a i=l1
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12.

13.

14.

15.

é(l — ¢7?™) computed in double precision to compute the absolute errors in these
results.

(Continuation) Repeat the previous problem using all of the rules in Table 6.1 and
compare the results.

(Student research project) From a practical point of view, investigate some new
algorithms for numerical integration that are associated with the names Clenshaw
and Curtis [1960], Kronrod [1964], and Patterson [1968]. The later two are adaptive
Gaussian quadrature methods that provide error estimates based on the evaluation
and reuse of the results at Kronrod points. See QUADPACK by Pessens, de Doncker,
Uberhuber, and Kahaner [1983] and also Laurie [1997], Ammar, Calvetti, and Reichel
[1999], and Calvetti, Golub, Gragg, and Reichel [2000] for examples.

Consider the integral
/ L
141 —x2
Because it has singularities at the endpoints of the interval [—1, 1], closed rules cannot

be used. Apply all of the Gaussian open rules in Table 6.1. Compare and explain these
numerical results to the true solution, which is fj (1 =x?)72dx = arcsinx|' | = 7.

Use numerical integration to verify or refute each of the following conjectures:

1 4 1 4 1 2
a./o 1+x2dx:n b./o ﬁlog(x)dx:—§ c./o x/;dx:g

1 1 4 100 1 10 ’s
d. ——dx = - e. dx =26 f. 25¢ 7 dx =1
/0 1+ 10x2 5 /,9 Vx| /0

1
g. / log(x)dx = —1
0



Systems of Linear Equations

A simple electrical network contains a number of resistances and a single
source of electromotive force (a battery) as shown in Figure 7.1. Using
Kirchhoff’s laws and Ohm'’s law, we can write a system of linear equations
that govern this circuit. If x4, X2, X3, and x; are the loop currents as shown,
then the equations are

15x; — 2x0 — 6Xx3 =300
—2x1+12x% — 4x3— xz= O
—6x1 — 4% +19% — 9x = 0

— X — 9% +21xxs= 0
Systems of equations like this, even those that contain hundreds of un-
knowns, can be solved by using the methods developed in this chapter.
The solution to the preceding system is

x; = 26.5 x; = 9.35 x3 =13.3 X3 =6.13

70

———— W

300 volts ___ X1

FIGURE 7.1
Electrical
network

7.1 Naive Gaussian Elimination

One of the fundamental problems in many scientific and engineering applications is to
solve an algebraic linear system Ax = b for the unknown vector x when the coefficient
matrix A and right-hand side vector b are known. Such systems arise naturally in various

245
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applications, such as approximating nonlinear equations by linear equations or differential
equations by algebraic equations. The cornerstone of many numerical methods for solving
a variety of practical computational problems is the efficient and accurate solution of linear
systems. The system of linear algebraic equations Ax = b may or may not have a solution,
and if it has a solution, it may or may not be unique. Gaussian elimination is the standard
method for solving the linear system by using a calculator or a computer. This method is
undoubtedly familiar to most readers, since it is the simplest way to solve a linear system
by hand. When the system has no solution, other approaches are used, such as linear least
squares, which is discussed in Chapter 14. In this chapter and most of the next one, we
assume that the coefficient matrix A is n x n and invertible (nonsingular).

In a pure mathematical approach, the solution to the problem Ax = b is simply x =
A~'b, where A~ is the inverse matrix. But in most applications, it is advisable to solve the
system directly for the unknown vector x rather than explicitly computing the inverse matrix.

In applied mathematics and in many applications, it can be a daunting task for even
the largest and fastest computers to solve accurately extremely large systems involving
thousands or millions of unknowns. Some of the questions are the following: How do we
store such large systems in the computer? How do we know that the computed answers are
correct? What is the precision of the computed results? Can the algorithm fail? How long
will it take to compute answers? What is the asymptotic operation count of the algorithm?
Will the algorithm be unstable for certain systems? Can instability be controlled by pivoting?
(Permuting the order of the rows of the matrix is called pivoting.) Which strategy of pivoting
should be used? How do we know whether the matrix is ill-conditioned and whether the
answers are accurate?

Gaussian elimination transforms a linear system into an upper triangular form, which
is easier to solve. This process, in turn, is equivalent to finding the factorization A =
LU, where L is a unit lower triangular matrix and U is an upper triangular matrix. This
factorization is especially useful when solving many linear systems involving the same
coefficient matrix but different right-hand sides, which occurs in various applications.

When the coefficient matrix A has a special structure such as being symmetric, positive
definite, triangular, banded, block, or sparse, the general approach of Gaussian elimination
with partial pivoting needs to be modified or rewritten specifically for the system. When the
coefficient matrix has predominantly zero entries, the system is sparse and iterative methods
can involve much less computer memory than Gaussian elimination. We will address many
of these issues in this chapter and the next one.

Our objective in this chapter is to develop a good program for solving a system of n
linear equations in n unknowns:

anxy + apx; + apxs + -+ apx, = by
axnXxi + apxy + apxz + - + ayx, = by
az1x; + anxy + azxz + -+ + azux, = bs

aj1xy + apxy + apxz + - + aipx, =b;

an1 X1 + appXo + ap3xs + -+ AppXy = bn
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In compact form, this system can be written simply as
n
Za,-jxj:b,» (lgzgn)
j=1

In these equations, a;; and b; are prescribed real numbers (data), and the unknowns x; are
to be determined. Subscripts on the letter a are separated by a comma only if necessary for
clarity—for example, in a3, 75 but not in ;.

A Larger Numerical Example

In this section, the simplest form of Gaussian elimination is explained. The adjective naive
applies because this form is not usually suitable for automatic computation unless essential
modifications are made, as in Section 7.2. We illustrate naive Gaussian elimination with a
specific example that has four equations and four unknowns:

6.X1 — 2)62 + 2)(?3 + 4.X4 = 16
12.X1 — 8)(?2 + 6)(?3 + 10)64 = 26
3X1 — 13X2 + 9X3 + 3X4 =—-19
—6x1 + 4xy, + x3 — 18xy = —34

2)

In the first step of the elimination procedure, certain multiples of the first equation are
subtracted from the second, third, and fourth equations so as to eliminate x; from these
equations. Thus, we want to create 0’s as coefficients for each x; below the first (where 12,
3, and —6 now stand). It is clear that we should subtract 2 times the first equation from the
second. (This multiplier is simply the quotient %.) Likewise, we should subtract % times the
first equation from the third. (Again, this multiplier is just %.) Finally, we should subtract
—1 times the first equation from the fourth. When all of this has been done, the result is

6x; — 2x, 4+ 2x3 + 4x4 = 16
— 4)62 + 2X3 + 2)C4 = -6

- 12)62 + 8)(3 + X4 = —27
2)62 + 3X3 — 14.X4 =-—18

3)

Note that the first equation was not altered in this process, although it was used to produce
the O coefficients in the other equations. In this context, it is called the pivot equation.

Notice also that Systems (2) and (3) are equivalent in the following technical sense:
Any solution of (2) is also a solution of (3), and vice versa. This follows at once from the
fact that if equal quantities are added to equal quantities, the resulting quantities are equal.
One can get System (2) from System (3) by adding 2 times the first equation to the second,
and so on.

In the second step of the process, we mentally ignore the first equation and the first
column of coefficients. This leaves a system of three equations with three unknowns. The
same process is now repeated using the top equation in the smaller system as the current
pivot equation. Thus, we begin by subtracting 3 times the second equation from the third.
(The multiplier is just the quotient i—lf.) Then we subtract —% times the second equation
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from the fourth. After doing the arithmetic, we arrive at

6)61 - 2)62 + 2)(?3 + 4.X4
— 4x2 + 2)(73 + 2.X4

2X3 -

4x3 — 13)(4

SX4

-21

4)

The final step consists in subtracting 2 times the third equation from the fourth. The result is

This system is said to be in upper triangular form. It is equivalent to System (2).

6)(?1 — 2)C2 + 2.X3 + 4.X4
— 4)(2 —|— 2X3 + 2X4

2)C3 - 5X4

— 3)C4

16

&)

This completes the first phase (forward elimination) in the Gaussian algorithm. The
second phase (back substitution) will solve System (5) for the unknowns starting at the

bottom. Thus, from the fourth equation, we obtain the last unknown
-3

:_—3:

Putting x4, = 1 in the third equation gives us

X4

1

2x3—-5=-9

and we find the next to last unknown

and so on. The solution is

X1=3

Algorithm

Xy=— =2

)C2=l

)C3=—2

.X4=1

To simplify the discussion, we write System (1) in matrix-vector form. The coefficient
elements a;; form an n x n square array, or matrix. The unknowns x; and the right-hand
side elements b; form n x 1 arrays, or vectors.* (See Appendix D for linear algebra notation
and concepts.) Hence, we have

aj
as
asy

ap
an
asy

as
azs
ass

an3

ain
(250
Az,

*To save space, we occasionally write a vector as [x, xa, ...,

us that this is an n x 1 array or vector and not 1 x n, as would be indicated without the transpose symbol.

X1
X2
X3

Xi

Xn |

b,
by
bs

b;

by

(6)

x,17, where the T stands for the transpose. It tells
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or
Ax =0b

Operations between equations correspond to operations between rows in this notation. We
shall use these two words interchangeably.

Now let us organize the naive Gaussian elimination algorithm for the general system,
which contains n equations and n unknowns. In this algorithm, the original data are over-
written with new computed values. In the forward elimination phase of the process, there
are n — 1 principal steps. The first of these steps uses the first equation to produce n — 1
zeros as coefficients for each x; in all but the first equation. This is done by subtracting
appropriate multiples of the first equation from the others. In this process, we refer to the
first equation as the first pivot equation and to a;; as the first pivot element. For each of
the remaining equations (2 <i < n), we compute

ai) .
ajj < a;j — (a—>alj (Isj<sn)
11

bl' < bl’ — <al1>b1
ap

The symbol < indicates a replacement. Thus, the content of the memory location allocated
to a;; is replaced by a;; — (a;1/ai1)a;;, and so on. This is accomplished by the following
line of pseudocode:

a;j < a;; — (a;1/an)ay;

Note that the quantities (a;;/a;;) are the multipliers. The new coefficient of x; in the ith
equation will be 0 because a;; — (a;;/ai)a;; = 0.
After the first step, the system will be of the form

ap dip a3 - Ay X1 b,
dzy dzz -+ dyy X2 by
0 apn ax - a X3 bs
0 apn a3z -+ ap Xi b;

L 0 dpy  QAp3 -+ dpp | | Xn | _bn h

From here on, we will not alter the first equation, nor will we alter any of the coefficients
for x; (since a multiplier times O subtracted from O is still 0). Thus, we can mentally
ignore the first row and the first column and repeat the process on the smaller system.
With the second equation as the pivot equation, we compute for each remaining equation
(B=sisn)

aiz .
ajj <= ajj — (a—>612j (2<j<n)
2

bl‘ < bi — (alz>b2
an
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Just prior to the kth step in the forward elimination, the system will appear as follows:

ay dip apz o et A X1 b,
0 a22 a23 DY P PRI azn 'x2 b2
0 0 0 - ayp --- aij e Qi X; b;

L 0 0 O .« e aﬂk P anj PRI ann_ _x”_ _bn_

Here, a wedge of O coefficients has been created, and the first k£ equations have been proc-
essed and are now fixed. Using the kth equation as the pivot equation, we select multipliers
to create 0’s as coefficients for each x; below the ay, coefficient. Hence, we compute for
each remaining equation (k + 1 <i <n)

dik .
aij < a;; — (a_>akj (k<j<n)
Kk

bi < bi — <ai>bk
Ak

Obviously, we must assume that all the divisors in this algorithm are nonzero.

Pseudocode

We now consider the pseudocode for forward elimination. The coefficient array is stored as
a double-subscripted array (a;;); the right-hand side of the system of equations is stored as
a single-subscripted array (b;); the solution is computed and stored in a single-subscripted
array (x;). It is easy to see that the following lines of pseudocode carry out the forward
elimination phase of naive Gaussian elimination:

integer i, j, k; real array (a;;)i.nx1:0, (bi)1:n
fork =1ton —1do
fori =k+1tondo
for j =kton do
aij < a;j — (@ir/are) ay;
end for
bi < b; — (ajr/a) by
end for
end for

Since the multiplier a;;/ay; does not depend on j, it should be moved outside the j loop.
Notice also that the new values in column k will be 0, at least theoretically, because when
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Jj =k, we have

aix < aix — (@i /A ) Ak

Since we expect this to be 0, no purpose is served in computing it. The location where the 0
is being created is a good place to store the multiplier. If these remarks are put into practice,
the pseudocode will look like this:

integer i, j, k; real xmult; real array (a;;)i.x1:n, (bi)1:n
fork =1ton —1do
fori =k+ 1tondo
xmult < agy [ ag
a;, < xmult
for j =k+ 1tondo
ajj < a;j — (xmult)ay;
end for
b; < b; — (xmult)b,
end for
end for

Here, the multipliers are stored because they are part of the LU -factorization that can be
useful in some applications. This matter is discussed in Section 8.1.
At the beginning of the back substitution phase, the linear system is of the form

anxy + apx; + ajizxs + - o apx, = by
anX; + axxs + --- et ax, = by

azxz + - - +  azyx, =bs

aiiXi + Qijy1Xip1 + ot ainXy = b

Ap—1,n—1Xn—1 + Ap—1,nXn = bn—l

AppXn = bn

where the a;;’s and b;’s are not the original ones from System (6) but instead are the ones
that have been altered by the elimination process.
The back substitution starts by solving the nth equation for x,,:

by
Xp = —
ann

Then, using the (n — 1)th equation, we solve for x,,_;:

1
Xp—1 = (bn—l - an—l,nxn)
anfl,n—]
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We continue working upward, recovering each x; by the formula

1 n
;= — b,’— E ijXj | = _1a _2""71 7
. a,-i< ajxj) (l ! ’ ) ()

j=i+1

Here is pseudocode to do this:

integer i, j, n; real sum; real array (a;;)i:nxin, (Xi)in
Xn < bn/ann
fori =n—1to1 step —1 do

sum <— b;

for j =i+ 1tondo

SUm <— SUm — a;;x;

end for

X; < sum/a;;
end for

Now we put these segments of pseudocode together to form a procedure, called Naive_Gauss,
which is intended to solve a system of n linear equations in n unknowns by the method of
naive Gaussian elimination. This pseudocode serves a didactic purpose only; a more robust
pseudocode will be developed in the next section.

procedure Naive_Gauss(n, (a;;), (b;), (x;))
integer i, j, k, n; real sum, xmult
real array (aij)lznxl:nv (bi)l:ru (-xi)lzn
fork =1ton — 1do
fori =k+1tondo
xmult < ag [ag
;i < xmult
for j =k+ 1tondo
ajj < a;; — (xmult)ay;
end for
b; < b, — (xmult)b,
end for
end for
Xy <= by/an,
fori =n—1to1 step —1do
sum < b;
for j =i+ 1tondo
Sum <— sum — aijxj
end for
X; <— sum/a;;
end for
end procedure Naive_Gauss
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Before giving a test example, let us examine the crucial computation in our pseudocode,
namely, a triply nested for-loop containing a replacement operation:

fork--------. do
fori --------- do
forj ......... do
ajj < a;j — (i [axe) ay;
end do
end do
end do

Here, we must expect all quantities to be infected with roundoff error. Such a roundoff error
in ay; is multiplied by the factor (a;/ax). This factor is large if the pivot element |ay| is
small relative to |a;;|. Hence, we conclude, tentatively, that small pivot elements lead to
large multipliers and to worse roundoff errors.

Testing the Pseudocode

One good way to test a procedure is to set up an artificial problem whose solution is known
beforehand. Sometimes the test problem will include a parameter that can be changed to
vary the difficulty. The next example illustrates this.

Fixing a value of n, define the polynomial

pOy=1+t+2+ =D 10!
j=1

The coefficients in this polynomial are all equal to 1. We shall try to recover these known
coefficients from n values of the polynomial. We use the values of p(t) at the integers ¢t =
1+4ifori =1,2,...,n.If the coefficients in the polynomial are denoted by x1, x5, . .., X,
we should have

. i 1 - .
YU+ = [A+d" =1 (Isisn) ®)
j=1 !
Here, we have used the formula for the sum of a geometric series on the right-hand side;
that is,

I+ -1 1

N i1
P(1+1)—Z(1+l)’ =0 -1 i

j=1
Letting a;; = (14i)/~"and b; = [(1 +i)" — 1]/i in Equation (8), we have a linear system.
We write a pseudocode for a specific test case that solves the system of Equation (8) for

various values of n.

Since the naive Gaussian elimination procedure Naive_Gauss can be used, all that is needed
is a calling program. We decide to use n = 4,5,6,7,8,9, 10 for the test. Here is a
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suitable pseudocode:

program 7Test NGE
integer parameter m < 10
integer iv j» n; real al’ray, (aij)l:mxlzrm (bi)lzmv (xi)]:m
for n = 4to 10 do
fori = 1tondo
for j = 1tondo

Cl,'j S (l + 1)j7]
end for
by <~ [G+ 1" —1]/i

end for
call Naive_Gauss(n, (a;;), (b;), (x;))
output n, (x;)1.,

end for

end program 7Test NGE

When this pseudocode was run on a machine that carries approximately seven decimal
digits of accuracy, the solution was obtained with complete precision until n reached 9, and
then the computed solution was worthless because one component exhibited a relative error
of 16,120%! (Write and run a computer program to see for yourself!) [ |

The coefficient matrix for this linear system is an example of a well-known ill-
conditioned matrix called the Vandermonde matrix, and this accounts for the fact that
the system cannot be solved accurately using naive Gaussian elimination. What is amazing
is that the trouble happens so suddenly! When n > 9, the roundoff error that is present in
computing x; is propagated and magnified throughout the back substitution phase so that
most of the computed values for x; are worthless. Insert some intermediate print state-
ments in the code to see for yourself what is going on here. (See Gautschi [1990] for more
information on the Vandermonde matrix and its ill-conditioned nature.)

Residual and Error Vectors
For a linear system Ax = b having the true solution x and a computed solution x, we define
e=X-—x error vector
r=Ax—»>b residual vector
An important relationship between the error vector and the residual vector is
Ae=r

Suppose that two students using different computer systems solve the same linear
system, Ax = b. What algorithm and what precision each student used are not known.
Each vehemently claims to have the correct answer, but the two computer solutions x and
X are totally different! How do we determine which, if either, computed solution is correct?

We can check the solutions by substituting them into the original system, which is the
same as computing the residual vectors 7 = AX — b and ¥ = Ax — b. Of course, the
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computed solutions are not exact because each must contain some roundoff errors. So we
would want to accept the solution with the smaller residual vector. However, if we knew
the exact solution x, then we would just compare the computed solutions with the exact
solution, which is the same as computing the error vectors ¢ = X —x and ¢ = X —x. Now
the computed solution that produces the smaller error vector would most assuredly be the
better answer.

Since the exact solution is usually not known in applications, one would tend to accept
the computed solution that has the smaller residual vector. But this may not be the best
computed solution if the original problem is sensitive to roundoff errors—that is, is ill-
conditioned. In fact, the question of whether a computed solution to a linear system is a
good solution is extremely difficult and beyond the scope of this book. Problem 7.1.5 may
give some insight into the difficulty of assessing the accuracy of computed solutions of
linear systems.

Summary

(1) The basic forward elimination procedure using equation k to operate on equations k +
Lk+2,...,nis

aij < aij — (@ic/aw)a; — (k<jsnk <i<n)
bi <= b; — (aix/ar) by

Here we assume ay; # 0. The basic back substitution procedure is
1 - .
x,-:a—ii bi_AZaijxj i=n—-1,n-2,...,1)
Jj=i+l

(2) When solving the linear system Ax = b, if the true or exact solution is x and the
approximate or computed solution is X, then important quantities are

error vectors e=X—x
residual vectors r=Ax —b

Problems 7.1

“1. Show that the system of equations

X1 +4x + ax3 =06
2x;1 — X2 + 20x3 =3
ax; +3x+ x3=5

possesses a unique solution when o« = 0, no solution when « = —1, and infinitely
many solutions when o = 1. Also, investigate the corresponding situation when the
right-hand side is replaced by 0’s.
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“2. For what values of o does naive Gaussian elimination produce erroneous answers for
this system?

x1+x2:2
ax; +x =2+«

Explain what happens in the computer.

3. Apply naive Gaussian elimination to these examples and account for the failures. Solve
the systems by other means if possible.
ag 3X1 + 2.X2 =4 ap, 6X1 — 3)C2 = 6
: —X1 — %XZ =1 : —ZX] + X = -2
x| + xy + 2)63 =4
d. X1+XZ+OX3:2
Ox1 + X+ x3= 0
“4. Solve the following system of equations, retaining only four significant figures in each
step of the calculation, and compare your answer with the solution obtained when eight
significant figures are retained. Be consistent by either always rounding to the number
of significant figures that are being carried or always chopping.

{0X1+2X2=4
C.
X1 — .X2=5

0.1036x; 4 0.2122x, = 0.7381
0.2081x; 4 0.4247x, = 0.9327

45, Consider

4 _ [0780 0563 ,_ [0217
= 10913 0.659|" = 10.254
~ [ 0999 - [ 0341
=1 1.001 | *=1_0.087

Compute residual vectors 7 = AX — b and ¥ = AX — b and decide which of X and x
is the better solution vector. Now compute the error vectorse = X —x ande = X — x,
where x = [1, —1]7 is the exact solution. Discuss the implications of this example.

6. Consider the system

10_4x1 + X, = bl
X1+ x=0by

where by #£ 0 and b, # 0. Its exact solution is

—by + b, by — 1074b2
Xy = ——, Xp= ————
-0 T o1-10*
“a. Let by = 1 and b, = 2. Solve this system using naive Gaussian elimination

with three-digit (rounded) arithmetic and compare with the exact solution x; =
1.00010. .. and x, = 0.9998909. . ..

“b. Repeat the preceding part after interchanging the order of the two equations.

“c. Find values of b; and b, in the original system so that naive Gaussian elimination
does not give poor answers.
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7. Solve each of the following systems using naive Gaussian elimination—that is, forward
elimination and back substitution. Carry four significant figures.

3x; + 4x, + 3x3 = 10 3x; + 2x, — 5x3 =0

‘a. X1+5)C2— X3 = 7 “h. 2)61—3X2+ )C3=0
6x; + 3x3 + 7x3 = 15 X +4dx — x3=4
1-1 2 1 X1 1 3+ 20— v = 7
3 2 1 4 X 1

“c. = d. 5x1 4+ 3x, +2x3 = 4
58 6 3| |x 1 e
4 2 5 3] |x -1 S

x1+3x2+2x3+ .X4=—2
4x1+2x2+ X3+ZX4=
2x1 + x4 2x3 4+ 3x4 =
X1+ 2x0 +4xz + x4 =—1

Computer Problems 7.1

1. Program and run the example in the text and insert some print statements to see what
is happening.

2. Rewrite and test procedure Naive_Gauss so that it is column oriented; that is, the first
index of a;; varies on the innermost loop.

3. Define an n x n matrix A by the equation a;; = i + j. Define b by the equation
b; =i + 1. Solve Ax = b by using procedure Naive_Gauss. What should x be?

4. Define an n x n array by a;; = —1 + 2min{i, j}. Then set up the array (b;) in such a
way that the solution of the system Zj’:l a;jxj =b; (1gi<n)isx; =1(1<j<n).
Test procedure Naive_Gauss on this system for a moderate value of n, say n = 15.

5. Write and test a version of procedure Naive_Gauss in which
a. An attempted division by 0 is signaled by an error return.

b. The solution x is placed in array (b;).

“6. Write acomplex arithmetic version of Naive_Gauss by declaring certain variables comp-
lex and making other necessary changes to the code. Consider the complex linear system

Az=D>b
where
549 54 5 —-6-6i —-7-7i
A= 3+3i 64100 -5-5 —6-6i
T 1242 3+ 3 —1+43 -5-5i
I+ i 2+ 2i -3-3i 4i
Solve this system four times with the following vectors b:
—10 + 2i 24+ 6i 7 —3i —4—8i
=5+ i 44+ 12i 7 —3i —4—8i
=S5+ i’ 24 60|’ 01" —4—8i

=5+ i 24+ 6i 7 —3i 0
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10.
11.

Verify that the solutions are z = A~'b for scalars A. The numbers A are called
eigenvalues, and the solutions z are eigenvectors of A. Usually, the b vector is not
known, and the solution of the problem Az = Az cannot be obtained by using a linear
equation solver.

. (Continuation) A common electrical engineering problem is to calculate currents in

an electric circuit. For example, the circuit shown in the figure with R; (ohms), C;
(microfarads), L (millihenries), and w (hertz) leads to the system

(50— 100)I; + B0, + 6O = V,
(10i); + (10 — 10i)I, + (10 —20i)lz = O
- 30i), + 20 —50i)[; = —V,
Select V| to be 100 millivolts, and solve two cases:

“a. The two voltages are in phase; that is, V, = V.

“b. The second voltage is a quarter of a cycle ahead of the first; that is, V, =i V].

Use the complex arithmetic version of Naive_Gauss, and in each case, solve the sys-
tem for the amplitude (in milliamperes) and the phase (in degrees) for each cur-
rent I;. Hint: When I, = Re(l;) + i Im(l), the amplitude is |/;|, and the phase is
(180°/m) arctan[Im(/;) /Re(I;)]. Draw a diagram to show why this is so.

R, =50 R; =50 G=5 G=2
— ANV A | |
I L I
¢ =10 L=2
v Ry =20
v =104 -4 v,

. Select a reasonable value of n, and generate a random n x n array a using a random-

number generator. Define the array b such that the solution of the system
n
Zaijxj:b,- (1§l§l’l)
j=1
is x; = j, where 1< j <n. Test the naive Gaussian algorithm on this system. Hint:

You may use the function Random, which is discussed in Chapter 13, to generate the
random elements of the (g;;) array.

. Carry out the test described in the text for procedure Naive_Gauss but reverse the order

of the equations. Hint: It suffices, in the code, to replace i by n — i + 1 in appropriate
places.

Solve the linear system given in the leadoff example to this chapter using Naive_Gauss.

Use mathematical software such as built-in routines in Matlab, Maple, or Mathematica
to directly solve linear system (2).
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1.2 Gaussian Elimination with Scaled Partial Pivoting

Naive Gaussian Elimination Can Fail

To see why the naive Gaussian elimination algorithm is unsatisfactory, consider the follow-
ing system:

{0X1+X2=1 (1)

)C1+)C2:2

The pseudocode that we constructed in Section 7.1 would attempt to subtract some multiple
of the first equation from the second to produce 0 as the coefficient for x; in the second
equation. This, of course, is impossible, so the algorithm fails if a;; = 0.

If a numerical procedure actually fails for some values of the data, then the procedure
is probably untrustworthy for values of the data near the failing values. To test this dictum,
consider the system

{8)(1 +X2=1 (2)

)C1+X2:2

in which ¢ is a small number different from 0. Now the naive algorithm of Section 7.1
works, and after forward elimination it produces the system

=1
{m ' (1) ‘ .

Xo=2—¢&"
In the back substitution, the arithmetic is as follows:

2—¢7'

=1_7871~ s XI=871(1—X2)%0

X2
Now &~ will be large, so if this calculation is performed by a computer that has a fixed
word length, then for small values of ¢, both (2 — &™) and (1 — ¢~') would be computed
-1
as —e .
For example, in an 8-digit decimal machine with a 16-digit accumulator, when ¢ =
1072, it follows that e~ = 10°. To subtract, the computer must interpret the numbers as

e~ =10° = 0.10000 000 x 10'® = 0.10000 00000 00000 0 x 10'°
2 = 0.20000000 x 10" = 0.00000 00002 000000 x 10'°

Thus, (¢~! — 2) is initially computed as 0.09999 99998 000000 x 10'® and then rounded
to 0.10000 000 x 10'0 = =1,
We conclude that for values of ¢ sufficiently close to 0, the computer calculates x, as
1 and then x; as 0. Since the correct solution is
1 12

~ 1, =
1—c¢ 2 1—¢

~

the relative error in the computed solution for x; is extremely large: 100%.
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Actually, the naive Gaussian elimination algorithm works well on Systems (1) and (2)
if the equations are first permuted:

X1 +x, = 2
0)61 + X, = 1
and
X1+ x2=2
EX1 + xp = 1
The first system is easily solved obtaining x, = 1 and x; = 2 — x, = 1. Moreover, the
second of these systems becomes

X1+ Xy =2
(I—¢e)x,=1-2¢

after the forward elimination. Then from the back substitution, the solution is computed as

1—2¢
1—¢

Xy = ~ 1, x1=2—x~1

Notice that we do not have to rearrange the equations in the system: it is necessary
only to select a different pivot row. The difficulty in System (2) is not due simply to € being
small but rather to its being small relative to other coefficients in the same row. To verify
this, consider

1, _ -1
{xl—{—s Xo =€ )

X1 + Xo =2

System (4) is mathematically equivalent to (2). The naive Gaussian elimination algorithm
fails here. It produces the triangular system

{xl + e lx, = g7
( 1

l—ex=2—¢"

and then, in the back substitution, it produces the erroneous result

2—¢'
Tl =gt

This situation can be resolved by interchanging the two equations in (4):

{x1+ Xp =2

X> 1, X1 =g} —871)62%0

X +elx,=¢7!

Now the naive Gaussian elimination algorithm can be applied, resulting in the system

X1 +x2=2
(e =Dry=¢e"-2
The solution is
e -2
el —1

—

Xy = s x1=2—-—x~1

which is the correct solution.
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Partial Pivoting and Complete Partial Pivoting

Gaussian elimination with partial pivoting selects the pivot row to be the one with the
maximum pivot entry in absolute value from those in the leading column of the reduced
submatrix. Two rows are interchanged to move the designated row into the pivot row posi-
tion. Gaussian elimination with complete pivoting selects the pivot entry as the maximum
pivot entry from all entries in the submatrix. (This complicates things because some of the
unknowns are rearranged.) Two rows and two columns are interchanged to accomplish this.
In practice, partial pivoting is almost as good as full pivoting and involves significantly
less work. See Wilkinson [1963] for more details on this matter. Simply picking the largest
number in magnitude as is done in partial pivoting may work well, but here row scaling
does not play a role—the relative sizes of entries in a row are not considered. Systems with
equations having coefficients of disparate sizes may cause difficulties and should be viewed
with suspicion. Sometimes a scaling strategy may ameliorate these problems. In this book,
we present Gaussian elimination with scaled partial pivoting, and the pseudocode contains
an implicit pivoting scheme.

In certain situations, Gaussian elimination with the simple partial pivoting strategy may
lead to an incorrect solution. Consider the augmented matrix

2 2c | 2c
1 1] 2
where ¢ is a parameter that can take on very large numerical values and the variables are x

and y. The first row is selected as the pivot row by choosing the larger number in the first
column. Since the multiplier is 1/2, one step in the row reduction process brings us to

2 2¢ 2c
0 1—c|2—-c¢
Now suppose that we are working with a computer of limited word length. So in this

computer, we obtain | — ¢ &~ —c and 2 — ¢ & —c. Consequently, the computer contains
these numbers:

2c

—c

Thus, as the solution, we obtain y = 1 and x = 0, whereas the correct solutionisx = y = 1.

On the other hand, Gaussian elimination with scaled partial pivoting selects the second
row as the pivot row. The scaling constants are (2c, 1), and the larger of the two ratios for
selecting the pivot row from {2/(2c), 1} is the second one. Now the multiplier is 2, and one
step in the row reduction process brings us to

[0 2c—2 ‘ 2c—4}

2 2c
0 —c

1 1 2

On our computer of limited word length, we find 2¢c — 2 & 2¢ and 2¢ — 4 =~ 2¢. Conse-
quently, the computer contains these numbers:
2c
2

{0 2c
Now we obtain the correct solution, y = 1 and x = 1.

11
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Gaussian Elimination with Scaled Partial Pivoting

These simple examples should make it clear that the order in which we treat the equations
significantly affects the accuracy of the elimination algorithm in the computer. In the naive
Gaussian elimination algorithm, we use the first equation to eliminate x; from the equations
that follow it. Then we use the second equation to eliminate x, from the equations that
follow it, and so on. The order in which the equations are used as pivot equations is the
natural order {1, 2, ..., n}. Note that the last equation (equation number n) is not used as
an operating equation in the natural ordering: At no time are multiples of it subtracted from
other equations in the naive algorithm.

From the previous examples, it is clear that a strategy is needed for selecting new pivots
at each stage in Gaussian elimination. Perhaps the best approach is complete pivoting,
which involves searches over all entries in the submatrices for the largest entry in absolute
value and then interchanges rows and columns to move it into the pivot position. This
would be quite expensive, since it involves a great amount of searching and data movement.
However, searching just the first column in the submatrix at each stage accomplishes most
of what is needed (avoiding small or zero pivots). This is partial pivoting, and it is the
most common approach. It does not involve an examination of the elements in the rows,
since it looks only at column entries. We advocate a strategy that simulates a scaling of
the row vectors and then selects as a pivot element the relatively largest entry in a column.
Also, rather than interchanging rows to move the desired element into the pivot position,
we use an indexing array to avoid the data movement. This procedure is not as expensive
as complete pivoting, and it goes beyond partial pivoting to include an examination of all
elements in the original matrix. Of course, other strategies for selecting pivot elements could
be used.

The Gaussian elimination algorithm now to be described uses the equations in an order
that is determined by the actual system being solved. For instance, if the algorithm were
asked to solve System (1) or (2), the order in which the equations would be used as pivot
equations would not be the natural order {1, 2} but rather {2, 1}. This order is automatically
determined by the computer program. The order in which the equations are employed is
denoted by the row vector [£4, £, ..., £,], where ¢, is not actually being used in the forward
elimination phase. Here, the ¢; are integers from 1 to n in a possibly different order. We call
L =1[4,4,,...,¢,]theindex vector. The strategy to be described now for determining the
index vector is termed scaled partial pivoting.

At the beginning, a scale factor must be computed for each equation in the system.
Referring to the notation in Section 7.1, we define

s; = max |a| (Igi<n)
1<j<n
These n numbers are recorded in the scale vector s = [sy, 52, ..., 5,].

In starting the forward elimination process, we do not arbitrarily use the first equation
as the pivot equation. Instead, we use the equation for which the ratio |a; ;|/s; is greatest. Let
£, be the first index for which this ratio is greatest. Now appropriate multiples of equation
£, are subtracted from the other equations to create 0’s as coefficients for each x; except in
the pivot equation.

The best way of keeping track of the indices is as follows: At the beginning, define the
index vector £ tobe [€1, €5, ..., £,] =[1,2,...,n].Select j to be the first index associated
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ay.
{—' al lgign}
Sg,.

Now interchange £; with ¢, in the index vector £. Next, use multipliers

with the largest ratio in the set:

g1
ag 1
times row ¢, and subtract from equations ¢; for 2 <i <n. It is important to note that only

entries in £ are being interchanged and not the equations. This eliminates the time-consuming
and unnecessary process of moving the coefficients of equations around in the computer

memory!
ag; 2 .
u :2<i<n
Se;

In the second step, the ratios
are scanned. If j is the first index for the largest ratio, interchange £; with £, in £. Then
multipliers

g2

agy2

times equation ¢, are subtracted from equations ¢; for 3 <i <n.
At step k, select j to be the first index corresponding to the largest of the ratios,

ay.
{| okl :k<i<n}
Se;

and interchange £; and ¢, in index vector £. Then multipliers

Ak
gk

times pivot equation £; are subtracted from equations ¢; for k + 1 <i <n.

Notice that the scale factors are not changed after each pivot step. Intuitively, one might
think that after each step in the Gaussian algorithm, the remaining (modified) coefficients
should be used to recompute the scale factors instead of using the original scale vector. Of
course, this could be done, but it is generally believed that the extra computations involved in
this procedure are not worthwhile in the majority of linear systems. The reader is encouraged
to explore this question. (See Computer Problem 7.2.16.)

Solve this system of linear equations:
0.0001lx +y =1
x+y=2

using no pivoting, partial pivoting, and scaled partial pivoting. Carry at most five significant
digits of precision (rounding) to see how finite precision computations and roundoff errors
can affect the calculations.

By direct substitution, it is easy to verify that the true solution is x = 1.0001 and y =
0.99990 to five significant digits.
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For no pivoting, the first equation in the original system is the pivot equation, and
the multiplier is xmult = 1/0.0001 = 10000. Multiplying the first equation by this mul-
tiplier and subtracting the result from the second equation, the necessary calculations are
(10000)(0.0001) — 1 = 0, (10000)(1) — 1 = 9999, and (10000)(1) — 2 = 9998. The new
system of equations is

0.0001x +y = 1
9999y = 9998

From the second equation, we obtain y = 9998/9999 =~ 0.99990. Using this result
and the first equation, we find 0.000lx = 1 —y = 1 — 0.999900 = 0.0001 and x =
0.0001/0.0001 = 1. Notice that we have lost the last significant digit in the correct value
of x.

We repeat the solution using partial pivoting in the original system. Examining the first
column of x coefficients (0.0001, 1), we see that the second is larger, so the second equation
is used as the pivot equation. We can interchange the two equations, obtaining

x+y=2
0.0001x +y =1

The multiplier is xmult = 0.0001/1 = 0.0001. This multiple of the first equation is
subtracted from the second equation. The calculations are (—0.0001)(1) + 0.0001 = 0,
(0.0001)(1) — 1=0.99990, and (0.0001)(2) — 1 = 0.99980. The new system of equa-
tions is

x+y=2
0.99990y = 0.99980

Weobtain y = 0.99980/0.99990 ~ 0.99990. Now, using the second equation and this value,
wefindx =2 —y =2—-0.99990 = 1.0001. Both computed values of x and y are correct
to five significant digits.

We repeat the solution using scaled partial pivoting on the original system. Since
the scaling constants are s = (1, 1) and the ratios for determining the pivot equation
are (0.0001/1, 1/1), the second equation is now the pivot equation. We do not actually
interchange the equations but can work with an index array £ = (2, 1) that tells us to use
the second equation as the first pivot equation. The rest of the calculations are as above for
partial pivoting. The computed values of x and y are correct to five significant digits.

We cannot promise that scaled partial pivoting will be better than partial pivoting, but
it clearly has some advantages. For example, suppose that someone wants to force the first
equation in the original system to be the pivot equation and multiply it by a large number
such as 20,000, obtaining

2x + 20000y = 20000
x+y=2

Partial pivoting ignores the fact that the coefficients in the first equation differ by orders
of magnitude and selects the first equation as the pivot equation. However, scaled partial
pivoting uses the scaling constants (20000, 1), and the ratios for determining the pivot
equations are (2/20000, 1/1). Scaled partial pivoting continues to select the second equation
as the pivot equation! [ |
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A Larger Numerical Example

We are not quite ready to write pseudocode, but let us consider what has been described in
a concrete example. Consider

3 -13 9 3] [x —19
6 4 1 18] |x| |34

6 —2 2 4|lx|=] 16 )
2 -8 6 10| |x 26

The index vector is £ = [1, 2, 3, 4] at the beginning. The scale vector does not change
throughout the procedure and is s = [13, 18, 6, 12]. To determine the first pivot row, we
look at four ratios:

il ;12,34 36 6 121 023,033, 1.0, 1.0
{ Se; T e }_{13’18’6’ IZ}N{. 1033,1.0. 1.0}
We select the index j as the first occurrence of the largest value of these ratios. In this
example, the largest of these occurs for the index j = 3. So row three is to be the pivot
equation in step 1 (k = 1) of the elimination process. In the index vector £, entries ¢; and
£; are interchanged so that the new index vectoris £ = [3, 2, 1, 4]. Thus, the pivot equation
is £, which is £; = 3. Now appropriate multiples of the third equation are subtracted from
the other equations so as to create 0’s as coefficients for x; in each of those equations.
Explicitly, % times row three is subtracted from row one, —1 times row three is subtracted
from row two, and 2 times row three is subtracted from row four. The result is

0 —12 8 1 X =27
0 2 3 —14 x| | —18
6 -2 2 4 x| 16
0 -4 2 2 Xy —6

In the next step (k = 2), we use the index vector £ = [3, 2, 1, 4] and scan the ratios
corresponding to rows two, one, and four:

2 12 4
lawal o5y VL2 1240 011,092,0.33)
50 18 13° 12

looking for the largest value. We find that the largest is the second ratio, and we therefore
set j = 3 and interchange ¢; with £; in the index vector. Thus, the index vector becomes
£ = [3, 1, 2, 4]. The pivot equation for step 2 in the elimination is now row one, and ¢, = 1.
Next, multiples of the first equation are subtracted from the second equation and the fourth
equation. The appropriate multiples are —é and % respectively. The result is

0 -12 8 1] [x ~27
3 83

0 0 B ¥l | |-t

6 -2 2  4||x 16

0o 0 -2 3] |x 3

The third and final step (k = 3) is to examine the ratios corresponding to rows two and

four:
lag 3| . 13/3 2/3
;: :3’4 = —_, ~ 024, 006
{ s } { 18 12 { }

i



266

Chapter 7 Systems of Linear Equations

with the index vector £ = [3, 1,2, 4]. The larger value is the first, so we set j = 3.
Since this is step k = 3, interchanging ¢; with £; leaves the index vector unchanged, £ =
[3, 1, 2, 4]. The pivot equation is row two and £3 = 2, and we subtract — % times the second
equation from the fourth equation. So the forward elimination phase ends with the final
system

0 —-12 8 1 X1 =27
O
6 -2 2 4 X3 16
0 0o 0 —-% X4 -5

13 1

The order in which the pivot equations were selected is displayed in the final index vector
£=1[3,1,2,4].

Now, reading the entries in the index vector from the last to the first, we have the order
in which the back substitution is to be performed. The solution is obtained by using equation
{4 = 4 to determine x4, and then equation ¢; = 2 to find x3, and so on. Carrying out the
calculations, we have

1
1
&:Tgﬂ04y3+@y®un:_z
1
x = —o[-27 = 8(=2) — 1()] = |

1
x| = 8[16+ 2(1) —2(=2)—4(DH] =3
Hence, the solution is

x=[3 1 =2 1]

Pseudocode

The algorithm as programmed carries out the forward elimination phase on the coefficient
array (a;;) only. The right-hand side array (b;) is treated in the next phase. This method is
adopted because it is more efficient if several systems must be solved with the same array
(a;;) but differing arrays (b;). Because we wish to treat (b;) later, it is necessary to store
not only the index array but also the various multipliers that are used. These multipliers
are conveniently stored in array (a;;) in the positions where the 0 entries would have been
created. These multipliers are useful in constructing the LU factorization of the matrix A,
as we explain in Section 8.1.

We are now ready to write a procedure for forward elimination with scaled partial
pivoting. Our approach is to modify procedure Naive_Gauss of Section 7.1 by introducing
scaling and indexing arrays. The procedure that carries out Gaussian elimination with
scaled partial pivoting on the square array (a;;) is called Gauss. Its calling sequence is
(n, (aij), (£;)), where (a;;) is the n x n coefficient array and (¢;) is the index array £. In the
pseudocode, (s;) is the scale array, s.
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procedure Gauss(n, (a;;), (¢;))
integer i, j, k, n; real r, rmax, smax, xmult
real array (a;;)i.nx1:n, (¢i)1.,; real array allocate (s;);.,
fori = 1tondo
b <1
smax < 0
for j =1tondo
smax < max(smax, |a;;|)
end for
S; < smax
end for
fork=1ton —1do
rmax < 0
fori =k ton do
r < lag i/se|
if (r > rmax) then
rmax <—r
Jj<—i
end if
end for
Ej <> ﬁk
fori =k+1tondo
xmult <— ay, i /ag, x
ag; x < xmult
for j=k+1tondo
ag, j < ag ;j — (xmult)ay, ;
end for
end for
end for
deallocate array (s;)
end procedure Gauss

A detailed explanation of the above procedure is now presented. In the first loop, the initial
form of the index array is being established, namely, ¢; = i. Then the scale array (s;) is
computed.

The statement for k = 1 to n — 1 do initiates the principal outer loop. The index k is
the subscript of the variable whose coefficients will be made 0 in the array (a;;); that is,
k is the index of the column in which new O’s are to be created. Remember that the 0’s
in the array (a;;) do not actually appear because those storage locations are used for the
multipliers. This fact can be seen in the line of the procedure where xmult is stored in the
array (a;;). (See Section 8.1 on the LU factorization of A for why this is done.)

Once k has been set, the first task is to select the correct pivot row, which is done by
computing |asi|/se, fori = k,k 4+ 1, ..., n. The next set of lines in the pseudocode is
calculating this greatest ratio, called rmax in the routine, and the index j where it occurs.
Next, £, and ¢; are interchanged in the array (¢;).
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The arithmetic modifications in the array (a;;) due to subtracting multiples of row £
from rows €1, £x12, - .., £, all occur in the final lines. First the multiplier is computed and
stored; then the subtraction occurs in a loop.

Caution: Values in array (g;;) that result as output from procedure Gauss are not the
same as those in array (a;;) at input. If the original array must be retained, one should store
a duplicate of it in another array.

In the procedure Naive_Gauss for naive Gaussian elimination from Section 7.1, the
right-hand side b was modified during the forward elimination phase; however, this was not
done in the procedure Gauss. Therefore, we need to update b before considering the back
substitution phase. For simplicity, we discuss updating b for the naive forward elimination
first. Stripping out the pseudocode from Naive_Gauss that involves the (b;) array in the
forward elimination phase, we obtain

fork =1ton —1do
fori =k+1tondo
b; = b; — a;; by
end for
end for

This updates the (b;) array based on the stored multipliers from the (a;;) array. When scaled
partial pivoting is done in the forward elimination phase, such as in procedure Gauss, the
multipliers for each step are not one below another in the (g;;) array but are jumbled around.
To unravel this situation, all we have to do is introduce the index array (¢;) into the above
pseudocode:

fork =1ton —1do
fori =k+1tondo
by, = by, — agiby,
end for
end for

After the array b has been processed in the forward elimination, the back substitution process
is carried out. It begins by solving the equation

ag,.nXn = bln (6)

whence
by

n

Xy =
aln,n

Then the equation
g,y n—1Xn—1+ A, | nXn = by,_,

is solved for x,_;:

1
Xp—1 = (bk,,,l - al”,],nxn)
ag, .n—1
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After x,, x,_1, ..., X;+1 have been determined, x; is found from the equation
Qg i Xi + ag i1 Xip1 + -+ ag n Xy = by,

whose solution is

X = ] (bé, Z ay;, jxj> (7)

Jj=i+1

Except for the presence of the index array ¢;, this is similar to the back substitution formula
(7) in Section 7.1 obtained for naive Gaussian elimination.

The procedure for processing the array b and performing the back substitution phase
is given next:

procedure Solve(n, (a;;), (£;), (b;), (x;))
integer i, k, n; real sum
real array (aij)l:nxl:m (Zi)l:ny (bi)lzm (-xi)l:n
fork =1ton — 1do
fori =k+ 1tondo
by, < by, — ay by
end for
end for
Xp < bln /al,,,n
fori =n—1to1 step —1do
sum <— by,
for j =i+ 1ton do
SUM <— SUm — dy, ;X;
end for
X; <= sumj/ay, ;
end for
end procedure Solve

Here, the first loop carries out the forward elimination process on array (b;), using arrays
(a;;) and ({;) that result from procedure Gauss. The next line carries out the solution of
Equation (6). The final part carries out Equation (7). The variable sum is a temporary variable
for accumulating the terms in parentheses.

As with most pseudocode in this book, those in this chapter contain only the basic
ingredients for good mathematical software. They are not suitable as production code for
various reasons. For example, procedures for optimizing code are ignored. Furthermore, the
procedures do not give warnings for difficulties that may be encountered, such as division by
zero! General-purpose software should be robust; that is, it should anticipate every possible
situation and deal with each in a prescribed way. (See Computer Problem 7.2.11.)

Long Operation Count

Solving large systems of linear equations can be expensive in computer time. To understand
why, let us perform an operation count on the two algorithms whose codes have been given.
We count only multiplications and divisions (long operations) because they are more time
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consuming than addition. Furthermore, we lump multiplications and divisions together
even though division is slower than multiplication. In modern computers, all floating-point
operations are done in hardware, so long operations may not be as significant, but this still
gives an indication of the operational cost of Gaussian elimination.

Consider first procedure Gauss. In step 1, the choice of a pivot element requires the
calculation of n ratios—that is, n divisions. Then for rows ¢5, ¢3, ..., £,, we first compute a
multiplier and then subtract from row ¢; that multiplier times row £,. The zero that is being
created in this process is not computed. So the elimination requires n — 1 multiplications
per row. If we include the calculation of the multiplier, there are n long operations (divisions
or multiplications) per row. There are n — 1 rows to be processed for a total of n(n — 1)
operations. If we add the cost of computing the ratios, a total of n> operations is needed for
step 1.

The next step is like step 1 except that row ¢, is not affected, nor is the column of
multipliers created and stored in step 1. So step 2 will require (n — 1) multiplications or
divisions because it operates on a system without row ¢, and without column 1. Continuing
this reasoning, we conclude that the total number of long operations for procedure Gauss is

3

W= 1P+ =2 e 4 P = D DD -1

(The derivation of this formula is outlined in Problem 7.2.16.) Note that the number of long
operations in this procedure grows like n?/3, the dominant term.

Now consider procedure Solve. The forward processing of the array (b;) involves n — 1
steps. The first step contains n — 1 multiplications, the second contains n —2 multiplications,
and so on. The total of the forward processing of array (b;) is thus

(n—1)+(n—2)+~'+3+2+1=%(n—1)

(See Problem 7.2.15.) In the back substitution procedure, one long operation is involved in
the first step, two in the second step, and so on. The total is

n
I+243 4+ +n=-0m+1

Thus, procedure Solve involves altogether n? long operations. To summarize:

B THEOREM 1 THEOREM ON LONG OPERATIONS

The forward elimination phase of the Gaussian elimination algorithm with scaled par-
tial pivoting, if applied only to the n x n coefficient array, involves approximately n° /3
long operations (multiplications or divisions). Solving for x requires an additional n?
long operations.

An intuitive way to think of this result is that the Gaussian elimination algorithm
involves a triply nested for-loop. So an O (n?) algorithmic structure is driving the elimination
process, and the work is heavily influenced by the cube of the number of equations and
unknowns.
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Numerical Stability

The numerical stability of a numerical algorithm is related to the accuracy of the procedure.
An algorithm can have different levels of numerical stability because many computations
can be achieved in various ways that are algebraically equivalent but may produce different
results. A robust numerical algorithm with a high level of numerical stability is desirable.
Gaussian elimination is numerically stable for strictly diagonally dominant matrices or
symmetric positive definite matrices. (These are properties we will present in Sections 7.3
and 8.1, respectively.) For matrices with a general dense structure, Gaussian elimination
with partial pivoting is usually numerically stable in practice. Nevertheless, there exist
unstable pathological examples in which it may fail. For additional details, see Golub and
Van Loan [1996] and Highman [1996].

An early version of Gaussian elimination can be found in a Chinese mathematics text
dating from 150 B.C.

Scaling

Readers should not confuse scaling in Gaussian elimination (which is not recommended)
with our discussion of scaled partial pivoting in Gaussian elimination.

The word scaling has more than one meaning. It could mean actually dividing each
row by its maximum element in absolute value. We certainly do not advocate that. In other
words, we do not recommend scaling of the matrix at all. However, we do compute a scale
array and use it in selecting the pivot element in Gaussian elimination with scaled partial
pivoting. We do not actually scale the rows; we just keep a vector of the “row infinity norms,”
that is, the maximum element in absolute value for each row. This and the need for a vector
of indices to keep track of the pivot rows make the algorithm somewhat complicated, but
that is the price to be paid for some degree of robustness in the procedure.

The simple 2 x 2 example in Equation (4) shows that scaling does not help in choosing
a good pivot row. In this example, scaling is of no use. Scaling of the rows is contemplated
in Problem 7.2.23 and Computer Problem 7.2.17. Notice that this procedure requires at least
n? arithmetic operations. Again, we are not recommending it for a general-purpose code.

Some codes actually move the rows around in storage. Because that should not be
done in practice, we do not do it in the code, since it might be misleading. Also, to avoid
misleading the casual reader, we called our initial algorithm (in the preceding section) naive,
hoping that nobody would mistake it for a reliable code.

Summary

(1) In performing Gaussian elimination, partial pivoting is highly recommended to avoid
zero pivots and small pivots. In Gaussian elimination with scaled partial pivoting, we use a
scale vector s = [sq, 52, ..., s,]7 in which

s; = max |aj;| (I<i<n)
I<jsn
and an index vector £ = [{, {5, ..., £,]7, initially set as £ = [1,2,...,n]". The scale

vector or array is set once at the beginning of the algorithm. The elements in the index
vector or array are interchanged rather than the rows of the matrix A, which reduces the
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amount of data movement considerably. The key step in the pivoting procedure is to select
Jj to be the first index associated with the largest ratio in the set

Ay,
{mzkgign}
Se;

and interchange £; with £ in the index array £. Then use multipliers
Ay, k
Qg k
times row ¢, and subtract from equations ¢; for k 4+ 1 <i <n. The forward elimination
from equation ¢; for €, < €; < ¢, is
ag.j < ag, j — (@ 1/ ) rst;<4,)
by, < by, — (ag 1 /aui)by,

The steps involving the vector b are usually done separately just before the back substitution
phase, which we call updating the right-hand side. The back substitution is

1 n
by, — i =n,n—1,n—2,...,1
@ ( ¢ Z aghjxj> (i=n,n n )

! j=i+l

Xi =

(2) For an n x n system of linear equations Ax = b, the forward elimination phase of
the Gaussian elimination with scaled partial pivoting involves approximately n?/3 long
operations (multiplications or divisions), whereas the back substitution requires only n>
long operations.

Problems 7.2

“1. Show how Gaussian elimination with scaled partial pivoting works on the following

matrix A:
2 3 —4 1
1 -1 0 -2
3 3 4 3

4 1 0 4

“2. Solve the following system using Gaussian elimination with scaled partial pivoting:

1 -1 27 [x -2
2 1 =1 |xl=] 2
4 -1 2| |x —1

Show intermediate matrices at each step.

“3. Carry out Gaussian elimination with scaled partial pivoting on the matrix
1 0 3 0

0 1 3 -1
3 -3 0 6
0 2 4 -6

Show intermediate matrices.
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Consider the matrix

—-0.0013  56.4972 123.4567  987.6543
0.0000 —0.0145 8.8990  833.3333
0.0000 102.7513 —7.6543 69.6869
0.0000 —1.3131 —9876.5432 100.0001

Identify the entry that will be used as the next pivot element of naive Gaussian elimina-
tion, of Gaussian elimination with partial pivoting (the scale vectoris[1, 1, 1, 1]), and of
Gaussian elimination with scaled partial pivoting (the scale vector is [987.6543,46.79,
256.29, 1.096]).

Without using the computer, determine the final contents of the array (a;;) after proce-
dure Gauss has processed the following array. Indicate the multipliers by underlining
them.

1 3 2 1
4 2 1 2
2 1 2 3
1 2 4 1

If the Gaussian elimination algorithm with scaled partial pivoting is used on the matrix
shown, what is the scale vector? What is the second pivot row?

4 7 3
1 3 2
2 —4 -1

If the Gaussian elimination algorithm with scaled partial pivoting is used on the example
shown, which row will be selected as the third pivot row?

& —1 4 9 2
1 0 3 9 7
=5 0 1 3 5
4 3 2 2 7
3 o o0 0 9

Solve the system

2x1 +4x, —2x3= 6
X1 + 3)C2 +4X3 = —1
5)61 + 2)62 = 2

using Gaussian elimination with scaled partial pivoting. Show intermediate results at
each step; in particular, display the scale and index vectors.

. Consider the linear system

2X1 + 3.X2 =38
—Xx; + 2.XZ —X3 = 0
3X1 + 2X3 =9

Solve for xy, x,, and x; using Gaussian elimination with scaled partial pivoting. Show
intermediate matrices and vectors.
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“10.

11.

12.
13.

14.

Consider the linear system of equations
—X1 + X3 — 3)C4 =4
X1 + 3)(3 + x4 = 0
Xp — X3 — Xg = 3
3)C1 + X3+ 2.X4 =1

Solve this system using Gaussian elimination with scaled partial pivoting. Show all
intermediate steps, and write down the index vector at each step.

Consider Gaussian elimination with scaled partial pivoting applied to the coefficient
matrix

# # # # 0
# # # 0 #
0 # # # 0
0O # 0 # O
# 0 0 # #

where each # denotes a different nonzero element. Circle the locations of elements in
which multipliers will be stored and mark with an f those where fill-in will occur. The
final index vectoris £ = [2, 3, 1, 5, 4].

Repeat Problem 7.1.6a using Gaussian elimination with scaled partial pivoting.

Solve each of the following systems using Gaussian elimination with scaled partial
pivoting. Carry four significant figures. What are the contents of the index array at each
step?

3)(1 + 4.X2 + 3.X3 =10 3)(1 + 2)62 — S.X3 =0

a. X1+5.X2— X3 = 7 b, 2X1—3.X2+ X3:O
6X1+3X3+7X3=15 X1+4X2— )C3=4
1-1 2 1 X1 1 3+ 20— 1= 7
32 1 4] |x 1

C. = d. 5X1+3X2+2X3=
58 6 3| |x 1 e T
4 2 5 3] |x -1 TR TR

X1+3X2+2X3+ )C4:—2
4X1+2X2+ )C3+2)C4= 2

e 2.X1 + .X2+2.X3+3)C4= 1
X1 +2.X2+4X3+ )C4=—1
Using scaled partial pivoting, show how the computer would solve the following system

of equations. Show the scale array, tell how the pivot rows are selected, and carry out
the computations. Include the index array for each step. There are no fractions in the
correct solution, except for certain ratios that must be looked at to select pivots. You
should follow exactly the scaled-partial-pivoting code, except that you can include the
right-hand side of the system in your calculations as you go along.

2)(] — X + 3X3 + 7X4 =15
4.X] + 4)(2 + 7X4 =11
2x1+ Xy + x3 + 3)64:7
6)61 + 5)(2 + 4X3 + 17)64 =31
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Derive the formula
n

n
k=-(m+1)
2 k=3

Hint: Set S = > _, k; also observe that

2S=010+2+-+n)+n+m -1+ +2+1]

or use induction.

Derive the formula
S ="m+nen+
k=1 6

Hint: Induction is probably easiest.
Count the number of operations in the following pseudocode:

real array (aij)lznxl:m (xij)l:nxlzn
real z; integeri, j,n
fori = 1tondo
for j =1toi do
=2+ aijx;;
end for
end for

Count the number of divisions in procedure Gauss. Count the number of multiplications.
Count the number of additions or subtractions. Using execution times in microseconds
(multiplication 1, division 2.9, addition 0.4, subtraction 0.4), write a function of n that
represents the time used in these arithmetic operations.

Considering long operations only and assuming 1-microsecond execution time for
all long operations, give the approximate execution times and costs for procedure
Gauss when n = 10, 102, 103, 10*. Use only the dominant term in the operation count.
Estimate costs at $500 per hour.

(Continuation) How much time would be used on the computer to solve 2000 equations
using Gaussian elimination with scaled partial pivoting? How much would it cost? Give
a rough estimate based on operation times.

After processing a matrix A by procedure Gauss, how can the results be used to solve
a system of equations of form A" x = b?

What modifications would make procedure Gauss more efficient if division were much
slower than multiplication?

The matrix A = (a;j),xn is row-equilibrated if it is scaled so that
max |a;| =1 (Isi<n)
I<jsn

In solving a system of equations Ax = b, we can produce an equivalent system in
which the matrix is row-equilibrated by dividing the ith equation by max; < ; <, |a;;|.
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“a. Solve the system of equations

11 2x10°] [x 1
2 -1 10°] x| =1
1 2 0l |x 1

by Gaussian elimination with scaled partial pivoting.
b. Solve by using row-equilibrated naive Gaussian elimination. Are the answers the
same? Why or why not?

24. Solve each system using partial pivoting and scaled partial pivoting carrying four
significant digits. Also find the true solutions.

0.004000x + 69.13y = 69.17 b 40.00x + 691300y = 691700
4.281x —5.230y = 41.91 ) 4.281x —5.230y = 41.91
0.003000x + 59.14y = 59.17 d 30.00x + 591400y = 591700
5.291x — 6.130y = 46.78 5.291x — 6.130y = 46.78
0.7000x 4 1725y = 1739 £ 0.8000x + 1825y = 2040
0.4352x —5.433y = 5.278 0.4321x —5.432y = 7.531

Computer Problems 7.2

1. Test the numerical example in the text using the naive Gaussian algorithm and the
Gaussian algorithm with scaled partial pivoting.

42. Consider the system

0.4096  0.1234  0.3678  0.2943 | | x; 0.4043
0.2246  0.3872  0.4015  0.1129 | | x| _ [ 0.1550
0.3645  0.1920  0.3781 0.0643 | | x3 | — | 0.4240
0.1784  0.4002  0.2786  0.3927 | | x4 0.2557
Solve it by Gaussian elimination with scaled partial pivoting using procedures Gauss

and Solve.

“3. (Continuation) Assume that an error was made when the coefficient matrix in Computer
Problem 7.2.2 was typed and that a single digit was mistyped—namely, 0.3645 became
0.3345. Solve this system, and notice the effect of this small change. Explain.

“4. The Hilbert matrix of order n is defined by a;; = (i + j — D! for 1<i, j<n.
It is often used for test purposes because of its ill-conditioned nature. Define b; =
> _'i—1 aij- Then the solution of the system of equations ", a;;x; = b; for 1 <i <n s
x=[1,1,...,1]". Verify this. Select some values of n in the range 2 <n < 15, solve
the system of equations for x using procedures Gauss and Solve, and see whether the
result is as predicted. Do the case n = 2 by hand to see what difficulties occur in the

computer.

5. Define the n x n array (a;;) by a;; = —1 +2max{i, j}. Set up array (b;) in such a way
that the solution of the system Ax = b is x; = 1 for 1 <i < n. Test procedures Gauss
and Solve on this system for a moderate value of n, say, n = 30.
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Select a modest value of n, say, 5<n <20, and leta;; = (i — 1)/"'and b; =i — 1.
Solve the system Ax = b on the computer. By looking at the output, guess what the
correct solution is. Establish algebraically that your guess is correct. Account for the
errors in the computed solution.

. For a fixed value of n from 2 to 4, let

a; = (i +j)* bi =ni(i +n+ 1)+ tn(l +n@2n+3))

Show that the vector x = [1,1,...,1]7 solves the system Ax = b. Test whether
procedures Gauss and Solve can compute x correctly for n = 2, 3, 4. Explain what
happens.

. Using each value of n from 2 to 9, solve the n x n system Ax = b, where A and b are

defined by
aj=@G{+j-1"  b=pmn+i—-1)—pi-1
where
xz
p(x) = ﬂ(z + x2(=7 4+ n*(14 + n(12 + 3n))))

Explain what happens.

. Solve the following system using procedures Gauss and Solve and then using procedure

Naive_Gauss. Compare the results and explain.

0.0001 —5.0300 5.8090  7.8320 | | x; 9.5740
2.2660 1.9950 1.2120  8.0080 | x| _ [7.2190
8.8500  5.6810 4.5520 1.3020 | | x3| ~— | 5.7300
6.7750 —2.2530 2.9080  3.9700 | | x4 6.2910

Without changing the parameter list, rewrite and test procedure Gauss so that it does
both forward elimination and back substitution. Increase the size of array (a;;), and
store the right-hand side array (b;) in the n + 1st column of (g;;). Also, return the
solution in this column.

Modify procedures Gauss and Solve so that they are more robust. Two suggested
changes are as follows: (i) Skip elimination if a,, = 0 and (ii) add an error parameter
ierr to the parameter list and perform error checking (e.g., on division by zero or a row
of zeros). Test the modified code on linear systems of varying sizes.

Rewrite procedures Gauss and Solve so that they are column oriented—that is, so that all
inner loops vary the first index of (a;;). On some computer systems, this implementation
may avoid paging or swapping between high-speed and secondary memory and be more
efficient for large matrices.

Computer memory can be minimized by using a different storage mode when the
coefficient matrix is symmetric. An n X n symmetric matrix A = (a;;) has the prop-
erty that a;; = aj;, so only the elements on and below the main diagonal need be
stored in a vector of length n(n + 1)/2. The elements of the matrix A are placed in a
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14.

15.

16.

17.

18.

vector v = (vi) in this order: ayy, as1, axn, a3, as, ass, ..., a,,. Storing a matrix in
this way is known as symmetric storage mode and effects a savings of n(n — 1)/2
memory locations. Here, a;; = v, where k = %i(i — 1) 4+ j for i > j. Verify these
statements.

Write and test procedures Gauss_Sym(n, (v;), (¢;)) and Solve_Sym(n, (v;), (¢;),
(b;)), which are analogous to procedures Gauss and Solve except that the coefficient
matrix is stored in symmetric storage mode in a one-dimensional array (v;) and the
solution is returned in array (b;).

The determinant of a square matrix can be easily computed with the help of pro-
cedure Gauss. We require three facts about determinants. First, the determinant of a
triangular matrix is the product of the elements on its diagonal. Second, if a mul-
tiple of one row is added to another row, the determinant of the matrix does not
change. Third, if two rows in a matrix are interchanged, the determinant changes
sign. Procedure Gauss can be interpreted as a procedure for reducing a matrix to upper
triangular form by interchanging rows and adding multiples of one row to another.
Write a function det(n, (¢;;)) that computes the determinant of an n x n matrix. It
will call procedure Gauss and utilize the arrays (a;;) and (¢;) that result from that
call. Numerically verify function det by using the following test matrices with several
values of n:

a. a; =i — j| det(A) = (=1)"'(n — 1)2"2
1 j=i
L= = =n!
b. a; {—j i<i det(A) = n!
-1
AL / det(A) = n™"
« {aij=ail,j+ai,j1 i,jz2 cHA) =n
(Continuation) Overflow and underflow may occur in evaluating determinants by this

procedure. To avoid this, one can compute log | det(A)| as the sum of terms log |ay, ;| and
use the exponential function at the end. Repeat the numerical experiments in Computer
Problem 7.2.14 using this idea.

Test a modification of procedure Gauss in which the scale array is recomputed at
each step (each new value of k) of the forward elimination phase. Try to construct an
example for which this procedure would produce less roundoff error than the scaled
partial pivoting method given in the text with fixed scale array. It is generally believed
that the extra computations that are involved in this procedure are not worthwhile for
most linear systems.

(Continuation) Modify and test procedure Gauss so that the original system is ini-
tially row-equilibrated; that is, it is scaled so that the maximum element in every
row is 1.

Modify and test procedures Gauss and Solve so that they carry out scaled complete
pivoting; that is, the pivot element is selected from all elements in the submatrix,
not just those in the kth column. Keep track of the order of the unknowns in the
solution array in another index array because they will not be determined in the order
Xns Xn—ly+-, X1
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Compare the computed numerical solutions of the following two linear systems:

L3 3 3 s|[x 1

b ]s] o

bibd sl =o

I3 o6 7 8| |™ 0

1 1 1 1 1

5 6 7 5 o) Lxs 0
1.0 0.5 0.333333  0.25 0.2 X 1
0.5 0.333333  0.25 0.2 0.166667 | | x, 0
0.333333  0.25 0.2 0.166667 0.142857 | |xs | = |0
0.25 0.2 0.166667 0.142857 0.125 X 0
0.2 0.166667 0.142857 0.125 0111111 | | x5 0

Solve both systems using single-precision Gaussian elimination with scaled partial
pivoting. For each system, compute the £,-norms ||u||, = /> ;_, u; of the residual
vector ¥ = AX — b and of the error vector ¢ = X — x, where X is the computed
solution and x is the true, or exact, solution. For the first system, the exact solution is
x = [25, —300, 1050, —1400, 630]7, and for the second system, the exact solution,
to six decimal digits of accuracy, is x = [26.9314, —336.018, 1205.11, —1634.03,
744.411]7 . Do not change the input data of the second system to include more than the
number of digits shown. Analyze the results. What have you learned?

(Continuation) Repeat the preceding computer problem, but set a;; < 7560q;; and
b; < 7560b; for each system before solving.

Write complex arithmetic versions of procedures Gauss and Solve by declaring certain
variables complex and making other necessary changes in the code. Test them on the
complex linear systems given in Computer Problem 7.1.6.

(Continuation) Solve the complex linear systems given in Computer Problem 7.1.7.

The fact that in the previous two problems solutions of complex linear systems were
asked for may lead you to think that you must have complex versions of procedures
Gauss and Solve. This is not the case. A complex system Ax = b can also be written
as a 2n x 2n real system:

> [Re(a;j)Re(x;) — Im(@;)Im(x;)] = Re(h;)  (1<i<n)
j=I1
> [Re(a;)Im(x;) + Im(a;)Re(x;)] = Im(b;) ~ (1<i<n)

j=1

Repeat these two problems using this idea and the two procedures of this section. (Here,
Re denotes the real part and Im the imaginary part.)

(Student research project) The Gauss-Huard algorithm is a variant of the Gauss-
Jordan algorithm for solving dense linear systems. Both algorithms reduce the sys-
tem to an equivalent diagonal system. However, the Gauss-Jordan method does more
floating-point operations than Gaussian elimination, while the Gauss-Huard method
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does not. To preserve stability, the Gauss-Huard method incorporates a pivoting strat-
egy using column interchanges. An error analysis shows that the Gauss-Huard method
is as stable as Gauss-Jordan elimination with an appropriate pivoting strategy. Read
about these algorithms in papers by Dekker and Hoffmann [1989], Dekker, Hoffmann,
and Potma [1997], Hoffmann [1989], and Huard [1979]. Carry out some numerical ex-
periments by programming and testing the Gauss-Jordan and Gauss-Huard algorithms
on some dense linear systems.

25. Solve System (5) using mathematical software routines based on Gaussian elimination
such as found in Matlab, Maple, or Mathematica. There are a large number of computer
programs and software packages for solving linear systems, each of which may use a
slightly different pivoting strategy.

1.3 Tridiagonal and Banded Systems

In many applications, including several that are considered later on, extremely large linear
systems that have a banded structure are encountered. Banded matrices often occur in
solving ordinary and partial differential equations. It is advantageous to develop computer
codes specifically designed for such linear systems, since they reduce the amount of storage
used.

Of practical importance is the tridiagonal system. Here, all the nonzero elements in
the coefficient matrix must be on the main diagonal or on the two diagonals just above and
below the main diagonal (usually called superdiagonal and subdiagonal, respectively):

di ¢ X1 [ b,
a dy o X2 by
ay d3 C3 X3 b3
= (1)
a1 di ¢ Xi b;
() dnfl Cn—1 Xn—1 bnfl
L Ap—1 dn a _-xn a _bn a

(All elements not in the displayed diagonals are 0’s.) A tridiagonal matrix is characterized
by the condition a;; = 0if |i — j| > 2. In general, a matrix is said to have a banded structure
if there is an integer k (less than n) such that a;; = 0 whenever |i — j| > k.

The storage requirements for a banded matrix are less than those for a general matrix
of the same size. Thus, an n x n diagonal matrix requires only n» memory locations in the
computer, and a tridiagonal matrix requires only 3n — 2. This fact is important if banded
matrices of very large order are being used.

For banded matrices, the Gaussian elimination algorithm can be made very efficient if
it is known beforehand that pivoting is unnecessary. This situation occurs often enough to
justify special procedures. Here, we develop a code for the tridiagonal system and give a
listing for the pentadiagonal system (in which a;; = 0if |[i — j| = 3).
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Tridiagonal Systems

The routine to be described now is called procedure 77i. It is designed to solve a system of
n linear equations in n unknowns, as shown in Equation (1). Both the forward elimination
phase and the back substitution phase are incorporated in the procedure, and no pivoting is
used; that is, the pivot equations are those given by the natural ordering {1, 2, ..., n}. Thus,
naive Gaussian elimination is used.

In step 1, we subtract a; /d, times row 1 from row 2, thus creating a 0 in the a; position.
Only the entries d> and b, are altered. Observe that ¢, is not altered. In step 2, the process
is repeated, using the new row 2 as the pivot row. Here is how the d;’s and b;’s are altered

in each step:
ap
dy <—dy — | —
2 2 (dl)Cl

by —by— (L)
2 2 d; 1
d d ai—1
i< di =\ 57— | Ci-
i)

In general, we obtain

by < by <“"‘1) b @sisn)
di—
At the end of the forward elimination phase, the form of the system is as follows:
[di INE (b ]
d2 Cy X2 b2
d3 C3 X3 b3
di Ci Xi - bi
dn—l Cn—1 Xn—1 bn—l
L d}'l _ L -xn . L bn
Of course, the b;’s and d;’s are not as they were at the beginning of this process, but the ¢;’s
are. The back substitution phase solves for x,,, x,_1, . .., x1 as follows:
by
X, < —
dy
1
Xp—1 < (bnfl - Cnfl-xn)

dn —1
Finally, we obtain

1
xi(—J(bi—Cixi_H) (l:l’l—l,l’l—z,,l)

In procedure 7vi for a tridiagonal system, we use single-dimensioned arrays («;), (d;),
and (¢;) for the diagonals in the coefficient matrix and array (b;) for the right-hand side,
and store the solution in array (x;).
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procedure Tri(n, (a;), (d;), (¢;), (bi), (x))
integer i, n; real xmult
real array (a;) 1., (di) 10, (€) 10> (Bi) 1y (Xi)1:n
fori =2 ton do
xmult <— a;_1/d;_,
d; < d; — (xmult)c;_4
b; < b; — (xmult)b; _;
end for
X, < b,/d,
fori =n—1to1 step —1do
x;i < (bj — cixip1)/d;
end for
end procedure 7ri

Notice that the original data in arrays (d;) and (b;) have been changed.
A symmetric tridiagonal system arises in the cubic spline development of Chapter 9
and elsewhere. A general symmetric tridiagonal system has the form

_dl 1 i _xl ] _bl ]
a dy o X2 b,
o di X3 b3
= ()
ci—1 d; Ci Xi b;
Ch—2 dnfl Cn—1 Xn—1 bnfl
L Cn—1 dn i _xn B _bn i

One could overwrite the right-hand side vector b with the solution vector x as well. Thus,
a symmetric linear system can be solved with a procedure call of the form

Call Tri(ns (Ci)v (di)s (ci)v (bi)9 (bl))

which reduces the number of linear arrays from five to three.

Strictly Diagonal Dominance

Since procedure 7ri does not involve pivoting, it is natural to ask whether it is likely to fail.
Simple examples can be given to illustrate failure because of attempted division by zero
even though the coefficient matrix in Equation (1) is nonsingular. On the other hand, it is
not easy to give the weakest possible conditions on this matrix to guarantee the success of
the algorithm. We content ourselves with one property that is easily checked and commonly
encountered. If the tridiagonal coefficient matrix is diagonally dominant, then procedure
Tri will not encounter zero divisors.
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B DEFINITION 1 STRICTLY DIAGONAL DOMINANCE

A general matrix A = (a;;)nxn is strictly diagonally dominant if

n
laiil > > laijl  (1<i<n)
=l

J#

In the case of the tridiagonal system of Equation (1), strict diagonal dominance means
simply that (with ay = a, = 0)

|di| > lai—1| + lcil (I<i<n)

Let us verify that the forward elimination phase in procedure 7ri preserves strictly
diagonal dominance. The new coefficient matrix produced by Gaussian elimination has
0 elements where the a;’s originally stood, and new diagonal elements are determined
recursively by

where c/l\, denotes a new diagonal element. The c; elerrlents are unaltered. Now we assume
that |d;| > |a;—i| + |c;|, and we want to be sure that |d;| > |c;|. Obviously, this is true for
i = 1 because d| = d,. If it is true for index i — 1 (thatis, |d;_i| > |c;_1]), then it is true
for index i because

-~ ai—1
|d,| = di — | =— |Ci—1
di_y
lci—1]
> |di| — |ai—i|7=—
|dii]
> |ai—1| + lcil — lai—1| = lcil

While the number of long operations in Gaussian elimination on full matrices is O(n?),
itis only O(n) for tridiagonal matrices. Also, the scaled pivoting strategy is not needed on
strictly diagonally dominant tridiagonal systems.

Pentadiagonal Systems

The principles illustrated by procedure 7ri can be applied to matrices that have wider
bands of nonzero elements. A procedure called Penta is given here to solve the
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five-diagonal system:

rdi a1 N T rMxr T (b1 ]
ap dy ¢ | X2 by
el ay di c3 f3 X3 b3
e a3 dy s fa X4 by
e aj—1 d; Ci fi Xi | bi

€n—4 AaAp-3 dp— cn—2  fan—2 Xn—2 by

€p-3 ap—2 dp—1 Cp—q Xn—1 by—1

L ep—2 ap—1 dy 1 Lxp Lb,

In the pseudocode, the solution vector is placed in array (x;). Also, one should not use this
routine if n £4. (Why?)

procedure Penta(n, (e;), (a;), (d;), (¢i), (fi), (bi), (xi))
integer i, n; realr, s, xmult
real array (€;) 1., (@) 10> (di)1:ns (€) 1> (Fi) 15 (Bi)1ins (Xi)1n
r < a
S <—ap
< e
fori =2ton —1do
xmult <—r/d;_,
d; < d; — (xmult)c;_,
c; < ¢; — (xmult) f;_,
b; < b; — (xmult)b; _;
xmult < t/d;_,
r < s — (xmult)c;
div1 < diy1 — (xmult) f; 4
biv1 < biyy — (xmult)b;
S < dit
t < ¢
end for
xmult < r/d,_,
d, < d, — (xmult)c,_;
Xp <= (bn - (xmult)bn—])/dn
Xp—1 < (bn—l - Cn—lxn)/dn—l
fori =n—2to1 step —1do
xXi < (bj — fixizo — cixip1)/d;
end for
end procedure Penta

To be able to solve symmetric pentadiagonal systems with the same code and with a mini-
mum of storage, we have used variables r, s, and ¢ to store temporarily some information
rather than overwriting into arrays. This allows us to solve a symmetric pentadiagonal
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system with a procedure call of the form

call Penta(n, (f;), (¢i), (d;), (i), (fi). (bi), (bi))

which reduces the number of linear arrays from seven to four. Of course, the original data
in some of these arrays will be corrupted. The computed solution will be stored in the (b;)
array. Here, we assume that all linear arrays are padded with zeros to length n in order not
to exceed the array dimensions in the pseudocode.

Block Pentadiagonal Systems

Many mathematical problems involve matrices with block structures. In many cases, there
are advantages in exploiting the block structure in the numerical solution. This is particularly
true in solving partial differential equations numerically.

We can consider a pentadiagonal system as a block tridiagonal system

D, C, X, B,
A D, C, X, B,
Ay D; C; X; B;
A, D; C; X; B;
A, D, C,, X, B,
L Anfl Dn B _Xn B _Bn i
where
dri_1  Criy -1 C2i—1 fHici O
Di: ) Ai: ) Ci:
[ Az dy 0 €2; €1 S

Here, we assume that n is even, say n = 2m. If n is not even, then the system can be padded
with an extra equation x,; = 1 so that the number of rows is even.

The algorithm for this block tridiagonal system is similar to the one for tridiagonal
systems. Hence, we have the forward elimination phase

{ D; < D, —A,_,D;\C;_,

B; <~ B, — Ai—lDf_llBi—l 2<i<m)

and the back substitution phase

{X,, <~ D;'B,

X; < D' (Bi = CiX; 1)) (m—1<i<l)

Here,

—C2i—1

1 [ dy
D! = 2
[ i

' A |~
where A = dyidyi_1 — asi_1Coi-).

Code for solving a pentadiagonal system using this block procedure is left as an exercise
(Computer Problem 7.3.21). The results from the block pentadiagonal code are the same

as those from the procedure Penta, except for roundoff error. Also, this procedure can be
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used for symmetric pentadiagonal systems (in which the subdiagonals are the same as the
superdiagonals).

In Chapter 16, we discuss two-dimensional elliptic partial differential equations. For
example, the Laplace equation is defined on the unit square. A 3 x 3 mesh of points are
placed over the unit square region, and they are ordered in the natural ordering (left-to-right
and up) as shown in Figure 7.2.

@ ® O)

© ® ©
FIGURE 7.2
Mesh points in
A ) (3
natural order ® 2 ®

In the Laplace equation, second partial derivatives are approximated by second-order cen-
tered finite difference formulas. This results in an 9 x 9 system of linear equations having
a sparse coefficient matrix with this nonzero pattern:

[x x |x
X X X| X
X X X

X X X
X X X X
X X X

Here, nonzero entries in the matrix are indicated by the x symbol, and zero entries are
a blank. This matrix is block tridiagonal, and each nonzero block is either tridiagonal or
diagonal. Other orderings of the mesh points result in sparse matrices with different patterns.

Summary

(1) For banded systems, such as tridiagonal, pentadiagonal, and others, it is usual to develop
special algorithms for implementing Gaussian elimination, since partial pivoting is not
needed in many applications. The forward elimination procedure for a tridiagonal linear
system A = tridiagonal[(«;), (d;), (c;)] is

ai—
d; < d; — i
< (dl-_1>c 1

a1 .
b; < b; — <d>bi—1 (2<iz<n)
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The back substitution procedure is

1
xi(—d—(bi—c,-xiH) (i=n—1,n—2,---,1)
(2) A strictly diagonally dominant matrix A = (a;;),xn is one in which the magnitude of
the diagonal entry is larger than the sum of the magnitudes of the off-diagonal entries in the
same row and this is true for all rows, namely,

n
laifl > Y laiyl  (1<izn)
j=1
J#i
For strictly diagonally dominant tridiagonal coefficient matrices, partial pivoting is not
necessary because zero divisors will not be encountered.

(3) The forward elimination and back substitution procedures for a pentadiagonal linear
system A = pentadiagonal [(e;), (a;), (d;), (¢;), (fi)] is similar to that for a tridiagonal
system.

Additional References

For additional study of linear systems, see Colerman and Van Loan [1988], Dekker and
Hoffmann [1989], Dekker, Hoffmann, and Potma [1997], Dongarra, Duff, Sorenson, and
van der Vorst [1990], Forsythe and Moler [1967], Gallivan et al. [1990], Golub and Van
Loan [1996], Hoffmann [1989], Jennings [1977], Meyer [2000], Noble and Daniel [1988],
Stewart [1973, 1996, 1998a, 1998b, 2001], and Watkins [1991].

Problems 7.3

1. What happens to the tridiagonal System (1) if Gaussian elimination with partial pivoting
is used to solve it? In general, what happens to a banded system?

2. Count the long arithmetic operations involved in procedures:
“a. Tri b. Penta

“3. How many storage locations are needed for a system of n linear equations if the
coefficient matrix has banded structure in which ¢;; = 0for |i — j| >k + 17

4. Give an example of a system of linear equations in tridiagonal form that cannot be
solved without pivoting.

5. What is the appearance of a matrix A if its elements satisfy a;; = 0 when:
a. j<i—2 b. j>i+1
“6. Consider a strictly diagonally dominant matrix A whose elements satisfy a;; = 0 when

i > j 4 1. Does Gaussian elimination without pivoting preserve the strictly diagonal
dominance? Why or why not?

“7. Let A be a matrix of form (1) such that a;c; > 0 for 1 <i <n — 1. Find the general form
of the diagonal matrix D = diag(a;) with o; # 0 such that D™'AD is symmetric.
What is the general form of D~'AD?
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Computer Problems 7.3

1.

“3.

ag,

Rewrite procedure 7ri using only four arrays, (a;), (d;), (¢;), and (b;), and storing the
solution in the (b;) array. Test the code with both a nonsymmetric and a symmetric
tridiagonal system.

. Repeat the previous computer problem for procedure Penta with six arrays (e;), (a;),

(d), (ci), (fi), and (b;). Use the example that begins this chapter as one of the test
cases.

Write and test a special procedure to solve the tridiagonal system in whicha; = ¢; = 1
forall i.

Use procedure Tri to solve the following system of 100 equations. Compare the nu-
merical solution to the obvious exact solution.

X1 + 0.5)62 =1.5
0.5xi-1 + x; +0.5x4, =20 (2i£99)
O.SX99 + X100 = 1.5
. Solve the system
4)61 — X2 = -20
xj_1—4xj + Xjp = 40 2<jsn—1
— Xp—1 +4x, =-20
using procedure 7ri with n = 100.
. Let A be the 50 x 50 tridiagonal matrix
5 —1 i
-1 5 -1
—1 5 -1
-1 5 -1
L _1 -

Consider the problem Ax = b for 50 different vectors b of the form

[1,2,...,49,501" [2,3,...,50,1]" [3,4,...,50,1,2]"

Write and test an efficient code for solving this problem. Hint: Rewrite procedure 7ri.

. Rewrite and test procedure 7ri so that it performs Gaussian elimination with scaled

partial pivoting. Hint: Additional temporary storage arrays may be needed.

. Rewrite and test Penta so that it does Gaussian elimination with scaled partial pivoting.

Is this worthwhile?

. Using the ideas illustrated in Penta, write a procedure for solving seven-diagonal sys-

tems. Test it on several such systems.



10. Consider the system of equations (n = 7)

11.

“12.

13.

14.
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d, ar X1 b
d, Ae X2 by

ds as x3 b3

d4 X4 b4

as d5 X5 b5

ay d6 X6 b6

L ay d7 i X7 b7
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For n odd, write and test

procedure X_Gauss(n, (a;), (d;), (b;))

that does the forward elimination phase of Gaussian elimination (without scaled partial
pivoting) and

procedure X _Solve(n, (a;), (d;), (b;), (x;))

that does the back substitution for cross-systems of this form.

Consider the n x n lower-triangular system Ax = b, where A = (a;;) and a;; = 0 for
i< j.
“a. Write an algorithm (in mathematical terms) for solving for x by forward
substitution.

b. Write
procedure Forward_Sub(n, (a;), (b;), (x;))

which uses this algorithm.

¢. Determine the number of divisions, multiplications, and additions (or subtractions)
in using this algorithm to solve for x.

d. Should Gaussian elimination with partial pivoting be used to solve such a system?

(Normalized tridiagonal algorithm) Construct an algorithm for handling tridiagonal
systems in which the normalized Gaussian elimination procedure without pivoting is
used. In this process, each pivot row is divided by the diagonal element before a multiple
of the row is subtracted from the successive rows. Write the equations involved in the
forward elimination phase and store the upper diagonal entries back in array (c;) and the
right-hand side entries back in array (b;). Write the equations for the back substitution
phase, storing the solution in array (b;). Code and test this procedure. What are its
advantages and disadvantages?

Fora (2n) x (2n) tridiagonal system, write and test a procedure that proceeds as follows:
In the forward elimination phase, the routine simultaneously eliminates the elements
in the subdiagonal from the top to the middle and in the superdiagonal from the bottom
to the middle. In the back substitution phase, the unknowns are determined two at a
time from the middle outward.

(Continuation) Rewrite and test the procedure in the preceding computer problem for
a general n x n tridiagonal matrix.
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15. Suppose

16.

17.

procedure 7ri_Normal(n, (a;), (d;), (¢;), (b;), (x;))

performs the normalized Gaussian elimination algorithm of Computer Problem 7.3.12
and

procedure Tri_2n(n, (a;), (d;), (¢;), (b;), (x;))

performs the algorithm outlined in Computer Problem 7.3.13. Using a timing routine
on your computer, compare 7ri, Tri_Normal, and Tri_2n to determine which of them is
fastest for the tridiagonal system

a =i(n—1i+1), c=>0+Dn—i-1),
di= Qi+ 1)n—i—2i, by =i
with a large even value of n. Note: Mathematical algorithms may behave differently on

parallel and vector computers. Generally speaking, parallel computations completely
alter our conventional notions about what’s best or most efficient.

Consider a special bidiagonal linear system of the following form (illustrated with
n = 7) with nonzero diagonal elements:
_dl 1 _xl 1 [ b 1
ar dy X2 by
a, d; X3 bs
as d4 ay Xg4 | = b4
ds as Xs bs
ds as X6 be
L d; 1 X7 L by i

Write and test
procedure Bi_Diagional(n, (a;), (d;), (b;))
to solve the general system of order n (odd). Store t