

Formulas from Algebra

1 + r + r 2 + · · · + rn−1 = rn − 1

r − 1
loga x = (loga b)(logb x)

1 + 2 + 3 + · · · + n = 1
2 n(n + 1) |x | − |y| � |x ± y| � |x | + |y|

12 + 22 + 32 + · · · + n2 = 1
6 n(n + 1)(2n + 1)

Cauchy-Schwarz Inequality(
n∑

i=1

xi yi

)2

�

(
n∑

i=1

x2
i

)(
n∑

i=1

y2
i

)

Formulas from Geometry
Area of circle: A = πr 2 (r = radius) Circumference of circle: C = 2πr

Area of trapezoid: A = 1
2 h(a + b) (h = height; a and b are parallel bases)

Area of triangle: A = 1
2 bh (b = base, h = height)

Formulas from Trigonometry

sin2 x + cos2 x = 1 sin
(

π

2 − x
) = cos x

1 + tan2 x = sec2 x cos
(

π

2 − x
) = sin x

sin x = 1/ csc x sin(x + y) = sin x cos y + cos x sin y

cos x = 1/ sec x cos(x + y) = cos x cos y − sin x sin y

tan x = 1/ cot x sin x + sin y = 2 sin
[

1
2 (x + y)

]
cos

[
1
2 (x − y)

]
tan x = sin x/ cos x cos x + cos y = 2 cos

[
1
2 (x + y)

]
cos

[
1
2 (x − y)

]
sin x = − sin(−x) sinh x = 1

2 (e
x − e−x)

cos x = cos(−x) cosh x = 1
2 (e

x + e−x)

Graphs

x

y

1

�1

2���–
2

3�––
2

sin x cos x

tan x

x

y

1�1

�

�–
2

arcsin x
arctan x

0

�
�–

2

arccos x

Formulas from Analytic Geometry

Slope of line: m = y2 − y1

x2 − x1
(two points (x1, y1) and (x2, y2))

Equation of line: y − y1 = m(x − x1)

Distance formula: d =
√

(x2 − x1)2 + (y2 − y1)2

Circle: (x − x0)
2 + (y − y0)

2 = r 2 (r = radius, (x0, y0) center)

Ellipse:
(x − x0)

2

a2
+ (y − y0)

2

b2
= 1 (a and b semiaxes)

Definitions from Calculus
The limit statement lim

x→a
f (x) = L means that for any ε > 0, there is a δ > 0 such that | f (x) − L| < ε

whenever 0 < |x − a| < δ.

A function f is continuous at x if lim
h→0

f (x + h) = f (x).

If lim
h→0

1

h
[f (x + h) − f (x)] exists, it is denoted by f ′(x) or

d

dx
f (x) and is termed the derivative of f at x .

Formulas from Differential Calculus

(f ± g)′ = f ′ ± g′ d

dx
loga x = x−1 loga e

d

dx
arccot x = −1

1 + x2

(f g)′ = f g′ + f ′g
d

dx
sin x = cos x

d

dx
arcsec x = 1

x
√

x2 − 1(
f

g

)′
= g f ′ − f g′

g2

d

dx
cos x = −sin x

d

dx
arccsc x = −1

x
√

x2 − 1

(f ◦ g)′ = (f ′ ◦ g)g′ d

dx
tan x = sec2 x

d

dx
sinh x = cosh x

d

dx
xa = a xa−1 d

dx
cot x = −csc2 x

d

dx
cosh x = sinh x

d

dx
ex = ex d

dx
sec x = tan x sec x

d

dx
tanh x = sech2x

d

dx
eax = aeax d

dx
csc x = −cot x csc x

d

dx
coth x = −csch2x

d

dx
ax = ax ln a

d

dx
arcsin x = 1√

1 − x2

d

dx
sech x = −sech x tanh x

d

dx
x x = x x(1 − ln x)

d

dx
arccos x = −1√

1 − x2

d

dx
csch x = −csch x coth x

d

dx
ln x = x−1 d

dx
arctan x = 1

1 + x2

S I X T H E D I T I O NS I X T H E D I T I O N

NUMERICALNUMERICAL
MATHEMATICSMATHEMATICS
AND COMPUTINGAND COMPUTING

Ward Cheney
The University of Texas at Austin

David Kincaid
The University of Texas at Austin

Australia • Brazil • Canada • Mexico • Singapore • Spain
United Kingdom • United States

Numerical Mathematics and Computing, Sixth edition
Ward Cheney, David Kincaid

Dedicated to David M. Young

Publisher: Bob Pirtle

Development Editor: Stacy Green

Editorial Assistant: Elizabeth Rodio

Technology Project Manager: Sam Subity

Marketing Manager: Amanda Jellerichs

Marketing Assistant: Ashley Pickering

Marketing Communications Manager:
Darlene Amidon-Brent

Project Manager, Editorial Production:
Cheryll Linthicum

Creative Director: Rob Hugel

Art Director: Vernon T. Boes

Print Buyer: Doreen Suruki

Permissions Editor: Bob Kauser

Production Service: Matrix Productions

Text Designer: Roy Neuhaus

Photo Researcher: Terri Wright

Copy Editor: Barbara Willette

Illustrator: ICC Macmillan Inc.

Cover Designer: Denise Davidson

Cover Image: Glowimages/Getty Images

Cover Printer: R.R. Donnelley/Crawfordsville

Compositor: ICC Macmillan Inc.

Printer: R.R. Donnelley/Crawfordsville

© 2008, 2004 Thomson Brooks/Cole, a part of The Thomson
Corporation. Thomson, the Star logo, and Brooks/Cole are
trademarks used herein under license.

ALL RIGHTS RESERVED. No part of this work covered by the
copyright hereon may be reproduced or used in any form or by
any means—graphic, electronic, or mechanical, including
photocopying, recording, taping, web distribution, information
storage and retrieval systems, or in any other manner—without
the written permission of the publisher.

Printed in the United States of America
1 2 3 4 5 6 7 11 10 09 08 07

For more information about our products, contact us at:
Thomson Learning Academic Resource Center

1-800-423-0563

For permission to use material from this text or product,
submit a request online at http://www.thomsonrights.com.

Any additional questions about permissions can be
submitted by e-mail to thomsonrights@thomson.com.

Thomson Higher Education
10 Davis Drive
Belmont, CA 94002-3098
USA

Library of Congress Control Number: 2007922553

Student Edition:
ISBN-13: 978-0-495-11475-8
ISBN-10: 495-11475-8

http://www.thomsonrights.com

Preface

In preparing the sixth edition of this book, we have adhered to the basic objective of the
previous editions—namely, to acquaint students of science and engineering with the po-
tentialities of the modern computer for solving numerical problems that may arise in their
professions. A secondary objective is to give students an opportunity to hone their skills in
programming and problem solving. A final objective is to help students arrive at an under-
standing of the important subject of errors that inevitably accompany scientific computing,
and to arm them with methods for detecting, predicting, and controlling these errors.

Much of science today involves complex computations built upon mathematical soft-
ware systems. The users may have little knowledge of the underlying numerical algorithms
used in these problem-solving environments. By studying numerical methods one can be-
come a more informed user and be better prepared to evaluate and judge the accuracy of
the results. What this implies is that students should study algorithms to learn not only how
they work but also how they can fail. Critical thinking and constant skepticism are attitudes
we want students to acquire. Any extensive numerical calculation, even when carried out
by state-of-the-art software, should be subjected to independent verification, if possible.

Since this book is to be accessible to students who are not necessarily advanced in their
formal study of mathematics and computer sciences, we have tried to achieve an elementary
style of presentation. Toward this end, we have provided numerous examples and figures
for illustrative purposes and fragments of pseudocode, which are informal descriptions of
computer algorithms.

Believing that most students at this level need a survey of the subject of numerical
mathematics and computing, we have presented a wide diversity of topics, including some
rather advanced ones that play an important role in current scientific computing. We rec-
ommend that the reader have at least a one-year study of calculus as a prerequisite for our
text. Some knowledge of matrices, vectors, and differential equations is helpful.

Features in the Sixth Edition
Following suggestions and comments by a dozen reviewers, we have revised all sections of
the book to some degree, and a number of major new features have been added as follows:

• We have moved some items (especially computer codes) from the text to the website so
that they are easily accessible without tedious typing. This endeavor includes all of the
Matlab, Mathematica, and Maple computer codes as well as the Appendix on Overview
of Mathematical Software available on the World Wide Web.

• We have added more figures and numerical examples throughout, believing that concrete
codes and visual aids are helpful to every reader.

iii

iv Preface

• New sections and material have been added to many topics, such as the modified false
position method, the conjugate gradient method, Simpson’s method, and some others.

• More exercises involving applications are presented throughout.

• There are additional citations to recent references and some older references have been
replaced.

• We have reorganized the appendices, adding some new ones and omitting some older
ones.

Suggestions for Use
Numerical Mathematics and Computing, Sixth Edition, can be used in a variety of ways,
depending on the emphasis the instructor prefers and the inevitable time constraints. Prob-
lems have been supplied in abundance to enhance the book’s versatility. They are divided
into two categories: Problems and Computer Problems. In the first category, there are more
than 800 exercises in analysis that require pencil, paper, and possibly a calculator. In the
second category, there are approximately 500 problems that involve writing a program and
testing it on a computer. Students can be asked to solve some problems using advanced
software systems such as Matlab, Mathematica, or Maple. Alternatively, students can be
asked to write their own code. Readers can often follow a model or example in the text
to assist them in working out exercises, but in other cases they must proceed on their own
from a mathematical description given in the text or in the problems.

In some of the computer problems, there is something to be learned beyond simply
writing code—a moral, if you like. This can happen if the problem being solved and the
code provided to do so are somehow mismatched. Some computing problems are designed
to give experience in using either mathematical software systems, precoded programs, or
black-box library codes.

A Student’s Solution Manual is sold as a separate publication. Also, teachers who adopt
the book can obtain from the publisher the Instructor’s Solution Manual. Sample programs
based on the pseudocode displayed in this text have been coded in several programming
languages. These codes and additional material are available on the textbook websites:

www.thomsonedu.com/math/cheney

www.ma.utexas.edu/CNA/NMC6/

The arrangement of chapters reflects our own view of how the material might best
unfold for a student new to the subject. However, there is very little mutual dependence
among the chapters, and the instructor can order the sequence of presentation in various
ways. Most courses will certainly have to omit some sections and chapters for want of time.

Our own recommendations for courses based on this text are as follows:

• A one-term course carefully covering Chapters 1 through 11 (possibly omitting Chapters 5
and 8 and Sections 4.2, 9.3, 10.3, and 11.3, for example), followed by a selection of
material from the remaining chapters as time permits.

• A one-term survey rapidly skimming over most of the chapters in the text and omitting
some of the more difficult sections.

• A two-term course carefully covering all chapters.

www.thomsonedu.com/math/cheney
www.ma.utexas.edu/CNA/NMC6/

Preface v

Student Research Projects
Throughout the book there are some computer problems designated as Student Research
Projects. These suggest opportunities for students to explore topics beyond the scope of
the textbook. Many of these involve application areas for numerical methods. The projects
should include programming and numerical experiments. A favorable aspect of these as-
signments is to allow students to choose a topic of interest to them, possibly something
that may arise in their future profession or their major study area. For example, any topic
suggested by the chapters and sections in the book may be delved into more deeply by
consulting other texts and references on that topic. In preparing such a project, the students
have to learn about the topic, locate the significant references (books and research papers),
do the computing, and write a report that explains all this in a coherent way. Students can
avail themselves of mathematical software systems such as Matlab, Maple, or Mathematica,
or do their own programming in whatever language they prefer.

Acknowledgments
In preparing the sixth edition, we have been able to profit from advice and suggestions
kindly offered by a large number of colleagues, students, and users of the previous edition.

We wish to acknowledge the reviewers who have provided detailed critiques for this new
edition: Krishan Agrawal, Thomas Boger, Charles Collins, Gentil A. Estévez, Terry Feagin,
Mahadevan Ganesh, William Gearhart, Juan Gil, Xiaofan Li, Vania Mascioni, Bernard
Maxum, Amar Raheja, Daniel Reynolds, Asok Sen, Ching-Kuang Shene, William Slough,
Thiab Taha, Jin Wang, Quiang Ye, Tjalling Ypma, and Shangyou Zhan. In particular, Jose
Flores was most helpful in checking over the manuscript.

Reviewers from previous editions were Neil Berger, Jose E. Castillo, Charles Cullen,
Elias Y. Deeba, F. Emad, Terry Feagin, Leslie Foster, Bob Funderlic, John Gregory, Bruce
P. Hillam, Patrick Lang, Ren Chi Li, Wu Li, Edward Neuman, Roy Nicolaides. J. N. Reddy,
Ralph Smart, Stephen Wirkus, and Marcus Wright.

We thank those who have helped in various capacities. Many individuals took the trou-
ble to write us with suggestions and criticisms of previous editions of this book: A. Aawwal,
Nabeel S.Abo-Ghander, Krishan Agrawal, Roger Alexander, Husain Ali Al-Mohssen,
Kistone Anand, Keven Anderson, Vladimir Andrijevik, Jon Ashland, Hassan Basir, Steve
Batterson, Neil Berger, Adarsh Beohar, Bernard Bialecki, Jason Brazile, Keith M. Briggs,
Carl de Boor, Jose E. Castillo, Ellen Chen, Edmond Chow, John Cook, Roger Crawfis,
Charles Cullen, Antonella Cupillari, Jonathan Dautrich, James Arthur Davis, Tim Davis,
Elias Y. Deeba, Suhrit Dey, Alan Donoho, Jason Durheim, Wayne Dymacek, Fawzi P. Emad,
Paul Enigenbury, Terry Feagin, Leslie Foster, Peter Fraser, Richard Gardner, John Gregory,
Katherine Hua Guo, Scott Hagerup, Kent Harris, Bruce P. Hillam, Tom Hogan, Jackie
Hohnson, Christopher M. Hoss, Kwang-il In, Victoria Interrante, Sadegh Jokar, Erni Jusuf,
Jason Karns, Grant Keady, Jacek Kierzenka, S. A. (Seppo) Korpela, Andrew Knyazev,
Gary Krenz, Jihoon Kwak, Kim Kyungjin, Minghorng Lai, Patrick Lang, Wu Li, Grace
Liu, Wenguo Liu, Mark C. Malburg, P. W. Manual, Juan Meza, F. Milianazzo, Milan
Miklavcic, Sue Minkoff, George Minty, Baharen Momken, Justin Montgomery, Ramon
E. Moore, Aaron Naiman, Asha Nallana, Edward Neuman, Durene Ngo, Roy Nicolaides,
Jeff Nunemacher, Valia Guerra Ones, Tony Praseuth, Rolfe G. Petschek, Mihaela Quirk,
Helia Niroomand Rad, Jeremy Rahe, Frank Roberts, Frank Rogers, Simen Rokaas, Robert

vi Preface

S. Raposo, Chris C. Seib, Granville Sewell, Keh-Ming Shyue, Daniel Somerville, Nathan
Smith, Mandayam Srinivas, Alexander Stromberger, Xingping Sun, Thiab Taha, Hidajaty
Thajeb, Joseph Traub, Phuoc Truong, Vincent Tsao, Bi Roubolo Vona, David Wallace,
Charles Walters, Kegnag Wang, Layne T. Watson, Andre Weideman, Perry Wong, Yuan
Xu, and Rick Zaccone.

Valuable comments and suggestions were made by our colleagues and friends. In
particular, David Young was very generous with suggestions for improving the accuracy
and clarity of the exposition in previous editions. Some parts of previous editions were
typed with great care and attention to detail by Katy Burrell, Kata Carbone, and Belinda
Trevino. Aaron Naiman at Jerusalem College of Technology was particularly helpful in
preparing view-graphs for a course based on this book.

It is our pleasure to thank those who helped with the task of preparing the new edition.
The staff of Brooks/Cole and associated individuals have been most understanding and
patient in bringing this book to fruition. In particular, we thank Bob Pirtle, Stacy Green,
Elizabeth Rodio, and Cheryll Linthicum for their efforts on behalf of this project. Some
of those who were involved with previous editions were Seema Atwal, Craig Barth, Carol
Benedict, Gary Ostedt, Jeremy Hayhurst, Janet Hill, Ragu Raghavan, Anne Seitz, Marlene
Thom, and Elizabeth Rammel. We also thank Merrill Peterson and Sara Planck at Matrix
Productions Inc. for providing the LATEX macros and for help in putting the book into final
form.

We would appreciate any comments, questions, criticisms, or corrections that readers
may communicate to us. For this, e-mail is especially efficient.

Ward Cheney
Department of Mathematics
cheney@math.utexas.edu

David Kincaid
Department of Computer Sciences
kincaid@cs.utexas.edu

Contents

1 Introduction 1

1.1 Preliminary Remarks 1
Significant Digits of Precision: Examples 3
Errors: Absolute and Relative 5
Accuracy and Precision 5
Rounding and Chopping 6
Nested Multiplication 7
Pairs of Easy/Hard Problems 9
First Programming Experiment 9
Mathematical Software 10
Summary 11
Additional References 11
Problems 1.1 12
Computer Problems 1.1 14

1.2 Review of Taylor Series 20
Taylor Series 20
Complete Horner’s Algorithm 23
Taylor’s Theorem in Terms of (x − c) 24
Mean-Value Theorem 26
Taylor’s Theorem in Terms of h 26
Alternating Series 28
Summary 30
Additional References 31
Problems 1.2 31
Computer Problems 1.2 36

2 Floating-Point Representation and Errors 43

2.1 Floating-Point Representation 43
Normalized Floating-Point Representation 44
Floating-Point Representation 46
Single-Precision Floating-Point Form 46

vii

viii Contents

Double-Precision Floating-Point Form 48
Computer Errors in Representing Numbers 50
Notation fl(x) and Backward Error Analysis 51
Historical Notes 54
Summary 54
Problems 2.1 55
Computer Problems 2.1 59

2.2 Loss of Significance 61
Significant Digits 61
Computer-Caused Loss of Significance 62
Theorem on Loss of Precision 63
Avoiding Loss of Significance in Subtraction 64
Range Reduction 67
Summary 68
Additional References 68
Problems 2.2 68
Computer Problems 2.2 71

3 Locating Roots of Equations 76

3.1 Bisection Method 76
Introduction 76
Bisection Algorithm and Pseudocode 78
Examples 79
Convergence Analysis 81
False Position (Regula Falsi) Method and Modifications 83
Summary 85
Problems 3.1 85
Computer Problems 3.1 87

3.2 Newton’s Method 89
Interpretations of Newton’s Method 90
Pseudocode 92
Illustration 92
Convergence Analysis 93
Systems of Nonlinear Equations 96
Fractal Basins of Attraction 99
Summary 100
Additional References 100
Problems 3.2 101
Computer Problems 3.2 105

3.3 Secant Method 111
Secant Algorithm 112
Convergence Analysis 114
Comparison of Methods 117

Contents ix

Hybrid Schemes 117
Fixed-Point Iteration 117
Summary 118
Additional References 119
Problems 3.3 119
Computer Problems 3.3 121

4 Interpolation and

Numerical Differentiation 124

4.1 Polynomial Interpolation 124
Preliminary Remarks 124
Polynomial Interpolation 125
Interpolating Polynomial: Lagrange Form 126
Existence of Interpolating Polynomial 128
Interpolating Polynomial: Newton Form 128
Nested Form 130
Calculating Coefficients ai Using Divided Differences 131
Algorithms and Pseudocode 136
Vandermonde Matrix 139
Inverse Interpolation 141
Polynomial Interpolation by Neville’s Algorithm 142
Interpolation of Bivariate Functions 144
Summary 145
Problems 4.1 146
Computer Problems 4.1 152

4.2 Errors in Polynomial Interpolation 153
Dirichlet Function 154
Runge Function 154
Theorems on Interpolation Errors 156
Summary 160
Problems 4.2 161
Computer Problems 4.2 163

4.3 Estimating Derivatives and Richardson Extrapolation 164
First-Derivative Formulas via Taylor Series 164
Richardson Extrapolation 166
First-Derivative Formulas via Interpolation Polynomials 170
Second-Derivative Formulas via Taylor Series 173
Noise in Computation 174
Summary 174
Additional References for Chapter 4 175
Problems 4.3 175
Computer Problems 4.3 178

x Contents

5 Numerical Integration 180

5.1 Lower and Upper Sums 180
Definite and Indefinite Integrals 180
Lower and Upper Sums 181
Riemann-Integrable Functions 183
Examples and Pseudocode 184
Summary 187
Problems 5.1 187
Computer Problems 5.1 188

5.2 Trapezoid Rule 190
Uniform Spacing 191
Error Analysis 192
Applying the Error Formula 195
Recursive Trapezoid Formula for Equal Subintervals 196
Multidimensional Integration 198
Summary 199
Problems 5.2 200
Computer Problems 5.2 203

5.3 Romberg Algorithm 204
Description 204
Pseudocode 205
Euler-Maclaurin Formula 206
General Extrapolation 209
Summary 211
Additional References 211
Problems 5.3 212
Computer Problems 5.3 214

6 Additional Topics on

Numerical Integration 216

6.1 Simpson’s Rule and Adaptive Simpson’s Rule 216
Basic Simpson’s Rule 216
Simpson’s Rule 219
Composite Simpson’s Rule 220
An Adaptive Simpson’s Scheme 221
Example Using Adaptive Simpson Procedure 224
Newton-Cotes Rules 225
Summary 226
Problems 6.1 227
Computer Problems 6.1 229

Contents xi

6.2 Gaussian Quadrature Formulas 230
Description 230
Change of Intervals 231
Gaussian Nodes and Weights 232
Legendre Polynomials 234
Integrals with Singularities 237
Summary 237
Additional References 239
Problems 6.2 239
Computer Problems 6.2 241

7 Systems of Linear Equations 245

7.1 Naive Gaussian Elimination 245
A Larger Numerical Example 247
Algorithm 248
Pseudocode 250
Testing the Pseudocode 253
Residual and Error Vectors 254
Summary 255
Problems 7.1 255
Computer Problems 7.1 257

7.2 Gaussian Elimination with Scaled Partial Pivoting 259
Naive Gaussian Elimination Can Fail 259
Partial Pivoting and Complete Partial Pivoting 261
Gaussian Elimination with Scaled Partial Pivoting 262
A Larger Numerical Example 265
Pseudocode 266
Long Operation Count 269
Numerical Stability 271
Scaling 271
Summary 271
Problems 7.2 272
Computer Problems 7.2 276

7.3 Tridiagonal and Banded Systems 280
Tridiagonal Systems 281
Strictly Diagonal Dominance 282
Pentadiagonal Systems 283
Block Pentadiagonal Systems 285
Summary 286
Additional References 287
Problems 7.3 287
Computer Problems 7.3 288

xii Contents

8 Additional Topics Concerning

Systems of Linear Equations 293

8.1 Matrix Factorizations 293
Numerical Example 294
Formal Derivation 296
Pseudocode 300
Solving Linear Systems Using LU Factorization 300
L DLT Factorization 302
Cholesky Factorization 305
Multiple Right-Hand Sides 306
Computing A−1 307
Example Using Software Packages 307
Summary 309
Problems 8.1 311
Computer Problems 8.1 316

8.2 Iterative Solutions of Linear Systems 319
Vector and Matrix Norms 319
Condition Number and Ill-Conditioning 321
Basic Iterative Methods 322
Pseudocode 327
Convergence Theorems 328
Matrix Formulation 331
Another View of Overrelaxation 332
Conjugate Gradient Method 332
Summary 335
Problems 8.2 337
Computer Problems 8.2 339

8.3 Eigenvalues and Eigenvectors 342
Calculating Eigenvalues and Eigenvectors 343
Mathematical Software 344
Properties of Eigenvalues 345
Gershgorin’s Theorem 347
Singular Value Decomposition 348
Numerical Examples of Singular Value Decomposition 351
Application: Linear Differential Equations 353
Application: A Vibration Problem 354
Summary 355
Problems 8.3 356
Computer Problems 8.3 358

8.4 Power Method 360
Power Method Algorithms 361

Contents xiii

Aitken Acceleration 363
Inverse Power Method 364
Software Examples: Inverse Power Method 365
Shifted (Inverse) Power Method 365
Example: Shifted Inverse Power Method 366
Summary 366
Additional References 367
Problems 8.4 367
Computer Problems 8.4 368

9 Approximation by Spline Functions 371

9.1 First-Degree and Second-Degree Splines 371
First-Degree Spline 372
Modulus of Continuity 374
Second-Degree Splines 376
Interpolating Quadratic Spline Q(x) 376
Subbotin Quadratic Spline 378
Summary 380
Problems 9.1 381
Computer Problems 9.1 384

9.2 Natural Cubic Splines 385
Introduction 385
Natural Cubic Spline 386
Algorithm for Natural Cubic Spline 388
Pseudocode for Natural Cubic Splines 392
Using Pseudocode for Interpolating and Curve Fitting 393
Space Curves 394
Smoothness Property 396
Summary 398
Problems 9.2 399
Computer Problems 9.2 403

9.3 B Splines: Interpolation and Approximation 404
Interpolation and Approximation by B Splines 410
Pseudocode and a Curve-Fitting Example 412
Schoenberg’s Process 414
Pseudocode 414
Bézier Curves 416
Summary 418
Additional References 419
Problems 9.3 420
Computer Problems 9.3 423

xiv Contents

10 Ordinary Differential Equations 426

10.1 Taylor Series Methods 426
Initial-Value Problem: Analytical versus Numerical Solution 426
An Example of a Practical Problem 428
Solving Differential Equations and Integration 428
Vector Fields 429
Taylor Series Methods 431
Euler’s Method Pseudocode 432
Taylor Series Method of Higher Order 433
Types of Errors 435
Taylor Series Method Using Symbolic Computations 435
Summary 435
Problems 10.1 436
Computer Problems 10.1 438

10.2 Runge-Kutta Methods 439
Taylor Series for f (x, y) 440
Runge-Kutta Method of Order 2 441
Runge-Kutta Method of Order 4 442
Pseudocode 443
Summary 444
Problems 10.2 445
Computer Problems 10.2 447

10.3 Stability and Adaptive Runge-Kutta and Multistep Methods 450
An Adaptive Runge-Kutta-Fehlberg Method 450
An Industrial Example 454
Adams-Bashforth-Moulton Formulas 455
Stability Analysis 456
Summary 459
Additional References 460
Problems 10.3 460
Computer Problems 10.3 461

11 Systems of Ordinary

Differential Equations 465

11.1 Methods for First-Order Systems 465
Uncoupled and Coupled Systems 465
Taylor Series Method 466
Vector Notation 467
Systems of ODEs 468
Taylor Series Method: Vector Notation 468

Contents xv

Runge-Kutta Method 469
Autonomous ODE 471
Summary 473
Problems 11.1 474
Computer Problems 11.1 475

11.2 Higher-Order Equations and Systems 477
Higher-Order Differential Equations 477
Systems of Higher-Order Differential Equations 479
Autonomous ODE Systems 479
Summary 480
Problems 11.2 480
Computer Problems 11.2 482

11.3 Adams-Bashforth-Moulton Methods 483
A Predictor-Corrector Scheme 483
Pseudocode 484
An Adaptive Scheme 488
An Engineering Example 488
Some Remarks about Stiff Equations 489
Summary 491
Additional References 492
Problems 11.3 492
Computer Problems 11.3 492

12 Smoothing of Data and

the Method of Least Squares 495

12.1 Method of Least Squares 495
Linear Least Squares 495
Linear Example 498
Nonpolynomial Example 499
Basis Functions {g0, g1, . . . , gn} 500
Summary 501
Problems 12.1 502
Computer Problems 12.1 505

12.2 Orthogonal Systems and Chebyshev Polynomials 505
Orthonormal Basis Functions {g0, g1, . . . , gn} 505
Outline of Algorithm 508
Smoothing Data: Polynomial Regression 510
Summary 515
Problems 12.2 516
Computer Problems 12.2 517

12.3 Other Examples of the Least-Squares Principle 518
Use of a Weight Function w (x) 519

xvi Contents

Nonlinear Example 520
Linear and Nonlinear Example 521
Additional Details on SVD 522
Using the Singular Value Decomposition 524
Summary 527
Additional References 527
Problems 12.3 527
Computer Problems 12.3 530

13 Monte Carlo Methods and Simulation 532

13.1 Random Numbers 532
Random-Number Algorithms and Generators 533
Examples 535
Uses of Pseudocode Random 537
Summary 541
Problems 13.1 541
Computer Problems 13.1 542

13.2 Estimation of Areas and Volumes
by Monte Carlo Techniques 544
Numerical Integration 544
Example and Pseudocode 545
Computing Volumes 547
Ice Cream Cone Example 548
Summary 549
Problems 13.2 549
Computer Problems 13.2 549

13.3 Simulation 552
Loaded Die Problem 552
Birthday Problem 553
Buffon’s Needle Problem 555
Two Dice Problem 556
Neutron Shielding 557
Summary 558
Additional References 558
Computer Problems 13.3 559

14 Boundary-Value Problems for

Ordinary Differential Equations 563

14.1 Shooting Method 563
Shooting Method Algorithm 565
Modifications and Refinements 567

Contents xvii

Summary 567
Problems 14.1 568
Computer Problems 14.1 570

14.2 A Discretization Method 570
Finite-Difference Approximations 570
The Linear Case 571
Pseudocode and Numerical Example 572
Shooting Method in the Linear Case 574
Pseudocode and Numerical Example 575
Summary 577
Additional References 578
Problems 14.2 578
Computer Problems 14.2 580

15 Partial Differential Equations 582

15.1 Parabolic Problems 582
Some Partial Differential Equations from Applied Problems 582
Heat Equation Model Problem 585
Finite-Difference Method 585
Pseudocode for Explicit Method 587
Crank-Nicolson Method 588
Pseudocode for the Crank-Nicolson Method 589
Alternative Version of the Crank-Nicolson Method 590
Stability 591
Summary 593
Problems 15.1 594
Computer Problems 15.1 596

15.2 Hyperbolic Problems 596
Wave Equation Model Problem 596
Analytic Solution 597
Numerical Solution 598
Pseudocode 600
Advection Equation 601
Lax Method 602
Upwind Method 602
Lax-Wendroff Method 602
Summary 603
Problems 15.2 604
Computer Problems 15.2 604

15.3 Elliptic Problems 605
Helmholtz Equation Model Problem 605
Finite-Difference Method 606
Gauss-Seidel Iterative Method 610

xviii Contents

Numerical Example and Pseudocode 610
Finite-Element Methods 613
More on Finite Elements 617
Summary 619
Additional References 620
Problems 15.3 620
Computer Problems 15.3 622

16 Minimization of Functions 625

16.1 One-Variable Case 625
Unconstrained and Constrained Minimization Problems 625
One-Variable Case 626
Unimodal Functions F 627
Fibonacci Search Algorithm 628
Golden Section Search Algorithm 631
Quadratic Interpolation Algorithm 633
Summary 635
Problems 16.1 635
Computer Problems 16.1 637

16.2 Multivariate Case 639
Taylor Series for F : Gradient Vector and Hessian Matrix 640
Alternative Form of Taylor Series 641
Steepest Descent Procedure 643
Contour Diagrams 644
More Advanced Algorithms 644
Minimum, Maximum, and Saddle Points 646
Positive Definite Matrix 647
Quasi-Newton Methods 647
Nelder-Mead Algorithm 647
Method of Simulated Annealing 648
Summary 650
Additional References 651
Problems 16.2 651
Computer Problems 16.2 654

17 Linear Programming 657

17.1 Standard Forms and Duality 657
First Primal Form 657
Numerical Example 658
Transforming Problems into First Primal Form 660

Contents xix

Dual Problem 661
Second Primal Form 663
Summary 664
Problems 17.1 665
Computer Problems 17.1 669

17.2 Simplex Method 670
Vertices in K and Linearly Independent Columns of A 671
Simplex Method 672
Summary 674
Problems 17.2 674
Computer Problems 17.2 675

17.3 Approximate Solution of Inconsistent Linear Systems 675
�1 Problem 676
�∞ Problem 678
Summary 680
Additional References 682
Problems 17.3 682
Computer Problems 17.3 682

Appendix A Advice on Good Programming Practices 684

A.1 Programming Suggestions 684
Case Studies 687
On Developing Mathematical Software 691

Appendix B Representation of Numbers in Different Bases 692

B.1 Representation of Numbers in Different Bases 692
Base β Numbers 693
Conversion of Integer Parts 693
Conversion of Fractional Parts 695
Base Conversion 10 ↔ 8 ↔ 2 696
Base 16 698
More Examples 698
Summary 699
Problems B.1 699
Computer Problems B.1 701

Appendix C Additional Details on IEEE Floating-Point Arithmetic 703

C.1 More on IEEE Standard Floating-Point Arithmetic 703

Appendix D Linear Algebra Concepts and Notation 706

D.1 Elementary Concepts 706
Vectors 706
Matrices 708

xx Contents

Matrix-Vector Product 711
Matrix Product 711
Other Concepts 713
Cramer’s Rule 715

D.2 Abstract Vector Spaces 716
Subspaces 717
Linear Independence 717
Bases 718
Linear Transformations 718
Eigenvalues and Eigenvectors 719
Change of Basis and Similarity 719
Orthogonal Matrices and Spectral Theorem 720
Norms 721
Gram-Schmidt Process 722

Answers for Selected Problems 724

Bibliography 745

Index 754

1

Introduction

The Taylor series for the natural logarithm ln(1 + x) is

ln 2 = 1 − 1
2

+ 1
3

− 1
4

+ 1
5

− 1
6

+ 1
7

− 1
8

+ · · ·

Adding together the eight terms shown, we obtain ln 2 ≈ 0.63452∗, which
is a poor approximation to ln 2 = 0.69315. . . . On the other hand, the Taylor
series for ln[(1 + x)/(1 − x)] gives us

(
with x = 1

3

)
ln 2 = 2

(
3−1 + 3−3

3
+ 3−5

5
+ 3−7

7
+ · · ·

)

By adding the four terms shown between the parentheses and multiplying
by 2, we obtain ln 2 ≈ 0.69313. This illustrates the fact that rapid conver-
gence of a Taylor series can be expected near the point of expansion but
not at remote points. Evaluating the series ln[(1 + x)/(1 − x)] at x = 1

3 is a
mechanism for evaluating ln 2 near the point of expansion. It also gives an
example in which the properties of a function can be exploited to obtain a
more rapidly convergent series. Examples like this will become clearer after
the reader has studied Section 1.2. Taylor series and Taylor’s Theorem are
two of the principal topics we discuss in this chapter. They are ubiquitous
features in much of numerical analysis.

1.1 Preliminary Remarks
The objective of this text is to help the reader in understanding some of the many methods
for solving scientific problems on a modern computer. We intentionally limit ourselves to
the typical problems that arise in science, engineering, and technology. Thus, we do not
touch on problems of accounting, modeling in the social sciences, information retrieval,
artificial intelligence, and so on.

∗The symbol ≈ means “approximately equal to.”

1

2 Chapter 1 Introduction

Usually, our treatment of problems will not begin at the source, for that would take
us far afield into such areas as physics, engineering, and chemistry. Instead, we consider
problems after they have been cast into certain standard mathematical forms. The reader is
therefore asked to accept on faith the assertion that the chosen topics are indeed important
ones in scientific computing.

To survey many topics, we must treat some in a superficial way. But it is hoped that
the reader will acquire a good bird’s-eye view of the subject and therefore will be better
prepared for a further, deeper study of numerical analysis.

For each principal topic, we list good current sources for more information. In any
realistic computing situation, considerable thought should be given to the choice of method
to be employed. Although most procedures presented here are useful and important, they
may not be the optimum ones for a particular problem. In choosing among available methods
for solving a problem, the analyst or programmer should consult recent references.

Becoming familiar with basic numerical methods without realizing their limitations
would be foolhardy. Numerical computations are almost invariably contaminated by errors,
and it is important to understand the source, propagation, magnitude, and rate of growth
of these errors. Numerical methods that provide approximations and error estimates are
more valuable than those that provide only approximate answers. While we cannot help
but be impressed by the speed and accuracy of the modern computer, we should temper
our admiration with generous measures of skepticism. As the eminent numerical analyst
Carl-Erik Fröberg once remarked:

Never in the history of mankind has it been possible to produce so many wrong
answers so quickly!

Thus, one of our goals is to help the reader arrive at this state of skepticism, armed with
methods for detecting, estimating, and controlling errors.

The reader is expected to be familiar with the rudiments of programming. Algorithms
are presented as pseudocode, and no particular programming language is adopted.

Some of the primary issues related to numerical methods are the nature of numerical
errors, the propagation of errors, and the efficiency of the computations involved, as well
as the number of operations and their possible reduction.

Many students have graphing calculators and access to mathematical software systems
that can produce solutions to complicated numerical problems with minimal difficulty.
The purpose of a numerical mathematics course is to examine the underlying algorithmic
techniques so that students learn how the software or calculator found the answer. In this
way, they would have a better understanding of the inherent limits on the accuracy that must
be anticipated in working with such systems.

One of the fundamental strategies behind many numerical methods is the replacement
of a difficult problem with a string of simpler ones. By carrying out an iterative process,
the solutions of the simpler problems can be put together to obtain the solution of the
original, difficult problem. This strategy succeeds in finding zeros of functions (Chapter 3),
interpolation (Chapter 4), numerical integration (Chapters 5–6), and solving linear systems
(Chapters 7–8).

Students majoring in computer science and mathematics as well as those majoring in
engineering and other sciences are usually well aware that numerical methods are needed
to solve problems that they frequently encounter. It may not be as well recognized that

1.1 Preliminary Remarks 3

scientific computing is quite important for solving problems that come from fields other
than engineering and science, such as economics. For example, finding zeros of functions
may arise in problems using the formulas for loans, interest, and payment schedules. Also,
problems in areas such as those involving the stock market may require least-squares solu-
tions (Chapter 12). In fact, the field of computational finance requires solving quite complex
mathematical problems utilizing a great deal of computing power. Economic models rou-
tinely require the analysis of linear systems of equations with thousands of unknowns.

Significant Digits of Precision: Examples
Significant digits are digits beginning with the leftmost nonzero digit and ending with the
rightmost correct digit, including final zeros that are exact.

EXAMPLE 1 In a machine shop, a technician cuts a 2-meter by 3-meter rectangular sheet of metal into
two equal triangular pieces. What is the diagonal measurement of each triangle? Can these
pieces be slightly modified so the diagonals are exactly 3.6 meters?

Solution Since the piece is rectangular, the Pythagorean Theorem can be invoked. Thus, to compute
the diagonal, we write 22 + 32 = d2, where d is the diagonal. It follows that

d = √
4 + 9 =

√
13 = 3.60555 1275

This last number is obtained by using a hand-held calculator. The accuracy of d as given
can be verified by computing (3.60555 1275) ∗ (3.60555 1275) = 13. Is this value for the
diagonal, d , to be taken seriously? Certainly not. To begin with, the given dimensions of
the rectangle cannot be expected to be precisely 2 and 3. If the dimensions are accurate to
one millimeter, the dimensions may be as large as 2.001 and 3.001. Using the Pythagorean
Theorem again, one finds that the diagonal may be as large as

d =
√

2.0012 + 3.0012 = √
4.00400 1 + 9.00600 1 =

√
13.01002 ≈ 3.6069

Similar reasoning indicates that d may be as small as 3.6042. These are both worst cases.
We can conclude that

3.6042 � d � 3.6069

No greater accuracy can be claimed for the diagonal, d.
If we want the diagonal to be exactly 3.6, we require

(3 − c)2 + (2 − c)2 = 3.62

For simplicity, we reduce each side by the same amount. This leads to

c2 − 5c + 0.02 = 0

Using the quadratic formula, we obtain the smaller root

c = 2.5 −
√

6.23 ≈ 0.00400

By cutting off 4 millimeters from the two perpendicular sides, we have triangular pieces of
sizes 1.996 by 2.996 meters. Checking, we obtain (1.996)2 + (2.996)2 ≈ 3.62. ■

To show the effect of the number of significant digits used in a calculation, we consider
the problem of solving a linear system of equations.

4 Chapter 1 Introduction

EXAMPLE 2 Let us concentrate on solving for the variable y in this linear system of equations in two
variables {

0.1036 x + 0.2122 y = 0.7381

0.2081 x + 0.4247 y = 0.9327
(1)

First, carry only three significant digits of precision in the calculations. Second, repeat with
four significant digits throughout. Finally, use ten significant digits.

Solution In the first task, we round all numbers in the original problem to three digits and round
all the calculations, keeping only three significant digits. We take a multiple α of the first
equation and subtract it from the second equation to eliminate the x-term in the second
equation. The multiplier is α = 0.208/0.104 ≈ 2.00. Thus, in the second equation, the
new coefficient of the x-term is 0.208 − (2.00)(0.104) ≈ 0.208 − 0.208 = 0 and the
new y-term coefficient is 0.425 − (2.00)(0.212) ≈ 0.425 − 0.424 = 0.001. The right-
hand side is 0.933 − (2.00)(0.738) = 0.933 − 1.48 = −0.547. Hence, we find that
y = −0.547/(0.001) ≈ −547.

We decide to keep four significant digits throughout and repeat the calculations. Now
the multiplier is α = 0.2081/0.1036 ≈ 2.009. In the second equation, the new coefficient
of the x-term is 0.2081 − (2.009)(0.1036) ≈ 0.2081 − 0.2081 = 0, the new coefficient of
the y-term is 0.4247 − (2.009)(0.2122) ≈ 0.4247 − 0.4263 = −0.00160 0, and the new
right-hand side is 0.9327− (2.009)(0.7381) ≈ 0.9327−1.483 ≈ −0.5503. Hence, we find
y = −0.5503/(−.00160 0) ≈ 343.9. We are shocked to find that the answer has changed
from −547 to 343.9, which is a huge difference!

In fact, if we repeat this process and carry ten significant decimal digits, we find that
even 343.9 is not accurate, since we obtain 356.29071 99. The lesson learned in this example
is that data thought to be accurate should be carried with full precision and not be rounded
off prior to each of the calculations. ■

In most computers, the arithmetic operations are carried out in a double-length ac-
cumulator that has twice the precision of the stored quantities. However, even this may
not avoid a loss of accuracy! Loss of accuracy can happen in various ways such as from
roundoff errors and subtracting nearly equal numbers. We shall discuss loss of precision in
Chapter 2, and the solving of linear systems in Chapter 7.

Figure 1.1 shows a geometric illustration of what can happen in solving two equations
in two unknowns. The point of intersection of the two lines is the exact solution. As is shown
by the dotted lines, there may be a degree of uncertainty from errors in the measurements
or roundoff errors. So instead of a sharply defined point, there may be a small trapezoidal
area containing many possible solutions. However, if the two lines are nearly parallel, then

FIGURE 1.1

In 2D, well-
conditioned and

ill-conditioned
linear systems

1.1 Preliminary Remarks 5

this area of possible solutions can increase dramatically! This is related to well-conditioned
and ill-conditioned systems of linear equations, which are discussed more in Chapter 8.

Errors: Absolute and Relative
Suppose that α and β are two numbers, of which one is regarded as an approximation to
the other. The error of β as an approximation to α is α − β; that is, the error equals the
exact value minus the approximate value. The absolute error of β as an approximation to
α is |α −β|. The relative error of β as an approximation to α is |α −β|/|α|. Notice that in
computing the absolute error, the roles of α and β are the same, whereas in computing the
relative error, it is essential to distinguish one of the two numbers as correct. (Observe that
the relative error is undefined in the case α = 0.) For practical reasons, the relative error is
usually more meaningful than the absolute error. For example, if α1 = 1.333, β1 = 1.334,
and α2 = 0.001, β2 = 0.002, then the absolute error of βi as an approximation to αi is
the same in both cases—namely, 10−3. However, the relative errors are 3

4 × 10−3 and 1,
respectively. The relative error clearly indicates that β1 is a good approximation to α1 but
that β2 is a poor approximation to α2. In summary, we have

absolute error = |exact value − approximate value|

relative error = |exact value − approximate value|
|exact value|

Here the exact value is the true value. A useful way to express the absolute error and relative
error is to drop the absolute values and write

(relative error)(exact value) = exact value − approximate value

approximate value = (exact value)[1 + (relative error)]

So the relative error is related to the approximate value rather than to the exact value because
the true value may not be known.

EXAMPLE 3 Consider x = 0.00347 rounded to x̃ = 0.0035 and y = 30.158 rounded to ŷ = 30.16.
In each case, what are the number of significant digits, absolute errors, and relative errors.
Interpret the results.

Solution Case 1. x̃ = 0.35 × 10−2 has two significant digits, absolute error 0.3 × 10−4, and relative
error 0.865 × 10−2. Case 2. ŷ = 0.3016 × 102 has four significant digits, absolute error
0.2 × 10−2, and relative error 0.66 × 10−4. Clearly, the relative error is a better indication
of the number of significant digits than the absolute error. ■

Accuracy and Precision
Accurate to n decimal places means that you can trust n digits to the right of the decimal
place. Accurate to n significant digits means that you can trust a total of n digits as being
meaningful beginning with the leftmost nonzero digit.

Suppose you use a ruler graduated in millimeters to measure lengths. The measurements
will be accurate to one millimeter, or 0.001 m, which is three decimal places written in
meters. A measurement such as 12.345 m would be accurate to three decimal places. A
measurement such as 12.34567 89 m would be meaningless, since the ruler produces only

6 Chapter 1 Introduction

three decimal places, and it should be 12.345 m or 12.346 m. If the measurement 12.345 m
has five dependable digits, then it is accurate to five significant figures. On the other hand,
a measurement such as 0.076 m has only two significant figures.

When using a calculator or computer in a laboratory experiment, one may get a false
sense of having higher precision than is warranted by the data. For example, the result

(1.2) + (3.45) = 4.65

actually has only two significant digits of accuracy because the second digit in 1.2 may be
the effect of rounding 1.24 down or rounding 1.16 up to two significant figures. Then the
left-hand side could be as large as

(1.249) + (3.454) = (4.703)

or as small as

(1.16) + (3.449) = (4.609)

There are really only two significant decimal places in the answer! In adding and subtracting
numbers, the result is accurate only to the smallest number of significant digits used in
any step of the calculation. In the above example, the term 1.2 has two significant digits;
therefore, the final calculation has an uncertainty in the third digit.

In multiplication and division of numbers, the results may be even more mislead-
ing. For instance, perform these computations on a calculator: (1.23)(4.5) = 5.535 and
(1.23)/(4.5) = 0.27333 3333. You think that there are four and nine significant digits in
the results, but there are really only two! As a rule of thumb, one should keep as many
significant digits in a sequence of calculations as there are in the least accurate number
involved in the computations.

Rounding and Chopping
Rounding reduces the number of significant digits in a number. The result of rounding is
a number similar in magnitude that is a shorter number having fewer nonzero digits. There
are several slightly different rules for rounding. The round-to-even method is also known
as statistician’s rounding or bankers’ rounding. It will be discussed below. Over a large set
of data, the round-to-even rule tends to reduce the total rounding error with (on average) an
equal portion of numbers rounding up as well as rounding down.

We say that a number x is chopped to n digits or figures when all digits that follow
the nth digit are discarded and none of the remaining n digits are changed. Conversely, x is
rounded to n digits or figures when x is replaced by an n-digit number that approximates x
with minimum error. The question of whether to round up or down an (n +1)-digit decimal
number that ends with a 5 is best handled by always selecting the rounded n-digit number
with an even nth digit. This may seem strange at first, but remarkably, this is essentially
what computers do in rounding decimal calculations when using the standard floating-point
arithmetic! (This is a topic discussed in Chapter 2.)

For example, the results of rounding some three-decimal numbers to two digits are
0.217 ≈ 0.22, 0.365 ≈ 0.36, 0.475 ≈ 0.48, and 0.592 ≈ 0.59, while chopping them gives
0.217 ≈ 0.21, 0.365 ≈ 0.36, 0.475 ≈ 0.47, and 0.592 ≈ 0.59. On the computer, the user
sometimes has the option to have all arithmetic operations done with either chopping or
rounding. The latter is usually preferable, of course.

1.1 Preliminary Remarks 7

Nested Multiplication
We will begin with some remarks on evaluating a polynomial efficiently and on rounding
and chopping real numbers. To evaluate the polynomial

p(x) = a0 + a1x + a2x2 + · · · + an−1xn−1 + an xn (2)

we group the terms in a nested multiplication:

p(x) = a0 + x(a1 + x(a2 + · · · + x(an−1 + x(an)) · · ·))

The pseudocode‡ that evaluates p(x) starts with the innermost parentheses and works out-
ward. It can be written as

integer i, n; real p, x ; real array (ai)0:n

p ← an

for i = n − 1 to 0 do
p ← ai + xp

end for

Here we assume that numerical values have been assigned to the integer variable n, the
real variable x , as well as the coefficients a0, a1, . . . , an , which are stored in a real linear
array. (Throughout, we use semicolons between these declarative statements to save space.)
The left-pointing arrow (←) means that the value on the right is stored in the location
named on the left (i.e., “overwrites” from right to left). The for-loop index i runs backward,
taking values n − 1, n − 2, . . . , 0. The final value of p is the value of the polynomial at
x . This nested multiplication procedure is also known as Horner’s algorithm or synthetic
division.

In the pseudocode above, there is exactly one addition and one multiplication each time
the loop is traversed. Consequently, Horner’s algorithm can evaluate a polynomial with only
n additions and n multiplications. This is the minimum number of operations possible. A
naive method of evaluating a polynomial would require many more operations. For example,
p(x) = 5 + 3x − 7x2 + 2x3 should be computed as p(x) = 5 + x(3 + x(−7 + x(2)))

for a given value of x . We have avoided all the exponentiation operations by using nested
multiplication!

The polynomial in Equation (1) can be written in an alternative form by utilizing the
mathematical symbols for sum

∑
and product

∏
, namely,

p(x) =
n∑

i=0

ai x
i =

n∑
i=0

(
ai

i∏
j=1

x

)

‡A pseudocode is a compact and informal description of an algorithm that uses the conventions of a programming
language but omits the detailed syntax. When convenient, it may be augmented with natural language.

8 Chapter 1 Introduction

Recall that if n � m, we write
m∑

k=n

xk = xn + xn+1 + · · · + xm

and
m∏

k=n

xk = xn xn+1 · · · xm

By convention, whenever m < n, we define
m∑

k=n

xk = 0 and
m∏

k=n

xk = 1

Horner’s algorithm can be used in the deflation of a polynomial. This is the process of
removing a linear factor from a polynomial. If r is a root of the polynomial p, then x − r
is a factor of p. The remaining roots of p are the n − 1 roots of a polynomial q of degree 1
less than the degree of p such that

p(x) = (x − r)q(x) + p(r) (3)

where

q(x) = b0 + b1x + b2x2 + · · · + bn−1xn−1 (4)

The pseudocode for Horner’s algorithm can be written as follows:

integer i, n; real p, r ; real array (ai)0:n, (bi)0:n−1

bn−1 ← an

for i = n − 1 to 0 do
bi−1 ← ai + rbi

end for

Notice that b−1 = p(r) in this pseudocode. If f is an exact root, then b−1 = p(r) = 0. If the
calculation in Horner’s algorithm is to be carried out with pencil and paper, the following
arrangement is often used:

an an−1 an−2 . . . a1 a0

r) rbn−1 rbn−2 . . . rb1 rb0−−
bn−1 bn−2 bn−3 . . . b0 b−1

EXAMPLE 4 Use Horner’s algorithm to evaluate p(3), where p is the polynomial

p(x) = x4 − 4x3 + 7x2 − 5x − 2

Solution We arrange the calculation as suggested above:

1 −4 7 −5 −2
3) 3 −3 12 21−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 −1 4 7 19

1.1 Preliminary Remarks 9

Thus, we obtain p(3) = 19, and we can write

p(x) = (x − 3)(x3 − x2 + 4x + 7) + 19 ■

In the deflation process, if r is a zero of the polynomial p, then x − r is a factor of p,
and conversely. The remaining zeros of p are the n − 1 zeros of q(x).

EXAMPLE 5 Deflate the polynomial p of the preceding example, using the fact that 2 is one of its zeros.

Solution We use the same arrangement of computations as explained previously:

1 −4 7 −5 −2
2) 2 −4 6 2−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 −2 3 1 0

Thus, we have p(2) = 0, and

x4 − 4x3 + 7x2 − 5x − 2 = (x − 2)(x3 − 2x2 + 3x + 1) ■

Pairs of Easy/Hard Problems
In scientific computing, we often encounter a pair of problems, one of which is easy and
the other hard and they are inverses of each other. This is the main idea in cryptology, in
which multiplying two numbers together is trivial but the reverse problem (factoring a huge
number) verges on the impossible.

The same phenomenon arises with polynomials. Given the roots, we can easily find
the power form of the polynomial as in Equation (2). Given the power form, it may be a
difficult problem to compute the roots (and it may be an ill-conditioned problem). Computer
Problem 1.1.24 calls for the writing of code to compute the coefficients in the power form
of a polynomial from its roots. It is a do-loop with simple formulas. One adjoins one factor
(x − r) at a time. This theme arises again in linear algebra, in which computing b = Ax is
trivial but finding x from A and b (the inverse problem) is hard. (See Section 7.1.)

Easy/hard problems come up again in two-point boundary value problems. Finding D f
and f (0) and f (1) when f is given and D is a differential operator is easy, but finding f
from knowledge of D f , f (0) and f (1) is hard. (See Section 14.1.)

Likewise, computing the eigenvalues of a matrix is a hard problem. Given the eigen-
values λ1, λ2, . . . , λn of an n × n matrix and corresponding eigenvectors v1, v2, . . . , vn of
an n × n matrix, we can get A by putting the eigenvalues on the diagonal of a diagonal
matrix D and the eigenvectors as columns in a matrix V . Then AV = V D, and we can get
A from this by solving the equation for A. But finding λi and vi from A itself is difficult.
(See Section 8.3.)

The reader may think of other examples.

First Programming Experiment
We conclude this section with a short programming experiment involving numerical com-
putations. Here we consider, from the computational point of view, a familiar operation in
calculus—namely, taking the derivative of a function. Recall that the derivative of a function

10 Chapter 1 Introduction

f at a point x is defined by the equation

f ′(x) = lim
h→0

f (x + h) − f (x)

h

A computer has the capacity of imitating the limit operation by using a sequence of numbers
h such as

h = 4−1, 4−2, 4−3, . . . , 4−n, . . .

for they certainly approach zero rapidly. Of course, many other simple sequences are pos-
sible, such as 1/n, 1/n2, and 1/10n . The sequence 1/4n consists of machine numbers in a
binary computer and, for this experiment on a 32-bit computer, will be sufficiently close to
zero when n is 10.

The following is pseudocode to compute f ′(x) at the point x = 0.5, with f (x) = sin x :

program First
integer i , imax, n ← 30
real error, y, x ← 0.5, h ← 1, emax ← 0
for i = 1 to n do

h ← 0.25h
y ← [sin(x + h) − sin(x)]/h
error ← |cos(x) − y|; output i, h, y, error
if error > emax then emax ← error; imax ← i end if

end for
output imax, emax

end program First

We have neither explained the purpose of the experiment nor shown the output from this
pseudocode. We invite the reader to discover this by coding and running it (or one like it)
on a computer. (See Computer Problems 1.1.1 through 1.1.3.)

Mathematical Software
The algorithms and programming problems in this book have been coded and tested in a
variety of ways, and they are available on the website for this book as given in the Pref-
ace. Some are best done by using a scientific programming language such as C, C++,
Fortran, or any other that allows for calculations with adequate precision. Sometimes it
is instructive to utilize mathematical software systems such as Matlab, Maple, Mathemat-
ica, or Octave, since they contain built-in problem-solving procedures. Alternatively, one
could use a mathematical program library such as IMSL, NAG, or others when locally
available. Some numerical libraries have been specifically optimized for the processor such
as Intel and AMD. Software systems are particularly useful for obtaining graphical results
as well as for experimenting with various numerical methods for solving a difficult prob-
lem. Mathematical software packages containing symbolic-manipulation capabilities, such
as in Maple, Mathematica, and Macsyma, are particularly useful for obtaining exact as
well as numerical solutions. In solving the computer problems, students should focus on
gaining insights and better understandings of the numerical methods involved. Appendix A

1.1 Preliminary Remarks 11

offers advice on computer programming for scientific computations. The suggestions are
independent of the particular language being used.

With the development of the World Wide Web and the Internet, good mathematical
software has become easy to locate and to transfer from one computer to another. Browsers,
search engines, and URL addresses may be used to find software that is applicable to a
particular area of interest. Collections of mathematical software exist, ranging from large
comprehensive libraries to smaller versions of these libraries for PCs; some of these are
interactive. Also, references to computer programs and collections of routines can be found
in books and technical reports. The URL of the website for this book, as given in the
Preface, contains an overview of available mathematical software as well as other supporting
material.

Summary

(1) Use nested multiplication to evaluate a polynomial efficiently:

p(x) = a0 + a1x + a2x2 + · · · + an−1xn−1 + an xn

= a0 + x(a1 + x(a2 + · · · + x(an−1 + x(an)) · · ·))

A segment of pseudocode for doing this is

p ← an

for k = 1 to n do
p ← xp + an−k

end for

(2) Deflation of the polynomial p(x) is removing a linear factor:

p(x) = (x − r)q(x) + p(r)

where

q(x) = b0 + b1x + b2x2 + · · · + bn−1xn−1

The pseudocode for Horner’s algorithm for deflation of a polynomial is

bn−1 ← an

for i = n − 1 to 0 do
bi−1 ← ai + rbi

end for

Here b−1 = p(r).

Additional References
Two interesting papers containing numerous examples of why numerical methods are criti-
cally important are Forsythe [1970] and McCartin [1998]. See Briggs [2004] and Friedman
and Littman [1994] for many industrial and real-world problems.

12 Chapter 1 Introduction

Problems 1.1*

1. In high school, some students have been misled to believe that 22/7 is either the
actual value of π or an acceptable approximation to π . Show that 355/113 is a better
approximation in terms of both absolute and relative errors. Find some other simple
rational fractions n/m that approximate π . For example, ones for which |π − n/m| <

10−9. Hint: See Problem 1.1.4.

a2. A real number x is represented approximately by 0.6032, and we are told that the
relative error is at most 0.1%. What is x?

a3. What is the relative error involved in rounding 4.9997 to 5.000?

a4. The value of π can be generated by the computer to nearly full machine precision by
the assignment statement

pi ← 4.0 arctan(1.0)

Suggest at least four other ways to compute π using basic functions on your computer
system.

5. A given doubly subscripted array (ai j)n×n can be added in any order. Write the pseu-
docode segments for each of the following parts. Which is best?

aa.
∑n

i=1

∑n
j=1 ai j b.

∑n
j=1

∑n
i=1 ai j

c.
∑n

i=1

(∑i
j=1 ai j +∑i−1

j=1 a ji

)
ad.

∑n−1
k=0

∑
|i− j |=k ai j e.

∑2n
k=2

∑n
i+ j=k ai j

a6. Count the number of operations involved in evaluating a polynomial using nested
multiplication. Do not count subscript calculations.

7. For small x , show that (1 + x)2 can sometimes be more accurately computed from
(x + 2)x + 1. Explain. What other expressions can be used to compute it?

8. Show how these polynomials can be efficiently evaluated:
aa. p(x) = x32 b. p(x) = 3(x − 1)5 + 7(x − 1)9

ac. p(x) = 6(x + 2)3 + 9(x + 2)7 + 3(x + 2)15 − (x + 2)31

d. p(x) = x127 − 5x37 + 10x17 − 3x7

9. Using the exponential function exp(x), write an efficient pseudocode segment for the
statement y = 5e3x + 7e2x + 9ex + 11.

a10. Write a pseudocode segment to evaluate the expression

z =
n∑

i=1

b−1
i

i∏
j=1

a j

where (a1, a2, . . . , an) and (b1, b2, . . . , bn) are linear arrays containing given values.

∗Problems marked with a have answers in the back of the book.

1.1 Preliminary Remarks 13

11. Write segments of pseudocode to evaluate the following expressions efficiently:

a. p(x) = ∑n−1
k=0 kxk ab. z = ∑n

i=1

∏i
j=1 xn− j+1

c. z = ∏n
i=1

∑i
j=1 x j d. p(t) = ∑n

i=1 ai
∏i−1

j=1(t − x j)

12. Using summation and product notation, write mathematical expressions for the follow-
ing pseudocode segments:

a. integer i, n; real v, x ; real array (ai)0:n

v ← a0

for i = 1 to n do
v ← v + xai

end for
ab. integer i, n; real v, x ; real array (ai)0:n

v ← an

for i = 1 to n do
v ← vx + an−i

end for

c. integer i, n; real v, x ; real array (ai)0:n

v ← a0

for i = 1 to n do
v ← vx + ai

end for

d. integer i, n; real v, x, z; real array (ai)0:n

v ← a0

z ← x
for i = 1 to n do

v ← v + zai

z ← xz
end for

ae. integer i, n; real v; real array (ai)0:n

v ← an

for i = 1 to n do
v ← (v + an−i)x

end for

a13. Express in mathematical notation without parentheses the final value of z in the fol-
lowing pseudocode segment:

integer k, n; real z; real array (bi)0:n

z ← bn + 1
for k = 1 to n − 2 do

z ← zbn−k + 1
end for

14 Chapter 1 Introduction

a14. How many multiplications occur in executing the following pseudocode segment?

integer i, j, n; real x ; real array (ai j)0:n×0:n, (bi j)0:n×0:n

x ← 0.0
for j = 1 to n do

for i = 1 to j do
x ← x + ai j bi j

end for
end for

15. Criticize the following pseudocode segments and write improved versions:

a. integer i, n; real x, z; real array (ai)0:n

for i = 1 to n do
x ← z2 + 5.7
ai ← x/ i

end for
ab. integer i, j, n; real array (ai j)0:n×0:n

for i = 1 to n do
for j = 1 to n do

ai j ← 1/(i + j − 1)

end for
end for

c. integer i, j, n; real array (ai j)0:n×0:n

for j = 1 to n do
for i = 1 to n do

ai j ← 1/(i + j − 1)

end for
end for

16. The augmented matrix

[
3.5713 2.1426 | 7.2158
10.714 6.4280 | 1.3379

]
is for a system of two equations

and two unknowns x and y. Repeat Example 2 for this system. Can small changes in
the data lead to massive change in the solution?

17. A base 60 approximation circa 1750 B.C. is
√

2 ≈ 1 + 24

60
+ 51

602
+ 10

603

Determine how accurate it is. See Sauer [2006] for additional details.

Computer Problems 1.1

1. Write and run a computer program that corresponds to the pseudocode program First
described in the text (p. 10) and interpret the results.

2. (Continuation) Select a function f and a point x and carry out a computer experiment
like the one given in the text. Interpret the results. Do not select too simple a function.
For example, you might consider 1/x , log x , ex , tan x , cosh x , or x3 − 23x .

1.1 Preliminary Remarks 15

3. As we saw in the first computer experiment, the accuracy of a formula for numerical
differentiation may deteriorate as the step-size h decreases. Study the following central
difference formula:

f ′(x) ≈ f (x + h) − f (x − h)

2h

as h → 0. We will learn in Chapter 4 that the truncation error for this formula is
− 1

6 h2 f ′′′(ξ) for some ξ in the interval (x − h, x + h). Modify and run the code for
the experiment First so that approximate values for the rounding error and truncation
error are computed. On the same graph, plot the rounding error, the truncation error,
and the total error (sum of these two errors) using a log-scale; that is, the axes in the
plot should be − log10 |error| versus log10 h. Analyze these results.

a4. The limit e = limn→∞(1+1/n)n defines the number e in calculus. Estimate e by taking
the value of this expression for n = 8, 82, 83, . . . , 810. Compare with e obtained from
e ← exp(1.0). Interpret the results.

5. It is not difficult to see that the numbers pn = ∫ 1
0 xnex dx satisfy the inequalities

p1 > p2 > p3 > · · · > 0. Establish this fact. Next, use integration by parts to show
that pn+1 = e − (n +1)pn and that p1 = 1. In the computer, use the recurrence relation
to generate the first 20 values of pn and explain why the inequalities above are violated.
Do not use subscripted variables. (See Dorn and McCracken [1972], pp. 120–129.)

6. (Continuation) Let p20 = 1
8 and use the formula in the preceding computer problem

to compute p19, p18, . . . , p2, and p1. Do the numbers generated obey the inequalities
1 = p1 > p2 > p3 > · · · > 0? Explain the difference in the two procedures. Repeat
with p20 = 20 or p20 = 100. Explain what happens.

7. Write an efficient routine that accepts as input a list of real numbers a1, a2, . . . , an and
then computes the following:

Arithmetic mean m = 1

n

n∑
k=1

ak

Variance v = 1

n − 1

n∑
k=1

(ak − m)2

Standard deviation σ = √
v

Test the routine on a set of data of your choice.

8. (Continuation) Show that another formula is

Variance v = 1

n − 1

[
n∑

k=1

a2
k − nm2

]

Of the two given formulas for v, which is more accurate in the computer? Verify on the
computer with a data set. Hint: Use a large set of real numbers that vary in magnitude
from very small to very large.

16 Chapter 1 Introduction

a9. Let a1 be given. Write a program to compute for 1 � n � 1000 the numbers bn = nan−1

and an = bn/n. Print the numbers a100, a200, . . . , a1000. Do not use subscripted variables.
What should an be? Account for the deviation of fact from theory. Determine four
values for a1 so that the computation does deviate from theory on your computer.
Hint: Consider extremely small and large numbers and print to full machine precision.

a10. In a computer, it can happen that a + x = a when x �= 0. Explain why. Describe the
set of n for which 1 + 2−n = 1 in your computer. Write and run appropriate programs
to illustrate the phenomenon.

11. Write a program to test the programming suggestion concerning the roundoff error in
the computation of t ← t + h versus t ← t0 + ih. For example, use h = 1

10 and
compute t ← t + h in double precision for the correct single-precision value of t ; print
the absolute values of the differences between this calculation and the values of the
two procedures. What is the result of the test when h is a machine number, such as
h = 1

128 , on a binary computer (with more than seven bits per word)?

a12. The Russian mathematician P. L. Chebyshev (1821–1894) spelled his nameQebywev.
Many transliterations from the Cyrillic to the Latin alphabet are possible. Cheb can
alternatively be rendered as Ceb, Tscheb, or Tcheb. The y can be rendered as i . Shev
can also be rendered as schef, cev, cheff, or scheff. Taking all combinations of these
variants, program a computer to print all possible spellings.

13. Compute n! using logarithms, integer arithmetic, and double-precision floating-point
arithmetic. For each part, print a table of values for 0 � n � 30, and determine the largest
correct value.

14. Given two arrays, a real array v = (v1, v2, . . . , vn) and an integer permutation array
p = (p1, p2, . . . , pn) of integers 1, 2, . . . , n, can we form a new permuted array
v = (vp1 , vp2 , . . . , vpn) by overwriting v and not involving another array in memory?
If so, write and test the code for doing it. If not, use an additional array and test.

Case 1. v = (6.3, 4.2, 9.3, 6.7, 7.8, 2.4, 3.8, 9.7), p = (2, 3, 8, 7, 1, 4, 6, 5)

Case 2. v = (0.7, 0.6, 0.1, 0.3, 0.2, 0.5, 0.4), p = (3, 5, 4, 7, 6, 2, 1)

15. Using a computer algebra system (e.g., Maple, Derive, Mathematica), print 200 decimal
digits of

√
10.

16. a. Repeat the example (1) on loss of significant digits of accuracy but perform the
calculations with twice the precision before rounding them. Does this help?

b. Use Maple or some other mathematical software system in which you can set the
number of digits of precision. Hint: In Maple, use Digits.

17. In 1706, Machin used the formula

π = 16 arctan

(
1

5

)
− 4 arctan

(
1

239

)
to compute 100 digits of π . Derive this formula. Reproduce Machin’s calculations
by using suitable software. Hint: Let tan θ = 1

5 , and use standard trigonometric
identities.

1.1 Preliminary Remarks 17

18. Using a symbol-manipulating program such as Maple, Mathematica or Macsyma, carry
out the following tasks. Record your work in some manner, for example, by using a
diary or script command.

a. Find the Taylor series, up to and including the term x10, for the function (tan x)2,
using 0 as the point x0.

b. Find the indefinite integral of (cos x)−4.

c. Find the definite integral
∫ 1

0 log |log x | dx .

d. Find the first prime number greater than 27448.

e. Obtain the numerical value of
∫ 1

0

√
1 + sin3 x dx .

f. Find the solution of the differential equation y′ + y = (1 + ex)−1.

g. Define the function f (x, y) = 9x4 − y4 + 2y2 − 1. You want to know the value of
f (40545, 70226). Compute this in the straightforward way by direct substitution
of x = 40545 and y = 70226 in the definition of f (x, y), using first six-decimal
accuracy, then seven, eight, and so on up to 24-decimal digits of accuracy. Next,
prove by means of elementary algebra that

f (x, y) = (3x2 − y2 + 1)(3x2 + y2 − 1)

Use this formula to compute the same value of f (x, y), again using different pre-
cisions, from six-decimal to 24-decimal. Describe what you have learned. To force
the program to do floating-point operations instead of integer arithmetic, write your
numbers in the form 9.0, 40545.0, and so forth.

19. Consider the following pseudocode segments:

a. integer i ; real x, y, z
for i = 1 to 20 do

x ← 2 + 1.0/8i

y ← arctan(x) − arctan(2)

z ← 8i y
output x, y, z

end for

b. real epsi ← 1
while 1 < 1 + epsi do

epsi ← epsi/2
output epsi

end while

What is the purpose of each program? Is it achieved? Explain. Code and run each one
to verify your conclusions.

20. Consider some oversights involving assignment statements.

aa. What is the difference between the following two assignment statements? Write a
code that contains them and illustrate with specific examples to show that sometimes
x = y and sometimes x �= y.

18 Chapter 1 Introduction

integer m, n; real x, y
x ← real(m/n)

y ← real(m)/real(n)

output x, y

b. What value will n receive?

integer n; real x, y
x ← 7.4
y ← 3.8
n ← x + y
output n

What happens when the last statement is replaced with the following?

n ← integer(x) + integer(y)

21. Write a computer code that contains the following assignment statements exactly as
shown. Analyze the results.

a. Print these values first using the default format and then with an extremely large
format field:

real p, q, u, v, w, x, y, z
x ← 0.1
y ← 0.01
z ← x − y
p ← 1.0/3.0
q ← 3.0p
u ← 7.6
v ← 2.9
w ← u − v

output x, y, z, p, q, u, v, w

b. What values would be computed for x , y, and z if this code is used?

integer n; real x, y, z
for n = 1 to 10 do

x ← (n − 1)/2
y ← n2/3.0
z ← 1.0 + 1/n
output x, y, z

end for

c. What values would the following assignment statements produce?

integer i, j ; real c, f, x, half
x ← 10/3
i ← integer(x + 1/2)

half ← 1/2
j ← integer(half)

1.1 Preliminary Remarks 19

c ← (5/9)(f − 32)

f ← 9/5c + 32
output x, i, half, j, c, f

d. Discuss what is wrong with the following pseudocode segment:

real area, circum, radius
radius ← 1
area ← (22/7)(radius)2

circum ← 2(3.1416)radius
output area, circum

22. Criticize the following pseudocode for evaluating limx→0 arctan(|x |)/x . Code and run
it to see what happens.

integer i ; real x, y
x ← 1
for i = 1 to 24 do

x ← x/2.0
y ← arctan(|x |)/x
output x, y

end for

23. Carry out some computer experiments to illustrate or test the programming suggestions
in Appendix A. Specific topics to include are these: (a) when to avoid arrays, (b) when
to limit iterations, (c) checking for floating-point equality, (d) ways for taking equal
floating-point steps, and (e) various ways to evaluate functions. Hint: Comparing single
and double precision results may be helpful.

24. (Easy/Hard Problem Pairs) Write a computer program to obtain the power form of
a polynomial from its roots. Let the roots be r1, r2, . . . , rn . Then (except for a scalar
factor) the polynomial is the product

p(x) = (x − r1)(x − r2) · · · (x − rn).

Find the coefficients in the expression p(x) = ∑n
j=0 a j x j . Test your code on the

Wilkinson polynomials in Computer Problems 3.1.10 and 3.3.9. Explain why this task
of getting the power form of the polynomial is trivial, whereas the inverse problem of
finding the roots from the power form is quite difficult.

25. A prime number is a positive integer that has no integer factors other than itself and 1.
How many prime numbers are there in each of these open intervals: (1, 40), (1, 80),
(1, 160), and (1, 2000)? Make a guess as to the percentage of prime numbers among
all numbers.

26. Mathematical software systems such as Maple and Mathematica do both numerical cal-
culations and symbolic manipulations. Verify symbolically that a nested multiplication
is correct for a general polynomial of degree ten.

20 Chapter 1 Introduction

1.2 Review of Taylor Series
Most students will have encountered infinite series (particularly Taylor series) in their
study of calculus without necessarily having acquired a good understanding of this topic.
Consequently, this section is particularly important for numerical analysis, and deserves
careful study.

Once students are well grounded with a basic understanding of Taylor series, the Mean-
Value Theorem, and alternating series (all topics in this section) as well as computer number
representation (Section 2.2), they can proceed to study the fundamentals of numerical
methods with better comprehension.

Taylor Series
Familiar (and useful) examples of Taylor series are the following:

ex = 1 + x + x2

2!
+ x3

3!
+ · · · =

∞∑
k=0

xk

k!
(|x | < ∞) (1)

sin x = x − x3

3!
+ x5

5!
− · · · =

∞∑
k=0

(−1)k x2k+1

(2k + 1)!
(|x | < ∞) (2)

cos x = 1 − x2

2!
+ x4

4!
− · · · =

∞∑
k=0

(−1)k x2k

(2k)!
(|x | < ∞) (3)

1

1 − x
= 1 + x + x2 + x3 + · · · =

∞∑
k=0

xk (|x | < 1) (4)

ln(1 + x) = x − x2

2
+ x3

3
− · · · =

∞∑
k=1

(−1)k−1 xk

k
(−1 < x � 1) (5)

For each case, the series represents the given function and converges in the interval specified.
Series (1)–(5) are Taylor series expanded about c = 0. A Taylor series expanded about
c = 1 is

ln(x) = (x − 1) − (x − 1)2

2
+ (x − 1)3

3
− · · · =

∞∑
k=1

(−1)k−1 (x − 1)k

k

where 0 < x � 2. The reader should recall the factorial notation

n! = 1 · 2 · 3 · 4 · · · · · n

for n � 1 and the special definition of 0! = 1.
Series of this type are often used to compute good approximate values of complicated

functions at specific points.

1.2 Review of Taylor Series 21

EXAMPLE 1 Use five terms in Series (5) to approximate ln(1.1).

Solution Taking x = 0.1 in the first five terms of the series for ln(1 + x) gives us

ln(1.1) ≈ 0.1 − 0.01

2
+ 0.001

3
− 0.0001

4
+ 0.00001

5
= 0.09531 03333 . . .

where ≈ means “approximately equal.” This value is correct to six decimal places of
accuracy. ■

On the other hand, such good results are not always obtained in using series.

EXAMPLE 2 Try to compute e8 by using Series (1).

Solution The result is

e8 = 1 + 8 + 64

2
+ 512

6
+ 4096

24
+ 32768

120
+ · · ·

It is apparent that many terms will be needed to compute e8 with reasonable precision. By
repeated squaring, we find e2 = 7.38905 6, e4 = 54.59815 00, and e8 = 2980.95798 7. The
first six terms given above yield 570.06666 5. ■

These examples illustrate a general rule:

A Taylor series converges rapidly near the point of expansion and slowly (or not
at all) at more remote points.

A graphical depiction of the phenomenon can be obtained by graphing a few partial
sums of a Taylor series. In Figure 1.2, we show the function

y = sin x

FIGURE 1.2

Approximations
to sin x

y

x
1 2 3�1�2

�1

�2

1

2

S1

S5

S3

sin x

�3
0

22 Chapter 1 Introduction

and the partial-sum functions

S1 = x

S3 = x − x3

6

S5 = x − x3

6
+ x5

120

which come from Series (2). While S1 may be an acceptable approximation to sin x when
x ≈ 0, the graphs for S3 and S5 match that of sin x on larger intervals about the origin.

All of the series illustrated above are examples of the following general series:

■ THEOREM 1 FORMAL TAYLOR SERIES FOR f ABOUT c

f (x) ∼ f (c) + f ′(c)(x − c) + f ′′(c)
2!

(x − c)2 + f ′′′(c)
3!

(x − c)3 + · · ·

f (x) ∼
∞∑

k=0

f (k)(c)

k!
(x − c)k (6)

Here, rather than using =, we have written ∼ to indicate that we are not allowed to assume
that f (x) equals the series on the right. All we have at the moment is a formal series that
can be written down provided that the successive derivatives f ′, f ′′, f ′′′, . . . exist at the
point c. Series (6) is called the “Taylor series of f at the point c.”

In the special case c = 0, Series (6) is also called a Maclaurin series:

f (x) ∼ f (0) + f ′(0)x + f ′′(0)

2!
x2 + f ′′′(0)

3!
x3 + · · ·

f (x) ∼
∞∑

k=0

f (k)(0)

k!
xk (7)

The first term is f (0) when k = 0.

EXAMPLE 3 What is the Taylor series of the function

f (x) = 3x5 − 2x4 + 15x3 + 13x2 − 12x − 5

at the point c = 2?

Solution To compute the coefficients in the series, we need the numerical values of f (k)(2) for
k � 0. Here are the details of the computation:

f (x) = 3x5 − 2x4 + 15x3 + 13x2 − 12x − 5 f (2) = 207

f ′(x) = 15x4 − 8x3 + 45x2 + 26x − 12 f ′(2) = 396

f ′′(x) = 60x3 − 24x2 + 90x + 26 f ′′(2) = 590

f ′′′(x) = 180x2 − 48x + 90 f ′′′(2) = 714

f (4)(x) = 360x − 48 f (4)(2) = 672

f (5)(x) = 360 f (5)(2) = 360

f (k)(x) = 0 f (k)(2) = 0

1.2 Review of Taylor Series 23

for k � 6. Therefore, we have

f (x) ∼ 207 + 396(x − 2) + 295(x − 2)2

+ 119(x − 2)3 + 28(x − 2)4 + 3(x − 2)5

In this example, it is not difficult to see that ∼ may be replaced by = . Simply expand all the
terms in the Taylor series and collect them to get the original form for f . Taylor’s Theorem,
discussed soon, will allow us to draw this conclusion without doing any work! ■

Complete Horner’s Algorithm
An application of Horner’s algorithm is that of finding the Taylor expansion of a polynomial
about any point. Let p(x) be a given polynomial of degree n with coefficients ak as in
Equation (2) in Section 1.1, and suppose that we desire the coefficients ck in the equation

p(x) = an xn + an−1xn−1 + · · · + a0

= cn(x − r)n + cn−1(x − r)n−1 + · · · + c1(x − r) + c0

Of course, Taylor’s Theorem asserts that ck = p(k)(r)/k!, but we seek a more efficient
algorithm. Notice that p(r) = c0, so this coefficient is obtained by applying Horner’s
algorithm to the polynomial p with the point r . The algorithm also yields the polynomial

q(x) = p(x) − p(r)

x − r
= cn(x − r)n−1 + cn−1(x − r)n−2 + · · · + c1

This shows that the second coefficient, c1, can be obtained by applying Horner’s algorithm
to the polynomial q with point r , because c1 = q(r). (Notice that the first application of
Horner’s algorithm does not yield q in the form shown but rather as a sum of powers of x .
(See Equations (3)–(4) in Section 1.1.) This process is repeated until all coefficients ck are
found.

We call the algorithm just described the complete Horner’s algorithm. The pseu-
docode for executing it is arranged so that the coefficients ck overwrite the input coeffi-
cients ak .

integer n, k, j ; real r ; real array (ai)0:n

for k = 0 to n − 1 do
for j = n − 1 to k do

a j ← a j + ra j+1

end for
end for

This procedure can be used in carrying out Newton’s method for finding roots of a poly-
nomial, which we discuss in Chapter 3. Moreover, it can be done in complex arithmetic to
handle polynomials with complex roots or coefficients.

EXAMPLE 4 Using the complete Horner’s algorithm, find the Taylor expansion of the polynomial

p(x) = x4 − 4x3 + 7x2 − 5x + 2

about the point r = 3.

24 Chapter 1 Introduction

Solution The work can be arranged as follows:

1 −4 7 −5 2
3) 3 −3 12 21−−−−−−−−−−−−−−−−−−−−−−−−−−−−

1 −1 4 7 23
3 6 30−−−−−−−−−−−−−−−−−−−−−−

1 2 10 37
3 15−−−−−−−−−−−−−−−−

1 5 25
3−−−−−−−−−−

1 8

The calculation shows that

p(x) = (x − 3)4 + 8(x − 3)3 + 25(x − 3)2 + 37(x − 3) + 23 ■

Taylor’s Theorem in Terms of (x − c)

■ THEOREM 2 TAYLOR’S THEOREM FOR f (x)

If the function f possesses continuous derivatives of orders 0, 1, 2, . . . , (n + 1) in a
closed interval I = [a, b], then for any c and x in I ,

f (x) =
n∑

k=0

f (k)(c)

k!
(x − c)k + En+1 (8)

where the error term En+1 can be given in the form

En+1 = f (n+1)(ξ)

(n + 1)!
(x − c)n+1

Here ξ is a point that lies between c and x and depends on both.

In practical computations with Taylor series, it is usually necessary to truncate the
series because it is not possible to carry out an infinite number of additions. A series is
said to be truncated if we ignore all terms after a certain point. Thus, if we truncate the
exponential Series (1) after seven terms, the result is

ex ≈ 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ x6

6!
This no longer represents ex except when x = 0. But the truncated series should approximate
ex . Here is where we need Taylor’s Theorem. With its help, we can assess the difference
between a function f and its truncated Taylor series.

The explicit assumption in this theorem is that f (x), f ′(x), f ′′(x), . . . , f (n+1)(x) are
all continuous functions in the interval I = [a, b]. The final term En+1 in Equation (8) is the
remainder or error term. The given formula for En+1 is valid when we assume only that
f (n+1) exists at each point of the open interval (a, b). The error term is similar to the terms
preceding it, but notice that f (n+1) must be evaluated at a point other than c. This point
ξ depends on x and is in the open interval (c, x) or (x, c). Other forms of the remainder

1.2 Review of Taylor Series 25

are possible; the one given here is Lagrange’s form. (We do not prove Taylor’s Theorem
here.)

EXAMPLE 5 Derive the Taylor series for ex at c = 0, and prove that it converges to ex by using Taylor’s
Theorem.

Solution If f (x) = ex , then f (k)(x) = ex for k � 0. Therefore, f (k)(c) = f (k)(0) = e0 = 1 for all k.
From Equation (8), we have

ex =
n∑

k=0

xk

k!
+ eξ

(n + 1)!
xn+1 (9)

Now let us consider all the values of x in some symmetric interval around the origin, for
example, −s � x � s. Then |x | � s, |ξ | � s, and eξ � es . Hence, the remainder term satisfies
this inequality:

lim
n→∞

∣∣∣∣ eξ

(n + 1)!
xn+1

∣∣∣∣� lim
n→∞

es

(n + 1)!
sn+1 = 0

Thus, if we take the limit as n → ∞ on both sides of Equation (9), we obtain

ex = lim
n→∞

n∑
k=0

xk

k!
=

∞∑
k=0

xk

k! ■

This example illustrates how we can establish, in specific cases, that a formal Taylor
Series (6) actually represents the function. Let’s examine another example to see how the
formal series can fail to represent the function.

EXAMPLE 6 Derive the formal Taylor series for f (x) = ln(1 + x) at c = 0, and determine the range of
positive x for which the series represents the function.

Solution We need f (k)(x) and f (k)(0) for k � 1. Here is the work:

f (x) = ln(1 + x) f (0) = 0

f ′(x) = (1 + x)−1 f ′(0) = 1

f ′′(x) = −(1 + x)−2 f ′′(0) = −1

f ′′′(x) = 2(1 + x)−3 f ′′′(0) = 2

f (4)(x) = −6(1 + x)−4 f (4)(0) = −6
...

...

f (k)(x) = (−1)k−1(k − 1)!(1 + x)−k f (k)(0) = (−1)k−1(k − 1)!

Hence by Taylor’s Theorem, we obtain

ln(1 + x) =
n∑

k=1

(−1)k−1 (k − 1)!

k!
xk + (−1)nn!(1 + ξ)−n−1

(n + 1)!
xn+1

=
n∑

k=1

(−1)k−1 xk

k
+ (−1)n

n + 1

(
1 + ξ

)−n−1
xn+1 (10)

26 Chapter 1 Introduction

For the infinite series to represent ln(1 + x), it is necessary and sufficient that the error
term converge to zero as n → ∞. Assume that 0 � x � 1. Then 0 � ξ � x (because zero is
the point of expansion); thus, 0 � x/(1 + ξ) � 1. Hence, the error term converges to zero
in this case. If x > 1, the terms in the series do not approach zero, and the series does not
converge. Hence, the series represents ln(1 + x) if 0 � x � 1 but not if x > 1. (The series
also represents ln(1 + x) for −1 < x < 0 but not if x � − 1.) ■

Mean-Value Theorem
The special case n = 0 in Taylor’s Theorem is known as the Mean-Value Theorem. It is
usually stated, however, in a somewhat more precise form.

■ THEOREM 3 MEAN-VALUE THEOREM

If f is a continuous function on the closed interval [a, b] and possesses a derivative
at each point of the open interval (a, b), then

f (b) = f (a) + (b − a) f ′(ξ)

for some ξ in (a, b).

Hence, the ratio [f (b) − f (a)]/(b − a) is equal to the derivative of f at some point ξ

between a and b; that is, for some ξ ∈ (a, b),

f ′(ξ) = f (b) − f (a)

b − a

The right-hand side could be used as an approximation for f ′(x) at any x within the interval
(a, b). The approximation of derivatives is discussed more fully in Section 4.3.

Taylor’s Theorem in Terms of h
Other forms of Taylor’s Theorem are often useful. These can be obtained from the basic
Formula (8) by changing the variables.

■ COROLLARY 1 TAYLOR’S THEOREM FOR f (x + h)

If the function f possesses continuous derivatives of order 0, 1, 2, . . . , (n + 1) in a
closed interval I = [a, b], then for any x in I ,

f (x + h) =
n∑

k=0

f (k)(x)

k!
hk + En+1 (11)

where h is any value such that x + h is in I and where

En+1 = f (n+1)(ξ)

(n + 1)!
hn+1

for some ξ between x and x + h.

1.2 Review of Taylor Series 27

The form (11) is obtained from Equation (8) by replacing x by x + h and replacing c by x .
Notice that because h can be positive or negative, the requirement on ξ means x < ξ <

x + h if h > 0 or x + h < ξ < x if h < 0.
The error term En+1 depends on h in two ways: First, hn+1 is explicitly present;

second, the point ξ generally depends on h. As h converges to zero, En+1 converges to zero
with essentially the same rapidity with which hn+1 converges to zero. For large n, this is
quite rapid. To express this qualitative fact, we write

En+1 = O(hn+1)

as h → 0. This is called big O notation, and it is shorthand for the inequality

|En+1| � C |h|n+1

where C is a constant. In the present circumstances, this constant could be any number for
which | f (n+1)(t)|/(n + 1)! � C , for all t in the initially given interval, I . Roughly speaking,
En+1 = O(hn+1) means that the behavior of En+1 is similar to the much simpler expression
hn+1.

It is important to realize that Equation (11) corresponds to an entire sequence of the-
orems, one for each value of n. For example, we can write out the cases n = 0, 1, 2 as
follows:

f (x + h) = f (x) + f ′(ξ1)h

= f (x) + O(h)

f (x + h) = f (x) + f ′(x)h + 1

2!
f ′′(ξ2)h

2

= f (x) + f ′(x)h + O(h2)

f (x + h) = f (x) + f ′(x)h + 1

2!
f ′′(x)h2 + 1

3!
f ′′′(ξ3)h

3

= f (x) + f ′(x)h + 1

2!
f ′′(x)h2 + O(h3)

The importance of the error term in Taylor’s Theorem cannot be stressed too much. In
later chapters, many situations require an estimate of errors in a numerical process by use
of Taylor’s Theorem. Here are some elementary examples.

EXAMPLE 7 Expand
√

1 + h in powers of h. Then compute
√

1.00001 and
√

0.99999.

Solution Let f (x) = x1/2. Then f ′(x) = 1
2 x−1/2, f ′′(x) = − 1

4 x−3/2, f ′′′(x) = 3
8 x−5/2, and so on.

Now use Equation (11) with x = 1. Taking n = 2 for illustration, we have

√
1 + h = 1 + 1

2
h − 1

8
h2 + 1

16
h3ξ−5/2 (12)

where ξ is an unknown number that satisfies 1 < ξ < 1 + h, if h > 0. It is important to
notice that the function f (x) = √

x possesses derivatives of all orders at any point x > 0.
In Equation (12), let h = 10−5. Then

√
1.00001 ≈ 1 + 0.5 × 10−5 − 0.125 × 10−10 = 1.00000 49999 87500

28 Chapter 1 Introduction

By substituting −h for h in the series, we obtain

√
1 − h = 1 − 1

2
h − 1

8
h2 − 1

16
h3ξ−5/2

Hence, we have
√

0.99999 ≈ 0.99999 49999 87500

Since 1 < ξ < 1 + h, the absolute error does not exceed

1

16
h3ξ−5/2 <

1

16
10−15 = 0.00000 00000 00000 0625

and both numerical values are correct to all 15 decimal places shown. ■

Alternating Series
Another theorem from calculus is often useful in establishing the convergence of a series
and in estimating the error involved in truncation. From it, we have the following important
principle for alternating series:

If the magnitudes of the terms in an alternating series converge monotonically to
zero, then the error in truncating the series is no larger than the magnitude of the
first omitted term.

This theorem applies only to alternating series—that is, series in which the successive
terms are alternately positive and negative.

■ THEOREM 4 ALTERNATING SERIES THEOREM

If a1 � a2 � · · · � an � · · · 0 for all n and limn→∞ an = 0, then the alternating series

a1 − a2 + a3 − a4 + · · ·
converges; that is,

∞∑
k=1

(−1)k−1ak = lim
n→∞

n∑
k=1

(−1)k−1ak = lim
n→∞

Sn = S

where S is its sum and Sn is the nth partial sum. Moreover, for all n,

|S − Sn| � an+1

EXAMPLE 8 If the sine series is to be used in computing sin 1 with an error less than 1
2 × 10−6, how

many terms are needed?

Solution From Series (2), we have

sin 1 = 1 − 1

3!
+ 1

5!
− 1

7!
+ · · ·

1.2 Review of Taylor Series 29

If we stop at 1/(2n − 1)!, the error does not exceed the first neglected term, which is
1/(2n + 1)!. Thus, we should select n so that

1

(2n + 1)!
<

1

2
× 10−6

Using logarithms to base 10, we obtain log(2n + 1)! > log 2 + 6 = 6.3. With a calcula-
tor, we compute a table of values for log n! and find that log 10! ≈ 6.6. Hence, if n � 5,
the error will be acceptable. ■

EXAMPLE 9 If the logarithmic Series (5) is to be used for computing ln 2 with an error of less than
1
2 × 10−6, how many terms will be required?

Solution To compute ln 2, we take x = 1 in the series, and using ≈ to mean approximate equality,
we have

S = ln 2 ≈ 1 − 1

2
+ 1

3
− 1

4
+ · · · + (−1)n−1

n
= Sn

By the Alternating Series Theorem, the error involved when the series is truncated with n
terms is

|S − Sn| �
1

n + 1

We select n so that

1

n + 1
<

1

2
× 10−6

Hence, more than two million terms would be needed! We conclude that this method
of computing ln 2 is not practical. (See Problems 1.2.10 through 1.2.12 for several good
alternatives.) ■

A word of caution is needed about this technique of calculating the number of terms
to be used in a series by just making the (n + 1)st term less than some tolerance. This
procedure is valid only for alternating series in which the terms decrease in magnitude to
zero, although it is occasionally used to get rough estimates in other cases. For example,
it can be used to identify a nonalternating series as one that converges slowly. When this
technique cannot be used, a bound on the remaining terms of the series has to be established.
Determining such a bound may be somewhat difficult.

EXAMPLE 10 It is known that

π4

90
= 1−4 + 2−4 + 3−4 + · · ·

How many terms should we take to compute π4/90 with an error of at most 1
2 × 10−6?

Solution A naive approach is to take

1−4 + 2−4 + 3−4 + · · · + n−4

30 Chapter 1 Introduction

where n is chosen so that the next term, (n + 1)−4, is less that 1
2 × 10−6. This value of n is

37, but this is an erroneous answer because the partial sum

S37 =
37∑

k=1

k−4

differs from π4/90 by approximately 6 × 10−6. What we should do, of course, is to select
n so that all the omitted terms add up to less than 1

2 × 10−6; that is,

∞∑
k=n+1

k−4 <
1

2
× 10−6

By a technique familiar from calculus (see Figure 1.3), we have

∞∑
k=n+1

k−4 <

∫ ∞

n
x−4 dx = x−3

−3

∣∣∣∣∞
n

= 1

3n3

Thus, it suffices to select n so that (3n3)−1 < 1
2 × 10−6, or n � 88. (A more sophisticated

analysis will improve this considerably.)

FIGURE 1.3

Illustrating
Example 10

x
n n � 1 n � 2 n � 3

etc.

y � x�4

(n�1)�4

(n�2)�4

(n�3)�4

■

Summary

(1) The Taylor series expansion about c for f (x) is

f (x) =
n∑

k=0

f (k)(c)

k!
(x − c)k + En+1

with error term

En+1 = f (n+1)(ξ)

(n + 1)!
(x − c)n+1

A more useful form for us is the Taylor series expansion for f (x + h), which is

f (x + h) =
n∑

k=0

f (k)(x)

k!
hk + En+1

1.2 Review of Taylor Series 31

with error term

En+1 = f (n+1)(ξ)

(n + 1)!
hn+1 = O(hn+1)

(2) An alternating series

S =
∞∑

k=1

(−1)k−1ak

converges when the terms ak converge downward to zero. Furthermore, the partial sums Sn

differ from S by an amount that is bounded by

|S − Sn| � an+1

Additional References
For additional study, see the following references found in the Bibliography: Atkinson [1988,
1993], Burden and Faires [2001], Conte and de Boor [1980], Dahlquist and Björck [1974],
Forsythe, Malcolm, and Moler [1977], Fröberg [1969], Gautschi [1997], Gerald and
Wheatley [1999], Golub and Ortega [1993], Golub and Van Loan [1996], Hämmerlin and
Hoffmann [1991], Heath [2002], Higham and Higham [2006], Hildebrand [1974], Isaacson
and Keller [1966], Kahaner, Moler, and Nash [1989], Kincaid and Cheney [2002], Maron
[1991], Moler [2004], Nievergelt, Farra, and Reingold [1974], Oliveira and Stewart [2006],
Ortega [1990a], Phillips and Taylor [1973], Ralston [1965], Ralston and Rabinowitz [2001],
Rice [1983], Scheid [1968], Skeel and Keiper [1992], Van Loan [1997, 2000], Wood [1999],
and Young and Gregory [1988].

Some other numerical methods books with an emphasis on a particular mathematical
software system or computer language are Chapman [2000], Devitt [1993], Ellis and Lodi
[1991], Ellis, Johnson, Lodi, and Schwalbe [1997], Garvan [2002], Knight [2000], Lindfield
and Penny [2000], Press, Teukolsky, Vetterling, and Flannery [2002], Recktenwald [2000],
Schilling and Harris [2000], and Szabo [2002].

Problems 1.2

1. The Maclaurin series for (1 + x)n is also known as the binomial series. It states that

(1 + x)n = 1 + nx + n(n − 1)

2!
x2 + n(n − 1)(n − 2)

3!
x3 + · · · (x2 < 1)

Derive this series. Then give its particular forms in summation notation by letting
n = 2, n = 3, and n = 1

2 . Next use the last form to compute
√

1.0001 correct to
15 decimal places (rounded).

2. (Continuation) Use the series in the preceding problem to obtain Series (4). How
could this series be used on a computing machine to produce x/y if only addition and
multiplication are built-in operations?

3. (Continuation) Use the previous problem to obtain a series for (1 + x2)−1.

32 Chapter 1 Introduction

4. Why do the following functions not possess Taylor series expansions at x = 0?
aa. f (x) = √

x ab. f (x) = |x | c. f (x) = arcsin(x − 1)

d. f (x) = cot x ae. f (x) = log x f. f (x) = xπ

a5. Determine the Taylor series for cosh x about zero. Evaluate cosh(0.7) by summing four
terms. Compare with the actual value.

6. Determine the first two nonzero terms of the series expansion about zero for the
following:

aa. ecos x ab. sin(cos x) c. (cos x)2(sin x)

a7. Find the smallest nonnegative integer m such that the Taylor series about m for
(x − 1)1/2 exists. Determine the coefficients in the series.

a8. Determine how many terms are needed to compute e correctly to 15 decimal places
(rounded) using Series (1) for ex .

a9. (Continuation) If x < 0 in the preceding problem, what are the signs of the terms in
the series? Loss of significant digits can be a serious problem in using the series. Will
the formula e−x = 1/ex be helpful in reducing the error? Explain. (See Section 2.3
for further discussion.) Try high-precision computer arithmetic to see how bad the
floating-point errors can be.

10. Show how the simple equation ln 2 = ln[e(2/e)] can be used to speed up the calculation
of ln 2 in Series (10).

a11. What is the series for ln(1 − x)? What is the series for ln[(1 + x)/(1 − x)]?

a12. (Continuation) In the series for ln[(1+ x)/(1− x)], determine what value of x to use if
we wish to compute ln 2. Estimate the number of terms needed for ten digits (rounded)
of accuracy. Is this method practical?

13. Use the Alternating Series Theorem to determine the number of terms in Series (5)
needed for computing ln 1.1 with error less than 1

2 × 10−8.

14. Write the Taylor series for the function f (x) = x3 − 2x2 + 4x − 1, using x = 2 as the
point of expansion; that is, write a formula for f (2 + h).

15. Determine the first four nonzero terms in the series expansion about zero for

aa. f (x) = (sin x) + (cos x) and find an approximate value for f (0.001)

ab. g(x) = (sin x)(cos x) and find an approximate value for g(0.0006).

Compare the accuracy of these approximations to those obtained from tables or via a
calculator.

a16. Verify this Taylor series and prove that it converges on the interval −e < x � e.

ln(e + x) = 1 + x

e
− x2

2e2
+ x3

3e3
− x4

4e4
+ · · · = 1 +

∞∑
k=1

(−1)k−1

k

(x

e

)k

a17. How many terms are needed in Series (3) to compute cos x for |x | < 1
2 accurate to

12 decimal places (rounded)?

1.2 Review of Taylor Series 33

a18. A function f is defined by the series

f (x) =
∞∑

k=1

(−1)k

(
xk

k4

)

Determine the minimum number of terms needed to compute f (1) with error less
than 10−8.

19. Verify that the partial sums sk = ∑k
i=0 xi/ i! in the series for ex , Series (1), can be

written recursively as sk = sk−1 + tk , where s0 = 1, t1 = x , and tk = (x/k)tk−1.

a20. What is the fifth term in the Taylor series of (1 − 2h)1/2?

21. Show that if E = O(hn), then E = O(hm) for any nonnegative integer m � n. Here
h → 0.

22. Show how p(x) = 6(x + 3) + 9(x + 3)5 − 5(x + 3)8 − (x + 3)11 can be efficiently
evaluated.

a23. What is the second term in the Taylor series of 4
√

4x − 1 about 4.25?

a24. How would you compute a table of log n! for 1 � n � 1000?

25. For small x , the approximation sin x ≈ x is often used. For what range of x is this
good to a relative accuracy of 1

2 × 10−14 ?

26. In the Taylor series for the function 3x2 − 7 + cos x (expanded in powers of x), what
is the coefficient of x2?

27. In the Taylor series (about π/4) for the function sin x + cos x , find the third nonzero
term.

a28. By using Taylor’s Theorem, one can be sure that for all x that satisfy |x | < 1
2 , |cos x −

(1 − x2/2)| is less than or equal to what numerical value?

29. Find the value of ξ that serves in Taylor’s Theorem when f (x) = sin x , with x = π/4,
c = 0, and n = 4.

30. Use Taylor’s Theorem to find a linear function that approximates cos x best in the
vicinity of x = 5π/6.

31. For the alternating series Sn = ∑n
k=0(−1)kak , with a0 > a1 > · · · > 0, show by

induction that S0 > S2 > S4 > · · · , that S1 < S3 < S5 < · · · , and that 0 < S2n −
S2n+1 = a2n+1.

a32. What is the Maclaurin series for the function f (x) = 3 + 7x − 1.33x2 + 19.2x4?
What is the Taylor series for this function about c = 2?

33. In the text, it was asserted that
∑6

k=0 xk/k! represents ex only at the point x = 0. Prove
this.

34. Determine the first three terms in the Taylor series in terms of h for ex−h . Using three
terms, one obtains e0.999 ≈ Ce, where C is a constant. Determine C .

34 Chapter 1 Introduction

a35. What is the least number of terms required to compute π as 3.14 (rounded) using the
series

π = 4 − 4

3
+ 4

5
− 4

7
+ · · ·

36. Using the Taylor series expansion in terms of h, determine the first three terms in
the series for esin(x+h). Evaluate esin 90.01◦

accurately to ten decimal places as Ce for
constant C .

37. Develop the first two terms and the error in the Taylor series in terms of h for ln(3−2h).

a38. Determine a Taylor series to represent cos(π/3 + h). Evaluate cos(60.001◦) to eight
decimal places (rounded). Hint: π radians equal 180 degrees.

a39. Determine a Taylor series to represent sin(π/4 + h). Evaluate sin(45.0005◦) to nine
decimal places (rounded).

40. Establish the first three terms in the Taylor series for csc(π/6 + h). Compute
csc(30.00001◦) to the same accuracy as the given data.

41. Establish the Taylor series in terms of h for the following:

a. ex+2h b. sin(x − 3h) c. ln[(x − h2)/(x + h2)]

a42. Determine the first three terms in the Taylor series in terms of h for (x − h)m , where
m is an integer constant.

43. Given the series

−1 + 2−4 − 3−4 + 4−4 − · · ·
how many terms are needed to obtain four decimal places (chopped) of accuracy?

44. How many terms are needed in the series

arccot x = π

2
− x + x3

3
− x5

5
+ x7

7
− · · ·

to compute arccot x for x2 < 1 accurate to 12 decimal places (rounded)?

45. Determine the first three terms in the Taylor series to represent sinh(x + h). Evaluate
sinh(0.0001) to 20 decimal places (rounded) using this series.

46. Determine a Taylor series to represent C x+h for constant C . Use the series to find an
approximate value of 101.0001 to five decimal places (rounded).

a47. Stirling’s formula states that n! is greater than, and very close to,
√

2πn nne−n . Use
this to find an n for which 1/n! < 1

2 × 10−14.

48. Develop the first two nonzero terms and the error term in the Taylor series in powers
of h for ln[1 − (h/2)]. Approximate ln(0.9998) using these two terms.

49. L’Hôpital’s rule states that under suitable conditions,

lim
x→a

f (x)

g(x)
= f ′(a)

g′(a)

1.2 Review of Taylor Series 35

It is true, for instance, when f and g have continuous derivatives in an open interval
containing a, and f (a) = g(a) = 0 �= g′(a). Establish L’Hôpital’s rule using the
Mean-Value Theorem.

50. (Continuation) Evaluate the following numerically and use the previous problem to
show that

a. limx→0
sin x

x
= 1 ab. limx→0

arctan x

x
= 1 ac. limx→π

cos x + 1

sin x
= 0

a51. Verify that if we take only the terms up to and including x2n−1/(2n − 1)! in Series (2)
for sin x and if |x | <

√
6, then the error involved does not exceed |x |2n+1/(2n + 1)!.

How many terms are needed to compute sin(23) with an error of at most 10−8? What
problems do you foresee in using the series to compute sin(23)? Show how to use
periodicity to compute sin(23). Show that each term in the series can be obtained from
the preceding one by a simple arithmetic operation.

a52. Expand the error function

erf(x) = 2√
π

∫ x

0
e−t2

dt

in a series by using the exponential series and integrating. Obtain the Taylor series
of erf(x) about zero directly. Are the two series the same? Evaluate erf(1) by adding
four terms of the series and compare with the value erf(1) ≈ 0.8427, which is correct
to four decimal places. Hint: Recall from the Fundamental Theorem of Calculus
that

d

dx

∫ x

0
f (t) dt = f (x)

a53. Establish the validity of the Taylor series

arctan x =
∞∑

k=1

(−1)k+1 x2k−1

2k − 1
(−1 � x � 1)

Is it practical to use this series directly to compute arctan(1) if ten decimal places
(rounded) of accuracy are required? How many terms of the series would be needed?
Will loss of significance occur? Hint: Start with the series for 1/(1 + x2) and integrate
term by term. Note that this procedure is only formal; the convergence of the resulting
series can be proved by appealing to certain theorems of advanced calculus.

a54. It is known that

π = 4 − 8
∞∑

k=1

(16k2 − 1)−1

Discuss the numerical aspects of computing π by means of this formula. How many
terms would be needed to yield ten decimal places (rounded) of accuracy?

55. Taylor’s Theorem for f (x) expanded about c concerns this equation:

f (x) = f (c) + (x − c) f ′(c) + 1

2
(x − c)2 f ′′(c) + · · ·

+ 1

(n − 1)!
(x − c)n−1 f (n−1)(c) + 1

n!
(x − c)n f (n)(ξ)

36 Chapter 1 Introduction

Use this to determine how many terms in the series for ex are needed to compute e with
error at most 10−10. Hint: Use these approximate values of n!: 9! = 3.6 × 105, 11! =
4.0 × 107, 12! = 4.8 × 108, 13! = 6.2 × 109, 14! = 8.7 × 1010, and 15! = 1.3 × 1012.

56. a. Repeat Example 3 using the complete Horner’s algorithm.

b. Repeat Example 4 using the Taylor series of the polynomial p(x).

Computer Problems 1.2

a1. Everyone knows the quadratic formula (−b ± √
b2 − 4ac)/(2a) for the roots of the

quadratic equation ax2 + bx + c = 0. Using this formula, by hand and by computer,
solve the equation x2 + 108x + c = 0 when c = 1 and 108. Interpret the results.

2. Use a computer algebra system to obtain graphs of the first five partial sums of the
series

arctan x =
∞∑

k=1

(−1)k+1 x2k−1

2k − 1

3. Use a graphical computer package to reproduce the graphs in Figure 1.2 as well as the
next two partial sums—that is, S4 and S5. Analyze the results.

4. Use a computer algebra system to obtain the Taylor series given in Equations (1)–(5),
obtaining the final form at once without displaying all the derivatives.

5. Use two or more computer algebra systems to carry out Example 6 to 50 decimal
places. Are their answers the same and correct to all digits obtained? Repeat using

√
x

expanded about x0 = 1.

6. Use a computer algebra system to verify the results in Examples 7 and 9.

7. Design and carry out an experiment to check the computation of x y on your computer.
Hint: Compare the computations of some examples, such as 322.5 and 811.25, to their
correct values. A more elaborate test can be made by comparing single-precision results
to double-precision results in various cases.

8. Verify that x y = ey ln x . Try to find values of x and y for which these two expressions
differ in your computer. Interpret the results.

9. (Continuation) For cos(x − y) = (cos x)(cos y) + (sin x)(sin y), repeat the preceding
computer problem.

10. The number of combinations of n distinct items taken m at a time is given by the
binomial coefficient (n

m

)
= n!

m! (n − m)!

for integers m and n, with 0 � m � n. Recall that
(n

0

) = (n
n

) = 1.

1.2 Review of Taylor Series 37

a. Write

integer function ibin(n, m)

which uses the definition above to compute
(n

m

)
.

b. Verify the formula (n

m

)
=

min(m,n−m)∏
k=1

[n − k + 1

k

]
for computing the binomial coefficients. Write

integer function jbin(n, m)

that is based on this formula.

c. Verify the formulas (Pascal’s triangle){
ai0 = aii = 1 (0 � i � n)

ai j = ai−1, j−1 + ai−1, j (2 � i � n, 1 � j � i − 1)

Using Pascal’s triangle, compute the binomial coefficients(
i

j

)
= ai, j (0 � i, j � n)

and store them in the lower triangular part of the array (ai j)n×n . Write

integer function kbin(n, m)

that does an array look-up after first allocating and computing entries in the array.

11. The length of the curved part of a unit semicircle is π . We can approximate π by using
triangles and elementary mathematics. Consider the semicircle with the arc bisected as
in Figure (a). The hypotenuse of the right triangle is

√
2. Hence, a rough approximation

to π is given by 2
√

2 ≈ 2.8284. In Figure (b), we consider an angle θ that is a fraction
1/k of the semicircle. The secant shown has length 2 sin(θ/2), and so an approximation
to π is 2k sin(θ/2). From trigonometry, we have

sin2 1

2
θ = 1

2
(1 − cos θ) = 1

2

(
1 −

√
1 − sin2 θ

)
= sin2 θ

2 + 2
√

1 − sin2 θ

(a) (b)

�

2 sin(��2)

Now let θn be the angle that results from division of the semicircular arc into 2n−1 pieces.
Next let Sn = sin2 θn and Pn = 2n

√
Sn+1. Show that Sn+1 = Sn/(2 + 2

√
1 − Sn) and

Pn is an approximation to π . Starting with S2 = 1 and P1 = 2, compute Sn+1 and Pn

recursively for 2 � n � 20.

12. The irrational number π can be computed by approximating the area of a unit circle as
the limit of a sequence p1, p2, . . . described as follows. Divide the unit circle into 2n

sectors. (The figure shows the case n = 3.) Approximate the area of the sector by the

38 Chapter 1 Introduction

area of the isosceles triangle. The angle θn is 2π/2n . The area of the triangle is 1
2 sin θn .

(Verify.) The nth approximation to π is then pn = 2n−1 sin θn . Prove that sin θn =
sin θn−1/{2[1+(1−sin2 θn−1)

1/2]}1/2 by means of well-known trigonometric identities.
Use this recurrence relation to generate the sequences sin θn and pn (3 � n � 20) starting
with sin θ2 = 1. Compare with the computation 4.0 arctan(1.0).

�n

1

1

13. (Continuation) Calculate π by a method similar to that of the preceding computer
problem, where the area of the unit circle is approximated by a sequence of trapezoids
as illustrated by the figure.

a14. Write a routine in double or extended precision to implement the following algorithm
for computing π .

integer k; real a, b, c, d, e, f, g
a ← 0
b ← 1
c ← 1/

√
2

d ← 0.25
e ← 1
for k = 1 to 5 do

a ← b
b ← (b + c)/2
c ← √

ca
d ← d − e(b − a)2

e ← 2e
f ← b2/d
g ← (b + c)2/(4d)

output k, f, | f − π |, g, |g − π |
end for

1.2 Review of Taylor Series 39

Which converges faster, f or g? How accurate are the final values? Also compare with
the double- or extended-precision computation of 4.0 arctan(1.0). Hint: The value of
π correct to 36 digits is

3.14159 26535 89793 23846 26433 83279 50288

Note: A new formula for computing π was discovered in the early 1970s. This algorithm
is based on that formula, which is a direct consequence of a method developed by Gauss
for calculating elliptic integrals and of Legendre’s elliptic integral relation, both known
for over 150 years! The error analysis shows that rapid convergence occurs in the compu-
tation of π , and the number of significant digits doubles after each step. (The interested
reader should consult Brent [1976], Borwein and Borwein [1987], and Salamin [1976].)

15. Another quadratically convergent scheme for computing π was discovered by Borwein
and Borwein [1984] and can be written as

integer k; real a, b, t, x
a ← √

2
b ← 0
x ← 2 + √

2
for k = 1 to 5 do

t ← √
a

b ← t (1 + b)/(a + b)

a ← 1
2 (t + 1/t)

x ← xb(1 + a)/(1 + b)

output k, x, |x − π |
end for

Numerically verify that |x − π | � 10−2k . Note: Ludolf van Ceulen (1540–1610) was
able to calculate π to 36 digits. With modern mathematical software packages such as
Matlab, Maple, and Mathematica, anyone can easily compute π to tens of thousands
of digits in seconds!

a16. The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, . . . is defined by the linear recurrence
relation {

λ1 = 1 λ2 = 1
λn = λn−1 + λn−2 (n � 3)

A formula for the nth Fibonacci number is

λn = 1√
5

{[
1

2

(
1 +

√
5
)]n

−
[

1

2

(
1 −

√
5
)]n}

Compute λn (1 � n � 50), using both the recurrence relation and the formula. Write three
programs that use integer, single-precision, and double-precision arithmetic, respec-
tively. For each n, print the results using integer, single-precision, and double-precision
formats, respectively.

40 Chapter 1 Introduction

a17. (Continuation) Repeat the experiment, using the sequence given by the recurrence
relation {

α1 = 1 α2 = 1

2

(
1 +

√
5
)

αn = αn−1 + αn−2 (n � 3)

A closed-form formula is

αn =
[

1

2

(
1 +

√
5
)]n

18. (Continuation) Change +√
5 to −√

5, and repeat the computation of αn . Explain the
results.

19. The Bessel functions Jn are defined by

Jn(x) = 1

π

∫ π

0
cos(x sin θ − nθ) dθ

Establish that |Jn(x)| � 1.

a. It is known that Jn+1(x) = 2nx−1 Jn(x) − Jn−1(x). Use this equation to com-
pute J0(1), J1(1), . . . , J20(1), starting from known values J0(1) ≈ 0.76519 76865
and J1(1) ≈ 0.44005 05857. Account for the fact that the inequality |Jn(x)| � 1 is
violated.

b. Another recursive relation is Jn−1(x) = 2nx−1 Jn(x) − Jn+1(x). Starting with the
known values J20(1) ≈ 3.87350 3009 × 10−25 and J19(1) ≈ 1.54847 8441 × 10−23,
use this equation to compute J18(1), J17(1), . . . , J1(1), J0(1). Analyze the results.

20. A calculus student is asked to determine limn→∞(100n/n!) and writes a program to
evaluate x0, x1, x2, . . . , xn as follows:

integer parameter n ← 100
integer i ; real x ; x ← 1
for i = 1 to n do

x ← 100x/ i
output i, x

end for

The numbers printed become ever larger, and the student concludes that
limn→∞ xn = ∞. What is the moral here?

21. (Maclaurin Series Function Approximations) By using the truncated Maclaurin se-
ries, a function f (x) with n continuous derivatives can be approximated by an nth-
degree polynomial

f (x) ≈ pn(x) =
n∑

i=0

ci x
i

where ci = f (i)(0)/ i!.

1.2 Review of Taylor Series 41

a. Produce and compare computer plots for f (x) = ex and the polynomials p2(x),
p3(x), p4(x), p5(x). Do the higher-order polynomials approximate the exponential
function ex satisfactorily on increasing intervals about zero?

b. Repeat for g(x) = ln(1 + x).

22. (Continuation, Rational Padé Approximations) Padé rational approximation is the
best approximation of a function by a rational function of a given order. Often it gives a
better approximation of the function than truncating its Taylor series, and it may work
even when the Taylor series does not converge! Consequently, the Padé rational approx-
imations are frequently used in computer calculations such as for the basic function sin x
as discussed in Computer Problem 2.2.17. Rather than using high-order polynomials,
we use ratios of low-order polynomials. These are called rational approximations. Let

f (x) ≈ pm(x)

qk(x)
=

∑m
i=0 ai xi∑k
j=0 b j x j

= Rm,k(x)

where b0 = 1. Here we have normalized with respect to b0 �= 0 and the values of m
and k are modest. We choose the k coefficients b j and the m + 1 coefficients ai in Rm,k

to match f and a specified number of its derivatives at the fixed point x = 0. First,
we construct the truncated Maclaurin series

∑n
i=0 ci xi in which ci = f (i)(0)/ i! and

ci = 0 for i < 0. Next, we match the first m + k + 1 derivatives of Rm,k with respect to
x at x = 0 to the first m + k + 1 coefficients ci . This leads to the following displayed
equations. Since b0 = 1, we solve this k × k system of equations for b1, b2, . . . , bk⎡⎢⎢⎢⎢⎢⎢⎣

cm cm−1 · · · cm−(k−2) cm−(k−1)

cm+1 cm · · · cm−(k−3) cm−(k−2)

...
...

. . .
...

...

cm+(k−2) cm+(k−3) · · · cm cm−1

cm+(k−1) cm+(k−2) · · · cm+1 cm

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

b1

b2

...

bk−1

bk

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

−cm+1

−cm+2

...

−cm+(k−1)

−cm+k

⎤⎥⎥⎥⎥⎥⎥⎦
(Solving systems of linear equations numerically is discussed in Chapters 7 and 8.)
Finally, we evaluate these m + 1 equations for a0, a1, . . . , am .

a j =
j∑

�=0

c j−�b� (j = 0, 1, . . . , m)

Note that a j = 0 for j > m and b j = 0 for j > k. Also, if k = 0, then Rm,0 is a truncated
Maclaurin series for f . Moreover, the Padé approximations may contain singularities.

a. Determine the rational functions R1,1(x) and R2,2(x). Produce and compare com-
puter plots for f (x) = ex , R1,1, and R2,2. Do these low-order rational functions
approximate the exponential function ex satisfactorily within [−1, 1]? How do they
compare to the truncated Maclaurin polynomials of the preceding problem?

b. Repeat using R2,2(x) and R3,1(x) for the function g(x) = ln(1 + x).

Information on the life and work of the French mathematician Herni Eugène Padé
(1863–1953) can be found in Wood [1999]. This reference also has examples and
exercises similar to these. Further examples of Padé approximation can be seen.

42 Chapter 1 Introduction

23. (Continuation) Repeat for the Bessel function J0(2x), whose Maclaurin series is

1 − x2 + x4

4
− x6

36
+ · · · =

∞∑
i=0

(−1)i
(xi

i!

)2

Then determine R2,2(x), R4,3(x), and R2,4(x) as well as comparing plots.

24. Carry out the details in the introductory example to this chapter by first deriving the
Taylor series for ln(1 + x) and computing ln 2 ≈ 0.63452 using the first eight terms.
Then establish the series ln[(1 + x)/(1 − x)] and calculate ln 2 ≈ 0.69313 using
the terms shown. Determine the absolute error and relative errors for each of these
answers.

25. Reproduce Figure 1.2 using your computer as well as adding the curve for S4.

26. Use a mathematical software system that does symbolic manipulations such as Maple
or Mathematica to carry out

a. Example 3 b. Example 6

27. Can you obtain the following numerical results?
√

1.00001 = 1.00000 49999 87500 06249 96093 77734 37500 0000√
0.99999 = 0.99999 49999 87499 93749 96093 72265 62500 00000

Are these answers accurate to all digits shown?

2
Floating-Point Representation
and Errors

Computers usually do not use base-10 arithmetic for storage or computa-
tion. Numbers that have a finite expression in one number system may
have an infinite expression in another system. This phenomenon is illus-
trated when the familiar decimal number 1/10 is converted into the binary
system:

(0.1)10 = (0.0 0011 0011 0011 0011 0011 0011 0011 0011 . . .)2

In this chapter, we explain the floating-point number system and develop
basic facts about roundoff errors. Another topic is loss of significance,
which occurs when nearly equal numbers are subtracted. It is studied and
shown to be avoidable by various programming techniques.

2.1 Floating-Point Representation
The standard way to represent a nonnegative real number in decimal form is with an in-
teger part, a fractional part, and a decimal point between them—for example, 37.21829,
0.00227 1828, and 30 00527.11059. Another standard form, often called normalized
scientific notation, is obtained by shifting the decimal point and supplying appropriate
powers of 10. Thus, the preceding numbers have alternative representations as

37.21829 = 0.37218 29 × 102

0.00227 1828 = 0.22718 28 × 10−2

30 00527.11059 = 0.30005 27110 59 × 107

In normalized scientific notation, the number is represented by a fraction multiplied by 10n ,
and the leading digit in the fraction is not zero (except when the number involved is zero).
Thus, we write 79325 as 0.79325 × 105, not 0.07932 5 × 106 or 7.9325 × 104 or some
other way.

43

44 Chapter 2 Floating-Point Representation and Errors

Normalized Floating-Point Representation
In the context of computer science, normalized scientific notation is also called normalized
floating-point representation. In the decimal system, any real number x (other than zero)
can be represented in normalized floating-point form as

x = ±0.d1d2d3 . . . × 10n

where d1 �= 0 and n is an integer (positive, negative, or zero). The numbers d1, d2, . . . are
the decimal digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.

Stated another way, the real number x , if different from zero, can be represented in
normalized floating-point decimal form as

x = ±r × 10n
(

1
10 � r < 1

)
This representation consists of three parts: a sign that is either + or −, a number r in
the interval

[
1

10 , 1
)
, and an integer power of 10. The number r is called the normalized

mantissa and n the exponent.
The floating-point representation in the binary system is similar to that in the decimal

system in several ways. If x �= 0, it can be written as

x = ±q × 2m
(

1
2 � q < 1

)
The mantissa q would be expressed as a sequence of zeros or ones in the form q =
(0.b1b2b3 . . .)2, where b1 �= 0. Hence, b1 = 1 and then necessarily q � 1

2 .
A floating-point number system within a computer is similar to what we have just

described, with one important difference: Every computer has only a finite word length and
a finite total capacity, so only numbers with a finite number of digits can be represented.
A number is allotted only one word of storage in the single-precision mode (two or more
words in double or extended precision). In either case, the degree of precision is strictly
limited. Clearly, irrational numbers cannot be represented, nor can those rational numbers
that do not fit the finite format imposed by the computer. Furthermore, numbers may be
either too large or too small to be representable. The real numbers that are representable in
a computer are called its machine numbers.

Since any number used in calculations with a computer system must conform to the
format of numbers in that system, it must have a finite expansion. Numbers that have a
nonterminating expansion cannot be accommodated precisely. Moreover, a number that has
a terminating expansion in one base may have a nonterminating expansion in another. A
good example of this is the following simple fraction as given in the introductory example
to this chapter:

1

10
= (0.1)10 = (0.06314 6314 6314 6314 . . .)8

= (0.0 0011 0011 0011 0011 0011 0011 0011 0011 . . .)2

The important point here is that most real numbers cannot be represented exactly in a
computer. (See Appendix B for a discussion of representation of numbers in difference
bases.)

The effective number system for a computer is not a continuum but a rather peculiar
discrete set. To illustrate, let us take an extreme example, in which the floating-point numbers
must be of the form x = ±(0.b1b2b3)2 × 2±k , where b1, b2, b3, and m are allowed to have
only the value 0 or 1.

2.1 Floating-Point Representation 45

EXAMPLE 1 List all the floating-point numbers that can be expressed in the form

x = ±(0.b1b2b3)2 × 2±k (k, bi ∈ {0, 1})
Solution There are two choices for the ±, two choices for b1, two choices for b2, two choices for b3,

and three choices for the exponent. Thus, at first, one would expect 2 × 2 × 2 × 2 × 3 = 48
different numbers. However, there is some duplication. For example, the nonnegative num-
bers in this system are as follows:

0.000 × 20 = 0 0.000 × 21 = 0 0.000 × 2−1 = 0

0.001 × 20 = 1

8
0.001 × 21 = 1

4
0.001 × 2−1 = 1

16

0.010 × 20 = 2

8
0.010 × 21 = 2

4
0.010 × 2−1 = 2

16

0.011 × 20 = 3

8
0.011 × 21 = 3

4
0.011 × 2−1 = 3

16

0.100 × 20 = 4

8
0.100 × 21 = 4

4
0.100 × 2−1 = 4

16

0.101 × 20 = 5

8
0.101 × 21 = 5

4
0.101 × 2−1 = 5

16

0.110 × 20 = 6

8
0.110 × 21 = 6

4
0.110 × 2−1 = 6

16

0.111 × 20 = 7

8
0.111 × 21 = 7

4
0.111 × 2−1 = 7

16
Altogether there are 31 distinct numbers in the system. The positive numbers obtained are
shown on a line in Figure 2.1. Observe that the numbers are symmetrically but unevenly
distributed about zero. ■

FIGURE 2.1

Positive
machine

numbers in
Example 1

0 1
1

16
3

16
1
4

1
8

5
16

7
16

1
2

3
8

5
8

3
4

7
8

5
4

3
2

7
4

If, in the course of a computation, a number x is produced of the form ±q×2m , where m
is outside the computer’s permissible range, then we say that an overflow or an underflow
has occurred or that x is outside the range of the computer. Generally, an overflow results
in a fatal error (or exception), and the normal execution of the program stops. An underflow,
however, is usually treated automatically by setting x to zero without any interruption of
the program but with a warning message in most computers.

In a computer whose floating-point numbers are restricted to the form in Example 1,
any number closer to zero than 1

16 would underflow to zero, and any number outside the
range −1.75 to +1.75 would overflow to machine infinity.

If, in Example 1, we allow only normalized floating-point numbers, then all our numbers
(with the exception of zero) have the form

x = ±(0.1b2b3)2 × 2±k

This creates a phenomenon known as the hole at zero. Our nonnegative machine numbers
are now distributed as in Figure 2.2. There is a relatively wide gap between zero and the
smallest positive machine number, which is (0.100)2 × 2−1 = 1

4 .

46 Chapter 2 Floating-Point Representation and Errors

FIGURE 2.2

Normalized
machine

numbers in
Example 1

0 1
5

16
7

16
3
8

1
2

1
4

5
8

3
4

7
8

5
4

3
2

7
4

Floating-Point Representation
A computer that operates in floating-point mode represents numbers as described earlier
except for the limitations imposed by the finite word length. Many binary computers have
a word length of 32 bits (binary digits). We shall describe a machine of this type whose
features mimic many workstations and personal computers in widespread use. The internal
representation of numbers and their storage is standard floating-point form, which is used
in almost all computers. For simplicity, we have left out a discussion of some of the details
and features. Fortunately, one need not know all the details of the floating-point arithmetic
system used in a computer to use it intelligently. Nevertheless, it is generally helpful in
debugging a program to have a basic understanding of the representation of numbers in
your computer.

By single-precision floating-point numbers, we mean all acceptable numbers in a
computer using the standard single-precision floating-point arithmetic format. (In this dis-
cussion, we are assuming that such a computer stores these numbers in 32-bit words.) This
set is a finite subset of the real numbers. It consists of ±0, ±∞, normal and subnormal
single-precision floating-point numbers, but not NotaNumber (NaN) values. (More detail
on these subjects are in Appendix B and in the references.) Recall that most real numbers
cannot be represented exactly as floating-point numbers, since they have infinite decimal
or binary expansions (all irrational numbers and some rational numbers); for example,
π, e, 1

3 , 0.1 and so on.
Because of the 32-bit word-length, as much as possible of the normalized floating-point

number

±q × 2m

must be contained in those 32 bits. One way of allocating the 32 bits is as follows:

sign of q 1 bit
integer |m| 8 bits
number q 23 bits

Information on the sign of m is contained in the eight bits allocated for the integer |m|.
In such a scheme, we can represent real numbers with |m| as large as 27 − 1 = 127. The
exponent represents numbers from −127 through 128.

Single-Precision Floating-Point Form
We now describe a machine number of the following form in standard single-precision
floating-point representation:

(−1)s × 2c−127 × (1.f)2

The leftmost bit is used for the sign of the mantissa, where s = 0 corresponds to + and s = 1
corresponds to −. The next eight bits are used to represent the number c in the exponent

2.1 Floating-Point Representation 47

FIGURE 2.3

Partitioned
floating-point

single-precision
computer word

Sign of mantissa biased exponent c f from one-plus mantissa (1.f)2

radix point

9 bits 23 bits

s

of 2c−127, which is interpreted as an excess-127 code. Finally, the last 23 bits represent
f from the fractional part of the mantissa in the 1-plus form: (1.f)2. Each floating-point
single-precision word is partitioned as in Figure 2.3.

In the normalized representation of a nonzero floating-point number, the first bit in the
mantissa is always 1 so that this bit does not have to be stored. This can be accomplished by
shifting the binary point to a “1-plus” form (1.f)2. The mantissa is the rightmost 23 bits and
contains f with an understood binary point as in Figure 2.3. So the mantissa (significand)
actually corresponds to 24 binary digits since there is a hidden bit. (An important exception
is the number ±0.)

We now outline the procedure for determining the representation of a real number x . If
x is zero, it is represented by a full word of zero bits with the possible exception of the sign
bit. For a nonzero x , first assign the sign bit for x and consider |x |. Then convert both the
integer and fractional parts of |x | from decimal to binary. Next one-plus normalize (|x |)2 by
shifting the binary point so that the first bit to the left of the binary point is a 1 and all bits to
the left of this 1 are 0. To compensate for this shift of the binary point, adjust the exponent
of 2; that is, multiply by the appropriate power of 2. The 24-bit one-plus-normalized
mantissa in binary is thus found. Now the current exponent of 2 should be set equal to
c − 127 to determine c, which is then converted from decimal to binary. The sign bit of
the mantissa is combined with (c)2 and (f)2. Finally, write the 32-bit representation of x as
eight hexadecimal digits.

The value of c in the representation of a floating-point number in single precision is
restricted by the inequality

0 < c < (11 111 111)2 = 255

The values 0 and 255 are reserved for special cases, including ±0 and ±∞, respectively.
Hence, the actual exponent of the number is restricted by the inequality

−126 � c − 127 � 127

Likewise, we find that the mantissa of each nonzero number is restricted by the inequality

1 � (1.f)2 � (1.111 111 111 111 111 111 111 11)2 = 2 − 2−23

The largest number representable is therefore (2 − 2−23)2127 ≈ 2128 ≈ 3.4 × 1038. The
smallest positive number is 2−126 ≈ 1.2 × 10−38.

The binary machine floating-point number ε = 2−23 is called the machine epsilon when
using single precision. It is the smallest positive machine number ε such that 1 + ε �= 1.
Because 2−23 ≈ 1.2 × 10−7, we infer that in a simple computation, approximately six
significant decimal digits of accuracy may be obtained in single precision. Recall that
23 bits are allocated for the mantissa.

48 Chapter 2 Floating-Point Representation and Errors

Double-Precision Floating-Point Form
When more precision is needed, double precision can be used, in which case each double-
precision floating-point number is stored in two computer words in memory. In double
precision, there are 52 bits allocated for the mantissa. The double precision machine epsilon
is 2−52 ≈ 2.2 × 10−16, so approximately 15 significant decimal digits of precision are
available. There are 11 bits allowed for the exponent, which is biased by 1023. The exponent
represents numbers from −1022 through 1023. A machine number in standard double-
precision floating-point form corresponds to

(−1)s × 2c−1023 × (1.f)2

The leftmost bit is used for the sign of the mantissa with s = 0 for + and s = 1 for −.
The next eleven bits are used to represent the exponent c corresponding to 2c−1023. Finally,
52 bits represent f from the fractional part of the mantissa in the one-plus form: (1.f)2.

The value of c in the representation of a floating-point number in double precision is
restricted by the inequality

0 < c < (1 111 111 111)2 = 2047

As in single precision, the values at the ends of this interval are reserved for special cases.
Hence, the actual exponent of the number is restricted by the inequality

−1022 � c − 1023 � 1023

We find that the mantissa of each nonzero number is restricted by the inequality

1 � (1.f)2 � (1.111 111 111 · · · 111 111 111 1)2 = 2 − 2−52

Because 2−52 ≈ 1.2 × 10−16, we infer that in a simple computation approximately 15
significant decimal digits of accuracy may be obtained in double precision. Recall that
52 bits are allocated for the mantissa. The largest double-precision machine number is
(2 − 2−52)21023 ≈ 21024 ≈ 1.8 × 10308. The smallest double-precision positive machine
number is 2−1022 ≈ 2.2 × 10−308.

Single precision on a 64-bit computer is comparable to double precision on a 32-bit
computer, whereas double precision on a 64-bit computer gives four times the precision
available on a 32-bit computer.

In single precision, 31 bits are available for an integer because only 1 bit is needed for
the sign. Consequently, the range for integers is from −(231−1) to (231−1) = 21474 83647.
In double precision, 63 bits are used for integers giving integers in the range −(263 − 1) to
(263 −1). In using integer arithmetic, accurate calculations can result in only approximately
nine digits in single precision and 18 digits in double precision! For high accuracy, most
computations should be done by using double-precision floating-point arithmetic.

EXAMPLE 2 Determine the single-precision machine representation of the decimal number −52.23437 5
in both single precision and double precision.

Solution Converting the integer part to binary, we have (52.)10 = (64.)8 = (110 100.)2. Next, con-
verting the fractional part, we have (.23437 5)10 = (.17)8 = (.001 111)2. Now

(52.23437 5)10 = (110 100.001 111)2 = (1.101 000 011 110)2 × 25

2.1 Floating-Point Representation 49

is the corresponding one-plus form in base 2, and (.101 000 011 110)2 is the stored man-
tissa. Next the exponent is (5)10, and since c−127 = 5, we immediately see that (132)10 =
(204)8 = (10 000 100)2 is the stored exponent. Thus, the single-precision machine repre-
sentation of −52.23437 5 is

[1 10 000 100 101 000 011 110 000 000 000 00]2 =
[1100 0010 0101 0000 1111 0000 0000 0000]2 = [C250F000]16

In double precision, for the exponent (5)10, we let c−1023 = 5, and we have (1028)10 =
(2004)8 = (10 000 000 100)2, which is the stored exponent. Thus, the double-precision
machine representation of −52.23437 5 is

[1 10 000 000 100 101 000 011 110 000 · · · 00]2 =
[1100 0000 0100 1010 0001 1110 0000 · · · 0000]2 = [C04A1E0000000000]16

Here [· · ·]k is the bit pattern of the machine word(s) that represents floating-point numbers,
which is displayed in base-k. ■

EXAMPLE 3 Determine the decimal numbers that correspond to these machine words:

[45DE4000]16 [BA390000]16

Solution The first number in binary is

[0100 0101 1101 1110 0100 0000 0000 0000]2

The stored exponent is (10 001 011)2 = (213)8 = (139)10, so 139 − 127 = 12. The man-
tissa is positive and represents the number

(1.101 111 001)2 × 212 = (1 101 111 001 000.)2

= (15710.)8

= 0 × 1 + 1 × 8 + 7 × 82 + 5 × 83 + 1 × 84

= 8(1 + 8(7 + 8(5 + 8(1))))

= 7112

Similarily, the second word in binary is

[1011 1010 0011 1001 0000 0000 0000 0000]2

The exponential part of the word is (01 110 100)2 = (164)8 = 116, so the exponent is
116 − 127 = −11. The mantissa is negative and corresponds to the following floating-
point number:

−(1.011 100 100)2 × 2−11 = −(0.000 000 000 010 111 001)2

= −(0.00027 1)8

= −2 × 8−4 − 7 × 8−5 − 1 × 8−6

= −8−6(1 + 8(7 + 8(2)))

= − 185

26214 4
≈ −7.05718 99 × 10−4

■

50 Chapter 2 Floating-Point Representation and Errors

Computer Errors in Representing Numbers
We turn now to the errors that can occur when we attempt to represent a given real number x
in the computer. We use a model computer with a 32-bit word length. Suppose first that we let
x = 253 21697 or x = 2−32591. The exponents of these numbers far exceed the limitations of the
machine (as described above). These numbers would overflow and underflow, respectively,
and the relative error in replacing x by the closest machine number will be very large. Such
numbers are outside the range of a 32-bit word-length computer.

Consider next a positive real number x in normalized floating-point form

x = q × 2m
(

1
2 � q < 1, −126 � m � 127

)
The process of replacing x by its nearest machine number is called correct rounding, and
the error involved is called roundoff error. We want to know how large it can be. We
suppose that q is expressed in normalized binary notation, so

x = (0.1b2b3b4 . . . b24b25b26 . . .)2 × 2m

One nearby machine number can be obtained by rounding down or by simply dropping the
excess bits b25b26 . . . , since only 23 bits have been allocated to the stored mantissa. This
machine number is

x− = (0.1b2b3b4 . . . b24)2 × 2m

It lies to the left of x on the real-number axis. Another machine number, x+, is just to the
right of x on the real axis and is obtained by rounding up. It is found by adding one unit to
b24 in the expression for x−. Thus,

x+ = [
(0.1b2b3b4 . . . b24)2 + 2−24

]× 2m

The closer of these machine numbers is the one chosen to represent x .
The two situations are illustrated by the simple diagrams in Figure 2.4. If x lies closer

to x− than to x+, then

|x − x−| � 1
2 |x+ − x−| = 2−25+m

In this case, the relative error is bounded as follows:∣∣∣∣ x − x−
x

∣∣∣∣ �
2−25+m

(0.1b2b3b4 . . .)2 × 2m
�

2−25

1
2

= 2−24 = u

where u = 2−24 is the unit roundoff error for a 32-bit binary computer with standard
floating-point arithmetic. Recall that the machine epsilon is ε = 2−23, so u = 1

2ε. Moreover,
u = 2−k , where k is the number of binary digits used in the mantissa, including the hidden
bit (k = 24 in single precision and k = 53 in double precision). On the other hand, if x lies
closer to x+ than to x−, then

|x − x+| � 1
2 |x+ − x−|

and the same analysis shows that the relative error is no greater than 2−24 = u. So in the case
of rounding to the nearest machine number, the relative error is bounded by u. We note in

FIGURE 2.4

A possible
relationship

between
x−, x+, and x. xx� x x�x� x�

2.1 Floating-Point Representation 51

passing that when all excess digits or bits are discarded, the process is called chopping. If a
32-bit word-length computer has been designed to chop numbers, the relative error bound
would be twice as large as above, or 2u = 2−23 = ε.

Notation fl(x) and Backward Error Analysis
Next let us turn to the errors that are produced in the course of elementary arithmetic oper-
ations. To illustrate the principles, suppose that we are working with a five-place decimal
machine and wish to add numbers. Two typical machine numbers in normalized floating-
point form are

x = 0.37218 × 104 y = 0.71422 × 10−1

Many computers perform arithmetic operations in a double-length work area, so let us
assume that our computer will have a ten-place accumulator. First, the exponent of the
smaller number is adjusted so that both exponents are the same. Then the numbers are
added in the accumulator, and the rounded result is placed in a computer word:

x = 0.37218 00000 × 104

y = 0.00000 71422 × 104

x + y = 0.37218 71422 × 104

The nearest machine number is z = 0.37219 × 104, and the relative error involved in this
machine addition is

|x + y − z|
|x + y| = 0.00000 28578 × 104

0.37218 71422 × 104
≈ 0.77 × 10−5

This relative error would be regarded as acceptable on a machine of such low precision.
To facilitate the analysis of such errors, it is convenient to introduce the notation fl(x)

to denote the floating-point machine number that corresponds to the real number x .
Of course, the function fl depends on the particular computer involved. The hypothetical
five-decimal-digit machine used above would give

fl(0.37218 71422 × 104) = 0.37219 × 104

For a 32-bit word-length computer, we established previously that if x is any real number
within the range of the computer, then

|x − fl(x)|
|x | � u

(
u = 2−24

)
(1)

Here and throughout, we assume that correct rounding is used. This inequality can also be
expressed in the more useful form

fl(x) = x(1 + δ)
(|δ| � 2−24

)
To see that these two inequalities are equivalent, simply let δ = [fl(x) − x]/x . Then, by
Inequality (1), we have |δ| � 2−24 and solving for fl(x) yields fl(x) = x(1 + δ).

By considering the details in the addition 1 + ε, we see that if ε � 2−23, then
fl(1 + ε) > 1, while if ε < 2−23, then fl(1 + ε) = 1. Consequently, if machine epsilon is
the smallest positive machine number ε such that

fl(1 + ε) > 1

52 Chapter 2 Floating-Point Representation and Errors

then ε = 2−23. Sometimes it is necessary to furnish the machine epsilon to a program.
Since it is a machine-dependent constant, it can be found by either calling a system routine
or by writing a simple program that finds the smallest positive number x = 2m such that
1 + x > 1 in the machine.

Now let the symbol � denote any one of the arithmetic operations +, −, ×, or ÷.
Suppose a 32-bit word-length computer has been designed so that whenever two machine
numbers x and y are to be combined arithmetically, the computer will produce fl(x � y)

instead of x � y. We can imagine that x � y is first correctly formed, then normalized, and
finally rounded to become a machine number. Under this assumption, the relative error will
not exceed 2−24 by the previous analysis:

fl(x � y) = (x � y)(1 + δ)
(|δ| � 2−24

)
Special cases of this are, of course,

fl(x ± y) = (x ± y)(1 + δ)

fl(xy) = xy(1 + δ)

fl

(
x

y

)
=
(

x

y

)
(1 + δ)

In these equations, δ is variable but satisfies −2−24 � δ � 2−24. The assumptions that we
have made about a model 32-bit word-length computer is not quite true for a real computer.
For example, it is possible for x and y to be machine numbers and for x � y to overflow or
underflow. Nevertheless, the assumptions should be realistic for most computing machines.

The equations given above can be written in a variety of ways, some of which suggest
alternative interpretations of roundoff. For example,

fl(x + y) = x(1 + δ) + y(1 + δ)

This says that the result of adding machine numbers x and y is not in general x + y but is
the true sum of x(1 + δ) and y(1 + δ). We can think of x(1 + δ) as the result of slightly
perturbing x . Thus, the machine version of x + y, which is fl(x + y), is the exact sum of a
slightly perturbed x and a slightly perturbed y. The reader can supply similar interpretations
in the examples given in the problems.

This interpretation is an example of backward error analysis. It attempts to determine
what perturbation of the original data would cause the computer results to be the exact
results for a perturbed problem. In contrast, a direct error analysis attempts to determine
how computed answers differ from exact answers based on the same data. In this aspect
of scientific computing, computers have stimulated a new way of looking at computational
errors.

EXAMPLE 4 If x , y, and z are machine numbers in a 32-bit word-length computer, what upper bound
can be given for the relative roundoff error in computing z(x + y)?

Solution In the computer, the calculation of x + y will be done first. This arithmetic operation pro-
duces the machine number fl(x + y), which differs from x + y because of roundoff. By the
principles established above, there is a δ1 such that

fl(x + y) = (x + y)(1 + δ1)
(|δ1| � 2−24

)

2.1 Floating-Point Representation 53

Now z is already a machine number. When it multiplies the machine number fl(x + y), the
result is the machine number fl[z fl(x + y)]. This, too, differs from its exact counterpart,
and we have, for some δ2,

fl[z fl(x + y)] = z fl(x + y)(1 + δ2)
(|δ2| � 2−24

)
Putting both of our equations together, we have

fl[z fl(x + y)] = z(x + y)(1 + δ1)(1 + δ2)

= z(x + y)(1 + δ1 + δ2 + δ1δ2)

≈ z(x + y)(1 + δ1 + δ2)

= z(x + y)(1 + δ)
(|δ| � 2−23

)
In this calculation, |δ1δ2| � 2−48, and so we ignore it. Also, we put δ = δ1 + δ2 and then
reason that |δ| = |δ1 + δ2| � |δ1| + |δ2| � 2−24 + 2−24 = 2−23. ■

EXAMPLE 5 Critique the following attempt to estimate the relative roundoff error in computing the sum
of two real numbers, x and y. In a 32-bit word-length computer, the calculation yields

z = fl[fl(x) + fl(y)]

= [x(1 + δ) + y(1 + δ)](1 + δ)

= (x + y)(1 + δ)2

≈ (x + y)(1 + 2δ)

Therefore, the relative error is bounded as follows:∣∣∣∣ (x + y) − z

(x + y)

∣∣∣∣ =
∣∣∣∣2δ(x + y)

(x + y)

∣∣∣∣ = |2δ| � 2−23

Why is this calculation not correct?

Solution The quantities δ that occur in such calculations are not, in general, equal to each other. The
correct calculation is

z = fl[fl(x) + fl(y)]

= [x(1 + δ1) + y(1 + δ2)](1 + δ3)

= [(x + y) + δ1x + δ2 y](1 + δ3)

= (x + y) + δ1x + δ2 y + δ3x + δ3 y + δ1δ3x + δ2δ3 y

≈ (x + y) + x(δ1 + δ3) + y(δ2 + δ3)

Therefore, the relative roundoff error is∣∣∣∣ (x + y) − z

(x + y)

∣∣∣∣ =
∣∣∣∣ x(δ1 + δ3) + y(δ2 + δ3)

(x + y)

∣∣∣∣
=
∣∣∣∣ (x + y)δ3 + xδ1 + yδ2

(x + y)

∣∣∣∣
=
∣∣∣∣δ3 + xδ1 + yδ2

(x + y)

∣∣∣∣

54 Chapter 2 Floating-Point Representation and Errors

This cannot be bounded, because the second term has a denominator that can be zero or
close to zero. Notice that if x and y are machine numbers, then δ1 and δ2 are zero, and a
useful bound results—namely, δ3. But we do not need this calculation to know that! It has
been assumed that when machine numbers are combined with any of the four arithmetic
operations, the relative roundoff error will not exceed 2−24 in magnitude (on a 32-bit word-
length computer). ■

Historical Notes
In the 1991 Gulf War, a failure of the Patriot missile defense system was the result of a
software conversion error. The system clock measured time in tenths of a second, but it
was stored as a 24-bit floating-point number, resulting in rounding errors. Field data had
shown that the system would fail to track and intercept an incoming missile after being
on for 20 consecutive hours and would need to be rebooted. After it had been on for
100 hours, a system failure resulted in the death of 28 American soldiers in a barracks in
Dhahran, Saudi Arabia, because it failed to intercept an incoming Iraqi Scud missile. Since
the number 0.1 has an infinite binary expansion, the value in the 24-bit register was in error
by (1.1001100 . . .)2 × 2−24 ≈ 0.95 × 10−7. The resulting time error was approximately
thirty-four one-hundreds of a second after running for 100 hours.

In 1996, the Ariane 5 rocket launched by the European Space Agency exploded 40 sec-
onds after lift-off from Kourou, French Guiana. An investigation determined that the hori-
zontal velocity required the conversion of a 64-bit floating-point number to a 16-bit signed
integer. It failed because the number was larger than 32,767, which was the largest inte-
ger of this type that could be stored in memory. The rocket and its cargo were valued at
$500 million.

Additional details about these disasters can be found by searching the World Wide
Web. There are other interesting accounts of calamities that could have been averted by
more careful computer programming, especially in using floating-point arithmetic.

Summary

(1) A single-precision floating-point number in a 32-bit word-length computer with stan-
dard floating-point representation is stored in a single word with the bit pattern

b1b2b3 · · · b9b10b11 · · · b32

which is interpreted as the real number

(−1)b1 × 2(b2b3...b9)2 × 2−127 × (1.b10b11 . . . b32)2

(2) A double-precision floating-point number in a 32-bit word-length computer with
standard floating-point representation is stored in two words with the bit pattern

b1b2b3 · · · b9b10b11b12b13 · · · b32b33b34b35 · · · · · · b64

which is interpreted as the real number

(−1)b1 × 2(b2b3...b12)2 × 2−1023 × (1.b13b14 . . . b64)2

2.1 Floating-Point Representation 55

(3) The relationship between a real number x and the floating-point machine number fl(x)

can be written as

fl(x) = x(1 + δ)
(|δ| � 2−24

)
If � denotes any one of the arithmetic operations, then we write

fl(x � y) = (x � y)(1 + δ)

In these equations, δ depends on x and y.

Problems 2.1

1. Determine the machine representation in single precision on a 32-bit word-length com-
puter for the following decimal numbers.

a. 2−30 b. 64.01562 5 ac. −8 × 2−24

2. Determine the single-precision and double-precision machine representation in a 32-bit
word-length computer of the following decimal numbers:

a. 0.5, −0.5 b. 0.125, −0.125 c. 0.0625, −0.0625 ad. 0.03125, −0.03125

3. Which of these are machine numbers?

a. 10403 b. 1 + 2−32 c. 1
5 d. 1

10 e. 1
256

4. Determine the single-precision and double-precision machine representation of the
following decimal numbers:

a. 1.0, −1.0 b. +0.0, −0.0 c. −9876.54321 ad. 0.23437 5
ae. 492.78125 f. 64.37109 375 g. −285.75 h. 10−2

5. Identify the floating-point numbers corresponding to the following bit strings:

a. 0 00000000 00000000000000000000000

b. 1 00000000 00000000000000000000000

c. 0 11111111 00000000000000000000000

ad. 1 11111111 00000000000000000000000

e. 0 00000001 00000000000000000000000

f. 0 10000001 01100000000000000000000

g. 0 01111111 00000000000000000000000

h. 0 01111011 10011001100110011001100

6. What are the bit-string machine representations for the following subnormal numbers?

a. 2−127 + 2−128 b. 2−127 + 2−150 c. 2−127 + 2−130 d.
∑150

k=127 2−k

56 Chapter 2 Floating-Point Representation and Errors

7. Determine the decimal numbers that have the following machine representations:

a. [3F27E520]16 b. [3BCDCA00]16 c. [BF4F9680]16 d. [CB187ABC]16

8. Determine the decimal numbers that have the following machine representations:

aa. [CA3F2900]16 b. [C705A700]16 c. [494F96A0]16
ad. [4B187ABC]16

e. [45223000]16 f. [45607000]16
ag. [C553E000]16 h. [437F0000]16

9. Are these machine representations? Why or why not?

a. [4BAB2BEB]16 b. [1A1AIA1A]16

c. [FADEDEAD]16 d. [CABE6G94]16

10. The computer word associated with the variable � appears as [7F7FFFFF]16, which is
the largest representable floating-point single-precision number. What is the decimal
value of �? The variable ε appears as [00800000]16, which is the smallest positive
number. What is the decimal value of ε?

11. Enumerate the set of numbers in the floating-point number system that have binary
representations of the form ±(0.b1b2) × 2k , where

a. k ∈ {−1, 0} b. k ∈ {−1, 1} ac. k ∈ {−1, 0, 1}
12. What are the machine numbers immediately to the right and left of 2m? How far is each

from 2m?

13. Generally, when a list of floating-point numbers is added, less roundoff error will
occur if the numbers are added in order of increasing magnitude. Give some examples
to illustrate this principle.

14. (Continuation) The principle of the preceding problem is not universally valid. Consider
a decimal machine with two decimal digits allocated to the mantissa. Show that the
four numbers 0.25, 0.0034, 0.00051, and 0.061 can be added with less roundoff error
if not added in ascending order.

a15. In the case of machine underflow, what is the relative error involved in replacing a
number x by zero?

16. Consider a computer that operates in base β and carries n digits in the mantissa of
its floating-point numbers. Show that the rounding of a real number x to the nearest
machine number x̃ involves a relative error of at most 1

2β
1−n . Hint: Imitate the argument

in the text.

a17. Consider a decimal machine in which five decimal digits are allocated to the mantissa.
Give an example, avoiding overflow or underflow, of a real number x whose closest
machine number x̃ involves the greatest possible relative error.

a18. In a five-decimal machine that correctly rounds numbers to the nearest machine number,
what real numbers x will have the property fl(1.0 + x) = 1.0?

a19. Consider a computer operating in base β. Suppose that it chops numbers instead of
correctly rounding them. If its floating-point numbers have a mantissa of n digits, how
large is the relative error in storing a real number in machine format?

2.1 Floating-Point Representation 57

20. What is the roundoff error when we represent 2−1 + 2−25 by a machine number? Note:
This refers to absolute error, not relative error.

a21. (Continuation) What is the relative roundoff error when we round off 2−1 + 2−26 to get
the closest machine number?

22. If x is a real number within the range of a 32-bit word-length computer that is rounded
and stored, what can happen when x2 is computed? Explain the difference between
fl[fl(x)fl(x)] and fl(x x).

23. A binary machine that carries 30 bits in the fractional part of each floating-point number
is designed to round a number up or down correctly to get the closest floating-point
number. What simple upper bound can be given for the relative error in this rounding
process?

24. A decimal machine that carries 15 decimal places in its floating-point numbers
is designed to chop numbers. If x is a real number in the range of this machine
and x̂ is its machine representation, what upper bound can be given for
|x − x̂ |/|x |?

a25. If x and y are real numbers within the range of a 32-bit word-length computer and if
xy is also within the range, what relative error can there be in the machine computation
of xy? Hint: The machine produces fl[fl(x)fl(y)].

a26. Let x and y be positive real numbers that are not machine numbers but are within the
exponent range of a 32-bit word-length computer. What is the largest possible relative
error in the machine representation of x + y2? Include errors made to get the numbers
in the machine as well as errors in the arithmetic.

27. Show that if x and y are positive real numbers that have the same first n digits in their
decimal representations, then y approximates x with relative error less than 101−n . Is
the converse true?

28. Show that a rough bound on the relative roundoff error when n machine numbers are
multiplied in a 32-bit word-length computer is (n − 1)2−24.

29. Show that fl(x + y) = y on a 32-bit word-length computer if x and y are positive
machine numbers and x < y × 2−25.

a30. If 1000 nonzero machine numbers are added in a 32-bit word-length computer, what
upper bound can be given for the relative roundoff error in the result? How many
decimal digits in the answer can be trusted?

31. Suppose that x = ∑n
i=1 ai 2−i , where ai ∈ {−1, 0, 1} is a positive number. Show that

x can also be written in the form
∑n

i=1 bi 2−i , where bi ∈ {0, 1}.
32. If x and y are machine numbers in a 32-bit word-length computer and if fl(x/y) =

x/[y(1 + δ)], what upper bound can be placed on |δ|?
33. How big is the hole at zero in a 32-bit word-length computer?

34. How many machine numbers are there in a 32-bit length computer? (Consider only
normalized floating-point numbers.)

58 Chapter 2 Floating-Point Representation and Errors

35. How many normalized floating-point numbers are available in a binary machine if n
bits are allocated to the mantissa and m bits are allocated to the exponent? Assume that
two additional bits are used for signs, as in a 32-bit length computer.

36. Show by an example that in computer arithmetic a + (b + c) may differ from
(a + b) + c.

a37. Consider a decimal machine in which floating-point numbers have 13 decimal places.
Suppose that numbers are correctly rounded up or down to the nearest machine number.
Give the best bound for the roundoff error, assuming no underflow or overflow. Use
relative error, of course. What if the numbers are always chopped?

a38. Consider a computer that uses five-decimal-digit numbers. Let fl(x) denote the
floating-point machine number closest to x . Show that if x = 0.53214 87513 and
y = 0.53213 04421, then the operation fl(x) − fl(y) involves a large relative error.
Compute it.

a39. Two numbers x and y that are not machine numbers are read into a 32-bit word-length
computer. The machine computes xy2. What sort of relative error can be expected?
Assume no underflow or overflow.

40. Let x , y, and z be three machine numbers in a 32-bit word-length computer. By ana-
lyzing the relative error in the worst case, determine how much roundoff error should
be expected in forming (xy)z.

41. Let x and y be machine numbers in a 32-bit word-length computer. What relative
roundoff error should be expected in the computation of x + y ? If x is around 30 and
y is around 250, what absolute error should be expected in the computation of x + y ?

a42. Every machine number in a 32-bit word-length computer can be interpreted as the
correct machine representation of an entire interval of real numbers. Describe this
interval for the machine number q × 2m .

43. Is every machine number on a 32-bit word-length computer the average of two other
machine numbers? If not, describe those that are not averages.

44. Let x and y be machine numbers in a 32-bit word-length computer. Let u and v be
real numbers in the range of a 32-bit word-length computer but not machine numbers.
Find a realistic upper bound on the relative roundoff error when u and v are read into
the computer and then used to compute (x + y)/(uv). As usual, ignore products of
two or more numbers having magnitudes as small as 2−24. Assume that no overflow or
underflow occurs in this calculation.

45. Interpret the following:

a. fl(x) = x(1 − δ) b. fl(xy) = [x(1 + δ)]y

c. fl(xy) = x[y(1 + δ)] d. fl(xy) = (
x
√

1 + δ
) (

y
√

1 + δ
)

e. fl

(
x

y

)
= x(1 + δ)

y
f. fl

(
x

y

)
= x

√
1 + δ

y/
√

1 + δ
g. fl

(
x

y

)
≈ x

y(1 − δ)

46. Let x and y be real numbers that are not machine numbers for a 32-bit word-length
computer and have to be rounded to get them into the machine. Assume that there is

2.1 Floating-Point Representation 59

no overflow or underflow in getting their (rounded) values into the machine. (Thus, the
numbers are within the range of a 32-bit word-length computer, although they are not
machine numbers.) Find a rough upper bound on the relative error in computing x2 y3.
Hint: We say rough upper bound because you may use (1 + δ1)(1 + δ2) ≈ 1 + δ1 + δ2

and similar approximations. Be sure to include errors involved in getting the numbers
into the machine as well as errors that arise from the arithmetic operations.

47. (Student Research Project) Write a research paper on the standard floating-point
number system providing additional details on

a. types of rounding b. subnormal floating-point numbers

c. extended precision d. handling exceptional situations

Computer Problems 2.1

1. Print several numbers, both integers and reals, in octal format and try to explain the
machine representation used in your computer. For example, examine (0.1)10 and
compare to the results given at the beginning of this chapter.

2. Use your computer to construct a table of three functions f , g, and h defined as follows.
For each integer n in the range 1 to 50, let f (n) = 1/n. Then g(n) is computed by
adding f (n) to itself n − 1 times. Finally, set h(n) = n f (n). We want to see the effects
of roundoff error in these computations. Use the function real(n) to convert an integer
variable n to its real (floating-point) form. Print the table with all the precision of which
your computer is capable (in single-precision mode).

3. Predict and then show what value your computer will print for
√

2 computed in single
precision. Repeat for double or extended precision. Explain.

4. Write a program to determine the machine epsilon ε within a factor of 2 for single,
double, and extended precision.

5. Let A denote the set of positive integers whose decimal representation does not contain
the digit 0. The sum of the reciprocals of the elements in A is known to be 23.10345.
Can you verify this numerically?

6. Write a computer code

integer function nDigit(n, x)

which returns the nth nonzero digit in the decimal expression for the real number x .

7. The harmonic series 1 + 1
2 + 1

3 + 1
4 + · · · is known to diverge to +∞. The nth partial

sum approaches +∞ at the same rate as ln(n). Euler’s constant is defined to be

γ = lim
n→∞

[
n∑

k=1

1

k
− ln(n)

]
≈ 0.57721

60 Chapter 2 Floating-Point Representation and Errors

If your computer ran a program for a week based on the pseudocode

real s, x
x ← 1.0; s ← 1.0
repeat

x ← x + 1.0; s ← s + 1.0/x
end repeat

what is the largest value of s it would obtain? Write and test a program that uses a
loop of 5000 steps to estimate Euler’s constant. Print intermediate answers at every
100 steps.

8. (Continuation) Prove that Euler’s constant, γ , can also be represented by

γ = lim
m→∞

[
m∑

k=1

1

k
− ln

(
m + 1

2

)]

Write and test a program that uses m = 1, 2, 3, . . . , 5000 to compute γ by this formula.
The convergence should be more rapid than that in the preceding computer problem.
(See the article by De Temple [1993].)

9. Determine the binary form of 1
3 . What is the correctly rounded machine representation

in single precision on a 32-bit word-length computer? Check your answer on an actual
machine with the instructions

x ← 1.0/3.0; output x

using a long format of 16 digits for the output statement.

10. Owing to its gravitational pull, the earth gains weight and volume slowly over time
from space dust, meteorites, and comets. Suppose the earth is a sphere. Let the radius be
ra = 7000 kilometers at the beginning of the year 1900, and let rb be its radius at the end
of the year 2000. Assume that rb = ra +0.000001, an increase of 1 millimeter. Using a
computer, calculate how much the earth’s volume and surface area has increased during
the last century by the following three procedures (exactly as given):

a. Va = 4
3πr 3

a , Vb = 4
3πr 3

b , δ1 = Vb − Va (difference in spherical volume)

b. δ2 = 4
3π(rb − ra)(r 2

b + rbra + r 2
a) (difference in spherical volume)

c. h = rb − ra, δ3 = 4πr 2
a h (difference in spherical surface area)

First use single precision and then double precision. Compare and analyze your results.
(This problem was suggested by an anonymous reviewer.)

11. (Student Research Project) Explore recent developments in floating-point arithmetic.
In particular, learn about extended precision for both real numbers and integers as well
as for complex numbers.

12. What is the largest integer your computer can handle?

2.2 Loss of Significance 61

2.2 Loss of Significance
In this section, we show how loss of significance in subtraction can often be reduced or
eliminated by various techniques, such as the use of rationalization, Taylor series, trigono-
metric identities, logarithmic properties, double precision, and/or range reduction. These
are some of the techniques that can be used when one wants to guard against the degradation
of precision in a calculation. Of course, we cannot always know when a loss of significance
has occurred in a long computation, but we should be alert to the possibility and take steps
to avoid it, if possible.

Significant Digits
We first address the elusive concept of significant digits in a number. Suppose that x is a
real number expressed in normalized scientific notation in the decimal system

x = ±r × 10n
(

1
10 � r < 1

)
For example, x might be

x = 0.37214 98 × 10−5

The digits 3, 7, 2, 1, 4, 9, 8 used to express r do not all have the same significance because
they represent different powers of 10. Thus, we say that 3 is the most significant digit, and
the significance of the digits diminishes from left to right. In this example, 8 is the least
significant digit.

If x is a mathematically exact real number, then its approximate decimal form can be
given with as many significant digits as we wish. Thus, we may write

π

10
≈ 0.31415 92653 58979

and all the digits given are correct. If x is a measured quantity, however, the situation is quite
different. Every measured quantity involves an error whose magnitude depends on the nature
of the measuring device. Thus, if a meter stick is used, it is not reasonable to measure any
length with precision better than 1 millimeter. Therefore, the result of measuring, say, a plate
glass window with a meter stick should not be reported as 2.73594 meters. That would be
misleading. Only digits that are believed to be correct or in error by at most a few units should
be reported. It is a scientific convention that the least significant digit given in a measured
quantity should be in error by at most five units; that is, the result is rounded correctly.

Similar remarks pertain to quantities computed from measured quantities. For example,
if the side of a square is reported to be s = 0.736 meter, then one can assume that the error
does not exceed a few units in the third decimal place. The diagonal of that square is then

s
√

2 ≈ 0.10408 61182 × 101

but should be reported as 0.1041 × 101 or (more conservatively) 0.104 × 101. The infinite
precision available in

√
2,

√
2 = 1.41421 35623 73095 . . .

does not convey any more precision to s
√

2 than was already present in s.

62 Chapter 2 Floating-Point Representation and Errors

Computer-Caused Loss of Significance
Perhaps it is surprising that a loss of significance can occur within the computer. It is
essential to understand this process so that blind trust will not be placed in numerical output
from a computer. One of the most common causes for a deterioration in precision is the
subtraction of one quantity from another nearly equal quantity. This effect is potentially
quite serious and can be catastrophic. The closer these two numbers are to each other, the
more pronounced is the effect.

To illustrate this phenomenon, let us consider the assignment statement

y ← x − sin(x)

and suppose that at some point in a computer program this statement is executed with an x
value of 1

15 . Assume further that our computer works with floating-point numbers that have
ten decimal digits. Then

x ← 0.66666 66667 × 10−1

sin(x) ← 0.66617 29492 × 10−1

x − sin(x) ← 0.00049 37175 × 10−1

x − sin(x) ← 0.49371 75000 × 10−4

In the last step, the result has been shifted to normalized floating-point form. Three zeros
have then been supplied by the computer in the three least significant decimal places. We
refer to these as spurious zeros; they are not significant digits. In fact, the ten-decimal-digit
correct value is

1

15
− sin

1

15
≈ 0.49371 74327 × 10−4

Another way of interpreting this is to note that the final digit in x − sin(x) is derived from
the tenth digits in x and sin(x). When the eleventh digit in either x or sin(x) is 5, 6, 7, 8, or
9, the numerical values are rounded up to ten digits so that their tenth digits may be altered
by plus one unit. Since these tenth digits may be in error, the final digit in x − sin(x) may
also be in error—which it is!

EXAMPLE 1 If x = 0.37214 48693 and y = 0.37202 14371, what is the relative error in the computation
of x − y in a computer that has five decimal digits of accuracy?

Solution The numbers would first be rounded to x̃ = 0.37214 and ỹ = 0.37202. Then we have
x̃ − ỹ = 0.00012, while the correct answer is x − y = 0.00012 34322. The relative error
involved is

|(x − y) − (x̃ − ỹ)|
|x − y| = 0.00000 34322

0.00012 34322
≈ 3 × 10−2

This magnitude of relative error must be judged quite large when compared with the relative
error of x̃ and ỹ. (They cannot exceed 1

2 × 10−4 by the coarsest estimates, and in this
example, they are, in fact, approximately 1.3 × 10−5.) ■

2.2 Loss of Significance 63

It should be emphasized that this discussion pertains not to the operation

fl(x − y) ← x − y

but rather to the operation

fl[fl(x) − fl(y)] ← x − y

Roundoff error in the former case is governed by the equation

fl(x − y) = (x − y)(1 + δ)

where |δ| � 2−24 on a 32-bit word-length computer, and on a five-decimal-digit computer
in the example above |δ| � 1

2 × 10−4.
In Example 1, we observe that the computed difference of 0.00012 has only two

significant figures of accuracy, whereas in general, one expects the numbers and calculations
in this computer to have five significant figures of accuracy.

The remedy for this difficulty is first to anticipate that it may occur and then to re-
program. The simplest technique may be to carry out part of a computation in double- or
extended-precision arithmetic (that means roughly twice as many significant digits), but
often a slight change in the formulas is required. Several illustrations of this will be given,
and the reader will find additional ones among the problems.

Consider Example 1, but imagine that the calculations to obtain x , y, and x −y are being
done in double precision. Suppose that single-precision arithmetic is used thereafter. In the
computer, all ten digits of x , y, and x−y will be retained, but at the end, x−y will be rounded
to its five-digit form, which is 0.12343 × 10−3. This answer has five significant digits of
accuracy, as we would like. Of course, the programmer or analyst must know in advance
where the double-precision arithmetic will be necessary in the computation. Programming
everything in double precision is very wasteful if it is not needed. This approach has another
drawback: There may be such serious cancellation of significant digits that even double
precision might not help.

Theorem on Loss of Precision
Before considering other techniques for avoiding this problem, we ask the following ques-
tion: Exactly how many significant binary digits are lost in the subtraction x − y when x is
close to y? The closeness of x and y is conveniently measured by |1 − (y/x)|. Here is the
result:

■ THEOREM 1 LOSS OF PRECISION THEOREM

Let x and y be normalized floating-point machine numbers, where x > y > 0. If
2−p � 1 − (y/x) � 2−q for some positive integers p and q, then at most p and at least
q significant binary bits are lost in the subtraction x − y.

Proof We prove the second part of the theorem and leave the first as an exercise. To this end, let
x = r × 2n and y = s × 2m , where 1

2 � r, s < 1. (This is the normalized binary floating-point

64 Chapter 2 Floating-Point Representation and Errors

form.) Since y < x , the computer may have to shift y before carrying out the subtraction. In
any case, y must first be expressed with the same exponent as x . Hence, y = (s2m−n) × 2n

and

x − y = (r − s2m−n) × 2n

The mantissa of this number satisfies the equations and inequality

r − s2m−n = r

(
1 − s2m

r2n

)
= r

(
1 − y

x

)
< 2−q

Hence, to normalize the representation of x−y, a shift of at least q bits to the left is necessary.
Then at least q (spurious) zeros are supplied on the right-hand end of the mantissa. This
means that at least q bits of precision have been lost. ■

EXAMPLE 2 In the subtraction 37.59362 1 − 37.58421 6, how many bits of significance will be lost?

Solution Let x denote the first number and y the second. Then

1 − y

x
= 0.00025 01754

This lies between 2−12 and 2−11. These two numbers are 0.00024 4 and 0.00048 8. Hence,
at least 11 but not more than 12 bits are lost. ■

Here is an example in decimal form: let x = .6353 and y = .6311. These are close,
and 1 − y/x = .00661 < 10−2. In the subtraction, we have x − y = .0042. There are two
significant figures in the answer, although there were four significant figures in x and y.

Avoiding Loss of Significance in Subtraction
Now we take up various techniques that can be used to avoid the loss of significance that
may occur in subtraction. Consider the function

f (x) =
√

x2 + 1 − 1 (1)

whose values may be required for x near zero. Since
√

x2 + 1 ≈ 1 when x ≈ 0, we see
that there is a potential loss of significance in the subtraction. However, the function can be
rewritten in the form

f (x) = (√
x2 + 1 − 1

)(√
x2 + 1 + 1√
x2 + 1 + 1

)
= x2

√
x2 + 1 + 1

(2)

by rationalizing the numerator—that is, removing the radical in the numerator. This proce-
dure allows terms to be canceled and thereby removes the subtraction. For example, if we
use five-decimal-digit arithmetic and if x = 10−3, then f (x) will be computed incorrectly
as zero by the first formula but as 1

2 × 10−6 by the second. If we use the first formula to-
gether with double precision, the difficulty is ameliorated but not circumvented altogether.
For example, in double precision, we have the same problem when x = 10−6.

2.2 Loss of Significance 65

As another example, suppose that the values of

f (x) = x − sin x (3)

are required near x = 0. A careless programmer might code this function just as indicated
in Equation (3), not realizing that serious loss of accuracy will occur. Recall from calculus
that

lim
x→0

sin x

x
= 1

to see that sin x ≈ x when x ≈ 0. One cure for this problem is to use the Taylor series for
sin x :

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ · · ·

This series is known to represent sin x for all real values of x . For x near zero, it converges
quite rapidly. Using this series, we can write the function f as

f (x) = x −
(

x − x3

3!
+ x5

5!
− x7

7!
− · · ·

)
= x3

3!
− x5

5!
+ x7

7!
− · · · (4)

We see in this equation where the original difficulty arose; namely, for small values of x ,
the term x in the sine series is much larger than x3/3! and thus more important. But when
f (x) is formed, this dominant x term disappears, leaving only the lesser terms. The series
that starts with x3/3! is very effective for calculating f (x) when x is small.

In this example, further analysis is needed to determine the range in which Series (4)
should be used and the range in which Formula (3) can be used. Using the Theorem on Loss
of Precision, we see that the loss of bits in the subtraction of Formula (3) can be limited
to at most one bit by restricting x so that 1

2 � 1 − sin x/x . (Here we are considering only
the case when sin x > 0.) With a calculator, it is easy to see that x must be at least 1.9.
Thus, for |x | < 1.9, we use the first few terms in the Series (4), and for |x | � 1.9, we use
f (x) = x − sin x . One can verify that for the worst case (x = 1.9), ten terms in the series
give f (x) with an error of at most 10−16. (That is good enough for double precision on a
32-bit word-length computer.)

To construct a function procedure for f (x), notice that the terms in the series can be
obtained inductively by the algorithm⎧⎪⎪⎨⎪⎪⎩

t1 = x3

6

tn+1 = −tn x2

(2n + 2)(2n + 3)
(n � 1)

Then the partial sums can be obtained inductively by{
s1 = t1

sn+1 = sn + tn+1 (n � 1)

so that

sn =
n∑

k=1

tk =
n∑

k=1

(−1)k+1

[
x2k+1

(2k + 1)!

]

66 Chapter 2 Floating-Point Representation and Errors

Suitable pseudocode for a function is given here:

real function f (x)

integer i , n ← 10; real s, t, x
if |x | � 1.9 then

s ← x − sin x
else
t ← x3/6
s ← t
for i = 2 to n do

t ← −t x2/[(2i + 2)(2i + 3)]
s ← s + t

end for
end if
f ← s
end function f

EXAMPLE 3 How can accurate values of the function

f (x) = ex − e−2x

be computed in the vicinity of x = 0?

Solution Since ex and e−2x are both equal to 1 when x = 0, there will be a loss of significance
because of subtraction when x is close to zero. Inserting the appropriate Taylor series, we
obtain

f (x) =
(

1 + x + x2

2!
+ x3

3!
+ · · ·

)
−
(

1 − 2x + 4x2

2!
− 8x3

3!
+ · · ·

)
= 3x − 3

2
x2 + 3

2
x3 − · · ·

An alternative is to write

f (x) = e−2x
(
e3x − 1

)
= e−2x

(
3x + 9

2!
x2 + 27

3!
x3 + · · ·

)
By using the Theorem on Loss of Precision, we find that at most one bit is lost in the
subtraction ex − e−2x when x > 0 and

1

2
� 1 − e−2x

ex

This inequality is valid when x � 1
3 ln 2 = 0.23105. Similar reasoning when x < 0 shows

that for x � − 0.23105, at most one bit is lost. Hence, the series should be used for |x | <

0.23105. ■

EXAMPLE 4 Criticize the assignment statement

y ← cos2(x) − sin2(x)

2.2 Loss of Significance 67

Solution When cos2(x) − sin2(x) is computed, there will be a loss of significance at x = π/4 (and
other points). The simple trigonometric identity

cos 2θ = cos2 θ − sin2 θ

should be used. Thus, the assignment statement should be replaced by

y ← cos(2x) ■

EXAMPLE 5 Criticize the assignment statement

y ← ln(x) − 1

Solution If the expression ln x − 1 is used for x near e, there will be a cancellation of digits and
a loss of accuracy. One can use elementary facts about logarithms to overcome the diffi-
culty. Thus, we have y = ln x − 1 = ln x − ln e = ln(x/e). Here is a suitable assignment
statement

y ← ln
(x

e

)
■

Range Reduction
Another cause of loss of significant figures is the evaluation of various library functions
with very large arguments. This problem is more subtle than the ones previously discussed.
We illustrate with the sine function.

A basic property of the function sin x is its periodicity:

sin x = sin(x + 2nπ)

for all real values of x and for all integer values of n. Because of this relationship, one needs
to know only the values of sin x in some fixed interval of length 2π to compute sin x for
arbitrary x . This property is used in the computer evaluation of sin x and is called range
reduction.

Suppose now that we want to evaluate sin(12532.14). By subtracting integer multiples
of 2π , we find that this equals sin(3.47) if we retain only two decimal digits of accuracy. From
sin(12532.14) = sin(12532.14 − 2kπ), we want 12532 = 2kπ and k = 3989/2π ≈ 1994.
Consequently, we obtain 12532.14 − 2(1994)π = 3.49 and sin(12532.14) ≈ sin(3.49).
Thus, although our original argument 12532.14 had seven significant figures, the reduced
argument has only three. The remaining digits disappeared in the subtraction of 3988π .
Since 3.47 has only three significant figures, our computed value of sin(12532.14) will
have no more than three significant figures. This decrease in precision is unavoidable if
there is no way of increasing the precision of the original argument. If the original argument
(12532.14 in this example) can be obtained with more significant figures, these additional
figures will be present in the reduced argument (3.47 in this example). In some cases,
double- or extended-precision programming will help.

EXAMPLE 6 For sin x , how many binary bits of significance are lost in range reduction to the interval
[0, 2π)?

Solution Given an argument x > 2π , we determine an integer n that satisfies the inequality
0 � x − 2nπ < 2π . Then in evaluating elementary trigonometric functions, we use

68 Chapter 2 Floating-Point Representation and Errors

f (x) = f (x − 2nπ). In the subtraction x − 2nπ , there will be a loss of significance.
By the Theorem on Loss of Precision, at least q bits are lost if

1 − 2nπ

x
� 2−q

Since

1 − 2nπ

x
= x − 2nπ

x
<

2π

x

we conclude that at least q bits are lost if 2π/x � 2−q . Stated otherwise, at least q bits are
lost if 2q � x/2π . ■

Summary

(1) To avoid loss of significance in subtraction, one may be able to reformulate the expression
using rationalizing, series expansions, or mathematical identities.

(2) If x and y are positive normalized floating-point machine numbers with

2−p � 1 − y

x
� 2−q

then at most p and at least q significant binary bits are lost in computing x − y. Note that
it is permissible to leave out the hypothesis x > y here.

Additional References
For supplemental study and reading of material related to this chapter, see Appendix B as
well as the following references: Acton [1996], Bornemann, Laurie, Wagon, and Waldvogel
[2004], Goldberg [1991], Higham [2002], Hodges [1983], Kincaid and Cheney [2002],
Overton [2001], Salamin [1976], Wilkinson [1963], and others listed in the Bibliography.

Problems 2.2

1. How can values of the function f (x) = √
x + 4 − 2 be computed accurately when x

is small?

2. Calculate f (10−2) for the function f (x) = ex − x − 1. The answer should have five
significant figures and can easily be obtained with pencil and paper. Contrast it with
the straightforward evaluation of f (10−2) using e0.01 ≈ 1.0101.

3. What is a good way to compute values of the function f (x) = ex − e if full machine
precision is needed? Note: There is some difficulty when x = 1.

a4. What difficulty could the following assignment cause?

y ← 1 − sin x

Circumvent it without resorting to a Taylor series if possible.

2.2 Loss of Significance 69

5. The hyperbolic sine function is defined by sinh x = 1
2 (e

x −e−x). What drawback could
there be in using this formula to obtain values of the function? How can values of sinh x
be computed to full machine precision when |x | � 1

2 ?

a6. Determine the first two nonzero terms in the expansion about zero for the function

f (x) = tan x − sin x

x − √
1 + x2

Give an approximate value for f (0.0125).

7. Find a method for computing

y ← 1

x
(sinh x − tanh x)

that avoids loss of significance when x is small. Find appropriate identities to solve
this problem without using Taylor series.

a8. Find a way to calculate accurate values for

f (x) =
√

1 + x2 − 1

x2
− x2 sin x

x − tan x

Determine limx→0 f (x).

9. For some values of x , the assignment statement y ← 1 − cos x involves a difficulty.
What is it, what values of x are involved, and what remedy do you propose?

a10. For some values of x , the function f (x) = √
x2 + 1−x cannot be accurately computed

by using this formula. Explain and find a way around the difficulty.

a11. The inverse hyperbolic sine is given by f (x) = ln
(
x +√

x2 + 1
)
. Show how to avoid

loss of significance in computing f (x) when x is negative. Hint: Find and exploit the
relationship between f (x) and f (−x).

12. On most computers, a highly accurate routine for cos x is provided. It is proposed to
base a routine for sin x on the formula sin x = ±√

1 − cos2 x . From the standpoint of
precision (not efficiency), what problems do you foresee and how can they be avoided
if we insist on using the routine for cos x?

a13. Criticize and recode the assignment statement z ← √
x4 + 4 − 2 assuming that z will

sometimes be needed for an x close to zero.

14. How can values of the function f (x) = √
x + 2 − √

x be computed accurately when
x is large?

15. Write a function that computes accurate values of f (x) = 4
√

x + 4− 4
√

x for positive x .

a16. Find a way to calculate f (x) = (cos x − e−x)/ sin x correctly. Determine f (0.008)

correctly to ten decimal places (rounded).

17. Without using series, how could the function

f (x) = sin x

x − √
x2 − 1

be computed to avoid loss of significance?

70 Chapter 2 Floating-Point Representation and Errors

18. Write a function procedure that returns accurate values of the hyperbolic tangent
function

tanh x = ex − e−x

ex + e−x

for all values of x . Notice the difficulty when |x | < 1
2 .

19. Find a good way to compute sin x + cos x − 1 for x near zero.

a20. Find a good way to compute arctan x − x for x near zero.

21. Find a good bound for | sin x − x | using Taylor series and assuming that |x | < 1
10 .

a22. How would you compute (e2x − 1)/(2x) to avoid loss of significance near zero?

23. For any x0 > −1, the sequence defined recursively by

xn+1 = 2n+1
(√

1 + 2−n xn − 1
)

(n � 0)

converges to ln(x0 + 1). Arrange this formula in a way that avoids loss of significance.

24. Indicate how the following formulas may be useful for arranging computations to avoid
loss of significant digits.

aa. sin x − sin y = 2 sin 1
2 (x − y) cos 1

2 (x + nny)

b. log x − log y = log(x/y) c. ex−y = ex/ey d. 1 − cos x = 2 sin2(x/2)

e. arctan x − arctan y = arctan

(
x − y

1 + xy

)
25. What is a good way to compute tan x − x when x is near zero?

26. Find ways to compute these functions without serious loss of significant figures:

a. ex − sin x − cos x ab. ln(x) − 1 c. log x − log(1/x)

ad. x−2(sin x − ex + 1) e. x − arctanh x

27. Let

a(x) = 1 − cos x

sin x
b(x) = sin x

1 + cos x
c(x) = x

2
+ x3

24

Show that b(x) is identical to a(x) and that c(x) approximates a(x) in a neighborhood
of zero.

a28. On your computer determine the range of x for which (sin x)/x ≈ 1 with full machine
precision. Hint: Use Taylor series.

a29. Use of the familiar quadratic formula

x = 1

2a

(
−b ±

√
b2 − 4ac

)
will cause a problem when the quadratic equation x2 − 105x + 1 = 0 is solved with
a machine that carries only eight decimal digits. Investigate the example, observe the
difficulty, and propose a remedy. Hint: An example in the text is similar.

2.2 Loss of Significance 71

a30. When accurate values for the roots of a quadratic equation are desired, some loss of
significance may occur if b2 ≈ 4ac. What (if anything) can be done to overcome this
when writing a computer routine?

31. Refer to the discussion of the function f (x) = x − sin x given in the text. Show that
when 0 < x < 1.9, there will be no undue loss of significance from subtraction in
Equation (3).

32. Discuss the problem of computing tan(10100). (See Gleick [1992], p. 178.)

33. Let x and y be two normalized binary floating-point machine numbers. Assume that
x = q ×2n , y = r ×2n−1, 1

2 � r , q < 1, and 2q −1 � r . How much loss of significance
occurs in subtracting x − y? Answer the same question when 2q −1 < r . Observe that
the Theorem on Loss of Precision is not strong enough to solve this problem precisely.

34. Prove the first part of the Theorem on Loss of Precision.

35. Show that if x is a machine number on a 32-bit computer that satisfies the inequality
x > π225, then sin x will be computed with no significant digits.

36. Let x and y be two positive normalized floating-point machine numbers in a 32-bit
computer. Let x = q × 2m and y = r × 2n with 1

2 � r, q < 1. Show that if n = m, then
at least one bit of significance is lost in the subtraction x − y.

37. (Student Research Project) Read about and discuss the difference between cancella-
tion error, a bad algorithm, and an ill-conditioned problem. Suggestion: One example
involves the quadratic equation. Read Stewart [1996].

38. On a three-significant-digit computer, calculate
√

9.01 − 3.00, with as much accuracy
as possible.

Computer Problems 2.2

a1. Write a routine for computing the two roots x1 and x2 of the quadratic equation f (x) =
ax2 + bx + c = 0 with real constants a, b, and c and for evaluating f (x1) and f (x2).
Use formulas that reduce roundoff errors and write efficient code. Test your routine on
the following (a, b, c) values: (0, 0, 1); (0, 1, 0); (1, 0, 0); (0, 0, 0); (1, 1, 0); (2, 10, 1);
(1, −4, 3.99999); (1, −8.01, 16.004); (2×1017, 1018, 1017); and (10−17, −1017, 1017).

2. (Continuation) Write and test a routine for solving a quadratic equation that may have
complex roots.

3. Alter and test the pseudocode in the text for computing x − sin x by using nested
multiplication to evaluate the series.

4. Write a routine for the function f (x) = ex − e−2x using the examples in the text for
guidance.

5. Write code using double or extended precision to evaluate f (x) = cos(104x) on the
interval [0, 1]. Determine how many significant figures the values of f (x) will have.

72 Chapter 2 Floating-Point Representation and Errors

6. Write a procedure to compute f (x) = sin x − 1 + cos x . The routine should produce
nearly full machine precision for all x in the interval [0, π/4]. Hint: The trigonometric
identity sin2 θ = 1

2 (1 − cos 2θ) may be useful.

7. Write a procedure to compute f (x, y) = ∫ x
1 t y dt for arbitrary x and y. Note: Notice

the exceptional case y = −1 and the numerical problem near the exceptional case.

8. Suppose that we wish to evaluate the function f (x) = (x − sin x)/x3 for values of x
close to zero.

a. Write a routine for this function. Evaluate f (x) sixteen times. Initially, let x ← 1,
and then let x ← 1

10 x fifteen times. Explain the results. Note: L’Hôpital’s rule
indicates that f (x) should tend to 1

6 . Test this code.

b. Write a function procedure that produces more accurate values of f (x) for all
values of x . Test this code.

9. Write a program to print a table of the function f (x) = 5 − √
25 + x2 for x = 0 to 1

with steps of 0.01. Be sure that your program yields full machine precision, but do not
program the problem in double precision. Explain the results.

a10. Write a routine that computes ex by summing n terms of the Taylor series until the
n + 1st term t is such that |t | < ε = 10−6. Use the reciprocal of ex for negative values
of x . Test on the following data: 0, +1, −1, 0.5, −0.123, −25.5, −1776, 3.14159.
Compute the relative error, the absolute error, and n for each case, using the exponential
function on your computer system for the exact value. Sum no more than 25 terms.

11. (Continuation) The computation of ex can be reduced to computing eu for |u| < (ln 2)/2
only. This algorithm removes powers of 2 and computes eu in a range where the series
converges very rapidly. It is given by

ex = 2meu

where m and u are computed by the steps

z ← x/ ln 2; m ← integer (z ± 1
2)

w ← z − m; u ← w ln 2

Here the minus sign is used if x < 0 because z < 0. Incorporate this range reduction
technique into the code.

12. (Continuation) Write a routine that uses range reduction ex = 2meu and computes eu

from the even part of the Gaussian continued fraction; that is,

eu = s + u

s − u
where s = 2 + u2

(
2520 + 28u2

15120 + 420u2 + u4

)
Test on the data given in Computer Problem 2.2.10. Note: Some of the computer
problems in this section contain rather complicated algorithms for computing various
intrinsic functions that correspond to those actually used on a large mainframe computer
system. Descriptions of these and other similar library functions are frequently found
in the supporting documentation of your computer system.

13. Quite important in many numerical calculations is the accurate computation of the
absolute value |z| of a complex number z = a + bi . Design and carry out a computer

2.2 Loss of Significance 73

experiment to compare the following three schemes:

a. |z| = (a2 + b2)1/2 b. |z| = v

[
1 +

(w

v

)2
]1/2

c. |z| = 2v

[
1

4
+
(w

2v

)2
]1/2

where v = max {|a|, |b|} and w = min {|a|, |b|}. Use very small and large numbers
for the experiment.

a14. For what range of x is the approximation (ex − 1)/2x ≈ 0.5 correct to 15 decimal
digits of accuracy? Using this information, write a function procedure for (ex − 1)/2x ,
producing 15 decimals of accuracy throughout the interval [−10, 10].

a15. In the theory of Fourier series, some numbers known as Lebesgue constants play a
role. A formula for them is

ρn = 1

2n + 1
+ 2

π

n∑
k=1

1

k
tan

πk

2n + 1

Write and run a program to compute ρ1, ρ2, . . . , ρ100 with eight decimal digits of
accuracy. Then test the validity of the inequality

0 �
4

π2
ln(2n + 1) + 1 − ρn � 0.0106

16. Compute in double or extended precision the following number:

x =
[

1

π
ln(6 403203 + 744)

]2

What is the point of this problem? (See Good [1972].)

17. Write a routine to compute sin x for x in radians as follows. First, using properties of
the sine function, reduce the range so that −π/2 � x � π/2. Then if |x | < 10−8, set
sin x ≈ x ; if |x | > π/6, set u = x/3, compute sin u by the formula below, and then
set sin x ≈ [3 − 4 sin2 u] sin u; if |x | � π/6, set u = x and compute sin u as follows:

sin u ≈ u

⎡⎢⎢⎣1 −
(

29593

2 07636

)
u2 +

(
34911

76 13320

)
u4 −

(
4 79249

1 15113 39840

)
u6

1 +
(

1671

69212

)
u2 +

(
97

3 51384

)
u4 +

(
2623

16444 77120

)
u6

⎤⎥⎥⎦
Try to determine whether the sine function on your computer system uses this algorithm.
Note: This is the Padé rational approximation for sine.

18. Write a routine to compute the natural logarithm by the algorithm outlined here based
on telescoped rational and Gaussian continued fractions for ln x and test for several
values of x . First check whether x = 1 and return zero if so. Reduce the range of
x by determining n and r such that x = r × 2n with 1

2 � r < 1. Next, set u =
(r − √

2/2)/(r + √
2/2), and compute ln[(1 + u)/(1 − u)] by the approximation

ln

(
1 + u

1 − u

)
≈ u

(
20790 − 21545.27u2 + 4223.9187u4

10395 − 14237.635u2 + 4778.8377u4 − 230.41913u6

)

74 Chapter 2 Floating-Point Representation and Errors

which is valid for |u| < 3 − 2
√

2. Finally, set

ln x ≈
(

n − 1

2

)
ln 2 + ln

[
1 + u

1 − u

]
19. Write a routine to compute the tangent of x in radians, using the algorithm below. Test

the resulting routine over a range of values of x . First, the argument x is reduced to
|x | � π/2 by adding or subtracting multiples of π . If we have 0 � |x | � 1.7 × 10−9, set
tan x ≈ x . If |x | > π/4, set u = π/2 − x ; otherwise, set u = x . Now compute the
approximation

tan u ≈ u

(
1 35135 − 17336.106u2 + 379.23564u4 − 1.01186 25u6

1 35135 − 62381.106u2 + 3154.9377u4 + 28.17694u6

)
Finally, if |x | > π/4, set tan x ≈ 1/ tan u; if |x | � π/4, set tan x ≈ tan u. Note: This
algorithm is obtained from the telescoped rational and Gaussian continued fraction
for the tangent function.

20. Write a routine to compute arcsin x based on the following algorithm, using telescoped
polynomials for the arcsine. If |x | < 10−8, set arcsin x ≈ x . Otherwise, if 0 � x � 1

2 ,
set u = x , a = 0, and b = 1; if 1

2 < x � 1
2

√
3, set u = 2x2 − 1, a = π/4, and

b = 1
2 ; if 1

2

√
3 < x � 1

2

√
2 + √

3, set u = 8x4 − 8x2 + 1, a = 3π/8, and b = 1
4 ; if

1
2

√
2 + √

3 < x � 1, set u =
√

1
2 (1 − x), a = π/2, and b = −2. Now compute the

approximation

arcsin u ≈ u
(
1.0 + 1

6 u2 + 0.075u4 + 0.04464 286u6 + 0.03038 182u8

+ 0.02237 5u10 + 0.01731 276u12 + 0.01433 124u14

+ 0.00934 2806u16 + 0.01835 667u18 − 0.01186 224u20

+ 0.03162 712u22
)

Finally, set arcsin x ≈ a + b arcsin u. Test this routine for various values of x .

21. Write and test a routine to compute arctan x for x in radians as follows. If 0 � x � 1.7×
10−9, set arctan x ≈ x . If 1.7 × 10−9 < x � 2 × 10−2, use the series approximation

arctan x ≈ x − x3

3
+ x5

5
− x7

7

Otherwise, set y = x , a = 0, and b = 1 if 0 � x � 1; set y = 1/x , a = π/2, and b = −1
if 1 < x . Then set c = π/16 and d = tan c if 0 � y �

√
2 − 1 and c = 3π/16 and

d = tan c if
√

2 − 1 < y � 1. Compute u = (y − d)/(1 + dy) and the approximation

arctan u ≈ u

(
1 35135 + 1 71962.46u2 + 52490.4832u4 + 2218.1u6

1 35135 + 2 17007.46u2 + 97799.3033u4 + 10721.3745u6

)
Finally, set arctan x ≈ a + b(c + arctan u). Note: This algorithm uses telescoped
rational and Gaussian continued fractions.

22. A fast algorithm for computing arctan x to n-bit precision for x in the interval (0, 1] is
as follows: Set a = 2−n/2, b = x/(1 + √

1 + x2), c = 1, and d = 1. Then repeatedly

2.2 Loss of Significance 75

update these variables by these formulas (in order from left to right and top to bottom):

real a, b, c, d

c ← 2c

1 + a
; d ← 2ab

1 + b2
; d ← d

1 + √
1 − d2

d ← b + d

1 − bd
; b ← d

1 + √
1 + d2

; a ← 2
√

a

1 + a

After each sweep, print f = c ln[(1+b)/(1−b)]. Stop when 1−a � 2−n . Write a double-
precision routine to implement this algorithm and test it for various values of x . Compare
the results to those obtained from the arctangent function on your computer system.
Note: This fast multiple-precision algorithm depends on the theory of elliptic integrals,
using the arithmetic-geometric mean iteration and ascending Landen transformations.
Other fast algorithms for trigonometric functions are discussed in Brent [1976].

23. On your computer, show that in single precision, you have only six decimal digits of
accuracy if you enter 20 digits. Show that going to double precision is effective only
if all work is done in double precision. For example, if you use pi = 3.14 or pi =
22/7, you will lose all the precision that you have gained by using double precision.
Remember that the number of significant digits in the final results is what counts!

24. In some programming languages such as Java and C++, show that mixed-mode arith-
metic can lead to results such as (4/3)*pi=pi when pi is a floating-point number
because the fraction inside the parentheses is computed in integer mode.

25. (Student Research Project) Investigate interval arithmetic, which has the goal of
obtaining results with a guaranteed precision.

3

Locating Roots of Equations

An electric power cable is suspended (at points of equal height) from two
towers that are 100 meters apart. The cable is allowed to dip 10 meters in
the middle. How long is the cable?

x

y (0)

y (50)

�50 500

10 m

y

It is known that the curve assumed by a suspended cable is a catenary.
When the y-axis passes through the lowest point, we can assume an equa-
tion of the form y = λ cosh(x/λ) . Here λ is a parameter to be determined.
The conditions of the problem are that y (50) = y (0) +10. Hence, we obtain

λ cosh
(

50
λ

)
= λ + 10

By the methods of this chapter, the parameter is found to be λ = 126.632.
After this value is substituted into the arc length formula of the catenary, the
length is determined to be 102.619 meters. (See Computer Problem 5.1.4.)

3.1 Bisection Method
Introduction
Let f be a real- or complex-valued function of a real or complex variable. A number r ,
real or complex, for which f (r) = 0 is called a root of that equation or a zero of f . For
example, the function

f (x) = 6x2 − 7x + 2

76

3.1 Bisection Method 77

has 1
2 and 2

3 as zeros, as can be verified by direct substitution or by writing f in its factored
form:

f (x) = (2x − 1)(3x − 2)

For another example, the function

g(x) = cos 3x − cos 7x

has not only the obvious zero x = 0, but every integer multiple of π/5 and of π/2 as well,
which we discover by applying the trigonometric identity

cos A − cos B = 2 sin

[
1

2
(a + b)

]
sin

[
1

2
(b − a)

]
Consequently, we find

g(x) = 2 sin(5x) sin(2x)

Why is locating roots important? Frequently, the solution to a scientific problem is a
number about which we have little information other than that it satisfies some equation.
Since every equation can be written so that a function stands on one side and zero on the
other, the desired number must be a zero of the function. Thus, if we possess an arsenal of
methods for locating zeros of functions, we shall be able to solve such problems.

We illustrate this claim by use of a specific engineering problem whose solution is the
root of an equation. In a certain electrical circuit, the voltage V and current I are related by
two equations of the form {

I = a(ebV − 1)

c = d I + V

in which a, b, c, and d are constants. For our purpose, these four numbers are assumed to
be known. When these equations are combined by eliminating I between them, the result
is a single equation:

c = ad(ebV − 1) + V

In a concrete case, this might reduce to

12 = 14.3(e2V − 1) + V

and its solution is required. (It turns out that V ≈ 0.299 in this case.)
In some problems in which a root of an equation is sought, we can perform the required

calculation with a hand calculator. But how can we locate zeros of complicated functions
such as these?

f (x) = 3.24x8 − 2.42x7 + 10.34x6 + 11.01x2 + 47.98

g(x) = 2x2 − 10x + 1

h(x) = cosh
(√

x2 + 1 − ex
)

+ log |sin x |
What is needed is a general numerical method that does not depend on special properties of
our functions. Of course, continuity and differentiability are special properties, but they are

78 Chapter 3 Locating Roots of Equations

common attributes of functions that are usually encountered. The sort of special property that
we probably cannot easily exploit in general-purpose codes is typified by the trigonometric
identity mentioned previously.

Hundreds of methods are available for locating zeros of functions, and three of the
most useful have been selected for study here: the bisection method, Newton’s method, and
the secant method.

Let f be a function that has values of opposite sign at the two ends of an interval.
Suppose also that f is continuous on that interval. To fix the notation, let a < b and
f (a) f (b) < 0. It then follows that f has a root in the interval (a, b). In other words, there
must exist a number r that satisfies the two conditions a < r < b and f (r) = 0. How is this
conclusion reached? One must recall the Intermediate-Value Theorem.∗ If x traverses an
interval [a, b], then the values of f (x) completely fill out the interval between f (a) and
f (b). No intermediate values can be skipped. Hence, a specific function f must take on the
value zero somewhere in the interval (a, b) because f (a) and f (b) are of opposite signs.

Bisection Algorithm and Pseudocode
The bisection method exploits this property of continuous functions. At each step in this
algorithm, we have an interval [a, b] and the values u = f (a) and v = f (b). The numbers
u and v satisfy uv < 0. Next, we construct the midpoint of the interval, c = 1

2 (a + b),
and compute w = f (c). It can happen fortuitously that f (c) = 0. If so, the objective of
the algorithm has been fulfilled. In the usual case, w �= 0, and either wu < 0 or wv < 0.
(Why?) If wu < 0, we can be sure that a root of f exists in the interval [a, c]. Consequently,
we store the value of c in b and w in v. If wu > 0, then we cannot be sure that f has a root
in [a, c], but since wv < 0, f must have a root in [c, b]. In this case, we store the value of
c in a and w in u. In either case, the situation at the end of this step is just like that at the
beginning except that the final interval is half as large as the initial interval. This step can
now be repeated until the interval is satisfactorily small, say |b − a| < 1

2 × 10−6. At the
end, the best estimate of the root would be (a + b)/2, where [a, b] is the last interval in the
procedure.

Now let us construct pseudocode to carry out this procedure. We shall not try to create
a piece of high-quality software with many “bells and whistles,” but we will write the
pseudocode in the form of a procedure for general use. This will afford the reader an
opportunity to review how a main program and one or more procedures can be connected.

As a general rule, in programming routines to locate the roots of arbitrary functions,
unnecessary evaluations of the function should be avoided because a given function may
be costly to evaluate in terms of computer time. Thus, any value of the function that may
be needed later should be stored rather than recomputed. A careless programming of the
bisection method might violate this principle.

The procedure to be constructed will operate on an arbitrary function f . An interval
[a, b] is also specified, and the number of steps to be taken, nmax , is given. Pseudocode to

∗A formal statement of the Intermediate-Value Theorem is as follows: If the function f is continuous on the
closed interval [a, b], and if f (a) � y � f (b) or f (b) � y � f (a), then there exists a point c such that a � c � b
and f (c) = y.

3.1 Bisection Method 79

perform nmax steps in the bisection algorithm follows:

procedure Bisection(f, a, b, nmax, ε)

integer n, nmax ; real a, b, c, fa, fb, fc, error
fa ← f (a)

fb ← f (b)

if sign(fa) = sign(fb) then
output a, b, fa, fb
output “function has same signs at a and b”
return

end if
error ← b − a
for n = 0 to nmax do

error ← error/2
c ← a + error
fc ← f (c)
output n, c, fc, error
if |error| < ε then

output “convergence”
return

end if
if sign(fa) �= sign(fc) then

b ← c
fb ← fc

else
a ← c
fa ← fc

end if
end for
end procedure Bisection

Many modifications are incorporated to enhance the pseudocode. For example, we use
fa, fb, fc as mnemonics for u, v, w, respectively. Also, we illustrate some techniques of
structured programming and some other alternatives, such as a test for convergence. For
example, if u, v, or w is close to zero, then uv or wu may underflow. Similarly, an overflow
situation may arise. A test involving the intrinsic function sign could be used to avoid these
difficulties, such as a test that determines whether sign(u) �= sign(v). Here, the iterations
terminate if they exceed nmax or if the error bound (discussed later in this section) is less
than ε. The reader should trace the steps in the routine to see that it does what is claimed.

Examples
Now we want to illustrate how the bisection pseudocode can be used. Suppose that we have
two functions, and for each, we seek a zero in a specified interval:

f (x) = x3 − 3x + 1 on [0, 1]

g(x) = x3 − 2 sin x on [0.5, 2]

80 Chapter 3 Locating Roots of Equations

First, we write two procedure functions to compute f (x) and g(x). Then we input the initial
intervals and the number of steps to be performed in a main program. Since this is a rather
simple example, this information could be assigned directly in the main program or by way
of statements in the subprograms rather than being read into the program. Also, depending
on the computer language being used, an external or interface statement is needed to tell
the compiler that the parameter f in the bisection procedure is not an ordinary variable
with numerical values but the name of a function procedure defined externally to the main
program. In this example, there would be two of these function procedures and two calls to
the bisection procedure.

A call program or main program that calls the second bisection routine might be written
as follows:

program Test Bisection
integer n, nmax ← 20
real a, b, ε ← 1

2 10−6

external function f, g
a ← 0.0
b ← 1.0
call Bisection(f, a, b, nmax, ε)

a ← 0.5
b ← 2.0
call Bisection(g, a, b, nmax, ε)

end program Test Bisection

real function f (x)

real x
f ← x3 − 3x + 1
end function f

real function g(x)

real x
g ← x3 − 2 sin x
end function g

The computer results for the iterative steps of the bisection method for f (x):

n cn f (cn) error
0 0.5 −0.375 0.5
1 0.25 0.266 0.25
2 0.375 −7.23 × 10−2 0.125
3 0.3125 9.30 × 10−2 6.25 × 10−2

4 0.34375 9.37 × 10−3 3.125 × 10−2

...

19 0.34729 67 −9.54 × 10−7 9.54 × 10−7

20 0.34729 62 3.58 × 10−7 4.77 × 10−7

3.1 Bisection Method 81

Also, the results for g(x) are as follows:

n cn g(cn) error
0 1.25 5.52 × 10−2 0.75
1 0.875 −0.865 0.375
2 1.0625 −0.548 0.188
3 1.15625 −0.285 9.38 × 10−2

4 1.20312 5 −0.125 4.69 × 10−2

...

19 1.23618 27 −4.88 × 10−6 1.43 × 10−6

20 1.23618 34 −2.15 × 10−6 7.15 × 10−7

To verify these results, we use built-in procedures in mathematical software such as
Matlab, Mathematica, or Maple to find the desired roots of f and g to be 0.34729 63553
and 1.23618 3928, respectively. Since f is a polynomial, we can use a routine for finding
numerical approximations to all the zeros of a polynomial function. However, when more
complicated nonpolynomial functions are involved, there is generally no systematic pro-
cedure for finding all zeros. In this case, a routine can be used to search for zeros (one at
a time), but we have to specify a point at which to start the search, and different starting
points may result in the same or different zeros. It may be particularly troublesome to find
all the zeros of a function whose behavior is unknown.

Convergence Analysis
Now let us investigate the accuracy with which the bisection method determines a root of
a function. Suppose that f is a continuous function that takes values of opposite sign at the
ends of an interval [a0, b0]. Then there is a root r in [a0, b0], and if we use the midpoint
c0 = (a0 + b0)/2 as our estimate of r , we have

|r − c0| �
b0 − a0

2

as illustrated in Figure 3.1. If the bisection algorithm is now applied and if the computed
quantities are denoted by a0, b0, c0, a1, b1, c1 and so on, then by the same reasoning,

|r − cn| �
bn − an

2
(n � 0)

Since the widths of the intervals are divided by 2 in each step, we conclude that

|r − cn| �
b0 − a0

2n+1
(1)

FIGURE 3.1

Bisection
method:

Illustrating error
upper bound a0 r b0c0

�r � c0�

(b0 — a0)�2

82 Chapter 3 Locating Roots of Equations

To summarize:

■ THEOREM 1 BISECTION METHOD THEOREM

If the bisection algorithm is applied to a continuous function f on an interval [a, b],
where f (a) f (b) < 0, then, after n steps, an approximate root will have been computed
with error at most (b − a)/2n+1.

If an error tolerance has been prescribed in advance, it is possible to determine the
number of steps required in the bisection method. Suppose that we want |r − cn| < ε. Then
it is necessary to solve the following inequality for n:

b − a

2n+1
< ε

By taking logarithms (with any convenient base), we obtain

n >
log(b − a) − log(2ε)

log 2
(2)

EXAMPLE 1 How many steps of the bisection algorithm are needed to compute a root of f to full machine
single precision on a 32-bit word-length computer if a = 16 and b = 17?

Solution The root is between the two binary numbers a = (10 000.0)2 and b = (10 001.0)2. Thus, we
already know five of the binary digits in the answer. Since we can use only 24 bits altogether,
that leaves 19 bits to determine. We want the last one to be correct, so we want the error
to be less than 2−19 or 2−20 (being conservative). Since a 32-bit word-length computer has
a 24-bit mantissa, we can expect the answer to have an accuracy of only 2−20. From the
equation above, we want (b − a)/2n+1 < ε. Since b − a = 1 and ε = 2−20, we have
1/2n+1 < 2−20. Taking reciprocals gives 2n+1 > 220, or n � 20. Alternatively, we can use
Equation (2), which in this case is

n >
log 1 − log 2−19

log 2

Using a basic property of logarithms (log x y = y log x), we find that n � 20. In this
example, each step of the algorithm determines the root with one additional binary digit of
precision. ■

A sequence {xn} exhibits linear convergence to a limit x if there is a constant C in the
interval [0, 1) such that

|xn+1 − x | � C |xn − x | (n � 1) (3)

If this inequality is true for all n, then

|xn+1 − x | � C |xn − x | � C2|xn−1 − x | � · · · � Cn|x1 − x |
Thus, it is a consequence of linear convergence that

|xn+1 − x | � ACn (0 � C < 1) (4)

3.1 Bisection Method 83

The sequence produced by the bisection method obeys Inequality (4), as we see from
Equation (1). However, the sequence need not obey Inequality (3).

The bisection method is the simplest way to solve a nonlinear equation f (x) = 0. It
arrives at the root by constraining the interval in which a root lies, and it eventually makes
the interval quite small. Because the bisection method halves the width of the interval at
each step, one can predict exactly how long it will take to find the root within any desired
degree of accuracy. In the bisection method, not every guess is closer to the root than the
previous guess because the bisection method does not use the nature of the function itself.
Often the bisection method is used to get close to the root before switching to a faster
method.

False Position (Regula Falsi) Method and Modifications
The false position method retains the main feature of the bisection method: that a root is
trapped in a sequence of intervals of decreasing size. Rather than selecting the midpoint of
each interval, this method uses the point where the secant lines intersect the x-axis.

FIGURE 3.2

False position
method

r

a

bc

(a, f (a))

(b, f (b))

In Figure 3.2, the secant line over the interval [a, b] is the chord between (a, f (a)) and
(b, f (b)). The two right triangles in the figure are similar, which means that

b − c

f (b)
= c − a

− f (a)

It is easy to show that

c = b − f (b)

[
a − b

f (a) − f (b)

]
= a − f (a)

[
b − a

f (b) − f (a)

]
= a f (b) − b f (a)

f (b) − f (a)

We then compute f (c) and proceed to the next step with the interval [a, c] if f (a) f (c) < 0
or to the interval [c, b] if f (c) f (b) < 0.

In the general case, the false position method starts with the interval [a0, b0] contain-
ing a root: f (a0) and f (b0) are of opposite signs. The false position method uses intervals
[ak, bk] that contain roots in almost the same way that the bisection method does. How-
ever, instead of finding the midpoint of the interval, it finds where the secant line joining
(ak, f (ak)) and (bk, f (bk)) crosses the x-axis and then selects it to be the new endpoint.

84 Chapter 3 Locating Roots of Equations

At the kth step, it computes

ck = ak f (bk) − bk f (ak)

f (bk) − f (ak)

If f (ak) and f (ck) have the same sign, then set ak+1 = ck and bk+1 = bk ; otherwise, set
ak+1 = ak and bk+1 = ck . The process is repeated until the root is approximated sufficiently
well.

For some functions, the false position method may repeatedly select the same endpoint,
and the process may degrade to linear convergence. There are various approaches to rectify
this. For example, when the same endpoint is to be retained twice, the modified false
position method uses

c(m)
k =

⎧⎪⎪⎨⎪⎪⎩
ak f (bk) − 2bk f (ak)

f (bk) − 2 f (ak)
, if f (ak) f (bk) < 0

2ak f (bk) − bk f (ak)

2 f (bk) − f (ak)
, if f (ak) f (bk) > 0

So rather than selecting points on the same side of the root as the regular false position
method does, the modified false position method changes the slope of the straight line so
that it is closer to the root. See Figure 3.3.

FIGURE 3.3

Modified false
position
method

r

f

(ak�1, f (ak�1))

(bk�1, f (bk�1))

bk�1
ck ck�1 � bk

ak�1 � ak

(ak , f (ak))1
2

(bk, f (bk))

ck
(m)

The bisection method uses only the fact that f (a) f (b) < 0 for each new interval [a, b],
but the false position method uses the values of f (a) and f (b). This is an example showing
how one can include additional information in an algorithm to build a better one. In the next
section, Newton’s method uses not only the function but also its first derivative.

Some variants of the modified false position procedure have superlinear convergence,
which we discuss in Section 3.3. See, for example, Ford [1995]. Another modified false
position method replaces the secant lines by straight lines with ever-smaller slope until the
iterate falls to the opposite side of the root. (See Conte and de Boor [1980].) Early versions
of the false position method date back to a Chinese mathematical text (200 B.C.E. to 100 C.E.)
and an Indian mathematical text (3 B.C.E.).

3.1 Bisection Method 85

Summary

(1) For finding a zero r of a given continuous function f in an interval [a, b], n steps of the
bisection method produce a sequence of intervals [a, b] = [a0, b0], [a1, b1], [a2, b2], . . . ,
[an, bn] each containing the desired root of the function. The midpoints of these intervals
c0, c1, c2, . . . , cn form a sequence of approximations to the root, namely, ci = 1

2 (ai + bi).
On each interval [ai , bi], the error ei = r − ci obeys the inequality

|ei | �
1

2
(bi − ai)

and after n steps we have

|en| �
1

2n+1
(b0 − a0)

(2) For an error tolerance ε such that |en| < ε, n steps are needed, where n satisfies the
inequality

n >
log(b − a) − log 2ε

log 2

(3) For the kth step of the false position method over the interval [ak, bk], let

ck = ak f (bk) − bk f (ak)

f (bk) − f (ak)

If f (ak) f (ck) > 0, set ak+1 = ck and bk+1 = bk ; otherwise, set ak+1 = ak and bk+1 = ck .

Problems 3.1

a1. Find where the graphs of y = 3x and y = ex intersect by finding roots of ex − 3x = 0
correct to four decimal digits.

2. Give a graphical demonstration that the equation tan x = x has infinitely many roots.
Determine one root precisely and another approximately by using a graph. Hint: Use
the approach of the preceding problem.

3. Demonstrate graphically that the equation 50π + sin x = 100 arctan x has infinitely
many solutions.

a4. By graphical methods, locate approximations to all roots of the nonlinear equation
ln(x + 1) + tan(2x) = 0.

5. Give an example of a function for which the bisection method does not converge
linearly.

6. Draw a graph of a function that is discontinuous yet the bisection method converges.
Repeat, getting a function for which it diverges.

7. Prove Inequality (1).

86 Chapter 3 Locating Roots of Equations

8. If a = 0.1 and b = 1.0, how many steps of the bisection method are needed to determine
the root with an error of at most 1

2 × 10−8?

a9. Find all the roots of f (x) = cos x − cos 3x . Use two different methods.

a10. (Continuation) Find the root or roots of ln[(1 + x)/(1 − x2)] = 0.

11. If f has an inverse, then the equation f (x) = 0 can be solved by simply writing
x = f −1(0). Does this remark eliminate the problem of finding roots of equations?
Illustrate with sin x = 1/π .

a12. How many binary digits of precision are gained in each step of the bisection method?
How many steps are required for each decimal digit of precision?

13. Try to devise a stopping criterion for the bisection method to guarantee that the root is
determined with relative error at most ε.

14. Denote the successive intervals that arise in the bisection method by [a0, b0], [a1, b1],
[a2, b2], and so on.

a. Show that a0 � a1 � a2 � · · · and that b0 � b1 � b2 � · · ·.
b. Show that bn − an = 2−n(b0 − a0).

c. Show that, for all n, anbn + an−1bn−1 = an−1bn + anbn−1.

15. (Continuation) Can it happen that a0 = a1 = a2 = · · ·
16. (Continuation) Let cn = (an + bn)/2. Show that

lim
n→∞

cn = lim
n→∞

an = lim
n→∞

bn

a17. (Continuation) Consider the bisection method with the initial interval [a0, b0]. Show
that after ten steps with this method,∣∣∣∣12 (a10 + b10) − 1

2
(a9 + b9)

∣∣∣∣ = 2−11(b0 − a0)

Also, determine how many steps are required to guarantee an approximation of a root
to six decimal places (rounded).

18. (True–False) If the bisection method generates intervals [a0, b0], [a1, b1], and so on,
which of these inequalities are true for the root r that is being calculated? Give proofs
or counterexamples in each case.

a. |r − an| � 2|r − bn| ab. |r − an| � 2−n−1(b0 − a0)

c. |r − 1
2 (an + bn)| � 2−n−2(b0 − a0)

ad. 0 � r − an � 2−n(b0 − a0) e. |r − bn| � 2−n−1(b0 − a0)

19. (True–False) Using the notation of the text, determine which of these assertions are
true and which are generally false:

aa. |r − cn| < |r − cn−1| b. an � r � cn c. cn � r � bn

d. |r − an| � 2−n ae. |r − bn| � 2−n(b0 − a0)

20. Prove that |cn − cn+1| = 2−n−2(b0 − a0).

3.1 Bisection Method 87

a21. If the bisection method is applied with starting interval [a, a + 1] and a � 2m , where
m � 0, what is the correct number of steps to compute the root with full machine
precision on a 32-bit word-length computer?

22. If the bisection method is applied with starting interval [2m, 2m+1], where m is a positive
or negative integer, how many steps should be taken to compute the root to full machine
precision on a 32-bit word-length computer?

a23. Every polynomial of degree n has n zeros (counting multiplicities) in the complex
plane. Does every real polynomial have n real zeros? Does every polynomial of infinite
degree f (x) = ∑∞

n=0 an xn have infinitely many zeros?

Computer Problems 3.1

1. Using the bisection method, determine the point of intersection of the curves given by
y = x3 − 2x + 1 and y = x2.

2. Find a root of the following equation in the interval [0, 1] by using the bisection method:
9x4 + 18x3 + 38x2 − 57x + 14 = 0.

3. Find a root of the equation tan x = x on the interval [4, 5] by using the bisection
method. What happens on the interval [1, 2]?

4. Find a root of the equation 6(ex − x) = 6 + 3x2 + 2x3 between −1 and +1 using the
bisection method.

5. Use the bisection method to find a zero of the equation λ cosh(50/λ) = λ + 10 that
begins this chapter.

6. Program the bisection method as a recursive procedure and test it on one or two of the
examples in the text.

7. Use the bisection method to determine roots of these functions on the intervals indicated.
Process all three functions in one computer run.

f (x) = x3 + 3x − 1 on [0, 1]

g(x) = x3 − 2 sin x on [0.5, 2]

h(x) = x + 10 − x cosh(50/x) on [120, 130]

Find each root to full machine precision. Use the correct number of steps, at least
approximately. Repeat using the false position method.

8. Test the three bisection routines on f (x) = x3 + 2x2 + 10x − 20, with a = 1 and
b = 2. The zero is 1.36880 8108. In programming this polynomial function, use nested
multiplication. Repeat using the modified false position method.

9. Write a program to find a zero of a function f in the following way: In each step, an
interval [a, b] is given and f (a) f (b) < 0. Then c is computed as the root of the linear
function that agrees with f at a and b. We retain either [a, c] or [c, b], depending on
whether f (a) f (c) < 0 or f (c) f (b) < 0. Test your program on several functions.

88 Chapter 3 Locating Roots of Equations

a10. Select a routine from your program library to solve polynomial equations and use it to
find the roots of the equation

x8 − 36x7 + 546x6 − 4536x5 + 22449x4 − 67284x3

+118124x2 − 109584x + 40320 = 0

The correct roots are the integers 1, 2, . . . , 8. Next, solve the same equation when the
coefficient of x7 is changed to −37. Observe how a minor perturbation in the coeffi-
cients can cause massive changes in the roots. Thus, the roots are unstable functions
of the coefficients. (Be sure to program the problem to allow for complex roots.) Cul-
tural Note: This is a simplified version of Wilkinson’s polynomial, which is found in
Computer Problem 3.3.9.

a11. A circular metal shaft is being used to transmit power. It is known that at a certain
critical angular velocity ω, any jarring of the shaft during rotation will cause the shaft
to deform or buckle. This is a dangerous situation because the shaft might shatter under
the increased centrifugal force. To find this critical velocity ω, we must first compute
a number x that satisfies the equation

tan x + tanh x = 0

This number is then used in a formula to obtain ω. Solve for x (x > 0).

12. Using built-in routines in mathematical software systems such as Matlab, Mathematica,
or Maple, find the roots for f (x) = x3 − 3x + 1 on [0, 1] and g(x) = x3 − sin x on
[0.5, 2] to more digits of accuracy than shown in the text.

13. (Engineering problem) Nonlinear equations occur in almost all fields of engineering.
For example, suppose a given task is expressed in the form f (x) = 0 and the objective
is to find values of x that satisfy this condition. It is often difficult to find an explicit
solution and an approximate solution is sought with the aid of mathematical software.
Find a solution of

f (x) = 1√
2π

e−(1/2)x2 + 1

10
sin(πx)

Plot the curve in the range [−3.5, 3.5] for x values and [−0.5, 0.5] for y = f (x)

values.

14. (Circuit problem) A simple circuit with resistance R, capacitance C in series with a
battery of voltage V is given by Q = CV [1 − e−T/(RC)], where Q is the charge of
the capacitor and T is the time needed to obtain the charge. We wish to solve for the
unknown C . For example, solve this problem

f (x) = [
10x

(
1 − e−0.004/(2000x)

)− 0.00001
]

Plot the curve. Hint: You may wish to magnify the vertical scale by using y = 105 f (x).

15. (Engineering polynomials) Equations such as A + Bx2eCx = 0 and A + Bx +
Cx2 + Dx3 + Ex4 = 0 occur in engineering problems. Using mathematical software,
find one or more solutions to the following equations and plot their curves:

a. 2 − x2e−0.385x = 0 b. 1 − 32x + 160x2 − 256x3 + 128x4 = 0

3.2 Newton’s Method 89

16. (Reinforced concrete) In the design of reinforced concrete with regard to stress, one
needs to solve numerically a quadratic equation such as

24147 07.2x[450 − 0.822x(225)] − 265,000,000 = 0

Find approximate values of the roots.

17. (Board in hall problem) In a building, two intersecting halls with widths w1 = 9 feet
and w2 = 7 feet meet at an angle α = 125◦, as shown:

� 1

� 2

�
�

�1

�2
�

Assuming a two-dimensional situation, what is the longest board that can negotiate the
turn? Ignore the thickness of the board. The relationship between the angles θ and the
length of the board � = �1 + �2 is �1 = w1 csc(β), �2 = w2 csc(γ), β = π − α − γ

and � = w1 csc(π − α − γ) + w2 csc(γ). The maximum length of the board that can
make the turn is found by minimizing � as a function of γ . Taking the derivative and
setting d�/dγ = 0, we obtain

w1 cot(π − α − γ) csc(π − α − γ) − w2 cot(γ) csc(γ) = 0

Substitute in the known values and numerically solve the nonlinear equation. This
problem is similar to an example in Gerald and Wheatley [1999].

18. Find the rectangle of maximum area if its vertices are at (0, 0), (x, 0), (x, cos x),
(0, cos x). Assume that 0 � x � π/2.

19. Program the false position algorithm and test it on some examples such as some of the
nonlinear problems in the text or in the computer problems. Compare your results with
those given for the bisection method.

20. Program the modified false position method, test it, and compare it to the false position
method when using some sample functions.

3.2 Newton’s Method
The procedure known as Newton’s method is also called the Newton-Raphson iteration.
It has a more general form than the one seen here, and the more general form can be used
to find roots of systems of equations. Indeed, it is one of the more important procedures

90 Chapter 3 Locating Roots of Equations

in numerical analysis, and its applicability extends to differential equations and integral
equations. Here it is being applied to a single equation of the form f (x) = 0. As before,
we seek one or more points at which the value of the function f is zero.

Interpretations of Newton’s Method
In Newton’s method, it is assumed at once that the function f is differentiable. This implies
that the graph of f has a definite slope at each point and hence a unique tangent line. Now
let us pursue the following simple idea. At a certain point (x0, f (x0)) on the graph of f ,
there is a tangent, which is a rather good approximation to the curve in the vicinity of that
point. Analytically, it means that the linear function

l(x) = f ′(x0)(x − x0) + f (x0)

is close to the given function f near x0. At x0, the two functions l and f agree. We take the
zero of l as an approximation to the zero of f . The zero of l is easily found:

x1 = x0 − f (x0)

f ′(x0)

Thus, starting with point x0 (which we may interpret as an approximation to the root sought),
we pass to a new point x1 obtained from the preceding formula. Naturally, the process can
be repeated (iterated) to produce a sequence of points:

x2 = x1 − f (x1)

f ′(x1)
, x3 = x2 − f (x2)

f ′(x2)
, etc.

Under favorable conditions, the sequence of points will approach a zero of f .
The geometry of Newton’s method is shown in Figure 3.4. The line y = l(x) is tangent

to the curve y = f (x). It intersects the x-axis at a point x1. The slope of l(x) is f ′(x0).

FIGURE 3.4

Newton’s
method r x1 x0

x

y

y � f (x)
Tangent line

y � l (x)

There are other ways of interpreting Newton’s method. Suppose again that x0 is an
initial approximation to a root of f . We ask: What correction h should be added to x0 to
obtain the root precisely? Obviously, we want

f (x0 + h) = 0

3.2 Newton’s Method 91

If f is a sufficiently well-behaved function, it will have a Taylor series at x0 [see Equa-
tion (11) in Section 1.2]. Thus, we could write

f (x0) + h f ′(x0) + h2

2
f ′′(x0) + · · · = 0

Determining h from this equation is, of course, not easy. Therefore, we give up the expec-
tation of arriving at the true root in one step and seek only an approximation to h. This can
be obtained by ignoring all but the first two terms in the series:

f (x0) + h f ′(x0) = 0

The h that solves this is not the h that solves f (x0 + h) = 0, but it is the easily computed
number

h = − f (x0)

f ′(x0)

Our new approximation is then

x1 = x0 + h = x0 − f (x0)

f ′(x0)

and the process can be repeated. In retrospect, we see that the Taylor series was not needed
after all because we used only the first two terms. In the analysis to be given later, it is
assumed that f ′′ is continuous in a neighborhood of the root. This assumption enables us
to estimate the errors in the process.

If Newton’s method is described in terms of a sequence x0, x1, . . . , then the following
recursive or inductive definition applies:

xn+1 = xn − f (xn)

f ′(xn)

Naturally, the interesting question is whether

lim
n→∞

xn = r

where r is the desired root.

EXAMPLE 1 If f (x) = x3 − x + 1 and x0 = 1, what are x1 and x2 in the Newton iteration?

Solution From the basic formula, x1 = x0 − f (x0)/ f ′(x0). Now f ′(x) = 3x2 − 1, and so f ′(1) = 2.
Also, we find f (1) = 1. Hence, we have x1 = 1 − 1

2 = 1
2 . Similarly, we obtain f

(
1
2

) = 5
8 ,

f ′(1
2

) = − 1
4 , and x2 = 3. ■

92 Chapter 3 Locating Roots of Equations

Pseudocode
A pseudocode for Newton’s method can be written as follows:

procedure Newton(f, f ′, x, nmax, ε, δ)

integer n, nmax ; real x, fx, fp, ε, δ

external function f, f ′

fx ← f (x)

output 0, x, fx
for n = 1 to nmax do

fp ← f ′(x)

if | f p| < δ then
output “small derivative”
return

end if
d ← fx/fp
x ← x − d
fx ← f (x)

output n, x, fx
if |d| < ε then

output “convergence”
return

end if
end for
end procedure Newton

Using the initial value of x as the starting point, we carry out a maximum of nmax iterations
of Newton’s method. Procedures must be supplied for the external functions f (x) and f ′(x).
The parameters ε and δ are used to control the convergence and are related to the accuracy
desired or to the machine precision available.

Illustration
Now we illustrate Newton’s method by locating a root of x3 + x = 2x2 + 3. We apply the
method to the function f (x) = x3 − 2x2 + x − 3, starting with x0 = 3. Of course, f ′(x) =
3x2 − 4x + 1, and these two functions should be arranged in nested form for efficiency:

f (x) = ((x − 2)x + 1)x − 3

f ′(x) = (3x − 4)x + 1

To see in greater detail the rapid convergence of Newton’s method, we use arithmetic with
double the normal precision in the program and obtain the following results:

n xn f (xn)

0 3.0 9.0
1 2.4375 2.04
2 2.21303 27224 73144 5 0.256
3 2.17555 49386 14368 4 6.46 × 10−3

4 2.17456 01006 55071 4 4.48 × 10−6

5 2.17455 94102 93284 1 1.97 × 10−12

3.2 Newton’s Method 93

FIGURE 3.5

Three steps of
Newton’s

method f (x) =
x3 − 2x2 + x − 3

y

x

2

4

6

8

10

0
2 2.2 2.4 2.6 2.8 3 3.2

y � f (x)

x2 x1 x0

Notice the doubling of the accuracy in f (x) (and also in x) until the maximum precision
of the computer is encountered. Figure 3.5 shows a computer plot of three iterations of
Newton’s method for this sample problem.

Using mathematical software that allows for complex roots such as in Matlab, Maple,
or Mathematica, we find that the polynomial has a single real root, 2.17456, and a pair of
complex conjugate roots, −0.0872797 ± 1.17131i .

Convergence Analysis
Anyone who has experimented with Newton’s method—for instance, by working some of
the problems in this section—will have observed the remarkable rapidity in the convergence
of the sequence to the root. This phenomenon is also noticeable in the example just given.
Indeed, the number of correct figures in the answer is nearly doubled at each successive
step. Thus in the example above, we have first 0 and then 1, 2, 3, 6, 12, 24, . . . accurate
digits from each Newton iteration. Five or six steps of Newton’s method often suffice to
yield full machine precision in the determination of a root. There is a theoretical basis for
this dramatic performance, as we shall now see.

Let the function f , whose zero we seek, possess two continuous derivatives f ′ and
f ′′, and let r be a zero of f . Assume further that r is a simple zero; that is, f ′(r) �= 0.
Then Newton’s method, if started sufficiently close to r , converges quadratically to r . This
means that the errors in successive steps obey an inequality of the form

|r − xn+1| � c|r − xn|2

We shall establish this fact presently, but first, an informal interpretation of the inequality
may be helpful.

Suppose, for simplicity, that c = 1. Suppose also that xn is an estimate of the root r
that differs from it by at most one unit in the kth decimal place. This means that

|r − xn| � 10−k

94 Chapter 3 Locating Roots of Equations

The two inequalities above imply that

|r − xn+1| � 10−2k

In other words, xn+1 differs from r by at most one unit in the (2k)th decimal place. So xn+1

has approximately twice as many correct digits as xn! This is the doubling of significant
digits alluded to previously.

■ THEOREM 1 NEWTON’S METHOD THEOREM

If f , f ′, and f ′′ are continuous in a neighborhood of a root r of f and if f ′(r) �= 0,
then there is a positive δ with the following property: If the initial point in Newton’s
method satisfies |r − x0| � δ, then all subsequent points xn satisfy the same inequality,
converge to r , and do so quadratically; that is,

|r − xn+1| � c(δ)|r − xn|2

where c(δ) is given by Equation (2) below.

Proof To establish the quadratic convergence of Newton’s method, let en = r − xn . The formula
that defines the sequence {xn} then gives

en+1 = r − xn+1 = r − xn + f (xn)

f ′(xn)
= en + f (xn)

f ′(xn)
= en f ′(xn) + f (xn)

f ′(xn)

By Taylor’s Theorem (see Section 1.2), there exists a point ξn situated between xn and r for
which

0 = f (r) = f (xn + en) = f (xn) + en f ′(xn) + 1

2
e2

n f ′′(ξn)

(The subscript on ξn emphasizes the dependence on xn .) This last equation can be rearranged
to read

en f ′(xn) + f (xn) = −1

2
e2

n f ′′(ξn)

and if this is used in the previous equation for en+1, the result is

en+1 = −1

2

(
f ′′(ξn)

f ′(xn)

)
e2

n (1)

This is, at least qualitatively, the sort of equation we want. Continuing the analysis, we
define a function

c(δ) = 1

2

max
|x−r |� δ

| f ′′(x)|
min

|x−r |� δ
| f ′(x)| (δ > 0) (2)

By virtue of this definition, we can assert that, for any two points x and ξ within distance
δ of the root r , the inequality 1

2 | f ′′(ξ)/ f ′(x)| � c(δ) is true. Now select δ so small that
δc(δ) < 1. This is possible because as δ approaches 0, c(δ) converges to 1

2 | f ′′(r)/ f ′(r)|,
and so δc(δ) converges to 0. Recall that we assumed that f ′(r) �= 0. Let ρ = δc(δ). In the
remainder of this argument, we hold δ, c(δ), and ρ fixed with ρ < 1.

3.2 Newton’s Method 95

Suppose now that some iterate xn lies within distance δ from the root r . We have

|en| = |r − xn| � δ and |ξn − r | � δ

By the definition of c(δ), it follows that 1
2 | f ′′(ξn)|/| f ′(xn)| � c(δ). From Equation (1), we

now have

|en+1| = 1

2

∣∣∣∣ f ′′(ξn)

f ′(xn)

∣∣∣∣ e2
n � c(δ)e2

n � δc(δ)|en| = ρ|en|

Consequently, xn+1 is also within distance δ of r because

|r − xn+1| = |en+1| � ρ|en| � |en| � δ

If the initial point x0 is chosen within distance δ of r , then

|en| � ρ|en−1| � ρ2|en−1| � · · · � ρn|e0|
Since 0 < ρ < 1, limn→∞ ρn = 0 and limn→∞ en = 0. In other words, we obtain

lim
n→∞

xn = r

In this process, we have |en+1| � c(δ)e2
n . ■

In the use of Newton’s method, consideration must be given to the proper choice of a
starting point. Usually, one must have some insight into the shape of the graph of the function.
Sometimes a coarse graph is adequate, but in other cases, a step-by-step evaluation of the
function at various points may be necessary to find a point near the root. Often several steps
of the bisection method is used initially to obtain a suitable starting point, and Newton’s
method is used to improve the precision.

Although Newton’s method is truly a marvelous invention, its convergence depends
upon hypotheses that are difficult to verify a priori. Some graphical examples will show what
can happen. In Figure 3.6(a), the tangent to the graph of the function f at x0 intersects the
x-axis at a point remote from the root r , and successive points in Newton’s iteration recede

FIGURE 3.6

Failure of
Newton’s

method due to
bad starting

points

x

(a) Runaway

f

r x0

x

(b) Flat spot

f
x0

x

(c) Cycle

f

x0 � x2

x1

x1 x2

r

r

96 Chapter 3 Locating Roots of Equations

from r instead of converging to r . The difficulty can be ascribed to a poor choice of the initial
point x0; it is not sufficiently close to r . In Figure 3.6(b), the tangent to the curve is parallel
to the x-axis and x1 = ±∞, or it is assigned the value of machine infinity in a computer. In
Figure 3.6(c), the iteration values cycle because x2 = x0. In a computer, roundoff errors or
limited precision may eventually cause this situation to become unbalanced such that the
iterates either spiral inward and converge or spiral outward and diverge.

The analysis that establishes the quadratic convergence discloses another troublesome
hypothesis; namely, f ′(r) �= 0. If f ′(r) = 0, then r is a zero of f and f ′. Such a zero is
termed a multiple zero of f —in this case, at least a double zero. Newton’s iteration for a
multiple zero converges only linearly! Ordinarily, one would not know in advance that the
zero sought was a multiple zero. If one knew that the multiplicity was m, however, Newton’s
method could be accelerated by modifying the equation to read

xn+1 = xn − m
f (xn)

f ′(xn)

in which m is the multiplicity of the zero in question. The multiplicity of the zero r is the
least m such that f (k)(r) = 0 for 0 � k < m, but f (m)(r) �= 0. (See Problem 3.2.35.)

As is shown in Figure 3.7, the equation p2(x) = x2 − 2x + 1 = 0 has a root at
1 of multiplicity 2, and the equation p3(x) = x3 − 3x2 + 3x − 1 = 0 has a root at 1
of multiplicity 3. It is instructive to plot these curves. Both curves are rather flat at the
roots, which slows down the convergence of the regular Newton’s method. Also, the figures
illustrate the curves of two nonlinear functions with multiplicities as well as their regions
of uncertainty about the curves. So the computed solutions could be anywhere within the
indicated intervals on the x-axis. This is an indication of the difficulty in obtaining precise
solutions of nonlinear functions with multiplicities.

FIGURE 3.7

Curves p2 and
p3 with

multiplicity
2 and 3

[] x

r � 1 r � 1
2

[]
0

(a) p2(x) � x2 � 2x � 1 (b) p3(x) � x3 � 3x2 � 3x � 1

x
20

p2 p3

Systems of Nonlinear Equations
Some physical problems involve the solution of systems of N nonlinear equations in N
unknowns. One approach is to linearize and solve, repeatedly. This is the same strategy
used by Newton’s method in solving a single nonlinear equation. Not surprisingly, a natural
extension of Newton’s method for nonlinear systems can be found. The topic of systems
of nonlinear equations requires some familiarity with matrices and their inverses. (See
Appendix D.)

3.2 Newton’s Method 97

In the general case, a system of N nonlinear equations in N unknowns xi can be
displayed in the form ⎧⎪⎪⎪⎨⎪⎪⎪⎩

f1(x1, x2, . . . , xN) = 0

f2(x1, x2, . . . , xN) = 0
...

fN (x1, x2, . . . , xN) = 0

Using vector notation, we can write this system in a more elegant form:

F(X) = 0

by defining column vectors as

F = [f1, f2, . . . , fN]T

X = [x1, x2, . . . , xN]T

The extension of Newton’s method for nonlinear systems is

X(k+1) = X(k) − [
F ′(X(k)

)]−1
F
(
X(k)

)
where F ′(X(k)

)
is the Jacobian matrix, which will be defined presently. It comprises

partial derivatives of F evaluated at X(k) = [
x (k)

1 , x (k)
2 , . . . , x (k)

N

]T
. This formula is similar to

the previously seen version of Newton’s method except that the derivative expression is not
in the denominator but in the numerator as the inverse of a matrix. In the computational
form of the formula, X(0) = [

x (0)
1 , x (0)

2 , . . . , x (0)
N

]T
is an initial approximation vector, taken

to be close to the solution of the nonlinear system, and the inverse of the Jacobian matrix is
not computed but rather a related system of equations is solved.

We illustrate the development of this procedure using three nonlinear equations⎧⎪⎨⎪⎩
f1(x1, x2, x3) = 0

f2(x1, x2, x3) = 0

f3(x1, x2, x3) = 0

(3)

Recall the Taylor expansion in three variables for i = 1, 2, 3:

fi (x1 + h1, x2 + h2, x3 + h3) = fi (x1, x2, x3) + h1
∂ fi

∂x1
+ h2

∂ fi

∂x2
+ h3

∂ fi

∂x3
+ · · · (4)

where the partial derivatives are evaluated at the point (x1, x2, x3). Here only the linear
terms in step sizes hi are shown. Suppose that the vector X(0) = (

x (0)
1 , x (0)

2 , x (0)
3

)T
is an

approximate solution to (3). Let H = [
h1, h2, h3

]T
be a computed correction to the initial

guess so that X(0) + H = [
x (0)

1 + h1, x (0)
2 + h2, x (0)

3 + h3

]T
is a better approximate solution.

Discarding the higher-order terms in the Taylor expansion (4), we have in vector notation

0 ≈ F
(
X(0) + H

) ≈ F
(
X(0)

)+ F ′(X(0)
)
H (5)

98 Chapter 3 Locating Roots of Equations

where the Jacobian matrix is defined by

F ′(X(0)
) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∂ f1

∂x1

∂ f1

∂x2

∂ f1

∂x3

∂ f2

∂x1

∂ f2

∂x2

∂ f2

∂x3

∂ f3

∂x1

∂ f3

∂x2

∂ f3

∂x3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Here all of the partial derivatives are evaluated at X(0); namely,

∂ fi

∂x j
= ∂ fi

(
X(0)

)
∂x j

Also, we assume that the Jacobian matrix F ′(X(0)
)

is nonsingular, so its inverse exists.
Solving for H in (5), we have

H ≈ −[F ′(X(0)
)]−1

F
(
X(0)

)
Let X(1) = X(0) + H be the better approximation after the correction; we then arrive at the
first iteration of Newton’s method for nonlinear systems

X(1) = X(0) − [
F ′(X(0)

)]−1
F
(
X(0)

)
In general, Newton’s method uses this iteration:

X(k+1) = X(k) − [
F ′(X(k)

)]−1
F
(
X(k)

)
In practice, the computational form of Newton’s method does not involve inverting the
Jacobian matrix but rather solves the Jacobian linear systems[

F ′(X(k)
)]

H(k) = −F
(
X(k)

)
(6)

The next iteration of Newton’s method is then

X(k+1) = X(k) + H(k) (7)

This is Newton’s method for nonlinear systems. The linear system (6) can be solved by
procedures Gauss and Solve as discussed in Chapter 7. Small systems of order 2 can be
solved easily. (See Problem 3.2.39.)

EXAMPLE 2 As an illustration, we can write a pseudocode to solve the following nonlinear system of
equations using a variant of Newton’s method given by (6) and (7):⎧⎪⎨⎪⎩

x + y + z = 3

x2 + y2 + z2 = 5

ex + xy − xz = 1

(8)

Solution With a sharp eye, the reader immediately sees that the solution of this system is x = 0, y =
1, z = 2. But in most realistic problems, the solution is not so obvious. We wish to develop

3.2 Newton’s Method 99

a numerical procedure for finding such a solution. Here is a pseudocode:

X = [
0.1, 1.2, 2.5

]T

for k = 1 to 10 do

F =

⎡⎢⎣ x1 + x2 + x3 − 3

x2
1 + x2

2 + x2
3 − 5

ex1 + x1x2 − x1x3 − 1

⎤⎥⎦
J =

⎡⎣ 1 1 1
2x1 2x2 2x3

ex1 + x2 − x3 x1 −x1

⎤⎦
solve JH = F
X = X − H

end for

When programmed and executed on a computer, we found that it converges to x = (0, 1, 2),
but when we change to a different starting vector, (1, 0, 1), it converges to another root,
(1.2244, −0.0931, 1.8687). (Why?) ■

We can use mathematical software such as in Matlab, Maple, or Mathematica and their
built-in procedures for solving the system of nonlinear equations (8). The important appli-
cation area of solving systems of nonlinear equations is used in Chapter 16 on minimization
of functions.

Fractal Basins of Attraction
The applicability of Newton’s method for finding complex roots is one of its outstanding
strengths. One need only program Newton’s method using complex arithmetic.

The frontiers of numerical analysis and nonlinear dynamics overlap in some intriguing
ways. Computer-generated displays with fractal patterns, such as in Figure 3.8, can easily
be created with the help of the Newton iteration. The resulting pictures show intricately

FIGURE 3.8

Basins of
attraction

100 Chapter 3 Locating Roots of Equations

interwoven sets in the plane that are quite beautiful if displayed on a color computer monitor.
One begins with a polynomial in the complex variable z. For example, p(z) = z4 − 1 is
suitable. This polynomial has four zeros, which are the fourth roots of unity. Each of these
zeros has a basin of attraction, that is, the set of all points z0 such that Newton’s iteration,
started at z0, will converge to that zero. These four basins of attraction are disjoint from each
other, because if the Newton iteration starting at z0 converges to one zero, then it cannot
also converge to another zero. One would naturally expect each basin to be a simple set
surrounding the zero in the complex plane. But they turn out to be far from simple. To see
what they are, we can systematically determine, for a large number of points, which zero
of p the Newton iteration converges to if started at z0. Points in each basin can be assigned
different colors. The (rare) points for which the Newton iteration does not converge can be
left uncolored. Computer Problem 3.2.27 suggests how to do this.

Summary

(1) For finding a zero of a continuous and differentiable function f , Newton’s method is
given by

xn+1 = xn − f (xn)

f ′(xn)
(n � 0)

It requires a given initial value x0 and two function evaluations (for f and f ′) per step.

(2) The errors are related by

en+1 = −1

2

(
f ′′(ξn)

f ′(xn)

)
e2

n

which leads to the inequality

|en+1| � c|en|2

This means that Newton’s method has quadratic convergence behavior for x0 sufficiently
close to the root r .

(3) For an N × N system of nonlinear equations F(X) = 0, Newton’s method is written as

X(k+1) = X(k) − [
F ′(X(k)

)]−1
F
(
X(k)

)
(k � 0)

which involves the Jacobian matrix F ′(X(k)
) = J = [(

∂ fi

(
X(k)

)
/∂x j

)]
N×N

. In practice,
one solves the Jacobian linear system[

F ′(X(k)
)]

H(k) = −F
(
X(k)

)
using Gaussian elimination and then finds the next iterate from the equation

X(k+1) = X(k) + H(k)

Additional References
For additional details and sample plots, see Kincaid and Cheney [2002] or Epureanu and
Greenside [1998]. For other references on fractals, see Crilly, Earnshall, and Jones [1991],
Feder [1998], Hastings and Sugihara [1993], and Novak [1998].

3.2 Newton’s Method 101

Moreover, an expository paper by Ypma [1995] traces the historical development of
Newton’s method through notes, letters, and publications by Isaac Newton, Joseph Raphson,
and Thomas Simpson.

Problems 3.2

1. Verify that when Newton’s method is used to compute
√

R (by solving the equation
x2 = R), the sequence of iterates is defined by

xn+1 = 1

2

(
xn + R

xn

)
2. (Continuation) Show that if the sequence {xn} is defined as in the preceding problem,

then

x2
n+1 − R =

[
x2

n − R

2xn

]2

Interpret this equation in terms of quadratic convergence.

a3. Write Newton’s method in simplified form for determining the reciprocal of the square
root of a positive number. Perform two iterations to approximate 1/±√

5, starting with
x0 = 1 and x0 = −1.

a4. Two of the four zeros of x4 + 2x3 − 7x2 + 3 are positive. Find them by Newton’s
method, correct to two significant figures.

5. The equation x − Rx−1 = 0 has x = ±R1/2 for its solution. Establish Newton’s
iterative scheme, in simplified form, for this situation. Carry out five steps for R = 25
and x0 = 1.

6. Using a calculator, observe the sluggishness with which Newton’s method converges
in the case of f (x) = (x − 1)m with m = 8 or 12. Reconcile this with the theory. Use
x0 = 1.1.

a7. What linear function y = ax + b approximates f (x) = sin x best in the vicinity of
x = π/4? How does this problem relate to Newton’s method?

8. In Problems 1.2.11 and 1.2.12, several methods are suggested for computing ln 2.
Compare them with the use of Newton’s method applied to the equation ex = 2.

a9. Define a sequence xn+1 = xn − tan xn with x0 = 3. What is limn→∞ xn?

10. The iteration formula xn+1 = xn − (cos xn)(sin xn) + R cos2 xn , where R is a positive
constant, was obtained by applying Newton’s method to some function f (x). What
was f (x)? What can this formula be used for?

a11. Establish Newton’s iterative scheme in simplified form, not involving the reciprocal of
x , for the function f (x) = x R − x−1. Carry out three steps of this procedure using
R = 4 and x0 = −1.

102 Chapter 3 Locating Roots of Equations

12. Consider the following procedures:

aa. xn+1 = 1

3

(
2xn − r

x2
n

)
b. xn+1 = 1

2
xn + 1

xn

Do they converge for any nonzero initial point? If so, to what values?

13. Each of the following functions has 3
√

R as a zero for any positive real number R.
Determine the formulas for Newton’s method for each and any necessary restrictions
on the choice for x0.

aa. a(x) = x3 − R b. b(x) = 1/x3 − 1/R ac. c(x) = x2 − R/x

d. d(x) = x − R/x2 ae. e(x) = 1 − R/x3 f. f (x) = 1/x − x2/R
ag. g(x) = 1/x2 − x/R h. h(x) = 1 − x3/R

14. Determine the formulas for Newton’s method for finding a root of the function f (x) =
x − e/x . What is the behavior of the iterates?

a15. If Newton’s method is used on f (x) = x3 − x + 1 starting with x0 = 1, what will x1

be?

16. Locate the root of f (x) = e−x − cos x that is nearest π/2.

a17. If Newton’s method is used on f (x) = x5 − x3 + 3 and if xn = 1, what is xn+1?

18. Determine Newton’s iteration formula for computing the cube root of N/M for nonzero
integers N and M .

a19. For what starting values will Newton’s method converge if the function f is f (x) =
x2/(1 + x2)?

20. Starting at x = 3, x < 3, or x > 3, analyze what happens when Newton’s method is
applied to the function f (x) = 2x3 − 9x2 + 12x + 15.

a21. (Continuation) Repeat for f (x) = √|x |, starting with x < 0 or x > 0.

a22. To determine x = 3
√

R, we can solve the equation x3 = R by Newton’s method. Write
the loop that carries out this process, starting from the initial approximation x0 = R.

23. The reciprocal of a number R can be computed without division by the iterative formula

xn+1 = xn(2 − xn R)

Establish this relation by applying Newton’s method to some f (x). Beginning with
x0 = 0.2, compute the reciprocal of 4 correct to six decimal digits or more by this rule.
Tabulate the error at each step and observe the quadratic convergence.

24. On a certain modern computer, floating-point numbers have a 48-bit mantissa. More-
over, floating-point hardware can perform addition, subtraction, multiplication, and
reciprocation, but not division. Unfortunately, the reciprocation hardware produces a
result accurate to less than full precision, whereas the other operations produce results
accurate to full floating-point precision.

a. Show that Newton’s method can be used to find a zero of the function f (x) =
1 − 1/(ax). This will provide an approximation to 1/a that is accurate to full
floating-point precision. How many iterations are required?

3.2 Newton’s Method 103

b. Show how to obtain an approximation to b/a that is accurate to full floating-point
precision.

25. Newton’s method for finding
√

R is

xn+1 = 1

2

(
xn + R

xn

)
Perform three iterations of this scheme for computing

√
2, starting with x0 = 1, and

of the bisection method for
√

2, starting with interval [1, 2]. How many iterations are
needed for each method in order to obtain 10−6 accuracy?

26. (Continuation) Newton’s method for finding
√

R, where R = AB, gives this approxi-
mation:

√
AB ≈ A + B

4
+ AB

A + B

Show that if x0 = A or B, then two iterations of Newton’s method are needed to obtain
this approximation, whereas if x0 = 1

2 (A + B), then only one iteration is needed.

a27. Show that Newton’s method applied to xm − R and to 1 − (R/xm) for determining
m
√

R results in two similar yet different iterative formulas. Here R > 0, m � 2. Which
formula is better and why?

28. Using a handheld calculator, carry out three iterations of Newton’s method using x0 = 1
and f (x) = 3x3 + x2 − 15x + 3.

a29. What happens if the Newton iteration is applied to f (x) = arctan x with x0 = 2? For
what starting values will Newton’s method converge? (See Computer Problem 3.2.7.)

30. Newton’s method can be interpreted as follows: Suppose that f (x + h) = 0. Then
f ′(x) ≈ [f (x + h) − f (x)]/h = − f (x)/h. Continue this argument.

a31. Derive a formula for Newton’s method for the function F(x) = f (x)/ f ′(x), where
f (x) is a function with simple zeros that is three times continuously differentiable.
Show that the convergence of the resulting method to any zero r of f (x) is at least
quadratic. Hint: Apply the result in the text to F , making sure that F has the required
properties.

a32. The Taylor series for a function f looks like this:

f (x + h) = f (x) + h f ′(x) + h2

2
f ′′(x) + h3

6
f ′′′(x) + · · ·

Suppose that f (x), f ′(x), and f ′′(x) are easily computed. Derive an algorithm like
Newton’s method that uses three terms in the Taylor series. The algorithm should take
as input an approximation to the root and produce as output a better approximation to
the root. Show that the method is cubically convergent.

33. To avoid computing the derivative at each step in Newton’s method, it has been proposed
to replace f ′(xn) by f ′(x0). Derive the rate of convergence for this method.

104 Chapter 3 Locating Roots of Equations

34. Refer to the discussion of Newton’s method and establish that

lim
n→∞

(
en+1e−2

n

) = −1

2

[
f ′′(r)

f ′(r)

]
How can this be used in a practical case to test whether the convergence is quadratic?
Devise an example in which r , f ′(r), and f ′′(r) are all known, and test numerically
the convergence of en+1e−2

n .

a35. Show that in the case of a zero of multiplicity m, the modified Newton’s method

xn+1 = xn − m
f (xn)

f ′(xn)

is quadratically convergent. Hint: Use Taylor series for each of f (r +en) and f ′(r +en).

a36. The Steffensen method for solving the equation f (x) = 0 uses the formula

xn+1 = xn − f (xn)

g(xn)

in which g(x) = { f [x + f (x)] − f (x)}/ f (x). It is quadratically convergent, like
Newton’s method. How many function evaluations are necessary per step? Using
Taylor series, show that g(x) ≈ f ′(x) if f (x) is small and thus relate Steffensen’s
iteration to Newton’s. What advantage does Steffensen’s have? Establish the quadratic
convergence.

a37. A proposed Generalization of Newton’s method is

xn+1 = xn − ω
f (xn)

f ′(xn)

where the constant ω is an acceleration factor chosen to increase the rate of convergence.
For what range of values of ω is a simple root r of f (x) a point of attraction; that is,
|g′(r)| < 1, where g(x) = x − ω f (x)/ f ′(x)? This method is quadratically convergent
only if ω = 1 because g′(r) �= 0 when ω �= 1.

38. Suppose that r is a double root of f (x) = 0; that is, f (r) = f ′(r) = 0 but f ′′(r) �= 0,
and suppose that f and all derivatives up to and including the second are continuous
in some neighborhood of r . Show that en+1 ≈ 1

2 en for Newton’s method and thereby
conclude that the rate of convergence is linear near a double root. (If the root has
multiplicity m, then en+1 ≈ [(m − 1)/m]en .)

39. (Simultaneous nonlinear equations) Using the Taylor series in two variables (x, y)

of the form

f (x + h, y + k) = f (x, y) + h fx(x, y) + k fy(x, y) + · · ·
where fx = ∂ f/∂x and fy = ∂ f/∂y, establish that Newton’s method for solving the
two simultaneous nonlinear equations{

f (x, y) = 0

g(x, y) = 0

can be described with the formulas

xn+1 = xn − f gy − g fy

fx gy − gx fy
, yn+1 = yn − fx g − gx f

fx gy − gx fy

Here the functions f , fx , and so on are evaluated at (xn, yn).

3.2 Newton’s Method 105

40. Newton’s method can be defined for the equation f (z) = g(x, y) + ih(x, y), where
f (z) is an analytic function of the complex variable z = x + iy (x and y real) and
g(x, y) and h(x, y) are real functions for all x and y. The derivative f ′(z) is given by
f ′(z) = gx + ihx = hy − igy because the Cauchy-Riemann equations gx = hy and
hx = −gy hold. Here the partial derivatives are defined as gx = ∂g/∂x , gy = ∂g/∂y,
and so on. Show that Newton’s method

zn+1 = zn − f (zn)

f ′(zn)

can be written in the form

xn+1 = xn − ghy − hgy

gx hy − gyhx
, yn+1 = yn − hgx − ghx

gx hy − gyhx

Here all functions are evaluated at zn = xn + iyn .

a41. Consider the algorithm of which one step consists of two steps of Newton’s method.
What is its order of convergence?

42. (Continuation) Using the idea of the preceding Problem, show how we can easily create
methods of arbitrarily high order for solving f (x) = 0. Why is the order of a method
not the only criterion that should be considered in assessing its merits?

43. If we want to solve the equation 2 − x = ex using Newton’s iteration, what are the
equations and functions that must be coded? Give a pseudocode for doing this problem.
Include a suitable starting point and a suitable stopping criterion.

44. Suppose that we want to compute
√

2 by using Newton’s Method on the equation
x2 = 2 (in the obvious, straightforward way). If the starting point is x0 = 7

5 , what is
the numerical value of the correction that must be added to x0 to get x1? Hint: The
arithmetic is quite easy if you do it using ratios of integers.

45. Apply Newton’s method to the equation f (x) = 0 with f (x) as given below. Find out
what happens and why.

a. f (x) = ex b. f (x) = ex + x2

46. Consider Newton’s method xn+1 = xn − f (xn)/ f ′(xn). If the sequence converges then
the limit point is a solution. Explain why or why not.

Computer Problems 3.2

1. Using the procedure Newton and a single computer run, test your code on these exam-
ples: f (t) = tan t − t with x0 = 7 and g(t) = et − √

t + 9 with x0 = 2. Print each
iterate and its accompanying function value.

2. Write a simple, self-contained program to apply Newton’s method to the equation
x3 + 2x2 + 10x = 20, starting with x0 = 2. Evaluate the appropriate f (x) and f ′(x),
using nested multiplication. Stop the computation when two successive points differ by
1
2 × 10−5 or some other convenient tolerance close to your machine’s capability. Print
all intermediate points and function values. Put an upper limit of ten on the number of
steps.

106 Chapter 3 Locating Roots of Equations

3. (Continuation) Repeat using double precision and more steps.

a4. Find the root of the equation

2x(1 − x2 + x) ln x = x2 − 1

in the interval [0, 1] by Newton’s method using double precision. Make a table that
shows the number of correct digits in each step.

a5. In 1685, John Wallis published a book called Algebra, in which he described a method
devised by Newton for solving equations. In slightly modified form, this method was
also published by Joseph Raphson in 1690. This form is the one now commonly
called Newton’s method or the Newton-Raphson method. Newton himself discussed
the method in 1669 and illustrated it with the equation x3 − 2x − 5 = 0. Wallis used
the same example. Find a root of this equation in double precision, thus continuing the
tradition that every numerical analysis student should solve this venerable equation.

6. In celestial mechanics, Kepler’s equation is important. It reads x = y − ε sin y, in
which x is a planet’s mean anomaly, y its eccentric anomaly, and ε the eccentricity of
its orbit. Taking ε = 0.9, construct a table of y for 30 equally spaced values of x in the
interval 0 � x � π . Use Newton’s method to obtain each value of y. The y corresponding
to an x can be used as the starting point for the iteration when x is changed slightly.

7. In Newton’s method, we progress in each step from a given point x to a new point x −h,
where h = f (x)/ f ′(x). A refinement that is easily programmed is this: If | f (x − h)|
is not smaller than | f (x)|, then reject this value of h and use h/2 instead. Test this
refinement.

a8. Write a brief program to compute a root of the equation x3 = x2 + x + 1, using
Newton’s method. Be careful to select a suitable starting value.

a9. Find the root of the equation 5(3x4 − 6x2 + 1) = 2(3x5 − 5x3) that lies in the interval
[0, 1] by using Newton’s method and a short program.

10. For each equation, write a brief program to compute and print eight steps of Newton’s
method for finding a positive root.

aa. x = 2 sin x ab. x3 = sin x + 7 ac. sin x = 1 − x
ad. x5 + x2 = 1 + 7x3 for x � 2

11. Write and test a recursive procedure for Newton’s method.

12. Rewrite and test the Newton procedure so that it is a character function and
returns key words such as iterating, success, near-zero, max-iteration. Then
a case statement can be used to print the results.

13. Would you like to see the number 0.55887 766 come out of a calculation? Take three
steps in Newton’s method on 10 + x3 − 12 cos x = 0 starting with x0 = 1.

a14. Write a short program to solve for a root of the equation e−x2 = cos x + 1 on [0, 4].
What happens in Newton’s method if we start with x0 = 0 or with x0 = 1?

15. Find the root of the equation 1
2 x2 + x + 1 − ex = 0 by Newton’s method, starting with

x0 = 1, and account for the slow convergence.

3.2 Newton’s Method 107

16. Using f (x) = x5 − 9x4 − x3 + 17x2 − 8x − 8 and x0 = 0, study and explain the
behavior of Newton’s method. Hint: The iterates are initially cyclic.

17. Find the zero of the function f (x) = x − tan x that is closest to 99 (radians) by both
the bisection method and Newton’s method. Hint: Extremely accurate starting values
are needed for this function. Use the computer to construct a table of values of f (x)

around 99 to determine the nature of this function.

18. Using the bisection method, find the positive root of 2x(1 + x2)−1 = arctan x . Using
the root as x0, apply Newton’s method to the function arctan x . Interpret the results.

19. If the root of f (x) = 0 is a double root, then Newton’s method can be accelerated by
using

xn+1 = xn − 2
f (xn)

f ′(xn)

Numerically compare the convergence of this scheme with Newton’s method on a
function with a known double root.

20. Program and test Steffensen’s method, as described in Problem 3.2.36.

21. Consider the nonlinear system{
f (x, y) = x2 + y2 − 25 = 0

g(x, y) = x2 − y − 2 = 0

Using a software package that has 2D plotting capabilities, illustrate what is going on
in solving such a system by plotting f (x, y), g(x, y), and show their intersection with
the (x, y)-plane. Determine approximate roots of these equations from the graphical
results.

22. Solve this pair of simultaneous nonlinear equations by first eliminating y and then solv-
ing the resulting equation in x by Newton’s method. Start with the initial value x0 = 1.0.{

x3 − 2xy + y7 − 4x3 y = 5

y sin x + 3x2 y + tan x = 4

23. Using Equations (7) and (8), code Newton’s methods for nonlinear systems. Test your
program by solving one or more of the following systems:

a. System in Computer Problem 3.2.21.

b. System in Computer Problem 3.2.22.

c. System (3) using starting values (0, 0, 0).

d. Using starting values
(

3
4 ,

1
2 , − 1

2

)
, solve⎧⎪⎨⎪⎩
x + y + z = 0

x2 + y2 + z2 = 2

x(y + z) = −1

e. Using starting values (−0.01, −0.01), solve{
4y2 + 4y + 52x − 19 = 0

169x2 + 3y2 + 111x − 10y − 10 = 0

108 Chapter 3 Locating Roots of Equations

f. Select starting values, and solve{
sin(x + y) = ex−y

cos(x + 6) = x2 y2

24. Investigate the behavior of Newton’s method for finding complex roots of polynomials
with real coefficients. For example, the polynomial p(x) = x2 + 1 has the complex
conjugate pair of roots ±i and Newton’s method is xn+1 = 1

2 (xn −1/xn). First, program
this method using real arithmetic and real numbers as starting values. Second, modify
the program using complex arithmetic but still using only real starting values. Finally,
use complex numbers as starting values. Observe the behavior of the iterates in each
case.

25. Using Problem 3.2.40, find a complex root of each of the following:

a. z3 − z − 1 = 0 b. z4 − 2z3 − 2i z2 + 4i z = 0

c. 2z3 − 6(1 + i)z2 − 6(1 − i) = 0 d. z = ez

Hint: For the last part, use Euler’s relation eiy = cos y + i sin y.

26. In the Newton method for finding a root r of f (x) = 0, we start with x0 and compute the
sequence x1, x2, . . . using the formula xn+1 = xn − f (xn)/ f ′(xn). To avoid computing
the derivative at each step, it has been proposed to replace f ′(xn) with f ′(x0) in all
steps. It has also been suggested that the derivative in Newton’s formula be computed
only every other step. This method is given by⎧⎪⎪⎨⎪⎪⎩

x2n+1 = x2n − f (x2n)

f ′(x2n)

x2n+2 = x2n+1 − f (x2n+1)

f ′(x2n)

Numerically compare both proposed methods to Newton’s method for several simple
functions that have known roots. Print the error of each method on every iteration to
monitor the convergence. How well do the proposed methods work?

27. (Basin of attraction) Consider the complex polynomial z3−1, whose zeros are the three
cube roots of unity. Generate a picture showing three basins of attraction in the complex
plane in the square region defined by −1 � Real(z) � 1 and −1 � Imaginary(z) � 1. To
do this, use a mesh of 1000 × 1000 pixels inside the square. The center point of each
pixel is used to start the iteration of Newton’s method. Assign a particular basin color
to each pixel if convergence to a root is obtained with nmax = 10 iterations. The large
number of iterations suggested can be avoided by doing some analysis with the aid
of Theorem 1, since the iterates get within a certain neighborhood of the root and the
iteration can be stopped. The criterion for convergence is to check both |zn+1 − zn| < ε

and |z3
n+1 − 1| < ε with a small value such as ε = 10−4 as well as a maximum number

of iterations. Hint: It is best to debug your program and get a crude picture with only
a small number of pixels such as 10 × 10.

28. (Continuation) Repeat for the polynomial z4 − 1 = 0.

29. Write real function Sqrt(x) to compute the square root of a real argument x by the
following algorithm: First, reduce the range of x by finding a real number r and an

3.2 Newton’s Method 109

integer m such that x = 22mr with 1
4 � r < 1. Next, compute x2 by using three iterations

of Newton’s method given by

xn+1 = 1

2

(
xn + r

xn

)
with the special initial approximation

x0 = 1.27235 367 + 0.24269 3281r − 1.02966 039

1 + r

Then set
√

x ≈ 2m x2. Test this algorithm on various values of x . Obtain a listing of the
code for the square-root function on your computer system. By reading the comments,
try to determine what algorithm it uses.

30. The following method has third-order convergence for computing
√

R:

xn+1 = xn

(
x2

n + 3R
)

3x2
n + R

Carry out some numerical experiments using this method and the method of the pre-
ceding problem to see whether you observe a difference in the rate of convergence. Use
the same starting procedures of range reduction and initial approximation.

31. Write real function CubeRoot(x) to compute the cube root of a real argument x by
the following procedure: First, determine a real number r and an integer m such that
x = r23m with 1

8 � r < 1. Compute x4 using four iterations of Newton’s method:

xn+1 = 2

3

(
xn + r

2x2
n

)
with the special starting value

x0 = 2.50292 6 − 8.04512 5(r + 0.38775 52)

(r + 4.61224 4)(r + 0.38775 52) − 0.35984 96

Then set 3
√

x ≈ 2m x4. Test this algorithm on a variety of x values.

32. Use mathematical software such as in Maple or Mathematica to compute ten iterates
of Newton’s method starting with x0 = 0 for f (x) = x3 − 2x2 + x − 3. With 100
decimal places of accuracy and after nine iterations, show that the value of x is

2.17455 94102 92980 07420 23189 88695 65392 56759 48725 33708
24983 36733 92030 23647 64792 75760 66115 28969 38832 0640

Show that the values of the function at each iteration are 9.0, 2.0, 0.26, 0.0065, 0.45 ×
10−5, 0.22×10−11, 0.50×10−24, 0.27×10−49, 0.1×10−98, and 0.1×10−98. Again notice
that the number of digits of accuracy in Newton’s method doubles (approximately) with
each iteration once they are sufficiently close to the root. (Also, see Bornemann, Wagon,
and Waldvogel [2004] for a 100-Digit Challenge, which is a study in high-accuracy
numerical computing.)

110 Chapter 3 Locating Roots of Equations

33. (Continuation) Use Maple or Mathematica to discover that this root is exactly

3

√
79

54
+ 1

6

√
77 + 1

9 3

√
79

54
+ 1

6

√
77

+ 2

3

Clearly, the decimal results are of more interest to us in our study of numerical methods.

34. (Continuation) Find all the roots including complex roots.

35. Numerically, find all the roots of the following systems of nonlinear equations. Then
plot the curves to verify your results:

a. y = 2x2 + 3x − 4, y = x2 + 2x + 3

b. y + x + 3 = 0, x2 + y2 = 17

c. y = 1
2 x − 5, y = x2 + 2x − 15

d. xy = 1, x + y = 2

e. y = x2, x2 + (y − 2)2 = 4

f. 3x2 + 2y2 = 35, 4x2 − 3y2 = 24

g. x2 − xy + y2 = 21, x2 + 2xy − 8y2 = 0

36. Apply Newton’s method on these test problems:

a. f (x) = x2. Hint: The first derivative is zero at the root and convergence may not
be quadratic.

b. f (x) = x + x4/3. Hint: There is no second derivative at the root and convergence
may fail to be quadratic.

c. f (x) = x + x2 sin(2/x) for x �= 0 and f (0) = 0 and f ′(x) = 1 + 2x sin(2/x) −
2 cos(2/x) for x �= 0 and f ′(0) = 1. Hint: The derivative of this function is not
continuous at the root and convergence may fail.

37. Let F(X) =
[

x2
1 − x2 + c

x2
2 − x1 + c

]
=
[

0
0

]
. Each component equation f1(x) = 0 and f2(x) =

0 describes a parabola. Any point (x∗, y∗) where these two parabolas intersect is a
solution to the nonlinear system of equations. Using Newton’s method for systems
of nonlinear equations, find the solutions for each of these values of the parameter
c = 1

2 ,
1
4 , − 1

2 , −1. Give the Jacobian matrix for each. Also for each of these values,
plot the resulting curves showing the points of intersection. (Heath 2000, p. 218)

38. Let F(X) =
[

x2
1 + 2x2 − 2

x1 + 4x2
2 − 4

]
=
[

0
0

]
. Solve this nonlinear system starting with X(0) =

(1, 2). Give the Jacobian matrix. Also plot the resulting curves showing the point(s) of
intersection.

39. Using Newton’s method, find the zeros of f (z) = z3 − z with these starting values
z(0) = 1 + 1.5i , 1 + 1.1i , 1 + 1.2i , 1 + 1.3i .

40. Use Halley’s method to produce a plot of the basins of attraction for p(z) = z6 − 1.
Compare to Figure 3.8.

3.3 Secant Method 111

41. (Global positioning system project) Each time a GPS is used, a system of nonlinear
equations of the form

(x − a1)
2 + (y − b1)

2 + (z − ci)
2 = [(C(t1 − D)]2

(x − a2)
2 + (y − b2)

2 + (z − ci)
2 = [(C(t2 − D)]2

(x − a3)
2 + (y − b3)

2 + (z − ci)
2 = [(C(t3 − D)]2

(x − a4)
2 + (y − b4)

2 + (z − ci)
2 = [(C(t4 − D)]2

is solved for the (x, y, z) coordinates of the receiver. For each satellite i , the locations
are (ai , bi , ci), and ti is the synchronized transmission time from the satellite. Further,
C is the speed of light, and D is the difference between the synchronized time of the
satellite clocks and the earth-bound receiver clock. While there are only two points
on the intersection of three spheres (one of which can be determined to be the desired
location), a fourth sphere (satellite) must be used to resolve the inaccuracy in the
clock contained in the low-cost receiver on earth. Explore various ways for solving
such a nonlinear system. See Hofmann-Wellenhof, Lichtenegger, and Collins [2001],
Sauer [2006], and Strang and Borre [1997].

42. Use mathematical software such as in Matlab, Maple, or Mathematica and their built-in
procedures to solve the system of nonlinear equations (8) in Example 2. Also, plot the
given surfaces and the solution obtained. Hint: You may need to use a slightly perturbed
starting point (0.5, 1.5, 0.5) to avoid a singularity in the Jacobian matrix.

3.3 Secant Method
We now consider a general-purpose procedure that converges almost as fast as Newton’s
method. This method mimics Newton’s method but avoids the calculation of derivatives.
Recall that Newton’s iteration defines xn+1 in terms of xn via the formula

xn+1 = xn − f (xn)

f ′(xn)
(1)

In the secant method, we replace f ′(xn) in Formula (1) by an approximation that is easily
computed. Since the derivative is defined by

f ′(x) = lim
h→0

f (x + h) − f (x)

h

we can say that for small h,

f ′(x) ≈ f (x + h) − f (x)

h

112 Chapter 3 Locating Roots of Equations

(In Section 4.3, we revisit this subject and learn that this is a finite difference approximation
to the first derivative.) In particular, if x = xn and h = xn−1 − xn , we have

f ′(xn) ≈ f (xn−1) − f (xn)

xn−1 − xn
(2)

When this is used in Equation (1), the result defines the secant method:

xn+1 = xn −
(

xn − xn−1

f (xn) − f (xn−1)

)
f (xn) (3)

The secant method (like Newton’s) can be used to solve systems of equations as well.
The name of the method is taken from the fact that the right member of Equation (2)

is the slope of a secant line to the graph of f (see Figure 3.9). Of course, the left member
is the slope of a tangent line to the graph of f . (Similarly, Newton’s method could be called
the “tangent method.”)

FIGURE 3.9

Secant method r xn�1 xn�1
x

y � f (x)
Secant line

xn

A few remarks about Equation (3) are in order. Clearly, xn+1 depends on two previous
elements of the sequence. So to start, two points (x0 and x1) must be provided. Equation (3)
can then generate x2, x3, In programming the secant method, we could calculate and
test the quantity f (xn)− f (xn−1). If it is nearly zero, an overflow can occur in Equation (3).
Of course, if the method is succeeding, the points xn will be approaching a zero of f , so
f (xn) will be converging to zero. (We are assuming that f is continuous.) Also, f (xn−1)

will be converging to zero, and, a fortiori, f (xn)− f (xn−1) will approach zero. If the terms
f (xn) and f (xn−1) have the same sign, additional significant digits are canceled in the
subtraction. So we could perhaps halt the iteration when | f (xn) − f (xn−1)| � δ| f (xn)| for
some specified tolerance δ, such as 1

2 × 10−6. (See Computer Problem 3.3.18.)

Secant Algorithm
A pseudocode for nmax steps of the secant method applied to the function f starting with
the interval [a, b] = [x0, x1] can be written as follows:

procedure Secant(f, a, b, nmax, ε)

integer n, nmax ; real a, b, fa, fb, ε, d
external function f
fa ← f (a)

fb ← f (b)

3.3 Secant Method 113

if |fa| > |fb| then
a ←→ b
f a ←→ fb

end if
output 0, a, fa
output 1, b, fb
for n = 2 to nmax do

if |fa| > |fb| then
a ←→ b
f a ←→ f b

end if
d ← (b − a)/(fb − fa)

b ← a
f b ← f a
d ← d · fa
if |d| < ε then

output “convergence”
return

end if
a ← a − d
f a ← f (a)

output n, a, f a
end for
end procedure Secant

Here ←→ means interchange values. The endpoints [a, b] are interchanged, if necessary, to
keep | f (a)| � | f (b)|. Consequently, the absolute values of the function are nonincreasing;
thus, we have | f (xn)| � | f (xn+1)| for n � 1.

EXAMPLE 1 If the secant method is used on p(x) = x5 + x3 + 3 with x0 = −1 and x1 = 1, what is x8?

Solution The output from the computer program corresponding to the pseudocode for the secant
method is as follows. (We used a 32-bit word-length computer.)

n xn p(xn)

0 −1.0 1.0
1 1.0 5.0
2 −1.5 −7.97
3 −1.05575 0.512
4 −1.11416 −9.991 × 10−2

5 −1.10462 7.593 × 10−3

6 −1.10529 1.011 × 10−4

7 −1.10530 2.990 × 10−7

8 −1.10530 2.990 × 10−7

We can use mathematical software to find the single real root, −1.1053, and the two pairs
of complex roots, −0.319201 ± 1.35008i and 0.871851 ± 0.806311i. ■

114 Chapter 3 Locating Roots of Equations

Convergence Analysis
The advantages of the secant method are that (after the first step) only one function evaluation
is required per step (in contrast to Newton’s iteration, which requires two) and that it is almost
as rapidly convergent. It can be shown that the basic secant method defined by Equation (3)
obeys an equation of the form

en+1 = −1

2

(
f ′′(ξn)

f ′(ζn)

)
enen−1 ≈ −1

2

(
f ′′(r)

f ′(r)

)
enen−1 (4)

where ξn and ζn are in the smallest interval that contains r , xn , and xn−1. Thus, the ratio
en+1(enen−1)

−1 converges to − 1
2 f ′′(r)/ f ′(r). The rapidity of convergence of this method

is, in general, between those for bisection and for Newton’s method.
To prove the second part of Equation (4), we begin with the definition of the secant

method in Equation (3) and the error

en+1 = r − xn+1

= r − f (xn)xn−1 − f (xn−1)xn

f (xn) − f (xn−1)

= f (xn)en−1 − f (xn−1)en

f (xn) − f (xn−1)

=
[

xn − xn−1

f (xn) − f (xn−1)

]⎡⎢⎢⎣
f (xn)

en
− f (xn−1)

en−1

xn − xn−1

⎤⎥⎥⎦ enen−1 (5)

By Taylor’s Theorem, we establish

f (xn) = f (r − en) = f (r) − en f ′(r) + 1

2
e2

n f ′′(r) + O(e3
n

)
Since f (r) = 0, this gives us

f (xn)

en
= − f ′(r) + 1

2
en f ′′(r) + O(e2

n

)
Changing the index to n − 1 yields

f (xn−1)

en−1
= − f ′(r) + 1

2
en−1 f ′′(r) + O(e2

n−1

)
By subtraction between these equations, we arrive at

f (xn)

en
− f (xn−1)

en−1
= 1

2
(en − en−1) f ′′(r) + O(e2

n−1

)
Since xn − xn−1 = en−1 − en , we reach the equation

f (xn)

en
− f (xn−1)

en−1

xn − xn−1
≈ −1

2
f ′′(r)

3.3 Secant Method 115

The first bracketed expression in Equation (5) can be written as

xn − xn−1

f (xn) − f (xn−1)
≈ 1

f ′(r)

Hence, we have shown the second part of Equation (4).
We leave the establishment of the first part of Equation (4) as a problem because it

depends on some material to be covered in Chapter 4. (See Problem 3.3.18.)
From Equation (4), the order of convergence for the secant method can be expressed

in terms of the inequality

|en+1| � C |en|α (6)

where α = 1
2

(
1+√

5
) ≈ 1.62 is the golden ratio. Since α > 1, we say that the convergence

is superlinear. Assuming that Inequality (6) is true, we can show that the secant method
converges under certain conditions.

Let c = c(δ) be defined as in Equation (2) of Section 3.2. If |r−xn| � δ and |r−xn−1| � δ,
for some root r , then Equation (4) yields

|en+1| � c|en||en−1| (7)

Suppose that the initial points x0 and x1 are sufficiently close to r that c|e0| � D and c|e1| � D
for some D < 1. Then

c|e1| � D, c|e0| � D

c|e2| � c|e1| c|e0| � D2

c|e3| � c|e2| c|e1| � D3

c|e4| � c|e3| c|e2| � D5

c|e5| � c|e4| c|e3| � D8

etc.

In general, we have

|en| � c−1 Dλn+1 (8)

where inductively, {
λ1 = 1, λ2 = 1

λn = λn−1 + λn−2 (n � 3)
(9)

This is the recurrence relation for generating the famous Fibonacci sequence, 1, 1, 2, 3, 5,
8, It can be shown to have the surprising explicit form

λn = 1√
5

(
αn − βn

)
(10)

where α = 1
2

(
1+√

5
)

and β = 1
2

(
1−√

5
)
. Since D < 1 and λn → ∞, we conclude from

Inequality (8) that en → 0. Hence, xn → r as n → ∞, and the secant method converges to
the root r if x0 and x1 are sufficiently close to it.

116 Chapter 3 Locating Roots of Equations

Next, we show that Inequality (6) is in fact reasonable—not a proof. From Equations (7),
we now have

|en+1| � c|en||en−1|
= c|en|α|en|1−α|en−1|
≈ c|en|α

(
c−1 Dλn+1

)1−α(
c−1 Dλn

)
= |en|αcα−1 Dλn+1(1−α)+λn

= |en|αcα−1 Dλn+2−αλn+1

by using an approximation to Inequality (8). In the last line, we used the recurrence relation
(9). Now λn+2 − αλn+1 converges to zero. (See Problem 3.3.6.). Hence, cα−1 Dλn+2−αλn+1 is
bounded, say, by C , as a function of n. Thus, we have

|en+1| ≈ C |en|α

which is a reasonable approximation to Inequality (6).
Another derivation (with a bit of hand waving) for the order of convergence of the

secant method can be given by using a general recurrence relation. Equation (4) gives us

en+1 ≈ K enen−1

where K = − 1
2 f ′′(r)/ f ′(r). We can write this as

|K en+1| ≈ |K en| |K en−1|
Let zi = log |K ei |. Then we want to solve the recurrence equation

zn+1 = zn + zn−1

where z0 and z1 are arbitrary. This is a linear recurrence relation with constant coefficients
similar to the one for the Fibonacci numbers (9) except that the first two values z0 and z1

are unknown. The solution is of the form

zn = Aαn + Bβn (11)

where α = 1
2

(
1 + √

5
)

and β = 1
2

(
1 − √

5
)
. These are the roots of the quadratic equation

λ2 − λ − 1 = 0. Since |α| > |β|, the term Aαn dominates, and we can say that

zn ≈ Aαn

for large n and for some constant A. Consequently, we have

|K en| ≈ 10Aαn

Then it follows that

|K en+1| ≈ 10Aαn+1 = (
10Aαn)α = |K en|α

Hence, we have

|en+1| ≈ C |en|α (12)

for large n and for some constant C . Again, Inequality (6) is essentially established! A
rigorous proof of Inequality (6) is tedious and quite long.

3.3 Secant Method 117

Comparison of Methods
In this chapter, three primary methods for solving an equation f (x) = 0 have been pre-
sented. The bisection method is reliable but slow. Newton’s method is fast but often only
near the root and requires f ′. The secant method is nearly as fast as Newton’s method
and does not require knowledge of the derivative f ′, which may not be available or may
be too expensive to compute. The user of the bisection method must provide two points
at which the signs of f (x) differ, and the function f need only be continuous. In using
Newton’s method, one must specify a starting point near the root, and f must be differ-
entiable. The secant method requires two good starting points. Newton’s procedure can
be interpreted as the repetition of a two-step procedure summarized by the prescription
linearize and solve. This strategy is applicable in many other numerical problems, and its
importance cannot be overemphasized. Both Newton’s method and the secant method fail
to bracket a root. The modified false position method can retain the advantages of both
methods.

The secant method is often faster at approximating roots of nonlinear functions in
comparison to bisection and false position. Unlike these two methods, the intervals [ak, bk]
do not have to be on opposite sides of the root and have a change of sign. Moreover, the
slope of the secant line can become quite small, and a step can move far from the current
point. The secant method can fail to find a root of a nonlinear function that has a small slope
near the root because the secant line can jump a large amount.

For nice functions and guesses relatively close to the root, most of these methods require
relatively few iterations before coming close to the root. However, there are pathological
functions that can cause troubles for any of those methods. When selecting a method for
solving a given nonlinear problem, one must consider many issues such as what you know
about the behavior of the function, an interval [a, b] satisfying f (a) f (b) < 0, the first
derivative of the function, a good initial guess to the desired root, and so on.

Hybrid Schemes
In an effort to find the best algorithm for finding a zero of a given function, various hybrid
methods have been developed. Some of these procedures combine the bisection method
(used during the early iterations) with either the secant method or the Newton method. Also,
adaptive schemes are used for monitoring the iterations and for carrying out stopping rules.
More information on some hybrid secant-bisection methods and hybrid Newton-bisection
methods with adaptive stopping rules can be found in Bus and Dekker [1975], Dekker [1969],
Kahaner, Moler, and Nash [1989], and Novak, Ritter, and Woźniakowski [1995].

Fixed-Point Iteration
For a nonlinear equation f (x) = 0, we seek a point where the curve f intersects the x-axis
(y = 0). An alternative approach is to recast the problem as a fixed-point problem x = g(x)

for a related nonlinear function g. For the fixed point problem, we seek a point where the
curve g intersects the diagonal line y = x . A value of x such that x = g(x) is a fixed point
of g because x is unchanged when g is applied to it. Many iterative algorithms for solving
a nonlinear equation f (x) = 0 are based on a fixed-point iterative method x (n+1) = g

(
x (n)

)
where g has fixed points that are solutions of f (x) = 0. An initial starting value x (0)

118 Chapter 3 Locating Roots of Equations

is selected, and the iterative method is applied repeatedly until it converges sufficiently
well.

EXAMPLE 2 Apply the fixed-point procedure, where g(x) = 1 + 2/x , starting with x (0) = 1, to compute
a zero of the nonlinear function f (x) = x2 − x − 2. Graphically, trace the convergence
process.

Solution The fixed-point method is

x (n+1) = 1 + 2

x (n)

Eight steps of the iterative algorithm are x (0) = 1, x (1) = 3, x (2) = 5/3, x (3) = 11/5,
x (4) = 21/11, x (5) = 43/21, x (6) = 85/43, x (7) = 171/85, and x (8) = 341/171 ≈ 1.99415.
In Figure 3.10, we see that these steps spiral into the fixed point 2.

FIGURE 3.10

Fixed point
iterations for

f (x) = x2 −x−2

y

x
1 2 3

1

0

2

3

y � 1 � y � x2
x

■

For a given nonlinear equation f (x) = 0, there may be many equivalent fixed-point
problems x = g(x) with different functions g, some better than others. A simple way to
characterize the behavior of an iterative method x (n+1) = g

(
x (n)

)
is locally convergent for

x∗ if x∗ = g(x∗) and |g′(x∗)| < 1. By locally convergent, we mean that there is an interval
containing x (0) such that the fixed-point method converges for any starting value x (0) within
that interval. If |g′(x∗)| > 1, then the fixed-point method diverges for any starting point x (0)

other than x∗. Fixed-point iterative methods are used in standard practice for solving many
science and engineering problems. In fact, the fixed-point theory can simplify the proof of
the convergence of Newton’s method.

Summary

(1) The secant method for finding a zero r of a function f (x) is written as

xn+1 = xn −
(

xn − xn−1

f (xn) − f (xn−1)

)
f (xn)

3.3 Secant Method 119

for n � 1, which requires two initial values x0 and x1. After the first step, only one new
function evaluation per step is needed.

(2) After n + 1 steps of the secant method, the error iterates ei = r − xi obey the equation

en+1 = −1

2

(
f ′′(ξn)

f ′(ζn)

)
enen−1

which leads to the approximation

|en+1| ≈ C |en|1/2(1+√
5) ≈ C |en|1.62

Therefore, the secant method has superlinear convergence behavior.

Additional References
For supplemental reading and study, see Barnsley [2006], Bus and Dekker [1975], Dekker
[1969], Dennis and Schnabel [1983], Epureanu and Greenside [1998], Fauvel, Flood,
Shortland, and Wilson [1988], Feder [1988], Ford [1995], Householder [1970], Kelley
[1995], Lozier and Olver [1994], Nerinckx and Haegemans [1976], Novak, Ritter, and
Woźniakowski [1995], Ortega and Rheinboldt [1970], Ostrowski [1966], Rabinowitz [1970],
Traub [1964], Westfall [1995], and Ypma [1995].

Problems 3.3

a1. Calculate an approximate value for 43/4 using one step of the secant method with x0 = 3
and x1 = 2.

2. If we use the secant method on f (x) = x3 − 2x + 2 starting with x0 = 0 and x1 = 1,
what is x2?

a3. If the secant method is used on f (x) = x5 + x3 + 3 and if xn−2 = 0 and xn−1 = 1,
what is xn?

a4. If xn+1 = xn + (2 − exn)(xn − xn−1)/(exn − exn−1) with x0 = 0 and x1 = 1, what is
limn→∞ xn?

5. Using the bisection method, Newton’s method, and the secant method, find the largest
positive root correct to three decimal places of x3 − 5x + 3 = 0. (All roots are in
[−3, +3].)

6. Prove that in the first analysis of the secant method, λn+1 − αλn converges to zero as
n → ∞.

7. Establish Equation (10).

8. Write out the derivation of the order of convergence of the secant method that uses
recurrence relations; that is, find the constants A and B in Equation (11), and fill in the
details in arriving at Equation (12).

120 Chapter 3 Locating Roots of Equations

a9. What is the appropriate formula for finding square roots using the secant method?
(Refer to Problem 3.2.1.)

10. The formula for the secant method can also be written as

xn+1 = xn−1 f (xn) − xn f (xn−1)

f (xn) − f (xn−1)

Establish this, and explain why it is inferior to Equation (3) in a computer program.

11. Show that if the iterates in Newton’s method converge to a point r for which f ′(r) �= 0,
then f (r) = 0. Establish the same assertion for the secant method. Hint: In the latter,
the Mean-Value Theorem of Differential Calculus is useful. This is the case n = 0 in
Taylor’s Theorem.

a12. A method of finding a zero of a given function f proceeds as follows. Two initial
approximations x0 and x1 to the zero are chosen, the value of x0 is fixed, and successive
iterations are given by

xn+1 = xn −
(

xn − x0

f (xn) − f (x0)

)
f (xn)

This process will converge to a zero of f under certain conditions. Show that the rate
of convergence to a simple zero is linear under some conditions.

13. Test the following sequences for different types of convergence (i.e., linear, superlinear,
or quadratic), where n = 1, 2, 3

aa. xn = n−2 b. xn = 2−n ac. xn = 2−2n

d. xn = 2−an with a0 = a1 = 1 and an+1 = an + an−1 for n � 2

14. This problem and the next three deal with the method of functional iteration. The
method of functional iteration is as follows: Starting with any x0, we define xn+1 =
f (xn), where n = 0, 1, 2, Show that if f is continuous and if the sequence {xn}
converges, then its limit is a fixed point of f .

a15. (Continuation) Show that if f is a function defined on the whole real line whose
derivative satisfies | f ′(x)| � c with a constant c less than 1, then the method of functional
iteration produces a fixed point of f . Hint: In establishing this, the Mean-Value Theorem
from Section 1.2 is helpful.

a16. (Continuation) With a calculator, try the method of functional iteration with f (x) =
x/2 + 1/x , taking x0 = 1. What is the limit of the resulting sequence?

a17. (Continuation) Using functional iteration, show that the equation 10 − 2x + sin x = 0
has a root. Locate the root approximately by drawing a graph. Starting with your
approximate root, use functional iteration to obtain the root accurately by using a
calculator. Hint: Write the equation in the form x = 5 + 1

2 sin x .

18. Establish the first part of Equation (4) using Equation (5). Hint: Use the relationship
between divided differences and derivatives from Section 4.2.

3.3 Secant Method 121

Computer Problems 3.3

a1. Use the secant method to find the zero near −0.5 of f (x) = ex − 3x2. This function
also has a zero near 4. Find this positive zero by Newton’s method.

2. Write

procedure Secant(f, x1, x2, epsi, delta, maxf, x, ierr)

which uses the secant method to solve f (x) = 0. The input parameters are as follows:
f is the name of the given function; x1 and x2 are the initial estimates of the solution;
epsi is a positive tolerance such that the iteration stops if the difference between two
consecutive iterates is smaller than this value; delta is a positive tolerance such that
the iteration stops if a function value is smaller in magnitude than this value; and maxf
is a positive integer bounding the number of evaluations of the function allowed. The
output parameters are as follows: x is the final estimate of the solution, and ierr is an
integer error flag that indicates whether a tolerance test was violated. Test this routine
using the function of Computer Problem 3.3.1. Print the final estimate of the solution
and the value of the function at this point.

3. Find a zero of one of the functions given in the introduction of this chapter using one
of the methods introduced in this chapter.

4. Write and test a recursive procedure for the secant method.

5. Rerun the example in this section with x0 = 0 and x1 = 1. Explain any unusual results.

6. Write a simple program to compare the secant method with Newton’s method for
finding a root of each function.

aa. x3 − 3x + 1 with x0 = 2 b. x3 − 2 sin x with x0 = 1
2

Use the x1 value from Newton’s method as the second starting point for the secant
method. Print out each iteration for both methods.

a7. Write a simple program to find the root of f (x) = x3 + 2x2 + 10x − 20 using the
secant method with starting values x0 = 2 and x1 = 1. Let it run at most 20 steps,
and include a stopping test as well. Compare the number of steps needed here to the
number needed in Newton’s method. Is the convergence quadratic?

8. Test the secant method on the set of functions fk(x) = 2e−k x + 1 − 3e−kx for k =
1, 2, 3, . . . , 10. Use the starting points 0 and 1 in each case.

a9. An example by Wilkinson [1963] shows that minute alterations in the coefficients of a
polynomial may have massive effects on the roots. Let

f (x) = (x − 1)(x − 2) · · · (x − 20)

which has become known as the Wilkinson polynomial. The zeros of f are, of course,
the integers 1, 2, . . . , 20. Try to determine what happens to the zero r = 20 when the
function is altered to f (x) − 10−8x19. Hint: The secant method in double precision
will locate a zero in the interval [20, 21].

122 Chapter 3 Locating Roots of Equations

10. Test the secant method on an example in which r , f ′(r), and f ′′(r) are known in ad-
vance. Monitor the ratios en+1/(enen−1) to see whether they converge to − 1

2 f ′′(r)/ f ′(r).
The function f (x) = arctan x is suitable for this experiment.

11. Using a function of your choice, verify numerically that the iterative method

xn+1 = xn − f (xn)√
[f ′(xn)]

2 − f (xn) f ′′(xn)

is cubically convergent at a simple root but only linearly convergent at a multiple root.

12. Test numerically whether Olver’s method, given by

xn+1 = xn − f (xn)

f ′(xn)
− 1

2

f ′′(xn)

f ′(xn)

[
f (xn)

f ′(xn)

]2

is cubically convergent to a root of f . Try to establish that it is.

13. (Continuation) Repeat for Halley’s method

xn+1 = xn − 1

an
with an = f ′(xn)

f (xn)
− 1

2

[
f ′′(xn)

f ′(xn)

]
14. (Moler-Morrison algorithm) Computing an approximation for

√
x2 + y2 does not

require square roots. It can be done as follows:

real function f (x, y)

integer n; real a, b, c, x, y
f ← max {|x |, |y|}
a ← min {|x |, |y|}
for n = 1 to 3 do

b ← (a/ f)2

c ← b/(4 + b)

f ← f + 2c f
a ← ca

end for
end function f

Test the algorithm on some simple cases such as (x, y) = (3, 4), (−5, 12), and (7, −24).
Then write a routine that uses the function f (x, y) for approximating the Euclidean
norm of a vector x = (x1, x2, . . . , xn); that is, the nonnegative number ‖x‖ = (

x2
1 +

x2
2 + · · · + x2

n

)1/2
.

15. Study the following functions by starting with any initial value of x0 in the domain
[0, 2] and iterating xn+1 = F(xn). First use a calculator and then a computer. Explain
the results.

a. Use the tent function

F(x) =
{

2x if 2x < 1

2x − 1 if 2x � 1

b. Repeat using the function

F(x) = 10x (modulo 1)

3.3 Secant Method 123

Hint: Don’t be surprised by chaotic behavior. The interested reader can learn more
about the dynamics of one-dimensional maps by reading papers such as the one by
Bassien [1998].

16. Show how the secant method can be used to solve systems of equations such as those
in Computer Problems 3.2.21–3.2.23.

17. (Student research project) Muller’s method is an algorithm for computing solutions
of an equation f (x) = 0. It is similar to the secant method in that it replaces f locally
by a simple function, and finds a root of it. Naturally, this step is repeated. The simple
function chosen in Muller’s method is a quadratic polynomial, p, that interpolates f
at the three most recent points. After p has been determined, its roots are computed,
and one of them is chosen as the next point in the sequence. Since this quadratic
function may have complex roots, the algorithm should be programmed with this in
mind. Suppose that points xn−2, xn−1, and xn have been computed. Set

p(x) = a(x − xn)(x − xn−1) + b(x − xn) + c

where a, b, and c are determined so that p interpolates f at the three points mentioned
previously. Then find the roots of p and take xn+1 to be the root of p closest to xn . At the
beginning, three points must be furnished by the user. Program the method, allowing
for complex numbers throughout. Test your program on the example

p(x) = x3 + x2 − 10x − 10

If the first three points are 1, 2, 3, then you should find that the polynomial is p(x) =
7(x − 3)(x − 2) + 14(x − 3) − 4 and x4 = 3.17971 086. Next, test your code on a
polynomial having real coefficients but some complex roots.

18. Program and test the code for the secant algorithm after incorporating the stopping
criterion described in the text.

19. Using mathematical software such as Matlab, Mathematica, and Maple, find the real
zero of the polynomial p(x) = x5 + x3 + 3. Attain more digits of accuracy than shown
in the solution to Example 1 in the text.

20. (Continuation) Using mathematical software that allows for complex roots, find all
zeros of the polynomial.

21. Program a hybrid method for solving several of the nonlinear problems given as exam-
ples in the text, and compare your results with those given.

22. Find the fixed points for each of the following functions:

a. ex + 1 b. e−x − x c. x2 − 4 sin x d. x3 + 6x2 + 11x − 6 e. sin x

23. For the nonlinear equation f (x) = x2 − x − 2 = 0 with roots 1 and 2, write four
fixed-point problems x = g(x) that are equivalent. Plot all of these, and show that they
all intersect the line x = y. Also, plot the convergence steps of each of these fixed-point
iterations for different starting values x (0). Show that the behavior of these fixed-point
schemes can vary wildly: slow convergence, fast convergence, and divergence.

4
Interpolation and Numerical
Differentiation

The viscosity of water has been experimentally determined at different
temperatures, as indicated in the following table:

Temperature 0◦ 5◦ 10◦ 15◦

Viscosity 1.792 1.519 1.308 1.140

From this table, how can we estimate a reasonable value for the viscosity
at temperature 8◦?

The method of polynomial interpolation, described in Section 4.1, can
be used to create a polynomial of degree 3 that assumes the values in the
table. This polynomial should provide acceptable intermediate values for
temperatures not tabulated. The value of that polynomial at the point 8◦

turns out to be 1.386.

4.1 Polynomial Interpolation
Preliminary Remarks
We pose three problems concerning the representation of functions to give an indication
of the subject matter in this chapter, in Chapter 9 (on splines), and in Chapter 12 (on least
squares).

First, suppose that we have a table of numerical values of a function:

x x0 x1 · · · xn

y y0 y1 · · · yn

Is it possible to find a simple and convenient formula that reproduces the given points
exactly?

The second problem is similar, but it is assumed that the given table of numerical values
is contaminated by errors, as might occur if the values came from a physical experiment.
Now we ask for a formula that represents the data (approximately) and, if possible, filters
out the errors.

As a third problem, a function f is given, perhaps in the form of a computer procedure,
but it is an expensive function to evaluate. In this case, we ask for another function g that
is simpler to evaluate and produces a reasonable approximation to f . Sometimes in this
problem, we want g to approximate f with full machine precision.

124

4.1 Polynomial Interpolation 125

In all of these problems, a simple function p can be obtained that represents or
approximates the given table or function f . The representation p can always be taken
to be a polynomial, although many other types of simple functions can also be used. Once
a simple function p has been obtained, it can be used in place of f in many situations. For
example, the integral of f could be estimated by the integral of p, and the latter should
generally be easier to evaluate.

In many situations, a polynomial solution to the problems outlined above will be unsat-
isfactory from a practical point of view, and other classes of functions must be considered.
In this book, one other class of versatile functions is discussed: the spline functions (see
Chapter 9). The present chapter concerns polynomials exclusively, and Chapter 12 dis-
cusses general linear families of functions, of which splines and polynomials are important
examples.

The obvious way in which a polynomial can fail as a practical solution to one of the
preceding problems is that its degree may be unreasonably high. For instance, if the table
considered contains 1,000 entries, a polynomial of degree 999 may be required to represent
it. Polynomials also may have the surprising defect of being highly oscillatory. If the table
is precisely represented by a polynomial p, then p(xi) = yi for 0 � i � n. For points other
than the given xi , however, p(x) may be a very poor representation of the function from
which the table arose. The example in Section 4.2 involving the Runge function illustrates
this phenomenon.

Polynomial Interpolation
We begin again with a table of values:

x x0 x1 · · · xn

y y0 y1 · · · yn

and assume that the xi ’s form a set of n + 1 distinct points. The table represents n + 1
points in the Cartesian plane, and we want to find a polynomial curve that passes through
all points. Thus, we seek to determine a polynomial that is defined for all x , and takes on
the corresponding values of yi for each of the n + 1 distinct xi ’s in this table. A polynomial
p for which p(xi) = yi when 0 � i � n is said to interpolate the table. The points xi are
called nodes.

Consider the first and simplest case, n = 0. Here, a constant function solves the prob-
lem. In other words, the polynomial p of degree 0 defined by the equation p(x) = y0 repro-
duces the one-node table.

The next simplest case occurs when n = 1. Since a straight line can be passed through
two points, a linear function is capable of solving the problem. Explicitly, the polynomial
p defined by

p(x) =
(

x − x1

x0 − x1

)
y0 +

(
x − x0

x1 − x0

)
y1

= y0 +
(

y1 − y0

x1 − x0

)
(x − x0)

is of first degree (at most) and reproduces the table. That means (in this case) that p(x0) = y0

and p(x1) = y1, as is easily verified. This p is used for linear interpolation.

126 Chapter 4 Interpolation and Numerical Differentiation

EXAMPLE 1 Find the polynomial of least degree that interpolates this table:

x 1.4 1.25

y 3.7 3.9

Solution By the equation above, the polynomial that is sought is

p(x) =
(

x − 1.25

1.4 − 1.25

)
3.7 +

(
x − 1.4

1.25 − 1.4

)
3.9

= 3.7 +
(

3.9 − 3.7

1.25 − 1.4

)
(x − 1.4)

= 3.7 − 4

3
(x − 1.4) ■

As we can see, an interpolating polynomial can be written in a variety of forms; among
these are those known as the Newton form and the Lagrange form. The Newton form is
probably the most convenient and efficient; however, conceptually, the Lagrange form has
several advantages. We begin with the Lagrange form, since it may be easier to understand.

Interpolating Polynomial: Lagrange Form
Suppose that we wish to interpolate arbitrary functions at a set of fixed nodes x0, x1, . . . , xn .
We first define a system of n + 1 special polynomials of degree n known as cardinal
polynomials in interpolation theory. These are denoted by �0, �1, . . . , �n and have the
property

�i (x j) = δi j =
{

0 if i �= j

1 if i = j

Once these are available, we can interpolate any function f by the Lagrange form of the
interpolation polynomial:

pn(x) =
n∑

i=0

�i (x) f (xi) (1)

This function pn , being a linear combination of the polynomials �i , is itself a polynomial
of degree at most n. Furthermore, when we evaluate pn at x j , we get f (x j):

pn(x j) =
n∑

i=0

�i (x j) f (xi) = � j (x j) f (x j) = f (x j)

Thus, pn is the interpolating polynomial for the function f at nodes x0, x1, . . . , xn . It remains
now only to write the formula for the cardinal polynomial �i , which is

�i (x) =
n∏

j �=i
j=0

(
x − x j

xi − x j

)
(0 � i � n) (2)

4.1 Polynomial Interpolation 127

This formula indicates that �i (x) is the product of n linear factors:

�i (x) =
(

x − x0

xi − x0

)(
x − x1

xi − x1

)
· · ·

(
x − xi−1

xi − xi−1

)(
x − xi+1

xi − xi+1

)
· · ·

(
x − xn

xi − xn

)
(The denominators are just numbers; the variable x occurs only in the numerators.) Thus,
�i is a polynomial of degree n. Notice that when �i (x) is evaluated at x = xi , each factor in
the preceding equation becomes 1. Hence, �i (xi) = 1. But when �i (x) is evaluated at any
other node, say, x j , one of the factors in the above equation will be 0, and �i (x j) = 0, for
i �= j .

Figure 4.1 shows the first few Lagrange cardinal polynomials: �0(x), �1(x), �2(x),
�3(x), �4(x), and �5(x).

FIGURE 4.1

First few
Lagrange

cardinal
polynomials �1 1

0

1

x

�1

�0

�2 �3 �4

�0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8
�0.6

�0.4

�0.2

0.2

0.4

0.6

0.8

1.2

y

EXAMPLE 2 Write out the cardinal polynomials appropriate to the problem of interpolating the following
table, and give the Lagrange form of the interpolating polynomial:

x 1
3

1
4 1

f (x) 2 −1 7

Solution Using Equation (2), we have

�0(x) =
(
x − 1

4

)
(x − 1)(

1
3 − 1

4

)(
1
3 − 1

) = −18

(
x − 1

4

)
(x − 1)

�1(x) =
(
x − 1

3

)
(x − 1)(

1
4 − 1

3

)(
1
4 − 1

) = 16

(
x − 1

3

)
(x − 1)

�2(x) =
(
x − 1

3

)(
x − 1

4

)(
1 − 1

3

)(
1 − 1

4

) = 2

(
x − 1

3

)(
x − 1

4

)
Therefore, the interpolating polynomial in Lagrange’s form is

p2(x) = −36

(
x − 1

4

)
(x − 1) − 16

(
x − 1

3

)
(x − 1) + 14

(
x − 1

3

)(
x − 1

4

)
■

128 Chapter 4 Interpolation and Numerical Differentiation

Existence of Interpolating Polynomial
The Lagrange interpolation formula proves the existence of an interpolating polynomial for
any table of values. There is another constructive way of proving this fact, and it leads to a
different formula.

Suppose that we have succeeded in finding a polynomial p that reproduces part of the
table. Assume, say, that p(xi) = yi for 0 � i � k. We shall attempt to add to p another term
that will enable the new polynomial to reproduce one more entry in the table. We consider

p(x) + c(x − x0)(x − x1) · · · (x − xk)

where c is a constant to be determined. This is surely a polynomial. It also reproduces the
first k points in the table because p itself does so, and the added portion takes the value 0
at each of the points x0, x1, . . . , xk . (Its form is chosen for precisely this reason.) Now we
adjust the parameter c so that the new polynomial takes the value yk+1 at xk+1. Imposing
this condition, we obtain

p(xk+1) + c(xk+1 − x0)(xk+1 − x1) · · · (xk+1 − xk) = yk+1

The proper value of c can be obtained from this equation because none of the factors
xk+1 − xi , for 0 � i � k, can be zero. Remember our original assumption that the xi ’s are all
distinct.

This analysis is an example of inductive reasoning. We have shown that the process
can be started and that it can be continued. Hence, the following formal statement has been
partially justified:

■ THEOREM 1 THEOREM ON EXISTENCE OF POLYNOMIAL INTERPOLATION

If points x0, x1, . . . , xn are distinct, then for arbitrary real values y0, y1, . . . , yn , there
is a unique polynomial p of degree at most n such that p(xi) = yi for 0 � i � n.

Two parts of this formal statement must still be established. First, the degree of the poly-
nomial increases by at most 1 in each step of the inductive argument. At the beginning, the
degree was at most 0, so at the end, the degree is at most n.

Second, we establish the uniqueness of the polynomial p. Suppose that another poly-
nomial q claims to accomplish what p does; that is, q is also of degree at most n and satisfies
q(xi) = yi for 0 � i � n. Then the polynomial p − q is of degree at most n and takes the
value 0 at x0, x1, . . . , xn . Recall, however, that a nonzero polynomial of degree n can have
at most n roots. We conclude that p = q, which establishes the uniqueness of p.

Interpolating Polynomial: Newton Form
In Example 2, we found the Lagrange form of the interpolating polynomial:

p2(x) = −36

(
x − 1

4

)
(x − 1) − 16

(
x − 1

3

)
(x − 1) + 14

(
x − 1

3

)(
x − 1

4

)
It can be simplified to

p2(x) = −79

6
+ 349

6
x − 38x2

4.1 Polynomial Interpolation 129

We will now learn that this polynomial can be written in another form called the nested
Newton form:

p2(x) = 2 +
(

x − 1

3

)[
36 +

(
x − 1

4

)
(−38)

]
It involves the fewest arithmetic operations and is recommended for evaluating p2(x). It
can not be overemphasized that the Newton and Lagrange forms are just two different
derivations for precisely the same polynomial. The Newton form has the advantage of easy
extensibility to accommodate additional data points.

The preceding discussion provides a method for constructing an interpolating polyno-
mial. The method is known as the Newton algorithm, and the resulting polynomial is the
Newton form of the interpolating polynomial.

EXAMPLE 3 Using the Newton algorithm, find the interpolating polynomial of least degree for this table:

x 0 1 −1 2 −2

y −5 −3 −15 39 −9

Solution In the construction, five successive polynomials will appear; these are labeled p0, p1, p2, p3,
and p4. The polynomial p0 is defined to be

p0(x) = −5

The polynomial p1 has the form

p1(x) = p0(x) + c(x − x0) = −5 + c(x − 0)

The interpolation condition placed on p1 is that p1(1) = −3. Therefore, we have −5 +
c(1 − 0) = −3. Hence, c = 2, and p1 is

p1(x) = −5 + 2x

The polynomial p2 has the form

p2(x) = p1(x) + c(x − x0)(x − x1) = −5 + 2x + cx(x − 1)

The interpolation condition placed on p2 is that p2(−1) = −15. Hence, we have −5 +
2(−1) + c(−1)(−1 − 1) = −15. This yields c = −4, so

p2(x) = −5 + 2x − 4x(x − 1)

The remaining steps are similar, and the final result is the Newton form of the interpolating
polynomial:

p4(x) = −5 + 2x − 4x(x − 1) + 8x(x − 1)(x + 1) + 3x(x − 1)(x + 1)(x − 2) ■

Later, we will develop a better algorithm for constructing the Newton interpolating
polynomial. Nevertheless, the method just explained is a systematic one and involves
very little computation. An important feature to notice is that each new polynomial in the
algorithm is obtained from its predecessor by adding a new term. Thus, at the end, the final
polynomial exhibits all the previous polynomials as constituents.

130 Chapter 4 Interpolation and Numerical Differentiation

Nested Form
Before continuing, let us rewrite the Newton form of the interpolating polynomial for
efficient evaluation.

EXAMPLE 4 Write the polynomial p4 of Example 3 in nested form and use it to evaluate p4(3).

Solution We write p4 as

p4(x) = −5 + x(2 + (x − 1)(−4 + (x + 1)(8 + (x − 2)3)))

Therefore,

p4(3) = −5 + 3(2 + 2(−4 + 4(8 + 3)))

= 241

Another solution, also in nested form, is

p4(x) = −5 + x(4 + x(−7 + x(2 + 3x)))

from which we obtain

p4(3) = −5 + 3(4 + 3(−7 + 3(2 + 3 · 3))) = 241

This form is obtained by expanding and systematic factoring of the original polynomial. It
is also known as a nested form and its evaluation is by nested multiplication. ■

To describe nested multiplication in a formal way (so that it can be translated into a
code), consider a general polynomial in the Newton form. It might be

p(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + · · ·
+ an(x − x0)(x − x1) · · · (x − xn−1)

The nested form of p(x) is

p(x) = a0 + (x − x0)(a1 + (x − x1)(a2 + · · · + (x − xn−1)an)) · · ·))
= (· · · ((an(x − xn−1) + an−1)(x − xn−2) + an−2) · · ·)(x − x0) + a0

The Newton interpolation polynomial can be written succinctly as

pn(x) =
n∑

i=0

ai

i−1∏
j=0

(x − x j) (3)

Here
∏−1

j=0(x − x j) is interpreted to be 1. Also, we can write it as

pn(x) =
n∑

i=0

aiπi (x)

where

πi (x) =
i−1∏
j=0

(x − x j) (4)

Figure 4.2 shows the first few Newton polynomials: π0(x), π1(x), π2(x), π3(x), π4(x), and
π5(x).

4.1 Polynomial Interpolation 131

FIGURE 4.2

First few
Newton

polynomials �1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1
�0.5

0

0.5

1

1.5

2

2.5

3

�0

�1 �2 �3 �4

x

y

In evaluating p(t) for a given numerical value of t , we naturally start with the innermost
parentheses, forming successively the following quantities:

v0 = an

v1 = v0(t − xn−1) + an−1

v2 = v1(t − xn−2) + an−2

...

vn = vn−1(t − x0) + a0

The quantity vn is now p(t). In the following pseudocode, a subscripted variable is not
needed for vi . Instead, we can write

integer i, n; real t, v; real array (ai)0:n, (xi)0:n

v ← an

for i = n − 1 to 0 step −1 do
v ← v(t − xi) + ai

end for

Here, the array (ai)0:n contains the n+1 coefficients of the Newton form of the interpolating
polynomial (3) of degree at most n, and the array (xi)0:n contains the n + 1 nodes xi .

Calculating Coefficients ai Using Divided Differences
We turn now to the problem of determining the coefficients a0, a1, . . . , an efficiently. Again
we start with a table of values of a function f :

x x0 x1 x2 · · · xn

f (x) f (x0) f (x1) f (x2) · · · f (xn)

The points x0, x1, . . . , xn are assumed to be distinct, but no assumption is made about their
positions on the real line.

132 Chapter 4 Interpolation and Numerical Differentiation

Previously, we established that for each n = 0, 1, . . . , there exists a unique polynomial
pn such that

• The degree of pn is at most n.

• pn(xi) = f (xi) for i = 0, 1, . . . , n.

It was shown that pn can be expressed in the Newton form

pn(x) = a0 + a1(x − x0) + a2(x − x0)(x − x1) + · · ·
+ an(x − x0) · · · (x − xn−1)

A crucial observation about pn is that the coefficients a0, a1, . . . do not depend on n. In other
words, pn is obtained from pn−1 by adding one more term, without altering the coefficients
already present in pn−1 itself. This is because we began with the hope that pn could be
expressed in the form

pn(x) = pn−1(x) + an(x − x0) · · · (x − xn−1)

and discovered that it was indeed possible.
A way of systematically determining the unknown coefficients a0, a1, . . . , an is to set

x equal in turn to x0, x1, . . . , xn in the Newton form (3) and to write down the resulting
equations: ⎧⎪⎪⎪⎨⎪⎪⎪⎩

f (x0) = a0

f (x1) = a0 + a1(x1 − x0)

f (x2) = a0 + a1(x2 − x0) + a2(x2 − x0)(x2 − x1)

etc.

(5)

The compact form of Equations (5) is

f (xk) =
k∑

i=0

ai

i−1∏
j=0

(xk − x j) (0 � k � n) (6)

Equations (5) can be solved for the ai ’s in turn, starting with a0. Then we see that a0 depends
on f (x0), that a1 depends on f (x0) and f (x1), and so on. In general, ak depends on f (x0),
f (x1), . . . , f (xk). In other words, ak depends on the values of f at the nodes x0, x1, . . . , xk .
The traditional notation is

ak = f [x0, x1, . . . , xk] (7)

This equation defines f [x0, x1, . . . , xk]. The quantity f [x0, x1, . . . , xk] is called the divided
difference of order k for f . Notice also that the coefficients a0, a1, . . . , ak are uniquely
determined by System (6). Indeed, there is no possible choice for a0 other than a0 = f (x0).
Similarly, there is now no choice for a1 other than [f (x1) − a0]/(x1 − x0) and so on. Using
Equations (5), we see that the first few divided differences can be written as

a0 = f (x0)

a1 = f (x1) − a0

x1 − x0
= f (x1) − f (x0)

x1 − x0

a2 = f (x2) − a0 − a1(x2 − x0)

(x2 − x0)(x2 − x1)
=

f (x2) − f (x1)

x2 − x1
− f (x1) − f (x0)

x1 − x0

x2 − x0

4.1 Polynomial Interpolation 133

EXAMPLE 5 For the table
x 1 −4 0

f (x) 3 13 −23

determine the quantities f [x0], f [x0, x1], and f [x0, x1, x2].

Solution We write out the system of Equations (5) for this concrete case:⎧⎪⎨⎪⎩
3 = a0

13 = a0 + a1(−5)

−23 = a0 + a1(−1) + a2(−1)(4)

The solution is a0 = 3, a1 = −2, and a2 = 7. Hence, for this function, f [1] = 3,
f [1, −4] = −2, and f [1, −4, 0] = 7. ■

With this new notation, the Newton form of the interpolating polynomial takes the
form

pn(x) =
n∑

i=0

{
f [x0, x1, . . . , xi]

i−1∏
j=0

(x − x j)

}
(8)

with the usual convention that
∏−1

j=0(x − x j) = 1. Notice that the coefficient of xn in pn is
f [x0, x1, . . . , xn] because the term xn occurs only in

∏n−1
j=0(x − x j). It follows that if f is

a polynomial of degree � n − 1, then f [x0, x1, . . . , xn] = 0.
We return to the question of how to compute the required divided differences

f [x0, x1, . . . , xk]. From System (5) or (6), it is evident that this computation can be per-
formed recursively. We simply solve Equation (6) for ak as follows:

f (xk) = ak

k−1∏
j=0

(xk − x j) +
k−1∑
i=0

ai

i−1∏
j=0

(xk − x j)

and

ak =
f (xk) −

k−1∑
i=0

ai

i−1∏
j=0

(xk − x j)

k−1∏
j=0

(xk − x j)

Using Equation (7), we have

f [x0, x1, . . . , xk] =
f (xk) −

k−1∑
i=0

f [x0, x1, . . . , xi]
i−1∏
j=0

(xk − x j)

k−1∏
j=0

(xk − x j)

(9)

■ ALGORITHM 1 An Algorithm for Computing the Divided Differences of f

• Set f [x0] = f (x0).
(10)

• For k = 1, 2, . . . , n, compute f [x0, x1, . . . , xk] by Equation (9).

134 Chapter 4 Interpolation and Numerical Differentiation

EXAMPLE 6 Using Algorithm (10), write out the formulas for f [x0], f [x0, x1], f [x0, x1, x2], and
f [x0, x1, x2, x3].

Solution f [x0] = f (x0)

f [x0, x1] = f (x1) − f [x0]

x1 − x0

f [x0, x1, x2] = f (x2) − f [x0] − f [x0, x1](x2 − x0)

(x2 − x0)(x2 − x1)

f [x0, x1, x2, x3] = f (x3) − f [x0] − f [x0, x1](x3 − x0) − f [x0, x1, x2](x3 − x0)(x3 − x1)

(x3 − x0)(x3 − x1)(x3 − x2)

■

Algorithm (10) is easily programmed and is capable of computing the divided dif-
ferences f [x0], f [x0, x1], . . . , f [x0, x1, . . . , xn] at the cost of 1

2 n(3n + 1) additions,
(n − 1)(n − 2) multiplications, and n divisions excluding arithmetic operations on the
indices. A more refined method will now be presented for which the pseudocode requires
only three statements (!) and costs only 1

2 n(n + 1) divisions and n(n + 1) additions.
At the heart of the new method is the following remarkable theorem:

■ THEOREM 2 RECURSIVE PROPERTY OF DIVIDED DIFFERENCES

The divided differences obey the formula

f [x0, x1, . . . , xk] = f [x1, x2, . . . , xk] − f [x0, x1, . . . , xk−1]

xk − x0
(11)

Proof Since f [x0, x1, . . . , xk] was defined to be equal to the coefficient ak in the Newton form
of the interpolating polynomial pk of Equation (3), we can say that f [x0, x1, . . . , xk] is the
coefficient of xk in the polynomial pk of degree � k, which interpolates f at x0, x1, . . . , xk .
Similarly, f [x1, x2, . . . , xk] is the coefficient of xk−1 in the polynomial q of degree � k − 1,
which interpolates f at x1, x2, . . . , xk . Likewise, f [x0, x1, . . . , xk−1] is the coefficient of
xk−1 in the polynomial pk−1 of degree � k −1, which interpolates f at x0, x1, . . . , xk−1. The
three polynomials pk , q, and pk−1 are intimately related. In fact,

pk(x) = q(x) + x − xk

xk − x0
[q(x) − pk−1(x)] (12)

To establish Equation (12), observe that the right side is a polynomial of degree at most k.
Evaluating it at xi , for 1 � i � k − 1, results in f (xi):

q(xi) + xi − xk

xk − x0
[q(xi) − pk−1(xi)] = f (xi) + xi − xk

xk − x0
[f (xi) − f (xi)]

= f (xi)

Similarly, evaluating it at x0 and xk gives f (x0) and f (xk), respectively. By the uniqueness of
interpolating polynomials, the right side of Equation (12) must be pk(x), and Equation (12)
is established.

4.1 Polynomial Interpolation 135

Completing the argument to justify Equation (11), we take the coefficient of xk on both
sides of Equation (12). The result is Equation (11). Indeed, we see that f [x1, x2, . . . , xk] is
the coefficient of xk−1 in q, and f [x0, x1, . . . , xk−1] is the coefficient of xk−1 in pk−1. ■

Notice that f [x0, x1, . . . , xk] is not changed if the nodes x0, x1, . . . , xk are permuted:
thus, for example, f [x0, x1, x2] = f [x1, x2, x0]. The reason is that f [x0, x1, x2] is the coeffi-
cient of x2 in the quadratic polynomial interpolating f at x0, x1, x2, whereas f [x1, x2, x0] is
the coefficient of x2 in the quadratic polynomial interpolating f at x1, x2, x0. These two poly-
nomials are, of course, the same. A formal statement in mathematical language is as follows:

■ THEOREM 3 INVARIANCE THEOREM

The divided difference f [x0, x1, . . . , xk] is invariant under all permutations of the
arguments x0, x1, . . . , xk .

Since the variables x0, x1, . . . , xk and k are arbitrary, the recursive Formula (11) can
also be written as

f [xi , xi+1, . . . , x j−1, x j] = f [xi+1, xi+2, . . . , x j] − f [xi , xi+1, . . . , x j−1]

x j − xi
(13)

The first three divided differences are thus

f [xi] = f (xi)

f [xi , xi+1] = f [xi+1] − f [xi]

xi+1 − xi

f [xi , xi+1, xi+2] = f [xi+1, xi+2] − f [xi , xi+1]

xi+2 − xi

Using Formula (13), we can construct a divided-difference table for a function f . It is
customary to arrange it as follows (here n = 3):

x f [] f [,] f [, ,] f [, , ,]
x0 f [x0]

f [x0, x1]
x1 f [x1] f [x0, x1, x2]

f [x1, x2] f [x0, x1, x2, x3]
x2 f [x2] f [x1, x2, x3]

f [x2, x3]
x3 f [x3]

In the table, the coefficients along the top diagonal are the ones needed to form the Newton
form of the interpolating polynomial (3).

EXAMPLE 7 Construct a divided-difference diagram for the function f given in the following table, and
write out the Newton form of the interpolating polynomial.

x 1 3
2 0 2

f (x) 3 13
4 3 5

3

136 Chapter 4 Interpolation and Numerical Differentiation

Solution The first entry is f [x0, x1] = (
13
4 − 3

)
/
(

3
2 − 1

) = 1
2 . After completion of column 3, the

first entry in column 4 is

f [x0, x1, x2] = f [x1, x2] − f [x0, x1]

x2 − x0
=

1
6 − 1

2

0 − 1
= 1

3

The complete diagram is

x f [] f [,] f [, ,] f [, , ,]

1 3
1
2

3
2

13
4

1
3

1
6 −2

0 3 − 5
3− 2

3
2 5

3

Thus, we obtain

p3(x) = 3 + 1
2 (x − 1) + 1

3 (x − 1)
(
x − 3

2

)− 2(x − 1)
(
x − 3

2

)
x ■

Algorithms and Pseudocode
Turning next to algorithms, we suppose that a table for f is given at points x0, x1, . . . , xn and
that all the divided differences ai j ≡ f [xi , xi+1, . . . , x j] are to be computed. The following
pseudocode accomplishes this:

integer i, j, n; real array (ai j)0:n×0:n, (xi)0:n

for i = 0 to n do
ai0 ← f (xi)

end for
for j = 1 to n do

for i = 0 to n − j do
ai j ← (ai+1, j−1 − ai, j−1)/(xi+ j − xi)

end for
end for

Observe that the coefficients of the interpolating polynomial (3) are stored in the first row
of the array (ai j)0:n×0:n .

If the divided differences are being computed for use only in constructing the Newton
form of the interpolation polynomial

pn(x) =
n∑

i=0

ai

i−1∏
j=0

(x − x j)

where ai = f [x0, x1, . . . , xi], there is no need to store all of them. Only f [x0], f [x0, x1], . . . ,
f [x0, x1, . . . , xn] need to be stored.

When a one-dimensional array (ai)0:n is used, the divided differences can be overwritten
each time from the last storage location backward so that, finally, only the desired coefficients

4.1 Polynomial Interpolation 137

remain. In this case, the amount of computing is the same as in the preceding case, but the
storage requirements are less. (Why?) Here is a pseudocode to do this:

integer i, j, n; real array (ai)0:n, (xi)0:n

for i = 0 to n do
ai ← f (xi)

end for
for j = 1 to n do

for i = n to j step −1 do
ai ← (ai − ai−1)/(xi − xi− j)

end for
end for

This algorithm is more intricate, and the reader is invited to verify it—say, in the case n = 3.
For the numerical experiments suggested in the computer problems, the following two

procedures should be satisfactory. The first is called Coef. It requires as input the number
n and tabular values in the arrays (xi) and (yi). Remember that the number of points in
the table is n + 1. The procedure then computes the coefficients required in the Newton
interpolating polynomial, storing them in the array (ai).

procedure Coef (n, (xi), (yi), (ai))

integer i, j, n; real array (xi)0:n, (yi)0:n, (ai)0:n

for i = 0 to n do
ai ← yi

end for
for j = 1 to n do

for i = n to j step −1 do
ai ← (ai − ai−1)/(xi − xi− j)

end for
end for
end procedure Coef

The second is function Eval. It requires as input the array (xi) from the original table and
the array (ai), which is output from Coef. The array (ai) contains the coefficients for the
Newton form of the interpolation polynomial. Finally, as input, a single real value for t is
given. The function then returns the value of the interpolating polynomial at t .

real function Eval(n, (xi), (ai), t)
integer i, n; real t, temp; real array (xi)0:n, (ai)0:n

temp ← an

for i = n − 1 to 0 step −1 do
temp ← (temp)(t − xi) + ai

end for
Eval ← temp
end function Eval

138 Chapter 4 Interpolation and Numerical Differentiation

Since the coefficients of the interpolating polynomial need be computed only once, we call
Coef first, and then all subsequent calls for evaluating this polynomial are accomplished
with Eval. Notice that only the t argument should be changed between successive calls to
function Eval.

EXAMPLE 8 Write pseudocode for the Newton form of the interpolating polynomial p for sin x at
ten equidistant points in the interval [0, 1.6875]. The code finds the maximum value of
| sin x − p(x)| over a finer set of equally spaced points in the same interval.

Solution If we take ten points, including the ends of the interval, then we create nine subintervals,
each of length h = 0.1875. The points are then xi = ih for i = 0, 1, . . . , 9. After obtaining
the polynomial, we divide each subinterval into four panels, and we evaluate | sin x − p(x)|
at 37 points (called t in the pseudocode). These are t j = jh/4 for j = 0, 1, . . . , 36. Here is
a suitable main program in pseudocode that calls the procedures Coef and Eval previously
given:

program Test Coef Eval
integer j, k, n, jmax; real e, h, p, emax, pmax, tmax,
real array (xi)0:n, (yi)0:n, (ai)0:n

n ← 9
h ← 1.6875/n
for k = 0 to n do

xk ← kh
yk ← sin(xk)

end for
call Coef (n, (xi), (yi), (ai))

output (ai); emax ← 0
for j = 0 to 4n do

t ← jh/4
p ← Eval(n, (xi)n, (ai)n, t)
e ← |sin(t) − p|
output j, t, p, e
if e > emax then

jmax ← j ; tmax ← t ; pmax ← p; emax ← e
end if

end for
output jmax, tmax, pmax, emax

end program Test Coef Eval

The first coefficient in the Newton form of the interpolating polynomial is 0 (why?), and the
others range in magnitude from approximately 0.99 to 0.18 × 10−5. The deviation between
sin x and p(x) is practically zero at each interpolation node. (Because of roundoff errors,
they are not precisely zero.) From the computer output, the largest error is at jmax = 35,
where sin(1.64062 5) ≈ 0.99756 31 with an error of 1.19 × 10−7. ■

4.1 Polynomial Interpolation 139

Vandermonde Matrix
Another view of interpolation is that for a given set of n + 1 data points (x0, y0), (x1, y1),
. . . , (xn, yn), we want to express an interpolating function f (x) as a linear combination of
a set of basis functions ϕ0, ϕ1, ϕ2, . . . , ϕn so that

f (x) ≈ c0ϕ0(x) + c1ϕ1(x) + c2ϕ2(x) + · · · + cnϕn(x)

Here the coefficients c0, c1, c2, . . . , cn are to be determined. We want the function f to
interpolate the data (xi , yi). This means that we have linear equations of the form

f (xi) = c0ϕ0(xi) + c1ϕ1(xi) + c2ϕ2(xi) + · · · + cnϕn(xi) = yi

for each i = 0, 1, 2, . . . , n. This is a system of linear equations

Ac = y

Here, the entries in the coefficient matrix A are given by ai j = ϕ j (xi), which is the value of
the j th basis function evaluated at the i th data point. The right-hand side vector y contains
the known data values yi , and the components of the vector c are the unknown coefficients
ci . Systems of linear equations are discussed in Chapters 7 and 8.

Polynomials are the simplest and most common basis functions. The natural basis for
Pn consists of the monomials

ϕ0(x) = 1, ϕ1(x) = x, ϕ2(x) = x2, . . . , ϕn(x) = xn

Figure 4.3 shows the first few monomials: 1, x , x2, x3, x4, and x5.

FIGURE 4.3

First few
monomials �1 �0.8 �0.6 �0.4 �0.2 0 0.2 0.4 0.6 0.8 1

�1

�0.8

�0.6

�0.4

�0.2

0

0.2

0.4

0.6

0.8

1
1

x

x2

x3

x4

x

y

Consequently, a given polynomial pn has the form

pn(x) = c0 + c1x + c2x2 + · · · + cn xn

140 Chapter 4 Interpolation and Numerical Differentiation

The corresponding linear system Ac = y has the form⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 x0 x2
0 · · · xn

0

1 x1 x2
1 · · · xn

1

1 x2 x2
2 · · · xn

2

...
...

...
. . .

...

1 xn x2
n · · · xn

n

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

c0

c1

c2

...

cn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y0

y1

y2

...

yn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The coefficient matrix is called a Vandermonde matrix. It can be shown that this matrix is
nonsingular provided that the points x0, x1, x2, . . . , xn are distinct. So we can, in theory,
solve the system for the polynomial interpolant. Although the Vandermonde matrix is non-
singular, it is ill-conditioned as n increases. For large n, the monomials are less distinguish-
able from one another, as shown in Figure 4.4. Moreover, the columns of the Vandermonde
become nearly linearly dependent in this case. High-degree polynomials often oscillate
wildly and are highly sensitive to small changes in the data.

FIGURE 4.4

First few
Chebyshev

polynomials

1

0.5

0

�0.5

�1
�1 �0.5 0.5 10

T0

T1

T2

T3

T4

T5

x

y

As Figures 4.1, 4.2, and 4.3 show, we have discussed three choices for the basis func-
tions: the Lagrange cardinal polynomials �i (x), the Newton polynomials πi (x), and the
monomials. It turns out that there are better choices for the basis functions; namely, the
Chebyshev polynomials have more desirable features.

The Chebyshev polynomials play an important role in mathematics because they have
several special properties such as the recursive relation{

T0(x) = 1, T1(x) = x

Ti (x) = 2xTi−1(x) − Ti−2(x)

for i = 2, 3, 4, and so on. Thus, the first five Chebyshev polynomials are

T0(x) = 1, T1(x) = x, T2(x) = 2x2 − 1, T3(x) = 4x3 − 3x

T4(x) = 8x4 − 8x2 + 1, T5(x) = 16x5 − 20x3 + 5x

These curves for these polynomials, as is shown in Figure 4.4, are quite different from
one another. The Chebyshev polynomials are usually employed on the interval [−1, 1].

4.1 Polynomial Interpolation 141

With changes of variable, they can be used on any interval, but the results will be more
complicated.

One of the important properties of the Chebyshev polynomials is the equal oscillation
property. Notice in Figure 4.4 that successive extreme points of the Chebyshev polynomials
are equal in magnitude and alternate in sign. This property tends to distribute the error
uniformly when the Chebyshev polynomials are used as the basis functions. In polynomial
interpolation for continuous functions, it is particularly advantageous to select as the inter-
polation points the roots or the extreme points of a Chebyshev polynomial. This causes the
maximum error over the interval of interpolation to be minimized. An example of this is
given in Section 4.2. In Section 12.2, we discuss Chebyshev polynomials in more detail.

Inverse Interpolation
A process called inverse interpolation is often used to approximate an inverse function.
Suppose that values yi = f (xi) have been computed at x0, x1, . . . , xn . Using the table

y y0 y1 · · · yn

x x0 x1 · · · xn

we form the interpolation polynomial

p(y) =
n∑

i=0

ci

i−1∏
j=0

(y − y j)

The original relationship, y = f (x), has an inverse, under certain conditions. This inverse
is being approximated by x = p(y). Procedures Coef and Eval can be used to carry out the
inverse interpolation by reversing the arguments x and y in the calling sequence for Coef.

Inverse interpolation can be used to find where a given function f has a root or zero.
This means inverting the equation f (x) = 0. We propose to do this by creating a table of
values (f (xi), xi) and interpolating with a polynomial, p. Thus, p(yi) = xi . The points xi

should be chosen near the unknown root, r . The approximate root is then given by r ≈ p(0).

See Figure 4.5 for an example of function y = f (x) and its inverse function x = g(y) with
the root r = g(0).

FIGURE 4.5

Function
y = f (x) and

inverse function
x = g(y)

x
r

y

y � f(x)

0
y

x

x � g(y)

r � g(0)

f(r) � 0 0

EXAMPLE 9 For a concrete case, let the table of known values be

y −0.57892 00 −0.36263 70 −0.18491 60 −0.03406 42 0.09698 58

x 1.0 2.0 3.0 4.0 5.0

Find the inverse interpolation polynomial.

142 Chapter 4 Interpolation and Numerical Differentiation

Solution The nodes in this problem are the points in the row of the table headed y, and the function
values being interpolated are in the x row. The resulting polynomial is

p(y) = 0.25y4 + 1.2y3 + 3.69y2 + 7.39y + 4.24747 0086

and p(0) = 4.24747 0086. Only the last coefficient is shown with all the digits carried in
the calculation, as it is the only one needed for the problem at hand. ■

Polynomial Interpolation by Neville’s Algorithm
Another method of obtaining a polynomial interpolant from a given table of values

x x0 x1 · · · xn

y y0 y1 · · · yn

was given by Neville. It builds the polynomial in steps, just as the Newton algorithm does.
The constituent polynomials have interpolating properties of their own.

Let Pa,b,...,s(x) be the polynomial interpolating the given data at a sequence of nodes
xa, xb, . . . , xs . We start with constant polynomials Pi (x) = f (xi). Selecting two nodes xi

and x j with i > j , we define recursively

Pu,...,v(x) =
(

x − x j

xi − x j

)
Pu,..., j−1, j+1,...,v(x) +

(
xi − x

xi − x j

)
Pu,...,i−1,i+1,...,v(x)

Using this formula repeatedly, we can create an array of polynomials:

x0 P0(x)

x1 P1(x) P0,1(x)

x2 P2(x) P1,2(x) P0,1,2(x)

x3 P3(x) P2,3(x) P1,2,3(x) P0,1,2,3(x)

x4 P4(x) P3,4(x) P2,3,4(x) P1,2,3,4(x) P0,1,2,3,4(x)

Here, each successive polynomial can be determined from two adjacent polynomials in the
previous column.

We can simplify the notation by letting

Si j (x) = Pi− j,i− j+1,...,i−1,i (x)

where Si j (x) for i � j denotes the interpolating polynomial of degree j on the j + 1 nodes
xi− j , xi− j+1, . . . , xi−1, xi . Next we can rewrite the recurrence relation above as

Si j (x) =
(

x − xi− j

xi − xi− j

)
Si, j−1(x) +

(
xi − x

xi − xi− j

)
Si−1, j−1(x)

So the displayed array becomes

x0 S00(x)

x1 S10(x) S11(x)

x2 S20(x) S21(x) S22(x)

x3 S30(x) S31(x) S32(x) S33(x)

x4 S40(x) S41(x) S42(x) S43(x) S44(x)

4.1 Polynomial Interpolation 143

To prove some theoretical results, we change the notation by making the superscript
the degree of the polynomial. At the beginning, we define constant polynomials (i.e., poly-
nomials of degree 0) as P0

i (x) = yi for 0 � i � n. Then we define

P j
i (x) =

(
x − xi− j

xi − xi− j

)
P j−1

i (x) +
(

xi − x

xi − xi− j

)
P j−1

i−1 (x) (14)

In this equation, the superscripts are simply indices, not exponents. The range of j is
1 � j � n, while that of i is j � i � n. Formula (14) will be seen again, in slightly different
form, in the theory of B splines in Section 9.3.

The interpolation properties of these polynomials are given in the next result.

■ THEOREM 4 INTERPOLATION PROPERTIES

The polynomials P j
i defined above interpolate as follows:

P j
i (xk) = yk (0 � i − j � k � i � n) (15)

Proof We use induction on j . When j = 0, the assertion in Equation (15) reads

P0
i (xk) = yk (0 � i � k � i � n)

In other words, P0
i (xi) = yi , which is true by the definition of P0

i .
Now assume, as an induction hypothesis, that for some j � 1,

P j−1
i (xk) = yk (0 � i − j + 1 � k � i � n)

To prove the next case in Equation (15), we begin by verifying the two extreme cases for k,
namely, k = i − j and k = i . We have, by Equation (14),

P j
i (xi− j) =

(
xi − xi− j

xi − xi− j

)
P j−1

i−1 (xi− j)

= P j−1
i−1 (xi− j) = yi− j

The last equality is justified by the induction hypothesis. It is necessary to observe that
0 � i − 1 − j + 1 � i − j � i − 1 � n. In the same way, we compute

P j
i (xi) =

(
xi − xi− j

xi − xi− j

)
P j−1

i (xi)

= P j−1
i (xi) = yi

Here, in using the induction hypothesis, observe that 0 � i − j + 1 � i � i � n.
Now let i − j < k < i . Then

P j
i (xk) =

(
xk − xi− j

xi − xi− j

)
P j−1

i (xk) +
(

xi − xk

xi − xi− j

)
P j−1

i−1 (xk)

144 Chapter 4 Interpolation and Numerical Differentiation

In this equation, P j−1
i (xk) = yk by the induction hypothesis, because 0 � i− j+1 � k � i � n.

Likewise, P j−1
i−1 (xk) = yk because 0 � i − 1 − j + 1 � k � i − 1 � n. Thus, we have

P j
i (xk) =

(
xk − xi− j

xi − xi− j

)
yk +

(
xi − xk

xi − xi− j

)
yk = yk ■

An algorithm follows in pseudocode to evaluate Pn
0 (t) when a table of values is given:

integer i, j, n; real array (xi)0:n, (yi)0:n, (Si j)0:n×0:n

for i = 0 to n
Si0 ← yi

end for
for j = 1 to n

for i = j to n
Si j ← [

(t − xi− j)Si, j−1 + (xi − t)Si−1, j−1

] /
(xi − xi− j)

end for
end for
return S0n

We begin the algorithm by finding the node nearest the point t at which the evaluation is to
be made. In general, interpolation is more accurate when this is done.

Interpolation of Bivariate Functions
The methods we have discussed for interpolating functions of one variable by polynomials
extend to some cases of functions of two or more variables. An important case occurs when
a function (x, y) �→ f (x, y) is to be approximated on a rectangle. This leads to what is
known as tensor-product interpolation. Suppose the rectangle is the Cartesian product of
two intervals: [a, b]× [α, β]. That is, the variables x and y run over the intervals [a, b], and
[α, β], respectively. Select n nodes xi in [a, b], and define the Lagrangian polynomials

�i (x) =
n∏

j �=i
j=1

x − x j

xi − x j
(1 � i � n)

Similarly, we select m nodes yi in [α, β] and define

�i (y) =
m∏

j �=i
j=1

y − y j

yi − y j
(1 � i � m)

Then the function

P(x, y) =
n∑

i=1

m∑
j=1

f (xi , y j)�i (x)� j (y)

is a polynomial in two variables that interpolates f at the grid points (xi , y j). There are nm
such points of interpolation. The proof of the interpolation property is quite simple because

4.1 Polynomial Interpolation 145

�i (xq) = δiq and � j (yp) = δ j p. Consequently,

P(xq , yp) =
n∑

i=1

m∑
j=1

f (xi , y j)�i (xq)� j (yp)

=
n∑

i=1

m∑
j=1

f (xi , y j)δiqδ j p = f (xq , yp)

The same procedure can be used with spline interpolants (or indeed any other type of
function).

Summary

(1) The Lagrange form of the interpolation polynomial is

pn(x) =
n∑

i=0

�i (x) f (xi)

with cardinal polynomials

�i (x) =
n∏

j �=i
j=0

(
x − x j

xi − x j

)
(0 � i � n)

that obey the Kronecker delta equation

�i (x j) = δi j =
{

0 if i �= j

1 if i = j

(2) The Newton form of the interpolation polynomial is

pn(x) =
n∑

i=0

ai

i−1∏
j=0

(x − x j)

with divided differences

ai = f [x0, x1, . . . , xi] = f [x1, x2, . . . , xi] − f [x0, x1, . . . , xi−1]

xi − x0

These are two different forms of the unique polynomial p of degree n that interpolates a
table of n + 1 pairs of points (xi , f (xi)) for 0 � i � n.

(3) We can illustrate this with a small table for n = 2:

x x0 x1 x2

f (x) f (x0) f (x1) f (x2)

The Lagrange interpolating polynomial is

p2(x) = (x − x1)(x − x2)

(x0 − x1)(x0 − x2)
f (x0) + (x − x0)(x − x2)

(x1 − x0)(x1 − x2)
f (x1)

+ (x − x0)(x − x1)

(x2 − x0)(x2 − x1)
f (x2)

146 Chapter 4 Interpolation and Numerical Differentiation

Clearly, p2(x0) = f (x0), p2(x1) = f (x1), and p2(x2) = f (x2). Next, we form the divided-
difference table:

x0 f (x0)

f [x0, x1]
x1 f (x1) f [x0, x1, x2]

f [x1, x2]
x2 f (x2)

Using the divided-difference entries from the top diagonal, we have

pn(x) = f (x0) + f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1)

Again, it can be easily shown that p2(x0) = f (x0), p2(x1) = f (x1), and p2(x) = f (x2).

(4) We can use inverse polynomial interpolation to find an approximate value of a root r of
the equation f (x) = 0 from a table of values (xi , yi) for 1 � i � n. Here we are assuming
that the table values are in the vicinity of this zero of the function f . Flipping the table
values, we use the reversed table values (yi , xi) to determine the interpolating polynomial
called pn(y). Now evaluating it at 0, we find a value that approximates the desired zero,
namely, r ≈ pn(0) and f (pn(0)) ≈ f (r) = 0.

(5) Other advanced polynomial interpolation methods discussed are Neville’s algorithm
and bivariate function interpolation.

Problems 4.1

a1. Use the Lagrange interpolation process to obtain a polynomial of least degree that
assumes these values:

x 0 2 3 4

y 7 11 28 63

2. (Continuation) Rearrange the points in the table of the preceding problem and find the
Newton form of the interpolating polynomial. Show that the polynomials obtained are
identical, although their forms may differ.

a3. For the four interpolation nodes −1, 1, 3, 4, what are the �i Functions (2) required in
the Lagrange interpolation procedure? Draw the graphs of these four functions to show
their essential properties.

4. Verify that the polynomials

p(x) = 5x3 − 27x2 + 45x − 21, q(x) = x4 − 5x3 + 8x2 − 5x + 3

interpolate the data

x 1 2 3 4

y 2 1 6 47

and explain why this does not violate the uniqueness part of the theorem on existence
of polynomial interpolation.

4.1 Polynomial Interpolation 147

5. Verify that the polynomials

p(x) = 3 + 2(x − 1) + 4(x − 1)(x + 2), q(x) = 4x2 + 6x − 7

are both interpolating polynomials for the following table, and explain why this does
not violate the uniqueness part of the existence theorem for polynomial interpolation.

x 1 −2 0

y 3 −3 −7

6. Find the polynomial p of least degree that takes these values: p(0) = 2, p(2) = 4,
p(3) = −4, p(5) = 82. Use divided differences to get the correct polynomial. It is not
necessary to write the polynomial in the standard form a0 + a1x + a2x2 + · · ·.

7. Complete the following divided-difference tables, and use them to obtain polynomials
of degree 3 that interpolate the function values indicated:

aa. x f [] f [,] f [, ,] f [, , ,]

−1 2

1 −4 2

3 6
2

5 10

b. x f [] f [,] f [, ,] f [, , ,]

−1 2

1 −4

3 46
53.5

4 99.5

Write the final polynomials in a form most efficient for computing.

a8. Find an interpolating polynomial for this table:

x 1 2 2.5 3 4

y −1 − 1
3

3
32

4
3 25

9. Given the data
x 0 1 2 4 6

f (x) 1 9 23 93 259

do the following.

aa. Construct the divided-difference table.
ab. Using Newton’s interpolation polynomial, find an approximation to f (4.2). Hint:

Use polynomials starting with 9 and involving factors (x − 1).

148 Chapter 4 Interpolation and Numerical Differentiation

10. a. Construct Newton’s interpolation polynomial for the data shown.

x 0 2 3 4

y 7 11 28 63

b. Without simplifying it, write the polynomial obtained in nested form for easy
evaluation.

11. From census data, the approximate population of the United States was 150.7 million
in 1950, 179.3 million in 1960, 203.3 million in 1970, 226.5 million in 1980, and
249.6 million in 1990. Using Newton’s interpolation polynomial for these data, find
an approximate value for the population in 2000. Then use the polynomial to estimate
the population in 1920 based on these data. What conclusion should be drawn?

a12. The polynomial p(x) = x4 − x3 + x2 − x + 1 has the following values:

x −2 −1 0 1 2 3

p(x) 31 5 1 1 11 61

Find a polynomial q that takes these values:

x −2 −1 0 1 2 3

q(x) 31 5 1 1 11 30

Hint: This can be done with little work.

13. Use the divided-difference method to obtain a polynomial of least degree that fits the
values shown.

aa. x 0 1 2 −1 3

y −1 −1 −1 −7 5

b. x 1 3 −2 4 5

y 2 6 −1 −4 2
a14. Find the interpolating polynomial for these data:

x 1.0 2.0 2.5 3.0 4.0

f (x) −1.5 −0.5 0.0 0.5 1.5

15. It is suspected that the table

x −2 −1 0 1 2 3

y 1 4 11 16 13 −4
comes from a cubic polynomial. How can this be tested? Explain.

a16. There exists a unique polynomial p(x) of degree 2 or less such that p(0) = 0, p(1) = 1,
and p′(α) = 2 for any value of α between 0 and 1 (inclusive) except one value of α,
say, α0. Determine α0, and give this polynomial for α �= α0.

17. Determine by two methods the polynomial of degree 2 or less whose graph passes
through the points (0, 1.1), (1, 2), and (2, 4.2). Verify that they are the same.

a18. Develop the divided-difference table from the given data. Write down the interpolating
polynomial, and rearrange it for fast computation without simplifying.

x 0 1 3 2 5

f (x) 2 1 5 6 −183

Checkpoint: f [1, 3, 2, 5] = −7.

4.1 Polynomial Interpolation 149

a19. Let f (x) = x3 + 2x2 + x + 1. Find the polynomial of degree 4 that interpolates the
values of f at x = −2, −1, 0, 1, 2. Find the polynomial of degree 2 that interpolates
the values of f at x = −1, 0, 1.

20. Without using a divided-difference table, derive and simplify the polynomial of least
degree that assumes these values:

x −2 −1 0 1 2

y 2 14 4 2 2

21. (Continuation) Find a polynomial that takes the values shown in the preceding problem
and has at x = 3 the value 10. Hint: Add a suitable polynomial to the p(x) of the
previous problem.

a22. Find a polynomial of least degree that takes these values:

x 1.73 1.82 2.61 5.22 8.26

y 0 0 7.8 0 0

Hint: Rearrange the table so that the nonzero value of y is the last entry, or think of
some better way.

23. Form a divided-difference table for the following and explain what happened.

x 1 2 3 1

y 3 5 5 7

24. Simple polynomial interpolation in two dimensions is not always possible. For example,
suppose that the following data are to be represented by a polynomial of first degree in
x and y, p(t) = a + bx + cy, where t = (x, y):

t (1, 1) (3, 2) (5, 3)

f (t) 3 2 6

Show that it is not possible.

a25. Consider a function f (x) such that f (2) = 1.5713, f (3) = 1.5719, f (5) = 1.5738,
and f (6) = 1.5751. Estimate f (4) using a second-degree interpolating polynomial
and a third-degree polynomial. Round the final results off to four decimal places. Is
there any advantage here in using a third-degree polynomial?

26. Use inverse interpolation to find an approximate value of x such that f (x) = 0 given
the following table of values for f . Look into what happens and draw a conclusion.

x −2 −1 1 2 3

f (x) −31 5 1 11 61
a27. Find a polynomial p(x) of degree at most 3 such that p(0) = 1, p(1) = 0, p′(0) = 0,

and p′(−1) = −1.

a28. From a table of logarithms, we obtain the following values of log x at the indicated
tabular points:

x 1 1.5 2 3 3.5 4

log x 0 0.17609 0.30103 0.47712 0.54407 0.60206

150 Chapter 4 Interpolation and Numerical Differentiation

Form a divided-difference table based on these values. Interpolate for log 2.4 and log 1.2
using third-degree interpolation polynomials in Newton form.

29. Show that the divided differences are linear maps; that is,

(α f + βg)[x0, x1, . . . , xn] = α f [x0, x1, . . . , xn] + βg[x0, x1, . . . , xn]

Hint: Use induction.

30. Show that another form for the polynomial pn of degree at most n that takes values
y0, y1, . . . , yn at abscissas x0, x1, . . . , xn is

n∑
i=0

f [xn, xn−1, . . . , xn−i]
i−1∏
j=0

(x − xn− j)

31. Use the uniqueness of the interpolating polynomial to verify that
n∑

i=0

f (xi)�i (x) =
n∑

i=0

f [x0, x1, . . . , xi]
i−1∏
j=0

(x − x j)

32. (Continuation) Show that the following explicit formula is valid for divided differences:

f [x0, x1, . . . , xn] =
n∑

i=0

f (xi)

n∏
j �=i
j=0

(xi − x j)
−1

Hint: If two polynomials are equal, the coefficients of xn in each are equal.

33. Verify directly that
n∑

i=0

�i (x) = 1

for the case n = 1. Then establish the result for arbitrary values of n.

34. Write the Lagrange form (1) of the interpolating polynomial of degree at most 2 that
interpolates f (x) at x0, x1, and x2, where x0 < x1 < x2.

35. (Continuation) Write the Newton form of the interpolating polynomial p2(x), and show
that it is equivalent to the Lagrange form.

36. (Continuation) Show directly that

p′′
2(x) = 2 f [x0, x1, x2]

37. (Continuation) Show directly for uniform spacing h = x1 − x0 = x2 − x1 that

f [x0, x1] = � f0

h
and f [x0, x1, x2] = �2 f0

2h2

where � fi = fi+1 − fi , �2 fi = � fi+1 − � fi , and fi = f (xi).

38. (Continuation) Establish Newton’s forward-difference form of the interpolating poly-
nomial with uniform spacing

p2(x) = f0 +
(

s
1

)
� f0 +

(
s
2

)
�2 f0

4.1 Polynomial Interpolation 151

where x = x0 + sh. Here,
(s

m

)
is the binomial coefficient [s!]/[(s − m)! m!], and

s!/(s − m)! = s(s − 1)(s − 2) · · · (s − m + 1) because s can be any real number and
m! has the usual definition because m is an integer.

a39. (Continuation) From the following table of values of ln x , interpolate to obtain
ln 2.352 and ln 2.387 using the Newton forward-difference form of the interpolating
polynomial:

x f (x) � f �2 f

2.35 0.85442
0.00424

2.36 0.85866 −0.00001
0.00423

2.37 0.86289 −0.00002
0.00421

2.38 0.86710 −0.00002
0.00419

2.39 0.87129

Using the correctly rounded values ln 2.352 ≈ 0.85527 and ln 2.387 ≈ 0.87004, show
that the forward-difference formula is more accurate near the top of the table than it is
near the bottom.

a40. Count the number of multiplications, divisions, and additions/subtractions in the gen-
eration of the divided-difference table that has n + 1 points.

41. Verify directly that for any three distinct points x0, x1, and x2,

f [x0, x1, x2] = f [x2, x0, x1] = f [x1, x2, x0]

Compare this argument to the one in the text.

a42. Let p be a polynomial of degree n. What is p[x0, x1, . . . , xn+1]?

43. Show that if f is continuously differentiable on the interval [x0, x1], then f [x0, x1] =
f ′(c) for some c in (x0, x1).

44. If f is a polynomial of degree n, show that in a divided-difference table for f , the nth
column has a single constant value—a column containing entries f [xi , xi+1, . . . , xi+n].

a45. Determine whether the following assertion is true or false. If x0, x1, . . . , xn are distinct,
then for arbitrary real values y0, y1, . . ., yn , there is a unique polynomial pn+1 of degree
� n + 1 such that pn+1(xi) = yi for all i = 0, 1, . . . , n.

46. Show that if a function g interpolates the function f at x0, x1, . . . , xn−1 and h interpo-
lates f at x1, x2, . . . , xn , then

g(x) + x0 − x

xn − x0
[g(x) − h(x)]

interpolates f at x0, x1, . . . , xn .

152 Chapter 4 Interpolation and Numerical Differentiation

47. (Vandermonde determinant) Using fi = f (xi), show the following:

a. f [x0, x1] =

∣∣∣∣1 f0

1 f1

∣∣∣∣∣∣∣∣1 x0

1 x1

∣∣∣∣ b. f [x0, x1, x2] =

∣∣∣∣∣∣
1 x0 f0

1 x1 f1

1 x2 f2

∣∣∣∣∣∣∣∣∣∣∣∣∣
1 x0 x2

0

1 x1 x2
1

1 x2 x2
2

∣∣∣∣∣∣∣
Computer Problems 4.1

a1. Test the procedure given in the text for determining the Newton form of the interpolating
polynomial. For example, consider this table:

x 1 2 3 −4 5

y 2 48 272 1182 2262

Find the interpolating polynomial and verify that p(−1) = 12.

2. Find the polynomial of degree 10 that interpolates the function arctan x at 11 equally
spaced points in the interval [1, 6]. Print the coefficients in the Newton form of the
polynomial. Compute and print the difference between the polynomial and the function
at 33 equally spaced points in the interval [0, 8]. What conclusion can be drawn?

3. Write a simple program using procedure Coef that interpolates ex by a polynomial of
degree 10 on [0, 2] and then compares the polynomial to exp at 100 points.

4. Use as input data to procedure Coef the annual rainfall in your town for each of the last
5 years. Using function Eval, predict the rainfall for this year. Is the answer reasonable?

5. A table of values of a function f is given at the points xi = i/10 for 0 � i � 100. In
order to obtain a graph of f with the aid of an automatic plotter, the values of f are
required at the points zi = i/20 for 0 � i � 200. Write a procedure to do this, using
a cubic interpolating polynomial with nodes xi , xi+1, xi+2, and xi+3 to compute f at
1
2 (xi+1 + xi+2). For z1 and z199, use the cubic polynomial associated with z3 and z197,
respectively. Compare this routine to Coef for a given function.

6. Write routines analogous to Coef and Eval using the Lagrange form of the interpolation
polynomial. Test on the example given in this section at 20 points with h/2. Does the
Lagrange form have any advantage over the Newton form?

7. (Continuation) Design and carry out a numerical experiment to compare the
accuracy of the Newton and Lagrange forms of the interpolation polynomials at values
throughout the interval [x0, xn].

8. Rewrite and test routines Coef and Eval so that the array (ai) is not used. Hint: When
the elements in the array (yi) are no longer needed, store the divided differences in
their places.

9. Write a procedure for carrying out inverse interpolation to solve equations of the form
f (x) = 0. Test it on the introductory example at the beginning of this chapter.

4.2 Errors in Polynomial Interpolation 153

10. For Example 8, compare the results from your code with that in the text. Redo using
linear interpolation based on the ten equidistant points. How do the errors compare at
intermediate points? Plot curves to visualize the difference between linear interpolation
and a higher-degree polynomial interpolation.

11. Use mathematical software such as Matlab, Maple, or Mathematica to find an interpo-
lation polynomial for the points (0, 0), (1, 1), (2, 2.001), (3, 3), (4, 4), (5, 5). Evaluate
the polynomial at the point x = 14 or x = 20 to show that slight roundoff errors in the
data can lead to suspicious results in extrapolation.

12. Use symbolic mathematical software such as Matlab, Maple, or Mathematica to gener-
ate the interpolation polynomial for the data points in Example 3. Plot the polynomial
and the data points.

13. (Continuation.) Repeat these instructions using Example 7.

14. Carry out the details in Example 8 by writing a computer program that plots the data
points and the curve for the interpolation polynomial.

15. (Continuation.) Repeat the instructions for Problem 14 on Example 9.

16. Using mathematical software, carry out the details and verify the results in the intro-
ductory example to this chapter.

17. (Padé interpolation) Find a rational function of the form

g(x) = a + bx

1 + cx

that interpolates the function f (x) = arctan (x) at the points x0 = 1, x1 = 2, and
x2 = 3. On the same axes, plot the graphs of f and g, using dashed and dotted lines,
respectively.

4.2 Errors in Polynomial Interpolation
When a function f is approximated on an interval [a, b] by means of an interpolating
polynomial p, the discrepancy between f and p will (theoretically) be zero at each node of
interpolation. A natural expectation is that the function f will be well approximated at all
intermediate points and that as the number of nodes increases, this agreement will become
better and better.

In the history of numerical mathematics, a severe shock occurred when it was realized
that this expectation was ill-founded. Of course, if the function being approximated is not
required to be continuous, then there may be no agreement at all between p(x) and f (x)

except at the nodes.

EXAMPLE 1 Consider these five data points: (0, 8), (1, 12), (3, 2), (4, 6), (8, 0). Construct and plot the
interpolation polynomial using the two outermost points. Repeat this process by adding
one additional point at a time until all the points are included. What conclusions can you
draw?

154 Chapter 4 Interpolation and Numerical Differentiation

FIGURE 4.6

Interpolant
polynomials

over data points 0 1 2 3 4 5 6 7 8
�5

0

5

10

15

20

25

30

35

p2

p1

p3

p4

x

y

Solution The first interpolation polynomial is the line between the outermost points (0, 8) and
(8, 0). Then we added the points (3, 2), (4, 5), and (1, 12) in that order and plotted a
curve for each additional point. All of these polynomials are shown in Figure 4.6. We were
hoping for a smooth curve going through these points without wide fluctuations, but this did
not happen. (Why?) It may seem counterintuitive, but as we added more points, the situation
became worse instead of better! The reason for this comes from the nature of high-degree
polynomials. A polynomial of degree n has n zeros. If all of these zero points are real, then
the curve crosses the x-axis n times. The resulting curve must make many turns for this to
happen, resulting in wild oscillations. In Chapter 9, we discuss fitting the data points with
spline curves. ■

Dirichlet Function
As a pathological example, consider the so-called Dirichlet function f , defined to be 1 at
each irrational point and 0 at each rational point. If we choose nodes that are
rational numbers, then p(x) ≡ 0 and f (x) − p(x) = 0 for all rational values of x , but
f (x) − p(x) = 1 for all irrational values of x .

However, if the function f is well-behaved, can we not assume that the differences
| f (x) − p(x)| will be small when the number of interpolating nodes is large? The
answer is still no, even for functions that possess continuous derivatives of all orders on the
interval!

Runge Function
A specific example of this remarkable phenomenon is provided by the Runge function:

f (x) = (
1 + x2

)−1
(1)

on the interval [−5, 5]. Let pn be the polynomial that interpolates this function at n + 1
equally spaced points on the interval [−5, 5], including the endpoints. Then

lim
n→∞

max
−5 � x � 5

| f (x) − pn(x)| = ∞

4.2 Errors in Polynomial Interpolation 155

Thus, the effect of requiring the agreement of f and pn at more and more points is to
increase the error at nonnodal points, and the error actually increases beyond all bounds!

The moral of this example, then, is that polynomial interpolation of high degree with
many nodes is a risky operation; the resulting polynomials may be very unsatisfactory as
representations of functions unless the set of nodes is chosen with great care.

The reader can easily observe the phenomenon just described by using the pseudocodes
already developed in this chapter. See Computer Problem 4.2.1 for a suggested numerical
experiment. In a more advanced study of this topic, it would be shown that the divergence
of the polynomials can often be ascribed to the fact that the nodes are equally spaced.
Again, contrary to intuition, equally distributed nodes are usually a very poor choice in
interpolation. A much better choice for n + 1 nodes in [−1, 1] is the set of Chebyshev
nodes:

xi = cos

[(
2i + 1

2n + 2

)
π

]
(0 � i � n)

The corresponding set of nodes on an arbitrary interval [a, b] would be derived from a linear
mapping to obtain

xi = 1

2
(a + b) + 1

2
(b − a) cos

[(
2i + 1

2n + 2

)
π

]
(0 � i � n)

Notice that these nodes are numbered from right to left. Since the theory does not depend
on any particular ordering of the nodes, this is not troublesome.

A simple graph illustrates this phenomenon best. Again, consider Equation (1) on the
interval [−5, 5]. First, we select nine equally spaced nodes and use routines Coef and Eval
with an automatic plotter to graph p8. As shown in Figure 4.7, the resulting curve assumes
negative values, which, of course, f (x) does not have! Adding more equally spaced nodes—
and thereby obtaining a higher-degree polynomial—only makes matters worse with wilder
oscillations. In Figure 4.8, nine Chebyshev nodes are used, and the resulting polynomial
curve is smoother. However, cubic splines (discussed in Chapter 9) produce an even better
curve fit.

FIGURE 4.7

Polynomial
interpolant with

nine equally
spaced nodes

x

y

1 2 3�1�2

�1

1

�3

4 5�4�5

0

FIGURE 4.8

Polynomial
interpolant with
nine Chebyshev

nodes

y

x
1 2 3�1�2

�1

1

�3 4 5�4�5 0

156 Chapter 4 Interpolation and Numerical Differentiation

FIGURE 4.9

Interpolation
with Chebyshev

points 0 5�5

The Chebyshev nodes are obtained by taking equally-spaced points on a semicircle and
projecting them down onto the horizontal axis, as in Figure 4.9.

Theorems on Interpolation Errors
It is possible to assess the errors of interpolation by means of a formula that involves the
(n + 1)st derivative of the function being interpolated. Here is the formal statement:

■ THEOREM 1 INTERPOLATION ERRORS I

If p is the polynomial of degree at most n that interpolates f at the n + 1 distinct
nodes x0, x1, . . . , xn belonging to an interval [a, b] and if f (n+1) is continuous, then
for each x in [a, b], there is a ξ in (a, b) for which

f (x) − p(x) = 1

(n + 1)!
f (n+1)(ξ)

n∏
i=0

(x − xi) (2)

Proof Observe first that Equation (2) is obviously valid if x is one of the nodes xi because then
both sides of the equation reduce to zero. If x is not a node, let it be fixed in the remainder
of the discussion, and define

w(t) =
n∏

i=0

(t − xi) (polynomial in the variable t)

c = f (x) − p(x)

w(x)
(constant)

ϕ(t) = f (t) − p(t) − cw(t) (function in the variable t)

(3)

Observe that c is well defined because w(x) �= 0 (x is not a node). Note also that ϕ takes
the value 0 at the n + 2 points x0, x1, . . . , xn , and x . Now invoke Rolle’s Theorem,∗ which
states that between any two roots of ϕ, there must occur a root of ϕ′. Thus, ϕ′ has at least
n + 1 roots. By similar reasoning, ϕ′′ has at least n roots, ϕ′′′ has at least n − 1 roots, and
so on. Finally, it can be inferred that ϕ(n+1) must have at least one root. Let ξ be a root of

∗Rolle’s Theorem: Let f be a function that is continuous on [a, b] and differentiable on (a, b). If
f (a) = f (b) = 0, then f ′(c) = 0 for some point c in (a, b).

4.2 Errors in Polynomial Interpolation 157

ϕ(n+1). All the roots being counted in this argument are in (a, b). Thus,

0 = ϕ(n+1)(ξ) = f (n+1)(ξ) − p(n+1)(ξ) − cw(n+1)(ξ)

In this equation, p(n+1)(ξ) = 0 because p is a polynomial of degree � n. Also, w(n+1)(ξ) =
(n + 1)! because w(t) = tn+1+ (lower-order terms in t). Thus, we have

0 = f (n+1)(ξ) − c(n + 1)! = f (n+1)(ξ) − (n + 1)!

w(x)
[f (x) − p(x)]

This equation is a rearrangement of Equation (2). ■

A special case that often arises is the one in which the interpolation nodes are equally
spaced.

■ LEMMA 1 UPPER BOUND LEMMA

Suppose that xi = a + ih for i = 0, 1, . . . , n and that h = (b − a)/n. Then for any
x ∈ [a, b]

n∏
i=0

|x − xi | �
1

4
hn+1n! (4)

Proof To establish this inequality, fix x and select j so that x j � x � x j+1. It is an exercise in
calculus (Problem 4.2.2) to show that

|x − x j ||x − x j+1| �
h2

4
(5)

Using Equation (5), we have

n∏
i=0

|x − xi | �
h2

4

j−1∏
i=0

(x − xi)

n∏
i= j+2

(xi − x)

The sketch in Figure 4.10, showing a typical case of equally spaced nodes, may be helpful.
Since x j � x � x j+1, we have further

n∏
i=0

|x − xi | �
h2

4

j−1∏
i=0

(x j+1 − xi)

n∏
i= j+2

(xi − x j)

FIGURE 4.10

Typical location
of x in equally
spaced nodes a � x0 x1 xn � bx2 x3 xj�1 xj xj�1 xj�2 xn�1

.

x

158 Chapter 4 Interpolation and Numerical Differentiation

Now use the fact that xi = a + ih. Then we have x j+1 − xi = (j − i + 1)h and xi − x j =
(i − j)h. Therefore,

n∏
i=0

|x − xi | �
h2

4
h j hn−(j+2)+1

j−1∏
i=0

(j − i + 1)

n∏
i= j+2

(i − j)

�
1

4
hn+1(j + 1)!(n − j)! �

1

4
hn+1n!

In the last step, we use the fact that if 0 � j � n − 1, then (j + 1)!(n − j)! � n!. This, too,
is left as an exercise (Problem 4.2.3). Hence, Inequality (4) is established. ■

We can now find a bound on the interpolation error.

■ THEOREM 2 INTERPOLATION ERRORS II

Let f be a function such that f (n+1) is continuous on [a, b] and satisfies | f (n+1)(x)| � M .
Let p be the polynomial of degree � n that interpolates f at n + 1 equally spaced
nodes in [a, b], including the endpoints. Then on [a, b],

| f (x) − p(x)| �
1

4(n + 1)
Mhn+1 (6)

where h = (b − a)/n is the spacing between nodes.

Proof Use Theorem 1 on interpolation errors and Inequality (4) in Lemma 1. ■

This theorem gives loose upper bounds on the interpolation error for different values of
n. By other means, one can find tighter upper bounds for small values of n. (Cf. Problem
4.2.5.) If the nodes are not uniformly spaced then a better bound can be found by use of the
Chebyshev nodes.

EXAMPLE 2 Assess the error if sin x is replaced by an interpolation polynomial that has ten equally
spaced nodes in [0, 1.6875]. (See the related Example 8 in Section 4.1.)

Solution We use Theorem 2 on interpolation errors, taking f (x) = sin x , n = 9, a = 0, and
b = 1.6875. Since f (10)(x) = − sin x, | f (10)(x)| � 1. Hence, in Equation (6), we can let
M = 1. The result is

|sin x − p(x)| � 1.34 × 10−9

Thus, p(x) represents sin x on this interval with an error of at most two units in the ninth
decimal place. Therefore, the interpolation polynomial that has ten equally spaced nodes
on the interval [0, 1.6875] approximates sin x to at least eight decimal digits of accuracy.
In fact, a careful check on a computer would reveal that the polynomial is accurate to even
more decimal places. (Why?) ■

4.2 Errors in Polynomial Interpolation 159

The error expression in polynomial interpolation can also be given in terms of divided
differences:

■ THEOREM 3 INTERPOLATION ERRORS III

If p is the polynomial of degree n that interpolates the function f at nodes x0, x1, . . . , xn ,
then for any x that is not a node,

f (x) − p(x) = f [x0, x1, . . . , xn, x]
n∏

i=0

(x − xi)

Proof Let t be any point, other than a node, where f (t) is defined. Let q be the polynomial of
degree � n + 1 that interpolates f at x0, x1, . . . , xn, t . By the Newton form of the interpola-
tion formula [Equation (8) in Section 4.1], we have

q(x) = p(x) + f [x0, x1, . . . , xn, t]
n∏

i=0

(x − xi)

Since q(t) = f (t), this yields at once

f (t) = p(t) + f [x0, x1, . . . , xn, t]
n∏

i=0

(t − xi) ■

The following theorem shows that there is a relationship between divided differences
and derivatives.

■ THEOREM 4 DIVIDED DIFFERENCES AND DERIVATIVES

If f (n) is continuous on [a, b] and if x0, x1, . . . , xn are any n + 1 distinct points in
[a, b], then for some ξ in (a, b),

f [x0, x1, . . . , xn] = 1

n!
f (n)(ξ)

Proof Let p be the polynomial of degree � n − 1 that interpolates f at x0, x1, . . . , xn−1. By
Theorem 1 on interpolation errors, there is a point ξ such that

f (xn) − p(xn) = 1

n!
f (n)(ξ)

n−1∏
i=0

(xn − xi)

By Theorem 3 on interpolation errors, we obtain

f (xn) − p(xn) = f [x0, x1, . . . , xn−1, xn]
n−1∏
i=0

(xn − xi) ■

As an immediate consequence of this theorem, we observe that all high-order divided
differences are zero for a polynomial.

160 Chapter 4 Interpolation and Numerical Differentiation

■ COROLLARY 1 DIVIDED DIFFERENCES COROLLARY

If f is a polynomial of degree n, then all of the divided differences f [x0, x1, . . . , xi]
are zero for i � n + 1.

EXAMPLE 3 Is there a cubic polynomial that takes these values?

x 1 −2 0 3 −1 7

y −2 −56 −2 4 −16 376

Solution If such a polynomial exists, its fourth-order divided differences f [, , , ,] would all be
zero. We form a divided-difference table to check this possibility:

x f [] f [,] f [, ,] f [, , ,] f [, , , ,]

1 −2
18

−2 −56 −9
27 2

0 −2 −5 0
2 2

3 4 −3 0
5 2

−1 −16 11
49

7 376

The data can be represented by a cubic polynomial because the fourth-order divided dif-
ferences f [, , , ,] are zero. From the Newton form of the interpolation formula, this
polynomial is

p3(x) = −2 + 18(x − 1) − 9(x − 1)(x + 2) + 2(x − 1)(x + 2)x ■

Summary

(1) The Runge function f (x) = 1/(1 + x2) on the interval [−5, 5] shows that high-degree
polynomial interpolation and uniform spacing of nodes may not be satisfactory. The Cheby-
shev nodes for the interval [a, b] are given by

xi = 1

2
(a + b) + 1

2
(b − a) cos

[(
2i + 1

2n + 2

)
π

]
(2) There is a relationship between differences and derivatives:

f [x0, x1, . . . , xn] = 1

n!
f (n)(ξ)

4.2 Errors in Polynomial Interpolation 161

(3) Expressions for errors in polynomial interpolation are

f (x) − p(x) = 1

(n + 1)!
f (n+1)(ξ)

n∏
i=0

(x − xi)

f (x) − p(x) = f [x0, x1, . . . , xn, x]
n∏

i=0

(x − xi)

(4) For n + 1 equally spaced nodes, an upper bound on the error is given by

| f (x) − p(x)| �
M

4(n + 1)

(
b − a

n

)n+1

Here M is an upper bound on
∣∣ f (n+1)(x)

∣∣ when a � x � b.

(5) If f is a polynomial of degree n, then all of the divided differences f [x0, x1, . . . , xi] are
zero for i � n + 1.

Problems 4.2

a1. Use a divided-difference table to show that the following data can be represented by a
polynomial of degree 3:

x −2 −1 0 1 2 3

y 1 4 11 16 13 −4

2. Fill in a detail in the proof of Inequality (4) by proving Inequality (5).

3. (Continuation) Fill in another detail in the proof of Inequality (4) by showing that
(j +1)!(n − j)! � n! if 0 � j � n −1. Induction and a symmetry argument can be used.

4. For nonuniformly distributed nodes a = x0 < x1 < · · · < xn = b, where h =
max1 � i � n{(xi − xi−1)}, show that Inequality (4) is true.

5. Using Theorem 1, show directly that the maximum interpolation error is bounded by
the following expressions and compare them to the bounds given by Theorem 2:

a. 1
8 h2 M for linear interpolation, where h = x1 − x0 and M = maxx0 � x � x1 | f ′′(x)|.

b. 1
9
√

3
h3 M for quadratic interpolation, where h = x1 − x0 = x2 − x1 and M =

maxx0 � x � x2 | f ′′(x)|.
c. 3

128 h4 M for cubic interpolation, where h = x1 − x0 = x2 − x1 = x3 = x2 and
M = maxx0 � x � x3 | f ′′(x)|.

a6. How accurately can we determine sin x by linear interpolation, given a table of sin x
to ten decimal places, for x in [0, 2] with h = 0.01?

a7. (Continuation) Given the data

x sin x cos x

0.70 0.64421 76872 0.76484 21873
0.71 0.65183 37710 0.75836 18760

find approximate values of sin 0.705 and cos 0.702 by linear interpolation. What is the
error?

162 Chapter 4 Interpolation and Numerical Differentiation

a8. Linear interpolation in a table of function values means the following: If y0 = f (x0)

and y1 = f (x1) are tabulated values, and if x0 < x < x1, then an interpolated value of
f (x) is y0 + [(y1 − y0)/(x1 − x0)](x − x0), as explained at the beginning of Section 4.1.
A table of values of cos x is required so that the linear interpolation will yield five-
decimal-place accuracy for any value of x in [0, π]. Assume that the tabular values are
equally spaced, and determine the minimum number of entries needed in this table.

a9. An interpolating polynomial of degree 20 is to be used to approximate e−x on the interval
[0, 2]. How accurate will it be? (Use 21 uniform nodes, including the endpoints of the
interval. Compare results, using Theorems 1 and 2.)

a10. Let the function f (x) = ln x be approximated by an interpolation polynomial of degree
9 with ten nodes uniformly distributed in the interval [1, 2]. What bound can be placed
on the error?

11. In the first theorem on interpolation errors, show that if x0 < x1 < · · · < xn and
x0 < x < xn , then x0 < ξ < xn .

12. (Continuation) In the same theorem, considering ξ as a function of x , show that
f (n)[ξ(x)] is a continuous function of x . Note: ξ(x) need not be a continuous function
of x .

a13. Suppose cos x is to be approximated by an interpolating polynomial of degree n, using
n + 1 equally spaced nodes in the interval [0, 1]. How accurate is the approximation?
(Express your answer in terms of n.) How accurate is the approximation when n = 9?
For what values of n is the error less than 10−7?

a14. In interpolating with n + 1 equally spaced nodes on an interval, we could use xi =
a + (2i + 1)h/2, where 0 � i � n − 1 and h = (b − a)/n. What bound can be given
now for

∏n
i=0 |x − xi | when a � x � b? Note: We are not requiring the endpoints to be

nodes.

15. Using Equation (3), show that

w′(t) =
n∑

i=0

n∏
j �=i
j=0

(t − x j) w′(xi) =
n∏

j �=i
j=0

(xi − x j)

a16. Does every polynomial p of degree at most n obey the following equation? Explain
why or why not.

p(x) =
n∑

i=0

p[x0, x1, . . . , xi]
i−1∏
j=0

(x − x j)

Hint: Use the uniqueness of the interpolating polynomial.

17. Find a polynomial p that takes these values: p(1) = 3, p(2) = 1, p(0) = −5. You
may use any method you wish. You may leave the polynomial in any convenient form,
not necessarily in the standard form,

∑n
k=1 ck xk . Next, find a new polynomial q that

takes those same three values and q(3) = 7.

18. For the case n = 2, establish Theorem 4 and Corollory 1 directly.

4.2 Errors in Polynomial Interpolation 163

Computer Problems 4.2

1. Using 21 equally spaced nodes on the interval [−5, 5], find the interpolating polynomial
p of degree 20 for the function f (x) = (x2 +1)−1. Print the values of f (x) and p(x) at
41 equally spaced points, including the nodes. Observe the large discrepancy between
f (x) and p(x).

2. (Continuation) Perform the experiment in the preceding computer problem, using
Chebyshev nodes xi = 5 cos(iπ/20), where 0 � i � 20, and nodes xi = 5 cos[(2i +
1)π/42], where 0 � i � 20. Record your conclusions.

3. Using procedures corresponding to the pseudocode in the text, find a polynomial of
degree 13 that interpolates f (x) = arctan x on the interval [−1, 1]. Test numerically
by taking 100 points to determine how accurate the polynomial approximation is.

4. (Continuation) Write a function for arctan x that uses the polynomial of the preceding
computer problem. If x is not in the interval [−1, 1], use the formula 1/ tan θ = cot θ =
tan(π/2 − θ).

5. Approximate arcsin x on the interval
[−1/

√
2, 1/

√
2
]

by an interpolating polynomial
of degree 15. Determine how accurate the approximation is by numerical tests. Use
equally spaced nodes.

6. (Continuation) Write a function for arcsin x , using the polynomial of the previous

computer problem. Use sin(π/2 − θ) = cos θ =
√

1 − sin2 θ if x is in the interval
|x | > 1/

√
2.

7. Let f (x) = max{0, 1− x}. Sketch the function f . Then find interpolating polynomials
p of degrees 2, 4, 8, 16, and 32 to f on the interval [−4, 4], using equally spaced
nodes. Print out the discrepancy f (x) − p(x) at 128 equally spaced points. Then redo
the problem using Chebyshev nodes.

8. Using Coef and Eval and an automatic plotter, fit a polynomial through the following
data:

x 0.0 0.60 1.50 1.70 1.90 2.1 2.30 2.60 2.8 3.00

y −0.8 −0.34 0.59 0.59 0.23 0.1 0.28 1.03 1.5 1.44

Does the resulting curve look like a good fit? Explain.

9. Find the polynomial p of degree � 10 that interpolates |x | on [−1, 1] at 11 equally
spaced points. Print the difference |x | − p(x) at 41 equally spaced points. Then do the
same with Chebyshev nodes. Compare.

10. Why are the Chebyshev nodes generally better than equally spaced nodes in polynomial
interpolation? The answer lies in the term

∏n
i=0(x −xi) that occurs in the error formula.

If xi = cos[(2i + 1)π/(2n + 2)], then∣∣∣∣∣
n∏

i=0

(x − xi)

∣∣∣∣∣ � 2−n

for all x in [−1, 1]. Carry out a numerical experiment to test the given inequality for
n = 3, 7, 15.

164 Chapter 4 Interpolation and Numerical Differentiation

11. (Student research project) Explore the topic of interpolation of multivariate scattered
data, such as arise in geophysics and other areas.

12. Use mathematical software such as found in Matlab, Maple, or Mathematica to repro-
duce Figures 4.7 and 4.8.

13. Use symbolic mathematical software such as Maple or Mathematica to generate the
interpolation polynomial for the data points in Example 2. Plot the polynomial and the
data points.

14. Use graphical software to plot four or five points that happen to generate an interpolating
polynomial that exhibits a great deal of oscillations. This piece of software should let
you use your computer mouse to click on three or four points that visually appear to
be part of a smooth curve. Next it uses Newton’s interpolating polynomial to sketch
the curve through these points. Then add another point that is somewhat remote from
the curve and refit all the points. Repeat, adding other points. After a few points have
been added in this way, you should have evidence that polynomials can oscillate wildly.

4.3 Estimating Derivatives and Richardson Extrapolation
A numerical experiment outlined in Chapter 1 (at the end of Section 1.1, p. 10) showed that
determining the derivative of a function f at a point x is not a trivial numerical problem.
Specifically, if f (x) can be computed with only n digits of precision, it is difficult to calculate
f ′(x) numerically with n digits of precision. This difficulty can be traced to the subtraction
between quantities that are nearly equal. In this section, several alternatives are offered for
the numerical computation of f ′(x) and f ′′(x).

First-Derivative Formulas via Taylor Series
First, consider again the obvious method based on the definition of f ′(x). It consists of
selecting one or more small values of h and writing

f ′(x) ≈ 1

h
[f (x + h) − f (x)] (1)

What error is involved in this formula? To find out, use Taylor’s Theorem from Section 1.2:

f (x + h) = f (x) + h f ′(x) + 1

2
h2 f ′′(ξ)

Rearranging this equation gives

f ′(x) = 1

h
[f (x + h) − f (x)] − 1

2
h f ′′(ξ) (2)

Hence, we see that approximation (1) has error term − 1
2 h f ′′(ξ) = O(h), where ξ is in the

interval having endpoints x and x + h.
Equation (2) shows that in general, as h → 0, the difference between f ′(x) and the

estimate h−1[f (x +h)− f (x)] approaches zero at the same rate that h does—that is, O(h).
Of course, if f ′′(x) = 0, then the error term will be 1

6 h2 f ′′′(γ), which converges to zero
somewhat faster at O(h2). But usually, f ′′(x) is not zero.

4.3 Estimating Derivatives and Richardson Extrapolation 165

Equation (2) gives the truncation error for this numerical procedure, namely,
− 1

2 h f ′′(ξ). This error is present even if the calculations are performed with infinite preci-
sion; it is due to our imitating the mathematical limit process by means of an approximation
formula. Additional (and worse) errors must be expected when calculations are performed
on a computer with finite word length.

EXAMPLE 1 In Section 1.1, the program named First used the one-sided rule (1) to approximate the first
derivative of the function f (x) = sin x at x = 0.5. Explain what happens when a large
number of iterations are performed, say n = 50.

Solution There is a total loss of all significant digits! When we examine the computer output closely,
we find that, in fact, a good approximation f ′(0.5) ≈ 0.87758 was found, but it deteriorated
as the process continued. This was caused by the subtraction of two nearly equal quantities
f (x + h) and f (x), resulting in a loss of significant digits as well as a magnification of this
effect from dividing by a small value of h. We need to stop the iterations sooner! When to
stop an iterative process is a common question in numerical algorithms. In this case, one can
monitor the iterations to determine when they settle down, namely, when two successive
ones are within a prescribed tolerance. Alternatively, we can use the truncation error term.
If we want six significant digits of accuracy in the results, we set∣∣∣∣−1

2
h f ′′(ξ)

∣∣∣∣ �
1

2
4−n <

1

2
10−6

since | f ′′(x)| < 1 and h = 1/4n . We find n > 6/ log 4 ≈ 9.97. So we should stop after
about ten steps in the process. (The least error of 3.1 × 10−9 was found at iteration 14.) ■

As we saw in Newton’s method (Chapter 3) and will see in the Romberg method
(Chapter 5), it is advantageous to have the convergence of numerical processes occur with
higher powers of some quantity approaching zero. In the present situation, we want an
approximation to f ′(x) in which the error behaves like O(h2). One such method is easily
obtained with the aid of the following two Taylor series:⎧⎪⎪⎨⎪⎪⎩

f (x + h) = f (x) + h f ′(x) + 1

2!
h2 f ′′(x) + 1

3!
h3 f ′′′(x) + 1

4!
h4 f (4)(x) + · · ·

f (x − h) = f (x) − h f ′(x) + 1

2!
h2 f ′′(x) − 1

3!
h3 f ′′′(x) + 1

4!
h4 f (4)(x) − · · ·

(3)

By subtraction, we obtain

f (x + h) − f (x − h) = 2h f ′(x) + 2

3!
h3 f ′′′(x) + 2

5!
h5 f (5)(x) + · · ·

This leads to a very important formula for approximating f ′(x):

f ′(x) = 1

2h
[f (x + h) − f (x − h)] − h2

3!
f ′′′(x) − h4

5!
f (5)(x) − · · · (4)

Expressed otherwise,

f ′(x) ≈ 1

2h
[f (x + h) − f (x − h)] (5)

with an error whose leading term is − 1
6 h2 f ′′′(x), which makes it O(h2).

166 Chapter 4 Interpolation and Numerical Differentiation

By using Taylor’s Theorem with its error term, we could have obtained the following
two expressions:

f (x + h) = f (x) + h f ′(x) + 1

2
h2 f ′′(x) + 1

6
h3 f ′′′(ξ1)

f (x − h) = f (x) − h f ′(x) + 1

2
h2 f ′′(x) − 1

6
h3 f ′′′(ξ2)

Then the subtraction would lead to

f ′(x) = 1

2h
[f (x + h) − f (x − h)] − 1

6
h2

[
f ′′′(ξ1) + f ′′′(ξ2)

2

]
The error term here can be simplified by the following reasoning: The expression 1

2 [f ′′′(ξ1)+
f ′′′(ξ2)] is the average of two values of f ′′′ on the interval [x − h, x + h]. It therefore lies
between the least and greatest values of f ′′′ on this interval. If f ′′′ is continuous on this
interval, then this average value is assumed at some point ξ . Hence, the formula with its
error term can be written as

f ′(x) = 1

2h
[f (x + h) − f (x − h)] − 1

6
h2 f ′′′(ξ)

This is based on the sole assumption that f ′′′ is continuous on [x − h, x + h]. This formula
for numerical differentiation turns out to be very useful in the numerical solution of certain
differential equations, as we shall see in Chapter 14 (on boundary value problems) and
Chapter 15 (on partial differential equations).

EXAMPLE 2 Modify program First in Section 1.1 so that it uses the central difference formula (5) to
approximate the first derivative of the function f (x) = sin x at x = 0.5.

Solution Using the truncation error term for the central difference formula (5), we set∣∣∣∣−1

6
h2 f ′′′(ξ)

∣∣∣∣ �
1

6
4−2n <

1

2
10−6

or n > (6−log 3)/ log 16 ≈ 4.59. We obtain a good approximation after about five iterations
with this higher-order formula. (The least error of 3.6 × 10−12 was at step 9.) ■

Richardson Extrapolation
Returning now to Equation (4), we write it in a simpler form:

f ′(x) = 1

2h
[f (x + h) − f (x − h)] + a2h2 + a4h4 + a6h6 + · · · (6)

in which the constants a2, a4, . . . depend on f and x . When such information is available
about a numerical process, it is possible to use a powerful technique known as Richardson
extrapolation to wring more accuracy out of the method. This procedure is now explained,
using Equation (6) as our model.

Holding f and x fixed, we define a function of h by the formula

ϕ(h) = 1

2h
[f (x + h) − f (x − h)] (7)

From Equation (6), we see that ϕ(h) is an approximation to f ′(x) with error of order O(h2).
Our objective is to compute limh→0 ϕ(h) because this is the quantity f ′(x) that we wanted

4.3 Estimating Derivatives and Richardson Extrapolation 167

in the first place. If we select a function f and plot ϕ(h) for h = 1, 1
2 ,

1
4 ,

1
8 , . . . , then we

get a graph (Computer Problem 4.3.5). Near zero, where we cannot actually calculate the
value of ϕ from Equation (7), ϕ is approximately a quadratic function of h, since the higher-
order terms from Equation (6) are negligible. Richardson extrapolation seeks to estimate
the limiting value at 0 from some computed values of ϕ(h) near 0. Obviously, we can take
any convenient sequence hn that converges to zero, calculate ϕ(hn) from Equation (7), and
use these as approximations to f ′(x).

But something much more clever can be done. Suppose we compute ϕ(h) for some h
and then compute ϕ(h/2). By Equation (6), we have

ϕ(h) = f ′(x) − a2h2 − a4h4 − a6h6 − · · ·

ϕ

(
h

2

)
= f ′(x) − a2

(
h

2

)2

− a4

(
h

2

)4

− a6

(
h

2

)6

− · · ·

We can eliminate the dominant term in the error series by simple algebra. To do so, multiply
the second equation by 4 and subtract it from the first equation. The result is

ϕ(h) − 4ϕ

(
h

2

)
= −3 f ′(x) − 3

4
a4h4 − 15

16
a6h6 − · · ·

We divide by −3 and rearrange this to get

ϕ

(
h

2

)
+ 1

3

[
ϕ

(
h

2

)
− ϕ(h)

]
= f ′(x) + 1

4
a4h4 + 5

16
a6h6 + · · ·

This is a marvelous discovery. Simply by adding 1
3 [ϕ(h/2) − ϕ(h)] to ϕ(h/2), we have

apparently improved the precision to O(h4) because the error series that accompanies this
new combination begins with 1

4 a4h4. Since h will be small, this is a dramatic improvement.
We can repeat this process by letting

�(h) = 4

3
ϕ

(
h

2

)
− 1

3
ϕ(h)

Then we have from the previous derivation that

�(h) = f ′(x) + b4h4 + b6h6 + · · ·
�

(
h

2

)
= f ′(x) + b4

(
h

2

)4

+ b6

(
h

2

)6

+ · · ·

We can combine these equations to eliminate the first term in the error series

�(h) − 16�

(
h

2

)
= −15 f ′(x) + 3

4
b6h6 + · · ·

Hence, we have

�

(
h

2

)
+ 1

15

[
�

(
h

2

)
− �(h)

]
= f ′(x) − 1

20
b6h5 + · · ·

This is yet another apparent improvement in the precision to O(h6). And now, to top it off,
note that the same procedure can be repeated over and over again to kill higher and higher
terms in the error. This is Richardson extrapolation.

168 Chapter 4 Interpolation and Numerical Differentiation

Essentially the same situation arises in the derivation of Romberg’s algorithm in Chap-
ter 5. Therefore, it is desirable to have a general discussion of the procedure here. We start
with an equation that includes both situations. Let ϕ be a function such that

ϕ(h) = L −
∞∑

k=1

a2kh2k (8)

where the coefficients a2k are not known. Equation (8) is not interpreted as the definition of
ϕ but rather as a property that ϕ possesses. It is assumed that ϕ(h) can be computed for any
h > 0 and that our objective is to approximate L accurately using ϕ.

Select a convenient h, and compute the numbers

D(n, 0) = ϕ

(
h

2n

)
(n � 0) (9)

Because of Equation (8), we have

D(n, 0) = L +
∞∑

k=1

A(k, 0)

(
h

2n

)2k

where A(k, 0) = −a2k . These quantities D(n, 0) give a crude estimate of the unknown num-
ber L = limx→0 ϕ(x). More accurate estimates are obtained via Richardson extrapolation.
The extrapolation formula is

D(n, m) = 4m

4m − 1
D(n, m − 1) − 1

4m − 1
D(n − 1, m − 1) (1 � m � n) (10)

■ THEOREM 1 RICHARDSON EXTRAPOLATION THEOREM

The quantities D(n, m) defined in the Richardson extrapolation process (10) obey the
equation

D(n, m) = L +
∞∑

k=m+1

A(k, m)

(
h

2n

)2k

(0 � m � n) (11)

Proof Equation (11) is true by hypothesis if m = 0. For the purpose of an inductive proof, we
assume that Equation (11) is valid for an arbitrary value of m−1, and we prove that Equation
(11) is then valid for m. Now from Equations (10) and (11) for a fixed value m, we have

D(n, m) = 4m

4m − 1

[
L +

∞∑
k=m

A(k, m − 1)

(
h

2n

)2k
]

− 1

4m − 1

[
L +

∞∑
k=m

A(k, m − 1)

(
h

2n−1

)2k
]

After simplification, this becomes

D(n, m) = L +
∞∑

k=m

A(k, m − 1)

(
4m − 4k

4m − 1

)(
h

2n

)2k

(12)

4.3 Estimating Derivatives and Richardson Extrapolation 169

Thus, we are led to define

A(k, m) = A(k, m − 1)

(
4m − 4k

4m − 1

)
At the same time, we notice that A(m, m) = 0. Hence, Equation (12) can be written as

D(n, m) = L +
∞∑

k=m+1

A(k, m)

(
h

2n

)2k

Equation (11) is true for m, and the induction is complete. ■

The significance of Equation (11) is that the summation begins with the term (h/2n)2m+2.
Since h/2n is small, this indicates that the numbers D(n, m) are approaching L very rapidly,
namely,

D(n, m) = L + O
(

h2(m+1)

22n(m+1)

)
In practice, one can arrange the quantities in a two-dimensional triangular array as

follows:

D(0, 0)

D(1, 0) D(1, 1)

D(2, 0) D(2, 1) D(2, 2)

...
...

...
. . .

D(N , 0) D(N , 1) D(N , 2) · · · D(N , N)

(13)

The main tasks to generate such an array are as follows:

■ ALGORITHM 2 Richardson Extrapolation

1. Write a function for ϕ.

2. Decide on suitable values for N and h.

3. For i = 0, 1, . . . , N , compute D(i, 0) = ϕ(h/2i).

4. For 0 � i � j � N , compute

D(i, j) = D(i, j − 1) + (4 j − 1)−1[D(i, j − 1) − D(i − 1, j − 1)]

Notice that in this algorithm, the computation of D(i, j) follows Equation (10) but
has been rearranged slightly to improve its numerical properties.

EXAMPLE 3 Write a procedure to compute the derivative of a function at a point by using Equation (5)
and Richardson extrapolation.

Solution The input to the procedure will be a function f , a specific point x , a value of h, and a
number n signifying how many rows in the array (13) are to be computed. The output will

170 Chapter 4 Interpolation and Numerical Differentiation

be the array (13). Here is a suitable pseudocode:

procedure Derivative(f, x, n, h, (di j))

integer i, j, n; real h, x ; real array (di j)0:n×0:n

external function f
for i = 0 to n do

di0 ← [f (x + h) − f (x − h)]/(2h)

for j = 1 to i do
di, j ← di, j−1 + (di, j−1 − di−1, j−1)/(4 j − 1)

end for
h ← h/2

end for
end procedure Derivative

To test the procedure, choose f (x) = sin x , where x0 = 1.23095 94154 and h = 1. Then
f ′(x) = cos x and f ′(x0) = 1

3 . A pseudocode is written as follows:

program Test Derivative
real array (di j)0:n×0:n; external function f
integer n ← 10; real h ← 1; x ← 1.23095 94154
call Derivative(f, x, n, h, (di j))

output (di j)

end program Test Derivative

real function f (x)

real x
f ← sin(x)

end function f

We invite the reader to program the pseudocode and execute it on a computer. The computer
output is the triangular array (di j) with indices 0 � j � i � 10. The most accurate value
is (d4,1) = 0.33333 33433. The values di0, which are obtained solely by Equations (7)
and (9) without any extrapolation, are not as accurate, having no more than four correct
digits. ■

Mathematical software is now available with algebraic manipulation capabilities. Using
them, we could write a computer program to find derivatives symbolically for a rather
large class of functions—probably all those you would encounter in a calculus course.
For example, we could verify the numerical results above by first finding the derivative
exactly and then evaluating the numerical answer cos(1.23095 94154) ≈ 0.33333 33355
since arccos

(
1
3

) ≈ 1.23095 941543. Of course, the procedures discussed in this section are
for approximating derivatives that cannot be determined exactly.

First-Derivative Formulas via Interpolation Polynomials
An important general stratagem can be used to approximate derivatives (as well as integrals
and other quantities). The function f is first approximated by a polynomial p so that

4.3 Estimating Derivatives and Richardson Extrapolation 171

f ≈ p. Then we simply proceed to the approximation f ′(x) ≈ p′(x) as a consequence. Of
course, this strategy should be used very cautiously because the behavior of the interpolating
polynomial can be oscillatory.

In practice, the approximating polynomial p is often determined by interpolation at
a few points. For example, suppose that p is the polynomial of degree at most 1 that
interpolates f at two nodes, x0 and x1. Then from Equation (8) in Section 4.1 with n = 1,
we have

p1(x) = f (x0) + f [x0, x1](x − x0)

Consequently,

f ′(x) ≈ p′
1(x) = f [x0, x1] = f (x1) − f (x0)

x1 − x0
(14)

If x0 = x and x1 = x + h (see Figure 4.11), this formula is one previously considered,
namely, Equation (1):

f ′(x) ≈ 1

h
[f (x + h) − f (x)] (15)

FIGURE 4.11

Forward
difference:
two nodes x x � h

x0 x1

If x0 = x − h and x1 = x + h (see Figure 4.12), the resulting formula is Equation (5):

f ′(x) ≈ 1

2h
[f (x + h) − f (x − h)] (16)

FIGURE 4.12

Central
difference:
two nodes x � h x

x0

x � h

x1

Now consider interpolation with three nodes, x0, x1, and x2. The interpolating polyno-
mial is obtained from Equation (8) in Section 4.1:

p2(x) = f (x0) + f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1)

and its derivative is

p′
2(x) = f [x0, x1] + f [x0, x1, x2](2x − x0 − x1) (17)

Here the right-hand side consists of two terms. The first is the previous estimate in Equa-
tion (14), and the second is a refinement or correction term.

If Equation (17) is used to evaluate f ′(x) when x = 1
2 (x0 + x1), as in Equation (16),

then the correction term in Equation (17) is zero. Thus, the first term in this case must be
more accurate than those in other cases because the correction term adds nothing. This is
why Equation (16) is more accurate than (15).

An analysis of the errors in this general procedure goes as follows: Suppose that pn is
the polynomial of least degree that interpolates f at the nodes x0, x1, . . . , xn . Then according

172 Chapter 4 Interpolation and Numerical Differentiation

to the first theorem on interpolating errors in Section 4.2,

f (x) − pn(x) = 1

(n + 1)!
f (n+1)(ξ)w(x)

where ξ is dependent on x , and w(x) = (x − x0)(x − x1) · · · (x − xn). Differentiating gives

f ′(x) − p′
n(x) = 1

(n + 1)!
w(x)

d

dx
f (n+1)(ξ) + 1

(n + 1)!
f (n+1)(ξ)w′(x) (18)

Here, we had to assume that f (n+1)(ξ) is differentiable as a function of x , a fact that is
known if f (n+2) exists and is continuous.

The first observation to make about the error formula in Equation (18) is that w(x)

vanishes at each node, so if the evaluation is at a node xi , the resulting equation is simpler:

f ′(xi) = p′
n(xi) + 1

(n + 1)!
f (n+1)(ξ)w′(xi)

For example, taking just two points x0 and x1, we obtain with n = 1 and i = 0,

f ′(x0) = f [x0, x1] + 1

2
f ′′(ξ)

d

dx
[(x − x0)(x − x1)]

∣∣∣∣
x=x0

= f [x0, x1] + 1

2
f ′′(ξ)(x0 − x1)

This is Equation (2) in disguise when x0 = x and x1 = x + h. Similar results follow with
n = 1 and i = 1.

The second observation to make about Equation (18) is that it becomes simpler if x is
chosen as a point where w′(x) = 0. For instance, if n = 1, then w is a quadratic function
that vanishes at the two nodes x0 and x1. Because a parabola is symmetric about its axis,
w′[(x0 + x1)/2] = 0. The resulting formula is

f ′
(

x0 + x1

2

)
= f [x0, x1] − 1

8
(x1 − x0)

2 d

dx
f ′′(ξ)

As a final example, consider four interpolation points: x0, x1, x2, and x3. The interpo-
lating polynomial from Equation (8) in Section 4.1 with n = 3 is

p3(x) = f (x0) + f [x0, x1](x − x0) + f [x0, x1, x2](x − x0)(x − x1)

+ f [x0, x1, x2, x3](x − x0)(x − x1)(x − x2)

Its derivative is

p′
3(x) = f [x0, x1] + f [x0, x1, x2](2x − x0 − x1)

+ f [x0, x1, x2, x3]((x − x1)(x − x2)

+ (x − x0)(x − x2) + (x − x0)(x − x1))

A useful special case occurs if x0 = x − h, x1 = x + h, x2 = x − 2h, and x3 = x + 2h (see
Figure 4.13). The resulting formula is

f ′(x) ≈ − 2

3h
[f (x + h) − f (x − h)] − 1

12h
[f (x + 2h) − f (x − 2h)]

4.3 Estimating Derivatives and Richardson Extrapolation 173

FIGURE 4.13

Central
difference:
four nodes x � 2h x � 2hx � h x � h

x2 x0 x3x1

x

This can be arranged in a form in which it probably should be computed with a principal
term plus a correction or refining term:

f ′(x) ≈ 1

2h
[f (x + h) − f (x − h)]

− 1

12h
{ f (x + 2h) − 2[f (x + h) − f (x − h)] − f (x − 2h)} (19)

The error term is − 1
30 h4 f (v)(ξ) = O(h4).

Second-Derivative Formulas via Taylor Series
In the numerical solution of differential equations, it is often necessary to approximate
second derivatives. We shall derive the most important formula for accomplishing this.
Simply add the two Taylor series (3) for f (x + h) and f (x − h). The result is

f (x + h) + f (x − h) = 2 f (x) + h2 f ′′(x) + 2

[
1

4!
h4 f (4)(x) + · · ·

]
When this is rearranged, we get

f ′′(x) = 1

h2
[f (x + h) − 2 f (x) + f (x − h)] + E

where the error series is

E = −2

[
1

4!
h2 f (4)(x) + 1

6!
h4 f (6)(x) + · · ·

]
By carrying out the same process using Taylor’s formula with a remainder, one can show
that E is also given by

E = − 1

12
h2 f (4)(ξ)

for some ξ in the interval (x − h, x + h). Hence, we have the approximation

f ′′(x) ≈ 1

h2
[f (x + h) − 2 f (x) + f (x − h)] (20)

with error O(h2).

EXAMPLE 4 Repeat Example 2, using the central difference formula (20) to approximate the second
derivative of the function f (x) = sin x at the given point x = 0.5.

Solution Using the truncation error term, we set∣∣∣∣− 1

12
h2 f (4)(ξ)

∣∣∣∣ �
1

12
4−2n <

1

2
10−6

and we obtain n > (6 − log 6)/ log 16 ≈ 4.34. Hence, the modified program First finds a
good approximation of f ′′(0.5) ≈ −0.47942 after about four iterations. (The least error of
3.1 × 10−9 was obtained at iteration 6.) ■

174 Chapter 4 Interpolation and Numerical Differentiation

Approximate derivative formulas of high order can be obtained by using unequally
spaced points such as at Chebyshev nodes. Recently, software packages have been developed
for automatic differentiation of functions that are expressible by a computer program. They
produce true derivatives with only rounding errors and no discretization errors.

Noise in Computation
An interesting question is how noise in the evaluation of f (x) affects the computation of
derivatives when using the standard formulas.

The formulas for derivatives are derived with the expectation that evaluation of the
function at any point is possible, with complete precision. Then the approximate derivative
produced by the formula differs from the actual derivative by a quantity called the error
term, which involves the spacing of the sample points and some higher derivative of the
function.

If there are errors in the values of the function (noise), they can vitiate the whole
process! Those errors could overwhelm the error inherent in the formulas. The inherent
error arises from the fact that in deriving the formulas a Taylor series was truncated after
only a few terms. It is called the truncation error. It is present even if the evaluation of the
function at the required sample points is absolutely correct.

For example, consider the formula

f ′(x) = f (x + h) − f (x − h)

2h
− h2

6
f ′′′(ξ)

The term with h2 is the error term. The point ξ is a nearby point (unknown). If f (x + h)

and f (x − h) are in error by at most d, then one can see that the formula will produce a
value for f ′(x) that is in error by d/h, which is large when h is small. Noise completely
spoils the process if d is large.

For a specific numerical case, suppose that h = 10−2 and | f ′′′(s)| � 6. Then the trunca-
tion error, E , satisfies |E | � 10−4. The derivative computed from the formula with complete
precision is within 10−4 of the actual derivative. Suppose, however, that there is noise in the
evaluation of f (x ±h) of magnitude d = h. The correct value of [f (x +h)− f (x −h)]/(2h)

may differ from the noisy value by (2d)/(2h) = 1.

Summary

(1) We have derived formulas for approximating first and second derivatives. For f ′(x), a
one-sided formula is

f ′(x) ≈ 1

h
[f (x + h) − f (x)]

with error term − 1
2 h f ′′(ξ). A central difference formula is

f ′(x) ≈ 1

2h
[f (x + h) − f (x − h)]

4.3 Estimating Derivatives and Richardson Extrapolation 175

with error − 1
6 h2 f ′′′(ξ) = O(h2). A central difference formula with a correction term is

f ′(x) ≈ 1

2h
[f (x + h) − f (x − h)]

− 1

12h
[f (x + 2h) − 2 f (x + h) + 2 f (x − h) − f (x − 2h)]

with error term − 1
30 h4 f (v)(ξ) = O(h4).

(2) For f ′′(x), a central difference formula is

f ′′(x) ≈ 1

h2
[f (x + h) − 2 f (x) + f (x − h)]

with error term − 1
12 h2 f (4)(ξ)

(3) If ϕ(h) is one of these formulas with error series a2h2 + a4h4 + a6h6 + · · ·, then we can
apply Richardson extrapolation as follows{

D(n, 0) = ϕ (h/2n)

D(n, m) = D(n, m − 1) + [D(n, m − 1) − D(n − 1, m − 1)]/(4m − 1)

with error terms

D(n, m) = L + O
(

h2(m+1)

22n(m+1)

)

Additional References for Chapter 4
For additional study, see Gautschi [1990], Goldstine [1977], Griewark [2000], Groetsch
[1998], Rivlin [1990], and Whittaker and Robinson [1944].

Problems 4.3

a1. Determine the error term for the formula

f ′(x) ≈ 1

4h
[f (x + 3h) − f (x − h)]

a2. Using Taylor series, establish the error term for the formula

f ′(0) ≈ 1

2h
[f (2h) − f (0)]

3. Derive the approximation formula

f ′(x) ≈ 1

2h
[4 f (x + h) − 3 f (x) − f (x + 2h)]

and show that its error term is of the form 1
3 h2 f ′′′(ξ).

a4. Can you find an approximation formula for f ′(x) that has error termO(h3) and involves
only two evaluations of the function f ? Prove or disprove.

5. Averaging the forward-difference formula f ′(x) ≈ [f (x + h) − f (x)]/h and the
backward-difference formula f ′(x) ≈ [f (x) − f (x − h)]/h, each with error term

176 Chapter 4 Interpolation and Numerical Differentiation

O(h), results in the central-difference formula f ′(x) ≈ [f (x + h) − f (x − h)]/(2h)

with error O(h2). Show why. Hint: Determine at least the first term in the error series
for each formula.

a6. Criticize the following analysis. By Taylor’s formula, we have

f (x + h) − f (x) = h f ′(x) + h2

2
f ′′(x) + h3

6
f ′′′(ξ)

f (x − h) − f (x) = −h f ′(x) + h2

2
f ′′(x) − h3

6
f ′′′(ξ)

So by adding, we obtain an exact expression for f ′′(x):

f (x + h) + f (x − h) − 2 f (x) = h2 f ′′(x)

7. Criticize the following analysis. By Taylor’s formula, we have

f (x + h) − f (x) = h f ′(x) + h2

2
f ′′(x) + h3

6
f ′′′(ξ1)

f (x − h) − f (x) = −h f ′(x) + h2

2
f ′′(x) − h3

6
f ′′′(ξ2)

Therefore,

1

h2
[f (x + h) − 2 f (x) + f (x − h)] = f ′′(x) + h

6
[f ′′′(ξ1) − f ′′′(ξ2)]

The error in the approximation formula for f ′′ is thus O(h).

8. Derive the two formulas

aa. f ′(x) ≈ 1

4h
[f (x + 2h) − f (x − 2h)]

b. f ′′(x) ≈ 1

4h2
[f (x + 2h) − 2 f (x) + f (x − 2h)]

and establish formulas for the errors in using them.

9. Derive the following rules for estimating derivatives:

aa. f ′′′(x) ≈ 1

2h3
[f (x + 2h) − 2 f (x + h) + 2 f (x − h) − f (x − 2h)]

ab. f (4)(x) ≈ 1

h4
[f (x + 2h) − 4 f (x + h) + 6 f (x) − 4 f (x − h) + f (x − 2h)]

and their error terms. Which is more accurate? Hint: Consider the Taylor series for
D(h) ≡ f (x + h) − f (x − h) and S(h) ≡ f (x + h) + f (x − h).

10. Establish the formula

f ′′(x) ≈ 2

h2

[
f (x0)

(1 + α)
− f (x1)

α
+ f (x2)

α(α + 1)

]

4.3 Estimating Derivatives and Richardson Extrapolation 177

in the following two ways, using the unevenly spaced points x0 < x1 < x2, where
x1 − x0 = h and x2 − x1 = αh. Notice that this formula reduces to the standard
central-difference formula (20) when α = 1.

a. Approximate f (x) by the Newton form of the interpolating polynomial of degree 2.

b. Calculate the undetermined coefficients A, B, and C in the expression f ′′(x) ≈
A f (x0) + B f (x1) + C f (x2) by making it exact for the three polynomials 1, x − x1,
and (x − x1)

2 and thus exact for all polynomials of degree � 2.

a11. (Continuation) Using Taylor series, show that

f ′(x1) = f (x2) − f (x0)

x2 − x0
+ (α − 1)

h

2
f ′′(x1) + O(h2)

Establish that the error for approximating f ′(x1) by [f (x2)− f (x0)]/(x2 −x0) isO(h2)

when x1 is midway between x0 and x2 but only O(h) otherwise.

a12. A certain calculation requires an approximation formula for f ′(x) + f ′′(x). How well
does the expression(

2 + h

2h2

)
f (x + h) −

(
2

h2

)
f (x) +

(
2 − h

2h2

)
f (x − h)

serve? Derive this approximation and its error term.

a13. The values of a function f are given at three points x0, x1, and x2. If a quadratic
interpolating polynomial is used to estimate f ′(x) at x = 1

2 (x0 + x1), what formula
will result?

14. Consider Equation (19).

a. Fill in the details in its derivation.

b. Using Taylor series, derive its error term.

15. Show how Richardson extrapolation would work on Formula (20).

a16. If ϕ(h) = L − c1h − c2h2 − c3h3 − · · ·, then what combination of ϕ(h) and ϕ(h/2)

should give an accurate estimate of L?

17. (Continuation) State and prove a theorem analogous to the theorem on Richardson
extrapolation for the situation of the preceding problem.

18. If ϕ(h) = L − c1h1/2 − c2h2/2 − c3h3/2 − · · ·, then what combination of ϕ(h) and
ϕ(h/2) should give an accurate estimate of L?

19. Show that Richardson extrapolation can be carried out for any two values of h. Thus,
if ϕ(h) = L − O(h p), then from ϕ(h1) and ϕ(h2), a more accurate estimate of L is
given by

ϕ(h2) + h p
2

h p
1 − h p

2

[ϕ(h2) − ϕ(h1)]

a20. Consider a function ϕ such that limh→0 ϕ(h) = L and L − ϕ(h) ≈ ce−1/h for some
constant c. By combining ϕ(h), ϕ(h/2), and ϕ(h/3), find an accurate estimate of L .

178 Chapter 4 Interpolation and Numerical Differentiation

21. Consider the approximate formula

f ′(x) ≈ 3

2h3

∫ h

−h
t f (x + t) dt

Determine its error term. Does the function f have to be differentiable for the for-
mula to be meaningful? Hint: This is a novel method of doing numerical differentia-
tion. The interested reader can read more about Lanczos’ generalized derivative in
Groetsch [1998].

22. Derive the error terms for D(3, 0), D(3, 1), D(3, 2) and D(3, 3).

23. Differentiation and integration are mutual inverse processes. Differentiation is an in-
herently sensitive problem in which small changes in the data can cause large changes
in the results. Integration is a smoothing process and is inherently stable. Display two
functions that have very different derivatives but equal definite integrals and vice versa.

24. Establish the error terms for these rules:

a. f ′′′(x) ≈ 1

2h3
[3 f (x + h) − 10 f (x) + 12 f (x − h) − 6 f (x − 2h) + f (x − 3h)]

b. f ′(x) + h

2
f ′′ ≈ 1

h
[f (x + h) − f (x)]

c. f (iv)(x) ≈ 1

h4

[
4

3
f (x + 3h) − 6 f (x + 2h) + 12 f (x + h)

]
if f (x) = f ′(x) = 0.

Computer Problems 4.3

1. Test procedure Derivative on the following functions at the points indicated in a single
computer run. Interpret the results.

a. f (x) = cos x at x = 0 b. f (x) = arctan x at x = 1

c. f (x) = |x | at x = 0

2. (Continuation) Write and test a procedure similar to Derivative that computes f ′′(x)

with repeated Richardson extrapolation.

a3. Find f ′(0.25) as accurately as possible, using only the function corresponding to the
pseudocode below and a method for numerical differentiation:

real function f (x)

integer i ; real a, b, c, x
a ← 1; b ← cos(x)

for i = 1 to 5 do
c ← b
b ← √

ab
a ← (a + c)/2

end for
f ← 2 arctan(1)/a
end function f

4.3 Estimating Derivatives and Richardson Extrapolation 179

4. Carry out a numerical experiment to compare the accuracy of Formulas (5) and (19) on
a function f whose derivative can be computed precisely. Take a sequence of values
for h, such as 4−n with 0 � n � 12.

5. Using the discussion of the geometric interpretation of Richardson extrapolation, pro-
duce a graph to show that ϕ(h) looks like a quadratic curve in h.

6. Use symbolic mathematical software such as Maple or Mathematica to establish the
first term in the error series for Equation (19).

7. Use mathematical software such as found in Matlab, Maple, or Mathematica to redo
Example 1.

5

Numerical Integration

In electrical field theory, it is proved that the magnetic field induced by a
current flowing in a circular loop of wire has intensity

H (x) = 4I r
r 2 − x2

∫ π/2

0

[
1 −

(x
r

)2
sin2

θ
]1/2

dθ

where I is the current, r is the radius of the loop, and x is the distance from
the center to the point where the magnetic intensity is being computed
(0 � x � r) . If I , r , and x are given, we have a formidable integral to evaluate.
It is an elliptic integral and not expressible in terms of familiar functions.
But H can be computed precisely by the methods of this chapter. For
example, if I = 15.3, r = 120, and x = 84, we find H = 1.35566 1135
accurate to nine decimals.

5.1 Lower and Upper Sums
Elementary calculus focuses largely on two important processes of mathematics: differen-
tiation and integration. In Section 1.1, numerical differentiation was considered briefly; it
was taken up again in Section 4.3. In this chapter, the process of integration is examined
from the standpoint of numerical mathematics.

Definite and Indefinite Integrals
It is customary to distinguish two types of integrals: the definite and the indefinite integral.
The indefinite integral of a function is another function or a class of functions, whereas
the definite integral of a function over a fixed interval is a number. For example,

Indefinite integral:
∫

x2 dx = 1

3
x3 + C

Definite integral:
∫ 2

0
x2 dx = 8

3

Actually, a function has not just one but many indefinite integrals. These differ from
each other by constants. Thus, in the preceding example, any constant value may be assigned

180

5.1 Lower and Upper Sums 181

to C , and the result is still an indefinite integral. In elementary calculus, the concept of an
indefinite integral is identical with the concept of an antiderivative. An antiderivative of a
function f is any function F having the property that F ′ = f .

The definite and indefinite integrals are related by the Fundamental Theorem of
Calculus,∗ which states that

∫ b
a f (x) dx can be computed by first finding an antiderivative

F of f and then evaluating F(b) − F(a). Thus, using traditional notation, we have∫ 3

1
(x2 − 2) dx =

(x3

3
− 2x

)∣∣∣∣3
1

=
(27

3
− 6

)
−
(1

3
− 2

)
= 14

3

As another example of the Fundamental Theorem of Calculus, we can write∫ b

a
F ′(x) dx = F(b) − F(a)∫ x

a
F ′(t) dt = F(x) − F(a)

If this second equation is differentiated with respect to x , the result is (and here we have
put f = F ′)

d

dx

∫ x

a
f (t) dt = f (x)

This last equation shows that
∫ x

a f (t) dt must be an antiderivative (indefinite integral) of f .
The foregoing technique for computing definite integrals is virtually the only one

emphasized in elementary calculus. The definite integral of a function, however, has an
interpretation as the area under a curve, and so the existence of a numerical value for∫ b

a f (x) dx should not depend logically on our limited ability to find antiderivatives. Thus,
for instance, ∫ 1

0
ex2

dx

has a precise numerical value despite the fact that there is no elementary function F such
that F ′(x) = ex2

. By the preceding remarks, ex2
does have antiderivatives, one of which is

F(x) =
∫ x

0
et2

dt

However, this form of the function F is of no help in determining the numerical value
sought.

Lower and Upper Sums
The existence of the definite integral of a nonnegative function f on a closed interval [a, b]
is based on an interpretation of that integral as the area under the graph of f . The definite
integral is defined by means of two concepts, the lower sums of f and the upper sums of
f ; these are approximations to the area under the graph.

∗Fundamental Theorem of Calculus: If f is continuous on the interval [a, b] and F is an antiderivative of f ,
then ∫ b

a

f (x) dx = F(b) − F(a)

182 Chapter 5 Numerical Integration

Let P be a partition of the interval [a, b] given by

P = {a = x0 < x1 < x2 < · · · < xn−1 < xn = b}
with partition points x0, x1, x2, . . . , xn that divide the interval [a, b] into n subintervals
[xi , xi+1]. Now denote by mi the greatest lower bound (infimum or inf) of f (x) on the
subinterval [xi , xi+1]. In symbols,

mi = inf{ f (x) : xi � x � xi+1}
Likewise, we denote by Mi the least upper bound (supremum or sup) of f (x) on [xi , xi+1].
Thus,

Mi = sup{ f (x) : xi � x � xi+1}
The lower sums and upper sums of f corresponding to the given partition P are defined
to be

L(f ; P) =
n−1∑
i=0

mi (xi+1 − xi)

U (f ; P) =
n−1∑
i=0

Mi (xi+1 − xi)

If f is a positive function, these two quantities can be interpreted as estimates of the area
under the curve for f . These sums are shown in Figure 5.1.

FIGURE 5.1

Illustrating
lower and

upper sums

a � x0 x1 x2 x3 x4 x5 � b

(a) Lower sums

a � x0 x1 x2 x3 x4 x5 � b

(b) Upper sums

EXAMPLE 1 What are the numerical values of the upper and lower sums for f (x) = x2 on the interval
[0, 1] if the partition is P = {

0, 1
4 ,

1
2 ,

3
4 , 1

}
?

5.1 Lower and Upper Sums 183

Solution We want the value of

U (f ; P) = M0(x1 − x0) + M1(x2 − x1) + M2(x3 − x2) + M3(x4 − x3)

Since f is increasing on [0, 1], M0 = f (x1) = 1
16 . Similarly, M1 = f (x2) = 1

4 , M2 =
f (x3) = 9

16 , and M3 = f (x4) = 1. The widths of the subintervals are all equal to 1
4 . Hence,

U (f ; P) = 1
4

(
1

16 + 1
4 + 9

16 + 1
) = 15

32

In the same way, we find that m0 = f (x0) = 0, m1 = 1
16 , m2 = 1

4 , and m3 = 9
16 . Hence,

L(f ; P) = 1
4

(
0 + 1

16 + 1
4 + 9

16

) = 7
32

If we had no other way of calculating
∫ 1

0 x2 dx , we would take a value halfway between
U (f ; P) and L(f ; P) as the best estimate. This number is 11

32 . The correct value is 1
3 , and

the error is 11
32 − 1

3 = 1
96 . ■

It is intuitively clear that the upper sum overestimates the area under the curve, and the
lower sum underestimates it. Therefore, the expression

∫ b
a f (x) dx , which we are trying to

define, is required to satisfy the basic inequality

L(f ; P) �
∫ b

a
f (x) dx � U (f ; P) (1)

for all partitions P . It turns out that if f is a continuous function defined on [a, b], then
Inequality (1) does indeed define the integral. That is, there is one and only one real number
that is greater than or equal to all lower sums of f and less than or equal to all upper sums
of f . This unique number (depending on f , a, and b) is defined to be

∫ b
a f (x) dx . The

integral also exists if f is monotone increasing on [a, b] or monotone decreasing on [a, b].

Riemann-Integrable Functions
We consider the least upper bound (supremum) of the set of all numbers L(f ; P) obtained
when P is allowed to range over all partitions of the interval [a, b]. This is abbreviated
supP L(f ; P). Similarly, we consider the greatest lower bound (infimum) of U (f ; P) when
P ranges over all partitions of [a, b]. This is denoted by infP U (f ; P). Now if these two
numbers are the same—that is, if

inf
P

U (f ; P) = sup
P

L(f ; P) (2)

then we say that f is Riemann-integrable on [a, b] and define
∫ b

a f (x) dx to be the common
value obtained in Equation (2). The important result mentioned above can be stated formally
as follows:

■ THEOREM 1 THEOREM ON RIEMANN INTEGRAL

Every continuous function defined on a closed and bounded interval of the real line
is Riemann-integrable.

184 Chapter 5 Numerical Integration

There are plenty of functions that are not Riemann-integrable. The simplest is known
as the Dirichlet function:

d(x) =
{

0 if x is rational

1 if x is irrational

For any interval [a, b] and for any partition P of [a, b], we have L(d; P) = 0 and U (d; P) =
b − a. Hence,

0 = sup
P

L(d; P) < inf
P

U (d; P) = b − a

In calculus, it is proved not only that the Riemann integral of a continuous function on
[a, b] exists but also that it can be obtained by two limits:

lim
n→∞

L(f ; Pn) =
∫ b

a
f (x) dx = lim

n→∞
U (f ; Pn)

in which P0, P1, . . . is any sequence of partitions with the property that the length of the
largest subinterval in Pn converges to zero as n → ∞. Furthermore, if it is so arranged that
Pn+1 is obtained from Pn by adding new points (and not deleting points), then the lower sums
converge upward to the integral and the upper sums converge downward to the integral.
From the numerical standpoint, this is a desirable feature of the process because at each
step, an interval that contains the unknown number

∫ b
a f (x) dx will be available. Moreover,

these intervals shrink in width at each succeeding step.

Examples and Pseudocode
The process just described can easily be carried out on a computer. To illustrate, we select
the function f (x) = e−x2

and the interval [0, 1]; that is, we consider∫ 1

0
e−x2

dx (3)

This function is of great importance in statistics, but its indefinite integral cannot be obtained
by the elementary techniques of calculus. For partitions, we take equally spaced points in
[0, 1]. Thus, if there are to be n subintervals in Pn , then we define Pn = {x0, x1, . . . , xn},
where xi = ih for 0 � i � n and h = 1/n. Since e−x2

is decreasing on [0, 1], the least value
of f on the subinterval [xi , xi+1] occurs at xi+1. Similarly, the greatest value occurs at xi .
Hence, mi = f (xi+1) and Mi = f (xi). Putting this into the formulas for the upper and
lower sums, we obtain for this function

L(f ; Pn) =
n−1∑
i=0

h f (xi+1) = h
n−1∑
i=0

e−x2
i+1

U (f ; Pn) =
n−1∑
i=0

h f (xi) = h
n−1∑
i=0

e−x2
i

Since these sums are almost the same, it is more economical to compute L(f ; Pn) by the
given formula and to obtain U (f ; Pn) by observing that

U (f ; Pn) = h f (x0) + L(f ; Pn) − h f (xn) = L(f ; Pn) + h(1 − e−1)

5.1 Lower and Upper Sums 185

The last equation also shows that the interval defined by Inequality (1) is of width h(1−e−1)

for this problem.
Here is a pseudocode to carry out this experiment with n = 1000:

program Sums
integer i ; real h, sum, sum lower, sum upper, x
integer n ← 1000; real a ← 0, b ← 1
h ← (b − a)/n
sum ← 0
for i = n to 1 step −1 do

x ← a + ih
sum ← sum + f (x)

end for
sum lower ← (sum)h
sum upper ← sum lower + h[f (a) − f (b)]
output sum lower, sum upper
end program Sums

real function f (x)

real x
f ← e−x2

end function f

A few comments about this pseudocode may be helpful. First, a subscripted variable
is not needed for the points xi . Each point is labeled x . After it has been defined and used,
it need not be saved. Next, observe that the program has been written so that only one line
of code must be changed if another value of n is required. Finally, the numbers e−x2

i are
added in order of ascending magnitude to reduce roundoff error. However, roundoff errors
in the computer are negligible compared to the error in our final estimation of the integral.
This code can be used with any function that is decreasing on [a, b] because with that
assumption, U (f ; P) can be easily obtained from L(f ; P) (see Problem 5.1.4).

The computer program corresponding to the pseudocode produces as output the fol-
lowing values of the lower and upper sums:

sum lower = 0.74651, sum upper = 0.74714

At this juncture, the reader is urged to program this experiment or one like it. The
experiment shows how the computer can mimic the abstract definition of the Riemann
integral, at least in cases in which the numbers mi and Mi can be obtained easily. Another
conclusion that can be drawn from the experiment is that the direct translation of a definition
into a computer algorithm may leave much to be desired in precision. With 999 evaluations of
the function, the absolute error is still about 0.0003. We shall soon see that more sophisticated
algorithms (such as Romberg’s) improve this situation dramatically.

A good approximate value for the integral in Equation (3) can be computed from
knowing that this integral is related to the error function

erf(x) = 2√
π

∫ x

0
e−t2

dt

186 Chapter 5 Numerical Integration

Using appropriate mathematical software, we obtain∫ 1

0
e−x2

dx = 1

2

√
π erf(1) ≈ 0.74682 41330

Mathematical software systems such as Maple and Matlab contain the error function. How-
ever, we are interested in learning about algorithms for approximating integrals that can
only be evaluated numerically.

In the problems of this chapter, we have used various well-known integrals to illus-
trate numerical integration. Many of these integrals have been thoroughly investigated and
tabulated. Examples are elliptic integrals, the sine integral, the Fresnel integral, the logarith-
mic integral, the error function, and Bessel functions. In the real world, when one is faced
with a daunting integral, the first question to raise is whether the integral has already been
studied and perhaps tabulated. The first place to look is in the Handbook of Mathematical
Functions with Formulas, Graphs, and Mathematical Tables, edited by M. Abramowitz
and I. Stegun [1964]. In modern numerical analysis, such tables are of limited use because
of the ready availability of software packages such as Matlab, Maple, and Mathematica.
Nevertheless, on rare occasions, problems have been found for which one obtains the wrong
answer when using such packages.

EXAMPLE 2 If the integral ∫ π

0
ecos x dx

is to be computed with absolute error less than 1
2 × 10−3, and if we are going to use upper

and lower sums with a uniform partition, how many subintervals are needed?

Solution The integrand, f (x) = ecos x , is a decreasing function on the interval [0, π]. Hence, in the
formulas for U (f ; P) and L(f ; P), we have

mi = f (xi+1) and Mi = f (xi)

Let P denote the partition of [0, π] by n + 1 equally spaced points, 0 = x0 < · · · < xn = π .
Then there will be n subintervals, all of width π/n. Hence,

L(f ; P) = π

n

n−1∑
i=0

mi = π

n

n−1∑
i=0

f (xi+1) (4)

U (f ; P) = π

n

n−1∑
i=0

Mi = π

n

n−1∑
i=0

f (xi) (5)

The correct value of the integral lies in the interval between L(f ; P) and U (f ; P). We
take the midpoint of the interval as the best estimate, thus obtaining an error of at most
1
2 [U (f ; P) − L(f ; P)]—that is, the length of half the interval. To meet the error criterion
imposed in the problem, we must have

1
2 [U (f ; P) − L(f ; P)] < 1

2 × 10−3

From Formulas (4) and (5), we can calculate the difference between the upper and lower
sums. This leads to (π/n)(e1 − e−1) < 10−3. With the aid of a calculator, we determine
that n must be at least 7385. ■

5.1 Lower and Upper Sums 187

For historical reasons, formulas for approximating definite integrals are called rules.
The lower and upper sums give rise to the left and right rectangle rules, the midpoint rule,
the trapezoid rule, and many other rules, some of which are found in the problems and
subsequent chapters of this book. A large collection of these quadrature rules can be
found in Abramowitz and Stegun [1964], Standard Mathematical Tables, which had its
origins in a U.S. government work project conducted during the Depression of the 1930s.

The word quadrature has several meanings both in mathematics and in astronomy. In
the dictionary, the first mathematical meaning is the process of finding a square whose area
is equal to the area enclosed by a given curve. The general mathematical meaning is the
process of determining the area of a surface, especially one bounded by a curve. We use it
primarily to mean the approximation of the area under a curve using a numerical integration
procedure.

Summary

(1) Let P = {a = x0 < x1 < x2 < · · · < xn−1 < xn = b} be a partition of the interval
[a, b], which divides the interval [a, b] into n subintervals [xi , xi+1]. The lower sums and
upper sums of f corresponding to the given partition P are

L(f ; P) =
n−1∑
i=0

mi (xi+1 − xi)

U (f ; P) =
n−1∑
i=0

Mi (xi+1 − xi)

where mi is the greatest lower bound and Mi is the least upper bound of f (x) on the
subinterval [xi , xi+1], namely,

mi = inf{ f (x) : xi � x � xi+1}
Mi = sup{ f (x) : xi � x � xi+1}

(2) We have

L(f ; P) �
∫ b

a
f (x) dx � U (f ; P)

Problems 5.1

a1. If we estimate
∫ 1

0 (x2 + 2)−1 dx by means of a lower sum using the partition P ={
0, 1

2 , 1
}

, what is the result?

2. What is the result if we estimate
∫ 2

1 x−1 dx by means of the upper sum using the partition
P = {

1, 3
2 , 2

}
?

a3. Calculate an approximate value of
∫ α

0 [(ex − 1)/x] dx for α = 10−4 correct to 14
decimal places (rounded). Hint: Use Taylor series.

188 Chapter 5 Numerical Integration

4. For a decreasing function f (x) over an interval [a, b] with n uniform subintervals,
show that the difference between the upper sum and the lower sum is given by the
expression [(b − a)/n][f (a) − f (b)].

5. (Continuation) Repeat the preceding problem for an increasing function.

a6. If upper and lower sums are used with regularly spaced points to compute
∫ 5

2 (dx/ log x),

how many points are needed if one is to achieve an accuracy of 1
2 × 10−4?

a7. Let f be an increasing function. If the integral
∫ 1

0 f (x) dx is to be estimated by using
the method of upper and lower sums, taking n equally spaced points, what is the worst
possible error?

8. If f is a (strictly) increasing function on [a, b], and if α = f (a) and β = f (b), then
f −1(x) is well defined for α � x � β. Discover the relationship between

∫ b
a f (x) dx

and
∫ β

α
f −1(x) dx .

9. Show that if θi � 0 and
∑n

i=0 θi = 1, then
∑n

i=0 θi ai lies between the least and the great-
est of the numbers ai .

10. Establish the composite midpoint rule for estimating an integral:∫ b

a
f (x) dx ≈

n−1∑
i=0

(xi+1 − xi) f

[
1

2
(xi+1 + xi)

]
a11. (Continuation) Find the relationship between the midpoint rule and the upper and lower

sums.

12. (Continuation) Establish that the composite midpoint rule for equal subintervals is
given by ∫ b

a
f (x) dx ≈ h

n−1∑
i=0

f

(
xi + 1

2
h

)
where h = (b − a)/n, xi = a + ih, and 0 � i � n.

Computer Problems 5.1

1. Write a general-purpose procedure to estimate integrals of decreasing functions by
the method of upper and lower sums with a uniform partition. Give the procedure the
calling sequence

real function Integral(f, a, b, ε, n, sum lower, sum upper)

where f is the function name, a and b are the endpoints of the interval, and ε is the
tolerance. The procedure determines n so that sum upper − sum lower < 2 ε. The
procedure returns the average of sum upper and sum lower. Test it on the sine integral
of the next computer problem, using ε = 1

2 × 10−5.

5.1 Lower and Upper Sums 189

a2. Estimate the definite integral
∫ 1

0 x−1 sin x dx by computing the upper and lower sums,
using 800 points in the interval. The integrand is defined to be 1 at x = 0. The function
is decreasing, and this fact should be shown by calculus. (For a decreasing function f ,
f ′ < 0.) Note: The function

Si(x) =
∫ x

0
t−1 sin t dt

is an important special function known as the sine integral. It is represented by a
Taylor series that converges for all real or complex values of x . The easiest way to
obtain this series is to start with the series for sin t , divide by t , and integrate term by
term:

Si(x) =
∫ x

0
t−1 sin t dt =

∫ x

0

∞∑
n=0

(−1)n t2n

(2n + 1)!
dt

=
∞∑

n=0

(−1)n x2n+1

(2n + 1)!(2n + 1)
= x − x3

18
+ x5

600
− x7

35280
+ · · ·

This series is rapidly convergent. For example, from only the terms shown, Si(1)

is computed to be 0.94608 27 with an error of at most four units in the last digit
shown.

3. The logarithmic integral is a special mathematical function defined by the equation

li(x) =
∫ x

2

dt

ln t

For large x , the number of prime integers less than or equal to x is closely approximated
by li(x). For example, there are 46 primes less than 200, and li(200) is around 50. Find
li(200) with three significant figures by means of upper and lower sums. Determine
the number of partition points needed prior to executing the program.

a4. From calculus, the length of a curve is
∫ b

a

√
1 + [f ′(x)]2 dx , where f is a function

whose graph is the curve on the interval a � x � b.

a. Find the length of the ellipse y2 + 4x2 = 1. Use the symmetry of the ellipse.

b. Verify the numerical approximation given for the arc length in the introductory
example at the beginning of Chapter 3.

5. Using a mathematical software system that contains the error function erf, find a
numerical approximation of

∫ 1
0 e−x2

dx to the full precision available. Also, plot the
error function.

6. (Continuation) Evaluate the integral
∫ 1

0 e−x2
dx using a numerical integration rou-

tine in a mathematical software system such as Matlab. Compare the results to those
obtained previously.

190 Chapter 5 Numerical Integration

5.2 Trapezoid Rule
The next method considered is an improvement over the coarse method of the preceding
section. Moreover, it is an important ingredient of the Romberg algorithm of the next section.

This method is called the trapezoid rule and is based on an estimation of the area
beneath a curve using trapezoids. Again, the estimation of

∫ b
a f (x) dx is approached by

first dividing the interval [a, b] into subintervals according to the partition P = {a = x0 <

x1 < x2 < · · · < xn = b}. For each such partition of the interval (the partition points xi need
not be uniformly spaced), an estimation of the integral by the trapezoid rule is obtained.
We denote it by T (f ; P). Figure 5.2 shows what the trapezoids are. A typical trapezoid has
the subinterval [xi , xi+1] as its base, and the two vertical sides are f (xi) and f (xi+1) (see
Figure 5.3). The area is equal to the base times the average height, and we have the basic
trapezoid rule for the subinterval [xi , xi+1]:∫ xi+1

xi

f (x) dx ≈ 1

2
(xi+1 − xi)[f (xi) + f (xi+1)]

Hence, the total area of all the trapezoids is∫ b

a
f (x) dx ≈ 1

2

n−1∑
i=0

(xi+1 − xi)[f (xi) + f (xi+1)]

FIGURE 5.2

Trapezoid rule
a � x0 x1 x2 x3 x4 x5 � b

FIGURE 5.3

Typical
trapezoid

f (xi)

xi xi�1

f

f (xi�1)

xi�1 � xi

5.2 Trapezoid Rule 191

This formula is called the composite trapezoid rule. The composite trapezoid rule is easy
to understand: on each subinterval [xi , xi+1], we multiply (xi+1 − xi) times the average of
f (xi) and f (xi+1).

Uniform Spacing
In practice and in the Romberg algorithm (discussed in the next section), the trapezoid rule
is used with a uniform partition of the interval. This means that the division points xi are
equally spaced: xi = a + ih, where h = (b − a)/n and 0 � i � n. Think of h as the step
size in the process. In this case, the formula for T (f ; P) can be given in simpler form
because xi+1 − xi = h. Thus, we obtain

T (f ; P) = h

2

n−1∑
i=0

[f (xi) + f (xi+1)]

It should be emphasized that to economize the amount of arithmetic, the computationally
preferable formula for the composite trapezoid rule is∫ b

a
f (x) dx ≈ T (f ; P) = h

{
1

2
[f (x0) + f (xn)] +

n−1∑
i=1

f (xi)

}
(1)

Here, we have expanded the summation and gathered similar terms in the new summation.
To illustrate, we consider the integral ∫ 1

0
e−x2

dx

which was approximated in Section 5.1 by lower and upper sums. Here is a pseudocode for
Equation (1) with n = 60 and f (x) = e−x2

:

program Trapezoid
integer i ; real h, sum, x
integer n ← 60; real a ← 0, b ← 1
h ← (b − a)/n
sum ← 1

2 [f (a) + f (b)]
for i = 1 to n − 1 do

x ← a + ih
sum ← sum + f (x)

end for
sum ← (sum)h
output sum
end Trapezoid

real function f (x)

real x
f ← 1/ex2

end function f

The computer output for the approximate value of the integral is 0.74681.

192 Chapter 5 Numerical Integration

EXAMPLE 1 Compute ∫ 1

0
(sin x/x) dx

by using the composite trapezoid rule with six uniform points (cf. Computer Problem 5.1.2).

Solution The function values are arranged in a table as follows:

xi f (xi)

0.0 1.00000
0.2 0.99335
0.4 0.97355
0.6 0.94107
0.8 0.89670
1.0 0.84147

Notice that we have assigned the value sin x/x = 1 at x = 0. Then

T (f ; P) = 0.2
4∑

i=1

f (xi) + (0.1)[f (x0) + f (x5)]

= (0.2)(3.80467) + (0.1)(1.84147)

= 0.94508

This result is not accurate to all the digits shown, as might be expected because only five
subintervals were used. Using mathematical software, we obtain Si(1) ≈ 0.94608 30704.
(Refer to Computer Problem 5.1.2.) We shall see later how to determine a suitable value
for n to obtain a desired accuracy using the trapezoid rule. ■

Error Analysis
The next task is to analyze the error incurred in using the trapezoid rule to estimate an
integral. We shall establish the following result.

■ THEOREM 1 THEOREM ON PRECISION OF TRAPEZOID RULE

If f ′′ exists and is continuous on the interval [a, b] and if the composite trapezoid
rule T with uniform spacing h is used to estimate the integral I = ∫ b

a f (x) dx , then
for some ζ in (a, b),

I − T = − 1
12 (b − a)h2 f ′′(ζ) = O(h2)

Proof The first step in the analysis is to prove the above result when a = 0, b = 1, and h = 1. In
this case, we have to show that∫ 1

0
f (x) dx − 1

2
[f (0) + f (1)] = − 1

12
f ′′(ζ) (2)

This is easily established with the aid of the error formula for polynomial interpolation (see
Section 4.2). To use this formula, let p be the polynomial of degree 1 that interpolates f at

5.2 Trapezoid Rule 193

0 and 1. Then p is given by

p(x) = f (0) + [f (1) − f (0)]x

Hence, ∫ 1

0
p(x) dx = f (0) + 1

2
[f (1) − f (0)]

= 1

2
[f (0) + f (1)]

By the error formula that governs polynomial interpolation [Equation (2) in Section 4.2],
we have (here, of course, n = 1, x0 = 0, and x1 = 1)

f (x) − p(x) = 1
2 f ′′[ξ(x)]x(x − 1) (3)

where ξ(x) depends on x in (0, 1). From Equation (3), it follows that∫ 1

0
f (x) dx −

∫ 1

0
p(x) dx = 1

2

∫ 1

0
f ′′[ξ(x)]x(x − 1) dx

That f ′′[ξ(x)] is continuous can be proved by solving Equation (3) for f ′′[ξ(x)] and veri-
fying the continuity. (See Problem 4.2.12.) Notice that x(x − 1) does not change sign in the
interval [0, 1]. Hence, by the Mean-Value Theorem for Integrals,∗ there is a point x = s
for which ∫ 1

0
f ′′[ξ(x)]x(x − 1) dx = f ′′[ξ(s)]

∫ 1

0
x(x − 1) dx

= −1

6
f ′′(ζ)

By putting all these equations together, we obtain Equation (2). From Equation (2), by
making a change of variable, we obtain the basic trapezoid rule with its error term:∫ b

a
f (x) dx = b − a

2
[f (a) + f (b)] − 1

12
(b − a)3 f ′′(ξ) (4)

The details of this are as follows: Let g(t) = f (a + t (b − a)) and x = a + (b − a)t .
Thus, as t traverses the interval [0, 1], x traverses the interval [a, b]. Also, dx = (b −a) dt ,
g′(t) = f ′[a + t (b − a)](b − a) and g′′(t) = f ′′[a + t (b − a)](b − a)2. Hence, by
Equation (2), ∫ b

a
f (x) dx = (b − a)

∫ 1

0
f [a + t (b − a)] dt

= (b − a)

∫ 1

0
g(t) dt

= (b − a)

{
1

2
[g(0) + g(1)] − 1

12
g′′(ζ)

}
= b − a

2
[f (a) + f (b)] − (b − a)3

12
f ′′(ξ)

∗Mean-Value Theorem for Integrals: Let f be continuous on [a, b] and assume that g is Riemann-integrable
on [a, b]. If g(x) � 0 on [a, b], then there exists a point ξ such that a � ξ � b and

∫ b

a
f (x)g(x) dx =

f (ξ)
∫ b

a
g(x) dx .

194 Chapter 5 Numerical Integration

This is the trapezoid rule and error term for the interval [a, b] with only one subinterval,
which is the entire interval. Thus, the error term is O(h3), where h = b − a. Here, ξ is
in (a, b).

Now let the interval [a, b] be divided into n equal subintervals by points x0, x1, . . . , xn

with spacing h. Applying Formula (4) to subinterval [xi , xi+1], we have∫ xi+1

xi

f (x) dx = h

2
[f (xi) + f (xi+1)] − 1

12
h3 f ′′(ξi) (5)

where xi < ξi < xi+1. We use this result over the interval [a, b], obtaining the composite
trapezoid rule ∫ b

a
f (x) dx =

n−1∑
i=0

∫ xi+1

xi

f (x) dx

= h

2

n−1∑
i=0

[f (xi) + f (xi+1)] − h3

12

n−1∑
i=0

f ′′(ξi) (6)

The final term in Equation (6) is the error term, and it can be simplified in the following
way: Since h = (b − a)/n, the error term for the composite trapezoid rule is

− h3

12

n−1∑
i=0

f ′′(ξi) = −b − a

12
h2

[
1

n

n−1∑
i=0

f ′′(ξi)

]
= −b − a

12
h2 f ′′(ζ)

Here, we have reasoned that the average [1/n]
∑n−1

i=0 f ′′(ξi) lies between the least and
greatest values of f ′′ on the interval (a, b). Hence, by the Intermediate-Value Theorem,∗

it is f ′′(ζ) for some point ζ in (a, b). This completes our proof of the error formula. ■

EXAMPLE 2 Use Taylor series to represent the error in the basic trapezoid rule by an infinite series.

Solution Equation (4) is equivalent to∫ a+h

a
f (x) dx = h

2
[f (a) + f (a + h)] − 1

12
h3 f ′′(ξ)

Let

F(t) =
∫ t

a
f (x) dx

The Taylor series for F is

F(a + h) = F(a) + hF ′(a) + h2

2
F ′′(a) + h3

3!
F ′′′(a) + · · ·

∗Intermediate-Value Theorem: If the function g is continuous on an interval [a, b], then for each c between
g(a) and g(b), there is a point ξ in [a, b] for which g(ξ) = c.

5.2 Trapezoid Rule 195

By the Fundamental Theorem of Calculus (p. 181), F ′ = f , and we observe that F(a) = 0,
F ′′ = f ′, F ′′′ = f ′′, and so on. Hence, we have∫ a+h

a
f (x) dx = h f (a) + h2

2
f ′(a) + h3

3!
f ′′(a) + · · ·

The Taylor series for f is

f (a + h) = f (a) + h f ′(a) + h2

2
f ′′(a) + h3

3!
f ′′′(a) + · · ·

Adding f (a) to both sides of this equation and then multiplying by h/2, we get

h

2
[f (a) + f (a + h)] = h f (a) + h2

2
f ′(a) + h3

4
f ′′(a) + · · ·

Subtracting, we have∫ a+h

a
f (x) dx − h

2
[f (a) + f (a + h)] = − 1

12
h3 f ′′(a) + · · · ■

Applying the Error Formula
How can an error formula like the one just derived be used? Our first application is in
predicting how small h must be to attain a specified precision in the trapezoid rule.

EXAMPLE 3 If the composite trapezoid rule is to be used to compute∫ 1

0
e−x2

dx

with an error of at most 1
2 × 10−4, how many points should be used?

Solution The error formula is

−b − a

12
h2 f ′′(ζ)

In this example, f (x) = e−x2
, f ′(x) = −2xe−x2

, and f ′′(x) = (4x2 − 2)e−x2
. Thus,

| f ′′(x)| � 2 on the interval [0, 1], and the error in absolute value will be no greater than
1
6 h2. To have an error of at most 1

2 × 10−4, we require

1

6
h2 �

1

2
× 10−4 or h � 0.01732

In this example, h = 1/n, so we require n � 58. Hence, 59 or more points will certainly
produce the desired accuracy. ■

EXAMPLE 4 How many subintervals are needed to approximate∫ 1

0

sin x

x
dx

with error not to exceed 1
2 × 10−5 using the composite trapezoid rule? Here, the integrand,

f (x) = x−1 sin x , is defined to be 1 when x is 0.

196 Chapter 5 Numerical Integration

Solution We wish to establish a bound on f ′′(x) for x in the range [0, 1]. Taking derivatives in the
usual way is not satisfactory because each term contains x with a negative power, and it is
difficult to find an upper bound on | f ′′(x)|. However, using Taylor series, we have

f (x) = 1 − x2

3!
+ x4

5!
− x6

7!
+ x8

9!
− · · ·

f ′(x) = −2x

3!
+ 4x3

5!
− 6x5

7!
+ 8x7

9!
− · · ·

f ′′(x) = − 2

3!
+ 3 × 4x2

5!
− 5 × 6x4

7!
+ 7 × 8x6

9!
− · · ·

Thus, on the interval [0, 1], | f ′′(x)| cannot exceed 1
2 because

2

3!
+ 3 × 4

5!
+ 5 × 6

7!
+ 7 × 8

9!
+ · · · <

1

3
+ 1

10
+ 1

24

(1

2
+ 1

4
+ 1

8
+ · · ·

)
<

1

2

Therefore, the error term |(b −a)h2 f ′′(ζ)/12| cannot exceed h2/24. For this to be less than
1
2 × 10−5, it suffices to take h <

√
1.2 × 10−2 or n > (1/

√
1.2)102 = 91.3. This analysis

induces us to take 92 subintervals. ■

Recursive Trapezoid Formula for Equal Subintervals
In the next section, we require a formula for the composite trapezoid rule when the interval
[a, b] is subdivided into 2n equal parts. By Formula (1), we have

T (f ; P) = h
n−1∑
i=1

f (xi) + h

2
[f (x0) + f (xn)]

= h
n−1∑
i=1

f (a + ih) + h

2
[f (a) + f (b)]

If we now replace n by 2n and use h = (b − a)/2n , the preceding formula becomes

R(n, 0) = h
2n−1∑
i=1

f (a + ih) + h

2
[f (a) + f (b)] (7)

Here, we have introduced the notation that will be used in Section 5.3 on the Romberg
algorithm, namely, R(n, 0). It denotes the result of applying the composite trapezoid rule
with 2n equal subintervals.

In the Romberg algorithm, it will also be necessary to have a means of computing
R(n, 0) from R(n − 1, 0) without involving unneeded evaluations of f . For example,
the computation of R(2, 0) utilizes the values of f at the five points a, a + (b − a)/4,
a + 2(b − a)/4, a + 3(b − a)/4, and b. In computing R(3, 0), we need values of f at these
five points, as well as at four new points: a + (b−a)/8, a +3(b−a)/8, a +5(b−a)/8, and
a + 7(b − a)/8 (see Figure 5.4). The computation should take advantage of the previously
computed result. The manner of doing so is now explained.

If R(n − 1, 0) has been computed and R(n, 0) is to be computed, we use the identity

R(n, 0) = 1
2 R(n − 1, 0) +

[
R(n, 0) − 1

2 R(n − 1, 0)
]

5.2 Trapezoid Rule 197

FIGURE 5.4

2n equal
subintervals 23 R(3, 0)

22 R(2, 0)

21 R(1, 0)

20 R(0, 0)
ba

Subintervals Array

It is desirable to compute the bracketed expression with as little additional work as possible.
Fixing h = (b − a)/2n for the analysis and putting

C = h

2
[f (a) + f (b)]

we have, from Equation (7),

R(n, 0) = h
2n−1∑
i=1

f (a + ih) + C (8)

R(n − 1, 0) = 2h
2n−1−1∑

j=1

f (a + 2 jh) + 2C (9)

Notice that the subintervals for R(n − 1, 0) are twice the size of those for R(n, 0). Now
from Equations (8) and (9), we have

R(n, 0) − 1

2
R(n − 1, 0) = h

2n−1∑
i=1

f (a + ih) − h
2n−1−1∑

j=1

f (a + 2 jh)

= h
2n−1∑
k=1

f [a + (2k − 1)h]

Here, we have taken account of the fact that each term in the first sum that corresponds
to an even value of i is canceled by a term in the second sum. This leaves only terms that
correspond to odd values of i .

To summarize:

■ THEOREM 2 RECURSIVE TRAPEZOID FORMULA

If R(n − 1, 0) is available, then R(n, 0) can be computed by the formula

R(n, 0) = 1

2
R(n − 1, 0) + h

2n−1∑
k=1

f [a + (2k − 1)h] (n � 1) (10)

using h = (b − a)/2n . Here, R(0, 0) = 1
2 (b − a)[f (a) + f (b)].

This formula allows us to compute a sequence of approximations to a definite integral using
the trapezoid rule without reevaluating the integrand at points where it has already been
evaluated.

198 Chapter 5 Numerical Integration

Multidimensional Integration
Here, we give a brief account of multidimensional numerical integration. For simplicity, we
illustrate with the trapezoid rule for the interval [0, 1], using n + 1 equally spaced points.
The step size is therefore h = 1/n. The composite trapezoid rule is then∫ 1

0
f (x) dx ≈ 1

2h

[
f (0) + 2

n−1∑
i=1

f
(i

n

)
+ f (1)

]
We write this in the form ∫ 1

0
f (x) dx ≈

n∑
i=0

Ci f
(i

n

)
where

Ci =

⎧⎪⎨⎪⎩
1/(2h), i = 0

1/h, 0 < i < n

1/(2h), i = n

The error is O(h2) = O(n−2) for functions having a continuous second derivative.
If one is faced with a two-dimensional integration over the unit square, then the

trapezoid rule can be applied twice:∫ 1

0

∫ 1

0
f (x, y) dx dy ≈

∫ 1

0

n∑
α1=0

Cα1 f
(α1

n
, y
)

dy

=
n∑

α1=0

Cα1

∫ 1

0
f
(α1

n
, y
)

dy

≈
n∑

α1=0

Cα1

n∑
α2=0

Cα2 f
(α1

n
,
α2

n

)
=

n∑
α1=0

n∑
α2=0

Cα1 Cα2 f
(α1

n
,
α2

n

)
The error here is again O(h2), because each of the two applications of the trapezoid rule
entails an error of O(h2).

In the same way, we can integrate a function of k variables. Suitable notation is the
vector x = (x1, x2, . . . , xk)

T for the independent variable. The region now is taken to be the
k-dimensional cube [0, 1]k ≡ [0, 1] × [0, 1] × · · · × [0, 1]. Then we obtain a multidimen-
sional numerical integration rule∫

[0,1]k

f (x) dx ≈
n∑

α1=0

n∑
α2=0

· · ·
n∑

αk=0

Cα1 Cα2 · · · Cαk f
(α1

n
,
α2

n
, . . . ,

αk

n

)
The error is still O(h2) = O(n−2), provided that f has continuous partial derivatives
∂2 f/∂x2

i .
Besides the error involved, one must consider the effort, or work, required to attain a

desired level of accuracy. The work in the one-variable case is O(n). In the two-variable
case, it is O(n2), and it is O(nk) for k variables. The error, now expressed as a function of

5.2 Trapezoid Rule 199

the number of nodes N = nk , is

O(h2) = O(n−2) = O
(
(nk)−2/k

)
= O(N−2/k)

Thus, the quality of the numerical approximation of the integral declines very quickly as the
number of variables, k, increases. Expressed in other terms, if a constant order of accuracy is
to be retained while the number of variables, k, goes up, the number of nodes must go up like
nk . These remarks indicate why the Monte Carlo method for numerical integration becomes
more attractive for high-dimensional integration. (This subject is discussed in Chapter 13.)

Summary

(1) To estimate
∫ b

a f (x) dx , divide the interval [a, b] into subintervals according to the
partition P = {a = x0 < x1 < x2 < · · · < xn = b}. The basic trapezoid rule for the
subinterval [xi , xi+1] is∫ xi+1

xi

f (x) dx ≈ Ai = 1

2
(xi+1 − xi)[f (xi) + f (xi+1)]

where the error is − 1
12 (xi+1 − xi)

3 f ′′(ξi). The composite trapezoid rule is∫ b

a
f (x) dx ≈ T (f ; P) =

n−1∑
i=0

Ai = 1

2

n−1∑
i=0

(xi+1 − xi)[f (xi) + f (xi+1)]

where the error is − 1
12

∑n
i=1(xi+1 − xi)

2 f ′′(ξi).

(2) For uniform spacing of nodes in the interval [a, b], we let xi = a + ih, where h =
(b − a)/n and 0 � i � n. The composite trapezoid rule with uniform spacing is∫ b

a
f (x) dx ≈ T (f ; P) = h

2
[f (x0) + f (xn)] + h

n−1∑
i=1

f (xi)

where the error is − 1
12 (b − a)2 f ′′(ζ).

(3) For uniform spacing of nodes in the interval [a, b] with 2n subintervals, we let h =
(b − a)/2n , and we have⎧⎪⎪⎨⎪⎪⎩

R(0, 0) = 1
2 (b − a)[f (a) + f (b)]

R(n, 0) = h
2n−1∑
i=1

f (a + ih) + h

2
[f (a) + f (b)]

We can compute the first column of the array R(n, 0) recursively by the Recursive Trape-
zoid Formula:

R(n, 0) = 1

2
R(n − 1, 0) + h

2n−1∑
k=1

f [a + (2k − 1)h]

200 Chapter 5 Numerical Integration

(4) For two-dimensional integration over the unit square, the trapezoid rule can be applied
twice: ∫ 1

0

∫ 1

0
f (x, y) dx dy ≈

n∑
α1=0

n∑
α2=0

Cα1 Cα2 f
(α1

n
,
α2

n

)
with error O(h2). For a k-dimensional cube [0, 1]k ≡ [0, 1] × [0, 1] × · · · × [0, 1], a
multidimensional numerical integration rule is∫

[0,1]k

f (x) dx ≈
n∑

α1=0

n∑
α2=0

· · ·
n∑

αk=0

Cα1 Cα2 · · · Cαk f
(α1

n
,
α2

n
, . . . ,

αk

n

)
with error O(h2) = O(n−2).

Problems 5.2

a1. What is the numerical value of the composite trapezoid rule applied to the reciprocal
function f (x) = x−1 using the points 1, 4

3 , and 2?

a2. Compute an approximate value of
∫ 1

0 (x2 + 1)−1 dx by using the composite trapezoid
rule with three points. Then compare with the actual value of the integral. Next, deter-
mine the error formula and numerically verify an upper bound on it.

3. (Continuation) Having computed R(1, 0) in the preceding problem, compute R(2, 0)

by using Formula (10).

4. Obtain an upper bound on the absolute error when we compute
∫ 6

0 sin x2 dx by means
of the composite trapezoid rule using 101 equally spaced points.

5. If the composite trapezoid rule is used to compute
∫ 2

−1 sin x dx with h = 0.01, give a
realistic bound on the error.

a6. Consider the function f (x) = |x | on the interval [−1, 1]. Calculate the results of
applying the following rules to approximate

∫ 1
−1 f (x) dx . Account for the differences

in the results and compare with the true solution. Use the

a. lower sums b. upper sums c. composite trapezoid rule

with uniform spacings h = 2, 1, 1
2 ,

1
4 .

a7. How large must n be if the composite trapezoid rule in Equation (1) is being used to
estimate

∫ π

0 sin x dx with error � 10−12? Will the estimate be too big or too small?

a8. What formula results from using the composite trapezoid rule on f (x) = x2, with
interval [0, 1] and n + 1 equally spaced points? Simplify your result by using the fact
that 12 +22 +32 +· · ·+n2 = 1

6 n(2n +1)(n +1). Show that as n → ∞, the trapezoidal
estimate converges to the correct value, 1

3 .

9. Prove that if a function is concave downward, then the trapezoid rule underestimates
the integral.

5.2 Trapezoid Rule 201

10. Compute two approximate values for
∫ 2

1 dx/x2 using h = 1
2 with lower sums and the

composite trapezoid rule.

11. Consider
∫ 2

1 dx/x3. What is the result of using the composite trapezoid rule with the
partition points 1, 3

2 , and 2?

a12. If the composite trapezoid rule is used with h = 0.01 to compute
∫ 5

2 sin x dx , what
numerical value will the error not exceed? (Use the absolute value of error.) Give the
best answer based on the error formula.

a13. Approximate
∫ 2

0 2x dx using the composite trapezoid rule with h = 1
2 .

a14. Consider
∫ 1

0 dx/(x2 +2). What is the result of using the composite trapezoid rule with
0, 1

2 , and 1 as partition points?

a15. What is a reasonable bound on the error when we use the composite trapezoid rule on∫ 4
0 cos x3 dx taking 201 equally spaced points (including endpoints)?

a16. We want to approximate
∫ 2

1 f (x) dx given the table of values

x 1 5
4

3
2

7
4 2

f (x) 10 8 7 6 5

Compute an estimate by the composite trapezoid rule. Can upper and lower sums be
computed from the given data?

17. Consider the integral I (h) ≡ ∫ a+h
a f (x) dx . Establish an expression for the error term

for each of the following rules:
aa. I (h) ≈ h f (a + h) ab. I (h) ≈ h f (a + h) − 1

2 h2 f ′(a)

c. I (h) ≈ h f (a) d. I (h) ≈ h f (a) − 1
2 h2 f ′(a)

For each, determine the corresponding general rule and error terms for the integral∫ b
a f (x) dx , where the partition is uniform; that is, xi = a + ih and h = (b − a)/n for

0 � i � n.

18. Obtain the following expressions for the midpoint rule error terms

aa.
∫ a+h

a
f (x) dx ≈ h f

(
a + 1

2
h
)

(one subinterval)

ab.
∫ b

a
f (x) dx ≈

n−1∑
i=0

hi f
(

xi + 1

2
hi

)
(n unequal subintervals)

ac.
∫ b

a
f (x) dx ≈ h

n−1∑
i=0

f

[
a +

(
i + 1

2

)
h

]
(n uniform subintervals)

where hi = xi+1 − xi and h = (b − a)/n. (The midpoint rule was introduced in
Problems 5.1.10–5.1.12.)

19. Show that there exist coefficients w0, w1, . . . , wn depending on x0, x1, . . . , xn and on
a, b such that ∫ b

a
p(x) dx =

n∑
i=0

wi p(xi)

202 Chapter 5 Numerical Integration

for all polynomials p of degree � n. Hint: Use the Lagrange form of the interpolating
polynomials from Section 4.1.

20. Show that when the composite trapezoid rule is applied to
∫ b

a ex dx using equally spaced
points, the relative error is exactly 1 − (h/2) − [h/(eh − 1)].

21. Let f be a decreasing function on [a, b]. Let P be a partition of the interval. Show
that

T (f ; P) = 1
2 [L(f ; P) + U (f ; P)]

where T , L , and U are the trapezoid rule, the lower sums, and the upper sums, respec-
tively.

22. Show that for any function f and any partition P ,

L(f ; P) � T (f ; P) � U (f ; P)

23. Let f be a continuous function and let Pn , for n = 0, 1, . . . , be partitions of [a, b] such
that the width of the largest subinterval in Pn converges to zero as n → ∞. Show that
T (f ; Pn) converges to

∫ b
a f (x) dx as n → ∞. Hint: Use the preceding problem and

known facts about upper and lower sums.

a24. Give an example of a function f and a partition P for which L(f ; P) is a better estimate
of
∫ b

a f (x) dx than is T (f ; P).

a25. A function is said to be convex if its graph between any two points lies beneath the
chord drawn between those two points. What is the relationship of L(f ; P), U (f ; P),
T (f ; P), and

∫ b
a f (x) dx for such a function?

a26. How large must n be if the composite trapezoid rule with equal subintervals is to
estimate

∫ 2
0 e−x2

dx with an error not exceeding 10−6? First find a crude estimate of n
by using the error formula. Then determine the least possible value for n.

27. Show that∫ b

a
f (x) dx − b − a

2
[f (a) + f (b)] = −

∞∑
k=3

k − 2

2 × k!
(b − a)k f (k−1)(a)

28. The composite (left) rectangle rule for numerical integration is like the upper and
lower sums but simpler: ∫ b

a
f (x) dx ≈

n−1∑
i=0

(xi+1 − xi) f (xi)

Here, the partition is P = {a = x0 < x1 < x2 < · · · < xn = b}. Show that the rectangle
rule converges to the integral as n → ∞.

a29. (Continuation) The composite rectangle rule with uniform spacing reads as follows:∫ b

a
f (x) dx ≈ h

n−1∑
i=0

f (xi)

5.2 Trapezoid Rule 203

where h = (b − a)/n and xi = a + ih for 0 � i � n. Find an expression for the error
involved in this latter formula.

a30. From the previous two problems, the basic rectangle rule for a single interval is given
by ∫ b

a
f (x) dx = (b − a) f (a) + 1

2
(b − a)2 f ′(ζ)

Establish the rectangle rule and its error term when the interval [a, b] is partitioned
into 2n uniform subintervals, each of width h. Simplify the results.

31. In the composite trapezoid rule, the spacing need not be uniform. Establish the formula∫ b

a
f (x) dx ≈ 1

2

n−1∑
i=1

(hi−1 + hi) f (xi) + 1

2
[h0 f (x0) + hn−1 f (xn)]

where hi = xi+1 − xi and a = x0 < x1 < x2 < · · · < xn = b.

32. (Continuation) Establish the following error formula for the composite trapezoid rule
with unequal spacing of points:∫ b

a
f (x) dx =

n−1∑
i=0

hi

2
[f (xi) + f (xi+1)] − 1

12
(b − a)h2 f ′′(ξ)

where ξ ∈ (a, b), hi = xi+1 − xi , and mini hi � h � maxi hi . (The composite trapezoid
rule with nonuniform spacing was introduced in the preceding problem.)

33. How many points should we use in the trapezoid rule in computing an approximate
value of

∫ 1
0 ex2

dx if the answer is to be within 10−6 of the correct value? Hint: Recall
the error formula for the trapezoid rule: − 1

12 h2(b − a) f ′′(ξ). You may use coarse
estimates, such as 2 < e < 3. Explain what you are doing. In the end, we want a suit-
able value of n, the number of points.

Computer Problems 5.2

1. Write

real function Trapezoid Uniform(f, a, b, n)

to calculate
∫ b

a f (x) dx using the composite trapezoid rule with n equal subintervals.

2. (Continuation) Test the code written in the preceding computer problem on the follow-
ing functions. In each case, compare with the correct answer.

aa.
∫ π

0
sin x dx ab.

∫ 1

0
ex dx ac.

∫ 1

0
arctan x dx

3. Compute π from an integral of the form c
∫ b

a dx/(1 + x2).

4. Compute an approximate value for the integral
∫ 0.8

0 (sin x/x) dx .

204 Chapter 5 Numerical Integration

5. Compute these integrals by using small and large values for the lower and upper limits
and applying a numerical method. Then compute them by first making the indicated
change of variable.

a.
∫ ∞

0
e−x2/2

dx =
√

π

2
, using x = − ln t (Gaussian/probability integral)

b.
∫ ∞

0
x−1 sin x dx = π

2
, using x = t−1 (sine integral)

c.
∫ ∞

0
sin x2 dx = 1

2

√
π

2
, using x = tan t (Fresnel sine integral)

Here and elsewhere, we have used various well-known integrals as examples in testing
numerical integration schemes. Some of these integrals are tabulated and can be found
in tables in Abramowitz and Stegun [1964].

6. Using a numerical integration routine in a mathematical software system such as
Matlab, find an approximate value for the sine integral

∫ 1
0 (sin x/x) dx . Compare the

approximate value obtained to the value of Si(1) if the system contains this function.
Make a plot of the integrand.

7. Use the composite trapezoid rule with 59 subintervals to verify numerically that the
approximation obtained agrees with results from Example 3.

8. Using a mathematical software system, verify the numerical approximation to the
integral given in the introductory example at the beginning of this chapter.

5.3 Romberg Algorithm
Description
The Romberg algorithm produces a triangular array of numbers, all of which are numerical
estimates of the definite integral

∫ b
a f (x) dx . The array is denoted here by the notation

R(0, 0)

R(1, 0) R(1, 1)

R(2, 0) R(2, 1) R(2, 2)

R(3, 0) R(3, 1) R(3, 2) R(3, 3)
...

...
...

...
. . .

R(n, 0) R(n, 1) R(n, 2) R(n, 3) · · · R(n, n)

The first column of this table contains estimates of the integral obtained by the recursive
trapezoid formula with decreasing values of the step size. Explicitly, R(n, 0) is the result of
applying the trapezoid rule with 2n equal subintervals. The first of them, R(0, 0), is obtained
with just one trapezoid:

R(0, 0) = 1
2 (b − a)[f (a) + f (b)]

5.3 Romberg Algorithm 205

Similarly, R(1, 0) is obtained with two trapezoids:

R(1, 0) = 1

4
(b − a)

[
f (a) + f

(a + b

2

)]
+ 1

4
(b − a)

[
f
(a + b

2

)
+ f (b)

]
= 1

4
(b − a)[f (a) + f (b)] + 1

2
(b − a) f

(a + b

2

)
= 1

2
R(0, 0) + 1

2
(b − a) f

(a + b

2

)
These formulas agree with those developed in the preceding section. In particular, note that
R(n, 0) is obtained easily from R(n − 1, 0) if Equation (10) in Section 5.2 is used; that is,

R(n, 0) = 1

2
R(n − 1, 0) + h

2n−1∑
k=1

f [a + (2k − 1)h] (1)

where h = (b − a)/2n and n � 1.
The second and successive columns in the Romberg array are generated by the extrap-

olation formula

R(n, m) = R(n, m − 1) + 1

4m − 1
[R(n, m − 1) − R(n − 1, m − 1)] (2)

with n � 1 and m � 1. This formula will be derived later using the theory of Richardson
extrapolation from Section 4.3.

EXAMPLE 1 If R(4, 2) = 8 and R(3, 2) = 1, what is R(4, 3)?

Solution From Equation (2), we have

R(4, 3) = R(4, 2) + 1
63 [R(4, 2) − R(3, 2)]

= 8 + 1
63 (8 − 1) = 73

9 ■

Pseudocode
The objective now is to develop computational formulas for the Romberg algorithm. By
replacing n with i and m with j in Equation (2), we obtain, for i � 1 and j � 1,

R(i, j) = R(i, j − 1) + 1

4 j − 1
[R(i, j − 1) − R(i − 1, j − 1)]

and

R(i, 0) = 1

2
R(i − 1, 0) + h

2i−1∑
k=1

f [a + (2k − 1)h]

The range of the summation is 1 � k � 2i−1, so that 1 � 2k − 1 � 2i − 1.
One way to generate the Romberg array is to compute a reasonable number of terms

in the first column, R(0, 0) up to R(n, 0), and then use the extrapolation Formula (2) to
construct columns 1, 2, . . . , n in order. Another way is to compute the array row by row.
Observe, for example, that R(1, 1) can be computed by the extrapolation formula as soon
as R(1, 0) and R(0, 0) are available. The procedure Romberg computes, row by row, n rows

206 Chapter 5 Numerical Integration

and columns of the Romberg array for a function f and a specified interval [a, b]:

procedure Romberg(f, a, b, n, (ri j))

integer i, j, k, n; real a, b, h, sum; real array (ri j)0:n×0:n

external function f
h ← b − a
r00 ← (h/2)[f (a) + f (b)]
for i = 1 to n do

h ← h/2
sum ← 0
for k = 1 to 2i − 1 step 2 do

sum ← sum + f (a + kh)

end for
ri0 ← 1

2ri−1,0 + (sum)h
for j = 1 to i do

ri j ← ri, j−1 + (ri, j−1 − ri−1, j−1)/(4 j − 1)

end for
end for
end procedure Romberg

This procedure is used with a main program and a function procedure (for computing
values of the function f). In the main program and perhaps in the procedure Romberg,
some language-specific interface must be included to indicate that the first argument is an
external function. Remember that in the Romberg algorithm as described, the number of
subintervals is 2n . Thus, a modest value of n should be chosen—for example, n = 5. A more
sophisticated program would include automatic tests to terminate the calculation as soon
as the error reaches a preassigned tolerance.

As an example, one can approximate π by using the procedure Romberg with n = 5
to obtain a numerical approximation for the integral∫ 1

0

4

1 + x2
dx

We obtain the following results:

3.00000 00000 000
3.09999 99046 326 3.13333 32061 768
3.13117 64717 102 3.14156 86607 361 3.14211 77387 238
3.13898 84948 730 3.14159 25025 940 3.14159 41715 240 3.14158 58268 738
3.14094 16198 730 3.14159 27410 126 3.14159 27410 126 3.14159 27410 126 3.14159 27410 126

Euler-Maclaurin Formula
Here we explain the source of Equation (2), which is used for constructing the successive
columns of the Romberg array. We begin with a formula that expresses the error in the
trapezoid rule over 2n−1 subintervals:∫ b

a
f (x) dx = R(n − 1, 0) + a2h2 + a4h4 + a6h6 + · · · (3)

5.3 Romberg Algorithm 207

Here, h = (b − a)/2n−1 and the coefficients ai depend on f but not on h. This equation
is one form of the Euler-Maclaurin formula and is given here without proof. (See Young
and Gregory [1972].) In this equation, R(n − 1, 0) denotes a typical element of the first
column in the Romberg array; hence, it is one of the trapezoidal estimates of the integral.
Notice particularly that the error is expressed in powers of h2, and the error series is O(h2).
For our purposes, it is not necessary to know the coefficients, but, in fact, they have definite
expressions in terms of f and its derivatives. For the theory to work smoothly, it is assumed
that f possesses derivatives of all orders on the interval [a, b].

The reader should now recall the theory of Richardson extrapolation as outlined in
Section 4.3. That theory is applicable because of Equation (3). In Equation (8) of Section 4.3,
L = φ(h) +∑∞

k=1 a2kh2k . Here, L is the value of the integral and φ(h) is R(n − 1, 0), the
trapezoidal estimate of L using subintervals of size h. Equation (10) of Section 4.3 gives
the approximate extrapolation formula, which in this situation is Equation (2).

We briefly review this procedure. Replacing n with n+1 and h with h/2 in Equation (3),
we have ∫ b

a
f (x) dx = R(n, 0) + 1

4
a2h2 + 1

16
a4h4 + 1

64
a6h6 + · · · (4)

Subtract Equation (3) from 4 times Equation (4) to obtain∫ b

a
f (x) dx = R(n, 1) − 1

4
a4h4 − 5

16
a6h6 − · · · (5)

where

R(n, 1) = R(n, 0) + 1
3 [R(n, 0) − R(n − 1, 0)] (n � 1)

Note that this is the first case (m = 1) of the extrapolation Formula (2). Now R(n, 1)

should be considerably more accurate than R(n, 0) or R(n −1, 0) because its error formula
begins with an h4 term. Hence, the error series is now O(h4). This process can be repeated
using Equation (5) slightly modified as the starting point—that is, with n replaced by n − 1
and with h replaced by 2h. Then combine the two equations appropriately to eliminate
the h4 term. The result is a new combination of elements from column 2 in the Romberg
array: ∫ b

a
f (x) dx = R(n, 2) + 1

43
a6h6 + 21

45
a8h8 + · · · (6)

where

R(n, 2) = R(n, 1) + 1
15 [R(n, 1) − R(n − 1, 1)] (n � 2)

which agrees with Equation (2) when m = 2. Thus, R(n, 2) is an even more accurate
approximation to the integral because its error series is O(h6).

The basic assumption on which of all this analysis depends is that Equation (3) is valid
for the function f being integrated. Of course, in practice, we will use a modest number of
rows in the Romberg algorithm, and only this number of terms in Equation (3) is needed.

208 Chapter 5 Numerical Integration

Here is the theorem that governs the situation:

■ THEOREM 1 EULER-MACLAURIN FORMULA AND ERROR TERM

If f (2m) exists and is continuous on the interval [a, b], then∫ b

a
f (x) dx = h

2

n−1∑
i=0

[f (xi) + f (xi+1)] + E

where h = (b − a)/n, xi = a + ih for 0 � i � n, and

E =
m−1∑
k=1

A2kh2k[f (2k−1)(a) − f (2k−1)(b)] − A2m(b − a)h2m f (2m)(ξ)

for some ξ in the interval (a, b).

In this theorem, the Ak’s are constants (related to the Bernoulli numbers) and ξ is some
point in the interval (a, b). The interested reader should refer to Young and Gregory [1972,
vol. 1, p. 374]. It turns out that the Ak’s can be defined by the equation

x

ex − 1
=

∞∑
k=0

Ak xk (7)

Observe that in the Euler-Maclaurin formula, the right-hand side contains the trapezoid rule
and an error term, E . Furthermore, E can be expressed as a finite sum in ascending powers
of h2. This theorem gives the formal justification (and the details) of Equation (3).

If the integrand f does not possess a large number of derivatives but is at least Riemann-
integrable, then the Romberg algorithm still converges in the following sense: The limit of
each column in the array equals the integral:

lim
n→∞

R(n, m) =
∫ b

a
f (x) dx (m � 0)

The convergence of the first column is easily justified by referring to the upper and lower
sums. (See Problem 5.2.23.) After the convergence of the first column has been established,
the convergence of the remaining columns can be proved by using Equation (2). (See
Problems 5.3.24 and 5.3.25.)

In practice, we may not know whether the function f whose integral we seek satisfies
the smoothness criterion upon which the theory depends. Then it would not be known
whether Equation (3) is valid for f . One way of testing this in the course of the Romberg
algorithm is to compute the ratios

R(n, m) − R(n − 1, m)

R(n + 1, m) − R(n, m)

and to note whether they are close to 4m+1. Let us verify, at least for the case m = 0, that
this ratio is near 4 for a function that obeys Equation (3).

If we subtract Equation (4) from (3), the result is

R(n, 0) − R(n − 1, 0) = 3
4 a2h2 + 15

16 a4h4 + 63
64 a6h6 + · · · (8)

5.3 Romberg Algorithm 209

If we write down the same equation for the next value of n, then the h of that equation is
half the value of h used in Equation (8). Hence,

R(n + 1, 0) − R(n, 0) = 3

42
a2h2 + 15

162
a4h4 + 63

642
a6h6 + · · · (9)

Equations (8) and (9) are now used to express the ratio mentioned previously:

R(n, 0) − R(n − 1, 0)

R(n + 1, 0) − R(n, 0)
= 4

⎡⎢⎢⎣ 1 + 5

4

(a4

a2

)
h2 + 21

16

(a6

a2

)
h4 + · · ·

1 + 5

42

(a4

a2

)
h2 + 21

162

(a6

a2

)
h4 + · · ·

⎤⎥⎥⎦
= 4

[
1 + 15

42

(a4

a2

)
h2 + · · ·

]
For small values of h, this expression is close to 4.

General Extrapolation
In closing, we return to the extrapolation process that is the heart of the Romberg algorithm.
The process is Richardson extrapolation, which was discussed in Section 4.3. It is an example
of a general dictum in numerical mathematics that if anything is known about the errors in
a process, then that knowledge can be exploited to improve the process.

The only type of extrapolation illustrated so far (in this section and Section 4.3) has
been the so-called h2 extrapolation. It applies to a numerical process in which the error
series is of the form

E = a2h2 + a4h4 + a6h6 + · · ·
In this case, the errors behave like O(h2) as h → 0, but the basic idea of Richardson
extrapolation has much wider applicability. We could apply extrapolation if we knew, for
example, that

E = ahα + bhβ + chγ + · · ·
provided that 0 < α < β < γ < · · ·. It is sufficient to see how to annihilate the first term
of the error expansion because the succeeding steps would be similar.

Suppose therefore that

L = ϕ(h) + ahα + bhβ + chγ + · · · (10)

Here, L is a mathematical entity that is approximated by a formula ϕ(h) depending on h
with the error series ahα + bhβ + · · ·. It follows that

L = ϕ
(h

2

)
+ a

(h

2

)α

+ b
(h

2

)β

+ c
(h

2

)γ

+ · · ·
Hence, if we multiply this by 2α , we get

2α L = 2αϕ
(h

2

)
+ ahα + 2αb

(h

2

)β

+ 2αc
(h

2

)γ

+ · · ·
By subtracting Equation (10) from this equation, we rid ourselves of the hα term:

(2α − 1)L = 2αϕ
(h

2

)
− ϕ(h) + (2α−β − 1)bhβ + (2α−γ − 1)chγ + · · ·

210 Chapter 5 Numerical Integration

We rewrite this as

L = 2α

2α − 1
ϕ
(h

2

)
− 1

2α − 1
ϕ(h) + b̃hβ + c̃hγ + · · · (11)

Thus, the special linear combination

2α

2α − 1
ϕ
(h

2

)
− 1

2α − 1
ϕ(h) = ϕ

(h

2

)
+ 1

2α − 1

[
ϕ
(h

2

)
− ϕ(h)

]
(12)

should be a more accurate approximation to L than either ϕ(h) or ϕ(h/2) because their error
series, in Equations (10) and (11), improve from O(hα) to O(hβ) as h → 0 and β > α > 0.
Notice that when α = 2, the combination in Equation (12) is the one we have already used
for the second column in the Romberg array.

Extrapolation of the same type can be used in still more general situations, as is illus-
trated next (and in the problems).

EXAMPLE 2 If ϕ is a function with the property

ϕ(x) = L + a1x−1 + a2x−2 + a3x−3 + · · ·
how can L be estimated using Richardson extrapolation?

Solution Obviously, L = limx→∞ ϕ(x); thus, L can be estimated by evaluating ϕ(x) for a succession
of ever-larger values of x . To use extrapolation, we write

ϕ(x) = L + a1x−1 + a2x−2 + a3x−3 + · · ·
ϕ(2x) = L + 2−1a1x−1 + 2−2a2x−2 + 2−3a3x−3 + · · ·

2ϕ(2x) = 2L + a1x−1 + 2−1a2x−2 + 2−2a3x−3 + · · ·
2ϕ(2x) − ϕ(x) = L − 2−1a2x−2 − 3 · 2−2a3x−3 − · · ·

Thus, having computed ϕ(x) and ϕ(2x), we can compute a new function ψ(x) = 2ϕ(2x)−
ϕ(x). It should be a better approximation to L because its error series begins with x−2 and
is O(x−2) as x → ∞. This process can be repeated, as in the Romberg algorithm. ■

Here is a concrete illustration of the preceding example. We want to estimate
limx→∞ ϕ(x) from the following table of numerical values:

x 1 2 4 8 16 32 64 128

φ(x) 21.1100 16.4425 14.3394 13.3455 12.8629 12.6253 12.5073 12.4486

A tentative hypothesis is that ϕ has the form in the preceding example. When we compute
the values of the function ψ(x) = 2ϕ(2x) − ϕ(x), we get a new table of values:

x 1 2 4 8 16 32 64

ψ(x) 11.7750 12.2363 12.3516 12.3803 12.3877 12.3893 12.3899

It therefore seems reasonable to believe that the value of limx→∞ ϕ(x) is approximately
12.3899. If we do another extrapolation, we should compute θ(x) = [4ψ(2x) − ψ(x)]/3;

5.3 Romberg Algorithm 211

values for this table are

x 1 2 4 8 16 32

θ(x) 12.3901 12.3900 12.3899 12.3902 12.3898 12.3901

For the precision of the given data, we conclude that limx→∞ ϕ(x) = 12.3900 to within
roundoff error.

Summary

(1) By using the Recursive Trapezoid Rule, we find that the first column of the Romberg
algorithm is

R(n, 0) = 1

2
R(n − 1, 0) + h

2n−1∑
k=1

f [a + (2k − 1)h]

where h = (b − a)/2n and n � 1. The second and successive columns in the Romberg array
are generated by the Richardson extrapolation formula and are

R(n, m) = R(n, m − 1) + 1

4m − 1
[R(n, m − 1) − R(n − 1, m − 1)]

with n � 1 and m � 1. The error is O(h2) for the first column, O(h4) for the second column,
O(h6) for the third column, and so on. Check the ratios

R(n, m) − R(n − 1, m)

R(n + 1, m) − R(n, m)
≈ 4m+1

to test whether the algorithm is working.

(2) If the expression L is approximated by ϕ(h) and if these entities are related by the error
series

L = ϕ(h) + ahα + bhβ + chγ + · · ·

then a more accurate approximation is

L ≈ ϕ
(h

2

)
+ 1

2α − 1

[
ϕ
(h

2

)
− ϕ(h)

]
with error O(hβ).

Additional References
For additional study, see Abramowitz and Stegun [1964], Clenshaw and Curtis [1960],
Davis and Rabinowitz [1984], de Boor [1971], Dixon [1974], Fraser and Wilson [1966],
Gentleman [1972], Ghizetti and Ossiccini [1970], Havie [1969], Kahaner [1971], Krylov
[1962], O’Hara and Smith [1968], Stroud [1974], and Stroud and Secrest [1966].

212 Chapter 5 Numerical Integration

Problems 5.3

a1. What is R(5, 3) if R(5, 2) = 12 and R(4, 2) = −51, in the Romberg algorithm?

2. If R(3, 2) = −54 and R(4, 2) = 72, what is R(4, 3)?

a3. Compute R(5, 2) from R(3, 0) = R(4, 0) = 8 and R(5, 0) = −4.

4. Let f (x) = 2x . Approximate
∫ 4

0 f (x) dx by the trapezoid rule using partition points
0, 2, and 4. Repeat by using partition points 0, 1, 2, 3, and 4. Now apply Romberg
extrapolation to obtain a better approximation.

a5. By the Romberg algorithm, approximate
∫ 2

0 4 dx/(1 + x2) by evaluating R(1, 1).

6. Using the Romberg scheme, establish a numerical value for the approximation∫ 1

0
e−(10x)2

dx ≈ R(1, 1)

Compute the approximation to only three decimal places of accuracy.

a7. We are going to use the Romberg method to estimate
∫ 1

0

√
x cos x dx . Will the method

work? Will it work well? Explain.

a8. By combining R(0, 0) and R(1, 0) for the partition P = {−h < 0 < h}, determine
R(1, 1).

9. In calculus, a technique of integration by substitution is developed. For example, if
the substitution x = z2 is made in the integral

∫ 1
0 (ex/

√
x) dx , the result is 2

∫ 1
0 ez2

dz.
Verify this and discuss the numerical aspects of this example. Which form is likely to
produce a more accurate answer by the Romberg method?

a10. How many evaluations of the function (integrand) are needed if the Romberg array
with n rows and n columns is to be constructed?

11. Using Equation (2), fill in the circles in the following diagram with coefficients used
in the Romberg algorithm:

R(4, 0)

R(3, 0)

R(2, 0)

R(1, 0)

R(4, 1)

R(3, 1)

R(2, 1)

R(4, 2)

R(3, 2)

R(2, 2)

R(4, 3)

R(3, 3)

R(4, 4)

R(0, 0)

R(1, 1)

12. Derive the quadrature rule for R(1, 1) in terms of the function f evaluated at partition
points a, a + h, and a + 2h, where h = (b − a)/2. Do the same for R(n, 1) with
h = (b − a)/2n .

5.3 Romberg Algorithm 213

a13. (Continuation) Derive the quadrature rule R(2, 2) in terms of the function f evaluated
at a, a + h, a + 2h, a + 3h, and b, where h = (b − a)/4.

a14. We want to compute X = limn→∞ Sn , and we have already computed the two numbers
u = S10 and v = S30. It is known that X = Sn + Cn−3. What is X in terms of u and v?

a15. Suppose that we want to estimate Z = limh→0 f (h) and that we calculate f (1), f (2−1),
f (2−2), f (2−3), . . . , f (2−10). Then suppose also that it is known that Z = f (h) +
ah2 + bh4 + ch6. Show how to obtain an improved estimate of Z from the 11 numbers
already computed. Show how Z can be determined exactly from any 4 of the 11
computed numbers.

16. Show how Richardson extrapolation works on a sequence x1, x2, x3, . . . that converges
to L as n → ∞ in such a way that L − xn = a2n−2 + a3n−3 + a4n−4 + · · ·.

a17. Let xn be a sequence that converges to L as n → ∞. If L − xn is known to be of
the form a3n−3 + a4n−4 + · · · (in which the coefficients are unknown), how can the
convergence of the sequence be accelerated by taking combinations of xn and xn+1?

a18. If the Romberg algorithm is operating on a function that possesses continuous deriva-
tives of all orders on the interval of integration, then what is a bound on the quantity
|∫ b

a f (x) dx − R(n, m)| in terms of h?

19. Show that the precise form of Equation (5) is∫ b

a
f (x) dx = R(n, 1) −

∞∑
j=1

(4 j − 1

3 × 4 j

)
a2 j+2h2 j+2

20. Derive Equation (6), and show that its precise form is∫ b

a
f (x) dx = R(n, 2) +

∞∑
j=2

(4 j − 1

3 × 4 j

)(4 j−1 − 1

15 × 4 j−1

)
a2 j+2h2 j+2

21. Use the fact that the coefficients in Equation (3) have the form

ak = ck[f (k−1)(b) − f (k−1)(a)]

to prove that
∫ b

a f (x) dx = R(n, m) if f is a polynomial of degree � 2m − 2.

a22. In the Romberg algorithm, R(n, 0) denotes an estimate of
∫ b

a f (x) dx with subintervals
of size h = (b − a)/2n . If it were known that∫ b

a
f (x) dx = R(n, 0) + a3h3 + a6h6 + · · ·

how would we have to modify the Romberg algorithm?

a23. Show that if f ′′ is continuous, then the first column in the Romberg array converges to
the integral in such a way that the error at the nth step is bounded in magnitude by a
constant times 4−n .

a24. Assuming that the first column of the Romberg array converges to
∫ b

a f (x) dx , show
that the second column does also.

214 Chapter 5 Numerical Integration

25. (Continuation) In the preceding problem, we established the elementary property that
if limn→∞ R(n, 0) = ∫ b

a f (x) dx , then limn→∞ R(n, 1) = ∫ b
a f (x) dx . Show that

lim
n→∞

R(n, 2) = lim
n→∞

R(n, 3) = · · · = lim
n→∞

R(n, n) =
∫ b

a
f (x) dx

26. a. Using Formula (7), prove Euler-Maclaurin coefficients can be generated recursively.

A0 = 1, Ak = −
k∑

j=1

Ak− j

(j + 1)!

b. Determine Ak for 1 � k � 6.

a27. Evaluate E in the theorem on the Euler-Maclaurin formula for this special case: a = 0,
b = 2π , f (x) = 1 + cos 4x , n = 4, and m arbitrary.

Computer Problems 5.3

a1. Compute eight rows and columns in the Romberg array for
∫ 2.19

1.3 x−1 sin x dx .

2. Design and carry out an experiment using the Romberg algorithm. Suggestions: For a
function that possesses many continuous derivatives on the interval, the method should
work well. Try such a function first. If you choose one whose integral you can compute
by other means, you will acquire a better understanding of the accuracy in the Romberg
algorithm. For example, try definite integrals for∫

(1 + x)−1 dx = ln(1 + x)

∫
ex dx = ex

and ∫
(1 + x2)−1 dx = arctan x

3. Test the Romberg algorithm on a bad function, such as
√

x on [0, 1]. Why is it bad?

4. The transcendental number π is the area of a circle whose radius is 1. Show that

8
∫ 1/

√
2

0
(
√

1 − x2 − x) dx = π

with the help of a diagram, and use this integral to approximate π by the Romberg
method.

a5. Apply the Romberg method to estimate
∫ π

0 (2 + sin 2x)−1 dx . Observe the high preci-
sion obtained in the first column of the array, that is, by the simple trapezoidal estimates.

a6. Compute
∫ π

0 x cos 3x dx by the Romberg algorithm using n = 6. What is the correct
answer?

a7. An integral of the form
∫∞

0 f (x) dx can be transformed into an integral on a finite
interval by making a change of variable. Verify, for instance, that the substitution
x = − ln y changes the integral

∫∞
0 f (x) dx into

∫ 1
0 y−1 f (− ln y) dy. Use this idea

to compute
∫∞

0 [e−x/(1 + x2)] dx by means of the Romberg algorithm, using 128
evaluations of the transformed function.

5.3 Romberg Algorithm 215

8. By the Romberg algorithm, calculate∫ ∞

0
e−x

√
1 − sin x dx

9. Calculate ∫ 1

0

sin x√
x

dx

by the Romberg algorithm. Hint: Consider making a change of variable.

10. Compute log 2 by using the Romberg algorithm on a suitable integral.

a11. The Bessel function of order 0 is defined by the equation

J0(x) = 1

π

∫ π

0
cos(x sin θ) dθ

Calculate J0(1) by applying the Romberg algorithm to the integral.

12. Recode the Romberg procedure so that all the trapezoid rule results are computed first
and stored in the first column. Then in a separate procedure,

procedures Extrapolate(n, (ri))

carry out Richardson extrapolation, and store the results in the lower triangular part of
the (ri) array. What are the advantages and disadvantages of this procedure over the
routine given in the text? Test on the two integrals

∫ 4
0 dx/(1 + x) and

∫ 1
−1 ex dx using

only one computer run.

13. (Student research project) Study the Clenshaw-Curtis method for numerical quadra-
ture. If possible, read the original paper by Clenshaw and Curtis [1960] and then pro-
gram the method. If programmed well, it should be superior to the Romberg method
in many cases. For further information on it, consult papers by Dixon [1974], Fraser
and Wilson [1966], Gentleman [1972], Havie [1969] Kahaner [1971], and O’Hara and
Smith [1968].

14. (Student research project) Numerical integration is an ideal problem for use on a
parallel computer, since the interval of integration can be subdivided into subintervals
on each of which the integral can be approximated simultaneously and independently
of each other. Investigate how numerical integration can be done in parallel. If you
have access to a parallel computer or can simulate a parallel computer on a collection
of PCs, write a parallel program to approximate π by using the standard example∫ 1

0
(1 + x2)−1 dx

with a basic rule such as the midpoint rule. Vary the number of processors used and
the number of subintervals. You can read about parallel computing in books such as
Pacheco [1997], Quinn [1994], and others or at any of the numerous sites on the Internet.

15. Use a mathematical software system with symbolic capabilities such as Mathematica
to verify the relationship between Ak and the Bernoulli numbers for k = 6.

6
Additional Topics on Numerical
Integration

Some interesting test integrals (for which numerical values are known) are∫ 1

0

dx√
sin x

∫ ∞

0
e−x3

dx
∫ 1

0
x
∣∣sin(1/x)

∣∣ dx

An important feature that is desirable in a numerical integration scheme
is the capability of dealing with functions that have peculiarities, such as
becoming infinite at some point or being highly oscillatory on certain subin-
tervals. Another special case arises when the interval of integration is infi-
nite. In this chapter, additional methods for numerical integration are intro-
duced: the Gaussian quadrature formulas and an adaptive scheme based on
Simpson’s Rule. Gaussian formulas can often be used when the integrand
has a singularity at an endpoint of the interval. The adaptive Simpson code
is robust in the sense that it can concentrate the calculations on trouble-
some parts of the interval, where the integrand may have some unexpected
behavior. Robust quadrature procedures automatically detect singularities
or rapid fluctuations in the integrand and deal with them appropriately.

6.1 Simpson’s Rule and Adaptive Simpson’s Rule
Basic Simpson’s Rule
The basic trapezoid rule for approximating

∫ b
a f (x) dx is based on an estimation of the area

beneath the curve over the interval [a, b] using a trapezoid. The function of integration f (x)

is taken to be a straight line between f (a) and f (b). The numerical integration formula is
of the form ∫ b

a
f (x) dx ≈ A f (a) + B f (b)

where the values of A and B are selected so that the resulting approximate formula will
correctly integrate any linear function. It suffices to integrate exactly the two functions 1
and x because a polynomial of degree at most one is a linear combination of these two
monomials. To simplify the calculations, let a = 0 and b = 1 and find a formula of the

216

6.1 Simpson’s Rule and Adaptive Simpson’s Rule 217

following type: ∫ 1

0
f (x) dx ≈ A f (0) + B f (1)

Thus, these equations should be fulfilled:

f (x) = 1 :
∫ 1

0
dx = A + B

f (x) = x :
∫ 1

0
x dx = 1

2
= B

The solution is A = B = 1
2 , and the integration formula is∫ 1

0
f (x) dx ≈ 1

2
[f (0) + f (1)]

By a linear mapping y = (b − a)x + a from [0, 1] to [a, b], the basic Trapezoid Rule for
the interval [a, b] is obtained:∫ b

a
f (x) dx ≈ 1

2
(b − a)[f (a) + f (b)]

See Figure 6.1 for a graphical illustration.

FIGURE 6.1

Basic Trapezoid
Rule

x
a b

f(a)

p1(x)

f(b)

f(x)

The next obvious generalization is to take two subintervals
[
a, a+b

2

]
and

[
a+b

2 , b
]

and
to approximate

∫ b
a f (x) dx by taking the function of integration f (x) to be a quadratic

polynomial passing through the three points f (a), f
(

a+b
2

)
, and f (b). Let us seek a numerical

integration formula of the following type:∫ b

a
f (x) dx ≈ A f (a) + B f

(
a + b

2

)
+ C f (b)

The function f is assumed to be continuous on the interval [a, b]. The coefficients A, B,
and C will be chosen such that the formula above will give correct values for the integral
whenever f is a quadratic polynomial. It suffices to integrate correctly the three functions
1, x , and x2 because a polynomial of degree at most 2 is a linear combination of those

218 Chapter 6 Additional Topics on Numerical Integration

3 monomials. To simplify the calculations, let a = −1 and b = 1 and consider the equation∫ 1

−1
f (x) dx ≈ A f (−1) + B f (0) + C f (1)

Thus, these equations should be fulfilled:

f (x) = 1 :
∫ 1

−1
dx = 2 = A + B + C

f (x) = x :
∫ 1

−1
x dx = 0 = −A + C

f (x) = x2 :
∫ 1

−1
x2 dx = 2

3
= A + C

The solution is A = 1
3 , C = 1

3 , and B = 4
3 . The resulting formula is∫ 1

−1
f (x) dx ≈ 1

3
[f (−1) + 4 f (0) + f (1)]

Using a linear mapping y = 1
2 (b − a) + 1

2 (a + b) from [−1, 1] to [a, b], we obtain the
basic Simpson’s Rule over the interval [a, b]:∫ b

a
f (x) dx ≈ 1

6
(b − a)

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
See Figure 6.2 for an illustration.

FIGURE 6.2

Basic Simpson’s
Rule

x
a b

f ()a � b
2

a � b
2

f (a)

f (b) f (x)

p2(x)
p2(x)

Figure 6.3 shows graphically the difference between the Trapezoid Rule and the Simp-
son’s Rule.

FIGURE 6.3

Example of
Trapezoid Rule
vs. Simpson’s

Rule

Simpson

Trapezoid

f

a ba � b
2

p1(x)

p2(x)

6.1 Simpson’s Rule and Adaptive Simpson’s Rule 219

EXAMPLE 1 Find approximate values for the integral∫ 1

−1
e−x2

ds

using the basic Trapezoid Rule and the basic Simpson’s Rule. Carry five significant digits.

Solution Let a = 0 and b = 1. For the basic Trapezoid Rule (1), we obtain∫ 1

0
e−x2

ds ≈ 1

2

[
e0 + e−1

] ≈ 0.5[1 + 0.36788] = 0.68394

which is correct to only one significant decimal place (rounded). For the basic Simpson’s
Rule (2), we find∫ 1

0
e−x2

ds ≈ 1

6

[
e0 + 4e−0.25 + e−1

]
≈ 0.16667[1 + 4(0.77880) + 0.36788] = 0.7472

which is correct to three significant decimal places (rounded). Recall that
∫ 1

0 e−x2
dx =

1
2

√
πerf(1) ≈ 0.74682. ■

Simpson’s Rule
A numerical integration rule over two equal subintervals with partition points a, a + h, and
a + 2h = b is the widely used basic Simpson’s Rule:∫ a+2h

a
f (x) dx ≈ h

3
[f (a) + 4 f (a + h) + f (a + 2h)] (1)

Simpson’s Rule computes exactly the integral of an interpolating quadratic polynomial over
an interval of length 2h using three points; namely, the two endpoints and the middle point.
It can be derived by integrating over the interval [0, 2h] the Lagrange quadratic polynomial
p through the points (0, f (0)), (h, f (h)), and (2h, f (2h)):∫ 2h

0
f (x) dx ≈

∫ 2h

0
p(x) dx = h

3
[f (0) + 4 f (h) + f (2h)]

where

p(x) = 1

2h2
(x − h)(x − 2h) f (0) − 1

h2
x(x − 2h) f (h) + 1

2h2
x(x − h) f (2h)

The error term in Simpson’s rule can be established by using the Taylor series from
Section 1.2:

f (a + h) = f + h f ′ + 1

2!
h2 f ′′ + 1

3!
h3 f ′′′ + 1

4!
h4 f (4) + · · ·

where the functions f , f ′, f ′′, . . . on the right-hand side are evaluated at a. Now replacing
h by 2h, we have

f (a + 2h) = f + 2h f ′ + 2h2 f ′′ + 4

3
h3 f ′′′ + 24

4!
h4 f (4) + · · ·

220 Chapter 6 Additional Topics on Numerical Integration

Using these two series, we obtain

f (a) + 4 f (a + h) + f (a + 2h) = 6 f + 6h f ′ + 4h2 f ′′ + 2h3 f ′′′ + 20

4!
h4 f (4) + · · ·

and, thereby, we have

h

3
[f (a) + 4 f (a + h) + f (a + 2h)] = 2h f + 2h2 f ′ + 4

3
h3 f ′′

+ 2

3
h4 f ′′′ + 20

3 · 4!
h5 f (4) + · · · (2)

Hence, we have a series for the right-hand side of Equation (1). Now let’s find one for the
left-hand side. The Taylor series for F(a + 2h) is

F(a + 2h) = F(a) + 2hF ′(a) + 2h2 F ′′(a) + 4

3
h3 F ′′′(a)

+ 2

3
h4 F (4)(a) + 25

5!
h5 F (5)(a) + · · ·

Let

F(x) =
∫ x

a
f (t) dt

By the Fundamental Theorem of Calculus, F ′ = f . We observe that F(a) = 0 and
F(a + 2h) is the integral on the left-hand side of Equation (1). Since F ′′ = f ′, F ′′′ = f ′′,
and so on, we have∫ a+2h

a
f (x) dx = 2h f + 2h2 f ′ + 4

3
h3 f ′′ + 2

3
h4 f ′′′ + 25

5 · 4!
h5 f (4) + · · · (3)

Subtracting Equation (2) from Equation (3), we obtain∫ a+2h

a
f (x) dx = h

3
[f (a) + 4 f (a + h) + f (a + 2h)] − h5

90
f (4) − · · ·

A more detailed analysis will show that the error term for the basic Simpson’s Rule (1) is
−(h5/90) f (4)(ξ) = O(h5) as h → 0, for some ξ between a and a + 2h. We can rewrite
the basic Simpson’s Rule over the interval [a, b] as∫ b

a
f (x) dx ≈ (b − a)

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
with error term

− 1

90

(
b − a

2

)5

f (4)(ξ)

for some ξ in (a, b).

Composite Simpson’s Rule
Suppose that the interval [a, b] is subdivided into an even number of subintervals, say n,
each of width h = (b − a)/n. Then the partition points are xi = a + ih for 0 � i � n, where

6.1 Simpson’s Rule and Adaptive Simpson’s Rule 221

n is divisible by 2. Now from basic calculus, we have∫ b

a
f (x) dx =

n/2∑
i=1

∫ a+2ih

a+2(i−1)h
f (x) dx

Using the basic Simpson’s Rule, we have, for the right-hand side,

≈
n/2∑
i=1

h

3
{ f (a + 2(i − 1)h) + 4 f (a + (2i − 1)h) + f (a + 2ih)}

= h

3

{
f (a) +

(n/2)−1∑
i=1

f (a + 2ih) + 4
n/2∑
i=1

f (a + (2i − 1)h)

+
(n/2)−1∑

i=1

f (a + 2ih) + f (b)

}
Thus, we obtain∫ b

a
f (x) dx ≈ h

3

{
[f (a) + f (b)] + 4

n/2∑
i=1

f [a + (2i − 1)h] + 2
(n−2)/2∑

i=1

f (a + 2ih)

}
where h = (b − a)/n. The error term is

− 1

180
(b − a)h4 f (4)(ξ)

Many formulas for numerical integration have error estimates that involve derivatives
of the function being integrated. An important point that is frequently overlooked is that such
error estimates depend on the function having derivatives. So if a piecewise function is being
integrated, the numerical integration should be broken up over the region to coincide with
the regions of smoothness of the function. Another important point is that no polynomial
ever becomes infinite in the finite plane, so any integration technique that uses polynomials
to approximate the integrand will fail to give good results without extra work at integrable
singularities.

An Adaptive Simpson’s Scheme
Now we develop an adaptive scheme based on Simpson’s Rule for obtaining a numerical
approximation to the integral ∫ b

a
f (x) dx

In this adaptive algorithm, the partitioning of the interval [a, b] is not selected beforehand
but is automatically determined. The partition is generated adaptively so that more and
smaller subintervals are used in some parts of the interval and fewer and larger subintervals
are used in other parts.

In the adaptive process, we divide the interval [a, b] into two subintervals and then
decide whether each of them is to be divided into more subintervals. This procedure is
continued until some specified accuracy is obtained throughout the entire interval [a, b].
Since the integrand f may vary in its behavior on the interval [a, b], we do not expect the
final partitioning to be uniform but to vary in the density of the partition points.

222 Chapter 6 Additional Topics on Numerical Integration

It is necessary to develop the test for deciding whether subintervals should continue to
be divided. One application of Simpson’s Rule over the interval [a, b] can be written as

I ≡
∫ b

a
f (x) dx = S(a, b) + E(a, b)

where

S(a, b) = (b − a)

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
and

E(a, b) = − 1

90

(
b − a

2

)5

f (4)(a) + · · ·

Letting h = b − a, we have

I = S(1) + E (1) (4)

where

S(1) = S(a, b)

and

E (1) = − 1

90

(
h

2

)5

f (4)(a) + · · ·

= − 1

90

(
h

2

)5

C

Here we assume that f (4) remains a constant value C throughout the interval [a, b]. Now
two applications of Simpson’s Rule over the interval [a, b] give

I = S(2) + E (2) (5)

where

S(2) = S(a, c) + S(c, b)

where c = (a + b)/2, as in Figure 6.4, and

E (2) = − 1

90

(
h/2

2

)5

f (4)(a) + · · · − 1

90

(
h/2

2

)5

f (4)(c) + · · ·

= − 1

90

(
h/2

2

)5 [
f (4)(a) + f (4)(c)

]+ · · ·

= − 1

90

(
1

25

)(
h

2

)5

(2C) = 1

16

[
− 1

90

(
h

2

)5

C

]

FIGURE 6.4

Simpson’s rule

bc � (a � b)/2a

h
One Simpson’s Rule

bca

h/2
Two Simpson’s Rules

h/2

6.1 Simpson’s Rule and Adaptive Simpson’s Rule 223

Again, we use the assumption that f (4) remains a constant value C throughout the interval
[a, b]. We find that

16E (2) = E (1)

Subtracting Equation (5) from (4), we have

S(2) − S(1) = E (1) − E (2) = 15E (2)

From this equation and Equation (4), we have

I = S(2) + E (2) = S(2) + 1
15

(
S(2) − S(1)

)
This value of I is the best we have at this step, and we use the inequality

1
15

∣∣S(2) − S(1)
∣∣ < ε (6)

to guide the adaptive process.
If Test (6) is not satisfied, the interval [a, b] is split into two subintervals, [a, c] and

[c, b], where c is the midpoint c = (a + b)/2. On each of these subintervals, we again
use Test (6) with ε replaced by ε/2 so that the resulting tolerance will be ε over the entire
interval [a, b]. A recursive procedure handles this quite nicely.

To see why we take ε/2 on each subinterval, recall that

I =
∫ b

a
f (x) dx =

∫ c

a
f (x) dx +

∫ b

c
f (x) dx = Ileft + Iright

If S is the sum of approximations S(2)
left over [a, c] and S(2)

right over [c, b], we have

|I − S| = ∣∣Ileft + Iright − S(2)
left − S(2)

right

∣∣
�
∣∣Ileft − S(2)

left

∣∣+ ∣∣Iright − S(2)
right

∣∣
= 1

15

∣∣S(2)
left − S(1)

left

∣∣+ 1
15

∣∣S(2)
right − S(1)

right

∣∣
using Equation (6). Hence, if we require

1

15

∣∣S(2)
left − S(1)

left

∣∣�
ε

2
and

1

15

∣∣S(2)
right − S(1)

right

∣∣�
ε

2
then |I − S| � ε over the entire interval [a, b].

We now describe an adaptive Simpson recursive procedure. The interval [a, b] is parti-
tioned into four subintervals of width (b − a)/4. Two Simpson approximations are computed
by using two double-width subintervals and four single-width subintervals; that is,

one simpson ← h

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]
two simpson ← h

12

[
f (a) + 4 f

(
a + c

2

)
+ 2 f (c) + 4 f

(
c + b

2

)
+ f (b)

]
where h = b − a and c = (a + b)/2.

According to Inequality (6), if one simpson and two simpson agree to within 15ε, then
the interval [a, b] does not need to be subdivided further to obtain an accurate approximation
to the integral

∫ b
a f (x) dx . In this case, the value of [16 (two simpson)−(one simpson)]/15

is used as the approximate value of the integral over the interval [a, b]. If the desired accu-
racy for the integral has not been obtained, then the interval [a, b] is divided in half. The

224 Chapter 6 Additional Topics on Numerical Integration

subintervals [a, c] and [c, b], where c = (a + b)/2, are used in a recursive call to the
adaptive Simpson procedure with tolerance ε/2 on each. This procedure terminates when-
ever all subintervals satisfy Inequality (6). Alternatively, a maximum number of allowable
levels of subdividing intervals is used as well to terminate the procedure prematurely. The
recursive procedure provides an elegant and simple way to keep track of which subintervals
satisfy the tolerance test and which need to be divided further.

Example Using Adaptive Simpson Procedure
The main program for calling the adaptive Simpson procedure can best be presented in
terms of a concrete example. An approximate value for the integral∫ 5

4 π

0

[
cos(2x)

ex

]
dx (7)

is desired with accuracy 1
2 × 10−3.

FIGURE 6.5

Adaptive
Integration of∫ 5

4 π

0 cos(2x)/ex dx

1

0.8

0.6

0.4

0.2

0

1 2 3 40.50 1.5 2.5 3.5

�0.2

The graph of the integrand function is shown in Figure 6.5. We see that this function has many
turns and twists, so accurately determining the area under the curve may be difficult. A func-
tion procedure f is written for the integrand. Its name is the first argument in the procedure,
and necessary interface statements are needed here and in the main program. Other argu-
ments are the values of the upper and lower limits a and b of the integral, the desired accuracy
ε, the level of the current subinterval, and the maximum level depth. Here is the pseudocode:

recursive real function Simpson(f, a, b, ε, level, level max)
result(simpson result)

integer level, level max; real a, b, c, d, e, h
external function f
level ← level + 1
h ← b − a
c ← (a + b)/2
one simpson ← h[f (a) + 4 f (c) + f (b)]/6
d ← (a + c)/2
e ← (c + b)/2

6.1 Simpson’s Rule and Adaptive Simpson’s Rule 225

two simpson ← h[f (a) + 4 f (d) + 2 f (c) + 4 f (e) + f (b)]/12
if level � level max then

simpson result ← two simpson
output “maximum level reached”

else
if |two simpson − one simpson| < 15ε then

simpson result ← two simpson + (two simpson − one simpson)/15
else

left simpson ← Simpson(f, a, c, ε/2, level, level max)
right simpson ← Simpson(f, c, b, ε/2, level, level max)
simpson result ← left simpson + right simpson

end if
end if
end function Simpson

By writing a driver computer program for this pseudocode and executing it on a computer, we
obtain an approximate value of 0.208 for the integral (7). The adaptive Simpson procedure
uses a different number of panels for different parts of the curve as shown in Figure 6.5.

Newton-Cotes Rules
Newton-Cotes quadrature formulas for approximating

∫ b
a f (x) dx are obtained by approx-

imating the function of integration f (x) by interpolating polynomials. The rules are closed
when they involve function values at the ends of the interval of integration. Otherwise, they
are said to be open.

Some closed Newton-Cotes rules with error terms are as follows. Here, a = x0, b = xn ,
h = (b − a)/n, xi = x0 + ih, for i = 0, 1, . . . , n, where h = (b − a)/n, fi = f (xi), and
a = x0 < ξ < xn = b in the error terms.

Trapezoid Rule: ∫ x1

x0

f (x) dx = 1

2
h[f0 + f1] − 1

12
h3 f ′′(ξ)

Simpson’s 1
3 Rule: ∫ x2

x0

f (x) dx = 1

3
h[f0 + 4 f1 + f2] − 1

90
h5 f (4)(ξ)

Simpson’s 3
8 Rule:∫ x3

x0

f (x) dx = 3

8
h[f0 + 3 f1 + 3 f2 + f3] − 3

80
h5 f (4)(ξ)

Boole’s Rule:∫ x4

x0

f (x) dx = 2

45
h[7 f0 + 32 f1 + 12 f2 + 32 f3 + 7 f4] − 8

945
h7 f (6)(ξ)

226 Chapter 6 Additional Topics on Numerical Integration

Six-Point Newton-Cotes Closed Rule:∫ x5

x0

f (x) dx = 5

288
h[19 f0 + 75 f1 + 50 f2 + 50 f3 + 75 f4 + 19 f5]

− 275

12096
h7 f (6)(ξ)

Some of the open Newton-Cotes rules are as follows:

Midpoint Rule: ∫ x2

x0

f (x) dx = 2h f1 + 1

24
h3 f ′′(ξ)

Two-Point Newton-Cotes Open Rule:∫ x3

x0

f (x) dx = 3

2
h[f1 + f2] + 1

4
h3 f ′′(ξ)

Three-Point Newton-Cotes Open Rule:∫ x4

x0

f (x) dx = 4

3
h[2 f1 − f2 + 2 f3] + 28

90
h5 f (4)(ξ)

Four-Point Newton-Cotes Open Rule:∫ x5

x0

f (x) dx = 5

24
h[11 f1 + f2 + f3 + 11 f4] + 95

144
h5 f (4)(ξ)

Five-Point Newton-Cotes Open Rule:∫ x6

x0

f (x) dx = 6

20
h[11 f1 − 14 f2 + 26 f3 − 14 f4 + 11 f5] − 41

140
h7 f (6)(ξ)

Over the years, many Newton-Cotes formulas have been derived and are compiled in
the handbook by Abramowitz and Stegun [1964], which is available online. Rather than
using high-order Newton-Cotes rules that are derived by using a single polynomial over
the entire interval, it is preferable to use a composite rule based on a low-order basic
Newton-Cotes rule. There is seldom any advantage to using an open rule instead of a closed
rule involving the same number of nodes. Nevertheless, open rules do have applications in
integrating a function with singularities at the endpoints and in the numerical solution of
ordinary differential equations as discussed in Chapter 10 and 11.

Before the widespread use of computers, the Newton-Cotes rules were the most com-
monly used quadrature rules, since they involved fractions that were easy to use in hand
calculations. The Gaussian quadrature rules of the next section use fewer function evalu-
ations with higher-order error terms. The fact that they involve nodes involving irrational
numbers is no longer a drawback on modern computers.

Summary

(1) Over the interval [a, b], the basic Simpson’s Rule is∫ b

a
f (x) dx ≈ S(a, b) = (b − a)

6

[
f (a) + 4 f

(
a + b

2

)
+ f (b)

]

6.1 Simpson’s Rule and Adaptive Simpson’s Rule 227

with error term − 1
90 [1

2 (b −a)]5 f (4)(ξ) for some ξ in (a, b). Letting h = (b −a)/2, another
form for the basic Simpson’s Rule is∫ a+2h

a
f (x) dx ≈ h

3
[f (a) + 4 f (a + h) + f (a + 2h)]

with error term − 1
90 h5 f (4)(ξ).

(2) The composite Simpson’s 1
3 Rule over n (even) subintervals

∫ b

a
f (x) dx ≈ h

3
[f (a) + f (b)] + 4h

3

n/2∑
i=1

f [a + (2i − 1)h]

+ 2h

3

(n−2)/2∑
i=1

f (a + 2ih)

where h = (b − a)/n and the general error term is − 1
180 (b − a)h4 f (4)(ξ).

(3) On the interval [a, b] with c = 1
2 (a + b), the test

1
15 |S(a, c) + S(c, b) − S(a, b)| < ε

can be used in an adaptive Simpson’s algorithm.

(4) Newton-Cotes quadrature rules encompass many common quadrature rules, such as the
Trapezoid Rule, Simpson’s Rule, and the Midpoint Rule.

Problems 6.1

a1. Compute
∫ 1

0 (1 + x2)−1 dx by the basic Simpson’s Rule, using the three partition points
x = 0, 0.5, and 1. Compare with the true solution.

2. Consider the integral
∫ 1

0 sin(πx2/2) dx . Suppose that we wish to integrate numerically,
with an error of magnitude less than 10−3.

aa. What width h is needed if we wish to use the composite Trapezoid Rule?
ab. Composite Simpson’s Rule? c. Composite Simpson’s 3

8 Rule?

3. A function f has the values shown.

x 1 1.25 1.5 1.75 2

f (x) 10 8 7 6 5

aa. Use Simpson’s Rule and the function values at x = 1, 1.5, and 2 to approximate∫ 2
1 f (x) dx .

ab. Repeat the preceding part, using x = 1, 1.25, 1.5, 1.75, and 2.
ac. Use the results from parts a and b along with the error terms to establish an improved

approximation. Hint: Assume constant error term Ch4.

228 Chapter 6 Additional Topics on Numerical Integration

d. Repeat the previous parts using lower sums, upper sums, and the Trapezoid Rule.
Compare these results to that from Simpson’s Rule.

a4. Find an approximate value of
∫ 2

1 x−1 dx using composite Simpson’s Rule with h =
0.25. Give a bound on the error.

5. Use Simpson’s Rule and its error formula to prove that if a cubic polynomial and a
quadratic polynomial cross at three equally spaced points, then the two areas enclosed
are equal.

6. For the composite Simpson’s 1
3 Rule over n (even) subintervals, derive the general

error term

− 1

180
(b − a)h4 f (4)(ξ)

for some ξ ∈ (a, b).

a7. (Continuation) The composite Simpson’s Rule for calculating
∫ b

a f (x) dx can be writ-
ten as

Sn−1 = h

3
[f (x0) + 4 f (x1) + 2 f (x2) + · · · + 4 f (xn−1) + f (xn)]

where xi = a + ih for 0 � i � n and h = (b − a)/n with n even. Its error is of the form
Ch4. Show how two values of Sk can be combined to obtain a more accurate estimate
of the integral.

a8. A numerical integration scheme that is not as well known is the basic Simpson’s 3
8

Rule over three subintervals:∫ a+3h

a
f (x) dx ≈ 3h

8
[f (a) + 3 f (a + h) + 3 f (a + 2h) + f (a + 3h)]

Establish the error term for this rule, and explain why this rule is overshadowed by
Simpson’s Rule.

9. (Continuation) Using the preceding problem, establish the composite Simpson’s 3
8 Rule

over n (divisible by 3) subintervals. Derive the general error term.

10. Write out the details in the derivation of Simpson’s Rule.

11. Find a formula of the type ∫ 1

0
f (x) dx ≈ α f (0) + β f (1)

that gives correct values for f (x) = 1 and f (x) = x2. Does your formula give the
correct value when f (x) = x?

12. If possible, find a formula∫ 1

−1
f (x) dx ≈ α f (−1) + β f (0) + γ f (1)

6.1 Simpson’s Rule and Adaptive Simpson’s Rule 229

that gives the correct value for f (x) = x , x2, and x3. Does it correctly integrate the
functions x �→ 1, x4, and x5.

13. Use linear mappings from [0, 1] to [a, b] and from [−1, 1] to [a, b] to justify the basic
Trapezoid Rule and the basic Simpson’s Rule in general terms, respectively.

Computer Problems 6.1

1. Find approximate values for the two integrals

4
∫ 1

0

dx

1 + x2
8
∫ 1/

√
2

0
(
√

1 − x2 − x) dx

Use recursive function Simpson with ε = 1
2 ×10−5 and level max = 4. Sketch the curves

of the integrand f (x) in each case, and show how Simpson partitions the intervals. You
may want to print the intervals at which new values are added to simpson result in
function Simpson and also to print values of f (x) over the entire interval [a, b] in order
to sketch the curves.

2. Discover how to save function evaluations in function Simpson so that the integrand
f (x) is evaluated only once at each partition point. Test the modified code using the
example in the text; that is, ∫ 2π

0
cos(2x)e−x dx

with ε = 5.0 × 10−5 and level max = 4.

3. Modify and test the pseudocode in this section so that it stores the partition points and
function values. Using an automatic plotter and the modified code, repeat the preceding
computer problem, and plot the resulting partition points and function values.

4. Write and test code similar to that in this section but based on a different Newton-Cotes
rule.

5. Using mathematical software such as Matlab, Maple, or Mathematica, write and execute
a computer program for finding an approximate value for the integral in Equation (7).
Interpret warning messages. Try to obtain a more accurate approximation with more
digits of precision by using additional (optional) parameters in the procedure.

6. Code and execute the recursive Simpson algorithm. Use integral (7) for one test.

7. Consider the integral ∫ 1

−1

1√
1 − x2

dx

Because it has singularities at the endpoints of the interval [−1, 1], closed rules cannot
be used. Apply all of the Newton-Cote open rules. Compare and explain these numerical
results to the true solution, which is

∫ 1
−1(1 − x2)−1/2 dx = arcsin x |1−1 = π .

230 Chapter 6 Additional Topics on Numerical Integration

6.2 Gaussian Quadrature Formulas
Description
Most numerical integration formulas conform to the following pattern:∫ b

a
f (x) dx ≈ A0 f (x0) + A1 f (x1) + · · · + An f (xn) (1)

In this section, every numerical integration formula is of this form. To use such a formula, it
is necessary only to know the nodes x0, x1, . . . , xn and the weights A0, A1, . . . , An . There
are tables that list the numerical values of the nodes and weights for important special cases.

Where do formulas such as Formula (1) come from? One major source is the theory of
polynomial interpolation as presented in Chapter 4. If the nodes have been fixed, then there
is a corresponding Lagrange interpolation formula:

p(x) =
n∑

i=0

f (xi) �i (x) where �i (x) =
n∏

j=0
j �=i

(
x − x j

xi − x j

)

This formula [Equations (1) and (2) from Section 4.1] provides a polynomial p of degree
at most n that interpolates f at the nodes; that is, p(xi) = f (xi) for 0 � i � n. If the
circumstances are favorable, p will be a good approximation to f , and

∫ b
a p(x) dx will be

a good approximation to
∫ b

a f (x) dx . Therefore,∫ b

a
f (x) dx ≈

∫ b

a
p(x) dx =

n∑
i=0

f (xi)

∫ b

a
�i (x) dx =

n∑
i=0

Ai f (xi) (2)

where we have put

Ai =
∫ b

a
�i (x) dx

From the way in which Formula (2) has been derived, we know that it will give correct
values for the integral of every polynomial of degree at most n.

EXAMPLE 1 Determine the quadrature formula of the form (1) when the interval is [−2, 2] and the nodes
are −1, 0, and 1.

Solution The functions �i are given above. Thus, we have

�0(x) =
2∏

j=1

(
x − x j

x0 − x j

)
= 1

2
x(x − 1)

Similarly, �1(x) = −(x + 1)(x − 1) and �2(x) = 1
2 x(x + 1). The weights are obtained by

integrating these functions. For example,

A0 =
∫ 2

−2
�0(x) dx = 1

2

∫ 2

−2
(x2 − x) dx = 8

3

6.2 Gaussian Quadrature Formulas 231

Similarly, A1 = − 4
3 and A2 = 8

3 . Therefore, the quadrature formula is∫ 2

−2
f (x) dx ≈ 8

3
f (−1) − 4

3
f (0) + 8

3
f (1)

As a check on the work, one can verify that the formula gives exact values for the three
functions f (x) = 1, x , and x2. By linear algebra, the formula provides correct values for
any quadratic polynomial. ■

Change of Intervals
Gaussian rules for numerical integration are usually given on an interval such as [0, 1] or
[−1, 1]. Often, we want to use these rules over a different interval! We can derive a formula
for any other interval by making a linear change of variables. If the first formula is exact
for polynomials of a certain degree, the same is true of the second. Let us see how this is
accomplished.

Suppose that a numerical integration formula is given:∫ d

c
f (t) dt ≈

n∑
i=0

Ai f (ti)

It does not matter where this formula comes from; however, let us assume that it is exact
for all polynomials of degree at most m. If a formula is needed for some other interval, say,
[a, b], we first define a linear function λ of t such that if t traverses [c, d], then λ(t) will
traverse [a, b]. The function λ is given explicitly by

λ(t) =
(

b − a

d − c

)
t +

(
ad − bc

d − c

)
Now in the integral ∫ b

a
f (x) dx

we change the variable, x = λ(t). Then dx = λ′(t) dt = (b − a)(d − c)−1 dt , and so we
have ∫ b

a
f (x) dx =

(
b − a

d − c

)∫ d

c
f (λ(t)) dt

≈
(

b − a

d − c

) n∑
i=0

Ai f (λ(ti))

Hence, we have∫ b

a
f (x) dx ≈

(
b − a

d − c

) n∑
i=0

Ai f

((
b − a

d − c

)
ti +

(
ad − bc

d − c

))
Observe that because λ is linear, f (λ(t)) is a polynomial in t if f is a polynomial, and
the degrees are the same. Hence, the new formula is exact for polynomials of degree at
most m.

232 Chapter 6 Additional Topics on Numerical Integration

Gaussian Nodes and Weights
In the preceding discussion, the nodes were arbitrary, although for practical reasons, they
should belong to the interval in which the integration is to be carried out. The great mathe-
matician Karl Friedrich Gauss (1777–1855) discovered that by a special placement of the
nodes, the accuracy of the numerical integration process could be greatly increased. Here
is Gauss’s remarkable result.

■ THEOREM 1 GAUSSIAN QUADRATURE THEOREM

Let q be a nontrivial polynomial of degree n + 1 such that∫ b

a
xkq(x) dx = 0 (0 � k � n)

Let x0, x1, . . . , xn be the zeros of q. Then the formula∫ b

a
f (x) dx ≈

n∑
i=0

Ai f (xi) where Ai =
∫ b

a
�i (x) dx (3)

with these xi ’s as nodes will be exact for all polynomials of degree at most 2n + 1.
Furthermore, the nodes lie in the open interval (a, b).

Proof (We prove only the first assertion.) Let f be any polynomial of degree � 2n + 1. Dividing
f by q, we obtain a quotient p and a remainder r , both of which have degree at most n. So

f = pq + r

By our hypothesis,
∫ b

a q(x)p(x) dx = 0. Furthermore, because each xi is a root of q , we
have f (xi) = p(xi)q(xi)+r(xi) = r(xi). Finally, since r has degree at most n, Formula (3)
will give

∫ b
a r(x) dx precisely. Hence,∫ b

a
f (x) dx =

∫ b

a
p(x)q(x) dx +

∫ b

a
r(x) dx =

∫ b

a
r(x) dx

=
n∑

i=0

Air(xi) =
n∑

i=0

Ai f (xi) ■

To summarize: With arbitrary nodes, Formula (3) will be exact for all polynomials
of degree � n. With the Gaussian nodes, Formula (3) will be exact for all polynomials of
degree � 2n + 1.

The quadrature formulas that arise as applications of this theorem are called Gaussian or
Gauss-Legendre quadrature formulas. There is a different formula for each interval [a, b]
and each value of n. There are also more general Gaussian formulas to give approximate
values of integrals, such as∫ ∞

0
f (x)e−x dx

∫ 1

−1
f (x)(1 − x2)1/2 dx

∫ ∞

−∞
f (x)e−x2

dx etc.

Next we derive a Gaussian formula that is not very complicated.

6.2 Gaussian Quadrature Formulas 233

EXAMPLE 2 Determine the Gaussian quadrature formula with three Gaussian nodes and three weights
for the integral

∫ 1
−1 f (x) dx .

Solution We must find the polynomial q referred to in the Gaussian Quadrature Theorem and then
compute its roots. The degree of q is 3, so q has the form

q(x) = c0 + c1x + c2x2 + c3x3

The conditions that q must satisfy are∫ 1

−1
q(x) dx =

∫ 1

−1
xq(x) dx =

∫ 1

−1
x2q(x) dx = 0

If we let c0 = c2 = 0, then q(x) = c1x + c3x3, and so∫ 1

−1
q(x) dx =

∫ 1

−1
x2q(x) dx = 0

because the integral of an odd function over a symmetric interval is 0. To obtain c1 and c3,
we impose the condition ∫ 1

−1
x(c1x + c3x3) dx = 0

A convenient solution of this is c1 = −3 and c3 = 5. (Because it is a homogeneous equa-
tion, any multiple of a solution is another solution. We take the smallest integers that work.)
Hence, we obtain

q(x) = 5x3 − 3x

The roots of q are −√3/5, 0, and
√

3/5. These, then, are the Gaussian nodes for the desired
quadrature formula.

To obtain the weights A0, A1, and A2, we use a procedure known as the method of
undetermined coefficients. We want to select A0, A1, and A2 in the formula∫ 1

−1
f (x) dx ≈ A0 f

(
−
√

3

5

)
+ A1 f (0) + A2 f

(√
3

5

)
(4)

so that the approximate equality (≈) is an exact equality (=) whenever f is of the form
ax2 + bx + c. Since integration is a linear process, Formula (4) will be exact for all
polynomials of degree � 2 if it is exact for these three: 1, x , and x2. We arrange the
calculations in a tabular form.

f Left-hand side Right-hand side

1
∫ 1

−1
dx = 2 A0 + A1 + A2

x
∫ 1

−1
x dx = 0 −

√
3

5
A0 +

√
3

5
A2

x2

∫ 1

−1
x2 dx = 2

3

3

5
A0 + 3

5
A2

234 Chapter 6 Additional Topics on Numerical Integration

The left-hand side of Equation (4) will equal the right-hand side for all quadratic polynomials
when A0, A1, and A2 satisfy the equations⎧⎪⎨⎪⎩

A0 + A1 + A2 = 2

A0 − A2 = 0

A0 + A2 = 10
9

The weights are A0 = A2 = 5
9 and A1 = 8

9 . Therefore, the final formula is∫ 1

−1
f (x) dx ≈ 5

9
f

(
−
√

3

5

)
+ 8

9
f (0) + 5

9
f

(√
3

5

)
(5)

It will integrate correctly all polynomials up to and including quintic ones. For example,∫ 1
−1 x4 dx = 2

5 , and the formula also yields the value 2
5 for this function. ■

With the transformation t = [2x − (b + a)]/(b − a), a Gaussian quadrature rule of the
form ∫ 1

−1
f (t) dt ≈

n∑
i=0

Ai f (ti)

can be used over the interval [a, b]; that is,∫ b

a
f (x) dx = 1

2
(b − a)

∫ 1

−1
f

[
1

2
(b − a)t + 1

2
(b + a)

]
dt (6)

EXAMPLE 3 Use Formulas (5) and (6) to approximate the integral∫ 1

0
e−x2

dx

Solution Since a = 0 and b = 1, we have∫ 1

0
f (x) dx = 1

2

∫ 1

−1
f

(
1

2
t + 1

2

)
dt

= 1

2

[
5

9
f

(
1

2
− 1

2

√
3

5

)
+ 8

9
f

(
1

2

)
+ 5

9
f

(
1

2
+ 1

2

√
3

5

)]
Letting f (x) = e−x2

, we have∫ 1

0
e−x2

dx ≈ 5

18
e−0.11270 16652 + 4

9
e−0.52 + 5

18
e−0.88729 83352

≈ 0.74681 4584

Comparing against the true solution 1
2

√
πerf(1) ≈ 0.74682 41330, we find that the error

in the computed solution is approximately 10−5, which is excellent, considering that there
were only three function evaluations. ■

Legendre Polynomials
Much more could be said about Gaussian quadrature formulas. In particular, there are
efficient methods for generating the special polynomials whose roots are used as nodes in

6.2 Gaussian Quadrature Formulas 235

the quadrature formula. If we specialize to the integral
∫ 1

−1 f (x) dx and standardize qn so
that qn(1) = 1, then these polynomials are called Legendre polynomials. Thus, the roots
of the Legendre polynomials are the nodes for Gaussian quadrature on the interval [−1, 1].
The first few Legendre polynomials are

q0(x) = 1

q1(x) = x

q2(x) = 3
2 x2 − 1

2

q3(x) = 5
2 x3 − 3

2 x

They can be generated by a three-term recurrence relation:

qn(x) =
(

2n − 1

n

)
xqn−1(x) −

(
n − 1

n

)
qn−2(x) (n � 2) (7)

With no new ideas, we can treat integrals of the form
∫ b

a f (x)w(x) dx . Here, w(x)

should be a fixed positive function on (a, b) for which the integrals
∫ b

a xnw(x) dx all exist,
for n = 0, 1, 2, Important examples for the interval [−1, 1] are given by w(x) =
(1 − x2)−1/2 and w(x) = (1 − x2)1/2. The corresponding theorem is as follows:

■ THEOREM 2 WEIGHTED GAUSSIAN QUADRATURE THEOREM

Let q be a nonzero polynomial of degree n + 1 such that∫ b

a
xkq(x)w(x) dx = 0 (0 � k � n)

Let x0, x1, . . . , xn be the roots of q. Then the formula∫ b

a
f (x)w(x) dx ≈

n∑
i=0

Ai f (xi)

where

li (x) =
n∏

j=0
j �=i

x − x j

xi − x j
and Ai =

∫ b

a
�i (x)w(x) dx

will be exact whenever f is a polynomial of degree at most 2n + 1.

The nodes and weights for several values of n in the Gaussian quadrature formula∫ 1

−1
f (x) dx ≈

n∑
i=0

Ai f (xi)

are given in Table 6.1. The numerical values of nodes and weights for various values of
n up to 95 can be found in Abramowitz and Stegun [1964]. See also Stroud and Secrest
[1966]. Since these nodes and weights are mostly irrational numbers, they are not used in
computations by hand as much as are simpler rules that involve integer and rational values.
However, in programs for automatic computation, it does not matter whether a formula

236 Chapter 6 Additional Topics on Numerical Integration

TABLE 6.1 Gaussian Quadrature Nodes and Weights

n Nodes xi Weights Ai

1 −
√

1

3
1

+
√

1

3
1

2 −
√

3

5

5

9

0
8

9

+
√

3

5

5

9

3 −
√

1

7

(
3 − 4

√
0.3

) 1

2
+ 1

12

√
10

3

−
√

1

7

(
3 + 4

√
0.3

) 1

2
− 1

12

√
10

3

+
√

1

7

(
3 − 4

√
0.3

) 1

2
+ 1

12

√
10

3

+
√

1

7

(
3 + 4

√
0.3

) 1

2
− 1

12

√
10

3

4 −
√√√√1

9

(
5 − 2

√
10

7

)
0.3

(
−0.7 + 5

√
0.7

−2 + 5
√

0.7

)

−
√√√√1

9

(
5 + 2

√
10

7

)
0.3

(
0.7 + 5

√
0.7)

2 + 5
√

0.7

)

0
128

225

+
√√√√1

9

(
5 − 2

√
10

7

)
0.3

(
−0.7 + 5

√
0.7

−2 + 5
√

0.7

)

+
√√√√1

9

(
5 + 2

√
10

7

)
0.3

(
0.7 + 5

√
0.7

2 + 5
√

0.7

)

6.2 Gaussian Quadrature Formulas 237

looks elegant, and the Gaussian quadrature formulas usually give greater accuracy with
fewer function evaluations. The choice of quadrature formulas depends on the specific
application being considered, and the reader should consult more advanced references for
guidelines. See, for example, Davis and Rabinowitz [1984], Ghizetti and Ossiccini [1970],
or Krylov [1962].

Integrals with Singularities
If either the interval of integration is unbounded or the function of integration is unbounded,
then special procedures must be used to obtain accurate approximations to the integrals.

One approach for handling a singularity in the function of integration is to change
variables to remove the singularity and then use a standard approximation technique. For
example, we obtain ∫ 1

0

dx

ex
√

x
= 2

∫ 1

0

dt

et2

and ∫ π/2

0

cos x√
x

dx = 2
∫ √

π/2

0
cos t2 dt

using x = t2. Some other useful transformations are x = − log t , x = t/(1 − t), x = tan t ,
and x = √

(1 + t)/(1 − t).
An important case where Gaussian formulas have an advantage occurs in integrating a

function that is infinite at one end of the interval. The reason for this advantage is that the
nodes in Gaussian quadrature are always interior points of the interval. Thus, for example,
in computing ∫ 1

0

sin x

x
dx

we can safely use the statement y ← sin x/x with a Gaussian formula because the value at
x = 0 will not be required. More difficult integrals such as∫ 1

0

3
√

x2 − 1√
sin(ex − 1)

dx

can be computed directly with a Gaussian formula in spite of the singularity at 0. Of course,
we are referring to integrals that are well defined and finite in spite of a singularity. A typical
case is ∫ 1

0

dx√
x

Summary

(1) Gaussian Quadrature Rules with nodes xi and weights Ai are of the form∫ b

a
f (x) dx ≈

n∑
i=0

Ai f (xi)

238 Chapter 6 Additional Topics on Numerical Integration

where the weights are

Ai =
∫ b

a
�i (x) dx �i (x) =

n∏
j=0
j �=i

(
x − x j

xi − x j

)

If q is a nontrivial polynomial of degree n + 1 such that∫ b

a
xkq(x) dx = 0 (0 � k � n)

then the nodes x0, x1, . . . , xn are the zeros of q . Furthermore, the nodes lie in the open
interval (a, b). The rule is exact for all polynomials of degree at most 2n + 1.

(2) Use the following formula to change an integration rule from the interval [c, d] to [a, b]:∫ b

a
f (x) dx ≈

(
b − a

d − c

) n∑
i=0

Ai f

((
b − a

d − c

)
xi +

(
ad − bc

d − c

))
(3) Some Gaussian integration rules are∫ 1

−1
f (x) dx ≈ f

(
− 1√

3

)
+ f

(
1√
3

)
∫ 1

−1
f (x) dx ≈ 5

9
f

(
−
√

3

5

)
+ 8

9
f (0) + 5

9
f

(√
3

5

)
(4) The Weighted Gaussian Quadrature Rules are of the form∫ b

a
f (x)w(x) dx ≈

n∑
i=0

Ai f (xi)

where the weights are

Ai =
∫ b

a
�i (x)w(x) dx

If q is a nonzero polynomial of degree n + 1 such that∫ b

a
xkq(x)w(x) dx = 0 (0 � k � n)

then nodes x0, x1, . . . , xn are the roots of q . The rule is exact whenever f is a polynomial
of degree at most 2n + 1.

(5) If we have a basic numerical integration formula for the interval [−1, 1] such as∫ 1

−1
f (t) dt ≈

m∑
i=0

Ai f (ti)

it can be employed on an arbitrary interval [c, d] by using a change of variables. To convert
to the interval [c, d], change variables by writing x = βt + α, where α = 1

2 (c + d) and
β = 1

2 (d − c). Notice that when t = −1 then x = c and when t = +1 then x = d. Also,

6.2 Gaussian Quadrature Formulas 239

we must use dx = β dt . Putting this together, we have the following formulas:∫ d

c
f (x) dx = β

∫ 1

−1
f (βt + α) dt ≈ β

m∑
i=0

Ai f (βti + α)

If we want to find a composite rule for the interval [a, b] with m/2 applications of the basic
rule, we use ∫ b

a
f (x) dx =

n/2∑
j=1

∫ x2 j

x2(j−1)

f (x) dx

and determine ∫ b

a
f (x) dx ≈ h

n/2∑
j=1

m∑
i=0

Ai f [hti + t2i−1]

where h = t2i − t2i−1 = t2i−1 − t2i−2.

Additional References
For additional reading, see the following: Abell and Braselton [1993], Abramowitz and
Stegun [1964], Acton [1990], Atkinson [1993], Clenshaw and Curtis [1960], Davis and
Rabinowitz [1984], de Boor [1971], Dixon [1974], Fraser and Wilson [1966], Gander and
Gautschi [2000], Gentleman [1972], Ghizetti and Ossiccini [1970], Havie [1969], Kahaner
[1971], Krylov [1962], O’Hara and Smith [1968], Stroud [1974], and Stroud and Secrest
[1966].

Problems 6.2

a1. A Gaussian quadrature rule for the interval [−1, 1] can be used on the interval [a, b]
by applying a suitable linear transformation. Approximate∫ 2

0
e−x2

dx

using the transformed rule from Table 6.1 with n = 1.

2. Using Table 6.1, show directly that the Gaussian quadrature rule is exact for the poly-
nomials 1, x, x2, . . . , x2n+1 when

a. n = 1 b. n = 3 c. n = 4

3. For how high a degree of polynomial is Formula (5) exact? Verify your answer by
continuing the method of undetermined coefficients until an equation is not satisfied.

4. Verify parts of Table 6.1 by finding the roots of qn and using the method of undetermined
coefficients to establish the Gaussian quadrature formula on the interval [−1, 1] for the
following:

aa. n = 1 ab. n = 3 c. n = 4

240 Chapter 6 Additional Topics on Numerical Integration

a5. Construct a rule of the form∫ 1

−1
f (x) dx ≈ α f

(− 1
2

)+ β f (0) + γ f
(

1
2

)
that is exact for all polynomials of degree � 2; that is, determine values for α, β, and
γ . Hint: Make the relation exact for 1, x , and x2 and find a solution of the result-
ing equations. If it is exact for these polynomials, it is exact for all polynomials of
degree � 2.

a6. Establish a numerical integration formula of the form∫ b

a
f (x) dx ≈ A f (a) + B f ′(b)

that is accurate for polynomials of as high a degree as possible.

a7. Derive a formula for
∫ a+h

a f (x) dx in terms of function evaluations f (a), f (a + h),
and f (a + 2h) that is correct for polynomials of as high a degree as possible. Hint:
Use polynomials 1, x − a, (x − a)2, and so on.

8. Derive a formula of the form∫ b

a
f (x) dx ≈ w0 f (a) + w1 f (b) + w2 f ′(a) + w3 f ′(b)

that is exact for polynomials of the highest degree possible.

a9. Derive the Gaussian quadrature rule of the form∫ 1

−1
f (x)x2 dx ≈ a f (−α) + b f (0) + c f (α)

that is exact for all polynomials of as high a degree as possible; that is, determine α, a,
b, and c.

a10. Determine a formula of the form∫ h

0
f (x) dx ≈ w0 f (0) + w1 f (h) + w2 f ′′(0) + w3 f ′′(h)

that is exact for polynomials of as high a degree as possible.

a11. Derive a numerical integration formula of the form∫ xn+1

xn−1

f (x) dx ≈ A f (xn) + B f ′(xn−1) + C f ′′(xn+1)

for uniformly spaced points xn−1, xn , and xn+1 with spacing h. The formula should be
exact for polynomials of as high a degree as possible. Hint: Consider∫ h

−h
f (x) dx ≈ A f (0) + B f ′(−h) + C f ′′(h)

a12. By the method of undetermined coefficients, derive a numerical integration formula of
the form ∫ +2

−2
|x | f (x) dx ≈ A f (−1) + B f (0) + C f (+1)

6.2 Gaussian Quadrature Formulas 241

that is exact for polynomials of degree � 2. Is it exact for polynomials of degree greater
than 2?

a13. Determine A, B, C , and D for a formula of the form

A f (−h) + B f (0) + C f (h) = h D f ′(h) +
∫ h

−h
f (x) dt

that is accurate for polynomials of as high a degree as possible.

a14. The numerical integration rule∫ 3h

0
f (x) dx ≈ 3h

8
[f (0) + 3 f (h) + 3 f (2h) + f (3h)]

is exact for polynomials of degree � n. Determine the largest value of n for which this
assertion is true.

15. (Adams-Bashforth-Moulton formulas) Verify that the numerical integration formulas

a.
∫ t+h

t
g(s) ds ≈ h

24
[55g(t) − 59g(t − h) + 37g(t − 2h) − 9g(t − 3h)]

b.
∫ t+h

t
g(s) ds ≈ h

24
[9g(t + h) + 19g(t) − 5g(t − h) + g(t − 2h)]

are exact for polynomials of third degree. Note: These two formulas can also be derived
by replacing the two integrands g with two interpolating polynomials from Chapter 4
using nodes (t , t − h, t − 2h, t − 3h) or nodes (t + h, t , t − h, t − 2h), respectively.

16. Let a quadrature formula be given in the form∫ 1

−1
f (x) dx ≈

n∑
i=1

wi f (xi)

What is the corresponding formula for
∫ 1

0 f (x) dx?

17. Using the rules in Table 6.1, determine the general rules for approximating integrals of
the form

∫ b
a f (x) dx .

Computer Problems 6.2

1. Write a program to evaluate an integral
∫ b

a f (x) dx using Formula (5).

2. (Continuation) By use of the same program, compute approximate values of the
integrals

aa.
∫ 1

0
dx/

√
x b.

∫ 2

0
e− cos2 x dx

3. (Continuation) Compute
∫ 1

0 x−1 sin x dx by the Gaussian Formula (5) suitably
modified.

242 Chapter 6 Additional Topics on Numerical Integration

4. Write a procedure for evaluating
∫ b

a f (x) dx by first subdividing the interval into n
equal subintervals and then using the three-point Gaussian Formula (5) modified to
apply to the n different subintervals. The function f and the integer n will be furnished
to the procedure.

5. (Continuation) Test the procedure written in the preceding computer problem on these
examples:

a.
∫ 1

0
x5 dx (n = 1, 2, 10) b.

∫ 1

0
x−1 sin x dx (n = 1, 2, 3, 4)

6. Apply and compare the composite rules for Trapezoid, Midpoint, Two-Point Gaussian,
and Simpson’s 1

3 Rule for approximating the integral∫ 2π

0
e−x cos x dx ≈ 0.49906 62786 34

using 32 applications of each basic rule.

7. Code and test an adaptive two-point Gaussian integration procedure to approximate
the integral ∫ 3

1
100x−1 sin(10x−1) dx ≈ −18.79829 68367 8703

Write three procedures using double precision:

a. two-point Gauss procedure Gauss(f, a, b)

b. nonrecursive procedure Adaptive Initial(f, a, b) that initializes variables sum and
depth to zero and calls recursive procedure Adaptive(f , sum, a, b, depth)

c. recursive procedure Adaptive(f , sum, a, b, depth) that checks to see whether the
maximum depth is exceeded; if so, it prints an error message and stops; if not, it
continues by dividing the interval [a, b] in half and calling procedure Gauss on
the left subinterval, the right subinterval, and the whole interval, then checking to
see whether the tolerance test is accepted; if it is, it adds the approximate value
over the whole interval to the variable sum; otherwise it calls recursive procedure
Adaptive on the left and right subintervals in addition to increasing the value of the
depth variable. The tolerance test checks to see if the difference in absolute value
between the approximate value over the whole interval and the sum of the approx-
imate values over the left subinterval and right subinterval is less than the variable
tolerance.

Print out the contribution of each subinterval and the depth at which the approximate
value over the subinterval is accepted. Use a maximum depth of 100 subintervals, and
stop subdividing subintervals when the tolerance is less than 10−7.

8. Compute the three integrals that were mentioned as test cases in the introduction to
this chapter:

aa.
∫ 1

0

dx√
sin x

ab.
∫ ∞

0
e−x3

dx ac.
∫ 1

0
x | sin(1/x)| dx

6.2 Gaussian Quadrature Formulas 243

To determine whether the computed results are accurate, use two different programs
from Matlab, Maple, and/or Mathematica to do these calculations.

9. (Continuation) Another approach to computing the integral
∫ 1

0 x | sin(1/x)| dx is by
a change of variables. Turn it into the integral

∫∞
1 | sin(t)|/t3 dt and then write it

as the sum of the integrals from 1 to π , π to 2π , and 2kπ to 2(k + 1)π , for k =
1, 2, 3, To get 12-decimal places of accuracy, let k run to 112,536. Adding up the
subintegrals in order of smallest to largest, should give better roundoff errors. Taking
10,000 steps may require about five minutes of machine time, but the error should be
no more than about two digits in the tenth decimal place. The first two partial integrals
should be computed outside the loop and then added into the sum at the end. Using
Matlab program quad, integrate the original integral, and then program this alternative
approach.

10. Use Gaussian quadrature formulas on these test cases:

a.
∫ 1

0

log(1 − x)

x
dx = −π2

6
b.
∫ 1

0

log(1 + x)

x
dx = π2

12

c.
∫ 1

0

log(1 + x2)

x
dx = π2

24

This problem illustrates integrals with singularities at the endpoint. The integrals can
be computed numerically by using Gaussian quadrature. The known values enable one
to test the process. (See Haruki and Haruki [1983] and Jeffrey [2000].)

11. Suppose we want to compute
∫ b

a f (x) dx . We divide the interval [a, b] into n subin-
tervals of uniform size h = (b − a)/n, where n is divisible by 2. Let the nodes be
xi = a + ih for 0 � i � n. Consider the following numerical integration rules.

Composite Trapezoid Rule (n need not be even)∫ b

a
f (x) dx ≈ 1

2
h [f (a) + f (b)] + h

n−1∑
i=1

f (xi)

Composite Simpson’s 1
3 Rule (n even)∫ b

a
f (x) dx ≈ 1

3
h [f (a) + f (b)] + 4

3
h f (b − h)

+ 2

3
h

1
2 n−1∑
i=1

[2 f (x2i−1) + f (x2i)]

Composite Gaussian Three-Point Rule (n even)∫ b

a
f (x) dx ≈ h

n/2∑
i=1

[
5

9
f

(
x2i−1 − h

√
3

5

)

+ 5

9
f

(
x2i−1 + h

√
3

5

)
+ 8

9
f (x2i−1)

]
Write and run computer programs for obtaining the numerical approximation to the
integral

∫ 2π

0 [cos(2x)/ex] dx using these rules with n = 120. Use the true solution

244 Chapter 6 Additional Topics on Numerical Integration

1
5 (1 − e−2π) computed in double precision to compute the absolute errors in these
results.

12. (Continuation) Repeat the previous problem using all of the rules in Table 6.1 and
compare the results.

13. (Student research project) From a practical point of view, investigate some new
algorithms for numerical integration that are associated with the names Clenshaw
and Curtis [1960], Kronrod [1964], and Patterson [1968]. The later two are adaptive
Gaussian quadrature methods that provide error estimates based on the evaluation
and reuse of the results at Kronrod points. See QUADPACK by Pessens, de Doncker,
Uberhuber, and Kahaner [1983] and also Laurie [1997], Ammar, Calvetti, and Reichel
[1999], and Calvetti, Golub, Gragg, and Reichel [2000] for examples.

14. Consider the integral ∫ 1

−1

1√
1 − x2

dx

Because it has singularities at the endpoints of the interval [−1, 1], closed rules cannot
be used. Apply all of the Gaussian open rules in Table 6.1. Compare and explain these
numerical results to the true solution, which is

∫ 1
−1(1 − x2)−1/2 dx = arcsin x |1−1 = π .

15. Use numerical integration to verify or refute each of the following conjectures:

a.
∫ 1

0

4

1 + x2
dx = π b.

∫ 1

0

√
x log(x) dx = −4

9
c.
∫ 1

0

√
x3 dx = 2

5

d.
∫ 1

0

1

1 + 10x2
dx = 4

5
e.
∫ 100

−9

1√
|x | dx = 26 f.

∫ 10

0
25e−25x dx = 1

g.
∫ 1

0
log(x) dx = −1

7

Systems of Linear Equations

A simple electrical network contains a number of resistances and a single
source of electromotive force (a battery) as shown in Figure 7.1. Using
Kirchhoff’s laws and Ohm’s law, we can write a system of linear equations
that govern this circuit. If x1, x2, x3, and x4 are the loop currents as shown,
then the equations are⎧⎪⎪⎨⎪⎪⎩

15x1 − 2x2 − 6x3 = 300
−2x1 + 12x2 − 4x3 − x4 = 0
−6x1 − 4x2 + 19x3 − 9x4 = 0

− x2 − 9x3 + 21x4 = 0

Systems of equations like this, even those that contain hundreds of un-
knowns, can be solved by using the methods developed in this chapter.
The solution to the preceding system is

x1 = 26.5 x2 = 9.35 x3 = 13.3 x4 = 6.13

FIGURE 7.1

Electrical
network

x3 x4

x2

4 � 1 �

5 �2 �

11 �6 �
9 �

7 �

x1300 volts

7.1 Naive Gaussian Elimination
One of the fundamental problems in many scientific and engineering applications is to
solve an algebraic linear system Ax = b for the unknown vector x when the coefficient
matrix A and right-hand side vector b are known. Such systems arise naturally in various

245

246 Chapter 7 Systems of Linear Equations

applications, such as approximating nonlinear equations by linear equations or differential
equations by algebraic equations. The cornerstone of many numerical methods for solving
a variety of practical computational problems is the efficient and accurate solution of linear
systems. The system of linear algebraic equations Ax = b may or may not have a solution,
and if it has a solution, it may or may not be unique. Gaussian elimination is the standard
method for solving the linear system by using a calculator or a computer. This method is
undoubtedly familiar to most readers, since it is the simplest way to solve a linear system
by hand. When the system has no solution, other approaches are used, such as linear least
squares, which is discussed in Chapter 14. In this chapter and most of the next one, we
assume that the coefficient matrix A is n × n and invertible (nonsingular).

In a pure mathematical approach, the solution to the problem Ax = b is simply x =
A−1b, where A−1 is the inverse matrix. But in most applications, it is advisable to solve the
system directly for the unknown vector x rather than explicitly computing the inverse matrix.

In applied mathematics and in many applications, it can be a daunting task for even
the largest and fastest computers to solve accurately extremely large systems involving
thousands or millions of unknowns. Some of the questions are the following: How do we
store such large systems in the computer? How do we know that the computed answers are
correct? What is the precision of the computed results? Can the algorithm fail? How long
will it take to compute answers? What is the asymptotic operation count of the algorithm?
Will the algorithm be unstable for certain systems? Can instability be controlled by pivoting?
(Permuting the order of the rows of the matrix is called pivoting.) Which strategy of pivoting
should be used? How do we know whether the matrix is ill-conditioned and whether the
answers are accurate?

Gaussian elimination transforms a linear system into an upper triangular form, which
is easier to solve. This process, in turn, is equivalent to finding the factorization A =
LU , where L is a unit lower triangular matrix and U is an upper triangular matrix. This
factorization is especially useful when solving many linear systems involving the same
coefficient matrix but different right-hand sides, which occurs in various applications.

When the coefficient matrix A has a special structure such as being symmetric, positive
definite, triangular, banded, block, or sparse, the general approach of Gaussian elimination
with partial pivoting needs to be modified or rewritten specifically for the system. When the
coefficient matrix has predominantly zero entries, the system is sparse and iterative methods
can involve much less computer memory than Gaussian elimination. We will address many
of these issues in this chapter and the next one.

Our objective in this chapter is to develop a good program for solving a system of n
linear equations in n unknowns:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + a13x3 + · · · + a1n xn = b1

a21x1 + a22x2 + a23x3 + · · · + a2n xn = b2

a31x1 + a32x2 + a33x3 + · · · + a3n xn = b3

...
...

...
...

...

ai1x1 + ai2x2 + ai3x3 + · · · + ain xn = bi

...
...

...
...

...

an1x1 + an2x2 + an3x3 + · · · + ann xn = bn

(1)

7.1 Naive Gaussian Elimination 247

In compact form, this system can be written simply as

n∑
j=1

ai j x j = bi (1 � i � n)

In these equations, ai j and bi are prescribed real numbers (data), and the unknowns x j are
to be determined. Subscripts on the letter a are separated by a comma only if necessary for
clarity—for example, in a32,75 but not in ai j .

A Larger Numerical Example
In this section, the simplest form of Gaussian elimination is explained. The adjective naive
applies because this form is not usually suitable for automatic computation unless essential
modifications are made, as in Section 7.2. We illustrate naive Gaussian elimination with a
specific example that has four equations and four unknowns:⎧⎪⎪⎨⎪⎪⎩

6x1 − 2x2 + 2x3 + 4x4 = 16
12x1 − 8x2 + 6x3 + 10x4 = 26
3x1 − 13x2 + 9x3 + 3x4 = −19

−6x1 + 4x2 + x3 − 18x4 = −34

(2)

In the first step of the elimination procedure, certain multiples of the first equation are
subtracted from the second, third, and fourth equations so as to eliminate x1 from these
equations. Thus, we want to create 0’s as coefficients for each x1 below the first (where 12,
3, and −6 now stand). It is clear that we should subtract 2 times the first equation from the
second. (This multiplier is simply the quotient 12

6 .) Likewise, we should subtract 1
2 times the

first equation from the third. (Again, this multiplier is just 3
6 .) Finally, we should subtract

−1 times the first equation from the fourth. When all of this has been done, the result is⎧⎪⎪⎨⎪⎪⎩
6x1 − 2x2 + 2x3 + 4x4 = 16

− 4x2 + 2x3 + 2x4 = −6
− 12x2 + 8x3 + x4 = −27

2x2 + 3x3 − 14x4 = −18

(3)

Note that the first equation was not altered in this process, although it was used to produce
the 0 coefficients in the other equations. In this context, it is called the pivot equation.

Notice also that Systems (2) and (3) are equivalent in the following technical sense:
Any solution of (2) is also a solution of (3), and vice versa. This follows at once from the
fact that if equal quantities are added to equal quantities, the resulting quantities are equal.
One can get System (2) from System (3) by adding 2 times the first equation to the second,
and so on.

In the second step of the process, we mentally ignore the first equation and the first
column of coefficients. This leaves a system of three equations with three unknowns. The
same process is now repeated using the top equation in the smaller system as the current
pivot equation. Thus, we begin by subtracting 3 times the second equation from the third.
(The multiplier is just the quotient −12

−4 .) Then we subtract − 1
2 times the second equation

248 Chapter 7 Systems of Linear Equations

from the fourth. After doing the arithmetic, we arrive at⎧⎪⎪⎨⎪⎪⎩
6x1 − 2x2 + 2x3 + 4x4 = 16

− 4x2 + 2x3 + 2x4 = −6
2x3 − 5x4 = −9
4x3 − 13x4 = −21

(4)

The final step consists in subtracting 2 times the third equation from the fourth. The result is⎧⎪⎪⎨⎪⎪⎩
6x1 − 2x2 + 2x3 + 4x4 = 16

− 4x2 + 2x3 + 2x4 = −6
2x3 − 5x4 = −9

− 3x4 = −3

(5)

This system is said to be in upper triangular form. It is equivalent to System (2).
This completes the first phase (forward elimination) in the Gaussian algorithm. The

second phase (back substitution) will solve System (5) for the unknowns starting at the
bottom. Thus, from the fourth equation, we obtain the last unknown

x4 = −3

−3
= 1

Putting x4 = 1 in the third equation gives us

2x3 − 5 = −9

and we find the next to last unknown

x3 = −4

2
= −2

and so on. The solution is

x1 = 3 x2 = 1 x3 = −2 x4 = 1

Algorithm
To simplify the discussion, we write System (1) in matrix-vector form. The coefficient
elements ai j form an n × n square array, or matrix. The unknowns xi and the right-hand
side elements bi form n ×1 arrays, or vectors.∗ (See Appendix D for linear algebra notation
and concepts.) Hence, we have⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

...

ai1 ai2 ai3 · · · ain
...

...
...

...

an1 an2 an3 · · · ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xi
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3
...

bi
...

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(6)

∗To save space, we occasionally write a vector as [x1, x2, . . . , xn]T , where the T stands for the transpose. It tells
us that this is an n × 1 array or vector and not 1 × n, as would be indicated without the transpose symbol.

7.1 Naive Gaussian Elimination 249

or

Ax = b

Operations between equations correspond to operations between rows in this notation. We
shall use these two words interchangeably.

Now let us organize the naive Gaussian elimination algorithm for the general system,
which contains n equations and n unknowns. In this algorithm, the original data are over-
written with new computed values. In the forward elimination phase of the process, there
are n − 1 principal steps. The first of these steps uses the first equation to produce n − 1
zeros as coefficients for each x1 in all but the first equation. This is done by subtracting
appropriate multiples of the first equation from the others. In this process, we refer to the
first equation as the first pivot equation and to a11 as the first pivot element. For each of
the remaining equations (2 � i � n), we compute⎧⎪⎪⎨⎪⎪⎩

ai j ← ai j −
(

ai1

a11

)
a1 j (1 � j � n)

bi ← bi −
(

ai1

a11

)
b1

The symbol ← indicates a replacement. Thus, the content of the memory location allocated
to ai j is replaced by ai j − (ai1/a11)a1 j , and so on. This is accomplished by the following
line of pseudocode:

ai j ← ai j − (ai1/a11)a1 j

Note that the quantities (ai1/a11) are the multipliers. The new coefficient of x1 in the i th
equation will be 0 because ai1 − (ai1/a11)a11 = 0.

After the first step, the system will be of the form⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n

0 a22 a23 · · · a2n

0 a23 a33 · · · a3n
...

...
...

...

0 ai2 ai3 · · · ain
...

...
...

...

0 an2 an3 · · · ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xi
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3
...

bi
...

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
From here on, we will not alter the first equation, nor will we alter any of the coefficients
for x1 (since a multiplier times 0 subtracted from 0 is still 0). Thus, we can mentally
ignore the first row and the first column and repeat the process on the smaller system.
With the second equation as the pivot equation, we compute for each remaining equation
(3 � i � n) ⎧⎪⎪⎨⎪⎪⎩

ai j ← ai j −
(

ai2

a22

)
a2 j (2 � j � n)

bi ← bi −
(

ai2

a22

)
b2

250 Chapter 7 Systems of Linear Equations

Just prior to the kth step in the forward elimination, the system will appear as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · · · · · · · a1n

0 a22 a23 · · · · · · · · · a2n

0 0 a33 · · · · · · · · · a3n
...

...
...

. . .
...

0 0 0 · · · akk · · · akj · · · akn
...

...
...

...
...

...
...

0 0 0 · · · aik · · · ai j · · · ain
...

...
...

...
...

...
...

0 0 0 · · · ank · · · anj · · · ann

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xk
...

xi
...

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3
...

bk
...

bi
...

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Here, a wedge of 0 coefficients has been created, and the first k equations have been proc-
essed and are now fixed. Using the kth equation as the pivot equation, we select multipliers
to create 0’s as coefficients for each xi below the akk coefficient. Hence, we compute for
each remaining equation (k + 1 � i � n)⎧⎪⎪⎨⎪⎪⎩

ai j ← ai j −
(

aik

akk

)
akj (k � j � n)

bi ← bi −
(

aik

akk

)
bk

Obviously, we must assume that all the divisors in this algorithm are nonzero.

Pseudocode
We now consider the pseudocode for forward elimination. The coefficient array is stored as
a double-subscripted array (ai j); the right-hand side of the system of equations is stored as
a single-subscripted array (bi); the solution is computed and stored in a single-subscripted
array (xi). It is easy to see that the following lines of pseudocode carry out the forward
elimination phase of naive Gaussian elimination:

integer i, j, k; real array (ai j)1:n×1:n, (bi)1:n

for k = 1 to n − 1 do
for i = k + 1 to n do

for j = k to n do
ai j ← ai j − (aik/akk)akj

end for
bi ← bi − (aik/akk)bk

end for
end for

Since the multiplier aik/akk does not depend on j , it should be moved outside the j loop.
Notice also that the new values in column k will be 0, at least theoretically, because when

7.1 Naive Gaussian Elimination 251

j = k, we have

aik ← aik − (aik/akk)akk

Since we expect this to be 0, no purpose is served in computing it. The location where the 0
is being created is a good place to store the multiplier. If these remarks are put into practice,
the pseudocode will look like this:

integer i, j, k; real xmult; real array (ai j)1:n×1:n, (bi)1:n

for k = 1 to n − 1 do
for i = k + 1 to n do

xmult ← aik/akk

aik ← xmult
for j = k + 1 to n do

ai j ← ai j − (xmult)akj

end for
bi ← bi − (xmult)bk

end for
end for

Here, the multipliers are stored because they are part of the LU-factorization that can be
useful in some applications. This matter is discussed in Section 8.1.

At the beginning of the back substitution phase, the linear system is of the form⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a11x1 + a12x2 + a13x3 + · · · · · · + a1n xn = b1

a22x2 + a23x3 + · · · · · · + a2n xn = b2

a33x3 + · · · + a3n xn = b3

. . .
...

...

aii xi + ai,i+1xi+1 + · · · + ain xn = bi

. . .
...

...

an−1,n−1xn−1 + an−1,n xn = bn−1

ann xn = bn

where the ai j ’s and bi ’s are not the original ones from System (6) but instead are the ones
that have been altered by the elimination process.

The back substitution starts by solving the nth equation for xn:

xn = bn

ann

Then, using the (n − 1)th equation, we solve for xn−1:

xn−1 = 1

an−1,n−1

(
bn−1 − an−1,n xn

)

252 Chapter 7 Systems of Linear Equations

We continue working upward, recovering each xi by the formula

xi = 1

aii

(
bi −

n∑
j=i+1

ai j x j

)
(i = n − 1, n − 2, . . . , 1) (7)

Here is pseudocode to do this:

integer i, j, n; real sum; real array (ai j)1:n×1:n, (xi)1:n

xn ← bn/ann

for i = n − 1 to 1 step −1 do
sum ← bi

for j = i + 1 to n do
sum ← sum − ai j x j

end for
xi ← sum/aii

end for

Now we put these segments of pseudocode together to form a procedure, called Naive Gauss,
which is intended to solve a system of n linear equations in n unknowns by the method of
naive Gaussian elimination. This pseudocode serves a didactic purpose only; a more robust
pseudocode will be developed in the next section.

procedure Naive Gauss(n, (ai j), (bi), (xi))

integer i, j, k, n; real sum, xmult
real array (ai j)1:n×1:n, (bi)1:n, (xi)1:n

for k = 1 to n − 1 do
for i = k + 1 to n do

xmult ← aik/akk

aik ← xmult
for j = k + 1 to n do

ai j ← ai j − (xmult)akj

end for
bi ← bi − (xmult)bk

end for
end for
xn ← bn/ann

for i = n − 1 to 1 step −1 do
sum ← bi

for j = i + 1 to n do
sum ← sum − ai j x j

end for
xi ← sum/aii

end for
end procedure Naive Gauss

7.1 Naive Gaussian Elimination 253

Before giving a test example, let us examine the crucial computation in our pseudocode,
namely, a triply nested for-loop containing a replacement operation:

for k · · · · · · · · · do
for i · · · · · · · · · do

for j · · · · · · · · · do
ai j ← ai j − (aik/akk)akj

end do
end do

end do

Here, we must expect all quantities to be infected with roundoff error. Such a roundoff error
in akj is multiplied by the factor (aik/akk). This factor is large if the pivot element |akk | is
small relative to |aik |. Hence, we conclude, tentatively, that small pivot elements lead to
large multipliers and to worse roundoff errors.

Testing the Pseudocode
One good way to test a procedure is to set up an artificial problem whose solution is known
beforehand. Sometimes the test problem will include a parameter that can be changed to
vary the difficulty. The next example illustrates this.

Fixing a value of n, define the polynomial

p(t) = 1 + t + t2 + · · · + tn−1 =
n∑

j=1

t j−1

The coefficients in this polynomial are all equal to 1. We shall try to recover these known
coefficients from n values of the polynomial. We use the values of p(t) at the integers t =
1+ i for i = 1, 2, . . . , n. If the coefficients in the polynomial are denoted by x1, x2, . . . , xn ,
we should have

n∑
j=1

(1 + i) j−1x j = 1

i

[
(1 + i)n − 1

]
(1 � i � n) (8)

Here, we have used the formula for the sum of a geometric series on the right-hand side;
that is,

p(1 + i) =
n∑

j=1

(1 + i) j−1 = (1 + i)n − 1

(1 + i) − 1
= 1

i

[
(1 + i)n − 1

]
(9)

Letting ai j = (1+ i) j−1 and bi = [(1+ i)n −1]/ i in Equation (8), we have a linear system.

EXAMPLE 1 We write a pseudocode for a specific test case that solves the system of Equation (8) for
various values of n.

Solution Since the naive Gaussian elimination procedure Naive Gauss can be used, all that is needed
is a calling program. We decide to use n = 4, 5, 6, 7, 8, 9, 10 for the test. Here is a

254 Chapter 7 Systems of Linear Equations

suitable pseudocode:

program Test NGE
integer parameter m ← 10
integer i, j, n; real array, (ai j)1:m×1:m, (bi)1:m, (xi)1:m

for n = 4 to 10 do
for i = 1 to n do

for j = 1 to n do
ai j ← (i + 1) j−1

end for
bi ← [(i + 1)n − 1]/ i

end for
call Naive Gauss(n, (ai j), (bi), (xi))

output n, (xi)1:n

end for
end program Test NGE

When this pseudocode was run on a machine that carries approximately seven decimal
digits of accuracy, the solution was obtained with complete precision until n reached 9, and
then the computed solution was worthless because one component exhibited a relative error
of 16,120%! (Write and run a computer program to see for yourself!) ■

The coefficient matrix for this linear system is an example of a well-known ill-
conditioned matrix called the Vandermonde matrix, and this accounts for the fact that
the system cannot be solved accurately using naive Gaussian elimination. What is amazing
is that the trouble happens so suddenly! When n � 9, the roundoff error that is present in
computing xi is propagated and magnified throughout the back substitution phase so that
most of the computed values for xi are worthless. Insert some intermediate print state-
ments in the code to see for yourself what is going on here. (See Gautschi [1990] for more
information on the Vandermonde matrix and its ill-conditioned nature.)

Residual and Error Vectors
For a linear system Ax = b having the true solution x and a computed solution x̃ , we define

e = x̃ − x error vector

r = Ax̃ − b residual vector

An important relationship between the error vector and the residual vector is

Ae = r

Suppose that two students using different computer systems solve the same linear
system, Ax = b. What algorithm and what precision each student used are not known.
Each vehemently claims to have the correct answer, but the two computer solutions x̃ and
x̂ are totally different! How do we determine which, if either, computed solution is correct?

We can check the solutions by substituting them into the original system, which is the
same as computing the residual vectors r̃ = Ax̃ − b and r̂ = Ax̂ − b. Of course, the

7.1 Naive Gaussian Elimination 255

computed solutions are not exact because each must contain some roundoff errors. So we
would want to accept the solution with the smaller residual vector. However, if we knew
the exact solution x, then we would just compare the computed solutions with the exact
solution, which is the same as computing the error vectors ẽ = x̃ − x and ê = x̂ − x. Now
the computed solution that produces the smaller error vector would most assuredly be the
better answer.

Since the exact solution is usually not known in applications, one would tend to accept
the computed solution that has the smaller residual vector. But this may not be the best
computed solution if the original problem is sensitive to roundoff errors—that is, is ill-
conditioned. In fact, the question of whether a computed solution to a linear system is a
good solution is extremely difficult and beyond the scope of this book. Problem 7.1.5 may
give some insight into the difficulty of assessing the accuracy of computed solutions of
linear systems.

Summary

(1) The basic forward elimination procedure using equation k to operate on equations k +
1, k + 2, . . . , n is {

ai j ← ai j − (aik/akk)akj (k � j � n, k < i � n)

bi ← bi − (aik/akk)bk

Here we assume akk �= 0. The basic back substitution procedure is

xi = 1

aii

(
bi −

n∑
j=i+1

ai j x j

)
(i = n − 1, n − 2, . . . , 1)

(2) When solving the linear system Ax = b, if the true or exact solution is x and the
approximate or computed solution is x̃, then important quantities are

error vectors e = x̃ − x
residual vectors r = Ax̃ − b

Problems 7.1

a1. Show that the system of equations⎧⎨⎩
x1 + 4x2 + αx3 = 6

2x1 − x2 + 2αx3 = 3
αx1 + 3x2 + x3 = 5

possesses a unique solution when α = 0, no solution when α = −1, and infinitely
many solutions when α = 1. Also, investigate the corresponding situation when the
right-hand side is replaced by 0’s.

256 Chapter 7 Systems of Linear Equations

a2. For what values of α does naive Gaussian elimination produce erroneous answers for
this system? {

x1 + x2 = 2
αx1 + x2 = 2 + α

Explain what happens in the computer.

3. Apply naive Gaussian elimination to these examples and account for the failures. Solve
the systems by other means if possible.

aa.
{

3x1 + 2x2 = 4
−x1 − 2

3 x2 = 1
ab.

{
6x1 − 3x2 = 6

−2x1 + x2 = −2

c.
{

0x1 + 2x2 = 4
x1 − x2 = 5

d.

⎧⎨⎩
x1 + x2 + 2x3 = 4
x1 + x2 + 0x3 = 2

0x1 + x2 + x3 = 0
a4. Solve the following system of equations, retaining only four significant figures in each

step of the calculation, and compare your answer with the solution obtained when eight
significant figures are retained. Be consistent by either always rounding to the number
of significant figures that are being carried or always chopping.{

0.1036x1 + 0.2122x2 = 0.7381
0.2081x1 + 0.4247x2 = 0.9327

a5. Consider

A =
[

0.780 0.563
0.913 0.659

]
, b =

[
0.217
0.254

]

x̃ =
[

0.999
−1.001

]
, x̂ =

[
0.341

−0.087

]
Compute residual vectors r̃ = Ax̃ − b and r̂ = Ax̂ − b and decide which of x̃ and x̂
is the better solution vector. Now compute the error vectors e = x̃ − x and ê = x̂ − x,
where x = [1, −1]T is the exact solution. Discuss the implications of this example.

6. Consider the system {
10−4x1 + x2 = b1

x1 + x2 = b2

where b1 �= 0 and b2 �= 0. Its exact solution is

x1 = −b1 + b2

1 − 10−4
, x2 = b1 − 10−4b2

1 − 10−4

aa. Let b1 = 1 and b2 = 2. Solve this system using naive Gaussian elimination
with three-digit (rounded) arithmetic and compare with the exact solution x1 =
1.00010 . . . and x2 = 0.99989 9. . . .

ab. Repeat the preceding part after interchanging the order of the two equations.
ac. Find values of b1 and b2 in the original system so that naive Gaussian elimination

does not give poor answers.

7.1 Naive Gaussian Elimination 257

7. Solve each of the following systems using naive Gaussian elimination—that is, forward
elimination and back substitution. Carry four significant figures.

aa.

⎧⎨⎩
3x1 + 4x2 + 3x3 = 10

x1 + 5x2 − x3 = 7
6x1 + 3x3 + 7x3 = 15

ab.

⎧⎨⎩
3x1 + 2x2 − 5x3 = 0
2x1 − 3x2 + x3 = 0

x1 + 4x2 − x3 = 4

ac.

⎡⎢⎢⎣
1 −1 2 1
3 2 1 4
5 8 6 3
4 2 5 3

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
1
1

−1

⎤⎥⎥⎦ d.

⎧⎨⎩
3x1 + 2x2 − x3 = 7
5x1 + 3x2 + 2x3 = 4
−x1 + x2 − 3x3 = −1

e.

⎧⎪⎪⎨⎪⎪⎩
x1 + 3x2 + 2x3 + x4 = −2

4x1 + 2x2 + x3 + 2x4 = 2
2x1 + x2 + 2x3 + 3x4 = 1

x1 + 2x2 + 4x3 + x4 = −1

Computer Problems 7.1

1. Program and run the example in the text and insert some print statements to see what
is happening.

2. Rewrite and test procedure Naive Gauss so that it is column oriented; that is, the first
index of ai j varies on the innermost loop.

3. Define an n × n matrix A by the equation ai j = i + j . Define b by the equation
bi = i + 1. Solve Ax = b by using procedure Naive Gauss. What should x be?

4. Define an n × n array by ai j = −1 + 2 min{i, j}. Then set up the array (bi) in such a
way that the solution of the system

∑n
j=1 ai j x j = bi (1 � i � n) is x j = 1 (1 � j � n).

Test procedure Naive Gauss on this system for a moderate value of n, say n = 15.

5. Write and test a version of procedure Naive Gauss in which

a. An attempted division by 0 is signaled by an error return.

b. The solution x is placed in array (bi).

a6. Write a complex arithmetic version of Naive Gauss by declaring certain variables comp-
lex and making other necessary changes to the code. Consider the complex linear system

Az = b
where

A =

⎡⎢⎢⎣
5 + 9i 5 + 5i −6 − 6i −7 − 7i
3 + 3i 6 + 10i −5 − 5i −6 − 6i
2 + 2i 3 + 3i −1 + 3i −5 − 5i
1 + i 2 + 2i −3 − 3i 4i

⎤⎥⎥⎦
Solve this system four times with the following vectors b:⎡⎢⎢⎣

−10 + 2i
−5 + i
−5 + i
−5 + i

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
2 + 6i
4 + 12i
2 + 6i
2 + 6i

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
7 − 3i
7 − 3i

0
7 − 3i

⎤⎥⎥⎦ ,

⎡⎢⎢⎣
− 4 − 8i
− 4 − 8i
− 4 − 8i

0

⎤⎥⎥⎦

258 Chapter 7 Systems of Linear Equations

Verify that the solutions are z = λ−1b for scalars λ. The numbers λ are called
eigenvalues, and the solutions z are eigenvectors of A. Usually, the b vector is not
known, and the solution of the problem Az = λz cannot be obtained by using a linear
equation solver.

7. (Continuation) A common electrical engineering problem is to calculate currents in
an electric circuit. For example, the circuit shown in the figure with Ri (ohms), Ci

(microfarads), L (millihenries), and ω (hertz) leads to the system⎧⎨⎩
(50 − 10i)I1 + (50)I2 + (50)I3 = V1

(10i)I1 + (10 − 10i)I2 + (10 − 20i)I3 = 0
− (30i)I2 + (20 − 50i)I3 = −V2

Select V1 to be 100 millivolts, and solve two cases:

aa. The two voltages are in phase; that is, V2 = V1.
ab. The second voltage is a quarter of a cycle ahead of the first; that is, V2 = iV1.

Use the complex arithmetic version of Naive Gauss, and in each case, solve the sys-
tem for the amplitude (in milliamperes) and the phase (in degrees) for each cur-
rent Ik . Hint: When Ik = Re(Ik) + i Im(Ik), the amplitude is |Ik |, and the phase is
(180◦/π) arctan[Im(Ik)/Re(Ik)]. Draw a diagram to show why this is so.

I2 I3I1

R1 � 50 R1 � 50 C2 � 5 C3 � 2

C1 � 10
R3 � 20

V2

V1

v � 104

L � 2

8. Select a reasonable value of n, and generate a random n × n array a using a random-
number generator. Define the array b such that the solution of the system

n∑
j=1

ai j x j = bi (1 � i � n)

is x j = j , where 1 � j � n. Test the naive Gaussian algorithm on this system. Hint:
You may use the function Random, which is discussed in Chapter 13, to generate the
random elements of the (ai j) array.

9. Carry out the test described in the text for procedure Naive Gauss but reverse the order
of the equations. Hint: It suffices, in the code, to replace i by n − i + 1 in appropriate
places.

10. Solve the linear system given in the leadoff example to this chapter using Naive Gauss.

11. Use mathematical software such as built-in routines in Matlab, Maple, or Mathematica
to directly solve linear system (2).

7.2 Gaussian Elimination with Scaled Partial Pivoting 259

7.2 Gaussian Elimination with Scaled Partial Pivoting
Naive Gaussian Elimination Can Fail
To see why the naive Gaussian elimination algorithm is unsatisfactory, consider the follow-
ing system: {

0x1 + x2 = 1
x1 + x2 = 2

(1)

The pseudocode that we constructed in Section 7.1 would attempt to subtract some multiple
of the first equation from the second to produce 0 as the coefficient for x1 in the second
equation. This, of course, is impossible, so the algorithm fails if a11 = 0.

If a numerical procedure actually fails for some values of the data, then the procedure
is probably untrustworthy for values of the data near the failing values. To test this dictum,
consider the system {

εx1 + x2 = 1
x1 + x2 = 2

(2)

in which ε is a small number different from 0. Now the naive algorithm of Section 7.1
works, and after forward elimination it produces the system{

εx1 + x2 = 1(
1 − ε−1

)
x2 = 2 − ε−1 (3)

In the back substitution, the arithmetic is as follows:

x2 = 2 − ε−1

1 − ε−1
≈ 1, x1 = ε−1(1 − x2) ≈ 0

Now ε−1 will be large, so if this calculation is performed by a computer that has a fixed
word length, then for small values of ε, both (2 − ε−1) and (1 − ε−1) would be computed
as −ε−1.

For example, in an 8-digit decimal machine with a 16-digit accumulator, when ε =
10−9, it follows that ε−1 = 109. To subtract, the computer must interpret the numbers as

ε−1 = 109 = 0.10000 000 × 1010 = 0.10000 00000 00000 0 × 1010

2 = 0.20000 000 × 101 = 0.00000 00002 00000 0 × 1010

Thus, (ε−1 − 2) is initially computed as 0.09999 99998 00000 0 × 1010 and then rounded
to 0.10000 000 × 1010 = ε−1.

We conclude that for values of ε sufficiently close to 0, the computer calculates x2 as
1 and then x1 as 0. Since the correct solution is

x1 = 1

1 − ε
≈ 1, x2 = 1 − 2ε

1 − ε
≈ 1

the relative error in the computed solution for x1 is extremely large: 100%.

260 Chapter 7 Systems of Linear Equations

Actually, the naive Gaussian elimination algorithm works well on Systems (1) and (2)
if the equations are first permuted: {

x1 + x2 = 2
0x1 + x2 = 1

and {
x1 + x2 = 2

εx1 + x2 = 1

The first system is easily solved obtaining x2 = 1 and x1 = 2 − x2 = 1. Moreover, the
second of these systems becomes{

x1+ x2 = 2
(1 − ε)x2 = 1 − 2ε

after the forward elimination. Then from the back substitution, the solution is computed as

x2 = 1 − 2ε

1 − ε
≈ 1, x1 = 2 − x2 ≈ 1

Notice that we do not have to rearrange the equations in the system: it is necessary
only to select a different pivot row. The difficulty in System (2) is not due simply to ε being
small but rather to its being small relative to other coefficients in the same row. To verify
this, consider {

x1 + ε−1x2 = ε−1

x1 + x2 = 2
(4)

System (4) is mathematically equivalent to (2). The naive Gaussian elimination algorithm
fails here. It produces the triangular system{

x1 + ε−1x2 = ε−1(
1 − ε−1

)
x2 = 2 − ε−1

and then, in the back substitution, it produces the erroneous result

x2 = 2 − ε−1

1 − ε−1
≈ 1, x1 = ε−1 − ε−1x2 ≈ 0

This situation can be resolved by interchanging the two equations in (4):{
x1 + x2 = 2
x1 + ε−1x2 = ε−1

Now the naive Gaussian elimination algorithm can be applied, resulting in the system{
x1 + x2 = 2(

ε−1 − 1
)
x2 = ε−1 − 2

The solution is

x2 = ε−1 − 2

ε−1 − 1
≈ 1, x1 = 2 − x2 ≈ 1

which is the correct solution.

7.2 Gaussian Elimination with Scaled Partial Pivoting 261

Partial Pivoting and Complete Partial Pivoting
Gaussian elimination with partial pivoting selects the pivot row to be the one with the
maximum pivot entry in absolute value from those in the leading column of the reduced
submatrix. Two rows are interchanged to move the designated row into the pivot row posi-
tion. Gaussian elimination with complete pivoting selects the pivot entry as the maximum
pivot entry from all entries in the submatrix. (This complicates things because some of the
unknowns are rearranged.) Two rows and two columns are interchanged to accomplish this.
In practice, partial pivoting is almost as good as full pivoting and involves significantly
less work. See Wilkinson [1963] for more details on this matter. Simply picking the largest
number in magnitude as is done in partial pivoting may work well, but here row scaling
does not play a role—the relative sizes of entries in a row are not considered. Systems with
equations having coefficients of disparate sizes may cause difficulties and should be viewed
with suspicion. Sometimes a scaling strategy may ameliorate these problems. In this book,
we present Gaussian elimination with scaled partial pivoting, and the pseudocode contains
an implicit pivoting scheme.

In certain situations, Gaussian elimination with the simple partial pivoting strategy may
lead to an incorrect solution. Consider the augmented matrix[

2 2c 2c
1 1 2

]
where c is a parameter that can take on very large numerical values and the variables are x
and y. The first row is selected as the pivot row by choosing the larger number in the first
column. Since the multiplier is 1/2, one step in the row reduction process brings us to[

2 2c 2c
0 1 − c 2 − c

]
Now suppose that we are working with a computer of limited word length. So in this
computer, we obtain 1 − c ≈ −c and 2 − c ≈ −c. Consequently, the computer contains
these numbers: [

2 2c 2c
0 −c −c

]
Thus, as the solution, we obtain y = 1 and x = 0, whereas the correct solution is x = y = 1.

On the other hand, Gaussian elimination with scaled partial pivoting selects the second
row as the pivot row. The scaling constants are (2c, 1), and the larger of the two ratios for
selecting the pivot row from {2/(2c), 1} is the second one. Now the multiplier is 2, and one
step in the row reduction process brings us to[

0 2c − 2 2c − 4
1 1 2

]
On our computer of limited word length, we find 2c − 2 ≈ 2c and 2c − 4 ≈ 2c. Conse-
quently, the computer contains these numbers:[

0 2c 2c
1 1 2

]
Now we obtain the correct solution, y = 1 and x = 1.

262 Chapter 7 Systems of Linear Equations

Gaussian Elimination with Scaled Partial Pivoting
These simple examples should make it clear that the order in which we treat the equations
significantly affects the accuracy of the elimination algorithm in the computer. In the naive
Gaussian elimination algorithm, we use the first equation to eliminate x1 from the equations
that follow it. Then we use the second equation to eliminate x2 from the equations that
follow it, and so on. The order in which the equations are used as pivot equations is the
natural order {1, 2, . . . , n}. Note that the last equation (equation number n) is not used as
an operating equation in the natural ordering: At no time are multiples of it subtracted from
other equations in the naive algorithm.

From the previous examples, it is clear that a strategy is needed for selecting new pivots
at each stage in Gaussian elimination. Perhaps the best approach is complete pivoting,
which involves searches over all entries in the submatrices for the largest entry in absolute
value and then interchanges rows and columns to move it into the pivot position. This
would be quite expensive, since it involves a great amount of searching and data movement.
However, searching just the first column in the submatrix at each stage accomplishes most
of what is needed (avoiding small or zero pivots). This is partial pivoting, and it is the
most common approach. It does not involve an examination of the elements in the rows,
since it looks only at column entries. We advocate a strategy that simulates a scaling of
the row vectors and then selects as a pivot element the relatively largest entry in a column.
Also, rather than interchanging rows to move the desired element into the pivot position,
we use an indexing array to avoid the data movement. This procedure is not as expensive
as complete pivoting, and it goes beyond partial pivoting to include an examination of all
elements in the original matrix. Of course, other strategies for selecting pivot elements could
be used.

The Gaussian elimination algorithm now to be described uses the equations in an order
that is determined by the actual system being solved. For instance, if the algorithm were
asked to solve System (1) or (2), the order in which the equations would be used as pivot
equations would not be the natural order {1, 2} but rather {2, 1}. This order is automatically
determined by the computer program. The order in which the equations are employed is
denoted by the row vector [�1, �2, . . . , �n], where �n is not actually being used in the forward
elimination phase. Here, the �i are integers from 1 to n in a possibly different order. We call
� = [�1, �2, . . . , �n] the index vector. The strategy to be described now for determining the
index vector is termed scaled partial pivoting.

At the beginning, a scale factor must be computed for each equation in the system.
Referring to the notation in Section 7.1, we define

si = max
1 � j � n

|ai j | (1 � i � n)

These n numbers are recorded in the scale vector s = [s1, s2, . . . , sn].
In starting the forward elimination process, we do not arbitrarily use the first equation

as the pivot equation. Instead, we use the equation for which the ratio |ai,1|/si is greatest. Let
�1 be the first index for which this ratio is greatest. Now appropriate multiples of equation
�1 are subtracted from the other equations to create 0’s as coefficients for each x1 except in
the pivot equation.

The best way of keeping track of the indices is as follows: At the beginning, define the
index vector � to be [�1, �2, . . . , �n] = [1, 2, . . . , n]. Select j to be the first index associated

7.2 Gaussian Elimination with Scaled Partial Pivoting 263

with the largest ratio in the set: { |a�i 1|
s�i

: 1 � i � n

}
Now interchange � j with �1 in the index vector �. Next, use multipliers

a�i 1

a�11

times row �1, and subtract from equations �i for 2 � i � n. It is important to note that only
entries in � are being interchanged and not the equations. This eliminates the time-consuming
and unnecessary process of moving the coefficients of equations around in the computer
memory!

In the second step, the ratios { |a�i ,2|
s�i

: 2 � i � n

}
are scanned. If j is the first index for the largest ratio, interchange � j with �2 in �. Then
multipliers

a�i 2

a�22

times equation �2 are subtracted from equations �i for 3 � i � n.
At step k, select j to be the first index corresponding to the largest of the ratios,{ |a�i k |

s�i

: k � i � n

}
and interchange � j and �k in index vector �. Then multipliers

a�i k

a�k k

times pivot equation �k are subtracted from equations �i for k + 1 � i � n.
Notice that the scale factors are not changed after each pivot step. Intuitively, one might

think that after each step in the Gaussian algorithm, the remaining (modified) coefficients
should be used to recompute the scale factors instead of using the original scale vector. Of
course, this could be done, but it is generally believed that the extra computations involved in
this procedure are not worthwhile in the majority of linear systems. The reader is encouraged
to explore this question. (See Computer Problem 7.2.16.)

EXAMPLE 1 Solve this system of linear equations:{
0.0001x + y = 1

x + y = 2

using no pivoting, partial pivoting, and scaled partial pivoting. Carry at most five significant
digits of precision (rounding) to see how finite precision computations and roundoff errors
can affect the calculations.

Solution By direct substitution, it is easy to verify that the true solution is x = 1.0001 and y =
0.99990 to five significant digits.

264 Chapter 7 Systems of Linear Equations

For no pivoting, the first equation in the original system is the pivot equation, and
the multiplier is xmult = 1/0.0001 = 10000. Multiplying the first equation by this mul-
tiplier and subtracting the result from the second equation, the necessary calculations are
(10000)(0.0001) − 1 = 0, (10000)(1) − 1 = 9999, and (10000)(1) − 2 = 9998. The new
system of equations is {

0.0001x + y = 1
9999y = 9998

From the second equation, we obtain y = 9998/9999 ≈ 0.99990. Using this result
and the first equation, we find 0.0001x = 1 − y = 1 − 0.999900 = 0.0001 and x =
0.0001/0.0001 = 1. Notice that we have lost the last significant digit in the correct value
of x .

We repeat the solution using partial pivoting in the original system. Examining the first
column of x coefficients (0.0001, 1), we see that the second is larger, so the second equation
is used as the pivot equation. We can interchange the two equations, obtaining{

x + y = 2
0.0001x + y = 1

The multiplier is xmult = 0.0001/1 = 0.0001. This multiple of the first equation is
subtracted from the second equation. The calculations are (−0.0001)(1) + 0.0001 = 0,
(0.0001)(1) − 1 = 0.99990, and (0.0001)(2) − 1 = 0.99980. The new system of equa-
tions is {

x + y = 2
0.99990y = 0.99980

We obtain y = 0.99980/0.99990 ≈ 0.99990. Now, using the second equation and this value,
we find x = 2 − y = 2 − 0.99990 = 1.0001. Both computed values of x and y are correct
to five significant digits.

We repeat the solution using scaled partial pivoting on the original system. Since
the scaling constants are s = (1, 1) and the ratios for determining the pivot equation
are (0.0001/1, 1/1), the second equation is now the pivot equation. We do not actually
interchange the equations but can work with an index array � = (2, 1) that tells us to use
the second equation as the first pivot equation. The rest of the calculations are as above for
partial pivoting. The computed values of x and y are correct to five significant digits.

We cannot promise that scaled partial pivoting will be better than partial pivoting, but
it clearly has some advantages. For example, suppose that someone wants to force the first
equation in the original system to be the pivot equation and multiply it by a large number
such as 20,000, obtaining {

2x + 20000y = 20000
x + y = 2

Partial pivoting ignores the fact that the coefficients in the first equation differ by orders
of magnitude and selects the first equation as the pivot equation. However, scaled partial
pivoting uses the scaling constants (20000, 1), and the ratios for determining the pivot
equations are (2/20000, 1/1). Scaled partial pivoting continues to select the second equation
as the pivot equation! ■

7.2 Gaussian Elimination with Scaled Partial Pivoting 265

A Larger Numerical Example
We are not quite ready to write pseudocode, but let us consider what has been described in
a concrete example. Consider⎡⎢⎢⎣

3 −13 9 3
−6 4 1 −18

6 −2 2 4
12 −8 6 10

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−19
−34

16
26

⎤⎥⎥⎦ (5)

The index vector is � = [1, 2, 3, 4] at the beginning. The scale vector does not change
throughout the procedure and is s = [13, 18, 6, 12]. To determine the first pivot row, we
look at four ratios:{ |a�i ,1|

s�i

: i = 1, 2, 3, 4

}
=
{

3

13
,

6

18
,

6

6
,

12

12

}
≈ {0.23, 0.33, 1.0, 1.0}

We select the index j as the first occurrence of the largest value of these ratios. In this
example, the largest of these occurs for the index j = 3. So row three is to be the pivot
equation in step 1 (k = 1) of the elimination process. In the index vector �, entries �k and
� j are interchanged so that the new index vector is � = [3, 2, 1, 4]. Thus, the pivot equation
is �k , which is �1 = 3. Now appropriate multiples of the third equation are subtracted from
the other equations so as to create 0’s as coefficients for x1 in each of those equations.
Explicitly, 1

2 times row three is subtracted from row one, −1 times row three is subtracted
from row two, and 2 times row three is subtracted from row four. The result is⎡⎢⎢⎣

0 −12 8 1
0 2 3 −14
6 −2 2 4
0 −4 2 2

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−27
−18

16
−6

⎤⎥⎥⎦
In the next step (k = 2), we use the index vector � = [3, 2, 1, 4] and scan the ratios

corresponding to rows two, one, and four:{ |a�i ,2|
s�i

: i = 2, 3, 4

}
=
{

2

18
,

12

13
,

4

12

}
≈ {0.11, 0.92, 0.33}

looking for the largest value. We find that the largest is the second ratio, and we therefore
set j = 3 and interchange �k with � j in the index vector. Thus, the index vector becomes
� = [3, 1, 2, 4]. The pivot equation for step 2 in the elimination is now row one, and �2 = 1.
Next, multiples of the first equation are subtracted from the second equation and the fourth
equation. The appropriate multiples are − 1

6 and 1
3 , respectively. The result is⎡⎢⎢⎣

0 −12 8 1
0 0 13

3 − 83
6

6 −2 2 4
0 0 − 2

3
5
3

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−27
− 45

2
16

3

⎤⎥⎥⎦
The third and final step (k = 3) is to examine the ratios corresponding to rows two and
four: { |a�i ,3|

s�i

: i = 3, 4

}
=
{

13/3

18
,

2/3

12

}
≈ {0.24, 0.06}

266 Chapter 7 Systems of Linear Equations

with the index vector � = [3, 1, 2, 4]. The larger value is the first, so we set j = 3.
Since this is step k = 3, interchanging �k with � j leaves the index vector unchanged, � =
[3, 1, 2, 4]. The pivot equation is row two and �3 = 2, and we subtract − 2

13 times the second
equation from the fourth equation. So the forward elimination phase ends with the final
system ⎡⎢⎢⎣

0 −12 8 1
0 0 13

3 − 83
6

6 −2 2 4
0 0 0 − 6

13

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−27
− 45

2
16

− 6
13

⎤⎥⎥⎦
The order in which the pivot equations were selected is displayed in the final index vector
� = [3, 1, 2, 4].

Now, reading the entries in the index vector from the last to the first, we have the order
in which the back substitution is to be performed. The solution is obtained by using equation
�4 = 4 to determine x4, and then equation �3 = 2 to find x3, and so on. Carrying out the
calculations, we have

x4 = 1

−6/13
[−6/13] = 1

x3 = 1

13/3
[(−45/2) + (83/6)(1)] = −2

x2 = 1

−12
[−27 − 8(−2) − 1(1)] = 1

x1 = 1

6
[16 + 2(1) − 2(−2) − 4(1)] = 3

Hence, the solution is

x = [
3 1 −2 1

]T

Pseudocode
The algorithm as programmed carries out the forward elimination phase on the coefficient
array (ai j) only. The right-hand side array (bi) is treated in the next phase. This method is
adopted because it is more efficient if several systems must be solved with the same array
(ai j) but differing arrays (bi). Because we wish to treat (bi) later, it is necessary to store
not only the index array but also the various multipliers that are used. These multipliers
are conveniently stored in array (ai j) in the positions where the 0 entries would have been
created. These multipliers are useful in constructing the LU factorization of the matrix A,
as we explain in Section 8.1.

We are now ready to write a procedure for forward elimination with scaled partial
pivoting. Our approach is to modify procedure Naive Gauss of Section 7.1 by introducing
scaling and indexing arrays. The procedure that carries out Gaussian elimination with
scaled partial pivoting on the square array (ai j) is called Gauss. Its calling sequence is
(n, (ai j), (�i)), where (ai j) is the n × n coefficient array and (�i) is the index array �. In the
pseudocode, (si) is the scale array, s.

7.2 Gaussian Elimination with Scaled Partial Pivoting 267

procedure Gauss(n, (ai j), (�i))

integer i, j, k, n; real r, rmax, smax, xmult
real array (ai j)1:n×1:n, (�i)1:n; real array allocate (si)1:n

for i = 1 to n do
�i ← i
smax ← 0
for j = 1 to n do

smax ← max(smax, |ai j |)
end for
si ← smax

end for
for k = 1 to n − 1 do

rmax ← 0
for i = k to n do

r ← |a�i ,k/s�i |
if (r > rmax) then

rmax ← r
j ← i

end if
end for
� j ↔ �k

for i = k + 1 to n do
xmult ← a�i ,k/a�k ,k

a�i ,k ← xmult
for j = k + 1 to n do

a�i , j ← a�i , j − (xmult)a�k , j

end for
end for

end for
deallocate array (si)

end procedure Gauss

A detailed explanation of the above procedure is now presented. In the first loop, the initial
form of the index array is being established, namely, �i = i . Then the scale array (si) is
computed.

The statement for k = 1 to n − 1 do initiates the principal outer loop. The index k is
the subscript of the variable whose coefficients will be made 0 in the array (ai j); that is,
k is the index of the column in which new 0’s are to be created. Remember that the 0’s
in the array (ai j) do not actually appear because those storage locations are used for the
multipliers. This fact can be seen in the line of the procedure where xmult is stored in the
array (ai j). (See Section 8.1 on the LU factorization of A for why this is done.)

Once k has been set, the first task is to select the correct pivot row, which is done by
computing |a�i k |/s�i for i = k, k + 1, . . . , n. The next set of lines in the pseudocode is
calculating this greatest ratio, called rmax in the routine, and the index j where it occurs.
Next, �k and � j are interchanged in the array (�i).

268 Chapter 7 Systems of Linear Equations

The arithmetic modifications in the array (ai j) due to subtracting multiples of row �k

from rows �k+1, �k+2, . . . , �n all occur in the final lines. First the multiplier is computed and
stored; then the subtraction occurs in a loop.

Caution: Values in array (ai j) that result as output from procedure Gauss are not the
same as those in array (ai j) at input. If the original array must be retained, one should store
a duplicate of it in another array.

In the procedure Naive Gauss for naive Gaussian elimination from Section 7.1, the
right-hand side b was modified during the forward elimination phase; however, this was not
done in the procedure Gauss. Therefore, we need to update b before considering the back
substitution phase. For simplicity, we discuss updating b for the naive forward elimination
first. Stripping out the pseudocode from Naive Gauss that involves the (bi) array in the
forward elimination phase, we obtain

for k = 1 to n − 1 do
for i = k + 1 to n do

bi = bi − aikbk

end for
end for

This updates the (bi) array based on the stored multipliers from the (ai j) array. When scaled
partial pivoting is done in the forward elimination phase, such as in procedure Gauss, the
multipliers for each step are not one below another in the (ai j) array but are jumbled around.
To unravel this situation, all we have to do is introduce the index array (�i) into the above
pseudocode:

for k = 1 to n − 1 do
for i = k + 1 to n do

b�i = b�i − a�i kb�k

end for
end for

After the array b has been processed in the forward elimination, the back substitution process
is carried out. It begins by solving the equation

a�n ,n xn = b�n (6)

whence

xn = b�n

a�n ,n

Then the equation

a�n−1,n−1xn−1 + a�n−1,n xn = b�n−1

is solved for xn−1:

xn−1 = 1

a�n−1,n−1

(
b�n−1 − a�n−1,n xn

)

7.2 Gaussian Elimination with Scaled Partial Pivoting 269

After xn, xn−1, . . . , xi+1 have been determined, xi is found from the equation

a�i ,i xi + a�i ,i+1xi+1 + · · · + a�i ,n xn = b�i

whose solution is

xi = 1

a�i ,i

(
b�i −

n∑
j=i+1

a�i , j x j

)
(7)

Except for the presence of the index array �i , this is similar to the back substitution formula
(7) in Section 7.1 obtained for naive Gaussian elimination.

The procedure for processing the array b and performing the back substitution phase
is given next:

procedure Solve(n, (ai j), (�i), (bi), (xi))

integer i, k, n; real sum
real array (ai j)1:n×1:n, (�i)1:n, (bi)1:n, (xi)1:n

for k = 1 to n − 1 do
for i = k + 1 to n do

b�i ← b�i − a�i ,kb�k

end for
end for
xn ← b�n /a�n ,n

for i = n − 1 to 1 step −1 do
sum ← b�i

for j = i + 1 to n do
sum ← sum − a�i , j x j

end for
xi ← sum/a�i ,i

end for
end procedure Solve

Here, the first loop carries out the forward elimination process on array (bi), using arrays
(ai j) and (�i) that result from procedure Gauss. The next line carries out the solution of
Equation (6). The final part carries out Equation (7). The variable sum is a temporary variable
for accumulating the terms in parentheses.

As with most pseudocode in this book, those in this chapter contain only the basic
ingredients for good mathematical software. They are not suitable as production code for
various reasons. For example, procedures for optimizing code are ignored. Furthermore, the
procedures do not give warnings for difficulties that may be encountered, such as division by
zero! General-purpose software should be robust; that is, it should anticipate every possible
situation and deal with each in a prescribed way. (See Computer Problem 7.2.11.)

Long Operation Count
Solving large systems of linear equations can be expensive in computer time. To understand
why, let us perform an operation count on the two algorithms whose codes have been given.
We count only multiplications and divisions (long operations) because they are more time

270 Chapter 7 Systems of Linear Equations

consuming than addition. Furthermore, we lump multiplications and divisions together
even though division is slower than multiplication. In modern computers, all floating-point
operations are done in hardware, so long operations may not be as significant, but this still
gives an indication of the operational cost of Gaussian elimination.

Consider first procedure Gauss. In step 1, the choice of a pivot element requires the
calculation of n ratios—that is, n divisions. Then for rows �2, �3, . . . , �n , we first compute a
multiplier and then subtract from row �i that multiplier times row �1. The zero that is being
created in this process is not computed. So the elimination requires n − 1 multiplications
per row. If we include the calculation of the multiplier, there are n long operations (divisions
or multiplications) per row. There are n − 1 rows to be processed for a total of n(n − 1)

operations. If we add the cost of computing the ratios, a total of n2 operations is needed for
step 1.

The next step is like step 1 except that row �1 is not affected, nor is the column of
multipliers created and stored in step 1. So step 2 will require (n − 1)2 multiplications or
divisions because it operates on a system without row �1 and without column 1. Continuing
this reasoning, we conclude that the total number of long operations for procedure Gauss is

n2 + (n − 1)2 + (n − 2)2 + · · · + 42 + 32 + 22 = n

6
(n + 1)(2n + 1) − 1 ≈ n3

3

(The derivation of this formula is outlined in Problem 7.2.16.) Note that the number of long
operations in this procedure grows like n3/3, the dominant term.

Now consider procedure Solve. The forward processing of the array (bi) involves n −1
steps. The first step contains n−1 multiplications, the second contains n−2 multiplications,
and so on. The total of the forward processing of array (bi) is thus

(n − 1) + (n − 2) + · · · + 3 + 2 + 1 = n

2
(n − 1)

(See Problem 7.2.15.) In the back substitution procedure, one long operation is involved in
the first step, two in the second step, and so on. The total is

1 + 2 + 3 + · · · + n = n

2
(n + 1)

Thus, procedure Solve involves altogether n2 long operations. To summarize:

■ THEOREM 1 THEOREM ON LONG OPERATIONS

The forward elimination phase of the Gaussian elimination algorithm with scaled par-
tial pivoting, if applied only to the n×n coefficient array, involves approximately n3/3
long operations (multiplications or divisions). Solving for x requires an additional n2

long operations.

An intuitive way to think of this result is that the Gaussian elimination algorithm
involves a triply nested for-loop. So anO(n3) algorithmic structure is driving the elimination
process, and the work is heavily influenced by the cube of the number of equations and
unknowns.

7.2 Gaussian Elimination with Scaled Partial Pivoting 271

Numerical Stability
The numerical stability of a numerical algorithm is related to the accuracy of the procedure.
An algorithm can have different levels of numerical stability because many computations
can be achieved in various ways that are algebraically equivalent but may produce different
results. A robust numerical algorithm with a high level of numerical stability is desirable.
Gaussian elimination is numerically stable for strictly diagonally dominant matrices or
symmetric positive definite matrices. (These are properties we will present in Sections 7.3
and 8.1, respectively.) For matrices with a general dense structure, Gaussian elimination
with partial pivoting is usually numerically stable in practice. Nevertheless, there exist
unstable pathological examples in which it may fail. For additional details, see Golub and
Van Loan [1996] and Highman [1996].

An early version of Gaussian elimination can be found in a Chinese mathematics text
dating from 150 B.C.

Scaling
Readers should not confuse scaling in Gaussian elimination (which is not recommended)
with our discussion of scaled partial pivoting in Gaussian elimination.

The word scaling has more than one meaning. It could mean actually dividing each
row by its maximum element in absolute value. We certainly do not advocate that. In other
words, we do not recommend scaling of the matrix at all. However, we do compute a scale
array and use it in selecting the pivot element in Gaussian elimination with scaled partial
pivoting. We do not actually scale the rows; we just keep a vector of the “row infinity norms,”
that is, the maximum element in absolute value for each row. This and the need for a vector
of indices to keep track of the pivot rows make the algorithm somewhat complicated, but
that is the price to be paid for some degree of robustness in the procedure.

The simple 2×2 example in Equation (4) shows that scaling does not help in choosing
a good pivot row. In this example, scaling is of no use. Scaling of the rows is contemplated
in Problem 7.2.23 and Computer Problem 7.2.17. Notice that this procedure requires at least
n2 arithmetic operations. Again, we are not recommending it for a general-purpose code.

Some codes actually move the rows around in storage. Because that should not be
done in practice, we do not do it in the code, since it might be misleading. Also, to avoid
misleading the casual reader, we called our initial algorithm (in the preceding section) naive,
hoping that nobody would mistake it for a reliable code.

Summary

(1) In performing Gaussian elimination, partial pivoting is highly recommended to avoid
zero pivots and small pivots. In Gaussian elimination with scaled partial pivoting, we use a
scale vector s = [s1, s2, . . . , sn]T in which

si = max
1 � j � n

|ai j | (1 � i � n)

and an index vector � = [�1, �2, . . . , �n]T , initially set as � = [1, 2, . . . , n]T . The scale
vector or array is set once at the beginning of the algorithm. The elements in the index
vector or array are interchanged rather than the rows of the matrix A, which reduces the

272 Chapter 7 Systems of Linear Equations

amount of data movement considerably. The key step in the pivoting procedure is to select
j to be the first index associated with the largest ratio in the set{ |a�i ,k |

s�i

: k � i � n

}
and interchange � j with �k in the index array �. Then use multipliers

a�i ,k

a�k ,k

times row �k and subtract from equations �i for k + 1 � i � n. The forward elimination
from equation �i for �k+1 � �i � �n is{

a�i , j ← a�i , j − (a�i ,k/akk)akj (�k � � j � �n)

b�i ← b�i − (a�i ,k/a�k k)b�k

The steps involving the vector b are usually done separately just before the back substitution
phase, which we call updating the right-hand side. The back substitution is

xi = 1

a�i ,i

(
b�i −

n∑
j=i+1

a�i , j x j

)
(i = n, n − 1, n − 2, . . . , 1)

(2) For an n × n system of linear equations Ax = b, the forward elimination phase of
the Gaussian elimination with scaled partial pivoting involves approximately n3/3 long
operations (multiplications or divisions), whereas the back substitution requires only n2

long operations.

Problems 7.2

a1. Show how Gaussian elimination with scaled partial pivoting works on the following
matrix A: ⎡⎢⎢⎣

2 3 −4 1
1 −1 0 −2
3 3 4 3
4 1 0 4

⎤⎥⎥⎦
a2. Solve the following system using Gaussian elimination with scaled partial pivoting:⎡⎣ 1 −1 2

−2 1 −1
4 −1 2

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =
⎡⎣−2

2
−1

⎤⎦
Show intermediate matrices at each step.

a3. Carry out Gaussian elimination with scaled partial pivoting on the matrix⎡⎢⎢⎣
1 0 3 0
0 1 3 −1
3 −3 0 6
0 2 4 −6

⎤⎥⎥⎦
Show intermediate matrices.

7.2 Gaussian Elimination with Scaled Partial Pivoting 273

4. Consider the matrix⎡⎢⎢⎣
−0.0013 56.4972 123.4567 987.6543

0.0000 −0.0145 8.8990 833.3333
0.0000 102.7513 −7.6543 69.6869
0.0000 −1.3131 −9876.5432 100.0001

⎤⎥⎥⎦
Identify the entry that will be used as the next pivot element of naive Gaussian elimina-
tion, of Gaussian elimination with partial pivoting (the scale vector is [1, 1, 1, 1]), and of
Gaussian elimination with scaled partial pivoting (the scale vector is [987.6543, 46.79,
256.29, 1.096]).

a5. Without using the computer, determine the final contents of the array (ai j) after proce-
dure Gauss has processed the following array. Indicate the multipliers by underlining
them. ⎡⎢⎢⎣

1 3 2 1
4 2 1 2
2 1 2 3
1 2 4 1

⎤⎥⎥⎦
a6. If the Gaussian elimination algorithm with scaled partial pivoting is used on the matrix

shown, what is the scale vector? What is the second pivot row?⎡⎣4 7 3
1 3 2
2 −4 −1

⎤⎦
7. If the Gaussian elimination algorithm with scaled partial pivoting is used on the example

shown, which row will be selected as the third pivot row?⎡⎢⎢⎢⎢⎣
8 −1 4 9 2
1 0 3 9 7

−5 0 1 3 5
4 3 2 2 7
3 0 0 0 9

⎤⎥⎥⎥⎥⎦
a8. Solve the system ⎧⎨⎩

2x1 + 4x2 − 2x3 = 6
x1 + 3x2 + 4x3 = −1

5x1 + 2x2 = 2

using Gaussian elimination with scaled partial pivoting. Show intermediate results at
each step; in particular, display the scale and index vectors.

9. Consider the linear system ⎧⎨⎩
2x1 + 3x2 = 8
−x1 + 2x2 −x3 = 0
3x1 + 2x3 = 9

Solve for x1, x2, and x3 using Gaussian elimination with scaled partial pivoting. Show
intermediate matrices and vectors.

274 Chapter 7 Systems of Linear Equations

a10. Consider the linear system of equations⎧⎪⎪⎨⎪⎪⎩
−x1 + x2 − 3x4 = 4

x1 + 3x3 + x4 = 0
x2 − x3 − x4 = 3

3x1 + x3 + 2x4 = 1

Solve this system using Gaussian elimination with scaled partial pivoting. Show all
intermediate steps, and write down the index vector at each step.

11. Consider Gaussian elimination with scaled partial pivoting applied to the coefficient
matrix ⎡⎢⎢⎢⎢⎣

0
0
0 # # # 0
0 # 0 # 0
0 0 #

⎤⎥⎥⎥⎥⎦
where each # denotes a different nonzero element. Circle the locations of elements in
which multipliers will be stored and mark with an f those where fill-in will occur. The
final index vector is � = [2, 3, 1, 5, 4].

12. Repeat Problem 7.1.6a using Gaussian elimination with scaled partial pivoting.

13. Solve each of the following systems using Gaussian elimination with scaled partial
pivoting. Carry four significant figures. What are the contents of the index array at each
step?

a.

⎧⎨⎩
3x1 + 4x2 + 3x3 = 10

x1 + 5x2 − x3 = 7
6x1 + 3x3 + 7x3 = 15

ab.

⎧⎨⎩
3x1 + 2x2 − 5x3 = 0
2x1 − 3x2 + x3 = 0

x1 + 4x2 − x3 = 4

c.

⎡⎢⎢⎣
1 −1 2 1
3 2 1 4
5 8 6 3
4 2 5 3

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
1
1

−1

⎤⎥⎥⎦ d.

⎧⎨⎩
3x1 + 2x2 − x3 = 7
5x1 + 3x2 + 2x3 = 4
−x1 + x2 − 3x3 = −1

e.

⎧⎪⎪⎨⎪⎪⎩
x1 + 3x2 + 2x3 + x4 = −2

4x1 + 2x2 + x3 + 2x4 = 2
2x1 + x2 + 2x3 + 3x4 = 1

x1 + 2x2 + 4x3 + x4 = −1

14. Using scaled partial pivoting, show how the computer would solve the following system
of equations. Show the scale array, tell how the pivot rows are selected, and carry out
the computations. Include the index array for each step. There are no fractions in the
correct solution, except for certain ratios that must be looked at to select pivots. You
should follow exactly the scaled-partial-pivoting code, except that you can include the
right-hand side of the system in your calculations as you go along.⎧⎪⎪⎨⎪⎪⎩

2x1 − x2 + 3x3 + 7x4 = 15
4x1 + 4x2 + 7x4 = 11
2x1 + x2 + x3 + 3x4 = 7
6x1 + 5x2 + 4x3 + 17x4 = 31

7.2 Gaussian Elimination with Scaled Partial Pivoting 275

15. Derive the formula
n∑

k=1

k = n

2
(n + 1)

Hint: Set S = ∑n
k=1 k; also observe that

2S = (1 + 2 + · · · + n) + [n + (n − 1) + · · · + 2 + 1]

= (n + 1) + (n + 1) + · · ·
or use induction.

16. Derive the formula
n∑

k=1

k2 = n

6
(n + 1)(2n + 1)

Hint: Induction is probably easiest.

a17. Count the number of operations in the following pseudocode:

real array (ai j)1:n×1:n, (xi j)1:n×1:n

real z; integer i, j, n
for i = 1 to n do

for j = 1 to i do
z = z + ai j xi j

end for
end for

a18. Count the number of divisions in procedure Gauss. Count the number of multiplications.
Count the number of additions or subtractions. Using execution times in microseconds
(multiplication 1, division 2.9, addition 0.4, subtraction 0.4), write a function of n that
represents the time used in these arithmetic operations.

a19. Considering long operations only and assuming 1-microsecond execution time for
all long operations, give the approximate execution times and costs for procedure
Gauss when n = 10, 102, 103, 104. Use only the dominant term in the operation count.
Estimate costs at $500 per hour.

20. (Continuation) How much time would be used on the computer to solve 2000 equations
using Gaussian elimination with scaled partial pivoting? How much would it cost? Give
a rough estimate based on operation times.

a21. After processing a matrix A by procedure Gauss, how can the results be used to solve
a system of equations of form AT x = b?

22. What modifications would make procedure Gauss more efficient if division were much
slower than multiplication?

23. The matrix A = (ai j)n×n is row-equilibrated if it is scaled so that

max
1 � j � n

|ai j | = 1 (1 � i � n)

In solving a system of equations Ax = b, we can produce an equivalent system in
which the matrix is row-equilibrated by dividing the i th equation by max1 � j � n |ai j |.

276 Chapter 7 Systems of Linear Equations

aa. Solve the system of equations⎡⎣ 1 1 2 × 109

2 −1 109

1 2 0

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =
⎡⎣ 1

1
1

⎤⎦
by Gaussian elimination with scaled partial pivoting.

b. Solve by using row-equilibrated naive Gaussian elimination. Are the answers the
same? Why or why not?

24. Solve each system using partial pivoting and scaled partial pivoting carrying four
significant digits. Also find the true solutions.

a.
{

0.004000x + 69.13y = 69.17
4.281x − 5.230y = 41.91

b.
{

40.00x + 691300y = 691700
4.281x − 5.230y = 41.91

c.
{

0.003000x + 59.14y = 59.17
5.291x − 6.130y = 46.78

d.
{

30.00x + 591400y = 591700
5.291x − 6.130y = 46.78

e.
{

0.7000x + 1725y = 1739
0.4352x − 5.433y = 5.278

f.
{

0.8000x + 1825y = 2040
0.4321x − 5.432y = 7.531

Computer Problems 7.2

1. Test the numerical example in the text using the naive Gaussian algorithm and the
Gaussian algorithm with scaled partial pivoting.

a2. Consider the system⎡⎢⎢⎣
0.4096 0.1234 0.3678 0.2943
0.2246 0.3872 0.4015 0.1129
0.3645 0.1920 0.3781 0.0643
0.1784 0.4002 0.2786 0.3927

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0.4043
0.1550
0.4240
0.2557

⎤⎥⎥⎦
Solve it by Gaussian elimination with scaled partial pivoting using procedures Gauss
and Solve.

a3. (Continuation) Assume that an error was made when the coefficient matrix in Computer
Problem 7.2.2 was typed and that a single digit was mistyped—namely, 0.3645 became
0.3345. Solve this system, and notice the effect of this small change. Explain.

a4. The Hilbert matrix of order n is defined by ai j = (i + j − 1)−1 for 1 � i, j � n.
It is often used for test purposes because of its ill-conditioned nature. Define bi =∑n

j=1 ai j . Then the solution of the system of equations
∑n

j=1 ai j x j = bi for 1 � i � n is
x = [1, 1, . . . , 1]T . Verify this. Select some values of n in the range 2 � n � 15, solve
the system of equations for x using procedures Gauss and Solve, and see whether the
result is as predicted. Do the case n = 2 by hand to see what difficulties occur in the
computer.

a5. Define the n × n array (ai j) by ai j = −1 + 2 max{i, j}. Set up array (bi) in such a way
that the solution of the system Ax = b is xi = 1 for 1 � i � n. Test procedures Gauss
and Solve on this system for a moderate value of n, say, n = 30.

7.2 Gaussian Elimination with Scaled Partial Pivoting 277

a6. Select a modest value of n, say, 5 � n � 20, and let ai j = (i − 1) j−1 and bi = i − 1.
Solve the system Ax = b on the computer. By looking at the output, guess what the
correct solution is. Establish algebraically that your guess is correct. Account for the
errors in the computed solution.

7. For a fixed value of n from 2 to 4, let

ai j = (i + j)2 bi = ni(i + n + 1) + 1
6 n(1 + n(2n + 3))

Show that the vector x = [1, 1, . . . , 1]T solves the system Ax = b. Test whether
procedures Gauss and Solve can compute x correctly for n = 2, 3, 4. Explain what
happens.

8. Using each value of n from 2 to 9, solve the n × n system Ax = b, where A and b are
defined by

ai j = (i + j − 1)7 bi = p(n + i − 1) − p(i − 1)

where

p(x) = x2

24
(2 + x2(−7 + n2(14 + n(12 + 3n))))

Explain what happens.

9. Solve the following system using procedures Gauss and Solve and then using procedure
Naive Gauss. Compare the results and explain.⎡⎢⎢⎣

0.0001 −5.0300 5.8090 7.8320
2.2660 1.9950 1.2120 8.0080
8.8500 5.6810 4.5520 1.3020
6.7750 −2.2530 2.9080 3.9700

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
9.5740
7.2190
5.7300
6.2910

⎤⎥⎥⎦
10. Without changing the parameter list, rewrite and test procedure Gauss so that it does

both forward elimination and back substitution. Increase the size of array (ai j), and
store the right-hand side array (bi) in the n + 1st column of (ai j). Also, return the
solution in this column.

11. Modify procedures Gauss and Solve so that they are more robust. Two suggested
changes are as follows: (i) Skip elimination if a�i ,k = 0 and (ii) add an error parameter
ierr to the parameter list and perform error checking (e.g., on division by zero or a row
of zeros). Test the modified code on linear systems of varying sizes.

12. Rewrite procedures Gauss and Solve so that they are column oriented—that is, so that all
inner loops vary the first index of (ai j). On some computer systems, this implementation
may avoid paging or swapping between high-speed and secondary memory and be more
efficient for large matrices.

13. Computer memory can be minimized by using a different storage mode when the
coefficient matrix is symmetric. An n × n symmetric matrix A = (ai j) has the prop-
erty that ai j = a ji , so only the elements on and below the main diagonal need be
stored in a vector of length n(n + 1)/2. The elements of the matrix A are placed in a

278 Chapter 7 Systems of Linear Equations

vector v = (vk) in this order: a11, a21, a22, a31, a32, a33, . . . , an,n . Storing a matrix in
this way is known as symmetric storage mode and effects a savings of n(n − 1)/2
memory locations. Here, ai j = vk , where k = 1

2 i(i − 1) + j for i � j . Verify these
statements.

Write and test procedures Gauss Sym(n, (vi), (�i)) and Solve Sym(n, (vi), (�i),

(bi)), which are analogous to procedures Gauss and Solve except that the coefficient
matrix is stored in symmetric storage mode in a one-dimensional array (vi) and the
solution is returned in array (bi).

14. The determinant of a square matrix can be easily computed with the help of pro-
cedure Gauss. We require three facts about determinants. First, the determinant of a
triangular matrix is the product of the elements on its diagonal. Second, if a mul-
tiple of one row is added to another row, the determinant of the matrix does not
change. Third, if two rows in a matrix are interchanged, the determinant changes
sign. Procedure Gauss can be interpreted as a procedure for reducing a matrix to upper
triangular form by interchanging rows and adding multiples of one row to another.
Write a function det(n, (ai j)) that computes the determinant of an n × n matrix. It
will call procedure Gauss and utilize the arrays (ai j) and (�i) that result from that
call. Numerically verify function det by using the following test matrices with several
values of n:

a. ai j = |i − j | det(A) = (−1)n−1(n − 1)2n−2

b. ai j =
{

1 j � i
− j j < i

det(A) = n!

c.
{

ai j = a j1 = n−1 j � 1
ai j = ai−1, j + ai, j−1 i, j � 2

det(A) = n−n

15. (Continuation) Overflow and underflow may occur in evaluating determinants by this
procedure. To avoid this, one can compute log | det(A)| as the sum of terms log |a�i ,i | and
use the exponential function at the end. Repeat the numerical experiments in Computer
Problem 7.2.14 using this idea.

16. Test a modification of procedure Gauss in which the scale array is recomputed at
each step (each new value of k) of the forward elimination phase. Try to construct an
example for which this procedure would produce less roundoff error than the scaled
partial pivoting method given in the text with fixed scale array. It is generally believed
that the extra computations that are involved in this procedure are not worthwhile for
most linear systems.

17. (Continuation) Modify and test procedure Gauss so that the original system is ini-
tially row-equilibrated; that is, it is scaled so that the maximum element in every
row is 1.

18. Modify and test procedures Gauss and Solve so that they carry out scaled complete
pivoting; that is, the pivot element is selected from all elements in the submatrix,
not just those in the kth column. Keep track of the order of the unknowns in the
solution array in another index array because they will not be determined in the order
xn, xn−1, . . . , x1.

7.2 Gaussian Elimination with Scaled Partial Pivoting 279

19. Compare the computed numerical solutions of the following two linear systems:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 1
2

1
3

1
4

1
5

1
2

1
3

1
4

1
5

1
6

1
3

1
4

1
5

1
6

1
7

1
4

1
5

1
6

1
7

1
8

1
5

1
6

1
7

1
8

1
9

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎢⎣

1

0

0

0

0

⎤⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

1.0 0.5 0.333333 0.25 0.2
0.5 0.333333 0.25 0.2 0.166667
0.333333 0.25 0.2 0.166667 0.142857
0.25 0.2 0.166667 0.142857 0.125
0.2 0.166667 0.142857 0.125 0.111111

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1
0
0
0
0

⎤⎥⎥⎥⎥⎦
Solve both systems using single-precision Gaussian elimination with scaled partial

pivoting. For each system, compute the �2-norms ||u||2 =
√∑n

i=1 u2
i of the residual

vector r̃ = Ax̃ − b and of the error vector ẽ = x̃ − x, where x̃ is the computed
solution and x is the true, or exact, solution. For the first system, the exact solution is
x = [25, −300, 1050, −1400, 630]T , and for the second system, the exact solution,
to six decimal digits of accuracy, is x = [26.9314, −336.018, 1205.11, −1634.03,

744.411]T . Do not change the input data of the second system to include more than the
number of digits shown. Analyze the results. What have you learned?

20. (Continuation) Repeat the preceding computer problem, but set ai j ← 7560ai j and
bi ← 7560bi for each system before solving.

21. Write complex arithmetic versions of procedures Gauss and Solve by declaring certain
variables complex and making other necessary changes in the code. Test them on the
complex linear systems given in Computer Problem 7.1.6.

22. (Continuation) Solve the complex linear systems given in Computer Problem 7.1.7.

23. The fact that in the previous two problems solutions of complex linear systems were
asked for may lead you to think that you must have complex versions of procedures
Gauss and Solve. This is not the case. A complex system Ax = b can also be written
as a 2n × 2n real system:

n∑
j=1

[
Re(ai j)Re(x j) − Im(ai j)Im(x j)

] = Re(bi) (1 � i � n)

n∑
j=1

[
Re(ai j)Im(x j) + Im(ai j)Re(x j)

] = Im(bi) (1 � i � n)

Repeat these two problems using this idea and the two procedures of this section. (Here,
Re denotes the real part and Im the imaginary part.)

24. (Student research project) The Gauss-Huard algorithm is a variant of the Gauss-
Jordan algorithm for solving dense linear systems. Both algorithms reduce the sys-
tem to an equivalent diagonal system. However, the Gauss-Jordan method does more
floating-point operations than Gaussian elimination, while the Gauss-Huard method

280 Chapter 7 Systems of Linear Equations

does not. To preserve stability, the Gauss-Huard method incorporates a pivoting strat-
egy using column interchanges. An error analysis shows that the Gauss-Huard method
is as stable as Gauss-Jordan elimination with an appropriate pivoting strategy. Read
about these algorithms in papers by Dekker and Hoffmann [1989], Dekker, Hoffmann,
and Potma [1997], Hoffmann [1989], and Huard [1979]. Carry out some numerical ex-
periments by programming and testing the Gauss-Jordan and Gauss-Huard algorithms
on some dense linear systems.

25. Solve System (5) using mathematical software routines based on Gaussian elimination
such as found in Matlab, Maple, or Mathematica. There are a large number of computer
programs and software packages for solving linear systems, each of which may use a
slightly different pivoting strategy.

7.3 Tridiagonal and Banded Systems
In many applications, including several that are considered later on, extremely large linear
systems that have a banded structure are encountered. Banded matrices often occur in
solving ordinary and partial differential equations. It is advantageous to develop computer
codes specifically designed for such linear systems, since they reduce the amount of storage
used.

Of practical importance is the tridiagonal system. Here, all the nonzero elements in
the coefficient matrix must be on the main diagonal or on the two diagonals just above and
below the main diagonal (usually called superdiagonal and subdiagonal, respectively):

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 c1

a1 d2 c2

a2 d3 c3

. . .
. . .

. . .

ai−1 di ci

. . .
. . .

. . .

an−2 dn−1 cn−1

an−1 dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xi
...

xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3
...

bi
...

bn−1

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(1)

(All elements not in the displayed diagonals are 0’s.) A tridiagonal matrix is characterized
by the condition ai j = 0 if |i − j | � 2. In general, a matrix is said to have a banded structure
if there is an integer k (less than n) such that ai j = 0 whenever |i − j | � k.

The storage requirements for a banded matrix are less than those for a general matrix
of the same size. Thus, an n × n diagonal matrix requires only n memory locations in the
computer, and a tridiagonal matrix requires only 3n − 2. This fact is important if banded
matrices of very large order are being used.

For banded matrices, the Gaussian elimination algorithm can be made very efficient if
it is known beforehand that pivoting is unnecessary. This situation occurs often enough to
justify special procedures. Here, we develop a code for the tridiagonal system and give a
listing for the pentadiagonal system (in which ai j = 0 if |i − j | � 3).

7.3 Tridiagonal and Banded Systems 281

Tridiagonal Systems
The routine to be described now is called procedure Tri. It is designed to solve a system of
n linear equations in n unknowns, as shown in Equation (1). Both the forward elimination
phase and the back substitution phase are incorporated in the procedure, and no pivoting is
used; that is, the pivot equations are those given by the natural ordering {1, 2, . . . , n}. Thus,
naive Gaussian elimination is used.

In step 1, we subtract a1/d1 times row 1 from row 2, thus creating a 0 in the a1 position.
Only the entries d2 and b2 are altered. Observe that c2 is not altered. In step 2, the process
is repeated, using the new row 2 as the pivot row. Here is how the di ’s and bi ’s are altered
in each step: ⎧⎪⎪⎨⎪⎪⎩

d2 ← d2 −
(

a1

d1

)
c1

b2 ← b2 −
(

a1

d1

)
b1

In general, we obtain ⎧⎪⎪⎪⎨⎪⎪⎪⎩
di ← di −

(
ai−1

di−1

)
ci−1

bi ← bi −
(

ai−1

di−1

)
bi−1 (2 � i � n)

At the end of the forward elimination phase, the form of the system is as follows:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 c1

d2 c2

d3 c3

. . .
. . .

di ci

. . .
. . .

dn−1 cn−1

dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xi
...

xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3
...

bi
...

bn−1

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Of course, the bi ’s and di ’s are not as they were at the beginning of this process, but the ci ’s
are. The back substitution phase solves for xn, xn−1, . . . , x1 as follows:

xn ← bn

dn

xn−1 ← 1

dn−1
(bn−1 − cn−1xn)

Finally, we obtain

xi ← 1

di
(bi − ci xi+1) (i = n − 1, n − 2, . . . , 1)

In procedure Tri for a tridiagonal system, we use single-dimensioned arrays (ai), (di),
and (ci) for the diagonals in the coefficient matrix and array (bi) for the right-hand side,
and store the solution in array (xi).

282 Chapter 7 Systems of Linear Equations

procedure Tri(n, (ai), (di), (ci), (bi), (xi))

integer i, n; real xmult
real array (ai)1:n, (di)1:n, (ci)1:n, (bi)1:n, (xi)1:n

for i = 2 to n do
xmult ← ai−1/di−1

di ← di − (xmult)ci−1

bi ← bi − (xmult)bi−1

end for
xn ← bn/dn

for i = n − 1 to 1 step −1 do
xi ← (bi − ci xi+1)/di

end for
end procedure Tri

Notice that the original data in arrays (di) and (bi) have been changed.
A symmetric tridiagonal system arises in the cubic spline development of Chapter 9

and elsewhere. A general symmetric tridiagonal system has the form

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 c1

c1 d2 c2

c2 d3 c3

. . .
. . .

. . .

ci−1 di ci

. . .
. . .

. . .

cn−2 dn−1 cn−1

cn−1 dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xi
...

xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3
...

bi
...

bn−1

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(2)

One could overwrite the right-hand side vector b with the solution vector x as well. Thus,
a symmetric linear system can be solved with a procedure call of the form

call Tri(n, (ci), (di), (ci), (bi), (bi))

which reduces the number of linear arrays from five to three.

Strictly Diagonal Dominance
Since procedure Tri does not involve pivoting, it is natural to ask whether it is likely to fail.
Simple examples can be given to illustrate failure because of attempted division by zero
even though the coefficient matrix in Equation (1) is nonsingular. On the other hand, it is
not easy to give the weakest possible conditions on this matrix to guarantee the success of
the algorithm. We content ourselves with one property that is easily checked and commonly
encountered. If the tridiagonal coefficient matrix is diagonally dominant, then procedure
Tri will not encounter zero divisors.

7.3 Tridiagonal and Banded Systems 283

■ DEFINITION 1 STRICTLY DIAGONAL DOMINANCE

A general matrix A = (ai j)n×n is strictly diagonally dominant if

|aii | >

n∑
j=1
j �=i

|ai j | (1 � i � n)

In the case of the tridiagonal system of Equation (1), strict diagonal dominance means
simply that (with a0 = an = 0)

|di | > |ai−1| + |ci | (1 � i � n)

Let us verify that the forward elimination phase in procedure Tri preserves strictly
diagonal dominance. The new coefficient matrix produced by Gaussian elimination has
0 elements where the ai ’s originally stood, and new diagonal elements are determined
recursively by ⎧⎨⎩

d̂1 = d1

d̂ i = di −
(

ai−1

d̂ i−1

)
ci−1 (2 � i � n)

where d̂ i denotes a new diagonal element. The ci elements are unaltered. Now we assume
that |di | > |ai−1| + |ci |, and we want to be sure that |d̂ i | > |ci |. Obviously, this is true for
i = 1 because d̂1 = d1. If it is true for index i − 1 (that is, |d̂ i−1| > |ci−1|), then it is true
for index i because

∣∣d̂ i

∣∣ =
∣∣∣∣di −

(
ai−1

d̂ i−1

)
ci−1

∣∣∣∣
� |di | − |ai−1| |ci−1|∣∣d̂ i−1

∣∣
> |ai−1| + |ci | − |ai−1| = |ci |

While the number of long operations in Gaussian elimination on full matrices is O(n3),
it is only O(n) for tridiagonal matrices. Also, the scaled pivoting strategy is not needed on
strictly diagonally dominant tridiagonal systems.

Pentadiagonal Systems
The principles illustrated by procedure Tri can be applied to matrices that have wider
bands of nonzero elements. A procedure called Penta is given here to solve the

284 Chapter 7 Systems of Linear Equations

five-diagonal system:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 c1 f1
a1 d2 c2 f2
e1 a2 d3 c3 f3

e2 a3 d4 c4 f4

. . .
. . .

. . .
. . .

. . .

ei−2 ai−1 di ci fi

. . .
. . .

. . .
. . .

. . .

en−4 an−3 dn−2 cn−2 fn−2
en−3 an−2 dn−1 cn−1

en−2 an−1 dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1
x2
x3
x4
...

xi
...

xn−2
xn−1
xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
b2
b3
b4
...

bi
...

bn−2
bn−1
bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
In the pseudocode, the solution vector is placed in array (xi). Also, one should not use this
routine if n � 4. (Why?)

procedure Penta(n, (ei), (ai), (di), (ci), (fi), (bi), (xi))

integer i, n; real r, s, xmult
real array (ei)1:n, (ai)1:n, (di)1:n, (ci)1:n, (fi)1:n, (bi)1:n, (xi)1:n

r ← a1

s ← a2

t ← e1

for i = 2 to n − 1 do
xmult ← r/di−1

di ← di − (xmult)ci−1

ci ← ci − (xmult) fi−1

bi ← bi − (xmult)bi−1

xmult ← t/di−1

r ← s − (xmult)ci−1

di+1 ← di+1 − (xmult) fi−1

bi+1 ← bi+1 − (xmult)bi−1

s ← ai+1

t ← ei

end for
xmult ← r/dn−1

dn ← dn − (xmult)cn−1

xn ← (bn − (xmult)bn−1)/dn

xn−1 ← (bn−1 − cn−1xn)/dn−1

for i = n − 2 to 1 step −1 do
xi ← (bi − fi xi+2 − ci xi+1)/di

end for
end procedure Penta

To be able to solve symmetric pentadiagonal systems with the same code and with a mini-
mum of storage, we have used variables r , s, and t to store temporarily some information
rather than overwriting into arrays. This allows us to solve a symmetric pentadiagonal

7.3 Tridiagonal and Banded Systems 285

system with a procedure call of the form

call Penta(n, (fi), (ci), (di), (ci), (fi), (bi), (bi))

which reduces the number of linear arrays from seven to four. Of course, the original data
in some of these arrays will be corrupted. The computed solution will be stored in the (bi)

array. Here, we assume that all linear arrays are padded with zeros to length n in order not
to exceed the array dimensions in the pseudocode.

Block Pentadiagonal Systems
Many mathematical problems involve matrices with block structures. In many cases, there
are advantages in exploiting the block structure in the numerical solution. This is particularly
true in solving partial differential equations numerically.

We can consider a pentadiagonal system as a block tridiagonal system⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D1 C1

A1 D2 C2

A2 D3 C3

. . .
. . .

. . .

Ai−1 Di C i

. . .
. . .

. . .

An−2 Dn−1 Cn−1

An−1 Dn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X1

X2

X3
...

X i
...

Xn−1

Xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B1

B2

B3
...

Bi
...

Bn−1

Bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where

Di =
[

d2i−1 c2i−1

a2i−1 d2i

]
, Ai =

[
e2i−1 c2i−1

0 e2i

]
, C i =

[
f2i−1 0
c2i−1 f2i

]
Here, we assume that n is even, say n = 2m. If n is not even, then the system can be padded
with an extra equation xn+1 = 1 so that the number of rows is even.

The algorithm for this block tridiagonal system is similar to the one for tridiagonal
systems. Hence, we have the forward elimination phase{

Di ← Di − Ai−1 D−1
i−1C i−1

Bi ← Bi − Ai−1 D−1
i−1 Bi−1 (2 � i � m)

and the back substitution phase{
Xn ← D−1

n Bn

X i ← D−1
i (Bi − C i X i+1) (m − 1 � i � 1)

Here,

D−1
i = 1

�

[
d2i −c2i−1

−a2i−1 d2i−1

]
where � = d2i d2i−1 − a2i−1c2i−1.

Code for solving a pentadiagonal system using this block procedure is left as an exercise
(Computer Problem 7.3.21). The results from the block pentadiagonal code are the same
as those from the procedure Penta, except for roundoff error. Also, this procedure can be

286 Chapter 7 Systems of Linear Equations

used for symmetric pentadiagonal systems (in which the subdiagonals are the same as the
superdiagonals).

In Chapter 16, we discuss two-dimensional elliptic partial differential equations. For
example, the Laplace equation is defined on the unit square. A 3 × 3 mesh of points are
placed over the unit square region, and they are ordered in the natural ordering (left-to-right
and up) as shown in Figure 7.2.

FIGURE 7.2

Mesh points in
natural order

9

6

3

8

5

2

7

4

1

In the Laplace equation, second partial derivatives are approximated by second-order cen-
tered finite difference formulas. This results in an 9 × 9 system of linear equations having
a sparse coefficient matrix with this nonzero pattern:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
× × × ×

× × ×
× × × ×

× × × × ×
× × × ×

× × ×
× × × ×

× × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Here, nonzero entries in the matrix are indicated by the × symbol, and zero entries are
a blank. This matrix is block tridiagonal, and each nonzero block is either tridiagonal or
diagonal. Other orderings of the mesh points result in sparse matrices with different patterns.

Summary

(1) For banded systems, such as tridiagonal, pentadiagonal, and others, it is usual to develop
special algorithms for implementing Gaussian elimination, since partial pivoting is not
needed in many applications. The forward elimination procedure for a tridiagonal linear
system A = tridiagonal[(ai), (di), (ci)] is⎧⎪⎪⎨⎪⎪⎩

di ← di −
(

ai−1

di−1

)
ci−1

bi ← bi −
(

ai−1

di−1

)
bi−1 (2 � i � n)

7.3 Tridiagonal and Banded Systems 287

The back substitution procedure is

xi ← 1

di
(bi − ci xi+1) (i = n − 1, n − 2, . . . , 1)

(2) A strictly diagonally dominant matrix A = (ai j)n×n is one in which the magnitude of
the diagonal entry is larger than the sum of the magnitudes of the off-diagonal entries in the
same row and this is true for all rows, namely,

|aii | >

n∑
j=1
j �=i

|ai j | (1 � i � n)

For strictly diagonally dominant tridiagonal coefficient matrices, partial pivoting is not
necessary because zero divisors will not be encountered.

(3) The forward elimination and back substitution procedures for a pentadiagonal linear
system A = pentadiagonal [(ei), (ai), (di), (ci), (fi)] is similar to that for a tridiagonal
system.

Additional References
For additional study of linear systems, see Colerman and Van Loan [1988], Dekker and
Hoffmann [1989], Dekker, Hoffmann, and Potma [1997], Dongarra, Duff, Sorenson, and
van der Vorst [1990], Forsythe and Moler [1967], Gallivan et al. [1990], Golub and Van
Loan [1996], Hoffmann [1989], Jennings [1977], Meyer [2000], Noble and Daniel [1988],
Stewart [1973, 1996, 1998a, 1998b, 2001], and Watkins [1991].

Problems 7.3

1. What happens to the tridiagonal System (1) if Gaussian elimination with partial pivoting
is used to solve it? In general, what happens to a banded system?

2. Count the long arithmetic operations involved in procedures:
aa. Tri b. Penta

a3. How many storage locations are needed for a system of n linear equations if the
coefficient matrix has banded structure in which ai j = 0 for |i − j | � k + 1?

4. Give an example of a system of linear equations in tridiagonal form that cannot be
solved without pivoting.

5. What is the appearance of a matrix A if its elements satisfy ai j = 0 when:

a. j < i − 2 b. j > i + 1
a6. Consider a strictly diagonally dominant matrix A whose elements satisfy ai j = 0 when

i > j + 1. Does Gaussian elimination without pivoting preserve the strictly diagonal
dominance? Why or why not?

a7. Let A be a matrix of form (1) such that ai ci > 0 for 1 � i � n −1. Find the general form
of the diagonal matrix D = diag(αi) with αi �= 0 such that D−1 AD is symmetric.
What is the general form of D−1 AD?

288 Chapter 7 Systems of Linear Equations

Computer Problems 7.3

1. Rewrite procedure Tri using only four arrays, (ai), (di), (ci), and (bi), and storing the
solution in the (bi) array. Test the code with both a nonsymmetric and a symmetric
tridiagonal system.

2. Repeat the previous computer problem for procedure Penta with six arrays (ei), (ai),
(di), (ci), (fi), and (bi). Use the example that begins this chapter as one of the test
cases.

a3. Write and test a special procedure to solve the tridiagonal system in which ai = ci = 1
for all i .

a4. Use procedure Tri to solve the following system of 100 equations. Compare the nu-
merical solution to the obvious exact solution.⎧⎨⎩

x1 + 0.5x2 = 1.5
0.5xi−1 + xi + 0.5xi+1 = 2.0 (2 � i � 99)

0.5x99 + x100 = 1.5

5. Solve the system⎧⎨⎩
4x1 − x2 = −20

x j−1 − 4x j + x j+1 = 40 (2 � j � n − 1)

− xn−1 + 4xn = −20

using procedure Tri with n = 100.

6. Let A be the 50 × 50 tridiagonal matrix⎡⎢⎢⎢⎢⎢⎢⎢⎣

5 −1
−1 5 −1

−1 5 −1
. . .

. . .
. . .

−1 5 −1
−1 5

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Consider the problem Ax = b for 50 different vectors b of the form

[1, 2, . . . , 49, 50]T [2, 3, . . . , 50, 1]T [3, 4, . . . , 50, 1, 2]T . . .

Write and test an efficient code for solving this problem. Hint: Rewrite procedure Tri.

7. Rewrite and test procedure Tri so that it performs Gaussian elimination with scaled
partial pivoting. Hint: Additional temporary storage arrays may be needed.

8. Rewrite and test Penta so that it does Gaussian elimination with scaled partial pivoting.
Is this worthwhile?

9. Using the ideas illustrated in Penta, write a procedure for solving seven-diagonal sys-
tems. Test it on several such systems.

7.3 Tridiagonal and Banded Systems 289

10. Consider the system of equations (n = 7)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1 a7

d2 a6

d3 a5

d4

a3 d5

a2 d6

a1 d7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5

b6

b7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
For n odd, write and test

procedure X Gauss(n, (ai), (di), (bi))

that does the forward elimination phase of Gaussian elimination (without scaled partial
pivoting) and

procedure X Solve(n, (ai), (di), (bi), (xi))

that does the back substitution for cross-systems of this form.

11. Consider the n × n lower-triangular system Ax = b, where A = (ai j) and ai j = 0 for
i < j .

aa. Write an algorithm (in mathematical terms) for solving for x by forward
substitution.

b. Write

procedure Forward Sub(n, (ai), (bi), (xi))

which uses this algorithm.

c. Determine the number of divisions, multiplications, and additions (or subtractions)
in using this algorithm to solve for x.

d. Should Gaussian elimination with partial pivoting be used to solve such a system?

a12. (Normalized tridiagonal algorithm) Construct an algorithm for handling tridiagonal
systems in which the normalized Gaussian elimination procedure without pivoting is
used. In this process, each pivot row is divided by the diagonal element before a multiple
of the row is subtracted from the successive rows. Write the equations involved in the
forward elimination phase and store the upper diagonal entries back in array (ci) and the
right-hand side entries back in array (bi). Write the equations for the back substitution
phase, storing the solution in array (bi). Code and test this procedure. What are its
advantages and disadvantages?

13. For a (2n)×(2n) tridiagonal system, write and test a procedure that proceeds as follows:
In the forward elimination phase, the routine simultaneously eliminates the elements
in the subdiagonal from the top to the middle and in the superdiagonal from the bottom
to the middle. In the back substitution phase, the unknowns are determined two at a
time from the middle outward.

14. (Continuation) Rewrite and test the procedure in the preceding computer problem for
a general n × n tridiagonal matrix.

290 Chapter 7 Systems of Linear Equations

15. Suppose

procedure Tri Normal(n, (ai), (di), (ci), (bi), (xi))

performs the normalized Gaussian elimination algorithm of Computer Problem 7.3.12
and

procedure Tri 2n(n, (ai), (di), (ci), (bi), (xi))

performs the algorithm outlined in Computer Problem 7.3.13. Using a timing routine
on your computer, compare Tri, Tri Normal, and Tri 2n to determine which of them is
fastest for the tridiagonal system

ai = i(n − i + 1), ci = (i + 1)(n − i − 1),

di = (2i + 1)n − i − 2i, bi = i

with a large even value of n. Note: Mathematical algorithms may behave differently on
parallel and vector computers. Generally speaking, parallel computations completely
alter our conventional notions about what’s best or most efficient.

16. Consider a special bidiagonal linear system of the following form (illustrated with
n = 7) with nonzero diagonal elements:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

d1

a1 d2

a2 d3

a3 d4 a4

d5 a5

d6 a6

d7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3

x4

x5

x6

x7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4

b5

b6

b7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
Write and test

procedure Bi Diagional(n, (ai), (di), (bi))

to solve the general system of order n (odd). Store the solution in array b, and assume
that all arrays are of length n. Do not use forward elimination because the system can
be solved quite easily without it.

17. Write and test

procedure Backward Tri(n, (ai), (di), (ci), (bi), (xi))

for solving a backward tridiagonal system of linear equations of the form⎡⎢⎢⎢⎢⎢⎢⎣

a1 d1

a2 d2 c1

a3 d3 c2

. .
.

. .
.

. .
.

an−1 dn−1 cn−1

dn cn−1

⎤⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3
...

bn−1

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
using Gaussian elimination without pivoting.

7.3 Tridiagonal and Banded Systems 291

18. An upper Hessenberg matrix is of the form⎡⎢⎢⎢⎢⎢⎣
a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a32 a33 · · · a3n

. . .
. . .

...

an,n−1 ann

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
x1

x2

x3
...

xn

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
b1

b2

b3
...

bn

⎤⎥⎥⎥⎥⎥⎦
Write a procedure for solving such a system, and test it on a system having 10 or more
equations.

19. An n × n banded coefficient matrix with � subdiagonals and m superdiagonals can be
stored in banded storage mode in an n × (� + m + 1) array. The matrix is stored with
the row and diagonal structure preserved with almost all 0 elements unstored. If the
original n ×n banded matrix had the form shown in the figure, then the n × (�+m +1)

array in banded storage mode would be as shown. The main diagonal would be the
� + 1st column of the new array. Write and test a procedure for solving a linear system
with the coefficient matrix stored in banded storage mode.

20. An n × n symmetric banded coefficient matrix with m subdiagonals and m superdiag-
onals can be stored in symmetric banded storage mode in an n × (m +1) array. Only
the main diagonal and subdiagonals are stored so that the main diagonal is the last
column in the new array, shown in the figure. Write and test a procedure for solving a
linear system with the coefficient matrix stored in symmetric banded storage mode.

21. Write code for solving block pentadiagonal systems and test it on the systems with
block submatrices. Compare the code to Penta using symmetric and nonsymmetric
systems.

22. (Nonperiodic spline filter) The filter equation for the nonperiodic spline filter is given
by the n × n system (

I + α4 Q
)
w = z

where the matrix is

Q =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −2 1
−2 5 −4 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 −1
1 −4 5 −2

1 −2 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Here the parameter α = 1/[2 sin(π�x/λc)] involves measurement values of the pro-
file, dimensions, and wavelength over a sampling interval. The solution w gives the
profile values for the long wave components and z − w are those for the short wave
components. Use this system to test the Penta code using various values of α. Hint:
For test systems, select a simple solution vector such as w = [1, −1, 1, −1, . . . , 1]T

with a modest value for n, and then compute the right-hand side by matrix-vector
multiplication z = (I + α4 Q)w.

292 Chapter 7 Systems of Linear Equations

23. (Continuation, periodic spline filter) The filter equation for the periodic spline filter
is given by the n × n system (

I + α4 Q̂
)
ŵ = ẑ

where the matrix is

Q̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

6 −4 1 1 −4
−4 6 −4 1 1

1 −4 6 −4 1
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
1 1 −4 6 −4

−4 1 1 −4 6

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Periodic spline filters are used in cases of filtering closed profiles. Making use of the
symmetry, modify the Penta pseudocode to handle this system and then code and
test it.

24. Use mathematical software such as found in Matlab, Maple, or Mathematica to generate
a tridiagonal system and solve it. For example, use the 5 × 5 tridiagonal system A =
Band Matrix(−1, 2, 1) with right-hand side b = [1, 4, 9, 16, 25]T .

8
Additional Topics Concerning Systems
of Linear Equations

In applications that involve partial differential equations, large linear systems
arise with sparse coefficient matrices such as

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 −1 0 −1 0 0 0 0 0
−1 4 −1 0 −1 0 0 0 0

0 −1 4 0 0 −1 0 0 0
−1 0 0 4 −1 0 −1 0 0

0 −1 0 −1 4 −1 0 −1 0
0 0 −1 0 −1 4 0 0 −1
0 0 0 −1 0 0 4 −1 0
0 0 0 0 −1 0 −1 4 −1
0 0 0 0 0 −1 0 −1 4

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Gaussian elimination may cause fill-in of the zero entries by nonzero values.
On the other hand, iterative methods preserve its sparse structure.

8.1 Matrix Factorizations
An n × n system of linear equations can be written in matrix form

Ax = b (1)

where the coefficient matrix A has the form

A =

⎡⎢⎢⎢⎢⎢⎣
a11 a12 a13 · · · a1n

a21 a22 a23 · · · a2n

a31 a32 a33 · · · a3n
...

...
...

. . .
...

an1 an2 an3 · · · ann

⎤⎥⎥⎥⎥⎥⎦
293

294 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Our main objective is to show that the naive Gaussian algorithm applied to A yields a
factorization of A into a product of two simple matrices, one unit lower triangular:

L =

⎡⎢⎢⎢⎢⎢⎣
1

�21 1
�31 �32 1
...

...
...

. . .

�n1 �n2 �n3 · · · 1

⎤⎥⎥⎥⎥⎥⎦
and the other upper triangular:

U =

⎡⎢⎢⎢⎢⎢⎣
u11 u12 u13 · · · u1n

u22 u23 · · · u2n

u33 · · · u3n

. . .
...

unn

⎤⎥⎥⎥⎥⎥⎦
In short, we refer to this as an LU factorization of A; that is, A = LU .

Numerical Example
The system of Equations (2) of Section 7.1 can be written succinctly in matrix form:⎡⎢⎢⎣

6 −2 2 4
12 −8 6 10

3 −13 9 3
−6 4 1 −18

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
16
26

−19
−34

⎤⎥⎥⎦ (2)

Furthermore, the operations that led from this system to Equation (5) of Section 7.1, that
is, the system ⎡⎢⎢⎣

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
16
−6
−9
−3

⎤⎥⎥⎦ (3)

could be effected by an appropriate matrix multiplication. The forward elimination phase
can be interpreted as starting from (1) and proceeding to

M Ax = Mb (4)

where M is a matrix chosen so that M A is the coefficient matrix for System (3). Hence,
we have

M A =

⎡⎢⎢⎣
6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3

⎤⎥⎥⎦ ≡ U

which is an upper triangular matrix.

8.1 Matrix Factorizations 295

The first step of naive Gaussian elimination results in Equation (3) of Section 7.1 or
the system ⎡⎢⎢⎣

6 −2 2 4
0 −4 2 2
0 −12 8 1
0 2 3 −14

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
16
−6

−27
−18

⎤⎥⎥⎦
This step can be accomplished by multiplying (1) by a lower triangular matrix M1:

M1 Ax = M1b

where

M1 =

⎡⎢⎢⎣
1 0 0 0

−2 1 0 0
− 1

2 0 1 0
1 0 0 1

⎤⎥⎥⎦
Notice the special form of M1. The diagonal elements are all 1’s, and the only other nonzero
elements are in the first column. These numbers are the negatives of the multipliers located
in the positions where they created 0’s as coefficients in step 1 of the forward elimination
phase. To continue, step 2 resulted in Equation (4) of Section 7.1 or the system⎡⎢⎢⎣

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 4 −13

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
16
−6
−9

−21

⎤⎥⎥⎦
which is equivalent to

M2 M1 Ax = M2 M1b

where

M2 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 −3 1 0
0 1

2 0 1

⎤⎥⎥⎦
Again, M2 differs from an identity matrix by the presence of the negatives of the multipliers
in the second column from the diagonal down. Finally, step 3 gives System (3), which is
equivalent to

M3 M2 M1 Ax = M3 M2 M1b
where

M3 =

⎡⎢⎢⎣
1 0 0 0
0 1 0 0
0 0 1 0
0 0 −2 1

⎤⎥⎥⎦
Now the forward elimination phase is complete, and with

M = M3 M2 M1 (5)

we have the upper triangular coefficient System (3).

296 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Using Equations (4) and (5), we can give a different interpretation of the forward
elimination phase of naive Gaussian elimination. Now we see that

A = M−1U

= M−1
1 M−1

2 M−1
3 U

= LU

Since each Mk has such a special form, its inverse is obtained by simply changing the signs
of the negative multiplier entries! Hence, we have

L =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
1
2 0 1 0

−1 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 3 1 0
0 − 1

2 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 2 1

⎤⎥⎥⎦

=

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
1
2 3 1 0

−1 − 1
2 2 1

⎤⎥⎥⎦
It is somewhat amazing that L is a unit lower triangular matrix composed of the multipliers.
Notice that in forming L, we did not determine M first and then compute M−1 = L. (Why?)

It is easy to verify that

LU =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
1
2 3 1 0

−1 − 1
2 2 1

⎤⎥⎥⎦
⎡⎢⎢⎣

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3

⎤⎥⎥⎦

=

⎡⎢⎢⎣
6 −2 2 4

12 −8 6 10
3 −13 9 3

−6 4 1 −18

⎤⎥⎥⎦ = A

We see that A is factored or decomposed into a unit lower triangular matrix L and an
upper triangular matrix U . The matrix L consists of the multipliers located in the positions
of the elements they annihilated from A, of unit diagonal elements, and of 0 upper triangular
elements. In fact, we now know the general form of L and can just write it down directly
using the multipliers without forming the Mk’s and the M−1

k ’s. The matrix U is upper
triangular (not generally having unit diagonal) and is the final coefficient matrix after the
forward elimination phase is completed.

It should be noted that the pseudocode Naive Gauss of Section 7.1 replaces the original
coefficient matrix with its LU factorization. The elements of U are in the upper triangular
part of the (ai j) array including the diagonal. The entries below the main diagonal in L (that
is, the multipliers) are found below the main diagonal in the (ai j) array. Since it is known
that L has a unit diagonal, nothing is lost by not storing the 1’s. [In fact, we have run out of
room in the (ai j) array anyway!]

Formal Derivation
To see formally how the Gaussian elimination (in naive form) leads to an LU factorization,
it is necessary to show that each row operation used in the algorithm can be effected by

8.1 Matrix Factorizations 297

multiplying A on the left by an elementary matrix. Specifically, if we wish to subtract λ

times row p from row q, we first apply this operation to the n × n identity matrix to create
an elementary matrix Mqp. Then we form the matrix product Mqp A.

Before proceeding, let us verify that Mqp A is obtained by subtracting λ times row p
from row q in matrix A. Assume that p < q (for in the naive algorithm, this is always true).
Then the elements of Mqp = (mi j) are

mi j =

⎧⎪⎨⎪⎩
1 if i = j

−λ if i = q and j = p

0 in all other cases

Therefore, the elements of Mqp A are given by

(Mqp A)i j =
n∑

s=1

misas j =
{

ai j if i �= q

aq j − λapj if i = q

The qth row of Mqp A is the sum of the qth row of A and −λ times the pth row of A, as
was to be proved.

The kth step of Gaussian elimination corresponds to the matrix Mk , which is the product
of n − k elementary matrices:

Mk = Mnk Mn−1,k · · · Mk+1,k

Notice that each elementary matrix M ik here is lower triangular because i > k, and therefore,
Mk is also lower triangular. If we carry out the Gaussian forward elimination process on
A, the result will be an upper triangular matrix U . On the other hand, the result is obtained
by applying a succession of factors such as Mk to the left of A. Hence, the entire process
is summarized by writing

Mn−1 · · · M2 M1 A = U

Since each Mk is invertible, we have

A = M−1
1 M−1

2 · · · M−1
n−1U

Each Mk is lower triangular having 1’s on its main diagonal (unit lower triangular). Each
inverse M−1

k has the same property, and the same is true of their product. Hence, the matrix

L = M−1
1 M−1

2 · · · M−1
n−1 (6)

is unit lower triangular, and we have

A = LU

This is the so-called LU factorization of A. Our construction of it depends upon not
encountering any 0 divisors in the algorithm. It is easy to give examples of matrices that
have no LU factorization; one of the simplest is

A =
[

0 1
1 1

]
(See Problem 8.1.4.)

298 Chapter 8 Additional Topics Concerning Systems of Linear Equations

■ THEOREM 1 L U FACTORIZATION THEOREM

Let A = (ai j) be an n × n matrix. Assume that the forward elimination phase of the
naive Gaussian algorithm is applied to A without encountering any 0 divisors. Let
the resulting matrix be denoted by Ã = (ãi j). If

L =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0

ã21 1 0 · · · 0
ã31 ã32 1 · · · 0
...

...
. . .

. . .
...

ãn1 ãn2 · · · ãn,n−1 1

⎤⎥⎥⎥⎥⎥⎦
and

U =

⎡⎢⎢⎢⎢⎢⎣
ã11 ã12 ã13 · · · ã1n

0 ã22 ã23 · · · ã2n

0 0 ã33 · · · ã3n
...

...
. . .

. . .
...

0 0 · · · 0 ãnn

⎤⎥⎥⎥⎥⎥⎦
then A = LU .

Proof We define the Gaussian algorithm formally as follows. Let A(1) = A. Then we compute
A(2), A(3), . . . , A(n) recursively by the naive Gaussian algorithm, following these equations:

a(k+1)
i j = a(k)

i j (if i � k or j < k) (7)

a(k+1)
i j = a(k)

ik

a(k)
kk

(if i > k and j = k) (8)

a(k+1)
i j = a(k)

i j −
(

a(k)
ik

a(k)
kk

)
a(k)

k j (if i > k and j > k) (9)

These equations describe in a precise form the forward elimination phase of the naive
Gaussian elimination algorithm. For example, Equation (7) states that in proceeding from
A(k) to A(k+1), we do not alter rows 1, 2, . . . , k or columns 1, 2, . . . , k − 1. Equation (8)
shows how the multipliers are computed and stored in passing from A(k) to A(k+1). Finally,
Equation (9) shows how multiples of row k are subtracted from rows k + 1, k + 2, . . . , n to
produce A(k+1) from A(k).

Notice that A(n) is the final result of the process. (It was referred to as Ã in the statement
of the theorem.) The formal definitions of L = (�ik) and U = (ukj) are therefore

�ik = 1 (i = k) (10)

�ik = a(n)
ik (k < i) (11)

�ik = 0 (k > i) (12)

ukj = a(n)
k j (j � k) (13)

ukj = 0 (j < k) (14)

8.1 Matrix Factorizations 299

Now we draw some consequences of these equations. First, it follows immediately from
Equation (7) that

a(i)
i j = a(i+1)

i j = · · · = a(n)
i j (15)

Likewise, we have, from Equation (7),

a(j+1)
i j = a(j+2)

i j = · · · = a(n)
i j (j < n) (16)

From Equations (16) and (8), we now have

a(n)
i j = a(j+1)

i j = a(j)
i j

a(j)
j j

(j < n) (17)

From Equations (17) and (11), it follows that

�ik = a(n)
ik = a(k)

ik

a(k)
kk

(k < i) (18)

From Equations (13) and (15), we have

ukj = a(n)
k j = a(k)

k j (k � j) (19)

With the aid of all these equations, we can now prove that LU = A. First, consider the
case i � j . Then

(LU)i j =
n∑

k=1

�ikuk j [definition of multiplication]

=
i∑

k=1

�ikuk j [by Equation (12)]

=
i−1∑
k=1

�ikuk j + ui j [by Equation (10)]

=
i−1∑
k=1

[
a(k)

ik

a(k)
kk

]
a(k)

k j + a(i)
i j [by Equations (18) and (19)]

=
i−1∑
k=1

[
a(k)

i j − a(k+1)
i j

]
+ a(i)

i j [by Equation (9)]

= a(1)
i j = ai j

300 Chapter 8 Additional Topics Concerning Systems of Linear Equations

In the remaining case, i > j , we have

(LU)i j =
n∑

k=1

�ikuk j [definition of multiplication]

=
j∑

k=1

�ikuk j [by Equation (14)]

=
j∑

k=1

[
a(k)

ik

a(k)
kk

]
a(k)

k j [by Equations (18) and (19)]

=
j−1∑
k=1

[
a(k)

ik

a(k)
kk

]
a(k)

k j + a(j)
i j

=
j−1∑
k=1

[
a(k)

i j − a(k+1)
i j

]
+ a(j)

i j [by Equation (9)]

= a(1)
i j = ai j ■

Pseudocode
The following is the pseudocode for carrying out the LU factorization, which is sometimes
called the Doolittle factorization:

integer i, k, n; real array (ai j)1:n×1:n, (�i j)1:n×1:n, (ui j)1:n×1:n

for k = 1 to n do
�kk ← 1
for j = k to n do

ukj ← akj −
k−1∑
s=1

�ksus j

end do
for i = k + 1 to n do

�ik ←
(

aik −
k−1∑
s=1

�isusk

)/
ukk

end do
end do

Solving Linear Systems Using LU Factorization
Once the LU factorization of A is available, we can solve the system

Ax = b

by writing

LU x = b

Then we solve two triangular systems:

Lz = b (20)

8.1 Matrix Factorizations 301

for z and

U x = z (21)

for x. This is particularly useful for problems that involve the same coefficient matrix A
and many different right-hand vectors b.

Since L is unit lower triangular, z is obtained by the pseudocode

integer i, n; real array (bi)1:n, (�i j)1:n×1:n, (zi)1:n

z1 ← b1

for i = 2 to n do

zi ← bi −
i−1∑
j=1

�i j z j

end for

Likewise, x is obtained by the pseudocode

integer i, n; real array (ui j)1:n×1:n, (xi)1:n, (zi)1:n

xn ← zn/unn

for i = n − 1 to 1 step −1 do

xi ←
(

zi −
n∑

j=i+1

ui j x j

)/
uii

end for

The first of these two algorithms applies the forward phase of Gaussian elimination to the
right-hand-side vector b. [Recall that the �i j ’s are the multipliers that have been stored in
the array (ai j).] The easiest way to verify this assertion is to use Equation (6) and to rewrite
the equation

Lz = b

in the form

M−1
1 M−1

2 · · · M−1
n−1 z = b

From this, we get immediately

z = Mn−1 · · · M2 M1b

Thus, the same operations used to reduce A to U are to be used on b to produce z.
Another way to solve Equation (20) is to note that what must be done is to form

Mn−1 Mn−2 · · · M2 M1b

This can be accomplished by using only the array (bi) by putting the results back into b;
that is,

b ← Mk b

302 Chapter 8 Additional Topics Concerning Systems of Linear Equations

We know what Mk looks like because it is made up of negative multipliers that have been
saved in the array (ai j). Consequently, we have

Mk b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
. . .

1
−ak+1,k 1

...
. . .

−aik 1
...

. . .

−ank 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1
...

bk

bk+1
...

bi
...

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The entries b1 to bk are not changed by this multiplication, while bi (for i � k + 1) is

replaced by −aikbk + bi . Hence, the following pseudocode updates the array (bi) based on
the stored multipliers in the array a:

integer i, k, n; real array (ai j)1:n×1:n, (bi)1:n

for k = 1 to n − 1 do
for i = k + 1 to n do

bi ← bi − aikbk

end for
end for

This pseudocode should be familiar. It is the process for updating b from Section 7.2.
The algorithm for solving Equation (21) is the back substitution phase of the naive

Gaussian elimination process.

LDL T Factorization
In the L DLT factorization, L is unit lower triangular, and D is a diagonal matrix. This
factorization can be carried out if A is symmetric and has an ordinary LU factorization,
with L unit lower triangular. To see this, we start with

LU = A = AT = (LU)T = U T LT

Since L is unit lower triangular, it is invertible, and we can write U = L−1U T LT . Then
U(LT)−1 = L−1U T . Since the right side of this equation is lower triangular and the left
side is upper triangular, both sides are diagonal, say, D. From the equation U(LT)−1 = D,
we have U = DLT and A = LU = L DLT .

We now derive the pseudocode for obtaining the L DLT factorization of a symmetric
matrix A in which L is unit lower triangular and D is diagonal. In our analysis, we write ai j

as generic elements of A and �i j as generic elements of L. The diagonal of D has elements

8.1 Matrix Factorizations 303

dii , or di . From the equation A = L DLT , we have

ai j =
n∑

ν=1

n∑
μ=1

�iνdνμ�T
μj

=
n∑

ν=1

n∑
μ=1

�iνdνδνμ� jμ

=
n∑

ν=1

�iνdν� jν (1 � i, j � n)

Use the fact that �i j = 0 when j > i and �i i = 1 to continue the argument

ai j =
min(i, j)∑

ν=1

�iνdν� jν (1 � i, j � n)

Assume now that j � i . Then

ai j =
j∑

ν=1

�iνdν� jν

=
j−1∑
ν=1

�iνdν� jν + �i j d j� j j

=
j−1∑
ν=1

�iνdν� jν + �i j d j (1 � j � i � n)

In particular, let j = i . We get

aii =
i−1∑
ν=1

�iνdν�iν + di (1 � i � n)

Equivalently, we have

di = aii −
i−1∑
ν=1

dν�
2
iν (1 � i � n)

Particular cases of this are

d1 = a11

d2 = a22 − d1�
2
21

d3 = a33 − d1�
2
31 − d2�

2
32

etc.

Now we can limit our attention to the cases 1 � j < i � n, where we have

ai j =
j−1∑
ν=1

�iνdν� jν + �i j d j (1 � j < i � n)

304 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Solving for �i j , we obtain

�i j =
[

ai j −
j−1∑
ν=1

�iνdν� jν

]/
d j (1 � j < i � n)

Taking j = 1, we have

�i1 = ai1/d1 (2 � i � n)

This formula produces column one in L. Taking j = 2, we have

�i2 = (ai2 − �i1d1�21)/d2 (3 � i � n)

This formula produces column two in L. The formal algorithm for the L DLT factorization
is as follows:

integer i, j, n, ν; real array (ai j)1:n×1:n, (�i j)1:n×1:n, (di)1:n

for j = 1 to n
� j j = 1

d j = a j j −
j−1∑
ν=1

dν�
2
jν

for i = j + 1 to n
� j i = 0

�i j =
(

ai j −
j−1∑
ν=1

�iνdν� jν

)/
d j

end for
end for

EXAMPLE 1 Determine the L DLT factorization of the matrix

A =

⎡⎢⎢⎣
4 3 2 1
3 3 2 1
2 2 2 1
1 1 1 1

⎤⎥⎥⎦
Solution First, we determine the LU factorization:

A =

⎡⎢⎢⎢⎣
1 0 0 0
3
4 1 0 0
1
2

2
3 1 0

1
4

1
3

1
2 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

4 3 2 1
0 3

4
1
2

1
4

0 0 2
3

1
3

0 0 0 1
2

⎤⎥⎥⎥⎦ = LU

Then extract the diagonal elements from U and place them into a diagonal matrix D, writing

U =

⎡⎢⎢⎣
4 0 0 0
0 3

4 0 0
0 0 2

3 0
0 0 0 1

2

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

1 3
4

1
2

1
4

0 1 2
3

1
3

0 0 1 1
2

0 0 0 1

⎤⎥⎥⎥⎦ = DLT

Clearly, we have A = L DLT . ■

8.1 Matrix Factorizations 305

Cholesky Factorization
Any symmetric matrix that has an LU factorization in which L is unit lower triangular, has
an L DLT factorization. The Cholesky factorization A = LLT is a simple consequence of
it for the case in which A is symmetric and positive definite.

Suppose in the factorization A = LU the matrix L is lower triangular and the matrix U
is upper triangular. When L is unit lower triangular, it is called the Doolittle factorization.
When U is unit upper triangular, it goes by the name Crout factorization. In the case in
which A is symmetric positive definite and U = LT , it is called the Cholesky factorization.
The mathematician André Louis Cholesky proved the following result.

■ THEOREM 2 CHOLESKY THEOREM ON L L T FACTORIZATION

If A is a real, symmetric, and positive definite matrix, then it has a unique factorization,
A = LLT , in which L is lower triangular with a positive diagonal.

Recall that a matrix A is symmetric and positive definite if A = AT and x TAx > 0
for every nonzero vector x . It follows at once that A is nonsingular because A obviously
cannot map any nonzero vector into 0. Moreover, by considering special vectors of the form
x = (x1, x2, . . . , xk, 0, 0, . . . , 0)T , we see that the leading principal minors of A are also
positive definite. Theorem 1 implies that A has an LU decomposition. By the symmetry
of A, we then have, from the previous discussion, A = L DLT . It can be shown that D
is positive definite, and thus its elements dii are positive. Denoting by D1/2 the diagonal
matrix whose diagonal elements are

√
dii , we have A = L̃ L̃

T
where L̃ ≡ L D1/2, which is

the Cholesky factorization. We leave the proof of uniqueness to the reader.
The algorithm for the Cholesky factorization is a special case of the general LU

factorization algorithm. If A is real, symmetric, and positive definite, then by Theorem 2,
it has a unique factorization of the form A = LLT , in which L is lower triangular and has
positive diagonal. Thus, in the equation A = LU , U = LT . In the kth step of the general
algorithm, the diagonal entry is computed by

�kk =
(

akk −
k−1∑
s=1

�2
ks

)1/2

(22)

The algorithm for the Cholesky factorization will then be as follows:

integer i, k, n, s; real array (ai j)1:n×1:n, (�i j)1:n×1:n

for k = 1 to n do

�kk ←
(

akk −
k−1∑
s=1

�2
ks

)1/2

for i = k + 1 to n do

�ik ←
(

aik −
k−1∑
s=1

�is�ks

)/
�kk

end do
end do

306 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Theorem 2 guarantees that �kk > 0. Observe that Equation (22) gives us the following
bound:

akk =
k∑

s=1

�2
ks � �2

k j (j � k)

from which we conclude that

|�k j | �
√

akk (1 � j � k)

Hence, any element of L is bounded by the square root of a corresponding diagonal element
in A. This implies that the elements of L do not become large relative to A even without
any pivoting. In the Cholesky algorithm (and the Doolittle algorithms), the dot products of
vectors should be computed in double precision to avoid a buildup of roundoff errors.

EXAMPLE 2 Determine the Cholesky factorization of the matrix in Example 1.

Solution Using the results from Example 1, we write

A = L DLT = (L D1/2)(D1/2 LT) = L̃ L̃T

where

L̃ = L D1/2

=

⎡⎢⎢⎢⎣
1 0 0 0
3
4 1 0 0
1
2

2
3 1 0

1
4

1
3

1
2 1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

2 0 0 0
0 1

2

√
3 0 0

0 0
√

2
3 0

0 0 0 1√
2

⎤⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
2 0 0 0
3
2

1
2

√
3 0 0

1 1
3

√
3

√
2
3 0

1
2

1
6

√
3 1

2

√
2
3

1√
2

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
2.0000 0 0 0

1.5000 0.8660 0 0

1.0000 0.5774 0.8165 0

0.5000 0.2887 0.4082 0.7071

⎤⎥⎥⎥⎥⎦
Clearly, L̃ is the lower triangular matrix in the Cholesky factorization A = L̃ L̃

T
. ■

Multiple Right-Hand Sides
Many software packages for solving linear systems allow the input of multiple right-hand
sides. Suppose an n × m matrix B is

B = [b(1), b(2), . . . , b(m)]

in which each column corresponds to a right-hand side of the m linear systems

Ax(j) = b(j)

for 1 � j � m. Thus, we can write

A[x(1), x(2), . . . , x(m)] = [b(1), b(2), . . . , b(m)]

8.1 Matrix Factorizations 307

or

AX = B

For example, procedure Gauss can be used once to produce a factorization of A, and
procedure Solve can be used m times with right-hand side vectors b(j) to find the m solution
vectors x(j) for 1 � j � m. Since the factorization phase can be done in 1

3 n3 long operations
while each of the back substitution phases requires n2 long operations, this entire process
can be done in 1

3 n3 + mn2 long operations. This is much less than m
(

1
3 n3 + n2

)
, which is

what it would take if each of the m linear systems were solved separately.

Computing A−1

In some applications, such as in statistics, it may be necessary to compute the inverse of a
matrix A and explicitly display it as A−1. This can be done by using procedures Gauss and
Solve. If an n × n matrix A has an inverse, it is an n × n matrix X with the property that

AX = I (23)

where I is the identity matrix. If x(j) denotes the j th column of X and I (j) denotes the j th
column of I , then matrix Equation (23) can be written as

A[x(1), x(2), . . . , x(n)] = [I (1), I (2), . . . , I (n)]

This can be written as n linear systems of equations of the form

Ax(j) = I (j) (1 � j � n)

Now use procedure Gauss once to produce a factorization of A, and use procedure Solve n
times with the right-hand side vectors I (j) for 1 � j � n. This is equivalent to solving, one
at a time, for the columns of A−1, which are x(j). Hence,

A−1 = [x(1), x(2), . . . , x(n)]

A word of caution on computing the inverse of a matrix: In solving a linear system
Ax = b, it is not advisable to determine A−1 and then compute the matrix-vector product
x = A−1b because this requires many unnecessary calculations, compared to directly
solving Ax = b for x.

Example Using Software Packages
A permutation matrix is an n×n matrix P that arises from the identity matrix by permuting
its rows. It then turns out that permuting the rows of any n×n matrix A can be accomplished
by multiplying A on the left by P . Every permutation matrix is nonsingular, since the rows
still form a basis for R

n . When Gaussian elimination with row pivoting is performed on a
matrix A, the result is expressible as

P A = LU

where L is lower triangular and U is upper triangular. The matrix P A is A with its rows
rearranged. If we have the LU factorization of P A, how do we solve the system Ax = b?

308 Chapter 8 Additional Topics Concerning Systems of Linear Equations

First, write it as

P Ax = P b

then LU x = P b. Let y = U x, so that our problem is now

L y = P b

U x = y

The first equation is easily solved for y, and then the second equation is easily solved
for x. Mathematical software systems such as Matlab, Maple, and Mathematica produce
factorizations of the form P A = LU upon command.

EXAMPLE 3 Use mathematical software systems such as Matlab, Maple, and Mathematica to find the
LU factorization of this matrix:

A =

⎡⎢⎢⎣
6 −2 2 4

12 −8 6 10
3 −13 9 3

−6 4 1 −18

⎤⎥⎥⎦ (24)

Solution First, we use Maple and find this factorization:

A = LU =

⎡⎢⎢⎣
1 0 0 0
2 1 0 0
1
2 3 1 0

−1 − 1
2 2 1

⎤⎥⎥⎦
⎡⎢⎢⎣

6 −2 2 4
0 −4 2 2
0 0 2 −5
0 0 0 −3

⎤⎥⎥⎦
Next, we use Matlab and find a different factorization:

P A = L̂Û

L̂ =

⎡⎢⎢⎣
1.0000 0 0 0
0.2500 1.0000 0 0

−0.5000 0 1.0000 0
0.5000 −0.1818 0.0909 1.0000

⎤⎥⎥⎦

Û =

⎡⎢⎢⎣
12.0000 −8.0000 6.0000 10.0000

0 −11.0000 7.5000 0.5000
0 0 4.0000 −13.0000
0 0 0 0.2727

⎤⎥⎥⎦

P =

⎡⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

⎤⎥⎥⎦
where P is a permutation matrix corresponding to the pivoting strategy used. Finally, we
use Mathematica to create this LU decomposition:⎡⎢⎢⎣

3 −13 9 3
−2 −22 19 −12

2 − 12
11

52
11 − 166

11

4 −2 22
13 − 6

13

⎤⎥⎥⎦

8.1 Matrix Factorizations 309

The output is in a compact store scheme that contains both the lower triangular matrix and
the upper triangular matrix in a single matrix. However, the storage arrangement may be
complicated because the rows are usually permuted during the factorization in an effort to
make the solution process numerically stable. Verify that this factorization corresponds
to the permutation of rows of matrix A in the order 3, 4, 1, 2. ■

Summary

(1) If A = (ai j) is an n × n matrix such that the forward elimination phase of the naive
Gaussian algorithm can be applied to A without encountering any zero divisors, then the
resulting matrix can be denoted by Ã = (ãi j), where

L =

⎡⎢⎢⎢⎢⎢⎣
1 0 0 · · · 0
ã21 1 0 · · · 0
ã31 ã32 1 · · · 0
...

...
. . .

. . .
...

ãn1 ãn2 · · · ãn,n−1 1

⎤⎥⎥⎥⎥⎥⎦
and

U =

⎡⎢⎢⎢⎢⎢⎣
ã11 ã12 ã13 · · · ã1n

0 ã22 ã23 · · · ã2n

0 0 ã33 · · · ã3n
...

...
. . .

. . .
...

0 0 · · · 0 ãnn

⎤⎥⎥⎥⎥⎥⎦
This is the LU factorization of A, so A = LU , where L is a unit lower triangular and
U is upper triangular. When we carry out the Gaussian forward elimination process on A,
the result is the upper triangular matrix U . The matrix L is the unit lower triangular matrix
whose entries are negatives of the multipliers in the locations of the elements they zero out.

(2) We can also give a formal description as follows. The matrix U can be obtained by
applying a succession of matrices Mk to the left of A. The kth step of Gaussian elimination
corresponds to a unit lower triangular matrix Mk , which is the product of n − k elementary
matrices

Mk = Mnk Mn−1,k · · · Mk+1,k

where each elementary matrix M ik is unit lower triangular. If Mqp A is obtained by sub-
tracting λ times row p from row q in matrix A with p < q , then the elements of Mqp = (mi j)

are

mi j =
⎧⎨⎩

1 if i = j
−λ if i = q and j = p

0 in all other cases

The entire Gaussian elimination process is summarized by writing

Mn−1 · · · M2 M1 A = U

310 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Since each Mk is invertible, we have

A = M−1
1 M−1

2 · · · M−1
n−1U

Each Mk is a unit lower triangular matrix, and the same is true of each inverse M−1
k , as well

as their products. Hence, the matrix

L = M−1
1 M−1

2 · · · M−1
n−1

is unit lower triangular.

(3) For symmetric matrices, we have the L DLT factorization, and for symmetric posi-
tive definite matrices, we have the LLT factorization, which is also known as Cholesky
factorization.

(4) If the LU factorization of A is available, we can solve the system

Ax = b

by solving two triangular systems: {
L y = b for y

U x = y for x

This is useful for problems that involve the same coefficient matrix A and many different
right-hand vectors b. For example, let B be an n × m matrix of the form

B = [b(1), b(2), . . . , b(m)]

where each column corresponds to a right-hand side of the m linear systems

Ax(j) = b(j) (1 � j � m)

Thus, we can write

A
[
x(1), x(2), . . . , x(m)

] = [
b(1), b(2), . . . , b(m)

]
or

AX = B

A special case of this is to compute the inverse of an n × n invertible matrix A. We write

AX = I

where I is the identity matrix. If x(j) denotes the j th column of X and I (j) denotes the j th
column of I , this can be written as

A
[
x(1), x(2), . . . , x(n)

] = [
I (1), I (2), . . . , I (n)

]
or as n linear systems of equations of the form

Ax(j) = I (j) (1 � j � n)

We can use LU factorization to solve these n systems efficiently, obtaining

A−1 = [
x(1), x(2), . . . , x(n)

]
(5) When Gaussian elimination with row pivoting is performed on a matrix A, the result is
expressible as

P A = LU

8.1 Matrix Factorizations 311

where P is a permutation matrix, L is unit lower triangular, and U is upper triangular.
Here, the matrix P A is A with its rows interchanged. We can solve the system Ax = b by
solving {

L y = P b for y

U x = y for x

Problems 8.1

1. Using naive Gaussian elimination, factor the following matrices in the form A = LU ,
where L is a unit lower triangular matrix and U is an upper triangular matrix.

aa. A =
⎡⎣ 3 0 3

0 −1 3
1 3 0

⎤⎦ b. A =

⎡⎢⎢⎣
1 0 1

3 0
0 1 3 −1
3 −3 0 6
0 2 4 −6

⎤⎥⎥⎦

c. A =

⎡⎢⎢⎣
−20 −15 −10 −5

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦
2. Consider the matrix

A =

⎡⎢⎢⎣
1 0 0 2
0 3 0 0
0 9 4 0
5 0 8 10

⎤⎥⎥⎦
aa. Determine a unit lower triangular matrix M and an upper triangular matrix U such

that MA = U .

b. Determine a unit lower triangular matrix L and an upper triangular matrix U such
that A = LU . Show that M L = I so that L = M−1.

3. Consider the matrix

A =

⎡⎢⎢⎢⎢⎣
25 0 0 0 1

0 27 4 3 2
0 54 58 0 0
0 108 116 0 0

100 0 0 0 24

⎤⎥⎥⎥⎥⎦
aa. Determine the unit lower triangular matrix M and the upper triangular matrix U

such that MA = U .

b. Determine M−1 = L such that A = LU .

4. Consider the matrix

A =
⎡⎣ 2 2 1

1 1 1
3 2 1

⎤⎦

312 Chapter 8 Additional Topics Concerning Systems of Linear Equations

a. Show that A cannot be factored into the product of a unit lower triangular matrix
and an upper triangular matrix.

ab. Interchange the rows of A so that this can be done.

5. Consider the matrix

A =

⎡⎢⎢⎣
a 0 0 z
0 b 0 0
0 x c 0
w 0 y d

⎤⎥⎥⎦
aa. Determine a unit lower triangular matrix M and an upper triangular matrix U such

that MA = U .
ab. Determine a lower triangular matrix L ′ and a unit upper triangular matrix U ′ such

that A = L′U ′.

6. Consider the matrix

A =

⎡⎢⎢⎣
4 −1 −1 0

−1 4 0 −1
−1 0 4 −1

0 −1 −1 4

⎤⎥⎥⎦
Factor A in the following ways:

aa. A = LU , where L is unit lower triangular and U is upper triangular.
ab. A = L DU ′, where L is unit lower triangular, D is diagonal, and U ′ is unit upper

triangular.
ac. A = L′U ′, where L′ is lower triangular and U ′ is unit upper triangular.
ad. A = (L′′)(L′′)T , where L′′ is lower triangular.
ae. Evaluate the determinant of A. Hint: det(A) = det(L) det(D) det(U ′) = det(D).

7. Consider the 3 × 3 Hilbert matrix

A =

⎡⎢⎣ 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎤⎥⎦
Repeat the preceding problem using this matrix.

a8. Find the LU decomposition, where L is unit lower triangular, for

A =

⎡⎢⎢⎣
1 0 0 1
1 1 0 −1

−1 1 1 1
1 −1 1 −1

⎤⎥⎥⎦
9. Consider

A =
⎡⎣2 −1 2

2 −3 3
6 −1 8

⎤⎦

8.1 Matrix Factorizations 313

aa. Find the matrix factorization A = L DU ′, where L is unit lower triangular, D is
diagonal, and U ′ is unit upper triangular.

ab. Use this decomposition of A to solve Ax = b, where b = [−2, −5, 0]T .

a10. Repeat the preceding problem for

A =
⎡⎣−2 1 −2

−4 3 −3
2 2 4

⎤⎦ , b =
⎡⎣ 1

4
4

⎤⎦
11. Consider the system of equations⎧⎪⎪⎪⎨⎪⎪⎪⎩

6x1 = 12

6x2 + 3x1 = −12

7x3 − 2x2 + 4x1 = 14

21x4 + 9x3 − 3x2 + 5x1 = −2

a. Solve for x1, x2, x3, and x4 (in order) by forward substitution.

b. Write this system in matrix notation Ax = b, where x = [x1, x2, x3, x4]T . Deter-
mine the LU factorization A = LU , where L is unit lower triangular and U is
upper triangular.

a12. Given

A =
⎡⎣ 3 2 −1

5 3 2
−1 1 −3

⎤⎦ , L−1 =
⎡⎣ 1 0 0

− 5
3 1 0

−8 5 1

⎤⎦ , U =
⎡⎣3 2 −1

0 − 1
3

11
3

0 0 15

⎤⎦
obtain the inverse of A by solving U X (j) = L−1 I (j) for j = 1, 2, 3.

13. Using the system of Equations (2), form M = M3 M2 M1 and determine M−1. Verify
that M−1 = L. Why is this, in general, not a good idea?

14. Consider the matrix A = tridiagonal (ai,i−1, aii , ai,i+1), where aii �= 0.

aa. Establish the algorithm

integer i
real array (ai j)1:n×1:n, (�i j)1:n×1:n, (ui j)1:n×1:n

�11 ← a11

for i = 2 to 4 do
�i,i−1 ← ai,i−1

ui−1,i ← ai−1,i/�i−1,i−1

�i,i ← ai,i − �i,i−1ui−1,i

end for

for determining the elements of a lower tridiagonal matrix L = (�i j) and a unit
upper tridiagonal matrix U = (ui j) such that A = LU .

314 Chapter 8 Additional Topics Concerning Systems of Linear Equations

b. Establish the algorithm

integer i ; real array (ai j)1:n×1:n, (�i, j)1:n×1:n, (ui, j)1:n×1:n

u11 ← a11

for i = 2 to 4 do
ui−1,i ← ai−1,i

�i,i−1 ← ai,i−1/ui−1,i−1

ui, j ← ai,i − �i,i−1ui−1,i

end for

for determining the elements of a unit lower triangular matrix L = (�i j) and an
upper tridiagonal matrix U = (ui j) such that A = LU .

By extending the loops, we can generalize these algorithms to n×n tridiagonal matrices.

15. Show that the equation Ax = B can be solved by Gaussian elimination with scaled
partial pivoting in (n3/3) + mn2 + O(n2) multiplications and divisions, where A, X ,
and B are matrices of order n × n, n × m, and n × m, respectively. Thus, if B is n × n,
then the n × n solution matrix X can be found by Gaussian elimination with scaled
partial pivoting in 4

3 n3 + O(n2) multiplications and divisions. Hint: If X (j) and B(j)

are the j th columns of X and B, respectively, then AX (j) = B(j).

16. Let X be a square matrix that has the form

X =
[

A B
C D

]
where A and D are square matrices and A−1 exists. It is known that X −1 exists if and
only if (D − C A−1 B)−1 exists. Verify that X −1 is given by

X =
[

I −A−1 B
0 I

] [
A−1 0
0 (D − C A−1 B)−1

] [
I 0

−C A−1 I

]
As an application, compute the inverse of the following:

aa. X =

⎡⎢⎢⎣
1 0 0 1
0 1 1 0

1 0 1 2
0 0 0 1

⎤⎥⎥⎦ ab. X =

⎡⎢⎢⎣
1 0 0 1
0 1 0 1
0 0 1 1

1 1 1 2

⎤⎥⎥⎦
a17. Let A be an n × n complex matrix such that A−1 exists. Verify that[

A A
−Ai −Ai

]−1

= 1

2

[
A−1 A−1i

A
−1 −A

−1
i

]
where A denotes the complex conjugate of A; if A = (ai j), then A = (ai j). Recall
that for a complex number z = a + bi , where a and b are real, and z = a − bi .

18. Find the LU factorization of this matrix:

A =
⎡⎣ 2 2 1

4 7 2
2 11 5

⎤⎦

8.1 Matrix Factorizations 315

19. a. Prove that the product of two lower triangular matrices is lower triangular.

b. Prove that the product of two unit lower triangular matrices is unit lower triangular.

c. Prove that the inverse of a unit lower triangular matrix is unit lower triangular.

d. By using the transpose operation, prove that all of the preceding results are true for
upper triangular matrices.

20. Let L be lower triangular, U be upper triangular, and D be diagonal.

a. If L and U are both unit triangular and L DU is diagonal, does it follow that L and
U are diagonal?

b. If L DU is nonsingular and diagonal, does it follow that L and U are diagonal?

c. If L and U are both unit triangular and if L DU is diagonal, does it follow that
L = U = I?

21. Determine the L DLT factorization for the following matrix:

A =

⎡⎢⎢⎣
1 2 −1 1
2 3 −4 3

−1 −4 −1 3
1 3 3 0

⎤⎥⎥⎦
22. Find the Cholesky factorization of

A =
⎡⎣ 4 6 10

6 25 19
10 19 62

⎤⎦
23. Consider the system [

A 0
B C

] [
x
y

]
=
[

b
d

]
Show how to solve the system more cheaply using the submatrices rather than the overall
system. Give an estimate of the computational cost of both the new and old approaches.
This problem illustrates solving a block linear system with a special structure.

24. Determine the L DLT factorization of the matrix

A =

⎡⎢⎢⎣
5 35 −20 65

35 244 −143 461
−20 −143 73 −232

65 461 −232 856

⎤⎥⎥⎦
Can you find the Cholesky factorization?

25. (Sparse factorizations) Consider the following sparse symmetric matrices with the
nonzero pattern shown where nonzero entries in the matrix are indicated by the ×
symbol and zero entries are a blank. Show the nonzero pattern in the matrix L for
the Cholesky factorization by using the symbol + for the fill-in of a zero entry by a
nonzero entry.

316 Chapter 8 Additional Topics Concerning Systems of Linear Equations

a. A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
× × × ×

× × ×
× × × ×

× × × × ×
× × × ×

× ×
× × × ×

× × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
b. A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
× × ×

× × ×
× × ×

× × × ×
× × × ×

× × × ×
× × × ×

× × × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

c. A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

× × ×
× × ×

× × × ×
× × ×

× × ×
× × × ×

× × × ×
× × × × ×

× × × ×

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Computer Problems 8.1

1. Write and test a procedure for implementing the algorithms of Problem 8.1.14.

2. The n ×n factorization A = LU , where L = (�i j) is lower triangular and U = (ui j) is
upper triangular, can be computed directly by the following algorithm (provided zero
divisions are not encountered): Specify either �11 or u11 and compute the other such
that �11u11 = a11. Compute the first column in L by

�i1 = ai1

u11
(1 � i � n)

and compute the first row in U by

u1 j = a1 j

�11
(1 � j � n)

Now suppose that columns 1, 2, . . . , k − 1 have been computed in L and that rows
1, 2, . . . , k − 1 have been computed in U . At the kth step, specify either �kk or ukk , and
compute the other such that

�kkukk = akk −
k−1∑
m=1

�kmumk

Compute the kth column in L by

�ik = 1

ukk

(
aik −

k−1∑
m=1

�imumk

)
(k � i � n)

8.1 Matrix Factorizations 317

and compute the kth row in U by

ukj = 1

�kk

(
akj −

k−1∑
m=1

�kmumj

)
(k � j � n)

This algorithm is continued until all elements of U and L are completely determined.
When �i i = 1 (1 � i � n), this procedure is called the Doolittle factorization, and when
u j j = 1 (1 � j � n), it is known as the Crout factorization.

Define the test matrix

A =

⎡⎢⎢⎣
5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

⎤⎥⎥⎦
Using the algorithm above, compute and print factorizations so that the diagonal entries
of L and U are of the following forms:

diag(L) diag(U)

[1, 1, 1, 1] [?, ?, ?, ?] Doolittle
[?, ?, ?, ?] [1, 1, 1, 1] Crout
[1, ?, 1, ?] [?, 1, ?, 1]
[?, 1, ?, 1] [1, ?, 1, ?]
[?, ?, 7, 9] [3, 5, ?, ?]

Here the question mark means that the entry is to be computed. Write code to check
the results by multiplying L and U together.

3. Write

procedure Poly(n, (ai j), (ci), k, (yi j))

for computing the n × n matrix pk(A) stored in array (yi j):

yk = pk(A) = c0 I + c1 A + c2 A2 + · · · + ck Ak

where A is an n × n matrix and pk is a kth-degree polynomial. Here (ci) are real con-
stants for 0 � i � k. Use nested multiplication and write efficient code. Test procedure
Poly on the following data:

Case 1.

A = I5, p3(x) = 1 − 5x + 10x3

Case 2.

A =
[

1 2
3 4

]
, p2(x) = 1 − 2x + x2

Case 3.

A =
⎡⎣ 0 2 4

0 0 8
0 0 0

⎤⎦ , p3(x) = 1 + 3x − 3x2 + x3

318 Chapter 8 Additional Topics Concerning Systems of Linear Equations

aCase 4.

A =

⎡⎢⎢⎣
2 −1 0 0

−1 2 −1 0
0 −1 2 −1
0 0 −1 2

⎤⎥⎥⎦ , p5(x) = 10 + x − 2x2 + 3x3 − 4x4 + 5x5

Case 5.

A =

⎡⎢⎢⎣
−20 −15 −10 −5

1 0 0 0
0 1 0 0
0 0 1 0

⎤⎥⎥⎦ , p4(x) = 5 + 10x + 15x2 + 20x3 + x4

Case 6.

A =

⎡⎢⎢⎣
5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

⎤⎥⎥⎦ , p4(x) = 1 − 100x + 146x2 − 35x3 + x4

4. Write and test a procedure for determining A−1 for a given square matrix A of order
n. Your procedure should use procedures Gauss and Solve.

5. Write and test a procedure to solve the system AX = B in which A, X , and B are
matrices of order n ×n, n ×m, and n ×m, respectively. Verify that the procedure works
on several test cases, one of which has B = I so that the solution X is the inverse of
A. Hint: See Problem 8.1.15.

6. Write and test a procedure for directly computing the inverse of a tridiagonal matrix.
Assume that pivoting is not necessary.

7. (Continuation) Test the procedure of the preceding computer problem on the symmetric
tridiagonal matrix A of order 10:

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−2 1
1 −2 1

1 −2 1
. . .

. . .
. . .

1 −2 1
1 −2

⎤⎥⎥⎥⎥⎥⎥⎥⎦
The inverse of this matrix is known to be

(A−1)i j = (A−1) j i = −i(n + 1 − j)

(n + 1)
(i � j)

8. Investigate the numerical difficulties in inverting the following matrix:

A =

⎡⎢⎢⎣
−0.0001 5.096 5.101 1.853

0. 3.737 3.740 3.392
0. 0. 0.006 5.254
0. 0. 0. 4.567

⎤⎥⎥⎦

8.2 Iterative Solutions of Linear Systems 319

9. Consider the following two test matrices:

A =
⎡⎣ 4 6 10

6 25 19
10 19 62

⎤⎦ , B =
⎡⎣ 4 6 10

6 13 19
10 19 62

⎤⎦
Show that the first Cholesky factorization has all integers in the solution, while the
second one is all integers until the last step, where there is a square root.

a. Program the Cholesky algorithm.

b. Use Matlab, Maple, or Mathematica to find the Cholesky factorizations.

10. Let A be real, symmetric, and positive definite. Is the same true for the matrix obtained
by removing the first row and column of A?

11. Devise a code for inverting a unit lower triangular matrix. Test it on the following
matrix: ⎡⎢⎢⎣

1 0 0 0
3 1 0 0
5 2 1 0
7 4 −3 1

⎤⎥⎥⎦
12. Verify Example 1 using Matlab, Maple, or Mathematica.

13. In Example 3, verify the factorizations of matrix A using Matlab, Maple, and
Mathematica.

14. Find the PA = LU factorization of this matrix:

A =

⎡⎢⎢⎣
−0.05811 −0.11696 0.51004 −0.31330
−0.04291 0.56850 0.07041 0.68747
−0.01652 0.38953 0.01203 −0.52927
−0.06140 0.32179 −0.22094 0.42448

⎤⎥⎥⎦
which was studied by Wilkinson [1965, p. 640].

8.2 Iterative Solutions of Linear Systems
In this section, a completely different strategy for solving a nonsingular linear system

Ax = b (1)

is explored. This alternative approach is often used on enormous problems that arise in
solving partial differential equations numerically. In that subject, systems having hundreds
of thousands of equations arise routinely.

Vector and Matrix Norms
We first present a brief overview of vector and matrix norms because they are useful in the
discussion of errors and in the stopping criteria for iterative methods. Norms can be defined
on any vector space, but we usually use R

n or C
n . A vector norm ||x|| can be thought of as

320 Chapter 8 Additional Topics Concerning Systems of Linear Equations

the length or magnitude of a vector x ∈ R
n . A vector norm is any mapping from R

n to R

that obeys these three properties:

||x || > 0 if x �= 0

||αx|| = |α| ||x||
||x + y|| � ||x|| + || y|| (triangle inequality)

for vectors x, y ∈ R
n and scalars α ∈ R. Examples of vector norms for the vector x =

(x1, x2, . . . , xn)
T ∈ R

n are

||x||1 =
n∑

i=1

|xi | �1-vector norm

||x||2 =
(

n∑
i=1

x2
i

)1/2

Euclidean/�2-vector norm

||x||∞ = max
1 � i � n

|xi | �∞-vector norm

For n × n matrices, we can also have matrix norms, subject to the same requirements:

||A|| > 0 if A �= 0

||α A|| = |α| ||A||
||A + B|| � ||A|| + ||B|| (triangular inequality)

for matrices A, B and scalars α.
We usually prefer matrix norms that are related to a vector norm. For a vector norm

|| · ||, the subordinate matrix norm is defined by

||A|| ≡ sup {||Ax|| : x ∈ R
n and ||x|| = 1}

Here, A is an n × n matrix. For a subordinate matrix norm, some additional properties are

||I || = 1

||Ax|| � ||A|| ||x||
||AB|| � ||A|| ||B||

There are two meanings associated with the notation || · ||p, one for vectors and another
for matrices. The context will determine which one is intended. Examples of subordinate
matrix norms for an n × n matrix A are

||A||1 = max
1 � j � n

n∑
i=1

|ai j | �1-matrix norm

||A||2 = max
1 � i � n

√
|σmax| spectral /�2-matrix norm

||A||∞ = max
1 � i � n

n∑
j=1

|ai j | �∞-matrix norm

Here, σi are the eigenvalues of AT A, which are called the singular values of A. The largest
σmax in absolute value is termed the spectral radius of A. (See Section 8.3 for a discussion
of singular values.)

8.2 Iterative Solutions of Linear Systems 321

Condition Number and Ill-Conditioning
An important quantity that has some influence in the numerical solution of a linear system
Ax = b is the condition number, which is defined as

κ(A) = ‖A‖2 ‖A−1‖2

It turns out that it is not necessary to compute the inverse of A to obtain an estimate of
the condition number. Also, it can be shown that the condition number κ(A) gauges the
transfer of error from the matrix A and the vector b to the solution x. The rule of thumb
is that if κ(A) = 10 k , then one can expect to lose at least k digits of precision in solving
the system Ax = b. If the linear system is sensitive to perturbations in the elements of A,
or to perturbations of the components of b, then this fact is reflected in A having a large
condition number. In such a case, the matrix A is said to be ill-conditioned. Briefly, the
larger the condition number, the more ill-conditioned the system.

Suppose we want to solve an invertible linear system of equations Ax = b for a given
coefficient matrix A and right-hand side b but there may have been perturbations of the
data owing to uncertainty in the measurements and roundoff errors in the calculations.
Suppose that the right-hand side is perturbed by an amount assigned the symbol δb and the
corresponding solution is perturbed an amount denoted by the symbol δx. Then we have

A(x + δx) = Ax + Aδx = b + δb

where

Aδx = δb

From the original linear system Ax = x and norms, we have

||b|| = ||Ax|| � ||A|| ||x||
which gives us

1

||x|| �
||A||
||b||

From the perturbed linear system Aδx = δb, we obtain δx = A−1δb and

||δx|| � ||A−1|| ||δb||
Combining the two inequalities above, we obtain

||δx||
||x|| � κ(A)

||δb||
||b||

which contains the condition number of the original matrix A.
As an example of an ill-conditioned matrix consider the Hilbert matrix

H3 =

⎡⎢⎣ 1 1
2

1
3

1
2

1
3

1
4

1
3

1
4

1
5

⎤⎥⎦
We can use the Matlab commands to generate the matrix and then to compute both the
condition number using the 2-norm and the determinant of the matrix. We find the condition
number to be 524.0568 and the determinant to be 4.6296 × 10−4. In solving linear systems,

322 Chapter 8 Additional Topics Concerning Systems of Linear Equations

the condition number of the coefficient matrix measures the sensitivity of the system to
errors in the data. When the condition number is large, the computed solution of the system
may be dangerously in error! Further checks should be made before accepting the solution
as being accurate. Values of the condition number near 1 indicate a well-conditioned matrix
whereas large values indicate an ill-conditioned matrix. Using the determinant to check for
singularity is appropriate only for matrices of modest size. Using mathematical software,
one can compute the condition number to check for singular or near-singular matrices.

A goal in the study of numerical methods is to acquire an awareness of whether a
numerical result can be trusted or whether it may be suspect (and therefore in need of
further analysis). The condition number provides some evidence regarding this question.
With the advent of sophisticated mathematical software systems such as Matlab and others,
an estimate of the condition number is often available, along with an approximate solution so
that one can judge the trustworthiness of the results. In fact, some solution procedures involve
advanced features that depend on an estimated condition number and may switch solution
techniques based on it. For example, this criterion may result in a switch of the solution
technique from a variant of Gaussian elimination to a least-squares solution for an ill-
conditioned system. Unsuspecting users may not realize that this has happened unless they
look at all of the results, including the estimate of the condition number. (Condition numbers
can also be associated with other numerical problems, such as locating roots of equations.)

Basic Iterative Methods
The iterative-method strategy produces a sequence of approximate solution vectors x(0),
x(1), x(2), . . . for system Ax = b. The numerical procedure is designed so that, in principle,
the sequence of vectors converges to the actual solution. The process can be stopped when
sufficient precision has been attained. This stands in contrast to the Gaussian elimination
algorithm, which has no provision for stopping midway and offering up an approximate
solution. A general iterative algorithm for solving System (1) goes as follows: Select a
nonsingular matrix Q, and having chosen an arbitrary starting vector x(0), generate vectors
x(1), x(2), . . . recursively from the equation

Qx(k) = (Q − A)x(k−1) + b (k = 1, 2, . . .) (2)

To see that this is sensible, suppose that the sequence x(k) does converge, to a vector x∗,
say. Then by taking the limit as k → ∞ in System (2), we get

Qx∗ = (Q − A)x∗ + b

This leads to Ax∗ = b. Thus, if the sequence converges, its limit is a solution to the original
System (1). For example, the Richardson iteration uses Q = I .

An outline of the pseudocode for carrying out the general iterative procedure (2)
follows:

integer k, kmax
real array (x(0))1:n, (b)1:n, (c)1:n, (x)1:n, (y)1:n, (A)1:n×1:n, (Q)1:n×1:n

x ← x(0)

for k = 1 to kmax do

8.2 Iterative Solutions of Linear Systems 323

y ← x
c ← (Q − A)x + b
solve Qx = c
output k, x
if ‖x − y‖ < ε then

output “convergence”
stop

end if
end for
output “maximum iteration reached”

In choosing the nonsingular matrix Q, we are influenced by the following considerations:

• System (2) should be easy to solve for x(k), when the right-hand side is known.

• Matrix Q should be chosen to ensure that the sequence x(k) converges, no matter what
initial vector is used. Ideally, this convergence will be rapid.

One should not believe that it is necessary to compute the inverse of Q to carry out
an iterative procedure. For small systems, we can easily compute the inverse of Q, but in
general, this is definitely not to be done! We want to solve a linear system in which Q is
the coefficient matrix. As was mentioned previously, we want to select Q so that a linear
system with Q as the coefficient matrix is easy to solve. Examples of such matrices are
diagonal, tridiagonal, banded, lower triangular, and upper triangular.

Now, let us view System (1) in its detailed form

n∑
j=1

ai j x j = bi (1 � i � n) (3)

Solving the i th equation for the i th unknown term, we obtain an equation that describes the
Jacobi method:

x (k)
i =

⎡⎢⎢⎣−
n∑

j=1
j �=i

(ai j/aii)x (k−1)
j + (bi/aii)

⎤⎥⎥⎦ (1 � i � n) (4)

Here, we assume that all diagonal elements are nonzero. (If this is not the case, we can
usually rearrange the equations so that it is.)

In the Jacobi method above, the equations are solved in order. The components x (k−1)
j

and the corresponding new values x (k)
j can be used immediately in their place. If this is

done, we have the Gauss-Seidel method:

x (k)
i =

⎡⎢⎢⎣−
n∑

j=1
j<i

(ai j/aii)x (k)
j −

n∑
j=1
j>i

(ai j/aii)x (k−1)
j + (bi/aii)

⎤⎥⎥⎦ (5)

324 Chapter 8 Additional Topics Concerning Systems of Linear Equations

If x (k−1) is not saved, then we can dispense with the superscripts in the pseudocode as
follows:

integer i, j, k, kmax, n; real array (ai j)1:n×1:n, (bi)1:n, (xi)1:n

for k = 1 to kmax do
for i = 1 to n do

xi ←
⎡⎣bi −∑n

j=1
j �=i

ai j x j

⎤⎦/aii

end for
end for

An acceleration of the Gauss-Seidel method is possible by the introduction of a relax-
ation factor ω, resulting in the successive overrelaxation (SOR) method:

x (k)
i = ω

⎧⎪⎪⎨⎪⎪⎩
⎡⎢⎢⎣−

n∑
j=1
j<i

(ai j/aii)x (k)
j −

n∑
j=1
j>i

(ai j/aii)x (k−1)
j + (bi/aii)

⎤⎥⎥⎦
⎫⎪⎪⎬⎪⎪⎭+ (1 − ω)x (k−1)

i (6)

The SOR method with ω = 1 reduces to the Gauss-Seidel method.
We now consider numerical examples using iterative methods associated with the names

Jacobi, Gauss-Seidel, and successive overrelaxation.

EXAMPLE 1 (Jacobi iteration) Let

A =
⎡⎣ 2 −1 0

−1 3 −1
0 −1 2

⎤⎦ , b =
⎡⎣ 1

8
−5

⎤⎦
Carry out a number of iterations of the Jacobi iteration, starting with the zero initial vector.

Solution Rewriting the equations, we have the Jacobi method:

x (k)
1 = 1

2
x (k−1)

2 + 1

2

x (k)
2 = 1

3
x (k−1)

1 + 1

3
x (k−1)

3 + 8

3

x (k)
3 = 1

2
x (k−1)

2 − 5

2

Taking the initial vector to be x(0) = [0, 0, 0]T , we find (with the aid of a computer program
or a programmable calculator) that

x(0) = [0, 0, 0]T

x(1) = [0.5000, 2.6667, −2.5000]T

x(2) = [1.8333, 2.0000, −1.1667]T

...

x(21) = [2.0000, 3.0000, −1.0000]T

The actual solution (to four decimal places rounded) is obtained. ■

8.2 Iterative Solutions of Linear Systems 325

In the Jacobi iteration, Q is taken to be the diagonal of A:

Q =
⎡⎣2 0 0

0 3 0
0 0 2

⎤⎦
Now

Q−1 =

⎡⎢⎣
1
2 0 0

0 1
3 0

0 0 1
2

⎤⎥⎦ , Q−1 A =

⎡⎢⎣ 1 − 1
2 0

− 1
3 1 − 1

3

0 − 1
2 1

⎤⎥⎦
The Jacobi iterative matrix and constant vector are

B = I − Q−1 A =

⎡⎢⎣ 0 1
2 0

1
3 0 1

3

0 1
2 0

⎤⎥⎦ , h = Q−1b =

⎡⎢⎣
1
2
8
3

− 5
2

⎤⎥⎦
One can see that Q is close to A, Q−1 A is close to I , and I − Q−1 A is small. We write
the Jacobi method as

x(k) = Bx(k−1) + h

EXAMPLE 2 (Gauss-Seidel iteration) Repeat the preceding example using the Gauss-Seidel iteration.

Solution The idea of the Gauss-Seidel iteration is simply to accelerate the convergence by incorpo-
rating each vector as soon as it has been computed. Obviously, it would be more efficient
in the Jacobi method to use the updated value x (k)

1 in the second equation instead of the old
value x (k−1)

1 . Similarly, x (k)
2 could be used in the third equation in place of x (k−1)

2 . Using the
new iterates as soon as they become available, we have the Gauss-Seidel method:

x (k)
1 = 1

2
x (k−1)

2 + 1

2

x (k)
2 = 1

3
x (k)

1 + 1

3
x (k−1)

3 + 8

3

x (k)
3 = 1

2
x (k)

2 − 5

2
Starting with the initial vector zero, some of the iterates are

x(0) = [0, 0, 0]T

x(1) = [0.5000, 2.8333, −1.0833]T

x(2) = [1.9167, 2.9444, −1.0278]T

...

x(9) = [2.0000, 3.0000, −1.0000]T

In this example, the convergence of the Gauss-Seidel method is approximately twice as fast
as that of the Jacobi method. ■

In the iterative algorithm that goes by the name Gauss-Seidel, Q is chosen as the lower
triangular part of A, including the diagonal. Using the data from the previous example, we

326 Chapter 8 Additional Topics Concerning Systems of Linear Equations

now find that

Q =
⎡⎣ 2 0 0

−1 3 0
0 −1 2

⎤⎦
The usual row operations give us

Q−1 =

⎡⎢⎣
1
2 0 0
1
6

1
3 0

1
12

1
6

1
2

⎤⎥⎦ , Q−1 A =

⎡⎢⎣1 − 1
2 0

0 5
6 − 1

3

0 − 1
12

5
6

⎤⎥⎦
Again, we emphasize that in a practical problem we would not compute Q−1. The Gauss-
Seidel iterative matrix and constant vector are

L = I − Q−1 A =

⎡⎢⎣ 0 1
2 0

0 1
6

1
3

0 1
12

1
6

⎤⎥⎦ , h = Q−1b =

⎡⎢⎣
1
2

17
6

− 13
12

⎤⎥⎦
We write the Gauss-Seidel method as

x(k) = Lx(k−1) + h

EXAMPLE 3 (SOR iteration) Repeat the preceding example using the SOR iteration with ω = 1.1.

Solution Introducing a relaxation factor ω into the Gauss-Seidel method, we have the SOR method:

x (k)
1 = ω

[
1

2
x (k−1)

2 + 1

2

]
+ (1 − ω)x (k−1)

1

x (k)
2 = ω

[
1

3
x (k)

1 + 1

3
x (k−1)

3 + 8

3

]
+ (1 − ω)x (k−1)

2

x (k)
3 = ω

[
1

2
x (k)

2 − 5

2

]
+ (1 − ω)x (k−1)

3

Starting with the initial vector of zeros and with ω = 1.1, some of the iterates are

x(0) = [0, 0, 0]T

x(1) = [0.5500, 3.1350, −1.0257]T

x(2) = [2.2193, 3.0574, −0.9658]T

...

x(7) = [2.0000, 3.0000, −1.0000]T

In this example, the convergence of the SOR method is faster than that of the Gauss-Seidel
method. ■

In the iterative algorithm that goes by the name successive overrelaxation (SOR), Q is
chosen as the lower triangular part of A including the diagonal, but each diagonal element
ai j is replaced by ai j/ω, where ω is the so-called relaxation factor. (Initial work on the
SOR method was done by Southwell [1946] and Young [1950].) From the previous example,

8.2 Iterative Solutions of Linear Systems 327

this means that

Q =

⎡⎢⎣
20
11 0 0

−1 30
11 0

0 −1 20
11

⎤⎥⎦
Now

Q−1 =

⎡⎢⎣
11
20 0 0

121
600

11
30 0

1331
12000

121
600

11
20

⎤⎥⎦ , Q−1 A =

⎡⎢⎣
11
10 − 11

20 0
11

300
539
600 − 11

30
121
6000

671
12000

539
600

⎤⎥⎦
The SOR iterative matrix and constant vector are

Lω = I − Q−1 A =

⎡⎢⎣ − 1
10

11
20 0

− 11
300

61
600

11
30

− 121
6000 − 671

12000
61

600

⎤⎥⎦ , h = Q−1b =

⎡⎢⎣
11
20

627
200

− 4103
4000

⎤⎥⎦
We write the SOR method as

x(k) = Lωx(k−1) + h

Pseudocode
We can write pseudocode for the Jacobi, Gauss-Seidel, and SOR methods assuming that
the linear system (1) is stored in matrix-vector form:

procedure Jacobi(A, b, x)
real kmax ← 100, δ ← 10−10, ε ← 1

2 × 10−4

integer i, j, k, kmax, n; real diag, sum
real array (A)1:n×1:n , (b)1:n, (x)1:n, (y)1:n

n ← size(A)

for k = 1 to kmax do
y ← x
for i = 1 to n do

sum ← bi

diag ← aii

if |diag| < δ then
output “diagonal element too small”
return

end if
for j = 1 to n do

if j �= i then
sum ← sum − ai j y j

end if
end for
xi ← sum/diag

end for
output k, x

328 Chapter 8 Additional Topics Concerning Systems of Linear Equations

if ‖x − y‖ < ε then
output k, x
return

end if
end for
output “maximum iterations reached”
return
end Jacobi

Here, the vector y contains the old iterate values, and the vector x contains the updated
ones. The values of kmax , δ, and ε are set either in a parameter statement or as global
variables.

The pseudocode for the procedure Gauss Seidel(A, b, x) would be the same as that
for the Jacobi pseudocode above except that the innermost j-loop would be replaced by the
following:

for j = 1 to i − 1 do
sum ← sum − ai j x j

end for
for j = i + 1 to n do

sum ← sum − ai j x j

end for

The pseudocode for procedure SOR(A, b, x, ω) would be the same as that for the Gauss-
Seidel pseudocode with the statement following the j-loop replaced by the following:

xi ← sum/diag

xi ← ωxi + (1 − ω)yi

In the solution of partial differential equations, iterative methods are frequently used to
solve large sparse linear systems, which often have special structures. The partial derivatives
are approximated by stencils composed of relatively few points, such as 5, 7, or 9. This leads
to only a few nonzero entries per row in the linear system. In such systems, the coefficient
matrix A is usually not stored since the matrix-vector product can be written directly in the
code. See Chapter 15 for additional details on this and how it is related to solving elliptic
partial differential equations.

Convergence Theorems
For the analysis of the method described by System (2), we write

x(k) = Q−1
[
(Q − A)x(k−1) + b

]
or

x(k) = Gx(k−1) + h (7)

8.2 Iterative Solutions of Linear Systems 329

where the iteration matrix and vector are

G = I − Q−1 A, h = Q−1b

Notice that in the pseudocode, we do not compute Q−1. The matrix Q−1 is used to facilitate
the analysis. Now let x be the solution of System (1). Since A is nonsingular, x exists and
is unique. We have, from Equation (7),

x(k) − x = (I − Q−1 A)x(k−1) − x + Q−1b

= (I − Q−1 A)x(k−1) − (I − Q−1 A)x

= (I − Q−1 A)(x(k−1) − x)

One can interpret e(k) ≡ x(k) − x as the current error vector. Thus, we have

e(k) = (I − Q−1 A)e(k−1) (8)

We want e(k) to become smaller as k increases. Equation (8) shows that e(k) will be smaller
than e(k−1) if I − Q−1 A is small, in some sense. In turn, that means that Q−1 A should be
close to I . Thus, Q should be close to A. (Norms can be used to make small and close
precise.)

■ THEOREM 1 SPECTRAL RADIUS THEOREM

In order that the sequence generated by Qx(k) = (Q − A)x(k−1) + b to converge,
no matter what starting point x(0) is selected, it is necessary and sufficient that all
eigenvalues of I − Q−1 A lie in the open unit disc, |z| < 1, in the complex plane.

The conclusion of this theorem can also be written as

ρ(I − Q−1 A) < 1

where ρ is the spectral radius function: For any n × n matrix G, having eigenvalues
λi , ρ(G) = max1 � i � n |λi |.

EXAMPLE 4 Determine whether the Jacobi, Gauss-Seidel, and SOR methods (with ω = 1.1) of the
previous examples converge for all initial iterates.

Solution For the Jacobi method, we can easily compute the eigenvalues of the relevant matrix B.
The steps are

det(B − λI) = det

⎡⎢⎣−λ 1
2 0

1
3 −λ 1

3

0 1
2 −λ

⎤⎥⎦ = −λ3 + 1

6
λ + 1

6
λ = 0

The eigenvalues are λ = 0, ±√1/3 ≈ ±0.5774. Thus, by the preceding theorem, the
Jacobi iteration succeeds for any starting vector in this example.

330 Chapter 8 Additional Topics Concerning Systems of Linear Equations

For the Gauss-Seidel method, the eigenvalues of the iteration matrix L are determined
from

det(L − λI) = det

⎡⎢⎣−λ 11
20 0

0 1
6 − λ 1

3

0 1
12

1
6 − λ

⎤⎥⎦ = −λ

(
1

6
− λ

)2

+ 1

36
λ = 0

The eigenvalues are λ = 0, 0, 1
3 ≈ 0.333. Hence, the Gauss-Seidel iteration will also

succeed for any initial vector in this example.
For the SOR method with ω = 1.1, the eigenvalues of the iteration matrix Lω are

determined from

det(Lω − λI) = det

⎡⎢⎣− 1
10 − λ 11

20 0

− 11
300

61
600 − λ 11

30

− 121
6000

671
12000

61
600 − λ

⎤⎥⎦
=
(

− 1

10
− λ

)(
61

600
− λ

)2

− 121

6000

11

30

11

20

+ 11

20

11

300

(
61

600
− λ

)
−
(

− 1

10
− λ

)
671

12000

11

30

= − 1

1000
+ 31

3000
λ + 31

3000
λ2 − λ3 = 0

The eigenvalues are λ ≈ 0.1200, 0.0833, −0.1000. Hence, the SOR iteration will also
succeed for any initial vector in this example. ■

A condition that is easier to verify than the inequality ρ(I − Q−1 A) < 1 is the
dominance of the diagonal elements over the other elements in the same row. As defined in
Section 7.3, we can use the property of diagonal dominance

|aii | >

n∑
j=1
j �=i

|ai j |

to determine whether the Jacobi and Gauss-Seidel methods converge via the following
theorem.

■ THEOREM 2 JACOBI AND GAUSS-SEIDEL CONVERGENCE THEOREM

If A is diagonally dominant, then the Jacobi and Gauss-Seidel methods converge for
any starting vector x(0).

Notice that this is a sufficient but not a necessary condition. Indeed, there are matrices that
are not diagonally dominant for which these methods converge.

Another important property follows:

■ DEFINITION 1 SYMMETRIC POSITIVE DEFINITE

Matrix A is symmetric positive definite (SPD) if A = AT and xT Ax > 0 for all
nonzero real vectors x.

8.2 Iterative Solutions of Linear Systems 331

For a matrix A to be SPD, it is necessary and sufficient that A = AT and that all eigenvalues
of A are positive.

■ THEOREM 3 SOR CONVERGENCE THEOREM

Suppose that the matrix A has positive diagonal elements and that 0 < ω < 2. The
SOR method converges for any starting vector x(0) if and only if A is symmetric and
positive definite.

Matrix Formulation
For the formal theory of iterative methods, we split the matrix A into the sum of a nonzero
diagonal matrix D, a strictly lower triangular matrix C L , and a strictly upper triangular
matrix CU such that

A = D − C L − CU

Here, D = diag(A), C L = (−ai j)i> j , and CU = (−ai j)i< j . The linear System (3) can be
written as

(D − C L − CU)x = b

From Equation (4), the Jacobi method in matrix-vector form is

Dx(k) = (C L + CU)x(k−1) + b

This corresponds to Equation (2) with Q = diag(A) = D. From Equation (5), the Gauss-
Seidel method becomes

(D − C L)x(k) = CU x(k−1) + b

This corresponds to Equation (2) with Q = diag(A) + lower triangular(A) = D − C L .
From Equation (6), the SOR method can be written as

(D − ωC L)x(k) = [ωCU + (1 − ω)D]x(k−1) + ωb

This corresponds to Equation (2) with Q = (1/ω)diag(A) + lower triangular(A) =
(1/ω)D − C L .

In summary, the iteration matrix and constant vector for the basic three iterative methods
(Jacobi, Gauss-Seidel, and SOR) can be written in terms of this splitting. For the Jacobi
method, we have Q = D, so

B = I − Q−1 A = D−1(C L + CU)

h = Q−1b = D−1b

For the Gauss-Seidel method, we have Q = D − C L , so

L = I − Q−1 A = (D − C L)−1CU

h = Q−1b = (D − C L)−1b

332 Chapter 8 Additional Topics Concerning Systems of Linear Equations

For the SOR method, we have Q = 1/ω(D − ωC L), so

Lω = I − Q−1 A = (D − ωC L)−1[ωCU + (1 − ω)D]

h = Q−1b = ω(D − ωC L)−1b

Another View of Overrelaxation
In some cases, the rate of convergence of the basic iterative scheme (2) can be improved by
the introduction of an auxiliary vector and an acceleration parameter ω as follows:

Qz(k) = (Q − A)x (k−1) + b

x(k) = ωz(k) + (1 − ω)x(k−1)

or

x(k) = ω
{
(I − Q−1 A)x(k−1) + Q−1b

}+ (1 − ω)x(k−1)

The parameter ω gives a weighting in favor of the updated values. When ω = 1, this pro-
cedure reduces to the basic iterative method, and when 1 < ω < 2, the rate of convergence
may be improved, which is called overrelaxation. When Q = D, we have the Jacobi
overrelaxation (JOR) method:

x(k) = ω
{

Bx(k−1) + h
}+ (1 − ω)x(k−1)

Overrelaxation has particular advantages when used with the Gauss-Seidel method in
a slightly different way:

Dz(k) = C L x(k) + CU x(k−1) + b

x(k) = ωz(k) + (1 − ω)x(k−1)

and we have the SOR method:

x(k) = Lωx(k−1) + h

Conjugate Gradient Method
The conjugate gradient method is one of the most popular iterative methods for solving
sparse systems of linear equations. This is particularly true for systems that arise in the
numerical solutions of partial differential equations.

We begin with a brief presentation of definitions and associated notation. (Some of
them are presented more fully in Chapter 16.) Assume that the real n × n matrix A is
symmetric, meaning that AT = A. The inner product of two vectors u = (u1, u2, . . . , un)

and v = (v1, v2, . . . , vn) can be written as 〈u, v〉 = uT v = ∑n
i=1 uivi , which is the scalar

sum. Note that 〈u, v〉 = 〈v, u〉. If u and v are mutually orthogonal, then 〈u, v〉 = 0. An
A-inner product of two vectors u and v is defined as

〈u, v〉A = 〈Au, v〉 = uT AT v

Two nonzero vectors u and v are A-conjugate if 〈u, v〉A = 0. An n ×n matrix A is positive
definite if

〈x, x〉A > 0

8.2 Iterative Solutions of Linear Systems 333

for all nonzero vectors x ∈ R
n . In general, expressions such as 〈u, v〉 and 〈u, v〉A reduce

to 1 × 1 matrices and are treated as scalar values. A quadratic form is a scalar quadratic
function of a vector of the form

f (x) = 1

2
〈x, x〉A − 〈b, x〉 + c

Here, A is a matrix, x and b are vectors, and c is a scalar constant. The gradient of a
quadratic form

f ′(x) = [
∂ f (x)/∂x1, ∂ f (x)/∂x2, · · · , ∂ f (x)/∂xn

]T

We can derive the following:

f ′(x) = 1

2
AT x + 1

2
Ax − b

If A is symmetric, this reduces to

f ′(x) = Ax − b

Setting the gradient to zero, we obtain the linear system to be solved, Ax = b. Therefore,
the solution of Ax = b is a critical point of f (x). If A is symmetric and positive definite,
then f (x) is minimized by the solution of Ax = b. So an alternative way of solving the
linear system Ax = b is by finding an x that minimizes f (x).

We want to solve the linear system

Ax = b

where the n × n matrix A is symmetric and positive definite.
Suppose that { p(1), p(2), . . . , p(k), . . . , p(n)} is a set containing a sequence of n mutually

conjugate direction vectors. Then they form a basis for the space R
n . Hence, we can expand

the true solution vector x∗ of Ax = b into a linear combination of these basis vectors:

x∗ = α1 p(1) + α2 p(2) + · · · + α(k) p(k) + · · · + αn p(n)

where the coefficients are given by

αk = 〈 p(k), b〉/〈 p(k), p(k)〉A

This can be viewed as a direct method for solving the linear system Ax = b: First find
the sequence of n conjugate direction vectors p(k), and then compute the coefficients αk .
However, in practice, this approach is impractical because it would take too much computer
time and storage.

On the other hand, if we view the conjugate gradient method as an iterative method,
then we could solve large sparse linear systems in a reasonable amount of time and storage.
The key is carefully choosing a small set of the conjugate direction vectors p(k) so that we
do not need them all to obtain a good approximation to the true solution vector.

Start with an initial guess x(0) to the true solution x∗. We can assume without loss of
generality that x(0) is the zero vector. The true solution x∗ is also the unique minimizer of

f (x) = 1

2
〈x, x〉A − 〈x, x〉 = 1

2
xT Ax − xT x

for x ∈ R
n . This suggests taking the first basis vector p(1) to be the gradient of f at x = x(0),

which equals −b. The other vectors in the basis are now conjugate to the gradient—hence

334 Chapter 8 Additional Topics Concerning Systems of Linear Equations

the name conjugate gradient method. The kth residual vector is

r (k) = b − Ax(k)

The gradient descent method moves in the direction r (k). Take the direction closest to the
gradient vector r (k) by insisting that the direction vectors p(k) be conjugate to each other.
Putting all this together, we obtain the expression

p(k+1) = r (k) − [〈
p(k), r (k)

〉
A

/〈
p(k), p(k)

〉
A

]
pk

After some simplifications, the algorithm is obtained for solving the linear system Ax = b,
where the coefficient matrix A is real, symmetric, and positive definite. The input vector
x(0) is an initial approximation to the solution or the zero vector.

In theory, the conjugate gradient iterative method solves a system of n linear equations
in at most n steps, if the matrix A is symmetric and positive definite. Moreover, the nth
iterative vector x(n) is the unique minimizer of the quadratic function q(x) = 1

2 xT Ax−xT b.
When the conjugate gradient method was introduced by Hestenes and Stiefel [1952], the
initial interest in it waned once it was discovered that this finite-termination property was not
obtained in practice. But two decades later, there was renewed interest in this method when
it was viewed as an iterative process by Reid [1971] and others. In practice, the solution of
a system of linear equations can often be found with satisfactory precision in a number of
steps considerably less than the order of the system.

Here is a pseudocode for the conjugate gradient algorithm:

k ← 0; x ← 0; r ← b − Ax; δ ← 〈r, r〉
while

(√
δ > ε

√〈b, b〉) and
(
k < kmax

)
k ← k + 1
if k = 1 then

p ← r
else

β ← δ/δold

p ← r + β p
end if
w ← A p
α ← δ/〈 p, w〉
x ← x + α p
r ← r − αw

δold ← δ

δ ← 〈r, r〉
end while

Here, ε is a parameter used in the convergence criterion (such as ε = 10−5), and kmax

is the maximum number of iterations allowed. Usually, the number of iterations needed
is much less than the size of the linear system. We save the previous value of δ in the
variable δold. If a good guess for the solution vector x is known, then it should be used as
an initial vector instead of zero. The variable ε is the desired convergence tolerance. The
algorithm produces not only a sequence of vectors x(i) that converges to the solution but an
orthogonal sequence of residual vectors r (i) = b − Ax(i) and an A-orthogonal sequence of

8.2 Iterative Solutions of Linear Systems 335

search direction vectors p(i), namely, 〈r (i), r (j)〉 = 0 if i �= j and 〈 p(i), A p(j)〉 = 0 if i �= j .
(The main computational features of the conjugate gradient algorithm are complicated to
derive, but the final conclusion is that in each step, only one matrix-vector multiplication is
required and only a few dot-products are computed. These are extremely desirable attributes
in solving large and sparse linear systems. Also, unlike Gaussian elimination, there is no
fill-in, so only the nonzero entries in A need to be stored in the computer memory. For some
partial differential equation problems, the equations in the linear system can be represented
by stencils that describe the nonzero structure within the coefficient matrix. Sometimes
these stencils are used in a computer program rather than storing the nonzero entries in the
coefficient matrix.

EXAMPLE 5 Use the conjugate gradient method to solve this linear system:⎡⎣ 2 −1 0
−1 3 −1

0 −1 2

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =
⎡⎣ 1

8
−5

⎤⎦
Solution Programming the pseudocode, we obtain the iterates

x(0) = [0.00000, 0.00000, 0.00000]T

x(1) = [0.29221, 2.33766, −1.46108]T

x(2) = [1.82254, 2.60772, −1.55106]T

x(3) = [2.00000, 3.00000, −1.00000]T

In only three iterations, we have the answer accurate to full machine precision, which
illustrates the finite termination property. The matrix A is symmetric positive definite and
the eigenvalues of A are 1, 2, 4. This simple example may be a bit misleading because one
cannot expect such rapid convergence in realistic applications. (The rate of convergence
depends on various properties of the linear system.) In fact, the above example is too small
to illustrate the power of advanced iterative methods on very large and sparse systems. ■

The conjugate gradient method may converge slowly when the matrix A is ill-
conditioned; however, the convergence can be accelerated by a technique called precondi-
tioning. This involves a matrix M−1 that approximates A so that M−1 A is well-conditioned
and Mx = y is easily solved. For many very large and sparse linear systems, precondi-
tioned conjugate gradient methods have now become the iterative methods of choice! For
additional details, see Golub and Van Loan [1996] as well as many other standard textbooks
and references.

Summary

(1) For the linear system

Ax = b

the general form of an iterative method is

x(k) = Gx(k−1) + h

336 Chapter 8 Additional Topics Concerning Systems of Linear Equations

where the iteration matrix and vector are

G = I − Q−1 A h = Q−1b

The error vector is

e(k) = (I − Q−1 A)e(k−1)

(2) In detail, we consider the linear system in the form
n∑

j=1

ai j x j = bi (1 � i � n)

The Jacobi method is

x (k)
i =

n∑
j=1
j �=i

(−ai j/aii)x (k−1)
j − (bi/aii) (1 � i � n)

assuming that aii �= 0. The Gauss-Seidel method is

x (k)
i =

n∑
j=1
j<i

(−ai j/aii)x (k)
i +

n∑
j=1
j>i

(−ai j/aii)x (k−1)
j − (bi/aii)

The SOR method is

x (k)
i = ω

⎧⎪⎪⎨⎪⎪⎩
n∑

j=1
j<i

(−ai j/aii)x (k)
i +

n∑
j=1
j>i

(−ai j/aii)x (k−1)
j − (bi/aii)

⎫⎪⎪⎬⎪⎪⎭+ (1 − ω)x (k−1)
i

The SOR method reduces to the Gauss-Seidel method when ω = 1.

(3) For a matrix formulation, we split the matrix A:

A = D − C L − CU

where D is a nonzero diagonal matrix, C L is a strictly lower triangular matrix, and CU is a
strictly upper triangular matrix. Here, D = diag(A), C L = (−ai j)i> j , and CU = (−ai j)i< j .
The Jacobi method in matrix-vector form is

Dx(k) = (C L + CU)x(k−1) + b

since Q = D. The Gauss-Seidel method is

(D − C L)x(k) = CU x(k−1) + b

since Q = D − C L . The SOR method is

(D − ωC L)x(k) = [ωCU + (1 − ω)D]x(k−1) + ωb

since Q = (1/ω)D − C L . The splitting matrices, iteration matrices, and constant vectors
are as follows: For the Jacobi method, we have

Q = D

B = D−1(C L + CU)

h = D−1b

8.2 Iterative Solutions of Linear Systems 337

For the Gauss-Seidel method, we have

Q = D − C L

L = (D − C L)−1CU

h = (D − C L)−1b

For the SOR method, we have

Q = 1

ω
(D − ωC L)

Lω = (D − ωC L)−1[ωCU + (1 − ω)D]

h = ω(D − ωC L)−1b

(4) An iterative method converges for a specific matrix A if and only if

ρ(I − Q−1 A) < 1

If A is diagonally dominant, then the Jacobi and Gauss-Seidel methods converge for any
x(0). The SOR method converges, for 0 < ω < 2 and any x(0), if and only if A is symmetric
and positive definite with positive diagonal elements.

Problems 8.2

1. Give an alternative solution to Example 4.

2. Write the matrix formula for the Gauss-Seidel overrelaxation method.

a3. (Multiple choice) In solving a system of equations Ax = b, it is often convenient to use
an iterative method, which generates a sequence of x(k) vectors that should converge
to a solution. The process is stopped when sufficient accuracy has been attained. A
general procedure is to obtain x(k) by solving Qx(k) = (Q − A)x(k−1) + b. Here, Q
is a certain matrix that is usually connected somehow to A. The process is repeated,
starting with any available guess, x(0). What hypothesis guarantees that the method
works, no matter what starting point is selected?

a. || Q|| < 1 b. || Q A|| < 1 c. ||I − Q A|| < 1

d. ||I − Q−1 A|| < 1 e. None of these.

Hint: The spectral radius is less than or equal to the norm.

4. (Multiple choice) From a vector norm, we can create a subordinate matrix norm. Which
relation is satisfied by every subordinate matrix norm?

a. ||Ax|| � ||A|| ||x|| b. ||I || = 1 c. ||AB|| � ||A|| ||B||
d. ||A+ B|| � ||A||+||B|| e. None of these.

a5. (Multiple choice) The condition for diagonal dominance of a matrix A is:

a. |aii | <
∑n

j=1
j �=i

|ai j | b. |aii | �
∑n

j=1
j �=i

|ai j | c. |aii | <
∑n

j=1 |ai j |

d. |aii | >
∑n

j=1 |ai j | e. None of these.

338 Chapter 8 Additional Topics Concerning Systems of Linear Equations

6. (Multiple choice) A necessary and sufficient condition for the standard iteration formula
x(k) = Gx(k−1)+h to produce a sequence x(k) that converges to a solution of the equation
(I − G)x = h is that:

a. The spectral radius of G is greater than 1.

b. The matrix G is diagonally dominant.

c. The spectral radius of G is less than 1.

d. G is nonsingular.

e. None of these.

7. (Multiple choice) A sufficient condition for the Jacobi method to converge for the
linear system Ax = b.

a. A − I is diagonally dominant.

b. A is diagonally dominant.

c. G is nonsingular.

d. The spectral radius of G is less than 1.

e. None of these.

8. (Multiple choice) A sufficient condition for the Gauss-Seidel method to work on the
linear system Ax = b.

a. A is diagonally dominant.

b. A − I is diagonally dominant.

c. The spectral radius of A is less than 1.

d. G is nonsingular.

e. None of these.

a9. (Multiple choice) Necessary and sufficient conditions for the SOR method, where
0 < ω < 2, to work on the linear system Ax = b.

a. A is diagonally dominant. b. ρ(A) < 1.

c. A is symmetric positive definite. d. x(0) = 0.

e. None of these.

10. The Frobenius norm is given by ||A||F =
√∑n

i=1

∑n
j=1

∣∣a2
i j

∣∣ which is frequently
used because it is so easy to compute. Find the value of this norm for these matrices:

a.

⎡⎣ 1 2 3
0 5 4
2 1 3

⎤⎦ b.

⎡⎢⎢⎣
0 0 1 2
3 0 5 4
1 1 1 2
1 3 2 2

⎤⎥⎥⎦ c.

⎡⎢⎢⎢⎢⎣
1 1 1 1 1
2 3 4 5 6
0 1 0 1 0
3 4 3 4 3
5 5 5 5 5

⎤⎥⎥⎥⎥⎦
11. Determine the condition numbers κ(A) of these matrices:

a.

⎡⎣−2 1 0
1 −2 1
0 1 −2

⎤⎦ b.

⎡⎣0 0 1
0 1 0
1 1 1

⎤⎦

8.2 Iterative Solutions of Linear Systems 339

c.

⎡⎣ 3 0 0
0 2 0
0 0 1

⎤⎦ d.

⎡⎢⎢⎣
−2 −1 2 −1

1 2 1 −2
2 −1 2 1
0 2 0 1

⎤⎥⎥⎦

Computer Problems 8.2

1. Redo several or all of Examples 1–5 using the linear system involving one of the
following coefficient matrix and right-hand side vector pairs:

a. A =
[

5 −1
−1 3

]
, b =

[
7
4

]

b. A =
⎡⎣ 5 −1 0

−1 3 −1
0 −1 2

⎤⎦ , b =
⎡⎣ 7

4
5

⎤⎦
c. A =

⎡⎣ 2 −1 0
−1 6 −2

4 −3 8

⎤⎦ , b =
⎡⎣ 1

3
9

⎤⎦
d. A =

⎡⎣ 7 3 −1
3 8 1

−1 1 4

⎤⎦ , b =
⎡⎣ 3

−4
2

⎤⎦
2. Using the Jacobi, Gauss-Seidel, and SOR (ω = 1.1) iterative methods, write and exe-

cute a computer program to solve the following linear system to four decimal places
(rounded) of accuracy:⎡⎢⎢⎣

7 1 −1 2
1 8 0 −2

−1 0 4 −1
2 −2 −1 6

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
3

−5
4

−3

⎤⎥⎥⎦
Compare the number of iterations needed in each case. Hint: The exact solution is
x = (1, −1, 1, −1)T .

3. Using the Jacobi, Gauss-Seidel, and the SOR (ω = 1.4) iterative methods, write and
run code to solve the following linear system to four decimal places of accuracy:⎡⎢⎢⎣

7 3 −1 2
3 8 1 −4

−1 1 4 −1
2 −4 −1 6

⎤⎥⎥⎦
⎡⎢⎢⎣

x1

x2

x3

x4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
−1

0
−3

1

⎤⎥⎥⎦
Compare the number of iterations in each case. Hint: Here, the exact solution is x =
(−1, 1, −1, 1)T .

4. (Continuation) Solve the system using the SOR iterative method with values of ω =
1(0.1)2. Plot the number of iterations for convergence versus the values of ω. Which
value of ω results in the fastest convergence?

340 Chapter 8 Additional Topics Concerning Systems of Linear Equations

5. Program and run the Jacobi, Gauss-Seidel, and SOR methods for the system of
Example 1

a. using equations involving the splitting matrix Q.

b. using the equation formulations in Example 4.

c. using the pseudocode involving matrix-vector multiplication.

6. (Continuation) Select one or more of the systems in Computer Problem 1, and rerun
these programs.

7. Consider the linear system [
9 −3

−2 8

] [
x1

x2

]
=
[

6
−4

]
Using Maple or Matlab, compare solving it by using the Jacobi method and the Gauss-
Seidel method starting with x(0) = (0, 0)T .

8. (Continuation)

a. Change the (1, 1) entry from 9 to 1 so that the coefficient matrix is no longer diag-
onally dominant and see whether the Gauss-Seidel method still works. Explain why
or why not.

b. Then change the (2, 2) entry from 8 to 1 as well and test. Again explain the results.

9. Use the conjugate gradient method to solve this linear system:⎡⎣ 2.0 −0.3 −0.2
−0.3 2.0 −0.1
−0.2 −0.1 2.0

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =
⎡⎣7

5
3

⎤⎦
10. (Euler-Bernoulli beam) A simple model for a bending beam under stress involves

the Euler-Bernoulli differential equation. A finite difference discretization converts it
into a system of linear equations. As the size of the discretization decreases, the linear
system becomes larger and more ill-conditioned.

a. For a beam pinned at both ends, we obtain the following banded system of linear
equations with a bandwidth of five:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 −6 4
3−4 6 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
1 −4 6 −4 1

1 −4 6 −4
4
3 6 −12

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4
...

yn−3

yn−2

yn−1

yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4
...

bn−3

bn−2

bn−1

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The right-hand side represents forces on the beam. Set the right-hand side so that
there is a known solution, such as a sag in the middle of the beam. Using an iterative

8.2 Iterative Solutions of Linear Systems 341

method, repeatedly solve the system by allowing n to increase. Does the error in the
solution increase when n increases? Use mathematical software that computes the
condition number of the coefficient matrix to explain what is happening.

b. The linear system of equations for a cantilever beam with a free boundary condition
at only one end is⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12 −6 4
3−4 6 −4 1

1 −4 6 −4 1
1 −4 6 −4 1

. . .
. . .

. . .
. . .

. . .
. . .

1 −4 6 −4 1
1 −4 6 −4 1

1 − 93
25

111
25 − 43

25
12
25

24
25

12
25

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

y1

y2

y3

y4
...

yn−3

yn−2

yn−1

yn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3

b4
...

bn−3

bn−2

bn−1

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Repeat the numerical experiment for this system. See Sauer [2006] for additional
details.

11. Consider this sparse linear system:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 −1 1
2−1 3 −1 1

2−1 3 −1 1
2

. . .
. . .

.
.

−1 3 −1

. .
. . . .

. . .
. . .

1
2 −1 3 −1

1
2 −1 3 −1

1
2 −1 3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...
...
...

xn−2

xn−1

xn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.5
1.5
1.5
...

1.0
...

1.5
1.5
1.5

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The true solution is x = [1, 1, 1, . . . , 1, 1, 1]T . Use an iterative method to solve this
system for increasing values of n.

12. Consider the sample two-dimensional linear system Ax = b, where A =
[

3 2
2 6

]
,

b =
[

2
−8

]
, and c = 0. Plot graphs to show the following:

a. The solution lies at the intersection of two lines.

b. Graph of the quadratic form F(x) = c + bT x + 1
2 xT Ax showing that the minimum

point of this surface is the solution of Ax = b.

c. Contours of the quadratic form so each ellipsoidal curve has a constant value.

d. Gradient F ′(x) of the quadratic form. Show that for every x, the gradient points in
the direction of the steepest increase of F(x) and is orthogonal to the contour lines.
(See Section 16.2.)

342 Chapter 8 Additional Topics Concerning Systems of Linear Equations

8.3 Eigenvalues and Eigenvectors
Let A be an n ×n matrix. We ask the following natural question about A: Are there nonzero
vectors v for which Av is a scalar multiple of v? Although we pose this question in the
spirit of pure curiosity, there are many situations in scientific computation in which this
question arises.

The answer to our question is a qualified Yes! We must be willing to consider complex
scalars, as well as vectors with complex components. With that broadening of our viewpoint,
such vectors always exist. Here are two examples. In the first, we need not bring in complex
numbers to illustrate the situation, while in the second, the vectors and scalar factors must
be complex.

EXAMPLE 1 Let A =
[

3 2
7 −2

]
. Find a nonzero vector v for which Av is a multiple of v.

Solution One easily verifies that

A
[

1
1

]
=
[

5
5

]
= 5

[
1
1

]
A
[

2
−7

]
=
[−8

28

]
= −4

[
2

−7

]
We have two different answers (but we have not revealed how to find them). ■

EXAMPLE 2 Repeat the preceding example with the matrix A =
[

1 1
−2 3

]
.

Solution As in Example 1, it can be verified that

A
[

1
1 + i

]
= (2 + i)

[
1

1 + i

]
A
[

1
1 − i

]
= (2 − i)

[
1

1 − i

]
In these equations, i = √−1. Surprisingly, we find answers involving complex numbers
even though the matrix does not contain any complex entries! ■

When the equation Ax = λx is valid and x is not zero, we say that λ is an eigenvalue
of A and x is an accompanying eigenvector. Thus, in Example 1, the matrix has 5 as
an eigenvalue with accompanying eigenvector [1, 1]T , and −4 is another eigenvalue with
accompanying eigenvector [2, −7]T . Example 2 emphasizes that a real matrix may have
complex eigenvalues and complex eigenvectors. Notice that an equation A0 = λ0 and an
equation A0 = 0x say nothing useful about eigenvalues and eigenvectors of A.

Many problems in science lead to eigenvalue problems in which the principal question
usually is: What are the eigenvalues of a given matrix, and what are the accompanying
eigenvectors? An outstanding application of this theory is to systems of linear differential
equations, about which more will be said later.

8.3 Eigenvalues and Eigenvectors 343

Notice that if Ax = λx and x �= 0, then every nonzero multiple of x is an eigenvector
(with the same eigenvalue). If λ is an eigenvalue of an n × n matrix A, then the set
{x: Ax = λx} is a subspace of R

n called an eigenspace. It is necessarily of dimension at
least 1.

Calculating Eigenvalues and Eigenvectors
Given a square matrix A, how does one discover its eigenvalues? Begin by observing
that the equation Ax = λx is equivalent to (A − λI)x = 0. Since we are interested in
nonzero solutions to this equation, the matrix A − λI must be singular (noninvertible), and
therefore, Det(A−λI) = 0. This is how (in principle) we can find all the eigenvalues of A.
Specifically, form the function p by the definition p(λ) = Det(A − λI), and find the zeros
of p. It turns out that p is a polynomial of degree n and must have n zeros, provided that we
allow complex zeros and count each zero a number of times equal to its multiplicity. Even
if the matrix A is real, we must be prepared for complex eigenvalues. The polynomial just
described is called the characteristic polynomial of the matrix A. If this polynomial has
a repeated factor, such as (λ − 3)k , then we say that 3 is a root of multiplicity k. Such roots
are still eigenvalues, but they can be troublesome when k > 1.

To illustrate the calculation of eigenvalues, let us use the matrix in Example 1, namely,

A =
[

3 2
7 −2

]
The characteristic polynomial is

p(λ) = Det(A − λI) = Det

[
3 − λ 2

7 −2 − λ

]
= (3 − λ)(−2 − λ) − 14

= λ2 − λ − 20 = (λ − 5)(λ + 4)

The eigenvalues are 5 and −4.
We can carry out this calculation with one or two commands in Matlab, Maple, or

Mathematica. We can determine the characteristic polynomial and subsequently compute
its zeros. This gives us the two roots of of the characteristic polynomial, which are the
eigenvalues 5 and −4. These mathematical software systems also have single commands
to produce a list of eigenvalues, computed in the best possible way, which is usually not to
determine the characteristic polynomial and subsequently compute its zeros!

In general, an n × n matrix will have a characteristic polynomial of degree n, and its
roots are the eigenvalues of A. Since the calculation of zeros of a polynomial is numeri-
cally challenging if not unstable, this straightforward procedure is not recommended. (See
Computer Problem 8.3.2 for an experiment pertaining to this situation.) For small values
of n, it may be quite satisfactory, however. It is called the direct method for computing
eigenvalues.

Once an eigenvalue λ has been determined for a matrix A, an eigenvector can be
computed by solving the system (A − λI)x = 0. Thus, in Example 1, we must solve
(A − 5I)x = 0, or [−2 2

7 −7

] [
x1

x2

]
=
[

0
0

]

344 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Of course, this matrix is singular, and the homogeneous equation has nontrivial solutions,
such as [1, 1]T . The other eigenvalue is treated in the same way, leading to an eigenvector
[2, −7]T . Any scalar multiple of an eigenvector is also an eigenvector.

This work can be done by using mathematical software to find an eigenvector for each
eigenvalue λ via the null space of the matrix A − λI . Also, we can use a single command
to compute all the eigenvalues directly or request the calculation of all the eigenvalues
and eigenvectors at once. The Matlab command [V,D] = eig(A) produces two arrays,
V and D. The array V has eigenvectors of A as its columns, and the array D contains all
the eigenvalues of A on its diagonal. The program returns a vector of unit length such as
[0.7071, 0.7071]T . That vector by itself provides a basis for the null space of A − 5I .

Notice that the eigenvalue-eigenvector problem is nonlinear. The equation Ax = λx
has two unknowns, λ and x. They appear in the equation multiplied together. If either x or
λ were known, finding the other would be a linear problem and very easy.

Mathematical Software
A typical, mundane use of mathematical software such as Matlab might be to compute the
eigenvalues and eigenvalues of a matrix with a command such as [V,D] = eig(A) for the
matrix

A =
⎡⎣ 1 3 −7

−3 4 1
2 −5 3

⎤⎦
Matlab responds instantly with the eigenvectors in the array V and the eigenvalues in the
diagonal array D. The real eigenvalue is 0.0214 and the complex pair of eigenvalues are
3.9893 ± 5.5601i . Behind the scenes, much complicated computing may be taking place.
The general procedure has these components: First, by means of similarity transforma-
tions, A is put into lower Hessenberg form. This means that all elements below the first
subdiagonal are zero. Thus, the new A = (ai j) satisfies ai j = 0 when i > j + 1. Sim-
ilarity transformations ensure that the eigenvalues are not disturbed. If A is real, further
similarity transformations put A into a near-diagonal form in which each diagonal element
is either a single real number or a 2 × 2 real matrix whose eigenvalues are a pair of con-
jugate complex numbers. Creating the additional zeros just below the diagonal requires
some iterative process, because after all, we are in effect computing the zeros of a poly-
nomial. The iterative process is reminiscent of the power method that will be described in
Section 8.4.

Maple can be used to compute the eigenvalues and eigenvectors. The quantities are
computed in exact arithmetic and then converted to floating-point. In some versions of
Maple and Matlab, one can use some of the commands from one of these packages in the
other. In Mathematica, we can use commands to obtain similar results.

The best advice for anyone who is confronted with challenging eigenvalue problems is
to use the software in the package LAPACK. Special eigenvalue algorithms for various types
of matrices are available there. For example, if the matrix in question is real and symmetric,
one should use an algorithm tailored for that case. There are about a dozen categories
available to choose from in LAPACK. Matlab itself employs some of the programs in
LAPACK.

8.3 Eigenvalues and Eigenvectors 345

Properties of Eigenvalues
A theorem that summarizes the special properties of a matrix that impinge on the computing
of its eigenvalues follows.

■ THEOREM 1 MATRIX EIGENVALUE PROPERTIES

The following statements are true for any square matrix A:

1. If λ is an eigenvalue of A, then p(λ) is an eigenvalue of p(A), for any polynomial
p. In particular, λk is an eigenvalue of Ak .

2. If A is nonsingular and λ is an eigenvalue of A, then p(1/λ) is an eigenvalue of
p(A−1), for any polynomial p. In particular, λ−1 is an eigenvalue of A−1.

3. If A is real and symmetric, then its eigenvalues are real.

4. If A is complex and Hermitian, then its eigenvalues are real.

5. If A is Hermitian and positive definite, then its eigenvalues are positive.

6. If P is nonsingular, then A and P AP−1 have the same characteristic polynomial
(and the same eigenvalues).

Recall that a matrix A is symmetric if A = AT , where AT = (a ji) is the transpose
of A = (ai j). On the other hand, a complex matrix A is Hermitian if A = A∗, where
A∗ = A

T = (a ji). Here A∗ is the conjugate transpose of the matrix A. Using the syntax of
programming, we can write AT (i, j) = A(j, i) and A∗(i, j) = A(j, i). Recall also that A
is positive definite if xT Ax > 0 for all nonzero vectors x.

Two matrices A and B are similar to each other if there exists a nonsingular matrix P
such that B = P AP−1. Similar matrices have the same characteristic polynomial

Det(B − λI) = Det(P AP−1 − λI)

= Det(P(A − λI)P−1)

= Det(P) · Det(A − λI) · Det(P−1)

= Det(A − λI)

Thus, we have an important theorem.

■ THEOREM 2 EIGENVALUES OF SIMILAR MATRICES

Similar matrices have the same eigenvalues.

This theorem suggests a strategy for finding eigenvalues of A. Transform the matrix A to a
matrix B using a similarity transformation B = P AP−1 in which B has a special structure,
and then find the eigenvalues of matrix B. Specifically, if B is triangular or diagonal, the
eigenvalues of B (and those of A) are simply the diagonal elements of B.

Matrices A and B are said to be unitarily similar to each other if B = U∗ AU for
some unitary matrix U . Recall that a matrix U is unitary if UU∗ = I . This brings us
naturally to another important theorem and two corollaries.

346 Chapter 8 Additional Topics Concerning Systems of Linear Equations

■ THEOREM 3 SCHUR’S THEOREM

Every square matrix is unitarily similar to a triangular matrix.

In this theorem, an arbitrary complex n × n matrix A is given, and the assertion made is
that a unitary matrix U exists such that:

U AU∗ = T

where UU∗ = I and T is a triangular matrix.
The proof of Schur’s Theorem can be found in Kincaid and Cheney [2002] and Golub

and Van Loan [1996].

■ COROLLARY 1 MATRIX SIMILAR TO A TRIANGULAR MATRIX

Every square real matrix is similar to a triangular matrix.

Thus the factorization

P AP−1 = T

is possible, where T is triangular, P is invertible, and A is real.

EXAMPLE 3 We illustrate Schur’s Theorem by finding the decomposition of this 2 × 2 matrix:

A =
[

3 −2
8 3

]
Solution From the characteristic equation det(A − λI) = λ2 − 6λ + 25 = 0, the eigenvalues are

3 ± 4i . By solving A − λI = 0 with each of these eigenvalues, the corresponding eigen-
vectors are v1 = [i, 2]T and v2 = [−i, 2]T . Using the Gram-Schmidt orthogonalization
process, we obtain u1 = v1 and u2 = v2 − [v∗

2u1/u∗
1u1]u1 = [−2, −i]T . After normalizing

these vectors, we obtain the unitary matrix

U = 1√
5

[
i −2
2 −i

]
which satisfies the property UU∗ = I , Finally, we obtain the Schur form

U AU∗ =
[

3 + 4i −6
0 3 − 4i

]
which is an upper triangular matrix with the eigenvalues on the diagonal. ■

■ COROLLARY 2 HERMITIAN MATRIX UNITARILY SIMILAR TO A DIAGONAL MATRIX

Every square Hermitian matrix is unitarily similar to a diagonal matrix.

8.3 Eigenvalues and Eigenvectors 347

In the second corollary, a Hermitian matrix, A, is factored as

A = U∗ DU

where D is diagonal and U is unitary.
Furthermore, U∗ AU = T and U∗ A∗U = T ∗ and A = A∗, so T = T ∗, which must

be a diagonal matrix.
Most numerical methods for finding eigenvalues of an n × n matrix A proceed by

determining such similarity transformations. Then one eigenvalue at a time, say, λ, is com-
puted, and a deflation process is used to produce an (n − 1) × (n − 1) matrix Ã whose
eigenvalues are the same as those of A, except for λ. Any such procedure can be repeated
with the matrix Ã to find as many eigenvalues of the matrix A as desired. In practice, this
strategy must be used cautiously because the successive eigenvalues may be infected with
roundoff error.

Gershgorin’s Theorem
Sometimes it is necessary to determine in a coarse manner where the eigenvalues of a
matrix are situated in the complex plane C. The most famous of these so-called localization
theorems is the following.

■ THEOREM 4 GERSHGORIN’S THEOREM

All eigenvalues of an n × n matrix A = (aii) are contained in the union of the n discs
Ci = Ci (aii , ri) in the complex plane with center aii and radii ri given by the sum of
the magnitudes of the off-diagonal entries in the i th row.

The matrix A can have either real or complex entires. The region containing the eigenvalues
of A can be written

n⋃
i=1

Ci =
n⋃

i=1

{
z ∈ C : |z − aii | � ri

}
where the radii are ri = ∑n

j=1
j �=i

|ai j |.
The eigenvalues of A and AT are the same because the characteristic equation involves

the determinant, which is the same for a matrix and its transpose. Therefore, we can apply
the Gershgorin Theorem to AT and obtain the following useful result.

■ COROLLARY 3 MORE GERSHGORIN DISCS

All eigenvalues of an n × n matrix A = (aii) are contained in the union of the n discs
Di = Di (aii , si) in the complex plane having center at aii and radii si given by the
sum of the magnitudes of the columns of A.

348 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Consequently, the region containing the eigenvalues of A can be written as
n⋃

i=1

Di =
n⋃

i=1

{
z ∈ C : |z − aii | � si

}
where the radii are si = ∑n

i=1
i �= j

|ai j |. Finally, the region containing the eigenvalues of A is

(
n⋃

i=1

Ci

)⋂(
n⋃

i=1

Di

)
This may contain tighter bounds on the eigenvalues in some case. Also, a useful localization
result is

■ COROLLARY 4

For a matrix A, the union of any k Gerschgorin discs that do not intersect the remaining
n − k circles contains exactly k (counting multiplicities) of the eigenvalues of A.

For a strictly diagonally dominant matrix, zero cannot lie in any of its Gershgorin discs, so
it must be invertible. Consequently, we obtain the following results.

■ COROLLARY 5

Every strictly diagonally dominant matrix is nonsingular.

EXAMPLE 4 Consider the matrix

A =
⎡⎣ 4 − i 2 i

−1 2i 2
1 −1 −5

⎤⎦
Draw the Gershgorin discs.

Solution Using the rows of A, we find that the Gershgorin discs are C1(4 − i, 3), C2(2i, 3), and
C3(−5, 2). By using the columns of A, we obtain more Gershgorin discs: D1(4 − i, 2),
D2(2i, 3), and D3(−5, 3). Consequently, all the eigenvalues of A are in the three discs D1,
C2, and C3, as shown in Figure 8.1. By other means, we compute the eigenvalues of A as
λ1 = 3.7208 − 1.05461i , λ2 = 4.5602 + −0.2849i , and λ3 = −0.1605 + 2.3395i . In
Figure 8.1, the center of the discs are designated by dots • and the eigenvalues by ∗. ■

Singular Value Decomposition
This subsection requires of the reader some further knowledge of linear algebra, in particular
the diagonalization of symmetric matrices, eigenvalues, eigenvectors, rank, column space,

8.3 Eigenvalues and Eigenvectors 349

FIGURE 8.1

Gershorgin
discs −6 −4 −2 0 2 4 6

−4

−2

0

2

4

6

Re(z)

*

Im(z)

C1

C2, D2

C3

D1

D3 *

*

and norms. See Appendix D for a brief review of these topics. (In the discussion below, we
assume that the Euclidean norm is being used.)

The singular value decomposition is a general-purpose tool that has many uses, par-
ticularly in least-squares problems (Chapter 12). It can be applied to any matrix, whether
square or not. We begin by stating that the singular values of a matrix A are the nonnegative
square roots of the eigenvalues of AT A.

■ THEOREM 5 MATRIX SPECTRAL THEOREM

Let A be m × n. Then AT Ais an n × n symmetric matrix and it can be diagonalized
by an orthogonal matrix, say, Q:

AT A = Q D Q−1

where Q QT = QT Q = I and D is a diagonal n × n matrix.

Furthermore, the diagonal matrix D contains the eigenvalues of AT A on its diagonal. This
follows from the fact that AT A Q = Q D, so the columns of Q are eigenvectors of AT A.
If λ is an eigenvalue of AT A and if x is a corresponding eigenvector, then AT Ax = λx
whence

||Ax||2 = (Ax)T (Ax) = xT AT Ax = xT λx = λ||x||2

This equation shows that λ is real and nonnegative. We can order the eigenvalues as
λ1 � λ2 � · · · � λn � 0. (Reordering the eigenvalues requires reordering the columns of Q.)
The numbers σ j = +√λ j are the singular values of A.

350 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Since Q is an orthogonal matrix, its columns form an orthonormal base for R
n . They

are unit eigenvectors of AT A, so if v j is the j th column of Q, then AT Av j = λ jv j . Some
of the eigenvalues of AT A can be zero. Define r by the condition

λ1 � λ2 � · · · � λr > 0 = λr+1 = · · · = λn

For a review of concepts such as rank, orthogonal basis, orthonormal basis, column
space, null space, and so on, see Appendix D.

■ THEOREM 6 ORTHOGONAL BASIS THEOREM

If the rank of A is r , then an orthogonal basis for the column space of A is {Av j :
1 � j � r}.

Proof Observe that

(Avk)
T (Av j) = vT

k AT Av j = vT
k λ jv j = λ jδk j

This establishes the orthogonality of the set {Av j : 1 � j � n}. By letting k = j , we get
||Av j ||2 = λ j . Hence, Av j �= 0 if and only if 1 � j � r . If w is any vector in the column
space of A, then w = Ax for some x in R

n . Putting x = ∑n
j=1 c jv j , we get

w = Ax =
n∑

j=1

c j Av j =
r∑

j=1

c j Av j

and therefore, w is in the span of {Av1, Av2, . . . , Avr }. ■

The preceding theorem gives a reasonable way of computing the rank of a numerical
matrix. First, compute its singular values. Any that are very small can be assumed to be
zero. The remaining ones are strongly positive, and if there are r of them, we take r to be
the numerically computed rank of A.

A singular value decomposition of an m × n matrix A is any representation of A in
the form

A = U DV T

where U and V are orthogonal matrices and D is an m ×n diagonal matrix having nonneg-
ative diagonal entries that are ordered d11 � d22 � · · · � 0. Then from Problem 4, it follows
that the diagonal elements dii are necessarily the singular values of A. Note that the matrix
U is m × m and V is n × n. A nonsquare matrix D is nevertheless said to be diagonal if
the only elements that are not zero are among those whose two indices are equal.

One singular value decomposition of A (there are many of them) can be obtained from
the work described above. Start with the vectors v1, v2, . . . , vr . Normalize the vectors Av j

to get vectors u j . Thus, we have

u j = Av j/||Av j || (1 � j � r)

Extend this set to an orthonormal base for R
m . Let U be the m×m matrix whose columns are

u1, u2, . . . , um . Define D to be the m×n matrix consisting of zeros except for σ1, σ2, . . . , σr

on its diagonal. Let V = Q, where Q is as above.

8.3 Eigenvalues and Eigenvectors 351

To verify the equation A = U DV T , first note that σ j = ||Av j ||2 and that σ j u j = Av j .
Then compute U D. Since D is diagonal, this is easy. We get

U D = [u1, u2, . . . , um]D = [σ1u1, σ2u2, . . . , σr ur , 0, . . . , 0]

= [Av1, Av2, . . . , Avr , . . . , Avn] = A Q = AV

This implies that

A = U DV T

The condition number of a matrix can be expressed in terms of its singular values

κ(A) =
√

σmax

σmin

since ||A||22 = ρ(AT A) = σmax(A) and ||A−1||22 = ρ(A−T A−1|| = σmin(A).

Numerical Examples of Singular Value Decomposition
The numerical determination of a singular value decomposition is best left to the available
high-quality software. Such programs can be found in Matlab, Maple, LAPACK, and other
software packages. The high-quality programs do not form AT A and seek its eigenvalues.
One wishes to avoid using AT A in numerical work because its condition number may be
much worse than that of A. This phenomenon is easily illustrated by the matrices

A =

⎡⎢⎢⎣
1 1 1
ε 0 0
0 ε 0
0 0 ε

⎤⎥⎥⎦, AT A =
⎡⎣1 + ε2 1 1

1 1 + ε2 1
1 1 1 + ε2

⎤⎦
There will be certain small values of ε for which A has rank 3 and AT A has rank 1 (in the
computer).

EXAMPLE 5 In an example in Section 1.1 (p. 4), we encountered this matrix:

A =
[

0.1036 0.2122
0.2081 0.4247

]
Determine its eigenvalues, singular values, and condition number.

Solution By using mathematical software, it is easy to find the eigenvalues λ1(A) ≈ −0.0003 and
λ2(A) ≈ 0.5286. We can form the matrix

AT A =
[

0.0540 01104
0.1104 0.2254

]
and find its eigenvalues λ1(AT A) ≈ 0.3025×10−4 and λ2(AT A) ≈ 0.2794. Therefore, the
singular values are σ1(A) =

√
|λ1(AT A)| ≈ 0.0003 and σ2(A) =

√
|λ2(AT A)| ≈ 0.5286.

Also, we can obtain the singular values directly as σ1 ≈ 0.0003 and σ2 ≈ 0.5286 using
mathematical software. Consequently, the condition number is κ(A) = σ2/σ1 ≈ 1747.6.
Because of this large condition number, we now understand why there was difficultly in
solving a linear system of equations with this coefficient matrix! ■

352 Chapter 8 Additional Topics Concerning Systems of Linear Equations

EXAMPLE 6 Calculate the singular value decomposition of the matrix

A =
⎡⎣ 1 1

0 1
1 0

⎤⎦ (1)

Solution Here, the matrix A is m × n and m = 3 and n = 2. First, we find that the eigenvalues of
the matrix

AT A =
[

2 1
1 2

]
arranged in descending order are λ1 = 3 and λ1 = 1. The number of nonzero eigenvalues of
the matrix AT A is 2. Next, we determine that the eigenvectors of the matrix AT A are [1, 1]T

for λ1 = 3 and [1, −1]T for λ2 = 1. Consequently, the orthonormal set of eigenvectors
of AT A are

[
1
2

√
2, 1

2

√
2
]T

for λ1 = 3 and
[

1
2

√
2, − 1

2

√
2
]T

. Then we arrange them in the
same order as the eigenvalues to form the column vectors of the n × n matrix V :

V = [
v1 v2

] =
[

1
2

√
2 1

2

√
2

1
2

√
2 − 1

2

√
2

]
Now we form a diagonal matrix D, placing on the leading diagonal the singular values:
σi = √

λi . Since σ1 = √
3 and σ2 = 1, the m × n singular value matrix is

D =

⎡⎢⎣
√

3 0

0
√

1

0 0

⎤⎥⎦
Here, on the leading diagonal are the square roots of the eigenvalues of AT A in descending
order, and the rest of the entries of the matrix D are zeros. Next, we compute vectors
ui = σ−1

i Avi for i = 1 and form the column vectors of the m × m matrix U . In this case,
we find

u1 = σ−1
1 Av1 = 1

3

√
3

⎡⎢⎣1 1

0 1

1 0

⎤⎥⎦[1
2

√
2

1
2

√
2

]
=

⎡⎢⎣
1
3

√
6

1
6

√
6

1
6

√
6

⎤⎥⎦
and

u2 = σ−1
2 Av2 =

⎡⎢⎣ 1 1

0 1

1 0

⎤⎥⎦[1
2

√
2

− 1
2

√
2

]
=

⎡⎢⎣ 0

− 1
2

√
2

1
2

√
2

⎤⎥⎦
Finally, we add to the matrix U the rest of the m − r vectors using the Gram-Schmidt
orthogonalization process. So we make the vector u3 perpendicular to u1 and u2:

ũ3 = e1 − (
uT

1 e1

)
u1 − (

uT
1 e2

)
u2 =

⎡⎢⎣
1
3

− 1
3

− 1
3

⎤⎥⎦

8.3 Eigenvalues and Eigenvectors 353

Normalizing the vector u3, we get

u3 =

⎡⎢⎣
1
3

√
3

− 1
3

√
3

− 1
3

√
3

⎤⎥⎦
So we have the matrix

U = [
u1 u2 u′

3

] =

⎡⎢⎣
1
3

√
6 0 1

3

√
3

1
6

√
6 1

2

√
2 − 1

3

√
3

1
6

√
6 − 1

2

√
2 − 1

3

√
3

⎤⎥⎦
The singular value decomposition of the matrix A is

A = U DV T⎡⎢⎣ 1 1

0 1

1 0

⎤⎥⎦ =

⎡⎢⎣
1
3

√
6 0 1

3

√
3

1
6

√
6 1

2

√
2 − 1

3

√
3

1
6

√
6 − 1

2

√
2 − 1

3

√
3

⎤⎥⎦
⎡⎢⎣

√
3 0

0
√

1

0 0

⎤⎥⎦[1
2

√
2 1

2

√
2

1
2

√
2 − 1

2

√
2

]

So there we have it! Fortunately, there is mathematical software for doing all of this instantly!
We can verify the results by computing the diagonal matrix and the matrix A from the
factorization. ■

See Chapters 12 and 16, for some important applications of the singular value decom-
position. Further examples are given there and in the problems of those chapters.

Application: Linear Differential Equations
The application of eigenvalue theory to systems of linear differential equations will be briefly
explained here. Let us start with a single linear differential equation with one dependent
variable x . The independent variable is t and often represents time. We write x ′ = ax , or
in more detail (d/dt)x(t) = ax(t). There is a family of solutions, namely, x(t) = ceat ,
where c is an arbitrary real parameter. If an initial value x(0) is prescribed, we shall need
parameter c to get the initial value right.

A pair of linear differential equations with two dependent variables, x1 and x2 will
look like this: {

x ′
1 = a11x1 + a12x2

x ′
2 = a21x1 + a22x2

The general form of a system of n linear first-order differential equations, with constant
coefficients, is simply x ′ = Ax. Here, A is an n × n numerical matrix, and the vector x has
n components, x j , each being a function of t . Differentiation is with respect to t . To solve
this, we are guided by the easy case of n = 1, discussed above. Here, we try x(t) = eλtv,
where v is a constant vector. Taking the derivative of x, we have x ′ = λeλtv. Now the
system of equations has become λeλtv = Aeλtv, or λv = Av. This is how eigenvalues
come into the process. We have proved the following result.

354 Chapter 8 Additional Topics Concerning Systems of Linear Equations

■ THEOREM 7 LINEAR DIFFERENTIAL EQUATIONS

If λ is an eigenvalue of the matrix A and if v is an accompanying eigenvector, then
one solution of the differential equation x ′ = Ax is x(t) = eλtv.

Application: A Vibration Problem
Eigenvalue-eigenvector analysis can be utilized for a variety of differential equations. Con-
sider the system of two masses and three springs shown in Figure 8.2. Here, the masses are
constrained to move only in the horizontal direction.

FIGURE 8.2

Two-mass
vibration
problem

From this situation, we write the equations of motion in matrix-vector form:[
x ′′

1

x ′′
2

]
=
[−β α

α −β

] [
x1

x2

]
x ′′ = Ax

By assuming that the solution is purely oscillatory (no damping), we have

x = veiωt

In matrix form, we get [
x1

x2

]
=
[

v1

v2

]
eiωt

By differentiation, we obtain

x ′′ = −ω2veiωt = −ω2x

and [−β α

α −β

]
x = −ω2x

This is the eigenvalue problem

Ax = λx

where λ = −ω2. Eigenvalues can be found from the characteristic equation:

det(A + ω2 I) = det

[
ω2 − β α

α ω2 − β

]
= 0

This is (ω2 − β)2 − α2 = ω4 − 2βω2 + (β2 − α2) = 0, and

ω2 = 1

2

[
2β ±

√
4β2 − 4(β2 − α2)

]
= β ± α

For simplicity, we now assume unit masses and unit springs so that β = 2 and α = 1. Then
we obtain

A =
[−2 1

1 −2

]

8.3 Eigenvalues and Eigenvectors 355

Then the roots of the characteristic equations are ω2
1 = β + α = 3 and ω2

2 = β − α = 1.
Next, we can find the eigenvectors. For the first eigenvalue, we obtain

(A + ω2
1 I)v1 = 0

[
1 1
1 1

] [
v11

v12

]
= 0

Since v11 = −v12, we obtain the first eigenvector

v1 =
[

1
−1

]
For the second eigenvector, we have

(A + ω2
2 I)v2 = 0

[−1 1
1 −1

] [
v21

v22

]
= 0

Since v21 = −v22, we obtain the first eigenvector

v2 =
[

1
1

]
The general solution for the equations of motion for the two-mass system is

x(t) = c1v1eiω1t + c2v1e−iω1t + c3v2eiω2t + c4v2e−iω2t

Because the solution was for the square of the frequency, each frequency is used twice
(one positive and one negative). We can use initial conditions to solve for the unknown
coefficients.

Summary

(1) An eigenvalue λ and eigenvector x satisfy the equation Ax = λx. The direct method
to compute the eigenvalues is to find the roots of the characteristic equation p(λ) =
det(A − λI) = 0. Then, for each eigenvalue λ, the eigenvectors can be found by solv-
ing the homogeneous system (A − λI)x = 0. There are software packages for finding the
eigenvalue-eigenvector pairs using more sophisticated methods.

(2) There are many useful properties for matrices that influence their eigenvalues. For ex-
ample, the eigenvalues are real when A is symmetric or Hermitian. The eigenvalues are
positive when A is symmetric or Hermitian positive definite.

(3) Many eigenvalue procedures involve similarity or unitary transformations to produce
triangular or diagonal matrices.

(4) Gershgorin’s discs can be used to localize the eigenvalues by finding coarse estimates
of them.

(5) The singular value decomposition of an m × n matrix A is

A = U DV T

where D is an m × n diagonal matrix whose diagonal entries are the singular values, U is
an m × m orthogonal matrix, and V is an n × n orthogonal matrix. The singular values of
A are the nonnegative square roots of the eigenvalues of AT A.

356 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Problems 8.3

1. Are [i, −1 + i]T and [−i, −1 − i]T eigenvectors of the matrix in Example 2?

2. Prove that if λ is an eigenvalue of a real matrix with eigenvector x, then λ is also an
eigenvalue with eigenvector x. (For a complex number z = x + iy, the conjugate is
defined by z = x − iy.)

3. Let

A =
[

cos θ − sin θ

sin θ cos θ

]
Account for the fact that the matrix A has the effect of rotating vectors counterclockwise
through an angle θ and thus cannot map any vector into a multiple of itself.

4. Let A be an m × n matrix such that A = U DV T , where U and V are orthogonal and
D is diagonal and nonnegative. Prove that the diagonal elements of D are the singular
values of A.

5. Let A, U , D, and V be as in the singular value decomposition: A = U DV T . Let r be
as described in the text. Define U r to consist of the first r columns of U . Let V r consist
of the first r columns of V , and let Dr be the r × r matrix having the same diagonal as
D. Prove that A = U r Dr V T

r . (This factorization is called the economical version of
the singular value decomposition.)

6. A linear map P is a projection if P2 = P . We can use the same terminology for
an n × n matrix: A2 = A is the projection property. Use the Pierce decomposition,
I = A + (I − A), to show that every point in R

n is the sum of a vector in the range of
A and a vector in the null space of A. What are the eigenvalues of a projection?

7. Find all of the Gershgorin discs for the following matrices. Indicate the smallest
region(s) containing all of the eigenvalues:

a.

⎡⎣ 3 −1 1
2 4 −2
3 −1 9

⎤⎦ b.

⎡⎣ 3 1 2
−1 4 −1
1 −2 9

⎤⎦ c.

⎡⎣1 − i 1 i
0 2i 2
1 0 2

⎤⎦
8. (Multiple choice) Let A be an n ×n invertible (nonsingular) matrix. Let x be a nonzero

vector. Suppose that Ax = λx. Which equation does not follow from these hypotheses?

a. Ak x = λk x b. λ−k x = (A−1)k x for k � 0

c. p(A)x = p(λ)x for any polynomial p d. Ak x = (1 − λ)k x

e. None of these.

a9. (Multiple choice) For what values of s will the matrix I − svv∗ be unitary, where v is
a column vector of unit length?

a. 0, 1 b. 0, 2 c. 1, 2 d. 0,
√

2 e. None of these.

10. (Multiple choice) Let U and V be unitary n × n matrices, possibly complex. Which
conclusion is not justified?

8.3 Eigenvalues and Eigenvectors 357

a. U + V is unitary. b. U∗ is unitary. c. U V is unitary.

d. U −vv∗ is unitary when ||v|| = √
2 and v is a column vector. e. None of these.

a11. (Multiple choice) Which assertion is true?

a. Every n × n matrix has n distinct (different) eigenvalues.

b. The eigenvalues of a real matrix are real.

c. If U is a unitary matrix, then U∗ = U T

d. A square matrix and its transpose have the same eigenvalues. e. None of these.

12. (Multiple choice) Consider the symmetric matrix

A =

⎡⎢⎢⎣
1 3 4 −1
3 7 −6 1
4 −6 3 0

−1 1 0 5

⎤⎥⎥⎦
What is the smallest interval derived from Gershgorin’s Theorem such that all eigen-
values of the matrix A lie in that interval?

a. [−7, 9] b. [−7, 13] c. [3, 7] d. [−3, 17] e. None of these.

13. (True or false) Gershgorin’s Theorem asserts that every eigenvalue λ of an n ×n matrix
A must satisfy one of these inequalities:

|λ − aii | �
n∑

j=1
j �=i

|ai j | for 1 � i � n.

14. (True or false) A consequence of Schur’s Theorem is that every square matrix A can be
factored as A = PT P−1, where P is a nonsingular matrix and T is upper triangular.

15. (True or false) A consequence of Schur’s Theorem is that every (real) symmetric matrix
A can be factored in the form A = P D P−1, where P is unitary and D is diagonal.

16. Explain why ||U B||2 = ||B||2 for any matrix B when U T U = I .

17. Consider the matrix A =

⎡⎢⎣ 4 − 1
2 0

3
5 5 − 3

5

0 1
2 3

⎤⎥⎦. Plot the Gershgorin discs in the complex

plane for A and AT as well as indicate the locations of the eigenvalues.

18. (Continuation) Let B be the matrix obtained by changing the negative entries in A to
positive numbers. Repeat the process for B.

19. (Continuation) Repeat for C =
⎡⎣4 0 −2

1 2 0
1 1 9

⎤⎦.

20. Find the Schur decomposition of A =
[

5 7
−2 −4

]
.

358 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Computer Problems 8.3

1. Use Matlab, Maple, Mathematica, or other computer programs available to you to
compute the eigenvalues and eigenvectors of these matrices:

a. A =
[

1 7
2 −5

]

b.

⎡⎢⎢⎢⎢⎣
4 −7 3 2 3
1 6 11 −1 2
5 −5 −2 −4 1
9 −3 1 6 5
3 2 5 −5 1

⎤⎥⎥⎥⎥⎦
c. Let n = 12, ai j = i/j when i � j , and ai j = j/ i when i > j . Find the eigenvalues.

d. Create an n×n matrix with a tridiagonal structure and nonzero elements (−1, 2, −1)

in each row. For n = 5 and 20, find all of the eigenvalues, and verify that they are
2 − 2 cos(jπ/(n + 1)).

e. For any positive integer n, form the symmetric matrix A whose upper triangular
part is given by ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n n − 1 n − 2 n − 3 · · · 2 1
n − 1 n − 2 n − 3 · · · 2 1

n − 2 n − 3 · · · 2 1
. . . · · · ...

...

. . . 2 1
2 1

1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The eigenvalues of A are 1/{2−2 cos[(2i −1)π/(2n +1)]}. (See Frank [1958] and
Gregory and Karney [1969].) Numerically verify this result for n = 30.

2. Use Matlab to compute the eigenvalues of a random 100 × 100 matrix by direct use
of the command eig and by use of the commands poly and roots. Use the timing
functions to determine the CPU time for each.

3. Let p be the polynomial of degree 20 whose roots are the integers 1, 2, . . . , 20. Find
the usual power form of this polynomial so that p(t) = t20 +a19t19 +a18t18 +· · ·+a0.
Next, form the so-called companion matrix, which is 20 × 20 and has zeros in all
positions except all 1’s on the superdiagonal and the coefficients −a0, −a1, . . . ,−a19

as its bottom row. Find the eigenvalues of this matrix, and account for any difficulties
encountered.

4. (Student research project) Investigate some modern methods for computing eigen-
values and eigenvectors. For the symmetric case, see the book by Parlett [1997]. Also,
read the LAPACK User’s Guide. (See Anderson, et al. [1999].)

5. (Student research project) Experiment with the Cayley-Hamilton Theorem, which
asserts that every square matrix satisfies its own characteristic equation. Check this

8.3 Eigenvalues and Eigenvectors 359

numerically by using Matlab or some other mathematical software system. Use matrices
of size 3, 6, 9, 12, and 15, and account for any surprises. If you can use higher-precision
arithmetic do so—Matlab works with 15 digits of precision.

6. (Student research project) Experiment with the Q R algorithm and the singular value
decomposition of matrices—for example, using Matlab. Try examples with four types
of equations Ax = b—namely, (a) the system has a unique solution; (b) the system has
many solutions; (c) the system is inconsistent but has a unique least-squares solution;
(d) the system is inconsistent and has many least-squares solutions.

7. Using mathematical software such as Matlab, Maple, or Mathematica on each of the
following matrices, compute the eigenvalues via the characteristic polynomial, compute
the eigenvectors via the null space of the matrix, and compute the eigenvalues and
eigenvectors directly:

a.
[

3 2
7 −1

]
b.

⎡⎣ 1 3 −7
−3 4 1

2 −5 3

⎤⎦
8. Using mathematical software such as Matlab, Maple, or Mathematica, determine the

execution time for computing all eigenvalues of a 1000 × 1000 matrix with random
entries.

9. Using mathematical software such as Matlab, Maple, or Mathematica, compute the
Schur factorization of these complex matrices, and verify the results according to
Schur’s Theorem and its corollaries:

a.
[

3 − i 2 − i
2 + i 3 + i

]
b.
[

2 + i 3 + i
3 − i 2 − i

]
c.
[

2 − i 2 + i
3 − i 3 + i

]
10. Using mathematical software such as Matlab, Maple, or Mathematica, compute the

singular value decomposition of these matrices, and verify that each result satisfies the
equation A = U DV T :

a.

⎡⎣ 1 1
0 1
1 0

⎤⎦ b.

⎡⎢⎢⎣
1 3 −2
2 7 5

−2 −3 4
5 −3 −2

⎤⎥⎥⎦
Create the diagonal matrix D = U T AV to check the results (always recommended).
One can see the effects of roundoff errors in these calculations, for the off-diagonal
elements in D are theoretically zero.

a11. Consider A =

⎡⎢⎢⎣
5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

⎤⎥⎥⎦. Find the eigenvalues and accompanying eigenvectors

of this matrix, from Gregory and Karney [1969], without using software. Hint: The
answers can be integers.

12. Find the singular value decomposition of these matrices:

a.
[

2 1 −2
]

b.
[

3
4

]
c.
[− 5

2 + 3
√

3 5
2

√
3 + 3

]

360 Chapter 8 Additional Topics Concerning Systems of Linear Equations

d.

⎡⎢⎣ 2 2 2 2
17
10

1
10 − 17

10 − 1
10

3
5

9
5 − 3

5 − 9
5

⎤⎥⎦ e.

⎡⎢⎣
7
2 − 13

6

√
6 7

2 + 13
6

√
6

− 7
2 − 13

6

√
6 − 7

2 + 13
6

√
6

− 13
6

√
6 13

6

√
6

⎤⎥⎦
13. Consider B =

⎡⎣−149 −50 −154
537 180 546
−27 −9 −25

⎤⎦. Find the eigenvalues, singular values, and

condition number of the matrix B.

8.4 Power Method
A procedure called the power method can be employed to compute eigenvalues. It is an
example of an iterative process that, under the right circumstances, will produce a sequence
converging to an eigenvalue of a given matrix.

Suppose that A is an n × n matrix, and that its eigenvalues (which we do not know)
have the following property:

|λ1| > |λ2| � |λ3| � · · · � |λn|
Notice the strict inequality in this hypothesis. Except for that, we are simply ordering the
eigenvalues according to decreasing absolute value. (This is only a matter of notation.) Each
eigenvalue has a nonzero eigenvector u(i) and

Au(i) = λi u(i) (i = 1, 2, . . . , n) (1)

We assume that there is a linearly independent set of n eigenvectors {u(1), u(2), . . . , u(n)}.
It is necessarily a basis for C

n .
We want to compute the single eigenvalue of maximum modulus (the dominant eigen-

value) and an associated eigenvector. We select an arbitrary starting vector, x(0) ∈ C
n and

express it as a linear combination of u(1), u(2), . . . , u(n):

x(0) = c1u(1) + c2u(2) + · · · + cn u(n)

In this equation, we must assume that c1 �= 0. Since the coefficients can be absorbed into
the vectors u(i), there is no loss of generality in assuming that

x(0) = u(1) + u(2) + · · · + u(n) (2)

Then we repeatedly carry out matrix-vector multiplication, using the matrix A to produce
a sequence of vectors. Specifically, we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x(1) = Ax(0)

x(2) = Ax(1) = A2x(0)

x(3) = Ax(2) = A3x(0)

...

x(k) = Ax(k−1) = Ak x(0)

...

8.4 Power Method 361

In general, we have

x(k) = Ak x(0) (k = 1, 2, 3, . . .)

Substituting x(0) in Equation (2), we obtain

x(k) = Ak x(0)

= Ak u(1) + Ak u(2) + Ak u(3) + · · · + Ak u(n)

= λk
1u(1) + λk

2u(2) + λk
3u(3) + · · · + λk

n u(n)

by using Equation (1). This can be written in the form

x(k) = λk
1

[
u(1) +

(
λ2

λ1

)k

u(2) +
(

λ3

λ1

)k

u(3) + · · · +
(

λn

λ1

)k

u(n)

]

Since |λ1| > |λ j | for j > 1, we have |λ j/λ1| < 1 and
(
λ j/λ1

)k → 0 as k → ∞. To simplify
the notation, we write the above equation in the form

x(k) = λk
1

[
u(1) + ε(k)

]
(3)

where ε(k) → 0 as k → ∞. We let ϕ be any complex-valued linear functional on C
n such

that ϕ(u(1)) �= 0. Recall that ϕ is a linear functional if ϕ(ax + b y) = aϕ(x) + bϕ(y) for
scalars a and b and vectors x and y. For example, ϕ(x) = x j for some fixed j (1 � j � n)
is a linear functional. Now, looking back at Equation (3), we apply ϕ to it:

ϕ
(

x(k)
) = λk

1

[
ϕ
(
u(1)

)+ ϕ
(
ε(k)

)]
Next, we form ratios r1, r2, . . . as follows:

rk ≡ ϕ
(

x(k+1)
)

ϕ
(

x(k)
) = λ1

[
ϕ
(
u(1)

)+ ϕ
(
ε(k+1)

)
ϕ
(
u(1)

)+ ϕ
(
ε(k)

)]
→ λ1 as k → ∞

Hence, we are able to compute the dominant eigenvalue λ1 as the limit of the sequence
{rk}. With a little more care, we can get an accompanying eigenvector. In the definition
of the vectors x(k) in Equation (2), we see nothing to prevent the vectors from growing
or converging to zero. Normalization will cure this problem, as in one of the pseudocodes
below.

Power Method Algorithms
Here we present pseudocode for calculating the dominant eigenvalue and an associated
eigenvector for a prescribed matrix A. In each algorithm, ϕ is a linear functional chosen by
the user. For example, one can use ϕ(x) = x1 (the first component of the vector).

362 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Power Method Algorithm

integer k, kmax , n; real r
real array (A)1:n×1:n , (x)1:n , (y)1:n

external function ϕ

output 0, x
for k = 1 to kmax do

y ← Ax
r ← ϕ(y)/ϕ(x)

x ← y
output k, x, r

end do

We use a simple 2×2 matrix such as A =
[

3 1
1 3

]
to give a geometric illustration of the

power method as shown in Figure 8.3. Clearly, the eigenvalues are λ1 = 2 and λ2 = 4 with
eigenvectors v(1) = [−1, 1]T and v(2) = [1, 1]T , respectively. Starting with x(0) = [0, 1]T ,
the power method repeatedly multiplies the matrix A by a vector. It produces a sequence
of vectors x(1), x(2), and so on that move in the direction of the eigenvector v(2), which
corresponds to the dominant eigenvalue λ2 = 4.

FIGURE 8.3

In 2D, power
method

illustration

v(2) x(0) x(1) x(2)
v(1)

0–1 1

We can easily modify this algorithm to produce normalized eigenvectors by using the
infinity vector norm ||x||∞ = max1 � j � n |x j |, as in the following code:

Modified Power Method Algorithm with Normalization

integer k, kmax , n; real r
real array (A)1:n×1:n , (x)1:n , (y)1:n

external function ϕ

output 0, x
for k = 1 to kmax do

y ← Ax
r ← ϕ(y)/ϕ(x)

x ← y/|| y||∞
output k, x, r

end do

8.4 Power Method 363

Aitken Acceleration
From a given sequence {rk}, we can construct another sequence {sk} by means of the Aitken
acceleration formula

sk = rk − (rk − rk−1)
2

rk − 2rk−1 + rk−2
(k � 3)

If the original sequence {rk} converges to r and if certain other conditions are satisfied, then
the new sequence {sk} will converge to r more rapidly than the original one. (For details,
see Kincaid and Cheney [2002].) Because subtractive cancellation may eventually spoil the
results, the Aitken acceleration process should be stopped soon after the values become
apparently stationary.

EXAMPLE 1 Use the modified power method algorithm and Aitken acceleration to find the dominant
eigenvalue and an eigenvector of the given matrix A, with vector x(0) and ϕ(x) given as
follows:

A =
⎡⎣ 6 5 −5

2 6 −2
2 5 −1

⎤⎦, x(0) =
⎡⎣−1

1
1

⎤⎦, ϕ(x) = x2

Solution After coding and running the modified power method algorithm with Aitken acceleration,
we obtain the following results:

x(0) = [−1.0000, 1.0000, 1.0000]T

x(1) = [−1.0000, 0.3333, 0.3333]T r0 = 2.0000
x(2) = [−1.0000, −0.1111, −0.1111]T r1 = −2.0000
x(3) = [−1.0000, −0.4074, −0.4074]T r2 = 22.0000
x(4) = [−1.0000, −0.6049, −0.6049]T r3 = 8.9091 s3 = 13.5294
x(5) = [−1.0000, −0.7366, −0.7366]T r4 = 7.3061 s4 = 7.0825
x(6) = [−1.0000, −0.8244, −0.8244]T r5 = 6.7151 s5 = 6.3699

...
...

...

x(14) = [−1.0000, −0.9931, −0.9931]T r13 = 6.0208 s13 = 6.0005

The Aitken-accelerated sequence, sk , converges noticeably faster than the sequence {rk}.
The actual dominant eigenvalue and an associated eigenvector are

λ1 = 6 u(1) = [1, 1, 1]T
■

The coding of the modified power method is very simple, and we leave the actual imple-
mentation as an exercise. We also use the simple infinity-norm for normalizing the vectors.
The final vectors and estimates of the eigenvalue are displayed with 15 decimals digits.

In such a problem, one should always seek an independent verification of the purported
answer. Here, we simply compute Ax to see whether it coincides with s14x. The last few
commands in the code are doing this rough checking, taking s14 as probably the best estimate
of the eigenvalue and the last x-vector as the best estimate of an eigenvector. The results
after 14 steps are not very accurate. For better accuracy, take 80 steps!

364 Chapter 8 Additional Topics Concerning Systems of Linear Equations

Inverse Power Method
It is possible to compute other eigenvalues of a matrix by using modifications of the power
method. For example, if A is invertible, we can compute its eigenvalue of smallest magnitude
by noting this logical equivalence:

Ax = λx ⇐⇒ x = A−1(λx) ⇐⇒ A−1x = 1

λ
x

Thus, the smallest eigenvalue of A in magnitude is the reciprocal of the largest eigenvalue
of A−1. We compute it by applying the power method to A−1 and taking the reciprocal of
the result.

Suppose that there is a single smallest eigenvalue of A. With our usual ordering, this
will be λn:

|λ1| � |λ2| � |λ3| � · · · � |λn−1| > |λn| > 0

It follows that A is invertible. (Why?) The eigenvalues of A−1 are λ−1
j for 1 � j � n. There-

fore, we have

|λ−1
n | > |λ−1

n−1| � · · · � |λ−1
1 | > 0

We can use the power method on the matrix A−1 to compute its dominant eigenvalue λ−1
n .

The reciprocal of this is the eigenvalue of A that we sought. Notice that we need not compute
A−1 because the equation

x(k+1) = A−1x(k)

is equivalent to the equation

Ax(k+1) = x(k)

and the vector x(k+1) can be more easily computed by solving this last linear system. To do
this, we first find the LU factorization of A, namely, A = LU . Then we repeatedly update
the right-hand side and back solve:

U x(k+1) = L−1x(k)

to obtain x(1), x(2),

EXAMPLE 2 Compute the smallest eigenvalue and an associated eigenvector of the following matrix:

A = 1

3

⎡⎣−154 528 407
55 −144 −121

−132 396 318

⎤⎦
using the following initial vector and linear function:

x(0) = [1, 2, 3]T , ϕ(x) = x2

Solution We decide to take the easy route and use the inverse of A for producing the successive
x vectors. We leave the actual implementation as an exercise. The ratios rk are saved, and
once it is complete, the Aitken accelerated values, sk , are computed. Notice that at the end,
we will want the reciprocal of the limiting ratio. Hence, it is easier to use reciprocals at
every step in the code. Thus, you see rk = x2/y2 rather than y2/x2, and these ratios should

8.4 Power Method 365

converge to the smallest eigenvalue of A. The final results after 80 steps are these:

x = [0.26726101285547, −0.53452256017715, 0.80178375118802]T

s80 = 3.33333333343344

We can divide each entry in x by the first component and arrive at

x = [1.0, −2.00000199979120, 3.00000266638827]T

The eigenvalue is actually 10
3 , and the eigenvector should be [1, −2, 3]T . The discrepancy

between Ax and s80x is about 2.6 × 10−6. ■

Software Examples: Inverse Power Method
Using mathematical software on a small example,

A =
⎡⎣ 6 5 −5

2 6 2
2 5 −1

⎤⎦ (4)

we can first get A−1 and then use the power method. (We have changed one entry in the
matrix A from Example 1 to solve a different problem.) We leave the implementation of
the code as an exercise. In the code, r is the reciprocal of the quantity r in the original
power method. Thus, at the end of the computation, r should be the eigenvalue of A that
has the smallest absolute value. After the prescribed 30 steps, we find that r = 0.214
and x = [0.7916, 0.5137, 0.3308]T . As usual, we can verify the result independently by
computing Ax and r x, which should be equal. The method just illustrated is called the
inverse power method. On larger examples, the successive vectors should be computed
not via A−1 but rather by solving the equation A y = x for y. In mathematical software
systems such as Matlab, Maple, and Mathematica, this can be done with a single command.
Alternatively, one can get the LU factorization of A and solve Lz = x and U y = z.

In this example, two eigenvalues are complex. Since the matrix is real, they must be
conjugate pairs of the form α + βi and α − βi . They have the same magnitude; thus, the
hypothesis |λ1| > |λ2| needed in the convergence proof of the power method is violated.
What happens when the power method is applied to A? The values of r for k = 26 to 30
are 0.76, −53.27, 8.86, 2.69, and −9.42. We leave the implementation of the code as a
computer problem.

Shifted (Inverse) Power Method
Other eigenvalues of a matrix (besides the largest and smallest) can be computed by
exploiting the following logical equivalences:

Ax = λx ⇐⇒ (A − μI)x = (λ − μ)x ⇐⇒ (A − μI)−1x = 1

λ − μ
x

If we want to compute an eigenvalue of A that is close to a given number μ, we can apply
the inverse power method to A − μI and take the reciprocal of the limiting value of r . This
should be λ − μ.

366 Chapter 8 Additional Topics Concerning Systems of Linear Equations

We can also compute an eigenvalue of A that is farthest from a given number μ.
Suppose that for some eigenvalue λ j of matrix A, we have

|λ j − μ| > ε and 0 < |λi − μ| < ε for all i �= j

Consider the shifted matrix A − μI . Applying the power method to the shifted matrix
A − μI , we compute ratios rk that converge to λ j − μ. This procedure is called the shifted
power method.

If we want to compute the eigenvalue of A that is closest to a given number μ, a variant
of the above procedure is needed. Suppose that λ j is an eigenvalue of A such that

0 < |λ j − μ| < ε and |λi − μ| > ε for all i �= j

Consider the shifted matrix A − μI . The eigenvalues of this matrix are λi − μ. Applying
the inverse power method to A−μI gives an approximate value for (λ j −μ)−1. We can use
the explicit inverse of A − μI or the LU factorization A − μI = LU . Now we repeatedly
solve the equations

(A − μI)x(k+1) = x(k)

by solving instead U x(k+1) = L−1x(k). Since the ratios rk converge to (λ j − μ)−1, we have

λ j = μ +
(

lim
k→∞

rk

)−1
= μ + lim

k→∞
1

rk

This algorithm is called the shifted inverse power method.

Example: Shifted Inverse Power Method
To illustrate the shifted inverse power method, we consider the following matrix:

A =
⎡⎣1 3 7

2 −4 5
3 4 −6

⎤⎦ (5)

and use mathematical software to compute the eigenvalue closest to −6. The code we
use takes ratios of y2/x2, and we are therefore expecting convergence of these ratios to
λ + 6. After eight steps, we have r = 0.9590 and x = [−0.7081, 0.6145, 0.3478]T .
Hence, the eigenvalue should be λ = 0.9590 − 6 = −5.0410. We can ask Matlab to
confirm the eigenvalue and eigenvector by computing both Ax and λx to be approximately
[3.57, −3.10, −1.75]T .

Summary

(1) We have considered the following methods for computing eigenvalues of a matrix. In
the power method, we approximate the largest eigenvalue λ1 by generating a sequence of
points using the formula

x(k+1) = Ax(k)

and then forming a sequence rk = ϕ(x(k+1))/ϕ(x(k)), where ϕ is a linear functional. Under
the right circumstances, this sequence, rk , will converge to the largest eigenvalue of A.

8.4 Power Method 367

(2) In the inverse power method, we find the smallest eigenvalue λn by using the preceding
process on the inverse of the matrix. The reciprocal of the largest eigenvalue of A−1 is the
smallest eigenvalue of A. We can also describe this process as one of computing the sequence
so that

Ax(k+1) = x(k)

(3) In the shifted power method, we find the eigenvalue that is farthest from a given number
μ by seeking the largest eigenvalue of A − μI . This involves an iteration to produce a
sequence

x(k+1) = (A − μI)x(k)

(4) In the shifted inverse power method, we find the eigenvalue that is closest to μ by
applying the inverse power method to A − μI . This requires solving the equation

(A − μI)x(k+1) = x(k) (A − μI = LU)

Additional References
For supplemental reading and study, see Anderson Bai, Bischof, Blackford, Demmel,
Dongarra, Du Croz, Greenbaum, Hammarling, and McKenney [1999]; Axelsson [1994];
Bai, Demmel, Dongarra, Ruhe, and van der Vorst [2000]; Barrett, Berry, Chan, Demmel,
Donato, Dongarra, Eijkhout, Pozo, Romine, and van der Vorst [1994]; Davis [2006];
Dekker and Hoffmann [1989]; Dekker, Hoffmann, and Potma [1997]; Demmel [1997];
Dongarra et al. [1990]; Elman, Silvester, and Wathen [2004]; Fox [1967]; Gautschi
[1997]; Greenbaum [1997]; Hageman and Young [1981]; Heroux, Raghavan, and Simon
[2006]; Jennings [1977]; Kincaid and Young [1979, 2000]; Lynch [2004]; Meurant [2006];
Noble and Daniel [1988]; Ortega [1990b]; Parlett [2000]; Saad [2003]; Schewchuck [1994];
Southwell [1946]; Stewart [1973]; Trefethen and Bau [1997]; Van der Vorst [2003];
Watkins [1991]; Wilkinson [1988]; and Young [1971].

Problems 8.4

a1. Let A =
[

5 2
4 7

]
. The power method has been applied to the matrix A. The result is

a long list of vectors that seem to settle down to a vector of the form [h, 1]T , where
|h| < 1. What is the largest eigenvalue, approximately, in terms of that number h?

a. 4h + 7 b. 5h + 2 c. 1/h d. 5h + 4 e. None of these.

2. What is the expected final output of the following pseudocode?

integer n, kmax ; real r
real array (A−1)1:n×1:n , (x)1:n , (y)1:n

for k = 1 to 30 do
y ← A−1x
r ← y1/x1 (first components of y and x)
x ← y/|| y||
output r, x

end do

368 Chapter 8 Additional Topics Concerning Systems of Linear Equations

a. r is the eigenvalue of A largest in magnitude, and x is an accompanying eigenvector.

b. r = 1/λ, where λ is the smallest eigenvalue of A, and x is such that Ax = λx.

c. A vector x such that Ax = r x, where r is the eigenvalue of A having the smallest
magnitude.

d. r is the largest (in magnitude) eigenvalue of A and x is a corresponding eigen-
vector of A.

e. None of these.

3. Briefly describe how to compute the following:

a. The dominant eigenvalue and associate eigenvector.

b. The next dominant eigenvalue and associated eigenvector.

c. The least dominant eigenvalue and associated eigenvector.

d. An eigenvalue other than the dominant or least dominant eigenvalue and associated
eigenvectors.

4. Let A =
⎡⎣ 2 −1 0

−1 2 −1
0 −1 2

⎤⎦ Carry out several iterations of the power method, starting

with x(0) = (1, 1, 1). What is the purpose of this procedure?

5. Let B = A−4I =
⎡⎣−2 −1 0

−1 −2 −1
0 −1 −2

⎤⎦. Carry out some iterations of the power method

applied to B, starting with x(0) = (1, 1, 1). What is the purpose of this procedure?

6. Let C = A−1 = 1
4

⎡⎣ 3 2 1
2 4 2
1 2 3

⎤⎦. Carry out a few iterations of the power method applied

to C, starting with x(0) = (1, 1, 1). What is the purpose of this procedure?

7. The Rayleigh quotient is the expression 〈x, x〉A/〈x, x〉 = xT Ax/xT x. How can the
Rayleigh quotient be used when Ax = λx?

Computer Problems 8.4

1. Use the power method, the inverse power method, and their shifted forms as well as
Aitken’s acceleration to find some or all of the eigenvalues of the following matrices:

a.

⎡⎢⎢⎣
5 4 1 1
4 5 1 1
1 1 4 2
1 1 2 4

⎤⎥⎥⎦ b.

⎡⎣ 2 3 4
7 −1 3
1 −1 5

⎤⎦

c.

⎡⎢⎢⎢⎢⎣
−2 1 0 0 0

1 −2 1 0 0
0 1 −2 1 0
0 0 1 −2 1
0 0 0 1 −2

⎤⎥⎥⎥⎥⎦

8.4 Power Method 369

2. Redo the examples in this section, using either Matlab, Maple, or Mathematica.

3. Modify and test the pseudocode for the power method to normalize the vector so
that the largest component is always 1 in the infinity-norm. This procedure gives the
eigenvector and eigenvalue without having to compute a linear functional.

4. Find the eigenvalues of the matrix

A =
⎡⎣−57 192 148

20 −53 −44
−48 144 115

⎤⎦
that are close to −4, 2, and 8 by using the inverse power method.

5. Using mathematical software such as Matlab, Maple, or Mathematica, write and execute
code for implementing the methods in Section 8.4. Verify that the results are consistent
with those described in the text.

a. Example 1 using the modified power method.

b. Example 2 using the inverse power method with Aitken acceleration.

c. Matrix (4) using the inverse power method.

d. Matrix (5) using the shifted power method.

6. Consider the matrix A =

⎡⎢⎣ 1 1 1
2

1 1 1
4

1
2

1
4 2

⎤⎥⎦
a. Use the normalized power method starting with x(0) = [1, 1, 1]T , and find the

dominant eigenvalue and eigenvector of the matrix A.

b. Repeat, starting with the initial value x(0) = [−0.64966116, 0, 74822116, 0]T .
Explain the results. See Ralston [1965, p. 475–476].

7. Let A =
⎡⎣−4 14 0

−5 13 0
−1 0 2

⎤⎦. Code and apply each of the following:

a. The modified power algorithm starting with x(0) = [1, 1, 1]T as well as the Aitken’s
acceleration process.

b. The inverse power algorithm.

c. The shifted power algorithm.

d. The shifted inverse power algorithm.

8. (Continuation) Let B =
⎡⎣ 4 −1 1

−1 3 −2
1 −2 3

⎤⎦. Repeat the previous problem starting with

x(0) = [1, 0, 0]T .

9. (Continuation) Let C =
⎡⎣−8 −5 8

6 3 −8
−3 1 9

⎤⎦. Use x(0) = [1, 1, 1]T . Repeat the previous

problem starting with x(0) = [1, 0, 0]T .

370 Chapter 8 Additional Topics Concerning Systems of Linear Equations

10. By means of the power method, find an eigenvalue and associated eigenvector of these
matrices from the historical books by Fox [1957] and Wilkinson [1965]. Verify your
results by using mathematical software such as Matlab, Maple, or Mathematica.

a.
[

0.9901 0.002
−0.0001 0.9904

]
starting with x(0) = [1, 0.9]T

b.

⎡⎣ 8 −1 −5
−4 4 −2
18 −5 −7

⎤⎦ starting with x(0) = [1, 0.8, 1]T

c.

⎡⎣ 1 1 3
1 −2 1
3 1 3

⎤⎦ starting with x(0) = [1, 1, 1]T

d.

⎡⎣−2 −1 4
2 1 −2

−1 −1 3

⎤⎦ starting with x(0) = [3, 1, 2]T without normalization and with

normalization

11. Find all of the eigenvalues and associated eigenvectors of these matrices from Fox [1957]
and Wilkinson [1965] by means of the power method and variations of it. Verify your
results by using mathematical software such as Matlab, Maple, or Mathematica.

a.
[

2 1
4 2

]
b.
[

0.4812 0.0023
−0.0024 0.4810

]

c.

⎡⎣ 1 1 0
−1 + 10−8 3 0

0 1 1

⎤⎦ d.

⎡⎣ 5 −1 −2
−1 3 −2
−2 −2 5

⎤⎦
e.

⎡⎣ 0.987 0.400 −0.487
−0.079 0.500 −0.479

0.082 0.400 0.418

⎤⎦

9

Approximation by Spline Functions

By experimentation in a wind tunnel, an airfoil is constructed by trial and
error so that it has certain desired characteristics. The cross section of the
airfoil is then drawn as a curve on coordinate paper (see Figure 9.1). To study
this airfoil by analytical methods or to manufacture it, it is essential to have
a formula for this curve. To arrive at such a formula, one first obtains the
coordinates of a finite set of points on the curve. Then a smooth curve called
a cubic interpolating spline can be constructed to match these data points.
This chapter discusses general polynomial spline functions and how they
can be used in various numerical problems such as the data-fitting problem
just described.

FIGURE 9.1

Airfoil cross
section

y

x

9.1 First-Degree and Second-Degree Splines
The history of spline functions is rooted in the work of draftsmen, who often needed to draw
a gently turning curve between points on a drawing. This process is called fairing and can
be accomplished with a number of ad hoc devices, such as the French curve, made of plastic
and presenting a number of curves of different curvature for the draftsman to select. Long
strips of wood were also used, being made to pass through the control points by weights
laid on the draftsman’s table and attached to the strips. The weights were called ducks and
the strips of wood were called splines, even as early as 1891. The elastic nature of the
wooden strips allowed them to bend only a little while still passing through the prescribed
points. The wood was, in effect, solving a differential equation and minimizing the strain
energy. The latter is known to be a simple function of the curvature. The mathematical
theory of these curves owes much to the early investigators, particularly Isaac Schoenberg
in the 1940s and 1950s. Other important names associated with the early development of
the subject (i.e., prior to 1964) are Garrett Birkhoff, C. de Boor, J. H. Ahlberg, E. N. Nilson,

371

372 Chapter 9 Approximation by Spline Functions

H. Garabedian, R. S. Johnson, F. Landis, A. Whitney, J. L. Walsh, and J. C. Holladay. The
first book giving a systematic exposition of spline theory was the book by Ahlberg, Nilson,
and Walsh [1967].

First-Degree Spline
A spline function is a function that consists of polynomial pieces joined together with
certain smoothness conditions. A simple example is the polygonal function (or spline of
degree 1), whose pieces are linear polynomials joined together to achieve continuity, as in
Figure 9.2. The points t0, t1, . . . , tn at which the function changes its character are termed
knots in the theory of splines. Thus, the spline function shown in Figure 9.2 has eight knots.

FIGURE 9.2

First-degree
spline function

x
a � t0 t4t3t2t1 t7 � bt6t5Knots:

S0 S1 S2

S3

S4 S5

S6

Such a function appears somewhat complicated when defined in explicit terms. We are
forced to write

S(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S0(x) x ∈ [t0, t1]

S1(x) x ∈ [t1, t2]
...

...

Sn−1(x) x ∈ [tn−1, tn]

(1)

where

Si (x) = ai x + bi (2)

because each piece of S(x) is a linear polynomial. Such a function S(x) is piecewise linear.
If the knots t0, t1, . . . , tn were given and if the coefficients a0, b0, a1, b1, . . . , an−1, bn−1 were
all known, then the evaluation of S(x) at a specific x would proceed by first determining
the interval that contains x and then using the appropriate linear function for that interval.

If the function S defined by Equation (1) is continuous, we call it a first-degree spline.
It is characterized by the following three properties.

■ DEFINITION 1 SPLINE OF DEGREE 1

A function S is called a spline of degree 1 if:

1. The domain of S is an interval [a, b].

2. S is continuous on [a, b].

3. There is a partitioning of the interval a = t0 < t1 < · · · < tn = b such that S is a
linear polynomial on each subinterval [ti , ti+1].

9.1 First-Degree and Second-Degree Splines 373

Outside the interval [a, b], S(x) is usually defined to be the same function on the left of a as
it is on the leftmost subinterval [t0, t1] and the same on the right of b as it is on the rightmost
subinterval [tn−1, tn], namely, S(x) = S0(x) when x < a and S(x) = Sn−1(x) when x > b.

Continuity of a function f at a point s can be defined by the condition

lim
x→s+

f (x) = lim
x→s−

f (x) = f (s)

Here, limx→s+ means that the limit is taken over x values that converge to s from above
s; that is, (x − s) is positive for all x values. Similarly, limx→s− means that the x values
converge to s from below.

EXAMPLE 1 Determine whether this function is a first-degree spline function:

S(x) =

⎧⎪⎨⎪⎩
x x ∈ [−1, 0]

1 − x x ∈ (0, 1)

2x − 2 x ∈ [1, 2]

Solution The function is obviously piecewise linear but is not a spline of degree 1 because it
is discontinuous at x = 0. Notice that limx→0+ S(x) = limx→0(1 − x) = 1, whereas
limx→0− S(x) = limx→0 x = 0. ■

The spline functions of degree 1 can be used for interpolation. Suppose the following
table of function values is given:

x t0 t1 · · · tn

y y0 y1 · · · yn

There is no loss of generality in supposing that t0 < t1 < · · · < tn because this is only a
matter of labeling the knots.

The table can be represented by a set of n + 1 points in the plane, (t0, y0), (t1, y1), . . . ,

(tn, yn), and these points have distinct abscissas. Therefore, we can draw a polygonal line
through the points without ever drawing a vertical segment. This polygonal line is the graph
of a function, and this function is obviously a spline of degree 1. What are the equations of
the individual line segments that make up this graph?

By referring to Figure 9.3 and using the point-slope form of a line, we obtain

Si (x) = yi + mi (x − ti) (3)

on the interval [ti , ti+1], where mi is the slope of the line and is therefore given by the
formula

mi = yi+1 − yi

ti+1 − ti

FIGURE 9.3

First-degree
spline:

linear Si (x)
x

ti

Si (x)

ti�1

(ti�1, yi�1)

(ti, yi)

374 Chapter 9 Approximation by Spline Functions

Notice that the function S that we are creating has 2n parameters in it: the n coefficients
ai and the n constants bi in Equation (2). On the other hand, exactly 2n conditions are
being imposed, since each constituent function Si must interpolate the data at the ends of
its subinterval. Thus, the number of parameters equals the number of conditions. For the
higher-degree splines, we shall encounter a mismatch in these two numbers; the spline
of degree k will have k − 1 free parameters for us to use as we wish in the problem of
interpolating at the knots.

The form of Equation (3) is better than that of Equation (2) for the practical evaluation
of S(x) because some of the quantities x − ti must be computed in any case simply to
determine which subinterval contains x . If t0 � x � tn then the interval [ti , ti+1] containing
x is characterized by the fact that x − ti is the first of the quantities x − tn−1, x − tn−2, . . . ,

x − t0 that is nonnegative.
The following is a function procedure that utilizes n + 1 table values (ti , yi) in linear

arrays (ti) and (yi), assuming that a = t0 < t1 < · · · < tn = b. Given an x value, the
routine returns S(x) using Equations (1) and (3). If x < t0, then S(x) = y0 + m0(x − t0);
if x > tn , then S(x) = yn−1 + mn−1(x − tn−1).

real function Spline1(n, (ti), (yi), x)

integer i, n; real x ; real array (ti)0:n, (yi)0:n

for i = n − 1 to 0 step −1 do
if x − ti � 0 then exit loop

end for
Spline1 ← yi + (x − ti)[(yi+1 − yi)/(ti+1 − ti)]
end function Spline1

Modulus of Continuity
To assess the goodness of fit when we interpolate a function with a first-degree spline, it
is useful to have something called the modulus of continuity of a function f . Suppose f is
defined on an interval [a, b]. The modulus of continuity of f is

ω(f ; h) = sup{| f (u) − f (v)|: a � u � v � b, |u − v| � h}

Here, sup is the supremum, which is the least upper bound of the given set of real numbers.
The quantity ω(f ; h) measures how much f can change over a small interval of width h. If
f is continuous on [a, b], then it is uniformly continuous, and ω(f ; h) will tend to zero as
h tends to zero. If f is not continuous, ω(f ; h) will not tend to zero. If f is differentiable
on (a, b) (in addition to being continuous on [a, b]) and if f ′(x) is bounded on (a, b), then
the Mean Value Theorem can be used to get an estimate of the modulus of continuity: If u
and v are as described in the definition of ω(f ; h), then

| f (u) − f (v)| = | f ′(c)(u − v)| � M1|u − v| � M1h

Here, M1 denotes the maximum of | f ′(x)| as x runs over (a, b). For example, if f (x) = x3

and [a, b] = [1, 4], then we find that ω(f ; h) � 48h.

9.1 First-Degree and Second-Degree Splines 375

■ THEOREM 1 FIRST-DEGREE POLYNOMIAL ACCURACY THEOREM

If p is the first-degree polynomial that interpolates a function f at the endpoints of
an interval [a, b], then with h = b − a, we have

| f (x) − p(x)| � ω(f ; h) (a � x � b)

Proof The linear function p is given explicitly by the formula

p(x) =
(

x − a

b − a

)
f (b) +

(
b − x

b − a

)
f (a)

Hence,

f (x) − p(x) =
(

x − a

b − a

)
[f (x) − f (b)] +

(
b − x

b − a

)
[f (x) − f (a)]

Then we have

| f (x) − p(x)| �
(

x − a

b − a

)
| f (x) − f (b)| +

(
b − x

b − a

)
| f (x) − f (a)|

�
(

x − a

b − a

)
ω(f ; h) +

(
b − x

b − a

)
ω(f ; h)

=
[(

x − a

b − a

)
+
(

b − x

b − a

)]
ω(f ; h) = ω(f ; h) ■

From this basic result, one can easily prove the following one, simply by applying the
basic inequality to each subinterval.

■ THEOREM 2 FIRST-DEGREE SPLINE ACCURACY THEOREM

Let p be a first-degree spline having knots a = x0 < x1 < · · · < xn = b. If p inter-
polates a function f at these knots, then with h = maxi (xi − xi−1), we have

| f (x) − p(x)| � ω(f ; h) (a � x � b)

If f ′ or f ′′ exist and are continuous, then more can be said, namely,

| f (x) − p(x)| � M1
h

2
(a � x � b)

| f (x) − p(x)| � M2
h2

8
(a � x � b)

In these estimates, M1 is the maximum value of | f ′(x)| on the interval, and M2 is the
maximum of | f ′′(x)|.

The first theorem tells us that if more knots are inserted in such a way that the maximum
spacing h goes to zero, then the corresponding first-degree spline will converge uniformly
to f . Recall that this type of result is conspicuously lacking in the polynomial interpolation
theory. In that situation, raising the degree and making the nodes fill up the interval will not
necessarily ensure that convergence takes place for an arbitrary continuous function. (See
Section 4.2.)

376 Chapter 9 Approximation by Spline Functions

Second-Degree Splines
Splines of degree higher than 1 are more complicated. We now take up the quadratic splines.
Let’s use the letter Q to remind ourselves that we are considering piecewise quadratic
functions. A function Q is a second-degree spline if it has the following properties.

■ DEFINITION 2 SPLINE OF DEGREE 2

A function Q is called a spline of degree 2 if:

1. The domain of Q is an interval [a, b].

2. Q and Q ′ are continuous on [a, b].

3. There are points ti (called knots) such that a = t0 < t1 < · · · < tn = b and Q is
a polynomial of degree at most 2 on each subinterval [ti , ti+1].

In brief, a quadratic spline is a continuously differentiable piecewise quadratic function,
where quadratic includes all linear combinations of the basic functions x �→ 1, x, x2.

EXAMPLE 2 Determine whether the following function is a quadratic spline:

Q(x) =

⎧⎪⎨⎪⎩
x2 (−10 � x � 0)

−x2 (0 � x � 1)

1 − 2x (1 � x � 20)

Solution The function is obviously piecewise quadratic. Whether Q and Q ′ are continuous at the
interior knots can be determined as follows:

lim
x→0−

Q(x) = lim
x→0−

x2 = 0 lim
x→0+

Q(x) = lim
x→0+

(−x2) = 0

lim
x→1−

Q(x) = lim
x→1−

(−x2) = −1 lim
x→1+

Q(x) = lim
x→1+

(1 − 2x) = −1

lim
x→0−

Q ′(x) = lim
x→0−

2x = 0 lim
x→0+

Q ′(x) = lim
x→0+

(−2x) = 0

lim
x→1−

Q ′(x) = lim
x→1−

(−2x) = −2 lim
x→1+

Q ′(x) = lim
x→1+

(−2) = −2

Consequently, Q(x) is a quadratic spline. ■

Interpolating Quadratic Spline Q (x)
Quadratic splines are not used in applications as often as are natural cubic splines, which
are developed in the next section. However, the derivations of interpolating quadratic and
cubic splines are similar enough that an understanding of the simpler second-degree spline
theory will allow one to grasp easily the more complicated third-degree spline theory. We
want to emphasize that quadratic splines are rarely used for interpolation, and the discussion
here is provided only as preparation for the study of higher-order splines, which are used
in many applications.

9.1 First-Degree and Second-Degree Splines 377

Proceeding now to the interpolation problem, suppose that a table of values has been
given:

x t0 t1 t2 · · · tn

y y0 y1 y2 · · · yn

We shall assume that the points t0, t1, . . . , tn , which we think of as the nodes for the
interpolation problem, are also the knots for the spline function to be constructed. Later,
another quadratic spline interpolant is discussed in which the nodes for interpolation are
different from the knots.

A quadratic spline, as just described, consists of n separate quadratic functions x �→
ai x2 + bi x + ci , one for each subinterval created by the n + 1 knots. Thus, we start with
3n coefficients. On each subinterval [ti , ti+1], the quadratic spline function Qi must satisfy
the interpolation conditions Qi (ti) = yi and Qi (ti+1) = yi+1. Since there are n such
subintervals, this imposes 2n conditions. The continuity of Q does not add any additional
conditions. (Why?) However, the continuity of Q ′ at each of the interior knots gives n − 1
more conditions. Thus, we have 2n + n − 1 = 3n − 1 conditions, or one condition short of
the 3n conditions required. There are a variety of ways to impose this additional condition;
for example, Q ′(t0) = 0 or Q ′′

0 = 0.
We now derive the equations for the interpolating quadratic spline, Q(x). The value of

Q ′(t0) is prescribed as the additional condition. We seek a piecewise quadratic function

Q(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q0(x) (t0 � x � t1)

Q1(x) (t1 � x � t2)
...

...

Qn−1(x) (tn−1 � x � tn)

(4)

which is continuously differentiable on the entire interval [t0, tn] and which interpolates the
table; that is, Q(ti) = yi for 0 � i � n.

Since Q ′ is continuous, we can put zi ≡ Q ′(ti). At present, we do not know the correct
values of zi ; nevertheless, the following must be the formula for Qi :

Qi (x) = zi+1 − zi

2(ti+1 − ti)
(x − ti)

2 + zi (x − ti) + yi (5)

To see that this is correct, verify that Qi (ti) = yi , Q ′
i (ti) = zi , and Q ′

i (ti+1) = zi+1. These
three conditions define the function Qi uniquely on [ti , ti+1] as given in Equation (5).

Now, for the quadratic spline function Q to be continuous and to interpolate the table
of data, it is necessary and sufficient that Qi (ti+1) = yi+1 for i = 0, 1, . . . , n − 1 in
Equation (5). When this equation is written out in detail and simplified, the result is

zi+1 = −zi + 2

(
yi+1 − yi

ti+1 − ti

)
(0 � i � n − 1) (6)

This equation can be used to obtain the vector [z0, z1, . . . , zn]T , starting with an arbitrary
value for z0. We summarize with an algorithm:

■ ALGORITHM 1 Quadratic Spline Interpolation at the Knots

1. Determine [z0, z1, . . . , zn]T by selecting z0 arbitrarily and computing z1, z2, . . . , zn

recursively by Formula (6).

2. The quadratic spline interpolating function Q is given by Formulas (4) and (5).

378 Chapter 9 Approximation by Spline Functions

EXAMPLE 3 For the five data points (0, 8), (1, 12), (3, 2), (4, 6), (8, 0), construct the linear spline S and
the quadratic spline Q.

Solution Figure 9.4 illustrates graphically these two low order spline curves. They fit better than the
interpolating polynomials in Figure 4.6 (p. 154) with regard to reduced oscillations. ■

FIGURE 9.4

First-degree
and second-

degree spline
functions 1 2 3 4 5 6 87

1

2

3

4

5

6

8

7

y

x

S

Q

Subbotin Quadratic Spline
A useful approximation process, first proposed by Subbotin [1967], consists of interpolation
with quadratic splines, where the nodes for interpolation are chosen to be the first and last
knots and the midpoints between the knots. Remember that knots are defined as the points
where the spline function is permitted to change in form from one polynomial to another.
The nodes are the points where values of the spline are specified. In the Subbotin quadratic
spline function, there are n + 2 interpolation conditions and 2(n − 1) conditions from the
continuity of Q and Q′. Hence, we have the exact number of conditions needed, 3n, to
define the quadratic spline function completely.

We outline the theory here, leaving details for the reader to fill in. Suppose that knots
a = t0 < t1 < · · · < tn = b have been specified; let the nodes be the points{

τ0 = t0 τn+1 = tn

τi = 1
2 (ti + ti−1) (1 � i � n)

We seek a quadratic spline function Q that has the given knots and takes prescribed values
at the nodes:

Q(τi) = yi (0 � i � n + 1)

as in Figure 9.5. The knots create n subintervals, and in each of them, Q can be a different
quadratic polynomial. Let us say that on [ti , ti+1], Q is equal to the quadratic polynomial
Qi . Since Q is a quadratic spline, it and its first derivative should be continuous. Thus,
zi ≡ Q ′(ti) is well defined, although as yet we do not know its values. It is easy to see that

9.1 First-Degree and Second-Degree Splines 379

FIGURE 9.5

Subbotin
quadratic

splines
(t0 = τ0, t3 = τ4)

x
t0Knots:

S0

S1

y0

S2

t1 t2 t3
�1�0 �2 �3Nodes: �4

y1

y2

y3

y4

on [ti , ti+1], our quadratic polynomial can be represented in the form

Qi (x) = yi+1 + 1

2
(zi+1 + zi)(x − τi+1) + 1

2hi
(zi+1 − zi)(x − τi+1)

2 (7)

in which hi = ti+1 − ti . To verify the correctness of Equation (7), we must check
that Qi (τi+1) = yi+1, Q ′

i (ti) = zi , and Q ′
i (ti+1) = zi+1. When the polynomial pieces

Q0, Q1, . . . , Qn−1 are joined together to form Q, the result may be discontinuous. Hence,
we impose continuity conditions at the interior knots:

lim
x→t−i

Qi−1(x) = lim
x→t+i

Qi (x) (1 � i � n − 1)

The reader should carry out this analysis, which leads to

hi−1zi−1 + 3(hi−1 + hi)zi + hi zi+1 = 8(yi+1 − yi) (1 � i � n − 1) (8)

The first and last interpolation conditions must also be imposed:

Q(τ0) = y0 Q(τn+1) = yn+1

These two equations lead to

3h0z0 + h0z1 = 8(y1 − y0)

hn−1zn−1 + 3hn−1zn = 8(yn+1 − yn)

The system of equations governing the vector z = [z0, z1, . . . , zn]T then can be written in
the matrix form⎡⎢⎢⎢⎢⎢⎢⎢⎣

3h0 h0

h0 3(h0 + h1) h1

h1 3(h1 + h2) h2

. . .
. . .

. . .

hn−2 3(hn−2 + hn−1) hn−1

hn−1 3hn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z0

z1

z2
...

zn−1

zn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 8

⎡⎢⎢⎢⎢⎢⎢⎢⎣

y1 − y0

y2 − y1

y3 − y2
...

yn − yn−1

yn+1 − yn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

380 Chapter 9 Approximation by Spline Functions

This system of n +1 equations in n +1 unknowns can be conveniently solved by procedure
Tri in Chapter 7. After the z vector has been obtained, values of Q(x) can be computed
from Equation (7). The writing of suitable code to carry out this interpolation method is left
as a programming project.

Summary

(1) We are given n + 1 pairs of points (ti , yi) with distinct knots a = t0 < t1 < · · · <

tn−1 < tn = b over the interval [a, b]. A first-degree spline function S is a piecewise linear
polynomial defined on the interval [a, b] so that it is continuous. It has the form

S(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S0(x) x ∈ [t0, t1]

S1(x) x ∈ [t1, t2]
...

...

Sn−1(x) x ∈ [tn−1, tn]

where

Si (x) = yi +
(

yi+1 − yi

ti+1 − ti

)
(x − ti)

on the interval [ti , ti+1]. Clearly, S(x) is continuous, since Si−1(ti) = Si (ti) = yi for 1 � i � n.

(2) A second-degree spline function Q is a piecewise quadratic polynomial with Q and
Q ′ continuous on the interval [a, b]. It has the form

Q(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Q0(x) x ∈ [t0, t1]

Q1(x) x ∈ [t1, t2]
...

...

Qn−1(x) x ∈ [tn−1, tn]

where

Qi (x) =
(

zi+1 − zi

2(ti+1 − ti)

)
(x − ti)

2 + zi (x − ti) + yi

on the interval [ti , ti+1]. The coefficients z0, z1, . . . , zn are obtained by selecting z0 and then
using the recurrence relation

zi+1 = −zi + 2

(
yi+1 − yi

ti+1 − ti

)
(0 � i � n − 1)

(3) A Subbotin quadratic spline function Q is a piecewise quadratic polynomial with Q
and Q ′ continuous on the interval [a, b] and with interpolation condition at the endpoints
of the interval [a, b] and at the midpoints of the subintervals, namely, Q(τi) = yi for
0 � i � n + 1, where

τ0 = t0, τi = 1

2
(ti + ti−1) (1 � i � n), τn+1 = tn

It has the form

Qi (x) = yi+1 + 1

2
(zi+1 + zi)(x − τi+1) + 1

2hi
(zi+1 − zi)(x − τi+1)

2

9.1 First-Degree and Second-Degree Splines 381

where hi = ti+1 − ti . The coefficients zi are found by solving the tridiagonal system⎧⎪⎨⎪⎩
3h0z0 + h0z1 = 8(y1 − y0)

hi−1zi−1 + 3(hi−1 + hi)zi + hi zi+1 = 8(yi+1 − yi) (1 � i � n − 1)

hn−1zn−1 + 3hn−1zn = 8(yn+1 − yn)

as discussed in Section 7.3.

Problems 9.1

a1. Determine whether this function is a first-degree spline:

S(x) =

⎧⎪⎨⎪⎩
x (−1 � x � 0.5)

0.5 + 2(x − 0.5) (0.5 � x � 2)

x + 1.5 (2 � x � 4)

2. The simplest type of spline function is the piecewise constant function, which could
be defined as

S(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
c0 (t0 � x < t1)

c1 (t1 � x < t2)
...

...

cn−1 (tn−1 � x � tn)

Show that the indefinite integral of such a function is a polygonal function. What is
the relationship between the piecewise constant functions and the rectangle rule of
numerical integration? (See Problem 5.2.29.)

3. Show that f (x) − p(x) = 1
2 f ′′(ξ)(x − a)(x − b) for some ξ in the interval (a, b),

where p is a linear polynomial that interpolates f at a and b. Hint: Use a result from
Section 4.2.

4. (Continuation) Show that | f (x) − p(x)| � 1
8 M�2, where � = b − a, if | f ′′(x)| � M on

the interval (a, b).

5. (Continuation) Show that

f (x) − p(x) = (x − a)(x − b)

b − a

[
f (x) − f (b)

x − b
− f (x) − f (a)

x − a

]
a6. (Continuation) If | f ′(x)| � C on (a, b), show that | f (x)− p(x)| � C�/2. Hint: Use the

Mean-Value Theorem on the result of the preceding problem.

7. (Continuation) Let S be a spline function of degree 1 that interpolates f at t0, t1, . . . , tn .
Let t0 < t1 < · · · < tn and let δ = max0 � i � n−1(ti+1 − ti). Then | f (x) − S(x)| � Cδ/2,
where C is an upper bound of | f ′(x)| on (t0, tn).

8. Let f be continuous on [a, b]. For a given ε > 0, let δ have the property that | f (x) −
f (y)| < ε whenever |x − y| < δ (uniform continuity principle). Let n > 1+(b−a)/δ.
Show that there is a first-degree spline S having n knots such that | f (x) − S(x)| < ε

on [a, b]. Hint: Use Problem 5.

382 Chapter 9 Approximation by Spline Functions

a9. If the function f (x) = sin(100x) is to be approximated on the interval [0, π] by an
interpolating spline of degree 1, how many knots are needed to ensure that |S(x) −
f (x)| < 10−8? Hint: Use Problem 7.

a10. Let t0 < t1 < · · · < tn . Construct first-degree spline functions G0, G1, . . . , Gn by
requiring that Gi vanish at t0, t1, . . . , ti−1, ti+1, . . . , tn but that Gi (ti) = 1. Show that
the first-degree spline function that interpolates f at t0, t1, . . . , tn is

∑n
i=0 f (ti)Gi (x).

11. Show that the trapezoid rule for numerical integration (Section 5.2) results from
approximating f by a first-degree spline S and then using∫ b

a
f (x) dx ≈

∫ b

a
S(x) dx

a12. Prove that the derivative of a quadratic spline is a first-degree spline.

13. If the knots ti happen to be the integers 0, 1, . . . , n, find a good way to determine the
index i for which ti � x < ti+1. (Note: This problem is deceptive, for the word good
can be given different meanings.)

14. Show that the indefinite integral of a first-degree spline is a second-degree spline.

15. Define f (x) = 0 if x < 0 and f (x) = x2 if x � 0. Show that f and f ′ are continuous.
Show that any quadratic spline with knots t0, t1, . . . , tn is of the form

ax2 + bx + c +
n−1∑
i=1

di f (x − ti)

16. Define a function g by the equation

g(x) =
{

0 (t0 � x � 0)

x (0 � x � tn)

Prove that every first-degree spline function that has knots t0, t1, . . . , tn can be written
in the form

ax + b +
n−1∑
i=1

ci g(x − ti)

a17. Find a quadratic spline interpolant for these data:

x −1 0 1
2 1 2 5

2

y 2 1 0 1 2 3

Assume that z0 = 0.

18. (Continuation) Show that no quadratic spline Q interpolates the table of the preceding
problem and satisfies Q ′(t0) = Q ′(t5).

a19. What equations must be solved if a quadratic spline function Q that has knots t0,

t1, . . . , tn is required to take prescribed values at points 1
2 (ti + ti+1) for 0 � i � n − 1?

9.1 First-Degree and Second-Degree Splines 383

20. Are these functions quadratic splines? Explain why or why not.

aa. Q(x) =
{

0.1x2 (0 � x � 1)

9.3x2 − 18.4x + 9.2 (1 � x � 1.3)

ab. Q(x) =
{

−x2 (−100 � x � 0)

x (0 � x � 100)

ac. Q(x) =

⎧⎪⎨⎪⎩
x (−50 � x � 1)

x2 (1 � x � 2)

4 (2 � x � 50)

a21. Is S(x) = |x | a first-degree spline? Why or why not?

22. Verify that Formula (5) has the three properties Qi (ti) = yi , Q ′
i (ti) = zi , and Q ′

i (ti+1) =
zi+1.

23. (Continuation) Impose the continuity condition on Q and derive the system of Equa-
tion (6).

24. Show by induction that the recursive Formula (6) together with Equation (5) produces
an interpolating quadratic spline function.

25. Verify the correctness of the equations in the text that pertain to Subbotin’s spline
interpolation process.

26. Analyze the Subbotin interpolation scheme in this alternative manner. First, let vi =
Q(ti). Show that

Qi (x) = Ai (x − ti)
2 + Bi (x − ti+1)

2 + Ci

where

Ci = 2yi − 1

2
vi − 1

2
vi+1, Bi = vi − Ci

h2
i

Ai = vi+1 − Ci

h2
i

hi = ti+1 − ti

Hint: Show that Qi (ti) = vi , Qi (ti+1) = vi+1, and Qi (τi) = yi .

27. (Continuation) When continuity conditions on Q′ are imposed, show that the result is
the following equation, in which i = 1, 2, . . . , n − 1:

hivi−1 + 3(hi + hi+1)vi + hi−1vi+1 = 4hi−1 yi + 4hi yi−1

28. (Student research project) It is commonly accepted that Schoenberg’s [1946] paper
is the first mathematical reference in which the word spline is used in connection with
smooth, piecewise polynomial approximations. However, the word spline as a thin strip
of wood used by a draftsman dates back to the 1890s at least. Many of the ideas used
in spline theory have their roots in work done in various industries such as the building
of aircraft, automobiles, and ships in which splines are used extensively. Research
and write a paper on the history of splines. (See books on mathematical history. For
a discussion of the history of splines in the automobile industry, see the NA Digest,
Volume 98, Issue 26, July 19, 1998.)

384 Chapter 9 Approximation by Spline Functions

Computer Problems 9.1

1. Rewrite procedure Spline1 so that ascending subintervals are considered instead of
descending ones. Test the code on a table of 15 unevenly spaced data points.

2. Rewrite procedure Spline1 so that a binary search is used to find the desired interval.
Test the revised code. What are the advantages and/or disadvantages of a binary search
compared to the procedure in the text? A binary search is similar to the bisection method
in that we choose tk with k = (i + j)/2 or k = (i + j + 1)/2 and determine whether
x is in [ti , tk] or [tk, t j].

3. A piecewise bilinear polynomial that interpolates points (x, y) specified in a rectan-
gular grid is given by

p(x, y) = (�i j zi+1, j+1 + �i+1, j+1zi j) − (�i+1, j zi, j+1 + �i, j+1zi+1, j)

(xi+1 − xi)(y j+1 − y j)

where �i j = (xi − x)(y j − y). Here xi � x � xi+1 and y j � y � y j+1. The given grid
(xi , y j) is specified by strictly increasing arrays (xi) and (y j) of length n and m,
respectively. The given values zi j at the grid points (xi , y j) are contained in the n × m
array (zi j), shown in the figure below. Write

real function Bi Linear((xi), n, (y j), m, (zi j), x, y)

to compute the value of p(x, y). Test this routine on a set of 5 × 10 unequally spaced
data points. Evaluate Bi Linear at four grid points and five nongrid points.

xi�1

yj

xi

yj�1

zij

4. Write an adaptive spline interpolation procedure. The input should be a function f ,
an interval [a, b], and a tolerance ε. The output should be a set of knots a = t0 <

t1 < · · · < tn = b and a set of function values yi = f (ti) such that the first-degree
spline interpolating function S satisfies |S(x) − f (x)| � ε whenever x is any point
xi j = ti + j (ti+1 − t j)/10 for 0 � i � n − 1 and 0 � j � 9.

5. Write

procedure Spline2 Coef (n, t, (yi), (zi))

that computes the (zi) array in the quadratic spline interpolation process (interpolation
at the knots). Then write

real function Spline2 Eval(n, (ti), (yi), (zi), x)

that computes values of Q(x).

6. Carry out the programming project of the preceding computer problem for the Subbotin
quadratic spline.

9.2 Natural Cubic Splines 385

9.2 Natural Cubic Splines
Introduction
The first- and second-degree splines discussed in the preceding section, though useful in
certain applications, suffer an obvious imperfection: Their low-order derivatives are discon-
tinuous. In the case of the first-degree spline (or polygonal line), this lack of smoothness is
immediately evident because the slope of the spline may change abruptly from one value to
another at each knot. For the quadratic spline, the discontinuity is in the second derivative
and is therefore not so evident. But the curvature of the quadratic spline changes abruptly
at each knot, and the curve may not be pleasing to the eye.

The general definition of spline functions of arbitrary degree is as follows.

■ DEFINITION 1 SPLINE OF DEGREE k

A function S is called a spline of degree k if:

1. The domain of S is an interval [a, b].

2. S, S′, S′′, . . . , S(k−1) are all continuous functions on [a, b].

3. There are points ti (the knots of S) such that a = t0 < t1 < · · · < tn = b and such
that S is a polynomial of degree at most k on each subinterval [ti , ti+1].

Observe that no mention has been made of interpolation in the definition of a spline function.
Indeed, splines are such versatile functions that they have many applications other than
interpolation.

Higher-degree splines are used whenever more smoothness is needed in the approxi-
mating function. From the definition of a spline function of degree k, we see that such a
function will be continuous and have continuous derivatives S′, S′′, . . . , S(k−1). If we want
the approximating spline to have a continuous mth derivative, a spline of degree at least
m + 1 is selected. To see why, consider a situation in which knots t0 < t1 < · · · < tn have
been prescribed. Suppose that a piecewise polynomial of degree m is to be defined, with
its pieces joined at the knots in such a way that the resulting spline S has m continuous
derivatives. At a typical interior knot t , we have the following circumstances: To the left
of t , S(x) = p(x); to the right of t , S(x) = q(x), where p and q are mth-degree polyno-
mials. The continuity of the mth derivative S(m) implies the continuity of the lower-order
derivatives S(m−1), S(m−2), . . . , S′, S. Therefore, at the knot t ,

lim
x→t−

S(k)(x) = lim
x→t+

S(k)(x) (0 � k � m)

from which we conclude that

lim
x→t−

p(k)(x) = lim
x→t+

q(k)(x) (0 � k � m) (1)

Since p and q are polynomials, their derivatives of all orders are continuous, and so Equa-
tion (1) is the same as

p(k)(t) = q(k)(t) (0 � k � m)

386 Chapter 9 Approximation by Spline Functions

This condition forces p and q to be the same polynomial because by Taylor’s Theorem,

p(x) =
m∑

k=0

1

k!
p(k)(t)(x − t)k =

m∑
k=0

1

k!
q (k)(t)(x − t)k = q(x)

This argument can be applied at each of the interior knots t1, t2, . . . , tn−1, and we see that
S is simply one polynomial throughout the entire interval from t0 to tn . Thus, we need a
piecewise polynomial of degree m+1 with at most m continuous derivatives to have a spline
function that is not just a single polynomial throughout the entire interval. (We already know
that ordinary polynomials usually do not serve well in curve fitting. See Section 4.2.)

The choice of degree most frequently made for a spline function is 3. The resulting
splines are termed cubic splines. In this case, we join cubic polynomials together in such a
way that the resulting spline function has two continuous derivatives everywhere. At each
knot, three continuity conditions will be imposed. Since S, S′, and S′′ are continuous, the
graph of the function will appear smooth to the eye. Discontinuities, of course, will occur in
the third derivative but cannot be easily detected visually, which is one reason for choosing
degree 3. Experience has shown, moreover, that using splines of degree greater than 3
seldom yields any advantage. For technical reasons, odd-degree splines behave better than
even-degree splines (when interpolating at the knots). Finally, a very elegant theorem, to be
proved later, shows that in a certain precise sense, the cubic interpolating spline function
is the best interpolating function available. Thus, our emphasis on the cubic splines is well
justified.

Natural Cubic Spline
We turn next to interpolating a given table of function values by a cubic spline whose knots
coincide with the values of the independent variable in the table. As earlier, we start with
the table:

x t0 t1 · · · tn

y y0 y1 · · · yn

The ti ’s are the knots and are assumed to be arranged in ascending order.
The function S that we wish to construct consists of n cubic polynomial pieces:

S(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S0(x) (t0 � x � t1)

S1(x) (t1 � x � t2)
...

...

Sn−1(x) (tn−1 � x � tn)

In this formula, Si denotes the cubic polynomial that will be used on the subinterval [ti , ti+1].
The interpolation conditions are

S(ti) = yi (0 � i � n)

The continuity conditions are imposed only at the interior knots t1, t2, . . . , tn−1. (Why?)
These conditions are written as

lim
x→t−i

S(k)(ti) = lim
x→t+i

S(k)(ti) (k = 0, 1, 2)

9.2 Natural Cubic Splines 387

It turns out that two more conditions must be imposed to use all the degrees of freedom
available. The choice that we make for these two extra conditions is

S′′(t0) = S′′(tn) = 0 (2)

The resulting spline function is then termed a natural cubic spline. Additional ways to close
the system of equations for the spline coefficients are periodic cubic splines and clamped
cubic splines. A clamped spline is a spline curve whose slope is fixed at both end points:
S′(t0) = d0 and S′(tn) = dn . A periodic cubic spline has S(t0) = S(tn), S′(t0) = S′(tn),
and S′′(t0) = S′′(tn). For all continuous differential functions, clamped and natural cubic
splines yield the least oscillations about the function f that it interpolates.

We now verify that the number of conditions imposed equals the number of coefficients
available. There are n + 1 knots and hence n subintervals. On each of these subintervals,
we shall have a different cubic polynomial. Since a cubic polynomial has four coefficients,
a total of 4n coefficients are available. As for the conditions imposed, we have specified
that within each interval the interpolating polynomial must go through two points, which
gives 2n conditions. The continuity adds no additional conditions. The first and second
derivatives must be continuous at the n − 1 interior points, for 2(n − 1) more conditions.
The second derivatives must vanish at the two endpoints for a total of 2n+2(n−1)+2 = 4n
conditions.

EXAMPLE 1 Derive the equations of the natural cubic interpolating spline for the following table:

x −1 0 1

y 1 2 −1

Solution Our approach is to determine the parameters a, b, c, d, e, f, g, and h so that S(x) is a natural
cubic spline, where

S(x) =
{

S0(s) = ax3 + bx2 + cx + d x ∈ [−1, 0]

S1(s) = ex3 + f x2 + gx + h x ∈ [0, 1]

where the two cubic polynomials are S0(x) and S1(x). From these interpolation conditions,
we have interpolation conditions S(−1) = S0(−1) = −a + b − c + d = 1, S(0) = S0(0) =
d = 2, S(0) = S1(0) = h = 2, and S(1) = S1(1) = e + f + g + h = −1. Taking the first
derivatives, we obtain

S′(x) =
{

S′
0(x) = 3ax2 + 2bx + c

S′
1(x) = 3ex2 + 2 f x + g

From the continuity condition of S′, we have S′
0(0) = S′

1(0), and we set c = g. Next taking
the second derivatives, we obtain

S′′(x) =
{

S′′
0 (x) = 6ax + 2b

S′′
1 (s) = 6ex + 2 f

From the continuity condition of S′′, we have S′′
0 (0) = S′′

1 (0), and we let b = f . For S to
be a natural cubic spline, we must have S′′

0 (−1) = 0 and S′′
1 (1) = 0, and we obtain 3a = b

and 3e = − f . From all of these equations, we obtain a = −1, b = −3, c = −1, d = 2,
e = 1, f = −3, g = −1, and h = 2. ■

388 Chapter 9 Approximation by Spline Functions

Algorithm for Natural Cubic Spline
From the previous example, it is evident that we need to develop a systematic procedure
for determining the formula for a natural cubic spline, given a table of interpolation values.
This is our objective in the material on the next several pages.

Since S′′ is continuous, the numbers

zi ≡ S′′(ti) (0 � i � n)

are unambiguously defined. We do not yet know the values z1, z2, . . . , zn−1, but, of course,
z0 = zn = 0 by Equation (2).

If the zi ’s were known, we could construct S as now described. On the interval [ti , ti+1],
S′′ is a linear polynomial that takes the values zi and zi+1 at the endpoints. Thus,

S′′
i (x) = zi+1

hi
(x − ti) + zi

hi
(ti+1 − x) (3)

with hi = ti+1 − ti for 0 � i � n − 1. To verify that Equation (3) is correct, notice that
S′′

i (ti) = zi , S′′
i (ti+1) = zi+1, and S′′

i is linear in x . If this is integrated twice, we obtain Si

itself:

Si (x) = zi+1

6hi
(x − ti)

3 + zi

6hi
(ti+1 − x)3 + cx + d

where c and d are constants of integration. By adjusting the integration constants, we obtain
a form for Si that is easier to work with, namely,

Si (x) = zi+1

6hi
(x − ti)

3 + zi

6hi
(ti+1 − x)3 + Ci (x − ti) + Di (ti+1 − x) (4)

where Ci and Di are constants. If we differentiate Equation (4) twice, we obtain Equation (3).
The interpolation conditions Si (ti) = yi and Si (ti+1) = yi+1 can be imposed now to

determine the appropriate values of Ci and Di . The reader should do so (Problem 9.2.27)
and verify that the result is

Si (x) = zi+1

6hi
(x − ti)

3 + zi

6hi
(ti+1 − x)3

+
(

yi+1

hi
− hi

6
zi+1

)
(x − ti) +

(
yi

hi
− hi

6
zi

)
(ti+1 − x)

(5)

When the values z0, z1, . . . , zn have been determined, the spline function S(x) is obtained
from equations of this form for S0(x), S1(x), . . . , Sn−1(x).

We now show how to determine the zi ’s. One condition remains to be imposed—namely,
the continuity of S′. At the interior knots ti for 1 � i � n −1, we must have S′

i−1(ti) = S′
i (ti),

as can be seen in Figure 9.6.

FIGURE 9.6

Cubic spline:
adjacent pieces

Si−1 and Si

x
ti�1 ti ti�1

Si�1 Si

9.2 Natural Cubic Splines 389

We have, from Equation (5),

S′
i (x) = zi+1

2hi
(x − ti)

2 − zi

2hi
(ti+1 − x)2 + yi+1

hi
− hi

6
zi+1 − yi

hi
+ hi

6
zi

This gives

S′
i (ti) = −hi

6
zi+1 − hi

3
zi + bi (6)

where

bi = 1

hi
(yi+1 − yi) (7)

Analogously, we have

S′
i−1(ti) = hi−1

6
zi−1 + hi−1

3
zi + bi−1

When these are set equal to each other, the resulting equation can be rearranged as

hi−1zi−1 + 2(hi−1 + hi)zi + hi zi+1 = 6(bi − bi−1)

for 1 � i � n − 1. By letting
ui = 2(hi−1 + hi)

vi = 6(bi − bi−1)
(8)

we obtain a tridiagonal system of equations:⎧⎪⎨⎪⎩
z0 = 0

hi−1zi−1 + ui zi + hi zi+1 = vi (1 � i � n − 1)

zn = 0

(9)

to be solved for the zi ’s. The simplicity of the first and last equations is a result of the natural
cubic spline conditions S′′(t0) = S′′(tn) = 0.

EXAMPLE 2 Repeat Example 1 by constructing the natural cubic spline through the points (−1, 1), (0, 2),
and (1, −1). Also, plot the results in order to visualize the spline curve.

Solution From the given values, we have t0 = −1, t1 = 0, t2 = 1, y0 = 1, y1 = 2, and y2 = −1.
Consequently, we obtain h0 = t1 − t0 = 1, h1 = t2 − t1 = 1, b0 = (y1 − y0)/h0 = 1,
b1 = (y2 − y1)/h1 = −3, u1 = 2(h0 − h1) = 4, and v1 = 6(b1 − b0) = −24. Then the
tridiagonal system of equations (9) is⎧⎪⎨⎪⎩

z0 = 0

z0 + 4z1+ z2 = −24

z2 = 0

Evidently, we obtain the solution z0 = 0, z1 = −6, and z2 = 0. From Equation (5), we
have

S(x) =
{

S0(x) = − (x + 1)3 + 3(x + 1) − x x ∈ [−1, 0]

S1(x) = − (1 − x)3 − x + 3(1 − x) x ∈ [0, 1]
or

S(x) =
{

S0(x) = −x3 − 3x2 − x + 2 x ∈ [−1, 0]

S1(x) = x3 − 3x2 − x + 2 x ∈ [0, 1]

390 Chapter 9 Approximation by Spline Functions

This agrees with the results from Example 1. The resulting natural spline curve through the
given points is shown in Figure 9.7.

FIGURE 9.7

Natural cubic
spline for

Examples 1
and 2

�0.8 �0.6 �0.4 �0.2 0.20 0.4 0.6 10.8
�0.5

�1

�1

0.5

S0

S11

1.5

2

2.5

y

x

■

Now consider System (9) in matrix form:⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 0
h0 u1 h1

h1 u2 h2

. . .
. . .

. . .

hn−2 un−1 hn−1

0 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

z0

z1

z2
...

zn−1

zn

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0
v1

v2
...

vn−1

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
On eliminating the first and last equations, we have⎡⎢⎢⎢⎢⎢⎣

u1 h1

h1 u2 h2

. . .
. . .

. . .

hn−3 un−2 hn−2

hn−2 un−1

⎤⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣
z1

z2
...

zn−2

zn−1

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎢⎣
v1

v2
...

vn−2

vn−1

⎤⎥⎥⎥⎥⎥⎦ (10)

which is a symmetric tridiagonal system of order n − 1. We could use procedure Tri devel-
oped in Section 7.3 to solve this system. However, we can design an algorithm specifically
for it (based on the ideas in Section 7.3). In Gaussian elimination without pivoting, the
forward elimination phase would modify the ui ’s and vi ’s as follows:⎧⎪⎪⎪⎨⎪⎪⎪⎩

ui ← ui − h2
i−1

ui−1

vi ← vi − hi−1vi−1

ui−1
(i = 2, 3, . . . , n − 1)

The back substitution phase yields⎧⎪⎪⎨⎪⎪⎩
zn−1 ← vn−1

un−1

zi ← vi − hi zi+1

ui
(i = n − 2, n − 3, . . . , 1)

9.2 Natural Cubic Splines 391

Putting all this together leads to the following algorithm, designed especially for the tridi-
agonal System (10).

■ ALGORITHM 1 Solving the Natural Cubic Spline Tridiagonal System Directly

Given the interpolation points (ti , yi) for i = 0, 1, . . . , n:

1. Compute for i = 0, 1, . . . , n − 1:⎧⎪⎨⎪⎩
hi = ti+1 − ti

bi = 1

hi
(yi+1 − yi)

2. Set {
u1 = 2(h0 + h1)

v1 = 6(b1 − b0)

and compute inductively for i = 2, 3, . . . , n − 1:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui = 2(hi + hi−1) − h2

i−1

ui−1

vi = 6(bi − bi−1) − hi−1vi−1

ui−1

3. Set {
zn = 0
z0 = 0

and compute inductively for i = n − 1, n − 2, . . . , 1:

zi = vi − hi zi+1

ui

This algorithm conceivably could fail because of divisions by zero in steps 2 and 3.
Therefore, let us prove that ui �= 0 for all i . It is clear that u1 > h1 > 0. If ui−1 > hi−1,
then ui > hi because

ui = 2(hi + hi−1) − h2
i−1

ui−1
> 2(hi + hi−1) − hi−1 > hi

Then by induction, ui > 0 for i = 1, 2, . . . , n − 1.
Equation (5) is not the best computational form for evaluating the cubic polynomial

Si (x). We would prefer to have it in the form

Si (x) = Ai + Bi (x − ti) + Ci (x − ti)
2 + Di (x − ti)

3 (11)

because nested multiplication can then be utilized.
Notice that Equation (11) is the Taylor expansion of Si about the point ti . Hence,

Ai = Si (ti), Bi = S′
i (ti), Ci = 1

2 S′′
i (ti), Di = 1

6 S′′′
i (ti)

Therefore, Ai = yi and Ci = zi/2. The coefficient of x3 in Equation (11) is Di , whereas
the coefficient of x3 in Equation (5) is (zi+1 − zi)/6hi . Therefore,

Di = 1

6hi
(zi+1 − zi)

392 Chapter 9 Approximation by Spline Functions

Finally, Equation (6) provides the value of S′
i (ti), which is

Bi = −hi

6
zi+1 − hi

3
zi + 1

hi
(yi+1 − yi)

Thus, the nested form of Si (x) is

Si (x) = yi + (x − ti)

(
Bi + (x − ti)

(
zi

2
+ 1

6hi
(x − ti)(zi+1 − zi)

))
(12)

Pseudocode for Natural Cubic Splines
We now write routines for determining a natural cubic spline based on a table of values and
for evaluating this function at a given value. First, we use Algorithm 1 for directly solving
the tridiagonal System (10). This procedure, called Spline3 Coef , takes n + 1 table values
(ti , yi) in arrays (ti) and (yi) and computes the zi ’s, storing them in array (zi). Intermediate
(working) arrays (hi), (bi), (ui), and (vi) are needed.

procedure Spline3 Coef (n, (ti), (yi), (zi))

integer i, n; real array (ti)0:n, (yi)0:n, (zi)0:n

allocate real array (hi)0:n−1, (bi)0:n−1, (ui)1:n−1, (vi)1:n−1

for i = 0 to n − 1 do
hi ← ti+1 − ti

bi ← (yi+1 − yi)/hi

end for
u1 ← 2(h0 + h1)

v1 ← 6(b1 − b0)

for i = 2 to n − 1 do
ui ← 2(hi + hi−1) − h2

i−1/ui−1

vi ← 6(bi − bi−1) − hi−1vi−1/ui−1

end for
zn ← 0
for i = n − 1 to 1 step −1 do

zi ← (vi − hi zi+1)/ui

end for
z0 ← 0
deallocate array (hi), (bi), (ui), (vi)

end procedure Spline3 Coef

Now a procedure called Spline3 Eval is written for evaluating Equation (12), the natural
cubic spline function S(x), for x a given value. The procedure Spline3 Eval first determines
the interval [ti , ti+1] that contains x and then evaluates Si (x) using the nested form of this
cubic polynomial:

real function Spline3 Eval(n, (ti), (yi), (zi), x)

integer i ; real h, tmp
real array (ti)0:n, (yi)0:n, (zi)0:n

for i = n − 1 to 0 step −1 do
if x − ti � 0 then exit loop

9.2 Natural Cubic Splines 393

end for
h ← ti+1 − ti

tmp ← (zi/2) + (x − ti)(zi+1 − zi)/(6h)

tmp ← −(h/6)(zi+1 + 2zi) + (yi+1 − yi)/h + (x − ti)(tmp)

Spline3 Eval ← yi + (x − ti)(tmp)

end function Spline3 Eval

The function Spline3 Eval can be used repeatedly with different values of x after one call to
procedure Spline3 Coef . For example, this would be the procedure when plotting a natural
cubic spline curve. Since procedure Spline3 Coef stores the solution of the tridiagonal sys-
tem corresponding to a particular spline function in the array (zi), the arguments n, (ti), (yi),
and (zi) must not be altered between repeated uses of Spline3 Eval.

Using Pseudocode for Interpolating and Curve Fitting
To illustrate the use of the natural cubic spline routines Spline3 Coef and Spline3 Eval, we
rework an example from Section 4.1.

EXAMPLE 3 Write pseudocode for a program that determines the natural cubic spline interpolant for sin x
at ten equidistant knots in the interval [0, 1.6875]. Over the same interval, subdivide each
subinterval into four equally spaced parts, and find the point where the value of | sin x−S(x)|
is largest.

Solution Here is a suitable pseudocode main program, which calls procedures Spline3 Coef and
Spline3 Eval:

procedure Test Spline3
integer i ; real e, h, x
real array (ti)0:n, (yi)0:n, (zi)0:n

integer n ← 9
real a ← 0, b ← 1.6875
h ← (b − a)/n
for i = 0 to n do

ti ← a + ih
yi ← sin(ti)

end for
call Spline3 Coef (n, (ti), (yi), (zi))

temp ← 0
for j = 0 to 4n do

x ← a + jh/4
e ← | sin(x) − Spline3 Eval(n, (ti), (yi), (zi), x)|
if e > temp then temp ← e
output j, x, e

end for
end Test Spline3

From the computer, the output is j = 19, x = 0.890625, and d = 0.930 × 10−5. ■

394 Chapter 9 Approximation by Spline Functions

We can use mathematical software such as in Matlab to plot the cubic spline curve
for this data, but the Matlab routine spline uses the not-a-knot end condition, which is
different from the natural end condition. It dictates that S′′′ be a single constant in the first
two subintervals and another single constant in the last two subintervals. First, the original
data are generated. Next, a finer subdivision of the interval [a, b] on the x-axis is made, and
the corresponding y-values are obtained from the procedure spline. Finally, the original
data points and the spline curve are plotted.

We now illustrate the use of spline functions in fitting a curve to a set of data. Consider
the following table:

x 0.0 0.6 1.5 1.7 1.9 2.1 2.3 2.6 2.8 3.0

y −0.8 −0.34 0.59 0.59 0.23 0.1 0.28 1.03 1.5 1.44

3.6 4.7 5.2 5.7 5.8 6.0 6.4 6.9 7.6 8.0

0.74 −0.82 −1.27 −0.92 −0.92 −1.04 −0.79 −0.06 1.0 0.0

These 20 points were selected from a wiggly freehand curve drawn on graph paper. We
intentionally selected more points where the curve bent sharply and sought to reproduce the
curve using an automatic plotter. A visually pleasing curve is provided by using the cubic
spline routines Spline3 Coef and Spline3 Eval. Figure 9.8 shows the resulting natural cubic
spline curve.

FIGURE 9.8

Natural cubic
spline curve

y

x
1 2

0
3 4 5 6 7 8

0.5

1

1.5

2

– 0.5

–1

–1.5

–2

y � S(x)

Alternatively, we can use mathematical software such as Matlab, Maple, or Mathemat-
ica to plot the cubic spline function for this table.

Space Curves
In two dimensions, two cubic spline functions can be used together to form a parametric
representation of a complicated curve that turns and twists. Select points on the curve and

9.2 Natural Cubic Splines 395

label them t = 0, 1, . . . , n. For each value of t , read off the x- and y-coordinates of the
point, thus producing a table:

t 0 1 · · · n

x x0 x1 · · · xn

y y0 y1 · · · yn

Then fit x = S(t) and y = S(t), where S and S are natural cubic spline interpolants.
The two functions S and S give a parametric representation of the curve. (See Computer
Problem 9.2.6.)

EXAMPLE 4 Select 13 points on the well-known serpentine curve given by

y = x

1/4 + x2

So that the knots will not be equally spaced, write the curve in parametric form:{
x = 1

2 tan θ

y = sin 2θ

and take θ = i(π/12), where i = −6, −5, . . . , 5, 6. Plot the natural cubic spline curve and
the interpolation polynomial in order to compare them.

Solution This is example of curve fitting using both the polynomial interpolation routines Coef and
Eval from Chapter 4 and the cubic spline routines Spline3 Coef and Spline3 Eval. Figure 9.9
shows the resulting cubic spline curve and the high-degree polynomial curve (dashed line)
from an automatic plotter. The polynomial becomes extremely erratic after the fourth knot
from the origin and oscillates wildly, whereas the spline is a near perfect fit.

FIGURE 9.9

Serpentine
curve

y

x
–2

2

4

6

8

–2

–4

– 6

�8

–1.5

–1

– 0.5 0 0.5 1 1.5 2

Polynomial
curve

Cubic spline
curve

■

396 Chapter 9 Approximation by Spline Functions

EXAMPLE 5 Use cubic spline functions to produce the curve for the following data:

t 0 1 2 3 4 5 6 7

y 1.0 1.5 1.6 1.5 0.9 2.2 2.8 3.1

It is known that the curve is continuous but its slope is not.

Solution A single cubic spline is not suitable. Instead, we can use two cubic spline interpolants, the
first having knots 0, 1, 2, 3, 4 and the second having knots 4, 5, 6, 7. By carrying out two
separate spline interpolation procedures, we obtain two cubic spline curves that meet at the
point (4, 0.9). At this point, the two curves have different slopes. The resulting curve is
shown in Figure 9.10.

FIGURE 9.10

Two cubic
splines

y

x
1 2

0
3 4 5 6 7

0.5

1

1.5

2

2.5

3

y � S(x)˜

y � S(x)ˆ

■

Smoothness Property
Why do spline functions serve the needs of data fitting better than ordinary polynomials?
To answer this, one should understand that interpolation by polynomials of high degree is
often unsatisfactory because polynomials may exhibit wild oscillations. Polynomials are
smooth in the technical sense of possessing continuous derivatives of all orders, whereas in
this sense, spline functions are not smooth.

Wild oscillations in a function can be attributed to its derivatives being very large.
Consider the function whose graph is shown in Figure 9.11. The slope of the chord that

FIGURE 9.11

Wildly
oscillating

function

p r

q

9.2 Natural Cubic Splines 397

joins the points p and q is very large in magnitude. By the Mean-Value Theorem, the slope of
that chord is the value of the derivative at some point between p and q . Thus, the derivative
must attain large values. Indeed, somewhere on the curve between p and q, there is a point
where f ′(x) is large and negative. Similarly, between q and r , there is a point where f ′(x)

is large and positive. Hence, there is a point on the curve between p and r where f ′′(x) is
large. This reasoning can be continued to higher derivatives if there are more oscillations.
This is the behavior that spline functions do not exhibit. In fact, the following result shows
that from a certain point of view, natural cubic splines are the best functions to use for curve
fitting.

■ THEOREM 1 CUBIC SPLINE SMOOTHNESS THEOREM

If S is the natural cubic spline function that interpolates a twice-continuously differ-
entiable function f at knots a = t0 < t1 < · · · < tn = b, then∫ b

a
[S′′(x)]2 dx �

∫ b

a
[f ′′(x)]2 dx

Proof To verify the assertion about [S′′(x)]2, we let

g(x) = f (x) − S(x)

so that g(ti) = 0 for 0 � i � n, and

f ′′ = S′′ + g′′

Now ∫ b

a
(f ′′)2 dx =

∫ b

a
(S′′)2 dx +

∫ b

a
(g′′)2 dx + 2

∫ b

a
S′′g′′ dx

If the last integral were 0, we would be finished because then∫ b

a
(f ′′)2 dx =

∫ b

a
(S′′)2 dx +

∫ b

a
(g′′)2 dx �

∫ b

a
(S′′)2 dx

We apply the technique of integration by parts to the integral in question to show that it
is 0.∗ We have ∫ b

a
S′′g′′ dx = S′′g′

∣∣∣b
a
−
∫ b

a
S′′′g′ dx = −

∫ b

a
S′′′g′ dx

∗The formula for integration by parts is ∫
u dv = uv −

∫
v du

398 Chapter 9 Approximation by Spline Functions

Here, use has been made of the fact that S is a natural cubic spline; that is, S′′(a) = 0 and
S′′(b) = 0. Continuing, we have∫ b

a
S′′′g′ dx =

n−1∑
i=0

∫ ti+1

ti

S′′′g′ dx

Since S is a cubic polynomial in each interval [ti , ti+1], its third derivative there is a constant,
say ci . So ∫ b

a
S′′′g′ dx =

n−1∑
i=0

ci

∫ ti+1

ti

g′ dx =
n−1∑
i=0

ci [g(ti+1) − g(ti)] = 0

because g vanishes at every knot. ■

The interpretation of the integral inequality in the theorem is that the average value of
[S′′(x)]2 on the interval [a, b] is never larger than the average value of this expression with
any twice-continuous function f that agrees with S at the knots. The quantity [f ′′(x)]2 is
closely related to the curvature of the function f .

Summary

(1) We are given n + 1 pairs of points (ti , yi) with distinct knots a = t0 < t1 < · · · <

tn−1 < tn = b over the interval [a, b]. A spline function of degree k is a piecewise
polynomial function so that S, S′, S′′, . . . , S(k−1) are all continuous functions on [a, b] and
S is a polynomial of degree at most k on each subinterval [ti , ti+1].

(2) A natural cubic spline function S is a piecewise cubic polynomial defined on the
interval [a, b] so that S, S′, S′′ are continuous and S′′(t0) = S′′(tn) = 0. It can be written in
the form

S(x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
S0(x) x ∈ [t0, t1]

S1(x) x ∈ [t1, t2]
...

...

Sn−1(x) x ∈ [tn−1, tn]

where on the interval [ti , ti+1],

Si (x) = zi+1

6hi
(x − ti)

3 + zi

6hi
(ti+1 − x)3

+
(

yi+1

hi
− hi

6
zi+1

)
(x − ti) +

(
yi

hi
− hi

6
zi

)
(ti+1 − x)

and where hi = ti+1 − ti . Clearly, S(x) is continuous, since Si−1(ti) = Si (ti) = yi for
1 � i � n. It can be shown that S′

i−1(ti) = S′
i (ti) and S′′

i−1(ti) = S′′
i (ti) = zi for 1 � i � n. For

efficient evaluation, use the nested form of Si (x), which is

Si (x) = yi + (x − ti)

(
Bi + (x − ti)

(
zi

2
+ 1

6hi
(x − ti)(zi+1 − zi)

))
where Bi = −(hi/6)zi+1 − (hi/3)zi + (yi+1 − yi)/hi . The coefficients z0, z1, . . . , zn are
found by letting bi = (yi+1 − yi)/hi , ui = 2(hi−1 +hi), vi = 6(bi −bi−1), and then solving

9.2 Natural Cubic Splines 399

the tridiagonal system of equations⎧⎨⎩
z0 = 0

hi−1zi−1 + ui zi + hi zi+1 = vi (1 � i � n − 1)

zn = 0

This can be done efficiently by using forward substitution:⎧⎪⎪⎪⎨⎪⎪⎪⎩
ui ← ui − h2

i−1

ui−1

vi ← vi − hi−1vi−1

ui−1
(i = 2, 3, . . . , n − 1)

and back substitution:⎧⎪⎪⎨⎪⎪⎩
zn−1 ← vn−1

un−1

zi ← vi − hi zi+1

ui
(i = n − 2, n − 3, . . . , 1)

Problems 9.2

a1. Do there exist a, b, c, and d such that the function

S(x) =
{

ax3 + x2 + cx (−1 � x � 0)

bx3 + x2 + dx (0 � x � 1)

is a natural cubic spline function that agrees with the absolute value function |x | at the
knots −1, 0, 1?

a2. Do there exist a, b, c, and d such that the function

S(x) =

⎧⎪⎨⎪⎩
−x (−10 � x � −1)

ax3 + bx2 + cx + d (−1 � x � 1)

x (1 � x � 10)

is a natural cubic spline function?

3. Determine the natural cubic spline that interpolates the function f (x) = x6 over the
interval [0, 2] using knots 0, 1, and 2.

a4. Determine the parameters a, b, c, d, and e such that S is a natural cubic spline:

S(x) =
{

a + b(x − 1) + c(x − 1)2 + d(x − 1)3 (x ∈ [0, 1])

(x − 1)3 + ex2 − 1 (x ∈ [1, 2])

a5. Determine the values of a, b, c, and d such that f is a cubic spline and such that∫ 2
0 [f ′′(x)]2 dx is a minimum:

f (x) =
{

3 + x − 9x3 (0 � x � 1)

a + b(x − 1) + c(x − 1)2 + d(x − 1)3 (1 � x � 2)

400 Chapter 9 Approximation by Spline Functions

a6. Determine whether f is a cubic spline with knots −1, 0, 1, and 2:

f (x) =
⎧⎨⎩

1 + 2(x + 1) + (x + 1)3 (−1 � x � 0)

3 + 5x + 3x2 (0 � x � 1)

11 + (x − 1) + 3(x − 1)2 + (x − 1)3 (1 � x � 2)

7. List all the ways in which the following functions fail to be natural cubic splines:

aa. S(x) =
⎧⎨⎩

x + 1 (−2 � x � −1)

x3 − 2x + 1 (−1 � x � 1)

x − 1 (1 � x � 2)

b. f (x) =
{

x3 + x − 1 (−1 � x � 0)

x3 − x − 1 (0 � x � 1)

8. Suppose S(x) is an mth-degree interpolating spline function over the interval [a, b]
with n + 1 knots a = t0 < t1 < · · · < tn = b.

aa. How many conditions are needed to define S(x) uniquely over [a, b]?
ab. How many conditions are defined by the interpolation conditions at the knots?
ac. How many conditions are defined by the continuity of the derivatives?
ad. How many additional conditions are needed so that the total equals the number in

part a?

9. Show that

S(x) =

⎧⎪⎪⎨⎪⎪⎩
28 + 25x + 9x2 + x3 (−3 � x � −1)

26 + 19x + 3x2 − x3 (−1 � x � 0)

26 + 19x + 3x2 − 2x3 (0 � x � 3)

−163 + 208x − 60x2 + 5x3 (3 � x � 4)

is a natural cubic spline function.

a10. Give an example of a cubic spline with knots 0, 1, 2, and 3 that is quadratic in [0, 1],
cubic in [1, 2], and quadratic in [2, 3].

11. Give an example of a cubic spline function S with knots 0, 1, 2, and 3 such that S is
linear in [0, 1] but of degree 3 in the other two intervals.

a12. Determine a, b, and c such that S is a cubic spline function:

S(x) =
{

x3 (0 � x � 1)
1
2 (x − 1)3 + a(x − 1)2 + b(x − 1) + c (1 � x � 3)

a13. Is there a choice of coefficients for which the following function is a natural cubic
spline? Why or why not?

f (x) =
⎧⎨⎩

x + 1 (−2 � x � −1)

ax3 + bx2 + cx + d (−1 � x � 1)

x − 1 (1 � x � 2)

14. Determine the coefficients in the function

S(x) =
{

x3 − 1 (−9 � x � 0)

ax3 + bx2 + cx + d (0 � x � 5)

such that it is a cubic spline that takes the value 2 when x = 1.

9.2 Natural Cubic Splines 401

a15. Determine the coefficients such that the function

S(x) =
{

x2 + x3 (0 � x � 1)

a + bx + cx2 + dx3 (1 � x � 2)

is a cubic spline and has the property S′′′
1 (x) = 12.

16. Assume that a = x0 < x1 < · · · < xm = b. Describe the function f that inter-
polates a table of values (xi , yi), where 0 � i � m, and that minimizes the expression∫ b

a | f ′(x)|dx .

a17. How many additional conditions are needed to specify uniquely a spline of degree 4
over n knots?

18. Let knots t0 < t1 < · · · < tn , and let numbers yi and zi be given. Determine for-
mulas for a piecewise cubic function f that has the given knots such that f (ti) = yi

(0 � i � n), limx→t+i
f ′′(x) = zi (0 � i � n − 1), and limx→t−i

f ′′(x) = zi (1 � i � n).
Why is f not generally a cubic spline?

a19. Define a function f by

f (x) =
{

x3 + x − 1 (−1 � x � 0)

x3 − x − 1 (0 � x � 1)

Show that limx→0+ f (x) = limx→0− f (x) and that limx→0+ f ′′(x) = limx→0− f ′′(x).
Are f and f ′′ continuous? Does it follow that f is a cubic spline? Explain.

20. Show that there is a unique cubic spline S with knots t0 < t1 < · · · < tn , interpolating
data S(ti) = yi (0 � i � n) and satisfying the two end conditions S′(t0) = S′(tn) = 0.

21. Describe explicitly the natural cubic spline that interpolates a table with only two
entries:

x t0 t1

y y0 y1

Give a formula for it. Here, t0 and t1 are the knots.

a22. Suppose that f (0) = 0, f (1) = 1.1752, f ′(0) = 1, and f ′(1) = 1.5431. Determine
the cubic interpolating polynomial p3(x) for these data. Is it a natural cubic spline?

23. A periodic cubic spline having knots t0, t1, . . . , tn is defined as a cubic spline function
S(x) such that S(t0) = S(tn), S′(t0) = S′(tn), and S′′(t0) = S′′(tn). It would be used
to fit data that are known to be periodic. Carry out the analysis necessary to obtain a
periodic cubic spline interpolant for the table

x t0 t1 · · · tn

y y0 y1 · · · yn

assuming that yn = y0.

24. The derivatives and integrals of polynomials are polynomials. State and prove a similar
result about spline functions.

402 Chapter 9 Approximation by Spline Functions

25. Given a differentiable function f and knots t0 < t1 < · · · < tn , show how to obtain a
cubic spline S that interpolates f at the knots and satisfies the end conditions S′(t0) =
f ′(t0) and S′(tn) = f ′(tn). Note: This procedure produces a better fit to f when
applicable. If f ′ is not known, finite-difference approximations to f ′(t0) and f ′(tn) can
be used.

a26. Let S be a cubic spline that has knots t0 < t1 < · · · < tn . Suppose that on the two
intervals [t0, t1] and [t2, t3], S reduces to linear polynomials. What can be said of S on
[t1, t2]?

27. In the construction of the cubic interpolating spline, carry out the evaluation of constants
Ci and Di , and thus justify Equation (5).

28. Show that Si can also be written in the form

Si (x) = yi + Ai (x − ti) + 1

2
zi (x − ti)

2 + zi+1 − zi

6hi
(x − ti)

3

with

Ai = −hi

3
zi − hi

6
zi+1 − yi

hi
+ yi+1

hi

29. Carry out the details in deriving Equation (9), starting with Equation (5).

30. Verify that the algorithm for computing the (zi) array is correct by showing that if (zi)

satisfies Equation (9), then it satisfies the equation in step 3 of the algorithm.

31. Establish that ui > 2hi + 3
2 hi−1 in the algorithm for determining the cubic spline

interpolant.

a32. By hand calculation, find the natural cubic spline interpolant for this table:

x 1 2 3 4 5

y 0 1 0 1 0
a33. Find a cubic spline over knots −1, 0, and 1 such that the following conditions are

satisfied: S′′(−1) = S′′(1) = 0, S(−1) = S(1) = 0, and S(0) = 1.

34. This problem and the next two lead to a more efficient algorithm for natural cubic
spline interpolation in the case of equally spaced knots. Let hi = h in Equation (5),
and replace the parameters zi by qi = h2zi/6. Show that the new form of Equation (5)
is then

Si (x) = qi+1

(
x − ti

h

)3

+ qi

(
ti+1 − x

h

)3

+ (yi+1 − qi+1)

(
x − ti

h

)
+ (yi − qi)

(
ti+1 − x

h

)
35. (Continuation) Establish the new continuity conditions:

q0 = qn = 0 qi−1 + 4qi + qi+1 = yi+1 − 2yi + yi−1 (1 � i � n − 1)

36. (Continuation) Show that the parameters qi can be determined by backward recursion
as follows:

qn = 0 qn−1 = βn−1 qi = αi qi+1 + βi (i = n − 2, n − 3, . . . , 0)

9.2 Natural Cubic Splines 403

where the coefficients αi and βi are generated by ascending recursion from the formulas

α0 = 0 αi = −(αi−1 + 4)−1 (1 � i � n)

β0 = 0 βi = −αi (yi+1 − 2yi + yi−1 − βi−1) (1 � i � n)

(This stable and efficient algorithm is due to MacLeod [1973].)

37. Prove that if S(x) is a spline of degree k on [a, b], then S′(x) is a spline of degree k −1.

a38. How many coefficients are needed to define a piecewise quartic (fourth-degree) function
with n + 1 knots? How many conditions will be imposed if the piecewise quartic
function is to be a quartic spline? Justify your answers.

a39. Determine whether this function is a natural cubic spline:

S(x) =
{

x3 + 3x2 + 7x − 5 (−1 � x � 0)

−x3 + 3x2 + 7x − 5 (0 � x � 1)

40. Determine whether this function is or is not a natural cubic spline having knots 0, 1,
and 2:

f (x) =
{

x3 + x − 1 (0 � x � 1)

−(x − 1)3 + 3(x − 1)2 + 4(x − 1) + 1 (1 � x � 2)

41. Show that the natural cubic spline going through the points (0, 1), (1, 2), (2, 3), (3, 4),
and (4, 5) must be y = x + 1. (The natural cubic spline interpolant to a given data set
is unique, because the matrix in Equation (10) is diagonally dominant and nonsingular,
as proven in Section 7.3.)

Computer Problems 9.2

1. Rewrite and test procedure Spline3 Coef using procedure Tri from Chapter 7. Use the
symmetry of the (n − 1) × (n − 1) tridiagonal system.

2. The extra storage required in step 1 of the algorithm for solving the natural cubic spline
tridiagonal system directly can be eliminated at the expense of a slight amount of extra
computation—namely, by computing the hi ’s and bi ’s directly from the ti ’s and yi ’s
in the forward elimination phase (step 2) and in the back substitution phase (step 3).
Rewrite and test procedure Spline3 Coef using this idea.

3. Using at most 20 knots and the cubic spline routines Spline3 Coef and Spline3 Eval,
plot on a computer plotter an outline of your:
a. school’s mascot. b. signature. c. profile.

4. Let S be the cubic spline function that interpolates f (x) = (x2 + 1)−1 at 41 equally
spaced knots in the interval [−5, 5]. Evaluate S(x)− f (x) at 101 equally spaced points
on the interval [0, 5].

5. Draw a free-form curve on graph paper, making certain that the curve is the graph of
a function. Then read values of your function at a reasonable number of points, say,
10–50, and compute the cubic spline function that takes those values. Compare the
freely drawn curve to the graph of the cubic spline.

404 Chapter 9 Approximation by Spline Functions

6. Draw a spiral (or other curve that is not a function) and reproduce it by way of parametric
spline functions. (See the figure below.)

y

x

7

3

9

5

8

4

6

2

1

0

7. Write and test procedures that are as simple as possible to perform natural cubic spline
interpolation with equally spaced knots. Hint: See Problems 9.3.34–9.3.36.

8. Write a program to estimate
∫ b

a f (x) dx , assuming that we know the values of f at
only certain prescribed knots a = t0 < t1 < · · · < tn = b. Approximate f first by an
interpolating cubic spline, and then compute the integral of it using Equation (5).

9. Write a procedure to estimate f ′(x) for any x in [a, b], assuming that we know only
the values of f at knots a = t0 < t1 < · · · < tn = b.

10. Using the Runge function f (x) = 1/(1 + x2) from Section 4.2 with an increasing
number of equally spaced nodes, watch the natural cubic spline curve get better with
regard to curve fitting while the interpolating polynomial gets worse.

11. Use mathematical software such as Matlab, Maple, or Mathematica to generate and
plot the spline function in Example 2.

12. Use mathematical software such as Matlab, Maple, or Mathematica to plot the cubic
spline functions corresponding to
a. Figure 9.8. b. Figure 9.9. c. Figure 9.10.

9.3 B Splines: Interpolation and Approximation
In this section, we give an introduction to the theory of B splines. These are special spline
functions that are well adapted to numerical tasks and are being used more and more
frequently in production-type programs for approximating data. Thus, the intelligent user
of library code should have some familiarity with them. The B splines were so named
because they formed a basis for the set of all splines. (We prefer the more romantic name
bell splines because of their characteristic shape.)

9.3 B Splines: Interpolation and Approximation 405

Throughout this section, we suppose that an infinite set of knots {ti } has been prescribed
in such a way that { · · · < t−2 < t−1 < t0 < t1 < t2 < · · ·

lim
i→∞

ti = ∞ = − lim
i→∞

t−i
(1)

The B splines to be defined now depend on this set of knots, although the notation does not
show that dependence. The B splines of degree 0 are defined by

B0
i (x) =

{
1 ti � x < ti+1

0 otherwise
(2)

The graph of B0
i is shown in Figure 9.12.

FIGURE 9.12

B0
i spline ti 1ti�1

x
ti ti�2

1

Obviously, B0
i is discontinuous. However, it is continuous from the right at all points,

even where the jumps occur. Thus,

lim
x→t+i

B0
i (x) = 1 = B0

i (ti) and lim
x→t+i+1

B0
i (x) = 0 = B0

i (ti+1)

If the support of a function f is defined as the set of points x where f (x) �= 0, then we
can say that the support of B0

i is the half-open interval [ti , ti+1). Since B0
i is a piecewise

constant function, it is a spline of degree 0.
Two further observations can be made:

B0
i (x) � 0 for all x and for all i

∞∑
i=−∞

B0
i (x) = 1 for all x

Although the second of these assertions contains an infinite series, there is no question of
convergence because for each x only one term in the series is different from 0. Indeed, for
fixed x , there is a unique integer m such that tm � x < tm+1, and then

∞∑
i=−∞

B0
i (x) = B0

m(x) = 1

The reader should now see the reason for defining B0
i in the manner of Equation (2).

A final remark concerning these B splines of degree 0: Any spline of degree 0 that
is continuous from the right and is based on the knots (1) can be expressed as a linear
combination of the B splines B0

i . Indeed, if S is such a function, then it can be specified by
a rule such as

S(x) = bi if ti � x < ti+1 (i = 0, ±1, ±2, . . .)

Then S can be written as

S =
∞∑

i=−∞
bi B0

i

406 Chapter 9 Approximation by Spline Functions

With the functions B0
i as a starting point, we now generate all the higher-degree B splines

by a simple recursive definition:

Bk
i (x) =

(
x − ti

ti+k − ti

)
Bk−1

i (x) +
(

ti+k+1 − x

ti+k+1 − ti+1

)
Bk−1

i+1 (x) (k � 1) (3)

Here k = 1, 2, . . . , and i = 0, ±1, ±2,
To illustrate Equation (3), let us determine B1

i in an alternative form:

B1
i (x) =

(
x − ti

ti+1 − ti

)
B0

i (x) +
(

ti+2 − x

ti+2 − ti+1

)
B0

i+1(x)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
0 (x � ti+2 or x � ti)

x − ti

ti+1 − ti
(ti � x < ti+1)

ti+2 − x

ti+2 − ti+1
(ti+1 � x < ti+2)

FIGURE 9.13

B1
1 spline ti�1

x

1

ti ti�1 ti�2 ti�3

The graph of B1
i is shown in Figure 9.13. These are sometimes called hat functions or

chapeau functions (from the French) since they resemble a triangular hat one might make
from a newspaper. The support of B1

i is the open interval (ti , ti+2). It is true, but perhaps
not so obvious, that

∞∑
i=−∞

B1
i (x) = 1 for all x

and that every spline of degree 1 based on the knots (1) is a linear combination of B1
i .

The functions Bk
i as defined by Equation (3) are called B splines of degree k. Since each

Bk
i is obtained by applying linear factors to Bk−1

i and Bk−1
i+1 , we see that the degrees actually

increase by 1 at each step. Therefore, B1
i is piecewise linear, B2

i is piecewise quadratic, and
so on.

It is also easily shown by induction that

Bk
i (x) = 0 x /∈ [ti , ti+k+1) (k � 0)

To establish this, we start by observing that it is true when k = 0 because of Definition (2).
If it is true for index k − 1, then it is true for index k by the following reasoning. The
inductive hypothesis tells us that Bk−1

i (x) = 0 if x is outside [ti , ti+k) and that Bk−1
i+1 (x) = 0

if x is outside [ti+1, ti+k+1). If x is outside both intervals, it is outside their union, [ti , ti+k+1);
then both terms on the right side of Equation (3) are 0. So Bk

i (x) = 0 outside [ti , ti+k+1).
That Bk

i (ti) = 0 follows directly from Equation (3), so we know that Bk
i (x) = 0 for all x

outside (ti , ti+k+1) if k � 1.

9.3 B Splines: Interpolation and Approximation 407

Complementary to the property just established, we can show, again by induction, that

Bk
i (x) > 0 x ∈ (ti , ti+k+1) (k � 0)

By Equation (2), this assertion is true when k = 0. If it is true for index k − 1, then
Bk−1

i (x) > 0 on (ti , ti+k) and Bk−1
i+1 (x) > 0 on (ti+1, ti+k+1). In Equation (3), the factors that

multiply Bk−1
i (x) and Bk−1

i+1 (x) are positive when ti < x < ti+k+1. Thus, Bk
i (x) > 0 on this

interval.
Figure 9.14 shows the first four B splines plotted on the same axes.

FIGURE 9.14

First four
B-splines

y

x

Bi
0

Bi
11

Bi
2

Bi
3

ti�3 ti�4ti�2ti�1ti

The principal use of the B splines Bk
i (i = 0, ±1, ±2, . . .) is as a basis for the set of all

kth-degree splines that have the same knot sequence. Thus, linear combinations
∞∑

i=−∞
ci Bk

i

are important objects of study. (We use ci for fixed k and Ck
i to emphasize the degree k of

the corresponding B splines.) Our first task is to develop an efficient method to evaluate a
function of the form

f (x) =
∞∑

i=−∞
Ck

i Bk
i (x) (4)

under the supposition that the coefficients Ck
i are given (as well as the knot sequence ti).

Using Definition (3) and some simple series manipulations, we have

f (x) =
∞∑

i=−∞
Ck

i

[(
x − ti

ti+k − ti

)
Bk−1

i (x) +
(

ti+k+1 − x

ti+k+1 − ti+1

)
Bk−1

i+1 (x)

]

=
∞∑

i=−∞

[
Ck

i

(
x − ti

ti+k − ti

)
+ Ck

i−1

(
ti+k − x

ti+k − ti

)]
Bk−1

i (x)

=
∞∑

i=−∞
Ck−1

i Bk−1
i (x) (5)

where Ck−1
i is defined to be the appropriate coefficient from the line preceding Equation (5).

This algebraic manipulation shows how a linear combination of Bk
i (x) can be expressed

as a linear combination of Bk−1
i (x). Repeating this process k−1 times, we eventually express

f (x) in the form

f (x) =
∞∑

i=−∞
C0

i B0
i (x) (6)

408 Chapter 9 Approximation by Spline Functions

If tm � x < tm+1, then f (x) = C0
m . The formula by which the coefficients C j−1

i are ob-
tained is

C j−1
i = C j

i

(
x − ti

ti+ j − ti

)
+ C j

i−1

(
ti+ j − x

ti+ j − ti

)
(7)

A nice feature of Equation (4) is that only the k + 1 coefficients Ck
m , Ck

m−1, . . . , Ck
m−k

are needed to compute f (x) if tm � x < tm+1 (see Problem 9.3.6). Thus, if f is defined by
Equation (4) and we want to compute f (x), we use Equation (7) to calculate the entries in
the following triangular array:

Ck
m Ck−1

m · · · C0
m

Ck
m−1 Ck−1

m−1 . .
.

... . .
.

Ck
m−k

Although our notation does not show it, the coefficients in Equation (4) are independent of
x , whereas the C j−1

i ’s calculated subsequently by Equation (7) do depend on x .
It is now a simple matter to establish that

∞∑
i=−∞

Bk
i (x) = 1 for all x and all k � 0

If k = 0, we already know this. If k > 0, we use Equation (4) with Ck
i = 1 for all i .

By Equation (7), all subsequent coefficients Ck
i , Ck−1

i , Ck−2
i , . . . , C0

i are also equal to 1
(induction is needed here!). Thus, at the end, Equation (6) is true with C0

i = 1, and so
f (x) = 1. Therefore, from Equation (4), the sum of all B splines of degree k is unity.

The smoothness of the B splines Bk
i increases with the index k. In fact, we can show

by induction that Bk
i has a continuous k − 1st derivative.

The B splines can be used as substitutes for complicated functions in many mathematical
situations. Differentiation and integration are important examples. A basic result about the
derivatives of B splines is

d

dx
Bk

i (x) =
(

k

ti+k − ti

)
Bk−1

i (x) −
(

k

ti+k+1 − ti+1

)
Bk−1

i+1 (x) (8)

This equation can be proved by induction using the recursive Formula (3). Once Equation (8)
is established, we get the useful formula

d

dx

∞∑
i=−∞

ci Bk
i (x) =

∞∑
i=−∞

di Bk−1
i (x) (9)

where

di = k

(
ci − ci−1

ti+k − ti

)

9.3 B Splines: Interpolation and Approximation 409

The verification is as follows. By Equation (8),

d

dx

∞∑
i=−∞

ci Bk
i (x)

=
∞∑

i=−∞
ci

d

dx
Bk

i (x)

=
∞∑

i=−∞
ci

[(
k

ti+k − ti

)
Bk−1

i (x) −
(

k

ti+k+1 − ti+1

)
Bk−1

i+1 (x)

]

=
∞∑

i=−∞

[(
ci k

ti+k − ti

)
−
(

ci−1k

ti+k − ti

)]
Bk−1

i (x)

=
∞∑

i=−∞
di Bk−1

i (x)

For numerical integration, the B splines are also recommended, especially for indefinite
integration. Here is the basic result needed for integration:∫ x

−∞
Bk

i (s) ds =
(

ti+k+1 − ti

k + 1

) ∞∑
j=i

Bk+1
j (x) (10)

This equation can be verified by differentiating both sides with respect to x and simplifying
by the use of Equation (9). To be sure that the two sides of Equation (10) do not differ by a
constant, we note that for any x < ti , both sides reduce to zero.

The basic result (10) produces this useful formula:∫ x

−∞

∞∑
i=−∞

ci Bk
i (s) ds =

∞∑
i=−∞

ei Bk+1
i (x) (11)

where

ei = 1

k + 1

i∑
j=−∞

c j (t j+k+1 − t j)

It should be emphasized that this formula gives an indefinite integral (antiderivative) of
any function expressed as a linear combination of B splines. Any definite integral can be
obtained by selecting a specific value of x . For example, if x is a knot, say, x = tm , then∫ tm

−∞

∞∑
i=−∞

ci Bk
i (s) ds =

∞∑
i=−∞

ei Bk+1
i (tm) =

m∑
i=m−k−1

ei Bk+1
i (tm)

Matlab has a Spline Toolbox, developed by Carl de Boor, that can be used for many
tasks involving splines. For example, there are routines for interpolating data by splines with
diverse end conditions and routines for least-squares fits to data. There are many demon-
stration routines in this Toolbox that exhibit plots and provide models for programming
Matlab M-files. These demonstrations are quite instructive for visualizing and learning the
concepts in spline theory, especially B splines.

Maple has a BSpline package for constructing B spline basis functions of degree k
from a given knot list, which may include multiple knots. It is based on a divided-difference

410 Chapter 9 Approximation by Spline Functions

implementation found in Bartels, Beatty, and Barskey [1987]. It can be downloaded from
the Maple Application Center at www.maplesoft.com.

Interpolation and Approximation by B Splines
We developed a number of properties of B splines and showed how B splines are used
in various numerical tasks. The problem of obtaining a B spline representation of a given
function was not discussed. Here, we consider the problem of interpolating a table of data;
later, a noninterpolatory method of approximation is described.

A basic question is how to determine the coefficients in the expression

S(x) =
∞∑

i=−∞
Ai Bk

i−k(x) (12)

so that the resulting spline function interpolates a prescribed table:

x t0 t1 · · · tn

y y0 y1 · · · yn

We mean by interpolate that

S(ti) = yi (0 � i � n) (13)

The natural starting point is with the simplest splines, corresponding to k = 0. Since

B0
i (t j) = δi j =

{
1 (i = j)
0 (i �= j)

the solution to the problem is immediate: Just set Ai = yi for 0 � i � n. All other coefficients
in Equation (12) are arbitrary. In particular, they can be zero. We arrive then at this result:
The zero-degree B spline

S(x) =
n∑

i=0

yi B0
i (x)

has the interpolation property (13).
The next case, k = 1, also has a simple solution. We use the fact that

B1
i−1(t j) = δi j

Hence, the following is true: The first-degree B spline

S(x) =
n∑

i=0

yi B1
i−1(x)

has the interpolation property (13). So Ai = yi again.
If the table has four entries (n = 3), for instance, we use B1

−1, B1
0 , B1

1 , and B1
2 . They,

in turn, require for their definition knots t−1, t0, t1, . . . , t4. Knots t−1 and t4 can be arbitrary.
Figure 9.15 shows the graphs of the four B1-splines. In such a problem, if t−1 and t4 are not
prescribed, it is natural to define them in such a way that t0 is the midpoint of the interval
[t−1, t1] and t3 is the midpoint of [t2, t4].

In both elementary cases considered, the unknown coefficients A0, A1, . . . , An in
Equation (12) were uniquely determined by the interpolation conditions (13). If terms were

www.maplesoft.com

9.3 B Splines: Interpolation and Approximation 411

FIGURE 9.15

B1
i splines t1 t2t0t�1 t3 t4

B1
�1 B1

0 B1
1 B1

2

x

present in Equation (12) corresponding to values of i outside the range {0, 1, . . . , n}, then
they would have no influence on the values of S(x) at t0, t1, . . . , tn .

For higher-degree splines, we shall see that some arbitrariness exists in choosing
coefficients. In fact, none of the coefficients is uniquely determined by the interpolation
conditions. This fact can be advantageous if other properties are desired of the solution. In
the quadratic case, we begin with the equation

∞∑
i=−∞

Ai B2
i−2(t j) = 1

t j+1 − t j−1

[
A j (t j+1 − t j) + A j+1(t j − t j−1)

]
(14)

Its justification is left to Problem 9.3.26. If the interpolation conditions (13) are now imposed,
we obtain the following system of equations, which gives the necessary and sufficient
conditions on the coefficients:

A j (t j+1 − t j) + A j+1(t j − t j−1) = y j (t j+1 − t j−1) (0 � j � n) (15)

This is a system of n + 1 linear equations in n + 2 unknowns A0, A1, . . . , An+1.
One way to solve Equation (15) is to assign any value to A0 and then use Equation (15)

to compute for A1, A2, . . . , An+1, recursively. For this purpose, the equations could be
rewritten as

A j+1 = α j + β j A j (0 � j � n) (16)

where these abbreviations have been used:⎧⎪⎪⎪⎨⎪⎪⎪⎩
α j = y j

(
t j+1 − t j−1

t j − t j−1

)
β j = t j − t j+1

t j − t j−1

(0 � j � n)

To keep the coefficients small in magnitude, we recommend selecting A0 such that the
expression

� =
n+1∑
i=0

A2
i

will be a minimum. To determine this value of A0, we proceed as follows: By successive
substitution using Equation (16), we can show that

A j+1 = γ j + δ j A0 (0 � j � n) (17)

412 Chapter 9 Approximation by Spline Functions

where the coefficients γ j and δ j are obtained recursively by this algorithm:{
γ0 = α0 δ0 = β0

γ j = α j + β jγ j−1 δ j = β jδ j−1 (1 � j � n)
(18)

Then � is a quadratic function of A0 as follows:

� = A2
0 + A2

1 + · · · + A2
n+1

= A2
0 + (γ0 + δ0 A0)

2 + (γ1 + δ1 A0)
2 + · · · + (γn + δn A0)

2

To find the minimum of �, we take its derivative with respect to A0 and set it equal to zero:

d�

d A0
= 2A0 + 2(γ0 + δ0 A0)δ0 + 2(γ1 + δ1 A0)δ1 + · · · + 2(γn + δn A0)δn = 0

This is equivalent to q A0 + p = 0, where{
q = 1 + δ2

0 + δ2
1 + · · · + δ2

n

p = γ0δ0 + γ1δ1 + · · · + γnδn

Pseudocode and a Curve-Fitting Example
A procedure that computes coefficients A0, A1, . . . , An+1 in the manner outlined above is
given now. In its calling sequence, (ti)0:n is the knot array, (yi)0:n is the array of abscissa
points, (ai)0:n+1 is the array of Ai coefficients, and (hi)0:n+1 is an array that contains hi =
ti − ti−1. Only n, (ti), and (yi) are input values. They are available unchanged when the
routine is finished. Arrays (ai) and (hi) are computed and available as output.

procedure BSpline2 Coef (n, (ti), (yi), (ai), (hi))

integer i, n; real δ, γ, p, q
real array (ai)0:n+1, (hi)0:n+1, (ti)0:n, (yi)0:n

for i = 1 to n do
hi ← ti − ti−1

end for
h0 ← h1

hn+1 ← hn

δ ← −1
γ ← 2y0

p ← δγ

q ← 2
for i = 1 to n do

r ← hi+1/hi

δ ← −rδ

γ ← −rγ + (r + 1)yi

p ← p + γ δ

q ← q + δ2

end for

9.3 B Splines: Interpolation and Approximation 413

a0 ← −p/q
for i = 1 to n + 1 do

ai ← [(hi−1 + hi)yi−1 − hi ai−1]/hi−1

end for
end procedure BSpline2 Coef

Next we give a procedure function BSpline2 Eval for computing values of the quadratic
spline given by S(x) = ∑n+1

i=0 Ai B2
i−2(x). Its calling sequence has some of the same variables

as in the preceding pseudocode. The input variable x is a single real number that should lie
between t0 and tn . The result of Problem 9.3.26 is used.

real function BSpline2 Eval(n, (ti), (ai), (hi), x)

integer i, n; real d, e, x ; real array (ai)0:n+1, (hi)0:n+1, (ti)0:n

for i = n − 1 to 0 step −1 do
if x − ti � 0 then exit loop

end for
i ← i + 1
d ← [ai+1(x − ti−1) + ai (ti − x + hi+1)]/(hi + hi+1)

e ← [ai (x − ti−1 + hi−1) + ai−1(ti−1 − x + hi)]/(hi−1 + hi)

BSpline2 Eval ← [d(x − ti−1) + e(ti − x)]/hi

end function BSpline2 Eval

Using the table of 20 points from Section 9.2, we can compare the resulting natural
cubic spline curve with the quadratic spline produced by the procedures BSpline2 Coef
and BSpline2 Eval. The first of these curves is shown in Figure 9.8, and the second is in
Figure 9.16. The latter is reasonable but perhaps not as pleasing as the former. These curves
show once again that cubic natural splines are simple and elegant functions for curve fitting.

FIGURE 9.16

Quadratic
interpolating

spline

y

x
1 2

0
3 4 5 6 7 8

0.5

1

1.5

2

�0.5

�1

�1.5

�2

414 Chapter 9 Approximation by Spline Functions

Schoenberg’s Process
An efficient process due to Schoenberg [1967] can also be used to obtain B spline approx-
imations to a given function. Its quadratic version is defined by

S(x) =
∞∑

i=−∞
f (τi)B2

i (x) where τi = 1

2
(ti+1 + ti+2) (19)

Here, of course, the knots are {ti }∞
i=−∞, and the points where f must be evaluated are

midpoints between the knots.
Equation (19) is useful in producing a quadratic spline function that approximates f .

The salient properties of this process are as follows:

1. If f (x) = ax + b, then S(x) = f (x).

2. If f (x) � 0 everywhere, then S(x) � 0 everywhere.

3. maxx |S(x)| � maxx | f (x)|.
4. If f is continuous on [a, b], if δ = maxi |ti+1 − ti |, and if δ < b − a, then for x in

[a, b],

|S(x) − f (x)| �
3

2
max

a � u � v � u+δ � b
| f (u) − f (v)|

5. The graph of S does not cross any line in the plane a greater number of times than does
the graph of f .

Some of these properties are elementary; others are more abstruse. Property 1 is outlined
in Problem 9.3.29. Property 2 is obvious because B2

i (x) � 0 for all x . Property 3 follows
easily from Equation (19) because if | f (x)| � M , then

|S(x)| �

∣∣∣∣∣
∞∑

i=−∞
f (τi)B2

i (x)

∣∣∣∣∣�
∞∑

i=−∞
| f (τi)‖B2

i (x) � M
∞∑

i=−∞
B2

i (x) = M

Properties 4 and 5 will be accepted without proof. Their significance, however, should
not be overlooked. By Property 4, we can make the function S close to a continuous function
f simply by making the mesh size δ small. This is because f (u)− f (v) can be made as small
as we wish simply by imposing the inequality |u − v| � δ (uniform continuity property).
Property 5 can be interpreted as a shape-preserving attribute of the approximation process.
In a crude interpretation, S should not exhibit more undulations than f .

Pseudocode
A pseudocode to obtain a spline approximation by means of Schoenberg’s process is devel-
oped here. Suppose that f is defined on an interval [a, b] and that the spline approximation
of Equation (19) is wanted on the same interval. We define nodes τi = a + ih, where
h = (b − a)/n. Here, i can be any integer, but the nodes in [a, b] are only τ0, τ1, . . . , τn .
To have τi = 1

2 (ti+1 + ti+2), we define the knots ti = a + (i − 3
2)h. In Equation (19), the

only B splines B2
i that are active on [a, b] are B2

−1, B2
0 , . . . , B2

n+1. Hence, for our purposes,
Equation (19) becomes

S(x) =
n+1∑

i=−1

f (τi)B2
i (x) (20)

9.3 B Splines: Interpolation and Approximation 415

Thus, we require the values of f at τ−1, τ0, . . . , τn+1. Two of these nodes are outside the
interval [a, b]; therefore, we furnish linearly extrapolated values in the code by defining

f (τ−1) = 2 f (τ0) − f (τ1)

f (τn+1) = 2 f (τn) − f (τn−1)

To use the formulas in Problem 9.3.26, we write

S(x) =
n+3∑
i=1

Di B2
i−2(x) [Di = f (τi−2)]

A pseudocode to compute D1, D2, . . . , Dn+3 is given now. In the calling sequence for
procedure Schoenberg Coef , f is an external function. After execution, the n + 3 desired
coefficients are in the (di) array.

procedure Schoenberg Coef (f, a, b, n, (di))

integer i ; real a, b, h; real array (di)1:n+3

external function f
h ← (b − a)/n
for i = 2 to n + 2 do

di ← f (a + (i − 2)h)

end for
d1 ← 2d2 − d3

dn+3 ← 2dn+2 − dn+1

end procedure Schoenberg Coef

After the coefficients Di have been obtained by the procedure just given, we can recover
values of the spline S(x) in Equation (20). Here, we use the algorithm of Problem 9.3.26.
Given an x , we first need to know where it is relative to the knots. To determine k such that
tk−1 � x � tk , we notice that k should be the largest integer such that tk−1 � x . This inequality
is equivalent to the inequality k � 5

2 + (x − a)/h, as is easily verified. This explains the
calculations of k in the pseudocode. The location of x is indicated in Figure 9.17. In the
calling sequence for function Schoenberg Eval, a and b are the ends of the interval, and x
is a point where the value of S(x) is desired. The procedure determines knots ti in such a
way that the equally spaced points τi in the preceding procedure satisfy τi = 1

2 (ti+1 + ti+2).

FIGURE 9.17

Location of x

tk � 1

tk � 2

tk

tk � 1

tk � 1x

real function Schoenberg Eval(a, b, n, (di), x)

integer k: real c, h, p, w; real array (di)1:n+3

h ← (b − a)/n
k ← integer[(x − a)/h + 5/2]
p ← x − a − (k − 5/2)h
c ← [dk+1 p + dk(2h − p)]/(2h)

e ← [dk(p + h) + dk−1(h − p)]/(2h)

Schoenberg Eval ← [cp + e(h − p)]/h
end function Schoenberg Eval

416 Chapter 9 Approximation by Spline Functions

Bézier Curves
In computer-aided design, it is useful to have a procedure for producing a curve that goes
through (or near to) some control points, or a curve that can be easily manipulated to give a
desired shape. High-degree polynomial interpolation is generally not suitable for this sort of
task, as one might guess from the negative remarks previously made about them. Experience
shows that if one specifies a number of control points through which the polynomial must
pass, the overall shape of the resulting curve may be severely disappointing!

Polynomials can be used in a different way, however, leading to Bézier curves. Bézier
curves use as a basis for the space �n (all polynomials of degree not exceeding n) a special
set of polynomials that lend themselves to the task at hand. We standardize to the interval
[0, 1] and fix a value of n. Next, we define basic polynomial functions

ϕni (x) =
(

n

i

)
xi (1 − x)n−i (0 � i � n)

The polynomials ϕni are the constituents of the Bernstein polynomials. For a continuous
function f defined on [0, 1], Bernstein, in 1912, proved that the sequence of polynomials

pn(x) =
n∑

i=0

f

(
i

n

)
ϕni (x) (n � 1)

converges uniformly to f , thus providing a very attractive proof of the Weierstrass Approx-
imation Theorem.

The graphs of a few polynomials ϕni are shown in Figure 9.18, where we used n = 7 and
i = 0, 1, 5. The Bernstein basic polynomials are found in mathematical software systems
such as Maple or Mathematica, for example.

FIGURE 9.18

First few
Bernstein basis

polynomials
0

0.2

0.4

0.6

0.8

1

0.2 0.4 0.6

	70

	71

	75

0.8 1

y

x

Bernstein polynomials have two salient properties.

■ PROPERTIES For all x satisfying 0 � x � 1,

1. ϕni (x) � 0

2.
∑n

i=0 ϕni (x) = 1

9.3 B Splines: Interpolation and Approximation 417

Any set of functions having these two properties is called a partition of unity on the
interval [0, 1]. Notice that the second equation above is actually valid for all real x . The set
{ϕn0, ϕn1, . . . , ϕnn} is a basis for the space �n . Consequently, every polynomial of degree
at most n has a representation

n∑
i=0

aiϕni (x)

If we want to create a polynomial that comes close to interpolating values (i/n, yi) for
0 � i � n, we can use

∑n
i=0 yiϕni to start and then, after examining the resulting curve,

adjust the coefficients to change the shape of the curve. This is one procedure that can be
used in computer-aided design. Changing the value of yi will change the curve principally
in the vicinity of i/n because of the local nature of the basic polynomials ϕni .

Another way in which these polynomials can be used is in creating curves that are not
simply graphs of a function f . Here, we turn to a vector form of the procedure suggested
above. If n + 1 vectors v0, v1, . . . , vn are prescribed, say, in R

2 or R
3, the expression

u(t) =
n∑

i=0

ϕni (t)vi (0 � t � 1)

makes sense, since the right-hand side is (for each t) a linear combination of the vectors vi .
As t runs over the interval [0, 1], the vector u(t) describes a curve in the space where the
vectors vi are situated. This curve lies in the convex hull of the vectors vi , because u(t) is a
convex linear combination of the vi . This requires the two properties of ϕni mentioned above.

To illustrate this procedure, we have selected seven points in the plane and have drawn
the closed curve generated by the above equation; that is, by the vector u(t). Figure 9.19
shows the resulting curve as well as the control points. In Figure 9.19, the control points

FIGURE 9.19

Curve using
control points

y

x
1 2 3 4 5

1

2

3

4

5

0

u(t)

418 Chapter 9 Approximation by Spline Functions

are the vertices of the polygon, and the curve is the one that results in the manner de-
scribed. Mathematical software systems such as Maple and Mathematica can be used to
do this.

A glance at Figure 9.18 will suggest to the reader that perhaps B splines can be used
in the role of the Bernstein functions ϕni . Indeed, that is the case, and B splines have taken
over in most programs for computer-aided design. Thus, to obtain a curve that comes close
to a set of points (ti , yi), we can set up a system of B splines (for example, cubic B splines)
having knots ti . Then the linear combination

∑n
i=0 yi B3

i can be examined to see whether it
has the desired shape. Here, of course, B3

i denotes a cubic B spline whose support is the
interval (ti , ti+4).

The vector case is like the one described above, except that the functions ϕni are replaced
by B3

i . Also, it is easier to take the knots as integers and let t run from 0 to n. The properties
1 and 2 of the ϕni displayed above are also shared by the B splines.

Summary

(1) The B spline of degree 0 is

B0
i (x) =

{
1 (ti � x < ti+1)

0 (otherwise)

Higher-degree B splines are defined recursively:

Bk
i (x) =

(
x − ti

ti+k − ti

)
Bk−1

i (x) +
(

ti+k+1 − x

ti+k+1 − ti+1

)
Bk−1

i+1 (x)

where k = 1, 2, . . . and i = 0, ±1, ±2,

(2) Some properties are

Bk
i (x) = 0 x /∈ [ti , ti+k+1)

Bk
i (x) > 0 x ∈ (ti , ti+k+1)

An efficient method to evaluate a function of the form

f (x) =
∞∑

i=−∞
Ck

i Bk
i (x)

is to use

C j−1
i = C j

i

(
x − ti

ti+ j − ti

)
+ C j

i−1

(
ti+ j − x

ti+ j − ti

)
(3) The derivative of B splines is

d

dx
Bk

i (x) =
(

k

ti+k − ti

)
Bk−1

i (x) −
(

k

ti+k+1 − ti+1

)
Bk−1

i+1 (x)

A useful formula is

d

dx

∞∑
i=−∞

ci Bk
i (x) =

∞∑
i=−∞

di Bk−1
i (x)

9.3 B Splines: Interpolation and Approximation 419

where di = k(ci − ci−1)/(ti+k − ti). A basic result needed for integration is∫ x

−∞
Bk

i (s) ds =
(

ti+k+1 − ti

k + 1

) ∞∑
j=i

Bk+1
j (x)

A resulting useful formula is∫ x

−∞

∞∑
i=−∞

ci Bk
i (s) ds =

∞∑
i=−∞

ei Bk+1
i (x)

where ei = 1/(k + 1)
∑i

j=−∞ c j (t j+k+1 − t j).

(4) To determine the coefficients in the expression

S(x) =
∞∑

i=−∞
Ai B2

i−k(x)

so that the resulting spline function interpolates a prescribed table, we use the condition

A j (t j+1 − t j) + A j+1(t j − t j−1) = y j (t j+1 − t j−1) (0 � j � n)

This is a system of n + 1 linear equations in n + 2 unknowns A0, A1, . . . , An+1 that can be
solved recursively.

(5) Schoenberg’s process is an efficient process to obtain B spline approximations to a
given function. For example, its quadratic version is defined by

S(x) =
∞∑

i=−∞
f (τi)B2

i (x)

where τi = 1
2 (ti+1+ti+2) and the knots are {ti }∞

i=−∞. The points τi where f must be evaluated
are midpoints between the knots.

(6) Bézier curves are used in computer-aided design for producing a curve that goes through
(or near to) control points, or a curve that can be manipulated easily to give a desired shape.
Bézier curves use Bernstein polynomials. For a continuous function f defined on [0, 1], the
sequence of Bernstein polynomials

pn(x) =
n∑

i=0

f

(
i

n

)
ϕni (x) (n � 1)

converges uniformly to f . The polynomials ϕni are

ϕni (x) =
(

n

i

)
xi (1 − x)n−i (0 � i � n)

Additional References
See Ahlberg et al. [1967], de Boor [1978], Farin [1990], MacLeod [1973], Schoenberg [1946,
1967], Schultz [1973], Schumaker [1981], Subbotin [1967], and Yamaguchi [1988].

420 Chapter 9 Approximation by Spline Functions

Problems 9.3

1. Show that the functions fn(x) = cos nx are generated by this recursive definition:{
f0(x) = 1, f1(x) = cos x

fn+1(x) = 2 f1(x) fn(x) − fn−1(x) (n � 1)

a2. What functions are generated by the following recursive definition?{
f0(x) = 1, f1(x) = x

fn+1(x) = 2x fn(x) − fn−1(x) (n � 1)

a3. Find an expression for B2
i (x) and verify that it is piecewise quadratic. Show that B2

i (x)

is zero at every knot except

B2
i (ti+1) = ti+1 − ti

ti+2 − ti
and B2

i (ti+2) = ti+3 − ti+2

ti+3 − ti+1

4. Verify Equation (5).

a5. Establish that
∑∞

i=−∞ f (ti)B1
i−1(x) is a first-degree spline that interpolates f at every

knot. What is the zero-degree spline that does so?

6. Show that if tm � x < tm+1, then
∞∑

i=−∞
ci Bk

i (x) =
m∑

i=m−k

ci Bk
i (x)

7. Let hi = ti+1 − ti . Show that if

S(x) =
∞∑

i=−∞
ci B2

i (x) and if ci−1hi−1 + ci−2hi = yi (hi + hi−1)

for all i , then S(tm) = ym for all m. Hint: Use Problem 3.

8. Show that the coefficients C j−1
i generated by Equation (7) satisfy the condition

mini C j−1
i � f (x) � maxi C j−1

i .

9. For equally spaced knots, show that k(k +1)−1 Bk
i (x) lies in the interval with endpoints

Bk−1
i (x) and Bk−1

i+1 (x).

10. Show that Bk
i (x) = Bk

0 (x − ti) if the knots are the integers on the real line (ti = i).

11. Show that ∫ ∞

−∞
Bk

i (x) dx = ti+k+1 − ti

k + 1

12. Show that the class of all spline functions of degree m that have knots x0, x1, . . . , xn

includes the class of polynomials of degree m.

13. Establish Equation (8) by induction.

a14. Which B splines Bk
i have a nonzero value on the interval (tn, tm)? Explain.

9.3 B Splines: Interpolation and Approximation 421

a15. Show that on [ti , ti+1] we have

Bk
i (x) = (x − ti)

k

(ti+1 − ti)(ti+2 − ti) · · · (ti+k − ti)
a16. Is a spline of the form S(x) = ∑∞

i=−∞ ci Bk
i (x) uniquely determined by a finite set of

interpolation conditions S(ti) = yi (0 � i � n)? Why or why not?

a17. If the spline function S(x) = ∑∞
i=−∞ ci Bk

i (x) vanishes at each knot, must it be identi-
cally zero? Why or why not?

18. What is the necessary and sufficient condition on the coefficients in order that∑∞
i=−∞ ci Bk

i = 0? State and prove.

a19. Expand the function f (x) = x in an infinite series
∑∞

i=−∞ ci B1
i .

a20. Establish that
∑∞

i=−∞ Bk
i is a constant function by means of Equation (9).

21. Show that if k � 2, then

d2

dx2

∞∑
i=−∞

ci Bk
i = k(k − 1)

∞∑
i=−∞

[
ci − ci−1

(ti+k − ti)(ti+k−1 − ti)

− ci−1 − ci−2

(ti+k−1 − ti−1)(ti+k−1 − ti)

]
Bk−2

i

22. Prove that if the knots are taken to be the integers, then

B1
−1(x) = max{0, 1 − |x |}.

23. Letting the knots be the integers, show that

B2
0 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (x < 0)

1

2
x2 (0 � x < 1)

1

2
(6x − 3 − 2x2) (1 � x < 2)

1

2
(3 − x)2 (2 � x < 3)

0 (x � 3)

a24. Establish formulas

B2
i−1(ti) = ti − ti−1

ti+1 − ti−1
= hi−1

hi + hi−1

B2
i−2(ti) = ti+1 − ti

ti+1 − ti−1
= hi

hi + hi−1

where hi = ti+1 − ti .

25. Show by induction that if

A j = 1

t j−1 − t j−2

[
y j−1(t j − t j−2) − A j−1(t j − t j−1)

]
for j = 2, 3, . . . , n + 1, then

n+1∑
i=0

Ai B2
i−2(t j) = y j (0 � j � n)

422 Chapter 9 Approximation by Spline Functions

26. Show that if S(x) = ∑∞
i=−∞ Ai B2

i−2(x) and t j−1 � x � t j , then

S(x) = 1

t j − t j−1
[d(x − t j−1) + e(t j − x)]

with

d = 1

t j+1 − t j−1
[A j+1(x − t j−1) + A j (t j+1 − x)]

and

e = 1

t j − t j−2
[A j (x − t j−2) + A j−1(t j − x)]

27. Verify Equations (17) and (18) by induction, using Equation (16).

a28. If points τ0 < τ1 < · · · < τn are given, can we always determine points ti such that
ti < ti+1 and τi = 1

2 (ti+1 + ti+2)? Why or why not?

29. Show that if f (x) = x , then Schoenberg’s process produces S(x) = x .

a30. Show that x2 = ∑∞
i=−∞ ti+1ti+2 B2

i (x).

31. Let f (x) = x2. Assume that ti+1 − ti � δ for all i . Show that the quadratic spline
approximation to f given by Equation (19) differs from f by no more than δ2/4.
Hint: Use the preceding problem and the fact that

∑∞
i=−∞ B2

i ≡ 1.

a32. Verify (for k > 0) that Bk
i (t j) = 0 if and only if j � i or j � i + k + 1.

a33. What is the maximum value of B2
i and where does it occur?

34. Let the knots be the integers, and prove that

B3
0 (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 (x < 0)

1

6
x3 (0 � x < 1)

1

6
(4 − 3x(x − 2)2) (1 � x < 2)

1

6
(4 + 3(x − 4)(x − 2)2) (2 � x < 3)

1

6
(4 − x)3 (3 � x < 4)

0 (x � 4)

35. In the theory of Bézier curves, using the Bernstein basic polynomials, show that the
curve passes through the first point, v0.

36. Show that a linear B spline with integer knots can be written in matrix form as

S(x) = [x 1]

[−1 1
2 0

] [
c1

c0

]
= b10c0 + b11c1

where

B1
0 (x) =

⎧⎪⎨⎪⎩
b10 = x (0 � x < 1)

b11 = 2 − x (1 � x < 2)

0 (otherwise)

9.3 B Splines: Interpolation and Approximation 423

37. Show that the quadratic B spline with integer knots can be written in matrix form as

S(x) = 1

2
[x2 x 1]

⎡⎣ 1 −2 1
−6 6 0

9 −3 0

⎤⎦⎡⎣ c2

c1

c0

⎤⎦ = b20c0 + b21c1 + b22c2

where

B2
0 (x) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
b20 (0 � x < 1)

b21 (1 � x < 2)

b22 (2 � x < 3)

0 (otherwise)

Hint: See Problem 9.3.23.

38. Show that the cubic B spline with integer knots can be written as

S(x) = 1

6
[x3 x2 x 1]

⎡⎢⎢⎣
−1 3 −3 1
12 −24 12 0

−48 60 −12 0
64 −44 4 0

⎤⎥⎥⎦
⎡⎢⎢⎣

c3

c2

c1

c0

⎤⎥⎥⎦
= b30c0 + b31c1 + b32c2 + b33c3

where

B3
0 (x) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

b30 (0 � x < 1)

b31 (1 � x < 2)

b32 (2 � x < 3)

b33 (3 � x < 4)

0 (otherwise)

Hint: See Problem 9.3.34.

Computer Problems 9.3

1. Using an automatic plotter, graph Bk
0 for k = 0, 1, 2, 3, 4. Use integer knots ti = i over

the interval [0, 5].

2. Let ti = i (so the knots are the integer points on the real line). Print a table of 100
values of the function 3B1

7 + 6B1
8 − 4B1

9 + 2B1
10 on the interval [6, 14]. Using a plotter,

construct the graph of this function on the given interval.

3. (Continuation) Repeat for the function 3B2
7 + 6B2

8 − 4B2
9 + 2B2

10.

4. Assuming that S(x) = ∑n
i=0 ci Bk

i (x), write a procedure to evaluate S′(x) at a specified
x . Input is n, k, x, t0, . . . , tn+k+1 and c0, c1, . . . , cn .

5. Write a procedure to evaluate
∫ b

a S(x) dx , using the assumption that S(x) =∑n
i=0 ci Bk

i (x). Input will be n, k, a, b, c0, c1, . . . , cn, t0, . . . , tn+k+1.

424 Chapter 9 Approximation by Spline Functions

6. (March of the B splines) Produce graphs of several B splines of the same degree
marching across the x-axis. Use an automatic plotter or a computer package with
on-screen graphics capabilities, such as Matlab.

a7. Historians have estimated the size of the Army of Flanders as follows:

Date Sept. 1572 Dec. 1573 Mar. 1574 Jan. 1575 May 1576

Number 67, 259 62, 280 62, 350 59, 250 51, 457

Feb. 1578 Sept. 1580 Oct. 1582 Apr. 1588 Nov. 1591 Mar. 1607

27, 603 45, 435 61, 162 63, 455 62, 164 41, 471

Fit the table with a quadratic B spline, and use it to find the average size of the army
during the period given. (The average is defined by an integral.)

8. Rewrite procedures BSpline2 Coef and BSpline Eval so that the array (hi) is not used.

9. Rewrite procedures BSpline2 Coef and BSpline2 Eval for the special case of equally
spaced knots, simplifying the code where possible.

10. Write a procedure to produce a spline approximation to F(x) = ∫ x
a f (t) dt . Assume

that a � x � b. Begin by finding a quadratic spline interpolant to f at the n points
ti = a + i(b − a)/n. Test your program on the following:

a. f (x) = sin x (0 � x � π)

b. f (x) = ex (0 � x � 4)

c. f (x) = (x2 + 1)−1 (0 � x � 2)

11. Write a procedure to produce a spline function that approximates f ′(x) for a given
f on a given interval [a, b]. Begin by finding a quadratic spline interpolant to f at
n + 1 points evenly spaced in [a, b], including endpoints. Test your procedure on the
functions suggested in the preceding computer problem.

12. Define f on [0, 6] to be a polygonal line that joins points (0, 0), (1, 2), (3, 3), (5, 3),
and (6, 0). Determine spline approximations to f , using Schoenberg’s process and
taking 7, 13, 19, 25, and 31 knots.

13. Write suitable code to calculate
∑∞

i=−∞ f (si)B2
i (x) with si = 1

2 (ti+1 + ti+2). Assume
that f is defined on [a, b] and that x will lie in [a, b]. Assume also that t1 < a < t2

and tn+1 < b < tn+2. (Make no assumption about the spacing of knots.)

14. Write a procedure to carry out this approximation scheme:

S(x) =
∞∑

i=−∞
f (τi)B3

i (x) τi = 1

3
(ti+1 + ti+2 + ti+3)

Assume that f is defined on [a, b] and that τi = a + ih for 0 � i � n, where h =
(b − a)/n.

15. Using a mathematical software system such as Matlab with B spline routines, compute
and plot the spline curve in Figure 9.16 based on the 20 data points from Section 9.2.
Vary the degree of the B splines from 0, 1, 2, 3, through 4 and observe the resulting
curves.

9.3 B Splines: Interpolation and Approximation 425

16. Using B splines, write a program to perform a natural cubic spline interpolation at
knots t0 < t1 < · · · < tn .

17. The documentation preparation system LATEX is widely available and contains facilities
for drawing some simple curves such as Bézier curves. Use this system to reproduce
the following figure.

18. Use mathematical software such as found in Matlab, Maple, or Mathematica to plot
the functions corresponding to
a. Figure 9.17. b. Figure 9.18. c. Figure 9.19.

19. (Computer-aided geometric design) Use mathematical software for drawing two-
dimensional Bézier spline curves, and graph the script number five shown, using spline
points and control points. See Farin [1990], Sauer [2006], and Yamaguchi [1988] for
additional details.

10

Ordinary Differential Equations

In a simple electrical circuit, the current I in amperes is a function of
time: I(t) . The function I(t) will satisfy an ordinary differential equation
of the form

d I
dt

= f (t, I)

Here, the right-hand side is a function of t and I that depends on the circuit
and on the nature of the electromotive force supplied to the circuit. Using
methods developed in this chapter, we can solve the differential equation
numerically to produce a table of I as a function of t.

10.1 Taylor Series Methods
First, we present a general discussion of ordinary differential equations and their solutions.

Initial-Value Problem: Analytical versus Numerical Solution
An ordinary differential equation (ODE) is an equation that involves one or more deriva-
tives of an unknown function. A solution of a differential equation is a specific function that
satisfies the equation. Here are some examples of differential equations with their solutions.
In each case, t is the independent variable and x is the dependent variable. Thus, x is the
name of the unknown function of the independent variable t :

Equation Solution
x ′ − x = et x(t) = tet + cet

x ′′ + 9x = et x(t) = c1 sin 3t + c2 cos 3t

x ′ + 1

2x
= 0 x(t) = √

c − t

In these three examples, the letter c denotes an arbitrary constant. The fact that such constants
appear in the solutions is an indication that a differential equation does not, in general,
determine a unique solution function. When occurring in a scientific problem, a differential
equation is usually accompanied by auxiliary conditions that (together with the differential
equation) specify the unknown function precisely.

426

10.1 Taylor Series Methods 427

In this chapter, we concentrate on one type of differential equation and one type of
auxiliary condition: the initial-value problem for a first-order differential equation. The
standard form that has been adopted is{

x ′ = f (t, x)

x(a) is given
(1)

It is understood that x is a function of t , so the differential equation written in more detail
looks like this:

dx(t)

dt
= f (t, x(t))

Problem (1) is termed an initial-value problem because t can be interpreted as time and
t = a can be thought of as the initial instant in time. We want to be able to determine the
value of x at any time t before or after a.

Here are some examples of initial-value problems, together with their solutions:

Equation Initial Value Solution
x ′ = x + 1 x(0) = 0 x = et − 1
x ′ = 6t − 1 x(1) = 6 x = 3t2 − t + 4

x ′ = t

x + 1
x(0) = 0 x = √

t2 + 1 − 1

Although many methods exist for obtaining analytical solutions of differential equa-
tions, they are primarily limited to special differential equations. When applicable, they
produce a solution in the form of a formula, such as shown in the preceding examples. Fre-
quently, however, in practical problems, a differential equation is not amenable to solution
by special methods, and a numerical solution must be sought. Even when a formal solution
can be obtained, a numerical solution may be preferable, especially if the formal solution is
very complicated. A numerical solution of a differential equation is usually obtained in the
form of a table; the functional form of the solution remains unknown insofar as a specific
formula is concerned.

The form of the differential equation adopted here permits the function f to depend
on t and x . If f does not involve x , as in the second example above, then the differential
equation can be solved by a direct process of indefinite integration. To illustrate, consider
the initial-value problem {

x ′ = 3t2 − 4t−1 + (1 + t2)−1

x(5) = 17
(2)

The differential equation can be integrated to produce

x(t) = t3 − 4 ln t + arctan t + C

The constant C can then be chosen so that x(5) = 17. We can use a mathematical software
system such as Maple or Mathematica to solve this differential equation explicitly and
thereby find the value of this constant as C = 4 ln(5) − arctan(5) − 108.

We often want a numerical solution to a differential equation because (a) the closed-
form solution may be very complicated and difficult to evaluate or (b) there is no other
choice; that is, no closed-form solution can be found. Consider, for instance, the differential
equation

x ′ = e−
√

t2−sin t + ln | sin t + tanh t3| (3)

428 Chapter 10 Ordinary Differential Equations

The solution is obtained by taking the integral or antiderivative of the right-hand side. It
can be done in principle but not in practice. In other words, a function x exists for which
dx/dt is the right-hand member of Equation (3), but it is not possible to write x(t) in terms
of familiar functions.

Solving ordinary differential equations on a computer may require a large number
of steps with small step size, so a significant amount of roundoff error can accumulate.
Consequently, multiple-precision computations may be necessary on small-word-length
computers.

An Example of a Practical Problem
Many practical problems in dynamics involve Newton’s three Laws of Motion, particularly
the Second Law. It states symbolically that F = ma, where F is the force acting on a body
of mass m and a is the resulting acceleration of that body. This law is a differential equation
in disguise because a, the acceleration, is the derivative of velocity and velocity is, in turn,
the derivative of the position. We illustrate with a simplified model of a rocket being fired
at time t = 0. Its motion is to be vertically upward, and we measure its height with the
variable x . The propulsive force is a constant value, namely, 5370. (Units are chosen to be
consistent with each other.) There is a negative force due to air resistance whose magnitude
is v3/2/ ln(2 + v), where v is the velocity of the rocket. The mass is decreasing at a steady
rate due to the burning of fuel and is taken to be 321 − 24t . The independent variable is
time, t . The fuel is completely consumed by the time t = 10. There is a downward force,
due to gravity, of magnitude 981. Putting all these terms into the equation F = ma, we have

5370 − 981 − v3/2/ ln(2 + v) = (321 − 24t)v′ (4)

The initial condition is v = 0 at t = 0.
We shall develop methods to solve such differential equations in the succeeding sec-

tions. Moreover, one can also invoke a mathematical software system to solve this problem.
A computer code for solving ordinary differential equations produces a table of discrete

values, while the mathematical solution is a continuous function. One may need additional
values within an interval for various purposes, such as plotting. Interpolation procedures
can be used to obtain all values of the approximate numerical solution within a given
interval. For example, a piecewise polynomial interpolation scheme may yield a numerical
solution that is continuous and has a continuous first derivative matching the derivative
of the solution. In using any ODE solver, an approximation to x ′(t) is available from the
fact that x ′(t) = f (t, x). Mathematical packages for solving ODEs may include automatic
plotting capabilities because the best way to make sense out of the large amount of data that
may be returned as the solution is to display the solution curves on a graphical monitor or
plot them on paper.

Solving Differential Equations and Integration
There is a close connection between solving differential equations and integration. Consider
the differential equation ⎧⎨⎩

dx

dr
= f (r, x)

x(a) = s

10.1 Taylor Series Methods 429

Integrating from t to t + h, we have∫ t+h

t
dx =

∫ t+h

t
f (r, x(r)) dr

Hence,

x(t + h) = x(t) +
∫ t+h

t
f (r, x(r)) dr

Replacing the integral with one of the numerical integration rules from Chapter 5, we obtain
a formula for solving the differential equation. For example, Euler’s method, Equation (6)
(see p. 432), is obtained from the left rectangle approximation (see Problem 5.2.28):∫ t+h

t
f (r, x(r)) dr ≈ h f (t, x(t))

The trapezoid rule∫ t+h

t
f (r, x(r)) dr ≈ h

2
[f (t, x(t)) + f (t + h, x(t + h))]

gives the formula

x(t + h) = x(t) + h

2
[f (t, x(t)) + f (t + h, x(t + h))]

Since x(t + h) appears on both sides of this equation, it is called an implicit formula. If
Euler’s method

x(t + h) = x(t) + h f (t, x(t))

is used for the x(t + h) on the right-hand side, then we obtain the Runge-Kutta formula of
order 2—namely, Equation (10) in Section 10.2.

Using the Fundamental Theorem of Calculus, we can easily show that an approximate
numerical value for the integral ∫ b

a
f (r, x(r)) dr

can be computed by solving the following initial-value problem for x(b):⎧⎨⎩
dx

dr
= f (r, x)

x(a) = 0

Vector Fields
Consider a generic first-order differential equation with prescribed initial condition:{

x ′(t) = f (t, x(t))

x(a) = b

Before addressing the question of solving such an initial-value problem numerically, it is
helpful to think about the intuitive meaning of the equation. The function f provides the
slope of the solution function in the t x-plane. At every point where f (t, x) is defined, we
can imagine a short line segment being drawn through that point and having the prescribed
slope. We cannot graph all of these short segments, but we can draw as many as we wish, in

430 Chapter 10 Ordinary Differential Equations

the hope of understanding how the solution function x(t) traces its way through this forest
of line segments while keeping its slope at every point equal to the slope of the line segment
drawn at that point. The diagram of line segments illustrates discretely the so-called vector
field of the differential equation.

For example, let us consider the equation

x ′ = sin(x + t2)

with initial value x(0) = 0. In the rectangle described by the inequalities −4 � x � 4 and
−4 � t � 4, we can direct mathematical software, such as Matlab, to furnish a picture of
the vector field engendered by our differential equation. Using commands in the windows
environment, we bring up a window with the differential equation shown in a rectangle.
Behind the scenes, the mathematical software will then carry out immense calculations to
provide the vector field for this differential equation, and will display it, correctly labeled.
To see the solution going through any point in the diagram, it is necessary only to use the
mouse to position the pointer on such a point. By clicking the left mouse button, the software
will display the solution sought. By use of such a software tool, one can see immediately the
effect of changing initial conditions. For the problem under consideration, several solution
curves (corresponding to different initial values) are shown in Figure 10.1.

FIGURE 10.1

Vector field and
some solution

curves for
x′ = sin(x + t2) �4 �3 �2 �1 0 1 2 3 4

�4

�3

�2

�1

0

1

2

3

4

x� � sin(x � t2)
x

t

Another example, treated in the same way, is the differential equation

x ′ = x2 − t

Figure 10.2 shows a vector field for this equation and some of its solutions. Notice the
phenomenon of many quite different curves all seeming to arise from the same initial
condition. What is happening here? This is an extreme example of a differential equation
whose solutions are exceedingly sensitive to the initial condition! One can expect trouble
in solving this differential equation with an initial value prescribed at t = −2.

How do we know that the differential equation x ′ = x2 − t , together with an initial
value, x(t0) = x0, has a unique solution? There are many theorems in the subject of differ-

10.1 Taylor Series Methods 431

FIGURE 10.2

Vector field and
some solution

curves for
x′ = x2 − t �2 0 2 4 6 8 10

�4

�3

�2

�1

0

1

2

3

4

x� = x2 � t
x

t

ential equations that concern such existence and uniqueness questions. One of the easiest
to use is as follows.

■ THEOREM 1 UNIQUENESS OF INITIAL-VALUE PROBLEMS

If f and ∂ f/∂y are continuous in the rectangle defined by |t − t0| < α and |x − x0| <

β, then the initial-value problem x ′ = f (t, x), x(t0) = x0 has a unique continuous
solution in some interval |t − t0| < ε.

From the theorem just quoted, we cannot conclude that the solution in question is defined
for |t − t0| < β. However, the value of ε in the theorem is at least β/M , where M is an
upper bound for | f (t, x)| in the original rectangle.

Taylor Series Methods
The numerical method described in this section does not have the utmost generality, but
it is natural and capable of high precision. Its principle is to represent the solution of a
differential equation locally by a few terms of its Taylor series.

In what follows, we shall assume that our solution function x is represented by its
Taylor series∗

x(t + h) = x(t) + hx ′(t) + 1

2!
h2x ′′(t) + 1

3!
h3x ′′′(t)

+ 1

4!
h4x (4)(t) + · · · + 1

m!
hm x (m)(t) + · · · (5)

∗Remember that some functions such as e−1/x2
are smooth but not represented by a Taylor series at 0.

432 Chapter 10 Ordinary Differential Equations

For numerical purposes, the Taylor series truncated after m +1 terms enables us to compute
x(t + h) rather accurately if h is small and if x(t), x ′(t), x ′′(t), . . . , x (m)(t) are known.
When only terms through hm x (m)(t)/m! are included in the Taylor series, the method that
results is called the Taylor series method of order m. We begin with the case m = 1.

Euler’s Method Pseudocode
The Taylor series method of order 1 is known as Euler’s method. To find approximate
values of the solutions to the initial-value problem{

x ′ = f (t, x(t))

x(a) = xa

over the interval [a, b], the first two terms in the Taylor series (5) are used:

x(t + h) ≈ x(t) + hx ′(t)
Hence, the formula

x(t + h) = x(t) + h f (t, x(t)) (6)

can be used to step from t = a to t = b with n steps of size h = (b−a)/n. The pseudocode
for Euler’s method can be written as follows, where some prescribed values for n, a, b, and
xa are used:

program Euler
integer k; real h, t ; integer n ← 100
external function f
real a ← 1, b ← 2, x ← −4
h ← (b − a)/n
t ← a
output 0, t, x
for k = 1 to n do

x ← x + h f (t, x)

t ← t + h
output k, t, x

end for
end program Euler

To use this program, a code for f (t, x) is needed, as shown in Example 1.

EXAMPLE 1 Using Euler’s method, compute an approximate value for x(2) for the differential equation
x ′ = 1 + x2 + t3 with the initial value x(1) = −4 using 100 steps.

Solution Use the pseudocode above with the initial values given and combine with the following
function:

real function f (t, x)

real t, x
f ← 1 + x2 + t3

end function

The computed value is x(2) ≈ 4.23585. ■

10.1 Taylor Series Methods 433

We can write a computer program to execute Euler’s method on this very simple
problem: {

x ′(t) = x

x(0) = 1

We obtain the results x(2) ≈ 7.3891. The plot produced by the code is shown in Figure 10.3.
The solution, x(t) = et , is the solid curve, and the points produced by Euler’s method are
shown by dots. Can you understand why the dots are always below the curve?

FIGURE 10.3

Euler’s method
curves 0

10

20

30

40

50

1 2 3 4

y

x

Before accepting these results and continuing, one should raise some questions such
as: How accurate are the answers? Are higher-order Taylor series methods ever needed?
Unfortunately, Euler’s method is not very accurate because only two terms in the Taylor
series (5) are used; therefore, the truncation error is O(h2).

Taylor Series Method of Higher Order
Example 1 can be used to explain the Taylor series method of higher order. Consider again
the initial-value problem {

x ′ = 1 + x2 + t3

x(1) = −4
(7)

If the functions in the differential equation are differentiated several times with respect to
t , the results are as follows. (Remember that a function of x must be differentiated with
respect to t by using the chain rule.)

x ′ = 1 + x2 + t3

x ′′ = 2xx ′ + 3t2

x ′′′ = 2xx ′′ + 2x ′x ′ + 6t

x (4) = 2xx ′′′ + 6x ′x ′′ + 6

(8)

434 Chapter 10 Ordinary Differential Equations

If numerical values of t and x(t) are known, these four formulas, applied in order, yield
x ′(t), x ′′(t), x ′′′(t), and x (4)(t). Thus, it is possible from this work to use the first five terms in
the Taylor series, Equation (5). Since x(1) = −4, we have a suitable starting point, and we
select n = 100, which determines h. Next, we can compute an approximation to x(a + h)

from Formulas (5) and (8). The same process can be repeated to compute x(a + 2h) using
x(a + h), x ′(a + h), . . . , x (4)(a + h). Here is the pseudocode:

program Taylor
integer k; real h, t, x, x ′, x ′′, x ′′′, x (4)

integer n ← 100
real a ← 1, b ← 2, x ← −4
h ← (b − a)/n
t ← a
output 0, t, x
for k = 1 to n do

x ′ ← 1 + x2 + t3

x ′′ ← 2xx ′ + 3t2

x ′′′ ← 2xx ′′ + 2(x ′)2 + 6t
x (4) ← 2xx ′′′ + 6x ′x ′′ + 6
x ← x + h

[
x ′ + 1

2 h
[
x ′′ + 1

3 h
[
x ′′′ + 1

4 h
[
x (4)

]]]]
t ← a + kh
output k, t, x

end for
end program Taylor

A few words of explanation may be helpful here. Before writing the pseudocode, determine
the interval in which you want to compute the solution of the differential equation. In the
example, this interval is chosen as a = 1 � t � 2 = b, and 100 steps are used. In each step,
the current value of t is an integer multiple of the step size h. The assignment statements that
define x ′, x ′′, x ′′′, and x (4) are simply carrying out calculations of the derivatives according
to Equation (8). The final calculation carries out the evaluation of the Taylor series in
Equation (5) using five terms. Since this equation is a polynomial in h, it is evaluated
most efficiently by using nested multiplication, which explains the formula for x in the
pseudocode. The computation t ← t + h may cause a small amount of roundoff error to
accumulate in the value of t . This is avoided by using t ← a + kh.

As one might expect, the results of using only two terms in the Taylor series (Euler’s
method) are not as accurate as when five terms are used:

Euler’s Method Taylor Series Method (Order 4)
x(2) ≈ 4.23585 41 x(2) ≈ 4.37120 96

By further analysis, one can prove that the correct value to more significant figures is
x(2) ≈ 4.37122 1866. Here, the computations were done with more precision just to show
that lack of precision was not a contributing factor.

10.1 Taylor Series Methods 435

Types of Errors
When the pseudocode described above is programmed and run on a computer, what sort
of accuracy can we expect? Are all the digits printed by the machine for the variable x
accurate? Of course not! On the other hand, it is not easy to say how many digits are
reliable. Here is a coarse assessment. Since terms up to 1

24 h4x (4)(t) are included, the first
term not included in the Taylor series is 1

120 h5x (5)(t). The error may be larger than this, but the
factor h5 = (10−2)5 ≈ 10−10 is affecting only the tenth decimal place. The printed solution
is perhaps accurate to eight decimal places. Bridges or airplanes should not be built on such
shoddy analysis, but for now, our attention is focused on the general form of the procedure.

Actually, there are two types of errors to consider. At each step, if x(t) is known and
x(t +h) is computed from the first few terms of the Taylor series, an error occurs because we
have truncated the Taylor series. This error, then, is called the truncation error or, to be more
precise, the local truncation error. In the preceding example, it is roughly 1

120 h5x (5)(ξ).
In this situation, we say that the local truncation error is of order h5, abbreviated by O(h5).

The second type of error obviously present is due to the accumulated effects of all local
truncation errors. Indeed, the calculated value of x(t + h) is in error because x(t) is already
wrong (because of previous truncation errors) and because another local truncation error
occurs in the computation of x(t + h) by means of the Taylor series.

Additional sources of errors must be considered in a complete theory. One is roundoff
error. Although not serious in any one step of the solution procedure, after hundreds or
thousands of steps, it may accumulate and contaminate the calculated solution seriously.
Remember that an error that is made at a certain step is carried forward into all succeeding
steps. Depending on the differential equation and the method that is used to solve it, such
errors may be magnified by succeeding steps.

Taylor Series Method Using Symbolic Computations
Various routine mathematical calculations of both a nonnumerical and a numerical type,
including differentiation and integration of even rather complicated expressions, can now
be turned over to the computer. Of course, this applies only to a restricted class of func-
tions, but this class is broad enough to include all the functions that one encounters in
the typical calculus textbook. With the use of such a program for symbolic computa-
tions, the Taylor series method of high order can be carried out without difficulty. Us-
ing the algebraic manipulation potentialities in mathematical software such as Maple or
Mathematica, we can write code to solve the initial value problem (7). The final result is
x(2) ≈ 4.37121 00522 49692 27234 569.

Summary

(1) We wish to solve the first-order initial-value problem

{
x ′(t) = f (t, x(t))

x(a) = xa

436 Chapter 10 Ordinary Differential Equations

over the interval [a, b] with step size h = (b − a)/n. The Taylor series method of order
m is

x(t + h) = x(t) + hx ′(t) + 1

2!
h2x ′′(t) + 1

3!
h3x ′′′(t)

+ 1

4!
h4x (4)(t) + · · · + 1

m!
hm x (m)(t)

where all of the derivatives x ′′, x ′′′, . . . , x (m) have been determined analytically.

(2) Euler’s method is the Taylor series method of order 1 and can be written as

x(t + h) = x(t) + h f (t, x(t))

Because only two terms in the Taylor series are used, the truncation error is large, and the
results cannot be computed with much accuracy. Consequently, higher-order Taylor series
methods are used most often. Of course, they require that one determine more derivatives,
with more chances for mathematical errors.

Problems 10.1

1. Give the solutions of these differential equations:
aa. x ′ = t3 + 7t2 − t1/2 ab. x ′ = x

c. x ′ = −x d. x ′′ = −x
ae. x ′′ = x f. x ′′ + x ′ − 2x = 0 Hint: Try x = eat .

a2. Give the solutions of these initial-value problems:
aa. x ′ = t2 + t1/3 x(0) = 7 b. x ′ = 2x x(0) = 15

c. x ′′ = −x x(π) = 0 x ′(π) = 3

3. Solve the following differential equations:

a. x ′ = 1 + x2 Hint: 1 + tan2 t = sec2 t

b. x ′ = √
1 − x2 Hint: sin2 t + cos2 t = 1

ac. x ′ = t−1 sin t Hint: See Computer Problem 5.1.2.
ad. x ′ + t x = t2 Hint: Multiply the equation by f (t) = exp(t2/2). The left-hand

side becomes (x f)′.
a4. Solve Problem 3b by substituting a power series x(t) = ∑∞

n=0 antn and then determin-
ing appropriate values of the coefficients.

5. Determine x ′′ when x ′ = xt2 + x3 + ex t .

a6. Find a polynomial p with the property p − p′ = t3 + t2 − 2t .

7. The general first-order linear differential equation is x ′ + px + q = 0, where p and
q are functions of t . Show that the solution is x = −y−1(z + c), where y and z are
functions obtained as follows: Let u be an antiderivative of p. Put y = eu , and let z be
an antiderivative of yq.

10.1 Taylor Series Methods 437

8. Here is an initial-value problem that has two solutions: x ′ = x1/3, x(0) = 0. Verify
that the two solutions are x1(t) = 0 and x2(t) = (

2
3 t
)3/2

for t � 0. If the Taylor series
method is applied, what happens?

a9. Consider the problem x ′ = x . If the initial condition is x(0) = c, then the solution is
x(t) = cet . If a roundoff error of ε occurs in reading the value of c into the computer,
what effect is there on the solution at the point t = 10? At t = 20? Do the same for
x ′ = −x .

a10. If the Taylor series method is used on the initial-value problem x ′ = t2 + x3, x(0) = 0,
and if we intend to use the derivatives of x up to and including x (4), what are the five
main equations that must be programmed?

11. In solving the following differential equations by the Taylor series method of order n,
what are the main equations in the algorithm?

aa. x ′ = x + ex n = 4 b. x ′ = x2 − cos x n = 5

a12. Calculate an approximate value for x(0.1) using one step of the Taylor series method
of order 3 on the ordinary differential equation{

x ′′ = x2et + x ′

x(0) = 1 x ′(0) = 2

13. Suppose that a differential equation is solved numerically on an interval [a, b] and
that the local truncation error is ch p. Show that if all truncation errors have the same
sign (the worst possible case), then the total truncation error is (b − a)ch p−1, where
h = (b − a)/n.

a14. If we plan to use the Taylor series method with terms up to h20, how should the
computation

∑20
n=0 x (n)(t)hn/n! be carried out? Assume that x(t), x (1)(t), x (2)(t), . . . ,

and x (20)(t) are available. Hint: Only a few statements suffice.

15. Explain how to use the ODE method that is based on the Trapezoid Rule:

x̂(t + h) = x(t) + h f (t, x(t))

x(t + h) = x(t) + h

2
[f (t, x(t)) + f (t + h, x̂(t + h))]

This is called the improved Euler’s method or Heun’s method. Here, x̂(t + h) is
computed by using Euler’s method.

16. (Continuation) Use the improved Euler’s method to solve the following differential
equation over the interval [0, 1] with step size h = 0.1:{

x ′ = −x + t + 1
2

x(0) = 1

17. Consider the initial-value problem{
x ′ = −100x2

x(0) = 1

In the improved Euler’s method, replace x̂(t + h) with x(t + h) and try to solve with
one step of size h = 0.1. Explain what happens. Find the closed-form solution by
substituting x = (a + bt)c and determining a, b, c.

438 Chapter 10 Ordinary Differential Equations

Computer Problems 10.1

a1. Write and test a program for applying the Taylor series method to the initial-value
problem ⎧⎨⎩ x ′ = x + x2

x(1) = e

16 − e
= 0.20466 34172 89155 26943

Generate the solution in the interval [1, 2.77]. Use derivatives to up to x (5) in the
Taylor series. Use h = 1/100. Print out for comparison the values of the exact solution
x(t) = et/(16 − et). Verify that it is the exact solution.

2. Write a program to solve each problem on the indicated intervals. Use the Taylor series
method with h = 1/100, and include terms to h3. Account for any difficulties.

a.

{
x ′ = t + x2 on [0, 0.9]

x(0) = 1
ab.

{
x ′ = x − t on [1, 1.75]

x(1) = 1

ac.

{
x ′ = t x + t2x2 on [2, 5]

x(2) = −0.63966 25333

a3. Solve the differential equation x ′ = x with initial value x(0) = 1 by the Taylor series
method on the interval [0, 10]. Compare the result with the exact solution x(t) = et .
Use derivatives up to and including the tenth. Use step size h = 1/100.

4. Solve for x(1):
aa. x ′ = 1 + x2, x(0) = 0 b. x ′ = (1 + t)−1x, x(0) = 1

Use the Taylor series method of order 5 with h = 1/100, and compare with the exact
solutions, which are tan t and 1 + t , respectively.

a5. Solve the initial-value problem x ′ = t + x + x2 on the interval [0, 1] with initial
condition x(1) = 1. Use the Taylor series method of order 5.

6. Solve the initial-value problem x ′ = (x + t)2 with x(0) = −1 on the interval [0, 1]
using the Taylor series method with derivatives up to and including the fourth. Compare
this to Taylor series methods of orders 1, 2, and 3.

a7. Write a program to solve on the interval [0, 1] the initial-value problem{
x ′ = t x
x(0) = 1

using the Taylor series method of order 20; that is, include terms in the Taylor series
up to and including h20. Observe that a simple recursive formula can be used to obtain
x (n) for n = 1, 2, . . . , 20.

8. Write a program to solve the initial-value problem x ′ = sin x + cos t , using the Taylor
series method. Continue the solution from t = 2 to t = 5, starting with x(2) = 0.32.
Include terms up to and including h3.

a9. Write a program to solve the initial-value problem x ′ = et x with x(2) = 1 on the
interval 0 � t � 2 using the Taylor series method. Include terms up to h4.

10.2 Runge-Kutta Methods 439

a10. Write a program to solve x ′ = t x + t4 on the interval 0 � t � 5 with x(5) = 3. Use the
Taylor series method with terms to h4.

11. Write a program to solve the initial-value problem of the example in this section over
the interval [1, 3]. Explain.

12. Compute a table, at 101 equally spaced points in the interval [0, 2], of the Dawson
integral

f (x) = exp
(− x2

) ∫ x

0
exp

(
t2
)

dt

by numerically solving, with the Taylor series method of suitable order, an initial-value
problem of which f is the solution. Make the table accurate to eight decimal places, and
print only eight decimal places. Hint: Find the relationship between f ′(x) and x f (x).
The Fundamental Theorem of Calculus is useful. Check values: f (1) = 0.53807 95069
and f (2) = 0.30134 03889.

13. Solve the initial-value problem x ′ = t3 + ex with x(3) = 7.4 on the interval 0 � t � 3
by means of the fourth-order Taylor series method.

14. Use a symbolic manipulation package such as Maple to solve the differential equations
of Example 1 by the fourth-order Taylor series method to high accuracy, carrying 24
decimal digits.

15. Program the pseudocodes Euler and Taylor and compare the numerical results to that
given in the text.

16. (Continuation) Repeat by calling directly an ordinary differential equation solver rou-
tine within a mathematical software system such as Matlab, Maple, or Mathematica.

17. Use mathematical software such as Matlab, Maple, or Mathematica, to find analytical
or numerical solutions to the ordinary differential equations at the beginning of this
section:
a. (2) b. (3) c. (4)

18. Write computer programs to reproduce the following figures:
a. Figure 10.1 b. Figure 10.2 c. Figure 10.3

10.2 Runge-Kutta Methods
The methods named after Carl Runge and Wilhelm Kutta are designed to imitate the Taylor
series method without requiring analytic differentiation of the original differential equation.
Recall that in using the Taylor series method on the initial-value problem{

x ′ = f (t, x)

x(a) = xa
(1)

we need to obtain x ′′, x ′′′, . . . by differentiating the function f . This requirement can be a
serious obstacle to using the method. The user of this method must do some preliminary

440 Chapter 10 Ordinary Differential Equations

analytical work before writing a computer program. Ideally, a method for solving Equa-
tion (1) should involve nothing more than writing a code to evaluate f . The Runge-Kutta
methods accomplish this.

For purposes of exposition, the Runge-Kutta method of order 2 is presented, although
its low precision usually precludes its use in actual scientific calculations. Later, the Runge-
Kutta method of order 4 is given without a derivation. It is in common use. The order-2
Runge-Kutta procedure does find application in real-time calculations on small computers.
For example, it is used in some aircraft by the on-board minicomputer.

At the heart of any method for solving an initial-value problem is a procedure for
advancing the solution function one step at a time; that is, a formula must be given for
x(t + h) in terms of known quantities. As examples of known quantities, we can cite
x(t), x(t − h), x(t − 2h), . . . if the solution process has gone through a number of steps.
At the beginning, only x(a) is known. Of course, we assume that f (t, x) can be computed
for any point (t, x).

Taylor Series for f(x, y)
Before explaining the Runge-Kutta method of order 2, let us present the Taylor series in
two variables. The infinite series is

f (x + h, y + k) =
∞∑

i=0

1

i!

(
h

∂

∂x
+ k

∂

∂y

)i

f (x, y) (2)

This series is analogous to the Taylor series in one variable given by Equation (11) in
Section 1.2. The mysterious-looking terms in Equation (2) are interpreted as follows:(

h
∂

∂x
+ k

∂

∂y

)0

f (x, y) = f(
h

∂

∂x
+ k

∂

∂y

)1

f (x, y) = h
∂ f

∂x
+ k

∂ f

∂y(
h

∂

∂x
+ k

∂

∂y

)2

f (x, y) = h2 ∂2 f

∂x2
+ 2hk

∂2 f

∂x∂y
+ k2 ∂2 f

∂y2

...

where f and all partial derivatives are evaluated at (x, y). As in the one-variable case, if the
Taylor series is truncated, an error term or remainder term is needed to restore the equality.
Here is the appropriate equation:

f (x + h, y + k) =
n−1∑
i=0

1

i!

(
h

∂

∂x
+ k

∂

∂y

)i

f (x, y) + 1

n!

(
h

∂

∂x
+ k

∂

∂y

)n

f (x, y) (3)

The point (x, y) lies on the line segment that joins (x, y) to (x + h, y + k) in the plane.
In applying Taylor series, we use subscripts to denote partial derivatives. So, for

instance,

fx = ∂ f

∂x
ft = ∂ f

∂t
fxx = ∂2 f

∂x2
fxt = ∂2 f

∂t ∂x
(4)

10.2 Runge-Kutta Methods 441

We are dealing with functions for which the order of these subscripts is immaterial; for
example, fxt = ftx . Thus, we have

f (x + h, y + k) = f + (h fx + k fy)

+ 1

2!

(
h2 fxx + 2hk fxy + k2 fyy

)
+ 1

3!

(
h3 fxxx + 3h2k fxxy + 3hk2 fxyy + k3 fyyy

)
+ · · ·

As special cases, we notice that

f (x + h, y) = f + h fx + h2

2!
fxx + h3

3!
fxxx + · · ·

f (x, y + k) = f + k fy + k2

2!
fyy + k3

3!
fyyy + · · ·

Runge-Kutta Method of Order 2
In the Runge-Kutta method of order 2, a formula is adopted that has two function evaluations
of the special form {

K1 = h f (t, x)

K2 = h f (t + αh, x + βK1)

and a linear combination of these is added to the value of x at t to obtain the value at t + h:

x(t + h) = x(t) + w1 K1 + w2 K2

or, equivalently,

x(t + h) = x(t) + w1h f (t, x) + w2h f (t + αh, x + βh f (t, x)) (5)

The objective is to determine constants w1, w2, α, and β so that Equation (5) is as accurate
as possible. Explicitly, we want to reproduce as many terms as possible in the Taylor series

x(t + h) = x(t) + hx ′(t) + 1

2!
h2x ′′(t) + 1

3!
h3x ′′′(t) + · · · (6)

Now compare Equation (5) with Equation (6). One way to force them to agree up
through the term in h is to set w1 = 1 and w2 = 0 because x ′ = f . However, this simply
reproduces Euler’s method (described in the preceding section), and its order of precision is
only 1. Agreement up through the h2 term is possible by a more adroit choice of parameters.
To see how, apply the two-variable form of the Taylor series to the final term in Equation (5).
We use n = 2 in the two-variable Taylor series given by Formula (3), with t , αh, x , and
βh f playing the role of x , h, y, and k, respectively:

f (t + αh, x + βh f) = f + αh ft + βh f fx + 1

2

(
αh

∂

∂t
+ βh f

∂

∂x

)2

f (x, y)

Using the above equation results in a new form for Equation (5). We have

x(t + h) = x(t) + (w1 + w2)h f + αw2h2 ft + βw2h2 f fx + O(h3) (7)

442 Chapter 10 Ordinary Differential Equations

Equation (6) is also given a new form by using differential Equation (1). Since x ′ = f , we
have

x ′′ = dx ′

dt
= d f (t, x)

dt
=
(

∂ f

∂t

)(
dt

dt

)
+
(

∂ f

∂x

)(
dx

dt

)
= ft + fx f

So Equation (6) implies that

x(t + h) = x + h f + 1

2
h2 ft + 1

2
h2 f fx + O(h3) (8)

Agreement between Equations (7) and (8) is achieved by stipulating that

w1 + w2 = 1 αw2 = 1

2
βw2 = 1

2
(9)

A convenient solution of these equations is

α = 1 β = 1 w1 = 1

2
w2 = 1

2
The resulting second-order Runge-Kutta method is then, from Equation (5),

x(t + h) = x(t) + h

2
f (t, x) + h

2
f (t + h, x + h f (t, x))

or, equivalently,

x(t + h) = x(t) + 1

2
(K1 + K2) (10)

where {
K1 = h f (t, x)

K2 = h f (t + h, x + K1)

Formula (10) shows that the solution function at t + h is computed at the expense of two
evaluations of the function f .

Notice that other solutions for the nonlinear System (9) are possible. For example, α

can be arbitrary, and then

β = α w1 = 1 − 1

2α
w2 = 1

2α

One can show (see Problem 10.2.10) that the error term for Runge-Kutta methods of
order 2 is

h3

4

(
2

3
− α

)(
∂

∂t
+ f

∂

∂x

)2

f + h3

6
fx

(
∂

∂t
+ f

∂

∂x

)
f (11)

Notice that the method with α = 2
3 is especially interesting. However, none of the second-

order Runge-Kutta methods is widely used on large computers because the error is only
O(h3).

Runge-Kutta Method of Order 4
One algorithm in common use for the initial-value Problem (1) is the classical fourth-order
Runge-Kutta method. Its formulas are as follows:

x(t + h) = x(t) + 1

6
(K1 + 2K2 + 2K3 + K4) (12)

10.2 Runge-Kutta Methods 443

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K1 = h f (t, x)

K2 = h f
(
t + 1

2 h, x + 1
2 K1

)
K3 = h f

(
t + 1

2 h, x + 1
2 K2

)
K4 = h f (t + h, x + K3)

The derivation of the Runge-Kutta formulas of order 4 is tedious. Very few textbooks give
the details. Two exceptions are the books of Henrici [1962] and Ralston [1965]. There exist
higher-order Runge-Kutta formulas, and they are still more tedious to derive. However,
symbolic manipulation software packages such as Maple or Mathematica can be used to
develop the formulas.

As can be seen, the solution at x(t + h) is obtained at the expense of evaluating the
function f four times. The final formula agrees with the Taylor expansion up to and including
the term in h4. The error therefore contains h5 but no lower powers of h. Without knowing
the coefficient of h5 in the error, we cannot be precise about the local truncation error.
In treatises devoted to this subject, these matters are explored further. See, for example,
Butcher [1987] or Gear [1971].

Pseudocode
Here is a pseudocode to implement the classical Runge-Kutta method of order 4:

procedure RK4(f, t, x, h, n)

integer j, n; real K1, K2, K3, K4, h, t, ta, x
external function f
output 0, t, x
ta ← t
for j = 1 to n do

K1 ← h f (t, x)

K2 ← h f (t + 1
2 h, x + 1

2 K1)

K3 ← h f (t + 1
2 h, x + 1

2 K2)

K4 ← h f (t + h, x + K3)

x ← x + 1
6 (K1 + 2K2 + 2K3 + K4)

t ← ta + jh
output j, t, x

end for
end procedure RK4

To illustrate the use of the preceding pseudocode, consider the initial-value problem{
x ′ = 2 + (x − t − 1)2

x(1) = 2
(13)

whose exact solution is x(t) = 1 + t + tan(t − 1). A pseudocode to solve this problem
on the interval [1, 1.5625] by the Runge-Kutta procedure follows. The step size needed is
calculated by dividing the length of the interval by the number of steps, say, n = 72.

444 Chapter 10 Ordinary Differential Equations

program Test RK4
real h, t ; external function f
integer n ← 72
real a ← 1, b ← 1.5625, x ← 2
h ← (b − a)/n
t ← a
call RK 4(f, t, x, h, n)

end program Test RK4

real function f (t, x)

real t, x
f ← 2 + (x − t − 1)2

end function f

We include an external-function statement both in the main program and in procedure RK4
because the procedure f is passed in the argument list of RK4. The final value of the
computed numerical solution is x(1.5625) = 3.19293 7699.

General-purpose routines incorporating the Runge-Kutta algorithm usually include
additional programming to monitor the truncation error and make necessary adjustments in
the step size as the solution progresses. In general terms, the step size can be large when the
solution is slowly varying but should be small when it is rapidly varying. Such a program
is presented in Section 10.3.

Summary

(1) The second-order Runge-Kutta method is

x(t + h) = x(t) + 1

2
(K1 + K2)

where {
K1 = h f (t, x)

K2 = h f (t + h, x + K1)

This method requires two evaluations of the function f per step. It is equivalent to a Taylor
series method of order 2.

(2) One of the most popular single-step methods for solving ODEs is the fourth-order
Runge-Kutta method

x(t + h) = x(t) + 1

6
(K1 + 2K2 + 2K3 + K4)

10.2 Runge-Kutta Methods 445

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K1 = h f (t, x)

K2 = h f
(
t + 1

2 h, x + 1
2 K1

)
K3 = h f

(
t + 1

2 h, x + 1
2 K2

)
K4 = h f (t + h, x + K3)

It needs four evaluations of the function f per step. Since it is equivalent to a Taylor series
method of order 4, it has truncation error of order O(h5). The small number of function
evaluations and high-order truncation error account for its popularity.

Problems 10.2

1. Derive the equations needed to apply the fourth-order Taylor series method to the
differential equation x ′ = t x2 + x − 2t . Compare them in complexity with the equa-
tions required for the fourth-order Runge-Kutta method.

2. Put these differential equations into a form suitable for numerical solution by the Runge-
Kutta method.
a. x + 2xx ′ − x ′ = 0 b. log x ′ = t2 − x2 ac. (x ′)2(1 − t2) = x

a3. Solve the differential equation ⎧⎨⎩
dx

dt
= −t x2

x(0) = 2

at t = −0.2, correct to two decimal places, using one step of the Taylor series method
of order 2 and one step of the Runge-Kutta method of order 2.

4. Consider the ordinary differential equation{
x ′ = (t x)3 − (x/t)2

x(1) = 1

Take one step of the Taylor series method of order 2 with h = 0.1 and then use the
Runge-Kutta method of order 2 to recompute x(1.1). Compare answers.

5. In solving the following differential equations by using a Runge-Kutta procedure, it is
necessary to write code for a function f (t, x). Do so for each of the following:

aa. x ′ = t2 + t x ′ − 2xx ′ b. x ′ = et + x ′ cos x + t2

6. Consider the ordinary differential equation x ′ = t3x2 − 2x3/t2 with x(1) = 0. Deter-
mine the equations that would be used in applying the Taylor series method of order 3
and the Runge-Kutta method of order 4.

7. Consider the third-order Runge-Kutta method:

x(t + h) = x(t) + 1

9
(2K1 + 3K2 + 4K3)

446 Chapter 10 Ordinary Differential Equations

where ⎧⎪⎨⎪⎩
K1 = h f (t, x)

K2 = h f
(
t + 1

2 h, x + 1
2 K1

)
K3 = h f

(
t + 3

4 h, x + 3
4 K2

)
a. Show that it agrees with the Taylor series method of the same order for the differential

equation x ′ = x + t .

b. Prove that this third-order Runge-Kutta method reproduces the Taylor series of the
solution up to and including terms in h3 for any differential equation.

a8. Describe how the fourth-order Runge-Kutta method can be used to produce a table of
values for the function

f (x) =
∫ x

0
e−t2

dt

at 100 equally spaced points in the unit interval. Hint: Find an appropriate initial-value
problem whose solution is f .

9. Show that the fourth-order Runge-Kutta formula reduces to a simple form when applied
to an ordinary differential equation of the form

x ′ = f (t)

a10. Establish the error term (11) for Runge-Kutta methods of order 2.

a11. On a certain computer, it was found that when the fourth-order Runge-Kutta method
was used over an interval [a, b] with h = (b − a)/n, the total error due to roundoff
was about 36n2−50 and the total truncation error was 9nh5, where n is the number of
steps and h is the step size. What is an optimum value of h? Hint: Minimize the total
error: roundoff error plus truncation error.

a12. How would you solve the initial-value problem{
x ′ = sin x + sin t

x(0) = 0

on the interval [0, 1] if ten decimal places of accuracy are required? Assume that you
have a computer in which unit roundoff error is 1

2 × 10−14, and assume that the fourth-
order Runge-Kutta method will involve local truncation errors of magnitude 100h5.

13. An important theorem of calculus states that the equation ftx = fxt is true, provided
that at least one of these two partial derivatives exists and is continuous. Test this
equation on some functions, such as f (t, x) = xt2 + x2t + x3t4, log(x − t−1), and
ex sinh(t + x) + cos(2x − 3t).

14. a. If x ′ = f (t, x), then

x ′′ = D f, x ′′′ = D2 f + fx D f f
where

D = ∂

∂t
+ f

∂

∂x
, D2 = ∂2

∂t2
+ 2 f

∂2

∂x ∂t
+ f 2 ∂2

∂x2

Verify these equations.
ab. Determine x (4) in a similar form.

10.2 Runge-Kutta Methods 447

a15. Derive the two-variable form of the Taylor series from the one-variable form by con-
sidering the function of one variable φ(t) = f (x + th, y + tk) and expanding it by
Taylor’s Theorem.

16. The Taylor series expansion about point (a, b) in terms of two variables x and y is
given by

f (x, y) =
∞∑

i=0

1

i!

(
(x − a)

∂

∂x
+ (y − b)

∂

∂y

)i

f (a, b)

Show that Formula (2) can be obtained from this form by a change of variables.

a17. (Continuation) Using the form given in the preceding problem, determine the first four
nonzero terms in the Taylor series for f (x, y) = sin x + cos y about the point (0, 0).
Compare the result to the known series for sin x and cos y. Make a conjecture about
the Taylor series for functions that have the special form f (x, y) = g(x) + h(y).

a18. For the function f (x, y) = y2 − 3 ln x , write the first six terms in the Taylor series of
f (1 + h, 0 + k).

a19. Using the truncated Taylor series about (1, 1), give a three-term approximation to
e(1−xy). Hint: Use Problem 10.2.16.

a20. The function f (x, y) = xey can be approximated by the Taylor series in two variables
by f (x +h, y +k) ≈ (Ax + B)ey . Determine A and B when terms through the second
partial derivatives are used in the series.

a21. For f (x, y) = (y − x)−1, the Taylor series can be written as

f (x + h, y + k) = A f + B f 2 + C f 3 + · · ·
where f = f (x, y). Determine the coefficients A, B, and C .

a22. Consider the function ex2+y . Determine its Taylor series about the point (0, 1) through
second-partial-derivative terms. Use this result to obtain an approximate value for
f (0.001, 0.998).

23. Show that the improved Euler’s method is a Runge-Kutta method of order 2.

Computer Problems 10.2

1. Run the sample pseudocode given in the text for differential Equation (13) to illustrate
the Runge-Kutta method.

a2. Solve the initial-value problem x ′ = x/t + t sec(x/t) with x(0) = 0 by the fourth-
order Runge-Kutta method. Continue the solution to t = 1 using step size h = 2−7.
Compare the numerical solution with the exact solution, which is x(t) = t arcsin t .
Define f (0, 0) = 0, where f (t, x) = x/t + t sec(x/t).

3. Select one of the following initial-value problems, and compare the numerical solu-
tions obtained with fourth-order Runge-Kutta formulas and fourth-order Taylor series.

448 Chapter 10 Ordinary Differential Equations

Use different values of h = 2−n , for n = 2, 3, . . . , 7, to compute the solution on the
interval [1, 2].
a. x ′ = 1 + x/t x(1) = 1 ab. x ′ = 1/x2 − xt x(1) = 1

ac. x ′ = 1/t2 − x/t − x2 x(1) = −1

a4. Select a Runge-Kutta routine from a program library, and test it on the initial-
value problem x ′ = (2 − t)x with x(2) = 1. Compare with the exact solution, x =
exp

[−(1
2

)
(t − 2)2

]
.

a5. (Ill-conditioned ODE) Solve the ordinary differential equation x ′ = 10x + 11t −
5t2 − 1 with initial value x(0) = 0. Continue the solution from t = 0 to t = 3, using
the fourth-order Runge-Kutta method with h = 2−8. Print the numerical solution and
the exact solution (t2/2 − t) at every tenth step, and draw a graph of the two solutions.
Verify that the solution of the same differential equation with initial value x(0) = ε is
εe10t + t2/2 − t and thus account for the discrepancy between the numerical and exact
solutions of the original problem.

a6. Solve the initial-value problem x ′ = x
√

x2 − 1 with x(0) = 1 by the Runge-Kutta
method on the interval 0 � t � 1.6, and account for any difficulties. Then, using
negative h, solve the same differential equation on the same interval with initial value
x(1.6) = 1.0.

7. The following pathological example has been given by Dahlquist and Björck [1974].
Consider the differential equation x ′ = 100(sin t − x) with initial value x(0) = 0.
Integrate it with the fourth-order Runge-Kutta method on the interval [0, 3], using step
sizes h = 0.015, 0.020, 0.025, 0.030. Observe the numerical instability!

a8. Consider the differential equation

⎧⎪⎨⎪⎩ x ′ =
{

x + t −1 � t � 0

x − t 0 � t � 1
x(−1) = 1

Using the Runge-Kutta procedure RK4 with step size h = 0.1, solve this problem over
the interval [−1, 1]. Now solve by using h = 0.09. Which numerical solution is more
accurate and why? Hint: The true solution is given by x = e(t+1) − (t + 1) if t � 0 and
x = e(t+1) − 2et + (t + 1) if t � 0.

a9. Solve t − x ′ + 2xt = 0 with x(0) = 0 on the interval [0, 10] using the Runge-Kutta

formulas with h = 0.1. Compare with the true solution: 1
2 (e

t2 − 1). Draw a graph or
have one created by an automatic plotter. Then graph the logarithm of the solution.

10. Write a program to solve x ′ = sin(xt) + arctan t on 1 � t � 7 with x(2) = 4 using the
Runge-Kutta procedure RK4.

11. The general form of Runge-Kutta methods of order 2 is given by Equations (5) and
(10). Write and test procedure RK2(f, t, x, h, α, n) for carrying out n steps with step
size h and initial conditions t and x for several given α values.

10.2 Runge-Kutta Methods 449

12. We want to solve {
x ′ = et x2 + e3

x(2) = 4

at x(5) with step size 0.5. Solve it in the following two ways.

a. Code the function f (t, x) that is needed and use procedure RK4.

b. Write a short program that uses the Taylor series method including terms up to h4.

13. Plot the solution for differential equation (13).

14. Select a differential equation with a known solution and compare the classical fourth-
order Runge-Kutta method with one or both of the following ones. Print the errors at
each step. Is the ratio of the two errors a constant at each step? What are the advantages
and/or disadvantages of each method?

a. A fourth-order Runge-Kutta method similar to the classical one is given by

x(t + h) = x(t) + 1

6
(K1 + 4K3 + K4)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K1 = h f (t, x)

K2 = h f
(
t + 1

2 h, x + 1
2 K1

)
K3 = h f

(
t + 1

2 h, x + 1
4 K1 + 1

4 K2

)
K4 = h f (t + h, x − K2 + 2K3)

See England [1969] or Shampine, Allen, and Pruess [1997].

b. Another fourth-order Runge-Kutta method is given by

x(t + h) = x(t) + w1 K1 + w2 K2 + w3 K3 + w4 K4

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K1 = h f (t, x)

K2 = h f
(
t + 2

5 h, x + 2
5 K1

)
K3 = h f

(
t + 1

16

(
14 − 3

√
5
)
h, x + c31 K1 + c32 K2

)
K4 = h f (t + h, x + c41 K1 + c42 K2 + c43 K3)

Here the appropriate constants are

c31 = 3
(− 963 + 476

√
5
)

1024
c32 = 5

(
757 − 324

√
5
)

1024

c41 = −3365 + 2094
√

5

6040
c42 = −975 − 3046

√
5

2552

c43 = 32
(
14595 + 6374

√
5
)

2 40845

w1 = 263 + 24
√

5

1812
w2 = 125

(
1 − 8

√
5
)

3828

w3 = 1024
(
3346 + 1623

√
5
)

59 24787
w4 = 2

(
15 − 2

√
5
)

123

450 Chapter 10 Ordinary Differential Equations

Note: There are any number of Runge-Kutta methods of any order. The higher the
order, the more complicated are the formulas. Since the one given by Equation (12)
has error O(h5) and is rather simple, it is the most popular fourth-order Runge-Kutta
method. The error term for the method of part b of this problem is also O(h5), and it
is optimum in a certain sense. (See Ralston [1965] for details.)

15. A fifth-order Runge-Kutta method is given by

x(t + h) = x(t) + 1

24
K1 + 5

48
K4 + 27

56
K5 + 125

336
K6

where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 = h f (t, x)

K2 = h f

(
t + 1

2
h, x + 1

2
K1

)
K3 = h f

(
t + 1

2
h, x + 1

4
K1 + 1

4
K2

)
K4 = h f (t + h, x − K2 + 2K3)

K5 = h f

(
t + 2

3
h, x + 7

27
K1 + 10

27
K2 + 1

27
K4

)
K6 = h f

(
t + 1

5
h, x + 28

625
K1 − 1

5
K2 + 546

625
K3 + 54

625
K4 − 378

625
K5

)
Write and test a procedure that uses this formula.

16. a. Use a symbol manipulation package such as Maple or Mathematica to find the
general Runge-Kunge method of order 2.

b. Repeat for order 3.

17. (Delay ordinary differential equation) Investigate procedures for determining the
numerical solution of an ordinary differential equation with a constant delay such as

x ′(t) = −x(t) + x(t − 20) + 1

20
cos

(
1

20
t

)
+ sin

(
1

20
t

)
− sin

(
1

20
(t − 20)

)
on the interval 0 � t � 1000, where x(t) = sin

(
1
20 t
)

for t � 0. Use a step size less
than or equal to 20 so that no overlapping occurs. Compare to the exact solution
x(t) = sin

(
1

20 t
)
.

18. Write a software for program Test RK4 and routine RK4, and verify the numerical
results given in the text.

10.3 Stability and Adaptive Runge-Kutta
and Multistep Methods

An Adaptive Runge-Kutta-Fehlberg Method
In realistic situations involving the numerical solution of initial-value problems, there is
always a need to estimate the precision attained in the computation. Usually, an error
tolerance is prescribed, and the numerical solution must not deviate from the true solution

10.3 Stability and Adaptive Runge-Kutta and Multistep Methods 451

beyond this tolerance. Once a method has been selected, the error tolerance dictates the
largest allowable step size. Even if we consider only the local truncation error, determining
an appropriate step size may be difficult. Moreover, often a small step size is needed on one
portion of the solution curve, whereas a larger one may suffice elsewhere.

For the reasons given, various methods have been developed for automatically adjusting
the step size in algorithms for the initial-value problem. One simple procedure is now de-
scribed. Consider the classical fourth-order Runge-Kutta method discussed in Section 10.2.
To advance the solution curve from t to t + h, we can take one step of size h using the
Runge-Kutta formulas. But we can also take two steps of size h/2 to arrive at t + h. If
there were no truncation error, the value of the numerical solution x(t + h) would be the
same for both procedures. The difference in the numerical results can be taken as an esti-
mate of the local truncation error. So, in practice, if this difference is within the prescribed
tolerance, the current step size h is satisfactory. If this difference exceeds the tolerance, the
step size is halved. If the difference is very much less than the tolerance, the step size is
doubled.

The procedure just outlined is easily programmed but rather wasteful of computing
time and is not recommended. A more sophisticated method was developed by Fehlberg
[1969]. The Fehlberg method of order 4 is of Runge-Kutta type and uses these formulas:

x(t + h) = x(t) + 25

216
K1 + 1408

2565
K3 + 2197

4104
K4 − 1

5
K5

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 = h f (t, x)

K2 = h f

(
t + 1

4
h, x + 1

4
K1

)
K3 = h f

(
t + 3

8
h, x + 3

32
K1 + 9

32
K2

)
K4 = h f

(
t + 12

13
h, x + 1932

2197
K1 − 7200

2197
K2 + 7296

2197
K3

)
K5 = h f

(
t + h, x + 439

216
K1 − 8K2 + 3680

513
K3 − 845

4104
K4

)
Since this scheme requires one more function evaluation than the classical Runge-Kutta
method of order 4, it is of questionable value alone. However, with an additional function
evaluation

K6 = h f

(
t + 1

2
h, x − 8

27
K1 + 2K2 − 3544

2565
K3 + 1859

4104
K4 − 11

40
K5

)
we can obtain a fifth-order Runge-Kutta method, namely,

x(t + h) = x(t) + 16

135
K1 + 6656

12825
K3 + 28561

56430
K4 − 9

50
K5 + 2

55
K6

The difference between the values of x(t + h) obtained from the fourth- and fifth-order
procedures is an estimate of the local truncation error in the fourth-order procedure. So six
function evaluations give a fifth-order approximation, together with an error estimate!

A pseudocode for the Runge-Kutta-Fehlberg method is given in procedure RK45:

452 Chapter 10 Ordinary Differential Equations

procedure RK45(f, t, x, h, ε)
real ε, K1, K2, K3, K4, K5, K6, h, t, x, x4

external function f
real c20 ← 0.25, c21 ← 0.25
real c30 ← 0.375, c31 ← 0.09375, c32 ← 0.28125
real c40 ← 12./13., c41 ← 1932./2197.

real c42 ← −7200./2197., c43 ← 7296./2197.

real c51 ← 439./216., c52 ← −8.

real c53 ← 3680./513., c54 ← −845./4104.

real c60 ← 0.5, c61 ← −8./27., c62 ← 2.

real c63 ← −3544./2565., c64 ← 1859./4104.

real c65 ← −0.275
real a1 ← 25./216., a2 ← 0., a3 ← 1408./2565.

real a4 ← 2197./4104., a5 ← −0.2
real b1 ← 16./135., b2 ← 0., b3 ← 6656./12825.

real b4 ← 28561./56430., b5 ← −0.18
real b6 ← 2./55.

K1 ← h f (t, x)

K2 ← h f (t + c20h, x + c21 K1)

K3 ← h f (t + c30h, x + c31 K1 + c32 K2)

K4 ← h f (t + c40h, x + c41 K1 + c42 K2 + c43 K3)

K5 ← h f (t + h, x + c51 K1 + c52 K2 + c53 K3 + c54 K4)

K6 ← h f (t + c60h, x + c61 K1 + c62 K2 + c63 K3 + c64 K4 + c65 K5)

x4 ← x + a1 K1 + a3 K3 + a4 K4 + a5 K5

x ← x + b1 K1 + b3 K3 + b4 K4 + b5 K5 + b6 K6

t ← t + h
ε ← |x − x4|
end procedure RK45

Of course, the programmer may wish to consider various optimization techniques such as
assigning numerical values to the coefficients with decimal expansions corresponding to
the precision of the computer being used so that the fractions do not need to be recomputed
at each call to the procedure.

We can use the RK45 procedure in a nonadaptive fashion such as in the following:

program Test RK45
integer k; real t, h, ε; external function f
integer n ← 72
real a ← 1.0, b ← 1.5625, x ← 2.0
h ← (b − a)/n
t ← a
output 0, t, x
for k = 1 to n do

call RK45(f, t, x, h, ε)

output k, t, x, ε

end for
end program Test RK45

10.3 Stability and Adaptive Runge-Kutta and Multistep Methods 453

real function f (t, x)

real t, x
f ← 2.0 + (x − t − 1.0)2

end function f

Here, we print the error estimation at each step. However, we can use it in an adaptive
procedure, since the error estimate ε can tell us when to adjust the step size to control the
single-step error.

We now describe a simple adaptive procedure. In the RK45 procedure, the fourth- and
fifth-order approximations for x(t + h), say, x4 and x5, are computed from six function
evaluations, and the error estimate ε = |x4 − x5| is known. From user-specified bounds
on the allowable error estimate (εmin � ε � εmax), the step size h is doubled or halved as
needed to keep ε within these bounds. A range for the allowable step size h is also specified
by the user (hmin � |h| � hmax). Clearly, the user must set the bounds (εmin, εmax, hmin, hmax)

carefully so that the adaptive procedure does not get caught in a loop, trying repeatedly
to halve and double the step size from the same point to meet error bounds that are too
restrictive for the given differential equation.

Basically, our adaptive process is as follows:

■ ALGORITHM 1 Overview of Adaptive Process

1. Given a step size h and an initial value x(t), the RK45 routine computes the
value x(t + h) and an error estimate ε.

2. If εmin � ε � εmax, then the step size h is not changed and the next step is taken
by repeating step 1 with initial value x(t + h).

3. If ε < εmin, then h is replaced by 2h, provided that |2h| � hmax.

4. If ε > εmax, then h is replaced by h/2, provided that |h/2| � hmin.

5. If hmin � |h| � hmax, then the step is repeated by returning to step 1 with x(t)
and the new h value.

The procedure for this adaptive scheme is RK45 Adaptive. In the parameter list of the
pseudocode, f is the function f (t, x) for the differential equation, t and x contain the initial
values, h is the initial step size, tb is the final value for t , itmax is the maximum number of
steps to be taken in going from a = ta to b = tb, εmin and εmax are lower and upper bounds
on the allowable error estimate ε, hmin and hmax are bounds on the step size h, and iflag is
an error flag that returns one of the following values:

iflag Meaning
0 Successful march from ta to tb

1 Maximum number of iterations reached

On return, t and x are the exit values, and h is the final step size value considered or used:

procedure RK45 Adaptive(f, t, x, h, tb, itmax, εmax, εmin, hmin, hmax, iflag)

integer iflag, itmax, n; external function f
real ε, εmax, εmin, d, h, hmin, hmax, t, tb, x, xsave, tsave

real δ ← 1
2 × 10−5

454 Chapter 10 Ordinary Differential Equations

output 0, h, t, x
iflag ← 1
k ← 0
while k � itmax

k ← k + 1
if |h| < hmin then h ← sign(h)hmin

if |h| > hmax then h ← sign(h)hmax

d ← |tb − t |
if d � |h| then

iflag ← 0
if d � δ · max{|tb|, |t |} then exit loop
h ← sign(h)d

end if
xsave ← x
tsave ← t
call RK45(f, t, x, h, ε)

output n, h, t, x, ε

if iflag = 0 then exit loop
if ε < εmin then h ← 2h
if ε > εmax then

h ← h/2
x ← xsave

t ← tsave

k ← k − 1
end if

end while
end procedure RK45 Adaptive

In the pseudocode, notice that several conditions must be checked to determine the size of
the final step, since floating-point arithmetic is involved and the step size varies.

As an illustration, the reader should repeat the computer example in the previous
section using RK45 Adaptive, which allows variable step size, instead of RK4. Compare
the accuracy of these two computed solutions.

An Industrial Example
A first-order differential equation that arose in the modeling of an industrial chemical
process is as follows:

x ′ = a + b sin t + cx x(0) = 0 (1)

in which a = 3, b = 5, and c = 0.2 are constants. This equation is amenable to the solution
techniques of calculus, in particular the use of an integrating factor. However, the analytic
solution is complicated, and a numerical solution may be preferable.

To solve this problem numerically using the adaptive Runge-Kutta formulas, one need
only identify (and program) the function f that appears in the general description. In this
problem, it is f (t, x) = 3 + 5 sin t + 0.2x . Here is a brief pseudocode for solving the

10.3 Stability and Adaptive Runge-Kutta and Multistep Methods 455

equation on the interval [0, 10] with particular values assigned to the parameters in the
routine RK45 Adaptive:

program Test RK45 Adaptive
integer iflag; real t, x, h, tb; external function f
integer itmax ← 1000
real εmax ← 10−5, εmin ← 10−8, hmin ← 10−6, hmax ← 1.0
t ← 0.0; x ← 0.0; h ← 0.01; tb ← 10.0
call RK45 Adaptive(f, t, x, h, tb, itmax, εmax , εmin, hmin, hmax , iflag)

output itmax, iflag
end program Test RK45 Adaptive

real function f (t, x)

real t, x
f ← 3 + 5 sin(t) + 0.2x
end function f

We obtain the approximation x(10) ≈ 135.917. The output from the code is a table of
values that can be sent to a plotting routine. The resulting graph helps the user to visualize
the solution curve.

Adams-Bashforth-Moulton Formulas
We now introduce a strategy in which numerical quadrature formulas are used to solve a
single first-order ordinary differential equation. The model equation is

x ′(t) = f (t, x(t))

and we suppose that the values of the unknown function have been computed at several
points to the left of t , namely, t, t − h, t − 2h, . . . , t − (n − 1)h. We want to compute
x(t + h). By the theorems of calculus, we can write

x(t + h) = x(t) +
∫ t+h

t
x ′(s) ds

= x(t) +
∫ t+h

t
f (s, x(s)) ds

≈ x(t) +
n∑

j=1

c j f j

where the abbreviation f j = f (t − (j − 1)h, x(t − (j − 1)h)) has been used. In the last
line of the above equation, we have brought in a suitable numerical integration formula.
The simplest case of such a formula will be for the interval [0, 1] and will use values of
the integrand at points 0, −1, −2, . . . , 1 − n in the case of an Adams-Bashforth formula.
Once we have such a basic rule, a change of variable will produce the rule for any other
interval with any other uniform spacing.

456 Chapter 10 Ordinary Differential Equations

Let us find a rule of the form∫ 1

0
F(r) dr ≈ c1 F(0) + c2 F(−1) + · · · + cn F(1 − n)

There are n coefficients c j at our disposal. We know from interpolation theory that the
formula can be made exact for all polynomials of degree n − 1. It suffices that we insist on
integrating each function 1, r, r2, . . . , rn−1 exactly. Hence, we write down the appropriate
equation: ∫ 1

0
r i−1 dt =

n∑
j=1

c j (1 − j)i−1 (1 � i � n)

This is a system Au = b of n equations in n unknowns. The elements of the matrix A are
Ai j = (1 − j)i−1, and the right-hand side is bi = 1/ i .

When this program is run, the output is the vector of coefficients
(

55
24 , − 59

24 , 37
24 , − 3

8

)
.

Of course, higher-order formulas are obtained by changing the value of n in the code. To
get the Adams-Moulton formulas, we start with a quadrature rule of the form∫ 1

0
G(r) dr ≈

n∑
j=1

C j G(2 − j)

A program similar to the one above yields the coefficients
(

9
24 , 19

24 , − 5
24 , 1

24

)
. The distinction

between the two quadrature rules is that one involves the value of the integrand at 1 and the
other does not.

How do we arrive at formulas for
∫ t+h

t g(s) ds from the work already done? Use the
change of variable from s to σ given by s = hσ − t . In these considerations, think of t as
a constant. The new integral will be h

∫ 1
0 g(hσ + t) dσ , which can be treated with either

of the two formulas already designed for the interval [0, 1]. For example,∫ t+h

t
F(r) dr ≈ h

24
[55F(t) − 59F(t − h) + 37F(t − 2h) − 9F(t − 3h)]∫ t+h

t
G(r) dr ≈ h

24
[9G(t + h) + 19G(t) − 5G(t − h) + G(t − 2h)]

The method of undetermined coefficients used here to obtain the quadrature formulas does
not, by itself, provide the error terms that we would like to have. An assessment of the error
can be made from interpolation theory, because the methods considered here come from
integrating an interpolating polynomial. Details can be found in more advanced books.
You can experiment with some of the Adams-Bashforth-Moulton formulas in Computer
Problems 10.3.2–10.3.4. These methods are taken up again in Section 11.3.

Stability Analysis
Let us now resume the discussion of errors that inevitably occur in the numerical solution
of an initial-value problem {

x ′ = f (t, x)

x(a) = s
(2)

10.3 Stability and Adaptive Runge-Kutta and Multistep Methods 457

The exact solution is a function x(t). It depends on the initial value s, and to show this,
we write x(t, s). The differential equation therefore gives rise to a family of solution
curves, each corresponding to one value of the parameter s. For example, the differential
equation {

x ′ = x

x(a) = s

gives rise to the family of solution curves x = se(t−a) that differ in their initial values
x(a) = s. A few such curves are shown in Figure 10.4. The fact that the curves there
diverge from one another as t increases has important numerical significance. Suppose,
for instance, that initial value s is read into the computer with some roundoff error. Then
even if all subsequent calculations are precise and no truncation errors occur, the computed
solution will be wrong. An error made at the beginning has the effect of selecting the wrong
curve from the family of all solution curves. Since these curves diverge from one another,
any minute error made at the beginning is responsible for an eventual complete loss of
accuracy. This phenomenon is not restricted to errors made in the first step, because each
point in the numerical solution can be interpreted as the initial value for succeeding points.

FIGURE 10.4

Solution curves
to x′ = x with

x(a) = s
t

x

a � t0

s1

t1 t2 t3 t4 t5

s2

s3

s4

s5

x � se(t�a)

Global error

For an example in which this difficulty does not arise, consider{
x ′ = −x

x(a) = s

Its solutions are x = se−(t−a). As t increases, these curves come closer together, as in
Figure 10.5. Thus, errors made in the numerical solution still result in selecting the wrong
curve, but the effect is not as serious because the curves coalesce.

At a given step, the global error of an approximate solution to an ordinary differential
equation contains both the local error at that step and the accumulative effect of all the local
errors at all previous steps. For divergent solution curves, the local errors at each step are
magnified over time, and the global error may be greater than the sum of all the local errors.
In Figure 10.4 and Figure 10.5, the steps in the numerical solution are indicated by dots
connected by dark lines. Also, the local errors are indicated by small vertical bars and the
global error by a vertical bar at the right end of the curves.

For convergent solution curves, the local errors at each step are reduced over time, and
the global error may be less than the sum of all the local errors. For the general differential

458 Chapter 10 Ordinary Differential Equations

FIGURE 10.5

Solution curves
to x′ = −x with

x(a) = s
t

x

a � t0

s1

s2

s3

s4

s5

x � se�(t�a)

t5t4t3t2t1

Global error

Equation (2), how can the two modes of behavior just discussed be distinguished? It is
simple. If fx > δ for some positive δ, the curves diverge. However, if fx < −δ, they con-
verge. To see why, consider two nearby solution curves that correspond to initial values s
and s + h. By Taylor series, we have

x(t, s + h) = x(t, s) + h
∂

∂s
x(t, s) + 1

2
h2 ∂2

∂s2
x(t, s) + · · ·

whence

x(t, s + h) − x(t, s) ≈ h
∂

∂s
x(t, s)

Thus, the divergence of the curves means that

lim
t→∞

|x(t, s + h) − x(t, s)| = ∞
and can be written as

lim
t→∞

∣∣∣∣ ∂

∂s
x(t, s)

∣∣∣∣ = ∞

To calculate this partial derivative, start with the differential equation satisfied by x(t, s):

∂

∂t
x(t, s) = f (t, x(t, s))

and differentiate partially with respect to s:

∂

∂s

∂

∂t
x(t, s) = ∂

∂s
f (t, x(t, s))

Hence,

∂

∂t

∂

∂s
x(t, s) = fx(t, x(t, s))

∂

∂s
x(t, s) + ft(t, x(t, s))

∂t

∂s
(3)

But s and t are independent variables (a change in s produces no change in t), so ∂t/∂s = 0.
If s is now fixed and if we put u(t) = (∂/∂s)x(t, s) and q(t) = fx(t, x(t, s)), then Equa-
tion (3) becomes

u′ = qu (4)

This is a linear differential equation with solution u(t) = ceQ(t), where Q is the indefinite
integral (antiderivative) of q. The condition limt→∞ |u(t)| = ∞ is met if limt→∞ Q(t) = ∞.

10.3 Stability and Adaptive Runge-Kutta and Multistep Methods 459

This situation, in turn, occurs if q(t) is positive and bounded away from zero because then

Q(t) =
∫ t

a
q(θ) dθ >

∫ t

a
δ dθ = δ(t − a) → ∞

as t → ∞ if fx = q > δ > 0.
To illustrate, consider the differential equation x ′ = t + tan x . The solution curves

diverge from one another as t → ∞ because fx(t, x) = sec2 x > 1.

Summary

(1) The Runge-Kutta-Fehlberg method is

x̃(t) = x(t) + 25

216
K1 + 1408

2565
K3 + 2197

4104
K4 − 1

5
K5

x(t + h) = x(t) + 16

135
K1 + 6656

12825
K3 + 28561

56430
K4 − 9

50
K5 + 2

55
K6

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

K1 = h f (t, x)

K2 = h f

(
t + 1

4
h, x + 1

4
K1

)
K3 = h f

(
t + 3

8
h, x + 3

32
K1 + 9

32
K2

)
K4 = h f

(
t + 12

13
h, x + 1932

2197
K1 − 7200

2197
K2 + 7296

2197
K3

)
K5 = h f

(
t + h, x + 439

216
K1 − 8K2 + 3680

513
K3 − 845

4104
K4

)
K6 = h f

(
t + 1

2
h, x − 8

27
K1 + 2K2 − 3544

2565
K3 + 1859

4104
K4 − 11

40
K5

)
The quantity ε = |x(t + h) − x̃ | can be used in an adaptive step-size procedure.

(2) A fourth-order multistep method is the Adams-Bashforth-Moulton method:

x̃(t + h) = x(t) + h

24
[55 f (t, x(t)) − 59 f (t − h, x(t − h))

+ 37 f (t − 2h, x(t − 2h)) − 9 f (t − 3h, x(t − 3h))]

x(t + h) = x(t) + h

24
[9 f (t + h, x̃(t + h)) + 19 f (t, x)t))

− 5 f (t − h, x(t − h)) + f (t − 2h, x(t − 2h))]

The value x̃(t + h) is the predicted value, and x(t + h) is the corrected value. The trunca-
tion errors for these two formulas are O(h5). Since the value of x(a) is given, the values
for x(a + h), x(a + 2h), x(a + 3h), x(a + 4h) are computed by some single-step method
such as the fourth-order Runge-Kutta method.

460 Chapter 10 Ordinary Differential Equations

Additional References
See Aiken [1985], Butcher [1987], Dekker and Verwer [1984], England [1969], Fehlberg
[1969], Henrici [1962], Hundsdorfer [1985], Lambert [1973], Lapidus and Seinfeld [1971],
Miranker [1981], Moulton [1930], Shampine and Gordon [1975], and Stetter [1973].

Problems 10.3

a1. Solve the problem {
x ′ = −x

x(0) = 1

by using the Trapezoid Rule, as discussed at the beginning of this chapter. Compare
the true solution at t = 1 to the approximate solution obtained with n steps. Show, for
example, that for n = 5, the error is 0.00123.

a2. Derive an implicit multistep formula based on Simpson’s rule, involving uniformly
spaced points x(t − h), x(t), and x(t + h), for numerically solving the ordinary differ-
ential equation x ′ = f .

3. An alert student noticed that the coefficients in the Adams-Bashforth formula add up
to 1. Why is that so?

a4. Derive a formula of the form

x(t + h) = ax(t) + bx(t − h) + h[cx ′(t + h) + dx ′′(t) + ex ′′′(t − h)]

that is accurate for polynomials of as high a degree as possible. Hint: Use polynomials
1, t , t2, and so on.

a5. Determine the coefficients of an implicit, one-step, ordinary differential equation method
of the form

x(t + h) = ax(t) + bx ′(t) + cx ′(t + h)

so that it is exact for polynomials of as high a degree as possible. What is the order of
the error term?

6. The differential equation that is used to illustrate the adaptive Runge-Kutta program
can be solved with an integrating factor. Do so.

7. Establish Equation (4).

a8. The initial-value problem x ′ = (1 + t2)x with x(0) = 1 is to be solved on the interval
[0, 9]. How sensitive is x(9) to perturbations in the initial value x(0)?

9. For each differential equation, determine regions in which the solution curves tend to
diverge from one another as t increases:

aa. x ′ = sin t + ex b. x ′ = x + te−t ac. x ′ = xt

d. x ′ = x3(t2 + 1) ae. x ′ = cos t − ex f. x ′ = (1 − x3)(1 + t2)

10.3 Stability and Adaptive Runge-Kutta and Multistep Methods 461

a10. For the differential equation x ′ = t (x3 − 6x2 + 15x), determine whether the solution
curves diverge from one another as t → ∞.

a11. Determine whether the solution curves of x ′ = (1 + t2)−1x diverge from one another
as t → ∞.

Computer Problems 10.3

1. Use mathematical software to solve systems of linear equations whose solutions are
a. Adams-Bahforth coefficients b. Adams-Moulton coefficients

2. The second-order Adams-Bashforth-Moulton method is given by

x̃(t + h) = x(t) + h

2
[3 f (t, x(t)) − f (t − h, x(t − h))]

x(t + h) = x(t) + h

2
[f (t + h, x̃(t + h)) + f (t, x(t))]

The approximate single-step error is ε ≡ K |x(t + h)− x̃(t + h)|, where K = 1
6 . Using

ε to monitor the convergence, write and test an adaptive procedure for solving an ODE
of your choice using these formulas.

3. (Continuation) Carry out the instructions of the previous computer problem for the
third-order Adams-Bashforth-Moulton method:

x̃(t + h) = x(t) + h

12
[23 f (t, x(t)) − 16 f (t − h, x(t − h))

+ 5 f (t − 2h, x(t − 2h))]

x(t + h) = x(t) + h

12
[5 f (t + h, x̃(t + h)) + 8 f (t, x(t))

− f (t − h, x(t − h))]

where K = 1
10 in the expression for the approximate single-step error.

4. (Predictor-corrector scheme) Using the fourth-order Adams-Bashforth-Moulton
method, derive the predictor-corrector scheme given by the following equations:

x̃(t + h) = x(t) + h

24
[55 f (t, x(t)) − 59 f (t − h, x(t − h))

+ 37 f (t − 2h, x(t − 2h)) − 9 f (t − 3h, x(t − 3h))]

x(t + h) = x(t) + h

24
[9 f (t + h, x̃(t + h)) + 19 f (t, x(t))

− 5 f (t − h, x(t − h)) + f (t − 2h, x(t − 2h))]

Write and test a procedure for the Adams-Bashforth-Moulton method. Note: This is a
multistep process because values of x at t , t − h, t − 2h, and t − 3h are used to deter-
mine the predicted value x̃(t + h), which, in turn, is used with values of x at t , t − h,
and t − 2h to obtain the corrected value x(t + h). The error terms for these form-
ulas are (251/720)h5 f (4)(ξ) and −(19/720)h5 f (4)(η), respectively. (See Section 9.3
for additional discussion of these methods.)

462 Chapter 10 Ordinary Differential Equations

a5. Solve ⎧⎨⎩ x ′ = 3x

t
+ 9

2
t − 13

x(3) = 6

at x
(

1
2

)
using procedure RK45 Adaptive to obtain the desired solution to nine decimal

places. Compare with the true solution:

x = t3 − 9

2
t2 + 13

2
t

a6. (Continuation) Repeat the previous problem for x
(− 1

2

)
.

7. It is known that the fourth-order Runge-Kutta method described in Equation (12) of
Section 10.2 has a local truncation error that isO(h5). Devise and carry out a numerical
experiment to test this. Suggestions: Take just one step in the numerical solution of a
nontrivial differential equation whose solution is known beforehand. However, use a
variety of values for h, such as 2−n , where 1 � n � 24. Test whether the ratio of errors to
h5 remains bounded as h → 0. A multiple-precision calculation may be needed. Print
the indicated ratios.

8. Compute the numerical solution of {
x ′ = −x

x(0) = 1

using the midpoint method

xn+1 = xn−1 + 2hx ′
n

with x0 = 1 and x1 = −h + √
1 + h2. Are there any difficulties in using this method

for this problem? Carry out an analysis of the stability of this method. Hint: Consider
fixed h and assume xn = λn .

a9. Tabulate and graph the function [1 − ln v(x)]v(x) on [0, e], where v(x) is the solution
of the initial-value problem (dv/dx)[ln v(x)] = 2x, v(0) = 1. Check value: v(1) = e.

10. Determine the numerical value of

2π

∫ 5

4

es

s
ds

in three ways: solving the integral, an ordinary differential equation, and using the exact
formula.

11. Compute and print a table of the function

f (φ) =
∫ φ

0

√
1 − 1

4
sin2 θ dθ

by solving an appropriate initial-value problem. Cover the interval [0, 90◦] with steps
of 1◦ and use the Runge-Kutta method of order 4. Check values: Use f (30◦) =
0.51788 193 and f (90◦) = 1.46746 221. Note: This is an example of an elliptic
integral of the second kind. It arises in finding an arc length on an ellipse and in
many engineering problems.

10.3 Stability and Adaptive Runge-Kutta and Multistep Methods 463

a12. By solving an appropriate initial-value problem, make a table of the function

f (x) =
∫ ∞

1/x

dt

tet

on the interval [0, 1]. Determine how well f is approximated by xe−1/x . Hint: Let
t = − ln s.

a13. By solving an appropriate initial-value problem, make a table of the function

f (x) = 2√
π

∫ x

0
e−t2

dt

on the interval 0 � x � 2. Determine how accurately f (x) is approximated on this
interval by the function

g(x) = 1 − (
ay + by2 + cy3

) 2√
π

e−x2

where {
a = 0.30842 84 b = −0.08497 13

c = 0.66276 98 y = (1 + 0.47047x)−1

14. Use the Runge-Kutta method to compute
∫ 1

0

√
1 + s3 ds.

a15. Write and run a program to print an accurate table of the sine integral

Si(x) =
∫ x

0

sin r

r
dr

The table should cover the interval 0 � x � 1 in steps of size 0.01. [Use sin(0)/0 = 1.
See Computer Problem 5.1.2]

16. Compute a table of the function

Shi(x) =
∫ x

0

sinh t

t
dt

by finding an initial-value problem that it satisfies and then solving the initial-value
problem. Your table should be accurate to nearly machine precision. [Use sinh(0)/

0 = 1.]

17. Design and carry out a numerical experiment to verify that a slight perturbation in an
initial-value problem can cause catastrophic errors in the numerical solution. Note: An
initial-value problem is an ordinary differential equation with conditions specified
only at the initial point. (Compare this with a boundary value problem as given in
Chapter 12.)

18. Run example programs for solving the industrial example in Equation (1), compare the
solutions, and produce the plots.

19. Another adaptive Runge-Kutta method was developed by England [1969]. The Runge-
Kutta-England method is similar to the Runge-Kutta-Fehlberg method in that it com-
bines a fourth-order Runge-Kutta formula and a companion fifth-order one. To reduce
the number of function evaluations, the formulas are derived so that some of the same
function evaluations are used in each pair of formulas. (A fourth-order Runge-Kutta

464 Chapter 10 Ordinary Differential Equations

formula requires at least four function evaluations, and a fifth-order one requires at least
six.) The Runge-Kutta-England method uses the fourth-order Runge-Kutta methods in
Computer Problem 10.2.14a and takes two half steps as follows:

x

(
t + 1

2
h

)
= x(t) + 1

6
(K1 + 4K3 + K4)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K1 = 1

2 h f (t, x(t))

K2 = 1
2 h f

(
t + 1

4 h, x(t) + 1
2 K1

)
K3 = 1

2 h f
(
t + 1

4 h, x(t) + 1
4 K1 + 1

4 K2

)
K4 = 1

2 h f
(
t + 1

2 h, x(t) − K2 + 2K3

)
and

x(t + h) = x

(
t + 1

2
h

)
+ 1

6
(K5 + 4K7 + K8)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K5 = 1

2 h f
(
t + 1

2 h, x
(
t + 1

2 h
))

K6 = 1
2 h f

(
t + 3

4 h, x
(
t + 1

2 h
)+ 1

2 K5

)
K7 = 1

2 h f
(
t + 3

4 h, x
(
t + 1

2 h
)+ 1

4 K5 + 1
4 K6

)
K8 = 1

2 h f
(
t + h, x

(
t + 1

2 h
)− K6 + 2K7

)
With these two half steps, there are enough function evaluations so that only one more

K9 = 1

2
h f

(
t + h, x(t) − 1

12
(K1 + 96K2 − 92K3 + 121K4

− 144K5 − 6K6 + 12K7)

)
is needed to obtain a fifth-order Runge-Kutta method:

x̂(t + h) = x(t) + 1

90
(14K1 + 64K3 + 32K3 − 8K5 + 64K7 + 15K8 − K9)

An adaptive procedure can be developed by using an error estimation based on the two
values x(t + h) and x̂(t + h). Program and test such a procedure. (See, for example,
Shampine, Allen, and Pruess [1997].)

20. Investigate the numerical solution of the initial-value problem{
x ′ = −√

1 − x2

x(0) = 1

This problem is ill-conditioned, since x(t) = cos t is a solution and x(t) = 1 is also. For
more information on this and other test problems, see Cash [2003] or www.ma.ic.ac
.uk/∼jcash/.

21. (Student research project) Learn about algebraic differential equations.

22. Write software to implement the following pseudocodes and verify the numerical
results given in the text:

a. Test RK45 and RK45 b. Test RK45 Adaptive and RK45 Adaptive

www.ma.ic.ac.uk/~jcash/
www.ma.ic.ac.uk/~jcash/

11
Systems of Ordinary Differential
Equations

A simple model to account for the way in which two different animal species
sometimes interact is the predator-prey model. If u(t) is the number of
individuals in the predator species and v(t) the number of individuals in
the prey species, then under suitable simplifying assumptions and with
appropriate constants a, b, c, and d,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
du
dt

= a(v + b)u

dv

dt
= c (u + d)v

This is a pair of nonlinear ordinary differential equations (ODEs) that govern
the populations of the two species (as functions of time t). In this chapter,
numerical procedures are developed for solving such problems.

11.1 Methods for First-Order Systems
In Chapter 10, ordinary differential equations were considered in the simplest context;
that is, we restricted our attention to a single differential equation of the first order with
an accompanying auxiliary condition. Scientific and technological problems often lead to
more complicated situations, however. The next degree of complication occurs with systems
of several first-order equations.

Uncoupled and Coupled Systems
The sun and the nine planets form a system of particles moving under the jurisdiction
of Newton’s law of gravitation. The position vectors of the planets constitute a system of
27 functions, and the Newtonian laws of motion can be written, then, as a system of 54
first-order ordinary differential equations. In principle, the past and future positions of the
planets can be obtained by solving these equations numerically.

465

466 Chapter 11 Systems of Ordinary Differential Equations

Taking an example of more modest scope, we consider two equations with two auxiliary
conditions. Let x and y be two functions of t subject to the system{

x ′(t) = x(t) − y(t) + 2t − t2 − t3

y′(t) = x(t) + y(t) − 4t2 + t3
(1)

with initial conditions {
x(0) = 1

y(0) = 0

This is an example of an initial-value problem that involves a system of two first-order
differential equations. Note that in the example given, it is not possible to solve either of
the two differential equations by itself because the first equation governing x ′ involves the
unknown function y, and the second equation governing y′ involves the unknown function x .
In this situation, we say that the two differential equations are coupled.

The reader is invited to verify that the analytic solution is{
x(t) = et cos(t) + t2 = cos(t)[cosh(t) + sinh(t)] + t2

y(t) = et sin(t) − t3 = sin(t)[cosh(t) + sinh(t)] − t3

Let us look at another example that is superficially similar to the first but is actually
simpler: {

x ′(t) = x(t) + 2t − t2 − t3

y′(t) = y(t) − 4t2 + t3
(2)

with initial conditions {
x(0) = 1

y(0) = 0

These two equations are not coupled and can be solved separately as two unrelated initial-
value problems (using, for instance, the methods of Chapter 10). Naturally, our concern
here is with systems that are coupled, although methods that solve coupled systems also
solve those that are not. The procedures discussed in Chapter 10 extend to systems whether
coupled or uncoupled.

Taylor Series Method
We illustrate the Taylor series method for System (1) and begin by differentiating the
equations constituting it: {

x ′ = x − y + 2t − t2 − t3

y′ = x + y − 4t2 + t3{
x ′′ = x ′ − y′ + 2 − 2t − 3t2

y′′ = x ′ + y′ − 8t + 3t2{
x ′′′ = x ′′ − y′′ − 2 − 6t

y′′′ = x ′′ + y′′ − 8 + 6t{
x (4) = x ′′′ − y′′′ − 6

y(4) = x ′′′ + y′′′ + 6
etc.

11.1 Methods for First-Order Systems 467

A program to proceed from x(t) to x(t + h) and from y(t) to y(t + h) is easily written by
using a few terms of the Taylor series:

x(t + h) = x + hx ′ + h2

2
x ′′ + h3

6
x ′′′ + h4

24
x (4) + · · ·

y(t + h) = y + hy′ + h2

2
y′′ + h3

6
y′′′ + h4

24
y(4) + · · ·

together with equations for the various derivatives. Here, x and y and all their derivatives
are functions of t ; that is, x = x(t), y = y(t), x ′ = x ′(t), y′′ = y′′(t), and so on.

A pseudocode program that generates and prints a numerical solution from 0 to 1 in
100 steps is as follows. Terms up to h4 have been used in the Taylor series.

program Taylor System1
integer k; real h, t, x, y, x ′, y′, x ′′, y′′, x ′′′, y′′′, x (4), y(4)

integer nsteps ← 100; real a ← 0, b ← 1
x ← 1; y ← 0; t ← a
output 0, t, x, y
h ← (b − a)/nsteps
for k = 1 to nsteps do

x ′ ← x − y + t (2 − t (1 + t))
y′ ← x + y + t2(−4 + t)
x ′′ ← x ′ − y′ + 2 − t (2 + 3t)
y′′ ← x ′ + y′ + t (−8 + 3t)
x ′′′ ← x ′′ − y′′ − 2 − 6t
y′′′ ← x ′′ + y′′ − 8 + 6t
x (4) ← x ′′′ − y′′′ − 6
y(4) ← x ′′′ + y′′′ + 6
x ← x + h

[
x ′ + 1

2 h
[
x ′′ + 1

3 h
[
x ′′′ + 1

4 h
[
x (4)

]]]]
y ← y + h

[
y′ + 1

2 h
[
y′′ + 1

3 h
[
y′′′ + 1

4 h
[
y(4)

]]]]
t ← t + h
output k, t, x, y

end for
end program Taylor System1

Vector Notation
Observe that System (1) can be written in vector notation as[

x ′

y′

]
=
[

x − y + 2t − t2 − t3

x + y − 4t2 + t3

]
(3)

with initial conditions [
x(0)

y(0)

]
=
[

1
0

]
This is a special case of a more general problem that can be written as{

X ′ = F(t, X)

X(a) = S, given
(4)

468 Chapter 11 Systems of Ordinary Differential Equations

where

X =
[

x
y

]
X ′ =

[
x ′

y′

]
and F is the vector whose two components are given by the right-hand sides in Equation (1).
Since F depends on t and X , we write F(t, X).

Systems of ODEs
We can continue this idea in order to handle a system of n first-order differential equations.
First, we write them as⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x ′
1 = f1(t, x1, x2, . . . , xn)

x ′
2 = f2(t, x1, x2, . . . , xn)

...

x ′
n = fn(t, x1, x2, . . . , xn)

x1(a) = s1, x2(a) = s2, . . . , xn(a) = sn all given

Then we let

X =

⎡⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎦ X ′ =

⎡⎢⎢⎢⎣
x ′

1

x ′
2
...

x ′
n

⎤⎥⎥⎥⎦ F =

⎡⎢⎢⎢⎣
f1

f2
...

fn

⎤⎥⎥⎥⎦ S =

⎡⎢⎢⎢⎣
s1

s2
...

sn

⎤⎥⎥⎥⎦
and we obtain Equation (4), which is an ordinary differential equation written in vector
notation.

Taylor Series Method: Vector Notation
The m-order Taylor series method would be written as

X(t + h) = X + hX ′ + h2

2
X ′′ + · · · + hm

m!
X (m) (5)

where X = X(t), X ′ = X ′(t), X ′′ = X ′′(t), and so on.
A pseudocode for the Taylor series method of order 4 applied to the preceding problem

can be easily rewritten by a simple change of variables and the introduction of an array and
an inner loop.

program Taylor System2
integer i, k; real h, t ; real array (xi)1:n, (di j)1:n×1:4

integer n ← 2, nsteps ← 100
real a ← 0, b ← 1
t ← 0; (xi) ← (1, 0)

output 0, t, (xi)

h ← (b − a)/nsteps

11.1 Methods for First-Order Systems 469

for k = 1 to nsteps do
d11 ← x1 − x2 + t (2 − t (1 + t))
d21 ← x1 + x2 + t2(−4 + t)
d12 ← d11 − d21 + 2 − t (2 + 3t)
d22 ← d11 + d21 + t (−8 + 3t)
d13 ← d12 − d22 − 2 − 6t
d23 ← d12 + d22 − 8 + 6t
d14 ← d13 − d23 − 6
d24 ← d13 + d23 + 6
for i = 1 to n do

xi ← xi + h
[
di1 + 1

2 h
[
di2 + 1

3 h
[
di3 + 1

4 h [di4]
]]]

end for
t ← t + h
output k, t, (xi)

end for
end program Taylor System2

Here, a two-dimensional array is used instead of all the different derivative variables; that
is, di j ↔ x (j)

i . In fact, this and other methods in this chapter become particularly easy to
program if the computer language supports vector operations.

Runge-Kutta Method
The Runge-Kutta methods of Chapter 10 also extend to systems of differential equations.
The classical fourth-order Runge-Kutta method for System (4) uses these formulas:

X(t + h) = X + h

6
(K 1 + 2K 2 + 2K 3 + K 4) (6)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
K 1 = F(t, X)

K 2 = F
(
t + 1

2 h, x + 1
2 hk1

)
K 3 = F

(
t + 1

2 h, x + 1
2 hk2

)
K 4 = F(t + h, X + h K 3)

Here, X = X(t), and all quantities are vectors with n components except variables t
and h.

A procedure for carrying out the Runge-Kutta procedure is given next. It is assumed
that the system to be solved is in the form of Equation (4) and that there are n equations in
the system. The user furnishes the initial value of t , the initial value of X , the step size h, and
the number of steps to be taken, nsteps. Furthermore, procedure XP System(n, t, (xi), (fi))

is needed, which evaluates the right-hand side of Equation (4) for a given value of array
(xi) and stores the result in array (fi). (The name XP System2 is chosen as an abbreviation
of X ′ for a system.)

470 Chapter 11 Systems of Ordinary Differential Equations

procedure RK4 System1(n, h, t, (xi), nsteps)
integer i, j, n; real h, t ; real array (xi)1:n

allocate real array (yi)1:n, (Ki, j)1:n×1:4

output 0, t, (xi)

for j = 1 to nsteps do
call XP System(n, t, (xi), (Ki,1))

for i = 1 to n do
yi ← xi + 1

2 hKi,1

end for
call XP System(n, t + h/2, (yi), (Ki,2))

for i = 1 to n do
yi ← xi + 1

2 hKi,2

end for
call XP System(n, t + h/2, (yi), (Ki,3))

for i = 1 to n do
yi ← xi + hKi,3

end for
call XP System(n, t + h, (y)i , (Ki,4))

for i = 1 to n do
xi ← xi + 1

6 h[Ki,1 + 2Ki,2 + 2Ki,3 + Ki,4]
end for
t ← t + h
output j, t, (xi)

end for
deallocate array (yi), (Ki, j)

end procedure RK4 System1

To illustrate the use of this procedure, we again use System (1) for our example. Of
course, it must be rewritten in the form of Equation (4). A suitable main program and a
procedure for computing the right-hand side of Equation (4) follow:

program Test RK4 System1
integer n ← 2, nsteps ← 100
real a ← 0, b ← 1
real h, t ; real array (xi)1:n

t ← 0
(xi) ← (1, 0)

h ← (b − a)/nsteps
call RK4 System1(n, h, t, (xi), nsteps)
end program Test RK4 System1

procedure XP System(n, t, (xi), (fi))

real array (xi)1:n, (fi)1:n

integer n

11.1 Methods for First-Order Systems 471

real t
f1 ← x1 − x2 + t (2 − t (1 + t))
f2 ← x1 + x2 − t2(4 − t)
end procedure XP System

A numerical experiment to compare the results of the Taylor series method and the
Runge-Kutta method with the analytic solution of System (1) is suggested in Computer
Problem 11.1.1. At the point t = 1.0, the results are as follows:

Taylor Series Runge-Kutta Analytic Solution
x(1.0) ≈ 2.46869 40 2.46869 42 2.46869 39399
y(1.0) ≈ 1.28735 46 1.28735 61 1.28735 52872

We can use mathematical software routines found in Matlab, Maple, or Mathematica to
obtain the numerical solution of the system of ordinary differential equations (1). For t over
the interval [0, 1], we invoke an ODE procedure to march from t = 0 at which x(0) = 1
and y(0) = 0 to t = 1 at which x(1) = 2.468693912 and y(1) = 1.287355325.

To obtain the numerical solution of the ordinary differential equation defined for t over
the interval [1, 1.5], invoke an ordinary differential equation solving procedure to march
from t = 0 at which x(1) = 2 and y(1) = −2 to t = 1.5 at which x(1.5) ≈ 15.5028 and
y(1.5) ≈ 6.15486.

Autonomous ODE
When we wrote the system of differential equations in vector form

X ′ = F(t, X)

we assumed that the variable t was explicitly separated from the other variables and treated
differently. It is not necessary to do this. Indeed, we can introduce a new variable x0

that is t in disguise and add a new differential equation x ′
0 = 1. A new initial condi-

tion must also be provided, x0(a) = a. In this way, we increase the number of differ-
ential equations from n to n + 1 and obtain a system written in the more elegant vector
form {

X ′ = F(X)

X(a) = S, given

Consider the system of two equations given by Equation (1). We write it as a system
with three variables by letting

x0 = t, x1 = x, x2 = y

Thus, we have ⎡⎢⎣ x ′
0

x ′
1

x ′
2

⎤⎥⎦ =

⎡⎢⎣1

x1 − x2 + 2x0 − x2
0 − x3

0

x1 + x2 − 4x2
0 + x3

0

⎤⎥⎦
The auxiliary condition for the vector X is X(0) = [0, 1, 0]T .

472 Chapter 11 Systems of Ordinary Differential Equations

As a result of the preceding remarks, we sacrifice no generality in considering a system
of n + 1 first-order differential equations written as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′
0 = f0(x0, x1, x2, . . . , xn)

x ′
1 = f1(x0, x1, x2, . . . , xn)

x ′
2 = f2(x0, x1, x2, . . . , xn)

...

x ′
n = fn(x0, x1, x2, . . . , xn)

x0(a) = s0, x1(a) = s1, x2(a) = s2, . . . , xn(a) = sn all given

We can write this system in general vector notation as{
X ′ = F(X)

X(a) = S, given
(7)

where

X =

⎡⎢⎢⎢⎢⎢⎣
x0

x1

x2
...

xn

⎤⎥⎥⎥⎥⎥⎦ X ′ =

⎡⎢⎢⎢⎢⎢⎣
x ′

0
x ′

1
x ′

2
...

x ′
n

⎤⎥⎥⎥⎥⎥⎦ F =

⎡⎢⎢⎢⎢⎢⎣
f0

f1

f2
...

fn

⎤⎥⎥⎥⎥⎥⎦ S =

⎡⎢⎢⎢⎢⎢⎣
s0

s1

s2
...

sn

⎤⎥⎥⎥⎥⎥⎦
A system of differential equations without the t variable explicitly present is said to be
autonomous. The numerical methods that we discuss do not require that x0 = t or f0 = 1
or s0 = a.

For an autonomous system, the classical fourth-order Runge-Kutta method for
System (6) uses these formulas:

X(t + h) = X + h

6
(K 1 + 2K 2 + 2K 3 + K 4) (8)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
K 1 = F(X)

K 2 = F
(

X + 1
2 h K 1

)
K 3 = F

(
X + 1

2 h K 2

)
K 4 = F(X + h K 3)

Here, X = X(t), and all quantities are vectors with n+1 components except the variables h.
In the previous example, the procedure RK4 System1 would need to be modified by

beginning the arrays with 0 rather than 1 and omitting the variable t . (We call it RK4 System2
and leave it as Computer Problem 11.1.4.) Then the calling programs would be as follows:

program Test RK4 System2
real h, t ; real array (xi)0:n

integer n ← 2, nsteps ← 100
real a ← 0, b ← 1
(xi) ← (0, 1, 0)

h ← (b − a)/nsteps
call RK4 System2(n, h, (xi), nsteps)
end program Test RK4 System2

11.1 Methods for First-Order Systems 473

procedure XP System(n, (xi), (fi))

real array (xi)0:n, (fi)0:n

integer n
f0 ← 1
f1 ← x1 − x2 + x0(2 − x0(1 + x0))

f2 ← x1 + x2 − x2
0(4 − x0)

end procedure XP System

It is typical in ordinary differential equation solvers, such as those found in mathe-
matical software libraries, for the user to interface with them by writing a subprogram in
a nonautonomous format. In other words, the ordinary differential equation solver takes
as input both the independent variable and the dependent variable and returns values for
the right-hand side to the ordinary differential equation. Consequently, the nonautonomous
programming convention may seem more natural to those who are using these software
packages.

It is a useful exercise to find a physical application in your field of study or profession
involving the solution of an ordinary differential equation. It is instructive to analyze and
solve the physical problem by determining the appropriate numerical method and translating
the problem into the format that is compatible with the available software.

Summary

(1) A system of ordinary differential equations⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x ′
1 = f1(t, x1, x2, . . . , xn)

x ′
2 = f2(t, x1, x2, . . . , xn)

...

x ′
n = fn(t, x1, x2, . . . , xn)

x1(a) = s1, x2(a) = s2, . . . , xn(a) = sn, all given

can be written in vector notation as{
X ′ = F(t, X)

X(a) = S, given

where we define the following n component vectors⎧⎪⎪⎪⎨⎪⎪⎪⎩
X = [x1, x2, . . . , xn]T

X ′ = [x ′
1, x ′

2, . . . , x ′
n]T

F = [f1, f2, . . . , fn]T

X(a) = [x1(a), x2(a), . . . , xn(a)]T

(2) The Taylor series method of order m is

X(t + h) = X + hX ′ + h2

2
X ′′ + · · · + hm

m!
X (m)

where X = X(t), X ′ = X ′(t), X ′′ = X ′′(t), and so on.

474 Chapter 11 Systems of Ordinary Differential Equations

(3) The Runge-Kutta method of order 4 is

X(t + h) = X + h

6
(K 1 + 2K 2 + 2K 3 + K 4)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
K 1 = F(t, X)

K 2 = F
(
t + 1

2 h, X + 1
2 h K 1

)
K 3 = F

(
t + 1

2 h, X + 1
2 h K 2

)
K 4 = F(t + h, X + h K 3)

Here, X = X(t), and all quantities are vectors with n components except variables t and h.

(4) We can absorb the t variable into the vector by letting x0 = t and then writing the
autonomous form for the system of ordinary differential equations in vector notation as{

X ′ = F(X)

X(a) = S, given

where vectors are defined to have n + 1 components. Then⎧⎪⎪⎪⎨⎪⎪⎪⎩
X = [x0, x1, x2, . . . , xn]T

X ′ = [x ′
0, x ′

1, x ′
2, . . . , x ′

n]T

F = [1, f1, f2, . . . , fn]T

X(a) = [a, x1(a), x2(a), . . . , xn(a)]T

(5) The Runge-Kutta method of order 4 for the system of ordinary differential equations
in autonomous form is

X(t + h) = X + h

6
(K 1 + 2K 2 + 2K 3 + K 4)

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
K 1 = F(X)

K 2 = F
(

X + 1
2 h K 1

)
K 3 = F

(
X + 1

2 h K 2

)
K 4 = F(X + h K 3)

Here, X = X(t), and all quantities F and K i are vectors with n + 1 components except the
variables t and h.

Problems 11.1

a1. Consider {
x ′ = y

y′ = x
with

{
x(0) = −1

y(0) = 0

Write down the equations, without derivatives, to be used in the Taylor series method
of order 5.

11.1 Methods for First-Order Systems 475

a2. How would you solve this system of differential equations numerically?⎧⎪⎨⎪⎩
x ′

1 = x2
1 + et − t2

x ′
2 = x2 − cos t

x1(0) = 0 x2(1) = 0

a3. How would you solve the initial-value problem⎧⎪⎨⎪⎩
x ′

1(t) = x1(t)et + sin t − t2

x ′
2(t) = [x2(t)]2 − et + x2(t)

x1(1) = 2 x2(1) = 4

if a computer program were available to solve an initial-value problem of the form
x ′ = f (t, x) involving a single unknown function x = x(t)?

a4. Write an equivalent system of first-order differential equations without t appearing on
the right-hand side: ⎧⎪⎨⎪⎩

x ′ = x2 + log(y) + t2

y′ = ey − cos(x) + sin(t x) − (xy)7

x(0) = 1 y(0) = 3

Computer Problems 11.1

a1. Solve the system of differential equations (1) by using two different methods given in
this section and compare the results with the analytic solution.

a2. Solve the initial-value problem⎧⎪⎨⎪⎩
x ′ = t + x2 − y

y′ = t2 − x + y2

x(0) = 3 y(0) = 2

by means of the Taylor series method using h = 1/128 on the interval [0, 0.38]. Include
terms involving three derivatives in x and y. How accurate are the computed function
values?

3. Write the Runge-Kutta procedure to solve⎧⎪⎨⎪⎩
x ′

1 = −3x2

x ′
2 = 1

3 x1

x1(0) = 0 x2(0) = 1

on the interval 0 � t � 4. Plot the solution.

a4. Write procedure RK4 System2 and a driver program for solving the ordinary differential
equation system given by Equation (2). Use h = −10−2, and print out the values of x0,
x1, and x2, together with the true solution on the interval [−1, 0]. Verify that the true
solution is x(t) = et + 6 + 6t + 4t2 + t3 and y(t) = et − t3 + t2 + 2t + 2.

476 Chapter 11 Systems of Ordinary Differential Equations

a5. Using the Runge-Kutta procedure, solve the following initial-value problem on the in-
terval 0 � t � 2π . Plot the resulting curves (x1(t), x2(t)) and (x3(t), x4(t)). They should
be circles. ⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

X ′ =

⎡⎢⎢⎢⎣
x3

x4

−x1

(
x2

1 + x2
2

)−3/2

−x2

(
x2

1 + x2
2

)−3/2

⎤⎥⎥⎥⎦
X(0) = [1, 0, 0, 1]T

6. Solve the problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ′

0 = 1

x ′
1 = −x2 + cos x0

x ′
2 = x1 + sin x0

x0(1) = 1 x1(1) = 0 x2(1) = −1

Use the Runge-Kutta method and the interval −1 � t � 2.

a7. Write and test a program, using the Taylor series method of order 5, to solve the system⎧⎪⎨⎪⎩
x ′ = t x − y2 + 3t

y′ = x2 − t y − t2

x(5) = 2 y(5) = 3

on the interval [5, 6] using h = 10−3. Print values of x and y at steps of 0.1.

8. Print a table of sin t and cos t on the interval [0, π/2] by numerically solving the system⎧⎪⎨⎪⎩
x ′ = y

y′ = −x

x(0) = 0 y(0) = 1

9. Write a program for using the Taylor series method of order 3 to solve the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ′ = t x + y′ − t2

y′ = t y + 3t

z′ = t z − y′ + 6t3

x(0) = 1 y(0) = 2 z(0) = 3

on the interval [0, 0.75] using h = 0.01.

10. Write and test a short program for solving the system of differential equations⎧⎪⎨⎪⎩
y′ = x3 − t2 y − t2

x ′ = t x2 − y4 + 3t

y(2) = 5 x(2) = 3

over the interval [2, 5] with h = 0.25. Use the Taylor series method of order 4.

11. Recode and test procedure RK4 System2 using a computer language that supports
vector operations.

11.2 Higher-Order Equations and Systems 477

12. Verify the numerical results given in the text for the system of differential equations (1)
from programs Test RK4 System1 and RK4 System2.

13. (Continuation) Using mathematical software such as Matlab, Maple, or Mathematica
containing symbolic manipulation capabilities to verify the analytic solution for the
system of differential equations (1).

14. (Continuation) Use mathematical software routines such as are found in Matlab, Maple,
or Mathematica to verify the numerical solutions given in the text. Plot the result-
ing solution curve. Compare with the results from programs Test RK4 System1 and
Test RK4 System2.

11.2 Higher-Order Equations and Systems
Consider the initial-value problem for ordinary differential equations of order higher than 1.
A differential equation of order n is normally accompanied by n auxiliary conditions. This
many initial conditions are needed to specify the solution of the differential equation pre-
cisely (assuming certain smoothness conditions are present). Take, for example, a particular
second-order initial-value problem{

x ′′(t) = −3 cos2(t) + 2

x(0) = 0 x ′(0) = 0
(1)

Without the auxiliary conditions, the general analytic solution is

x(t) = 1

4
t2 + 3

8
cos(2t) + c1t + c2

where c1 and c2 are arbitrary constants. To select one specific solution, c1 and c2 must be
fixed, and two initial conditions allow this to be done. In fact, x(0) = 0 yields c2 = − 3

8 ,
and x ′(0) = 0 forces c1 = 0.

Higher-Order Differential Equations
In general, higher-order problems can be much more complicated than this simple example
because System (1) has the special property that the function on the right-hand side of the
differential equation does not involve x . The most general form of an ordinary differential
equation with initial conditions that we shall consider is{

x (n) = f (t, x, x ′, x ′′, . . . , x (n−1))

x(a), x ′(a), x ′′(a), . . . , x (n−1)(a) all given
(2)

This can be solved numerically by turning it into a system of first-order differential equa-
tions. To do so, we define new variables x1, x2, . . . , xn as follows:

x1 = x x2 = x ′ x3 = x ′′ . . . xn−1 = x (n−2) xn = x (n−1)

478 Chapter 11 Systems of Ordinary Differential Equations

Consequently, the original initial-value problem (2) is equivalent to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x ′
1 = x2

x ′
2 = x3

...

x ′
n−1 = xn

x ′
n = f (t, x1, x2, . . . , xn)

x1(a), x2(a), . . . , xn(a) all given

or, in vector notation, {
X ′ = F(t, X)

X(a) = S, given
(3)

where

X = [x1, x2, . . . , xn]T

X ′ = [x ′
1, x ′

2, . . . , x ′
n]T

F = [x2, x3, x4, . . . , xn, f]T

and

X(a) = [x1(a), x2(a), . . . , xn(a)]

Whenever a problem must be transformed by introducing new variables, it is recom-
mended that a dictionary be provided to show the relationship between the new and the old
variables. At the same time, this information, together with the differential equations and
the initial values, can be displayed in a chart. Such systematic bookkeeping can be helpful
in a complicated situation.

To illustrate, let us transform the initial-value problem{
x ′′′ = cos x + sin x ′ − ex ′′ + t2

x(0) = 3 x ′(0) = 7 x ′′(0) = 13
(4)

into a form suitable for solution by the Runge-Kutta procedure. A chart summarizing the
transformed problem is as follows:

Old Variable New Variable Initial Value Differential Equation
x x1 3 x ′

1 = x2

x ′ x2 7 x ′
2 = x3

x ′′ x3 13 x ′
3 = cos x1 + sin x2 − ex3 + t2

So the corresponding first-order system is

X ′ =
⎡⎣ x2

x3

cos x1 + sin x2 − ex3 + t2

⎤⎦
and X(0) = [3, 7, 13]T .

11.2 Higher-Order Equations and Systems 479

Systems of Higher-Order Differential Equations
By systematically introducing new variables, we can transform a system of differential
equations of various orders into a larger system of first-order equations. For instance, the
system ⎧⎪⎨⎪⎩

x ′′ = x − y − (3x ′)2 + (y′)3 + 6y′′ + 2t

y′′′ = y′′ − x ′ + ex − t

x(1) = 2 x ′(1) = −4 y(1) = −2 y′(1) = 7 y′′(1) = 6

(5)

can be solved by the Runge-Kutta procedure if we first transform it according to the follow-
ing chart:

Old Variable New Variable Initial Value Differential Equation
x x1 2 x ′

1 = x2

x ′ x2 −4 x ′
2 = x1 − x3 − 9x2

2 + x3
4 + 6x5 + 2t

y x3 −2 x ′
3 = x4

y′ x4 7 x ′
4 = x5

y′′ x5 6 x ′
5 = x5 − x2 + ex1 − t

Hence, we have

X ′ =

⎡⎢⎢⎢⎢⎣
x2

x1 − x3 − 9x2
2 + x3

4 + 6x5 + 2t
x4

x5

x5 − x2 + ex1 − t

⎤⎥⎥⎥⎥⎦
and X(1) = [2, −4, −2, 7, 6]T .

Autonomous ODE Systems
We notice that t is present on the right-hand side of Equation (3) and that therefore the
equations x0 = t and x ′

0 = 1 can be introduced to form an autonomous system of ordinary
differential equations in vector notation. It is easy to show that a higher-order system of
differential equations having the form in Equation (2) can be written in vector notation as{

X ′ = F(X)

X(a) = S, given

where

X = [x0, x1, x2, . . . , xn]T

X ′ = [x ′
0, x ′

1, x ′
2, . . . , x ′

n]T

F = [1, x2, x3, x4, . . . , xn, f]T

and

X(a) = [a, x1(a), x2(a), . . . , xn(a)]

480 Chapter 11 Systems of Ordinary Differential Equations

As an example, the ordinary differential equation system in Equation (4) can be written
in autonomous form as

X ′ =

⎡⎢⎢⎢⎢⎢⎢⎣
1
x2

x1 − x3 − 9x2
2 + x3

4 + 6x5 + 2x0

x4

x5

x5 − x2 + ex1 − x0

⎤⎥⎥⎥⎥⎥⎥⎦
and X(1) = [1, 2, −4, −2, 7, 6]T .

Summary

(1) A single nth-order ordinary differential equation with initial values has the form{
x (n) = f (t, x, x ′, x ′′, . . . , x (n−1))

x(a), x ′(a), x ′′(a), . . . , x (n−1)(a), all given

It can be turned into a system of first-order equations of the form{
X ′ = F(t, X)

X(a) = S, given

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
X = [x1, x2, . . . , xn]T

X ′ = [x ′
1, x ′

2, . . . , x ′
n]T

F = [x2, x3, x4, . . . , xn, f]T

X(a) = [x1(a), x2(a), . . . , xn(a)]T

(2) We can absorb the variable t into the vector notation by letting x0 = t and extending
the vectors to length n + 1. Thus, a single nth-order ordinary differential equation can be
written as {

X ′ = F(X)

X(a) = S, given

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
X = [x0, x1, x2, . . . , xn]T

X ′ = [x ′
0, x ′

1, x ′
2, . . . , x ′

n]T

F = [1, x2, x3, x4, . . . , xn, f]T

X(a) = [a, x1(a), x2(a), . . . , xn(a)]

Problems 11.2

a1. Turn this differential equation into a system of first-order equations suitable for applying
the Runge-Kutta method:{

x ′′′ = 2x ′ + log(x ′′) + cos(x)

x(0) = 1 x ′(0) = −3 x ′′(0) = 5

11.2 Higher-Order Equations and Systems 481

2. a. Assuming that a program is available for solving initial-value problems of the form
in Equation (3), how can it be used to solve the following differential equation?{

x ′′′ = t + x + 2x ′ + 3x ′′

x(1) = 3 x ′(1) = −7 x ′′(1) = 4

b. How would this problem be solved if the initial conditions were x(1) = 3, x ′(1) =
−7, and x ′′′(1) = 0?

a3. How would you solve this differential equation problem numerically?⎧⎪⎨⎪⎩
x ′′

1 = x ′
1 + x2

1 − sin t

x ′′
2 = x2 − (x ′

2)
1/2 + t

x1(0) = 1 x2(1) = 3 x ′
1(0) = 0 x ′

2(1) = −2
a4. Convert to a first-order system the orbital equations{

x ′′ + x(x2 + y2)−3/2 = 0

y′′ + y(x2 + y2)−3/2 = 0

with initial conditions

x(0) = 0.5 x ′(0) = 0.75 y(0) = 0.25 y′(0) = 1.0

a5. Rewrite the following equation as a system of first-order differential equations without
t appearing on the right-hand side:{

x (4) = (x ′′′)2 + cos(x ′x ′′) − sin(t x) + log
(x

t

)
x(0) = 1 x ′(0) = 3 x ′′(0) = 4 x ′′′(0) = 5

a6. Express the system of ordinary differential equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d2z

dt2
− 2t

dz

dt
= 2texz

d2x

dt2
− 2xz

dx

dt
= 3x2 yt2

d2 y

dt2
− ey dy

dt
= 4xt2z

z(1) = x ′′(1) = y′(1) = 2 z′(1) = x(1) = y(1) = 3

as a system of first-order ordinary differential equations.

7. Determine a system of first-order equations equivalent to each of the following:

aa. x ′′′ + x ′′ sin x + t x ′ + x = 0 b. x (4) + x ′′ cos x ′ + t xx ′ = 0

c.

{
x ′′ = 3x2 − 7y2 + sin t + cos(x ′y′)

y′′′ = y + x2 − cos t − sin(xy′′)
a8. Consider {

x ′′ = x ′ − x

x(0) = 0 x ′(0) = 1

Determine the associated first-order system and its auxiliary initial conditions.

482 Chapter 11 Systems of Ordinary Differential Equations

a9. The problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ′′(t) = x + y − 2x ′ + 3y′ + log t

y′′(t) = 2x − 3y + 5x ′ + t y′ − sin t

x(0) = 1 x ′(0) = 2

y(0) = 3 y′(0) = 4

is to be put into the form of an autonomous system of five first-order equations. Give
the resulting system and the appropriate initial values.

10. Write procedure XP System for use with the fourth-order Runge-Kutta routine
RK4 System1 for the following differential equation:{

x ′′′ = 10ex ′′ − x ′′′ sin(x ′x) − (xt)10

x(2) = 6.5 x ′(2) = 4.1 x ′′(2) = 3.2

11. If we are going to solve the initial-value problem{
x ′′′ = x ′ − t x ′′ + x + ln t

x(1) = x ′(1) = x ′′(1) = 1

using Runge-Kutta formulas, how should the problem be transformed?

12. Convert this problem involving differential equations into an autonomous system of
first-order equations (with initial values):⎧⎪⎨⎪⎩

3x ′ + tan x ′′ − x2 = √
t2 + 1 + y2 + (y′)2

−3y′ + cot y′′ + y2 = t2 + (x + 1)1/2 + 4x ′

x(1) = 2 x ′(1) = −2 y(1) = 7 y′(1) = 3

13. Follow the instructions in the preceding problem on this example:⎧⎪⎪⎪⎨⎪⎪⎪⎩
t xyz + x ′y′/t = t x2 + x/y′′ + z

t2x/z + y′z′t = y2 − (z′′)2x + x ′y′

t yz − x ′z′y′ = z2 − zx ′′ − (yz)′

x(3) = 1 y(3) = 2 z(3) = 4 x ′(3) = 5 y′(3) = 6 z′(3) = 7

14. Turn this pair of differential equations into a second order differential equation involving
x alone: {

x ′ = −x + axy

y′ = 3y − xy

Computer Problems 11.2

1. Use RK4 System1 to solve each of the following for 0 � t � 1. Use h = 2−k with k = 5,
6, and 7, and compare results.

a.

{
x ′′ = 2(e2t − x2)1/2

x(0) = 0 x ′(0) = 1
b.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ′′ = x2 − y + et

y′′ = x − y2 − et

x(0) = 0 x ′(0) = 0

y(0) = 1 y′(0) = −2

11.3 Adams-Bashforth-Moulton Methods 483

2. Solve the Airy differential equation⎧⎪⎨⎪⎩
x ′′ = t x

x(0) = 0.35502 80538 87817

x ′(0) = −0.25881 94037 92807

on the interval [0, 4.5] using the Runge-Kutta method. Check value: The value x(4.5) =
0.00033 02503 is correct.

3. Solve {
x ′′ + x ′ + x2 − 2t = 0

x(0) = 0 x ′(0) = 0.1

on [0, 3] by any convenient method. If a plotter is available, graph the solution.

4. Solve {
x ′′ = 2x ′ − 5x

x(0) = 0 x ′(0) = 0.4

on the interval [−2, 0].

5. Write computer programs based on the pseudocode in the text to find the numerical
solution of these ordinary differential equation systems:
a. (1) b. (4) c. (5)

6. (Continuation) Use mathematical software such as Matlab, Maple, or Mathematica
with symbolic manipulation capabilities to find their analytical solutions.

7. (Continuation) Use mathematical software routines such as are found in Matlab, Maple,
or Mathematica to verify the numerical solutions for these ordinary differential
equation systems. Plot the resulting solution curves.

11.3 Adams-Bashforth-Moulton Methods
A Predictor-Corrector Scheme
The procedures explained so far have solved the initial-value problem{

X ′ = F(X)

X(a) = S, given
(1)

by means of single-step numerical methods. In other words, if the solution X(t) is known
at a particular point t , then X(t + h) can be computed with no knowledge of the solution
at points earlier than t . The Runge-Kutta and Taylor series methods compute X(t + h) in
terms of X(t) and various values of F.

More efficient methods can be devised if several values X(t), X(t −h), X(t −2h), . . .

are used in computing X(t + h). Such methods are called multistep methods. They have
the obvious drawback that at the beginning of the numerical solution, no prior values of X
are available. So it is usual to start a numerical solution with a single-step method, such as
the Runge-Kutta procedure, and transfer to a multistep procedure for efficiency as soon as
enough starting values have been computed.

484 Chapter 11 Systems of Ordinary Differential Equations

An example of a multistep formula is known as the Adams-Bashforth method (see
Section 10.3 and the related problem). It is

X̃(t + h) = X(t) + h

24
{55F[X(t)] − 59F[X(t − h)] + 37F[X(t − 2h)]

−9F[X(t − 3h)]} (2)

Here, X̃(t + h) is the predicted value of X(t + h) computed by using Formula (2). If
the solution X has been computed at the four points t , t − h, t − 2h, and t − 3h, then
Formula (2) can be used to compute X̃(t + h). If this is done systematically, then only one
evaluation of F is required for each step. This represents a considerable savings over the
fourth-order Runge-Kutta procedure; the latter requires four evaluations of F per step. (Of
course, a consideration of truncation error and stability might permit a larger step size in
the Runge-Kutta method and make it much more competitive.)

In practice, Formula (2) is never used by itself. Instead, it is used as a predictor, and then
another formula is used as a corrector. The corrector that is usually used with Formula (2)
is the Adams-Moulton formula:

X(t + h) = X(t) + h

24
{9F[X̃(t + h)] + 19F[X(t)] − 5F[X(t − h)]

+ F[X(t − 2h)]} (3)

Thus, Equation (2) predicts a tentative value of X(t +h), and Equation (3) computes this X
value more accurately. The combination of the two formulas results in a predictor-corrector
scheme.

With initial values of X specified at a, three steps of a Runge-Kutta method can be
performed to determine enough X values that the Adams-Bashforth-Moulton procedure
can begin. The fourth-order Adams-Bashforth and Adams-Moulton formulas, started with
the fourth-order Runge-Kutta method, are referred to as the Adams-Moulton method.
Predictor and corrector formulas of the same order are used so that only one application of
the corrector formula is needed. Some suggest iterating the corrector formula, but experience
has demonstrated that the best overall approach is only one application per step.

Pseudocode
Storage of the approximate solution at previous steps in the Adams-Moulton method is
usually handled either by storing in an array of dimension larger than the total number of
steps to be taken or by physically shifting data after each step (discarding the oldest data and
storing the newest in their place). If an adaptive process is used, the total number of steps to
be taken cannot be determined beforehand. Physical shifting of data can be eliminated by
cycling the indices of a storage array of fixed dimension. For the Adams-Moulton method,
the xi data for X(t) are stored in a two-dimensional array with entries zim in locations
m = 1, 2, 3, 4, 5, 1, 2, . . . for t = a, a + h, a + 2h, a + 3h, a + 4h, a + 5h, a + 6h, . . . ,

respectively. The sketch in Figure 11.1 shows the first several t values with corresponding
m values and abbreviations for the formulas used.

An error analysis can be conducted after each step of the Adams-Moulton method. If
x (p)

i is the numerical approximation of the i th equation in System (1) at t + h obtained by

11.3 Adams-Bashforth-Moulton Methods 485

FIGURE 11.1

Starting values
for applications

of RK and
AB/AM methods

1 2 3 4 5 1 2

a � 6h

AB / AM

a � 5h

AB / AM

a � 4h

AB / AM

a � 3h

RK

a � 2h

RK

a � h

RK

a

m:

predictor Formula (2) and xi is that from corrector Formula (3) at t +h, then it can be shown
that the single-step error for the i th component at t + h is given approximately by

εi = 19

270

∣∣xi − x (p)
i

∣∣
|xi |

So we compute

est = max
1 � i � n

|εi |

in the Adams-Moulton procedure AM System to obtain an estimate of the maximum single-
step error at t + h.

A control procedure is needed that calls the Runge-Kutta procedure three times and
then calls the Adams-Moulton predictor-corrector scheme to compute the remaining steps.
Such a procedure for doing nsteps steps with a fixed step size h follows:

procedure AMRK(n, h, (xi), nsteps)
integer i, k, m, n; real est, h; real array (xi)0:n

allocate real array (fi j)0:n×0:4, (zi j)0:n×0:4

m ← 0
output h
output 0, (xi)

for i = 0 to n do
zim ← xi

end for
for k = 1 to 3 do

call RK System(m, n, h, (zi j), (fi j))

output k, (zim)

end for
for k = 4 to nsteps do

call AM System(m, n, h, est, (zi j), (fi j),)

output k, (zim)

output est
end for
for i = 0 to n do

xi ← zim

end for
deallocate array (f, z)
end procedure AMRK

486 Chapter 11 Systems of Ordinary Differential Equations

The Adams-Moulton method for a system and the computation of the single-step error are
accomplished in the following pseudocode:

procedure AM System(m, n, h, est, (zi j), (fi j))

integer i, j, k, m, mp1; real d, dmax, est, h
real array (zi j)0:n×0:4, (fi j)0:n×0:4

allocate real array (si)0:n, (yi)0:n

real array (ai)1:4 ← (55, −59, 37, −9)

real array (bi)1:4 ← (9, 19, −5, 1)

mp1 ← (1 + m) mod 5
call XP System(n, (zim), (fim))

for i = 0 to n do
si ← 0

end for
for k = 1 to 4 do

j ← (m − k + 6) mod 5
for i = 0 to n do

si ← si + ak fi j

end for
end for
for i = 0 to n do

yi ← zim + hsi/24
end for
call XP System(n, (yi), (fi,mp1))

for i = 0 to n do
si ← 0

end for
for k = 1 to 4 do

j ← (mp1 − k + 6) mod 5
for i = 0 to n do

si ← si + bk fi j

end for
end for
for i = 0 to n do

zi,mp1 ← zim + hsi/24
end for
m ← mp1
dmax ← 0
for i = 0 to n do

d ← |zim − yi |/|zim |
if d > dmax then

dmax ← d
j ← i

end if
end for
est ← 19dmax/270
deallocate array (s, y)

end procedure AM System

11.3 Adams-Bashforth-Moulton Methods 487

Here, the function evaluations are stored cyclically in fim for use by Formulas (2) and (3).
Various optimization techniques are possible in this pseudocode. For example, the program-
mer may wish to move the computation of 1

24 h outside of the loops.
A companion Runge-Kutta procedure is needed, which is a modification of procedure

RK4 System2 from Section 11.1:

procedure RK System(m, n, h, (zi j), (fi j))

integer i, m, mp1, n; real h; real array (zi j)0:n×0:4, (fi j)0:n×0:4

allocate real array (gi j)0:n×0:3, (yi)0:n

mp1 ← (1 + m) mod 5
call XP System(n, (zim), (fim))

for i = 0 to n do
yi ← zim + 1

2 h fim

end for
call XP System(n, (yi), (gi,1))

for i = 0 to n do
yi ← zim + 1

2 hgi,1

end for
call XP System(n, (yi), (gi,2))

for i = 0 to n do
yi ← zim + hgi,2

end for
call XP System(n, (yi), (gi,3))

for i = 0 to n do
zi,mp1 ← zim + h[fim + 2gi,1 + 2gi,2 + gi,3]/6

end for
m ← mp1
deallocate array (gi j), (yi)

end procedure RK System

As before, the programmer may wish to move 1
6 h out of the loop.

To use the Adams-Moulton pseudocode, we supply the procedure XP System that
defines the system of ordinary differential equations and write a driver program with a call
to procedure AMRK. The complete program then consists of the following five parts: the
main program and procedures XP System, AMRK, RK System, and AM System.

As an illustration, the pseudocode for the last example in Section 11.2 (p. 479) is as
follows:

program Test AMRK
real h; real array (xi)0:n

integer n ← 5, nsteps ← 100
real a ← 0, b ← 1
(xi) ← (1, 2, −4, −2, 7, 6)

h ← (b − a)/nsteps
call AMRK(n, h, (xi), nsteps)
end program Test AMRK

488 Chapter 11 Systems of Ordinary Differential Equations

procedure XP System(n, (xi), (fi))

integer n; real array (xi)0:n, (fi)0:n

f0 ← 1
f1 ← x2

f2 ← x1 − x3 − 9x2
2 + x3

4 + 6x5 + 2x0

f3 ← x4

f4 ← x5

f5 ← x5 − x2 + ex1 − x0

end procedure XP System

Here, we have programmed this procedure for an autonomous system of ordinary differential
equations.

An Adaptive Scheme
Since an estimate of the error is available from the Adams-Moulton method, it is natural
to replace procedure AMRK with one that employs an adaptive scheme—that is, one that
changes the step size. A procedure similar to the one used in Section 10.3 is outlined here.
The Runge-Kutta method is used to compute the first three steps, and then the Adams-
Moulton method is used. If the error test determines that halving or doubling of the step
size is necessary in the first step using the Adams-Moulton method, then the step size is
halved or doubled, and the whole process starts again with the initial values—so at least
one step of the Adams-Moulton method must take place. If during this process the error test
indicates that halving is required at some point within the interval [a, b], then the step size is
halved. A retreat is made back to a previously computed value, and after three Runge-Kutta
steps have been computed, the process continues, using the Adams-Moulton method again
but with the new step size. In other words, the point at which the error was too large should
be computed by the Adams-Moulton method, not the Runge-Kutta method. Doubling the
step size is handled in an analogous manner. Doubling the step size requires only saving
an appropriate number of previous values; however, one can simplify this process (whether
halving or doubling the step size) by always backing up two steps with the old step size and
then using this as the beginning point of a new initial-value problem with the new step size.
Other, more complicated procedures can be designed and can be the subject of numerical
experimentation. (See Computer Problem 11.3.3.)

An Engineering Example
In chemical engineering, a complicated production activity may involve several reactors
connected with inflow and outflow pipes. The concentration of a certain chemical in the i th
reactor is an unknown quantity, xi . Each xi is a function of time. If there are n reactors, the
whole process is governed by a system of n differential equations of the form

X ′ = AX + V
X(0) = S, given

where X is the vector containing the unknown quantities xi , A is an n × n matrix, and V
is a constant vector. The entries in A depend on the flow rates permitted between different
reactors of the system.

11.3 Adams-Bashforth-Moulton Methods 489

There are several approaches to solving this problem. One is to diagonalize the matrix
A by finding a nonsingular matrix P for which is P−1 AP is diagonal and then using the
matrix exponential function to solve the system in an analytic form. This is a task that
mathematical software can handle. On the other hand, we can simply turn the problem over
to an ODE solver and get the numerical solution. One piece of information that is always
wanted in such a problem is a description of the steady state of the system. That means
the values of all variables at t = ∞. Each function xi should be a linear combination of
exponential functions of the form t �→ eλt , in which λ < 0. Here is a simple example that
can illustrate all of this:⎡⎢⎣ x ′

1

x ′
2

x ′
3

⎤⎥⎦ =
⎡⎣ −8/3 −4/3 1

−17/3 −4/3 1
−35/3 14/3 −2

⎤⎦⎡⎣ x1

x2

x3

⎤⎦+
⎡⎣12

29
48

⎤⎦ (4)

Using mathematical software such as Matlab, Maple, or Mathematica, we can obtain
a closed-form solution:

x(t) = 1

6
e−3t(6 − 50et + 10e2t + 34e3t)

y(t) = 1

6
e−3t(12 − 125et + 40e2t + 73e3t)

z(t) = 1

6
e−3t(14 − 200et + 70e2t + 116e3t)

For a system of ordinary differential equations with a large number of variables, it may be
more convenient to represent them in a computer program with an array such as x(i,t)
rather than by separate variables names. To see the numerical value of the analytic solution
at a single point, say, t = 2.5, we obtain x(2.5) ≈ 5.74788, y(2.5) ≈ 12.5746, z(2.5) ≈
20.0677. Also, we can produce a graphing of the analytic solution to the problem.

Finally, the programs presented in this section can be used to generate a numerical
solution on a prescribed interval with a prescribed number of points.

Some Remarks about Stiff Equations
In many applications of differential equations there are several functions to be tracked
together as functions of time. A system of ordinary differential equations may be used to
model the physical phenomena. In such a situation, it can happen that different solution
functions (or different components of a single solution) have quite disparate behavior that
makes the selection of the step size in the numerical solution problematic. For example, one
component of a function may require a small step in the numerical solution because it is
varying rapidly, whereas another component may vary slowly and not require a small step
size for its computation. Such a system is said to be stiff. Figure 11.2 illustrates a slowly
varying solution surrounded by other solutions with rapidly decaying transients.

An example will illustrate this possibility. Consider a system of two differential equa-
tions with initial conditions:{

x ′ = −20x − 19y x(0) = 2

y′ = −19x − 20y y(0) = 0
(5)

490 Chapter 11 Systems of Ordinary Differential Equations

FIGURE 11.2

Solution curves
for a stiff ode t

x

The solution is easily seen to be

x(t) = e−39t + e−t

y(t) = e−39t − e−t

The component e−39t quickly becomes negligible as t increases, starting at 0. The solution
is then approximately given by x(t) = −y(t) = e−t , and this function is smooth and
decreasing to 0. It would seem that in almost any numerical solution, a large step size could
be used. However, let us examine the simplest of numerical procedures: Euler’s method. It
generates the solution by using the following equations:

xn+1 = xn + h(−20xn − 19yn) x0 = 2

yn+1 = yn + h(−19xn − 20yn) y0 = 0

These difference equations can be solved in closed form, and we have

xn = (1 − 39h)n + (1 − h)n

yn = (1 − 39h)n − (1 − h)n

For the numerical solution to converge to 0 (and thus imitate the actual solution), it is
necessary that h < 2

39 . If we were solving only the differential equation x ′ = −x to get the
solution x(t) = e−t , the step size could be as large as h = 2 to get the correct behavior as t
increased. (See Problem 11.3.2.)

To see that numerical success (in the sense of being able to use a reasonable step
size) depends on the method used, let us consider the implicit Euler method. For a single
differential equation, this employs the formula

xn+1 = xn + h f (tn+1, xn+1)

Since xn+1 appears on both sides of this equation, the equation must be solved for xn+1. In
the example being considered, the Euler equations are

xn+1 = xn + h(−20xn+1 − 19yn+1)

yn+1 = yn + h(−19xn+1 − 20yn+1)

This pair of equations has the form Xn+1 = Xn + AXn+1, where A is the 2×2 matrix in the
previous pair of equations and Xn is the vector having components xn and yn . This matrix
equation can be written (I − A)Xn+1 = Xn or Xn+1 = (I − A)−1 Xn . A consequence is
that the explicit solution is Xn = (I − A)−n X0. At this point, it is necessary to appeal to a
result concerning such iterative processes. For Xn to converge to 0 for any choice of initial
vector X0, it is necessary and sufficient that all eigenvalues of (I − A)−1 be less than one in

11.3 Adams-Bashforth-Moulton Methods 491

modulus (see Kincaid and Cheney [2002]). Equivalently, the eigenvalues of I − A should
be greater than 1 in modulus. An easy calculation shows that for positive h this condition
is met, without further hypotheses. Thus, the implicit Euler method can be used with any
reasonable step size on this problem. In the literature on stiff equations, much more infor-
mation can be found, and there are books that address this topic thoroughly. Some essential
references are Dekker and Verwer [1984], Gear [1971], Miranker [1981], and Shampine
and Gordon [1975].

In general, stiff ordinary differential equations are rather difficult to solve. This is com-
pounded by the fact that in most cases, one does not know beforehand whether an ordinary
differential equation that one is trying to solve numerically is stiff. Software packages usu-
ally have ordinary differential equation solvers specifically designed to handle stiff ordinary
differential equations. Some of these procedures may vary both the step size and the order
of the method. In such algorithms, the Jacobian matrix ∂ F/∂ X y may play a role. Solving
an associated linear system involving the Jacobian matrix is critical to the reliability and
efficiency of the code. The Jacobian matrix may be sparse, an indication that the function
F does not depend on some of the variables in the problem.

For readers who are interested in the history of numerical analysis, we recommend
the book by Goldstine [1977]. The textbook on differential equations by Moulton [1930]
gives some insight into the numerical methods used prior to the advent of high-speed
computing machines. He also (page 224) gives some of the history, going back to Newton!
The calculation of orbits in celestial mechanics has always been a stimulus for the invention
of numerical methods; so also have been the needs of ballistic science. Moulton mentions
that the retardation of a projectile by air resistance is a very complicated function of velocity
that necessitates numerical solution of the otherwise simple equations of ballistics.

Summary

(1) For the autonomous form for a system of ordinary differential equations in vector notation{
X ′ = F(X)

X(a) = S, given

the Adams-Bashforth-Moulton method of fourth order is

X̃(t + h) = X(t) + h

24

{
55F[X(t)] − 59F[X(t − h)] + 37F[X(t − 2h)]

− 9F[X(t − 3h)]
}

X(t + h) = X(t) + h

24

{
9F[X̃(t + h)] + 19F[X(t)] − 5F[X(t − h)]

+ F[X(t − 2h)]
}

Here, X̃(t + h) is the predictor, and X(t + h) is the corrector. The Adams-Bashforth-
Moulton method needs five evaluations of F per step. With the initial vector X(a) given,
the values for X(a + h), X(a + 2h), X(a + 3h) are computed by the Runge-Kutta method
of fourth order. Then the Adams-Bashforth-Moulton method can be used repeatedly. The
predicted value X̃ is computed from the four X values at t , t − h, t − 2h, and t − 3h, and
then the corrected value X(t + h) can be computed by using the predictor value X̃(t + h)

and previously evaluated values of F at t , t − h, and t − 2h.

492 Chapter 11 Systems of Ordinary Differential Equations

Additional References
See Aiken [1985], Ascher and Petzold [1998], Boyce and DiPrima [2003], Butcher [1987],
Carrier and Pearson [1991], Chicone [2006], Collatz [1966], Dekker and Verwer [1984],
Edwards and Penny [2004], England [1969], Enright [2006], Fehlberg [1969], Gear [1971],
Golub and Ortega [1992], Henrici [1962], Hull et al. [1972], Hundsdorfer [1985],
Lambert [1973, 1991], Lapidus and Seinfeld [1971], Miranker [1981], Moulton [1930],
and Shampine and Gordon [1975].

Problems 11.3

a1. Find the general solution of this system by turning it into a first-order system of four
equations: {

x ′′ = αy

y′′ = βx

2. Verify the assertions made about the step size h in the discussion of stiff equations.

Computer Problems 11.3

1. Test the procedure AMRK on the system given in Computer Problem 11.2.2.

2. The single-step error is closely controlled by using fourth-order formulas; however,
the roundoff error in performing the computations in Equations (3) and (4) can be
large. It is logical to carry these out in what is known as partial double-precision
arithmetic. The function F would be evaluated in single precision at the desired points
X(t + ih), but the linear combination

∑
i ci F(X(t + ih)) would be accumulated in

double precision. Also, the addition of X(t) to this result is done in double precision.
Recode the Adams-Moulton method so that partial double-precision arithmetic is used.
Compare this code with that in the text for a system with a known solution. How do
they compare with regard to roundoff error at each step?

3. Write and test an adaptive process similar to RK45 Adaptive in Section 10.3 with calling
sequence

procedure AMRK Adaptive(n, h, ta, tb, (xi), itmax,εmin, εmax, hmin, hmax, iflag)

This routine should carry out the adaptive procedure outlined in this section and be
used in place of the AMRK procedure.

4. Solve the predator-prey problem in the example at the beginning of this chapter with
a = −10−2, b = − 1

4 ×102, c = 10−2 and d = −102 and with initial values u(0) = 80,
v(0) = 30. Plot u (the prey) and v (the predator) as functions of time t .

5. Solve and plot the numerical solution of the system of ordinary differential equa-
tions given by Equation (4) using mathematical software such as Matlab, Maple, or
Mathematica.

11.3 Adams-Bashforth-Moulton Methods 493

6. (Continuation) Repeat for Equation (5) using a routine specifically designed to handle
stiff ordinary differential equations.

7. Solve the following test problems and plot their solution curves.

a. This problem corresponds to a recently discovered stable orbit that arises in the
restricted three-body problem in which the orbits are co-planar. The two spatial
coordinates of the j th body are x1 j and x2 j for j = 1, 2, 3. Each of the six coordinates
satisfies a second-order differential equation:

x ′′
i j =

3∑
k=1
k �= j

mk

(
xik − xi j

)
/d3

jk

where d2
jk = ∑2

i=1(xi j − xik)
2 for k, j = 1, 2, 3. Assume that the bodies have equal

mass, say, m1 = m2 = m3 = 1, and with the appropriate starting conditions, they
will follow the same figure-eight orbit as a periodic steady-state solution. When the
system is rewritten as a first order system, the dimension of the problem is 12, and
the initial conditions at t = 0 are given by⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x11 = −0.97000436 x ′
11 = 0.466203685

x21 = 0.24308753 x ′
21 = 0.43236573

x12 = 0.0 x ′
12 = −0.93240737

x22 = 0.0 x ′
22 = −0.86473146

x13 = 0.97000436 x ′
13 = 0.466203685

x23 = −0.24308753 x ′
23 = 0.43236573

Solve the problem for t ∈ [0, 20].

b. The Lorenz problem is well known, and it arises in the study of dynamical systems:⎧⎪⎪⎪⎨⎪⎪⎪⎩
x ′

1 = 10(x2 − x1)

x ′
2 = x1(28 − x3) − x2

x ′
3 = x1x2 − 8

3 x3

x1(0) = 15, x2(0) = 15, x3(0) = 36

Solve the problem for t ∈ [0, 20]. It is known to have solutions that are potentially
poorly conditioned.

For additional details on these problems, see Enright [2006].

8. Write a computer program based on pseudocode Test AMRK to find the numerical
solution to the ordinary differential equation systems, and compare the results with
that by using a built-in routine such as can be found in Matlab, Maple, or Mathematica.
Plot the resulting solution curves.

9. (Tacoma Narrows Bridge project) In 1940, the third longest suspension bridge in
the world collapsed in a high wind. The following system of differential equations is a
mathematical model that attempts to explain how twisting oscillations can be magnified

494 Chapter 11 Systems of Ordinary Differential Equations

and cause such a calamity:{
y′′ = −y′d − [K/(ma)]

[
ea(y−� sin θ) − 1 + ea(y+� sin θ) − 1

]+ 0.2W sin ωt

θ ′′ = −θy′d + (3 cos θ/�)[K/(ma)]
[
ea(y−� sin θ) − ea(y+� sin θ)

]
The last term in the y equation is the forcing term for the wind W , which adds a strictly
vertical oscillation to the bridge. Here, the roadway has width 2� hanging between
two suspended cables, y is the current distance from the center of the roadway as
it hangs below its equilibrium point, and θ is the angle the roadway makes with the
horizontal. Also, Newton’s Law F = ma is used and Hooke’s constant K . Explore how
ODE solvers are used to generate numerical trajectories for various parameter settings.
Illustrate different types of phenomena that are available in this model. For additional
details, see McKenna and Tuama [2001] and Sauer [2006].

12
Smoothing of Data and the Method
of Least Squares

Surface tension S in a liquid is known to be a linear function of temperature
T . For a particular liquid, measurements have been made of the surface
tension at certain temperatures. The results were as follows:

T 0 10 20 30 40 80 90 95

S 68.0 67.1 66.4 65.6 64.6 61.8 61.0 60.0

How can the most probable values of the constants in the equation

S = aT + b

be determined? Methods for solving such problems are developed in this
chapter.

12.1 Method of Least Squares
Linear Least Squares
In experimental, social, and behavioral sciences, an experiment or survey often produces
a mass of data. To interpret the data, the investigator may resort to graphical methods. For
instance, an experiment in physics might produce a numerical table of the form

x x0 x1 · · · xm

y y0 y1 · · · ym

(1)

and from it, m +1 points on a graph could be plotted. Suppose that the resulting graph looks
like Figure 12.1. A reasonable tentative conclusion is that the underlying function is linear
and that the failure of the points to fall precisely on a straight line is due to experimental
error. If one proceeds on this assumption—or if theoretical reasons exist for believing that
the function is indeed linear—the next step is to determine the correct function. Assuming
that

y = ax + b

what are the coefficients a and b? Thinking geometrically, we ask: What line most nearly
passes through the eight points plotted?

495

496 Chapter 12 Smoothing of Data and the Method of Least Squares

FIGURE 12.1

Experimental
data

y0 y1

y2
y3

y4
y5 y6

y7

x0 x1 x2 x3 x4 x5 x6 x7
x

To answer this question, suppose that a guess is made about the correct values of a and
b. This is equivalent to deciding on a specific line to represent the data. In general, the data
points will not fall on the line y = ax + b. If by chance the kth datum falls on the line, then

axk + b − yk = 0

If it does not, then there is a discrepancy or error of magnitude

| axk + b − yk |

The total absolute error for all m + 1 points is therefore

m∑
k=0

| axk + b − yk |

This is a function of a and b, and it would be reasonable to choose a and b so that the function
assumes its minimum value. This problem is an example of �1 approximation and can be
solved by the techniques of linear programming, a subject dealt with in Chapter 17. (The
methods of calculus do not work on this function because it is not generally differentiable.)

In practice, it is common to minimize a different error function of a and b:

ϕ(a, b) =
m∑

k=0

(axk + b − yk)
2 (2)

This function is suitable because of statistical considerations. Explicitly, if the errors follow
a normal probability distribution, then the minimization of ϕ produces a best estimate of
a and b. This is called an �2 approximation. Another advantage is that the methods of
calculus can be used on Equation (2).

The �1 and �2 approximations are related to specific cases of the �p norm defined by

‖x‖p =
{

n∑
i=1

|xi |p

}1/p

(1 � p < ∞)

for the vector x = [x1, x2, . . . , xn]T .
Let us try to make ϕ(a, b) a minimum. By calculus, the conditions

∂ϕ

∂a
= 0

∂ϕ

∂b
= 0

12.1 Method of Least Squares 497

(partial derivatives of ϕ with respect to a and b, respectively) are necessary at the minimum.
Taking derivatives in Equation (2), we obtain⎧⎪⎪⎪⎨⎪⎪⎪⎩

m∑
k=0

2(axk + b − yk)xk = 0

m∑
k=0

2(axk + b − yk) = 0

This is a pair of simultaneous linear equations in the unknowns a and b. They are called
the normal equations and can be written as⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
m∑

k=0

x2
k

)
a +

(
m∑

k=0

xk

)
b =

m∑
k=0

yk xk(
m∑

k=0

xk

)
a + (m + 1)b =

m∑
k=0

yk

(3)

Here, of course,
∑m

k=0 1 = m + 1, which is the number of data points. To simplify the
notation, we set

p =
n∑

k=0

xk q =
n∑

k=0

yk r =
n∑

k=0

xk yk s =
n∑

k=0

x2
k

The system of Equations (3) is now[
s p
p m + 1

] [
a
b

]
=
[

r
q

]
We solve this pair of equations by Gaussian elimination and obtain the following algorithm.
Alternatively, since this is a 2 × 2 linear system, we can use Cramer’s Rule∗ to solve it. The
determinant of the coefficient matrix is

d = Det

[
s p
p m + 1

]
= (m + 1)s − p2

Moreover, we obtain

a = 1

d
Det

[
r p
q m + 1

]
= 1

d
[(m + 1)r − pq]

b = 1

d
Det

[
s r
p q

]
= 1

d
[sq − pr]

We can write this as an algorithm:

■ ALGORITHM 1 Linear Least Squares

The coefficients in the least-squares line y = ax + b through the set of m + 1 data
points (xk, yk) for k = 0, 1, 2, . . . , m are computed (in order) as follows:

1. p = ∑m
k=0 xk

2. q = ∑m
k=0 yk

∗Cramer’s Rule is given in Appendix D.

498 Chapter 12 Smoothing of Data and the Method of Least Squares

3. r = ∑m
k=0 xk yk

4. s = ∑m
k=0 x2

k

5. d = (m + 1)s − p2

6. a = [(m + 1)r − pq] /d

7. b = [sq − pr] /d

Another form of this result is

a = 1

d

[
(m + 1)

(
m∑

k=0

xk yk

)
−
(

m∑
k=0

xk

)(
m∑

k=0

yk

)]

b = 1

d

[(
m∑

k=0

x2
k

)(
m∑

k=0

yk

)
−
(

m∑
k=0

xk

)(
m∑

k=0

xk yk

)] (4)

where

d = (m + 1)

(
m∑

k=0

x2
k

)
−
(

m∑
k=0

xk

)2

Linear Example
The preceding analysis illustrates the least-squares procedure in the simple linear case.

EXAMPLE 1 As a concrete example, find the linear least-squares solution for the following table of values:
x 4 7 11 13 17

y 2 0 2 6 7
Plot the original data points and the line using a finer set of grid points.

Solution The equations in Algorithm 1 leads to this system of two equations:{
644a + 52b = 227

52a + 5b = 17

whose solution is a = 0.4864 and b = −1.6589. By Equation (3), we obtain the value
ϕ(a, b) = 10.7810. Figure 12.2 is a plot of the given data and the linear least squares
straight line.

FIGURE 12.2

Linear least
squares 0 2 4 6 8 10 12 14 16 18 20

–2

0

2

4

6

8

10

x

y

■

12.1 Method of Least Squares 499

We can use mathematical software such as Matlab, Maple, or Mathematica to fit a lin-
ear least-squares polynomial to the data and verify the value of ϕ. (See Computer Prob-
lem 12.1.5.)

To understand what is going on here, we want to determine the equation of a line of
the form y = ax + b that fits the data best in the least-squares sense. With four data points
(xi , yi), we have four equations yi = axi + b for i = 1, 2, 3, 4 that can be written as

Ax = y

where ⎡⎢⎢⎣
x1 1
x2 1
x3 1
x4 1

⎤⎥⎥⎦[a
b

]
=

⎡⎢⎢⎣
y1

y2

y3

y4

⎤⎥⎥⎦
In general, we want to solve a linear system

Ax = b

where A is an m × n matrix and m > n. The solution coincides with the solution of the
normal equations

AT Ax = AT b

This corresponds to minimizing ||Ax − b||22.

Nonpolynomial Example
The method of least squares is not restricted to linear (first-degree) polynomials or to any
specific functional form. Suppose, for instance, that we want to fit a table of values (xk, yk),
where k = 0, 1, . . . , m, by a function of the form

y = a ln x + b cos x + cex

in the least-squares sense. The unknowns in this problem are the three coefficients a, b,
and c. We consider the function

ϕ(a, b, c) =
m∑

k=0

(a ln xk + b cos xk + cexk − yk)
2

and set ∂ϕ/∂a = 0, ∂ϕ/∂b = 0, and ∂ϕ/∂c = 0. This results in the following three normal
equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a
m∑

k=0

(ln xk)
2 + b

m∑
k=0

(ln xk)(cos xk) + c
m∑

k=0

(ln xk)e
xk =

m∑
k=0

yk ln xk

a
m∑

k=0

(ln xk)(cos xk) + b
m∑

k=0

(cos xk)
2 + c

m∑
k=0

(cos xk)e
xk =

m∑
k=0

yk cos xk

a
m∑

k=0

(ln xk)e
xk + b

m∑
k=0

(cos xk)e
xk + c

m∑
k=0

(exk)2 =
m∑

k=0

ykexk

500 Chapter 12 Smoothing of Data and the Method of Least Squares

EXAMPLE 2 Fit a function of the form y = a ln x + b cos x + cex to the following table values:

x 0.24 0.65 0.95 1.24 1.73 2.01 2.23 2.52 2.77 2.99

y 0.23 −0.26 −1.10 −0.45 0.27 0.10 −0.29 0.24 0.56 1.00

Solution Using the table and the equations above, we obtain the 3 × 3 system⎧⎪⎨⎪⎩
6.79410a − 5.34749b + 63.25889c = 1.61627

−5.34749a + 5.10842b − 49.00859c = −2.38271

63.25889a − 49.00859b + 1002.50650c = 26.77277

It has the solution a = −1.04103, b = −1.26132, and c = 0.03073. So the curve

y = −1.04103 ln x − 1.26132 cos x + 0.03073ex

has the required form and fits the table in the least-squares sense. The value of ϕ(a, b, c)
is 0.92557. Figure 12.3 is a plot of the given data and the nonpolynomial least squares
curve.

FIGURE 12.3

Nonpolynomial
least squares 0 0.5 1 1.5 2 2.5 3

�1.5

�1

�0.5

0

0.5

1

x

y

■

We can use mathematical software such as Matlab, Maple, or Mathematica to verify
these results and to plot the solution curve. (See Computer Problem 12.1.6.)

Basis Functions {g0, g1, . . . , gn}
The principle of least squares, illustrated in these two simple cases, can be extended to
general linear families of functions without involving any new ideas. Suppose that the data
in Equation (1) are thought to conform to a relationship such as

y =
n∑

j=0

c j g j (x) (5)

in which the functions g0, g1, . . . , gn (called basis functions) are known and held fixed. The
coefficients c0, c1, . . . , cn are to be determined according to the principle of least squares.

12.1 Method of Least Squares 501

In other words, we define the expression

ϕ(c0, c1, . . . , cn) =
m∑

k=0

[
n∑

j=0

c j g j (xk) − yk

]2

(6)

and select the coefficients to make it as small as possible. Of course, the expression
ϕ(c0, c1, . . . , cn) is the sum of the squares of the errors associated with each entry (xk, yk)

in the given table.
Proceeding as before, we write down as necessary conditions for the minimum the n

equations

∂ϕ

∂ci
= 0 (0 � i � n)

These partial derivatives are obtained from Equation (7). Indeed,

∂ϕ

∂ci
=

m∑
k=0

2

[
n∑

j=0

c j g j (xk) − yk

]
gi (xk) (0 � i � n)

When set equal to zero, the resulting equations can be rearranged as

n∑
j=0

[
m∑

k=0

gi (xk)g j (xk)

]
c j =

m∑
k=0

yk gi (xk) (0 � i � n) (7)

These are the normal equations in this situation and serve to determine the best values of
the parameters c0, c1, . . . , cn . The normal equations are linear in ci ; thus, in principle, they
can be solved by the method of Gaussian elimination (see Chapter 7).

In practice, the normal equations may be difficult to solve if care is not taken in choosing
the basis functions g0, g1, . . . , gn . First, the set {g0, g1, . . . , gn} should be linearly inde-
pendent. This means that no linear combination

∑n
i=0 ci gi can be the zero function (except

in the trivial case when c0 = c1 = · · · = cn = 0). Second, the functions g0, g1, . . . , gn

should be appropriate to the problem at hand. Finally, one should choose a set of basis
functions that is well conditioned for numerical work. We elaborate on this aspect of the
problem in the next section.

Summary

(1) We wish to find a line y = ax + b that most nearly passes through the m + 1 pairs of
points (xi , yi) for 0 � i � m. An example of �1 approximation is to choose a and b so that
the total absolute error for all these points is minimized:

m∑
k=0

| axk + b − yk |

This can be solved by the techniques of linear programming.

(2) An �2 approximation will minimize a different error function of a and b:

ϕ(a, b) =
m∑

k=0

(axk + b − yk)
2

502 Chapter 12 Smoothing of Data and the Method of Least Squares

The minimization of ϕ produces a best estimate of a and b in the least-squares sense. One
solves the normal equations⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(
m∑

k=0

x2
k

)
a +

(
m∑

k=0

xk

)
b =

m∑
k=0

yk xk(
m∑

k=0

xk

)
a + (m + 1)b =

m∑
k=0

yk

(3) In a more general case, the data points conform to a relationship such as

y =
n∑

j=0

c j g j (x)

in which the basis functions g0, g1, . . . , gn are known and held fixed. The coefficients
c0, c1, . . . , cn are to be determined according to the principle of least squares. The normal
equations in this situation are

n∑
j=0

[
m∑

k=0

gi (xk)g j (xk)

]
c j =

m∑
k=0

yk gi (xk) (0 � i � n)

and can be solved, in principle, by the method of Gaussian elimination to determine the
best values of the parameters c0, c1, . . . , cn .

Problems 12.1

a1. Using the method of least squares, find the constant function that best fits the following
data:

x −1 2 3

y 5
4

4
3

5
12

a2. Determine the constant function c that is produced by the least-squares theory applied
to the Table on p. 495. Does the resulting formula involve the points xk in any way?
Apply your general formula to the preceding problem.

a3. Find an equation of the form y = aex2 + bx3 that best fits the points (−1, 0), (0, 1),
and (1, 2) in the least-squares sense.

4. Suppose that the x points in Table (1) are situated symmetrically about 0 on the x-axis.
In this case, there is an especially simple formula for the line that best fits the points.
Find it.

a5. Find the equation of a parabola of form y = ax2 + b that best represents the following
data. Use the method of least squares.

x −1 0 1

y 3.1 0.9 2.9

6. Suppose that Table (1) is known to conform to a function like y = x2 − x + c. What
value of c is obtained by the least-squares theory?

12.1 Method of Least Squares 503

a7. Suppose that Table (1) is thought to be represented by a function y = c log x . If so,
what value for c emerges from the least-squares theory?

8. Show that Equation (4) is the solution of Equation (3).

9. (Continuation) How do we know that divisor d is not zero? In fact, show that d is
positive for m � 1. Hint: Show that

d =
m∑

k=0

k−1∑
l=0

(xk − xl)
2

by induction on m. The Cauchy-Schwarz inequality can also be used to prove that
d > 0.

10. (Continuation) Show that a and b can also be computed as follows:

x̂ = 1

m + 1

m∑
k=0

xk ŷ = 1

m + 1

m∑
k=0

yk

c =
m∑

k=0

(xk − x̂)2 a = 1

c

m∑
k=0

(xk − x̂)(yk − ŷ) b = ŷ − ax̂

Hint: Show that d = (m + 1)c.

a11. How do we know that the coefficients c0, c1, . . . , cn that satisfy the normal Equations (7)
do not lead to a maximum in the function defined by Equation (6)?

a12. If Table (1) is thought to conform to a relationship y = log(cx), what is the value of c
obtained by the method of least squares?

a13. What straight line best fits the following data

x 1 2 3 4

y 0 1 1 2

in the least-squares sense?

14. In analytic geometry, we learn that the distance from a point (x0, y0) to a line represented
by the equation ax + by = c is (ax0 + by0 − c)(a2 + b2)−1/2. Determine a straight line
that fits a table of data points (xi , yi), for 0 � i � m, in such a way that the sum of the
squares of the distances from the points to the line is minimized.

15. Show that if a straight line is fitted to a table (xi , yi) by the method of least squares,
then the line will pass through the point (x∗, y∗), where x∗ and y∗ are the averages of
the xi ’s and yi ’s, respectively.

a16. The viscosity V of a liquid is known to vary with temperature according to a quadratic
law V = a + bT + cT 2. Find the best values of a, b, and c for the following table:

T 1 2 3 4 5 6 7

V 2.31 2.01 1.80 1.66 1.55 1.47 1.41

504 Chapter 12 Smoothing of Data and the Method of Least Squares

17. An experiment involves two independent variables x and y and one dependent variable
z. How can a function z = a +bx + cy be fitted to the table of points (xk, yk, zk)? Give
the normal equations.

a18. Find the best function (in the least-squares sense) that fits the following data points and
is of the form f (x) = a sin πx + b cos πx :

x −1 − 1
2 0 1

2 1

y −1 0 1 2 1
a19. Find the quadratic polynomial that best fits the following data in the sense of least

squares:
x −2 −1 0 1 2

y 2 1 1 1 2
a20. What line best represents the following data in the least-squares sense?

x 0 1 2

y 5 −6 7
a21. What constant c makes the expression

m∑
k=0

[f (xk) − cexk]2

as small as possible?

22. Show that the formula for the best line to fit data (k, yk) at the integers k for 1 � k � n
is

y = ax + b

where

a = 6

n(n2 − 1)

[
2

n∑
k=1

kyk − (n + 1)

n∑
k=1

yk

]

b = 2

n(n − 1)

[
(2n + 1)

n∑
k=1

yk − 3
n∑

k=1

kyk

]
23. Establish the normal equations and verify the results in Example 1.

24. A vector v is asserted to be the least-squares solution of an inconsistent system Ax = b.
How can we test v without going through the entire least-squares procedure?

25. Find the normal equations for the following data points:

x 1.0 2.0 2.5 3.0

y 3.7 4.1 4.3 5.0

Determine the straight line that best fits the data in the least-squares sense. Plot the data
point and the least-squares line.

26. For the case n = 4, show directly that by forming the normal equations from the data
points (xi , yi), we obtain the results in Theorem 1.

12.2 Orthogonal Systems and Chebyshev Polynomials 505

Computer Problems 12.1

1. Write a procedure that sets up the normal Equations (7). Using that procedure and
other routines, such as Gauss and Solve from Chapter 7, verify the solution given for
the problem involving ln x , cos x , and ex in the subsection entitled “Nonpolynomial
Example.”

2. Write a procedure that fits a straight line to Table (1). Use this procedure to find the
constants in the equation S = aT + b for the table in the example that begins this
chapter. Also, verify the results obtained for the problem in the subsection entitled
“Linear Example.”

3. Write and test a program that takes m + 1 points in the plane (xi , yi), where 0 � i � m,
with x0 < x1 < · · · < xm , and computes the best linear fit by the method of least
squares. Then the program should create a plot of the points and the best line determined
by the least-squares method.

4. The Internal Revenue Service (IRS) publishes the following table of values having to
do with minimal distributions of pension plans:

x 1 2 3 4 5 6 7 8

y 29.9 29.0 28.1 27.1 26.2 25.3 24.4 23.6

9 10 11 12 13 14 15 16

22.7 21.8 21.0 20.1 19.3 18.5 17.7 16.9

What simple function represents the data? Use Equation (5), and plot the data and the
results using either plotting software such as gnuplot or some mathematics software
system such as Maple, Matlab, or Mathematica.

5. Using mathematical software such as Matlab, Maple, or Mathematica, fit a linear least-
squares polynomial to the data in Example 1. Then plot the original data and the
polynomial using a fine set of grid points.

6. (Continuation) Verify the results in Example 2 and plot the curve.

12.2 Orthogonal Systems and Chebyshev Polynomials
Orthonormal Basis Functions {g0, g1, . . . , gn}
Once the functions g0, g1, . . . gn of Equation (5) in Section 12.1 have been chosen, the
least-squares problem can be interpreted as follows: The set of all functions g that can be
expressed as linear combinations of g0, g1, . . . , gn is a vector space G. (Familiarity with
vector spaces is not essential to understanding the discussion here.) In symbols, we have

G =
{

g: there exist c0, c1, . . . , cn such that g(x) =
n∑

j=0

c j g j (x)

}

506 Chapter 12 Smoothing of Data and the Method of Least Squares

The function that is being sought in the least-squares problem is thus an element of the
vector space G. Since the functions g0, g1, . . . , gn form a basis for G, the set is not linearly
dependent. However, a given vector space has many different bases, and they can differ
drastically in their numerical properties.

Let us turn our attention away from the given basis {g0, g1, . . . , gn} to the vector space
G generated by that basis. Without changing G, we ask: What basis for G should be chosen
for numerical work? In the present problem, the principal numerical task is to solve the
normal equations—that is, Equation (7) in Section 12.1:

n∑
j=0

[
m∑

k=0

gi (xk)g j (xk)

]
c j =

m∑
k=0

yk gi (xk) (0 � i � n) (1)

The nature of this system obviously depends on the basis {g0, g1, . . . , gn}. We want these
equations to be easily solved or to be capable of being accurately solved. The ideal situation
occurs when the coefficient matrix in Equation (1) is the identity matrix. This happens if
the basis {g0, g1, . . . , gn} has the property of orthonormality:

m∑
k=0

gi (xk)g j (xk) = δi j =
{

1 i = j
0 i �= j

In the presence of this property, Equation (1) simplifies dramatically to

c j =
m∑

k=0

yk g j (xk) (0 � j � n)

which is no longer a system of equations to be solved but rather an explicit formula for the
coefficients c j .

Under rather general conditions, the space G has a basis that is orthonormal in the sense
just described. A procedure known as the Gram-Schmidt process can be used to obtain
such a basis. There are some situations in which the effort of obtaining an orthonormal basis
is justified, but simpler procedures often suffice. We describe one such procedure now.

Remember that our goal is to make Equation (1) well disposed for numerical solution.
We want to avoid any matrix of coefficients that involves the difficulties encountered in
connection with the Hilbert matrix (see Computer Problem 7.2.4). This objective can be
met if the basis for the space G is well chosen.

We now consider the space G that consists of all polynomials of degree � n, which is
an important example of the least-squares theory. It may seem natural to use the following
n + 1 functions as a basis for G:

g0(x) = 1 g1(x) = x g2(x) = x2 . . . gn(x) = xn

Using this basis, we write a typical element of the space G in the form

g(x) =
n∑

j=0

c j g j (x) =
n∑

j=0

c j x
j = c0 + c1x + c2x2 + · · · + cn xn

This basis, however natural, is almost always a poor choice for numerical work. For many
purposes, the Chebyshev polynomials (suitably defined for the interval involved) do form
a good basis.

Figure 12.4 gives an indication of why the monomials x j do not form a good basis for
numerical work: These functions are too much alike! If a function g is given and we wish

12.2 Orthogonal Systems and Chebyshev Polynomials 507

FIGURE 12.4

Polynomials xk

and Chebyshev
polynomials Tk

y

x
0.2

0
0.4 0.6

0.5

1

�0.5

�1

0.8 1

T5

T4

T1

T3

T2

x

x2

x3

x4

x5

to express it as a linear combination of the monomials, g(x) = ∑n
j=0 c j x j , it is difficult

to determine the coefficients c j precisely. Figure 12.4 also shows a few of the Chebyshev
polynomials; they are quite different from one another.

For simplicity, assume that the points in our least-squares problem have the property

−1 = x0 < x1 < · · · < xm = 1

Then the Chebyshev polynomials for the interval [−1, 1] can be used. The traditional
notation is{

T0(x) = 1 T1(x) = x T2(x) = 2x2 − 1

T3(x) = 4x3 − 3x T4(x) = 8x4 − 8x2 + 1 etc.

A recursive formula for these polynomials is

Tj (x) = 2xTj−1(x) − Tj−2(x) (j � 2) (2)

This formula, together with the equations T0(x) = 1 and T1(x) = x , provides a formal defi-
nition of the Chebyshev polynomials. Alternatively, we can write Tk(x) = cos(k arccos x).

Linear combinations of Chebyshev polynomials are easy to evaluate because a special
nested multiplication algorithm applies. To describe this procedure, consider an arbitrary
linear combination of T0, T1, T2, . . . , Tn:

g(x) =
n∑

j=0

c j Tj (x)

508 Chapter 12 Smoothing of Data and the Method of Least Squares

An algorithm to compute g(x) for any given x goes as follows:⎧⎪⎨⎪⎩
wn+2 = wn+1 = 0

w j = c j + 2xw j+1 − w j+2 (j = n, n − 1, . . . , 0)

g(x) = w0 − xw1

(3)

To see that this algorithm actually produces g(x), we write down the series for g, shift some
indices, and use Formulas (2) and (3):

g(x) =
n∑

j=0

c j Tj (x)

=
n∑

j=0

(w j − 2xw j+1 + w j+2)Tj

=
n∑

j=0

w j Tj − 2x
n∑

j=0

w j+1Tj +
n∑

j=0

w j+2Tj

=
n∑

j=0

w j Tj − 2x
n+1∑
j=1

w j Tj−1 +
n+2∑
j=2

w j Tj−2

=
n∑

j=0

w j Tj − 2x
n∑

j=1

w j Tj−1 +
n∑

j=2

w j Tj−2

= w0T0 + w1T1 +
n∑

j=2

w j Tj − 2xw1T0 − 2x
n∑

j=2

w j Tj−1 +
n∑

j=2

w j Tj−2

= w0 + xw1 − 2xw1 +
n∑

j=2

w j (Tj − 2xTj−1 + Tj−2)

= w0 − xw1

In general, it is best to arrange the data so that all the abscissas {xi } lie in the interval
[−1, 1]. Then, if the first few Chebyshev polynomials are used as a basis for the polynomials,
the normal equations should be reasonably well conditioned. We have not given a technical
definition of this term; it can be interpreted informally to mean that Gaussian elimination
with pivoting produces an accurate solution to the normal equations.

If the original data do not satisfy min{xk} = −1 and max{xk} = 1 but lie instead in
another interval [a, b], then the change of variable

x = 1

2
(b − a)z + 1

2
(a + b)

produces a variable z that traverses [−1, 1] as x traverses [a, b].

Outline of Algorithm
Here is an outline of a procedure, based on the preceding discussion, that produces a
polynomial of degree � (n + 1) that best fits a given table of values (xk, yk)(0 � k � m).
Here, m is usually much greater than n.

12.2 Orthogonal Systems and Chebyshev Polynomials 509

■ ALGORITHM 1 Polynomial Fitting

1. Find the smallest interval [a, b] that contains all the xk . Thus, let a = min{xk}
and b = max{xk}.

2. Make a transformation to the interval [−1, 1] by defining

zk = 2xk − a − b

b − a
(0 � k � m)

3. Decide on the value of n to be used. In this situation, 8 or 10 would be a large
value for n.

4. Using Chebyshev polynomials as a basis, generate the (n +1)× (n +1) normal
equations

n∑
j=0

[
m∑

k=0

Ti (zk)Tj (zk)

]
c j =

m∑
k=0

yk Ti (zk) (0 � i � n) (4)

5. Use an equation-solving routine to solve the normal equations for coefficients
c0, c1, . . . , cn in the function

g(x) =
n∑

j=0

c j Tj (x)

6. The polynomial that is being sought is

g

(
2x − a − b

b − a

)

The details of step 4 are as follows: Begin by introducing a double-subscripted variable:

t jk = Tj (zk) 0 � k � m, 0 � j � n

The matrix T = (t jk) can be computed efficiently by using the recursive definition of the
Chebyshev polynomials, Equation (2), as in the following segment of pseudocode:

integer j, k, m; real array (ti j)0:n×0:m, (zi)0:n

for k = 0 to m do
t0k ← 1
t1k ← zk

for j = 2 to n do
t jk ← 2zkt j−1,k − t j−2,k

end for
end for

The normal equations have a coefficient matrix A = (ai j)0:n×0:n and a right-hand side b =
(bi)0:n given by

ai j =
m∑

k=0

Ti (zk)Tj (zk) =
m∑

k=0

tik t jk (0 � i, j � n)

bi =
m∑

k=0

yk Ti (zk) =
m∑

k=0

yktik (0 � i � n)

(5)

510 Chapter 12 Smoothing of Data and the Method of Least Squares

The pseudocode to calculate A and b follows:

real array (ai j)0:n×0:n, (bi)0:n, (ti j)0:n×0:m, (yi)0:n

integer i, j, m, n; real s
for i = 0 to n do

s ← 0
for k = 0 to m do

s ← s + yktik

end for
bi ← s
for j = i to n do

s ← 0
for k = 0 to m do

s ← s + tik t jk

end for
ai j ← s
a ji ← s

end for
end for

To fit data with polynomials, other methods exist that employ systems of polynomials
tailor-made for a given set of abscissas. The method outlined above is, however, simple and
direct.

Smoothing Data: Polynomial Regression
One of the important applications of the least-squares procedure is in the smoothing of
data. In this context, smoothing refers to the fitting of a “smooth” curve to a set of “noisy”
values (that is, the values contain experimental errors). If one knows the type of function to
which the data should conform, then the least-squares procedure can be used to compute
any unknown parameters in the function. This has been amply illustrated in the examples
given previously. However, if one simply wishes to smooth the data by fitting them with any
convenient function, then polynomials of increasing degree can be used until a reasonable
balance between good fit and smoothness is obtained.

This idea will be illustrated by the experimental data depicted in the table, which shows
20 points (xi , yi):

x −1.0 −0.92 −0.84 −0.8 −0.72 −0.64 −0.56 −0.48 −0.36

y 4.0 1.0 5.0 7.0 6.0 3.0 2.0 2.0 5.0

−0.24 −0.12 0.0 0.12 0.2 0.32 0.4 0.52 0.64 0.76 0.92

12.0 13.0 11.0 7.0 4.0 −2.0 −6.0 −8.0 −2.0 4.0 9.0

Of course, a polynomial of degree 19 can be determined that passes through these points
exactly. But if the points are contaminated by experimental errors, our purposes are better
served by some lower-degree polynomial that fits the data approximately in the least-squares

12.2 Orthogonal Systems and Chebyshev Polynomials 511

sense. In statistical parlance, this is the problem of curvilinear regression. A good software
library will contain code for the polynomial fitting of empirical data using a least-squares
criterion. Such programs will determine the fitting polynomials of degrees 0, 1, 2, . . . with a
minimum of computing effort and with high precision. One can, of course, use the techniques
illustrated already in this chapter, although they are not at all streamlined. Thus, with
the Chebyshev polynomials as a basis, we can set up and solve the normal equations for
n = 0, 1, 2, . . . and plot the resulting functions. Some of the polynomials obtained in this
way for the data of the table are shown in Figure 12.5.

FIGURE 12.5

Polynomial of
degree 8

(dashed line)
and polynomial

of degree 13
(solid line)

y

x

5

10

–5

–10

15

0.5 10�0.5

13th-degree
polynomial

8th-degree
polynomial

�1

An efficient procedure for polynomial regression, given by Forsythe [1957], is now
explained. This procedure uses a system of orthogonal polynomials that are tailor-made for
the problem at hand. We begin with a table of experimental values:

x x0 x1 . . . xm

y y0 y1 . . . ym

The ultimate objective is to replace this table by a suitable polynomial of modest degree,
with the experimental errors of the table somehow suppressed. We do not know what degree
of polynomial should be used.

For statistical purposes, a reasonable hypothesis is that there is a polynomial

pN (x) =
N∑

i=0

ai x
i

that represents the trend of the table and that the given tabular values obey the equation

yi = pN (xi) + εi (0 � i � m)

In this equation, εi represents an observational error that is present in yi . A further rea-
sonable hypothesis is that these errors are independent random variables that are normally
distributed.

512 Chapter 12 Smoothing of Data and the Method of Least Squares

For a fixed value of n, we have already discussed a method of determining pn by the
method of least squares. Thus, a system of normal equations can be set up to determine the
coefficients of pn . Once these are known, a quantity called the variance can be computed
from the formula

σ 2
n = 1

m − n

m∑
i=0

[yi − pn(xi)]
2 (m > n) (6)

Statistical theory tells us that if the trend of the table is truly a polynomial of degree N (but
infected by noise), then

σ 2
0 > σ 2

1 > · · · > σ 2
N = σ 2

N+1 = σ 2
N+2 = · · · = σ 2

m−1

This fact suggests the following strategy for dealing with the case in which N is not known:
Compute σ 2

0 , σ 2
1 , . . . in succession. As long as these are decreasing significantly, continue

the calculation. When an integer N is reached for which σ 2
N ≈ σ 2

N+1 ≈ σ 2
N+2 ≈ · · · , stop

and declare pN to be the polynomial sought.
If σ 2

0 , σ 2
1 , . . . are to be computed directly from the definition in Equation (6), then each

of the polynomials p0, p1, . . . will have to be determined. The procedure described below
can avoid the determination of all but the one desired polynomial.

In the remainder of the discussion, the abscissas xi are to be held fixed. These points
are assumed to be distinct, although the theory can be extended to include cases in which
some points repeat. If f and g are two functions whose domains include the points
{x0, x1, . . . , xm}, then the following notation is used:

〈 f, g〉 =
m∑

i=0

f (xi)g(xi) (7)

This quantity is called the inner product of f and g. Much of our discussion does not
depend on the exact form of the inner product but only on certain of its properties. An inner
product 〈· , ·〉 has the following properties:

■ PROPERTIES Defining Properties of an Inner Product

1. 〈 f, g〉 = 〈g, f 〉
2. 〈 f, f 〉 > 0 unless f (xi) = 0 for all i

3. 〈a f, g〉 = a〈 f, g〉 where a ∈ R

4. 〈 f, g + h〉 = 〈 f, g〉 + 〈 f, h〉

The reader should verify that the inner product defined in Equation (7) has the properties
listed.

A set of functions is now said to be orthogonal if 〈 f, g〉 = 0 for any two different
functions f and g in that set. An orthogonal set of polynomials can be generated recursively
by the following formulas:⎧⎪⎨⎪⎩

q0(x) = 1

q1(x) = x − α0

qn+1(x) = xqn(x) − αnqn(x) − βnqn−1(x) (n � 1)

12.2 Orthogonal Systems and Chebyshev Polynomials 513

where ⎧⎪⎪⎨⎪⎪⎩
αn = 〈xqn, qn〉

〈qn, qn〉
βn = 〈xqn, qn−1〉

〈qn−1, qn−1〉
In these formulas, a slight abuse of notation occurs where “xqn” is used to denote the
function whose value at x is xqn(x).

To understand how this definition leads to an orthogonal system, let’s examine a few
cases. First,

〈q1, q0〉 = 〈x − α0, q0〉 = 〈xq0 − α0q0, q0〉 = 〈xq0, q0〉 − α0〈q0, q0〉 = 0

Notice that several properties of an inner product listed previously have been used here.
Also, the definition of α0 was used. Another of the first few cases is this:

〈q2, q1〉 = 〈xq1 − α1q1 − β1q0, q1〉
= 〈xq1, q1〉 − α1〈q1, q1〉 − β1〈q0, q1〉 = 0

Here, the definition of α1 has been used, as well as the fact (established above) that 〈q1, q0〉 =
0. The next step in a formal proof is to verify that 〈q2, q0〉 = 0. Then an inductive proof
completes the argument.

One part of this proof consists in showing that the coefficients αn and βn are well
defined. This means that the denominators 〈qn, qn〉 are not zero. To verify that this is the
case, suppose that 〈qn, qn〉 = 0. Then

∑m
i=0[qn(xi)]2 = 0, and consequently, qn(xi) = 0 for

each value of i . This means that the polynomial qn has m + 1 roots, x0, x1, . . . , xm . Since
the degree n is less than m, we conclude that qn is the zero polynomial. However, this is not
possible because obviously

q0(x) = 1

q1(x) = x − α0

q2(x) = x2 + (lower-order terms)

and so on. Observe that this argument requires n < m.
The system of orthogonal polynomials {q0, q1, . . . , qm−1} generated by the above algo-

rithm is a basis for the vector space
∏

m−1 of all polynomials of degree at most m − 1. It is
clear from the algorithm that each qn starts with the highest term xn . If it is desired to express
a given polynomial p of degree n (n � m −1) as a linear combination of q0, q1, . . . , qn , this
can be done as follows: Set

p =
n∑

i=0

ai qi (8)

On the right-hand side, only one summand contains xn . It is the term anqn . On the left-hand
side, there is also a term in xn . One chooses an so that an xn on the right is equal to the
corresponding term in p. Now write

p − anqn =
n−1∑
i=0

ai qi

514 Chapter 12 Smoothing of Data and the Method of Least Squares

On both sides of this equation, there are polynomials of degree at most n −1 (because of the
choice of an). Hence, we can now choose an−1 in the way we chose an; that is, choose an−1

so that the terms in xn−1 are the same on both sides. By continuing in this way, we discover
the unique values that the coefficients ai must have. This establishes that {q0, q1, . . . , qn} is
a basis for

∏
n , for n = 0, 1, . . . , m − 1.

Another way of determining the coefficients ai (once we know that they exist!) is to
take the inner product of both sides of Equation (8) with q j . The result is

〈p, q j 〉 =
n∑

i=0

ai 〈qi , q j 〉 (0 � j � n)

Since the set q0, q1, . . . , qn is orthogonal, 〈qi , q j 〉 = 0 for each i different from j . Hence,
we obtain

〈p, q j 〉 = a j 〈q j , q j 〉
This gives a j as a quotient of two inner products.

Now we return to the least-squares problem. Let F be a function that we wish to fit by
a polynomial pn of degree n. We shall find the polynomial that minimizes the expression

m∑
i=0

[F(xi) − pn(xi)]
2

The solution is given by the formulas

pn =
n∑

i=0

ci qi ci = 〈F, qi 〉
〈qi , qi 〉 (9)

It is especially noteworthy that ci does not depend on n. This implies that the various
polynomials p0, p1, . . . that we are seeking can all be obtained by simply truncating one
series—namely,

∑m−1
i=0 ci qi . To prove that pn , as given in Equation (9), solves our problem,

we return to the normal equations, Equation (1). The basic functions now being used are
q0, q1, . . . , qn . Thus, the normal equations are

n∑
j=0

[
m∑

k=0

qi (xk)q j (xk)

]
c j =

m∑
k=0

ykqi (xk) (0 � i � n)

Using the inner product notation, we get

n∑
j=0

〈qi , q j 〉c j = 〈F, qi 〉 (0 � i � n)

where F is some function such that F(xk) = yk for 0 � k � m. Next, apply the orthogonality
property 〈qi , q j 〉 = 0 when i �= j . The result is

〈qi , qi 〉ci = 〈F, qi 〉 (0 � i � n) (10)

Now we return to the variance numbers σ 2
0 , σ 2

1 , . . . and show how they can be easily
computed. First, an important observation: The set {q0, q1, . . . , qn, F − pn} is orthogonal!

12.2 Orthogonal Systems and Chebyshev Polynomials 515

The only new fact here is that 〈F − pn, qi 〉 = 0 for 0 � i � n. To check this, write

〈F − pn, qi 〉 = 〈F, qi 〉 − 〈pn, qi 〉

= 〈F, qi 〉 −
〈

n∑
j=0

c j q j , qi

〉

= 〈F, qi 〉 −
n∑

j=0

c j 〈q j , qi 〉

= 〈F, qi 〉 − ci 〈qi , qi 〉 = 0

In this computation, we used Equations (9) and (10). Since pn is a linear combination of
q0, q1, . . . , qn , it follows easily that

〈F − pn, pn〉 = 0

Now recall that the variance σ 2
n was defined by

σ 2
n = ρn

m − n
ρn =

m∑
i=0

[yi − pn(xi)]
2

The quantities ρn can be written in another way:

ρn = 〈F − pn, F − pn〉
= 〈F − pn, F〉
= 〈F, F〉 − 〈F, pn〉
= 〈F, F〉 −

n∑
i=0

ci 〈F, qi 〉

= 〈F, F〉 −
n∑

i=0

〈F, qi 〉2

〈qi , qi 〉

Thus, the numbers ρ0, ρ1, . . . can be generated recursively by the algorithm⎧⎪⎪⎪⎨⎪⎪⎪⎩
ρ0 = 〈F, F〉 − 〈F, q0〉2

〈q0, q0〉

ρn = ρn−1 − 〈F, qn〉2

〈qn, qn〉 (n � 1)

Summary

(1) We use Chebyshev polynomials {Tj } as an orthogonal basis that can be generated recur-
sively by

Tj (x) = 2xTj−1(x) − Tj−2(x) (j � 2)

516 Chapter 12 Smoothing of Data and the Method of Least Squares

with T0(x) = 1 and T1(x) = x . The coefficient matrix A = (ai j)0:n×0:n and the right-hand
side b = (bi)0:n of the normal equations are

ai j =
m∑

k=0

Ti (zk)Tj (zk) (0 � i, j � n)

bi =
m∑

k=0

yk Ti (zk) (0 � i � n)

A linear combination of Chebyshev polynomials

g(x) =
n∑

j=0

c j Tj (x)

can be evaluated recursively:⎧⎪⎨⎪⎩
wn+2 = wn+1 = 0

w j = c j + 2xw j+1 − w j+2 (j = n, n − 1, . . . , 0)

g(x) = w0 − xw1

(2) We discuss smoothing of data by polynomial regression.

Problems 12.2

1. Let g0, g1, . . . , gn be a set of functions such that
∑m

k=0 gi (xk)g j (xk) = 0 if i �= j .
What linear combination of these functions best fits the data of Table (1) in
Section 12.1?

a2. Consider polynomials g0, g1, . . . , gn defined by g0(x) = 1, g1(x) = x −1, and g j (x) =
3xg j−1(x) + 2g j−2(x). Develop an efficient algorithm for computing values of the
function f (x) = ∑n

j=0 c j g j (x).

a3. Show that cos nθ = 2 cos θ cos(n − 1)θ − cos(n − 2)θ . Hint: Use the familiar identity
cos(A ∓ B) = cos A cos B ± sin A sin B.

4. (Continuation) Show that if fn(x) = cos(n arccos x), then f0(x) = 1, f1(x) = x , and
fn(x) = 2x fn−1(x) − fn−2(x).

a5. (Continuation) Show that an alternate definition of Chebyshev polynomials is Tn(x) =
cos(n arccos x) for −1 � x � 1.

a6. (Continuation) Give a one-line proof that Tn(Tm(x)) = Tnm(x).

a7. (Continuation) Show that |Tn(x)| � 1 for x in the interval [−1, 1].

a8. Define gk(x) = Tk

(
1
2 x + 1

2

)
. What recursive relation do these functions satisfy?

9. Show that T0, T2, T4, . . . are even and that T1, T3, . . . are odd functions. Recall that
an even function satisfies the equation f (x) = f (−x); an odd function satisfies the
equation f (x) = − f (−x).

12.2 Orthogonal Systems and Chebyshev Polynomials 517

a10. Count the number of operations involved in the algorithm used to compute g(x) =∑n
j=0 c j Tj (x).

11. Show that the algorithm for computing g(x) = ∑n
j=0 c j Tj (x) can be modified to read⎧⎪⎨⎪⎩

wn−1 = cn−1 + 2xcn

wk = ck + 2xwk+1 − wk−2 (n − 2 � k � 1)

g(x) = c0 + xw1 − w2

thus making wn+2, wn+1, and w0 unnecessary.

a12. (Continuation) Count the operations for the algorithm in the preceding problem.

a13. Determine T6(x) as a polynomial in x .

14. Verify the four properties of an inner product that were listed in the text, using Defini-
tion (7).

15. Verify these formulas:

p0(x) = 1

m + 1

m∑
i=0

yi βn = 〈qn, qn〉
〈qn−1, qn−1〉 cn = ρn−1 − ρn

〈F, qn〉
16. Complete the proof that the algorithm for generating the orthogonal system of polyno-

mials works.

a17. There is a function f of the form

f (x) = αx12 + βx13

for which f (0.1) = 6×10−13 and f (0.9) = 3×10−2. What is it? Are α and β sensitive
to perturbations in the two given values of f (x)?

18. (Multiple choice) Let x1 = [2, 2, 1]T , x2 = [1, 1, 5]T , and x3 = [−3, 2, 1]T . If
the Gram-Schmidt process is applied to this ordered set of vectors to produce an
orthonormal set {u1, u2, u3}, what is u1?

a.
[

2
3 ,

2
3 ,

1
3

]T b. [2, 2, 1]T
c.
[

2
5 ,

2
5 ,

1
5

]T

d. [1, 0, 0]T e. None of these.

19. (Multiple choice, continuation) What is u2?

a. 1√
27

[1, 1, 5]T b. 1√
18

[−1, −1, 4]T c. [2, 2, 1]T

d. [1, 1, −4]T e. None of these.

Computer Problems 12.2

1. Carry out an experiment in data smoothing as follows: Start with a polynomial of
modest degree, say, 7. Compute 100 values of this polynomial at random points in the
interval [−1, 1]. Perturb these values by adding random numbers chosen from a small
interval, say,

[− 1
8 ,

1
8

]
. Try to recover the polynomial from these perturbed values by

using the method of least squares.

518 Chapter 12 Smoothing of Data and the Method of Least Squares

2. Write real function Cheb(n, x) for evaluating Tn(x). Use the recursive formula satisfied
by Chebyshev polynomials. Do not use a subscripted variable. Test the program on these
15 cases: n = 0, 1, 3, 6, 12 and x = 0, −1, 0.5.

3. Write real function Cheb(n, x, (yi)) to calculate T0(x), T1(x), . . . , Tn(x), and store
these numbers in the array (yi). Use your routine, together with suitable plotting rou-
tines, to obtain graphs of T0, T1, T2, . . . , T8 on [−1, 1].

4. Write real function F(n, (ci), x) for evaluating f (x) = ∑n
j=0 c j Tj (x). Test your

routine by means of the formula
∑∞

k=0 t k Tk(x) = (1 − t x)/(1 − 2t x + t2), valid for
|t | < 1. If |t | � 1

2 , then only a few terms of the series are needed to give full machine
precision. Add terms in ascending order of magnitude.

5. Obtain a graph of Tn for some reasonable value of n by means of the following idea:
Generate 100 equally spaced angles θi in the interval [0, π]. Define xi cos θi and yi =
Tn(xi) = cos(n arccos xi) = cos nθi . Send the points (xi , yi) to a suitable plotting
routine.

6. Write suitable code to carry out the procedure outlined in the text for fitting a table with
a linear combination of Chebyshev polynomials. Test it in the manner of Computer
Problem 12.2.1, first by using an unperturbed polynomial. Find out experimentally how
large n can be in this process before roundoff errors become serious.

a7. Define xk = cos[(2k − 1)π/(2m)]. Select modest values of n and m > 2n. Compute
and print the matrix A whose elements are

ai j =
m∑

k=0

Ti (xk)Tj (xk) (0 � i, j � n)

Interpret the results in terms of the least-squares polynomial-fitting problem.

8. Program the algorithm for finding σ 2
0 , σ 2

1 , . . . in the polynomial regression problem.

9. Program the complete polynomial regression algorithm. The output should be αn , βn ,
σ 2

n , and cn for 0 � n � N , where N is determined by the condition σ 2
N−1 > σ 2

N ≈ σ 2
N+1.

10. Using orthogonal polynomials, find the quadratic polynomial that fits the following
data in the sense of least squares:

a. x −1 − 1
2 0 1

2 1

y −1 0 1 2 1

b. x −2 −1 0 1 2

y 2 1 1 1 2

12.3 Other Examples of the Least-Squares Principle
The principle of least squares is also used in other situations. In one of these, we attempt to
solve an inconsistent system of linear equations of the form

n∑
j=0

akj x j = bk (0 � k � m) (1)

12.3 Other Examples of the Least-Squares Principle 519

in which m > n. Here, there are m + 1 equations but only n + 1 unknowns. If a given
n +1-tuple (x0, x1, . . . , xn) is substituted on the left, the discrepancy between the two sides
of the kth equation is termed the kth residual. Ideally, of course, all residuals should be
zero. If it is not possible to select (x0, x1, . . . , xn) so as to make all residuals zero, System (1)
is said to be inconsistent or incompatible. In this case, an alternative is to minimize the
sum of the squares of the residuals. So we are led to minimize the expression

ϕ(x0, x1, . . . , xn) =
m∑

k=0

(
n∑

j=0

akj x j − bk

)2

(2)

by making an appropriate choice of (x0, x1, . . . , xn). Proceeding as before, we take partial
derivatives with respect to xi and set them equal to zero, thereby arriving at the normal
equations

n∑
j=0

(
m∑

k=0

aki ak j

)
x j =

m∑
k=0

bkaki (0 � i � n) (3)

This is a linear system of just n + 1 equations involving unknowns x0, x1, . . ., xn . It can be
shown that this system is consistent, provided that the column vectors in the original coef-
ficient array are linearly independent. System (3) can be solved, for instance, by Gaussian
elimination. The solution of System (3) is then a best approximate solution of Equation (1)
in the least-squares sense.

Special methods have been devised for the problem just discussed. Generally, they
gain in precision over the simple approach outlined above. One such algorithm for solving
System (1),

Ax = b

begins by factoring

A = Q R

where matrix Q is (m +1)× (n +1) satisfying QT Q = I and matrix R is (n +1)× (n +1)

satisfying rii > 0 and ri j = 0 for j< i . Then the least-squares solution is obtained by an
algorithm called the modified Gram-Schmidt process.

A more elaborate (and more versatile) algorithm depends on the singular value
decomposition of the matrix A. This is a factoring, A = U�V T , in which U T U = Im+1,
V T V = In+1, and � is an (m + 1) × (n + 1) diagonal matrix that has nonnegative entries.
For these more reliable procedures, the reader is referred to material at the end of this section
and to Stewart [1973] and Lawson and Hanson [1995].

Use of a Weight Function w (x)
Another important example of the principle of least squares occurs in fitting or approximat-
ing functions on intervals rather than discrete sets. For example, a given function f defined
on an interval [a, b] may have to be approximated by a function such as

g(x) =
n∑

j=0

c j g j (x)

520 Chapter 12 Smoothing of Data and the Method of Least Squares

It is natural, then, to attempt to minimize the expression

ϕ(c0, c1, . . . , cn) =
∫ b

a
[g(x) − f (x)]2 dx (4)

by choosing coefficients appropriately. In some applications, it is desirable to force functions
g and f into better agreement in certain parts of the interval. For this purpose, we can
modify Equation (4) by including a positive weight function w(x), which can, of course,
be w(x) ≡ 1 if all parts of the interval are to be treated the same. The result is

ϕ(c0, c1, . . . , cn) =
∫ b

a
[g(x) − f (x)]2w(x) dx

The minimum of ϕ is again sought by differentiating with respect to each ci and setting the
partial derivatives equal to zero. The result is a system of normal equations:

n∑
j=0

[∫ b

a
gi (x)g j (x)w(x) dx

]
c j =

∫ b

a
f (x)gi (x)w(x) dx (0 � i � n) (5)

This is a system of n+1 linear equations in n+1 unknowns c0, c1, . . . , cn and can be solved
by Gaussian elimination. Earlier remarks about choosing a good basis apply here also. The
ideal situation is to have functions g0, g1, . . . , gn that have the orthogonality property:∫ b

a
gi (x)g j (x)w(x) dx = 0 (i �= j) (6)

Many such orthogonal systems have been developed over the years. For example,
Chebyshev polynomials form one such system, namely,

∫ 1

−1
Ti (x)Tj (x)(1 − x2)−1/2 dx =

⎧⎪⎪⎨⎪⎪⎩
0 i �= j
π

2
i = j > 0

π i = j = 0

The weight function (1 − x2)−1/2 assigns heavy weight to the ends of the interval [−1, 1].
If a sequence of nonzero functions g0, g1, . . . , gn is orthogonal according to Equa-

tion (6), then the sequence λ0g0, λ1g1, . . . , λngn is orthonormal for appropriate positive
real numbers λ j , namely,

λ j =
{∫ b

a
[g j (x)]2w(x) dx

}−1/2

Nonlinear Example
As another example of the least-squares principle, here is a nonlinear problem. Suppose
that a table of points (xk, yk) is to be fitted by a function of the form

y = ecx

Proceeding as before leads to the problem of minimizing the function

ϕ(c) =
m∑

k=0

(ecxk − yk)
2

12.3 Other Examples of the Least-Squares Principle 521

The minimum occurs for a value of c such that

0 = ∂ϕ

∂c
=

m∑
k=0

2(ecxk − yk)e
cxk xk

This equation is nonlinear in c. One could contemplate solving it by Newton’s method or
the secant method. On the other hand, the problem of minimizing ϕ(c) could be attacked
directly. Since there can be multiple roots in the normal equation and local minima in ϕ itself,
a direct minimization of ϕ would be safer. This type of difficulty is typical of nonlinear
least-squares problems. Consequently, other methods of curve fitting are often preferred
if the unknown parameters do not occur linearly in the problem.

Alternatively, this particular example can be linearized by a change of variables z = ln y
and by considering

z = cx

The problem of minimizing the function

ϕ(c) =
m∑

k=0

(cxk − zk)
2 zk = ln yk

is easy and leads to

c =
m∑

k=0

zk xk

/
m∑

k=0

x2
k

This value of c is not the solution of the original problem but may be satisfactory in some
applications.

Linear and Nonlinear Example
The final example contains elements of linear and nonlinear theory. Suppose that an (xk, yk)

table is given with m + 1 entries and that a functional relationship such as

y = a sin(bx)

is suspected. Can the least-squares principle be used to obtain the appropriate values of
the parameters a and b?

Notice that parameter b enters this function in a nonlinear way, creating some difficulty,
as will be seen. According to the principle of least squares, the parameters should be chosen
such that the expression

m∑
k=0

[a sin(bxk) − yk]2

has a minimum value. The minimum value is sought by differentiating this expression with
respect to a and b and setting these partial derivatives equal to zero. The results are⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

m∑
k=0

2[a sin(bxk) − yk] sin(bxk) = 0

m∑
k=0

2[a sin(bxk) − yk]axk cos(bxk) = 0

522 Chapter 12 Smoothing of Data and the Method of Least Squares

If b were known, a could be obtained from either equation. The correct value of b is the
one for which these corresponding two a values are identical. So each of the preceding
equations should be solved for a, and the results set equal to each other. This process leads
to the equation

m∑
k=0

yk sin bxk

m∑
k=0

(sin bxk)
2

=

m∑
k=0

xk yk cos bxk

m∑
k=0

xk sin bxk cos bxk

which can now be solved for parameter b, using, for example, the bisection method or the
secant method. Then either side of this equation can be evaluated as the value of a.

Additional Details on SVD
The singular value decomposition (SVD) of a matrix is a factorization that can reveal
important properties of the matrix that otherwise could escape detection. For example,
from the SVD decomposition of a square matrix one could be alerted to the near-singularity
of the matrix. Or from the SVD factorization of a nonsquare matrix an unexpected loss of
rank could be revealed. Since the SVD factorization of a matrix yields a complete orthogonal
decomposition, it provides a technique for computing the least squares solution of a system
of equations and at the same time producing the norm of the error vector.

Suppose that a given m × n matrix has the factorization

A = U DV T

where U = [u1, u2, . . . , um] is an m × m orthogonal matrix, V = [v1, v2, . . . , vn] is an
n ×n orthogonal matrix, and the m ×n diagonal matrix D contains the singular values of A
on its diagonal, listed in decreasing order. The singular values of a matrix A are the positive
square roots of the eigenvalues of AT A. These are denoted by σ1 � σ2 � · · · � σr � 0. In
detail, we have

U T AV = D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

. . .

σr

0
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m×n

where U T U = Im and V T V = In . (In the above matrix, blank space corresponds to zero
entries.) Moreover, we have Avi = σi ui and σi = ||Avi ||2 where vi is column i in V and

12.3 Other Examples of the Least-Squares Principle 523

ui is column i in U . Since U is orthogonal, we obtain∣∣∣∣Ax − b
∣∣∣∣2

2
= ∣∣∣∣U T (Ax − b)

∣∣∣∣2
2
= ∣∣∣∣U T Ax − U T b

∣∣∣∣2
2

= ∣∣∣∣U T A(V V T)x − U T b
∣∣∣∣2

2

= ∣∣∣∣(U T AV)(V T x) − U T b
∣∣∣∣2

2

= ∣∣∣∣DV T x − U T b
∣∣∣∣2

2
= ∣∣∣∣D y − c

∣∣∣∣2
2

=
r∑

i=1

(σi yi − ci)
2 +

m∑
i=r+1

c2
i

where y = V T x and c = U T b. Here, y is defined by yi = ci/σ j and x by x = V y. Since
ci = uT

i b and x = V y, if yi = σ−1
i ci for 1 � i � r then the least-squares solution is

xLS =
n∑

i=1

yivi =
r∑

i=1

σ−1
i civi =

r∑
i=1

σ−1
i

(
uT

i b
)
vi

and ∣∣∣∣AxLS − b
∣∣∣∣2

2
=

m∑
i=r+1

c2
i =

m∑
i=r+1

(
uT

i b
)2

which is the smallest of all two-norm minimizers. For additional, details see Golub and
Van Loan [1996].

In conclusion, we obtain the following theorem.

■ THEOREM 1 SVD LEAST SQUARES THEOREM

Let A be an m × n matrix of rank r . Let the SVD factorization be A = U DV T .
The least-squares solution of the system Ax = b is xLS = ∑n

i=1(σ
−1
i ci)vi , where

ci = uT
i b. If there exist many least-squares solutions to the given system, then the

one of least 2-norm is x as described above.

EXAMPLE 1 Find the least-squares solution of this nonsquare system⎡⎣ 1 1
0 1
1 0

⎤⎦⎡⎣ x
y
z

⎤⎦ =
⎡⎣ 1

−1
1

⎤⎦
using the singular value decomposition:⎡⎣ 1 1

0 1
1 0

⎤⎦ =

⎡⎢⎢⎣
1
3

√
6 0 1

3

√
3

1
6

√
6 1

2

√
2 − 1

3

√
3

1
6

√
6 − 1

2

√
2 − 1

3

√
3

⎤⎥⎥⎦
⎡⎣√

3 0
0 1
0 0

⎤⎦[1
2

√
2 1

2

√
2

1
2

√
2 − 1

2

√
2

]

Solution We have r = rank(A) = 2 and the singular values σ1 = √
3 and σ2 = 1. This leads to

c1 = uT
1 b =

[
1

3

√
6

1

6

√
6

1

6

√
6

]⎡⎣ 1
−1

1

⎤⎦ = 1

3

√
6

524 Chapter 12 Smoothing of Data and the Method of Least Squares

and

c2 = uT
2 b =

[
0 −1

2

√
2

1

2

√
2

]⎡⎣ 1
−1

1

⎤⎦ =
√

2

and

xLS = (
σ−1

1 c1

)
v1 + (

σ−1
2 c2

)
v2 = 1√

3

(
1

3

√
6

)[1
2

√
2

1
2

√
2

]
+

√
2

[
1
2

√
2

− 1
2

√
2

]

=
[

1
3
1
3

]
+
[

1
1

]
=
[

4
3

− 2
3

]

This solution is the same as that from the normal equations. ■

Using the Singular Value Decomposition
This material requires the theory of the singular value decomposition discussed in Sec-
tion 8.3.

An important application of the singular value decomposition is in the matrix least-
squares problem, to which we now return. For any system of linear equations Ax = b, we
want to define a unique minimal solution. This is described as follows. Let A be m × n,
and define

ρ = inf{||Ax − b||2 : x ∈ R
n}

The minimal solution of our system is taken to be the point of smallest norm in the set
{x: ||Ax − b||2 = ρ}. If the system is consistent, then ρ = 0, and we are simply asking for
the point of least norm among all solutions. If the system is inconsistent, we want Ax to be
as close as possible to b; that is, ||Ax − b||2 = ρ. If there are many such points, we choose
the one closest to the origin.

The minimal solution is produced by using the pseudo-inverse of A, and this object,
in turn, can be computed from the singular value decomposition of A as discussed in
Section 8.3. First, consider a diagonal m × n matrix of the following form, where the σ j

are positive numbers:

D =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

σ1

σ2

. . .

σr

0
. . .

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
m × n

12.3 Other Examples of the Least-Squares Principle 525

Its pseudo-inverse D+ is defined to be of the same form, except that it is to be n × m and it
has 1/σ j on its diagonal. For example,

D =
[

5 0 0
0 2 0

]
D+ =

⎡⎣ 1
5 0
0 1

2
0 0

⎤⎦
If A is any m × n matrix and if UDV T is one of its singular value decompositions, we
define the pseudo-inverse of A to be

A+ = VD+U T

We do not stop to prove that the pseudo-inverse of A is unique if we impose the order
σ1 � σ2 � · · ·.

■ THEOREM 2 MINIMAL SOLUTION THEOREM

Consider a system of linear equations Ax = b, in which A is an m × n matrix. The
minimal solution of the system is A+b.

Proof Use the notation established above, and let x be any point in R
n . Define y = V T x and

c = U T b. Using the properties of V and U , we obtain

ρ = inf
x

||Ax − b||2
= inf

x
||U DV T x − b||2

= inf
x

||U T (U DV T x − b)||2
= inf

x
||DV T x − U T b||2

= inf
y

||D y − c||2
Exploiting the special nature of D, we have∣∣∣∣D y − c

∣∣∣∣2
2
=

r∑
i=1

(σi yi − ci)
2 +

m∑
i=r+1

c2
i

To minimize this last expression, we define yi = ci/σi for 1 � i � r . The other components
can remain unspecified. But to get the y of least norm, we must set yi = 0 for r +1 � i � m.
This construction is carried out by the pseudo-inverse D+, so y = D+c. Hence, we obtain

x = V y = V D+c = V D+U T b = A+b

Let us express the minimal solution in another form, taking advantage of the zero compo-
nents in the vector y. Since yi = 0 for i > r , we require only the first r components of y.
These are given by yi = ci/σi . Now it is evident that only the first r components of c are
needed. Since c = U T b, ci is the inner product of row i in U T with the vector b. That is
the same as the inner product of the i th column of U with b. Thus,

yi = uT
i b/σi 1 � i � r

526 Chapter 12 Smoothing of Data and the Method of Least Squares

The minimal solution, which we may denote by x∗, is then

x∗ = V y =
r∑

i=1

yivi ■

An example of this procedure can be carried out in mathematical software such as
Matlab, Maple or Mathematica. We can generate a system of 20 equations with three
unknowns by a random process. This technique is often used in testing software, especially
in benchmarking studies, in which a large number of examples is run with careful timing.
The software has a provision for entering random matrices. When executed, the computer
program first exhibits the random input. The three singular values of matrix A are displayed.
Then the diagonal 20 × 3 matrix D is displayed. A check on the numerical work is made
by computing U DV T , which should equal A. Then the pseudo-inverse of D+ is computed.
Next, the pseudo-inverse A+ is computed. The minimal solution, x = A+b, is computed,
as well as the residual vector, r = A+b = b. Then the orthogonality condition AT r = 0 is
checked. This program is therefore carrying out all the steps described above for obtaining
the minimal solution of a system of equations. Another example will be given below to
show what happens in the case of a loss in rank. (See Computer Problem 12.3.10.)

In problems of this type, the user must examine the singular values and decide whether
any are small enough to warrant being set equal to zero. The necessity of this step becomes
clear when we look at the definition of D+. The reciprocals of the singular values are the
principal constituents of this matrix. Any very small singular value that is not set equal to
zero will therefore have a disruptive effect on the subsequent calculations. A rule of thumb
that has been recommended is to drop any singular value whose magnitude is less than σ1

times the inherent accuracy of the coefficient matrix. Thus, if the data are accurate to three
decimal places and if σ1 = 5, then any σi less than 0.005 should be set equal to zero.

An example of a small matrix having a near-deficiency in rank is given next. In the
Maple program, certain singular values are set equal to zero if they fail to meet the relative
size criterion mentioned in the previous paragraph. Also, we have added, as a check on the
calculations, a verification of the following four Penrose properties for a pseudo-matrix.

■ THEOREM 3 PENROSE PROPERTIES OF THE PSEUDO-INVERSE

The pseudo-inverse A+ for the matrix A has these four properties:

A = AA+ A A+ = A+ AA+

AA+ = (AA+)T A+ A = (A+ A)T

We can use mathematical software such as Matlab, Maple, or Mathematica for finding
the pseudo-inverse of a matrix that has a deficiency in rank. For example, consider this
5 × 3 matrix:

A =

⎡⎢⎢⎢⎢⎣
−85 −55 −115
−35 97 −167

79 56 102
63 57 69
45 −8 97.5

⎤⎥⎥⎥⎥⎦ (7)

12.3 Other Examples of the Least-Squares Principle 527

A tolerance value is set so that in the evaluation of singular values any value whose magnitude
is less than the tolerance is treated as zero. We can verify the Penrose properties for this
matrix. (See Computer Problem 12.3.11.)

Summary

(1) We attempt to solve an inconsistent system

n∑
j=0

akj x j = bk (0 � k � m)

in which there are m + 1 equations but only n + 1 unknowns with m > n. We minimize the
sum of the squares of the residuals and are led to minimize the expression

ϕ(x0, x1, . . . , xn) =
m∑

k=0

(
n∑

j=0

akj x j − bk

)2

We solve the (n + 1) × (n + 1) system of normal equations

n∑
j=0

(
m∑

k=0

aki ak j

)
x j =

m∑
k=0

bkaki (0 � i � n)

by Gaussian elimination, and the solution is a best approximate solution of the original
system in the least-squares sense.

Additional References
See Acton [1959], Björck [1996], Branham [1990], Cheney [1982, 2001], Forsythe [1957],
van Huffel and Vandewalle [1991], Lawson and Hanson [1995], Rice [1971], Rice and
White [1964], Rivlin [1990], Späth [1992], and Whittaker and Robinson [1944].

Problems 12.3

1. Analyze the least-squares problem of fitting data by a function of the form y = xc.

a2. Show that the Hilbert matrix (Computer Problem 7.2.4) arises in the normal equations
when we minimize ∫ 1

0

[
n∑

j=0

c j x
j − f (x)

]2

dx

a3. Find a function of the form y = ecx that best fits this table:

x 0 1

y 1
2 1

528 Chapter 12 Smoothing of Data and the Method of Least Squares

a4. (Continuation) Repeat the preceding problem for the following table:

x 0 1

y a b

5. (Continuation) Repeat the preceding problem under the supposition that b is negative.

a6. Show that the normal equation for the problem of fitting y = ecx to points (1, −12) and
(2, 7.5) has two real roots: c = ln 2 and c = 0. Which value is correct for the fitting
problem?

7. Consider the inconsistent System (1). Suppose that each equation has associated with
it a positive number wi indicating its relative importance or reliability. How should
Equations (2) and (3) be modified to reflect this?

a8. Determine the best approximate solution of the inconsistent system of linear equations⎧⎪⎨⎪⎩
2x + 3y = 1

x − 4y = −9

2x − y = −1
in the least-squares sense.

9.aa. Find the constant c for which cx is the best approximation in the sense of least
squares to the function sin x on the interval [0, π/2].

ab. Do the same for ex on [0, 1].

10. Analyze the problem of fitting a function y = (c − x)−1 to a table of m + 1 points.

11. Show that the normal equations for the least-squares solution of Ax = b can be written
(AT A)x = AT b.

12. Derive the normal equations given by System (5).

13. A table of values (xk, yk), where k = 0, 1, . . . , m, is obtained from an experiment.
When plotted on semilogarithmic graph paper, the points lie nearly on a straight line,
implying that y ≈ eax+b. Suggest a simple procedure for obtaining parameters a and b.

a14. In fitting a table of values to a function of the form a + bx−1 + cx−2, we try to make
each point lie on the curve. This leads to a + bx−1

k + cx−2
k = yk for 0 � k � m. An

equivalent equation is ax2
k + bxk + c = yk x2

k for 0 � k � m. Are the least-squares
problems for these systems of equations equivalent?

a15. A table of points (xk, yk) is plotted and appears to lie on a hyperbola of the form
y = (a + bx)−1. How can the linear theory of least squares be used to obtain good
estimates of a and b?

a16. Consider f (x) = e2x over [0, π]. We wish to approximate the function by a trigono-
metric polynomial of the form p(x) = a + b cos(x) + c sin(x). Determine the linear
system to be solved for determining the least squares fit of p to f .

a17. Find the constant c that makes the expression
∫ 1

0 (ex − cx)2 dx a minimum.

18. Show that in every least-squares matrix problem, the normal equations have a symmetric
coefficient matrix.

12.3 Other Examples of the Least-Squares Principle 529

19. Verify that the following steps produce the least-squares solution of Ax = b.

a. Factor A = Q R, where Q and R have the properties described in the text.

b. Define y = QT b. c. Solve the lower triangular system Rx = y.

a20. What value of c should be used if a table of experimental data (xi , yi) for 0 � i � m
is to be represented by the formula y = c sin x? An explicit usable formula for c is
required. Use the principle of least squares.

21. Refer to the formulas leading to the minimal solution of the system Ax = b. Prove
that the y-vector is given by the formula yi = σ−2

i bT Av i for 1 � i � r .

22. Prove that the pseudo-inverse satisfies the four Penrose equations.

23. Use the four Penrose properties to find the pseudo-inverse of the matrix [a, 0]T , where
a > 0. Prove that the pseudo-inverse is a discontinuous function of a.

24. Use the technique suggested in the preceding problem to find the pseudo-inverse of the
m × n matrix consisting solely of 1’s.

25. Use the Penrose equations to find the pseudo-inverse of any 1×n matrix and any m ×1
matrix.

26. (Multiple choice) Let A = P D Q, where A is an m × n matrix, P is an m × m unitary
matrix, D is an m × n diagonal matrix, and Q is an n × n unitary matrix. Which
equation can be deduced from those hypotheses?

a. A∗ = P∗ D∗ Q∗ b. A−1 = Q∗ D−1 P∗ c. D = P A Q

d. A∗ A = Q∗ D∗ D Q e. None of these.

27. (Multiple choice, continuation) Assume the hypotheses of the preceding problem. Use
the notation + to indicate a pseudo-inverse. Which equation is correct?

a. A+ = P D+ Q b. A∗ = Q∗ D−1 P∗ c. A+ = Q∗ D+ P∗

d. A−1 = Q∗ D+ P∗ e. None of these.

28. (Multiple choice) Let D be an m × n diagonal matrix with diagonal elements p1, p2,
. . . , pr , 0, 0, . . . , 0. Here all the numbers pi , for 1 � i � r , are positive. Which assertion
is not valid?

a. D+ is the m × n diagonal matrix with diagonal elements (1/p1, 1/p2, . . . , 1/pr , 0,
0, . . . , 0)

b. D+ is the n × m diagonal matrix with diagonal elements (1/p1, 1/p2, . . . , 1/pr , 0,
0, . . . , 0)

c. (D+)∗ = (D∗)+ d. D++ = D e. None of these.

29. (Multiple choice) Consider an inconsistent system of equations Ax = b. Let U be
a unitary matrix and let E = U∗ A. Let v, w, and z be vectors such that Uv = Eb,
Uw = E∗b, E y = U∗b, and Ex = U b. A vector that solves the least-squares problem
for the original system Ax = b is:
a. v b. w c. y

d. z e. None of these.

530 Chapter 12 Smoothing of Data and the Method of Least Squares

Computer Problems 12.3
a1. Using the method suggested in the text, fit the data in the table

x 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

y 0.6 1.1 1.6 1.8 2.0 1.9 1.7 1.3

by a function y = a sin bx .

2. (Prony’s method, n = 1) To fit a table of the form

x 1 2 · · · m

y y1 y2 · · · ym

by the function y = abx , we can proceed as follows: If y is actually abx , then yk = abk

and yk+1 = byk for k = 1, 2, . . . , m − 1. So we determine b by solving this system
of equations using the least-squares method. Having found b, we find a by solving
the equations yk = abk in the least-squares sense. Write a program to carry out this
procedure, and test it on an artificial example.

3. (Continuation) Modify the procedure of the preceding computer problem to handle
any case of equally spaced points.

4. A quick way of fitting a function of the form

f (x) ≈ a + bx

1 + cx

is to apply the least-squares method to the problem (1 + cx) f (x) ≈ a + bx . Use this
technique to fit the world population data given here:

Year Population (billions)

1000 0.340
1650 0.545
1800 0.907
1900 1.61
1950 2.51
1960 3.15
1970 3.65
1980 4.20
1990 5.30

Determine when the world population will become infinite!

5. (Student research project) Explore the question of whether the least-squares method
should be used to predict. For example, study the variances in the preceding problem
to determine whether a polynomial of any degree would be satisfactory.

6. Write a procedure that takes as input an (m + 1) × (n + 1) matrix A and an m + 1
vector b and returns the least-squares solution of the system Ax = b.

7. Write a Maple program to find the minimal solution of any system of equations, Ax = b.

12.3 Other Examples of the Least-Squares Principle 531

8. (Continuation) Write a Matlab program for the task in the preceding problem.

9. Investigate some of the newer methods for solving inconsistent linear equations
Ax = b, when the criterion is to make Ax close to b in one of the other useful norms,
namely, the maximum norm ||x||∞ = max1 � i � n |xi | or the �1 norm ||x||1 = ∑n

i=1 |xi |.
Use some of the available software.

10. Using mathematical software such as Matlab, Maple, or Mathematica, generate a sys-
tem of twenty equations with three unknowns by a random number generator. Form
the pseudo-inverse matrix and verify the properties in Theorem 2.

11. (Continuation.) Repeat using Matrix (7).

12. Write a computer program for carrying out the least squares curve fit using Chebyshev
polynomials. Test the code on a suitable data set and plot the results.

13

Monte Carlo Methods and Simulation

A highway engineer wishes to simulate the flow of traffic for a proposed
design of a major freeway intersection. The information that is obtained will
then be used to determine the capacity of storage lanes (in which cars must
slow down to yield the right of way). The intersection has the form shown in
Figure 13.1, and various flows (cars per minute) are postulated at the points
where arrows are drawn. By writing and running a simulation program, the
engineer can study the effect of different speed limits, determine which
flows lead to saturation (bottlenecks), and so on. Some techniques for
constructing such programs are developed in this chapter.

FIGURE 13.1

Traffic flow

13.1 Random Numbers
This chapter differs from most of the others in its point of view. Instead of addressing clear-
cut mathematical problems, it attempts to develop methods for simulating complicated proc-
esses or phenomena. If the computer can be made to imitate an experiment or a process, then
by repeating the computer simulation with different data, we can draw statistical conclu-
sions. In such an approach, the conclusions may lack a high degree of mathematical precision
but still be sufficiently accurate to enable us to understand the process being simulated.

Particular emphasis is given to problems in which the computer simulation involves an
element of chance. The whimsical name of Monte Carlo methods was applied some years

532

13.1 Random Numbers 533

ago by Stanislaw M. Ulam (1909–1984) to this way of imitating reality by a computer.
Since chance or randomness is part of the method, we begin with the elusive concept of
random numbers.

Consider a sequence of real numbers x1, x2, . . . all lying in the unit interval (0, 1).
Expressed informally, the sequence is random if the numbers seem to be distributed hap-
hazardly throughout the interval and if there seems to be no pattern in the progression
x1, x2, . . . For example, if all the numbers in decimal form begin with the digit 3, then
the numbers are clustered in the subinterval 0.3 � x< 0.4 and are not randomly distributed
in (0, 1). If the numbers are monotonically increasing, they are not random. If each xi is
obtained from its predecessor by a simple continuous function, say, xi = f (xi−1), then
the sequence is not random (although it might appear to be so). A precise definition of
randomness is quite difficult to formulate, and the interested reader may wish to consult an
article by Chaitlin [1975], in which randomness is related to the complexity of computer
algorithms! Thus, it seems best, at least in introductory material, to accept intuitively the
notion of a random sequence of numbers in an interval and to accept certain algorithms for
generating sequences that are more or less random.

A recommended reference is the book of Niederreiter [1992].

Random-Number Algorithms and Generators
Most computer systems have random-number generators, which are procedures that
produce either a single random number or an entire array of random numbers with each
call. In this chapter, we call such a procedure Random. The reader can use a random-number
generator available on his or her own computing system, one available within the computer
language being used, or one of the generators described below. For example, random-
number generators are contained in mathematical software systems such as Matlab, Maple,
and Mathematica as well as many computer programming languages. These random-number
procedures return one or an array of uniformly distributed pseudo-random numbers in the
unit interval (0, 1) depending on whether the argument is a scalar variable or an array.
A random seed procedure restarts or queries the pseudo-random-number generator. The
random number generator can produce hundreds of thousands of pseudo-random numbers
before repeating itself, at least theoretically.

For the problems in this chapter, one should select a routine to provide random numbers
uniformly distributed in the interval (0, 1). A sequence of numbers is uniformly distributed
in the interval (0, 1) if no subset of the interval contains more than its share of the numbers.
In particular, the probability that an element x drawn from the sequence falls within the
subinterval [a, a + h] should be h and hence independent of the number a. Similarly, if
pi = (xi , yi) are random points in the plane uniformly distributed in some rectangle, then
the number of these points that fall inside a small square of area k should depend only on
k and not on where the square is located inside the rectangle.

Random numbers produced by a computer code cannot be truly random because the
manner in which they are produced is completely deterministic; that is, no element of
chance is actually present. But the sequences that are produced by these routines appear to
be random, and they do pass certain tests for randomness. Some authors prefer to emphasize
this point by calling such computer-generated sequences pseudo-random numbers.

If the reader wishes to program a random-number generator, the following one should
be satisfactory on a machine that has 32-bit word length. This algorithm generates n random

534 Chapter 13 Monte Carlo Methods and Simulation

numbers x1, x2, . . . , xn uniformly distributed in the open interval (0, 1) by means of the
following recursive algorithm:

integer array (�i)0:n; real array (xi)1:n

�0 ← any integer such that 1 < �0 < 231 − 1
for i = 1 to n do

�i ← remainder when 75�i−1 is divided by 231 − 1
xi ← �i/(231 − 1)

end for

Here, all �i ’s are integers in the range 1 < �i < 231 − 1. The initial integer �0 is called the
seed for the sequence and is selected as any integer between 1 and the Mersenne prime
number 231 − 1 = 21474 83647.

For information on portable random-number generators, the reader should consult the
article by Schrage [1979]. A fast normal random-number generator can be written in only
a few lines of code as presented in Leva [1992]. It is based on the ratio of uniform deviates
method of Kinderman and Monahan [1977].

An external function procedure to generate a new array of pseudo-random numbers per
call could be based on the following pseudocode:

real procedure Random((xi))

integer seed, i, n; real array (xi)1:n

integer k ← 16807, j ← 21474 83647
seed ← select initial value for seed
n ← size((xi))

for i = 1 to n do
seed ← mod(k · seed, j)
xi ← real(seed)/real(j)

end for
end procedure Random

To allow adequate representation of the numbers involved in procedure Random, it must be
written by using double or extended precision for use on a 32-bit computer; otherwise, it
will produce nonrandom numbers.

Recall that here and elsewhere, mod(n, m) is the remainder when n is divided by m;
that is, it results in n − [integer(n/m)]m, where integer(n/m) is the integer resulting from
the truncation of n/m. Thus, mod(44, 7) is 2, mod(3, 11) is 3, and mod(n, m) is 0 whenever
m divides n evenly. We also note that x ≡ y modulo (z) means that x − y is divisible by z.

Outlines of two other random-number generator algorithms follow:

■ ALGORITHM 1 Mother of All Pseudo-Random-Number Generators

Initialize the four values of x0, x1, x2, x3 and c to random values based on a value
of the seed. Letting s = 2111111111xn−4 + 1492xn−3 + 1776xn−2 + 5115xn−1 +
c, compute xn = s mod (232) and c = �s/232� for n � 4. Invented by George
Marsaglia. (See www.agner.org/random/.)

www.agner.org/random/

13.1 Random Numbers 535

■ ALGORITHM 2 rand() in Unix

Initialize the x0 to a random value based on a value of the seed. Compute xn+1 =
(1103515245xn + 12345) mod(231) for n � 1.

These algorithms are suitable for some applications, but they may not produce high-quality
randomness and may not be suitable for applications requiring accurate statistics or in
cryptographics. On the Internet, one can find new and improved pseudo-random-number
generators, which are designed for the fast generations of high-quality random numbers with
colossal periods and with special distributions. (See, for example,www.gnu.org/software
/gsl/.)

A few words of caution about random-number generators in computing systems are
needed. The fact that the sequences produced by these programs are not truly random has
already been noted. In some simulations, the failure of randomness can lead to erroneous
conclusions. Here are three specific points and examples to remember:

■ PROPERTIES 1. The algorithms of the type illustrated here by Random and those above produce
periodic sequences; that is, the sequences eventually repeat themselves. The
period is of the order 230 for Random, which is quite large.

2. If a random-number generator is used to produce random points in n-dimensional
space, these points lie on a relatively small number of planes or hyperplanes. As
Marsaglia [1968] reports, points obtained in this way in 3-space lie on a set of
only 119086 planes for computers with integer storage of 48 bits. In 10-space
they lie on a set of 126 planes, which is quite small.

3. The individual digits that make up random numbers generated by routines such
as Random are not, in general, independent random digits. For example, it might
happen that the digit 3 follows the digit 5 more (or less) often than would be
expected.

Examples
An example of a pseudocode to compute and print ten random numbers using procedure
Random follows:

program Test Random
real array (xi)1:n; integer n ← 10
call Random((xi))

output (xi)

end program Test Random

The computer results from a typical run are as follows:

0.31852 29, 0.53260 59, 0.50676 22, 0.15271 48, 0.67687 93,

0.31067 89, 0.57963 66, 0.95331 68, 0.39584 57, 0.97879 35

Mathematical software systems such as Matlab, Maple, and Mathematica have col-
lections of random-number generators with various distributions. For example, one can

www.gnu.org/software/gsl/
www.gnu.org/software/gsl/

536 Chapter 13 Monte Carlo Methods and Simulation

generate uniformly distributed pseudo-random numbers in the interval (0, 1). Moreover,
they are particularly useful for plotting and displaying random points generated within
regions in one, two, and three dimensions.

As a coarse check on the random-number generator, let us compute a long sequence
of random numbers and determine what proportion of them lie in the interval

(
0, 1

2

]
. The

computed answer should be approximately 50%. The results with different sequence lengths
are tabulated. Here is the pseudocode to carry out this experiment:

program Coarse Check
integer i, m; real per; real array (ri)1:n

integer n ← 10000
m ← 0
call Random((ri))

for i = 1 to n do
if ri � 1/2 then m ← m + 1
if mod(i, 1000) = 0 then

per ← 100 real(m)/real(n)

output i, per
end if

end for
end program Coarse Check

In this pseudocode, a sequence of 10000 random numbers is generated. Along the way,
the current proportion of numbers less than 1

2 is computed at the 1000th step and then at
multiples of 1000. Some of the computer results of the experiment are 49.5, 50.2, 51.0, and
50.625.

The experiment described can also be interpreted as a computer simulation of the tossing
of a coin. A single toss corresponds to the selection of a random number x in the interval
(0, 1). We arbitrarily associate heads with event 0 < x � 1

2 and tails with event 1
2 < x < 1.

One thousand tosses of the coin corresponds to 1000 choices of random numbers. The
results show the proportion of heads that result from repeated tossing of the coin. Random
integers can be used to simulate coin tossing as well.

Observe that (at least in this experiment) reasonable precision is attained with only a
moderate number of random numbers (4000). Repeating the experiment 10000 times has
only a marginal influence on the precision. Of course, theoretically, if the random numbers
were truly random, the limiting value as the number of random numbers used increases
without bound would be exactly 50%.

In this pseudocode and others in the chapter, all of the random numbers are generated
initially, stored in an array, and used later in the program as needed. This is an efficient way
to obtain these numbers because it minimizes the number of procedure calls but at the cost
of storage space. If memory space is at a premium, the call to the random-number generator
can be moved closer to its use (inside the loop(s)) so that it returns a single random number
with each call.

Now we consider some basic questions about generating random points in various
geometric configurations. Assume that procedure Random is used to obtain a random num-
ber r in the interval [0, 1]. First, if uniformly distributed random points are needed on some

13.1 Random Numbers 537

interval (a, b), the statement

x ← (b − a)r + a

accomplishes this. Second, the pseudocode

i ← integer ((n + 1)r)

produces random integers in the set {0, 1, . . . , n}. Third, for random integers from j to k
(j � k), use the assignment statement

i ← integer ((k − j + 1)r + j)

Finally, the following statements can be used to obtain the first four digits in a random
number:

integer array (mi)1:n; integer i ; real r, x
integer n ← 4
call Random(r)

for i = 1 to n do
x ← 10r
mi ← integer(x)

x ← x − real(mi)

end for
output (mi)

Uses of Pseudocode Random
We now illustrate both correct and incorrect uses of procedure Random for producing
uniformly distributed points.

Consider the problem of generating 1000 random points uniformly distributed inside
the ellipse x2 + 4y2 = 4.

One way to do so is to generate random points in the rectangle −2 � x � 2, −1 � y � 1,
and discard those that do not lie in the ellipse (see Figure 13.2).

FIGURE 13.2

Uniformly
distributed

random points
in ellipse

x2 + 4y2 = 4

y

x

�1

1

2�2

538 Chapter 13 Monte Carlo Methods and Simulation

program Ellipse
integer i, j ; real u, v; real array (xi)1:n, (yi)1:n, (ri j)1:npts×1:2

integer n ← 1000, npts ← 2000
call Random((ri j))

j ← 1
for i = 1 to npts do

u ← 4ri,1 − 2
v ← 2ri,2 − 1
if u2 + 4v2 � 4 then

x j ← u
y j ← v

j ← j + 1
if j = n then exit loop i
end if

end for
end program Ellipse

To be less wasteful, we can force the |y| value to be less than 1
2

√
4 − x2, as in the following

pseudocode, which produces erroneous results (see Figure 13.3):

FIGURE 13.3

Nonuniformly
distributed

random points
in the ellipse
x2 + 4y2 = 4

2

y

x
�2

�1

1

program Ellipse Erroneous
integer i ; real array (xi)1:n, (yi)1:n, (ri j)1:n×1:2

integer n ← 1000
call Random((ri j))

for i = 1 to n do
xi ← 4ri,1 − 2
yi ← [(2ri,2 − 1)/2]

√
4 − x2

i

end for
end program Ellipse Erroneous

13.1 Random Numbers 539

FIGURE 13.4

Vertical strips
containing

nonuniformly
distributed

points

y

x
�2

�1

1

2

This pseudocode does not produce uniformly distributed points inside the ellipse. To be
convinced of this, consider two vertical strips taken inside the ellipse (see Figure 13.4). If
each strip is of width h, then approximately 1000(h/4) of the random points lie in each
strip because the random variable x is uniformly distributed in (−2, 2), and with each x , a
corresponding y is generated by the program so that (x, y) is inside the ellipse. But the two
strips shown should not contain approximately the same number of points because they do
not have the same area. The points generated by the second program tend to be clustered at
the left and right extremities of the ellipse in Figure 13.3.

For the same reasons, the following pseudocode does not produce uniformly distributed
random points in the circle x2 + y2 = 1 (see Figure 13.5):

FIGURE 13.5

Nonuniformly
distributed

random points
in the circle
x2 + y2 = 1

y

x

–1

1

–1 1

program Circle Erroneous
integer i ; real array (xi)1:n, (yi)1:n, (ri j)1:n×1:2

integer n ← 1000

540 Chapter 13 Monte Carlo Methods and Simulation

call Random((ri j))

for i = 1 to n do
xi ← ri,1 cos(2πri,2)

yi ← ri,1 sin(2πri,2)

end for
end program Circle Erroneous

In this pseudocode, 2πri,2 is uniformly distributed in (0, 2π), and ri,1 is uniformly distributed
in (0, 1). However, in the transfer from polar to rectangular coordinates by the equations
x = ri,1 cos(2πri,2) and y = ri,1 sin(2πri,2), the uniformity is lost. The random points are
strongly clustered near the origin in Figure 13.5.

A random-number generator produces a sequence of numbers that are random in the
sense that they are uniformly distributed over a certain interval such as [0, 1) and it is not
possible to predict the next number in the sequence from knowing the previous ones. One
can increase the randomness of such a sequence by a suitable shuffle of them. The idea is
to fill an array with the consecutive numbers from the random-number generator and then
to use the generator again to choose at random which of the numbers in the array is to be
selected as the next number in a new sequence. The hope is that the new sequence is more
random than the original one. For example, a shuffle can remove any correlation between
near successors of a number in a sequence. See Flowers [1995] for a shuffling procedure that
can be used with a random-number generator based on a linear congruence. It is particularly
useful on computers with a small word length.

There are statistical tests that can be performed on a sequence of random numbers. While
such tests do not certify the randomness of a sequence, they are particularly important in
applications. For example, they are useful in choosing between different random-number
generators, and it is comforting to know that the random-number generator being used has
passed such tests. Situations exist when random-number generators are useful even though
they do not pass rigid tests for true randomness. Thus, if one is producing random matrices for
testing a linear algebra code, then strict randomness may not be important. On the other hand,
strict randomness is essential in Monte Carlo integration and other applications. In these
cases in which strict randomness is important, it is recommended that one use a machine
with a large word size and a random-number generator with known statistical characteristics.
(See Volume 2 of Knuth [1997] or Flowers [1995] for some tests of randomness.)

Quasi-random or low-discrepancy sequences are constructed to give a uniform cover-
age of an area or volume while maintaining a reasonably random appearance even though
they are not in fact random.

A prime number is an integer greater than 1 whose only factors (divisors) are itself
and 1. Prime numbers are some of the fundamental building blocks in mathematics. The
search for large primes has a long and interesting history. In 1644, Mersenne (a French
friar) conjectured that 2n − 1 was a prime number for n = 17, 19, 31, 67, 127, 257 and
for no other n in the range 1 � n � 257. In 1876, Lucas proved that 2127 − 1 was prime.
In 1937, however, Lehmer showed that 2257 − 1 was not prime. Until 1952, 2127 − 1 was
the largest known prime. Then it was shown that 2521 − 1 was prime. As a means of
testing new computer systems, the search for ever-larger Mersenne primes continues. In
fact, the search for ever larger primes has grown in importance for use in cryptology. In
1992, a Cray 2 supercomputer using the Lucas-Lehmer test determined after a 19-hour

13.1 Random Numbers 541

computation that the number 2756839 − 1 was a prime. This number has 227,832 digits! The
previous largest known Mersenne prime was identified in 1985 as 2216091 − 1. In 2006, the
largest known prime 232582657 −1, with 9.8 million digits, was discovered using the Internet
facility GIMPS (Great Internet Mersenne Prime Search). Thousands of individuals have
used the GIMPS database to facilitate their search for large primes, and interaction with
the database can be done automatically without human intervention. For more information
on large primes and to find out the current record for the largest known prime, consult
http://www.mersenne.org/prime.html and www.utm.edu/research/primes.

Summary

(1) An algorithm to generate an array (ri) of pseudo-random numbers is

integer �; real array (xi)1:n

� ← an integer between 1 and 231 − 1
for i = 1 to n do

� ← mod(75�, 231 − 1)

xi ← �/(231 − 1)

end for

(2) If (ri) is an array of random numbers, then use the following to generate random points
in an interval (a, b)

x ← (b − a)ri + a

to produce random integers in the set {0, 1, . . . , n}
i ← integer ((n + 1)ri)

and to obtain random integers from j to k (j � k)

i ← integer ((k − j + 1)ri + j)

Problems 13.1

a1. Taking the seed to be 123456, compute by hand the first three random numbers produced
by procedure Random.

2. Show that if the seed � is less than or equal to 12777, then the first random number
produced by procedure Random is less than 1

10 .

3. Show that the numbers produced by procedure Random are not random because their
products with 231 − 1 are integers.

4. Describe in what ways this algorithm for random numbers differs from procedure
Random: {

x0 arbitrary in (0, 1)

xi = fractional part of 75xi−1 i � 1

http://www.mersenne.org/prime.html
www.utm.edu/research/primes

542 Chapter 13 Monte Carlo Methods and Simulation

Computer Problems 13.1

1. Write a program to generate 1000 random points uniformly distributed in the cardioid
r = 2 − cos θ .

2. Using procedure Random, write code for procedure Random Trapezoid(x, y), which
generates a pseudo-random point (x, y) inside or on the trapezoid formed by the points
(1, 3), (2, 5), (4, 3), and (3, 5).

3. Without using any procedures, write a program to generate and print 100 random
numbers uniformly distributed in (0, 1). Eight statements suffice.

4. Test some random-number generators found in mathematical software on the World
Wide Web.

5. Test the random-number generator on your computer system in the following way:
Generate 1000 random numbers x1, x2, . . . , x1000.

a. In any small interval of width h, approximately 1000h of the xi ’s should lie in
that interval. Count the number of random numbers in each of ten intervals [(n −
1)/10, n/10], where n = 1, 2, . . . , 10.

b. The inequality xi < xi+1 should occur approximately 500 times. Count them in
your sample.

6. Write a procedure to generate with each call a random vector of the form x =
[x1, x2, . . . , x20]T , where each xi is an integer from 1 to 100 and no two components
of x are the same.

7. Write a program to generate n = 1000 random points uniformly distributed in the

a. equilateral triangle in the following figure:

3

1�1

b. diamond in the following figure:

1�1

�1

1

Store the random points (xi , yi) in arrays (xi)1:n and (yi)1:n .

13.1 Random Numbers 543

a8. If x1, x2, . . . is a random sequence of numbers uniformly distributed in the interval
(0, 1), what proportion would you expect to satisfy the inequality 40x2 + 7 > 43x?
Write a program to test this on 1000 random numbers.

9. Write a program to generate and print 1000 points uniformly and randomly distributed
in the circle (x − 3)2 + (y + 1)2 � 9.

10. Generate 1000 random numbers xi according to a uniform distribution in the interval
(0, 1). Define a function f on (0, 1) as follows: f (t) is the number of random numbers
x1, x2, . . . , x1000 less than t . Compute f (t)/1000 for 200 points t uniformly distributed
in (0, 1). What do you expect f (t)/1000 to be? Is this expectation borne out by the
experiment? If a plotter is available, plot f (t)/1000.

a11. Let ni (1 � i � 1000) be a sequence of integers that satisfies 0 � ni � 9. Write a program
to test the given sequence for periodicity. (The sequence is periodic if there is an integer
k such that ni = ni+k for all i .)

12. Generate in the computer 1000 random numbers in the interval (0, 1). Print and examine
them for evidence of nonrandom behavior.

a13. Generate 1000 random numbers xi (1 � i � 1000) on your computer. Let ni denote the
eighth decimal digit in xi . Count how many 0’s, 1’s, . . . , 9’s there are among the 1000
numbers ni . How many of each would you expect? This code can be written with nine
statements.

14. (Continuation) Using a random-number generator, generate 1000 random numbers,
and count how many times the digit i occurs in the j th decimal place. Print a table
of these values—that is, frequency of digit versus decimal place. By examining the
table, determine which decimal place seems to produce the best uniform distribution
of random digits. Hint: Use the routine from Computer Problem 1.1.7 to compute the
arithmetic mean, variance, and standard deviations of the table entries.

a15. Using random integers, write a short program to simulate five people matching coin
flips. Print the percentage of match-ups (five of a kind) after 125 flips.

a16. Write a program to generate 1600 random points uniformly distributed in the sphere
defined by x2 + y2 + z2 � 1. Count the number of random points in the first octant.

17. Write a program to simulate 1000 simultaneous flips of three coins. Print the number
of times that two of the three coins come up heads.

18. Compute 1000 triples of random numbers drawn from a uniform distribution. For each
triple (x, y, z), compute the leading significant digit of the product xyz. (The leading
significant digit is one of 1, 2, . . . , 9.) Determine the frequencies with which the digits
1 through 9 occur among the 1000 cases. Try to account for the fact that these digits
do not occur with the same frequency. (For example, 1 occurs approximately 7 times
more often than 9.) If you are intrigued by this, you may wish to consult the articles by
Flehinger [1966], Raimi [1969], and Turner [1982].

19. Run the example programs in this section and see whether similar results are obtained
on your computer system.

544 Chapter 13 Monte Carlo Methods and Simulation

20. Write a program to generate and plot 1000 pseudo-random points with the following
exponential distribution inside the figure below: x = − ln(1 − r)/λ for r ∈ [0, 1) and
λ = 1/30.

z

y

x

2

1

0

3
–
2

21. Improve the program Coarse Check by using ten or a hundred buckets instead of two.

22. (Student research project) Investigate some of the latest developments on random-
number generators and explore parallel random number generators. Random numbers
are often needed for distributions other than the uniform distribution, so this has a
statistical aspect.

13.2 Estimation of Areas and Volumes
by Monte Carlo Techniques

Numerical Integration
Now we turn to applications, the first being the approximation of a definite integral by
the Monte Carlo method. If we select the first n elements x1, x2, . . . , xn from a random
sequence in the interval (0, 1), then∫ 1

0
f (x) dx ≈ 1

n

n∑
i=1

f (xi)

Here, the integral is approximated by the average of n numbers f (x1), f (x2), . . . , f (xn).
When this is actually carried out, the error is of order 1/

√
n, which is not at all competitive

with good algorithms, such as the Romberg method. However, in higher dimensions, the
Monte Carlo method can be quite attractive. For example,∫ 1

0

∫ 1

0

∫ 1

0
f (x, y, z) dx dy dz ≈ 1

n

n∑
i=1

f (xi , yi , zi)

where (xi , yi , zi) is a random sequence of n points in the unit cube 0 � x � 1, 0 � y � 1, and
0 � z � 1. To obtain random points in the cube, we assume that we have a random sequence

13.2 Estimation of Areas and Volumes by Monte Carlo Techniques 545

in (0, 1) denoted by ξ1, ξ2, ξ3, ξ4, ξ5, ξ6, . . . To get our first random point p1 in the cube, just
let p1 = (ξ1, ξ2, ξ3). The second is, of course, p2 = (ξ4, ξ5, ξ6), and so on.

If the interval (in a one-dimensional integral) is not of length 1 but, say, is the gen-
eral case (a, b), then the average of f over n random points in (a, b) is not simply an
approximation for the integral but rather for

1

b − a

∫ b

a
f (x) dx

which agrees with our intention that the function f (x) = 1 have an average of 1. Similarly,
in higher dimensions, the average of f over a region is obtained by integrating and dividing
by the area, volume, or measure of that region. For instance,

1

8

∫ 3

1

∫ 1

−1

∫ 2

0
f (x, y, z) dx dy dz

is the average of f over the parallelepiped described by the following three inequalities:
0 � x � 2, −1 � y � 1, 1 � z � 3.

To keep the limits of integration straight, recall that∫ b

a

∫ d

c
f (x, y) dx dy =

∫ b

a

[∫ d

c
f (x, y) dx

]
dy

and ∫ a2

a1

∫ b2

b1

∫ c2

c1

f (x, y, z) dx dy dz =
∫ a2

a1

{∫ b2

b1

[∫ c2

c1

f (x, y, z) dx

]
dy

}
dz

So if (xi , yi) denote random points with appropriate uniform distribution, the following
examples illustrate Monte Carlo techniques:∫ 5

0
f (x) dx ≈ 5

n

n∑
i=1

f (xi)∫ 5

2

∫ 6

1
f (x, y) dx dy ≈ 15

n

n∑
i=1

f (xi , yi)

In each case, the random points should be uniformly distributed in the regions involved.
In general, we have∫

A
f ≈ (measure of A) × (average of f over n random points in A)

Here, we are using the fact that the average of a function on a set is equal to the integral of
the function over the set divided by the measure of the set.

Example and Pseudocode
Let us consider the problem of obtaining the numerical value of the integral∫∫

�

sin
√

ln(x + y + 1) dx dy =
∫∫

�

f (x, y) dx dy

546 Chapter 13 Monte Carlo Methods and Simulation

FIGURE 13.6

Sketch of
surface f (x, y)

above disk �

z

y

x

1

Surface f

1
Disk �

over the disk in xy-space, defined by the inequality

� =
{

(x, y) :

(
x − 1

2

)2

+
(

y − 1

2

)2

�
1

4

}
A sketch of this domain, with a surface above it, is shown in Figure 13.6. We proceed by gen-
erating random points in the square and discarding those that do not lie in the disk. We take
n = 5000 points in the disk. If the points are pi = (xi , yi), then the integral is estimated to be∫∫

�

f (x, y) dx dy ≈ (area of disk �) ×
(

average height of f
over n random points

)
= (

πr2
) [1

n

n∑
i=1

f (pi)

]

= π

4n

n∑
i=1

f (pi)

The pseudocode for this example follows. Intermediate estimates of the integral are printed
when n is a multiple of 1000. This gives us some idea of how the correct value is being
approached by our averaging process.

program Double Integral
integer i, j : real sum, vol, x, y; real array (ri j)1:n×1:2

integer n ← 5000, iprt ← 1000; external function f
call Random((ri j))

j ← 0; sum ← 0
for i = 1 to n do

x = ri,1; y = ri,2

if (x − 1/2)2 + (y − 1/2)2 � 1/4 then
j ← j + 1
sum ← sum + f (x, y)

if mod(j, iprt) = 0 then
vol ← (π/4)sum/real(j)
output j, vol

13.2 Estimation of Areas and Volumes by Monte Carlo Techniques 547

end if
end if

end for
vol ← (π/4)sum/real(j)
output j, vol
end program Double Integral

real function f (x, y)

real x, y
f ← sin

(√
ln(x + y + 1)

)
end function

We obtain an approximate value of 0.57 for the integral.

Computing Volumes
The volume of a complicated region in 3-space can be computed by a Monte Carlo technique.
Taking a simple case, let us determine the volume of the region whose points satisfy the
inequalities ⎧⎪⎨⎪⎩

0 � x � 1 0 � y � 1 0 � z � 1

x2 + sin y � z

x − z + ey � 1

The first line defines a cube whose volume is 1. The region defined by all the given in-
equalities is therefore a subset of this cube. If we generate n random points in the cube and
determine that m of them satisfy the last two inequalities, then the volume of the desired
region is approximately m/n. Here is a pseudocode that carries out this procedure:

program Volume Region
integer i, m; real array (ri j)1:n×1:3; real vol, x, y, z
integer n ← 5000, iprt ← 1000
call Random((ri j))

for i = 1 to n do
x ← ri,1

y ← ri,2

z ← ri,3

if x2 + sin y � z, x − z + ey � 1 then m ← m + 1
if mod(i, iprt) = 0 then

vol ← real(m)/real(i)
output i, vol

end if
end for
end program Volume Region

548 Chapter 13 Monte Carlo Methods and Simulation

Observe that intermediate estimates are printed out when we reach 1000, 2000, . . . , 5000
points. An approximate value of 0.14 is determined for the volume of the region.

Ice Cream Cone Example
Consider the problem of finding the volume above the cone z2 = x2 + y2 and inside
the sphere x2 + y2 + (z − 1)2 = 1 as shown in Figure 13.7. The volume is contained
in the box bounded by −1 � x � 1, −1 � y � 1, and 0 � z � 2, which has volume 8. Thus,
we want to generate random points inside this box and multiply by 8 the ratio of those
inside the desired volume to the total number generated. A pseudocode for doing this
follows:

program Cone
integer i, m; real vol, x, y, z; real array (ri j)1:n×1:3

integer n ← 5000, iprt ← 1000; m ← 0
call Random((ri j))

for i = 1 to n do
x ← 2ri,1 − 1; y ← 2ri,2 − 1; z ← 2ri,3

if x2 + y2 � z2, x2 + y2 � z(2 − z) then m ← m + 1
if mod(i, iprt) = 0 then

vol ← 8 real(m)/real(i)
output i, vol

end if
end for
end program Cone

The volume of the cone is approximately 3.3.

FIGURE 13.7

Ice cream cone
region

z

y

x

1�1 0

13.2 Estimation of Areas and Volumes by Monte Carlo Techniques 549

Summary

(1) We discuss the approximating of integrals by the Monte Carlo method to estimate areas
and volumes. We use ∫ 1

0
f (x) dx ≈ 1

n

n∑
i=1

f (xi)

∫ 1

0

∫ 1

0

∫ 1

0
f (x, y, z) dx dy dz ≈ 1

n

n∑
i=1

f (xi , yi , zi)

where {xi } is a sequence of random numbers in the unit interval and (xi , yi , zi) is a random
sequence of n points in the unit cube.

(2) In general, we have∫
A

f ≈ (measure of A) × (average of f over n random points in A)

Problems 13.2

a1. It is proposed to calculate π by using the Monte Carlo method. A circle of radius 1 is
inside a square of side 2. We count how many of m random points in the square happen
to lie in the circle. Assume that the error is 1/

√
m. How many points must be taken to

obtain π with three accurate figures (i.e., 3.142)?

Computer Problems 13.2

1. Run the codes given in this section on your computer system and verify that they produce
reasonable answers.

a2. Write and test a program to evaluate the integral
∫ 1

0 ex dx by the Monte Carlo method,
using n = 25, 50, 100, 200, 400, 800, 16000, and 32000. Observe that 32,000 random
numbers are needed and that the work in each case can be used in the next case. Print
the exact answer. Plot the results using a logarithmic scale to show the rate of growth.

3. Write a program to verify numerically that π = ∫ 2
0 (4− x2)1/2 dx . Use the Monte Carlo

method and 2500 random numbers.

a4. Use the Monte Carlo method to approximate the integral∫ 1

−1

∫ 1

−1

∫ 1

−1
(x2 + y2 + z2) dx dy dz

Compare with the correct answer.

550 Chapter 13 Monte Carlo Methods and Simulation

a5. Write a program to estimate∫ 2

0

∫ 6

3

∫ 1

−1
(yx2 + z log y + ex) dx dy dz

6. Using the Monte Carlo technique, write a pseudocode to approximate the integral∫∫∫
�

(ex sin y log z) dx dy dz

where � is the circular cylinder that has height 3 and circular base x2 + y2 � 4.

a7. Estimate the area under the curve y = e−(x+1)2
and inside the triangle that has vertices

(1, 0), (0, 1), and (−1, 0) by writing and testing a short program.

8. Using the Monte Carlo approach, find the area of the irregular figure defined by⎧⎪⎨⎪⎩
1 � x � 3 − 1 � y � 4

x3 + y3 � 29

y � ex − 2
a9. Use the Monte Carlo method to estimate the volume of the solid whose points (x, y, z)

satisfy ⎧⎪⎨⎪⎩
0 � x � y 1 � y � 2 − 1 � z � 3

ex � y

(sin z)y � 0
a10. Using a Monte Carlo technique, estimate the area of the region determined by the

inequalities 0 � x � 1, 10 � y � 13, y � 12 cos x , and y � 10 + x3. Print intermediate
answers.

11. Use the Monte Carlo method to approximate the following integrals.

a.
∫ 1

−1

∫ 1

−1

∫ 1

−1
(x2 − y2 − z2) dx dy dz

b.
∫ 4

1

∫ 5

2
(x2 − y2 + xy − 3) dx dy

c.
∫ 3

2

∫ √
y

1+y
(x2 y + xy2) dx dy d.

∫ 1

0

∫ √
y

y2

∫ y+z

0
xy dx dy dz

12. The value of the integral ∫ π/4

0

∫ 2 cos φ

0

∫ 2π

0
ρ2 sin φ dθ dρ dφ

using spherical coordinates is the volume above the cone z2 = x2 + y2 and inside
the sphere x2 + y2 + (z − 1)2 = 1. Use the Monte Carlo method to approximate this
integral and compare the results with that from the example in the text.

13. Let R denote the region in the xy-plane defined by the inequalities{
1
3 � 3x � 9 − y
√

x � y � 3

13.2 Estimation of Areas and Volumes by Monte Carlo Techniques 551

Estimate the integral ∫∫
R
(ex + cos xy) dx dy

a14. Using a Monte Carlo technique, estimate the area of the region defined by the inequali-
ties 4x2 + 9y2 � 36 and y � arctan(x + 1).

15. Write a program to estimate the area of the region defined by the inequalities{
x2 + y2 � 4

|y| � ex

16. An integral can be estimated by the formula∫ 1

0
f (x) dx ≈ 1

n

n∑
i=1

f (xi)

even if the xi ’s are not random numbers; in fact, some nonrandom sequences may
be better. Use the sequence xi = (

fractional part of i
√

2
)

and test the corresponding
numerical integration scheme. Test whether the estimates converge at the rate 1/n or
1/

√
n by using some simple examples, such as

∫ 1
0 ex dx and

∫ 1
0 (1 + x2)−1 dx .

17. Consider the ellipsoid

x2

4
+ y2

16
+ z2

4
= 1

a. Write a program to generate and store 5000 random points uniformly distributed in
the first octant of this ellipsoid.

ab. Write a program to estimate the volume of this ellipsoid in the first octant.

18. A Monte Carlo method for estimating
∫ b

a f (x) dx if f (x) � 0 is as follows: Let
c � maxa � x � b f (x). Then generate n random points (x, y) in the rectangle a � x � b,

0 � y � c. Count the number k of these random points (x, y) that satisfy y � f (x). Then∫ b
a f (x) dx ≈ kc(b − a)/n. Verify this and test the method on

∫ 2
1 x2 dx ,

∫ 1
0 (2x2 −

x + 1) dx , and
∫ 1

0 (x2 + sin 2x) dx .

19. (Continuation) Use the method of Computer Problem 13.2.18 to estimate the value
of π = 4

∫ 1
0

√
1 − x2 dx . Generate random points in 0 � x � 1, 0 � y � 1. Use n =

1000, 2000, . . . , 10000 and try to determine whether the error is behaving like 1/
√

n.

20. (Continuation) Modify the method outlined in Computer Problem 13.2.19 to handle the
case when f takes positive and negative values on [a, b]. Test the method on

∫ 1
−1 x3 dx .

21. Another Monte Carlo method for evaluating
∫ b

a f (x) dx is as follows: Generate an odd
number of random numbers in (a, b). Reorder these points so that a < x1 < x2 < · · · <

xn < b. Now compute

f (x1)(x2 − a) + f (x3)(x4 − x2) + f (x5)(x6 − x4) + · · · + f (xn)(b − xn−1)

Test this method on∫ 1

0
(1 + x2)−1 dx

∫ 1

0
(1 − x2)−1/2 dx

∫ 1

0
x−1 sin x dx

552 Chapter 13 Monte Carlo Methods and Simulation

22. What is the expected value of the volume of a tetrahedron formed by four points
chosen randomly inside the tetrahedron whose vertices are (0, 0, 0), (0, 1, 0), (0, 0, 1),
and (1, 0, 0)? (The precise answer is unknown!)

23. Write a program to compute the area under the curve y = sin x and above the curve
y = ln(x + 2). Use the Monte Carlo method, and print intermediate results.

24. Estimate the integral

∫ 5.9

3.2

(
esin x+x2

ln x

)
dx

by the Monte Carlo method.

25. Test the random-number generator that is available to you in the following manner:
Begin by creating a list of N random numbers rk , uniformly distributed in the interval
[0, 1]. Create a list of random integers nk by extracting the integer part of 10rk for
1 � k � N . Compute the elements in a 10×10 matrix (mi j), where mi j is the number of
times i is followed by j in the list (nk). Compare these numbers to the values predicted
by elementary probability theory. If possible, display the values of mi j graphically.

26. (Student research project) Investigate some of the latest developments on Monte
Carlo methods for multivariable integration.

13.3 Simulation
We next illustrate the idea of simulation. We consider a physical situation in which an
element of chance is present and try to imitate the situation on the computer. Statistical
conclusions can be drawn if the experiment is performed many times. Applications include
the simulation of servers, clients, and queues as might occur in businesses such as banks or
grocery stores.

Loaded Die Problem
In simulation problems, we must often produce random variables with a prescribed distri-
bution. Suppose, for example, that we want to simulate the throw of a loaded die and that
the probabilities of various outcomes have been determined as shown:

Outcome 1 2 3 4 5 6

Probability 0.2 0.14 0.22 0.16 0.17 0.11

If the random variable x is uniformly distributed in the interval (0, 1), then by breaking this
interval into six subintervals of lengths given by the table, we can simulate the throw of this
loaded die. For example, we agree that if x is in (0, 0.2), the die shows 1; if x is in [0.2,
0.34), the die shows 2, and so on. A pseudocode to count the outcome of 5000 throws of

13.3 Simulation 553

this die and compute the probability might be written as follows:

program Loaded Die
integer i, j ; real array (yi)1:6, (mi)1:6, (ri)1:n

real n ← 5000
(yi)6 ← (0.2, 0.34, 0.56, 0.72, 0.89, 1.0)

(mi)6 ← (0.0, 0.0, 0.0, 0.0, 0.0, 0.0)

call Random((ri))

for i = 1 to n do
for j = 1 to 6 do

if ri < y j then
m j ← m j + 1
exit loop j

end if
end for

end for
output real(mi)/real(n)

end program Loaded Die

The results are 0.2024, 0.1344, 0.2252, 0.1600, 0.1734, and 0.1046, which are reasonable
approximations to the probabilities in the table.

Birthday Problem
An interesting problem that can be solved by using simulation is the famous birthday
problem. Suppose that in a room of n people, each of the 365 days of the year is equally
likely to be someone’s birthday. From probability theory, it can be shown that, contrary to
intuition, only 23 people need be present for the chances to be better than fifty-fifty that at
least two of them will have the same birthday! (It is always fun to try this experiment at a
large party or in class to see it work in practice.)

Many people are curious about the theoretical reasoning behind this result, so we
discuss it briefly before solving the simulation problem. After someone is asked his or her
birthday, the chances that the next person asked will not have the same birthday are 364/365.
The chances that the third person’s birthday will not match those of the first two people
are 363/365. The chances of two successive independent events occurring is the product
of the probability of the separate events. (The sequential nature of the explanation does not
imply that the events are dependent.) In general, the probability that the nth person asked
will have a birthday different from that of anyone who has already been asked is(

365

365

)(
364

365

)(
363

365

)
· · ·

(
365 − (n − 1)

365

)
The probability that the nth person asked will provide a match is 1 minus this value. A table
of the quantity 1 − (365)(364) · · · [365 − (n − 1)]/365n shows that with 23 people, the
chances are 50.7%; with 55 or more people, the chances are 98.6% or almost theoretically
certain that at least two out of 55 people will have the same birthday. (See Table 13.1.)

Without using probability theory, we can write a routine that uses the random-number
generator to compute the approximate chances for groups of n people. Clearly, all that is

554 Chapter 13 Monte Carlo Methods and Simulation

TABLE 13.1 Birthday Problem

n Theoretical Simulation

5 0.027 0.028
10 0.117 0.110
15 0.253 0.255
20 0.411 0.412
22 0.476 0.462
23 0.507 0.520
25 0.569 0.553
30 0.706 0.692
35 0.814 0.819
40 0.891 0.885
45 0.941 0.936
50 0.970 0.977
55 0.986 0.987

needed is to select n random integers from the set {1, 2, 3, . . . , 365} and to examine them
in some way to determine whether there is a match. By repeating this experiment a large
number of times, we can compute the probability of at least one match in any gathering of
n people.

One way of writing a routine for simulating the birthday problem follows. In it we use
the approach of checking off days on a calendar to find out whether there is a match. Of
course, there are many other ways of approaching this problem.

Function procedure Probably calculates the probability of repeated birthdays:

real function Probably(n, npts)
integer i, npts; logical Birthday; real sum ← 0
for i = 1 to npts do

if Birthday (n) then sum ← sum + 1
end for
Probably ← sum/real(npts)
end function Probably

Logical function Birthday generates n random numbers and compares them. It returns a
value of true if these numbers contain at least one repetition and false if all n numbers
are different.

logical function Birthday(n)

integer i, n, number; logical array (daysi)1:365

real array (ri)1:n

call Random((ri))

for i = 1 to 365 do
days(i) ← false

end for

13.3 Simulation 555

Birthday ← false
for i = 1 to n do

number ← integer (365ri + 1)

if days(number) then
Birthday ← true
exit loop i

end if
days(number) ← true

end for
end function Birthday

The results of the theoretical calculations and the simulation are given in Table 13.1.

Buffon’s Needle Problem
The next example of a simulation is a very old problem known as Buffon’s needle problem.
Imagine that a needle of unit length is dropped onto a sheet of paper ruled by parallel lines
1 unit apart. What is the probability that the needle intersects one of the lines?

To make the problem precise, assume that the center of the needle lands between the
lines at a random point. Assume further that the angular orientation of the needle is another
random variable. Finally, assume that our random variables are drawn from a uniform
distribution. Figure 13.8 shows the geometry of the situation.

FIGURE 13.8

Buffon’s needle
problem

1st line

2nd line

Needle

1
2

v

u sin v
1
2

1
2

Let the distance of the center of the needle from the nearer of the two lines be u, and
let the angle from the horizontal be v. Here, u and v are the two random variables. The
needle intersects one of the lines if and only if u � 1

2 sin v. We perform the experiment many
times, say, 5000. Because of the problem’s symmetry, we select u from a uniform random
distribution on the interval

(
0, 1

2

)
and v from a uniform random distribution on the interval

(0, π/2), and we determine the number of times that 2u � sin v. We let w = 2u and test
w � sin v, where w is a random variable in (0, 1). In this program, intermediate answers
are printed out so that their progression can be observed. Also, the theoretical answer,
t = 2/π ≈ 0.63662, is printed for comparison.

program Needle
integer i, m; real prob, v, w; real array (ri j)1:n×1:2

integer n ← 5000, iprt ← 1000

556 Chapter 13 Monte Carlo Methods and Simulation

m ← 0
call Random((ri j))

for i = 1 to n do
w ← ri1

v ← (π/2)ri,2

if w � sin v then m ← m + 1
if mod(i, iprt) = 0 then

prob ← real(m)/real(i)
output i, prob, (2/π)

end if
end for
end program Needle

Two Dice Problem
Our next example again has an analytic solution. This is advantageous for us because we
wish to compare the results of Monte Carlo simulations with theoretical solutions. Consider
the experiment of tossing two dice. For an (unloaded) die, the numbers 1, 2, 3, 4, 5, and 6 are
equally likely to occur. We ask: What is the probability of throwing a 12 (i.e., 6 appearing
on each die) in 24 throws of the dice?

There are six possible outcomes from each die for a total of 36 possible combinations.
Only one of these combinations is a double 6, so 35 out of the 36 combinations are not
correct. With 24 throws, we have (35/36)24 as the probability of a wrong outcome. Hence,
1 − (35/36)24 = 0.49140 is the answer. Not all problems of this type can be analyzed like
this, so we model the situation using a random-number generator.

If we simulate this process, a single experiment consists of throwing the dice 24 times,
and this experiment must be repeated a large number of times, say, 1000. For the outcome
of the throw of a single die, we need random integers that are uniformly distributed in the
set {1, 2, 3, 4, 5, 6}. If x is a random variable in (0, 1), then 6x + 1 is a random variable in
(1, 7), and the integer part is a random integer in {1, 2, 3, 4, 5, 6}. Here is a pseudocode:

program Two Dice
integer i, j, i1, i2, m; real prob; real array (ri jk)1:n×1:24×1:2

integer n ← 5000, iprt ← 1000
call Random((ri jk))

m ← 0
for i = 1 to n do

for j = 1 to 24 do
i1 ← integer(6ri j1 + 1)

i2 ← integer(6ri j2 + 1)

if i1 + i2 = 12 then
m ← m + 1
exit loop j

end if
end for

13.3 Simulation 557

if mod(i, 1000) = 0 then
prob ← real(m)/real(i)
output i, prob

end if
end for
end program Two Dice

This program computes the probability of throwing a 12 in 24 throws of the dice at approx-
imately even money—that is, 0.487.

Neutron Shielding
Our final example concerns neutron shielding. We take a simple model of neutrons pene-
trating a lead wall. It is assumed that each neutron enters the lead wall at a right angle to
the wall and travels a unit distance. Then it collides with a lead atom and rebounds in a
random direction. Again, it travels a unit distance before colliding with another lead atom.
It rebounds in a random direction and so on. Assume that after eight collisions, all the
neutron’s energy is spent. Assume also that the lead wall is 5 units thick in the x direc-
tion and for all practical purposes infinitely thick in the y direction. The question is: What
percentage of neutrons can be expected to emerge from the other side of the lead wall?
(See Figure 13.9.)

FIGURE 13.9

Neutron-
shielding

experiment
x

0 1 2 3 4 5

Exit side

Entrance side

Lead wall

1

1
1

1

1

1 1

1

�1 �2

Let x be the distance measured from the initial surface where the neutron enters. From
trigonometry, we recall that in a right triangle with hypotenuse 1, one side is cos θ . Also
note that cos θ � 0 when π/2 � θ � π (see Figure 13.10). The first collision occurs at a point

FIGURE 13.10

Right triangles
with

hypotenuse 1
�

�

cos � cos �

1 1

558 Chapter 13 Monte Carlo Methods and Simulation

where x = 1. The second occurs at a point where x = 1 + cos θ1. The third collision occurs
at a point where x = 1 + cos θ1 + cos θ2, and so on. If x � 5, the neutron has exited. If
x < 5 for all eight collisions, the wall has shielded the area from that particular neutron.
For a Monte Carlo simulation, we can use random angles θi in the interval (0, π) because
of symmetry. The simulation program then follows:

program Shielding
integer i, j, m; real x, per; real array (ri j)1:n×1:7

integer n ← 5000, iprt ← 1000
m ← 0
call Random((ri j)) for i = 1 to n do

x ← 1
for j = 1 to 7 do

x ← x + cos(πri j)

if x � 0 then exit loop j
if x � 5 then

m ← m + 1
exit loop j

end if
end for
if mod(i, iprt) = 0 then

per ← 100 real(m)/real(i)
output i, per

end if
end for
end program Shielding

After running this program, we can say that approximately 1.85% of the neutrons can be
expected to emerge from the lead wall.

Summary

Random number generators are used in the simulation of a physical situation in which
an element of chance is present. Statistical conclusions can be drawn if the numerical
experiment is performed many times.

Additional References
See Bayer and Diaconis [1992], Chaitlin [1975], Evans et al. [1967], Flehinger [1966],
Gentle [2003], Greenbaum [2002], Hammersley and Handscomb [1964], Hansen et al.
[1993], Hull and Dobell [1962], Kinderman and Monahan [1977], Leva [1992], Marsaglia
[1968], Marsaglia and Tsang [2000], Niederreiter [1978, 1992], Peterson [1997], Raimi
[1969], Schrage [1979], Sobol [1994], Steele [1997].

13.3 Simulation 559

Computer Problems 13.3

a1. A point (a, b) is chosen at random in a rectangle defined by inequalities |a| � 1 and
|b| � 2. What is the probability that the resulting quadratic equation ax2 + bx + 1 = 0
has real roots? Find the answer both analytically and by the Monte Carlo method.

a2. Compute the average distance between two points in the circle x2 + y2 = 1. To
solve this, generate N random pairs of points (xi , yi) and (vi , wi) in the circle, and
compute

N−1
N∑

i=1

[
(xi − vi)

2 + (yi − wi)
2
]1/2

3. (French railroad system) Define the distance between two points (x1, y1) and (x2, y2)

in the plane to be
√

(x1 − x2)2 + (y1 − y2)2 if the points are on a straight line through

the origin but
√

x2
1 + y2

1 +
√

x2
2 + y2

2 in all other cases. Draw a picture to illustrate.
Compute the average distance between two points randomly selected in a unit circle
centered at the origin.

a4. Consider a circle of radius 1. A point is chosen at random inside the circle, and a chord
that has the chosen point as midpoint is drawn. What is the probability that the chord
will have length greater than 3

2 ? Solve the problem analytically and by the Monte Carlo
method.

5. Two points are selected at random on the circumference of a circle. What is the average
distance from the center of the circle to the center of gravity of the two points?

a6. Consider the cardioid given by (x2 + y2 + x)2 = (x2 + y2). Write a program to find the
average distance, staying within the cardioid, between two points randomly selected
within the figure. Use 1000 points, and print intermediate estimates.

a7. Find the length of the lemniscate whose equation in polar coordinates is given by
r 2 = cos 2θ . Hint: In polar coordinates, ds2 = dr 2 + r 2 dθ2.

8. Suppose that a die is loaded so that the six faces are not equally likely to turn up when
the die is rolled. The probabilities associated with the six faces are as follows:

Outcome 1 2 3 4 5 6

Probability 0.15 0.2 0.25 0.15 0.1 0.15

Write and run a program to simulate 1500 throws of such a die.

a9. Consider a pair of loaded dice as described in the text. By a Monte Carlo simulation,
determine the probability of throwing a 12 in 25 throws of the dice.

10. Consider a neutron-shielding problem similar to the one in the text but modified as
follows: Imagine the neutron beam impinging on the wall 1 unit above its base. The
wall can be very high. Neutrons cannot escape from the top, but they can escape from
the bottom as well as from the exit side. Find the percentage of escaping neutrons.

560 Chapter 13 Monte Carlo Methods and Simulation

11. Rewrite the routine(s) for the birthday problem using some other scheme for determin-
ing whether or not there is a match.

a12. Write a program to estimate the probability that three random points on the edges
of a square form an obtuse triangle (see the figure). Hint: Use the Law of Cosines:
cos θ = (b2 + c2 − a2)/2bc.

�

P3

P2

P1

a

c

b

13. A histogram is a graphical device for displaying frequencies by means of rectan-
gles whose heights are proportional to frequencies. For example, in throwing two
dice 3600 times, the resulting sums 2, 3, . . . , 12 should occur with frequencies close
to those shown in the histogram below. By means of a Monte Carlo simulation,
obtain a histogram for the frequency of digits 0, 1, . . . , 9 that appear in 1000 random
numbers.

2 3 4 5 6 7 8 9 10 11 12

100
200
300
400
500
600

Fr
eq

ue
nc

y

Outcome

a14. Consider a circular city of diameter 20 kilometers (see the following figure). Radiating
from the center are 36 straight roads, spaced 10◦ apart in angle. There are also 20 circular
roads spaced 1 kilometer apart. What is the average distance, measured along the roads,
between road intersection points in the city?

(r, �)

(
, �)

1 2 3 4 5

13.3 Simulation 561

a15. A particle breaks off from a random point on a rotating flywheel. Referring to the
following figure, determine the probability of the particle hitting the window. Perform
a Monte Carlo simulation to compute the probability in an experimental way.

r
r

Window

2r

Path

Flywheel

16. Write a program to simulate the following phenomenon: A particle is moving in the
xy-plane under the effect of a random force. It starts at (0, 0). At the end of each second,
it moves 1 unit in a random direction. We want to record in a table its position at the
end of each second, taking altogether 1000 seconds.

a17. (A random walk) On a windy night, a drunkard begins walking at the origin of a
two-dimensional coordinate system. His steps are 1 unit in length and are random in
the following way: With probability 1

6 , he takes a step east; with probability 1
4 , he takes

a step north; with probability 1
4 , he takes a step south; and with probability 1

3 , he takes
a step west. What is the probability that after 50 steps, he will be more than 20 units
distant from the origin? Write a program to simulate this problem.

18. (Another random walk) Consider the lattice points (points with integer coordinates)
in the square 0 � x � 6, 0 � y � 6. A particle starts at the point (4, 4) and moves in the
following way: At each step, it moves with equal probability to one of the four adjacent
lattice points. What is the probability that when the particle first crosses the boundary
of the square, it crosses the bottom side? Use Monte Carlo simulation.

19. What is the probability that within 20 generations, the Kzovck family name will die
out? Use the following data: In the first generation, there is only one male Kzovck.
In each succeeding generation, the probability that a male Kzovck will have exactly
one male offspring is 4

11 , the probability that he will have exactly two is 1
11 , and the

probability that he will have more than two is 0.

20. Write a program that simulates the random shuffle of a deck of 52 cards.

a21. A merry-go-round with a total of 24 horses allows children to jump on at three gates
and jump off at only one gate while it continues to turn slowly. If the children get on
and off randomly (at most one per gate), how many revolutions go by before someone
must wait longer than one revolution to ride? Assume a probability of 1

2 that a child
gets on or off.

22. Run the programs given in this section, and determine whether the results are
reasonable.

a23. In the unit cube {(x, y, z): 0 � x � 1, 0 � y � 1, 0 � z � 1}, if two points are randomly
chosen, then what is the expected distance between them?

24. The lattice points in the plane are defined as those points whose coordinates are integers.
A circle of diameter 1.5 is dropped on the plane in such a way that its center is
a uniformly distributed random point in the square 0 � x � 1, 0 � y � 1. What is the

562 Chapter 13 Monte Carlo Methods and Simulation

probability that two or more lattice points lie inside the circle? Use the Monte Carlo
simulation to compute an approximate answer.

25. Write a program to simulate a traffic flow problem similar to the one in the example
that begins this chapter.

26. Can you modify and rerun the programs in this section so that large arrays are not used?

27. (Student research project) In their paper Trailing the Dovetail Shuffle to its Lair,
Bayer and Diaconis [1992] show that it takes seven riffle shuffles to randomize a deck
of cards. Greenbaum [2002] uses this as an example of the application of polynomial
numerical hulls of various degrees associated with the probability transition matrix.
This is the cutoff phenomenon that is often observed in Markov processes.∗ Using
rising sequences and mathematical modeling, card shuffling is illustrated at

www.math.washington.edu/∼chartier/Shuffle

Investigate some of the following questions from this website: How many times do we
need to shuffle a deck of cards before the order of the cards is sufficiently random? Is
there some minimum number of shuffles required to ensure the deck is not ordered or
not predictable? Is there a point where continued shuffling no longer helps make the
deck less predictable?

∗Markov chains can be used to model the behavior of a system that depends only on its previous state. Markov
chains involve a transition matrix P = (Pi j), where the entries are the probability of going from state j to state i .

www.math.washington.edu/~chartier/Shuffle

14
Boundary-Value Problems for Ordinary
Differential Equations

In the design of pivots and bearings, the mechanical engineer encounters
the following problem: The cross section of a pivot is determined by a curve
y = y(x) that must pass through two fixed points, (0, 1) and (1, a) , as in
Figure 14.1. Moreover, for optimal performance (principally low friction),
the unknown function must minimize the value of a certain integral∫ 1

0

[
y (y ′)2 + b(x) y2]dx

in which b(x) is a known function. From this, it is possible to obtain a
second-order differential equation (the so-called Euler equation) for y. The
differential equation with its initial and terminal values is{−(y ′)2 − 2b(x) y + 2yy ′′ = 0

y (0) = 1 y (1) = a

FIGURE 14.1

Pivot cross
section

y

x

(0, 1)

(0, a)

This is a nonlinear two-point boundary-value problem, and methods for
solving it numerically are discussed in this chapter.

14.1 Shooting Method
In previous chapters, we dealt with the initial-value problem for ordinary differential
equations, but now we consider another type of numerical problem involving ordinary
differential equations. A boundary-value problem is exemplified by a second-order

563

564 Chapter 14 Boundary-Value Problems for Ordinary Differential Equations

ordinary differential equation whose solution function is prescribed at the endpoints of
the interval of interest. An instance of such a problem is{

x ′′ = −x

x(0) = 1 x
(π

2

)
= −3

Here, we have a differential equation whose general solution involves two arbitrary
parameters. To specify a particular solution, two conditions must be given. If this were
an initial-value problem, x and x ′ would be specified at some initial point. In this problem,
however, we are given two points of the form (t, x(t)) through which the solution curve
passes—namely, (0, 1) and (π/2, −3). The general solution of the differential equation is
x(t) = c1 sin(t) + c2 cos(t), and the two conditions (known as boundary values) enable
us to determine that c1 = −3 and c2 = 1.

Now suppose that we have a similar problem in which we are unable to determine the
general solution as above. We take as our model the problem{

x ′′(t) = f (t, x(t), x ′(t))

x(a) = α x(b) = β
(1)

A step-by-step numerical solution of Problem (1) by the methods of Chapter 11 requires
two initial conditions, but in Problem (1) only one condition is present at t = a. This fact
makes a problem like (1) considerably more difficult than an initial-value problem. Several
ways to attack it are considered in this chapter. Existence and uniqueness theorems for
solutions of two-point boundary-value problems can be found in Keller [1976].

One way to proceed in solving Problem (1) is to guess x ′(a), then carry out the solution
of the resulting initial-value problem as far as b, and hope that the computed solution agrees
with β; that is, x(b) = β. If it does not (which is quite likely), we can go back and change
our guess for x ′(a). Repeating this procedure until we hit the target β may be a good method
if we can learn something from the various trials. There are systematic ways of utilizing
this information, and the resulting method is known by the nickname shooting.

We observe that the final value x(b) of the solution of our initial-value problem depends
on the guess that was made for x ′(a). Everything else remains fixed in this problem. Thus,
the differential equation x ′′ = f (t, x, x ′) and the first initial value, x(a) = α, do not change.
If we assign a real value z to the missing initial condition,

x ′(a) = z

then the initial-value problem can be solved numerically. The value of x at b is now a
function of z, which we denote by ϕ(z). In other words, for each choice of z, we obtain a
new value for x(b), and ϕ is the name of the function with this behavior. We know very
little about ϕ(z), but we can compute or evaluate it. It is, however, an expensive function to
evaluate because each value of ϕ(z) is obtained only after solving an initial-value problem.

It should be emphasized that the shooting method combines any algorithm for the
initial-value problem with any algorithm for finding a zero of a function. The choice of
these two algorithms should reflect the nature of the problem being solved.

The basic idea of the shooting method is illustrated in Figure 14.2. The solution curves
are shown as well as two paths using different initial slopes. The goal is to keep adjusting
the initial aim with each attempt.

14.1 Shooting Method 565

FIGURE 14.2

Shooting
method

illustrated

1st attempt

� � x(b)

2nd attempt

t0 � a

x(a) � �

b � t2t1

Shooting Method Algorithm
To summarize, a function ϕ(z) is computed as follows: Solve the initial-value problem{

x ′′ = f (t, x(t), x ′(t))

x(a) = α x ′(a) = z

on the interval [a, b]. Let

ϕ(z) = x(b)

Our objective is to adjust z until we find a value for which

ϕ(z) = β

One way to do so is to use linear interpolation between ϕ(z1) and ϕ(z2), where z1 and z2 are
two guesses for the initial condition x ′(a). That is, given two values of ϕ, we pretend that
ϕ is a linear function and determine an appropriate value of z based on this hypothesis. A
sketch of the values of z versus ϕ(z) might look like Figure 14.3. The strategy just outlined
is the secant method for finding a zero of ϕ(z) − β.

To obtain an estimating formula for the next value z3, we compute ϕ(z1) and ϕ(z2) on
the basis of values z1 and z2, respectively.

FIGURE 14.3

ϕ linear function

	(z)

z

	(z2)

	(z1)

�

z1 z2 z3

566 Chapter 14 Boundary-Value Problems for Ordinary Differential Equations

By considering similar triangles, we have

z3 − z2

β − ϕ(z2)
= z2 − z1

ϕ(z2) − ϕ(z1)

from which

z3 = z2 + [β − ϕ(z2)]

[
z2 − z1

ϕ(z2) − ϕ(z1)

]
We can repeat this process and generate the sequence

zn+1 = zn + [β − ϕ(zn)]

[
zn − zn−1

ϕ(zn) − ϕ(zn−1)

]
(n � 2) (2)

all based on two starting values z1 and z2.
This procedure for solving the two-point boundary-value problem{

x ′′ = f (t, x, x ′)

x(a) = α x(b) = β
(3)

is then as follows: Solve the initial-value problem{
x ′′ = f (t, x, x ′)

x(a) = α x ′(a) = z
(4)

from t = a to t = b, letting the value of the solution at b be denoted by ϕ(z). Do this twice
with two different values of z, say, z1 and z2, and compute ϕ(z1) and ϕ(z2). Now calculate a
new z, called z3, by Formula (2). Then compute ϕ(z3) by again solving (4). Obtain z4 from
z2 and z3 in the same way, and so on. Monitor

ϕ(zn+1) − β

to see whether progress is being made. When it is satisfactorily small, stop. This process
is called a shooting method. Note that the numerically obtained values x(ti) for a � ti � b
must be saved until better ones are obtained (that is, one whose terminal value x(b) is closer
to β than the present one) because the objective in solving Problem (3) is to obtain values
x(t) for values of t between a and b.

The shooting method may be very time-consuming if each solution of the associated
initial-value problem involves a small value for the step size h. Consequently, we use a
relatively large value of h until |ϕ(zn+1) − β| is sufficiently small and then reduce h to
obtain the required accuracy.

EXAMPLE 1 What is the function ϕ for this two-point boundary-value problem?{
x ′′ = x

x(0) = 1 x(1) = 7

Solution The general solution of the differential equation is x(t) = c1et + c2e−t . The solution of the
initial-value problem {

x ′′ = x

x(0) = 1 x ′(0) = z

14.1 Shooting Method 567

is x(t) = 1
2 (1 + z)et + 1

2 (1 − z)e−t . Therefore, we have

ϕ(z) = x(1) = 1

2
(1 + z)e + 1

2
(1 − z)e−1 ■

Modifications and Refinements
Many modifications and refinements are possible. For instance, when ϕ(zn+1) is near β, one
can use higher-order interpolation formulas to estimate successive values of zi . Suppose,
for example, that instead of utilizing two values ϕ(z1) and ϕ(z2) to obtain z3, we utilize the
four values

ϕ(z1) ϕ(z2) ϕ(z3) ϕ(z4)

to estimate z5. We could set up a cubic interpolating polynomial p3 for the data

z1 z2 z3 z4

ϕ(z1) ϕ(z2) ϕ(z3) ϕ(z4)
(5)

and solve

p3(z5) = β

for z5. Since p3 is a cubic, this would entail some additional work. A better way may be to
set up a polynomial p̂3 to interpolate the data

ϕ(z1) ϕ(z2) ϕ(z3) ϕ(z4)

z1 z2 z3 z4

(6)

and then use p̂3(β) as the estimate for z5. This procedure is known as inverse interpolation.
(See Section 4.1.)

Further remarks on the shooting method will be made in the next section after the
discussion of an alternative procedure.

Summary

(1) A generic two-point boundary-value problem on the interval [a, b] is{
x ′′ = f (t, x, x ′)

x(a) = α x(b) = β

There is a related initial-value problem{
x ′′ = f (t, x, x ′)

x(a) = α x ′(a) = z

We hope to find a value of z so that the computed solution to the initial-value problem will
be the solution of the two-point boundary-value problem. We define a function ϕ(z) whose
value is the computed solution of the initial-value problem at t = b, namely, ϕ(z) = x(b),
where x solves the initial-value problem. We repeatedly adjust z until we find a value for
which ϕ(z) = β. If z1 and z2 are two guesses for the initial condition x ′(a), we can use
linear interpolation between ϕ(z1) and ϕ(z2) to find an improved value for z. This is done

568 Chapter 14 Boundary-Value Problems for Ordinary Differential Equations

by solving the initial-value problem twice with z1 and z2 and thereby compute ϕ(z1) and
ϕ(z2). We calculate a new z3 using

zn+1 = zn + [β − ϕ(zn)]

[
zn − zn−1

ϕ(zn) − ϕ(zn−1)

]
(n � 2)

and compute ϕ(zn+1) by again solving the initial-value problem. We monitor ϕ(zn+1) − β

until it is satisfactorily small and then stop. This is called the shooting method.

(2) Improvements and refinements to the shooting method involve using cubic polynomial
interpolation or inverse interpolation.

Problems 14.1

1. Verify that x = (2t + 1)et is the solution to each of the following problems:⎧⎨⎩
x ′′ = x + 4et

x(0) = 1 x

(
1

2

)
= 2e1/2

{
x ′′ = x ′ + x − (2t − 1)et

x(1) = 3e x(2) = 5e2

a2. Verify that x = c1et + c2e−t solves the boundary-value problem{
x ′′ = x

x(0) = 1 x(1) = 2
if appropriate values of c1 and c2 are chosen.

3. Solve these boundary value problems by adjusting the general solution of the differen-
tial equation.

aa. x ′′ = x x(0) = 0 x(π) = 1
ab. x ′′ = t2 x(0) = 1 x(1) = −1

4.aa. Determine all pairs (α, β) for which the problem{
x ′′ = −x

x(0) = α x
(π

2

)
= β

has a solution.
ab. Repeat part a for x(0) = α and x(π) = β.

5. a. Verify the following algorithm for the inverse interpolation technique suggested in
the text. Here we have set ϕi = ϕ(zi).

u = z2 − z1

ϕ2 − ϕ1
v = s − u

ϕ3 − ϕ1
s = z3 − z2

ϕ3 − ϕ2

r = e − s

ϕ4 − ϕ2
e = z4 − z3

ϕ4 − ϕ3
w = r − v

ϕ4 − ϕ1

z5 = z1 + (β − ϕ1){u + (β − ϕ2)[v + w(β − ϕ3)]}
b. Find similar formulas for three points.

a6. Let ϕ(z) denote x(π/2), where x is the solution of the initial-value problem{
x ′′ = −x

x(0) = 0 x ′(0) = z
What is ϕ(z)?

14.1 Shooting Method 569

a7. Determine the function ϕ explicitly in the case of this two-point boundary-value
problem. {

x ′′ = −x

x(0) = 1 x
(π

2

)
= 3

a8. (Continuation) Repeat the preceding problem for x ′′ = −(x ′)2/x with x(1) = 3 and
x(2) = 5. Using your result, solve the boundary-value problem. Hint: The general
solution of the differential equation is x(t) = c1

√
c2 + t .

a9. Determine the function ϕ explicitly in the case of this two-point boundary-value
problem: ⎧⎨⎩ x ′′ = x

x(−1) = e x ′(1) = 1

2
e

a10. Boundary-value problems may involve differential equations of order higher than 2.
For example, {

x ′′′ = f (t, x, x ′, x ′′)

x(a) = α x ′(a) = γ x(b) = β

Discuss the ways in which this problem can be solved using the shooting method.

a11. Solve analytically this three-point boundary-value problem:{
x ′′′ = −et + 4(t + 1)−3

x(0) = −1 x(1) = 3 − e + 2 ln 2 x(2) = 6 − e2 + 2 ln 3

12. Solve {
x ′′ = −x

x(0) = 2 x(π) = 3

analytically and analyze any difficulties.

13. Show that the following two problems are equivalent in the sense that a solution of one
is easily obtained from a solution of the other:{

y′′ = f (t, y)

y(0) = α y(1) = β

{
z′′ = f (t, z + α − αt + βt)

z(0) = 0 z(1) = 0

14. Discuss in general terms the numerical solution of the following two-point boundary-
value problems. Recommend specific methods for each, being sure to take advantage
of any special structure.

aa.

{
x ′′ = sin t + (

et
√

t2 + 1
)
x + (cos t)x ′

x(0) = 0 x(1) = 5
b.

⎧⎪⎨⎪⎩
x ′

1 = x2
1 + (t − 3)x1 + sin t

x ′
2 = x3

2 + √
t2 + 1 + (cos t)x1

x1(0) = 1 x2(2) = 3

570 Chapter 14 Boundary-Value Problems for Ordinary Differential Equations

a15. What is ϕ(z) in the case of this boundary-value problem?{
x ′′ = −x

x(0) = 1 x(π) = 3

Explain the implications.

16. Find the function ϕ explicitly for this two-point boundary-value problem:{
x ′′ = e−2t − 4x − 4x ′

x(0) = 1 x(2) = 0

What is the initial-value problem whose solution solves the boundary-value problem?
Hint: Find a solution of the form x(t) = q(t)e−2t , where q is a quadratic polynomial.

Computer Problems 14.1

1. The nonlinear two-point boundary-value problem{
x ′′ = ex

x(0) = α x(1) = β

has the closed-form solution

x = ln c1 − 2 ln

{
cos

[(
1

2
c1

)1/2

t + c2

]}
where c1 and c2 are the solutions of⎧⎪⎨⎪⎩

α = ln c1 − 2 ln cos c2

β = ln c1 − 2 ln

{
cos

[(
1

2
c1

)1/2

+ c2

]}
Use the shooting method to solve this problem with α = β = ln 8π2. Start with
z1 = − 25

2 and z2 = − 23
2 . Determine c1 and c2 so that a comparison with the true

solution can be made. Remark: The corresponding discretization method, as discussed
in the next section, involves a system of nonlinear equations with no closed-form
solution.

2. Write a program to solve the example that begins this chapter for specific a and b(x),
such as a = 1

4 and b(x) = x2.

14.2 A Discretization Method
Finite-Difference Approximations
We turn now to a completely different approach to solving the two-point boundary-value
problem—one based on a direct discretization of the differential equation. The problem

14.2 A Discretization Method 571

that we want to solve is {
x ′′ = f (t, x, x ′)

x(a) = α x(b) = β
(1)

Select a set of equally spaced points t0, t1, . . . , tn on the interval [a, b] by letting

ti = a + ih with h = b − a

n
(0 � i � n)

Next, approximate the derivatives, using the standard central difference formulas (5) and
(20) from Section 4.3:

x ′(t) ≈ 1

2h
[x(t + h) − x(t − h)]

x ′′(t) ≈ 1

h2
[x(t + h) − 2x(t) + x(t − h)] (2)

The approximate value of x(ti) is denoted by xi . Hence, the problem becomes⎧⎪⎪⎨⎪⎪⎩
x0 = α

1

h2
(xi−1 − 2xi + xi+1) = f

(
ti , xi ,

1

2h
(xi+1 − xi−1)

)
(1 � i � n − 1)

xn = β

(3)

This is usually a nonlinear system of equations in the n − 1 unknowns x1, x2, . . . , xn−1

because f generally involves the xi ’s in a nonlinear way. The solution of such a system is
seldom easy but could be approached by using the methods of Chapter 3.

The Linear Case
In some cases, System (3) is linear. This situation occurs exactly when f in Equation (1)
has the form

f (t, x, x ′) = u(t) + v(t)x + w(t)x ′ (4)

In this special case, the principal equation in System (3) looks like this:

1

h2
(xi−1 − 2xi + xi+1) = u(ti) + v(ti)xi + w(ti)

[
1

2h
(xi+1 − xi−1)

]
or, equivalently,

−
(

1 + h

2
wi

)
xi−1 + (

2 + h2vi

)
xi −

(
1 − h

2
wi

)
xi+1 = −h2ui (5)

where ui = u(ti), vi = v(ti), and wi = w(ti). Now let⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ai = −
(

1 + h

2
wi

)
di = 2 + h2vi

ci = −
(

1 − h

2
wi

)
bi = −h2ui

(0 � i � n)

572 Chapter 14 Boundary-Value Problems for Ordinary Differential Equations

Then the principal Equation (5) becomes

ai xi−1 + di xi + ci xi+1 = bi

The equations corresponding to i = 1 and i = n − 1 are different because we know x0 and
xn . The system can therefore be written as⎧⎪⎨⎪⎩

d1x1 + c1x2 = b1 − a1α

ai xi−1 + di xi + ci xi+1 = bi (2 � i � n − 2)

an−1xn−2 + dn−1xn−1 = bn−1 − cn−1β

(6)

In matrix form, System (6) looks like this:⎡⎢⎢⎢⎢⎢⎢⎢⎣

d1 c1

a2 d2 c2

a3 d3 c3

. . .
. . .

. . .

an−2 dn−2 cn−2

an−1 dn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

x1

x2

x3
...

xn−2

xn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1 − a1α

b2

b3
...

bn−2

bn−1 − cn−1β

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Since this system is tridiagonal, we can attempt to solve it with the special procedure
Tri for tridiagonal systems developed in Section 7.3. That procedure does not include
pivoting, however, and may fail in cases in which procedure Gauss would succeed. (See
Problem 14.2.5.)

Pseudocode and Numerical Example
The ideas just explained are now used to write a program for a specific test case. The
problem is of the form (1) with f a linear function as in Equation (4):{

x ′′ = et − 3 sin(t) + x ′ − x

x(1) = 1.09737 491 x(2) = 8.63749 661
(7)

The solution, known in advance to be x(t) = et − 3 cos(t), can be used to check the
computer solution. We use the discretization technique described earlier and procedure Tri
for solving the resulting linear system.

First, we decide to use 100 points, including endpoints a = 1 and b = 2. Thus, n = 99,
h = 1

99 , and ti = 1 + ih for 0 � i � 99. Then we have t0 = 1, x0 = x0(t0) = 1.09737 491,
t99 = 2, and x99 = x(t99) = 8.63749 661. The unknowns in our problem are the remaining
values of xi , namely, x1, x2, . . . , x98. By the discretization of the derivatives using the central
difference Formulas (2), we obtain a linear system of type (3). Our principal equation is of
the form (5) and is

−
(

1 + h

2

)
xi−1 + (2 − h2)xi −

(
1 − h

2

)
xi+1 = −h2

[
eti − 3 sin(ti)

]
since u(t) = et − 3 sin t , v(t) = −1, and w(t) = 1.

We generalize the pseudocode so that with only a few changes, it can accommodate
any two-point boundary value problem of type (1) with the right-hand side of form (4).
Here, u(x), v(x), and w(x) are statement functions.

14.2 A Discretization Method 573

program BVP1
integer i ; real error, h, t, u, v, w, x
real array (ai)1:n, (bi)1:n, (ci)1:n, (di)1:n, (yi)1:n

integer n ← 99
real ta ← 1, tb ← 2, α ← 1.09737 491, β ← 8.63749 661
u(x) = ex − 3 sin(x)

v(x) = −1
w(x) = 1
h ← (tb − ta)/n
for i = 1 to n − 1 do

t ← ta + ih
ai ← −[1 + (h/2)w(t)]
di ← 2 + h2v(t)
ci ← −[1 − (h/2)w(t)]
bi ← −h2u(t)

end for
b1 ← b1 − a1α

bn−1 ← bn−1 − cn−1β

for i = 1 to n − 1 do
ai ← ai+1

end
call Tri(n − 1, (ai), (di), (ci), (bi), (yi))

error ← eta − 3 cos(ta) − α

output ta, α, error
for i = 1 to n − 1 step 9 do

t ← ta + ih
error ← et − 3 cos(t) − yi

output t, yi , error
end for
error ← etb − 3 cos(tb) − β

output b, β, error
end program BVP1

The computer results are as follows:

t-Value Solution Error
1.00000 00 1.09737 49 0.00
1.09090 91 1.59203 02 −8.83 × 10−5

1.18181 82 2.12274 17 −1.74 × 10−4

1.27272 73 2.68980 86 −2.56 × 10−4

1.36363 64 3.29367 04 −3.28 × 10−4

1.45454 55 3.93494 53 −3.76 × 10−4

1.54545 45 4.61449 10 −4.06 × 10−4

1.63636 36 5.33343 17 −4.13 × 10−4

1.72727 27 6.09319 59 −3.89 × 10−4

1.81818 18 6.89557 22 −3.16 × 10−4

1.90909 10 7.74277 78 −1.88 × 10−4

2.00000 00 8.63749 69 0.00

574 Chapter 14 Boundary-Value Problems for Ordinary Differential Equations

Shooting Method in the Linear Case
We have just seen that this discretization method (also called a finite-difference method)
is rather simple in the case of the linear two-point boundary-value problem:{

x ′′ = u(t) + v(t)x + w(t)x ′

x(a) = α x(b) = β
(8)

The shooting method is also especially simple in this case. Recall that the shooting method
requires us to solve an initial-value problem:{

x ′′ = u(t) + v(t)x + w(t)x ′

x(a) = α x ′(a) = z
(9)

and interpret the terminal value x(b) as a function of z. We call that function ϕ and seek
a value of z for which ϕ(z) = β. For the linear Problem (9), ϕ is a linear function of z,
and so Figure 14.3 in Section 14.1 is actually realistic. Consequently, we need only solve
Problem (9) with two values of z to determine the function precisely. To establish these
facts, let us do a little more analysis.

Suppose that we have solved Problem (9) twice with particular values z1 and z2. Let the
solutions that are so obtained be denoted by x1(t) and x2(t). Then we claim that the function

g(t) = λx1(t) + (1 − λ)x2(t) (10)

has properties {
g′′ = u + vg + wg′

g(a) = α

which are left to the reader to verify in Problem 14.2.6. (The value of λ in this analysis is
a constant but is completely arbitrary.)

The function g nearly solves the two-point boundary-value Problem (8), and g contains
a parameter λ at our disposal. Imposing the condition g(b) = β, we obtain

λx1(b) + (1 − λ)x2(b) = β

from which

λ = β − x2(b)

x1(b) − x2(b)

Perhaps the simplest way to implement these ideas is to solve two initial-value problems{
x ′′ = u(t) + v(t)x + w(t)x ′

x(a) = α x ′(a) = 0

and {
y′′ = u(t) + v(t)y + w(t)y′

y(a) = α y′(a) = 1

Then the solution to the original two-point boundary-value Problem (8) is

λx(t) + (1 − λ)y(t) with λ = β − y(b)

x(b) − y(b)
(11)

14.2 A Discretization Method 575

In the computer realization of this procedure, we must save the entire solution curves x
and y. They are stored in arrays (xi) and (yi).

Pseudocode and Numerical Example
As an example of the shooting method, consider the problem of Equation (7). We solve the
two initial-value problems⎧⎪⎨⎪⎩

x ′′ = et − 3 sin(t) + x ′ − x

x(1) = 1.09737 491

x ′(1) = 0

⎧⎪⎨⎪⎩
y′′ = et − 3 sin(t) + y′ − y

y(1) = 1.09737 491

y′(1) = 1

(12)

by using the fourth-order Runge-Kutta method. To do so, we introduce variables

x0 = t x1 = x x2 = x ′

Then the first initial-value problem is⎡⎢⎣x ′
0

x ′
1

x ′
2

⎤⎥⎦ =
⎡⎣ 1

x2

ex0 − 3 sin(x0) + x2 − x1

⎤⎦ ⎡⎣ x0(1)

x1(1)

x2(1)

⎤⎦ =
⎡⎣1

1.09737 491
0

⎤⎦
Now let

y0 = t y1 = y y2 = y′

The second initial-value problem that we must solve is similar except that we modify the
initial vector⎡⎢⎣ y′

0

y′
1

y′
2

⎤⎥⎦ =
⎡⎣ 1

y2

ey0 − 3 sin(y0) + y2 − y1

⎤⎦ ⎡⎣ y0(1)

y1(1)

y2(1)

⎤⎦ =
⎡⎣ 1

1.09737 491
1

⎤⎦
It is more efficient to solve these two problems together as a single system. Introducing

x3 = y x4 = y′

into the first system, we have⎡⎢⎢⎢⎢⎢⎣
x ′

0

x ′
1

x ′
2

x ′
3

x ′
4

⎤⎥⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1
x2

ex0 − 3 sin(x0) + x2 − x1

x4

ex0 − 3 sin(x0) + x4 − x3

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

x0(1)

x1(1)

x2(1)

x3(1)

x4(1)

⎤⎥⎥⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
1
1.09737 491
0
1.09737 491
1

⎤⎥⎥⎥⎥⎦
Clearly, the x1(t) and x3(t) components of the solution vector at each t satisfy the first and
second problems, respectively. Consequently, the solution is

λx1(ti) + (1 − λ)x3(ti) (1 � i � n − 1)

where

λ = 8.63749 661 − x3(2)

x1(2) − x3(2)

We use 100 points as before, so n = 99.

576 Chapter 14 Boundary-Value Problems for Ordinary Differential Equations

program BVP2
integer i ; real array (xi)0:m, (x1i)0:n, (x3i)0:n; real error, h, p, q, t
integer n ← 99, m ← 4
real a ← 1, b ← 2, α ← 1.09737 491, β ← 8.63749 661
x ← (1, α, 0, α, 1)

h ← (b − a)/n
for i = 1 to n do

call RK 4 System2(m, h, (xi), 1)

(x1)i ← x1

(x3)i ← x3

end for
p ← [β − (x3)n]/[(x1)n − (x3)n]
q ← 1 − p
for i = 1 to n do

(x1)i ← p (x1)i + q (x3)i

end for
error ← ea − 3 cos(a) − α

output a, α, error
for i = 9 to n step 9 do

t ← a + ih
error ← et − 3 cos(t) − (x1)i

output t, (x1)i , error
end for
end program BVP2

procedure XP System(m, (xi), (fi))

real array (xi)0:m, (fi)0:m

f0 ← 1
f1 ← x2

f2 ← ex0 − 3 sin(x0) + x2 − x1

f3 ← x4

f4 ← ex0 − 3 sin(x0) + x4 − x3

end procedure XP System

The final computer results are as shown:

t-Value Solution Error
1.00000 00 1.09737 49 0.00
1.09090 91 1.59194 09 9.54 × 10−7

1.18181 82 2.12256 57 1.91 × 10−6

1.27272 73 2.68955 09 1.43 × 10−6

1.36363 64 3.29334 26 2.38 × 10−7

1.45454 55 3.93456 79 9.54 × 10−7

1.54545 45 4.61408 57 −4.77 × 10−7

1.63636 36 5.33301 78 4.77 × 10−7

1.72727 27 6.09280 54 1.91 × 10−6

1.81818 18 6.89525 56 9.54 × 10−7

1.90909 10 7.74258 90 9.54 × 10−7

2.00000 00 8.63749 69 0.00

14.2 A Discretization Method 577

Notice that the errors are smaller than those obtained in the discretization method for the
same problem. (Why?)

By using mathematical software such as found in Matlab, Maple, or Mathematica,
this problem can be solved in various ways. In Matlab and Mathematica, built-in routines
can be used to obtain the numerical solution to this boundary-value problem and plot the
solution curve. On the other hand, Maple can solve the two differential equations in (12) and
combine the solutions as described earlier with an appropriate value for λ. Also, the code
can evaluate the solution at 1, 1.5, and 2, for example. Note that this is an analytic solution.
These mathematical software systems do not produce the solution instantaneously; there is
a lot of calculation going on behind the scenes.

In our brief discussion of two-point boundary-value problems, we have not touched
upon the difficult question of the existence of solutions. Sometimes a boundary-value prob-
lem has no solution despite having smooth coefficients. An example is given in Prob-
lem 14.1.4b. This behavior contrasts sharply with that of initial-value problems. These
matters are beyond the scope of this book but are treated, for example, in Keller [1976] and
Stoer and Bulirsch [1993].

Summary

(1) For the two-point boundary-value problem{
x ′′(t) = f (t, x(t), x ′(t))

x(a) = α x(b) = β

we use finite differences over the interval [a, b] with n + 1 points, namely, ti = a + ih with
0 � i � n and h = (b − a)/n. We obtain x0 = α, xn = β, and

1

h2
(xi−1 − 2xi + xi+1) = f

(
ti , xi ,

1

2h
(xi+1 − xi−1)

)
(1 � i � n − 1)

The linear case of this problem occurs when the right-hand side is

f (t, x, x ′) = u(t) + v(t)x + w(t)x ′

In this case, the main equation becomes

1

h2
(xi−1 − 2xi + xi+1) = u(ti) + v(ti)xi + w(ti)

[
1

2h
(xi+1 − xi−1)

]
Then the computational form is

−
(

1 + h

2
wi

)
xi−1 + (2 + h2vi)xi −

(
1 − h

2
wi

)
xi+1 = −h2ui

where ui = u(ti), vi = v(ti), and wi = w(ti). This leads to a tridiagonal linear system to
be solved.

(2) Consider the linear two-point boundary-value problem{
x ′′ = u(t) + v(t)x + w(t)x ′

x(a) = α x(b) = β

578 Chapter 14 Boundary-Value Problems for Ordinary Differential Equations

and the corresponding initial-value problem{
x ′′ = u(t) + v(t)x + w(t)x ′

x(a) = α x ′(a) = z

Suppose that x1 and x2 are two solution curves to the initial-value problem with z1 and z2,
respectively. The solution of the two-point boundary-value problem is

g(t) = λx1(t) + (1 − λ)x2(t)

with

λ = β − x2(b)

x1(b) − x2(b)

Then we find {
g′′ = u + vg + wg′

g(a) = α g(b) = λx1(b) + (1 − λ)x2(b) = β

A simple way to implement this is to solve two initial-value problems:{
x ′′ = u(t) + v(t)x + w(t)x ′

x(a) = α x ′(a) = 0

{
y′′ = u(t) + v(t)y + w(t)y′

y(a) = α y′(a) = 1

Then the solution to the original two-point boundary-value problem is

λx(t) + (1 − λ)y(t) with λ = β − y(b)

x(b) − y(b)

Additional References
See Ascher, Mattheij, and Russell [1995], Axelsson and Barker [2001], Keller [1968, 1976],
and Stakgold [2000].

Problems 14.2

a1. If standard finite-difference approximations to derivatives are used to solve a two-point
boundary-value problem with x ′′ = t + 2x − x ′, what is the typical equation in the
resulting linear system of equations?

a2. Consider the two-point boundary-value problem{
x ′′ = −x
x(0) = 0 x(1) = 1

Set up and solve the tridiagonal system that arises from the finite-difference method
when h = 1

4 . Explain any differences from the analytic solution at x
(

1
4

) ≈ 0.29401,
x
(

1
2

) ≈ 0.56975, and x
(

3
4

) ≈ 0.81006.

3. Verify that Equation (11) gives the solution of boundary-value Problem (8).

a4. Consider the two-point boundary-value problem{
x ′′ = x2 − t + t x

x(0) = 1 x(1) = 3

14.2 A Discretization Method 579

Suppose that we have solved two initial-value problems{
u′′ = u2 − t + tu

u(0) = 1 u′(0) = 1

{
v′′ = v2 − t + tv

v(0) = 1 v′(0) = 2

numerically and have found as terminal values u(1) = 2 and v(1) = 3.5. What is a
reasonable initial-value problem to try next in attempting to solve the original two-point
value problem?

5. Consider the tridiagonal System (6). Show that if vi > 0, then some choice of h exists
for which the matrix is diagonally dominant.

6. Establish the properties claimed for the function g in Equation (10).

7. Show that for the simple problem{
x ′′ = −x

x(a) = α x(b) = β

the tridiagonal system to be solved can be written as⎧⎪⎨⎪⎩
(2 − h2)x1 − x2 = α

−xi−1 + (2 − h2)xi − xi+1 = 0 (2 � i � n − 2)

−xn−2 + (2 − h2)xn−1 = β

a8. Write down the system of equations Ax = b that results from using the usual second-
order central difference approximation to solve{

x ′′ = (1 + t)x

x(0) = 0 x(1) = 1

a9. Let u be a solution of the initial-value problem{
u′′ = et u + t2u′

u(1) = 0 u′(1) = 1

How do we solve the following two-point boundary-value problem by utilizing u?{
x ′′ = et x + t2x ′

x(1) = 0 x(2) = 7

10. How would you solve the problem{
x ′ = f (t, x)

Ax(a) + Bx(b) = C

where a, b, A, B, and C are given real numbers? (Assume that A and B are not both zero.)

a11. Use the shooting method on this two-point boundary-value problem, and explain what
happens: {

x ′′ = −x

x(0) = 3 x(π) = 7

This problem is to be solved analytically, not by computer or calculator.

580 Chapter 14 Boundary-Value Problems for Ordinary Differential Equations

Computer Problems 14.2

1. Explain the main steps in setting up a program to solve this two-point boundary value
problem by the finite-difference method.{

x ′′ = x sin t + x ′ cos t − et

x(0) = 0 x(1) = 1

Show any preliminary work that must be done before programming. Exploit the linearity
of the differential equation. Program and compare the results when different values of
n are used, say, n = 10, 100, and 1000.

2. Solve the following two-point boundary value problem numerically. For comparisons,
the exact solutions are given.

aa.

⎧⎨⎩ x ′′ = (1 − t)x + 1

(1 + t)2

x(0) = 1 x(1) = 0.5

ab.

{
x ′′ = 1

3

[
(2 − t)e2x + (1 + t)−1

]
x(0) = 0 x(1) = − log 2

3. Solve the boundary-value problem{
x ′′ = −x + t x ′ − 2t cos t + t

x(0) = 0 x(π) = π

by discretization. Compare with the exact solution, which is x(t) = t + 2 sin t .

4. Repeat Computer Problem 14.1.2, using a discretization method.

5. Write a computer program to implement

a. program BVP1. b. program BVP2.

6. (Continuation) Using built-in routines in mathematical software systems such as Matlab,
Maple, or Mathematical, solve and plot the solution curve for the boundary-value prob-
lem associated with

a. program BVP1. b. program BVP2.

7. Investigate the computation of numerical solutions to the following challenging test
problems, which are nonlinear:

a.

{
x ′′ = ex

x(0) = 0, x(1) = 0
b.

{
εx ′′ + (x ′)2 = 1

x(0) = 0, x(1) = 1

Vary ε = 10−1, 10−2, 10−3, Compare to the true solution

x(t) = 1 + ε ln cosh((x − 0.745)/ε)

which has a corner at t = 0.745.

14.2 A Discretization Method 581

c. Troesch’s problem:

{
x ′′ = μ sinh(μx)

x(0) = 0, x(1) = 1
using μ = 50.

d. Bratu’s problem:

{
x ′′ + λex = 0

x(0) = 0, x(1) = 0
using λ = 3.55.

If we let λ = 3.51383 . . . , there are two solutions when λ < λ∗, one solution when
λ = λ∗, and no solutions when λ > λ∗.

e.

{
εx ′′ + t x ′ = 0

x(−1) = 0, x(1) = 2
using ε = 10−8.

Compare to the true solution x(t) = 1 + erf(t/
√

2ε)/erf(1/
√

2ε).

Cash [2003] uses these and other test problems in his research. For more information
on them, see www.ma.ic.ac.uk/∼jcash/

8. (Bucking of a circular ring project) A model for a circular ring with compressibility
c under hydrostatic pressure p from all directions is given by the following boundary-
value problem involving a system of seven differential equations:

y′
1 = −1 − cy5 + (c + 1)y7, y1(0) = π

2
, y1

(π

2

)
= 0

y′
2 = [1 + c(y5 − y7)] cos y1, y2

(π

2

)
= 0

y′
3 = [1 + c(y5 − y7)] sin y1, y3(0) = 0

y′
4 = 1 + c(y5 − y7), y4(0) = 0

y′
5 = y6[−1 − cy5 + (c + 1)y7],

y′
6 = y5 y7 − [1 + c(y5 − y7)](y5 + p), y6(0) = 0, y6

(π

2

)
= 0

y′
7 = [1 + c(y5 − y7)]y6

Various simplifications are useful in the study of the buckling or collapse of the circular
ring such as by considering only a quarter-circle by symmetry (sketch (a) below). As the
pressure increases, the radius of the circle decreases, and a bifurcation or a change of
state can occur (sketch (b) below). The shooting method together with more advanced
numerical methods can be used to solve this problem. Explore some of them. See
Huddleston [2000] and Sauer [2006] for additional details.

�1

�1

l

1

y4 p

(y2, y3) y1

s � 0

pp

s � �/2

(a) (b)

www.ma.ic.ac.uk/~jcash/

15

Partial Differential Equations

In the theory of elasticity, it is shown that the stress in a cylindrical beam
under torsion can be derived from a function u (x, y) that satisfies the
Poisson equation

∂2u
∂x2

+ ∂2u
∂y2

+ 2 = 0

In the case of a beam whose cross section is the square defined by |x| � 1,
|y | � 1, the function u must satisfy Poisson’s equation inside the square and
must be zero at each point on the perimeter of the square. By using the
methods of this chapter, we can construct a table of approximate values
of u (x, y) .

15.1 Parabolic Problems
Many physical phenomena can be modeled mathematically by differential equations. When
the function that is being studied involves two or more independent variables, the differential
equation is usually a partial differential equation. Since functions of several variables are
intrinsically more complicated than those of one variable, partial differential equations can
lead to some of the most challenging of numerical problems. In fact, their numerical solution
is one type of scientific calculation in which the resources of the fastest and most expensive
computing systems easily become taxed. We shall see later why this is so.

Some Partial Differential Equations from Applied Problems
Some important partial differential equations and the physical phenomena that they govern
are listed here:

• The wave equation in three spatial variables (x, y, z) and time t is

∂2u

∂t2
= ∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

The function u represents the displacement at time t of a particle whose position at rest
is (x, y, z). With appropriate boundary conditions, this equation governs vibrations of a
three-dimensional elastic body.

582

15.1 Parabolic Problems 583

• The heat equation is

∂u

∂t
= ∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2

The function u represents the temperature at time t in a physical body at the point that
has coordinates (x, y, z).

• Laplace’s equation is

∂2u

∂x2
+ ∂2u

∂y2
+ ∂2u

∂z2
= 0

It governs the steady-state distribution of heat in a body or the steady-state distribution
of electrical charge in a body. Laplace’s equation also governs gravitational, electric,
and magnetic potentials and velocity potentials in irrotational flows of incompressible
fluids. The form of Laplace’s equation given above applies to rectangular coordinates. In
cylindrical and spherical coordinates, it takes these respective forms:

∂2u

∂r 2
+ 1

r

∂u

∂r
+ 1

r 2

∂2u

∂φ2
+ ∂2u

∂z2
= 0

1

r

∂2

∂r 2
(ru) + 1

r 2 sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+ 1

r 2 sin2 θ

∂2u

∂φ2
= 0

• The biharmonic equation is

∂4u

∂x4
+ 2

∂4u

∂x2 ∂y2
+ ∂4u

∂y4
= 0

It occurs in the study of elastic stress, and from its solution the shearing and normal
stresses can be derived for an elastic body.

• The Navier-Stokes equations are

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ ∂p

∂x
= ∂2u

∂x2
+ ∂2u

∂y2

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ ∂p

∂y
= ∂2v

∂x2
+ ∂2v

∂y2

Here, u and v are components of the velocity vector in a fluid flow. The function p is the
pressure, and the fluid is assumed to be incompressible but viscous.

In three dimensions, the following operators are useful in writing many standard partial
differential equations

∇ = ∂

∂x
+ ∂

∂y
+ ∂

∂z

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(Laplacian operator)

584 Chapter 15 Partial Differential Equations

For example, we have

Heat equation
1

k

∂u

∂t
= ∇2u

Diffusion equation
∂u

∂t
= ∇(d∇u) + ρ

Wave equation
1

ν2

∂2u

∂t2
= ∇2u

Laplace equation ∇2u = 0

Poisson equation ∇2u = −4πρ

Helmholtz equation ∇2u = −k2u

The diffusion equation with diffusion constant d has the same structure as the heat equation
because heat transfer is a diffusion process. Some authors use alternate notation such as
�u = curl(grad(u)) = ∇2u.

Additional examples from quantum mechanics, electromagnetism, hydrodynamics,
elasticity, and so on could also be given, but the five partial differential equations shown
already exhibit a great diversity. The Navier-Stokes equation, in particular, illustrates a very
complicated problem: a pair of nonlinear, simultaneous partial differential equations.

To specify a unique solution to a partial differential equation, additional conditions must
be imposed on the solution function. Typically, these conditions occur in the form of bound-
ary values that are prescribed on all or part of the perimeter of the region in which the solution
is sought. The nature of the boundary and the boundary values are usually the determining
factors in setting up an appropriate numerical scheme for obtaining the approximate solution.

Matlab includes a PDE Toolbox for partial differential equations. It contains many
commands for such tasks as describing the domain of an equation, generating meshes,
computing numerical solutions, and plotting. Within Matlab, the command pdetool in-
vokes a graphical user interface (GUI) that is a self-contained graphical environment for
solving partial differential equations. One draws the domain and indicates the boundary,
fills in menus with the problem and boundary specifications, and selects buttons to solve
the problem and plot the results. Although this interface may provide a convenient working
environment, there are situations in which command-line functions are needed for addi-
tional flexibility. A suite of demonstrations and help files is useful in finding one’s way. For
example, this software can handle PDEs of the following types

Parabolic PDE b
∂u

∂t
− ∇ · (c∇u) + au = f

Hyperbolic PDE b
∂2u

∂t2
− ∇ · (c∇u) + au = f

Elliptic PDE −∇ · (c∇u) + au = f

for x and y on the two-dimensional domain � for the problem. On the boundaries of the
domain, the following boundary conditions can be handled:

Dirichlet hu = r

Generalized Neumann �n · (c∇u) + qu = g

Mixed combination of Dirichlet/Neumann

15.1 Parabolic Problems 585

Here, �n = du/dν is the outward unit length normal derivative. While the PDE can be
entered via a dialog box, both the boundary conditions and the PDE coefficients a, c, d can
be entered in a variety of ways. One can construct the geometry of the domain by drawing
solid objects (circle, polygon, rectangle, and ellipse) that may be overlapped, moved, and
rotated.

Heat Equation Model Problem
In this section, we consider a model problem of modest scope to introduce some of the
essential ideas. For technical reasons, the problem is said to be of the parabolic type. In
it we have the heat equation in one spatial variable accompanied by boundary conditions
appropriate to a certain physical phenomenon:⎧⎪⎪⎪⎨⎪⎪⎪⎩

∂2

∂x2
u(x, t) = ∂

∂t
u(x, t)

u(0, t) = u(1, t) = 0

u(x, 0) = sin πx

(1)

These equations govern the temperature u(x, t) in a thin rod of length 1 when the ends are
held at temperature 0, under the assumption that the initial temperature in the rod is given
by the function sin πx (see Figure 15.1). In the xt-plane, the region in which the solution
is sought is described by inequalities 0 � x � 1 and t � 0. On the boundary of this region
(shaded in Figure 15.2), the values of u have been prescribed.

FIGURE 15.1

Heated rod
x

0 1

Rod
Ice Ice

FIGURE 15.2

Heat equation:
xt-plane x

0 1

t

Finite-Difference Method
A principal approach to the numerical solution of such a problem is the finite-difference
method. It proceeds by replacing the derivatives in the equation by finite differences. Two

586 Chapter 15 Partial Differential Equations

formulas from Section 4.3 are useful in this context:

f ′(x) ≈ 1

h
[f (x + h) − f (x)]

f ′′(x) ≈ 1

h2
[f (x + h) − 2 f (x) + f (x − h)]

If the formulas are used in the differential Equation (1), with possibly different step lengths
h and k, the result is

1

h2
[u(x + h, t) − 2u(x, t) + u(x − h, t)] = 1

k
[u(x, t + k) − u(x, t)] (2)

This equation is now interpreted as a means of advancing the solution step by step in the t
variable. That is, if u(x, t) is known for 0 � x � 1 and 0 � t � t0, then Equation (2) allows us
to evaluate the solution for t = t0 + k.

Equation (2) can be rewritten in the form

u(x, t + k) = σu(x + h, t) + (1 − 2σ)u(x, t) + σu(x − h, t) (3)

where

σ = k

h2

A sketch showing the location of the four points involved in this equation is given in
Figure 15.3. Since the solution is known on the boundary of the region, it is possible to
compute an approximate solution inside the region by systematically using Equation (3).
It is, of course, an approximate solution because Equation (2) is only a finite-difference
analog of Equation (1).

FIGURE 15.3

Heat equation:
Explicit stencil

(x, t � k)

(x � h, t) (x � h, t)(x, t)

To obtain an approximate solution on a computer, we select values for h and k and use
Equation (3). An analysis of this procedure, which is outside the scope of this text, shows that
for stability of the computation, the coefficient 1−2σ in Equation (3) should be nonnegative.
(If this condition is not met, errors made at one step will probably be magnified at subsequent
steps, ultimately spoiling the solution.) The reader is referred to Kincaid and Cheney [2002]
or Forsythe and Wasow [1960] for a discussion of stability. Using this algorithm, we can
continue the solution indefinitely in the t-variable by computations involving only prior
values of t . This is an example of a marching problem or marching method.

15.1 Parabolic Problems 587

Pseudocode for Explicit Method
For utmost simplicity, we select h = 0.1 and k = 0.005. Coefficient σ is now 0.5. This
choice makes the coefficient 1 − 2σ equal to zero. Our pseudocode first prints u(ih, 0) for
0 � i � 10 because they are known boundary values. Then it computes and prints u(ih, k) for
0 � i � 10 using Equation (3) and boundary values u(0, t) = u(1, t) = 0. This procedure is
continued until t reaches the value 0.1. The single subscripted arrays (ui) and (vi) are used
to store the values of the approximate solution at t and t +k, respectively. Since the analytic
solution of the problem is u(x, t) = e−π2t sin πx (see Problem 15.1.3), the error can be
printed out at each step.

The procedure described is an example of an explicit method. The approximate values
of u(x, t +k) are calculated explicitly in terms of u(x, t). Not only is this situation atypical,
but even in this problem the procedure is rather slow because considerations of stability
force us to select

k �
1

2
h2

Since h must be rather small to represent the derivative accurately by the finite difference
formula, the corresponding k must be extremely small. Values such as h = 0.1 and k =
0.005 are representative, as are h = 0.01 and k = 0.00005. With such small values of k, an
inordinate amount of computation is necessary to make much progress in the t variable.

program Parabolic1
integer i, j ; real array (ui)0:n, (vi)0:n

integer n ← 10, m ← 20
real h ← 0.1, k ← 0.005
real u0 ← 0, v0 ← 0, un ← 0, vn ← 0
for i = 1 to n − 1 do

ui ← sin(π ih)

end for
output (ui)

for j = 1 to m do
for i = 1 to n − 1 do

vi ← (ui−1 + ui+1)/2
end for
output (vi)

t ← jk
for i = 1 to n − 1 do

ui ← e−π2t sin(π ih) − vi

end for
output (ui)

for i = 1 to n − 1 do
ui ← vi

end for
end for
end program Parabolic1

588 Chapter 15 Partial Differential Equations

Crank-Nicolson Method
An alternative procedure of the implicit type goes by the name of its inventors, John Crank
and Phyllis Nicolson, and is based on a simple variant of Equation (2):

1

h2
[u(x + h, t) − 2u(x, t) + u(x − h, t)] = 1

k
[u(x, t) − u(x, t − k)] (4)

If a numerical solution at grid points x = ih, t = jk has been obtained up to a certain
level in the t variable, Equation (4) governs the values of u on the next t level. Therefore,
Equation (4) should be rewritten as

−u(x − h, t) + ru(x, t) − u(x + h, t) = su(x, t − k) (5)

in which

r = 2 + s and s = h2

k

The locations of the four points in this equation are shown in Figure 15.4.

FIGURE 15.4

Crank-Nicolson
method:

Implicit stencil (x, t � k)

(x � h, t) (x � h, t)(x, t)

On the t level, u is unknown, but on the (t − k) level, u is known. So we can introduce
unknowns ui = u(ih, t) and known quantities bi = su(ih, t − k) and write Equation (5) in
matrix form: ⎡⎢⎢⎢⎢⎢⎢⎢⎣

r −1
−1 r −1

−1 r −1
. . .

. . .
. . .

−1 r −1
−1 r

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3
...

un−2

un−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2

b3
...

bn−2

bn−1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6)

The simplifying assumption that u(0, t) = u(1, t) = 0 has been used here. Also, h =
1/n. The system of equations is tridiagonal and diagonally dominant because |r | = 2 +
h2/k > 2. Hence, it can be solved by the efficient method of Section 7.3.

An elementary argument shows that this method is stable. We shall see that if the
initial values u(x, 0) lie in an interval [α, β], then values subsequently calculated by using
Equation (5) will also lie in [α, β], thereby ruling out any unstable growth. Since the solution
is built up line by line in a uniform way, we need only verify that the values on the first
computed line, u(x, k), lie in [α, β]. Let j be the index of the largest ui that occurs on this
line t = k. Then

−u j−1 + ru j − u j+1 = b j

15.1 Parabolic Problems 589

Since u j is the largest of the u’s, u j−1 � u j and u j+1 � u j . Thus,

ru j = b j + u j−1 + u j+1 � b j + 2u j

Since r = 2 + s and b j = su(jh, 0), the previous inequality leads at once to

u j � u(jh, 0) � β

Since u j is the largest of the ui , we have

ui � β for all i

Similarly,

ui � α for all i

thus establishing our assertion.

Pseudocode for the Crank-Nicolson Method
A pseudocode to carry out the Crank-Nicolson method on the model program is given next.
In it, h = 0.1, k = h2/2, and the solution is continued until t = 0.1. The value of r is
4 and s = 2. It is easier to compute and print only the values of u at interior points on
each horizontal line. At boundary points, we have u(0, t) = u(1, t) = 0. The program calls
procedure Tri from Section 7.3.

program Parabolic2
integer i, j ; real array (ci)1:n−1, (di)1:n−1, (ui)1:n−1, (vi)1:n−1

integer n ← 10, m ← 20
real h ← 0.1, k ← 0.005
real r, s, t
s ← h2/k
r ← 2 + s
for i = 1 to n − 1 do

di ← r
ci ← −1
ui ← sin(π ih)

end for
output (ui)

for j = 1 to m do
for i = 1 to n − 1 do

di ← r
vi ← sui

end for

590 Chapter 15 Partial Differential Equations

call Tri(n − 1, (ci), (di), (ci), (vi), (vi))

output (vi)

t ← jk
for i = 1 to n − 1 do

ui ← e−π2t sin(π ih) − vi

end for
output (ui)

for i = 1 to n − 1 do
ui ← vi

end for
end for
end program Parabolic2

We used the same values for h and k in the pseudocode for two methods (explicit and Crank-
Nicolson), so a fair comparison can be made of the outputs. Because the Crank-Nicolson
method is stable, a much larger k could have been used.

Alternative Version of the Crank-Nicolson Method
Another version of the Crank-Nicolson method is obtained as follows: The central differ-
ences at

(
x, t − 1

2 k
)

in Equation (4) produce

1

h2

[
u

(
x + h, t − 1

2
k

)
− 2u

(
x, t − 1

2
k

)
+ u

(
x − h, t − 1

2
k

)]

= 1

k
[u(x, t) − u(x, t − k)]

Since the u values are known only at integer multiples of k, terms such as u
(
x, t − 1

2 k
)

are
replaced by the average of u values at adjacent grid points; that is,

u

(
x, t − 1

2
k

)
≈ 1

2
[u(x, t) + u(x, t − k)]

So we have

1

2h2
[u(x + h, t) − 2u(x, t) + u(x − h, t) + u(x + h, t − k)

−2u(x, t − k) + u(x − h, t − k)] = 1

k
[u(x, t) − u(x, t − k)]

The computational form of this equation is

−u(x − h, t) + 2(1 + s)u(x, t) − u(x + h, t)

= u(x − h, t − k) + 2(s − 1)u(x, t − k) + u(x + h, t − k) (7)

where

s = h2

k
≡ 1

σ

15.1 Parabolic Problems 591

The six points in this equation are shown in Figure 15.5. This leads to a tridiagonal system
of form (6) with r = 2(1 + s) and

bi = u((i − 1)h, t − k) + 2(s − 1)u(ih, t − k) + u((i + 1)h, t − k)

FIGURE 15.5

Crank-Nicolson
method:

Alternative
stencil (x, t � k)

(x � h, t) (x � h, t)(x, t)

(x � h, t � k) (x � h, t � k)

Stability
At the heart of the explicit method is Equation (3), which shows how the values of u for
t + k depend on the values of u at the previous time step, t . If we introduce the values of u
on the mesh by writing ui j = u(ih, jk), then we can assemble all the values for one t-level
into a vector v(j) as follows:

v(j) = [u0 j , u1 j , u2 j , . . . , unj]
T

Equation (3) can now be written in the form

ui, j+1 = σui+1, j + (1 − 2σ)ui j + σui−1, j

This equation shows how v(j+1) is obtained from v(j). It is simply

v(j+1) = Av(j)

where A is the matrix whose elements are⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 − 2σ σ

σ 1 − 2σ σ

σ 1 − 2σ σ

. . .
. . .

. . .

σ 1 − 2σ σ

σ 1 − 2σ

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Our equations tell us that

v(j) = Av(j−1) = A2v(j−2) = A3v(j−3) = · · · = A jv(0)

From physical considerations, the temperature in the bar should approach zero. After all,
the heat is being lost through the ends of the rod, which are being kept at temperature 0.
Hence, A jv(0) should converge to 0 as j → ∞.

At this juncture, we need a theorem in linear algebra that asserts (for any matrix A)
that A jv → 0 for all vectors v if and only if all eigenvalues of A satisfy |λi | < 1. The
eigenvalues of the matrix A in the present analysis are known to be

λi = 1 − 2σ(1 − cos θi) θi = iπ

n + 1

592 Chapter 15 Partial Differential Equations

In our problem, we therefore must have

−1 < 1 − 2σ(1 − cos θi) < 1

This leads to 0 < σ � 1
2 , because θi can be arbitrarily close to π . This in turn leads to

the step-size condition k � 1
2 h2.

Mathematical software systems such as Matlab, Maple, or Mathematica contain rou-
tines that solve partial differential equations. For example in Maple and Mathematica, we
can invoke commands to verify the general analytical solution. (See Problem 15.1.3.) In
Matlab, there is a sample program to numerically solve our model heat equation. In Fig-
ure 15.6, we solve the heat equation, generate a three-dimensional plot of its solution surface,
and produce a two-dimensional contour plot, which is displayed in color for indicating the
various contours.

FIGURE 15.6

Heat equation:
(a) Solution

surface;
(b) Contour plot 10.80.60.40.20

0

0.1

0.2

0.3

0.4

0.5

1

1

0.75
0.5

0.25
0
0

0

0.1

0.2

0.3

0.4

0.5

0.2
0.4

0.6
0.8

15.1 Parabolic Problems 593

The PDE Toolbox within Matlab produces solutions to partial differential equations
using the finite-element formulation of the scalar PDE problem. (See Section 15.3 for addi-
tional discussion of the finite-element method.) This software library contains a graphical
user interface with graphical tools for describing domains, generating triangular meshes on
them, discretizing the PDEs on the mesh, building systems of equations, obtaining numerical
approximations for their solution, and visualizing the results. In particular, Matlab has the
function parabolic for solving parabolic PDEs. As is found in the Matlab documentation,
one can solve the two-dimensional heat equation

∂u

∂t
= ∇2u

on the square −1 � x, y � 1. There are Dirichlet boundary conditions u = 0 and discon-
tinuous initial conditions u(0) = 1 in the circle x2 + y2 < 2

5 and u(0) = 0 otherwise. A
Matlab demonstration continues with a movie of the solution curves.

Summary

(1) We consider a model problem involving the following parabolic partial differential
equation

∂2

∂x2
u(x, t) = ∂

∂t
u(x, t)

Using finite differences with step size h in the x-direction and k in the t-direction, we obtain

1

h2
[u(x + h, t) − 2u(x, t) + u(x − h, t)] = 1

k
[u(x, t + k) − u(x, t)]

The computational form is

u(x, t + k) = σu(x + h, t) + (1 − 2σ)u(x, t) + σu(x − h, t)

where σ = k/h2. An alternative approach is the Crank-Nicolson method based on other
finite differences for the right-hand side:

1

h2
[u(x + h, t) − 2u(x, t) + u(x − h, t)] = 1

k
[u(x, t) − u(x, t − k)]

Its computational form is

−u(x − h, t) + ru(x, t) − u(x + h, t) = su(x, t − k)

where r = 2 + s and s = h2/k. Yet another variant of the Crank-Nicolson method is based
on these finite differences:

1

h2

[
u

(
x + h, t − 1

2
k

)
− 2u

(
x, t − 1

2
k

)
+ u

(
x − h, t − 1

2
k

)]
= 1

k
[u(x, t) − u(x, t − k)]

Then by using

u

(
x, t − 1

2
k

)
≈ 1

2
[u(x, t) + u(x, t − k)]

594 Chapter 15 Partial Differential Equations

the computational form is

−u(x − h, t) + 2(1 + s)u(x, t) − u(x + h, t)

= u(x − h, t − k) + 2(s − 1)u(x, t − k) + u(x + h, t − k)

where s = h2/k. This results in a tridiagonal system of equations to be solved.

Problems 15.1

1. A second-order linear differential equation with two variables has the form

A
∂2u

∂x2
+ B

∂2u

∂x ∂y
+ C

∂2u

∂y2
+ · · · = 0

Here, A, B, and C are functions of x and y, and the terms not written are of lower
order. The equation is said to be elliptic, parabolic, or hyperbolic at a point (x, y),
depending on whether B2 − 4AC is negative, zero, or positive, respectively. Classify
each of these equations in this manner:

aa. uxx + uyy + ux + sin xuy − u = x2 + y2

b. uxx − uyy + 2ux + 2uy + ex u = x − y
ac. uxx = uy + u − ux + y d. uxy = u − ux − uy

e. 3uxx + uxy + uyy = exy af. ex uxx + cos yuxy − uyy = 0

g. uxx + 2uxy + uyy = 0 h. xuxx + yuxy + uyy = 0

a2. Derive the two-dimensional form of Laplace’s equation in polar coordinates.

3. Show that the function

u(x, t) =
N∑

n=1

cne−(nπ)2t sin nπx

is a solution of the heat conduction problem uxx = ut and satisfies the boundary
condition

u(0, t) = u(1, t) = 0 u(x, 0) =
N∑

n=1

cn sin nπx for all N � 1

a4. Refer to the model problem solved numerically in this section and show that if there is
no roundoff, the approximate solution values obtained by using Equation (3) lie in the
interval [0, 1]. (Assume 1 � 2k/h2.)

a5. Find a solution of Equation (3) that has the form u(x, t) = at sin πx , where a is a
constant.

a6. In using Equation (5), how must the linear System (6) be modified for u(0, t) = c0 and
u(1, t) = cn with c0 �= 0, cn �= 0? When using Equation (7)?

15.1 Parabolic Problems 595

a7. Describe in detail how Equation (1) with boundary conditions u(0, t) = q(t), u(1, t) =
g(t), and u(x, 0) = f (x) can be solved numerically by using System (6). Here q , g,
and f are known functions.

a8. What finite difference equation should be a suitable replacement for the equation
∂2u/∂x2 = ∂u/∂t + ∂u/∂x in numerical work?

a9. Consider the partial differential equation ∂u/∂x + ∂u/∂t = 0 with u = u(x, t) in
the region [0, 1] × [0, ∞], subject to the boundary conditions u(0, t) = 0 and u(x, 0)

specified. For fixed t , we discretize only the first term using (ui+1 − ui−1)/(2h) for
i = 1, 2, . . . , n − 1 and (un − un−1)/h, where h = 1/n. Here, ui = u(xi , t) and
xi = ih with fixed t . In this way, the original problem can be considered a first-order
initial-value problem

d y
dx

+ 1

2h
A y = 0

where

y = [u1, u2, . . . , un]T d y
dx

= [
u′

1, u′
2, . . . , u′

n

]T
u′

i = ∂ui

∂t
Determine the n × n matrix A.

10. Refer to the discussion of the stability of the Crank-Nicolson procedure, and establish
the inequality ui � α.

11. What happens to System (6) when k = h2?

12. (Multiple choice) In solving the heat equation uxx = ut on the domain t � 1 and
0 � x � 1, one can use the explicit method. Suppose the approximate solution on one
horizontal line is a vector V j . Then the whole process turns out to be described by

V j+1 = AV j

where A is a tridiagonal matrix, having 1−2σ on its diagonal and σ in the superdiagonal
and subdiagonal positions. Here σ = k/h2, where k is the time step and h is the x-step.
For stability in the numerical solution, what should we require?

a. σ = 1
2 b. All eigenvalues of A satisfy |λ| < 1. c. k � h2/2

d. h = 0.01 and k = 5 × 10−3 e. None of these.

13. (Continuation) The fully implicit method for solving the heat conduction problem
requires at each step the solution of the equation

AV j−1 = V j

Here, A is not the same as in the preceding problem, but is similar: It has 1 + 2σ on
the diagonal and −σ on the subdiagonal and superdiagonal. What do we know about
the eigenvalues of this matrix, A? Hint: This question concerns eigenvalues of A, not
A−1.

a. They are all negative. b. They are all in the open interval (0, 1).

c. They are greater than 1. d. They are in the interval (−1, 0).

e. None of these.

596 Chapter 15 Partial Differential Equations

Computer Problems 15.1

1. Solve the same heat conduction problem as in the text except use h = 2−4, k = 2−10,
and u(x, 0) = x(1 − x). Carry out the solution until t = 0.0125.

2. Modify the Crank-Nicolson code in the text so that it uses the alternative scheme (7).
Compare the two programs on the same problems with the same spacing.

3. Recode and test the pseudocode in this section using a computer language that supports
vector operations.

4. Run the Crank-Nicolson code with different choices of h and k, in particular, letting k
be much larger. Try k = h, for example.

5. Try to take advantage of any special commands or procedures in mathematical software
such as in Matlab, Maple, or Mathematica to solve the numerical example (1).

6. (Continuation) Use the symbolic manipulation capabilities in Maple or Mathematica
to verify the general analytical solution of (1). Hint: See Problem 15.1.3.

15.2 Hyperbolic Problems
Wave Equation Model Problem
The wave equation with one space variable

∂2u

∂t2
= ∂2u

∂x2
(1)

governs the vibration of a string (transverse vibration in a plane) or the vibration in a rod
(longitudinal vibration). It is an example of a second-order linear differential equation of the
hyperbolic type. If Equation (1) is used to model the vibrating string, then u(x, t) represents
the deflection at time t of a point on the string whose coordinate is x when the string is
at rest.

To pose a definite model problem, we suppose that the points on the string have
coordinates x in the interval 0 � x � 1 (see Figure 15.7). Let us suppose that at time t = 0,
the deflections satisfy equations u(x, 0) = f (x) and ut(x, 0) = 0. Assume also that the
ends of the string remain fixed. Then u(0, t) = u(1, t) = 0. A fully defined boundary-value

FIGURE 15.7

Vibrating string

u

x

u(x, t)

x0 1

15.2 Hyperbolic Problems 597

problem, then, is ⎧⎪⎪⎪⎨⎪⎪⎪⎩
utt − uxx = 0

u(x, 0) = f (x)

ut(x, 0) = 0

u(0, t) = u(1, t) = 0

(2)

The region in the xt-plane where a solution is sought is the semi-infinite strip defined by
inequalities 0 � x � 1 and t � 0. As in the heat conduction problem of Section 15.1, the
values of the unknown function are prescribed on the boundary of the region shown (see
Figure 15.8).

FIGURE 15.8

Wave equation:
xt-plane

x
0 1

t

Analytic Solution
The model problem in (2) is so simple that it can be immediately solved. Indeed, the solution
is

u(x, t) = 1

2
[f (x + t) + f (x − t)] (3)

provided that f possesses two derivatives and has been extended to the whole real line by
defining

f (−x) = − f (x) and f (x + 2) = f (x)

To verify that Equation (3) is a solution, we compute derivatives using the chain rule:

ux = 1

2
[f ′(x + t) + f ′(x − t)] ut = 1

2
[f ′(x + t) − f ′(x − t)]

uxx = 1

2
[f ′′(x + t) + f ′′(x − t)] utt = 1

2
[f ′′(x + t) + f ′′(x − t)]

Obviously,

utt = uxx

Also,

u(x, 0) = f (x)

Furthermore, we have

ut(x, 0) = 1

2
[f ′(x) − f ′(x)] = 0

598 Chapter 15 Partial Differential Equations

In checking endpoint conditions, we use the formulas by which f was extended:

u(0, t) = 1

2
[f (t) + f (−t)] = 0

u(1, t) = 1

2
[f (1 + t) + f (1 − t)]

= 1

2
[f (1 + t) − f (t − 1)]

= 1

2
[f (1 + t) − f (t − 1 + 2)] = 0

The extension of f from its original domain to the entire real line makes it an odd
periodic function of period 2. Odd means that

f (x) = − f (−x)

and the periodicity is expressed by

f (x + 2) = f (x)

for all x . To compute u(x, t), we need to know f at only two points on the x-axis, x + t
and x − t , as in Figure 15.9.

FIGURE 15.9

Wave equation:
f stencil

x
(x, 0)(x � t, 0) (x � t, 0)

(x, t)

Numerical Solution
The model problem is used next to illustrate again the principle of numerical solution.
Choosing step sizes h and k for x and t , respectively, and using the familiar approximations
for derivatives, we have from Equation (1)

1

h2
[u(x + h, t) − 2u(x, t) + u(x − h, t)]

= 1

k2
[u(x, t + k) − 2u(x, t) + u(x, t − k)]

which can be rearranged as

u(x, t + k) = ρu(x + h, t) + 2(1 − ρ)u(x, t) + ρu(x − h, t) − u(x, t − k) (4)

15.2 Hyperbolic Problems 599

Here,

ρ = k2

h2

Figure 15.10 shows the point (x, t + k) and the nearby points that enter into Equation (4).

FIGURE 15.10

Wave equation:
Explicit stencil

(x, t � k)

(x, t � k)

(x � h, t) (x � h, t)(x, t)

The boundary conditions in Problem (2) can be written as⎧⎪⎪⎪⎨⎪⎪⎪⎩
u(x, 0) = f (x)

1

k
[u(x, k) − u(x, 0)] = 0

u(0, t) = u(1, t) = 0

(5)

The problem defined by Equations (4) and (5) can be solved by beginning at the line t = 0,
where u is known, and then progressing one line at a time with t = k, t = 2k, t = 3k,

Note that because of (5), our approximate solution satisfies

u(x, k) = u(x, 0) = f (x) (6)

The use of the O(k) approximation for ut leads to low accuracy in the computed
solution to Problem (2). Suppose that there is a row of grid points (x, −k). Letting t = 0 in
Equation (4), we have

u(x, k) = ρu(x + h, 0) + 2(1 − ρ)u(x, 0) + ρu(x − h, 0) − u(x, −k)

Now the central difference approximation

1

2k
[u(x, k) − u(x, −k)] = 0

for

ut(x, 0) = 0

can be used to eliminate the fictitious grid point (x, −k). So instead of Equation (6), we set

u(x, k) = 1

2
ρ[f (x + h) + f (x − h)] + (1 − ρ) f (x) (7)

because u(x, 0) = f (x). Values of u(x, nk), n � 2, can now be computed from Equation (4).

600 Chapter 15 Partial Differential Equations

Pseudocode
A pseudocode to carry out this numerical process is given next. For simplicity, three one-
dimensional arrays (ui), (vi), and (wi) are used: (ui) represents the solution being computed
on the new t line; (vi) and (wi) represent solutions on the preceding two t lines.

program Hyperbolic
integer i, j ; real t, x, ρ; real array (ui)0:n, (vi)0:n, (wi)0:n

integer n ← 10, m ← 20
real h ← 0.1, k ← 0.05
u0 ← 0; v0 ← 0; w0 ← 0; un ← 0; vn ← 0; wn ← 0
ρ ← (k/h)2

for i = 1 to n − 1 do
x ← ih
wi ← f (x)

vi ← 1
2ρ[f (x − h) + f (x + h)] + (1 − ρ) f (x)

end for
for j = 2 to m do

for i = 1 to n − 1 do
ui ← ρ(vi+1 + vi−1) + 2(1 − ρ)vi − wi

end for
output j, (ui)

for i = 1 to n − 1 do
wi ← vi

vi ← ui

t ← jk
x ← ih
ui ← True Solution(x, t) − vi

end for
output j, (ui)

end for
end program Hyperbolic

real function f (x)

real x
f ← sin(πx)

end function f

real function True Solution(x, t)
real t, x
True Solution ← sin(πx) cos(π t)
end function True Solution

This pseudocode requires accompanying functions to compute values of f (x) and the true
solution. We chose f (x) = sin(πx) in our example. It is assumed that the x interval is [0, 1],
but when h or n is changed, the interval can be [0, b]; that is, nh = b. The numerical solution
is printed on the t lines that correspond to 1k, 2k, . . . , mk.

15.2 Hyperbolic Problems 601

More advanced treatments show that the ratios

ρ = k2

h2

must not exceed 1 if the solution of the finite difference equations is to converge to a solution
of the differential problem as k → 0 and h → 0. Furthermore, if ρ > 1, roundoff errors
that occur at one stage of the computation would probably be magnified at later stages and
thereby ruin the numerical solution.

In Matlab, the PDE Toolbox has a function for producing the solution of hyperbolic
problems using the finite element formulation of the scalar PDE problem. An example
found in the Matlab documentation finds the numerical solution of the two-dimensional
wave propagation problem

∂2u

∂t2
= ∇2u

on the square −1 � x, y � 1 with Dirichlet boundary conditions on the left and right bound-
aries, u = 0 for x = ±1, and zero values of the normal derivatives on the top and bottom
boundaries. Further, there are Neumann boundary conditions ∂u/∂ν = 0 for y = ±1. The
initial conditions u(0) = arctan

(
cos

(
π

2 x
))

and du(0)/dt = 3 sin(πx) exp
(
sin
(

π

2 y
))

are
chosen to avoid putting too much energy into the higher vibration modes.

Advection Equation
We focus on the advection equation

∂u

∂t
= −c

∂u

∂x

Here, u = u(x, t) and c = c(x, t) in which one can consider x as space and t as time. The
advection equation is a hyperbolic partial differential equation that governs the motion of
a conserved scalar as it is advected by a known velocity field. For example, the advection
equation applies to the transport of dissolved salt in water. Even in one space dimension
and constant velocity, the system remains difficult to solve. Since the advection equation is
difficult to solve numerically, interest typically centers on discontinuous shock solutions,
which are notoriously hard for numerical schemes to handle.

Using the forward difference approximation in time and the central-difference approx-
imations in space, we have

1

k
[u(x, t + k) − u(x, t)] = −c

1

2h
[u(x + h, t) − u(x − h, t)]

This gives

u(x, t + k) = u(x, t) − 1

2
σ [u(x + h, t) − u(x − h, t)]

where σ = (k/h)c(x, t). All numerical solutions grow in magnitude for all time steps k.
For all σ > 0, this scheme is unstable by Fourier stability analysis.

602 Chapter 15 Partial Differential Equations

Lax Method
In the central-difference scheme above, replace the first term on the right-hand side, u(x, t),
by 1

2 [u(x, t − k) + u(x, t + k)]. Then we obtain

u(x, t + k) = 1

2
[u(x, t − k) + u(x, t + k)] − 1

2
σ [u(x + h, t) − u(x − h, t)]

= 1

2
(1 + σ)u(x − h, t) + 1

2
(1 + σ)u(x, t − k)

This is the Lax method, and this simple change makes the method conditionally stable.

Upwind Method
Another way of obtaining a stable method is by using a one-sided approximation to ux in
the advection equation as long as the side is taken in the upwind direction. If c > 0, the
transport is to the right. This can be interpreted as the wind of speed c blowing the solution
from left to right. So the upwind direction is to the left for c > 0 and to the right for c < 0.
Thus, the upwind difference approximation is

ux(x, t) ≈
{

−c [u(x, t) − u(x − h, t)] /h (c > 0)

−c [u(x + h, t) − u(x, t)] /h (c < 0)

Then the upwind scheme for the advection equation is

u(x, t + k) = u(x, t) − σ

{
−c [u(x, t) − u(x − h, t)] /h (c > 0)

−c [u(x + h, t) − u(x, t)] /h (c < 0)

Lax-Wendroff Method
The Lax-Wendroff scheme is second-order in space and time. The following is one of several
possible forms of this method. We start with a Taylor series expansion over one time step:

u(x, t + k) = u(x, t) + kut(x, t) + 1

2
k2utt(x, t) + O(k3)

Now use the advection equation to replace time derivatives on the right-hand side by space
derivatives:

ut = −cux

utt = (−cux)t

= −ct ux − c (ux)t

= −ct ux − c (ut)x

= −ct ux + c (cux)t

Here, we have let c = c(x, t) and have not assumed c is a constant. Substituting for ut and
uxx gives us

u(x, t + k) = u(x, t) − ckux + 1

2
k2
[−ct ux + c (cux)x

]+ O(k3)

15.2 Hyperbolic Problems 603

where everything on the right-hand side is evaluated at (x, t). If we approximate the space
derivative with second-order differences, we will have a second-order scheme in space and
time:

u(x, t + k) ≈ u(x, t) − ck
1

2h
[u(x + h, t) − u(x − h, t)]

+ 1

2
k2
[
−ct

1

2h
[u(x + h, t) − u(x − h, t)] + c (cux)x

]
The difficulty with this scheme arises when c depends on space and we must evaluate the
last term in the expression above. In the case in which c is a constant, we obtain

c (cux)x = c2uxx

≈ 1

2h
[u(x + h, t) − 2u(x, t) + u(x − h, t)]

The Lax-Wendroff scheme becomes

u(x, t + k) = u(x, t) − 1

2
σ [u(x + h, t) − u(x − h, t)]

+ 1

2
cσ 2 [u(x + h, t) − 2u(x, t) + u(x − h, t)]

where σ = c(k/h). As does the Lax method, this method has numerical dissipation (lose
of amplitude); however, it is relatively weak.

Summary

(1) We consider a model problem involving the following hyperbolic partial differential
equation:

∂2u

∂t2
= ∂2u

∂x2

Using finite differences, we approximate it by

1

h2
[u(x + h, t) − 2u(x, t) + u(x − h, t)]

= 1

k2
[u(x, t + k) − 2u(x, t) + u(x, t − k)]

The computational form is

u(x, t + k) = ρu(x + h, t) + 2(1 − ρ)u(x, t) + ρu(x − h, t) − u(x, t − k)

where ρ = k2/h2 < 1. At t = 0, we use

u(x, k) = 1

2
ρ[f (x + h) + f (x − h)] + (1 − ρ) f (x)

604 Chapter 15 Partial Differential Equations

Problems 15.2

a1. What is the solution of the boundary-value problem

utt = uxx u(x, 0) = x(1 − x) ut(x, 0) = 0 u(0, t) = u(1, t) = 0

at the point where x = 0.3 and t = 4?

a2. Show that the function u(x, t) = f (x + at) + g(x − at) satisfies the wave equa-
tion utt = a2uxx .

a3. (Continuation) Using the idea in the preceding problem, solve this boundary-value
problem:

utt = uxx u(x, 0) = F(x) ut(x, 0) = G(x) u(0, t) = u(1, t) = 0

4. Show that the boundary-value problem

utt = uxx u(x, 0) = 2 f (x) ut(x, 0) = 2g(x)

has the solution

u(x, t) = f (x + t) + f (x − t) + G(x + t) − G(x − t)

where G is an antiderivative (i.e., indefinite integral) of g. Here, we assume that −∞ <

x < ∞ and t � 0.

5. (Continuation) Solve the preceding problem on a finite x interval, for example, 0 � x � 1,
adding boundary condition u(0, t) = u(1, t) = 0. In this case, f and g are defined
only for 0 � x � 1.

Computer Problems 15.2

a1. Given f (x) defined on [0, 1], write and test a function for calculating the extended f
that obeys the equations f (−x) = − f (x) and f (x + 2) = f (x).

2. (Continuation) Write a program to compute the solution of u(x, t) at any given point
(x, t) for the boundary-value problem of Equation (2).

3. Compare the accuracy of the computed solution, using first Equation (6) and then
Equation (7), in the computer program in the text.

4. Use the program in the text to solve boundary-value Problem (2) with

f (x) = 1

4

(
1

2
−
∣∣∣∣x − 1

2

∣∣∣∣) h = 1

16
k = 1

32

5. Modify the code in the text to solve boundary-value Problem (2) when ut(x, 0) = g(x).
Hint: Equations (5) and (7) will be slightly different (a fact that affects only the initial
loop in the program).

15.3 Elliptic Problems 605

6. (Continuation) Use the program that you wrote for the preceding computer problem to
solve the following boundary-value problem:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

utt = uxx (0 � x � 1, t � 0)

u(x, 0) = sin πx

ut(x, 0) = 1

4
sin 2πx

u(0, t) = u(1, t) = 0

7. Modify the code in the text to solve the following boundary-value problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
utt = uxx (−1 � x � 1, t � 0)

u(x, 0) = |x | − 1

ut(x, 0) = 0

u(−1, t) = u(1, t) = 0

8. Modify the code in the text to avoid storage of the (vi) and (ui) arrays.

9. Simplify the code in the text for the special case in which ρ = 1. Compare the numerical
solution at the same grid points for a problem in which ρ = 1 and ρ �= 1.

10. Use mathematical software such as in Matlab, Maple, or Mathematica to solve the
wave Equation (2) and plot both the solution surface and the contour plot.

11. Use the symbolic manipulation capabilities in Maple or Mathematica to verify that
Equation (3) is the general analytical solution of the wave equation.

15.3 Elliptic Problems
One of the most important partial differential equations in mathematical physics and engi-
neering is Laplace’s equation, which has the following form in two variables:

∇2u ≡ ∂2u

∂x2
+ ∂2u

∂y2
= 0

Closely related to it is Poisson’s equation:

∇2u = g(x, y)

These are examples of elliptic equations. (Refer to Problem 17.1.1 for the classification
of equations.) The boundary conditions associated with elliptic equations generally differ
from those for parabolic and hyperbolic equations. A model problem is considered here to
illustrate the numerical procedures that are often used.

Helmholtz Equation Model Problem
Suppose that a function u = u(x, y) of two variables is the solution to a certain physical
problem. This function is unknown but has some properties that, theoretically, determine it

606 Chapter 15 Partial Differential Equations

uniquely. We assume that on a given region R in the xy-plane,{
∇2u + f u = g

u(x, y) known on the boundary of R
(1)

Here, f = f (x, y) and g = g(x, y) are given continuous functions defined in R. The
boundary values could be given by a third function

u(x, y) = q(x, y)

on the perimeter of R. When f is a constant, this partial differential equation is called the
Helmholtz equation. It arises in looking for oscillatory solutions of the wave equations.

Finite-Difference Method
As before, we find an approximate solution of such a problem by the finite-difference
method. The first step is to select approximate formulas for the derivatives in our problem.
In the present situation, we use the standard formula

f ′′(x) ≈ 1

h2
[f (x + h) − 2 f (x) + f (x − h)] (2)

derived in Section 4.3. If it is used on a function of two variables, we obtain the five-point
formula approximation to Laplace’s equation:

∇2u ≈ 1

h2
[u(x + h, y) + u(x − h, y) + u(x, y + h) + u(x, y − h) − 4u(x, y)] (3)

This formula involves the five points displayed in Figure 15.11.
The local error inherent in the five-point formula is

− h2

12

[
∂4u

∂x4
(ξ, y) + ∂4u

∂y4
(x, η)

]
(4)

and for this reason, Formula (3) is said to provide an approximation of order O(h2). In other
words, if grids are used with smaller and smaller spacing, h → 0, then the error that is
committed in replacing ∇2u by its finite-difference approximation goes to zero as rapidly
as does h2. Equation (3) is called the five-point formula because it involves values of u at
(x, y) and at the four nearest grid points.

FIGURE 15.11

Laplace’s
equation:

Five-point
stencil

(x, y � h)

(x, y � h)

(x � h, y) (x � h, y)(x, y)

15.3 Elliptic Problems 607

It should be emphasized that when the differential equation in (1) is replaced by
the finite-difference analog, we have changed the problem. Even if the analogous finite-
difference problem is solved with complete precision, the solution is that of a problem that
only simulates the original one. This simulation of one problem by another becomes better
and better as h is made to decrease to zero, but the computing cost will inevitably increase.

We should also note that other representations of the derivatives can be used. For
example, the nine-point formula is

∇2u ≈ 1

6h2
[4u(x + h, y) + 4u(x − h, y) + 4u(x, y + h) + 4u(x, y − h)

+ u(x + h, y + h) + u(x − h, y + h) + u(x + h, y − h)

+ u(x − h, y − h) − 20u(x, y)] (5)

This formula is of order O(h2). In the special case that u is a harmonic function (which
means it is a solution of Laplace’s equation), the nine-point formula is of order O(h6). For
additional details, see Forsythe and Wasow [1960, pp. 194–195]. Hence, it is an extremely
accurate approximation in using finite-difference methods and solving the Poisson equation
∇2u = g, with g a harmonic function. For more general problems, the nine-point Formula
(5) has the same order error term as the five-point Formula (3) [namely, O(h2)] and would
not be an improvement over it.

If the mesh spacing is not regular (say, h1, h2, h3, and h4 are the left, bottom, right,
and top spacing, respectively), then it is not difficult to show that at (x, y) the irregular
five-point formula is

∇2u ≈ 1
1
2 h1h3(h1 + h3)

[h1u(x + h3, y) + h3u(x − h1, y)]

+ 1
1
2 h2h4(h2 + h4)

[h2u(x, y + h4) + h4u(x, y − h2)]

− 2

(
1

h1h3
+ 1

h2h4

)
u(x, y) (6)

which is only of order h when h1 = αi h for 0 < αi < 1. This formula is usually used near
boundary points, as in Figure 15.12. If the mesh is small, however, the boundary points can
be moved over slightly to avoid the use of (6). This perturbation of the region R (in most

FIGURE 15.12

Boundary
points: Irregular

mesh spacing

h

h

h1

h2

h3

h4

608 Chapter 15 Partial Differential Equations

cases for small h) produces an error no greater than that introduced by using the irregular
scheme (6).

Returning to the model Problem (1), we cover the region R by mesh points

xi = ih y j = jh (i, j � 0) (7)

At this time, it is convenient to introduce an abbreviated notation:

ui j = u(xi , yi) fi j = f (xi , yi) gi j = g(xi , y j) (8)

With it, the five-point formula takes on a simple form at the point (xi , y j):

(∇2u)i j ≈ 1

h2
(ui+1, j + ui−1, j + ui, j+1 + ui, j−1 − 4ui j) (9)

If this approximation is made in the differential Equation (1), the result is (the reader should
verify it)

−ui+1, j − ui−1, j − ui, j+1 − ui, j−1 + (
4 − h2 fi j

)
ui j = −h2gi j (10)

The coefficients of this equation can be illustrated by a five-point star in which each point
corresponds to the coefficient of u in the grid (see Figure 15.13).

FIGURE 15.13

Helmholtz
equations:

Five-point star

�1 �1

�1

�1

4�hfij

To be specific, we assume that the region R is a unit square and that the grid has spacing
h = 1

4 (see Figure 15.14). We obtain a single linear equation of the form (10) for each of

FIGURE 15.14

Uniform grid
spacing 1 2 3 4 5

1

2

3

4

5

15.3 Elliptic Problems 609

the nine interior grid points. These nine equations are as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−u21 − u01 − u12 − u10 + (4 − h2 f11)u11 = −h2g11

−u31 − u11 − u22 − u20 + (4 − h2 f21)u21 = −h2g21

−u41 − u21 − u32 − u30 + (4 − h2 f31)u31 = −h2g31

−u22 − u02 − u13 − u11 + (4 − h2 f12)u12 = −h2g12

−u32 − u12 − u23 − u21 + (4 − h2 f22)u22 = −h2g22

−u42 − u22 − u33 − u31 + (4 − h2 f32)u32 = −h2g32

−u23 − u03 − u14 − u12 + (4 − h2 f13)u13 = −h2g13

−u33 − u13 − u24 − u22 + (4 − h2 f23)u23 = −h2g23

−u43 − u23 − u34 − u32 + (4 − h2 f33)u33 = −h2g33

This system of equations could be solved through Gaussian elimination, but let us examine
them more closely. There are 45 coefficients. Since u is known at the boundary points, we
move these 12 terms to the right-hand side, leaving only 33 nonzero entries out of 81 in
our 9 × 9 system. The standard Gaussian elimination causes a great deal of fill-in, in the
forward elimination phase—that is, zero entries are replaced by nonzero values. So we seek
a method that retains the sparse structure of this system. To illustrate how sparse this system
of equations is, we write it in matrix notation:

Au = b (11)

Suppose that we order the unknowns from left to right and bottom to top:

u = [u11, u21, u31, u12, u22, u32, u13, u23, u33]T (12)

This is called the natural ordering. Now the coefficient matrix is

A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 − h2 f11 −1 0 −1 0 0 0 0 0
−1 4 − h2 f21 −1 0 −1 0 0 0 0

0 −1 4 − h2 f31 0 0 −1 0 0 0
−1 0 0 4 − h2 f12 −1 0 −1 0 0

0 −1 0 −1 4 − h2 f22 −1 0 −1 0
0 0 −1 0 −1 4 − h2 f32 0 0 −1
0 0 0 −1 0 0 4 − h2 f13 −1 0
0 0 0 0 −1 0 −1 4 − h2 f23 −1
0 0 0 0 0 −1 0 −1 4 − h2 f33

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
and the right-hand side is

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h2g11 + u10 + u01

−h2g21 + u20

−h2g31 + u30 + u41

−h2g12 + u02

−h2g22

−h2g32 + u42

−h2g13 + u14 + u03

−h2g23 + u24

−h2g33 + u34 + u43

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
Notice that if f (x, y) < 0, then A is a diagonally dominant matrix.

610 Chapter 15 Partial Differential Equations

Gauss-Seidel Iterative Method
Since the equations are similar in form, iterative methods are often used to solve such sparse
systems. Solving for the diagonal unknown, we have from Equation (10) the Gauss-Seidel
method or iteration given by

u(k+1)
i j = 1

4 − h2 fi j

(
u(k)

i+1, j + u(k+1)
i−1, j + u(k)

i, j+1 + u(k+1)
i, j−1 − h2gi j

)
If we have approximate values of the unknowns at each grid point, this equation can be used
to generate new values. We call u(k) the current values of the unknowns at iteration k and
u(k+1) the value in the next iteration. Moreover, the new values are used in this equation as
soon as they become available. The Gauss-Seidel method and other iterative methods are
discussed in Section 8.2.

The pseudocode for this method on a rectangle is as follows:

procedure Seidel(ax , ay, nx , ny, h, itmax, (ui j))

integer i, j, k, nx , ny, itmax
real ax , ay, x, y; real array (ui j)0:nx ,0:ny

for k = 1 to itmax do
for j = 1 to ny − 1 do

y ← ay + jh
for i = 1 to nx − 1 do

x ← ax + ih
v ← ui+1, j + ui−1, j + ui, j+1 + ui, j−1

ui j ← (v − h2g(x, y))/(4 − h2 f (x, y))

end for
end for

end for
end procedure Seidel

In using this procedure, one must decide on the number of iterative steps to be computed,
itmax. The coordinates of the lower left-hand corner of the rectangle, (ax , ay), and the step
size h are specified. The number of x grid points is nx , and the number of y grid points is ny .

Numerical Example and Pseudocode
Let us illustrate this procedure on the boundary-value problem⎧⎨⎩∇2u − 1

25
u = 0 inside R (unit square)

u = q on the boundary of R
(13)

where q = cosh
(

1
5 x
) + cosh

(
1
5 y
)
. This problem has the known solution u = q. A driver

pseudocode for the Gauss-Seidel procedure, starting with u = 1 and taking 20 iterations,
is given next. Notice that only 81 words of storage are needed for the array in solving the
49 × 49 linear system iteratively. Here, h = 1

8 .

15.3 Elliptic Problems 611

program Elliptic
integer i, j ; real h, x, y; real array (ui j)0:nx ,0:ny

integer nx ← 8, ny ← 8, itmax ← 20
real ax ← 0, bx ← 1, ay ← 0, by ← 1
h ← (bx − ax)/nx

for j = 0 to ny do
y ← ay + jh
u0 j ← Bndy(ax , y)

unx , j ← Bndy(bx , y)

end for
for i = 0 to nx do

x ← ax + ih
ui0 ← Bndy(x, ay)

ui,ny ← Bndy(x, by)

end for
for j = 1 to ny − 1 do

y ← ay + jh
for i = 1 to nx − 1

x ← ax + ih
ui j ← Ustart(x, y)

end for
end for
output 0, Norm((ui j), nx , ny)

call Seidel(ax , ay, nx , ny, h, itmax, (ui j))

output itmax, Norm((ui j), nx , ny)

for j = 0 to ny do
y ← ay + jh
for i = 0 to nx do

x ← ax + ih
ui j ← |True Solution(x, y) − ui j |

end for
end for
output itmax, Norm((ui j), nx , ny)

end program Elliptic

For this model problem, the accompanying functions are given next:

real function f (x, y) real function g(x, y)

real x, y real x, y
f ← −0.04 g ← 0
end function f end function g

real function Bndy(x, y) real function Ustart(x, y)

real x, y real x, y
Bndy ← True Solution(x, y) Ustart ← 1
end function Bndy end function Ustart

612 Chapter 15 Partial Differential Equations

real function True Solution(x, y)

real x, y
True Solution ← cosh(0.2x) + cosh(0.2y)

end function True Solution

real function Norm((ui j), nx , ny)

real array (ui j)0:nx ,0:ny

t ← 0
for i = 1 to nx − 1 do
for j = 1 to ny − 1 do

t ← t + u2
i j

end for
end for
Norm ← √

t
end function Norm

After 75 iterations, the computed values at the 49 interior grid points are as follows:

2.0000 2.0003 2.0013 2.0028 2.0050 2.0078 2.0113 2.0154 2.0201
2.0003 2.0006 2.0016 2.0031 2.0053 2.0081 2.0116 2.0157 2.0204
2.0013 2.0016 2.0025 2.0041 2.0062 2.0091 2.0125 2.0166 2.0213
2.0028 2.0031 2.0041 2.0056 2.0078 2.0106 2.0141 2.0182 2.0229
2.0050 2.0053 2.0062 2.0078 2.0100 2.0128 2.0163 2.0204 2.0251
2.0078 2.0081 2.0091 2.0106 2.0128 2.0156 2.0191 2.0232 2.0279
2.0113 2.0116 2.0125 2.0141 2.0163 2.0191 2.0225 2.0266 2.0313
2.0154 2.0157 2.0166 2.0182 2.0204 2.0232 2.0266 2.0307 2.0354
2.0201 2.0204 2.0213 2.0229 2.0251 2.0279 2.0313 2.0354 2.0401

The Euclidean norm ||u||22 = ∑nx −1
i=1

∑ny−1
j=1 u2

i j of the difference between the computed
values and the known solution of the boundary-value problem (13) is approximately
0.47 × 10−4.

This example is a good illustration of the fact that the numerical problem being solved
is the system of linear Equations (11), which is a discrete approximation to the continuous-
boundary-value Problem (13). When comparing the true solution of (13) with the computed
solution of the system, remember the discretization error involved in making the approxi-
mation. This error is O(h2). With h as large as h = 1

8 , most of the errors in the computed
solution are due to the discretization error! To obtain a better agreement between the dis-
crete and continuous problems, select a much smaller mesh size. Of course, the resulting
linear system will have a coefficient matrix that is extremely large and quite sparse. Iterative
methods are ideal for solving such systems that arise from partial differential equations. For
additional information, see the references listed at the end of this section.

For a range of engineering and science applications, Matlab has a PDE Toolbox for the
numerical solution of partial differential equations. It can accommodate two space variables
and one time variable. After discretizing the equation over an unstructured mesh, it applies
finite elements to solve it and offers a provision for visualizing the results. The first example

15.3 Elliptic Problems 613

is Poisson’s equation

∇2u = −1

in the unit circle with u = 0 on the boundary. A comparison of the finite-element solution
is made with the exact solution.

Finite-Element Methods
The finite-element method has become one of the major strategies for solving partial dif-
ferential equations. It provides an alternative to the finite-difference methods discussed up
to now in this chapter.

As an illustration, we develop a version of the finite-element method for Poisson’s
equation

∇2u ≡ uxx + uyy = r

where r is a constant function. The partial differential equation holds over a specified region
R in a two-dimensional plane. Solving Poisson’s equation is equivalent to minimizing the
expression

J (u) =
∫ ∫

R

[
1

2

(
u2

x + u2
y

)+ ru

]
dx dy

This means that if the function u minimizes the expression above, then u obeys Poisson’s
equation. Suppose the region is subdivided into triangles using approximations as necessary.
The function u is approximated by a function ϕ that is a composite of plane triangular
elements, each defined over a triangular piece of R. Then consider the substitute problem
of minimizing ∑

e

Je

(
ϕ(e)

)
where each term in the summation is evaluated over its own base triangle T as described
below. (By accepting this theory on faith, you should be able to grasp the general idea of
the finite-element method.)

Assume that a base triangle has vertices (xi , yi), (x j , y j), and (xk, yk). The solution
surface above the triangle is approximated by a plane triangular element denoted ϕ(e)(x, y),
where the superscript indicated this element. Let zi , z j , and zk be the distances up to the
plane at the triangle corners called nodes. Let L (e)

i be one at node i and zero at nodes j and
k. Similarly, let L (e)

j be one at node j and zero at nodes i and k, and let L (e)
k be one at node k

and zero at nodes i and j .
As is shown in Figure 15.15, the area of the base triangle, denoted �e, is given by

�e = 1

2
Det

⎡⎣1 xi yi

1 x j y j

1 xk yk

⎤⎦
= x j yk + xi y j + xk yi − x j yi − xi yk − xk y j

614 Chapter 15 Partial Differential Equations

FIGURE 15.15

Base triangle (xi, yi) (xk, yk)

(xj, yj)

Consequently, we obtain

L (e)
i = 1

2
�−1

e Det

⎡⎣1 x y
1 x j y j

1 xk yk

⎤⎦
= 1

2
�−1

e [(x j yk − xk y j) + (y j − yk)x + (xk − x j)y]

≡ 1

2
�−1

e

(
a(e)

i + b(e)
i x + c(e)

i y
)

We have defined the coefficients a(e)
i , b(e)

i , and c(e)
i . Similarly, we find

L (e)
j = 1

2
�−1

e Det

⎡⎣ 1 x y
1 xk yk

1 xi yi

⎤⎦
= 1

2
�−1

e [(xk yi − xi yk) + (yk − yi)x + (xi − xk)y]

≡ 1

2
�−1

e

(
a(e)

j + b(e)
j x + c(e)

j y
)

and

L (e)
k = 1

2
�−1

e Det

⎡⎣1 x y
1 xi yi

1 x j y j

⎤⎦
= 1

2
�−1

e [(xi y j − x j yi) + (yi − y j)x + (x j − xi)y]

≡ 1

2
�−1

e

(
a(e)

k + b(e)
k x + c(e)

k y
)

Finally, we obtain

ϕ(e) = L (e)
i zi + L (e)

j z j + L (e)
k zk

We have

Je

(
ϕ(e)

) =
∫ ∫

T

[
1

2

((
ϕ(e)

x

)2 + (
ϕ(e)

y

)2
)

+ rϕ(e)

]
dx dy ≡ F(zi , z j , zk)

To solve the minimization problem, we set the appropriate derivatives to zero, which requires
derivatives of the components. Notice that

ϕ(e)
x = 1

2
�−1

e

(
b(e)

i zi + b(e)
j z j + b(e)

k zk

)
and

ϕ(e)
y = 1

2
�−1

e

(
c(e)

i zi + c(e)
j z j + c(e)

k zk

)

15.3 Elliptic Problems 615

We carry out the differentiations

∂ F/∂zi =
∫ ∫

T

(
ϕ(e)

x ϕ(e)
xzi

+ ϕ(e)
y ϕ(e)

yzi
+ rϕ(e)

zi

)
dx dy

=
∫ ∫

T

(
ϕ(e)

x

1

2
�−1

e b(e)
i + ϕ(e)

y

1

2
�−1

e c(e)
i + r L (e)

i

)
dx dy

= 1

4
�−1

e

[((
b(e)

i

)2
+
(

c(e)
i

)2
)

zi +
(

b(e)
i b(e)

j + c(e)
i c(e)

j

)
z j

+
(

b(e)
i b(e)

k + c(e)
i c(e)

k

)
zk

]
+ r

1

3
�e

Here, the integrations are straightforward by elementary calculus. Moreover, it can be shown
that ∫ ∫

T
L (e)

i dx dy =
∫ ∫

T
L (e)

j dx dy =
∫ ∫

T
L (e)

k dx dy = 1

3
�e

where �e is the area of each triangle T . Similar results are obtained for ∂ F/∂z j and ∂ F/∂zk .
Consequently, we set ⎡⎢⎣ ∂ F/∂zi

∂ F/∂z j

∂ F/∂zk

⎤⎥⎦ =
⎡⎣ 0

0
0

⎤⎦
and we obtain⎡⎢⎢⎣

(
b(e)

i

)2 + (
c(e)

i

)2
b(e)

i b(e)
j + c(e)

i c(e)
j b(e)

i b(e)
k + c(e)

i c(e)
k

b(e)
i b(e)

j + c(e)
i c(e)

j

(
b(e)

j

)2 + (
c(e)

j

)2
b(e)

j b(e)
k + c(e)

j c(e)
k

b(e)
i b(e)

k + c(e)
i c(e)

k b(e)
j b(e)

k + c(e)
j c(e)

k

(
b(e)

k

)2 + (
c(e)

k

)2

⎤⎥⎥⎦
⎡⎢⎣ z1

z2

z3

⎤⎥⎦ = −4

3
r�2

e

⎡⎢⎣ 1

1

1

⎤⎥⎦
This matrix equation contains all the ingredients we need to assemble the partial derivatives.
In a particular application, we need to do the proper assembling. For each elementϕ(e), the ac-
tive nodes i , j , and k are those that contribute nonzero values. These contributions are re-
corded for derivatives relative to the corresponding variables among the zi , z j , zk , and so on.

EXAMPLE 1 Apply the finite-element method to solve Poisson’s equation uxx + uyy = 4 over the unit
square with the triangularizations shown in Figure 15.16 and using boundary values corre-
sponding to the exact solution u(x, y) = x2 + y2.

FIGURE 15.16

Triangularization

y

x

(e � 1)

(e � 2)

4

1

2 3

616 Chapter 15 Partial Differential Equations

Solution By symmetry, we need to consider only the bottom right-hand part of the square, which has
been split into two triangles. The input ingredients are nodes 1 to 4, where the coordinates
(x, y) are as follows: node 1:

(
1
2 ,

1
2

)
, node 2: (0, 0), node 3: (1, 0), and node 4: (1, 1).

The elements are two triangles with node numbers indicated: e = 1: 1, 2, 3 and e = 2:
1, 3, 4. The astute reader will notice that the z coordinates need to be determined only for
node 1, since they are boundary values for nodes 2, 3, 4! However, we will ignore this fact
for the moment to illustrate the assembly process in the finite-element method. Notice that
the areas of the triangular elements are �1 = �2 = 1

4 and r = 4. First, we compute the
a(e), b(e), c(e) coefficients from this basic information. In the following table, each column
corresponds to a node (i, j, k):

e = 1 e = 2

a(e) 0 1
2 0 1 0 − 1

2

b(e) 0 − 1
2

1
2 −1 1

2
1
2

c(e) 1 − 1
2 − 1

2 0 − 1
2

1
2

One can verify that the columns do produce the desired L (e)
i , L (e)

j , and L (e)
k functions. For

example, the first column gives L (1)
i = 1

2�
−1
1 [0 + 0 · x + 1 · y] = 2y. At node 1, this gives

the value of 1, while at nodes 2 and 3, it gives the value 0. Similarly, the other columns
produce the desired results.

Next, we obtain the matrix equation for element e = 1:⎡⎢⎢⎣
1 − 1

2 − 1
2

− 1
2

1
2 0

− 1
2 0 1

2

⎤⎥⎥⎦
⎡⎣ z1

z2

z3

⎤⎦ =

⎡⎢⎣− 1
3

− 1
3

− 1
3

⎤⎥⎦
and the matrix equation for element e = 2:⎡⎢⎢⎣

1 − 1
2 − 1

2

− 1
2

1
2 0

− 1
2 0 − 1

2

⎤⎥⎥⎦
⎡⎣ z1

z3

z4

⎤⎦ =

⎡⎢⎣− 1
3

− 1
3

− 1
3

⎤⎥⎦
Then we assemble the two matrices, obtaining⎡⎢⎢⎢⎢⎣

2 − 1
2 −1 − 1

2

− 1
2

1
2 0 0

−1 0 1 0
− 1

2 0 0 − 1
2

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

z1

z2

z3

z4

⎤⎥⎥⎦ =

⎡⎢⎢⎢⎢⎣
− 2

3

− 1
3

− 2
3

− 1
3

⎤⎥⎥⎥⎥⎦
Now that we have illustrated the process of assembling the elements, we can quickly find
the solution using the fact that z2 = 0, z3 = 1, and z4 = 2, since they are boundary values.
Using these values in the last matrix equation above, we immediately find that z1 = 2

3 . This
is a rough approximation, since the true value is 1

2 . Remember that u(x, y) = x2 + y2 is
the exact solution. ■

We can obtain more accurate approximations by adding more elements and writing a com-
puter program to handle the computations. (See Computer Problem 15.3.15.) For additional
details, see Scheid [1990] and Sauer [2006].

15.3 Elliptic Problems 617

More on Finite Elements
At first, we take a very general approach to this topic, supposing that we have a linear
transformation A and want to solve the equation

Au = b

for u, when b is given. This obviously includes the case when A is an m ×n matrix and b is a
vector of m components. But there are many complicated problems that fit this same mold.

For example, A can be a linear differential operator, and we may wish to solve a
two-point boundary-value problem involving it, such as{

u′′(t) + 2u(t) = t2 (0 � t � 1)

u(0) = u(1) = 0

Here, A operates on functions and is defined by the equation Au = u′′ + 2u.
Another example of great importance is the model problem Equation (1). In this case, A

would be the Laplacian differential operator. This problem is discussed in Chapter 17 as well.
The basic strategy of the finite-element method for solving the equation Au = b is to

select basic functions v1, v2, . . . , vn and try to solve the equation with a linear combination
of these basic functions. Since A is assumed to be a linear transformation, we obtain

Au = A
n∑

j=1

c jv j =
n∑

j=1

c j

(
Av j

) = b

Now the unknowns in the problem are the coefficients c j . Typically, the equation just dis-
played is inconsistent because b is not in the linear span of the set of functions {Av1, Av2, . . . ,

Avn}. In this case, one must compromise and accept an approximate solution to the set of
equations. Many different tactics can be used to arrive at an approximate solution to the
problem. For example, a least-squares approach can be used if the linear space involved has
an inner product, 〈·, ·〉. The coefficients c j would then be chosen so that the orthogonality
condition was fulfilled; that is,

n∑
j=1

c j Av j − b ⊥ Span{v1, v2, . . . , vn}

This leads to the normal equations
n∑

j=1

〈Av j , vi 〉c j = 〈b, vi 〉 (1 � i � n)

These equations for the unknown coefficients c j are also known (in this context) as the
Galerkin equations. They form a system of n linear equations in n unknowns.

We shall illustrate this process with a two-point boundary-value problem involving a
second-order ordinary differential equation:{

u′′(t) + g(t)u(t) = f (t)

u(0) = a u(1) = b

The finite element method usually uses local functions as the basic functions in the previous
discussion. This means that each basic function should be zero except on a short interval.
B splines have this property and are therefore often used in the finite-element method. In the

618 Chapter 15 Partial Differential Equations

present problem, we shall want to use B splines having two continuous derivatives because
the operator A will be defined by

Au = u′′ + gu

Hence, cubic splines would suggest themselves. Define knots ti = ih, where h is a chosen
step size. (Its reciprocal should be an integer in this example.) Let B3

j be the cubic B
splines corresponding to the given knots. This is an infinite list of B splines, as discussed
in Chapter 9. All but a finite number are zero on the interval [0, 1]. The ones that are not
identically zero on the interval [0, 1] can be relabeled as v1, v2, . . . , vn . These are our test
functions. Proceeding as before, we arrive at a set of n linear equations in n unknowns. The
details require one to find the functions Av j by using the B spline formulas in Chapter 9.
This is tedious and not very instructive.

Similar considerations can be applied to Laplace’s equation on a given domain. To
illustrate, we take the domain to be a square of side 2, where 0 � x, y � 2. On the boundary
of the square, we require u(x, y) = sin(xy). Such a problem is called a Dirichlet problem.
For base functions, we use functions v j that already satisfy the homogeneous part of the
problem. That is, we want each v j to satisfy Laplace’s equation inside the square domain.
Functions that satisfy Laplace’s equation are said to be harmonic. We can exploit the
fact that the real and imaginary parts of an analytic function are harmonic. Thus, if we
set z = x + iy and compute zk , we will be able to extract harmonic functions that are
polynomials. Here are a few harmonic polynomials, v j for 0 � j � 6:

z = 1 v0(x, y) = 1

z = x + iy v1(x, y) = x v2(x, y) = y

z2 = (x + iy)2 v3(x, y) = x2 − y2 v4(x, y) = 2xy

z3 = (x + iy)3 v5(x, y) = x3 − 3xy2 v6(x, y) = 3x2 y − y3

Using these seven functions, we form u = ∑6
j=0 c jv j . This satisfies Laplace’s equation,

and we can concentrate on making u close to the specified boundary value x3 − y2 on
the perimeter of the square. There are many ways to proceed, and we choose first to use a
method called collocation. In this process, we select a number of points on the boundary and
write down an equation at each point that says the value of

∑6
j=0 c jv j equals the prescribed

value. If the number of points equals the number of basic functions, we have the classical
collocation method. Here, we took eight points, whereas there are only seven functions
and seven coefficients. Hence, we ask for a least-squares solution. We took the so-called
collocation points to be (0, 2), (1, 2), (2, 2), (2, 1), (2, 0), (1, 0), (0, 0) and (0, 1). This led
to the following system of eight equations:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 2 −4 0 0 −8
1 1 2 −3 4 −11 −2
1 2 2 0 8 −16 16
1 2 1 3 4 2 11
1 2 0 4 0 8 0
1 1 0 1 0 1 0
1 0 0 0 0 0 0
1 0 1 −1 0 0 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c0

c1

c2

c3

c4

c5

c6

c7

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
sin(2)

sin(4)

sin(2)

0
0
0
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
The least-squares solution is a c-vector having components

c = [0.3219, −0.8585, −0.8585, 0, 1.1931, 0.2146, −0.2146]T

15.3 Elliptic Problems 619

The residual function is
∑6

j=0 c jv j − b, where bi (x, y) = sin(xy). Its absolute value is
0.3219 at each of the eight collocation points. To improve the accuracy, one must employ
more basic functions and more collocation points.

Another technique that is often used in the finite-element method is the replacement of
a differential equation by an optimization problem. This can be illustrated by a two-point
boundary-value problem such as{

(hu′)′ − gu = f

u(a) = α u(b) = β

Here, u is the unknown function, while h, g, and f are prescribed functions, all defined
on the interval [a, b]. This problem is called a Sturm-Liouville problem. There is an
accompanying functional, defined by

�(u) =
∫ b

a

[
(u′)2h + u2g + 2u f

]
dx

The functional and the two-point boundary-value problem are related by several theorems.
One of these states roughly that if we find the function u that minimizes the functional
�(u) subject to the side conditions u(a) = α and u(b) = β, then we will have the solution
of the boundary-value problem. It is possible to exploit the fact that �(u) is defined as
long as u has a derivative, whereas in the differential equation, we require a function
possessing two derivatives. In fact, for the functional, we require only that u be piecewise
differentiable, a property that spline functions of degrees 0 and 1 possess. These ideas extend
to functions of two or more variables and allow one to use spline functions of low degree in
two or more variables to approximate the solution to a differential equation. These are the
principal features of the finite element method. For the mathematical theory of finite-element
methods, see the books by Brenner and Scott [2002], Strang [2006], and others.

Summary

(1) We study a model problem involving the following elliptic partial differential equation

∇2u + f u = g

over a region, with the value of u given on the boundary. The first term involves the Laplace
operator ∇2, which is

∇2u ≡ ∂2u

∂x2
+ ∂2u

∂y2

By placing a grid over the region with uniform spacing h in both directions the Laplacian
term can be approximated by using the five-point finite differences

∇2u ≈ 1

h2
[u(x + h, y) + u(x − h, y) + u(x, y + h) + u(x, y − h) − 4u(x, y)]

At each interior grid point, we write ui j = u(xi , y j) = u(ih, jh), and we obtain the
following equation for our model problem:

−ui+1, j − ui−1, j − ui, j+1 − ui, j−1 + (
4 − h2 fi j

)
ui j = −h2gi j

Usually, the resulting linear system of equations is large and sparse, and iterative methods
can be used to solve it. For example, the Gauss-Seidel iterative method for our linear

620 Chapter 15 Partial Differential Equations

system is

u(k+1)
i j = 1

4 − h2 fi j

(
u(k)

i+1, j + u(k+1)
i−1, j + u(k)

i, j+1 + u(k+1)
i, j−1 − h2gi j

)
The grid points can be ordered in different ways, such as the natural ordering or the red-black
ordering, which affects the rate of convergence of the iterative procedures.

(2) The distinguishing feature of the finite-element method is that we solve an equation
Ax = b approximately by setting u = ∑n

j=1 c jv j , where v1, v2, . . . , vn are chosen by the
user. The unknown coefficients c j are computed so that

∑n
j=1 c j Av j is as close as possible

to b. Typically, in partial differential equations, the functions v j will be multidimensional
spline functions.

Additional References
For additional study and reading, see Ames [1992], Evans [2000], Forsythe and Wasow
[1960], Gockenbach [2002], Mattheij, Rienstra and Boonkkamp [2005], Ortega and
Voigt [1985], Rice and Boisvert [1984], Smith [1965], Street [1973], Varga [1962, 2002],
Wachspress [1966], Young [1971], and Young and Gregory [1972].

Problems 15.3

1. Establish the formula for the error in the

a. five-point formula, Equation (3).

b. nine-point formula, Equation (5).

2. Establish the irregular five-point Formula (6) and its error term.

3. Write the matrices that occur in Equation (11) when the unknowns are ordered according
to the vector u = [u11, u31, u22, u13, u33, u21, u12, u32, u23]T . This is known as red-
black or checkerboard ordering.

4. a. Verify Equation (10).

b. Verify that the solution of Equation (13) is as given in the text.

a5. Consider the problem of solving the partial differential equation

20uxx − 30uyy + 5

x + y
ux + 1

y
uy = 69

in a region R with u prescribed on the boundary. Derive a five-point finite difference
equation of orderO(h2) that corresponds to this equation at some interior point (xi , y j).

a6. Solve this boundary-value problem to estimate u
(

1
2 ,

1
2

)
and u

(
0, 1

2

)
:{

∇2u = 0 (x, y) ∈ R

u = x (x, y) ∈ ∂ R

15.3 Elliptic Problems 621

The region R with boundary ∂ R is shown in the figure (the arc is circular). Use h = 1
2 .

Note: This problem (and many others in this text) can be stated in physical terms also.
For example, in this problem, we are finding the steady-state temperature in a beam of
cross section R if the surface of the beam is held at temperature u(x, y) = x .

x
0

y

1�

1

1
2

1
2

a7. Consider the boundary-value problem{
∇2u = 9(x2 + y2) (x, y) ∈ R

u = x − y (x, y) ∈ ∂ R1

for the region in the unit square with h = 1
3 in the figure below. Here, ∂ R is the

boundary of R, ∂ R2 = {
(x, y) ∈ ∂ R: 2

3 � x < 1, 2
3 � y < 1

}
, and ∂ R1 = ∂ R − ∂ R2.

At the mesh points, determine the system of linear equations that yields an approximate
value for u(x, y). Write the system in the form Au = b.

x

y

1

1

1
3

1
3

2
3

2
3

8. Determine the linear system to be solved if the nine-point Formula (5) is used as the
approximation in the problem of Equation (1). Notice the pattern in the coefficient
matrix with both the five-point and nine-point formulas when unknowns in each row
are grouped together. (Draw dotted lines through A to form 3 × 3 submatrices.)

9. In Equation (11), show that A is diagonally dominant when f (x, y) � 0.

10. What is the linear system if an alternative nine-point formula

∇2u ≈ 1

12h2
[16u(x + h, y) + 16u(x − h, y) + 16u(x, y + h)

+16u(x, y − h) − u(x + 2h, y) − u(x − 2h, y)

−u(x, y + 2h) − u(x, y − 2h) − 60u(x, y)]

622 Chapter 15 Partial Differential Equations

is used? What are the advantages and disadvantages of using it? Hint: It has accuracy
O(h4).

11. (Multiple choice) What is Laplace’s equation in three variables?

a. u − x + uy + uz = 0 b. uxx + uyy = 0

c. uxx + uyy + yzz = 0 d. uxx + uyy = yut e. None of these.

12. (Multiple choice) Which of these is not a harmonic function of (x, y)?

a. x2 − y2 b. 2xy c. x3 y − xy3

d. x3 − xy3 e. None of these.

13. (Multiple choice) In solving the Dirichlet problem on the unit square, where 0 < x < 1
and 0 < y < 1, suppose that we have chosen step size h = 1/100. How many unknown
function values u(x, y) will there be in this discrete version of the problem? Take into
account that xi = ih for 0 � i � n + 1, and similarly for yi . Also, x0 = 0 and xn+1 = 1,
and similarly for y. Hint: Boundary values on the perimeter of the square are given and
are not unknowns.

a. 9801 = 992 b. 10,000 = 1002 c. 10,404 = 1022

d. 10,201 = 1012 e. None of these.

14. Let zn = un + ivn . Verify that un and vn can be determined by the algorithm u0 = 1,
v0 = 0, un+1 = xun − yvn , and vn+1 = xvn + yun .

Computer Problems 15.3

1. Print the system of linear equations for solving Equation (13) with h = 1
4 and 1

8 . Solve
these systems using procedures Gauss and Solve of Chapter 7.

2. Try the Gauss-Seidel routine on the problem{
∇2u = 2ex+y (x, y) ∈ R

u = ex+y (x, y) ∈ ∂ R

R is the rectangle shown in the figure. Starting values and mesh sizes are in the following
table. Compare your numerical solutions with the exact solutions after itmax iterations.

y

x

1.5

1�1

�1.5

15.3 Elliptic Problems 623

Starting Values h itmax
u = xy 0.1 15
u = 0 0.2 20
u = (1 + x)(1 + y) 0.25 40

u =
(

1 + x + 1

2
x2

)(
1 + y + 1

2
y2

)
0.05 100

u = 1 + xy 0.25 200

3. Modify the Gauss-Seidel procedure to handle the red-black ordering. Redo the preced-
ing computer problem with this ordering. Does the ordering make any difference? (See
Problem 15.3.3.)

4. Rewrite the Gauss-Seidel pseudocode so that it can handle any ordering; that is, intro-
duce an ordering array (�i). Try several different orderings—natural, red-black, spiral,
and diagonal.

a5. Consider the heat transfer problem on the irregular region shown in the figure below.
The mathematical statement of this problem is as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∂2u

∂x2
+ ∂2u

∂y2
= 0 inside

∂u

∂x
= 0 sides

u = 0 top

u = 100 bottom

Insulated

Insulated

Temperature 0	

Temperature 100	

Here, the partial derivative ∂u/∂x can be approximated by a divided-difference formula.
Establish that the insulated boundaries act like mirrors so that we can assume that the
temperature is the same as at an adjacent interior grid point. Determine the associated
linear system, and solve for the temperature ui with 1 � i � 10.

6. Modify procedure Seidel so that is uses the nine-point Formula (5). Re-solve model
Problem (13) and compare results.

7. Solve the example that begins this chapter with h = 1
9 .

624 Chapter 15 Partial Differential Equations

8. Solve the boundary-value problem{
∇2u + 2u = g inside R

u = 0 on boundary of R

where g(x, y) = (xy + 1)(xy − x − y) + x2 + y2 and R is the unit square. This prob-
lem has the known solution u = 1

2 xy(x − 1)(y − 1). Use the Gauss-Seidel procedure
Seidel starting with u = xy and take 30 iterations.

9. (Continuation) Using the modified procedure Seidel of Computer Problem 15.3.6, in
which the nine-point Formula (5) is used, re-solve this problem. Compare results and
explain the difference.

10. For the elliptic PDE problem (13), use Maple, Mathematica, or Matlab to find the
numerical solution of the linear system (11), where h = 1

4 , fi j = 1
25 , and gi j = 0 in

the 7 × 7 coefficient matrix and the 1 × 7 right-hand side. Compare it with the exact
solution of the boundary-value problem, which is ui j = cosh

(
1
5 ih

) + cosh
(

1
5 jh

)
.

Also, compare these results with those obtained in the example in text when h = 1
8 and

the Gauss-Seidel method was used. What conclusions can you draw?

11. Find, approximately, a harmonic function on the circular domain x2 + y2 < 1 that
takes the values sin 3θ on the boundary circle. Here, θ is the angular coordinate of the
point in polar coordinates. Use the seven basic harmonic polynomials employed in the
example of this section. Choose 100 equally spaced points on the circumference, and
use the (extended) collocation method, in which a least-squares solution to the system
of linear equations is computed.

12. In the collocation example in the text, solve the Dirichlet problem but substitute the
boundary values x3 − x2.

13. Take advantage of any special commands or procedures in mathematical software
systems such as Matlab, Maple, or Mathematica to solve the numerical example (13).

14. (Continuation) Use the symbolic manipulation capabilities in mathematical software
such as in Maple or Mathematica to verify the general solution of (13).

15. Write a computer program using the finite-element method to solve Poisson’s equation
uxx + uyy = 4 with boundary conditions u(x, y) = x2 + y2 using nine nodes in the
finer triangularization shown. See Scheid (1988) for additional details.

y

x9 8

5

1

4

32

7

6

16

Minimization of Functions

An engineering design problem leads to a function

F (x, y) = cos(x2) + e(y−6)2 + 3(x + y)4

in which x and y are parameters to be selected and F (x, y) is a function
related to the cost of manufacturing and is to be minimized. Methods for
locating optimal points (x, y) in such problems are developed in this chapter.

16.1 One-Variable Case
An important application of calculus is the problem of finding the local minima of a function.
Problems of maximization are covered by the theory of minimization because the maxima
of F occur at points where −F has its minima. In calculus, the principal technique for
minimization is to differentiate the function whose minimum is sought, set the derivative
equal to zero, and locate the points that satisfy the resulting equation.

This technique can be used on functions of one or several variables. For example, if
a minimum value of F(x1, x2, x3) is sought, we look for the points where all three partial
derivatives are simultaneously zero:

∂ F

∂x1
= ∂ F

∂x2
= ∂ F

∂x3
= 0

This procedure cannot be readily accepted as a general-purpose numerical method because
it requires differentiation followed by the solution of one or more equations in one or more
variables using methods from Chapter 3. This task may be as difficult to carry out as a direct
frontal attack on the original problem.

Unconstrained and Constrained Minimization Problems
The minimization problem has two forms: the unconstrained and the constrained. In an
unconstrained minimization problem, a function F is defined from the n-dimensional
space R

n into the real line R, and a point z ∈ R
n is sought with the property that

F(z) � F(x) for all x ∈ R
n

It is convenient to write points in R
n simply as x, y, z, and so on. If it is necessary to display

the components of a point, we write x = [x1, x2, . . . , xn]T . In a constrained minimization

625

626 Chapter 16 Minimization of Functions

problem, a subset K in R
n is prescribed, and a point z ∈ K is sought for which

F(z) � F(x) for all x ∈ K

Such problems are more difficult because of the need to keep the points within the set K .

Sometimes the set K is defined in a complicated way.
Consider the elliptic paraboloid F(x1, x2) = x2

1 + x2
2 − 2x1 − 2x2 + 4, which is

sketched in Figure 16.1. The unconstrained minimum occurs at (1, 1) because F(x1, x2) =
(x1 − 1)2 + (x2 − 1)2 + 2. If K = {(x1, x2) : x1 � 0, x2 � 0}, the constrained minimum is 4
at (0, 0).

FIGURE 16.1

Elliptic
paraboloid

F

x2

x1

1

1
(1, 1)

Mathematical software systems such as Matlab, Maple, and Mathematica contain com-
mands for the optimization of general linear and nonlinear functions. For example, we
can solve the minimization problem corresponding to the elliptic paraboloid shown in
Figure 16.1. First, we define the function, find the minimum value close to the point

(
1
2 ,

1
2

)
,

and plot this function. We obtain the minimum point as (1, 1) and the value of the function
at this point as 2.

One-Variable Case
The special case in which a function F is defined on R is considered first because the more
general problem with n variables is often solved by a sequence of one-variable problems.

Suppose that F : R → R and that we seek a point z ∈ R with the property that
F(z) � F(x) for all x ∈ R. Note that if no assumptions are made about F , this problem is
insoluble in its general form. For instance, the function

f (x) = 1

1 + x2

has no minimum point. Even for relatively well-behaved functions, such as

F(x) = x2 + sin(53x)

numerical methods may encounter some difficulties because of the large number of purely
local minima. See Figure 16.2. Recall that a point z is a local minimum point of a function
F if there is some neighborhood of z in which all points satisfy F(z) � F(x). We can use

16.1 One-Variable Case 627

FIGURE 16.2

F (x) =
x2 + sin (53x) �4 �2 2 4

x

y

mathematical software such as Matlab and Mathematica to find local minimum values for
the function F(x) = x2 + sin(53x). First, we define the function, find a local minimum
value in the interval

[− 1
2 ,

1
2

]
, and plot the curve. The point that is computed may not be a

global minimum point! To try to find the global minimum point, we could use various starting
values to find local minimum values and then find the minimum of them. (See Computer
Problem 16.1.6.) In fact, we find a local minimum −0.99912 2 at t = −0.02961 66, which
is the global minimum for this function.

Unimodal Functions F
In attacking a minimization problem, one reasonable assumption is that on some interval
[a, b] given to us in advance, F has only a single local minimum. This property is often
expressed by saying that F is unimodal on [a, b]. (Caution: In statistics, unimodal refers
to a single local maximum.) Some unimodal functions are sketched in Figure 16.3.

An important property of a continuous unimodal function, which might be surmised
from Figure 16.3, is that it is strictly decreasing up to the minimum point and strictly
increasing thereafter.

FIGURE 16.3

Examples of
unimodal and
nonunimodal

functions

a b a b a b

a b a b a b

(a) Three unimodal functions

(b) Three functions that are not unimodal

628 Chapter 16 Minimization of Functions

To be convinced of this, let x∗ be the minimum point of F on [a, b] and suppose, for
instance, that F is not strictly decreasing on the interval [a, x∗]. Then points x1 and x2 that
satisfy a � x1 < x2 � x∗ and F(x1) � F(x2) must exist. Now let x∗∗ be a minimum point of
F on the interval [a, x2]. (Recall that a continuous function on a closed finite interval attains
its minimum value.) We can assume that x∗∗ �= x2 because if x∗∗ were initially chosen as
x2, it could be replaced by x1 inasmuch as F(x1) � F(x2). But now we see that x∗∗ is a local
minimum point of F in the interval [a, b] because it is a minimum point of F on [a, x2],
but it is not x2 itself. The presence of two local minimum points, of course, contradicts the
unimodality of F .

Fibonacci Search Algorithm
Now we pose a problem concerning the search for a minimum point x∗ of a continuous
unimodal function F on a given interval [a, b]. How accurately can the true minimum point
x∗ be computed with only n evaluations of F? With no evaluations of F , the best that can
be said is that x∗ ∈ [a, b]; taking the midpoint x̂ = 1

2 (b + a) as the best estimate gives an
error of

∣∣x∗ − x̂
∣∣ � 1

2 (b − a). One evaluation by itself does not improve this situation, so
the best estimate and the error remain the same as in the previous case. Consequently, we
need at least two function evaluations to obtain a better estimate.

FIGURE 16.4

Fibonacci
search

algorithm: F
evaluated at

a′ and b′ a bx*

F(b′)

F(a′)

b′a′

Suppose that F is evaluated at a′ and b′ with the results shown in Figure 16.4. If F(a′) <

F(b′), then because F is increasing to the right of x∗, we can be sure that x∗ ∈ [a, b′].
On the other hand, similar reasoning for the case F(a′) � F(b′) shows that x∗ ∈ [a′, b]. To
make both intervals of uncertainty as small as possible, we move b′ to the left and a′ to the
right. Thus, F should be evaluated at two nearby points on either side of the midpoint, as
shown in Figure 16.5. Suppose that

a′ = 1

2
(a + b) − 2δ and b′ = 1

2
(a + b) + 2δ

Taking the midpoint of the appropriate subinterval [a, b′] or [a′, b] as the best estimate x̂
of x∗, we find that the error does not exceed 1

4 (b − a) + δ. The reader can easily verify
this.

For n = 3, two evaluations are first made at the 1
3 and 2

3 points of the initial interval
[a, b]; that is,

a′ = a + 1

3
(b − a) and b′ = a + 2

3
(b − a)

From the two values F(a′) and F(b′), it can be determined whether x∗ ∈ [a, b′] or
x∗ ∈ [a′, b]. The two cases are, of course, similar. Let us suppose that F(a′) � F(b′), so

16.1 One-Variable Case 629

FIGURE 16.5

Fibonacci
search

algorithm: F
evaluated on
either side of
the midpoint

a x* b′

F(b′)

x̂

2�

a′

F(a′)

b

2�

(a � b)1
2

FIGURE 16.6

Fibonacci
search

algorithm:
Reset b = b′

a bx* a′ b′

F(b′)

F(a′)

x̂

2�

b′

F(b′)

b // / b/

that our minimum point x∗ must be in [a′, b], as shown in Figure 16.6. The third (final)
evaluation is made close to b′, for example, at b′ + δ (where δ > 0). If F(b′) � F(b′ + δ),
then x∗ ∈ [b′, b]. Taking the midpoint of this interval, we obtain x̂ = 1

2 (b
′ + b) as our

estimate of x∗ and find that |x̂ − x∗| � 1
6 (b − a). On the other hand, if F(b′) < F(b′ + δ),

then x∗ ∈ [a′, b′ + δ]. Again we take the midpoint, x̂ = 1
2 (a

′ + b′ + δ), and find that
|x̂ − x∗| � 1

6 (b − a) + 1
2δ. So if we ignore the small quantity δ/2, our accuracy is 1

6 (b − a)

in using three evaluations of F .
By continuing the search pattern outlined, we find an estimate x̂ of x∗ with only n

evaluations of F and with an error not exceeding

1

2

(
b − a

λn

)
(1)

where λn is the (n + 1)st member of the Fibonacci sequence:{
λ1 = 1, λ2 = 1

λk = λk−1 + λk−2 (k � 3)
(2)

For example, elements λ1 through λ8 are 1, 1, 2, 3, 5, 8, 13, and 21.
In the Fibonacci search algorithm, we initially determine the number of steps N for

a desired accuracy ε > δ by selecting N to be the subscript of the smallest Fibonacci
number greater than 1

2 (b − a)/ε. We define a sequence of intervals, starting with the given
interval [a, b] of length � = b − a, and, for k = N , N − 1, . . . , 3, use these formulas

630 Chapter 16 Minimization of Functions

for updating:

� =
(

λk−2

λk

)
(b − a) (3)

a′ = a + � b′ = b − �{
a = a′ if F(a′) � F(b′)

b = b′ if F(a′) < F(b′)

At the step k = 2, we set

a′ = 1

2
(a + b) − 2δ b′ = 1

2
(a + b) + 2δ{

a = a′ if F(a′) � F(b′)

b = b′ if F(a′) < F(b′)

and we have the final interval [a, b], from which we compute x̂ = 1
2 (a + b). This algorithm

requires only one function evaluation per step after the initial step.

FIGURE 16.7

Fibonacci
search

algorithm:
Verify using

a typical
situation a b

�

a′ b′

� ′

To verify the algorithm, consider the situation shown in Figure 16.7. Since λk =
λk−1 + λk−2, we have

�′ = � − � = � −
(

λk−2

λk

)
� =

(
λk−1

λk

)
� (4)

and the length of the interval of uncertainty has been reduced by the factor (λk−1/λk). The
next step yields

�′ =
(

λk−3

λk−1

)
�′ (5)

and �′ is actually the distance between a′ and b′. Therefore, one of the preceding points at
which the function was evaluated is at one end or the other of [a, b]; that is,

b′ − a′ = � = 2� =
(

λk − 2λk−2

λk

)
�

=
(

λk−1 − λk−2

λk

)
� =

(
λk−3

λk

)
�

=
(

λk−3

λk−1

)
�′ = �′

by Equations (2), (4), and (5).

16.1 One-Variable Case 631

It is clear by Equation (4) that after N −1 function evaluations, the next-to-last interval
has length (1/λN) times the length of the initial interval [a, b]. So the final interval is
(b − a)(1/λN) wide, and the maximum error (1) is established. The final step is similar to
that outlined, and F is evaluated at a point 2δ away from the midpoint of the next-to-last
interval. Finally, set x̂ = 1

2 (b + a) from the last interval [a, b].
One disadvantage of the Fibonacci search is that the algorithm is rather complicated.

Also, the desired precision must be given in advance, and the number of steps to be computed
for this precision must be determined before beginning the computation. Thus, the initial
evaluation points for the function F depend on N , the number of steps.

Golden Section Search Algorithm
A similar algorithm that is free of these drawbacks is described next. It has been termed
the golden section search because it depends on a ratio ρ known to the early Greeks as the
golden section ratio:

ρ = 1

2

(
1 +

√
5
)

≈ 1.61803 39887

The mathematical history of this number can be found in Roger [1998], and ρ satisfies
the equation ρ2 = ρ + 1, which has roots 1

2

(
1 + √

5
) ≈ 1.61803 . . . and 1

2

(
1 − √

5
) ≈

−0.61803. . . . In each step of this iterative algorithm, an interval [a, b] is available from
the previous work. It is an interval that is known to contain the minimum point x∗, and our
objective is to replace it by a smaller interval that is also known to contain x∗. In each step,
two values of F are needed:{

x = a + r(b − a) u = F(x)

y = a + r 2(b − a) v = F(y)
(6)

where r = 1/ρ and r 2 + r = 1, which has roots 1
2

(−1 + √
5
) ≈ 0.61803 . . . and

1
2

(−1 − √
5
) ≈ −1.61803. . . . There are two cases to consider: Either u > v or u � v.

Let us take the first. Figure 16.8 depicts this situation. Since F is assumed continuous and
unimodal, the minimum of F must be in the interval [a, x]. This interval is the input interval
at the beginning of the next step. Observe now that within the interval [a, x], one evaluation
of F is already available, namely, at y. Also note that

a + r(x − a) = y

FIGURE 16.8

Golden section
search

algorithm: u>v a x* x

u

y

v

b

r (b � a)
r (b � a)

632 Chapter 16 Minimization of Functions

because x − a = r(b − a). In the next step, therefore, y will play the role of x , and we shall
need the value of F at the point a + r2(x − a).

So what must be done in this step is to carry out the following replacements in order:

b ← x

x ← y

u ← v

y ← a + r 2(b − a)

v ← F(y)

The other case is similar. If u � v, the picture might be as in Figure 16.9. In this case, the
minimum point must lie in [y, b]. Within this interval, one value of F is available, namely,
at x . Observe that

y + r 2(b − y) = x

(See Problem 16.1.9.) Thus, x should now be given the role of y, and the value of F is to
be computed at y + r(b − y). The following ordered replacements accomplish this:

a ← y

y ← x

v ← u

x ← a + r(b − a)

u ← F(x)

Problems 16.1.10 and 16.1.11 hint at a shortcoming of this procedure: It is quite slow.
Slowness in this context refers to the large number of function evaluations that are needed
to achieve reasonable precision. It can be surmised that this slowness is attributable to the
extreme generality of the algorithm. No advantage has been taken of any smoothness that
the function F may possess.

If [a, b] is the starting interval in the search for a minimum of F , then at the beginning,
with one evaluation of F , we can be sure only that the minimum point, x∗, is in an interval of
width b − a. In the golden section search, the corresponding lengths in successive steps are
r(b − a) for two evaluations of F , r 2(b − a) for three evaluations of F , and so on. After n
steps, the minimum point has been pinned down to an interval of length rn−1(b − a). How
does this compare with the Fibonacci search algorithm using n evaluations? The correspond-
ing width of interval, at the last step of this algorithm, is λ−1

n (b − a). Now, the Fibonacci
algorithm should be better, because it is designed to do as well as possible with a prescribed

FIGURE 16.9

Golden section
search

algorithm: u � v a x*x

u

y

v

b

r (b � a)
r(b � a)

16.1 One-Variable Case 633

number of steps. So we expect the ratio rn−1/λ−1
n to be greater than 1. But it approaches

1.17 as n → ∞. (See Problem 16.1.8.) Thus, one may conclude that the extra complexity
of the Fibonacci algorithm, together with the disadvantage of having the algorithm itself
depend on the number of evaluations permitted, mitigates against its use in general.

In the golden section search algorithm, how is the correct ratio r determined? Remember
that when we pass from one interval to the next in the algorithm, one of the points x or y is
to be retained in the next step. Here, we present first a sketch of the first interval in which
we let x = a + r(b − a) and y = b + r(a − b). It is followed by a sketch of the next
interval.

a xy b

a x � byz

In this new interval, the same ratios should hold, so we have y = a + r(x − a). Since
x − a = r(b − a), we can write y = a + r [r(b − a)]. Setting the two formulas for y equal
to each other gives us

a + r 2(b − a) = b + r(a − b)

whence

a − b + r 2(b − a) = r(a − b)

Dividing by (a − b) gives

r 2 + r − 1 = 0

The roots of this quadratic equation are as given previously.

Quadratic Interpolation Algorithm
Suppose that F is represented by a Taylor series in the vicinity of the point x∗. Then

F(x) = F(x∗) + (x − x∗)F ′(x∗) + 1

2
(x − x∗)2 F ′′(x∗) + · · ·

Since x∗ is a minimum point of F , we have F ′(x∗) = 0. Thus,

F(x) ≈ F(x∗) + 1

2
(x − x∗)2 F ′′(x∗)

This tells us that, in the neighborhood of x∗, F(x) is approximated by a quadratic function
whose minimum is also at x∗. Since we do not know x∗ and do not want to involve derivatives
in our algorithms, a natural stratagem is to interpolate F by a quadratic polynomial. Any
three values (xi , F(xi)), i = 1, 2, 3, can be used for this purpose. The minimum point of
the resulting quadratic function may be a better approximation to x∗ than is x1, x2, or x3.
Writing an algorithm that carries out this idea iteratively is not trivial, and many unpleasant
cases must be handled. What should be done if the quadratic interpolant has a maximum
instead of a minimum, for example? There is also the possibility that F ′′(x∗) = 0, in which
case higher-order terms of the Taylor series determine the nature of F near x∗.

Here is the outline of an algorithm for this procedure. At the beginning, we have a
function F whose minimum is sought. Two starting points x and y are given, as well as two

634 Chapter 16 Minimization of Functions

control numbers δ and ε. Computing begins by evaluating the two numbers{
u = F(x)

v = F(y)

Now let

z =
{

2x − y if u < v

2y − x if u � v

In either case, the number

w = F(z)

is to be computed.
At this stage, we have three points x , y, and z together with corresponding function

values u, v, and w. In the main iteration step of the algorithm, one of these points and
its accompanying function value are replaced by a new point and new function value. The
process is repeated until a success or failure is reached.

In the main calculation, a quadratic polynomial q is determined to interpolate F at
the three current points x , y, and z. The formulas are discussed below. Next, the point t
where q ′(t) = 0 is determined. Under ideal circumstances, t is a minimum point of q and
an approximate minimum point of F . So one of the x , y, or z should be replaced by t . We
are interested in examining q ′′(t) to determine the shape of the curve q near t .

For the complete description of this algorithm, the formulas for t and q ′′(t) must be
given. They are obtained as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a = v − u

y − x

b = w − v

z − y

c = b − a

z − x

t = 1

2

[
x + y − a

c

]
q ′′(t) = 2c

Their derivation is outlined in Problem 16.1.12.
The solution case occurs if

q ′′(t) > 0 and max {|t − x | , |t − y| , |t − z|} < ε

The condition q ′′(t) > 0 indicates, of course, that q ′ is increasing in the vicinity of t , so t
is indeed a minimum point of q. The second condition indicates that this estimate, t , of the
minimum point of F is within distance ε of each of the three points x , y, and z. In this case,
t is accepted as a solution.

The usual case occurs if

q ′′(t) > 0 and δ � max {|t − x | , |t − y| , |t − z|} � ε

These inequalities indicate that t is a minimum point of q but not near enough to the three
initial points to be accepted as a solution. Also, t is not farther than δ units from each of
x , y, and z and can thus be accepted as a reasonable new point. The old point that has the
greatest function value is now replaced by t and its function value by F(t).

16.1 One-Variable Case 635

The first bad case occurs if

q ′′(t) > 0 and max {|t − x | , |t − y| , |t − z|} > δ

Here, t is a minimum point of q but is so remote that there is some danger in using it as a
new point. We identify one of the original three points that is farthest from t , for example,
x , and also we identify the point closest to t , say z. Then we replace x by z + δ sign(t − z)
and u by F(x). Figure 16.10 shows this case. The curve is the graph of q.

FIGURE 16.10

Taylor series
algorithm: First

bad case t z � � sign(t � z)

q

z

�

y

v

x

u

The second bad case occurs if

q ′′(t) < 0

thus indicating that t is a maximum point of q . In this case, identify the greatest and the
least among u, v, and w. Suppose, for example, that u � v � w. Then replace x by z +
δ sign(z − x). An example is shown in Figure 16.11.

FIGURE 16.11

Taylor series
algorithm:

Second bad
case z � � sign(z � x) z

�

x

u

t

q

y

v

Summary

We consider the problem of finding the local minimum of a unimodal function of a
one-variable. Algorithms discussed are Fibonacci search, golden section search, and
quadratic interpolation.

Problems 16.1

a1. For the function F(x1, x2, x3) = x2
1 + 3x2

2 + 2x2
3 − 4x1 − 6x2 + 8x3, find the uncon-

strained minimum point. Then find the constrained minimum over the set K defined by
inequalities x1 � 0, x2 � 0, and x3 � 0. Next, solve the same problem when K is defined
by x1 � 2, x2 � 0, and x3 � − 2.

636 Chapter 16 Minimization of Functions

a2. For the function F(x, y) = 13x2 + 13y2 − 10xy − 18x − 18y, find the unconstrained
minimum. Hint: Try substituting x = u + v and y = u − v.

3. If F is unimodal and continuous on the interval [a, b], how many local maxima may
F have on [a, b]?

a4. For the Fibonacci search algorithm, write expressions for x̂ in the two cases n = 2, 3.

5. Carry out four steps of the Fibonacci search algorithm using ε = 1
4 to determine the

following:

aa. Minimum of F(x) = x2 − 6x + 2 on [0, 10]

b. Minimum of F(x) = 2x3 − 9x2 + 12x + 2 on [0, 3]

c. Maximum of F(x) = 2x3 − 9x2 + 12x on [0, 2]

6. Let F be a continuous unimodal function defined on the interval [a, b]. Suppose that
the values of F are known at n points, namely, a = t1 < t2 < · · · < tn = b. How
accurately can one estimate the minimum point x∗ from only the values of ti and F(ti)?

a7. The equation satisfied by Fibonacci numbers, namely, λn − λn−1 − λn−2 = 0, is an
example of a linear difference equation with constant coefficients. Solve it by postulat-
ing that λn = λn and finding that α = 1

2

(
1 + √

5
)

or β = 1
2

(
1 − √

5
)

will serve for λ.
Initial conditions λ1 = λ2 = 1 can be met by a solution of the form λn = Aαn + Bβn .
Find A and B. Establish that

lim
n→∞

(
λn

λn−1

)
= α = 1

2

(
1 +

√
5
)

Show that this agrees with Equations (10) and (11) of Section 3.3.

8. (Continuation) Refer to the golden section search algorithm and to the preceding
problem. Prove that αβ = −1 and α + β = 1 so that α = 1/r and β = −r . Then
establish that rnλn converges to 1/

√
5 as n → ∞.

a9. Verify that y + r 2(b − y) = x in the golden section algorithm. Hint: Use r 2 + r = 1.

a10. If F is unimodal on an interval of length �, how many evaluations are necessary in the
golden section algorithm to estimate the minimum point with an error of at most 10−k?

a11. (Continuation) In the preceding problem, how large must n be if � = 1 and k = 10?

12. Using the divided-difference algorithm on the table

x y z

u v w

show that the quadratic interpolant in Newton form is

q(t) = u + a(t − x) + c(t − x)(t − y)

with a, b, and c given by Equation (7). Then verify the formulas for t and q ′′(t) given
in (7).

a13. If routines can be written easily for F , F ′, and F ′′, how can Newton’s method be used
to locate the minimum point of F? Write down the formula that defines the iterative
process. Does it involve F?

16.1 One-Variable Case 637

a14. If routines are available for F and F ′, how can the secant method be used to mini-
mize F?

15. The golden section ratio, ρ = 1
2

(
1 +√

5
)
, has many mystical properties; for example,

a. ρ = 1 + 1

1 + 1

1 + 1

1 + 1

1 + · · ·

ab. ρ =
√

1 +
√

1 +
√

1 + √
1 + · · ·

c. ρn = ρn−1 + ρn−2 d. ρ = ρ−1 + ρ−2 + ρ−3 + · · ·
Establish these properties.

16. (Multiple choice) In the golden section search algorithm, we use a number r =
0.618 . . . , which is the larger of the two roots of the quadratic equation r 2 + r = 1. Let
f be a unimodal function on the interval [a, b]. Thus, f has a single local minimum in
[a, b], where here we assume that a < b. Let x = a + r(b − a) and y = a + r2(b − a).
Also, let u = f (x) and v = f (y), where we suppose that u < v. What interval must
contain the minimum point of f ?

a. [y, b] b. [a, x] c. [a, y] d. [y, x] e. None of these.

Computer Problems 16.1

1. Write a routine to carry out the golden section algorithm for a given function and
interval. The search should continue until a preassigned error bound is reached but not
beyond 100 steps in any case.

2. (Continuation) Test the routine of the preceding computer problem on these examples
or use a routine from a package such as Matlab, Maple, or Mathematica:

a. F(x) = sin x on [0, π/2] b. F(x) = (arctan x)2 on [−1, 1]

c. F(x) = |ln x | on
[

1
2 , 4

]
d. F(x) = |x | on [−1, 1]

3. Code and test the following algorithm for approximating the minima of a function F
of one variable over an interval [a, b]: The algorithm defines a sequence of quadruples
a < a′ < b′ < b by initially setting a′ = 2

3 a + 1
3 b and b′ = 1

3 a + 2
3 b and repeatedly

updating by a = a′, a′ = b′, and b′ = 1
2 (b + b′) if F(a′) > F(b′); b = b′, a′ =

1
2 (a + a′), and b′ = a if F(a′) < F(b′); a = a′, b = b′, a′ = 2

3 a + 1
3 b, and

b′ = 1
3 a + 2

3 b if F(a′) = F(b′). Note: The construction ensures that a < a′ < b′ < b,
and the minimum of F always occurs between a and b. Furthermore, only one new
function value need be computed at each stage of the calculation after the first unless
the case F(a′) = F(b′) is obtained. The values of a, a′, b′, and b tend to the same limit,
which is a minimum point of F . Notice the similarity to the method of bisection of
Section 3.1.

638 Chapter 16 Minimization of Functions

4. Write and test a routine for the Fibonacci search algorithm. Verify that a partial algo-
rithm for the Fibonacci search is as follows: Initially, set

� =
(

λN−2

λN

)
(b − a)

a′ = a + �

b′ = b − �

u = F(a′)

v = F(b′)

Then loop on k from N − 1 downward to 3, updating as follows:

If u � v: If v > u:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a ← a′

a′ ← b′

u ← v

� ←
(

λk−2

λk

)
(b − a)

b′ ← b − �

v ← F(b′)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b ← b′

b′ ← a′

v ← u

� ←
(

λk−2

λk

)
(b − a)

a′ ← a + �

u ← F(a′)

Add steps for k = 2.

5. (Berman algorithm) Suppose that F is unimodal on [a, b]. Then if x1 and x2 are any
two points such that a � x1 < x2 � b, we have

F(x1) > F(x2) implies x∗ ∈ (x1, b]

F(x1) = F(x2) implies x∗ ∈ [x1, x2]

F(x1) < F(x2) implies x∗ ∈ [a, x2)

So by evaluating F at x1 and x2 and comparing function values, we are able to reduce
the size of the interval that is known to contain x∗. The simplest approach is to start
at the midpoint x0 = 1

2 (a + b) and if F is, say, decreasing for x > x0, we test F
at x0 + ih, i = 1, 2, . . . , q , with h = (b − a)/2q , until we find a point x1 from
which F begins to increase again (or until we reach b). Then we repeat this procedure
starting at x1 and using a smaller step length h/q . Here, q is the maximal number of
evaluations at each step, say, 4. Write a subroutine to perform the Berman algorithm
and test it for evaluating the approximate minimization of one-dimensional functions.
Note: The total number of evaluations of F needed for executing this algorithm up
to some iterative step k depends on the location of x∗. If, for example, x∗ = b, then
clearly, we need q evaluations at each iteration and hence kq evaluations. This number
will decrease the closer x∗ is to x0, and it can be shown that with q = 4, the expected
number of evaluations is three per step. It is interesting to compare the efficiency of the
Berman algorithm (q = 4) with that of the Fibonacci search algorithm. The expected
number of evaluations per step is three, and the uncertainty interval decreases by a
factor 4−1/3 ≈ 0.63 per evaluation. In comparison, the Fibonacci search algorithm has

16.2 Multivariate Case 639

a reduction factor of 1
2

(
1 + √

5
) ≈ 0.62. Of course, the factor 0.63 in the Berman

algorithm represents only an average and can be considerably lower but also as high
as 4−1/4 ≈ 0.87.

6. Select a routine from your program library or from a package such as Matlab, Maple, or
Mathematica for finding the minimum point of a function of one variable. Experiment
with the function F(x) = x4 + sin(23x) to determine whether this routine encounters
any difficulties in finding a global minimum point. Use starting values both near to and
far from the global minimum point. (See Figure 16.2.)

7. (Student project) The Greek mathematician Euclid of Alexandria (325–265 B.C.E.)
wrote a collection of 13 books on mathematics and geometry. In book six, Proposition
30 shows how to divide a line into its mean and extreme mean, which is finding the
golden section point on a line. This states that the ratio of the smaller part of a line
segment to the larger part is the same as the ratio of the larger part to the whole line
segment. For a line segment of length 1, denote the larger part by r and the smaller part
by 1 − r as shown here:

r 1 � r

10

Hence, we have the ratios

1 − r

r
= r

1
and we obtain the quadratic equation

r2 = 1 − r

This equation has two roots, one positive and one negative. The reciprocal of the
positive root is the golden ratio 1

2

(
1 + √

5
)
, which was of interest to Pythagoras

(580–500 B.C.E.). It was also used in the construction of the Great Pyramid of Gizah.
Mathematical software systems such as Matlab, Maple, or Mathematica contain the
golden ratio constant. In fact, the default width-to-height ratio for the plot function is
the golden ratio. Investigate the golden section ratio and its use in scientific computing.

8. Using a mathematical software system such as Matlab, Maple, or Mathematica, write
computer program to reproduce

a. Figure 16.1.

b. Figure 16.2. Also, find the global minimum of the function as well as several local
minimum points near the origin.

16.2 Multivariate Case
Now we consider a real-valued function of n real variables F: R

n → R. As before, a point
x∗ is sought such that

F(x∗) � F(x) for all x ∈ R
n

640 Chapter 16 Minimization of Functions

Some of the theory of multivariate functions must be developed to understand the rather
sophisticated minimization algorithms in current use.

Taylor Series for F : Gradient Vector and Hessian Matrix
If the function F possesses partial derivatives of certain low orders (which is usually assumed
in the development of these algorithms), then at any given point x, a gradient vector
G(x) = (Gi)n is defined with components

Gi = Gi (x) = ∂ F(x)

∂xi
(1 � i � n) (1)

and a Hessian matrix H(x) = (Hi j)n×n is defined with components

Hi j = Hi j (x) = ∂2 F(x)

∂xi ∂x j
(1 � i, j � n) (2)

We interpret G(x) as an n-component vector and H(x) as an n × n matrix, both depending
on x.

Using the gradient and Hessian, we can write the first few terms of the Taylor series
for F as

F(x + h) = F(x) +
n∑

i=1

Gi (x)hi + 1

2

n∑
i=1

n∑
j=1

hi Hi j (x)h j + · · · (3)

Equation (3) can also be written in an elegant matrix-vector form:

F(x + h) = F(x) + G(x)T h + 1

2
hT H(x)h + · · · (4)

Here, x is the fixed point of expansion in R
n , and h is the variable in R

n with components
h1, h2, . . . , hn . The three dots indicate higher-order terms in h that are not needed in this
discussion.

A result in calculus states that the order in which partial derivatives are taken is imma-
terial if all partial derivatives that occur are continuous. In the special case of the Hessian
matrix, if the second partial derivatives of F are all continuous, then H is a symmetric
matrix; that is, H = HT because

Hi j = ∂2 F

∂xi ∂x j
= ∂2 F

∂x j ∂xi
= Hji

EXAMPLE 1 To illustrate Formula (4), let us compute the first three terms in the Taylor series for the
function

F(x1, x2) = cos(πx1) + sin(πx2) + ex1x2

taking (1, 1) as the point of expansion.

16.2 Multivariate Case 641

Solution Partial derivatives are

∂ F

∂x1
= −π sin(πx1) + x2ex1x2

∂ F

∂x2
= π cos(πx2) + x1ex1x2

∂2 F

∂x2
1

= −π2 cos(πx1) + x2
2 ex1x2

∂2 F

∂x2 ∂x1
= (x1x2 + 1)ex1x2

∂2 F

∂x1 ∂x2
= (x1x2 + 1)ex1x2

∂2 F

∂x2
2

= −π2 sin(πx2) + x2
1 ex1x2

Note the equality of cross derivatives; that is, ∂2 F/∂x1 ∂x2 = ∂2 F/∂x2 ∂x1. At the particular
point x = [1, 1]T , we have

F(x) = −1 + e, G(x) =
[

e

−π + e

]
, H(x) =

[
π2 + e 2e

2e e

]
So by Equation (4),

F(1 + h1, 1 + h2) = −1 + e + [e, −π + e]

[
h1

h2

]
+ 1

2
[h1, h2]

[
π2 + e 2e

2e e

] [
h1

h2

]
+ · · ·

or equivalently, by Equation (3),

F(1 + h1, 1 + h2) = −1 + e + eh1 + (−π + e)h2

+ 1

2

[
(π2 + e)h2

1 + (2e)h1h2 + (2e)h2h1 + eh2
2

]+ · · · ■

In mathematical software systems such Maple or Mathematica, we can verify these
calculations using built-in routines for the gradient and Hessian. Also, we can obtain two
terms in the Taylor series in two variables expanded about the point (1, 1) and then carry
out a change of variables to obtain similar results as above.

Alternative Form of Taylor Series
Another form of the Taylor series is useful. First let z be the point of expansion, and then
let h = x − z. Now from Equation (4),

F(x) = F(z) + G(z)T (x − z) + 1

2
(x − z)T H(z)(x − z) + · · · (5)

We illustrate with two special types of functions.
First, the linear function has the form

F(x) = c +
n∑

i=1

bi xi = c + bT x

for appropriate coefficients c, b1, b2, . . . , bn . Clearly, the gradient and Hessian are Gi (z) =
bi and Hi j (z) = 0, so Equation (5) yields

F(x) = F(z) +
n∑

i=1

bi (xi − zi) = F(z) + bT (x − z)

642 Chapter 16 Minimization of Functions

Second, consider a general quadratic function. For simplicity, we take only two vari-
ables. The form of the function is

F(x1, x2) = c + (b1x1 + b2x2) + 1

2

(
a11x2

1 + 2a12x1x2 + a22x2
2

)
(6)

which can be interpreted as the Taylor series for F when the point of expansion is (0, 0).
To verify this assertion, the partial derivatives must be computed and evaluated at (0, 0):

∂ F

∂x1
= b1 + a11x1 + a12x2

∂ F

∂x2
= b2 + a22x2 + a12x1

∂2 F

∂x2
1

= a11
∂2 F

∂x1 ∂x2
= a12

∂2 F

∂x2 ∂x1
= a12

∂2 F

∂x2
2

= a22

Letting z = [0, 0]T , we obtain from Equation (5)

F(x) = c + [b1, b2]

[
x1

x2

]
+ 1

2
[x1, x2]

[
a11 a12

a12 a22

] [
x1

x2

]
This is the matrix form of the original quadratic function of two variables. It can also be
written as

F(x) = c + bT x + 1

2
xT Ax (7)

where c is a scalar, b a vector, and A a matrix. Equation (7) holds for a general quadratic
function of n variables, with b an n-component vector and A an n × n matrix.

Returning to Equation (3), we now write out the complicated double sum in complete
detail to assist in understanding it:

xT H x =
n∑

i=1

n∑
j=1

xi Hi j x j =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

∑n
j=1 x1 H1 j x j

+ ∑n
j=1 x2 H2 j x j

+ · · ·
+ · · ·
+ ∑n

j=1 xn Hnj x j

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 H11x1 + x1 H12x2 + · · · + x1 H1n xn

+ x2 H21x1 + x2 H22x2 + · · · + x2 H2n xn

+ · · · + · · ·
+ · · · + · · ·
+ xn Hn1x1 + xn Hn2x2 + · · · + xn Hnn xn

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
Thus, xT H x can be interpreted as the sum of all n2 terms in a square array of which the
(i, j) element is xi Hi j x j .

16.2 Multivariate Case 643

Steepest Descent Procedure
A crucial property of the gradient vector G(x) is that it points in the direction of the most
rapid increase in the function F , which is the direction of steepest ascent. Conversely,
−G(x) points in the direction of the steepest descent. This fact is so important that it is
worth a few words of justification. Suppose that h is a unit vector,

∑n
i=1 h2

i = 1. The rate
of change of F (at x) in the direction h is defined naturally by

d

dt
F(x + t h)

∣∣∣∣
t=0

This rate of change can be evaluated by using Equation (4). From that equation, it follows
that

F(x + t h) = F(x) + t G(x)T h + 1

2
t2hT H(x)h + · · · (8)

Differentiation with respect to t leads to

d

dt
F(x + t h) = G(x)T h + t hT H(x)h + · · · (9)

By letting t = 0 here, we see that the rate of change of F in the direction h is nothing else
than

G(x)T h

Now we ask: For what unit vector h is the rate of change a maximum? The simplest path
to the answer is to invoke the powerful Cauchy-Schwarz inequality:

n∑
i=1

uivi �

(
n∑

i=1

u2
i

)1/2 (n∑
i=1

v2
i

)1/2

(10)

where equality holds only if one of the vectors u or v is a nonnegative multiple of the other.
Applying this to

G(x)T h =
n∑

i=1

Gi (x)hi

and remembering that
∑n

i=1 h2
i = 1, we conclude that the maximum occurs when h is a

positive multiple of G(x), that is, when h points in the direction of G.
On the basis of the foregoing discussion, a minimization procedure called best-step

steepest descent can be described. At any given point x, the gradient vector G(x) is
calculated. Then a one-dimensional minimization problem is solved by determining the
value t∗ for which the function

φ(t) = F(x + t G(x))

is a minimum. Then we replace x by x + t∗G(x) and begin anew.
The general method of steepest descent takes a step of any size in the direction of the

negative gradient. It is not usually competitive with other methods, but it has the advantage
of simplicity. One way of speeding it up is described in Computer Problem 16.2.2.

644 Chapter 16 Minimization of Functions

Contour Diagrams
In understanding how these methods work on functions of two variables, it is often helpful
to draw contour diagrams. A contour of a function F is a set of the form

{x : F(x) = c}
where c is a given constant. For example, the contours of function

F(x) = 25x2
1 + x2

2

are ellipses, as shown in Figure 16.12. Contours are also called level sets by some authors.
At any point on a contour, the gradient of F is perpendicular to the curve. So, in general,
the path of steepest descent may look like Figure 16.13.

FIGURE 16.12

Contours of
F (x) = 25x2

1 +x2
2

y

x
2.00�2.00

6.00

�6.00

c � 25x2 � y2

Ellipse

More Advanced Algorithms
To explain more advanced algorithms, we consider a general real-valued function F of n
variables. Suppose that we have obtained the first three terms in the Taylor series of F in the
vicinity of a point z. How can they be used to guess the minimum point of F? Obviously,

16.2 Multivariate Case 645

FIGURE 16.13

Path of steepest
descent

F (x) � F (x1)

F (x) � F (x2)

F (x) � F (x4)

F (x) � F (x5)

F (x) � F (x3)

x2

x1x4

x5

x3

we could ignore all terms beyond the quadratic terms and find the minimum of the resulting
quadratic function:

F(x + z) = F(z) + G(z)T x + 1

2
xT H(z)x + · · · (11)

Here, z is fixed and x is the variable. To find the minimum of this quadratic function of
x, we must compute the first partial derivatives and set them equal to zero. Denoting this
quadratic function by Q and simplifying the notation slightly, we have

Q(x) = F(z) +
n∑

i=1

Gi xi + 1

2

n∑
i=1

n∑
j=1

xi Hi j x j (12)

from which it follows that

∂ Q

∂xk
= Gk +

n∑
j=1

Hkj x j (1 � k � n) (13)

(See Problem 16.2.13.) The point x that is sought is thus a solution of the system of n
equations

n∑
j=1

Hkj x j = −Gk (1 � k � n)

or, equivalently,

H(z)x = −G(z) (14)

The preceding analysis suggests the following iterative procedure for locating a mini-
mum point of a function F : Start with a point z that is a current estimate of the minimum
point. Compute the gradient and Hessian of F at the point z. They can be denoted by G
and H , respectively. Of course, G is an n-component vector of numbers and H is an n × n
matrix of numbers. Then solve the matrix equation

H x = −G

646 Chapter 16 Minimization of Functions

obtaining an n-component vector x. Replace z by z + x and return to the beginning of the
procedure.

Minimum, Maximum, and Saddle Points
There are many reasons for expecting trouble from the iterative procedure just outlined. One
especially noisome aspect is that we can expect to find a point only where the first partial
derivatives of F vanish; it need not be a minimum point. It is what we call a stationary
point. Such points can be classified into three types: minimum point, maximum point, and
saddle point. They can be illustrated by simple quadratic surfaces familiar from analytic
geometry:

• Minimum of F(x, y) = x2 + y2 at (0, 0) (See Figure 16.14(a).)

• Maximum of F(x, y) = 1 − x2 − y2 at (0, 0) (See Figure 16.14(b).)

• Saddle point of F(x, y) = x2 − y2 at (0, 0) (See Figure 16.14(c).)

FIGURE 16.14

Simple
quadratic
surfaces

(a) Minimum point

(b) Maximum point

(c) Saddle point

16.2 Multivariate Case 647

Positive Definite Matrix
If z is a stationary point of F , then

G(z) = 0

Moreover, a criterion ensuring that Q, as defined in Equation (12), has a minimum point is
as follows:

■ THEOREM 1 QUADRATIC FUNCTION THEOREM

If the matrix H has the property that xT H x > 0 for every nonzero vector x, then the
quadratic function Q has a minimum point.

(See Problem 16.2.15.) A matrix that has this property is said to be positive definite. Notice
that this theorem involves only second-degree terms in the quadratic function Q.

As examples of quadratic functions that do not have minima, consider the following:

−x2
1 − x2

2 + 13x1 + 6x2 + 12 x2
1 − x2

2 + 3x1 + 5x2 + 7

x2
1 − 2x1x2 + x1 + 2x2 + 3 2x1 + 4x2 + 6

In the first two examples, let x1 = 0 and x2 → ∞. In the third, let x1 = x2 → ∞. In the
last, let x1 = 0 and x2 → −∞. In each case, the function values approach −∞, and no
global minimum can exist.

Quasi-Newton Methods
Algorithms that converge faster than steepest descent in general and that are currently
recommended for minimization are of a type called quasi-Newton. The principal example
is an algorithm introduced in 1959 by Davidon, called the variable metric algorithm.
Subsequently, important modifications and improvements were made by others, such as
R. Fletcher, M. J. D. Powell, C. G. Broyden, P. E. Gill, and W. Murray. These algorithms
proceed iteratively, assuming in each step that a local quadratic approximation is known for
the function F whose minimum is sought. The minimum of this quadratic function either
provides the new point directly or is used to determine a line along which a one-dimensional
search can be carried out. In implementation of the algorithm, the gradient can be either
provided in the form of a procedure or computed numerically by finite differences. The
Hessian H is not computed, but an estimate of its LU factorization is kept up to date as the
process continues.

Nelder-Mead Algorithm
For minimizing a function F: R

n → R, another method called the Nelder-Mead algorithm
is available. It is a method of direct search and proceeds without involving any derivatives
of the function F and without any line searches.

Before beginning the calculations, the user assigns values to three parameters: α, β,
and γ . The default values are 1, 1

2 , and 1, respectively. In each step of the algorithm, a set

648 Chapter 16 Minimization of Functions

of n + 1 points in R
n is given: {x0, x1, . . . , xn}. This set is in general position in R

n . This
means that the set of n points xi − x0, with 1 � i � n, is linearly independent. A consequence
of this assumption is that the convex hull of the original set {x0, x1, . . . , xn} is an n-simplex.
For example, a 2-simplex is a triangle in R

2, and a 3-simplex is a tetrahedron in R
3. To

make the description of the algorithm as simple as possible, we assume that the points have
been relabeled (if necessary) so that F(x0) � F(x1) � · · · � F(xn). Since we are trying to
minimize the function F , the point x0 is the worst of the current set, because it produces
the highest value of F .

We compute the point

u = 1

n

n∑
i=1

xi

This is the centroid of the face of the current simplex opposite the worst vertex, x0. Next,
we compute a reflected point v = (1 + α)u − αx0.

If F(v) is less than F(xn), then this is a favorable situation, and one is tempted to
replace x0 by v and begin anew. However, we first compute an expanded reflected point
w = (1 + γ)v − γ u and test to see whether F(w) is less than F(xn). If so, we replace x0

by w and begin anew. Otherwise, we replace x0 by v as originally suggested and begin with
the new simplex.

Assume now that F(v) is not less than F(xn). If F(v) � F(x1), then replace x0 by v

and begin again. Having disposed of all cases when F(v) � F(x1), we now consider two
further cases. First, if F(v) � F(x0), then define w = u + β(v − u). If F(v) > F(x0),
compute w = u + β(x0 − u). With w now defined, test whether F(w) < F(x0). If this
is true, replace x0 by w and begin anew. However, if F(w) � F(x0), shrink the simplex by
using xi ← 1

2 (xi + xn) for 0 � i � n − 1. Then begin anew.
The algorithm needs a stopping test in each major step. One such test is whether the

relative flatness is small. That is the quantity

F(x0) − F(xn)

|F(x0)| + |F(xn)|
Other tests to make sure progress is being made can be added. In programming the algorithm,
one keeps the number of evaluations of f to a minimum. In fact, only three indices are
needed: the indices of the greatest F(xi), the next greatest, and the least.

In addition to the original paper of Nelder and Mead [1965], one can consult Dennis and
Woods [1987], Dixon [1974], and Torczon [1997]. Different authors give slightly different
versions of the algorithm. We have followed the original description by Nelder and Mead.

Method of Simulated Annealing
This method has been proposed and found to be effective for the minimization of difficult
functions, especially if they have many purely local minimum points. It involves no deriva-
tives or line searches; indeed, it has found great success in minimizing discrete functions,
such as arise in the traveling salesman problem.

Suppose we are given a real-valued function of n real variables; that is, F: R
n → R.

We must be able to compute the values F(x) for any x in R
n . It is desired to locate

a global minimum point of F , which is a point x∗ such that F(x∗) � F(x) for all x
in R

n . In other words, F(x∗) is equal to infx∈Rn F(x). The algorithm generates a

16.2 Multivariate Case 649

sequence of points x1, x2, x3, . . . , and one hopes that min j � k F(x j) converges to inf F(x)

as k → ∞.
It suffices to describe the computation that leads to xk+1, assuming that xk has been

computed. We begin by generating a modest number of random points u1, u2, . . . , um in
a large neighborhood of xk . For each of these points, the value of F must be computed.
The next point, xk+1, in our sequence is chosen to be one of the points u1, u2, . . . , um . This
choice is made as follows. Select an index j such that

F(u j) = min {F(u1), F(u2), . . . , F(um)}
If F(u j) < F(xk), then set xk+1 = u j . In the other case, for each i , we assign a probability
pi to ui by the formula

pi = eα[F(xk)−F(ui)] (1 � i � m)

Here, α is a positive parameter chosen by the user of the code. We normalize the probabilities
by dividing each by their sum. That is, we compute

S =
m∑

i=1

pi

and then carry out a replacement

pi ← pi/S

Finally, a random choice is made among the points u1, u2, . . . , um , taking account of the
probabilities pi that have been assigned to them. This randomly chosen ui becomes xk+1.

The simplest way to make this random choice is to employ a random number generator
to get a random point ξ in the interval (0, 1). Select i to be the first integer such that

ξ � p1 + p2 + · · · + pi

Thus, if ξ � p1, let i =1 (and xn+1 = u1). If p1 < ξ � p1+ p2, then let i = 2 (and xn+1 = u2),
and so on.

The formula for the probabilities pi is taken from the theory of thermodynamics. The
interested reader can consult the original articles by Metropolis et al. [1953] or Otten and
van Ginneken [1989]. Presumably, other functions can serve in this role as well.

What is the purpose of the complicated choice for xk+1? Because of the possibility of
encountering local minima, the algorithm must occasionally choose a point that is uphill
from the current point. Then there is a chance that subsequent points might begin to move
toward a different local minimum. An element of randomness is introduced to make this
possible.

With minor modifications, the algorithm can be used for functions f : X → R, where
X is any set. For example, in the traveling salesman problem, X will be the set of all
permutations of a set of integers {1, 2, 3, . . . , N }. All that is required is a procedure for
generating random permutations and, of course, a code for evaluating the function f .

Computer programs for this algorithm can be found on the Internet such as at the web-
sites http://www.netlib.gov and http://www.ingber.com. A collection of papers
on this subject, emphasizing parallel computation, is Azencott [1992].

http://www.netlib.gov
http://www.ingber.com

650 Chapter 16 Minimization of Functions

Summary

(1) In a typical minimization problem, we seek a point x∗ such that

F(x∗) � F(x) for all x ∈ R
n

where F is a real-valued multivariate function.

(2) A gradient vector G(x) has components

Gi = Gi (x) = ∂ F(x)

∂xi
(1 � i � n)

and a Hessian matrix H(x) has components

Hi j = Hi j (x) = ∂2 F(x)

∂xi ∂x j
(1 � i, j � n)

It is a symmetric matrix if the second-order derivatives are continuous.

(3) The Taylor series for F is

F(x + h) = F(x) + G(x)T h + 1

2
hT H(x)h + · · ·

Here, x is the fixed point of expansion in R
n and h is the variable in R

n with components
h1, h2, . . . , hn . The three dots indicate higher-order terms in h that are not needed in this
discussion.

(4) An alternative form of the Taylor series is

F(x) = F(z) + G(z)T (x − z) + 1

2
(x − z)T H(z)(x − z) + · · ·

For example, a linear function F(x) = c + bT x has the Taylor series

F(x) = F(z) + bT (x − z)

A quadratic function is

F(x) = c + bT x + 1

2
xT Ax

(5) An iterative procedure for locating a minimum point of a function F is to start with a
point z that is a current estimate of the minimum point, compute the gradient G and Hessian
H of F at the point z, and solve the matrix equation

H x = −G

for x. Then replace z by z + x and repeat.

(6) If the matrix H has the property that xT H x > 0 for every nonzero vector x, then the
quadratic function Q has a unique minimum point.

(7) Algorithms that are discussed are steepest descent, Nelder-Mead, and simulated
annealing.

16.2 Multivariate Case 651

Additional References
For more reading on the subject of optimization, see books and papers by Azencott [1992],
Baldick [2006], Beale [1988], Cvijovic and Kilnowski [1995], Dennis and Schnabel [1983,
1996], Dennis and Woods [1987], Dixon [1974], Fletcher [1976], Floudas and Pardalos
[1992], Gill, Murray and Wright [1981], Herz-Fischer [1998], Horst, Pardalos, and Thoai
[2000], Kelley [2003], Kirkpatrick et al. [1983], Lootsam [1972], Moré and Wright [1993],
Nelder and Mead [1965], Nocedal and Wright [2006], Otten and van Ginneken [1989],
Rheinboldt [1998], Roos, Terlaky, and Vial [1997], Torczon [1997], and Törn and Zilinskas
[1989].

Problems 16.2

1. Determine whether these functions have minimum values in R
2:

aa. x2
1 − x1x2 + x2

2 + 3x1 + 6x2 − 4
ab. x2

1 − 3x1x2 + x2
2 + 7x1 + 3x2 + 5

c. 2x2
1 − 3x1x2 + x2

2 + 4x1 − x2 + 6

d. ax2
1 − 2bx1x2 + cx2

2 + dx1 + ex2 + f

Hint: Use the method of completing the square.

a2. Locate the minimum point of 3x2 − 2xy + y2 + 3x − 46 + 7 by finding the gradient
and Hessian and solving the appropriate linear equations.

a3. Using (0, 0) as the point of expansion, write the first three terms of the Taylor series
for F(x, y) = ex cos y − y ln(x + 1).

4. Using (1, 1) as the point of expansion, write the first three terms of the Taylor series
for F(x, y) = 2x2 − 4xy + 7y2 − 3x + 5y.

5. The Taylor series expansion about zero can be written as

F(x) = F(0) + G(0)T x + 1

2
xT H(0)x + · · ·

Show that the Taylor series about z can be written in a similar form by using matrix-
vector notation; that is,

F(x) = F(z) + G(z)T X + 1

2
X T H(z)X + · · ·

where

X =
[

x
z

]
, G(z) =

[
G(z)

−G(z)

]
, H(z) =

[
H(z) −H(z)

−H(z) H(z)

]
a6. Show that the gradient of F(x, y) is perpendicular to the contour. Hint: Interpret the

equation F(x, y) = c as defining y as a function of x . Then by the chain rule,

∂ F

∂x
+ ∂ F

∂y

dy

dx
= 0

From it obtain the slope of the tangent to the contour.

652 Chapter 16 Minimization of Functions

7. Consider the function

F(x1, x2, x3) = 3ex1x2 − x3 cos x1 + x2 ln x3

a. Determine the gradient vector and Hessian matrix.
ab. Derive the first three terms of the Taylor series expansion about (0, 1, 1).

c. What linear system should be solved for a reasonable guess as to the minimum
point for F? What is the value of F at this point?

8. It is asserted that the Hessian of an unknown function F at a certain point is[
3 2
1 4

]
What conclusion can be drawn about F?

9. What are the gradients of the following functions at the points indicated?

aa. F(x, y) = x2 y − 2x + y at (1, 0)

ab. F(x, y, z) = xy + yz2 + x2z at (1, 2, 1)

a10. Consider F(x, y, z) = y2z2(1 + sin2 x) + (y + 1)2(z + 3)2. We want to find the mini-
mum of the function. The program to be used requires the gradient of the function.
What formulas must we program for the gradient?

11. Let F be a function of two variables whose gradient at (0, 0) is [−5, 1]T and whose
Hessian is [

6 −1
−1 2

]
Make a reasonable guess as to the minimum point of F . Explain.

a12. Write the function F(x1, x2) = 3x2
1 + 6x1x2 − 2x2

2 + 5x1 + 3x2 + 7 in the form of
Equation (7) with appropriate A, b, and c. Show in matrix form the linear equations that
must be solved in order to find a point where the first partial derivatives of F vanish.
Finally, solve these equations to locate this point numerically.

13. Verify Equation (13). In differentiating the double sum in Equation (12), first write all
terms that contain xk . Then differentiate and use the symmetry of the matrix H .

14. Consider the quadratic function Q in Equation (12). Show that if H is positive definite,
then the stationary point is a minimum point.

15. (General quadratic function) Generalize Equation (6) to n variables. Show that a
general quadratic function Q(x) of n variables can be written in the matrix-vector
form of Equation (7), where A is an n × n symmetric matrix, b a vector of length n,
and c a scalar. Establish that the gradient and Hessian are

G(x) = Ax + b and H(x) = A

respectively.

16.2 Multivariate Case 653

16. Let A be an n × n symmetric matrix and define an upper triangular matrix U = (ui j)

by putting

ui j =

⎧⎪⎨⎪⎩
ai j i = j

2ai j i < j

0 i > j

Show that xT U x = xT Ax for all vectors x.

17. Show that the general quadratic function Q(x) of n variables can be written

Q(x) = c + bT x + 1

2
xT U x

where U is an upper triangular matrix. Can this simplify the work of finding the station-
ary point of Q?

18. Show that the gradient and Hessian satisfy the equation

H(z)(x − z) = G(x) − G(z)

for a general quadratic function of n variables.

19. Using Taylor series, show that a general quadratic function of n variables can be written
in block form

Q(x) = 1

2
X T AX + BT X + c

where

X =
[

x
z

]
, A =

[
A −A

−A A

]
, B =

[
b

−b

]
Here z is the point of expansion.

20. (Least-squares problem) Consider the function

F(x) = (b − Ax)T (b − Ax) + αxT x

where A is a real m ×n matrix, b is a real column vector of order m, and α is a positive
real number. We want the minimum point of F for given A, b, and α. Show that

F(x + h) − F(x) = (Ah)T (Ah) + αhT h � 0

for h a vector of order n, provided that

(AT A + α I)x = AT b

This means that any solution of this linear system minimizes F(x); hence, this is the
normal equation.

21. (Multiple choice) What is the gradient of the function f (x) = 3x2
1 − sin(x1x2) at the

point (3, 0)?

a. (6, −3) b. (3, −1) c. (18, 0) d. (18, −3) e. None of these.

654 Chapter 16 Minimization of Functions

22. (Multiple choice, continuation) The directional derivative of the function f at the point
x in the direction u is given by the expression

d

dt
f (x + tu)|t=0

In this description, u should be a unit vector. What is the numerical value of the
directional derivative where f (x) is the function defined in the preceding problem,
x = (1, π/2), and u = (1, 1)/

√
2.

a. 6/
√

2 b. 6 c. 18 d. 3 e. None of these.

23. (Multiple choice, continuation) If f is a real-valued function of n variables, the Hessian
H = (Hi j) is given by Hi j = ∂2 f/∂xi∂x j , all terms being evaluated at a specific point
x. What is the entry H22 in this matrix in the case of f as given in the previous problem
and x = (1, π/2)?

a. 6 b. 6/
√

2 c. 1 d. π2/2 e. None of these.

24. (Multiple choice) Let f be a real-valued function of n real variables. Let x and u
be given as numerical vectors, and u �= 0. Then the expression f (x + tu) defines a
function of t . Suppose that the minimum of f (x+tu) occurs at t = 0. What conclusion
can be drawn?

a. The gradient of f at x, denoted by G(x), is 0.

b. u is perpendicular to the gradient of f at x.

c. u = G(x), where G(x) denotes the gradient of f at x.

d. G(x) is perpendicular to x. e. None of these.

25. (Multiple choice) If f is a (real-valued) quadratic function of n real variables, we can
write it in the form f x) = c − bT x + 1

2 xT Ax. The gradient of f is then:

a. Ax b. b − Ax c. Ax − b d. 1
2 Ax − b e. None of these.

Computer Problems 16.2

1. Select a routine from your program library or from a package such as Matlab, Maple, or
Mathematica for minimizing a function of many variables without the need to program
derivatives. Test it on one or more of the following well-known functions. The ordering
of our variables is (x, y, z, w).

a. Rosenbrock’s: 100(y − x2)2 + (1 − x)2. Start at (−1.2, 1.0).

b. Powell’s: (x + 10y)2 + 5(z − w)2 + (y − 2z)4 + 10(x − w)4. Start at (3, −1, 0, 1).

c. Powell’s: x2 + 2y2 + 3z2 + 4w2 + (x + y + z + w)4. Start at (1, −1, 1, 1).

d. Fletcher and Powell’s: 100(z − 10φ)2 + (√
x2 + y2 − 1

)2 + z2 in which φ is an
angle determined from (x, y) by

cos 2πφ = x√
x2 + y2

and
sin 2πφ = y√

x2 + y2

where −π/2 < 2πφ � 3π/2. Start at (1, 1, 1).

16.2 Multivariate Case 655

e. Wood’s: 100(x2 − y)2 + (1 − x)2 + 90(z2 − w)2 + (1 − z)2 + 10(y − 1)2 +
(w − 1)2 + 19.8(y − 1)(w − 1). Start at (−3, −1, −3, −1).

2. (Accelerated steepest descent) This version of steepest descent is superior to the basic
one. A sequence of points x1, x2, . . . is generated as follows: Point x1 is specified as
the starting point. Then x2 is obtained by one step of steepest descent from x1. In the
general step, if x1, x2, . . . , xm have been obtained, we find a point z by steepest descent
from xm . Then xm+1 is taken as the minimum point on the line xm−1 + t(z − zm−1).
Program and test this algorithm on one of the examples in Computer Problem 16.2.1.

3. Using a routine in your program library or in Matlab, Maple, or Mathematica,

a. solve the minimization problem that begins this chapter.

b. plot and solve for the minimum point, the maximum point, and the saddle point of
these functions, respectively: x2 + y2, 1 − x2 − y2, x2 − y2.

c. plot and numerically experiment with these functions that do not have minima:
−x2 − y2 + 13x + 6y + 12, x2 − y2 + 3x + 5y + 7, x2 − 2xy + x + 2y + 3,
2x + 4y + 6.

4. We want to find the minimum of F(x, y, z) = z2 cos x + x2 y2 + x2ez using a computer
program that requires procedures for the gradient of F together with F . Write the
necessary procedures. Find the minimum using a preprogrammed code that uses the
gradient.

5. Assume that

procedure Xmin(f, (gradi), n, (xi), (gi j))

is available to compute the minimum value of a function of two variables. Suppose that
this routine requires not only the function but also its gradient. If we are going to use
this routine with the function F(x, y) = ex cos2(xy), what procedure will be needed?
Write the appropriate code. Find the minimum using a preprogrammed code that uses
the gradient.

6. Program and test the Nelder-Mead algorithm.

7. Program and test the Simulated Annealing algorithm.

8. (Student research project) Explore one of the newer methods for minimization such
as generic algorithms, methods of simulated annealing, or the Nelder-Mead algorithm.
Use some of the software that is available for them.

9. Use built-in routines in mathematical software systems such as Maple or Mathematica
to verify the calculations in Example 1. Hint: In Maple, use grad and Hessian, and in
Mathematica, use Series. For example, obtain two terms in the Taylor series in two
variables expanded about the point (1, 1), and then carry out a change of variables.

10. (Molecular conformation: Protein folding project) Forces that govern folding of
amino acids into proteins are due to bonds between individual atoms and to weaker
interactions between unbound atoms such as electrostatic and Van der Waals forces.
The Van der Waals forces are modeled by the Lennard-Jones potential

U (r) = 1

r 12
− 2

r 6

656 Chapter 16 Minimization of Functions

where r is the distance between atoms.
y

x
1

�1

32

In the figure, the energy minimum is −1 and it is achieved at r = 1. Explore this subject
and the numerical methods used. One approach is to predict the conformation of the
proteins in finding the minimum potential energy of the total configuration of amino
acids. For a cluster of atoms with positions (x1, y1, z1) to (xn, yn, zn), the objective
function to be minimized is

U =
∑
i< j

1

r 12
i j

− 2

r 6
i j

over all pairs of atoms. Here, ri j = [
(xi − x j)

2 +(yi − y j)
2 +(zi − z j)

2
]2

is the distance
between atoms i and j . This optimization problem finds the rectangular coordinates of
the atoms. See Sauer [2006] for additional details.

17

Linear Programming

In the study of how the U.S. economy is affected by changes in the supply
and cost of energy, it has been found appropriate to use a linear program-
ming model. This is a large system of linear inequalities that govern the
variables in the model, together with a linear function of these variables to
be maximized. Typically, the variables are the activity levels of various pro-
cesses in the economy, such as the number of barrels of oil pumped per day
or the number of men’s shirts produced per day. A model that contains rea-
sonable detail could easily involve thousands of variables and thousands of
linear inequalities. Such problems are discussed in this chapter, and some
guidance is offered on how to use existing software.

17.1 Standard Forms and Duality
First Primal Form
Linear programming is a branch of mathematics that deals with finding extreme values of
linear functions when the variables are constrained by linear inequalities. Any problem of
this type can be put into a standard form known as first primal form by simple manipulations
(to be discussed later).

In matrix notation, the linear programming problem in first primal form looks like this:⎧⎪⎪⎨⎪⎪⎩
maximize: cT x

constraints:

{
Ax � b

x � 0

(1)

657

658 Chapter 17 Linear Programming

■ THEOREM 1 FIRST PRIMAL FORM

Given data c j , ai j , bi (for 1 � j � n, 1 � i � m), we wish to determine the x j ’s
(1 � j � n) that maximize the linear function

n∑
j=1

c j x j

subject to the constraints⎧⎪⎨⎪⎩
n∑

j=1

ai j x j � bi (1 � i � m)

x j � 0 (1 � j � n)

Here, c and x are n-component vectors, b is an m-component vector, and A is an m × n
matrix. A vector inequality u � v means that u and v are vectors with the same number of
components and that all the individual components satisfy the inequality ui � vi . The linear
function cT x is called the objective function.

In a linear programming problem, the set of all vectors that satisfy the constraints is
called the feasible set, and its elements are the feasible points. So in the preceding notation,
the feasible set is

K = {x ∈ R
n: x � 0 and Ax � b}

A more precise (and concise) statement of the linear programming problem, then, is as
follows: Determine x∗ ∈ K such that cT x∗ � cT x for all x ∈ K .

Numerical Example
To get an idea of the type of practical problem that can be solved by linear programming,
consider a simple example of optimization. Suppose that a certain factory uses two raw
materials to produce two products. Suppose also that the following are true:

• Each unit of the first product requires 5 units of the first raw material and 3 of the second.

• Each unit of the second product requires 3 units of the first raw material and 6 of the
second.

• On hand are 15 units of the first raw material and 18 units of the second.

• The profits on sales of the products are 2 per unit for the first product and 3 per unit for
the second product.

How should the raw materials be used to realize a maximum profit? To answer this question,
variables x1 and x2 are introduced to represent the number of units of the two products to
be manufactured. In terms of these variables, the profit is

2x1 + 3x2

17.1 Standard Forms and Duality 659

The process uses up 5x1 + 3x2 units of the first raw material and 3x1 + 6x2 units of the
second. The limitations in the third fact above are expressed by these inequalities:{

5x1 + 3x2 � 15

3x1 + 6x2 � 18

Of course, x1 � 0 and x2 � 0. Thus, the solution to the problem is a vector x � 0 that maxi-
mizes the objective function 2x1 + 3x2 while satisfying the constraints above. So the linear
programming problem is ⎧⎪⎪⎪⎨⎪⎪⎪⎩

maximize: 2x1 + 3x2

constraints:

⎧⎪⎨⎪⎩
5x1 + 3x2 � 15

3x1 + 6x2 � 18

x1 � 0 x2 � 0

(2)

More precisely, among all vectors x in the set

K = {x: x � 0, 5x1 + 3x2 � 15, 3x1 + 6x2 � 18}

we want the one that makes 2x1 + 3x2 as large as possible.
Because the number of variables in this example is only two, the problem can be solved

graphically. To locate the solution, we begin by graphing the set K . This is the shaded region
in Figure 17.1. Then we draw some of the lines 2x1 + 3x2 = α, where α is given various
values. These lines are dashed in the figure and labeled with the values of α. Finally, we
select one of these lines with a maximum α that intersects K . That intersection is the solution
point and a vertex of K . It is obtained numerically by solving simultaneously the equations

5x1 + 3x2 = 15 and 3x1 + 6x2 = 18. Thus, x = [
12
7 , 15

7

]T
, and the corresponding profit

from Equation (2) is 2
(

12
7

)+ 3
(

15
7

) = 69
7 .

We can use mathematical software systems such as Matlab, Maple, or Mathematica
to solve this linear programming problem. For example, we obtain the solution x = 12

7

FIGURE 17.1

Graphical
solution
method

x2

x1

1

2

3

4

5

1 2 3 4 5 6 7 8

K

5x1 � 3x2 � 15

3x1 � 6x2 � 1812, 15
7 7()

7
� �

69 � � 12
� � 15

660 Chapter 17 Linear Programming

and y = 15
7 with objective function value 69

7 using one system, and we obtain the solution
x = 1.7143 and y = 2.1429 with the value of the objective function used as −9.8571 on
another. (Why?)

Some of these mathematical systems contain large collections of commands for the
optimization of general linear and nonlinear functions. For nonlinear optimization, these
functions can handle unconstrained and constrained minimization as well as a large number
of other tasks. If the program performs minimization of the objective function and we wish
to maximize the objective function, we need to minimize the negative of the objective
function. Also, it may allow for additional equality constraints, and since we do not have
any, we set them to null entries.

Note in this example that the units that are used—whether dollars, pesos, pounds, or
kilograms—do not matter for the mathematical method as long as they are used consistently.
Notice also that x1 and x2 are permitted to be arbitrary real numbers. The problem would
be quite different if only integer values were acceptable as a solution. This situation would
occur if the products being produced consisted of indivisible units, such as a manufactured
article. If the integer constraint is imposed, only points with integer coordinates inside K
are acceptable. So (0, 3) is the best of them. Observe particularly that we cannot simply
round off the solution (1.71, 2.14) to the nearest integers to solve the problem with integer
constraints. The point (2, 2) lies just outside K . However, if the company could alter the
constraints slightly by increasing the amount of the first raw material to 16, the integer
solution (2, 2) would be allowable. Special programs for integer linear programming are
available but are outside the scope of this book.

Observe how the solution would be altered if our profit or objective function were
2x1 + x2. In this case, the dashed lines in the figure would have a different slope (namely,
−2) and a different vertex of the shaded region would occur as the solution—namely, (3, 0).
A characteristic feature of linear programming problems is that the solutions (if any exist)
can always be found among the vertices.

Transforming Problems into First Primal Form
A linear programming problem that is not already in the first primal form can be put into
that form by some standard techniques:

• If the original problem calls for the minimization of the linear function cTx, this is the
same as maximizing (−c)Tx.

• If the original problem contains a constraint like aTx � β, it can be replaced by the
constraint (−a)Tx � − β.

• If the objective function contains a constant, this fact has no effect on the solution. For
example, the maximum of cTx + λ occurs for the same x as the maximum of cTx.

• If the original problem contains equality constraints, each can be replaced by two in-
equality constraints. Thus, the equation aTx = β is equivalent to aTx � β and aTx � β.

• If the original problem does not require a variable (say, xi) to be nonnegative, we can
replace xi by the difference of two nonnegative variables, say, xi = ui − vi , where ui � 0
and vi � 0.

17.1 Standard Forms and Duality 661

Here is an example that illustrates all five techniques. Consider the linear programming
problem ⎧⎪⎪⎪⎨⎪⎪⎪⎩

minimize: 2x1 + 3x2 − x3 + 4

constraints:

⎧⎪⎨⎪⎩
x1 − x2 + 4x3 � 2

x1 + x2 + x3 = 15

x2 � 0 � x3

(3)

It is equivalent to the following problem in first primal form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

maximize: −2u + 2v − 3z − w

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−u + v + z + 4w � −2

u − v + z − w � 15

−u + v − z + w � −15

u � 0 v � 0 z � 0 w � 0

Dual Problem
Corresponding to a given linear programming problem in first primal form is another prob-
lem, called its dual. It is obtained from the original primal problem

(P)

⎧⎪⎪⎨⎪⎪⎩
maximize: cTx

constraints:

{
Ax � b

x � 0

by defining the dual to be the problem

(D)

⎧⎪⎪⎨⎪⎪⎩
minimize: bT y

constraints:

{
AT y � c

y � 0

For example, the dual of the problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

maximize: 2x1 + 3x2

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4x1 + 5x2 � 6

7x1 + 8x2 � 9

10x1 + 11x2 � 12

x1 � 0 x2 � 0

(4)

is this problem: ⎧⎪⎪⎪⎨⎪⎪⎪⎩
minimize: 6y1 + 9y2 + 12y3

constraints:

⎧⎪⎨⎪⎩
4y1 + 7y2 + 10y3 � 2

5y1 + 8y2 + 11y3 � 3

y1 � 0 y2 � 0 y3 � 0

662 Chapter 17 Linear Programming

Note that, in general, the dual problem has different dimensions from those of the original
problem. Thus, the number of inequalities in the original problem becomes the number of
variables in the dual problem.

An elementary relationship between the original primal problem and its dual is as
follows:

■ THEOREM 2 THEOREM ON PRIMAL AND DUAL PROBLEMS

If x satisfies the constraints of the primal problem and y satisfies the constraints of
its dual, then cTx � bT y. Consequently, if cTx = bT y, then x and y are solutions of
the primal problem and the dual problem, respectively.

Proof By the assumptions made, x � 0, Ax � b, y � 0, and AT y � c. Consequently,

cTx �
(

AT y
)T

x = yTAx � yT b = bT y ■

This relationship can be used to estimate the number λ = max
{

cTx : x � 0 and
Ax � b

}
. (This number is often termed the value of the linear programming problem.) To es-

timate λ, take any x and y that satisfy x � 0, y � 0, Ax � b, and AT y � c. Then cTx � λ � bT y.
The importance of the dual problem stems from the fact that the extreme values in the primal
and dual problems are the same. Formally stated, we have the following:

■ THEOREM 3 DUALITY THEOREM

If the original problem has a solution x∗, then the dual problem has a solution y∗;
furthermore, cTx∗ = bT y∗.

This result is nicely illustrated by the numerical example from the beginning of this
section. The dual to that problem is⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

minimize: 15y1 + 18y2

constraints:

⎧⎪⎨⎪⎩
5y1 + 3y2 � 2

3y1 + 6y2 � 3

y1 � 0 y2 � 0

(5)

The graph of this problem is given in Figure 17.2. Moving the line 15y1 + 18y2 = α, we
see that the vertex

(
1
7 ,

3
7

)
is the minimum point. The values of the objective functions are

indeed identical because 15
(

1
7

)+ 18
(

3
7

) = 69
7 . Moreover, the solutions x = [

12
7 , 15

7

]T
and

y = [
1
7 ,

3
7

]T
can be related, but we will not discuss this.

We can use mathematical software systems such as Matlab, Maple, or Mathematica to
solve this linear programming problem. For example, we obtain x = 0.1429 and y = 0.4286
with f (x, y) = 9.8571.

17.1 Standard Forms and Duality 663

FIGURE 17.2

Graphical
method of the
dual problem

y2

y1

1

1
2

1, 3

2
3

2
5

7 7()

7
� �

69

� � 15

1

K

Second Primal Form
Returning to the general problem in the first primal form, we introduce additional non-
negative variables xn+1, xn+2, . . . , xn+m , known as slack variables, so that some of the
inequalities can be written as equalities. Using this device, we can put the original problem
into the following standard form:

■ THEOREM 4 SECOND PRIMAL FORM

Maximize the linear function
n∑

j=1

c j x j

subject to the constraints⎧⎪⎪⎨⎪⎪⎩
n∑

j=1

ai j x j + xn+i = bi (1 � i � m)

x j � 0 (1 � j � m + n)

Using matrix notation, we have⎧⎪⎪⎨⎪⎪⎩
maximize: cTx

constraints:

{
Ax = b

x � 0

Here, it is assumed that the m × n matrix A contains an m × m identity matrix in its last m
columns and that the last m entries of c are 0. Also, note that when a problem in first primal
form is changed to second primal form, we increase the number of variables and thus alter
the quantities n, x, c, and A. That is, a problem in the first primal form with n variables
would contain n + m variables in the second form.

664 Chapter 17 Linear Programming

To illustrate the transformation of a problem from first to second primal form, consider
the example introduced at the beginning of this section:⎧⎪⎪⎪⎨⎪⎪⎪⎩

maximize: 2x1 + 3x2

constraints:

⎧⎪⎨⎪⎩
5x1 + 3x2 � 15

3x1 + 6x2 � 18

x1 � 0 x2 � 0

(6)

Two slack variables x3 and x4 are introduced to take up the slack in two of the inequalities.
The new problem in second primal form is then⎧⎪⎪⎪⎨⎪⎪⎪⎩

maximize: 2x1 + 3x2 + 0x3 + 0x4

constraints:

⎧⎪⎨⎪⎩
5x1 + 3x2 + x3 = 15

3x1 + 6x2 + x4 = 18

x1 � 0 x2 � 0 x3 � 0 x4 � 0

Problems involving absolute values of the variables or absolute values of linear ex-
pressions can often be turned into linear programming problems. To illustrate, consider the
problem of minimizing |x − y| subject to linear constraints on x and y. We can introduce
a new variable z � 0 and then impose constraints x − y � z, −x + y � z. Then we seek to
minimize the linear form 0x + 0y + 1z.

Summary

(1) The linear programming problem in first primal form is⎧⎪⎪⎨⎪⎪⎩
maximize: cTx

constraints:

{
Ax � b

x � 0

(2) Its dual problem is ⎧⎪⎪⎨⎪⎪⎩
minimize: bT y

constraints:

{
AT y � c

y � 0

(3) The second primal form is⎧⎪⎪⎨⎪⎪⎩
maximize: cTx

constraints:

{
Ax = b

x � 0

where the m × n matrix A contains an m × m identity matrix in its last m columns and
where the last m entries of c are 0.

17.1 Standard Forms and Duality 665

(4) If x satisfies the constraints of the primal problem and y satisfies the constraints of its
dual, then cTx � bT y. Consequently, if cTx = bT y, then x and y are solutions of the primal
problem and the dual problem, respectively.

(5) The extreme values in the primal and dual problems are the same.

Problems 17.1

1. Put the following problem into first primal form:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

minimize: |x1 + 2x2 − x3|

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 + 3x2 − x3 � 8

2x1 − 4x2 − x3 � 1

|4x1 + 5x2 + 6x3| � 12

x1 � 0 x2 � 0 x3 � 0

Hint: |α| � β can be written as −β � α � β.

a2. A program is available for solving linear programming problems in first primal form.
Put the following problem into that form:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: 5x1 + 6x2 − 2x3 + 8

constraints:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2x1 − 3x2 � 5

x1 + x2 � 15

2x1 − x2 + x3 � 25

x1 + x2 − x3 � 1

x1 � 0 x2 � 0 x3 � 0

3. Consider the following linear programming problems:

a. maximize: 2x1 + 3x2

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 + 2x2 � −6

−x1 + 3x2 � 3

|2x1 − 5x2| � 5

x1 � 0 x2 � 0

b. minimize: 7x1 + x2 − x3 + 4

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 − x2 + x3 � 2

x1 + x2 + x3 � 10

−2x1 − x2 � −4

x1 � 0 x2 � 0

Rewrite each problem in first primal form and give the dual problem.

666 Chapter 17 Linear Programming

4. Sketch the feasible region for the following constraints:⎧⎪⎪⎪⎨⎪⎪⎪⎩
x − y � 2

x + y � 3

2x + y � 3

x � 0 y � 0

aa. By substituting the vertices into the objective function

z(x, y) = x + 2y

determine the minimum value of this function on the feasible region.

b. Let

z(x, y) =
(

x − 1

2

)2

+
(

y − 1

2

)2

Show that the minimum value of z over the feasible region does not occur at a vertex.

5. Put the following linear programming problems into first primal form. What is the dual
of each?

a.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
minimize: 2x + y − 3z + 1

constraints:

⎧⎪⎨⎪⎩
x − y � 3

|x − z| � 2

x � 0 y � 0

ab.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
minimize: 3x − 2y + 5z + 3

constraints:

⎧⎪⎨⎪⎩
x + y + z � 4

x − y − z = 2

x � 0 y � 0 z � 0

c.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
maximize: 3x + 2y

constraints:

⎧⎪⎨⎪⎩
6x + 5y � 17

2x + 11y � 23

x � 0

6. Consider the following linear programming problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize: 2x1 + 2x2 − 6x3 − x4

constraints:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3x1 + x4 = 25

x1 + x2 + x3 + x4 = 20

4x1 + 6x3 � 5

2x1 + 3x3 + 2x4 � 0

x1 � 0 x2 � 0 x3 � 0 x4 � 0

17.1 Standard Forms and Duality 667

aa. Reformulate this problem in second primal form.
ab. Formulate the dual problem.

a7. Solve the following linear programming problem graphically:⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

maximize: 3x1 + 5x2

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
x1 � 4

x2 � 6

3x1 + 2x2 � 18

x1 � 0 x2 � 0

a8. (Continuation) Solve the dual problem of the preceding problem.

9. Show that the dual problem may be written as⎧⎪⎪⎨⎪⎪⎩
maximize: bT y

constraints:

{
yTA � cT

y � 0

10. Describe how max{|x − y − 3|, |2x + y + 4|, |x + 2y − 7|} can be minimized by using
a linear programming code.

a11. Show how this problem can be solved by linear programming:⎧⎪⎪⎪⎨⎪⎪⎪⎩
minimize: |x − y|

constraints:

⎧⎪⎨⎪⎩
x � 3y

x � y

y � x − 2

12. Consider the linear programming problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: x1 + x4 + 25

constraints:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2x1 + 2x2 + x3 < 7

2x1 − 3x2 + x4 = 4

x2 − x4 > 1

3x2 − 8x3 + x4 = 5

x1, x2, x3, x4 � 0

Write in matrix-vector form the dual problem and the second primal problem.

13. Solve each of the linear programming problems by the graphical method. Determine
x to ⎧⎪⎪⎨⎪⎪⎩

maximize: cTx

constraints:

{
Ax � b

x � 0

668 Chapter 17 Linear Programming

Here, nonunique and unbounded “solutions” may be obtained.

aa. c = [2, −4]T A =
[−3 −5

4 9

]
b = [−15, 36]

b. c =
[

2,
1

2

]T

A =
[

6 5
4 1

]
b = [30, 12]T

ac. c = [3, 2]T A =
[−3 2

−4 9

]
b = [6, 36]T

d. c = [2, −3]T A =
[−1 1

0 1

]
b = [0, 5]T

e. c = [−4, 11]T A =
[−3 4

−4 11

]
b = [12, 44]T

af. c = [−3, 4]T A =
[

2 3
−4 −5

]
b = [6, −20]T

g. c = [2, 1]T A =
[

1 1
1 2

]
b = [0, −2]T

ah. c = [3, 1]T A =
[

2 4
5 3

]
b = [21, 18]T

a14. Solve the following linear programming problem by hand, using a graph for help:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize: 4x + 4y + z

constraints:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

3x + 2y + z = 12

7x + 7y + 2z � 144

7x + 5y + 2z � 80

11x + 7y + 3z � 132

x � 0 y � 0

Hint: Use the equation to eliminate z from all other expressions. Solve the resulting
two-dimensional problem.

15. Put this linear programming problem into second primal form. You may want to make
changes of variables. If so, include a dictionary relating new and old variables.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

minimize: ε1 + ε2 + ε3

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
|3x + 4y + 6| � ε1

|2x − 8y − 4| � ε2

| − x − 3y + 5| � ε3

ε1 > 0 ε2 > 0 ε3 > 0 x > 0 y > 0

Solve the resulting problem.

17.1 Standard Forms and Duality 669

16. Consider the following linear programming problem:

⎧⎪⎪⎨⎪⎪⎩
maximize: c1x1 + c2x2

constraints:

{
a1x1 + a2x2 � b

x1 � 0 x2 � 0

In the special case in which all data are positive, show that the dual problem has the
same extreme value as the original problem.

a17. Suppose that a linear programming problem in first primal form has the property that
cTx is not bounded on the feasible set. What conclusion can be drawn about the dual
problem?

18. (Multiple choice) Which of these problems is formulated in the first primal form for a
linear programming problem?

a. maximize cTx subject to Ax � b

b. minimize cTx subject to Ax � b, x � 0

c. maximize cTx subject to Ax = b, x � 0

d. maximize cTx subject to Ax � b, x � 0 e. None of these.

Computer Problems 17.1

a1. A western shop wishes to purchase 300 felt and 200 straw cowboy hats. Bids have been
received from three wholesalers. Texas Hatters has agreed to supply not more than
200 hats, Lone Star Hatters not more than 250, and Lariat Ranch Wear not more than
150. The owner of the shop has estimated that his profit per hat sold from Texas Hatters
would be $3/felt and $4/straw, from Lone Star Hatters $3.80/felt and $3.50/straw, and
from Lariat Ranch Wear $4/felt and $3.60/straw. Set up a linear programming problem
to maximize the owner’s profits. Solve by using a program from your software library.

2. The ABC Drug Company makes two types of liquid painkiller that have brand names
Relieve (R) and Ease (E) and contain different mixtures of three basic drugs, A, B,
and C, produced by the company. Each bottle of R requires 7

9 unit of drug A, 1
2 unit

of drug B, and 3
4 unit of drug C. Each bottle of E requires 4

9 unit of drug A, 5
2 unit of

drug B, and 1
4 unit of drug C. The company is able to produce each day only 5 units of

drug A, 7 units of drug B, and 9 units of C. Moreover, Food and Drug Administration
regulations stipulate that the number of bottles of R manufactured cannot exceed twice
the number of bottles of E. The profit margin for each bottle of E and R is $7 and $3,
respectively. Set up the linear programming problem in first primal form to determine
the number of bottles of the two painkillers that the company should produce each day
so as to maximize their profits. Solve by using available software.

a3. Suppose that the university student government wishes to charter planes to transport at
least 750 students to the bowl game. Two airlines, α and β, agree to supply aircraft for

670 Chapter 17 Linear Programming

the trip. Airline α has five aircraft available carrying 75 passengers each, and airline β

has three aircraft available carrying 250 passengers each. The cost per aircraft is $900
and $3250 for the trip from airlines α and β, respectively. The student government
wants to charter at most six aircraft. How many of each type should be chartered to
minimize the cost of the airlift? How much should the student government charge to
make 50/c profit per student? Solve by the graphical method, and verify by using a
routine from your program library.

4. (Continuation) Rework the preceding computer problem in the following two possibly
different ways:

a. The number of students going on the airlift is maximized.

b. The cost per student is minimized.

a5. (Diet problem) A university dining hall wishes to provide at least 5 units of vitamin C
and 3 units of vitamin E per serving. Three foods are available containing these vitamins.
Food f1 contains 2.5 and 1.25 units per ounce of vitamins C and E, respectively, whereas
food f2 contains just the opposite amounts. The third food f3 contains an equal amount
of each vitamin at 1 unit per ounce. Food f1 costs 25/c per ounce, food f2 costs 56/c
per ounce, and food f3 costs 10/c per ounce. The dietitian wishes to provide the meal at
a minimum cost per serving that satisfies the minimum vitamin requirements. Set up
this linear programming problem in second primal form. Solve with the aid of a code
from your computer program library.

6. Use built-in routines in mathematical software systems such as Matlab, Maple, or
Mathematica to solve linear programming problem with equation number below in
first primal form, in second primal form, and in dual form:
a. (2) b. (3) c. (4) d. (5) e. (6)

17.2 Simplex Method
The principal algorithm that is used in solving linear programming problems is the simplex
method. Here, enough of the background of this method is described that the reader can use
available computer programs that incorporate it.

Consider a linear programming problem in second primal form:

⎧⎪⎪⎨⎪⎪⎩
maximize: cTx

constraints:

{
Ax = b

x � 0

It is assumed that c and x are n-component vectors, b is an m-component vector, and A
is an m × n matrix. Also, it is assumed that b � 0 and that A contains an m × m identity

17.2 Simplex Method 671

matrix in its last m columns. As before, we define the set of feasible points as

K = {x ∈ R
n: Ax = b, x � 0}

The points of K are exactly the points that are competing to maximize cTx.

Vertices in K and Linearly Independent Columns of A
The set K is a polyhedral set in R

n , and the algorithm to be described proceeds from vertex
to vertex in K , always increasing the value of cTx as it goes from one to another. Let us
give a precise definition of vertex. A point x in K is called a vertex if it is impossible to
express it as x = 1

2 (u + v), with both u and v in K and u �= v. In other words, x is not the
midpoint of any line segment whose endpoints lie in K .

We denote by a(1), a(2), . . . , a(n) the column vectors constituting the matrix A. The
following theorem relates the columns of A to the vertices of K :

■ THEOREM 1 THEOREM ON VERTICES AND COLUMN VECTORS

Let x ∈ K and define I(x) = {i: xi > 0}. Then the following are equivalent:

1. x is a vertex of K .

2. The set {a(i): i ∈ I(x)} is linearly independent.

Proof If Statement 1 is false, then we can write x = 1
2 (u+v), with u ∈ K , v ∈ K , and u �= v. For

every index i that is not in the set I(x), we have xi = 0, ui � 0, vi � 0, and xi = 1
2 (ui + vi).

This forces ui and vi to be zero. Thus, all the nonzero components of u and v correspond
to indices i in I(x). Since u and v belong to K ,

b = Au =
n∑

i=1

ui a(i) =
∑

i∈I(x)

ui a(i)

and

b = Av =
n∑

i=1

vi a(i) =
∑

i∈I(x)

vi a(i)

Hence, we obtain ∑
i∈I(x)

(ui − vi) a(i) = 0

showing the linear dependence of the set {a(i): i ∈ I(x)}. Thus, Statement 2 is false. Con-
sequently, Statement 2 implies Statement 1.

For the converse, assume that Statement 2 is false. From the linear dependence of
column vectors a(i) for i ∈ I(x), we have∑

i∈I(x)

yi a(i) = 0 with
∑

i∈I(x)

|yi | �= 0

672 Chapter 17 Linear Programming

for appropriate coefficients yi . For each i /∈ I(x), let yi = 0. Form the vector y with
components yi for i = 1, 2, . . . , n. Then, for any λ, we see that because x ∈ K ,

A(x ± λ y) =
n∑

i=1

(xi ± λyi) a(i) =
n∑

i=1

xi a(i) ± λ
∑

i∈I(x)

yi a(i) = Ax = b

Now select the real number λ positive but so small that x + λ y � 0 and x − λ y � 0. [To
see that it is possible, consider separately the components for i ∈ I(x) and i /∈ I(x).] The
resulting vectors, u = x + λ y and v = x − λ y, belong to K . They differ, and obviously,
x = 1

2 (u + v). Thus, x is not a vertex of K ; that is, Statement 1 is false. So Statement 1
implies Statement 2. ■

Given a linear programming problem, there are three possibilities:

1. There are no feasible points; that is, the set K is empty.

2. K is not empty, and cTx is not bounded on K .

3. K is not empty, and cTx is bounded on K .

It is true (but not obvious) that in the third case, there is a point x in K such that cTx � cT y
for all y in K . We have assumed that our problem is in the second primal form so that
possibility 1 cannot occur. Indeed, A contains an m ×m identity matrix and so has the form

A =

⎡⎢⎢⎢⎢⎢⎣
a11 a12 · · · a1k 1 0 · · · 0

a21 a22 · · · a2k 0 1 · · · 0

...
...

. . .
...

...
...

. . .
...

am1 am2 · · · amk 0 0 · · · 1

⎤⎥⎥⎥⎥⎥⎦
where k = n − m. Consequently, we can construct a feasible point x easily by setting
x1 = x2 = · · · = xk = 0 and xk+1 = b1, xk+2 = b2, and so on. It is then clear that Ax = b.
The inequality x � 0 follows from our initial assumption that b � 0.

Simplex Method
Next we present a brief outline of the simplex method for solving linear programming prob-
lems. It involves a sequence of exchanges so that the trial solution proceeds systematically
from one vertex to another in K . This procedure is stopped when the value of cTx is no
longer increased as a result of the exchange.

The following is an outline of the simplex algorithm.

17.2 Simplex Method 673

■ ALGORITHM 1 Simplex

Select a small positive value for ε. In each step, we have a set of m indices
{k1, k2, . . . , km}.
1. Put columns a(k1), a(k2), . . . , a(km) into B, and solve Bx = b.

2. If xi > 0 for 1 � i � m, continue. Otherwise, exit because the algorithm has
failed.

3. Set e = [ck1 , ck2 , . . . , ckm]T , and solve BT y = e.

4. Choose any s in {1, 2, . . . , n} but not in {k1, k2, . . . , km} for which cs − yTa(s)

is greatest.

5. If cs − yTa(s) < ε, exit because x is the solution.

6. Solve Bz = a(s).

7. If zi � ε for 1 � i � m, then exit because the objective function is unbounded
on K .

8. Among the ratios xi/zi that have zi > 0 for 1 � i � m, let xr/zr be the smallest.
In case of a tie, let r be the first occurrence.

9. Replace kr by s, and go to step 1.

A few remarks on this algorithm are in order. In the beginning, select the indices
k1, k2, . . . , km such that a(k1), a(k2), . . . , a(km) form an m × m identity matrix. At step 5,
where we say that x is a solution, we mean that the vector v = (vi) given by vki = xi for
1 � i � n and vi = 0 for i /∈ {k1, k2, . . . , km} is the solution. A convenient choice for the
tolerance ε that occurs in steps 5 and 7 might be 10−6.

In any reasonable implementation of the simplex method, advantage must be taken of
the fact that succeeding occurrences of step 1 are very similar. In fact, only one column of
B changes at a time. Similar remarks hold for steps 3 and 6.

We do not recommend that the reader attempt to program the simplex algorithm.
Efficient codes, refined over many years of experience, are usually available in software
libraries. Many of them can provide solutions to a given problem and to its dual with
very little additional computing. Sometimes this feature can be exploited to decrease the
execution time of a problem. To see why, consider a linear programming problem in first
primal form:

(P)

⎧⎪⎨⎪⎩
maximize: cTx

constraints:

{
Ax � b

x � 0

As usual, we assume that x is an n vector and that A is an m × n matrix. When the simplex
algorithm is applied to this problem, it performs an iterative process on an m × m matrix
denoted by B in the preceding description. If the number of inequality constraints m is very
large relative to n, then the dual problem may be easier to solve, since the B matrices for it
will be of dimension n × n. Indeed, the dual problem is

(D)

⎧⎪⎨⎪⎩
minimize: bT y

constraints:

{
AT y � c

y � 0

674 Chapter 17 Linear Programming

and the number of inequality constraints here is n. An example of this technique appears in
the next section.

Summary

(1) For the second primal form, the set of feasible points is

K = {x ∈ R
n: Ax = b, x � 0}

which are the points of K competing to maximize cTx.

(2) For a linear programming problem, there are these possibilities: There are no feasible
points, that is, the set K is empty; K is not empty, and cTx is not bounded on K ; K is not
empty, and cTx is bounded on K .

(3) Denote by a(1), a(2), . . . , a(n) the column vectors constituting the matrix A. Let x ∈ K
and define I(x) = {i : xi > 0}. Then x is a vertex of K if and only if the set {a(i): i ∈ I(x)}
is linearly independent.

(4) The simplex method involves a sequence of exchanges so that the trial solution proceeds
systematically from one vertex to another in the set of feasible points K . This procedure is
stopped when the value of cTx is no longer increased as a result of exchanges.

Problems 17.2

a1. Show that the linear programming problem{
maximize: cTx

constraints: Ax � b

can be put into first primal form by increasing the number of variables by just one.
Hint: Replace x j by y j − y0.

a2. Show that the set K can have only a finite number of vertices.

3. Suppose that u and v are solution points for a linear programming problem and that
x = 1

2 (u + v). Show that x is also a solution.

4. Using the simplex method as described, solve the numerical example in the text.

a5. Using standard manipulations, put the dual problem (D) into first and second primal
forms.

a6. Show how a code for solving a linear programming problem in first primal form can
be used to solve a system of n linear equations in n variables.

7. Using standard techniques, put the dual problem (D) into first primal form (P); then
take the dual of it. What is the result?

17.3 Approximate Solution of Inconsistent Linear Systems 675

Computer Problems 17.2

1. Select a linear programming code from your computing center library and use it to
solve these problems:

a.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: 8x1 + 6x2 + 6x3 + 9x4

constraints:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x1 + 2x2 + x4 � 2

3x1 + x2 + x4 � 4

x3 + x4 � 1

x1 + x3 � 1

x1 � 0 x2 � 0 x3 � 0 x4 � 0

ab.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
minimize: 10x1 − 5x2 − 4x3 + 7x4 + x5

constraints:

⎧⎪⎨⎪⎩
4x1 − 3x2 − x3 + 4x4 + x5 = 1

−x1 + 2x2 + 2x3 + x4 + 3x5 = 4

x1 � 0 x2 � 0 x3 � 0 x4 � 0 x5 � 0

ac.

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

maximize: 2x1 + 4x2 + 3x3

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
4x1 + 2x2 + 3x3 � 15

3x1 + 2x2 + x3 � 7

x1 + x2 + 2x3 � 6

x1 � 0 x2 � 0 x3 � 0

2. (Student research project) Investigate recent developments in computational linear
programming algorithms, especially by interior-point methods.

17.3 Approximate Solution of Inconsistent Linear Systems
Linear programming can be used for the approximate solution of systems of linear equations
that are inconsistent. An m × n system of equations

n∑
j=1

ai j x j = bi (1 � i � m)

is said to be inconsistent if there is no vector x = [x1, x2, . . . , xn]T that simultaneously
satisfies all m equations in the system. For instance, the system⎧⎪⎨⎪⎩

2x1 + 3x2 = 4

x1 − x2 = 2

x1 + 2x2 = 7

(1)

is inconsistent, as can be seen by attempting to carry out the Gaussian elimination process.

676 Chapter 17 Linear Programming

�1 Problem
Since no vector x can solve an inconsistent system of equations, the residuals

ri =
n∑

j=1

ai j x j − bi (1 � i � m)

cannot be made to vanish simultaneously. Hence,
∑m

i=1 |ri | > 0. Now it is natural to ask for
an x vector that renders the expression

∑m
i=1 |ri | as small as possible. This problem is called

the �1 problem for this system of equations. Other criteria, leading to different approximate
solutions, might be to minimize

∑m
i=1 r 2

i or max1 � i � m |ri |. Chapter 12 discusses in detail
the problem of minimizing

∑m
i=1 r 2

i .
The minimization of

∑n
i=1 |ri | by appropriate choice of the x vector is a problem for

which special algorithms have been designed (see Barrodale and Roberts [1974]). However,
if one of these special programs is not available or if the problem is small in scope, linear
programming can be used.

A simple, direct restatement of the problem is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize:
m∑

i=1

εi

constraints:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
j=1

ai j x j − bi � εi (1 � i � m)

−
n∑

j=1

ai j x j + bi � εi (1 � i � m)

(2)

If a linear programming code is at hand in which the variables are not required to be
nonnegative, then it can be used on Problem (2). If the variables must be nonnegative, the
following technique can be applied. Introduce a variable yn+1, and write x j = y j − yn+1.
Then define ai,n+1 = −∑n

j=1 ai j . This step creates an additional column in the matrix A.
Now consider the linear programming problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize: −
m∑

i=1

εi

constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+1∑
j=1

ai j y j − εi � bi (1 � i � m)

−
n+1∑
j=1

ai j y j − εi � − bi (1 � i � m)

y � 0 ε � 0

(3)

which is in first primal form with m + n + 1 variables and 2m inequality constraints.

17.3 Approximate Solution of Inconsistent Linear Systems 677

It is not hard to verify that Problem (3) is equivalent to Problem (2). The main point is
that

n+1∑
j=1

ai j y j =
n∑

j=1

ai j (x j + yn+1) + ai,n+1 yn+1

=
n∑

j=1

ai j x j + yn+1

n∑
j=1

ai j + yn+1

(
−

n∑
j=1

ai j

)

=
n∑

j=1

ai j x j

Another technique can be used to replace the 2m inequality constraints in Problem (3)
by a set of m equality constraints. We write

εi = |ri | = ui + vi

where ui = ri and vi = 0 if ri � 0 but vi = −ri and ui = 0 if ri < 0. The resulting linear
programming problem is⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maximize: −
m∑

i=1

ui −
m∑

i=1

vi

constraints:

⎧⎪⎨⎪⎩
n+1∑
j=1

ai j y j − ui + vi = bi (1 � i � m)

u � 0 v � 0 y � 0

Using the preceding formulas, we have

ri =
n∑

j=1

ai j x j − bi =
n∑

j=1

ai j (y j − yn+1) − bi

=
n∑

j=1

ai j y j − yn+1

n∑
j=1

ai j − bi

=
n+1∑
j=1

ai j y j − bi = ui − vi

From it, we conclude that ri + vi = ui � 0. Now vi and ui should be as small as possible,
consistent with this restriction, because we are attempting to minimize

∑m
i=1(ui +vi). So if

ri � 0, we take vi � 0 and ui = ri , whereas if ri < 0, we take vi = −ri and ui = 0. In either
case, |ri | = ui + vi . Thus, minimizing

∑m
i=1(ui + vi) is the same as minimizing

∑m
i=1 |ri |.

The example of the inconsistent linear system given by (1) could be solved in the �1

sense by solving the linear programming problem⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

minimize: u1 + v1 + u2 + v2 + u3 + v3

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
2y1 + 3y2 − 5y3 − u1 + v1 = 4

y1 − y2 − u2 + v2 = 2

y1 + 2y2 − 3y3 − u3 + v3 = 7

y1, y2, y3 � 0 u1, u2, u3 � 0 v1, v2, v3 � 0

(4)

678 Chapter 17 Linear Programming

The solution is

u1 = 0 u2 = 0 u3 = 0

v1 = 0 v2 = 0 v3 = 5

y1 = 2 y2 = 0 y3 = 0

From it, we recover the �1 solution of System (1) in the form

x1 = y1 − y3 = 2 r1 = u1 − v1 = 0

x2 = y2 − y3 = 0 r2 = u2 − v2 = 0

r3 = u3 − v3 = −5

We can use mathematical software systems such as Matlab, Maple, or Mathematica to
solve this linear programming problem. For example, we obtain u1 = v1 = u2 = v2 = u3 =
y2 = y3 = 0, v3 = 5, and y1 = 2, with 5 as the value of the objective function. For another
system, we need to set the equality constraints. We obtain the solution corresponding to
y1 = y2 = y3 = 684.2887, u1 = u2 = u3 = v1 = v2 = 0, and v3 = 5 with 5 as the value
of the objective function. The x vector is x1 = 2 and x2 = 3.1494 × 10−11. This solution
is slightly different from the one previously obtained, owing to roundoff errors, but the
minimum value for the objective function is the same and all the constraints are satisfied.

�∞ Problem
Consider again a system of m linear equations in n unknowns:

n∑
j=1

ai j x j = bi (1 � i � m)

If the system is inconsistent, we know that the residuals ri = ∑n
j=1 ai j x j − bi cannot all

be zero for any x vector. So the quantity ε = max1 � i � m |ri | is positive. The problem of
making ε a minimum is called the �∞ problem for the system of equations. An equivalent
linear programming problem is⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

minimize: ε

constraints:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
j=1

ai j x j − ε � bi (1 � i � m)

−
n∑

j=1

ai j x j − ε � − bi (1 � i � m)

If a linear programming code is available in which the variables need not be greater than
or equal to zero, then it can be used to solve the �∞ problem as formulated above. If the
variables must be nonnegative, we first introduce a variable yn+1 so large that the quantities

17.3 Approximate Solution of Inconsistent Linear Systems 679

y j = x j + yn+1 are positive. Next, we solve the linear programming problem⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: ε

constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+1∑
j=1

ai j y j − ε � bi (1 � i � m)

−
n+1∑
j=1

ai j y j − ε � − bi (1 � i � m)

ε � 0 y j � 0 (1 � j � n + 1)

(5)

Here, we have again defined ai,n+1 = −∑n
j=1 ai j .

For our System (1), the solution that minimizes the quantity

max{|2x1 + 3x2 − 4|, |x1 − x2 − 2|, |x1 + 2x2 − 7|}

is obtained from the linear programming problem

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: ε

constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2y1 + 3y2 − 5y3 − ε � 4

y1 − y2 − ε � 2

y1 + 2y2 − 3y3 − ε � 7

−2y1 − 3y2 + 5y3 − ε � −4

−y1 + y2 − ε � −2

−y1 − 2y2 + 3y3 − ε � −7

y1, y2, y3 � 0 ε � 0

(6)

The solution is

y1 = 8

9
y2 = 5

3
y3 = 0 ε = 25

9

From it, the �∞ solution of (1) is recovered as follows:

x1 = y1 − y3 = 8

9
x2 = y2 − y3 − 5

3

We can use mathematical software systems such as Matlab, Maple, or Mathematica to
solve the linear programming problem (6). For example, we obtain the solution y1 = 8

9 ,
y2 = 5

3 , y3 = 0, and ε = 25
9 from two of these systems. But for one of the mathematical

systems, we obtain the solution corresponding to y1 = 1.0423 × 103, y2 = 1.0431 ×
103. y3 = 1.0414 × 103, and ε = 2.778. We do obtain the same results as before
(0.8889, 1.6667) ≈ (

8
9 ,

5
3

)
.

680 Chapter 17 Linear Programming

In problems like (6), m is often much larger than n. Thus, in accordance with remarks
made in Section 17.2, it may be preferable to solve the dual problem because it would have
2m variables but only n + 2 inequality constraints. To illustrate, the dual of Problem (6) is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize: 4u1 + 2u2 + 7u3 − 4u4 − 2u5 − 7u6

constraints:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

2u1 + u2 + u3 − 2u4 − u5 − u6 � 0

3u1 − u2 + 2u3 − 3u4 + u5 − 2u6 � 0

−5u1 − 3u3 + 5u4 + 3u6 � 0

−u1 − u2 − u3 − u4 − u5 − u6 � −1

ui � 0 (1 � i � 6)

The three types of approximate solution that have been discussed (for an overdetermined
system of linear equations) are useful in different situations. Broadly speaking, an �∞
solution is preferred when the data are known to be accurate. An �2 solution is preferred
when the data are contaminated with errors that are believed to conform to the normal
probability distribution. The �1 solution is often used when data are suspected of containing
wild points—points that result from gross errors, such as the incorrect placement of a decimal
point. Additional information can be found in Rice and White [1964]. The �2 problem is
discussed in Chapter 12 also.

Summary

(1) We consider an inconsistent system of m linear equations in n unknowns

n∑
j=1

ai j x j = bi (1 � i � m)

For the residuals ri = ∑n
j=1 ai j x j − bi , the �1 problem for this system is to minimize the

expression
∑m

i=1 |ri |. A direct restatement of the problem is

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize:
m∑

i=1

εi

constraints:

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n∑
j=1

ai j x j − bi � εi (1 � i � m)

−
n∑

j=1

ai j x j + bi � εi (1 � i � m)

where εi = |ri |. If the variables must be nonnegative, we introduce a variable yn+1 and
write x j = y j − yn+1. Define ai,n+1 = −∑n

j=1 ai j ; an equivalent linear programming

17.3 Approximate Solution of Inconsistent Linear Systems 681

problem is ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

maximize: −
m∑

i=1

εi

constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

n+1∑
j=1

ai j y j − εi � bi (1 � i � m)

−
n+1∑
j=1

ai j y j − εi � − bi (1 � i � m)

y � 0 ε � 0

which is in first primal form with m + n + 1 variables and 2m inequality constraints.

(2) Another technique is to replace the 2m inequality constraints by a set of m equality
constraints. We write εi = |ri | = ui + vi , where ui = ri and vi = 0 if ri � 0 but vi = −ri

and ui = 0 if ri < 0. The resulting linear programming problem is⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maximize: −
m∑

i=1

ui −
m∑

i=1

vi

constraints:

⎧⎪⎨⎪⎩
n+1∑
j=1

ai j y j − ui + vi = bi (1 � i � m)

u � 0 v � 0 y � 0

(3) For an inconsistent system, the problem of making ε = max1 � i � m |ri | a minimum is
the �∞ problem for the system. An equivalent linear programming problem is⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

minimize: ε

constraints:

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

n∑
j=1

ai j x j − ε � bi (1 � i � m)

−
n∑

j=1

ai j x j − ε � − bi (1 � i � m)

If the variables must be nonnegative, we introduce a large variable yn+1 so that the quantities
y j = x j + yn+1 are positive and we have an equivalent linear programming problem:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

minimize: ε

constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

n+1∑
j=1

ai j y j − ε � bi (1 � i � m)

−
n+1∑
j=1

ai j y j − ε � − bi (1 � i � m)

ε � 0 y j � 0 (1 � j � n + 1)

where we defined ai,n+1 = −∑n
j=1 ai j .

682 Chapter 17 Linear Programming

Additional References
See Armstrong and Godfrey [1979], Barrodale and Phillips [1975], Barrodale and Roberts
[1974], Bartels [1971], Bloomfield and Steiger [1983], Branham [1990], Cärtner [2006],
Cooper and Steinberg [1974], Dantzi, Orden, and Wolfe [1963], Huard [1979], Nering
and Tucker [1992], Orchard-Hays [1968], Rabinowitz [1968], Roos et al. [1997], Schrijver
[1986], Wright [1997], Ye [1997], and Zhang [1995].

Problems 17.3

1. Consider the inconsistent linear system⎧⎪⎪⎪⎨⎪⎪⎪⎩
5x1 + 2x2 = 6

x1 + x2 + x3 = 2

7x2 − 5x3 = 11

6x1 + 9x3 = 9

Write the following with nonnegative variables:

aa. The equivalent linear programming problem for solving the system in the �1 sense.
ab. The equivalent linear programming problem for solving the system in the �∞ sense.

2. (Continuation) Repeat the preceding problem for the system⎧⎪⎪⎪⎨⎪⎪⎪⎩
3x + y = 7

x − y = 11

x + 6y = 13

−x + 3y = −12

a3. We want to find a polynomial p of degree n that approximates a function f as well as
possible from below; that is, we want 0 � f − p � ε for minimum ε. Show how p could
be obtained with reasonable precision by solving a linear programming problem.

a4. To solve the �1 problem for the system of equations⎧⎪⎨⎪⎩
x − y = 4

2x − 3y = 7

x + y = 2

we can solve a linear programming problem. What is it?

Computer Problems 17.3

a1. Obtain numerical answers for Parts a and b of Problem 17.3.1.

2. (Continuation) Repeat for Problem 17.3.2.

17.3 Approximate Solution of Inconsistent Linear Systems 683

a3. Find a polynomial of degree 4 that represents the function ex in the following sense:
Select 20 equally spaced points xi in interval [0, 1] and require the polynomial to
minimize the expression max1 � i � 20 |exi − p(xi)|. Hint: This is the same as solving 20
equations in five variables in the �∞ sense. The i th equation is A+ Bxi +Cx2

i + Dx3
i +

Ex4
i = exi , and the unknowns are A, B, C , D, and E .

4. Use built-in routines in mathematical software systems such as Matlab, Maple, or
Mathematica to solve the linear programming problem with the equation numbers
below in first primal form, in second primal form, and the dual:
a. (4) b. (6)

A
Advice on Good
Programming Practices

Because the programming of numerical schemes is essential to under-
standing them, we offer here a few words of advice on good programming
practices.

A.1 Programming Suggestions
The suggestions and techniques given here should be considered in context. They are not
intended to be complete, and some good programming suggestions have been omitted
to keep the discussion brief. Our purpose is to encourage the reader to be attentive to
considerations of efficiency, economy, readability, and roundoff errors. Of course, some
of these suggestions and admonitions may vary depending on the particular programming
language that is being used and features in the language.

Be Careful and Be Correct Strive to write programs carefully and correctly. This is of
utmost importance.

Use Pseudocode Before beginning the coding, write out in complete detail the mathemat-
ical algorithm to be used in pseudocode such as that used in this text. The pseudocode serves
as a bridge between the mathematics and the computer program. It need not be defined in
a formal way, as is done for a computer language, but it should contain sufficient detail
that the implementation is straightforward. When writing the pseudocode, use a style that
is easy to read and understand. For maintainability, it should be easy for a person who is
unfamiliar with the code to read it and understand what it does.

Check and Double-Check Check the code thoroughly for errors and omissions before
beginning to edit on a computer terminal. Spend time checking the code before running it
to avoid executing the program, showing the output, discovering an error, correcting the
error, and repeating the process ad nauseam.∗

∗In 1962, the rocket carrying the Mariner I space probe to Venus went off course after only five minutes of flight
and was destroyed. An investigation revealed that a single line of faulty Fortran code caused the disaster. A
period was typed in the code DO 5 I=1,3 instead of the comma, resulting in the loop being executed once
instead of three times. It has been estimated that this single typographical error cost the United States National
Aeronautics and Space Administration $18.5 million dollars! For additional details, see material available online
such as www-aix.gsi.de/∼giese/swr/mariner1.html and www-aix.gsi.de/∼giese/swr/
literatur1.html for a general reference.

684

www-aix.gsi.de/~giese/swr/mariner1.html
www-aix.gsi.de/~giese/swr/literatur1.html
www-aix.gsi.de/~giese/swr/literatur1.html

A.1 Programming Suggestions 685

Modern computing environments may allow the user to accomplish this process in only
a few seconds, but this advice is still valid if for no other reason than that it is dangerously
easy to write programs that may work on a simple test but not on a more complicated one.
No function key or mouse can tell you what is wrong!

Use Test Cases After writing the pseudocode, check and trace through it using pencil-
and-paper calculations on a typical yet simple example. Checking boundary cases, such as
the values of the first and second iterations in a loop and the processing of the first and
last elements in a data structure, will often reveal embarrassing errors. These same sample
cases can be used as the first set of test cases on the computer.

Modularize Code Build a program in steps by writing and testing a series of segments
(subprograms, procedures, or functions); that is, write self-contained subtasks as separate
routines. Try to keep these program segments reasonably small, less than a page whenever
possible, to make reading and debugging easier.

Generalize Slightly If the code can be written to handle a slightly more general situation,
then in many cases, it is worth the extra effort to do so. A program that was written for
only a particular set of numbers must be completely rewritten for another set. For example,
only a few additional statements are required to write a program with an arbitrary step size
compared with a program in which the step size is fixed numerically. However, one should
be careful not to introduce too much generality into the code because it can make a simple
programming task overly complicated.

Show Intermediate Results Print out or display intermediate results and diagnostic mes-
sages to assist in debugging and understanding the program’s operation. Always echo-print
the input data unless it is impractical to do so, such as with a large amount of data. Using
the default read and print commands frees the programmer from errors associated with
misalignment of data. Fancy output formats are not necessary, but some simple labeling of
the output is recommended.

Include Warning Messages A robust program always warns the user of a situation that
it is not designed to handle. In general, write programs so that they are easy to debug when
the inevitable bug appears.

Use Meaningful Variable Names It is often helpful to assign meaningful names to the
variables because they may have greater mnemonic value than single-letter variables. There
is perennial confusion between the characters O (letter “oh”) and 0 (number zero) and
between l (letter “ell”) and 1 (number one).

Declare All Variables All variables should be listed in type declarations in each program
or program segment. Implicit type assignments can be ignored when one writes declaration
statements that include all variables used. Historically, in Fortran, variables beginning with
I/i, J/j, K/k, L/l, M/m, and N/n are integer variables, and ones beginning with other
letters are floating-point real variables. It may be a good idea to adhere to this scheme so
that one can immediately recognize the type of a variable without looking it up in the type

686 Appendix A Advice on Good Programming Practices

declarations. In this book, we present algorithms using pseudocode and therefore do not
always follow this advice.

Include Comments Comments within a routine are helpful for revealing at some later time
what the program does. Extensive comments are not necessary, but we recommend that you
include a preface to each program or program segment explaining the purpose, the input
and output variables, and the algorithm used and that you provide a few comments between
major segments of the code. Indent each block of code a consistent number of spaces to
improve readability. Inserting blank comment lines and blank spaces can greatly improve
the readability of the code as well. To save space, we have not included any comments in
the pseudocode in this book.

Use Clean Loops Never put unnecessary statements within loops. Move expressions and
variables outside a loop from inside a loop if they do not depend on the loop or do not
change. Also, indenting loops can add to the readability of the code, particularly for nested
loops. Use a nonexecutable statement as the terminator of a loop so that the code may be
altered easily.

Declare Nonchanging Constants Use a parameter statement to assign the values of key
constants. Parameter values correspond to constants that do not change throughout the
routine. Such parameter statements are easy to change when one wants to rerun the program
with different values. Also, they clarify the role key constants play in the code and make
the routines more readable and easier to understand.

Use Appropriate Data Structures Use data structures that are natural to the problem
at hand. If the problem adapts more easily to a three-dimensional array than to several
one-dimensional arrays, then a three-dimensional array should be used.

Use Arrays of All Types The elements of arrays, whether one-, two-, or higher-dimensional,
are usually stored in consecutive words of memory. Since the compiler may map the value
of an index for two- and higher-subscripted arrays into a single subscript value that is used
as a pointer to determine the location of elements in storage, the use of two- and higher-
dimensional arrays can be considered a notational convenience for the user. However, any
advantage in using only a one-dimensional array and performing complicated subscript
calculation is slight. Such matters are best left to the compiler.

Use Built-in Functions In scientific programming languages, many built-in mathematical
functions are available for common functions such as sin, log, exp, arcsin, and so on. Also,
numeric functions such as integer, real, complex, and imaginary are usually available for
type conversion. One should utilize these and others as much as possible. Some of these
intrinsic functions accept arguments of more than one type and return a result whose type
may vary depending on the type of the argument used. Such functions are called generic
functions, for they represent an entire family of related functions. Of course, care should
be taken not to use the wrong argument type.

Use Program Libraries In preference to one that you might write yourself for a pro-
gramming project, a preprogrammed routine from a program library should be used when

A.1 Programming Suggestions 687

applicable. Such routines can be expected to be state-of-the-art software, well tested, and,
of course, completely debugged.

Do Not Overoptimize Students should be primarily concerned with writing readable code
that correctly computes the desired results. There are any number of tricks of the trade for
making code run faster or more efficiently. Save them for use later on in your program-
ming career. We are primarily concerned with understanding and testing various numerical
methods. Do not sacrifice the clarity of a program in an effort to make the code run faster.
Clarity of code may be preferable to optimization of code when the two criteria conflict.

Case Studies
We present some case studies that may be helpful.

Computing Sums When a long list of floating-point numbers is added in the computer,
there will generally be less roundoff error if the numbers are added in order of increasing
magnitude. (Roundoff errors are discussed in detail in Chapter 2.)

Mathematical Constants Some students are surprised to learn that in many programming
languages, the computer does not automatically know the values of common mathematical
constants such as π and e and must be explicitly told their values. Since it is easy to mistype
a long sequence of digits in a mathematical constant, such as the real number π ,

pi ← 3.14159 26535 89793

the use of simple calculations involving mathematical functions is recommended. For ex-
ample, the real numbers π and e can be easily and safely entered with nearly full machine
precision by using standard intrinsic functions such as

pi ← 4.0 arctan(1.0)

e ← exp(1.0)

Another reason for this advice is to avoid the problem that arises if one uses a short approx-
imation such as pi ← 3.14159 on a computer with limited precision but later moves the
code to another computer that has more precision. If you overlook changing this assignment
statement, then all results that depend on this value will be less accurate than they should be.

Exponents In coding for the computer, exercise some care in writing statements that in-
volve exponents. The general function x y is computed on many computers as exp(y ln x)

whenever y is not an integer. Sometimes this is unnecessarily complicated and may con-
tribute to roundoff errors. For example, it is preferable to write code with integer exponents
such as 5 rather than 5.0. Similarly, using exponents such as 1

2 or 0.5 is not recommended
because the built-in function sqrt may be used.

There is rarely any need for a calculation such as j ← (−1)k because there are better
ways of obtaining the same result. For example, in a loop, we can write j ← 1 before the
loop and j ← − j inside the loop.

Avoid Mixed Mode In general, one should avoid mixing real and integer expressions in
the computer code. Mixed expressions are formulas in which variables and constants of

688 Appendix A Advice on Good Programming Practices

different types appear together. If the floating-point form of an integer variable is needed,
use a function such as real. Similarly, a function such as integer is generally available for
obtaining the integer part of a real variable. In other words, use the intrinsic type conversion
functions whenever converting from complex to real, real to integer, or vice versa. For
example, in floating-point calculations, m/n should be coded as real(m)/real(n) when m
and n are integer variables so that it computes the correct real value of m/n. Similarly, 1/m
should be coded as 1.0/real(m) and 1/2 as 0.5 and so on.

Precision In the usual mode of representing numbers in a computer, one word of storage is
used for each number. This mode of representation is called single precision. In calculations
that require greater precision (called double precision or extended precision), it is possible
to allot two or more words of storage to each number. On a 32-bit computer, approximately
seven decimal places of precision can be obtained in single precision, and approximately
17 decimal places of precision can be obtained in double precision. Double precision is
usually more time-consuming than single precision because it may use software rather
than hardware to carry out the arithmetic. However, if more accuracy is needed than single
precision can provide, then double or extended precision should be used. This is particularly
true on computers with limited precision, such as a 32-bit computer, on which roundoff errors
can quickly accumulate in long computations and reduce the accuracy to only three or four
decimal places! (This topic is discussed in Chapter 2.)

Usually, two words of memory are used to store the real and imaginary parts of a
complex number. Complex variables and arrays must be explicitly declared as being of
complex type. Expressions involving variables and constants of complex type are evaluated
according to the normal rules of complex arithmetic. Intrinsic functions such as complex,
real, and imaginary should be used to convert between real and complex types.

Memory Fetches When using loops, write the code so that fetches are made from adjacent
words in memory. To illustrate, suppose we want to store values in a two-dimensional array
(ai j) in which the elements of each column are stored in consecutive memory locations.
Using i and j loops with the i th loop as the innermost one would process elements down the
columns. For some programs and computer languages, this detail may be of only secondary
concern. However, some computers have immediate access to only a portion or a few pages
of memory at a time. In this case, it is advantageous to process the elements of an array so
that they are taken from or stored in adjacent memory locations.

When to Avoid Arrays Although the mathematical description of an algorithm may indi-
cate that a sequence of values is computed, thus seeming to imply the need for an array, it is
often possible to avoid arrays. (This is especially true if only the final value of a sequence is
required.) For example, the theoretical description of Newton’s method (Chapter 3) reads

xn+1 = xn − f (xn)

f ′(xn)

but the pseudocode can be written within a loop simply as

for n = 1 to 10 do
x ← x − f (x)/ f ′(x)

end for

A.1 Programming Suggestions 689

where x is a real variable and function procedures for f and f ′ have been written. Such an
assignment statement automatically effects the replacement of the value of the old x with
the new numerical value of x − f (x)/ f ′(x).

Limit Iterations In a repetitive algorithm, one should always limit the number of permis-
sible steps by the use of a loop with a control variable. This will prevent endless cycling
due to unforeseen problems (e.g., programming errors and roundoff errors). For example,
in Newton’s method above, one might write

d ← f (x)/ f ′(x)

while |d| > 1
2 × 10−6 do

x ← x − d
output x
d ← f (x)/ f ′(x)

end while

If the function involves some erratic behavior, there is a danger here in not limiting the
number of repetitions. It is better to use a loop with a control variable:

for n = 1 to n max do
d ← f (x)/ f ′(x)

x ← x − d
output n, x
if |d| � 1

2 × 10−6 then exit loop
end for

where n and n max are integer variables and the value of n max is an upper bound on the
number of desired repetitions. All others are real variables.

Floating-Point Equality The sequence of steps in a routine should not depend on whether
two floating-point numbers are equal. Instead, reasonable tolerances should be permitted
to allow for floating-point arithmetic roundoff errors. For example, a suitable branching
statement for n decimal digits of accuracy might be

if |x − y| < ε then . . . end if

provided that it is known that x and y have magnitude comparable to 1. Here, x , y, and ε

are real variables with ε = 1
2 × 10−n . This corresponds to requiring that the absolute error

between x and y be less than ε. However, if x and y have very large or small orders of magni-
tude, then the relative error between x and y would be needed, as in the branching statement

if |x − y| < ε max{|x |, |y|} then . . . end if

Equal Floating-Point Steps In some situations, notably in solving differential equations
(see Chapter 8), a variable t assumes a succession of values equally spaced a distance of h
apart along the real line. One way of coding this is

690 Appendix A Advice on Good Programming Practices

t ← t0

output 0, t
for i = 1 to n do

...

t ← t + h
output i, t

end for

Here, i and n are integer variables, and t0, t , and h are real variables. An alternative way is

for i = 0 to n do
...

t ← t0 + real(i)h
output i, t

end for

In the first pseudocode, n additions occur, each with possible roundoff error. In the second,
this situation is avoided but at the added cost of n multiplications. Which is better depends
on the particular situation at hand.

Function Evaluations When values of a function at arbitrary points are needed in a
program, several ways of coding this are available. For example, suppose values of the
function

f (x) = 2x + ln x − sin x

are needed. A simple approach is to use an assignment statement such as

y ← 2x + ln(x) − sin(x)

at appropriate places within the program. Here, x and y are real variables. Equivalently, an
internal function procedure corresponding to the pseudocode

f (x) ← 2x + ln(x) − sin(x)

could be evaluated at 2.5 by

y ← f (2.5)

or whatever value of x is desired. Finally, a function subprogram can be used such as in the
following pseudocode:

real function f (x)

real x
f ← 2x + ln(x) − sin(x)

end function f

Which implementation is best? It depends on the situation at hand. The assignment state-
ment is simple and safe. An internal or external function procedure can be used to avoid

A.1 Programming Suggestions 691

duplicating code. A separate external function subprogram is the best way to avoid diffi-
culties that inadvertently occur when someone must insert code into another’s program. In
using program library routines, the user may be required to furnish an external function
procedure to communicate function values to the library routine. If the external function
procedure f is passed as an argument in another procedure, then a special interface must
be used to designate it as an external function.

On Developing Mathematical Software
Fred Krogh [2003] has written a paper listing some of the things he has learned from a career
at the Jet Propulsion Laboratory involving the development and writing of mathematical
software used in application packages. Some of his helpful hints and random thoughts
to remember in code development are as follows: Include internal output in order to see
what your algorithm is doing; support debugging by including output at the interfaces;
provide detailed error messages; fine-tune your code; provide understandable test cases;
verify results with care; take advantage of your mistakes; keep units consistent; test the
extremes; the algorithm matters; work on what does work; toss out what does not work; do
not give up too soon on ideas for improving or debugging your code; your subconscious is a
powerful tool, so learn to use it; test your assumptions; in the comments, keep a dictionary
of variables in alphabetical order because it is quite helpful when looking at a code years
after it was written; write the user documentation first; know what performance you should
expect to get; do not pay too much, but just enough, attention to others; see setbacks as
learning opportunities and as the staircase for keeping one’s spirits up; when comparing
codes, do not change their features or capabilities in order to make the comparison fair,
since you may not fully understand the other person’s code; keep action lists; categorize
code features; organize things into groups; the organization of the code may be one of
the most important decisions the developer makes; isolate the linear algebra parts of the
code in an application package so that the user may make modifications to them; reverse
communication is a helpful feature that allows users to leave the code and carry out matrix-
vector operations using their own data structures; save and restore variables when the user
is allowed to leave the code and return; portability is more important than efficiency. This
is just a random sampling of some of the items in this paper.

B
Representation of Numbers
in Different Bases

In this appendix, we review some basic concepts on number representation
in different bases.

B.1 Representation of Numbers in Different Bases
We begin with a discussion of general number representation but move quickly to bases 2,
8, and 16, as they are the bases primarily used in computer arithmetic.

The familiar decimal notation for numbers uses the digits 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9.
When we write a whole number such as 37294, the individual digits represent coefficients
of powers of 10 as follows:

37294 = 4 + 90 + 200 + 7000 + 30000

= 4 × 100 + 9 × 101 + 2 × 102 + 7 × 103 + 3 × 104

Thus, in general, a string of digits represents a number according to the formula

anan−1 . . . a2a1a0 = a0 × 100 + a1 × 101 + · · · + an−1 × 10n−1 + an × 10n

This takes care of only the positive whole numbers. A number between 0 and 1 is represented
by a string of digits to the right of a decimal point. For example, we see that

0.7215 = 7

10
+ 2

100
+ 1

1000
+ 5

10000
= 7 × 10−1 + 2 × 10−2 + 1 × 10−3 + 5 × 10−4

In general, we have the formula

0.b1b2b3 . . . = b1 × 10−1 + b2 × 10−2 + b3 × 10−3 + · · ·
Note that there can be an infinite string of digits to the right of the decimal point; indeed,
there must be an infinite string to represent some numbers. For example, we note that

√
2 = 1.41421 35623 73095 04880 16887 24209 69 . . .

e = 2.71828 18284 59045 23536 02874 71352 66 . . .

π = 3.14159 26535 89793 23846 26433 83279 50 . . .

ln 2 = 0.69314 71805 59945 30941 72321 21458 17 . . .
1
3 = 0.33333 33333 33333 33333 33333 33333 33 . . .

692

B.1 Representation of Numbers in Different Bases 693

For a real number of the form

(anan−1 . . . a1a0.b1b2b3 . . .)10 =
n∑

k=0

ak10k +
∞∑

k=1

bk10−k

the integer part is the first summation in the expansion and the fractional part is the
second summation. If ambiguity can arise, a number represented in base β is signified by
enclosing it in parentheses and adding a subscript β.

Base β Numbers
The foregoing discussion pertains to the usual representation of numbers with base 10.
Other bases are also used, especially in computers. For example, the binary system uses 2
as the base, the octal system uses 8, and the hexadecimal system uses 16.

In the octal representation of a number, the digits that are used are 0, 1, 2, 3, 4, 5, 6,
and 7. Thus, we see that

(21467)8 = 7 + 6 × 8 + 4 × 82 + 1 × 83 + 2 × 84

= 7 + 8(6 + 8(4 + 8(1 + 8(2))))

= 9015

A number between 0 and 1, expressed in octal, is represented with combinations of 8−1,
8−2, and so on. For example, we have

(0.36207)8 = 3 × 8−1 + 6 × 8−2 + 2 × 8−3 + 0 × 8−4 + 7 × 8−5

= 8−5(3 × 84 + 6 × 83 + 2 × 82 + 7)

= 8−5(7 + 82(2 + 8(6 + 8(3))))

= 15495

32768
= 0.47286 987 . . .

We shall see presently how to convert easily to decimal form without having to find a com-
mon denominator.

If we use another base, say, β, then numbers represented in the β-system look like this:

(anan−1 . . . a1a0.b1b2b3 . . .)β =
n∑

k=0

akβ
k +

∞∑
k=1

bkβ
−k

The digits are 0, 1, . . . , β − 2, and β − 1 in this representation. If β > 10, it is necessary to
introduce symbols for 10, 11, . . . , β − 1. The separator between the integer and fractional
part is called the radix point, since decimal point is reserved for base-10 numbers.

Conversion of Integer Parts
We now formalize the process of converting a number from one base to another. It is
advisable to consider separately the integer and fractional parts of a number. Consider,
then, a positive integer N in the number system with base γ :

N = (anan−1 . . . a1a0)γ =
n∑

k=0

akγ
k

694 Appendix B Representation of Numbers in Different Bases

Suppose that we wish to convert this to the number system with base β and that the calcu-
lations are to be performed in arithmetic with base β. Write N in its nested form:

N = a0 + γ (a1 + γ (a2 + · · · + γ (an−1 + γ (an)) · · ·))
and then replace each of the numbers on the right by its representation in base β. Next,
carry out the calculations in β-arithmetic. The replacement of the ak’s and γ by equivalent
base-β numbers requires a table showing how each of the numbers 0, 1, . . . , γ − 1 appears
in the β-system. Moreover, a base-β multiplication table may be required.

To illustrate this procedure, consider the conversion of the decimal number 3781 to
binary form. Using the decimal binary equivalences and longhand multiplication in base 2,
we have

(3781)10 = 1 + 10(8 + 10(7 + 10(3)))

= (1)2 + (1 010)2 ((1 000)2 + (1 010)2 ((111)2 + (1 010)2(11)2))

= (111 011 000 101)2

This arithmetic calculation in binary is easy for a computer that operates in binary but
tedious for humans.

Another procedure should be used for hand calculations. Write down an equation
containing the digits c0, c1, . . . , cm that we seek:

N = (cmcm−1 . . . c1c0)β = c0 + β(c1 + β(c2 + · · · + β(cm) · · ·))
Next, observe that if N is divided by β, then the remainder in this division is c0, and the
quotient is

c1 + β(c2 + · · · + β(cm) · · ·)
If this number is divided by β, the remainder is c1, and so on. Thus, we divide repeatedly
by β, saving remainders c0, c1, . . . , cm and quotients.

EXAMPLE 1 Convert the decimal number 3781 to binary form using the division algorithm.

Solution As was indicated above, we divide repeatedly by 2, saving the remainders along the way.
Here is the work:

Quotients Remainders
2) 3781
2) 1890 1 = c0 ↓̇
2) 945 0 = c1

2) 472 1 = c2

2) 236 0 = c3

2) 118 0 = c4

2) 59 0 = c5

2) 29 1 = c6

2) 14 1 = c7

2) 7 0 = c8

2) 3 1 = c9

2) 1 1 = c10

0 1 = c11

B.1 Representation of Numbers in Different Bases 695

Here, the symbol ↓̇ is used to remind us that the digits ci are obtained beginning with the
digit next to the binary point. Thus, we have

(3781.)10 = (111 011 000 101.)2

and not the other way around: (101 000 110 111.)2 = (2615)10. ■

EXAMPLE 2 Convert the number N = (111 011 000 101)2 to decimal form by nested multiplication.

Solution N = 1 × 20 + 0 × 21 + 1 × 22 + 0 × 23 + 0 × 24 + 0 × 25

+ 1 × 26 + 1 × 27 + 0 × 28 + 1 × 29 + 1 × 210 + 1 × 211

= 1 + 2(0 + 2(1 + 2(0 + 2(0 + 2(0 + 2(1 + 2(1 + 2(0

+ 2(1 + 2(1 + 2(1)))))))))))

= 3781

The nested multiplication with repeated multiplication and addition can be carried out on a
hand-held calculator more easily than can the previous form with exponentiation. ■

Another conversion problem exists in going from an integer in base γ to an integer
in base β when using calculations in base γ . As before, the unknown coefficients in the
equation

N = c0 + c1β + c2β
2 + · · · + cmβm

are determined by a process of successive division, and this arithmetic is carried out in the
γ -system. At the end, the numbers ck are in base γ , and a table of γ -β equivalents is used.

For example, we can convert a binary integer into decimal form by repeated division
by (1 010)2 [which equals (10)10], carrying out the operations in binary. A table of binary-
decimal equivalents is used at the final step. However, since binary division is easy only for
computers, we shall develop alternative procedures presently.

Conversion of Fractional Parts
We can convert a fractional number such as (0.372)10 to binary by using a direct yet naive
approach as follows:

(0.372)10 = 3 × 10−1 + 7 × 10−2 + 2 × 10−3

= 1

10

(
3 + 1

10

(
7 + 1

10
(2)

))
= 1

(1 010)2

(
(011)2 + 1

(1 010)2

(
(111)2 + 1

(1 010)2
(010)2

))
Dividing in binary arithmetic is not straightforward, so we look for easier ways of doing
this conversion.

Suppose that x is in the range 0 < x < 1 and that the digits ck in the representation

x =
∞∑

k=1

ckβ
−k = (0.c1c2c3 . . .)β

are to be determined. Observe that

βx = (c1.c2c3c4 . . .)β

696 Appendix B Representation of Numbers in Different Bases

because it is necessary to shift the radix point only when multiplying by base β. Thus,
the unknown digit c1 can be described as the integer part of βx . It is denoted by I(βx).
The fractional part, (0.c2c3c4 . . .)β , is denoted by F(βx). The process is repeated in the
following pattern:

d0 = x
d1 = F(βd0) c1 = I(βd0) ↓̇
d2 = F(βd1) c2 = I(βd1)

etc.

In this algorithm, the arithmetic is carried out in the decimal system.

EXAMPLE 3 Use the preceding algorithm to convert the decimal number x = (0.372)10 to binary form.

Solution The algorithm consists in repeatedly multiplying by 2 and removing the integer parts. Here
is the work:

0.372
2

↓̇ c1 = 0 .744
2

c2 = 1 .488
2

c3 = 0 .976
2

c4 = 1 .952
2

c5 = 1 .904
2

c6 = 1 .808

etc.
Thus, we have (0.372)10 = (0.010 111 . . .)2. ■

Base Conversion 10 ↔ 8 ↔ 2
Most computers use the binary system (base 2) for their internal representation of numbers.
The octal system (base 8) is particularly useful in converting from the decimal system (base
10) to the binary system and vice versa. With base 8, the positional values of the numbers
are 80 = 1, 81 = 8, 82 = 64, 83 = 512, 84 = 4096, and so on. Thus, for example, we have

(26031)8 = 2 × 84 + 6 × 83 + 0 × 82 + 3 × 8 + 1

= ((((2)8 + 6)8 + 0)8 + 3)8 + 1

= 11289

and

(7152.46)8 = 7 × 83 + 1 × 82 + 5 × 8 + 2 + 4 × 8−1 + 6 × 8−2

= (((7)8 + 1)8 + 5)8 + 2 + 8−2[(4)8 + 6]

= 3690 + 38
64

= 3690.59375

B.1 Representation of Numbers in Different Bases 697

When numbers are converted between decimal and binary form by hand, it is convenient
to use octal representation as an intermediate step. In the octal system, the base is 8, and,
of course, the digits 8 and 9 are not used. Conversion between octal and decimal proceeds
according to the principles already stated. Conversion between octal and binary is especially
simple. Groups of three binary digits can be translated directly to octal according to the
following table:

Binary 000 001 010 011 100 101 110 111

Octal 0 1 2 3 4 5 6 7

This grouping starts at the binary point and proceeds in both directions. Thus, we have

(101 101 001.110 010 100)2 = (551.624)8

To justify this convenient sleight of hand, we consider, for instance, a fraction expressed
in binary form:

x = (0.b1b2b3b4b5b6 . . .)2

= b12−1 + b22−2 + b32−3 + b42−4 + b52−5 + b62−6 + · · ·
= (4b1 + 2b2 + b3)8

−1 + (4b4 + 2b5 + b6)8
−2 + · · ·

In the last line of this equation, the parentheses enclose numbers from the set {0, 1, 2, 3, 4, 5,

6, 7} because the bi ’s are either 0 or 1. Hence, this must be the octal representation of x .
Conversion of an octal number to binary can be done in a similar manner but in reverse

order. It is easy! Just replace each octal digit with the corresponding three binary digits.
Thus, for example,

(5362.74)8 = (101 011 110 010.111 100)2

EXAMPLE 4 What is (2576.35546 875)10 in octal and binary forms?

Solution We convert the original decimal number first to octal and then to binary. For the integer
part, we repeatedly divide by 8:

8) 2576

8) 322 0 ↓̇
8) 40 2

8) 5 0

0 5
Thus, we have

2576. = (5020.)8 = (101 000 010 000.)2

using the rules for grouping binary digits. For the fractional part, we repeatedly multiply
by 8

0.35546875
8

↓̇ 2 .84375000
8

6 .75000000
8

6 .00000000

698 Appendix B Representation of Numbers in Different Bases

so that

0.35546 875 = (0.266)8 = (0.010 110 110)2

Finally, we obtain the result

2576.35546 875 = (101 000 010 000.010 110 110)2

Although this approach is longer for this example, we feel that it is easier, in general
and less likely to lead to error because one is working with single-digit numbers most of
the time. ■

Base 16
Some computers whose word lengths are multiples of 4 use the hexadecimal system (base
16) in which A, B, C, D, E, and F represent 10, 11, 12, 13, 14, and 15, respectively, as given
in the following table of equivalences:

Hexadecimal 0 1 2 3 4 5 6 7

Binary 0000 0001 0010 0011 0100 0101 0110 0111

Hexadecimal 8 9 A B C D E F

Binary 1000 1001 1010 1011 1100 1101 1110 1111

Conversion between binary numbers and hexadecimal numbers is particularly easy. We
need only regroup the binary digits from groups of three to groups of four. For example,
we have

(010 101 110 101 101)2 = (0010 1011 1010 1101)2 = (2BAD)16

and

(111 101 011 110 010.110 010 011 110)2 = (1010 1111 0010.1100 1001 1110)2

= (7AF2.C9E)16

More Examples
Continuing with more examples, let us convert (0.276)8, (0.C8)16, and (492)10 into different
number systems. We show one way for each number and invite the reader to work out the
details for other ways and to verify the answers by converting them back into the original
base.

(0.276)8 = 2 × 8−1 + 7 × 8−2 + 6 × 8−3

= 8−3[((2)8 + 7)8 + 6]

= (0.37109 375)10

(0.C8)16 = (0.110 010)2

= (0.62)8

= 6 × 8−1 + 2 × 8−2

= 8−2[(6)8 + 2]

= (0.78125)10

B.1 Representation of Numbers in Different Bases 699

(492)10 = (754)8

= (111 101 100)2

= (1EC)16

because

8) 492
8) 61 4 ↓̇

8) 7 5
0 7

Summary

(1) It might seem that there are several different procedures for converting between number
systems. Actually, there are only two basic techniques. The first procedure for converting
the number (N)γ to base β can be outlined as follows:

• Express (N)γ in nested form using powers of γ .

• Replace each digit by the corresponding base-β numbers.

• Carry out the indicated arithmetic in base β.

This outline holds whether N is an integer or a fraction. The second procedure is either the
divide-by-β and remainder-quotient-split process for N an integer or the multiply-by-β and
integer-fraction-split process for N a fraction. The first procedure is preferred when γ < β

and the second when γ > β. Of course, the 10 ↔ 8 ↔ 2 ↔ 16 base conversion procedure
should be used whenever possible because it is the easiest way to convert numbers between
the decimal, octal, binary, or hexadecimal systems.

Problems B.1

1. Find the binary representation and check by reconverting to decimal representation.

aa. e ≈ (2.718)10 b. 7
8 c. (592)10

2. Convert the following decimal numbers to octal numbers.

a. 27.1 b. 12.34 c. 3.14 d. 23.58 e. 75.232 f. 57.321

a3. Convert to hexadecimal, to octal, and then to decimal.

aa. (110 111 001.101 011 101)2 b. (1 001 100 101.011 01)2

a4. Convert the following numbers:

a. (100 101 101)2 = ()8 = ()10

b. (0.782)10 = ()8 = ()2

ac. (47)10 = ()8 = ()2

d. (0.47)10 = ()8 = ()2

700 Appendix B Representation of Numbers in Different Bases

ae. (51)10 = ()8 = ()2

f. (0.694)10 = ()8 = ()2

ag. (110 011.111 010 110 110 1)2 = ()8 = ()10

h. (361.4)8 = ()2 = ()10

5. Convert (45653.127664)8 to binary and to decimal.

a6. Convert (0.4)10 first to octal and then to binary. Check by converting directly to
binary.

7. Prove that the decimal number 1
5 cannot be represented by a finite expansion in the

binary system.

8. Do you expect your computer to calculate 3 × 1
3 with infinite precision? What about

2 × 1
2 or 10 × 1

10 ?

a9. Explain the algorithm for converting an integer in base 10 to one in base 2, assuming
that the calculations will be performed in binary arithmetic. Illustrate by converting
(479)10 to binary.

10. Justify mathematically the conversion between binary and hexadecimal numbers by
regrouping.

11. Justify for integers the rule given for the conversion between octal and binary numbers.

a12. Prove that a real number has a finite representation in the binary number system if and
only if it is of the form ±m/2n , where n and m are positive integers.

13. Prove that any number that has a finite representation in the binary system must have
a finite representation in the decimal system.

14. Some countries measure temperature in Fahrenheit (F), while other countries use Cel-
sius (C). Similarly, for distance, some use miles and others use kilometers. As a frequent
traveler, you may be in need of a quick approximate conversion scheme that you can
do in your head.

a. Fahrenheit and Celsius are related by the equation F = 32 + (9/5)C . Verify the
following simple conversion scheme for going from Celsius to Fahrenheit: A rough
approximation is to double the Celsius temperature and add 32. To refine your
approximation, shift the decimal place to the left in the doubled number (2C) and
subtract it from the approximation obtained previously: F = [(2C) + 32] − (2C)/10.

b. Determine a simple scheme to convert from Fahrenheit to Celsius.

c. Determine a simple scheme to convert from miles to kilometers.

d. Determine a simple scheme to convert from kilometers to miles.

15. Convert fractions such as 1
3 and 1

11 into their binary represention.

16. (Mayan arithmetic) The Maya civilization of Central America (2600 B.C. to 1200 A.D.)
understood the concept of zero hundreds of years before many other civilizations. For
their calculations, the vigesimal (base 20) system was used, not the decimal (base 10)
system. So instead of 1, 10, 100, 1000, 10000, they used 1, 20, 400, 8000, 16000. They
used a dot for 1 and a bar for 5, and zero was represented by the shell symbol. For

B.1 Representation of Numbers in Different Bases 701

example, the calculations 11131 + 7520 = 18651 and 11131 − 7520 = 3611 was as
follows:

8000s

400s

20s

1s

11131 7520 18651 3611

Here, as an aid, some of our numbers are included; on the left, they indicate the powers
used, and above, they are the numbers represented by the columns.

Do these calculations using Mayan symbols and arithmetic:

a. 92819 + 56313 = 149132, 92819 − 56313 = 36506

b. 3296 + 853 = 4149, 3296 − 853 = 2443

c. 2273 + 729 = 1544, 2273 − 729 = 1544

d. Investigate how the Mayans might have done multiplication and division in their
number system. Work out some simple examples.

17. (Babylonian arithmetic) Babylonians of ancient Mesopotania (now Iraq) used a sex-
agesimal (base 60) positional number system with a decimal (base 10) system within
it. The Babylonians based their number system on only two symbols! The influence
of Babylonian arithmetic is still with us today. An hour consists of 60 minutes and is
divided into 60 seconds, and a circle is measured in divisions of 360 degrees. Numbers
are frequently called digits, from the Latin word for “finger.” The base-10 and base-20
systems most likely arose from the fact that ten fingers and ten toes could be used in
counting. Investigate the early history of numbers and doing aritmetic calculations in
different number systems.

Computer Problems B.1

1. Read into your computer x = 1.1 (base 10), and print it out using several different
formats. Explain the results.

2. Show that eπ
√

163 is incredibly close to being the 18-digit integer 262 53741 26407
68744. Hint: More than 30 decimal digits will be needed to see any difference.

3. Write and test a routine for converting integers into octal and binary forms.

702 Appendix B Representation of Numbers in Different Bases

4. (Continuation) Write and test a routine for converting decimal fractions into octal and
binary forms.

5. (Continuation) Using the two routines of the preceding problems, write and test a
program that reads in decimal numbers and prints out the decimal, octal, and binary
representations of these numbers.

6. See how many binary digits your computer has for (0.1)10. See the introductory remarks
at the beginning of this chapter.

7. Some mathematical software systems have commands for converting numbers between
binary, decimal, hex, octal, and vice versa. Explore these commands using various
numerical values. Also, see whether there are commands for determining the precision
(the number of significant decimal digits in a number) and the accuracy (the number
of significant decimal digits to the right of the decimal point in a number).

8. Write a computer program to verify the conclusions in evaluating f (x) = x − sin x
for various values of x near 1.9, say, over the interval [0.1, 2.5] with increments of 0.1.
For these values, compute the approximate value of f , the true calculated value, and
the absolute error between them. Single-precision and double-precision computations
may be necessary.

C
Additional Details on IEEE
Floating-Point Arithmetic

In this appendix, we summarize some additional features in IEEE standard
floating-point arithmetic. (See Overton [2001] for additional details.)

C.1 More on IEEE Standard Floating-Point Arithmetic
In the early 1980s, a working committee of the Institute for Electrical and Electronics
Engineers (IEEE) established a standard floating-point arithmetic system for computers
that is now known as the IEEE floating-point standard. Previously, manufacturers of
different computers each developed their own internal floating-point number systems. This
led to inconsistencies in numerical results in moving code from machine to machine, for
example, in porting source code from an IBM computer to a Cray machine. Some impor-
tant requirements for all machines adopting the IEEE floating-point standard include the
following:

• Correctly rounded arithmetic

• Consistent representation of floating-point numbers across machines

• Consistent and sensible treatment of exceptional situations

Suppose that we are using a 32-bit computer with IEEE standard floating-point arith-
metic. There are exactly 23 bits of precision in the fraction field in a single-precision
normalized number. By counting the hidden bit, this means that there are 24 bits in the sig-
nificand and the unit roundoff error is u = 2−24. In single precision, the machine epsilon
is εsingle = 2−23 because 1 + 2−23 is the first single-precision number larger than 1. Since
2−23 ≈ 1.19 × 10−7, we can expect only approximately six accurate decimal digits in the
output. This accuracy may be reduced further by errors of various types, such as roundoff
errors in the arithmetic, truncation errors in the formulas used, and so on.

For example, when computing the single-precision approximation to π , we obtain six
accurate digits: 3.14159. Converting and printing the 24-bit binary number result in an
actual decimal number with more than six nonzero digits, but only the first six digits are
considered accurate approximations to π .

The first double-precision number larger than 1 is 1 + 2−52. So the double-precision
machine epsilon is εdouble = 2−52. Since 2−52 ≈ 2.22×10−16, there are only approximately
15 accurate decimal digits in the output in the absence of errors. The fraction field has
exactly 52 bits of precision, and this results in 53 bits in the significand when the hidden
bit is counted.

703

704 Appendix C Additional Details on IEEE Floating-Point Arithmetic

For example, when approximating π in double precision, we obtain 15 accurate digits:
3.14159 26535 8979. As in the case with single precision, converting and printing the 54-bit
binary significand results in more than 15 digits, but only the first 15 digits are accurate
approximations to π .

There are some useful special numbers in the IEEE standard. Instead of terminating
with an overflow when dividing a nonzero number by 0, the machine representation for
∞ is stored, which is the mathematically sensible thing to do. Because of the hidden bit
representation, a special technique for storing zero is necessary. Note that all zeros in
the fraction field (mantissa) represent the significand 1.0 rather than 0.0. Moreover, there
are two different representations for the same number zero, namely, +0 and −0. On the
other hand, there are two different representations for infinity that correspond to two quite
different numbers, +∞ and −∞. NaN stands for Not a Number and is an error pattern
rather than a number.

Is it possible to represent numbers smaller than the smallest normalized floating-point
number 2−126 in IEEE standard floating-point format? Yes! If the exponent field contains a bit
string of all zeros and the fraction field contains a nonzero bit string, then this representation
is called a subnormal number. Subnormal numbers cannot be normalized because this
would result in an exponent that does not fit into the exponent field. These subnormal
numbers are less accurate than normal numbers because they have less room in the fraction
field for nonzero bits.

By using various system inquiry functions (such as those in Table C.1 from Fortran 90),
we can determine some of the characteristics of the floating-point number system on a typical
PC with 32-bit IEEE standard floating-point arithmetic. Table C.2 contains the results. In
most cases, simple programs can also be written to determine these values.

In Table C.3, we show the relationship between the exponent field and the possible
single-precision 32-bit floating-points numbers corresponding to it. In this table, all lines
except the first and the last are normalized floating-point numbers. The first line shows that
zero is represented by +0 when all bits bi = 0, and by −0 when all bits are zero except
b1 = 1. The last line shows that +∞ and −∞ have bit strings of all ones in the exponent
field except for possibly the sign bit together with all zeros in the mantissa field.

TABLE C.1 Some Numeric Inquiry Functions in Fortran 90

EPSILON(X) Machine epsilon (number almost negligible compared to 1)
TINY(X) Smallest positive number
HUGE(X) Largest number
PRECISION(X) Decimal precision (number of significant decimal digits in output)

TABLE C.2 Results with IEEE Standard Floating-Point on 32-Bit Machine

X Single Precision X Double Precision

EPSILON(X) 1.192 × 10−7 ≈ 2−23 2.220 × 10−16 ≈ 2−52

TINY(X) 1.175 × 10−38 ≈ 2−126 2.225 × 10−308 ≈ (2 − 2−23) × 2127

HUGE(X) 3.403 × 1038 ≈ 2128 1.798 × 10308 ≈ 21024

PRECISION(X) 6 15

C.1 More on IEEE Standard Floating-Point Arithmetic 705

TABLE C.3 Single-Precision 32-Bit Word b1 b2b3b4 · · · b9 b10b11 · · · b32
with Sign Bit b1 = 0 for + and b1 = 1 for −.

(b2b3 . . . b9)2 Exponent Field Numerical Representation

(00000000)2 = (0)10

{±0, if b10 = b11 = · · · = b32 = 0
subnormal, otherwise

(00000001)2 = (1)10 ±(1.b10b11b12 · · · b32)2 × 2−126

(00000010)2 = (2)10 ±(1.b10b11b12 · · · b32)2 × 2−125

(00000011)2 = (3)10 ±(1.b10b11b12 · · · b32)2 × 2−124

(00000100)2 = (4)10 ±(1.b10b11b12 · · · b32)2 × 2−123

...
...

(01111101)2 = (125)10 ±(1.b10b11b12 · · · b32)2 × 2−2

(01111110)2 = (126)10 ±(1.b10b11b12 · · · b32)2 × 2−1

(01111111)2 = (127)10 ±(1.b10b11b12 · · · b32)2 × 20

(10000000)2 = (128)10 ±(1.b10b11b12 · · · b32)2 × 21

(10000001)2 = (129)10 ±(1.b10b11b12 · · · b32)2 × 22

...
...

(11111011)2 = (251)10 ±(1.b10b11b12 · · · b32)2 × 2124

(11111100)2 = (252)10 ±(1.b10b11b12 · · · b32)2 × 2125

(11111101)2 = (253)10 ±(1.b10b11b12 · · · b32)2 × 2126

(11111110)2 = (254)10 ±(1.b10b11b12 · · · b32)2 × 2127

(11111111)2 = (255)10

{±∞, if b10 = b11 = · · · = b32 = 0
NaN, otherwise

In the IEEE floating-point standard, the round to nearest or correctly rounded value
of the real number x , denoted round(x), is defined as follows. First, let x+ be the closest
floating-point number greater than x , and let x− be the closest one less than x . If x is a
floating-point number, then round(x) = x . Otherwise, the value of round(x) depends on
the rounding mode selected:

• Round to nearest: round(x) is either x− or x+, whichever is nearer to x . (If there is a tie,
choose the one with the least significant bit equal to 0.)

• Round toward 0: round(x) is either x− or x+, whichever is between 0 and x .

• Round toward −∞/round down: round(x) = x−.

• Round toward +∞/round up: round(x) = x+.

Round to nearest is almost always used, since it is the most useful and gives the floating-point
number closest to x .

D

Linear Algebra Concepts and Notation

In this appendix, we review some basic concepts and standard notation
used in linear algebra.

D.1 Elementary Concepts
The two concepts from linear algebra that we are most concerned with are vectors and
matrices because of their usefulness in compressing complicated expressions into a compact
notation. The vectors and matrices in this text are most often real, since they consist of real
numbers. These concepts easily generalize to complex vectors and matrices.

Vectors
A vector x ∈ R

n can be thought of as a one-dimensional array of numbers and is written
as

x =

⎡⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎦
where xi is called the i th element, entry, or component. An alternative notation that is
useful in pseudocodes is x = (xi)n . Sometimes the vector x displayed above is said to be a
column vector to distinguish it from a row vector y written as

y = [y1, y2, . . . , yn]

For example, here are some vectors:⎡⎢⎢⎢⎢⎣
1
5

3

− 5
6
2
7

⎤⎥⎥⎥⎥⎦ [π, e, 5, −4]

[
1
2
1
3

]

To save space, a column vector x can be written as a row vector such as

x = [x1, x2, . . . , xn]T or xT = [x1, x2, . . . , xn]

706

D.1 Elementary Concepts 707

by adding a T (for transpose) to indicate that we are interchanging or transposing a row or
column vector. As an example, we have

[1 2 3 4]T =

⎡⎢⎢⎣
1
2
3
4

⎤⎥⎥⎦
Many operations involving vectors are component-by-component operations. For vec-

tors x and y

x =

⎡⎢⎢⎢⎣
x1

x2
...

xn

⎤⎥⎥⎥⎦ y =

⎡⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎦
the following definitions apply.

Equality x = y if and only if xi = yi for all i(1 � i � n)

Inequality x < y if and only if xi < yi for all i(1 � i � n)

Addition/Subtraction

x ± y =

⎡⎢⎢⎢⎣
x1 ± y1

x2 ± y2
...

xn ± yn

⎤⎥⎥⎥⎦
Scalar Product

αx =

⎡⎢⎢⎢⎣
αx1

αx2
...

αxn

⎤⎥⎥⎥⎦ for α a constant or scalar

Here is an example: ⎡⎢⎢⎣
2
4
6
8

⎤⎥⎥⎦ = 2

⎡⎢⎢⎣
0
2
0
4

⎤⎥⎥⎦+

⎡⎢⎢⎣
2
0
6
0

⎤⎥⎥⎦
For m vectors x(1), x(2), . . . , x(m) and m scalars α1, α2, . . . , αm , we define a linear

combination as

m∑
i=1

αi x(i) = α1x(1) + α2x(2) + · · · + αm x(m) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m∑
i=1

αi x
(i)
1

m∑
i=1

αi x
(i)
2

...
m∑

i=1

αi x
(i)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

708 Appendix D Linear Algebra Concepts and Notation

Special vectors are the standard unit vectors:

e(1) =

⎡⎢⎢⎢⎢⎢⎣
1
0
0
...

0

⎤⎥⎥⎥⎥⎥⎦ e(2) =

⎡⎢⎢⎢⎢⎢⎣
0
1
0
...

0

⎤⎥⎥⎥⎥⎥⎦ . . . e(n) =

⎡⎢⎢⎢⎢⎢⎣
0
0
0
...

1

⎤⎥⎥⎥⎥⎥⎦
Clearly,

n∑
i=1

αi e(i) =

⎡⎢⎢⎢⎣
α1

α2
...

αn

⎤⎥⎥⎥⎦
Hence, any vector x can be written as a linear combination of the standard unit vectors

x = x1e(1) + x2e(2) + · · · + xn e(n) =
n∑

i=1

xi e(i)

As an example, notice that⎡⎢⎢⎣
1
2
3
4

⎤⎥⎥⎦ =

⎡⎢⎢⎣
1
0
0
0

⎤⎥⎥⎦+ 2

⎡⎢⎢⎣
0
1
0
0

⎤⎥⎥⎦+ 3

⎡⎢⎢⎣
0
0
1
0

⎤⎥⎥⎦+ 4

⎡⎢⎢⎣
0
0
0
1

⎤⎥⎥⎦
The dot product or inner product of vectors x and y is the number

xT y = [x1, x2, . . . , xn]

⎡⎢⎢⎢⎣
y1

y2
...

yn

⎤⎥⎥⎥⎦ =
n∑

i=1

xi yi

As an example, we see that

[1, 1, 1, 1]

⎡⎢⎢⎣
1
1
1
1

⎤⎥⎥⎦ = 4

Matrices
A matrix is a two-dimensional array of numbers that can be written as

A =

⎡⎢⎢⎢⎣
a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm

⎤⎥⎥⎥⎦
where ai j is called the element or entry in the i th row and j th column. An alternative
notation is A = (ai j)n×m . A column vector is also an n × 1 matrix and a row vector is also

D.1 Elementary Concepts 709

a 1 × m matrix. For example, here are three matrices:⎡⎣ 1
5

2
7 −1

3 2 1
8− 5

6
2
5 3

⎤⎦ [
1 6 9

8 − 5
]

⎡⎢⎢⎢⎣
11
2

4
9

2
3 − 7

8
π e
1
π

1
e

⎤⎥⎥⎥⎦
The entries in A can be grouped into column vectors:

A =

⎡⎢⎢⎢⎣
⎡⎢⎢⎢⎣

a11

a21
...

an1

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

a12

a22
...

an2

⎤⎥⎥⎥⎦ · · ·

⎡⎢⎢⎢⎣
a1m

a2m
...

anm

⎤⎥⎥⎥⎦
⎤⎥⎥⎥⎦ = [

a(1) a(2) · · · a(m)
]

where a(j) is the j th column vector. Also, A can be grouped into row vectors:

A =

⎡⎢⎢⎢⎣
[a11 a12 · · · a1m]
[a21 a22 · · · a2m]

...

[an1 an2 · · · anm]

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
A(1)

A(2)

...

A(n)

⎤⎥⎥⎥⎦
where A(i) is the i th row vector. Notice that⎡⎢⎢⎣

1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16

⎤⎥⎥⎦ =

⎡⎢⎢⎣
⎡⎢⎢⎣

1
2
3
4

⎤⎥⎥⎦
⎡⎢⎢⎣

5
6
7
8

⎤⎥⎥⎦
⎡⎢⎢⎣

9
10
11
12

⎤⎥⎥⎦
⎡⎢⎢⎣

13
14
15
16

⎤⎥⎥⎦
⎤⎥⎥⎦ =

⎡⎢⎢⎣
[1 5 9 13]
[2 6 10 14]
[3 7 11 15]
[4 8 12 16]

⎤⎥⎥⎦
An n × n matrix of special importance is the identity matrix, denoted by I , composed

of all 0’s except that the main diagonal consists of 1’s:

I =

⎡⎢⎢⎢⎣
1 0 · · · 0
0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

⎤⎥⎥⎥⎦ = [
e(1) e(2) · · · e(n)

]
A matrix of this same general form with entries di on the main diagonal is called a diagonal
matrix and is written as

D =

⎡⎢⎢⎢⎣
d1

d2

. . .

dn

⎤⎥⎥⎥⎦ = diag(d1, d2, . . . , dn)

where the blank space indicates 0 entries. A tridiagonal matrix is a square matrix of the form

T =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

d1 c1

a1 d2 c2

a2 d3 c3

. . .
. . .

. . .

an−2 dn−1 cn−1

an−1 dn

⎤⎥⎥⎥⎥⎥⎥⎥⎦

710 Appendix D Linear Algebra Concepts and Notation

where the diagonal entries {ai }, {di }, and {ci } are called the subdiagonal, main diagonal,
and superdiagonal, respectively.

For the general n × n matrix A = (ai j), A is a diagonal matrix if ai j = 0 whenever
i �= j , and A is a tridiagonal matrix if ai j = 0 whenever |i − j | � 2. The matrix A is
a lower triangular matrix whenever ai j = 0 for all i < j and is an upper triangular
matrix whenever ai j = 0 for all i > j . Examples of identity, diagonal, tridiagonal, lower
triangular, and upper triangular matrices, respectively, are as follows:⎡⎢⎢⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎥⎦
⎡⎢⎢⎣

3 0 0 0
0 5 0 0
0 0 7 0
0 0 0 9

⎤⎥⎥⎦
⎡⎢⎢⎢⎢⎣

5 3 0 0 0
2 5 3 0 0
0 2 9 2 0
0 0 3 7 2
0 0 0 3 7

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎣

6 0 0 0
3 6 0 0
4 −2 7 0
5 −3 9 21

⎤⎥⎥⎦
⎡⎢⎢⎣

1 −1 2 1
0 5 −5 1
0 0 9 −3
0 0 0 2

⎤⎥⎥⎦
As with vectors, many operations involving matrices correspond to component opera-

tions. For matrices A and B,

A =

⎡⎢⎢⎢⎣
a11 a12 · · · a1m

a21 a22 · · · a2m
...

...
. . .

...

an1 an2 · · · anm

⎤⎥⎥⎥⎦ B =

⎡⎢⎢⎢⎣
b11 b12 · · · b1m

b21 b22 · · · b2m
...

...
. . .

...

bn1 bn2 · · · bnm

⎤⎥⎥⎥⎦
the following definitions apply:

Equality A = B if and only if ai j = bi j for all i(1 � i � n) and all j (1 � j � m)

Inequality A < B if and only if ai j < bi j for all i(1 � i � n) and all j (1 � j � m)

Addition/Subtraction

A ± B =

⎡⎢⎢⎢⎣
a11 ± b11 a12 ± b12 · · · a1m ± b1m

a21 ± b21 a22 ± b22 · · · a2m ± b2m
...

...
. . .

...

an1 ± bn1 an2 ± bn2 · · · anm ± bnm

⎤⎥⎥⎥⎦
Scalar Product

α A =

⎡⎢⎢⎢⎣
αa11 αa12 · · · αa1m

αa21 αa22 · · · αa2m
...

...
. . .

...

αan1 αan2 · · · αanm

⎤⎥⎥⎥⎦ for α a constant

As an example, we have⎡⎣ 1
5

7
5 −1

−3 2 −8
6
5

2
5 −3

⎤⎦ = 1

5

⎡⎣ 1 7 0
0 10 0
6 2 0

⎤⎦−
⎡⎣ 0 0 1

3 0 8
0 0 3

⎤⎦

D.1 Elementary Concepts 711

Matrix-Vector Product
The product of an n × m matrix A and an m × 1 vector b is of special interest. Considering
the matrix A in terms of its columns, we have

Ab = [
a(1) a(2) · · · a(m)

]
⎡⎢⎢⎢⎣

b1

b2
...

bm

⎤⎥⎥⎥⎦
= b1a(1) + b2a(2) + · · · + bm a(m)

=
m∑

i=1

bi a(i)

Thus, Ab is a vector and can be thought of as a linear combination of the columns of A
with coefficients the entries of b. Considering matrix A in terms of its rows, we have

Ab =

⎡⎢⎢⎢⎣
A(1)

A(2)

...

A(n)

⎤⎥⎥⎥⎦b =

⎡⎢⎢⎢⎣
A(1)b
A(2)b

...

A(n)b

⎤⎥⎥⎥⎦
Thus, the j th element of Ab can be viewed as the dot product of the j th row of A and the
vector b.

Matrix Product
The product of the matrix A = (ai j)n×m and the matrix B = (bi j)m×r is the matrix C =
(ci j)n×r such that

AB = C

where

ci j = ai1b1 j + ai2b2 j + · · · + aimbmj =
m∑

k=1

aikbk j (1 � i � n, 1 � j � r)

The element ci j is the dot product of the i th row vector of A

A(i) = [ai1, ai2, . . . , aim]

and the j th column vector of B

b(j) =

⎡⎢⎢⎢⎣
b1 j

b2 j
...

bmj

⎤⎥⎥⎥⎦
that is,

ci j = A(i)b(j)

712 Appendix D Linear Algebra Concepts and Notation

Similarly, the matrix product AB can be thought of in two different ways. We can write
either

AB = A
[
b(1) b(2) · · · b(r)

]
(1)

= [
Ab(1) Ab(2) · · · Ab(r)

]
= C

or

AB =

⎡⎢⎢⎢⎣
A(1)

A(2)

...

A(n)

⎤⎥⎥⎥⎦B =

⎡⎢⎢⎢⎣
A(1) B
A(2) B

...

A(n) B

⎤⎥⎥⎥⎦ = C (2)

Equation (1) implies that the j th column of C = AB is

c(j) = Ab(j)

That is, each column of C is the result of postmultiplying A by the j th column of B. In
other words, each column of C can be obtained by taking inner products of a column of B
with all rows of A:

c(j) = Ab(j) =

⎡⎢⎢⎢⎣
←−
←−

...

←−

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

b1 j

b2 j
...

bmj

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
c1 j

c2 j
...

cnj

⎤⎥⎥⎥⎦
The long left-arrow means an inner product is formed across the elements in the row—that
is, ci j = ∑n

k=1 aikbk j . Equation (2) implies that the i th row of the result C of multiplying
A times B is

C (i) = A(i) B

That is, each row of C is the result of premultiplying B by the i th row of A. In other words,
each row of C can be obtained by taking inner products of a row of A with all columns
of B:

C (i) = A(i) B = [ai1 ai2 · · · aim]
[>⏐⏐ >⏐⏐ · · ·

>⏐⏐]
= [ci1 ci2 · · · cir]

The long up-arrow means an inner product is formed from the elements in the column—that
is, ci j = ∑n

k=1 aikbk j .
As an example, we can determine the matrix product columnwise as⎡⎣ 3 1 7

2 4 −5
1 −3 2

⎤⎦⎡⎣−1 −3 2
1 1 1

−3 −2 1

⎤⎦ = [
c(1) c(2) c(3)

]

D.1 Elementary Concepts 713

where

c(1) =
⎡⎣ 3 1 7

2 4 −5
1 −3 2

⎤⎦⎡⎣−1
1

−3

⎤⎦ =
⎡⎣−23

17
−10

⎤⎦

c(2) =
⎡⎣ 3 1 7

2 4 −5
1 −3 2

⎤⎦⎡⎣−3
1

−2

⎤⎦ =
⎡⎣−22

8
−10

⎤⎦

c(3) =
⎡⎣ 3 1 7

2 4 −5
1 −3 2

⎤⎦⎡⎣ 2
1
1

⎤⎦ =
⎡⎣14

3
1

⎤⎦
or we can determine it rowwise as⎡⎣ 3 1 7

2 4 −5
1 −3 2

⎤⎦⎡⎣−1 −3 2
1 1 1

−3 −2 1

⎤⎦ =
⎡⎣C(1)

C(2)

C(3)

⎤⎦
where

C(1) = [3 1 7]

⎡⎣−1 −3 2
1 1 1

−3 −2 1

⎤⎦ = [−23 −22 14]

C(2) = [2 4 − 5]

⎡⎣−1 −3 2
1 1 1

−3 −2 1

⎤⎦ = [17 8 3]

C (3) = [1 − 3 2]

⎡⎣−1 −3 2
1 1 1

−3 −2 1

⎤⎦ = [−10 −10 1]

Other Concepts
The transpose of the n × m matrix A, denoted AT , is obtained by interchanging the rows
and columns of A = (ai j)n×m :

AT =

⎡⎢⎢⎢⎣
A(1)

A(2)

...

A(n)

⎤⎥⎥⎥⎦
T

=
[

A(1)T
A(2)T · · · A(n)T

]

or

AT = [
a(1) a(2) · · · a(m)

]T =

⎡⎢⎢⎢⎢⎣
a(1)T

a(2)T

...

a(m)T

⎤⎥⎥⎥⎥⎦

714 Appendix D Linear Algebra Concepts and Notation

Hence, AT is the m × n matrix:

AT =

⎡⎢⎢⎢⎣
a11 a21 · · · an1

a12 a22 · · · an2
...

...
...

a1m a2m · · · anm

⎤⎥⎥⎥⎦ = (a ji)m×n

As an example, we have ⎡⎣ 2 4 9
5 7 3

10 6 2

⎤⎦T

=
⎡⎣2 5 10

4 7 6
9 3 2

⎤⎦
An n × n matrix A is symmetric if ai j = a ji for all i (1 � i � n) and all j (1 � j � n).

In other words, A is symmetric if A = AT .
Some useful properties for matrices of compatible sizes are as follows:

■ PROPERTIES Elementary Consequences of the Definitions

1. AB �= B A (in general)

2. AI = I A = A

3. A0 = 0A = 0

4.
(

AT
)T = A

5. (A + B)T = AT + BT

6. (AB)T = BT AT

If A and B are square matrices that satisfy AB = B A = I , then B is said to be the inverse
of A, which is denoted A−1.

To illustrate Property 1, form the following products, and observe that matrix multipli-
cation is not commutative:⎡⎣ 3 1 7

2 4 −5
1 −3 2

⎤⎦⎡⎣−1 −3 2
1 1 1

−3 −2 1

⎤⎦
⎡⎣−1 −3 2

1 1 1
−3 −2 1

⎤⎦⎡⎣ 3 1 7
2 4 −5
1 −3 2

⎤⎦
Also, verify that AA−1 = A−1 A = I for

A =
⎡⎣ 1 1 1

−1 3 2
2 1 1

⎤⎦
and

A−1 =
⎡⎣−1 0 1

−5 1 3
7 −1 −4

⎤⎦

D.1 Elementary Concepts 715

As our final set of examples, we have the product of a matrix times a vector and of two
matrices: ⎡⎣ 3 2 −1

5 3 2
−1 1 −3

⎤⎦⎡⎣ x1

x2

x3

⎤⎦ =
⎡⎣ 3x1 + 2x2 − x3

5x1 + 3x2 + 2x3

−x1 + x2 − 3x3

⎤⎦
⎡⎣ 1 0 0

− 5
3 1 0

−8 5 1

⎤⎦⎡⎣ 3 2 −1
5 3 2

−1 1 −3

⎤⎦ =
⎡⎣3 2 −1

0 − 1
3

11
3

0 0 15

⎤⎦
The reader should verify them and note how they relate to solving the following problem
using naive Gaussian elimination (see Section 7.1):⎧⎨⎩

3x1 + 2x2 − x3 = 7
5x1 + 3x2 + 2x3 = 4
−x1 + x2 − 3x3 = −1

As well, compute the products shown and relate them to this problem:⎡⎣ 1 0 0
− 5

8 1 0
−8 5 1

⎤⎦⎡⎣ 7
4

−1

⎤⎦
⎡⎢⎢⎣

1
3 2 − 7

15

0 −3 11
15

0 0 1
15

⎤⎥⎥⎦
⎡⎢⎢⎣

3 2 −1

0 − 1
3

11
3

0 0 15

⎤⎥⎥⎦
⎡⎢⎢⎣

1
3 2 − 7

15

0 −3 11
15

0 0 1
15

⎤⎥⎥⎦
⎡⎢⎢⎣

7

− 23
3

−37

⎤⎥⎥⎦

Cramer’s Rule
The solution of a 2 × 2 linear system of the form[

a c
b d

] [
x
y

]
=
[

f
g

]
is given by

x = 1

D
Det

[
f c
g d

]
= 1

D
(f d − gc)

y = 1

D
Det

[
a f
b g

]
= 1

D
(ag − b f)

where

D = Det

[
a c
b d

]
= ad − bc �= 0

716 Appendix D Linear Algebra Concepts and Notation

D.2 Abstract Vector Spaces
The vectors that have been considered so far in this appendix are members of a particular
vector space R

n . There is a general concept of an abstract vector space that will include R
n

as a particular case. An abstract vector space (a linear space) is a quadruple (X, F, +, ∗),
where X is a set of elements called vectors, F is a field, + is an operation, and ∗ is
an operation. There are ten axioms to be satisfied, and all of them are familiar to any
reader who has worked with the special case of R

n . First, let’s fix the field to be R. (The
other field that is often needed is C, but fields other than these two are rarely used in this
situation.)

■ THEOREM 1 AXIOMS FOR A VECTOR SPACE

1. If x and y belong to X , then x + y also belongs to X .

2. For x and y in X , x + y = y + x.

3. For x, y, and z in X , (x + y) + z = x + (y + z).

4. The set X contains a special element 0 such that x + 0 = x for all x in X .

5. For each x, there is an element −x with the property that x + (−x) = 0.

6. If a ∈ R, then for each x in X , ax ∈ X . (ax means a ∗ x.)

7. If a ∈ R and x, y ∈ X , then a(x + y) = ax + a y.

8. If a, b ∈ R and x ∈ X , then (a + b)x = ax + bx.

9. If a, b ∈ R and x ∈ X , then a(bx) = (ab)x.

10. For x ∈ X , 1x = x.

From these axioms, one can prove many additional properties, such as the following:

■ PROPERTIES Immediate Consequences of the Axioms

1. The zero element, 0, of X is unique.

2. 0x = 0 and a0 = 0 for a ∈ R. (Notice the different zeros here!)

3. For each x in X , the element −x in Axiom 5 is unique.

4. For each x in X , (−1)x = −x.

5. If ax = 0 and a �= 0, then x = 0.

A good example of a vector space (other than R
n) is the set of all polynomials. We

know that the sum of two polynomials is another polynomial and that a scalar multiple
of a polynomial is a polynomial. All other axioms for a vector space are quickly verified.
The zero element is the polynomial that we define by the equation 0(t) = 0 for all real
values of t .

D.2 Abstract Vector Spaces 717

Subspaces
If U is a subset of the vector space X and if U is a vector space also (with the same definitions
of + and ∗ as used in X), then we call U a subspace of X . In checking to determine
whether a given subset U is a subspace, one need only verify Axioms 1 and 6. Indeed,
once that has been done, Axiom 6 and Property 4 above yield −u ∈ U when u ∈ U . Then
Axiom 1 yields 0 = u + (−u) ∈ U. The remaining axioms are true for U simply because
U ⊂ X .

Linear Independence
A finite ordered set of points {x1, x2, . . . , xn} in a vector space is said to be linearly
dependent if there is a nontrivial equation of the form

n∑
i=1

ai xi = 0

The term nontrivial means that not all the coefficients ai are zero. For example, if n = 3
and x1 = 3x2 − x3, then the ordered set {x1, x2, x3} is linearly dependent. If n = 3 and
x3 = x1, which is permitted in an ordered set, then {x1, x2, x3} is linearly dependent.
Note that if these were interpreted as plain sets, we would have {x1, x2, x1} = {x1, x2},
because in describing a plain set the repeated entry can be dropped without changing the set!
This explains the necessity of dealing with ordered sets or indexed sets in defining linear
dependence. (The difficulty arises only for indexed sets in which two elements are equal
but bear different indices.) A finite set consisting of n (distinct) elements x1, x2, . . . , xn is
linearly independent if the equation

n∑
i=1

ai xi = 0

is true only when all the coefficients ai are zero. An arbitrary set, possibly infinite, is linearly
independent if every finite subset of that set is linearly independent.

To illustrate linear independence, consider the three polynomials p1(t) = t3 − 2t ,
p2(t) = t2 + 4, and p3(t) = 2t2 + t . Is the set { p1, p2, p3} linearly independent? To find
out, suppose that a1 p1 + a2 p2 + a3 p3 = 0. Then for all t ,

a1

(
t3 − 2t

)+ a2

(
t2 + 4

)+ a3

(
2t2 + t

) = 0

Collecting terms, we have

a3t3 + (a2 + 2a3)t
2 + (−2a1 + a3)t + 4a2 = 0 (t ∈ R)

Since a cubic polynomial can have at most three roots (if it is not zero), the coefficients of
each power of t in the preceding equation must be zero:

a3 = a2 + 2a3 = −2a1 + a3 = 4a2 = 0

Hence, all ai must be zero. The set is linearly independent.

718 Appendix D Linear Algebra Concepts and Notation

■ THEOREM 2 THEOREM ON LINEAR DEPENDENCE

A finite, ordered, set {x1, x2, . . . , xn}, with n � 2, is linearly dependent if and only if
some element of the set, say, xk , is a linear combination of its predecessors in the set:

xk =
k−1∑
i=1

ai xi

Bases
A basis for a vector space is a maximal linearly independent set in the vector space. Max-
imal means that no vector can be added to the set without spoiling the linear independence.
For example, a basis for the space of all polynomials is given by the functions ui (t) = t i for
i = 0, 1, 2, To see that this is a maximal linearly independent set, suppose we add to the
set any polynomial p. Let the degree of p be n. Then the set {u0, u1, . . . , un, p} is linearly
dependent. Indeed, one element (namely, p) is a linear combination of its predecessors in
the set, and the above theorem applies.

If a vector space X has a finite basis, {u1, u2, . . . , un}, then every basis for X has n ele-
ments. This number is called the dimension of X , and we say that X is finite-dimensional.
Each x in X has a unique representation x = ∑n

i=1 ai ui . The existence of this representa-
tion is a consequence of the maximality, and the uniqueness is a consequence of the linear
independence of the basis.

Linear Transformations
If X and Y are vector spaces and if L is a mapping of X into Y such that

L(au + bv) = aL(u) + bL(v)

for all scalars a and b and for all vectors u and v in X , then we say that L is linear. Many
familiar operations that are studied in mathematics are linear. For example, differentiation
is a linear operator:

(f + g)′ = f ′ + g′ (a f)′ = a f ′
The Laplace transform is linear, and so is the map f �→ ∫ b

1 f (t) dt .
If the space X is finite-dimensional and if we select a basis {u1, u2, . . . , un} for X , then a

linear map L : X → Y is completely known if the n vectors Lu1, Lu2, . . . , Lun are known.
Indeed, any vector x in X is representable in terms of the basis, x = ∑n

j=1 c j u j , and from
this, we get Lx = ∑n

j=1 c j Lu j . Going further, suppose that Y is also finite-dimensional.
Select a basis for Y , say, {v1, v2, . . . , vm}. Then each image Lu j is expressible in terms of
the basis selected for Y , and we have, for suitable coefficients ai j ,

Lu j =
m∑

i=1

ai jvi

From this, it follows that

Lx = L

(
n∑

j=1

c j u j

)
=

n∑
j=1

c j Lu j =
n∑

j=1

c j

m∑
i=1

ai jvi

D.2 Abstract Vector Spaces 719

In this way, a matrix A = (ai j) is associated with L , but only after the choice of bases in X
and Y has been made.

The special case in which Y = X and the same basis is used in both roles leads to these
equations:

x =
n∑

j=1

c j u j

Lu j =
n∑

i=1

ai j ui

Lx =
n∑

j=1

c j

n∑
i=1

ai j ui

Eigenvalues and Eigenvectors
Let A be an n × n matrix. If x is a nonzero vector with the property that Ax is a scalar
multiple of x, then we call x an eigenvector of A. When this occurs, the equation

Ax = λx

is satisfied for some scalar λ (which may be zero). The scalar λ is then called an eigenvalue
of A. Since we have a nonzero solution of the equation Ax − λx = 0, the matrix A − λI
must be singular. Hence, its determinant is zero. The equation

Det(A − λI) = 0

is called the characteristic equation of A. As a function of λ, the left side of this equation
is a polynomial of degree n, which has exactly n roots if we count each root with its
multiplicity.

Change of Basis and Similarity
If L is a linear transformation taking an n-dimensional vector space into itself, then, having
selected a basis {u1, u2, . . . , un}, we can assign a matrix A to L . Thus, we have

Lu j =
n∑

i=1

Ai j ui

If another basis for X is chosen, say, {v1, v2, . . . , vn}, then another matrix, B, arises in the
same way, and we have

Lv j =
n∑

i=1

Bi jvi

What is the relationship between A and B? Define the matrix P by the equation

uk =
n∑

i=1

P ikvi 1 � k � n

Then

B = P AP−1

720 Appendix D Linear Algebra Concepts and Notation

To prove this, we must establish that

Lv j =
n∑

i=1

(P AP−1)i jvi

The equations already recorded above justify the steps in the following calculation:
n∑

i=1

(P AP−1)i jvi =
n∑

i=1

n∑
k=1

n∑
r=1

P ik Akr P−1
r j vi

=
n∑

k=1

n∑
r=1

Akr P−1
r j uk

=
n∑

r=1

P−1
r j Lur

= L

(
n∑

r=1

P−1
r j ur

)

= L

(
n∑

r=1

n∑
i=1

P−1
r j P irvi

)

= L

(
n∑

i=1

I i jvi

)
= Lv j

Orthogonal Matrices and Spectral Theorem
A matrix Q is said to be orthogonal if

Q QT = QT Q = I

This forces Q to be square and nonsingular. Furthermore,

Q−1 = QT

With this concept available, we can state one of the principal theorems of linear algebra:
the spectral theorem for symmetric matrices.

■ THEOREM 3 SPECTRAL THEOREM FOR SYMMETRIC MATRICES

If A is a symmetric real matrix, then there exists an orthogonal matrix Q such that
QTA Q is a diagonal matrix.

The equation

QTA Q = D

is equivalent to

A Q = Q D

If D is diagonal, the columns vi of Q obey the equation

Avi = diivi

D.2 Abstract Vector Spaces 721

In other words, the columns of Q form an orthonormal system of eigenvectors of A, and
the diagonal elements of D are the eigenvalues of A.

Norms
A vector norm on a vector space X is a real-valued function on X , written
x �→ ‖x‖ and having these three properties:

■ PROPERTIES Properties of Vector Norms

1. ‖x‖ > 0 for all nonzero vectors x.

2. ‖ax‖ = |a|‖x‖ for all vectors x and all scalars a.

3. ‖x + y‖ � ‖x‖ + ‖ y‖ for all vectors x and y.

On R
n , the simplest vector norms are

‖x‖1 = |x1| + |x2| + · · · + |xn| (�1-vector norm)

‖x‖2 = √
x2

1 + x2
2 + · · · + x2

n (Euclidean/�2-vector norm)

‖x‖∞ = max{|x1|, |x2|, . . . , |xn|} (�∞-vector norm)

Here, xi denotes the i th component of the vector. Any norm can be thought of as assigning
a length to each vector. It is the Euclidean norm that corresponds directly to our usual
concept of length, but other norms are sometimes much more convenient for our purposes.
For example, if we know that ‖x − y‖∞ < 10−8, then we know that each component of
x differs from the corresponding component of y by at most 10−8 and that the converse is
also true. When we solve a system of linear equations Ax = b numerically, we shall want
to know (among other things) how big the residual vector is. That is conveniently measured
by ‖Ax − b‖, where some norm has been specified.

For n × n matrices, we can also have matrix norms, subject to the following
requirements:

■ PROPERTIES Properties of Matrix Norms

1. ‖A‖ > 0 if A �= 0

2. ‖α A‖ = |α|‖A‖
3. ‖A + B‖ � ‖A‖ + ‖B‖ (triangular inequality)

for matrices A, B and scalars α.

We usually prefer matrix norms that are related to a vector norm. When a vector norm has
been specified on R

n , there is a standard way of introducing a related matrix norm for
n × n matrices, namely,

‖A‖ = sup{‖Ax‖ : x ∈ R
n, ‖x‖ � 1}

We say that this matrix norm is the subordinate norm to the given vector norm or the
norm induced by the given vector norm. The close relationship between the two is useful,

722 Appendix D Linear Algebra Concepts and Notation

because it leads to the following inequality, which is true for all vectors x:

‖Ax‖ � ‖A‖ ‖x‖
The matrix norms subordinate to the vector norms discussed above are, respectively,

‖A‖1 = max1� j� n
∑n

i=1 |ai j | (�1-matrix norm)

‖A‖2 = max1�k� n σk (Spectral/�2-matrix norm)

‖A‖∞ = max1�i� n
∑n

j=1 |ai j | (�∞-matrix norm)

Here, σk are the singular values of A. (Refer to Section 8.2 for definitions.) Note from above
that the matrix norm subordinate to the Euclidean vector norm is not what most students
think that it should be, namely,

‖A‖F =
{

n∑
i=1

n∑
j=1

a2
i j

}1/2

(Frobenius norm)

This is indeed a matrix norm; however, it is not the one induced by the Euclidean vector
norm.

Gram-Schmidt Process
The projection operator is defined to be

proj y x = 〈x, y〉
〈 y, y〉 y

that projects the vector x orthogonally onto the vector y. The Gram-Schmidt process can
be written as

z1 = v1, q1 = z1
||z1||

z2 = v2 − projz1
v2, q2 = z2

||z2||
z3 = v3 − projz1

v3 − projz2
v3, q3 = z3

||z3||
In general, the k step is

zk = vk −
k−1∑
j=1

projv j
vk, qk = zk

||zk ||

Here {z1, z2, z3, . . . , zk} is an orthogonal set and {q1, q2, q3, . . . , qk} is an orthonormal
set. When implemented on a computer, the Gram-Schmidt process is numerically unstable
because the vectors zk may not be exactly orthogonal due to roundoff errors. By a minor
modification, the Gram-Schmidt process can be stabilized. Instead of computing the vectors
uk as above, it can be computed a term at a time. A computer algorithm for the modified
Gram-Schmidt process

for j = 1 to k
for i = 1 to j − 1

s ← 〈v j , vi 〉
v j ← v j − svi

end for
vi ← v j/||v j ||
end for

D.2 Abstract Vector Spaces 723

Here the vectors v1, v2, . . . , vk are replaced with orthonormal vectors that span the same
subspace. The i-loop removes components in the vi direction followed by normalization of
the vector. In exact arithmetic, this computation gives the same results as the original form
above. However, it produces smaller errors in finite-precision computer arithmetic.

EXAMPLE 1 Consider the vectors v1 = (1, ε, 0, 0), v1 = (1, 0, ε, 0), and v1 = (1, 0, 0, ε). Assume ε is
a small number. Carry out the standard Gram-Schmidt procedure and the modified Gram-
Schmidt procedure. Check the orthogonality conditions of the resulting vectors.

Solution Using the classical Gram-Schmidt process, we obtain u1 = (1, ε, 0, 0), u2 =
(0, −1, 1, 0)/

√
2, and u3 = (0, −1, 0, 1)/

√
2. Using the modified Gram-Schmidt process,

we find z1 = (1, ε, 0, 0), z2 = (0, −1, 1, 0)/
√

2, and z3 = (0, −1, −1, 2)/
√

6. Checking
orthogonality, we find 〈u2, u3〉 = 1

2 and 〈z2, z3〉 = 0. ■

Answers for Selected Problems*

Problems 1.1
2. x = 6032

9990 ; x = 6032
10010 3. 6 × 10−5 4. Two other ways: pi ← 2.0 arcsin(1.0) or pi ← 2.0 arccos(0.0)

5a. sum ← 0
for i = 1 to n do

for j = 1 to n do
sum ← sum + ai j

end for
end for

5d. sum ← 0.0
for i = 1 to n do

sum ← sum + aii

end for
for j = 2 to n do

for i = j to n do
sum ← sum + ai,i− j+1 + ai− j+1,i

end for
end for

6. n multiplications and n additions/subtractions

8a. for i = 1 to 5 do
x ← x · x

end for
p ← x

8c. z ← x + 2
p ← z3

(
6 + z4

(
9 + z8

(
3 − z10

)))
10. z ← an/bn

for i = 1 to n − 1 do
z ← an−i (z + 1/bn−i)

end for

*Answers to problems marked in the text with the symbol a are given here and in the Student’s Solution Manual with more details.

724

Answers for Selected Problems 725

11b. z ← 1
v ← 1
for i = 1 to n − 1 do

v ← vx
z ← vz + 1

end for
z ← vxz

12b. v = ∑n
i=0 ai xi 12e. v = an xn + x

∑n
i=1 an−i xn−i 13. z = 1 +∑n

i=2

∏i
j=2 b j 14. n(n + 1)/2

15b. for j = 1 to n do
for i = 1 to n do

ai j ← 1.0/real(i + j − 1)

end for
end for

Computer Problems 1.1
4. exp(1.0) ≈ 2.71828 18284 6

9. Computation deviates from theory when a1 = 10−12, 10−8, 10−4, 1020, for example.

10. x may underflow and be set to zero. 12. 40 different spellings

20a. The computation m/n may result in truncation so that x �= y.

Problems 1.2
4a. First derivative +∞ at 0. 4b. First derivative not continuous. 4e. Function −∞ at 0.

5. cosh x =
∞∑

k=0

x2k

(2k)!
; cosh 0.7 ≈ 1.25517 6a. ecos x = e

(
1 − x2

2
+ · · ·

)
6b. sin(cos x) = (sin 1) − (cos 1)

(
x2

2

)
+ · · · 7. m = 2 8. At least 18 terms

9. Yes. By using this formula, we avoid the series for e−x and use the one for ex .

11. ln(1 − x) = −
∞∑

k=1

xk

k
; ln

(1 + x

1 − x

)
= 2

∞∑
k=1

x2k−1

(2k − 1)

12. x = 1
3 , ln 2 = 0.69313 (four terms); At least 10 terms.

15a. sin x + cos x = 1 + x − x2

2
− x3

6
+ · · · ; sin(0.001) + cos(0.001) ≈ 1.00099 94998 3

15b. (sin x)(cos x) = x − 2
3 x3 + 2

15 x5 − 4
315 x7 + · · · ; sin(0.0006) cos(0.0006) ≈ 0.00059 99998 57

16. ln(e + x) = 1 +
∞∑

n=1

(−1)n−1 1

n

(x

e

)n

17. At least seven terms. 18. At least 100 terms. 20. − 5
8 h4 23. 1

8

(
x − 17

4

)
24. s ← 0

for i = 2 to n do
s ← s + log(i)
output i, s

end for

28.

∣∣∣∣cos x −
(

1 − x2

2

)∣∣∣∣ <
1

16 × 24
= 1

384

726 Answers for Selected Problems

32. Maclaurin series: f (x) = 3 + 7x − 1.33x2 + 19.2x4;

f (x) = 318.88 + (x − 2)616.08 + (x − 2)2

2!
918.94 + (x − 2)3

3!
921.6 + (x − 2)4

4!
460.8

35. 400 terms.

38. cos
(

π

3
+ h

)
= 1

2

∞∑
k=0

(−1)k h2k

(2k)!
+

√
3

2

∞∑
k=1

(−1)k h2k−1

(2k − 1)!
; cos(60.001◦) ≈ 0.49998 488

39. sin(45.0005◦) ≈ 0.70711 295 42. f (x − h) = (x − h)m = xm − mhxm−1 + m(m − 1)
h2

2!
xm−2 + · · ·

47. n = 16 or n = 17 50b. lim
x→0

arctanx

x
= 1 50c. lim

x→π

cos x + 1

sin x
= 0 51. At least 38 terms.

52. erf(x) = 2√
π

[
x − x3

3
+ x5

5(2!)
− x7

7(3!)
+ · · ·

]
; erf(1) ≈ 0.8382 53. 1010 54. 105

Computer Problems 1.2
1. c = 1 c = 108

x1 0 −1
x2 −108 −108

14. g converges faster (in five iterations) 16. λ50 = 1 25862 69025 17. α50 = 2 81437 53123

Problems 2.1
1c. [B5 000000]16

2d. [3FA 0000000000000]16; [BFA 0000000000000]16

4d. [3E7 00000]16,[3FCE 0000000000000]16

5d. −∞ 8a. −3.131968 × 106 8d. 9.992892 × 106 8g. −3.39 × 103

11c. m = −1, 0, 1. Nonnegative machine numbers: 0, 1
8 , 1

4 , 3
8 , 1

2 , 3
4 , 1, 3

2

15. 1 17. 1.00005; 1.0 18. |x | < 5 × 10−5 19. β1−n

21. ≈ 3 × 2−25 25. ≈ 3 × 2−24 26. ≈ 2−22 30. ≈ n × 2−24; n = 1000, ≈ 2−14

37. 1
2 × 10−12 rounding; 10−12 chopping 38. 9% 39. The relative error cannot exceed 5 × 2−24.

42.
((

q − 2−25
)

2m ,
(

q + 2−25
)

2m
)

Problems 2.2
4. y = cos2 x

1 + sin x
6. f (x) = − 1

2 x3 − 1
2 x4; f (0.0125) ≈ −9.888 × 10−7

8. f (x) = 1√
1 + x2 + 1

+ 3 − 1.7x2; f (0) = 3.5 10. f (x) = 1√
x2 + 1 + x

11. f (x) =

⎧⎨⎩ ln
(

x + √
x2 + 1

)
x > 0

0 x = 0
− ln

(−x + √
x2 + 1

)
x < 0

13. z = x4
√

x4 + 4 + 2

16. f (x) ≈ 1 − x + x2

3
− x3

6
; f (0.008) ≈ 0.99202 0915 20. arctan x − x ≈ x3

(− 1
3 + x2

(
1
5 + x2

(− 1
7

)))

Answers for Selected Problems 727

22.
(

e2x − 1
)/

2x ≈ 1 + x(1 + (x/3)(2 + x)) 24a. Near π/2, sine curve is relatively flat.

26b. ln x − 1 = ln(x/e) 26d. x−2(sin x − ex + 1) ≈ −1

2
− x

3
when x → 0

28. |x | <
√

6ε, where ε machine precision 29. x1 ≈ 105, x2 ≈ 10−5

30. Not much. Expect to compute b2 − 4ac in double precision.

Computer Problems 2.2
1. No solution; (0, 0); (0, 0); Any solution; (−1., 0.); (−0.10208 42383, −4.89791 57617);

(4.00000 00001, 4.0009 99999); (−0.10208 42383, −4.89791 57617); (1.0000 00000, 1.00000 0000E34);
(1.99683 77223, 2.00316 22777)

10. x Series n

0 1.0 1
1 2.71828 18285 10

−1 0.36787 94412 10
0.5 1.64872 12707 8

−0.123 0.88426 36626 5
−25.5 8.42346 37545 × 10−12 25
−1776 0 25

3.14159 23.14063 12270 17

14. |x | < 10−15 15. ρ50 = 2.85987

Problems 3.1
1. 0.61906; 1.51213

4.
{

−π

4
− δ, 0,

π

4
+ ε,

3π

4
+ ε,

5π

4
+ ε, . . .

}
, where δ ≈ 0.2 and ε starts at approximately 0.4 and decreases.

9.

{
0, ±π

2
, ±π, ±3π

2
, ±2π, . . .

}
10. x = 0

12. If the original interval is of width h, then after, say, k steps, we have reduced the interval containing the root to width
h2−k . From then on, we add one bit at each step. About three steps are needed for each decimal digit.

17. 20 steps 18b. This could be false because if r is close to bn then r − an ≈ bn − an = 2−n(b0 − a0).

18d. This is true because 0 � r − an (obvious) and r − an � bn − an = 2−n(b0 − a0). 19a. False in some cases.

19e. True. 21. n � 23. 23. No; No.

Computer Problems 3.1
10. 1, 2, 3, 3 − 2i , 3 + 2i , 5 + 5i , 5 − 5i , 16 11. 2.365

Problems 3.2

3. xn+1 = 1
2 [xn + 1/(Rxn)] 4. 0.79; 1.6 7. y =

√
2

2
x +

√
2

2

(
1 − π

4

)
9. π

11. xn+1 = 2xn
/(

x2
n R + 1

)
; −0.49985 12a. Yes, − 3

√
R. 13a. xn+1 = 1

3

(
2xn + R/x2

n

)

728 Answers for Selected Problems

13c. xn+1 = xn
(

x3
n + 2R

)/(
2x3

n + R
)

13e. xn+1 = xn

3R

(
4R − x3

n

)
13g. xn+1 = R

x2
n

(
2x6

n + 1
)/(

2Rx3
n + 1

)
15. x1 = 1

2 17. xn+1 = − 1
2 19. |x0| <

√
3 21. Newton’s method cycles if x0 �= 0.

22. x ← R
for n = 1 to n max do

x ← (2x + Rx2)/3
end for

27. xn+1 = [
(m − 1)xm

n + R
]
/
(

mxm−1
n

)
; xn+1 = xn

[
(m + 1)R − xm

n

]
/(m R)

29. Diverges. 31. xn+1 = xn − f (xn) f ′(xn)

[f ′(xn)]2 − f (xn) f ′′(xn)

32. xn+1 = xn − f ′(xn)

f ′′(xn)
+
√

[f ′(xn)]2 − 2 f (xn) f ′′(xn)

f ′′(xn)

35. en+1 = e2
n

⎡⎢⎢⎣
f (m+1)(ηn)

m!
− f (m+1)(ξn)

(m + 1)(m − 1)!
f (m)(r)

(m − 1)!
+ en f (m+1)(ηn)

m!

⎤⎥⎥⎦
36. en+1 = 1

2
e2

n
f ′′

g
37. |g′(r)| < 1 if 0 < ω < 2 41. 4th order

Computer Problems 3.2
4. 0.32796 77853 31818 36223 77546 5. 2.09455 14815 42326 59148 23865 40579

8. 1.83928 67552 9. 0.47033 169 10a. 1.89549 42670 340 10b. 1.99266 68631 307

10c. 0.51097 34293 8857 10d. 2.58280 14730 552 14. 3.13108; 3.15145 (two nearby roots)

Problems 3.3
1. 2.7385 3. − 3

2 4. ln 2 9. xn+1 = xn − x2
n − R

xn + xn−1

12. en+1 =
[

1 −
(

xn − x0

f (xn) − f (x0)

)
f ′(ξn)

]
en 13a. Linear convergence

13c. Quadratic convergence 15. Show |ξ − xn+1| � c|ξ − xn |. 16.
√

2 17. x = 4.510187

Computer Problems 3.3
1. −0.45896; 3.73308 6a. 1.53209 6b. 1.23618 7. 1.36880 81078 21373 9. 20.80485 4

Problems 4.1
1. p3(x) = 7 − 2x + x3 3. �2(x) = −(x − 4)(x2 − 1)/8

7a. p3(x) = 2 + (x + 1)(−3 + (x − 1)(2 + (x − 3)(−11/24)))

8. p4(x) = −1 + (x − 1)
(

2
3 + (x − 2)

(
1
8 + (x − 2.5)

(
3
4 + (x − 3) 11

6

)))

Answers for Selected Problems 729

9a. 0 1
8

1 9 3
14 1

2 23 7 0
35 1

4 93 12
83

6 259

9b. f (4.2) = 104.49 12. q(x) = x4 − x3 + x2 − x + 1 − 31
120 (x + 2)(x + 1)(x)(x − 1)(x − 2)

13a. x3 − 3x2 + 2x − 1 14. p(x) = x − 2.5 16. α0 = 1
2

18. 2 + x(−1 + (x − 1)(1 − (x − 3)x))

19. p4(x) = −1 + 2(x + 2) − (x + 2)(x + 1) + (x + 2)(x + 1)x ; p2(x) = 1 + 2(x + 1)x

22. p(x) = 0.76(x − 1.73)(x − 1.82)(x − 5.22)(x − 8.26) 25. 1.5727; No advantage

27. p(x) = − 3
5 x3 − 2

5 x2 + 1 28. 0.38099; 0.077848

39. 0.85527; 0.87006 40. Divisions:
1

2n (n − 1); additions/subtractions: n(n − 1)

42. zero 45. False, only unique for polynomial p of degree � n − 1.

Computer Problems 4.1
1. p(x) = 2 + 46(x − 1) + 89(x − 1)(x − 2) + 6(x − 1)(x − 2)(x − 3) + 4(x − 1)(x − 2)(x − 3)(x + 4)

Problems 4.2
1. f [x0, x1, x2, x3, x4] = 0 6. 1.25 × 10−5 7. Errors: 8.1 × 10−6, 6.1 × 10−6 8. 497 table entries

9. 4.105 × 10−14 (Thm 1), 1.1905 × 10−23 (Thm 2) 10. 2.6 × 10−6 13. n � 7

14.
n−1∏
i=0

|x − xi | �
hn(2n)!

22nn!
16. Yes.

Problems 4.3
1. −h f ′′(ξ) 2. Error term = −h f ′′(ξ) for ξ ∈ (0, 2h) 4. No such formula exists.

6. The point ξ for the first Taylor series is such that ξ ∈ (x, x + h), while the second is ξ ∈ (x − h, x). Clearly, they are
not the same.

8a. − 2
3 h2 f ′′′(ξ) 9a. −h2

4
f (5)(ξ) 9b. −h2

6
f (6)(ξ)

11. α = 1, error term = −h2

6
f ′′′(ξ); α �= 1, error term = −(α − 1)

h

2
f ′′(ξ)

12. Error term = −h2

6

[
f ′′′(ξ1) + 1

2
f (4)(ξ2)

]
for some ξi ∈ (x − h, x + h). 13. p′

(x0 + x1

2

)
= f (x1) − f (x0)

x1 − x0

16. L ≈ 2ϕ

(
h

2

)
− ϕ(h) 20. L ≈

{[
ϕ

(
h

2

)]2

− ϕ(h)ϕ

(
h

3

)}/{
2ϕ

(
h

2

)
− ϕ(h) − ϕ

(
h

3

)}

730 Answers for Selected Problems

Computer Problems 4.3
3. 0.20211 58503

Problems 5.1
1. 7

18 3. 0.00010 00025 0006 6. n � 56738 7. U − L = 1

n
[f (1) − f (0)]

11. L(f ; P) � M(f ; P) � U (f ; P)

Computer Problems 5.1
2. 0.94598 385; 0.94723 395 4. 4.84422

Problems 5.2
1. ≈ 0.70833

2. T (f ; P) = 0.775;

∫ 1

0

dx

x2 + 1
≈ 0.7854; Error = 0.0104

6. h 2 1 1/2 1/4

L 0 0 1/2 3/4
U 2 2 3/2 5/4
T 2 1 1 1

7. n � 16 07439; too small 8. T = 1

n3

[
1

6
(n − 1)(2n − 1)n

]
+ 1

2n

12. 0.000025 13. T (f ; P) ≈ 4.37132 14. T (f ; P) ≈ 0.43056 15. | error term | � 0.3104

16. T (f ; P) = 7.125; No, they can not be computed from the given data.

17a. = − (b − a)h

2
f ′(ξ) for some ξ ∈ (a, b). 17b. = − (b − a)h2

6
f ′′(ξ) for some ξ ∈ (a, b).

18a. 1
24 h3 f ′′(ξ) 18b. 1

24

∑n
i=1 h3

i f ′′(ξi) 18c.
b − a

24
h2 f ′′(ξ)

24. f (x) = xn (n > 3) on [0, 1], with partition {0, 1}
25. L �

∫ b
a f (x) dx � T � U 26. n � 1155 29. −(b − a)h f ′(ξ)/2

30.
∫ b

a f (x) dx = h
∑2n

i=0 f (a + ih) + E where E = 1
2 (b − a)h f ′(ξ) for ξ ∈ (a, b)

Computer Problems 5.2
2a. 2 2b. 1.71828 2c. 0.43882

Problems 5.3
1. 13 3. − 136

15 5. 4.267 7. Not well.

8. R(1, 1) = h

3
{ f (−h) + 4 f (0) + f (h)} Simpson’s rule 10. 1 + 2m−1

13. R(2, 2) = 2h

45
[7 f (a) + 32 f (a + h) + 12 f (a + 2h) + 32 f (a + 3h) + 7 f (b)]

Answers for Selected Problems 731

14. X = (27v − u)/26 15. Z = 4096

2835
f

(
h

8

)
− 1344

2835
f

(
h

4

)
+ 84

2835
f

(
h

2

)
− 1

2835
f (h)

17. xn+1 + n3(xn+1 − xn)/(3n2 + 3n + 1) 18. |I − R(n, m)| = O(h2m) as h → 0

22. R(n + 1, m + 1) = R(n + 1, m) + [R(n + 1, m) − R(n, m)]/(8m − 1)

23. Show
∫ b

a f (x) dx − R(n, 0) ≈ c4−(n+1). 24. Let m = 1 and let n → ∞ in Formula (2).

27. E = A2m(2π)

(
2π

4

)2m

[±42m cos(4ξ)] ± (2π)2m+142m+1 A2m cos(4ξ)

Computer Problems 5.3
1. R(7, 7) = 0.49996 9819 5. R(5, 0) = 1.81379 9364 6. 2

9 = 0.22222 . . .

7. 0.62135 732 11. R(7, 7) = 0.76519 7687

Problems 6.1
1.

π

4
2a. h < 0.03 or n > 33.97. 2b. h < 0.15 or n > 7.5.

3a. 7.1667 3b. 7.0833 3c. 7.0777 4.
∫ 2

1

dx

x
= 0.6933; Bound is 5.2 × 10−4.

7.
∫ b

a f (x) dx = 16
15 S2(n−1) − 1

15 Sn−1 8. − 3
80 h5 f (4)(ξ)

Problems 6.2
1. ≈ 0.91949 4a. x = ±

√
1
3 4b. x = ±0.861136, ±0.339981

5. α = γ = 4
3 , β = − 2

3 6. A = (b − a), B = 1
2 (b − a)2

7.
5h

12
f (a) + 2h

3
f (a + h) − h

12
f (a + 2h) 9. α =

√
5
7 , a = c = 7

25 , b = 8
75

10. w1 = w2 = h

2
, w3 = w4 = −h3

24
11. A = 2h, B = 0; C = h3

3
12. A = 8

3 , B = − 4
3 , C = 8

3 Yes. Exact for polynomials of degree � 3.

13. A = h

3
, D = 0, C = h

3
, B = 4

3
h 14. True for n � 3

Computer Problems 6.2
2a. 1.4183 8a. 2.03480 53185 77 8b. 0.89297 95115 69 8c. 0.43398 771

Problems 7.1
1. Homogeneous: α = 0, zero solution; α = ±1, infinite number of solutions

2. For α ≈ 1, erroneous answer is produced. 3a. No solution 3b. Infinite number of solutions

4.

{
x1 = −697.3
x2 = 343.9

{
x1 = −720.79976
x2 = 356.28760

5. r =
[−0.001343

−0.001572

]
, r̂ =

[−0.0000001
0.0000000

]
, e =

[−0.001
−0.001

]
, ê =

[−0.659
0.913

]
6a. x2 = 1, x1 = 0 6b. x2 = 1, x1 = 1 6c. Let b1 = b2 = 1. Then x2 = 1, x1 = 0, which is exact.

732 Answers for Selected Problems

7a. x1 = 2, x2 = 1, x3 = 0 7b. x1 = x2 = x3 = 1

7c. x1 ≈ −7.233, x2 ≈ 1.133, x3 ≈ 2.433, x4 = 4.5

Computer Problems 7.1
6. z = [2i, i, i, i]T , λ = 1 + 5i ; z = [1, 2, 1, 1]T , λ = 2 + 6i ; z = [−i, −i, 0, −i]T , λ = −3 − 7i ;

z = [1, 1, 1, 0]T , λ = −4 − 8i

7a. (3.75, 90◦); (3.27, −65.7◦); (0.775, 172.9◦) 7b. (2.5, −90◦); (2.08, 56.3◦); (1.55, −60.2◦)

Problems 7.2

1.

⎡⎢⎣ 1/2 5/2 −4 −1
1/4 −1/2 −5/19 −62/19
3/4 9/10 38/5 9/10

4 1 0 4

⎤⎥⎦ 2. x = [1/3, 3, 1/3]T

3.

⎡⎢⎣ 1 0 3 0
0 1 3 −1
3 −3 0 6
0 2 4 −6

⎤⎥⎦ ⇒

⎡⎢⎣ 0 1 3 −2
0 1 3 −1
3 −3 0 6
0 2 4 −6

⎤⎥⎦ ⇒

⎡⎢⎣0 1 3 −2
0 0 0 1
3 −3 0 6
0 0 −2 −2

⎤⎥⎦

5.

⎡⎢⎣ 1/4 5/2 7/4 1/2
4 2 1 2

1/2 0 5/9 17/9
1/4 3/5 27/10 1/5

⎤⎥⎦
6. � = (1, 3, 2), the second pivot row is the third row. 8. x3 = −1, x2 = 1, x1 = 0

10. x4 = −1, x3 = 0, x2 = 2, x1 = 1 13b. x3 = 1, x2 = 1, x1 = 1

13d. x1 ≈ 4.267, x2 ≈ −4.133, x3 ≈ −2.467 17. n(n + 1)

18.
[

29
10 (n2 − 1) + 7

30 n(n − 1)(2n − 1)
]

10−6 seconds

19. n 10 102 103 104

Time 1
3 × 10−3 sec 1

3 sec 5.56 min 3.86 days
Cost 0.005¢ 5¢ $46.30 $46,296.30

21. Solve these: U T y = b, LT x = y 23a. x1 = 5
9 , x2 = 2

9 , x3 = 1
9 × 10−9

Computer Problems 7.2
2. [3.4606, 1.5610, −2.9342, −0.4301]T 3. [6.7831, 3.5914, −6.4451, −1.5179]T

4. 2 � n � 10, xi ≈ 1 for all i ; for large n, many xi �= 1 5. bi = n2 + 2(i − 1)

6. x2 = 1, xi = 0, for i �= 2

Problems 7.3
2a. 5n − 4 3. n + 2nk − k(k + 1) 6. Yes, it does.

7. D−1 AD = tridiagonal
[±√

ai−1ci−1, di , ±√
ai ci

]

Answers for Selected Problems 733

Computer Problems 7.3

3.

{
di ← di − 1/di−1
bi ← bi − bi−1/di−1 (2 � i � n)

{
xn ← bn

xi ← (bi − xi+1)/xi (n − 1 � j � 1)

4.

{
x1 = 1
xi = 1 − (4xi−1)

−1 (2 � i � 100)
11a.

⎧⎪⎪⎨⎪⎪⎩
x1 ← b1/a11

xi ←

⎛⎝bi −
n−1∑
j=1

ai j x j

⎞⎠/
aii (2 � i � n)

12.

⎧⎪⎨⎪⎩
ci ← ci/di

bi ← bi/di

di+1 ← di+1 − ai+1ci

bi+1 ← bi+1 − ai+1bi (1 � i � n − 1)

{
bn ← bn/dn

bi ← bi − ci bi+1 (1 = n − 1, . . . , 1)

Problems 8.1

1a. L =
[

1 0 0
0 1 0

1/3 −3 1

]
, U =

[
3 0 3
0 −1 3
0 0 8

]
2a. M =

⎡⎢⎣ 1 0 0 0
0 1 0 0
0 −3 1 0

−5 0 −2 1

⎤⎥⎦ U =

⎡⎢⎣ 1 0 0 2
0 3 0 0
0 0 4 0
0 0 0 0

⎤⎥⎦

3a. M =

⎡⎢⎢⎢⎣
1 0 0 0 0
0 1 0 0 0
0 −2 1 0 0
0 0 −2 1 0

−4 0 0 0 1

⎤⎥⎥⎥⎦ U =

⎡⎢⎢⎢⎣
25 0 0 0 1
0 27 4 3 2
0 0 50 −6 −4
0 0 0 0 0
0 0 0 0 20

⎤⎥⎥⎥⎦ 4b. A =
[

3 2 1
2 2 1
1 1 1

]

5a. M =

⎡⎢⎣ 1 0 0 0
0 1 0 0
0 −x/b 1 0

−w/a (xy)/(bc) −y/c 1

⎤⎥⎦ U =

⎡⎢⎣ a 0 0 z
0 b 0 0
0 0 c 0
0 0 0 d − (wz)/a

⎤⎥⎦
5b. L′ =

⎡⎢⎣ a 0 0 0
0 b 0 0
0 x c 0
0 0 y d − (wz)/a

⎤⎥⎦ U ′ =

⎡⎢⎣ 1 0 0 z/a
0 1 0 0
0 0 1 0
0 0 0 1

⎤⎥⎦
6a. L =

⎡⎢⎣ 1 0 0 0
−1/4 1 0 0
−1/4 −1/15 1 0

0 −4/15 −2/7 1

⎤⎥⎦ U =

⎡⎢⎣ 4 −1 −1 0
0 15/4 −1/4 −1
0 0 56/15 −16/15
0 0 0 24/7

⎤⎥⎦
6b. D =

⎡⎢⎣ 4 0 0 0
0 15/4 0 0
0 0 56/15 0
0 0 0 24/7

⎤⎥⎦ U ′ =

⎡⎢⎣ 1 −1/4 −1/4 0
0 1 −1/15 −4/15
0 0 1 −2/7
0 0 0 1

⎤⎥⎦
6c. L ′ =

⎡⎢⎣ 4 0 0 0
−1 15/4 0 0
−1 −1/4 56/15 0

0 −1 −16/15 24/7

⎤⎥⎦

6d. L ′′ =

⎡⎢⎢⎣
2 0 0 0

−1/2 (1/2)
√

15 0 0
−1/2 −1/

(
2
√

15
)

2
√

14/15 0
0 −2/

(√
15
) −(4/7)

√
14/15 2

√
6/7

⎤⎥⎥⎦ 6e. 192

734 Answers for Selected Problems

8. U =

⎡⎢⎣ 1 0 0 1
0 1 0 −2
0 0 1 4
0 0 0 −8

⎤⎥⎦ L =

⎡⎢⎣ 1 0 0 0
1 1 0 0

−1 1 1 0
1 −1 1 1

⎤⎥⎦
9a. L =

[
1 0 0
1 1 0
3 −1 1

]
D =

[
2 0 0
0 −2 0
0 0 3

]
U ′ =

[
1 −1/2 1
0 1 −1/2
0 0 1

]
9b. x = [−1, 2, 1]T

10a. L =
[

1 0 0
2 1 0

−1 3 1

]
, D =

[−2 0 0
0 1 0
0 0 −1

]
, U ′ =

[
1 −1/2 1
0 1 1
0 0 1

]
10b. x = [−1, 1, 1]T

12. A−1 = 1

15

[
11 −5 −7

−13 10 11
−8 5 1

]
14a.

⎡⎢⎣ �11 �11u12 0 0
�21 �21u12 + �22 �22u23 0
0 �32 �32u23 + �33 �33u34
0 0 �43 �43u34 + �44

⎤⎥⎦
16a. X−1 =

⎡⎢⎣ 1 0 0 −1
1 1 −1 1

−1 0 1 −1
0 0 0 1

⎤⎥⎦ 16b. X−1 =

⎡⎢⎣ 0 −1 −1 1
−1 0 −1 1
−1 −1 0 1

1 1 1 −1

⎤⎥⎦
Computer Problems 8.1

3. Case 4: p5(A) =

⎡⎢⎣ 536 −668 458 −186
−668 994 −854 458

458 −854 994 −668
−186 458 −668 536

⎤⎥⎦
Problems 8.2
3. d. 5. e. 9. b.

Problems 8.3
9. c. 11. d.

Computer Problems 8.3
11. Eigenvalues/eigenvectors: 1, (−1, 1, 0, 0); 2, (0, 0, −1, 1); 5, (−1, 1, 2, 2)

Problems 8.4
1. a.

Problems 9.1
1. Yes

6. In Problem 9.1.5, the bracketed expression is f ′(ξ1) − f ′(ξ2) and in magnitude does not exceed 2C .

9. Knots � 50π108 ≈ 1.57 × 1010.

10.
∑n

i=1 f (ti)Si is a linear combination of 1st-degree spline functions having knots t0, . . . , tn . Hence, it is also such
a function. Its value at t j is

∑n
i=1 f (ti)Si (t j) = f (t j). Si (x) = 0 if x < ti−1 or x > ti+1. On (ti−1, ti), Si (x)

is given by (x − ti−1)/(ti − ti−1). On (ti , ti+1), Si (x) is given by (x − ti+1)/(ti − ti+1). S0 and Sn are slightly
different.

Answers for Selected Problems 735

12. If S is piecewise quadratic, then clearly S′ is piecewise linear. If S is a quadratic spline then S ∈ C1. Hence, S′ ∈ C .
Hence, S′ is piecewise linear and continuous.

17.

{
Q0(x) = −(x + 1)2 + 2, Q1(x) = −2x + 1, Q2(x) = 8

(
x − 1

2

)2 − 2
(

x − 1
2

)
Q3(x) = −5(x − 1)2 + 6(x − 1) + 1, Q4(x) = 12(x − 2)2 − 4(x − 2) + 2

19. The answer is given by Equation (8). 20a. Yes 20b. No 20c. No 21. Yes

Problems 9.2
1. No 2. No 4. a = −4, b = −6, c = −3, d = −1, e = −3

5. a = −5, b = −26, c = −27, d = 27
2 6. No

7a. S(x) is not continuous at x = −1. S′′(x) is not continuous at x = −1, 1.

8a. (m + 1)n 8b. 2n 8c. (m − 1)(n − 1) 8d. m − 1

10. S =

⎧⎨⎩ x2 [0, 1]
1 + 2(x − 1) + (x − 1)2 + (x − 1)3 [1, 2]
5 + 7(x − 2) + 4(x − 2)2 [2, 3]

12. a = 3, b = 3, c = 1 13. No 15. a = −1, b = 3, c = −2, d = 2 17. n + 3

19. f is not a cubic spline 22. p3(x) = x − 0.0175x2 + 0.1927x3; No 26. S is linear.

32. S0(x) = (− 5
7

)
(x − 1)3 + (12

7

)
(x − 1)

S1(x) = (
6
7

)
(x − 2)3 − (5

7

)
(3 − x)3 − (6

7

)
(x − 2) + (12

7

)
(3 − x)

S2(x) = (− 5
7

)
(x − 3)3 + (6

7

)
(4 − x)3 + (12

7

)
(x − 3) − (6

7

)
(4 − x)

S3(x) = (− 5
7

)
(5 − x)3 + (12

7

)
(5 − x)

33. The conditions on S make it an even function. If S(x) = S0(x) in [−1, 0] and S(x) = S1(x) in [0, 1], then S1(0) = 1,
S′

1(0) = 0, S′′
1 (1) = 0, and S1(1) = 0. An easy calculation yields S1(x) = 1 − 3

2 x2 + 1
2 x3.

38. 5n, n + 4 39. Yes

Problems 9.3
2. Chebyshev polynomials recurrence relation. See Section 12.2.

3. B2
i (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(x − ti)2

(ti+2 − ti)(ti+1 − ti)
, on [ti , ti+1]

(x − ti)(ti+2 − x)

(ti+2 − ti)(ti+2 − ti+1)
+ (ti+3 − x)(x − ti+1)

(ti+3 − ti+1)(ti+2 − ti+1)
, on [ti+1, ti+2]

(ti+3 − x)2

(ti+3 − ti+1)(ti+3 − ti+2)
, on [ti+2, ti+3]

0, elsewhere

5.
∑∞

i=−∞ f (ti)B0
i (x) 14. n − k � i � m − 1

15. Use induction on k and Bk+i
i+i (x) = 0 on [ti , ti+1]. 16. No 17. No 19.

∑∞
i=−∞ ti+1 B1

i (x)

20. In Equation (9), take all ci = 1. Then di = 0. Hence, d
dx

∑n
i=1 Bk

i (x) = 0 and
∑n

i=1 Bk
i (x) is constant.

24. Use Equation (14) with all A’s zero except A j = 1. Next, take all A’s zero except A j+1 = 1.

28. No 30. Let C2
i = ti+1ti+2, then C1

i = xti+1, and C0
i = x2.

32. Bk
i (t j) = 0 iff t j � ti+k+1 or t j � ti 33. x = (ti+3ti+2 − ti ti+1)/(ti+3 + ti+2 − ti+1 − ti)

736 Answers for Selected Problems

Computer Problems 9.3
7. 47040

Problems 10.1
1a. x = 1

4 t4 + 7
3 t3 − 2

3 t3/2 + c 1b. x = cet

1e. x = c1et + c2e−t or x = c1 cosh t + c2 sinh t 2a. x = 1
3 t3 + 3

4 t4/3 + 7

3c. x =
∞∑

n=0

(−1)n t2n+1

(2n + 1)(2n + 1)!
+ c 3d. x = e−t2/2

[∫
t2et2/2 dt + c

]
4. x = a0 + a0

∑∞
n=1(−1)n

(
(2n − 1)!

2n−1(2n)!

)
t2n +∑∞

n=1(−1)n−1

(
n!2n

(2n + 1)!

)
t2n+1

6. Let p(t) = a0 + a1t + a2t2 + · · · and determine ai .

9. t = 10, Error = 2.2 × 104ε; t = 20, Error = 4.8 × 108ε

10. x (4) = 18xx ′x ′′ + 6(x ′)3 + 3x2x ′′′

11a. x ′ = x + ex ; x ′′ = (1 + ex)x ′; x ′′′ = (1 + ex)x ′′ + ex (x ′)2; x (4) = (1 + ex)x ′′′ + 3ex x ′x ′′ + ex (x ′)3.

12. x(0.1) = 1.21633

14. n ← 20
s ← x (n)

for i = 1 to n − 1 do
s ← x (n−i) + [h/real(n + 1 − i)]s

end for
s ← x + h[s]

Computer Problems 10.1
1. x(2.77) = 385.79118 2b. x(1.75) = 0.63299 9983 2c. x(5) = −0.20873 51554

3. x(10) = 22026.47 4a. Error at t = 1 is 1.8 × 10−10. 5. x(0) = 0.03245 34427

7. x(1) = 1.64872 12691 9. x(0) = 1.67984 09205 × 10−3 10. x(0) = −3.75940 73450

Problems 10.2
2c. f (t, x) = +

√
x/
(

1 − t2
)

3. x(−0.2) = 1.92

5a. real function f (t, x)

real t, x
f ← t2/(1 − t + 2x)

end function f

8. Solve
d f

dx
= e−x2

, f (0) = 0.

10. h3
(1

6
− α

4

)
D2 f + h3

6
fx D f where D = ∂

∂t
+ f

∂

∂x
and D2 = ∂2

∂t2 + 2 f
∂2

∂x ∂t
+ f 2 ∂2

∂x2

11. h = 1
1024

12. Let’s make local truncation error � 10−13. Thus, 100h5 � 10−13 or h � 10−3. So take h = 10−3 and hope that the three
extra digits will be enough to preserve 10-digit precision.

Answers for Selected Problems 737

14b. x (4) = D3 f + fx D2 f + 3D fx D f + f 2
x D f where D3 = ∂3

∂t3 + 3 f
∂3

∂x ∂t2 + 3 f 2 ∂3

∂t ∂x2 + f 3 ∂3

∂x2

15. f (x + th, y + tk) = f (x, y)+ t[f1(x, y)h + f2(x, y)k]+ (1/2)t2
[

f11(x, y)h2 + 2 f12(x, y)hk + f22(x, y)k2
]+· · ·.

Now let t = 1 to get the usual form of Taylor’s series in two variables.

17. Taylor series of f (x, y) = g(x) + h(y) about (a, b) is equal to the Taylor series of g(x) about a plus that of h(y)

about b.

18. f (1 + h, k) ≈ −3h + 3
2 h2 + k2 19. e1−xy ≈ 3 − x − y 20. A = 1 + k + 1

2 k2, B = h(1 + k)

21. A = 1, B = h − k, C = (h − k)2

22. f (x + h, y + k) ≈ (
1 + 2xh + k + (1 + 2x2

)
h2 + 2hkx + 1

2 k2
)

f ; f (0.001, 0.998) ≈ 2.71285 34

Computer Problems 10.2
2. x(1) = 1.5708 3b. n = 7; x(2) = 0.82356 78972 (RK), 0.82356 78970 (TS)

3c. n = 7; x(2) = −0.49999 99998 (RK), −0.50000 00012 (TS) 4. x(1) = 0.60653 = x(3)

5. x(3) = 1.5 6. x(0) = 1.0 = x(1.6) 8. x(1) = 3.95249 9. x(10) = 1.344 × 1043

Problems 10.3
1. Let h = 1/n. Then x(1) = e−1 (true solution) and xn = {[1 − 1/(2n)]/[1 + 1/(2n)]}n approximate solution.

2. x(t + h) = x(t − h) + h

3
[f (t − h, x(t − h)) + 4 f (t, x(t)) + f (t + h, x(t + h))]

4. a = 24
13 , b = − 11

13 , c = 2
13 , d = 10

13 , e = − 2
39 h2 5. a = 1, b = c = h

2
; Error term is O(h3).

8.
∂

∂s
x(9, s) = e252 ≈ 10109 9a. All t . 9c. Positive t . 9e. No t . 11. Divergent for all t .

Computer Problems 10.3
5. x

(
1
2

) = 2.25 6. x
(− 1

2

) = −4.5 9. y(e) = −6.38905 60989 where y(x) = [1 − ln v(x)]v(x)

12. 0.21938 39244 13. 0.99530 87432 15. Si(1) = 0.94608 30703

Problems 11.1
1. x(t + h) = x

(
1 + 1

2 h2 + 1
24 h4

)+ y
(

h + 1
6 h3 + 1

120 h5
)

, y(t + h) = y
(

1 + 1
2 h2 + 1

24 h4
)+ x

(
h + 1

6 h3 + 1
120 h5

)
2. Since system is not coupled, solve two separate problems.

3. System is not coupled so each differential equation can be solved individually by the program.

4. X ′ =

⎡⎣ 1
x2

1 + log x2 + x2
0

ex2 − cos x1 + sin(x0x1) − (x1x2)
7

⎤⎦ , X(0) = [0, 1, 3]T

Computer Problems 11.1
1. x(1) = 2.46869 39399, y(1) = 1.28735 52872 2. x(0.38) = 1.90723 × 1012, y(0.38) = −8.28807 × 104

4. x(−1) = 3.36788, y(−1) = 2.36788 5. x1

(
π

2

)
= x4

(
π

2

)
= 0, x2

(
π

2

)
= 1, x3

(
π

2

)
= −1

7. x(6) = 4.39411, y(6) = 3.10378

738 Answers for Selected Problems

Problems 11.2

1. X ′ =
[

x2
x3
2x2 + log x3 + cos x1

]
X(0) = [1, −3, 5]T

3. Solve each equation separately since they are not coupled.

4. X ′ =

⎡⎢⎢⎣
x2

−x1
(

x2
1 + x2

3

)−3/2

x4

−x3
(

x2
1 + x2

3

)−3/2

⎤⎥⎥⎦ X (0) =

⎡⎢⎣ 0.5
0.75
0.25
1.0

⎤⎥⎦

5. X ′ =

⎡⎢⎢⎢⎣
1
x2
x3
x4

x2
4 + cos(x2x3) − sin(x0x1) + log(x1/x0)

⎤⎥⎥⎥⎦ X(0) = [0, 1, 3, 4, 5]T

6. X ′ =

⎡⎢⎢⎢⎢⎢⎣
x4
x5
x6

2x1x3x4 + 3x2
1 x2t2

ex2 x5 + 4x1t2x3
2t x6 + 2tex1x3

⎤⎥⎥⎥⎥⎥⎦ X (1) =

⎡⎢⎢⎢⎢⎢⎣
3
3
2
−79/12
2
3

⎤⎥⎥⎥⎥⎥⎦
7a. Let x1 = x , x2 = x ′, x3 = x ′′. Then X ′ =

[
x2
x3
−x3 sin x1 − t x2 − x3

]

8. X ′ =
[

x2
x2 − x1

]
X(0) = [0, 1]T

9. Let x0 = t , x1 = x , x2 = y, x3 = x ′, x4 = y′. Then X ′ =

⎡⎢⎢⎢⎣
1
x3
x4
x1 + x2 − 2x3 + 3x4 + log x0
2x1 − 3x2 + 5x3 + x0x2 − sin x0

⎤⎥⎥⎥⎦
X (0) = [0, 1, 3, 2, 4]T

Problems 11.3
1. x j (t) = eλ j t x j (0)

Problems 12.1
1. y(x) = 1

2. f (x) = 1

m + 1

m∑
k=0

yk = (y0 + · · · + ym)/(m + 1), the average of the y values which does not involve any xi .

3. a = (1 + 2e)/(1 + 2e2), b = 1 5. a = 2.1, b = 0.9 7. c = [∑m
k=0 yk log xk

] /[∑m
k=0 (log xk)

2
]

11. ϕ involves the sum of m + 1 polynomials of degree two in c which is either concave upward or a constant. Thus, no
maxima exists—only a minima.

12. c = 10**
[
(m + 1)−1

∑m
k=0(yk − log xk)

]
. 13. y = (6x − 5)/10

16. a ≈ 2.5929, b ≈ −0.32583, c ≈ 0.022738

Answers for Selected Problems 739

18. a = 1, b = 1
3 19. y(x) = 2

7 x2 + 29
35 20. y = x + 1 21. c =

[
m∑

k=0

exk f (xk)

]/[
m∑

k=0

e2xk

]

Problems 12.2

2.

{
wn+2 = wn+1 = 0
wk = ck + 3xwk+1 + 2wk+2 (k = n, n − 1, . . . , 0)

f (x) = w0 − (1 + 2x)w1

3. Since cos(n − 2)θ = cos[(n − 1)θ − θ] = cos(n − 1)θ cos θ + sin(n − 1)θ sin θ , we have 2 cos θ cos(n − 1)θ −
cos(n−2)θ = cos(n−1)θ cos θ −sin(n−1)θ sin θ = cos(nθ). Note if gn(θ) = cos nθ , then gn(θ) = 2 cos θgn−1(θ)−
gn−2(θ).

5. By the previous problem, the recursive relation is the same as (2) so that Tn(x) = fn(x) = cos(n arccos x).

6. Tn(Tm(x)) = cos(n arccos(cos(m arccos x))) = cos(nm arccos x) = Tnm(x).

7. |Tn(x)| = | cos(n arccos x)| � 1 for all x ∈ [−1, 1] since | cos y| � 1 and for arccos x to exist x must be |x | � 1.

8.

{
g0(x) = 1
g1(x) = (x + 1)/2
g j (x) = (x + 1)g j−1(x) − g j−2(x) (j � 2)

10. n + 2 multiplications, 2n + 1 additions/subtractions if 2x is computed as x + x

12. n multiplications, 2n additions/subtractions

13. T6(x) = 32x6 − 48x4 + 18x2 − 1

17. α = y1x13
2 − y2x13

1

x12
1 x12

2 (x2 − x1)
. α is very sensitive to perturbations in y1.

Computer Problems 12.2

7. ai j =
{

0 (i �= j)
(m + 1) (i = j = 1)

(m + 1)/2 (i = j > 1)

Problems 12.3
2. Coefficient matrix for the normal equations has elements ai j = 1

i + j − 1
by (5).

3. c = 0 4. y = bx 6. c = ln 2 8. x = −1, y = 20
13 9a. c = 24

π3 9b. c = 3 14. No.

15. y ≈ 1

a + bx
. Change to

1

y
≈ a + bx .

16.

[
π 0 2
0 π/2 0
2 0 π/2

][
a
b
c

]
=

⎡⎣ (1/2)(e2π − 1)

−(2/5)(e2π + 1)

(1/5)(e2π + 1)

⎤⎦
17. c = 3 20. c = [∑n

i=1 yi sin xi
] / [∑n

i=1(sin xi)
2
]

Computer Problems 12.3
1. a = 2, b = 3

Problems 13.1
1. �0 = 123456; x1 = .96621 2243; x2 = .12917 3003; x3 = .01065 6910

740 Answers for Selected Problems

Computer Problems 13.1
8. 32.5% 11. Sequence not periodic.

13.
0 1 2 3 4 5 6 7 8 9

97 93 97 107 90 115 88 101 113 99
15. 5.6% 16. 200

Problems 13.2
1. m > 4 million

Computer Problems 13.2
2. 1.71828 4. 8 5. 49.9 7. 0.518 9. 1.11 10. 2.00034 6869

14. 0.635 17b. 8.3

Computer Problems 13.3
1. 2

3 2. 0.898 4. 7
16 6. 1.05 7. 5.24 9. 0.996 12. 0.6394

14. 11.6 kilometers 15. 0.14758 17. 0.009 21. 24.2 revolutions 23. 0.6617

Problems 14.1
2. c1 = (

1 − 2e
)/(

1 − e2
)
, c2 = (

2e − e2
)/(

1 − e2
)

3a. x(t) = (
eπ+t − eπ−t

)/(
e2π − 1

)
3b. x(t) = (

t4 − 25t + 12
)/

12 4a. x(t) = β sin t + α cos t for all (α, β)

4b. x(t) = c1 sin t + α cos t for all α + β = 0 with c1 arbitrary 6. ϕ(t) = z 7. ϕ(z) = z 8. ϕ(z) = √
9 + 6z

9. ϕ(z) = (
e5 + e + ze4 − z

)/(
2e2
)

10. Two ways: Use x ′′(a) = z or x ′(b) = z, x ′′(b) = w.

11. x(t) = −et + 2 ln(t + 1) + 3t

14a. This is a linear problem. So two initial-value problems can be solved as in the text to obtain the solution. The two

sets of initial values would be

{
x(0) = 0
x ′(0) = 1

and

{
x(0) = 1
x ′(0) = 0

.

15. Solution of x ′′ = −x, x(0) = 1, x ′(0) = z is x(t) = cos t + z sin t . So φ(z) = x(π) = −1. Since φ is constant, we
cannot get ϕ(z) = 3 by any choice of z!

Problems 14.2
1. −

(
1 − h

2

)
xi−1 + 2(1 + h2)x1 −

(
1 − h

2

)
xi+1 = −h2t 2. x1 ≈ 0.29427, x2 ≈ 0.57016, x3 ≈ 0.81040

4. x ′(0) = 5
3 8. −xi−1 + [2 + (1 + ti)h2

]
xi − xi+1 = 0

9. x(t) = [7/u(2)]u(t)

11. x ′′
1 = −x1, x1(0) = 3, x ′

1(0) = z1 implies x = A cos t + B sin t, 3 = x(0) = A, x ′ = −A sin t + B cos t . Let
z1 = x ′(0) = B. So x1 = 3 cos t + z1 sin t , x2 = 3 cos t + z2 sin t . By Equation (10), x = λx1 + (1 − λ)x2 and
λ = [β − x2(b)]/[x1(b) − x2(b)] = [7 − (−3)]/[(−3) − (−3)] = 10/0.

Answers for Selected Problems 741

Computer Problems 14.2
2a. x = 1/(1 + t) 2b. x = − log(1 + t)

Problems 15.1
1a. Elliptic. 1c. Parabolic. 1f. Hyperbolic. 2.

1

r

∂

∂r

(
r
∂u

∂r

)
+ 1

r2

∂2u

∂θ2 = 0

4. Equation (3) shows that u(x, t + k) is a convex combination of values of u(x, t) in the interval [0, 1]. So it remains
in the interval.

5. a = [1 + 2kh−2(cos πh − 1)]1/k

6. The right-hand side is changed by b1 + c0 in place of b1 and bn−1 + cn replacing bn−1 for both (5) and (7).

7. In (6), b1 is replaced by b1 + g(t), bn−1 by bn−1 + g(t). At the level zero, bi = f (ih) for 1 � i � n − 1.

8. u(x, t + k) = k

h2 (1 − h)u(x + h, t) + k

h2

(
h2

k
+ h − 2

)
u(x, t) + k

h2 u(x − h, t)

9. A =

⎡⎢⎢⎢⎢⎣
0 1

−1 0 1
. . .

. . .
. . .

−1 0 1
−2 2

⎤⎥⎥⎥⎥⎦
Problems 15.2
1. −0.21 2. uxx = f ′′(x + at) + g′′(x − at), utt = a2 f ′′(x + at) + a2g′′(x − at) = a2uxx

3. u(x, t) = 1
2 [F(x + t) − F(−x + t)] + 1

2

[
G(x + t) − G(−x + t)

]
where G is the antiderivative of G

Computer Problems 15.2
1. real function fbar(x)

real x , xbar
xbar ← x + 2 real(integer(−(1 + x)/2))

if xbar < 0 then
fbar ← − f (−xbar)

else
fbar ← f (xbar)

end if
end function fbar

Problems 15.3

5.

(
20 + 2.5h

xi + y j

)
ui+1, j +

(
20 − 2.5h

xi + y j

)
ui−1, j +

(
−30 + 0.5h

y j

)
ui, j+1 +

(
−30 + 0.5h

y j

)
ui, j−1 + 20ui j = 69h2

6. u
(

0, 1
2

) ≈ −8.932 × 10−3; u
(

1
2 , 1

2

) ≈ 4.643 × 10−1 7. A =

⎡⎢⎣−4 1 1 0
1 −4 0 1
1 0 −4 1
0 1 1 −4

⎤⎥⎦

742 Answers for Selected Problems

Computer Problems 15.3
5. 18.41◦ 13.75◦

41.47◦ 36.60◦ 24.41◦
69.41◦ 66.77◦ 61.05◦ 53.01◦ 51.00◦

Problems 16.1
1. F(2, 1, −2) = −15; F(0, 0, −2) = −8; F(2, 0, −2) = −12 2. F

(
9
8 , 9

8

) = −20.25

4. Case n = 2:

{
x̂ = (3a + b)/4 + δ if a � x∗ � b′
x̂ = (a + 3b)/4 − δ if a′ � x∗ � b

5a. Exact solution F(3) = −7.

7. A = α/
√

5, A = −β/
√

5

9. By (6), y + rb = a + r2(b − a) + rb = ar + b since r2 + r = 1. Moreover, r(y + rb) = a + r(b − a) = x . Thus,
yr + r2b = x or y + r2(b − y) = x .

10. n � 1 + (k + log � − log 2)/| log r | 11. n � 48

13. Minimum point of F is a root of F ′. Newton’s method to find root of F ′: xn+1 = xn − F ′(xn)

F ′′(xn)
. Formula does not

involve F itself.

14. To find minimum of F , look for root of F ′. Secant method to find root of F ′ is

xn+1 = xn − F ′(xn)

[
xn − xn−1

F ′(xn) − F ′(xn−1)

]
. Formula does not involve F .

15b. Square both sides to obtain r2 = 1 +
√

1 + √
1 + · · · = 1 + r .

15d. 1 + r−1 + r−2 + · · · = (1 − r−1)−1 by series expansion. Hence, r = (1 − r−1)−1 − 1 = 1

r − 1
or r2 = r + 1.

Problems 16.2
1a. Yes 1b. No 2.

(
1
4 , 9

4

)
3. F(x, y) = 1 + x − xy + 1

2 x2 − 1
2 y2 + · · ·

6. The slope of the tangent is
dy

dx
= − Fx

Fy
≡ m1. The gradient has direction numbers Fx and Fy , and its slope is

Fy

Fx
≡ m2.

The condition of perpendicularity m1m2 = −1 is met.

7b. F(x) = 3
2 − 1

2 x2 + 3x1x2 + x2x3 + 2x2
1 − 1

2 x2
3 + · · · 9a. G(1, 0) =

[
−2

2

]
9b. G(1, 2, 1) =

[
5
2
5

]

10. G =

⎡⎣ 2y2z2 sin x cos x

2yz2(1 + sin2 x) + 2(y + 1)(z + 3)2

2y2z(1 + sin2 x) + 2(y + 1)2(z + 3)

⎤⎦ 12.
(− 19

30 , − 1
5

)

Problems 17.1
2. maximize: −5x1 − 6x2 + 2x3

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−2x1 + 3x2 � −5

x1 + x2 � 15
2x1 − x2 + x3 � 25
−x1 − x2 + x3 � −1

x1 � 0, x2 � 0, x3 � 0

4a. Minimum value 1.5 at (1.5, 0).

Answers for Selected Problems 743

5b. maximize: −3x + 2y − 5z

constraints:

⎧⎪⎨⎪⎩
−x − y − z � −4

x − y − z � 2
−x + y + z � −2
x � 0, y � 0, z � 0

6a. maximize: 2x1 + 2x2 − 6x3 − x4

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3x1 + x4 = 25

x1 + x2 + x3 + x4 = 20
−4x1 − 6x3 + x5 = −5
−2x1 − 3x3 − 2x4 + x6 = 0
x1, x2, x3, x4, x5, x6 � 0

6b. minimize: 25y1 + 20y2 − 5y3

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
3y1 + y2 − 4y3 − 2y4 � 2

y2 � 2
y2 − 6y3 − 3y4 � −6

y1 + y2 − 2y4 � −1
y1, y2, y3, y4 � 0

7. Maximum of 36 at (2, 6) 8. Minimum of 36 at (0, 3, 1) 11. Minimum 2 for (x, x − 2) where x � 3

13a. Maximum of 18 at (9, 0) 13c. Unbounded solution 13f. No solution

13h. Maximum of 54
5 at

(
18
5 , 0

)
14. Maximum of 100 at (24, 32, −124) 17. Its feasible set is empty.

Computer Problems 17.1
1. Felt Straw

Texas Hatters 0 200
Lone Star Hatters 150 0
Lariat Ranch Wear 150 0

3. $13.50 5. Cost 50¢ for 1.6 ounces of food f1, 1 ounce of food f3, and none of food f2.

Problems 17.2
1. maximize:

∑n
j=0 cj yj

constraints:

{∑n
j=0 ai j y j � bi

yi � 0 (0 � i � n)

Here c0 = −∑n
j=1 c j and ai0 = −∑n

j=1 ai j .

2. At most 2n . 5. First primal form: maximize: −bT y

constraints:

{−AT y � − c

y � 0

6. Given Ax = b. Let y j = x j + yn+1. Now
n∑

j=1

ai j x j − bi =
n∑

j=1

ai j y j − yn+1

n∑
j=1

ai j − bi .

minimize: yn+1

constraints:

⎧⎪⎨⎪⎩
n∑

j=1

ai j y j +
(

−
n∑

j=1

ai j

)
yn+1 = bi (1 � i � n + 1)

y � 0

Computer Problems 17.2
1b. x = [

0, 0, 5
3 , 2

3 , 0
]T

1c. x = [
0, 8

3 , 5
3

]T

744 Answers for Selected Problems

Problems 17.3
1a. maximize: −∑4

i=1(ui + vi)

constraints:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
5y1 + 2y2 − 7y4 − u1 + v1 = 6

y1 + y2 + y3 − 3y4 − u2 + v2 = 2
7y2 − 5y3 − 2y4 − u3 + v3 = 11

6y1 + 9y3 − 15y4 − u4 + v4 = 9
u � 0 v � 0 y � 0

1b. minimize: ε

constraints:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

5y1 + 2y2 − 7y4 − ε � 6

y1 + y2 + y3 − 3y4 − ε � 2

7y2 − 5y3 − 2y4 − ε � 11

6y1 + 9y3 − 15y4 − ε � 9

−5y1 − 2y2 + 7y4 − ε � −6

−y1 − y2 − y3 + 3y4 − ε � −2

− 7y2 + 5y3 + 2y4 − ε � −11

−6y1 − 9y3 + 15y4 − ε � −9

ε � 0 y j � 0 (1 � i � 4)

3. Take m points xi (i = 1, 2, . . . , m). Let p(x) =
n∑

j=0

a j x j .

minimize: ε

constraints:

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

n∑
j=0

a j x j
i � f (xi) (1 � i � m)

n∑
j=0

a j x j
i + ε � f (xi) (1 � i � m)

ε � 0

4. minimize: u1 + v1 + u2 + v2 + u3 + v3

constraints:

⎧⎪⎨⎪⎩
y1 − y2 − u1 + v1 = 4

2y1 − 3y2 + y3 − u2 + v2 = 7
y1 + y2 − 2y3 − u3 + v3 = 2

y1, y2, y3 � 0, u1, u2, u3 � 0, v1, v2, v3 � 0

Computer Problems 17.3
1a. x1 = 0.353, x2 = 2.118, x3 = 0.765 1b. x1 = 0.671, x2 = 1.768, x3 = 0.453

3. p(x) = 1.0001 + 0.9978x + 0.51307x2 + 0.13592x3 + 0.071344x4

Problems B
1a. e ≈ (2.718)10 = (010.101 101 111 100 111 . . .)2 2d. (27.45075 341 . . .)8

2e. (113.16662 13 . . .)8 2f. (71.24426 416 . . .)8 3a. (441.68164 0625)10 3b. (613.40625)10

4c. (101 111)2 4e. (110 011)2 4g. (33.72664)8 6. (0.3146 3146 . . .)8 9. (479)10 = (111 011 111)2

12. A real number R has a finite representation in binary system. ⇔ R = (amam−1 . . . a1a0.b1b2 . . . bn)2. ⇔ R =
(am . . . a1a0b1b2 . . . bn)2 × 2−n = m × 2−n where m = (amam−1 . . . a1a0b1b2 . . . bn)2.

Bibliography

Abell, M. L., and J. P. Braselton. 1993. The Mathematical
Handbook. New York: Academic Press.

Abramowitz, M., and I. A. Stegun (eds.). 1964. Hand-
book of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. National Bureau of Standards.
New York: Dover, 1965 (reprint).

Acton, F. S. 1959. Analysis of Straight-Line Data. New
York: Wiley. New York: Dover, 1966 (reprint).

Acton, F. S. 1990. Numerical Methods That (Usually)
Work. Washington, D.C.: Mathematical Association of
America.

Acton, F. S. 1996. Real Computing Made Real: Prevent-
ing Errors in Scientific and Engineering Calculations.
Princeton, New Jersey: Princeton University Press.

Ahlberg, J. H., E. N. Nilson, and J. L. Walsh. 1967. The
Theory of Splines and Their Applications. New York:
Academic Press.

Aiken, R. C., ed. 1985. Stiff Computation. New York:
Oxford University Press.

Ames, W. F. 1992. Numerical Methods for Partial Dif-
ferential Equations, 3rd Ed. New York: Academic
Press.

Ammar, G. S., D. Calvetti, and L. Reichel, 1999. “Com-
putation of Gauss-Kronrod quadrature rules with non-
positive weights,” Electronic Transactions on Numerical
Analysis 9, 26–38. http://etna.mcs.kent.edu

Anderson, E., Z. Bai, C. Bischof, S. Blackford, J. Demmel,
J. Dongarra, J. Du Croz, A. Greenbaum, S. Hammarling,
A. McKenney, and D. Sorensen. 1999. LAPACK User’s
Guide, 3rd Ed.. Philadelphia: SIAM.

Armstrong, R. D., and J. Godfrey. 1979. “Two linear pro-
gramming algorithms for the linear discrete �1 norm
problem.” Mathematics of Computation 33, 289–300.

Ascher, U. M., R. M. M. Mattheij, and R. D. Russell.
1995. Numerical Solution of Boundary Value Prob-
lems for Ordinary Differential Equations. Philadelphia:
SIAM.

Ascher, U. M., and L. R. Petzold. 1998. Computer Meth-
ods for Ordinary Differential Equations and Differential
Algebraic Equations. Philadelphia: SIAM.

Atkinson, K. 1993. Elementary Numerical Analysis. New
York: Wiley.

Atkinson, K. A. 1988. An Introduction to Numerical Anal-
ysis, 2nd Ed. New York: Wiley.

Axelsson, O. 1994. Iterative Solution Methods. New York:
Cambridge University Press.

Axelsson, O., and V.A. Barker. 2001. Finite Element Solu-
tion of Boundary Value Problems: Theory and Compu-
tations. Philadelphia: SIAM.

Azencott, R., ed. 1992. Simulated Annealing: Paralleliza-
tion Techniques. New York: Wiley.

Bai, Z., J. Demmel, J. Dongarra, A. Ruhe, and H. van
der Vorst. 2000. Templates for the Solution of Algebraic
Eigenvalue Problems: A Practical Guide. Philadelphia:
SIAM.

Baldick, R. 2006. Applied Optimization. New York, Cam-
bridge University Press.

Barnsley, M. F. 2006. SuperFractals. New York, Cambridge
University Press.

Barrett, R., M. Berry, T. F. Chan, J. Demmel, J. Donato,
J. Dongarra, V. Eijkhout, R. Pozo, C. Romine, and
H. van der Vorst. 1994. Templates for the Solution of
Linear Systems: Building Blocks for Iterative Methods
Philadelphia: SIAM.

Barrodale, I., and C. Phillips. 1975. “Solution of an overde-
termined system of linear equations in the Chebyshev
norm.” Association for Computing Machinery Transac-
tions on Mathematical Software 1, 264–270.

Barrodale, I., and F. D. K. Roberts. 1974. “Solution of an
overdetermined system of equations in the �1 norm.”
Communications of the Association for Computing
Machinery 17, 319–320.

Barrodale, I., F. D. K. Roberts, and B. L. Ehle. 1971. Ele-
mentary Computer Applications. New York: Wiley.

Bartels, R. H. 1971. “A stabilization of the simplex method.”
Numerische Mathematik 16, 414–434.

Bartels, R., J. Beatty, and B. Barskey. 1987. An Introduction
to Splines for Use in Computer Graphics and Geometric
Modelling. San Francisco: Morgan Kaufmann.

745

http://etna.mcs.kent.edu

746 Bibliography

Bassien, S. 1998. “The dynamics of a family of one-
dimensional maps.” American Mathematical Monthly
105, 118–130.

Bayer, D., and P. Diaconis. 1992. “Trailing the dovetail
shuffle to its lair.” Annals of Applied Probability, 2,
294–313.

Beale, E. M. L. 1988. Introduction to Optimization. New
York: Wiley.

Björck, Å. 1996. Numerical Methods for Least Squares
Problems. Philadelphia: SIAM.

Bloomfield, P., and W. Steiger. 1983. Least Absolute De-
viations, Theory, Applications, and Algorithms. Boston:
Birkhäuser.

Bornemann, F., D. Laurie, S. Wagon, and J. Waldvogel.
2004. The SIAM 100-Digit Challenge: A Study in High-
Accuracy Numerical Computing. Philadelphia: SIAM.

Borwein, J. M., and P. B. Borwein. 1984. “The arithmetic-
geometric mean and fast computation of elementary
functions.” Society for Industrial and Applied Mathe-
matics Review 26, 351–366.

Borwein, J. M., and P. B. Borwein. 1987. Pi and the AGM:
A Study in Analytic Number Theory and Computational
Complexity. New York: Wiley.

Boyce, W. E., and R. C. DiPrima. 2003. Elementary Differ-
ential Equations and Boundary Value Problems, 7th Ed.
New York: Wiley.

Branham, R. 1990. Scientific Data Analysis: An Introduc-
tion to Overdetermined Systems. New York: Springer-
Verlag.

Brenner, S., and R. Scott. 2002. The Mathematical Theory
of Finite Element Methods. New York: Springer-Verlag.

Brent, R. P. 1976. “Fast multiple precision evaluation of
elementary functions.” Journal of the Association for
Computing Machinery 23, 242–251.

Briggs, W. 2004. Ants, Bikes, and Clocks: Problems Solving
for Undergraduates. Philadelphia: SIAM.

Buchanan, J. L., and P. R. Turner. 1992. Numerical Methods
and Analysis. New York: McGraw-Hill.

Burden, R. L., and J. D. Faires. 2001. Numerical Analysis,
7th Ed. Pacific Grove, California: Brooks/Cole.

Bus, J. C. P., and T. J. Dekker. 1975. “Two efficient algo-
rithms with guaranteed convergence for finding a zero
of a function.” Association for Computing Machinery
Transactions on Mathematical Software 1, 330–345.

Butcher, J. C. 1987. The Numerical Analysis of Ordinary
Differential Equations: Runge-Kutta and General Linear
Methods. New York: Wiley.

Calvetti, D., G. H. Golub, W. B. Gragg, and L. Reichel.
2000. “Computation of Gauss-Kronrod quadrature
rules.” Mathematics of Computation 69, 1035–1052.

Carrier, G., and C. Pearson. 1991. Ordinary Differential
Equations. Philadelphia: SIAM.

Cärtner, B. 2006. Understanding and Using Linear Pro-
gramming. New York: Springer.

Cash, J. “Mesh selection for nonlinear two-point boundary-
value problems.” Journal of Computational Methods in
Science and Engineering, 2003.

Chaitlin, G. J. 1975. “Randomness and mathematical
proof.” Scientific American May, 47–52.

Chapman, S. J. 2000. MATLAB Programming for Engineer-
ing, Pacific Grove, California: Brooks/Cole.

Cheney, E. W. 1982. Introduction to Approximation Theory,
2nd Ed. Washington, D.C.: AMS.

Cheney, E. W. 2001. Analysis for Applied Mathematics,
New York: Springer.

Chicone, C. 2006. Ordinary Differential Equations with
Applications. 2nd Ed. New York: Springer.

Clenshaw, C. W., and A. R. Curtis. 1960. “A method
for numerical integration on an automatic computer.”
Numerische Mathematik 2, 197–205.

Colerman, T. F. and C. Van Loan. 1988. Handbook for
Matrix Computations. Philadelphia: SIAM.

Collatz, L. 1966. The Numerical Treatment of Differential
Equations, 3rd Ed. Berlin: Springer-Verlag.

Conte, S. D., and C. de Boor. 1980. Elementary Numerical
Analysis, 3rd Ed. New York: McGraw-Hill.

Cooper, L., and D. Steinberg. 1974. Methods and Applica-
tions of Linear Programming. Philadelphia: Saunders.

Crilly, A. J., R. A. Earnshaw, H. Jones, eds. 1991. Fractals
and Chaos. New York: Springer-Verlag.

Cvijovic, D., and J. Klinowski. 1995. “Taboo search: An
approach to the multiple minima problem.” Science 267,
664–666.

Dahlquist, G., and A. Björck. 1974. Numerical Methods.
Englewood Cliffs, New Jersey: Prentice-Hall.

Dantzi, G. B., A. Orden, and P. Wolfe. 1963. “Generalized
simplex method for minimizing a linear from under linear
inequality constraints.” Pacific Journal of Mathematics
5, 183–195.

Davis, P. J., and P. Rabinowitz. 1984. Methods of Numerical
Integration, 2nd Ed. New York: Academic Press.

Davis, T. 2006. Direct Methods for Sparse Linear Systems.
Philadelphia: SIAM.

de Boor, C. 1971. “CADRE: An algorithm for numerical
quadrature.” In Mathematical Software, edited by J. R.
Rice, 417–449. New York: Academic Press.

de Boor, C. 1984. A Practical Guide to Splines. 2nd Ed.
New York: Springer-Verlag.

Dekker, T. J. 1969. “Finding a zero by means of succes-
sive linear interpolation.” In Constructive Aspects of the

Bibliography 747

Fundamental Theorem of Algebra, edited by B. Dejon
and P. Henrici. New York: Wiley-Interscience.

Dekker, T. J., and W. Hoffmann. 1989. “Rehabilitation of
the Gauss-Jordan algorithm.” Numerische Mathematik
54, 591–599.

Dekker, T. J., W. Hoffmann, and K. Potma. 1997. “Stability
of the Gauss-Huard algorithm with partial pivoting.”
Computing 58, 225–244.

Dekker, K., and J. G. Verwer. 1984. “Stability of
Runge-Kutta methods for stiff nonlinear differential
equations.” CWI Monographs 2. Amsterdam: Elsevier
Science.

Demmel, J. W., 1997. Applied Numerical Linear Algebra.
Philadelphia: SIAM.

Dennis, J. E., and R. Schnabel. 1983. Quasi-Newton Meth-
ods for Nonlinear Problems. Englewood Cliffs, New
Jersey: Prentice-Hall.

Dennis, J. E., and R. B. Schnabel. 1996. Numerical Methods
for Unconstrained Optimization and Nonlinear Equa-
tions. Philadelphia: SIAM.

Dennis, J. E., and D. J. Woods. 1987. “Optimization on
microcomputers: The Nelder-Mead simplex algorithm.”
In New Computing Environments, edited by A. Wouk.
Philadelphia: SIAM.

de Temple, D. W. 1993. “A quicker convergence to
Euler’s Constant.” American Mathematical Monthly 100,
468–470.

Devitt, J. S. 1993. Calculus with Maple V. Pacific Grove,
California: Brooks/Cole.

Dixon, V. A. 1974. “Numerical quadrature: a survey of the
available algorithms.” In Software for Numerical Math-
ematics, edited by D. J. Evans. New York: Academic
Press.

Dongarra, J. J., I. S. Duff, D. C. Sorenson, and H. van
der Vorst. 1990. Solving Linear Systems on Vector and
Shared Memory Computers. Philadelphia: SIAM.

Dorn, W. S., and D. D. McCracken. 1972. Numerical Meth-
ods with FORTRAN IV Case Studies. New York: Wiley.

Edwards, C., and D. Penny. 2004. Differential Equations
and Boundary Value Problems, 5th Ed. Upper Saddle
River: New Jersey: Prentice-Hall.

Ellis, W., Jr., E. W. Johnson, E. Lodi, and D. Schwalbe.
1997. Maple V Flight Manual: Tutorials for Calculus,
Linear Algebra, and Differential Equations. Pacific
Grove, California: Brooks/Cole.

Ellis, W., Jr., and E. Lodi. 1991. A Tutorial Introduction to
Mathematica. Pacific Grove, California: Brooks/Cole.

Elman, H., D. J. Silvester, and A. Wathen. 2004. Finite
Element and Fast Iterative Solvers. New York: Oxford
University Press.

England, R. 1969. “Error estimates for Runge-Kutta type
solutions of ordinary differential equations.” Computer
Journal 12, 166–170.

Enright, W. H. 2006. “Verifying approximate solutions to
differential equations.” Journal of Computational and
Applied Mathematics 185, 203–311.

Epureanu, B. I., and H. S. Greenside. 1998. “Fractal
basins of attraction associated with a damped Newton’s
method.” SIAM Review 40, 102–109.

Evans, G., J. Blackledge, and P. Yardlay. 2000. Numerical
Methods for Partial Differential Equations. New York:
Springer-Verlag.

Evans, G. W., G. F. Wallace, and G. L. Sutherland. 1967.
Simulation Using Digital Computers. Englewood Cliffs,
New Jersey: Prentice-Hall.

Farin, G. 1990. Curves and Surfaces for Computer Aided
Geometric Design: A Practical Guide, 2nd Ed. New
York: Academic Press.

Fauvel, J., R. Flood, M. Shortland, and R. Wilson (eds.).
1988. Let Newton Be! London: Oxford University
Press.

Feder, J. 1988. Fractals. New York: Plenum Press.
Fehlberg, E. 1969. “Klassische Runge-Kutta formeln

fünfter und siebenter ordnung mit schrittweitenkon-
trolle.” Computing 4, 93–106.

Flehinger, B. J. 1966. “On the probability that a ran-
dom integer has initial digit A.” American Mathematical
Monthly 73, 1056–1061.

Fletcher, R. 1976. Practical Methods of Optimization. New
York: Wiley.

Floudas, C. A., and P. M. Pardalos (eds.). 1992. Recent Ad-
vances in Global Optimization. Princeton, New Jersey:
Princeton University Press.

Flowers, B. H. 1995. An Introduction to Numerical Methods
in C++. New York: Oxford University Press.

Ford, J. A. 1995. “Improved Algorithms of Ilinois-Type for
the Numerical Solution of Nonlinear Equations.” Techni-
cal Report, Department of Computer Science, University
of Essex, Colchester, Essex, UK.

Forsythe, G. E. 1957. “Generation and use of orthogonal
polynomials for data-fitting with a digital computer.”
Society for Industrial and Applied Mathematics Journal
5, 74–88.

Forsythe, G. E. 1970. “Pitfalls in computation, or why
a math book isn’t enough,” American Mathematical
Monthly 77, 931–956.

Forsythe, G. E., M. A. Malcolm, and C. B. Moler.
1977. Computer Methods for Mathematical Com-
putations. Englewood Cliffs, New Jersey: Prentice-
Hall.

748 Bibliography

Forsythe, G. E., and C. B. Moler. 1967. Computer Solu-
tion of Linear Algebraic Systems. Englewood Cliffs, New
Jersey: Prentice-Hall.

Forsythe, G. E., and W. R. Wasow. 1960. Finite Difference
Methods for Partial Differential Equations. New York:
Wiley.

Fox, L. 1957. The Numerical Solution of Two-Point
Boundary Problems in Ordinary Differential Equations.
Oxford: Clarendon Press.

Fox, L. 1964. An Introduction to Numerical Linear
Algebra, Monograph on Numerical Analysis. Oxford:
Clarendon Press. Reprinted 1974. New York: Oxford
University Press.

Fox, L., D. Juskey, and J. H. Wilkinson, 1948. “Notes on
the solution of algebraic linear simultaneous equations,”
Quarterly Journal of Mechanics and Applied Mathemat-
ics. 1, 149–173.

Frank, W. 1958. “Computing eigenvalues of complex ma-
trices by determinant evaluation and by methods of
Danilewski and Wielandt.” Journal of SIAM 6, 37–49.

Fraser, W., and M. W. Wilson. 1966. “Remarks on the
Clenshaw-Curtis quadrature scheme.” SIAM Review 8,
322–327.

Friedman, A., and N. Littman. 1994. Industrial Mathe-
matics: A Course in Solving Real-World Problems.
Philadelphia: SIAM.

Fröberg, C.-E. 1969. Introduction to Numerical Analysis.
Reading, Massachusetts: Addison-Wesley.

Gallivan, K. A., M. Heath, E. Ng, B. Peyton, R. Plemmons,
J. Ortega, C. Romine, A. Sameh, and R. Voigt. 1990. Par-
allel Algorithms for Matrix Computations. Philadelphia:
SIAM.

Gander, W., and W. Gautschi. 2000. “Adaptive quadra-
ture—revisited.” BIT 40, 84–101.

Garvan, F. 2002. The Maple Book. Boca Raton, Florida:
Chapman & Hall/CRC.

Gautschi, W. 1990. “How (un)stable are Vandermonde
systems?” in Asymptotic and Computational Analysis,
193–210, Lecture Notes in Pure and Applied Mathemat-
ics, 124. New York: Dekker.

Gautschi, W. 1997. Numerical Analysis: An Introduction.
Boston, Massachusetts: Birkhäuser.

Gear, C. W. 1971. Numerical Initial Value Problems in
Ordinary Differential Equations. Englewood Cliffs, New
Jersey: Prentice-Hall.

Gentle, J. E. 2003. Random Number Generation and Monte
Carlo Methods, 2nd Ed. New York: Springer-Verlag.

Gentleman, W. M. 1972. “Implementing Clenshaw-Curtis
quadrature.” Communications of the ACM 15, 337–346,
353.

Gerald, C. F., and P. O. Wheatley 1999. Applied Numeri-
cal Analysis, 6th Ed. Reading, Massachusetts: Addison-
Wesley.

Ghizetti, A., and A. Ossiccini. 1970. Quadrature Formulae.
New York: Academic Press.

Gill, P. E., W. Murray, and M. H. Wright. 1981. Practical
Optimization. New York: Academic Press.

Gleick, J. 1992. Genius: The Life and Science of Richard
Feynman. New York: Pantheon.

Gockenbach, M. S., 2002. Partial Differential Equations:
Analytical and Numerical Methods. Philadelphia: SIAM.

Goldberg, D. 1991. “What every computer scientist should
know about floating-point arithmetic.” ACM Computing
Surveys 23, 5–48.

Goldstine, H. H. 1977. A History of Numerical Analysis
from the 16th to the 19th Century. New York: Springer-
Verlag.

Golub, G. H., and J. M. Ortega. 1992. Scientific Computing
and Differential Equations. New York: Harcourt Brace
Jovanovich.

Golub, G. H., and J. M. Ortega. 1993. An Introduction
with Parallel Scientific Computing. New York: Academic
Press.

Golub, G. H., and C. F. Van Loan. 1996. Matrix Compu-
tations, 3rd Ed. Baltimore: Johns Hopkins University
Press.

Good, I. J. 1972. “What is the most amazing approxi-
mate integer in the universe?” Pi Mu Epsilon Journal 5,
314–315.

Greenbaum, A. 1997. Iterative Methods for Solving Linear
Systems. Philadelphia: SIAM.

Greenbaum, A. 2002. “Card Shuffling and the Polynomial
Numerical Hull of Degree k,” Mathematics Department,
University of Washington, Seattle, Washington.

Gregory, R. T., and D. Karney, 1969. A Collection of
Matrices for Testing Computational Algorithms. New
York: Wiley.

Griewark, A. 2000. Evaluating Derivatives: Principles and
Techniques of Algorithmic Differentiation. Philadelphia:
SIAM.

Groetsch, C. W. 1998. “Lanczos’ generalized derivative.”
American Mathematical Monthly 105, 320–326.

Haberman, R. 2004. Applied Partial Differential Equa-
tions with Fourier Series and Boundary Value Problems.
Upper Saddle River: New Jersey: Prentice-Hall.

Hageman, L. A., and D. M. Young. 1981. Applied Itera-
tive Methods. New York: Academic Press; Dover 2004
(reprint).

Hämmerlin, G., and K.-H. Hoffmann. 1991. Numerical
Mathematics. New York: Springer-Verlag.

Bibliography 749

Hammersley, J. M., and D. C. Handscomb. 1964. Monte
Carlo Methods. London: Methuen.

Hansen, T., G. L. Mullen, and H. Niederreiter. 1993. “Good
parameters for a class of node sets in quasi-Monte Carlo
integration.” Mathematics of Computation 61, 225–234.

Haruki, H., and S. Haruki. 1983. “Euler’s Integrals.” Amer-
ican Mathematical Monthly 7, 465.

Hastings, H. M. and G. Sugihara. 1993. Fractals: A User’s
Guide for the Natural Sciences. New York: Oxford
University Press.

Havie, T. 1969. “On a modification of the Clenshaw-Curtis
quadrature formula.” BIT 9, 338–350.

Heath, J. M. 2002. Scientific Computing: An Introductory
Survey, 2nd Ed. New York: McGraw-Hill.

Henrici, P. 1962. Discrete Variable Methods in Ordinary
Differential Equations. New York: Wiley.

Heroux, M., P. Raghavan, and H. Simon. 2006. Paral-
lel Processing for Scientific Computing. Philadelphia:
SIAM.

Herz-Fischler, 1998. R. A Mathematical History of the
Golden Number. New York: Dover

Hestenes, M. R., and E. Stiefel. 1952. “Methods of con-
jugate gradient for solving linear systems.” Journal
Research National Bureau of Standards 49, 409–436.

Higham, D., and N. J. Higham. 2006. MATLAB Guide, 2nd
Ed. Philadelphia: SIAM.

Higham, N. J. 2002. Accuracy and Stability of Numerical
Algorithms, 2nd Ed. Philadelphia: SIAM.

Hildebrand, F. B. 1974. Introduction to Numerical Analysis.
New York: McGraw-Hill.

Hodges, A. 1983. Alan Turing: The Enigma. New York:
Simon & Schuster.

Hoffmann, W. 1989. “A fast variant of the Gauss-Jordan
algorithm with partial pivoting. Basic transformations in
linear algebra for vector computing.” Doctoral disserta-
tion, University of Amsterdam, The Netherlands.

Hofmann-Wellenhof, B., H. Lichtenegger, and J. Collins.
2001. Global Positioning System: Theory and Practice,
5th Ed. New York: Springer-Verlag.

Horst, R., P. M. Pardalos, and N. V. Thoai. 2000. Introduc-
tion to Global Optimization, 2nd Ed. Boston: Kluwer.

Householder, A. S. 1970. The Numerical Treatment of a
Single Nonlinear Equation. New York: McGraw-Hill.

Huard, P. 1979. “La méthode du simplexe sans inverse
explicite.” Bull. E.D.F. Série C 2.

Huddleston, J. V. 2000. Extensibility and Compressibility in
One-Dimensional Structures. 2nd Ed. Buffalo, NY: ECS
Publ.

Hull, T. E., and A. R. Dobell. 1962. “Random number gen-
erators.” Society for Industrial and Applied Mathematics
Review 4, 230–254.

Hull, T. E., W. H. Enright, B. M. Fellen, and A. E. Sedg-
wick. 1972. “Comparing numerical methods for ordi-
nary differential equations.” Society for Industrial and
Applied Mathematics Journal on Numerical Analysis 9,
603–637.

Hundsdorfer, W. H. 1985. “The numerical solution of non-
linear stiff initial value problems: an analysis of one
step methods.” CWI Tract, 12. Amsterdam: Stichting
Mathematisch Centrum, Centrum voor Wiskunde en
Informatica.

Isaacson, E., and H. B. Keller. 1966. Analysis of Numerical
Methods. New York: Wiley.

Jeffrey, A. 2000. Handbook of Mathematical Formulas and
Integrals. Boston: Academic Press.

Jennings, A. 1977. Matrix Computation for Engineers and
Scientists. New York: Wiley.

Johnson, L. W., R. D. Riess, and J. T. Arnold. 1997.
Introduction to Linear Algebra. New York: Addison-
Wesley.

Kahaner, D. K. 1971. “Comparison of numerical quadra-
ture formulas.” In Mathematical Software, edited by
J. R. Rice. New York: Academic Press.

Kahaner, D., C. Moler, and S. Nash. 1989. Numerical
Methods and Software. Englewood Cliffs, New Jersey:
Prentice-Hall.

Keller, H. B. 1968. Numerical Methods for Two-Point
Boundary-Value Problems. Toronto: Blaisdell.

Keller, H. B. 1976. Numerical Solution of Two-Point Bound-
ary Value Problems. Philadelphia: SIAM.

Kelley, C. T. 1995. Iterative Methods for Linear and Non-
linear Equations. Philadelphia: SIAM.

Kelley, C. T. 2003. Solving Nonlinear Equations with
Newton’s Method. Philadelphia: SIAM.

Kincaid, D., and W. Cheney. 2002. Numerical Analysis:
Mathematics of Scientific Computing, 3rd Ed. Belmont,
California: Thomson Brooks/Cole.

Kincaid, D. R., and D. M. Young. 1979. “Survey of iter-
ative methods.” In Encyclopedia of Computer Science
and Technology, edited by J. Belzer, A. G. Holzman, and
A. Kent. New York: Dekker.

Kincaid, D. R., and D. M. Young. 2000. “Partial dif-
ferential equations.” In Encyclopedia of Computer
Science, 4th Ed., edited by A. Ralston, E. D. Reilly,
D. Hemmendinger. New York: Grove’s Dictionaries.

Kinderman, A. J., and J. F. Monahan. 1977. “Computer gen-
eration of random variables using the ratio of uniform
deviates.” Association of Computing Machinery Trans-
actions on Mathematical Software 3, 257–260.

750 Bibliography

Kirkpatrick, S., C. D. Gelatt, Jr., and M. P. Vecchi. 1983.
“Optimization by simulated annealing.” Science 220,
671–680.

Knight, A. 2000. Basics of MATLAB and Beyond. Boca
Raton, Florida: CRC Press.

Knuth, D. E. 1997. The Art of Computer Programming,
3rd Ed. Vol. 2, Seminumerical Algorithms. New York:
Addison-Wesley.

Krogh, F. T. 2003. “On developing mathematical software.”
Journal of Computational and Applied Mathematics 185,
196–202.

Kronrod, A. S. 1964. “Nodes and Weights of Quadra-
ture Rules.” Doklady Akad. Nauk SSSR, 154,
283–286. [Russian] (1965. New York: Consultants
Bureau.)

Krylov, V. I. 1962. Approximate Calculation of Integrals,
translated by A. Stroud. New York: Macmillan.

Lambert, J. D. 1973. Computational Methods in Ordinary
Differential Equations. New York: Wiley.

Lambert, J. D. 1991. Numerical Methods for Ordinary
Differential Equations. New York: Wiley.

Lapidus, L., and J. H. Seinfeld. 1971. Numerical Solution of
Ordinary Differential Equations. New York: Academic
Press.

Laurie, D. P. 1997. “Calculation of Gauss-Kronrod
quadrature formulae.” Mathematics of Computation,
1133–1145.

Lawson, C. L., and R. J. Hanson. 1995. Solving Least-
Squares Problems. Philadelphia: SIAM.

Leva, J. L. 1992. “A fast normal random number genera-
tor.” Association of Computing Machinery Transactions
on Mathematical Software 18, 449–455.

Lindfield, G., and J. Penny. 2000. Numerical Methods Us-
ing MATLAB, 2nd Ed. Upper Saddle River: New Jersey:
Prentice-Hall.

Lootsam, F. A., ed. 1972. Numerical Methods for Nonlinear
Optimization. New York: Academic Press.

Lozier, D. W., and F. W. J. Olver. 1994. “Numerical eval-
uation of special functions.” In Mathematics of Com-
putation 1943–1993: A Half-Century of Computational
Mathematics 48, 79–125. Providence, Rhode Island:
AMS.

Lynch, S. 2004. Dynamical Systems with Applications.
Boston: Birkhäuser.

MacLeod, M. A. 1973. “Improved computation of cubic
natural splines with equi-spaced knots.” Mathematics of
Computation 27, 107–109.

Maron, M. J. 1991. Numerical Analysis: A Practical Ap-
proach. Boston: PWS Publishers.

Marsaglia, G. 1968. “Random numbers fall mainly in the
planes.” Proceedings of the National Academy of Sci-
ences 61, 25–28.

Marsaglia, G., and W. W. Tsang. 2000. “The Ziggurat
Method for generating random variables.” Journal of
Statistical Software 5, 1–7.

Mattheij, R. M. M., S. W. Rienstra, and J. H. M. ten
Thije Boonkkamp. 2005. Partial Differential Equa-
tions: Modeling, Analysis, Computation. Philadelphia:
SIAM.

McCartin, B. J. 1998. “Seven deadly sins of numerical
computations,” American Mathematical Monthly 105,
No. 10, 929–941.

McKenna, P. J., and C. Tuama. 2001. “Large torsional oscil-
lations in suspension bridges visited again: Vertical forc-
ing creates torsional response.” American Mathematical
Monthly 108, 738–745.

Mehrotra, S. 1992. “On the implementation of a primal-dual
interior point method.” SIAM Journal on Optimization 2,
575–601.

Metropolis, N. et al. 1953. “Equation of state calcula-
tions by fast computing machines.” Journal of Physical
Chemistry 21, 1087–1092.

Meurant, G. 2006. The Lanczos and Conjugate Gradient
Algorithms: From Theory to Finite Precision Computa-
tions. Philadelphia: SIAM.

Meyer, C. D., 2000. Matrix Analysis and Applied Linear
Algebra. Philadelphia: SIAM.

Miranker, W. L. 1981. “Numerical methods for stiff equa-
tions and singular perturbation problems.” In Mathe-
matics and its Applications, Vol. 5. Dordrecht-Boston,
Massachusetts: D. Reidel.

Moler, C. B., 2004. Numerical Computing with MATLAB.
Philadelphia: SIAM.

Moré, J. J., and S. J. Wright. 1993. Optimization Software
Guide. Philadelphia: SIAM.

Moulton, F. R. 1930. Differential Equations. New York:
Macmillan.

Nelder, J. A., and R. Mead. 1965. “A simplex method for
function minimization.” Computer Journal 7, 308–313.

Nerinckx, D., and A. Haegemans. 1976. “A comparison of
nonlinear equation solvers.” Journal of Computational
and Applied Mathematics 2, 145–148.

Nering, E. D., and A. W. Tucker. 1992. Linear Programs
and Related Problems. New York: Academic Press.

Niederreiter, H. 1978. “Quasi-Monte Carlo methods.”
Bulletin of the American Mathematical Society 84,
957–1041.

Niederreiter, H. 1992. Random Number Generation and
Quasi-Monte Carlo Methods. Philadelphia: SIAM.

Bibliography 751

Nievergelt, J., J. G. Farrar, and E. M. Reingold. 1974. Com-
puter Approaches to Mathematical Problems. Engle-
wood Cliffs, New Jersey: Prentice-Hall.

Noble, B., and J. W. Daniel. 1988. Applied Linear Algebra,
3rd Ed. Englewood Cliffs, New Jersey: Prentice-Hall.

Nocedal, J., and S. Wright. 2006. Numerical Optimization.
2nd Ed. New York: Springer.

Novak, E., K. Ritter, and H. Woźniakowski. 1995.
“Average-case optimality of a hybrid secant-
bisection method.” Mathematics of Computation 64,
1517–1540.

Novak, M., ed. 1998. Fractals and Beyond: Complexities
in the Sciences. River Edge, NJ: World Scientific.

O’Hara, H., and F. J. Smith. 1968. “Error estimation
in Clenshaw-Curtis quadrature formula.” Computer
Journal 11, 213–219.

Oliveira, S., and D. E. Stewart. 2006. Writing Scientific
Software: A Guide to Good Style. New York: Cambridge
University Press.

Orchard-Hays, W. 1968. Advanced Linear Programming
Computing Techniques. New York: McGraw-Hill.

Ortega, J., and R. G. Voigt. 1985. Solution of Partial Dif-
ferential Equations on Vector and Parallel Computers.
Philadelphia: SIAM.

Ortega, J. M. 1990a. Numerical Analysis: A Second Course.
Philadelphia: SIAM.

Ortega, J. M. 1990b. Introduction to Parallel and Vector
Solution of Linear Systems. New York: Plenum.

Ortega, J. M., and W. C. Rheinboldt. 1970. Iterative Solu-
tion of Nonlinear Equations in Several Variables. New
York: Academic Press. (2000. Reprint. Philadelphia:
SIAM.)

Ostrowski, A. M. 1966. Solution of Equations and Sys-
tems of Equations, 2nd Ed. New York: Academic
Press.

Overton, M. L. 2001. Numerical Computing with IEEE
Floating Point Arithmetic. Philadelphia: SIAM.

Otten, R. H. J. M., and L. P. P. van Ginneken. 1989. The
Annealing Algorithm. Dordrecht, Germany: Kluwer.

Pacheco, P. 1997. Parallel Programming with MPI. San
Francisco: Morgan Kaufmann.

Patterson, T. N. L. 1968. “The optimum addition of points
to quadrature formulae.” Mathematics of Computations
22, 847–856, and in 1969 Mathematics of Computations
23, 892.

Parlett, B. N. 1997. The Symmetric Eigenvalue Problem.
Philadelphia: SIAM.

Parlett, B. 2000. “The QR Algorithm,” Computing in Sci-
ence and Engineering 2, 38–42.

Pessens, R., E. de Doncker, C. W. Uberhuber, and D. K.
Kahaner, 1983. QUADPACK: A Subroutine Package for
Automatic Integration. New York: Springer-Verlag.

Peterson, I. 1997. The Jungles of Randomness: A Mathe-
matical Safari. New York: Wiley.

Phillips, G. M., and P. J. Taylor. 1973. Theory and Applica-
tions of Numerical Analysis. New York: Academic Press.

Press, W. H., S. A. Teukolsky, W. T. Vetterling, and B. P.
Flannery. 2002. Numerical Recipes in C++, 2nd Ed. New
York: Cambridge University Press.

Quinn, M. J. 1994. Parallel Computing: Theory and Prac-
tice. New York: McGraw-Hill.

Rabinowitz, P. 1968. “Applications of linear programming
to numerical analysis.” Society for Industrial and Applied
Mathematics Review 10, 121–159.

Rabinowitz, P. 1970. Numerical Methods for Nonlinear
Algebraic Equations. London: Gordon & Breach.

Raimi, R. A. 1969. “On the distribution of first sig-
nificant figures.” American Mathematical Monthly 76,
342–347.

Ralston, A. 1965. A First Course in Numerical Analysis.
New York: McGraw-Hill.

Ralston, A., and C. L. Meek (eds.) 1976. Encyclopedia of
Computer Science. New York: Petrocelli/Charter.

Ralston, A., and P. Rabinowitz 2001. A First Course in
Numerical Analysis, 2nd Ed. New York: Dover.

Recktenwald, G. 2000. Numerical Methods with MATLAB:
Implementation and Applications. New York: Prentice-
Hall.

Reid, J. 1971. “On the method of conjugate gradient for
the solution of large sparse systems of linear equations.”
In Large Sparse Sets of Linear Equations, J. Reid (ed.),
London: Academic Press.

Rheinboldt, 1998. Methods for Solving Systems of Nonlin-
ear Equations, 2nd Ed. Philadelphia: SIAM.

Rice, J. R. 1971. “SQUARS: An algorithm for least squares
approximation.” In Mathematical Software, edited by
J. R. Rice. New York: Academic Press.

Rice, J. R. 1983. Numerical Methods, Software, and Anal-
ysis. New York: McGraw-Hill.

Rice, J. R., and R. F. Boisvert. 1984. Solving Elliptic Prob-
lems Using ELLPACK. New York: Springer-Verlag.

Rice, J. R., and J. S. White. 1964. “Norms for smooth-
ing and estimation.” Society for Industrial and Applied
Mathematics Review 6, 243–256.

Rivlin, T. J. 1990. The Chebyshev Polynomials, 2nd Ed.
New York: Wiley.

Roger, H.-F. 1998. A Mathematical History of the Golden
Number. New York: Dover.

752 Bibliography

Roos, C., T. Terlaky, and J.-Ph. Vial. 1997. Theory and
Algorithms for Linear Optimization: An Interior Point
Approach. New York: Wiley.

Saad, Y., 2003. Iterative Methods for Sparse Linear Sys-
tems. Philadelphia: SIAM.

Salamin, E. 1976. “Computation of π using arithmetic-
geometric mean.” Mathematics of Computation 30,
565–570.

Sauer, T. 2006. Numerical Analysis. New York: Pearson,
Addison-Wesley.

Scheid, F. 1968. Theory and Problems of Numerical Anal-
ysis. New York: McGraw-Hill.

Scheid, F. 1990. 2000 Solved Problems in Numerical
Analysis. Schaum’s Solved Problem Series. New York:
McGraw-Hill.

Schilling, R. J., and S. L. Harris. 2000. Applied Numerical
Methods for Engineering Using MATLAB and C. Pacific
Grove, California: Brooks/Cole.

Schmidt 1908. Title unknown. Rendiconti del Circolo
Matematico di Palermo 25, 53–77.

Schoenberg, I. J. 1946. “Contributions to the problem
of approximation of equidistant data by analytic func-
tions.” Quarterly of Applied Mathematics 4, 45–99,
112–141.

Schoenberg, I. J. 1967. “On spline functions.” In Inequali-
ties, edited by O. Shisha, 255–291. New York: Academic
Press.

Schrage, L. 1979. “A more portable Fortran random number
generator.” Association for Computing Machinery Trans-
actions on Mathematical Software 5, 132–138.

Schrijver, A. 1986. Theory of Linear and Integer Program-
ming. Somerset, New Jersey: Wiley.

Schultz, M. H. 1973. Spline Analysis. Englewood Cliffs,
New Jersey: Prentice-Hall.

Schumaker, L. L. 1981. Spine Function: Basic Theory. New
York: Wiley.

Shampine, J. D. 1994. Numerical Solutions of Ordinary
Differential Equations. London: Chapman and Hall.

Shampine, L. F., R. C. Allen, and S. Pruess. 1997. Funda-
mentals of Numerical Computing. New York: Wiley.

Shampine, L. F., and M. K. Gordon. 1975. Computer Solu-
tion of Ordinary Differential Equations. San Francisco:
W. H. Freeman.

Shewchuk, J. R. 1994. “An introduction to the conjugate
gradient method without the agonizing pain,” online
Wikipedia.

Skeel, R. D., and J. B. Keiper. 1992. Elementary Numerical
Computing with Mathematica. New York: McGraw-Hill.

Smith, G. D. 1965. Solution of Partial Differential Equa-
tions. New York: Oxford University Press.

Sobol, I. M. 1994. A Primer for the Monte Carlo Method.
Boca Raton, Florida: CRC Press.

Southwell, R. V. 1946. Relaxation Methods in Theoretical
Physics. Oxford: Clarendon Press.

Späth, H. 1992. Mathematical Algorithms for Linear Re-
gression. New York: Academic Press.

Stakgold, I., 2000. Boundary Value Problems of Mathemat-
ical Physics. Philadelphia: SIAM.

Steele, J. M., 1997. Random Number Generation and
Quasi-Monte Carlo Methods. Philadelphia: SIAM.

Stetter, H. J. 1973. Analysis of Discretization Methods
for Ordinary Differential Equations. Berlin: Springer-
Verlag.

Stewart, G. W. 1973. Introduction to Matrix Computations.
New York: Academic Press.

Stewart, G. W. 1996. Afternotes on Numerical Analysis.
Philadelphia: SIAM.

Stewart, G. W. 1998a. Afternotes on Numerical Analy-
sis: Afternotes Goes to Graduate School. Philadelphia:
SIAM.

Stewart, G. W. 1998b. Matrix Algorithms: Basic Decompo-
sitions, Vol. 1. Philadelphia: SIAM.

Stewart, G. W. 2001. Matrix Algorithms: Eigensystems,
Vol. 2. Philadelphia: SIAM.

Stoer, J., and R. Bulirsch. 1993. Introduction to Numerical
Analysis, 2nd Ed. New York: Springer-Verlag.

Strang, G. 2006. Linear Algebra and Its Applications.
Belmont, California: Thomson Brooks/Cole.

Strang, G., and K. Borre. 1997. Linear Algebra, Geodesy,
and GPS. Cambridge, MA: Wellesley Cambridge Press.

Street, R. L. 1973. The Analysis and Solution of Par-
tial Differential Equations. Pacific Grove, California:
Brooks/Cole.

Stroud, A. H. 1974. Numerical Quadrature and Solution of
Ordinary Differential Equations. New York: Springer-
Verlag.

Stroud, A. H., and D. Secrest. 1966. Gaussian Quadrature
Formulas. Englewood Cliffs, New Jersey: Prentice-Hall.

Subbotin, Y. N. 1967. “On piecewise-polynomial approxi-
mation.” Matematicheskie Zametcki 1, 63–70. (Transla-
tion: 1967. Math. Notes 1, 41–46.)

Szabo, F. 2002. Linear Algebra: An Introduction Using
MAPLE. San Diego, California: Harcourt/Academic
Press.

Torczon, V. 1997. “On the convergence of pattern search
methods.” Society for Industrial and Applied Mathemat-
ics Journal on Optimization 7, 1–25.

Törn, A., and A. Zilinskas. 1989. Global Optimization.
Lecture Notes in Computer Science 350. Berlin:
Springer-Verlag.

Bibliography 753

Traub, J. F. 1964. Iterative Methods for the Solution of
Equations. Englewood Cliffs, New Jersey: Prentice-Hall.

Trefethen, L. N., and D. Bau. 1997. Numerical Linear
Algebra. Philadelphia: SIAM.

Turner, P. R. 1982. “The distribution of leading significant
digits.” Journal of the Institute of Mathematics and Its
Applications 2, 407–412.

van Huffel, S. and J. Vandewalle. 1991. The Total Least
Squares Problem: Computational Aspects and Analsyis.
Philadelphia: SIAM.

Van Loan, C. F. 1997. Introduction to Computational Sci-
ence and Mathematics. Sudbury, Massachusetts: Jones
and Bartlett.

Van Loan, C. F. 2000. Introduction to Scientific Computing,
2nd Ed. Upper Saddle River: New Jersey: Prentice-Hall.

Van der Vorst, H. A. 2003. Iterative Krylov Methods for
Large Linear Systems. New York: Cambridge University
Press.

Varga, R. S. 1962. Matrix Iterative Analysis. Englewood
Cliffs: New Jersey: Prentice-Hall. (2000. Matrix Itera-
tive Analysis: Second Revised and Expanded Edition.
New York: Springer-Verlag.)

Wachspress, E. L. 1966. Iterative Solutions to Elliptic
Systems. Englewood Cliffs: New Jersey: Prentice-Hall.

Watkins, D. S. 1991. Fundamentals of Matrix Computation.
New York: Wiley.

Westfall, R. 1995. Never at Rest: A Biography of Isaac
Newton, 2nd Ed. London: Cambridge University Press.

Whittaker, E., and G. Robinson. 1944. The Calculus of Ob-
servation, 4th Ed. London: Blackie. New York: Dover,
1967 (reprint).

Wilkinson, J. H. 1965. The Algebraic Eigenvalue Problem.
Oxford: Clarendon Press. Reprinted 1988. New York:
Oxford University Press.

Wilkinson, J. H. 1963. Rounding Errors in Algebraic Proc-
esses. Englewood Cliffs, New Jersey: Prentice-Hall. New
York: Dover 1994 (reprint).

Wood, A. 1999. Introduction to Numerical Analysis. New
York: Addison-Wesley.

Wright, S. J. 1997. Primal-Dual Interior-Point Methods.
Philadelphia: SIAM.

Yamaguchi, F. 1988. Curves and Surfaces in Computer
Aided Geometric Design. New York: Springer-Verlag.

Ye, Yinyu. 1997. Interior Point Algorithms. New York:
Wiley.

Young, D. M. 1950. Iterative methods for solving par-
tial difference equations of elliptic type. Ph.D. thesis.
Cambridge, MA: Harvard University. See www.sccm
.stanford.edu/pub/sccm/david young thesis.ps.gz.

Young, D. M., 1971. Iterative Solution of Large Linear Sys-
tems. New York: Academic Press: Dover 2003 (reprint).

Young, D. M., and R. T. Gregory. 1972. A Survey of Numer-
ical Mathematics, Vols. 1–2. Reading, Massachusetts:
Addison-Wesley. New York: Dover 1988 (reprint).

Ypma, T. J. 1995, “Historical development of the Newton-
Raphson method.” Society for Industrial and Applied
Mathematics Review 37, 531–551.

Zhang, Y. 1995. “Solving large-scale linear programs
by interior-point methods under the MATLAB envi-
ronment.” Technical Report TR96–01, Department of
Mathematics and Statistics, University of Maryland,
Baltimore County, Baltimore, MD.

www.sccm.stanford.edu/pub/sccm/david_young_thesis.ps.gz
www.sccm.stanford.edu/pub/sccm/david_young_thesis.ps.gz

Index

Absolute errors, 5
Abstract vector spaces in linear algebra,

716–723
bases for, 718
change in similarity of, 719–720
eigenvalues and eigenvectors in, 719
Gram-Schmidt process for, 722–723
linear independence in, 717–718
linear transformations for, 718–719
norms for, 721–722
orthogonal matrices and spectral

theorem in, 720–721
subspaces in, 717

Accelerated steepest decent procedure,
655 (CPb 16.2.2)

Accuracy
first-degree polynomial, 375
first-degree spline, 375
in ordinary differential equation (ODE)

solutions, 435
precision and, 5–6

A−1 computation, 307
A-conjugate vectors, 332
Adams-Bashforth-Moulton methods

adaptive scheme for, 488
example of, 488–489
for first-order ordinary differential

equations, 455–456
predictor-corrector scheme in, 483–484
problems on, 241 (Pb 6.2.15), 461

(CPb 10.3.2–4)
pseudocode for, 484–488
stiff equations and, 489–491

Adaptive Runge-Kutta methods, 450–454
Adaptive Simpson’s rule, 221–225
Adaptive two-point Gaussian integration,

242 (CPb 6.2.7)
Advection equation, 601–602
Aiken acceleration formula, 363
A-inner product, of vectors, 332
Airy differential equation, 483

(CPb 11.2.2)
Algebra. See Linear algebra
Algorithms

Berman, 638 (16.1.5)
complete Horner’s, 7, 23–24
conjugate gradient, 334
converting bases of numbers, 696

Fibonacci search, 628–631
Gauss-Huard, 279–280 (CPb 7.2.24)
Gaussian, 248, 250–251
golden section search, 631–633
Gram-Schmidt process, 519
linear least squares, 497
Moler-Morrison, 122 (CPb 3.3.14)
multivariate case of minimization of

functions, 644–646
natural cubic spline functions, 388–392
Neider-Mead, 647–648
Neville’s, 142–144
Newton, 129
normalized tridiagonal, 289

(CPb 7.2.12)
orthogonal systems, 508–510
polynomial interpolation, 136–138
power method, 361–362
quadratic interpolation, 633–635
random numbers, 533–535, 535
Romberg, 165, 168, 204–215

description of, 204–205
Euler-Maclaurin formula and,

206–209
pseudocode for, 205–206
Richardson extrapolation of,

209–211
secant method for roots of equations,

112–113
shooting method for ordinary

differential equations, 565–567
simplex, 672–673
variable metric, 647

Alternating series theorem, 28–30, 32
(Pb 1.2.13)

Antiderivative, 181. See also Integration,
numerical

Approximation. See Least squares
method; Spline functions

Area and volume estimation, 544–552
computing, 547–548
“ice cream cone” example of, 548
numerical integration for, 544–545
pseudocode for, 545–547

Arithmetic
Babylonian, 701
IEEE standard floating-point, 703–705
Mayan, 700–701

partial double-precision, 492
(CPb 11.3.2)

Arithmetic mean, 15 (CPb 1.1.7)
Arrays, 686, 688–689
Attraction, fractile basins of, 99–100, 108

(CPb 3.2.27)
Autonomous ordinary differential

equations, 471–472, 479–480

Back substitution, in Gaussian algorithm,
248, 250–251

Backward error analysis, 52
Banded storage mode, 291 (CPb 7.2.19)
Banded systems of linear equations,

280–292
block pentadiagonal, 285–286
pentadiagonal, 283–285
strictly diagonal dominance in,

282–283
tridiagonal, 280–282

Banker’s rounding, 6
Bases for numbers, 692–702

β, 693
conversion between, 693–696
16, 698
10, 692–693
from 10 to 8 to 2, 696–698

Basic Simpson’s rule, 216–220, 228
(Pb 6.1.8)

Basic trapezoid rule, 190
Basins of attraction, 99–100, 108

(CPb 3.2.27)
Basis functions, 500–501, 505–508
Berman algorithm, 638 (CPb 16.1.5)
Bernoulli numbers, 208
Bernstein polynomials, 416
Bessel functions, 42 (CPb 1.2.23), 186,

215 (CPb 5.3.11)
Best-step steepest descent procedure, 643
Bézier curves, 416–418
Big O notation, 27
Biharmonic equation, 583
Binary search, for intervals, 384

(CPb 9.1.2)
Binary system, 693, 696–697. See also

Bases for numbers
Binomial series, 31 (Pb 1.2.1)
Birthday problem, 553–555

754

Index 755

Bisection method for locating roots of
equations, 76–85

convergence analysis in, 81–83
example of, 79–81
false position method in, 83–84
pseudocode in, 78–79
secant method and Newton’s method

versus, 117
Bivariate functions, 144–145
Block pentadiagonal systems of linear

equations, 285–286
Boundary cases, 685
Boundary-value problems. See Ordinary

differential equations,
boundary-value problems in

Bratu’s problem, 581 (CPb 14.2.7)
B spline functions, 404–425

for Bézier curves, 416–418
interpolation and approximation by,

410–412
pseudocode and example of, 412–413
Schoenberg’s process for, 414–415
theory of, 404–410

Bucking of a circular ring project, 581
(CPb 14.2.8)

Buffon’s needle problem, 555–556

Calculus, Fundamental Theorem of,
181, 195

Cantilever beam, 341 (CPb 8.1.10)
Cardinal polynomials, 126–127
Case studies in programming, 687–691
Cauchy-Riemann equation, 105

(Pb 3.2.40)
Cauchy-Schwartz inequality, 503

(Pb 12.1.9), 643
Cayley-Hamilton Theorem, 358

(CPb 8.2.5)
Central difference formula, 15

(CPb 1.1.3), 166, 171
Centroids, 648
Chapeau functions of B splines, 406
Characteristic equations, 719
Characteristic polynomials, 343
Chebyshev nodes, 155–156, 158, 163

(CPb 4.2.10), 174
Chebyshev polynomials

orthogonal systems and, 505–518
algorithm for, 508–510
orthonormal basis functions

in, 505–508
polynomial regression in, 510–515

properties of, 140–141
Checkerboard ordering, 620 (Pb 15.3.3)
Cholesky factorization, 305–306, 315

(Pb 8.1.24)
Chopping numbers, 6, 51
Clamped cubic splines, 387
Clean loops, 686
Code, modularizing, 685, 687–688
Coefficients aj, 131–136
Collocation method, 618

Column vectors, 671–672, 706
Companion matrix, 358 (CPb 8.2.3)
Complete Horner’s algorithm, 23–24
Complete partial pivoting, 261–264
Components, in vectors, 706
Composite Gaussian three-point rule, 243

(CPb 6.2.11)
Composite midpoint rule for equal

subintervals, 188 (Pb 5.1.12)
Composite (left) rectangle rule, 202

(Pb 5.2.28)
Composite rectangle rule with uniform

spacing, 202–203 (Pb 5.2.29)
Composite Simpson’s rule, 220–221, 228

(Pb 6.1.6), 243 (CPb 6.2.11)
Composite trapezoid rule, 191, 194, 243

(CPb 6.2.11)
Composite trapezoid rule with unequal

spacing, 203 (Pb 5.2.32)
Computation, noise in, 174
Computer-aided geometric design, 425

(CPb 9.3.19)
Condition number, in linear equations,

321–322
Conjugate gradient method, 332–335
Constrained minimization problems,

625–626
Continuity of functions, 373–375
Contour diagrams, 644
Control points, in drawing curves,

371, 416
Convergence analysis

in bisection method, 81–83
in Newton’s method, 93–96
in secant method, 114–116

Convergence theorems, 328–331
Convex hull, of vectors, 417
Corollaries on divided differences, 160
Correctly rounded value, 705
Correct rounding, 50
Cramer’s Rule, 715
Crank-Nicolson method, 588–591
Crout factorization, 317 (CPb 8.1.2)
Cubic B spline, 423 (Pb 9.3.38)
Cubic interpolating spline, 371. See also

Spline functions
Curves. See Ordinary differential

equations; Spline functions

Dawson integral, 439 (CPb 10.1.12)
Decimal places, accuracy to, 5
Decimal point, 693
Decomposition, in matrix

factorizations, 296
Deflation of polynomials, 8, 11
Delay ordinary differential equations, 450

(CPb 10.2.17)
Derivatives, 164–179

of B splines, 408
divided differences and, 159
of functions, 9–10
Lanczos’ generalized, 178 (Pb 4.3.21)

noise in computation and, 174
polynomial interpolation estimating of,

170–174
Richardson extrapolation for, 166–170
Taylor series estimating of, 164–166

Determinants, 278 (CPb 7.2.14)
Diagonal dominance, 282–283, 330
Diagonal matrices, 346–347, 709
Diet problem, 670 (CPb 17.1.5)
Differential equations, 353–355. See also

Ordinary differential equations;
Partial differential equations

Differentiation, 718
Diffusion equation, 584
Dimension, 718
Direct error analysis, 52
Direction vectors, 333
Direct method, for eigenvalues, 343
Dirichlet function, 154, 184, 584,

593, 618
Discretization method, 570–572
Divergent curves, 458
Divided differences

for calculating coefficients aj,
131–136

corollary on, 160
derivatives and, 159

Doolittle factorization, 300, 317
(CPb 8.1.2)

Dot product of vectors, 708
Double-precision floating-point

representation, 48–49
Dual problem, in linear programming,

661–663, 673

Economical version of singular value
decomposition, 356 (Pb 87.2.5)

Eigenvalues and eigenvectors, 258
(CPb 7.1. 6), 342–360. See also
Power method for linear equations

calculating, 343–344
Gershgorin’s Theorem and, 347–348
in linear algebra, 719
in linear differential equations,

353–355
in mathematical software, 344
matrix spectral theory of, 349–351
properties of, 345–347
singular value decomposition of,

348–349, 351–353
Elements, in vectors, 706, 708
Elliptic integrals, 39 (CPb 1.2.14),

180, 186
Elliptic problems, in differential

equations, 584, 594 (Pb15.1.1),
605–624

finite-difference method for, 606–609
finite-element methods for, 613–619
Gauss-Seidel iterative method

for, 610
Helmholtz equation model, 605–606
pseudocode for, 610–613

756 Index

Entry, in vectors, 706, 708
Epsilon, machine, 47–48
Equal oscillation property, 141
Equations, roots of. See Roots of

equations, locating
Error. See also Polynomial interpolation

absolute and relative, 5
in ordinary differential equations

(ODE), 435
roundoff, 50, 52, 54, 63, 253, 687
single-step, 453
trapezoid rule analysis of, 192–196
truncation, 165–166, 174
unit roundoff, 703
vectors of, 254–255, 279 (CPb 7.2.19)

Error function, 34 (Pb 1.2.52), 185–186
Error term, 25, 27, 174
Euclidean/l2-vector norm, 721
Euler-Bernoulli beam, 340 (CPb 8.1.10)
Euler-Maclaurin formula, 206–209, 214

(Pb 5.3.26)
Euler’s constant, 59–60 (CPb 2.1.7)
Euler’s method, 432–433, 437

(Pb 10.1.15)
European Space Agency, 54
Expanded reflected points, 648
Expansion, finite, 44
Explicit method for partial differential

equations, 587, 591, 595
(Pb 15.1.12)

Exponents, 44, 544 (CPb 13.1.20), 687

Factorial notation, 21
Factoring, 296. See also Matrix

factorizations
Fairing curves, 371
False position method, 83–84
Feasible set, of vectors, 658
Fehlberg method of order 4, 451
Fibonacci numbers, 40 (CPb 1.2.16), 115,

628–631
Finite-difference method, 570–571, 574,

606–609
Finite-dimensional number, 718
Finite-element methods, 613–619
Finite expansion, 44
First bad case, of quadratic interpolation

algorithm, 635
First-degree polynomial accuracy

theorem, 375
First-degree spline accuracy theorem, 375
First-derivative formulas, 164–166,

170–174
First primal form, in linear programming,

657–658, 660–661, 673
Five-point formula for Laplace’s

equation, 606–607
Fixed point iteration, 117–118
Flatness test, 648
Floating-point numbers, 43–55, 102

(Pb 3.2.24)
computer errors in, 50–51, 54, 687

double-precision, 48–49
equality of, 689–690
floating-point machine number [fl(x)]

and, 51–55
IEEE standard arithmetic for, 703–705
normalized, 44–46
single-precision, 46–47
standard, 46

Forward elimination, in Gaussian
algorithm, 248, 250

Fourier series, 73 (CPb 2.2.15)
Fractile basins of attraction, 99–100, 108

(CPb 3.2.27)
Fractional numbers, converting bases of,

695–696
Fractional parts, 696
French curves, 371
French railroad system problem, 559

(CPb 13.3.3)
Fresnel integral, 186, 204 (CPb 5.2.5)
Frobenius norm, 338 (Pb 8.1.10)
Fully implicit method for partial

differential equations, 595
(Pb 15.1.13)

Functions, minimization of, 625–658
multivariate case of, 639–656

advanced algorithms for, 644–646
contour diagrams for, 644
minimum, maximum and saddle

points in, 646
Neider-Mead algorithm for, 647–648
positive definite matrix and, 647
quasi-Newton methods for, 647
simulated annealing method for,

648–649
steepest descent procedure for, 643
Taylor Series for F in, 640–642

one-variable case of, 625–639
Fibonacci search algorithm and,

628–631
golden section search algorithm and,

631–633
quadratic interpolation algorithm

and, 633–635
special case of, 626–627
unconstrained and constrained

problems in, 625–626
unimodal functions F as,

627–628
Fundamental Theorem of Calculus,

181, 195

Galerkin equation, 617
Gauss-Huard algorithm, 279–280

(CPb 7.2.24)
Gaussian continued functions, 73

(CPb 2.2.18)
Gaussian elimination

naive, 245–258
algorithm for, 248–250
example of, 247–248
failure of, 259–260

in matrix factorizations, 295–296,
311 (Pb 8.1.1)

pseudocode for, 250–254
residual and error vectors in,

254–255
with scaled partial pivoting, 259–280

complete partial pivoting versus,
261–264

example of, 265–266
long operation count for, 269–270
numerical stability of, 271
pseudocode for, 266–269

Gaussian method for elliptic integrals, 39
(CPb 1.2.14)

Gaussian quadrature formulas, 230–244
change of intervals in, 231
composite three-point, 243

(CPb 6.2.11)
description of, 230–231
integrals with singularities in, 237–239
Legendre polynomials in, 234–237
nodes and weights in, 232–234

Gauss-Jordan algorithm, 279–280
(CPb 7.2.24)

Gauss-Legendre quadrature
formulas, 232

Gauss-Seidel method, 323–325,
330–331, 610

Generalized Neumann equation, 584
Generalized Newton’s method, 104

(Pb 3.2.36)
General quadratic functions, 652

(Pb 16.2.15)
Gershgorin’s Theorem, 347–348
Global positioning systems, 111

(CPb 3.2.41)
Golden ratio, 115, 638 (CPb 16.1.5)
Golden section search algorithm,

631–633
Goodness of fit, 374
Gradient of quadratic forms, 333
Gradient vector matrix, 640–641
Gram-Schmidt process, 506, 519,

722–723
Greatest lower bound, in integration, 182
Great Internet Mersenne Prime Search

(GIMPS), 541

Halley’s method, 122 (CPb 3.3.13)
Handbook of Mathematical Functions

with Formulas, Graphs, and
Mathematical Tables
(Abramowitz and Stegun), 186

Harmonic functions, 607, 618
Harmonic series, 59–60 (CPb 2.1.7)
Hat functions of B splines, 406
Heat equation model, 583–586
Helmholtz equation model, 584,

605–606
Hermitian matrices, 345
Hessian matrix, 640–641
Heun’s method, 437 (Pb 10.1.15)

Index 757

Hexadecimal system, 693, 698. See also
Bases for numbers

Hidden bits, 47
Hilbert matrix, 276 (CPb 7.2.4), 527

(Pb 12.3.2)
Histograms, 560 (CPb 13.3.13)
Horner’s algorithm, 7, 23–24
Hyperbolic problems, in differential

equations, 584, 594 (Pb15.1.1),
596–605

advection equation as, 601
analytical solution for, 597–598
Lax method for, 602
Lax-Wendroff method for, 602–603
numerical solution for, 598–599
pseudocode for, 600–601
upwind method for, 602
wave equation model as, 596–597

Idemtity matrix, 709
IEEE floating-point standard arithmetic,

703–705
Ill-conditioning, 321–322, 448

(CPb 10.2.5)
Improved Euler’s method, 437

(Pb 10.1.15)
IMSL mathematical library, 10
Incompatible systems, 519
Inconsistent systems, 519
Index vector, 262, 266
Inductive definition, in Newton’s

method, 91
Initial-value problem, 426–428, 431, 463

(CPb 10.3.17)
Inner product, 332, 512, 708
Integer parts, 696
Integrals

Dawson, 439 (CPb 10.1.12)
elliptic, 39 (CPb 1.2.14), 180, 186
sine, 189 (CPb 5.1.2), 204 (CPb 5.2.5),

463 (CPb 10.3.15)
Integration, numerical, 180–244

for area and volume estimation,
544–545

definite and indefinite, 180–181
Gaussian quadrature formulas in,

230–244
change of intervals in, 231
description of, 230–231
integrals with singularities in,

237–239
Legendre polynomials in, 234–237
nodes and weights in, 232–234

lower and upper sums in, 181–183
of ordinary differential equations

(ODE), 428–429
pseudocode and examples of,

184–187
Riemann-integrable functions in,

183–184
Romberg algorithm in, 204–215

description of, 204–205

Euler-Maclaurin formula and,
206–209

pseudocode for, 205–206
Richardson extrapolation of,

209–211
Simpson’s rule in, 216–229

adaptive, 221–225
basic, 216–220
composite, 220–221
Newton-Cotes rules and, 225–226

trapezoid rule in, 190–204
error analysis in, 192–197
multidimensional integration in,

198–199
uniform spacing in, 191–192

Intermediate-value theorem, 78, 194
Interpolation. See B spline functions;

Polynomial interpolation;
Quadratic interpolation algorithm

Invariance theorem, 135
Inverse polynomial interpolation,

141–142, 567
Inverse power method, 364–365
Irregular five-point formula for Laplace’s

equation, 607
Iterations. See also Linear equations,

systems of
fixed point, 117–118
limiting, 689
Newton-Raphson, 89
Richardson, 322–323

Jacobean matrix, 97–98, 100
Jacobi method, 323–325, 330–331
Jacobi overrelaxation (JOR)

method, 332

Kepler’s equation, 106 (CPb 3.2.6)
Knots, in spline theory, 372, 378
Kronecker delta equation, 145
kth residual, 519

Lagrange form of polynomial
interpolation, 25, 126–128, 144

Lanczos’ generalized derivative, 178
(Pb 4.3.21)

LAPACK mathematical software,
344, 351

Laplace’s equations, 286, 583–584,
605–606, 618

Laws of Motion, Newton’s, 428, 465
Lax method, 602
Lax-Wendroff method, 602–603
LDLT factorizations, 302–304, 315

(Pb 8.1.24)
Least lower bound, in integration, 182
Least squares method, 495–505,

518–531, 652 (Pb 16.1.20)
basis function in, 500–501
linear example of, 521–522
nonlinear example of, 520–522
nonpolynomial example of, 499–500

singular value decomposition (SVD)
and, 522–527

weight function in, 519–520
Least upper bound, of number set, 374
Lebesgue constants, 73 (CPb 2.2.15)
Legendre polynomials, 234–237
Legendre’s elliptic integral relation, 39

(CPb 1.2.14)
Lemma, upper bound, 157
Length of vectors, 320
L’Hôpital’s rule, 34 (Pb 1.2.49)
Libraries, program, 10, 686–687
Linear algebra, 706–723

abstract vector spaces in, 716–723
bases for, 718–720
change in similarity of, 719–720
eigenvalues and eigenvectors in, 719
Gram-Schmidt process for, 722–723
linear independence in, 717–718
linear transformations for, 718–719
norms for, 721–722
orthogonal matrices and spectral

theorem in, 720–721
subspaces in, 717

Cramer’s Rule and, 715
matrices in, 708–710
matrix product in, 711–713
matrix-vector product in, 711
symmetric matrices in, 714–715
transpose matrices in, 713–714
vectors in, 706–708

Linear B spline, 422 (Pb 9.3.36)
Linear combinations, 707
Linear convergence, 82
Linear equations, systems of, 245–370

banded, 280–292
block pentadiagonal, 285–286
pentadiagonal, 283–285
strictly diagonal dominance in,

282–283
tridiagonal, 280–282

eigenvalues and eigenvectors in,
342–360

calculating, 343–344
Gershgorin’s Theorem and, 347–348
in linear differential equations,

353–355
in mathematical software, 344
matrix spectral theory of, 349–351
properties of, 345–347
singular value decomposition of,

348–349, 351–353
Gaussian elimination with scaled

partial pivoting of, 259–280
complete partial pivoting versus,

261–264
example of, 265–266
long operation count for, 269–270
numerical stability of, 271
pseudocode for, 266–269

inconsistent, 675–683
iterative solutions of, 319–341

758 Index

Linear equations, systems of (continued)
basic methods of, 322–327
condition number and

ill-conditioning in, 321–322
conjugate gradient method of,

332–335
convergence theorems for, 328–331
matrix formulation for, 331–332
overrelaxation in, 332
pseudocode for, 327–328
vector and matrix norms in, 319–320

matrix factorizations in, 293–319
Cholesky factorization as, 305–306
derivation of, 296–300
example of, 294–296
A−1 in, 307
LDLT factorization as, 302–304
LU factorization as, 300–302
multiple right-hand sides in,

306–307
pseudocode for, 300
software package example of,

307–309
naive Gaussian elimination of,

245–258
algorithm for, 248–250
example of, 247–248
failure of, 259–260
pseudocode for, 250–254
residual and error vectors in,

254–255, 279 (CPb 7.2.19)
power method for, 360–370

Aiken acceleration formula for, 363
algorithms for, 361–362
inverse, 364–365
in mathematical software, 363
shifted inverse, 365–366

Linear functions, 361, 641
Linear interpolation, 162 (Pb 4.2.8)
Linearize and solve approach to solving

nonlinear equations, 96, 117
Linearly independent sets, 501
Linear polynomial interpolation, 125–126
Linear programming, 657–683

approximate solution of inconsistent
linear systems from, 675–683

l∞ problem for, 678–680
l1 problem for, 676–678

dual problem in, 661–663
first primal form in, 657–658,

660–661
optimization example of, 658–660
second primal form in, 663–664
simplex method for, 670–675

l∞-matrix norm, 320
l∞ problem, 678–680
l∞-vector norm, 320, 721
l∞-matrix norm, 722
l1-matrix norm, 722
Loaded die problem, 552–553
Localization theorems, 347
Local minimum points of functions, 626

Local truncation error, 435
Logarithmic integral, 186, 189

(CPb 5.1.3)
l1 approximation, 496
l1-matrix norm, 320
l1 problem, 676–678
l1-vector norm, 320, 721
Loops, clean, 686
Lower and upper sums, in integration,

181–183
Lower triangular matrix, 710
Lucas-Lehmer test, 540
LU factorization

derivation of, 296–300
description of, 294
problems in, 314–315 (Pb 8.1.18), 319

(CPb 8.1.14)
solving linear systems with, 300–302

Machine epsilon, 47–48, 703
Machine numbers, 44, 51. See also

Floating-point numbers
Maclaurin series, 31 (Pb 1.2.1), 41

(CPb 1.2.21)
Macsyma mathematical software, 10
Magnitude of vectors, 320
Main diagonal matrix, 710
Mantissa, normalized, 44, 47
Maple mathematical software, 10

boundary-value problem, 577
differential equations, 427
eigenvalues, 343–344
error function in, 186
linear programming, 678–679
LU factorization in, 308
minimal solution, 526
minimization problems, 626
nonlinear equations, 99, 111

(CPb 3.2.42), 123 (CPb 3.3.19)
partial differential equations, 592
polynomial interpolation in, 153

(CPb 4.1.11), 164 (CPb 4.2.12)
random numbers, 533, 535
roots of equations in, 81, 88

(CPb 3.1.12), 93
singular value decomposition, 351
splines, 409–410, 418
symbolic verification in, 20

(CPb 1.1.26)
Marching problem/method, 586
March of B splines, 424 (CPb 9.3.6)
Mathematica mathematical software, 10

boundary-value problem, 577
differential equations, 427
eigenvalues, 343–344
error function in, 186
linear programming, 678–679
LU factorization in, 308
minimal solution, 526
minimization problems, 626
nonlinear equations, 99, 111

(CPb 3.2.42), 123 (CPb 3.3.19)

partial differential equations, 592
polynomial interpolation in, 153

(CPb 4.1.11), 164 (CPb 4.2.12)
random numbers, 533, 535
roots of equations in, 81, 88

(CPb 3.1.12), 93
splines, 418
symbolic verification in, 20

(CPb 1.1.26)
Matlab mathematical software, 10

boundary-value problem, 577
eigenvalues, 343–344
error function in, 186
linear programming, 678–679
LU factorization in, 308
minimal solution, 526
minimization problems, 626
nonlinear equations in, 99, 111

(CPb 3.2.42), 123 (CPb 3.3.19)
not-a-knot condition, of

splines, 394
PDE Toolbox, 584, 592–593, 612
polynomial interpolation in, 153

(CPb 4.1.11), 164 (CPb 4.2.12)
random numbers, 533, 535
roots of equations in, 81, 88

(CPb 3.1.12), 93
singular value decomposition, 351
splines, 409
vector fields, 430

Matrices. See also Linear algebra;
Singular value
decomposition (SVD)

companion, 358 (CPb 8.2.3)
diagonal, 346–347
Gershgorin’s Theorem and, 348
gradient vector, 640–641
Hermitian, 345–346
Hessian, 640–641
Hilbert, 276 (CPb 7.2.4), 527

(Pb 12.3.2)
Jacobean, 97–98
of near-deficiency in rank, 526
permutation, 307
positive definite, 305, 332–333,

345, 647
pseudo-inverse of, 525–526
row-equilibrated, 275 (Pb 7.2.23)
similar, 345
singular values of, 349
symmetric, 332, 345, 640
symmetric positive definite (SPD),

305, 330
transpose of, 345
triangular, 346
unitarily similar, 345–346
Vandermonde, 139–141, 152

(Pb 4.1.47), 254
Matrix factorizations, 293–319

Cholesky, 305–306
derivation of, 296–300
example of, 294–296

Index 759

A−1 in, 307
LDLT , 302–304
LU, 300–302
multiple right-hand sides in, 306–307
pseudocode for, 300
software package example of, 307–309

Matrix formulations, 331–332
Matrix norms, 319–320, 721–722
Matrix spectral theory, 349–351
Maximal linearly independent basis, 718
Maximum points of functions, 646
Mayan arithmetic, 700–701
Mean, arithmetic, 15 (CPb 1.1.7)
Mean-Value Theorem, 26, 193, 397
Memory fetches, 688
Mersenne prime number, 534
Midpoint method, 188 (Pb 5.1.10), 188

(Pb 5.1.12), 201 (Pb 5.2.18), 462
(CPb 10.3.8)

Minimal solution, to linear equations,
524–526

Minimization of functions. See
Functions, minimization of

Minimum points of functions, 626, 646
Mixed Dirichlet/Neumann equation, 584
Mixed mode coding, 687–688
Modified false position method, 84
Modified Newton’s method, 104

(Pb 3.2.35)
Modularizing code, 685
Modulus of continuity in spline functions,

374–375
Molecular conformation, 655

(CPb 16.2.2), 655 (CPb 16.2.10)
Moler-Morrison algorithm, 122

(CPb 3.3.14)
Monte Carlo methods. See also

Simulation
area and volume estimation by,

544–552
computing, 547–548
“ice cream cone” example of, 548
numerical integration for, 544–545
pseudocode for, 545–547

random numbers and, 532–544
algorithms and generators for,

533–535
examples of, 535–537
pseudocode for, 537–541

Muller’s method, 123 (CPb 3.3.17)
Multidimensional integration, 198–199
Multiple zero, 96, 104 (Pb 3.2.35)
Multiplication, nested, 7–9, 12

(Pb 1.1.6), 131
Multipliers, in Gaussian algorithm, 249
Multistep methods, 483
Multivariate case of minimization of

functions
advanced algorithms for, 644–646
contour diagrams for, 644
minimum, maximum and saddle points

in, 646

Neider-Mead algorithm for, 647–648
positive definite matrix and, 647
quasi-Newton methods for, 647
simulated annealing method for, 648–649
steepest descent procedure for, 643
Taylor Series for F in, 640–642

NAG mathematical library, 10
NaN (Not a Number), 704
Natural cubic spline functions

algorithm for, 388–392
introduction to, 385–387
pseudocode for, 392–394
smoothness property from, 396–398
space curves from, 394–396

Natural logarithm (ln), 1
Natural ordering, 262–264, 609
Navler-Stokes equation, 583–584
Near-deficiency in rank, matrix with, 526
Neider-Mead algorithm, 647–648
Nested form of polynomial interpolation,

130–131
Nested multiplication, 7–9, 12

(Pb 1.1.6), 131
Neumann equation, 584
Neutron shielding simulation, 557–558
Neville’s algorithm, 142–144
Newton-Cotes rules, 225–226, 229

(CPb 6.1.7)
Newton-Raphson iteration, 89
Newton’s form of polynomial

interpolation, 128–130, 133,
150–151 (Pb 4.1.38), 164
(CPb 4.2.14)

Newton’s Laws of Motion, 428, 465
Newton’s method for locating roots of

equations, 89–100
bisection method and secant method

versus, 117
convergence analysis in, 93–96
fractile basins of attraction

in, 99–100
generalized, 104 (Pb 3.2.37)
interpretation of, 90–91
modified, 104 (Pb 3.2.35)
nonlinear equation systems in, 96–99
pseudocode in, 92–93

Newton’s method for nonlinear
systems, 98

Nine-point formula for Laplace’s
equation, 607, 621 (Pb 15.3.10)

Nodes
Chebyshev, 155–156, 158, 163

(CPb 4.2.10), 174
Gaussian, 230, 232–234
in polynomial interpolation, 125
in spline theory, 378

Noise in computation, 174
Nonlinear equation systems, 83, 96–99,

104 (Pb 3.2.39)
Nonlinear least squares problems,

520–522

Nonperiodic spline filter, 291
(CPb 7.2.22)

Normal equations, 497, 499, 501, 617
Normalized floating-point representation,

44–46
Normalized mantissa, 44, 47
Normalized scientific notation, 43
Normalized tridiagonal algorithm, 289

(CPb 7.2.12)
Norm induced, 721
Norms, 319–320, 721–722
n-simplex sets, 648
Number representation. See

Floating-point numbers

Objective functions, 658
Octal system, 693, 696–697. See also

Bases for numbers
Octave mathematical software, 10
Odd periodic functions, 598
Olver’s method, 122 (CPb 3.3.12)
One-variable case of minimization of

functions, 625–639
Fibonacci search algorithm and,

628–631
golden section search algorithm and,

631–633
quadratic interpolation algorithm and,

633–635
special case of, 626–627
unconstrained and constrained

problems in, 625–626
unimodal functions F as, 627–628

Optimization example, of linear
programming, 658–660

Ordering, natural, 262–264, 609
Ordering, red-black (checkerboard), 620

(Pb 15.3.3)
Ordinary differential equations (ODE),

426–464
Adams-Bashforth-Moulton formulas

for, 455–456
error types in, 435
Euler’s method pseudocode for,

432–433
initial-value problem in, 426–428
integration and, 428–429
Runge-Kutta methods for, 439–450

adaptive, 450–454
example of, 454–455
of order 4, 442–443
of order 2, 441–442
pseudocode for, 443–444
Taylor series in two variables and,

440–441
stability analysis for, 456–459
Taylor series methods for, 431–435
vector fields in, 429–431

Ordinary differential equations,
boundary-value problems in,
563–581

discretization method for, 570–572

760 Index

Ordinary differential equations
(continued)

shooting method for
algorithm for, 565–567
in linear case, 574–575
overview of, 563–565
pseudocode for, 575–577
refinements to, 567

Ordinary differential equations, systems
of, 465–494

Adams-Bashforth-Moulton methods
for, 483–494

adaptive scheme for, 488
example of, 488–489
predictor-corrector scheme in,

483–484
pseudocode for, 484–488
stiff equations and, 489–491

first order methods for, 465–477
for autonomous ODE, 471–471
Runge-Kutta, 469–471
Taylor series, 466–469
uncoupled and coupled systems in,

465–466
vector notation for, 467–469

higher order, 477–483
Orthogonal matrices, 720–721
Orthogonal systems. See also Chebyshev

polynomials
algorithm for, 508–510
orthonormal basis functions in,

505–508
polynomial regression in, 510–515

Overflow, of range, 45
Overrelaxation, 324, 326–327, 331–332

Padé interpolation, 153 (CPb 4.1.17)
Padé rational approximation, 41

(CPb 1.2.22), 73 (CPb 2.2.17)
Parabolic problems, in differential

equations, 582–596, 594
(Pb15.1.1)

applied, 582–585
Crank-Nicolson alternative method for,

590–591
Crank-Nicolson method for, 588–589
heat equation model as, 585–586
pseudocode for Crank-Nicolson

method for, 589–590
pseudocode for explicit model of, 587
stability and, 591–593

Parametric representation, of curves, 394
Partial differential equations, 582–624

elliptic problems in, 605–624
finite-difference method for,

606–609
finite-element methods for,

613–619
Gauss-Seidel iterative method

for, 610
Helmholtz equation model, 605–606
pseudocode for, 610–613

hyperbolic problems in, 596–605
advection equation as, 601
analytical solution for, 597–598
Lax method for, 602
Lax-Wendroff method for, 602–603
numerical solution for, 598–599
pseudocode for, 600–601
upwind method for, 602
wave equation model, 596–597

parabolic problems in, 582–596
applied, 582–585
Crank-Nicolson alternative method

for, 590–591
Crank-Nicolson method for,

588–589
heat equation model as, 585–586
pseudocode for Crank-Nicolson

method for, 589–590
pseudocode for explicit model

of, 587
stability and, 591–593

Partial double-precision arithmetic, 492
(CPb 11.3.2)

Partition of unity on interval, 417
Pascal’s triangle, 37 (CPb 1.2.10c)
Penrose properties, 526–527
Pentadiagonal systems of linear

equations, 280, 283–285
Periodic cubic splines, 387, 401

(Pb 9.2.23)
Periodicity, 67, 598
Periodic sequences of random

numbers, 535
Periodic spline filter, 292 (CPb 7.2.23)
Permutation matrices, 307
Piecewise bilinear polynomial, 384

(CPb 9.1.3)
Piecewise linear functions, 372
Pierce decomposition, 356 (Pb 8.2.6)
�, computing value of, 12 (Pb 1.1.1,

Pb 1.1.4)
Pivoting, 246

pivot element for, 249, 271
pivot equation for, 247, 249
scaled partial, 259–280

complete partial pivoting and, 261
example of, 265–266
Gaussian elimination with, 262–264
long operational count and, 269–270
numerical stability and, 271
pseudocode for, 266–269

Poisson equation, 584, 605, 613, 615
Polygonal functions, 372
Polyhedral set, 671
Polynomial(s), 8, 11, 343
Polynomial interpolation, 124–164

algorithms and pseudocode for,
136–138

of bivariate functions, 144–145
derivative estimating by, 170–174
divided differences for calculating

coefficients aj in, 131–136

errors in, 153–164
Dirichlet function as, 154
Runge function as, 154–156
theorems on, 156–160

inverse, 141–142
Lagrange form of, 126–128
linear, 125–126, 162 (Pb 4.2.8)
nested form of, 130–131
Neville’s algorithm for, 142–144
Newton form of, 128–130
Vandermonde matrix for, 139–141

Polynomial regression, 510–515
Positive definite matrices, 305, 332–333,

345, 647
Power method for linear equations.

See also Eigenvalues and
eigenvectors

Aiken acceleration formula for, 363
algorithms for, 361–362
inverse, 364–365
in mathematical software, 363
shifted inverse, 365–366

Precision, 3–6, 63–64, 688. See also
IEEE floating-point standard
arithmetic

Preconditioning, 335
Predator-prey models, 465
Predictor-corrector scheme, 461

(CPb 10.3.4), 483–484
Prime numbers, 534, 540
Probability integral, 204 (CPb 5.2.5)
Product, matrix, 711–713
Program libraries, 686–687
Programming derivatives, 9–10
Programming suggestions, 684–691
Projection, 356 (Pb 8.2.6)
Projection operator, 722
Prony’s method, 530 (CPb 12.3.2)
Protein folding, 655 (CPb 16.2.10)
Pseudocode

Adams-Bashforth-Moulton methods,
484–488

area and volume estimation, 545–547
bisection method, 78–79
as bridge, 684
B spline functions, 412–413
conjugate gradient algorithm, 334
Crank-Nicolson method, 589–590
elliptic problems, 610–613
Euler’s method, 432–433
explicit model of partial differential

equations, 587
Gaussian elimination with scaled

partial pivoting, 266–269
Gauss-Seidel method, 327, 610
hyperbolic problems, 600–601
Jacobi method, 327
linear equations, 327–328
loaded die problems, 552–553
matrix factorizations, 300
naive Gaussian elimination, 250–254
natural cubic spline functions, 392–394

Index 761

Newton’s method, 92–93
numerical integration, 184–187
polynomial interpolation, 136–138
power method, 361–362
random numbers, 535, 537–541
Romberg algorithm, 205–206
Runge-Kutta-Fehlberg methods, 452
Runge-Kutta methods, 443–444,

453–454
Schoenberg’s process, 415
secant method, 112
shooting method for ordinary

differential equations (ODE),
575–577

successive overrelaxation (SOR)
method, 327

Taylor series of order 4, 468–469
Pseudo-inverse, of matrices, 525–526
Pseudo-random numbers, 533

Quadratic B spline, 423 (Pb 9.3.37)
Quadratic convergence, 93, 100
Quadratic form, 333
Quadratic functions, 642, 652

(Pb 16.2.15)
Quadratic interpolation algorithm,

633–635
Quadratic splines, 376–378
Quadrature rules, 187
Quasi-Newton methods for minimization

of functions, 647
Quasi-random number sequences, 540

Radix point, 693
Random numbers, 532–544

algorithms and generators for,
533–535

examples of, 535–537
pseudocode for, 537–541

Random walk problem, 561
(CPb 13.3.17–18)

Range, of computer, 45
Range reduction, 67–68
Rationalizing numerators, 64
Rayleigh quotient, 368 (Pb 8.3.7)
Reciprocals of numbers, 102 (Pb 3.2.23)
Recursive definition, in Newton’s

method, 91
Recursive property of divided differences

theorem, 134
Recursive trapezoid formula for equal

subintervals, 196–197
Red-black ordering, 620 (Pb 15.3.3)
Reflected points, 648
Regression, polynomial, 510–515
Regula falsi method, 83–84
Relative errors, 5
Relaxation factor, 326. See also

Overrelaxation
Remainder, 25
Residual, 254–255, 279 (CPb 7.2.19),

519, 619

Richardson extrapolation
estimating derivatives and, 166–170,

177 (Pb 4.3.19)
Euler-Maclaurin formula and, 207
of Romberg algorithm, 209–211

Richardson iteration, 322–323
Riemann-integrable functions,

183–184
Riffle shuffles, 562 (CPb 13.3.27)
Rising sequences, 562 (CPb 13.3.27)
Robust software, 269
Rolle’s Theorem, 156–157
Romberg algorithm

convergence in, 165
description of, 204–205
Euler-Maclaurin formula and,

206–209
notation for, 196
pseudocode for, 205–206
Richardson extrapolation and, 168,

209–211
Roots of equations, locating, 76–123

bisection method for, 76–85
convergence analysis in, 81–83
example of, 79–81
false position method in, 83–84
pseudocode for, 78–79

Newton’s method for, 89–100
convergence analysis in, 93–96
fractile basins of attraction in,

99–100
interpretation of, 90–91
nonlinear equation systems in,

96–99
pseudocode in, 92–93

secant method for, 111–119
algorithm for, 112–113
bisection and Newton’s methods

versus, 117
convergence analysis in, 114–116
fixed point iteration and, 117–118

Rounding modes, 705
Rounding numbers, 6, 50
Roundoff error, 50, 52, 54, 63, 253, 435,

687, 703
Round-to-even method, 6
Round to nearest value, 705
Row-equilibrated matrix, 275 (Pb 7.2.23)
Row vectors, 706
Runge function, 125, 154–156
Runge-Kutta-England method, 463–464

(CPb 10.3.19)
Runge-Kutta methods, 439–450

adaptive, 450–454
example of, 454–455
of order 5, 451
of order 4, 442–443
of order 3, 445–446 (Pb 10.2.7)
of order 2, 441–442
pseudocode for, 443–444
for systems of ordinary differential

equations, 469–472

Taylor series in two variables and,
440–441

Saddle points of functions, 646
Scale vector, 262
Scaling, 271
Schoenberg’s process, 414–415
Scientific notation, normalized, 43
Secant method for locating roots of

equations, 111–119
algorithm for, 112–113
bisection and Newton’s methods

versus, 117
convergence analysis in, 114–116
fixed point iteration and, 117–118

Second bad case, of quadratic
interpolation algorithm, 635

Second-derivative formulas, 173–174
Second primal form, in linear

programming, 663–664
Seed, for random number sequence, 534
Serpentine curves, 395
Shifted inverse power method, 365–366
Shooting method for ordinary differential

equations (ODE), 563–570
algorithm for, 565–567
in linear case, 574–575
overview of, 563–565
pseudocode for, 575–577
refinements to, 567

Shure’s Theorem, 346
Significance

loss of, 61–68
avoiding in subtraction, 64–67
computer-caused, 62–63
range reduction and, 67–68
theorem for, 63–64

significant digits in, 3–5, 61
Significands, 47
Similar matrices, 345
Simplex method, 670–675
Simple zero, 93
Simpson’s rule, 216–229

adaptive, 221–225
basic, 216–220, 228 (Pb 6.1.8)
composite, 220–221, 228 (Pb 6.1.6),

243 (CPb 6.2.11)
Simulated annealing method, 648–649
Simulation, 552–562. See also Monte

Carlo methods
birthday problem as, 553–555
Buffon’s needle problem as, 555–556
loaded die problem as, 552–553
neutron shielding, 557–558
two dice problem as, 556–557

Simultaneous nonlinear equations, 104
(Pb 3.2.39)

Sine integral, 189 (CPb 5.1.2), 204
(CPb 5.2.5), 463 (CPb 10.3.15)

Single-precision floating-point
representation, 46–47

Single-step error, 453

762 Index

Single-step methods, 483
Singular value decomposition (SVD)

economical version of, 356 (Pb 8.3.5)
eigenvalues and eigenvectors and,

348–349
least squares method and, 519,

522–527
matrix spectral theory and, 350
numerical examples of, 351–353

Singular values, 320
sin x , periodicity of, 67
Smoothing data, 396–398. See also

Chebyshev polynomials; Least
squares method

Software, mathematical, 10–11
boundary-value problem, 577
development of, 691
differential equations, 427
eigenvalues and eigenvectors,

343–344
error function in, 186
linear programming, 678–679
LU factorization, 308
matrix factorizations, 307–309
minimal solution, 526
minimization problems, 626
nonlinear equations, 99, 111

(CPb 3.2.42), 123 (CPb 3.3.19)
partial differential equations, 584, 592
polynomial interpolation, 153

(CPb 4.1.11), 164 (CPb 4.2.12)
power method for linear equations, 363
random numbers, 533, 535
robust, 269
roots of equations, 81, 88

(CPb 3.1.12), 93
singular value decomposition, 351
splines, 394, 409–410, 418
symbolic verification, 20 (CPb 1.1.26)
vector fields, 430

Solution case, of quadratic interpolation
algorithm, 634

Solutions for differential equations, 426
Sparse factorization, 315 (Pb 8.1.24)
Spectral/l2-matrix norm, 320. See also

Matrix spectral theory
Spectral/l2-vector norm, 722
Spectral radius, 320, 329
Spectral theorem, 720–721
Spline functions, 371–425

B, 404–425
for Bézier curves, 416–418
interpolation and approximation by,

410–412
pseudocode and example of,

412–413
Schoenberg’s process for, 414–415
theory of, 404–410

first-degree, 371–374
interpolating quadratic, Q(x), 376–378
modulus of continuity in, 374–375
natural cubic, 385–404

algorithm for, 388–392
introduction to, 385–387
pseudocode for, 392–394
smoothness property from, 396–398
space curves from, 394–396

second-degree, 376
Subbotin quadratic, 378–380

Spurious zeros, 62
Stability

numerical, 271
in ordinary differential equations

(ODE), 456–459
in partial differential equations,

591–593
Standard deviation, 15 (CPb 1.1.7)
Standard floating-point

representation, 46
Stationary points of functions, 646
Statistician’s rounding, 6
Steady state of systems, 489
Steepest descent procedure, 643, 655

(CPb 16.2.2)
Steffensen’s method, 104 (Pb 3.2.36)
Stiff equations, 489–491
Stirling’s formula, 34 (Pb 1.2.47)
Subbotin quadratic spline functions,

378–380
Subdiagonal matrix, 280, 710
Subnormal numbers, 704
Subordinate norms, 721
Subtraction, significance and, 64–67
Successive overrelaxation (SOR) method,

324, 326, 331–332
Superdiagonal matrix, 280, 710
Superlinear convergence, 84, 115
Supremum (least upper bound), 374
Symbolic computations, 435
Symbolic verification, 20 (CPb 1.1.26)
Symmetric banded storage mode, 291

(CPb 7.2.20)
Symmetric matrices, 332, 345, 640,

714–715
Symmetric positive definite (SPD)

matrices, 305, 330
Symmetric storage mode, 278

(CPb 7.2.13)
Synthetic division, 7

Tacoma Narrows Bridge project, 493
(CPb 11.3.9)

Taylor series, 20–31, 177 (Pb 4.3.19)
alternating series and, 28–30
complete Horner’s algorithm in,

23–24
derivative estimating by, 164–166
examples of, 20–22
of f at the point c, 22–23
for F in minimization of functions,

640–642
machine precision and, 70 (Pb 2.2.28)
in Mean-Value Theorem, 26
for natural logarithm (ln), 1

for ordinary differential equations,
431–435, 466–469

Runge-Kutta methods and, 440–441
Taylor’s Theorem in terms of h and,

27–28
Taylor’s Theorem in terms of (x − c)

and, 24–26
Telescoped rational functions, 73

(CPb 2.2.18)
Tensor-product interpolation, 144
Tent function, 122 (CPb 3.3.15)
Test cases, 685
Theorems

alternating series, 28–30, 32
(Pb 1.2.13)

axioms for a vector space, 716
bisection method, 82
Cayley-Hamilton, 358 (CPb 8.2.5)
Cholesky factorizations, 305
cubic spline smoothness, 397
divided differences and derivatives, 159
duality, 662
eigenvlaues of similar matrices, 345
Euler-Maclaurin formula, 208
on existence of polynomial

interpolation, 128
first-degree polynomial accuracy, 375
first-degree spline accuracy, 375
first primal form, 658
Fundamental Theorem of Calculus,

181, 195
Gaussian quadrature, 232
Gershgorin’s, 347
initial value problem uniqueness, 431
intermediate-value, 78, 194
on interpolation errors, 156–160
on interpolation properties, 143
invariance, 135
Jacobi and Gauss-Seidel

convergence, 330
linear differential equations, 354
linear independence, 718
localization, 347
long operations, 270
on loss of precision, 63–64
LU factorization, 298
matrix spectral, 349
Mean-Value, 26, 397
Mean-Value Theorem for Integrals, 193
minimal solution, 525
Newton’s method of locating roots of

equations, 94
orthogonal basis, 350
Penrose properties of

pseudo-inverse, 526
on polynomial interpolation error,

156–160
primal and dual problems, 662
recursive property of divided

differences, 134
recursive trapezoid formula, 197
Richardson extrapolation, 168

Index 763

Riemann integral, 183
Rolle’s, 156–157
second primal form, 663
Shure’s, 346
spectral, 720–721
spectral radius, 329
spectral theorem for symmetric

matrices, 720
successive overrelaxation (SOR), 331
SVD least squares, 523
Taylor’s, 166
Taylor’s Theorem in terms of h, 27–28
Taylor’s Theorem in terms of (x - c),

24–26
trapezoid rule precision, 192
vertices and column vectors, 671
Weierstrass approximation, 416
weighted Gaussian quadrature, 232

3-simplex sets, 648
Transpose of matrices, 345, 707, 713–714
Trapezoid rule, 190–204. See also

Simpson’s rule
composite, 191, 194, 243 (CPb 6.2.11)
composite with unequal spacing, 203

(Pb 5.2.32)
error analysis in, 192–196
multidimensional integration in,

198–199
recursive formula for equal

subintervals in, 196–197
uniform spacing in, 191–192

Triangular inequality, 320, 721
Triangular matrix, 346, 710
Tridiagonal matrix, 709
Tridiagonal systems of linear equations,

280–282, 289 (CPb 7.2.12)
Troesch’s problem, 581 (CPb 14.2.7)

Truncated series, 25, 28
Truncation error, 165–166, 174, 435
Two dice problem, 556–557
Two-dimensional integration over the unit

square, 198
2-simplex sets, 648

Unconstrained minimization problems,
625–626

Underflow, of range, 45
Undetermined coefficients, method

of, 233
Uniformly distributed numbers, 533
Unimodal functions F , 627–628
Unitarily similar matrices, 345–346
Unit roundoff error, 50, 703
Unit vectors, 708
Unstable functions, roots as, 88

(CPb 3.1.12)
Upper bound lemma, 157
Upper triangular matrix, 710
Upper triangular system, 248
Upwind method, 602
Usual case, of quadratic interpolation

algorithm, 634

Vandermonde matrix, 139–141, 152
(Pb 4.1.47), 254

Variable metric algorithm, 647
Variables, declaring, 685–686
Variance, 15 (CPb 1.1.7, CPb 1.1.8)
Vector norms, 319–320, 721
Vector notation, 467–469
Vectors. See also Abstract vector spaces

in linear algebra; Eigenvalues and
eigenvectors

column, 671

A-conjugate, 332
convex hull of, 417
direction, 333
gradient, 640–641
index, 262, 266
inner product of, 332
in linear algebra, 706–708
matrix-vector product and, 711
in ordinary differential equations

(ODE), 429–431
residual, 254–255, 279 (CPb 7.2.19)
scale, 262
vector inequality of, 658

Verification, symbolic, 20 (CPb 1.1.26)
Vertices in K , 671–672
Volume estimation. See Area and volume

estimation

Warning messages, 685
Wave equation model, 582, 584,

596–597
Weierstrass approximation theorem, 416
Weight function, 519–520
Weights, Gaussian, 230, 232–234
Wilkinson’s polynomial, 88 (CPb 3.1.12),

121 (CPb 3.3.9)

Zeros
of f , 76–77, 81
of multiplicity, 96, 104 (Pb 3.2.35)
simple, 93
spurious, 62

This page intentionally left blank

Formulas from Integral Calculus∫
xa dx = xa+1

(a + 1)
+ C (a �= 1)

∫
cos x dx = sin x + C∫

ex dx = ex + C
∫

tan x dx = ln | sec x | + C∫
eax dx = 1

a
eax + C

∫
sec x dx = ln | sec x + tan x | + C∫

xeax dx = 1

a2
eax(ax − 1) + C

∫
x sin x dx = sin x − x cos x + C∫

x−1 dx = ln |x | + C
∫

sec2 x dx = tan x + C∫
ln x dx = x ln |x | − x + C

∫
sec x tan x dx = sec x + C∫

x ln x dx = x2

2
ln |x | − x2

4
+ C

∫
sinh x dx = cosh x + C∫

dx

a + bx
= 1

b
ln |a + bx | + C

∫
cosh x dx = sinh x + C∫

dx

(a + bx)2
= −1

b(a + bx)
+ C

∫
tanh x dx = ln | cosh x | + C∫

dx

x(ax + b)
= 1

b
ln

∣∣∣∣ x

ax + b

∣∣∣∣+ C

∫
coth x dx = ln | sinh x | + C∫

dx

a + bx2
= 1√

ab
arctan

(
1

a
x
√

ab

)
+ C

∫
sin2 x dx = x

2
− 1

4
sin 2x + C∫

dx

a2 + x2
= 1

a
arctan

(x

a

)
+ C (a �= 1)

∫
cos2 x dx = x

2
+ 1

4
sin 2x + C∫

dx√
a2 − x2

= arcsin
(x

a

)
+ C (a �= 1)

∫
arcsin x dx = x arcsin x +

√
1 − x2 + C∫

1√
x2 + a2

dx = ln
∣∣∣√x2 + a2 + x

∣∣∣+ C
∫

arccos x dx = x arccos x −
√

1 − x2 + C∫ √
x2 ± a2 dx = x

2

√
x2 ± a2 ± a2

2
ln
∣∣∣x +

√
x2 ± a2

∣∣∣+ C

∫
arctan x dx = x arctan x − 1

2
ln
(
1 + x2

)+C∫
sin x dx = −cos x + C

∫
F ′(g(x))g′(x) dx = F(g(x)) + C

Fundamental Theorem of Calculus
d

dx

∫ x

a
f (t) dt = f (x)

Integration by Parts∫
u dv = uv −

∫
v du

Mean Value for Integrals∫ b

a
f (x)g(x) dx = f (ξ)

∫ b

a
g(x) dx (g(x) � 0)

Series
ex = 1 + x + x2

2!
+ x3

3!
+ x4

4!
+ x5

5!
+ x6

6!
+ · · · =

∞∑
k=0

xk

k!
(|x | < ∞)

ax = 1 + x ln a + (x ln a)2

2!
+ (x ln a)3

3!
+ · · · =

∞∑
k=0

(x ln a)k

k!
(|x | < ∞)

sin x = x − x3

3!
+ x5

5!
− x7

7!
+ x9

9!
− x11

11!
+ · · · =

∞∑
k=0

(−1)k x2k+1

(2k + 1)!
(|x | < ∞)

cos x = 1 − x2

2!
+ x4

4!
− x6

6!
+ x8

8!
− x10

10!
+ · · · =

∞∑
k=0

(−1)k x2k

(2k)!
(|x | < ∞)

tan x = x + x3

3
+ 2x5

15
+ 17x7

315
+ 62x9

2835
+ · · ·

(
x2 < π2

4

)
arcsin x = x + x3

6
+ 1

2

3

4

x5

5
+ 1

2

3

4

5

6

x7

7
+ · · · (x2 < 1)

arctan x = x − x3

3
+ x5

5
− x7

7
+ · · · =

∞∑
k=0

(−1)k x2k+1

(2k + 1)
(x2 < 1)

ln(1 + x) = x − x2

2
+ x3

3
− x4

4
+ · · · =

∞∑
k=1

(−1)k−1 xk

k
(−1 < x � 1)

ln

(
1 + x

1 − x

)
= 2

[
x + x3

3
+ x5

5
− x7

7
+ · · ·

]
= 2

∞∑
k=1

x2k−1

2k − 1
(|x | < 1)

(x + y)n = xn + nxn−1 y + n(n − 1)

2!
xn−2 y2 + n(n − 1)(n − 2)

3!
xn−3 y3 + · · · =

n∑
k=0

(
n

k

)
xn−k yk

1

1 − x
= 1 + x + x2 + x3 + x4 + x5 + · · · =

∞∑
k=0

xk (|x | < 1)

Formal Taylor Series for f about c

f (x) ∼ f (c) + f ′(c)(x − c) + f ′′(c)
2!

(x − c)2 + f ′′′(c)
3!

(x − c)3 + · · · =
∞∑

k=0

f (k)(c)

k!
(x − c)k

Taylor Series for f (x)

f (x) =
n∑

k=0

f (k)(c)

k!
(x − c)k + En+1 where En+1 = f (n+1)(ξ)

(n + 1)!
(x − c)n+1

Taylor Series for f (x + h)

f (x + h) =
n∑

k=0

f (k)(x)

k!
hk + En+1 where En+1 = f (n+1)(ξ)

(n + 1)!
hn+1

Alternating Series
If a1 � a2 � · · · � an � · · · � 0 for all n and limn→∞ an = 0 then
∞∑

k=1

(−1)k−1ak = lim
n→∞

n∑
k=1

(−1)k−1ak = lim
n→∞

Sn = S. Moreover, |S − Sn| � an+1 for all n.

Mean-Value Theorem
f (b) = f (a) + (b − a) f ′(ξ) for some ξ in (a, b)

	Front Cover
	Title Page
	Copyright
	Contents
	1 Introduction
	1.1 Preliminary Remarks
	Significant Digits of Precision: Examples
	Errors: Absolute and Relative
	Accuracy and Precision
	Rounding and Chopping
	Nested Multiplication
	Pairs of Easy/Hard Problems
	First Programming Experiment
	Mathematical Software
	Summary
	Additional References
	Problems 1.1
	Computer Problems 1.1

	1.2 Review of Taylor Series
	Taylor Series
	Complete Horner’s Algorithm
	Taylor’s Theorem in Terms of (x – c)
	Mean-Value Theorem
	Taylor’s Theorem in Terms of h
	Alternating Series
	Summary
	Additional References
	Problems 1.2
	Computer Problems 1.2

	2 Floating-Point Representation and Errors
	2.1 Floating-Point Representation
	Normalized Floating-Point Representation
	Floating-Point Representation
	Single-Precision Floating-Point Form
	Double-Precision Floating-Point Form
	Computer Errors in Representing Numbers
	Notation fl(x) and Backward Error Analysis
	Historical Notes
	Summary
	Problems 2.1
	Computer Problems 2.1

	2.2 Loss of Significance
	Significant Digits
	Computer-Caused Loss of Significance
	Theorem on Loss of Precision
	Avoiding Loss of Significance in Subtraction
	Range Reduction
	Summary
	Additional References
	Problems 2.2
	Computer Problems 2.2

	3 Locating Roots of Equations
	3.1 Bisection Method
	Introduction
	Bisection Algorithm and Pseudocode
	Examples
	Convergence Analysis
	False Position (Regula Falsi) Method and Modifications
	Summary
	Problems 3.1
	Computer Problems 3.1

	3.2 Newton’s Method
	Interpretations of Newton’s Method
	Pseudocode
	Illustration
	Convergence Analysis
	Systems of Nonlinear Equations
	Fractal Basins of Attraction
	Summary
	Additional References
	Problems 3.2
	Computer Problems 3.2

	3.3 Secant Method
	Secant Algorithm
	Convergence Analysis
	Comparison of Methods
	Hybrid Schemes
	Fixed-Point Iteration
	Summary
	Additional References
	Problems 3.3
	Computer Problems 3.3

	4 Interpolation and Numerical Differentiation
	4.1 Polynomial Interpolation
	Preliminary Remarks
	Polynomial Interpolation
	Interpolating Polynomial: Lagrange Form
	Existence of Interpolating Polynomial
	Interpolating Polynomial: Newton Form
	Nested Form
	Calculating Coefficients a[sub(i)] Using Divided Differences
	Algorithms and Pseudocode
	Vandermonde Matrix
	Inverse Interpolation
	Polynomial Interpolation by Neville’s Algorithm
	Interpolation of Bivariate Functions
	Summary
	Problems 4.1
	Computer Problems 4.1

	4.2 Errors in Polynomial Interpolation
	Dirichlet Function
	Runge Function
	Theorems on Interpolation Errors
	Summary
	Problems 4.2
	Computer Problems 4.2

	4.3 Estimating Derivatives and Richardson Extrapolation
	First-Derivative Formulas via Taylor Series
	Richardson Extrapolation
	First-Derivative Formulas via Interpolation Polynomials
	Second-Derivative Formulas via Taylor Series
	Noise in Computation
	Summary
	Additional References for Chapter 4
	Problems 4.3
	Computer Problems 4.3

	5 Numerical Integration
	5.1 Lower and Upper Sums
	Definite and Indefinite Integrals
	Lower and Upper Sums
	Riemann-Integrable Functions
	Examples and Pseudocode
	Summary
	Problems 5.1
	Computer Problems 5.1

	5.2 Trapezoid Rule
	Uniform Spacing
	Error Analysis
	Applying the Error Formula
	Recursive Trapezoid Formula for Equal Subintervals
	Multidimensional Integration
	Summary
	Problems 5.2
	Computer Problems 5.2

	5.3 Romberg Algorithm
	Description
	Pseudocode
	Euler-Maclaurin Formula
	General Extrapolation
	Summary
	Additional References
	Problems 5.3
	Computer Problems 5.3

	6 Additional Topics on Numerical Integration
	6.1 Simpson’s Rule and Adaptive Simpson’s Rule
	Basic Simpson’s Rule
	Simpson’s Rule
	Composite Simpson’s Rule
	An Adaptive Simpson’s Scheme
	Example Using Adaptive Simpson Procedure
	Newton-Cotes Rules
	Summary
	Problems 6.1
	Computer Problems 6.1

	6.2 Gaussian Quadrature Formulas
	Description
	Change of Intervals
	Gaussian Nodes and Weights
	Legendre Polynomials
	Integrals with Singularities
	Summary
	Additional References
	Problems 6.2
	Computer Problems 6.2

	7 Systems of Linear Equations
	7.1 Naive Gaussian Elimination
	A Larger Numerical Example
	Algorithm
	Pseudocode
	Testing the Pseudocode
	Residual and Error Vectors
	Summary
	Problems 7.1
	Computer Problems 7.1

	7.2 Gaussian Elimination with Scaled Partial Pivoting
	Naive Gaussian Elimination Can Fail
	Partial Pivoting and Complete Partial Pivoting
	Gaussian Elimination with Scaled Partial Pivoting
	A Larger Numerical Example
	Pseudocode
	Long Operation Count
	Numerical Stability
	Scaling
	Summary
	Problems 7.2
	Computer Problems 7.2

	7.3 Tridiagonal and Banded Systems
	Tridiagonal Systems
	Strictly Diagonal Dominance
	Pentadiagonal Systems
	Block Pentadiagonal Systems
	Summary
	Additional References
	Problems 7.3
	Computer Problems 7.3

	8 Additional Topics Concerning Systems of Linear Equations
	8.1 Matrix Factorizations
	Numerical Example
	Formal Derivation
	Pseudocode
	Solving Linear Systems Using LU Factorization
	LDL[sup(T)] Factorization
	Cholesky Factorization
	Multiple Right-Hand Sides
	Computing A[sup(–1)]
	Example Using Software Packages
	Summary
	Problems 8.1
	Computer Problems 8.1

	8.2 Iterative Solutions of Linear Systems
	Vector and Matrix Norms
	Condition Number and Ill-Conditioning
	Basic Iterative Methods
	Pseudocode
	Convergence Theorems
	Matrix Formulation
	Another View of Overrelaxation
	Conjugate Gradient Method
	Summary
	Problems 8.2
	Computer Problems 8.2

	8.3 Eigenvalues and Eigenvectors
	Calculating Eigenvalues and Eigenvectors
	Mathematical Software
	Properties of Eigenvalues
	Gershgorin’s Theorem
	Singular Value Decomposition
	Numerical Examples of Singular Value Decomposition
	Application: Linear Differential Equations
	Application: A Vibration Problem
	Summary
	Problems 8.3
	Computer Problems 8.3

	8.4 Power Method
	Power Method Algorithms
	Aitken Acceleration
	Inverse Power Method
	Software Examples: Inverse Power Method
	Shifted (Inverse) Power Method
	Example: Shifted Inverse Power Method
	Summary
	Additional References
	Problems 8.4
	Computer Problems 8.4

	9 Approximation by Spline Functions
	9.1 First-Degree and Second-Degree Splines
	First-Degree Spline
	Modulus of Continuity
	Second-Degree Splines
	Interpolating Quadratic Spline Q(x)
	Subbotin Quadratic Spline
	Summary
	Problems 9.1
	Computer Problems 9.1

	9.2 Natural Cubic Splines
	Introduction
	Natural Cubic Spline
	Algorithm for Natural Cubic Spline
	Pseudocode for Natural Cubic Splines
	Using Pseudocode for Interpolating and Curve Fitting
	Space Curves
	Smoothness Property
	Summary
	Problems 9.2
	Computer Problems 9.2

	9.3 B Splines: Interpolation and Approximation
	Interpolation and Approximation by B Splines
	Pseudocode and a Curve-Fitting Example
	Schoenberg’s Process
	Pseudocode
	Bézier Curves
	Summary
	Additional References
	Problems 9.3
	Computer Problems 9.3

	10 Ordinary Differential Equations
	10.1 Taylor Series Methods
	Initial-Value Problem: Analytical versus Numerical Solution
	An Example of a Practical Problem
	Solving Differential Equations and Integration
	Vector Fields
	Taylor Series Methods
	Euler’s Method Pseudocode
	Taylor Series Method of Higher Order
	Types of Errors
	Taylor Series Method Using Symbolic Computations
	Summary
	Problems 10.1
	Computer Problems 10.1

	10.2 Runge-Kutta Methods
	Taylor Series for f (x, y)
	Runge-Kutta Method of Order 2
	Runge-Kutta Method of Order 4
	Pseudocode
	Summary
	Problems 10.2
	Computer Problems 10.2

	10.3 Stability and Adaptive Runge-Kutta and Multistep Methods
	An Adaptive Runge-Kutta-Fehlberg Method
	An Industrial Example
	Adams-Bashforth-Moulton Formulas
	Stability Analysis
	Summary
	Additional References
	Problems 10.3
	Computer Problems 10.3

	11 Systems of Ordinary Differential Equations
	11.1 Methods for First-Order Systems
	Uncoupled and Coupled Systems
	Taylor Series Method
	Vector Notation
	Systems of ODEs
	Taylor Series Method: Vector Notation
	Runge-Kutta Method
	Autonomous ODE
	Summary
	Problems 11.1
	Computer Problems 11.1

	11.2 Higher-Order Equations and Systems
	Higher-Order Differential Equations
	Systems of Higher-Order Differential Equations
	Autonomous ODE Systems
	Summary
	Problems 11.2
	Computer Problems 11.2

	11.3 Adams-Bashforth-Moulton Methods
	A Predictor-Corrector Scheme
	Pseudocode
	An Adaptive Scheme
	An Engineering Example
	Some Remarks about Stiff Equations
	Summary
	Additional References
	Problems 11.3
	Computer Problems 11.3

	12 Smoothing of Data and the Method of Least Squares
	12.1 Method of Least Squares
	Linear Least Squares
	Linear Example
	Nonpolynomial Example
	Basis Functions {g[sub(0)], g[sub(1)], . . . , g[sub(n)]}
	Summary
	Problems 12.1
	Computer Problems 12.1

	12.2 Orthogonal Systems and Chebyshev Polynomials
	Orthonormal Basis Functions {g[sub(0)], g[sub(1)], . . . , g[sub(n)]}
	Outline of Algorithm
	Smoothing Data: Polynomial Regression
	Summary
	Problems 12.2
	Computer Problems 12.2

	12.3 Other Examples of the Least-Squares Principle
	Use of a Weight Function w (x)
	Nonlinear Example
	Linear and Nonlinear Example
	Additional Details on SVD
	Using the Singular Value Decomposition
	Summary
	Additional References
	Problems 12.3
	Computer Problems 12.3

	13 Monte Carlo Methods and Simulation
	13.1 Random Numbers
	Random-Number Algorithms and Generators
	Examples
	Uses of Pseudocode Random
	Summary
	Problems 13.1
	Computer Problems 13.1

	13.2 Estimation of Areas and Volumes by Monte Carlo Techniques
	Numerical Integration
	Example and Pseudocode
	Computing Volumes
	Ice Cream Cone Example
	Summary
	Problems 13.2
	Computer Problems 13.2

	13.3 Simulation
	Loaded Die Problem
	Birthday Problem
	Buffon’s Needle Problem
	Two Dice Problem
	Neutron Shielding
	Summary
	Additional References
	Computer Problems 13.3

	14 Boundary-Value Problems for Ordinary Differential Equations
	14.1 Shooting Method
	Shooting Method Algorithm
	Modifications and Refinements
	Summary
	Problems 14.1
	Computer Problems 14.1

	14.2 A Discretization Method
	Finite-Difference Approximations
	The Linear Case
	Pseudocode and Numerical Example
	Shooting Method in the Linear Case
	Pseudocode and Numerical Example
	Summary
	Additional References
	Problems 14.2
	Computer Problems 14.2

	15 Partial Differential Equations
	15.1 Parabolic Problems
	Some Partial Differential Equations from Applied Problems
	Heat Equation Model Problem
	Finite-Difference Method
	Pseudocode for Explicit Method
	Crank-Nicolson Method
	Pseudocode for the Crank-Nicolson Method
	Alternative Version of the Crank-Nicolson Method
	Stability
	Summary
	Problems 15.1
	Computer Problems 15.1

	15.2 Hyperbolic Problems
	Wave Equation Model Problem
	Analytic Solution
	Numerical Solution
	Pseudocode
	Advection Equation
	Lax Method
	Upwind Method
	Lax-Wendroff Method
	Summary
	Problems 15.2
	Computer Problems 15.2

	15.3 Elliptic Problems
	Helmholtz Equation Model Problem
	Finite-Difference Method
	Gauss-Seidel Iterative Method
	Numerical Example and Pseudocode
	Finite-Element Methods
	More on Finite Elements
	Summary
	Additional References
	Problems 15.3
	Computer Problems 15.3

	16 Minimization of Functions
	16.1 One-Variable Case
	Unconstrained and Constrained Minimization Problems
	One-Variable Case
	Unimodal Functions F
	Fibonacci Search Algorithm
	Golden Section Search Algorithm
	Quadratic Interpolation Algorithm
	Summary
	Problems 16.1
	Computer Problems 16.1

	16.2 Multivariate Case
	Taylor Series for F: Gradient Vector and Hessian Matrix
	Alternative Form of Taylor Series
	Steepest Descent Procedure
	Contour Diagrams
	More Advanced Algorithms
	Minimum, Maximum, and Saddle Points
	Positive Definite Matrix
	Quasi-Newton Methods
	Nelder-Mead Algorithm
	Method of Simulated Annealing
	Summary
	Additional References
	Problems 16.2
	Computer Problems 16.2

	17 Linear Programming
	17.1 Standard Forms and Duality
	First Primal Form
	Numerical Example
	Transforming Problems into First Primal Form
	Dual Problem
	Second Primal Form
	Summary
	Problems 17.1
	Computer Problems 17.1

	17.2 Simplex Method
	Vertices in K and Linearly Independent Columns of A
	Simplex Method
	Summary
	Problems 17.2
	Computer Problems 17.2

	17.3 Approximate Solution of Inconsistent Linear Systems
	l[sub(1)] Problem
	l[sub(∞)] Problem
	Summary
	Additional References
	Problems 17.3
	Computer Problems 17.3

	Appendix A: Advice on Good Programming Practices
	A.1 Programming Suggestions
	Case Studies
	On Developing Mathematical Software

	Appendix B: Representation of Numbers in Different Bases
	B.1 Representation of Numbers in Different Bases
	Base β Numbers
	Conversion of Integer Parts
	Conversion of Fractional Parts
	Base Conversion 10 ↔ 8 ↔ 2
	Base 16
	More Examples
	Summary
	Problems B.1
	Computer Problems B.1

	Appendix C: Additional Details on IEEE Floating-Point Arithmetic
	C.1 More on IEEE Standard Floating-Point Arithmetic

	Appendix D: Linear Algebra Concepts and Notation
	D.1 Elementary Concepts
	Vectors
	Matrices
	Matrix-Vector Product
	Matrix Product
	Other Concepts
	Cramer’s Rule

	D.2 Abstract Vector Spaces
	Subspaces
	Linear Independence
	Bases
	Linear Transformations
	Eigenvalues and Eigenvectors
	Change of Basis and Similarity
	Orthogonal Matrices and Spectral Theorem
	Norms
	Gram-Schmidt Process

	Answers for Selected Problems
	Bibliography
	Index

