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I N T R O D U C T I O N  

SINCE THE APPEARANCE of  the first Scientific American Book 
o f  Mathematical Puzzles & Diversions, in 1959, popular in- 
terest in recreational mathematics has continued to increase. 
Many new puzzle books have been printed, old puzzle books 
reprinted, k i ts  o f  recreational ma th  materials are on the 
market ,  a new topological game (see Chapter 7 )  has caught 
the fancy o f  the country's youngsters, and an  excellent little 
magazine called Recreational Mathematics has been started 
by Joseph Madachy, a research chemist in Idaho Falls. Chess- 
men  - those intellectual status symbols - are jumping all 
over the place, from T V  commercials and magazine adver- 
tisements t o  A1 Horozoitz's lively chess corner in The Satur- 
day Review and the knight on Paladin's holster and have- 
gun-will-travel card. 

This  pleasant trend is  not confined to the U.S. A classic 
four-volume French work ,  Rkcrkations Mathkmatiques, b y  
Edouard Lucas, has been reissued in France in paperbacks. 
Thomas H .  OJBeirne, a Glasgozu mathematician, is  writing a 
splendid puzzle column in a British science journal. I n  the 
U.S.S.R. a handsome 575-page collection of puzzles, assem- 
bled by mathematics teacher Boris Kordemski,  is  selling in 
Russian and Ukrainian editions. I t  is  all, o f  course, part o f  
a world-wide boom in ma th  -in turn a reflection o f  the in- 
creasing demand for skilled mathematicians to meet the in- 
credible needs of the nezo triple age o f  the atom, spaceship 
and computer. 

The  computers are not replacing mathematicians; they 
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are  breeding t h e m .  I t  m a y  take  a computer  less t h a n  t w e n t y  
seconds t o  solve a t h o r n y  problem, but  i t  m a u  have t a k e n  a 
group o f  mathemat ic ians  m a n y  m o n t h s  to  program t h e  prob- 
lem. I n  addi t ion,  scientific research i s  becoming more  and 
more  dependent  o n  t h e  mathemat ic ian f o r  impor tan t  break- 
throughs  in theory .  T h e  re lat iv i ty  revolzction, remember ,  zuns 
t h e  w o r k  o f  a m a n  w h o  had n o  experience in t h e  laboratory. 
At t h e  m o m e n t ,  a tomic  scientists  are  thoroughly  befuddled 
b y  t h e  preposterous properties o f  some t h i r t y  d igeren t  fun- 
damental  particles; " a  vast  jumble o f  odd dimensionless 
numbers,' '  a s  J .  Robert  Oppenheimer  has  described t h e m ,  
"none o f  t h e m  understandable or derivable,  all zoith a n  in- 
sult ing lack o f  obvious meaning." One o f  these days  a great 
creative mathemat ic ian,  s i t t ing alone and scribbling o n  a 
piece o f  paper, or  shaving,  or  taking his  family o n  a picnic, 
zvill experience a flash of ins ight .  T h e  particles zoill sp in  in to  
the i r  appointed places, rank  o n  r a n k ,  in a beautiful  pat tern 
of unalterable law. At least, t ha t  i s  wha t  t h e  particle physi- 
cists  hope will  happen.  O f  course the  great puzzle solver toill 
d r a w  o n  laboratory data ,  but  the  chances are  tha t  he  zuill be, 
l ike Eins te in ,  pr imari ly  a mathemat ic ian.  

N o t  only  in the  physical sciences i s  mathemat ics  battering 
dozun locked doors. T h e  biological sciences, psychology and 
t h e  social sciences are  beginning to  reel under  the  invasion 
of mathemat ic ians  armed w i t h  strange n e w  statistical tech- 
n iques  for designing experiments ,  analyzing data ,  predicting 
probable results .  I t  m a y  still be t rue  tha t  if the  President o f  
t h e  Uni ted S ta tes  asks  three  economic advisers to  s t u d y  a n  
impor tan t  question,  t h e y  zoill report  back w i t h  four di f ferent  
opinions; but  it i s  n o  longer absurd to  imagine a dis tant  d a y  
w h e n  economic disagreements  can be settled b y  mathemat ics  
in a zuay t h a t  i s  no t  subject  to  t h e  uszial dismal disputes.  I n  
the  cold l ight  of m o d e r n  economic theory  t h e  conflict between 
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socialism and capitalism i s  rapidly becoming, as A r t h u r  
Koestler has put i t ,  as naive  and sterile as  the  w a r s  in Lilli- 
put over the  t w o  w a y s  to  break a n  egg. ( I  speak only of the  
economic debate; the  conflict betzoeen democraclj and totali- 
tar ianism has nothing to  do w i t h  mathematics.)  

B u t  those are zueighty mat ters  and th i s  i s  only a book o f  
amusements .  I f  i t  has a n y  serious purpose at  all i t  i s  to  stim- 
ulate popular interest  in mathematics.  S u c h  stimulation i s  
surely desirable, i f  f o r  n o  other reason than  to  help the  lay- 
m a n  understand tohat the  scientists are u p  to. A n d  they  are 
u p  t o  plenty. 

I zuould like to  express again m y  gratitude to  the  pub- 
lisher, editors and staff o f  Scientific American, the  magazine 
in which  these chapters first appeared; to  m y  zuife for assist- 
ance in m a n y  w a y s ;  and t o  the  hundreds o f  fr iendly  readers 
zuho continue t o  correct m y  errors and suggest nezu material. 
I zuould like also t o  thank ,  for her  expert  help in preparing 
the manuscript ,  N i n a  Bourne of S i m o n  and Schuster.  

MARTIN GARDNER 
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T h e  Five Platonic Solids 

A REGULAR POLYGON is a plane figure bounded by 
straight lines, with equal sides and equal interior an- 

gles. There is of course an  infinite number of such figures. 
In three dimensions the analog of the regular polygon is the 
regular polyhedron: a solid bounded by regular polygons, 
with congruent faces and congruent interior angles a t  its 
corners. One might suppose that  these forms are  also in- 
finite, but in fact they are, as Lewis Carroll once expressed 
it, "provokingly few in number." There are  only five regular 
convex solids : the regular tetrahedron, hexahedron (cube), 
octahedron, dodecahedron and icosahedron [see Fig. I ] .  

The first systematic study of the five regular solids ap- 
pears to have been made by the ancient Pythagoreans. They 
believed that  the tetrahedron, cube, octahedron and icosa- 
hedron respectively underlay the structure of the traditional 
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TETRAHEDRON / 

HEXAHEDRON 

FIG. 1.  
DODECAHEDRON 

The five Platonic solids. The cube and octahedron a r e  "duals" in the 
sense t h a t  if the centers of all pairs of adjacent faces on one a r e  con- 
nected by s traight  lines, the lines form the edges of the other. The 
dodecahedron and icosahedron a re  dually related in the same way. The 
tetrahedron is its own dual. 
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four elements: fire, earth, air and water. The dodecahedron 
was obscurely identified with the entire universe. Because 
these notions were elaborated in Plato's Timaeus, the regu- 
lar polyhedrons came to be known as the Platonic solids. The 
beauty and fascinating mathematical properties of these five 
forms haunted scholars from the time of Plato through the 
Renaissance. The analysis of the Platonic solids provides the 
climactic final book of Euclid's Elements. Johannes Kepler 
believed throughout his life that  the orbits of the six planets 
known in his day could be obtained by nesting the five solids 
in a certain order within the orbit of Saturn. Today the 
mathematician no longer views the Platonic solids with mys- 
tical reverence, but their rotations are studied in connection 
with group theory and they continue to play a colorful role 
in recreational mathematics. Here we shall quickly examine 
a few diversions in which they are  involved. 

There are four different ways in which a sealed envelope 
can be cut and folded into a tetrahedron. The following is 
perhaps the simplest. Draw an equilateral triangle on both 
sides of one end of an  envelope [see Fig. 21. Then cut through 

F I G .  2 .  

How a sealed envelope can be cut fo r  folding into a tetrahedron. 
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both layers of the envelope as indicated by the broken line 
and discard the right-hand piece. By creasing the paper 
along the sides of the front and back triangles, points A and 
B are brought together to form the tetrahedron. 

Figure 3 shows the pattern for a tantalizing little puzzle 
currently marketed in plastic. You can make the puzzle 
yourself by cutting two such patterns out of heavy paper. 
(All the line segments except the longer one have the same 
length.) Fold each pattern along the lines and tape the edges 
to make the solid shown. Now try to fit the two solids to- 
gether to make a tetrahedron. A mathematician I know likes 
to annoy his friends with a practical joke based on this 
puzzle. He bought two sets of the plastic pieces so that he 

\ 

\ 

I\\ 

i 
------------------A 

---- - ----- --- /4!3b A pattern FIG. (left) 3. that 

can be folded into a sol- 
id (right), two of which 
make a tetrahedron. 

could keep a third piece concealed in his hand. He displays 
a tetrahedron on the table, then knocks i t  over with his hand 
and a t  the same time releases the concealed piece. Naturally 
his friends do not succeed in forming the tetrahedron out of 
the three pieces. 

Concerning the cube I shall mention only an electrical 
puzzle and the surprising fact that a cube can be passed 
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through a hole in a smaller cube. If you will hold a cube so 
that one corner points directly toward you, the edges out- 
lining a hexagon, you will see a t  once that there is ample 
space for a square hole that  can be slightly larger than the 
face of the cube itself. The electrical puzzle involves the net- 
work depicted in Figure 4. If each edge of the cube has a 

F I G .  4 .  
An electrical-network puzzle. 

resistance of one ohm, what is the resistance of the entire 
structure when current flows from A to B? Electrical en- 
gineers have been known to produce pages of computations 
on this problem, though i t  yields easily to the proper insight. 

All five Platonic solids have been used as dice. Next to the 
cube the octahedron seems to have been the most popular. 
The pattern shown in Figure 5, its faces numbered as indi- 
cated, will fold into a neat octahedron whose open edges can 
be closed with transparent tape. The opposite sides of this 
die, as in the familiar cubical dice, total seven. Moreover, a 
pleasant little mind-reading stunt is made possible by this 
arrangement of digits. Ask someone to think of a number 
from 0 to 7 inclusive. Hold up the octahedron so that he sees 
only the faces 1, 3, 5 and 7, and ask him if he sees his 
chosen number. If he says "Yes," this answer has a key 



18 The Five Platonic Solids 

value of 1. Turn the solid so that he sees faces 2, 3, 6 and 7, 
and ask the question again. This time "Yes" has the value 
of 2. The final question is asked with the solid turned so that 

F I G .  5. 
A strip to make a n  octahedral die. 

he sees 4, 5, 6 and 7. Here a "Yes" answer has the value of 
4. If you now total the values of his three answers you ob- 
tain the chosen number, a fact that  should be easily ex- 
plained by anyone familiar with the binary system. To 
facilitate finding the three positions in which you must hold 
the solid, simply mark in some way the three corners which 
must be pointed toward you as  you face the spectator. 

There are  other interesting ways of numbering the faces 
of an octahedral die. I t  is possible, for  example, to arrange 
the digits 1 through 8 in such a manner that  the total of 
the four faces around each corner is a constant. The con- 
stant must be 18, but there are  three distinct ways (not 
counting rotations and reflections) in which the faces can 
be numbered in this fashion. 

An elegant way to construct a dodecahedron is explained 
in Hugo Steinhaus's book Mathematical Snapshots. Cut from 
heavy cardboard two patterns like the one pictured a t  left 
in Figure 6. The pentagons should be about an  inch on a 
side. Score the outline of each center pentagon with the 
point of a knife so that the pentagon flaps fold easily in one 
direction. Place the patterns together as  shown a t  right in 
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the illustration so that  the flaps of each pattern fold toward 
the others. Weave a rubber band alternately over and under 
the projecting ends, keeping the patterns pressed flat. When 
you release the pressure, the dodecahedron will spring 
magically into shape. 

If the faces of this model are colored, a single color to 
each face, what is the minimum number of colors needed to 
make sure that  no edge has the same color on both sides? 
The answer is four, and i t  is not difficult to discover the 
four different ways that  the colors can be arranged (two 
are mirror images of the other two). The tetrahedron also 
requires four colors, there being two arrangements, one a 
reflection of the other. The cube needs three colors and the 
octahedron two, each having only one possible arrangement. 
The icosahedron calls for three colors ; here there are no less 
than 144 different patterns, only six of which are identical 
with their mirror images. 

If a fly were to walk along the 12 edges of an icosahedron, 
traversing each edge a t  least once, what is the shortest dis- 

FIG.  6 .  
Two identical patterns are fastened together with a rubber band to 
make a pop-up dodecahedron. 
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tance i t  could travel? The fly need not return to its starting 
point, and i t  would be necessary for i t  to go over some 
edges twice. (Only the octahedron's edges can be traversed 
without retracing.) A plane projection of the icosahedron 
[Fig. 71 may be used in working on this problem, but one 
must remember that  each edge is one unit in length. (I  have 
been unable to resist concealing a laconic Christmas greet- 
ing in the way the corners of this diagram are  labeled. I t  
is not necessary to solve the problem in order to find it.) 

FIG.  7 .  
A plane projection of an icosahedron. 

In view of the fact that  cranks persist in trying to trisect 
the angle and square the circle long after these feats have 
been proved impossible, why has there been no comparable 
effort to find more than five regular polyhedrons? One rea- 
son is that  it is quite easy to "see" that  no more are  possible. 
The following simple proof goes back to Euclid. 

A corner of a polyhedron must have a t  least three faces. 
Consider the simplest face: an equilateral triangle. We can 
form a corner by putting together three, four or five such 
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triangles. Beyond five, the angles total 360 degrees or  more 
and therefore cannot form a corner. We thus have three 
possible ways to construct a regular convex solid with tri- 
angular faces. Three and only three squares will similarly 
form a corner, indicating the possibility of a regular solid 
with square faces. The same reasoning yields one possibility 
with three pentagons a t  each corner. We cannot go beyond 
the pentagon, because when we put three hexagons together 
a t  a corner, they equal 360 degrees. 

This argument does not prove tha t  five regular solids can 
be constructed, but i t  does show clearly that  no more than 
five a re  possible. More sophisticated arguments establish 
tha t  there a re  six regular polytopes, a s  they a re  called, in 
four-dimensional space. Curiously, in every space of more 
than four dimensions there a re  only three regular polytopes: 
analogs of the tetrahedron, cube and octahedron. 

A moral may be lurking here. There is a very real sense 
in which mathematics limits the kinds of structures tha t  
can exist in nature. I t  is not possible, for  example, tha t  
beings in another galaxy gamble with dice tha t  a re  regular 
convex polyhedra of a shape unknown to us. Some theolo- 
gians have been so bold a s  to contend tha t  not even God 
himself could construct a sixth Platonic solid in three- 
dimensional space. In similar fashion, geometry imposes un- 
breakable limits on the varieties of crystal growth. Some 
day physicists may even discover mathematical limitations 
to the number of fundamental particles and basic laws. No 
one of course has any notion of how mathematics may, if 
indeed i t  does, restrict the nature of structures that  can be 
called "alive." I t  is conceivable, for  example, tha t  the proper- 
ties of carbon compounds are  absolutely essential for  life. 
In any case, a s  humanity braces itself for  the shock of find- 
ing life on other planets, the Platonic solids serve a s  ancient 
reminders t ha t  there may be fewer things on Mars and 
Venus than a re  dreamt of in our philosophy. 
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A N S W E R S  

THE TOTAL resistance of the cubical network is 5/6 ohm. 
If the three corners closest to A are  short-circuited together, 
and the same is done with the three corners closest to B, no 
current will flow in the two triangles of short circuits be- 
cause each connects equipotential points. I t  is  now easy to 
see that there are three one-ohm resistors in parallel be- 
tween A and the nearest triangle (resistance 1/3 ohm), six 
in parallel between the triangles (1/6 ohm),  and three in 
parallel between the second triangle and B (1/3 ohm), 
making a total resistance of 5/6 ohm. 

C. W. Trigg, discussing the cubical-network problem in 
the November-December 1960 issue of Mathematics Maga- 
zine, points out that  a solution for it may be found in Mag- 
netism and Electricity, by E. E. Brooks and A. W. Poyser, 
1920. The problem and the method of solving i t  can be 
easily extended to networks in the form of the other four 
Platonic solids. 

The three ways to number the faces of an  octahedron so 
that  the total around each corner is 18 a re :  6, 7, 2, 3 clock- 
wise (or counterclockwise) around one corner, and 1, 4, 5, 
8 around the opposite corner (6  adjacent to 1, 7 to 4 and so 
o n ) ; 1 , 7 , 2 , 8 a n d 4 , 6 , 3 ,  5 ; a n d 4 , 7 , 2 ,  5 a n d 6 ,  1 ,  8 , 3 .  See 
W. W. Rouse Ball's Mathematical Recreations and Essays, 
Chapter 7, for a simple proof that  the octahedron is the only 
one of the five solids whose faces can be numbered so that  
there is a constant sum a t  each corner. 

The shortest distance the fly can walk to cover all edges 
of an  icosahedron is 35 units. By erasing five edges of the 
solid (for example, edges FM, BE, JA, ID and HC) we are 
left with a network that  has only two points, G and K, where 
an odd number of edges come together. The fly can there- 
fore traverse this network by starting a t  G and going to K 
without retracing an edge - a distance of 25 units. This is 
the longest distance it can go without retracing. Each erased 
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edge can now be added to this path, whenever the fly reaches 
it, simply by traversing i t  back and forth. The five erased 
edges, each gone over twice, add 10 units to the path, mak- 
ing a total of 35. 

The Christmas message conveyed by the letters is "Noel" 
(no "L"). 
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Tetrajlexagons 

H EXAFLEXAGONS are  diverting six-sided paper struc- 
tures that  can be "flexed" to  bring different surfaces 

into view. They are  constructed by folding a strip of paper 
as  explained in the first Scientific American Book of Mathe- 
matical Puzzles and Diversions. Close cousins to the hexa- 
flexagons are a wide variety of four-sided structures which 
may be grouped loosely under the term tetraflexagon. 

Hexaflexagons were invented in 1939 by Arthur H. Stone, 
then a graduate student a t  Princeton University and now a 
lecturer in mathematics a t  the University of Manchester in 
England. Their properties have been thoroughly investi- 
gated ; indeed, a complete mathematical theory of hexaflexi- 
gation has been developed. Much less is known about tetra- 
flexagons. Stone and his friends (notably John W. Tukey, 
now a well-known topologist) spent considerable time fold- 



ing and analyzing these four-sided forms, but did not suc- 
ceed in developing a comprehensive theory that  would cover 
all their discordant variations. Several species of tetraflexa- 
gon are  nonetheless intensely interesting from the recrea- 
tional standpoint. 

Consider first the simplest tetraflexagon, a three-faced 
structure which can be called the tri-tetraflexagon. It is  
easily folded from the str ip of paper shown in Figure 8 (8a 
is the front of the s t r ip ;  8b, the back). Number the small 
squares on each side of the str ip as  indicated, fold both ends 
inward (8c) and join two edges with a piece of transparent 
tape (8d) .  Face 2 is now in f ront ;  face 1 is in back. To flex 
the structure, fold it back along the vertical center line of 
face 2. Face 1 will fold into the flexagon's interior as face 3 
flexes into view. 

F I G .  8 .  

How to make a tri-tet~aflexagon. 

Stone and his friends were not the first to discover this 
interesting structure; it has been used for centuries as a 
double-action hinge. I have on my desk, for instance, two 
small picture frames containing photographs. The frames 
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are  joined by two tri-tetraflexagon hinges which permit the 
frames to flex forward or backward with equal ease. 

The same structure is involved in several children's toys, 
the most familiar of which is a chain of flat wooden or plas- 
tic blocks hinged together with crossed tapes. If the toy is 
manipulated properly, one block seems to tumble down the 
chain from top to bottom. Actually this is an  optical illusion 
created by the flexing of the tri-tetraflexagon hinges in 
serial order. The toy was popular in the U. S. during the 
1890's, when i t  was called Jacob's Ladder. (A  picture and 
description of the toy appear in Albert A. Hopkins's Magic: 
Stage Illusions and Scientific Diversions, 1897.) Two cur- 
rent models sell under the trade names Klik-Klak Blox and 
Flip Flop Blocks. 

There are a t  least six types of four-faced tetraflexagons, 
known as tetra-tetraflexagons. A good way to make one is 
to start  with a rectangular piece of thin cardboard ruled 
into 12 squares. Number the squares on both sides as  de- 
picted in Figure 9 (9a and 9b). Cut the rectangle along the 
broken lines. Star t  as  shown in 9a, then fold the two center 
squares back and to the left. Fold back the column on the 
extreme right. The cardboard should now appear as shown 
in 9c. Again fold back the column on the right. The single 
square projecting on the left is now folded forward and to 
the right. This brings all six of the "1" squares to the front. 
Fasten together the edges of the two middle squares with a 
piece of transparent tape as  shown in 9d. 

You will find i t  a simple matter to flex faces 1, 2, and 3 
into view, but finding face 4 may take a bit more doing. 
Naturally you must not tear the cardboard. Higher-order 
tetraflexagons of this type, if they have an even number of 
faces, can be constructed from similar rectangular starting 
patterns; tetraflexagons with an odd number of faces call 
for patterns analogous to the one used for the tri-tetraflexa- 
gon. Actually two rows of small squares are sufficient for 
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c d 
F I G .  9. 

How to make a tetra-tetraflexagon. 

making tetraflexagons of this sort, but adding one or  more 
additional rows (which does not change the essential struc- 
ture) makes the model easier to manipulate. 

The tetra-tetraflexagon shown in Figure 9 has often been 
used as  an  advertising novelty because the difficulty of find- 
ing its fourth face makes i t  a pleasant puzzle. I have seen 
many such folders, some dating back to the 1930's. One had 
a penny glued to the hidden face; the object of the puzzle 
was to find the lucky penny. In 1946 Roger Montandon, of 
The Montandon Magic Company, Tulsa, Oklahoma, copy- 
righted a tetra-tetraflexagon folder called Cherchez la 
Femme, the puzzle being to find the picture of the young 
lady. Magic and novelty stores also seli an  ancient children's 
trick usually called the "magic billfold." Its tri-tetraflexagon 
ribbon-hinges permit some simple disappearing stunts with 
a dollar bill and other flat objects. 



A different variety of tetraflexagon, and one which has 
the unusual property of flexing along either of two axes a t  
right angles to each other, can also be made with four or  
more faces. The construction of a hexa-tetraflexagon of this 
type is depicted in Figure 10. Begin with the square-shaped 
s t r ip  shown in 10a ( f ront )  and lob (back) .  I t s  small 
squares should be numbered a s  indicated. Crease along each 
internal line in 10a so tha t  each line is the trough of a valley, 
flatten the s tr ip again, then fold on the four lines marked 
with arrows. All folds a re  made to conform with the way 

FIG.  10.  
How to  make a hexa-tetraflexagon. 
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the lines were originally creased. The str ip now looks like 
10c. Fold on the three lines marked with arrows to form a 
square flexagon. Overlap the ends so tha t  all the "2" squares 
a r e  uppermost (10d).  Attach a piece of transparent tape to 
the edge of the square a t  upper left, then bend i t  back to 
overlap the edge of a "1" square on the opposite side. 

The hexa-tetraflexagon can now be flexed along both ver- 
tical and horizontal axes to expose all six of its faces. 
Larger square strips will yield flexagons whose number of 
faces increases by fours : 10, 14, 18, 22 and so on. For  tetra- 
flexagons of different orders, strips of other shapes must 
be used. 

I t  was while Stone was working on right-triangle forms 
of flexagons ("for which, perhaps mercifully," he writes in 
a letter, "we invented no name") tha t  he hit upon a most 
remarkable puzzle - the tetraflexatube. He had constructed 
a flat, square-shaped flexagon, which to  his surprise opened 
into a tube. Fur ther  experimentation revealed that  the tube 
could be turned completely inside out by a complicated 
series of flexes along the boundaries of the right triangles. 

The flexatube is made from a s t r ip  of four squares [see 
Fig. 111, each of which is ruled into four r ight  triangles. 
Crease back and forth along all the lines, then tape the ends 
together to form the cubical tube. The puzzle is to turn  the 
tube inside out by folding only on the creased lines. A more 
durable version can be made by gluing 16 triangles of card- 
board or  thin metal onto cloth tape, allowing space between 
the triangles for  flexing. I t  is useful to color only one side of 
the triangles, so tha t  you can see a t  all times just what sort 
of progress you a r e  making toward reversing the tube. 

One method of solving this fascinating puzzle is illus- 
trated in drawings l l b  through I l k .  Push the two A corners 
together, flattening the cube to the square flexagon of draw- 
ing l l c .  Fold this forward along the axis BB to form the 
triangle of drawing l l d .  Now push the two B corners to- 



FIG. 1 1 .  
How to make and flex the flexatube. 
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gethe'r to  make a flat square, but make sure tha t  the two 
inside flaps go in opposite directions ( l l e )  . Open the square 
a s  in drawing l l f ,  then pull corner C down and to  the left 
to  make the flat s t ructure shown in drawing l l g .  Corner D 
is now pushed to the left, behind the structure, creating the 
flat rectangle of drawing l l h .  This rectangle opens to form 
a cubical tube ( l l i )  t ha t  is half the height of the original one. 

You are  now a t  the mid-point of your operations; exactly 
half the tube has been reversed. Flatten the tube to make a 
rectangle again ( l l j ) ,  but flatten i t  in the opposite way 
from tha t  shown in drawing l l h .  Start ing a s  shown in 
drawing I l k ,  the previous operations a re  now "undone," so 
to  speak, by performing them in reverse. Result: a reversed 
flexatube. A t  least two other completely different methods 
of turning the flexatube inside out a re  known, both a s  de- 
vious and difficult to  discover a s  this one. 

Recently Stone has been able to prove that  a cylindrical 
band of ang width can be turned inside out by a finite num- 
ber of folds along straight  lines, but the general method is 
much too involved to describe here. The question arises : Can 
a paper bag ( tha t  is, a rectangular tube closed on the bot- 
tom) be turned inside out by a finite number of folds? This 
is a n  unsolved problem. Apparently the  answer is no, re- 
gardless of the bag's proportions, though i t  probably would 
be extremely difficult to  find a satisfactory proof. 
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Henry Ernest Dudeney: 
England's Greatest 

H ENRY ERNEST DUDENEY was England's greatest 
inventor of puzzles ; indeed, he may well have been the 

greatest puzzlist who ever lived. Today there is scarcely a 
single puzzle book that  does not contain (often without 
credit) dozens of brilliant mathematical problems that  had 
their origin in Dudeney's fertile imagination. 

He was born in the English village of Mayfield in 1857. 
Thus he was 16 years younger than Sam Loyd, the Ameri- 
can puzzle genius. I do not know whether the two men ever 
met, but in the 1890s they collaborated on a series of puzzle 



articles for the English magazine Tit-Bits, and later they
arranged to exchange puzzles for their magazine and news-
paper columns. This may explain the large amount of dupli-
cation in the published writings of Loyd and Dudeney.

Of the two, Dudeney was probably the better mathemati-
cian. Loyd excelled in catching the public fancy with
manufactured toys and advertising novelties. None of
Dudeney’s creations had the world-wide popularity of Loyd’s
“14-15” puzzle or his “Get Off the Earth” paradox involving a
vanishing Chinese warrior. On the other hand, Dudeney’s
work was mathematically more sophisticated (he once
described the rebus or picture puzzle, of which Loyd produced
thousands, as a “juvenile imbecility” of interest only to the fee-
ble-minded). Like Loyd, he enjoyed clothing his problems
with amusing anecdotes. In this he may have had the assis-
tance of his wife Alice, who wrote more than 30 romantic nov-
els that were widely read in her time. His six books of puzzles
(three are collections assembled after his death in 1930)
remain unexcelled in the literature of puzzledom.

Dudeneys‘s first book, The Canterbury Puzzles, was published
in 1907. It purports to be a series of quaint posers propound-
ed by the same group of pilgrims whose tales were recounted
by Chaucer. “I will not stop to explain the singular manner in
which they came into my possession,” Dudeney writes, “but
[will] proceed at once….. to give my readers an opportunity of
solving them.” The haberdasher’s problem, found in this
book, is Dudeney’s best-known geometrical discovery. The
problem is to cut an equilateral triangle into four pieces that
can then be reassembled to form a square.

The drawing at upper left in Figure 12 shows how the cuts
are made. Bisect AB at D and BC at E. Extend AE to F so that
EF equals EB. Bisect AF at G, then, with G as the center,
describe the arc AHF. Extend EB to H. With E as the center,
draw the arc HJ. Make JK equal to BE. From D and K drop
perpendiculars on EJ to obtain points L and M.

Henry Ernest Dudeney: England’s Greatest Puzzlist 33
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The four pieces can now be rearranged to make a perfect 
square, as shown a t  upper right in the illustration. A re- 
markable feature of this dissection is that, if the pieces are 
hinged a t  three vertices as shown in the drawing a t  the 
bottom, they form a chain that  can be closed clockwise to 
make the triangle and counterclockv~ise to make the square. 

FIG. 1 2 .  
Dudeney's four-piece dissection of equilateral triangle to square. 

Dudeney rendered the figure into a brass-hinged mahogany 
model, which he used for demonstrating the problem before 
the Royal Society of London in 1905. 
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According to a theorem first proved by the great German 
mathematician David Hilbert, any polygon can be trans- 
formed into any other polygon of equal area by cutting i t  
into a fihite number of pieces. The proof is lengthy but not 
difficult. It rests on two facts: (1) any polygon can be cut 
by diagonals into a finite number of triangles, and (2) any 
triangle can be dissected into a finite number of parts that 
can be rearranged to form a rectangle of a given base. This 
means that we can change any polygon, however weird its 
shape, into a rectangle of a given base simply by chopping 
i t  first into triangles, changing the triangles to rectangles 
with the given base, then piling the rectangles in a column. 
The column can then be used, by reversing the procedure, 
for producing any other polygon with an area equal to that 
of the original one. 

Unexpectedly, the analogous theorem does not hold for 
polyhedrons: solids bounded by plane polygons. There is no 
general method for dissecting any polyhedron by plane cuts 
to form any different polyhedron of equal volume, though of 
course it can be done in special cases. Hope for a general 
method was abandoned in 1900 when i t  was proved impos- 
sible to dissect a prism into a regular tetrahedron. 

Although Hilbert's procedure guarantees the transforma- 
tion of one polygon into another by means of a finite num- 
ber of cuts, the number of pieces required may be very 
large. To be elegant, a dissection must require the fewest 
possible pieces. This is often extremely difficult to determine. 
Dudeney was spectacularly successful in this odd geometri- 
cal ar t ,  often bettering long-established records. For exam- 
ple, although the regular hexagon can be cut into as few as 
five pieces that  will make a square, the regular pentagon 
was for many years believed to require a t  least seven. Dude- 
ney succeeded in reducing the number to six, the present 
record. Figure 13 shows how a pentagon can be squared by 
Dudeney's method. For an explanation of how Dudeney ar- 
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F I G .  1 3 .  

A pentagon reassembled into a square. 

rived a t  the method, the interested reader is referred to his 
Amuse tnen t s  in Mathemat ics ,  published in 1917. 

Dudeney's best-known brain teaser, about the spider and 
the fly, is a n  elementary but beautiful problem in geodesics. 
I t  first appeared in an  English newspaper in 1903 but did 
not arouse widespread public interest until he presented i t  
again two years later in the London Daily Mail. A rectangu- 
lar room has the dimensions shown in Figure 14. The spider 

< 
30 FT. 

F I G .  1 4 .  

The problem of the spider and the fly. 
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is a t  the middle of an  end wall, one foot from the ceiling. 
The fly is a t  the middle of the opposite end wall, one foot 
above the floor, and too paralyzed with fear to move. What 
is the shortest distance the spider must crawl in order to 
reach the fly? 

The problem is solved by cutting the room so t~ a+ walls 
and ceiling can be folded flat, then drawing a straight line 
from spider to fly. However, there are  many ways in which 
the room can be folded flat, so i t  is not as  easy as  i t  first ap- 
pears to determine the shortest path. 

A less well-known but similar geodesic problem, which 
appears in Dudeney's Modern  Puzz les  (published in 1926), 
involves the cylindrical glass shown in Figure 15. I t  is four 
inches high and six inches in circumference. On the inside, 
one inch from the top, is a drop of honey. On the outside, 
one inch from the bottom and directly opposite, is a fly. 
What is the shortest path by which the fly can walk to the 
honey, and exactly how f a r  does the fly walk? 

FIG.  IS. 

The fly and  the  honey. 
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It is interesting to note that  although Dudeney had little 
familiarity with topology, then in its infancy, he frequently 
used clever topological tricks for solving various route and 
counter-moving puzzles. He called it his "buttons and string 
method." A typical example is afforded by the ancient chess 
problem shown in Figure 16. How can you make the white 
knights change places with the black knights in the fewest 
number of moves? We replace the eight outside squares 
with buttons [middle illustration] and draw lines to indicate 
all possible knight moves. If we regard these lines as  strings 
joining the buttons, i t  is clear that  we can open the string 
into a circle [bot tom illustration] without changing the topo- 
logical structure of the elements and their connections. We 
see a t  once that  we have only to move the knights around 
the circle in either direction until they are exchanged, keep- 
ing a record of the moves so that  they can be reproduced on 
the original square board. In this way what seems a t  first 
to be a difficult problem becomes ridiculously easy. 

Of Dudeney's many problems involving number theory, 
perhaps the hardest to solve is the question posed by the 
doctor of physic in The Canterbury Puzzles. The good doc- 
tor produced two spherical phials, one exactly a foot in cir- 
cumference and the other two feet in circumference. "I do 
wish," said the doctor, "to have the exact measures of two 
other phials, of a like shape but different in size, that may 
together contain just as much liquid as  is contained by these 
two." 

Since similar solids have volumes that  are in the same 
proportion as  the cubes of corresponding lengths, the prob- 
lem reduces to the Diophantine task of finding two rational 
numbers other than 1 and 2 whose cubes will add up to nine. 
Both numbers must of course be fractions. Dudeney's solu- 
tion was: 
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F I G .  16 .  

Dudeney's 
"buttons and s t r ing  method." 
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These fractions had denominators of shorter length than 
any previously published. Considering the fact that Dude- 
ney worked without a modern digital computer, the achieve- 
ment is something to wonder at. 

Readers who like this type of problem may enjoy the 
much simpler search for two fractions whose cubes total 
exactly six. A published "proof" by the 19th-century French 
mathematician Adrien Marie Legendre that  no such frac- 
tions could be found was exploded when Dudeney discovered 
a solution in which each fraction has only two digits above 
and two below the line. 

A D D E N D U M  

DUDENEY'S dissection of the equilateral triangle to form a 
square brought a number of interesting letters from readers. 
John S. Gaskin of London and Arthur B. Niemoller of Mor- 
ristown, New Jersey, independently discovered that  Dude- 
ney's method, with certain modifications, can be applied to 
a large class of triangles that  are not equilateral. A lady in 
Brooklyn wrote that  her son had constructed for her a nest 
of four tables, the tops of which can be fitted together to 
make either a square or an  equilateral triangle, and that  the 
tables had proved to be quite a conversation piece. L. 
Vosburgh Lyons of New York used Dudeney's construction 
for cutting the plane into an  endless mosaic of interlocking 
squares and equilateral triangles. 

Several readers, supposing that  points J and K (in Fig- 
ure 12) lay directly beneath points D and E, sent proofs that 
the four pieces would not form a perfect square. But Dude- 
ney's construction does not put J and K exactly beneath D 
and E. A formal proof of the accuracy of the dissection will 
be found in Chester W. Hawley's article, "A Further Note 
on Dissecting a Square into an Equilateral Triangle," in 
The Mathematics Teacher, February, 1960. 
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A remarkable variation of Dudeney's spider and fly prob- 
lem will be found in Maurice Kraitchik's Mathematical 
Recreations, 1953, page 17. Eight spiders start from a spot 
80 inches above the center of one end wall of the rectangular 
room. They take eight different paths to reach a fly that is 
80 inches below the center of the opposite wall. Each spider 
moves at  a speed of .65 mile per hour, and a t  the end of 
625/11 seconds they arrive simultaneously a t  the fly. What 
are the room's dimensions? 

ANSWERS 

THE SHORTEST walking path of the spider to the fly is exactly 
40 feet, as indicated on the unfolded room shown in Figure 
17. The reader may be surprised that this geodesic carries 
the spider across five of the room's six sides. 

The fly reaches the honey along the five-inch path drawn 
on the unrolled cylinder depicted in Figure 18. This is the 
path that would be taken by an imaginary beam of light 
moving across the rectangle from fly to honey and reflected 
by the rectangle's upper boundary. Clearly i t  is the same 

FIG. 17. FIG. 18. 

Answer to spider and fly problem. Answer to fly and honey problem. 



42 H e n r y  Ernes t  Dudeney:  England 's  Greatest  Puzzlist 

length as  the hypotenuse of a right triangle with sides of 
three and four, as  indicated. 

The two fractions whose cubes add up to six are  17/21 
and 37/21. 

For an answer to the spiders and fly puzzle given in the 
addendum, consult the reference cited. 
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Digital Roots 

J OT DOWN your telephone number. Scramble the order 
of the digits in any way you please to form a new num- 

ber, then subtract the smaller number from the larger. Add 
all the digits in the answer. Now place your finger on the 
s tar  in the circle of mysterious symbols [Fig. 191 and count 
them clockwise around the circle, calling the star  1, the tri- 
angle 2 and so on until you reach the number that  was the 
final step in the procedure given above. Your count is sure 
to end on the spiral. 

The operation of this little trick is not hard to understand, 
and i t  provides a painless introduction to the concept of 
numerical congruence formulated by the great German 
mathematician Carl Friedrich Gauss. If two numbers have 
the same remainder when divided by a given number called 
k, they are  said to be congruent modulo k. The number k is 
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F I G .  19 .  

Symbols f o r  a trick with a telephone number.  

called the modulus. Thus 16 and 23 both have a remainder 
of 2 when divided by 7 and are  therefore congruent modulo 7. 

Because 9 is the largest digit in the decimal number sys- 
tem, the sum of the digits of any number will always be con- 
gruent modulo 9 to the original number. The digits in this 
second number can then be added to obtain a third number 
congruent to the other two, and if we continue this process 
until only one digit remains, i t  will be the remainder itself. 
Fo r  example, 4,157 has a remainder of 8 when divided by 9. 
I ts  digits total 17, which also has a remainder of 8 modulo 
9. And the digits of 17 add up to 8. This last digit is called 
the digital root of the original number. I t  is the same a s  the 
number's remainder modulo 9, with the exception of num- 
bers with a remainder of 0, in which case the digital root 
is 9 instead of 0. 
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Obtaining the digital root is simply the ancient process 
of "casting out 9's." Before the development of computing 
devices, the technique was widely used by accountants for  
checking their results. Some modern electronic computers, 
the International Business Machine NORC, for  example, use 
the technique a s  one of their built-in methods of self-check- 
ing for  accuracy. The method is based on the fact that  if 
whole numbers a re  added, subtracted, multiplied or  evenly 
divided, the answer will be congruent modulo 9 to the num- 
ber obtained by adding, subtracting, multiplying or dividing 
the digital roots of those same numbers. 

Fo r  example, to check quickly a sum involving large num- 
bers you obtain the digital roots of the numbers, add them, 
reduce the answer to a root, then see if i t  corresponds to the 
digital root of the answer you wish to test. If the roots fail 
to  match, you know tha t  there is an  error  somewhere. If 
they do match, there still may be an  error, but the proba- 
bility is fairly high tha t  the computation is correct. 

Let us see how all this applies to the telephone-number 
trick. Scrambling the digits of the number cannot change 
its digital root, so we have here a case in which a number 
with a certain digital root is subtracted from a larger num- 
ber with the same digital root. The result is certain to be a 
number evenly divisible by 9. To see why this is so, think 
of the larger number a s  consisting of a certain multiple of 
9, to which is added a digital root (the remainder when the 
number is divided by nine) .  The smaller number consists 
of a smaller multiple of 9, to  which is added the same digital 
root. When the smaller number is subtracted from the larger, 
the digital roots cancel out, leaving a multiple of 9. 

( A  multiple of 9 )  + a digital root 
- (A  multiple of 9 )  + the same digital root 

( A  multiple o f 9 ) + 7  
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Since the answer is a multiple of 9, i t  will have a digital 
root  of 9. Adding the digits will give a smaller number that  
also has a digital root of 9, so the final result is certain to 
be a multiple of 9. There are nine symbols in the mystic 
circle. The count, therefore, is sure to end on the ninth sym- 
bol from the first one that  is tapped. 

A knowledge of digital roots often furnishes amazing 
shortcuts in solving problems that  seem unusually difficult. 
F o r  example, suppose you are asked to find the smallest 
number composed of 1's and 0's which is evenly divisible by 
225. The digits in 225 have a digital root of 9, so you know 
a t  once that  the required number must also have a digital 
root  of 9. The smallest number composed of 1's that  will 
have a digital root of 9 is obviously 111,111,111. Adding 
zeros a t  significant spots will enlarge the number but will 
not  alter the root. Our problem is to increase 111,111,111 by 
the  smallest amount that  will make i t  divisible by 225. Since 
225 is a multiple of 25, the number we seek must also be a 
multiple of 25. All multiples of 25 must end in 00, 25, 50 or 
75. The last three pairs cannot be used, so we attach 00 to 
111,111,111 to obtain the answer - 11,111,111,100. 

Mathematical games also frequently lend themselves to 
digital-root analysis, as  for example this game played with 
a single die. An arbitrary number, usually larger than 20 
to  make the game interesting, is agreed upon. The first 
player rolls the die, scoring the number that is uppermost. 
The second player now gives the die a quarter turn in any 
direction, adding to the previous score the number he brings 
to  the top. Players alternate in making quarter-turns, keep- 
ing  a running total, until one of them wins by reaching the 
agreed-upon number or forcing his opponent to go above it. 
The game is difficult to analyze because the four side-numbers 
available a t  each turn vary with the position of the die. What 
strategy should one adopt to play the best possible game? 
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The key numbers in the strategy are  those which have 
digital roots tha t  a re  the same a s  the digital root of the goal. 
If you can score a number in this series, or  permanently pre- 
vent your opponent from doing so, you have a certain win. 
Fo r  example, the game is often played with the goal of 31, 
which has a digital root of 4. The only way the first player 
can force a win is by rolling a 4. Thereafter he either plays 
to get back in the series 4-13-22-31, or  plays so tha t  his op- 
ponent cannot enter it. Preventing an  opponent from enter- 
ing the series is somewhat tricky, so I shall content myself 
with saying only that  one must either play to five below a 
key number, leaving the 5 on the top o r  the bottom of the 
die ; or to four o r  three below, or  one above, leaving the 4 on 
the top or  the bottom. 

There is always one roll, and sometimes two o r  three, 
which will guarantee a win for  the first player, except when 
the digital root of the goal happens to  be 9. In  such cases 
the second player can always force a win. When the  goal is 
chosen a t  random, the odds of winning greatly favor the 
second player. If the first player chooses the goal, what 
should be the digital root of the number he picks in order t o  
have the best chance of winning? 

A large number of self-working card tricks depend on the 
properties of digital roots. In my opinion the best is a trick 
currently sold in magic shops a s  a four-page typescript titled 
"Remembering the Future." I t  was invented by Stewart 
James of Courtright, Ontario, a magician who has probably 
devised more high-quality mathematical card tricks than 
anyone who ever lived. The trick is explained here with 
James's permission. 

From a thoroughly shuffled deck you remove nine cards 
with values from ace to 9, arranging them in sequence with 
the ace on top. Show the audience what  you have done, then 
explain that  you will cut this packet so tha t  no one will know 
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what cards are  a t  what positions. Hold the packet face down 
in your hands and appear to cut i t  randomly but actually cut 
i t  so that  three cards are  transferred from bottom to top. 
From the top down the cards will now be in the order : 7-8-9- 
1-2-3-4-5-6. 

Slowly remove one card a t  a time from the top of this 
packet, transferring these cards to the top of the deck. As 
you take each card, ask a spectator if he wishes to select that  
card. He must, of course, select one of the nine. When he 
says "Yes," leave the chosen card on top of the remaining 
cards in the packet and put the packet aside. 

The deck is now cut a t  any spot by a spectator to form 
two piles. Count the cards in one pile, then reduce this num- 
ber to its digital root by adding the digits until a single digit 
remains. Do the same with the other pile. The two roots are 
now added, and if necessary the total is reduced to its digital 
root. The chosen card, on top of the packet placed aside, is 
now turned over. It has correctly predicted the outcome of 
the previous steps ! 

Why does i t  work? After the nine cards are  properly ar- 
ranged and cut, the 7 will be on top. The deck will consist 
of 43 cards, a number with a digital root of 7. If the spec- 
tator does not choose the 7, it is added to the deck, making 
a total of 44 cards. The packet now has an 8 on top, and 8 
is the digital root of 44. In other words, the card selected by 
the spectator must necessarily correspond to the digital root 
of the number of cards in the deck. Cutting the deck in two 
parts and combining the roots of each portion as  described 
will, of course, result in the same digit as the digital root of 
the entire deck. 

A D D E N D U M  

IT IS asserted a t  the beginning of this chapter that  because 
our number system is based on 10, the digital root of any 
number is the same as the remainder when that  number is 
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divided by 9. This is not hard to prove, and perhaps an  in- 
formal statement of a proof will interest some readers. 

Consider a four-digit number, say 4,135. This can be writ- 
ten as  sums of powers of 10 : 

If 1 is subtracted from each power of 10, we can write 
the same number like this : 
(4 x 999) + (1  x 99) + (3  x 9) + (5  x 0) + 4 + 1 + 3 + 5 

The expressions inside the. parentheses are  all multiples 
of 9. After casting them out, we are  left with 4 + 1 + 3 + 5, 
the digits of the original number. 

In general, a number written with the digits abed can 
be written : 
( a X 9 9 9 )  + ( b X 9 9 )  + ( c X 9 )  + ( d X O )  + a + b + c + d  

Therefore a + b + c + d must be a remainder after  cer- 
tain multiples of 9 are  cast out. This remainder of course 
may be a number of more than one digit. If so, the same 
procedure will show that  the sum of its digits will give 
another remainder after other multiples of 9 are  cast out, 
and we can continue until only one digit, the digital root, 
remains. Such a procedure can be applied to any number, 
no matter how large. The digital root, therefore, is the num- 
ber that  remains after  the maximum number of 9's have 
been cast out;  that  is, after the number is divided by 9. 

Digital roots are  often useful as  negative checks in deter- 
mining whether a very large number is a perfect square or 
cube. All square numbers have digital roots of 1, 4, 7 or 9, 
and the last digit of the number cannot be 2, 3, 7 or 8. A 
cube may end with any digit, but its digital root must be 1, 
8 or 9. Most curiously of all, an even perfect number (and 
so fa r  no odd perfect number has been found) must end in 
6 or 28 and, with the exception of 6, the smallest perfect 
number, have a digital root of 1. 
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A N S W E R S  

IN THE GAME played with a die, if the first player chooses 
the number that is to be the goal his best choice is a number 
with the digital root of 7. The chart in Figure 20 shows the 

DIGITAL ROOT I W I N N I Z  ROLLS 
OF GOAL 

FIG. 2 0 .  

9 

winning first roll for each of the nine possible digital roots 
of the goal. Seven has three winning first rolls; more than 
any other digital root. This gives the first player a chance 
of 1/2 that he will roll a number that will lead to a sure win 
if he plays correctly. 

NONE 



C H A P T E R  F I V E  

Nine Problems 

1 .  THE T W I D D L E D  BOLTS 

Two IDENTICAL BOLTS are  placed together so that  their heli- 
cal grooves intermesh [Fig. 211. If you move the bolts around 
each other as  you would twiddle your thumbs, holding each 
bolt firmly by the head so that  it does not rotate and twid- 
dling them in the direction shown, will the heads (a) move 
inward, (b) move outward, or (c) remain the same dis- 
tance from each other? The problem should be solved with- 
out resorting to actual test. 

2 .  THE FL IGHT A R O U N D  THE WORLD 

A GROUP of airplanes is based on a small island. The tank of 
each plane holds just enough fuel to take i t  halfway around 
the world. Any desired amount of fuel can be transferred 
from the tank of one plane to the tank of another while the 
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The twiddled bolts. 

planes are in flight. The only source of fuel is on the island, 
and for the purposes of the problem it  is assumed that  there 
is no time lost in refueling either in the air  or on the ground. 

What is the smallest number of planes that  will ensure 
the flight of one plane around the world on a great circle, 
assuming that  the planes have the same constant ground 
speed and rate of fuel consumption and that  all planes re- 
turn safely to their island base? 

3 .  T H E  C I R C L E  O N  T H E  C H E S S B O A R D  
A CHESSBOARD has squares that  are  two inches on the side. 
What is the radius of the largest circle that  can be drawn 
on the board in such a way that  the circle's circumference 
is entirely on black squares? 

4 .  T H E  C O R K  P L U G  
MANY OLD puzzle books explain how a cork can be carved to 
fit snugly into square, circular and triangular holes [Fig. 221. 
An interesting problem is to find the volume of the cork 
plug. Assume that i t  has a circular base with a radius of 
one unit, a height of two units, and a straight top edge of 
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FIG. 2 2 .  
The cork plug. 
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two units that  is directly above and parallel to a diameter 
of the base. The surface is such that  all vertical cross sec- 
tions which are made perpendicular to the top edge are 
triangles. 

The surface may also be thought of a s  generated by a 
straight line connecting the sharp edge with the circular 
edge and moving so that  i t  is  a t  all times parallel to a plane 
that  is perpendicular to the sharp edge. The plug's volume 
can of course be determined by calculus, but there is a sim- 
~ l e  way to find i t  with little more information than knowing 
that  the volume of a right circular cylinder is the area of its 
base times its altitude. 

5 .  T H E  R E P E T I T I O U S  N U M B E R  

AN UNUSUAL parlor trick is performed as  follows. Ask spec- 
tator A to jot down any three-digit number, and then to re- 
peat the digits in the same order to make a six-digit number 
(e.g., 394,394). With your back turned so that  you cannot 
see the number, ask A to pass the sheet of paper to spectator 
B, who is requested to divide the number by 7. 

"Don't worry about the remainder," you tell him, "because 
there won't be any." B is surprised to discover that  you are 
right (e.g., 394,394 divided by 7 is 56,342). Without telling 
you the result, he passes i t  on to spectator C, who is told to 
divide i t  by 11. Once again you state that  there will be no 
remainder, and this also proves correct (56,342 divided by 
11 is 5,122). 

With your back still turned, and no knowledge whatever 
of the figures obtained by these computations, you direct a 
fourth spectator, D, to divide the last result by 13. Again 
the division comes out even (5,122 divided by 13  is 394). 
This final result is written on a slip of paper which is folded 
and handed to you. Without opening i t  you pass i t  on to 
spectator A. 
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"Open this," you tell him, "and you will find your original 
three-digit number." 

Prove that the trick cannot fail to work regardless of the 
digits chosen by the first spectator. 

6 .  T H E  C O L L I D I N G  M I S S I L E S  

Two MISSILES speed directly toward each other, one a t  9,000 
miles per hour and the other a t  21,000 miles per hour. They 
start  1,317 miles apart. Without using pencil and paper, cal- 
culate how f a r  apart they are one minute before they collide. 

7.  T H E  S L I D I N G  P E N N I E S  

SIX PENNIES are arranged on a flat surface as  shown in Fig- 
ure 23. The problem is to move them into the formation 

FIG.  23 .  
The sliding pennies. 
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depicted a t  bottom in the smallest number of moves. Each 
move consists in sliding a penny, without disturbing any of 
the other pennies, to a new position in which i t  touches two 
others. The coins must remain flat on the surface a t  all times. 

8 .  H A N D S H A K E S  A N D  N E T W O R K S  

PROVE that a t  a recent convention of biophysicists the num- 
ber of scientists in attendance who shook hands an odd 
number of times is even. The same problem can be expressed 
graphically as follows. Put as many dots (biophysicists) as 
you wish on a sheet of paper. Draw as many lines (hand- 
shakes) as you wish from any dot to any other dot. A dot can 
"shake hands" as often as you please, or not a t  all. Prove 
that the number of dots with an odd number of lines joining 
them is even. 

9 .  THE T R I A N G U L A R  DUEL 

SMITH, Brown and Jones agree to fight a pistol duel under 
the following unusual conditions. After drawing lots to de- 
termine who fires first, second and third, they take their 
places a t  the corners of an equilateral triangle. I t  is agreed 
that they will fire single shots in turn and continue in the 
same cyclic order until two of them are dead. At each turn 
the man who is firing may aim wherever he pleases. All 
three duelists know that Smith always hits his target, 
Brown is 80 per cent accurate and Jones is 50 per cent ac- 
curate. 

Assuming that all three adopt the best strategy, and that 
no one is killed by a wild shot not intended for him, who has 
the best chance to survive? A more difficult question: What 
are the exact survival probabilities of the three men? 

A N S W E R S  

1. The heads of the twiddled bolts move neither inward 
nor outward. The situation is comparable to that of a person 



Nine Problems 57 

walking up an escalator a t  the same rate that  i t  is moving 
down. (I  am indebted to Theodore A. Kalin for calling this 
problem to my attention.) 

2. Three airplanes are quite sufficient to ensure the flight 
of one plane around the world. There are many ways this 
can be done, but the following seems to be the most efficient. 
I t  uses only five tanks of fuel, allows the pilots of two planes 
sufficient time for a cup of coffee and a sandwich before re- 
fueling a t  the base, and there is a pleasing symmetry in the 
procedure. 

Planes A, B and C take off together. After going 1/8 of 
the distance, C transfers 1/4 tank to A and 1/4 to B. This 
leaves C with 1/4 tank; just enough to get back home. 

Planes A and B continue another 1/8 of the way, then B 
transfers 1/4 tank to A. B now has 1/2 tank left, which is 
sufficient to get him back to the base where he arrives with 
an empy tank. 

Plane A, with a full tank, continues until i t  runs out of 
fuel 1/4 of the way from the base. I t  is met by C which has 
been refueled a t  the base. C transfers 1/4 tank to A, and 
both planes head for home. 

The two planes run out of fuel 1/8 of the way from the 
base, where they are met by refueled plane B. Plane B trans- 
fers 1/4 tank to each of the other two planes. The three 
planes now have just enough fuel to reach the base with 
empty tanks. 

The entire procedure can be diagramed as shown in Fig- 
ure 24, where distance is the horizontal axis and time the 
vertical axis. The right and left edges of the chart should, 
of course, be regarded as joined. 

3. If you place the point of a compass a t  the center of a 
black square on a chessboard with two-inch squares, and 
extend the arms of the compass a distance equal to the 
square root of 10 inches, the pencil will trace the largest 
possible circle that touches only black squares. 
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FIG .  24.  
The flight around the world. 

4. Any vertical cross section of the cork plug a t  right an- 
gles to the top edge and perpendicular to the base will be a 
triangle. If the cork were a cylinder of the same height, cor- 
responding cross sections would be rectangles. Each triangu- 
lar cross section is obviously 1/2 the area of the correspond- 
ing rectangular cross section. Since all the triangular sec- 
tions combine to make up the cylinder, the plug must be 
1/2 the volume of the cylinder. The cylinder's volume is 2 ~ ,  
so our answer is simply T. (This solution is given in "No 
Calculus, Please," by J. H. Butchart and Leo Moser in 
Scripta  Mathemut ica,  September-December 1952.) 

Actually, the cork can have an infinite number of shapes 
and still fit the three holes. The shape described in the 
problem has the least volume of any convex solid that  will 
fit the holes. The largest volume is obtained by the simple 
procedure of slicing the cylinder with two plane cuts as  
shown in Figure 25. This is the shape given in most puzzle 
books that include the plug problem. I ts  volume is equal to 
twice pi minus 8/3. ( I  am indebted to J. S. Robertson, East 
Setauket, N.Y., for sending this calculation.) 
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F I G .  2 5 .  
Slicing the  cork. 

5. Writing a three-digit number twice is the same a s  mul- 
tiplying i t  by 1,001. This number has the factors 7, 11 and 
13, so writing the chosen number twice is equivalent to mul- 
tiplying i t  by 7, 11 and 13. Naturally when the product is 
successively divided by these same three numbers, the final 
remainder will be the original number. (This problem is 
given by Yakov Perelman in his book Figures  for F u n ,  Mos- 
cow, 1957.) 

6. The two missiles approach each other with combined 
speeds of 30,000 miles per hour, o r  500 miles per minute. By 
running the scene backward in time we see tha t  one minute 
before the collision the missiles would have to be 500 miles 
apart.  

7. Number the top coin in the pyramid 1, the coins in the 
next row 2 and 3, and those in the bottom row 4, 5 and 6. 
The following four moves are  typical of many possible solu- 
tions: Move 1 to touch 2 and 4, move 4 to touch 5 and 6, 
move 5 to touch 1 and 2 below, move 1 to touch 4 and 5. 

8. Because two people a re  involved in every handshake, 
the total score for  everyone a t  the convention will be evenly 
divisible by two and therefore even. The total score for  the 
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men who shook hands an  even number of times is, of course, 
also even. If we subtract this even score f rom the even total 
score of the convention, we get a n  even total score for  those 
men who shook hands an  odd number of times. Only a n  even 
number of odd numbers will total a n  even number, so we 
conclude tha t  a n  even number of men shook hands a n  odd 
number of times. 

There a re  other ways to prove the theorem; one of the 
best was sent to me by Gerald K. Schoenfeld, a medical offi- 
cer in the U.S. Navy. At the s ta r t  of the convention, before 
any handshakes have occurred, the number of persons who 
have shaken hands an  odd number of times will be 0. The 
first handshake produces two "odd persons." From now on, 
handshakes are  of three types: between two even persons, 
two odd persons, or  one odd and one even person. Each even- 
even shake increases the number of odd persons by 2. Each 
odd-odd shake decreases the number of odd persons by 2. 
Each odd-even shake changes an odd person to even and an  
even person to odd, leaving the number of odd persons un- 
changed. There is no way, therefore, t ha t  the even number 
of odd persons can shift  its pari ty;  i t  must remain a t  all 
times an  even number. 

Both proofs apply to a graph of dots on which lines a re  
drawn to connect pairs of dots. The lines form a network 
on which the number of dots that  mark  the meeting of an  
odd number of lines is even. This theorem will be encoun- 
tered again in Chapter 7 in connection with network-tracing 
puzzles. 

9. In the triangular pistol duel the poorest shot, Jones, 
has the best chance to survive. Smith, who never misses, has 
the second best chance. Because Jones's two opponents will 
a im a t  each other when their turns  come, Jones's best s trat-  
egy is t o  fire into the a i r  until one opponent is dead. He will 
then get the first shot a t  the survivor, which gives him a 
strong advantage. 



Nine Problems 6 1 

Smith's survival chances a re  the easiest to  determine. 
There is a chance of 1/2 that  he will get the first shot in his 
duel with Brown, in  which case he kills him. There is a 
chance of 1/2 tha t  Brown will shoot first, and since Brown 
is 4/5 accurate, Smith has a 1 /5  chance of surviving. So 
Smith's chance of surviving Brown is 1 /2  added to 1 /2  X 

1 /5  = 3/5. Jones, who is accurate half the time, now gets a 
crack a t  Smith. If he misses, Smith kills him, so Smith has 
a survival chance of 1/2 against Jones. Smith's over-all 
chance of surviving is therefore 3/5 X 1/2 = 3/10. 

Brown's case is more complicated because we run into an  
infinite series of possibilities. His chance of surviving against 
Smith is 2/5 (we saw above tha t  Smith's survival chance 
against Brown was 3/5, and since one of the two men must 
survive, we subtract 315 from 1 to obtain Brown's chance 
of surviving against Smi th) .  Brown now faces fire from 
Jones. There is a chance of 1/2 tha t  Jones will miss, in 
which case Brown has a 4/5 chance of killing Jones. Up to 
this point, then, his chance of killing Jones is 1/2 X 4/5 = 
4/10. But there is a 1 /5  chance that  Brown may miss, giv- 
ing Jones another shot. Brown's chance of surviving is 1 / 2 ;  
then he has a 4/5 chance of killing Jones again, so his chance 
of surviving on the  second round is 1/2 X 1 / 5  X 1/2 X 4/5 
= 4/100. 

If Brown misses again, his chance of killing Jones on the 
third round will be 4/1,000; if he misses once more, his 
chance on the fourth round will be 4/10,000, and so on. 
Brown's total survival chance against Jones is thus the sum 
of the infinite series : 

This can be written a s  the repeating decimal ,444444 . . ., 
which is the decimal expansion of 4/9. 
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As we saw earlier, Brown had a 2/5 chance of surviving 
Smith; now we see that he has a 4/9 chance to survive 
Jones. His over-all survival chance is therefore 2/5 X 4/9 = 

8/45. 
Jones's survival chance can be determined in similar fash- 

ion, but of course we can get i t  immediately by subtracting 
Smith's chance, 3/10, and Brown's chance, 8/45, from 1. 
This gives Jones an over-all survival chance of 47/90. 

The entire duel can be conveniently graphed by using tht 
tree diagram shown in Figure 26. I t  begins with only twc 
branches because Jones passes if he has the first shot, leav- 
ing only two equal possibilities: Smith shooting first or 
Brown shooting first, with intent to kill. One branch of the 
tree goes on endlessly. The over-all survival chance of an 
individual is computed as  follows: 

1. Mark all the ends of branches a t  which the person is 
sole survivor. 

2. Trace each end back to the base of the tree, multiply- 
ing the probabilities of each segment as you go along. The 
product will be the probability of the event a t  the end of 
the branch. 

3. Add together the probabilities of all the marked end- 
point events. The sum will be the over-all survival proba- 
bility for that person. 

In computing the survival chances of Brown and Jones, 
an  infinite number of end-points are involved, but it is not 
difficult to see from the diagram how to formulate the in- 
finite series that is involved in each case. 

When I published the answer to this problem I added that  
perhaps there is a moral of international politics in this 
somewhere. This prompted the following comment from Lee 
Kean of Dayton, Ohio: 

SIRS : 
W e  must  not expect that in international politics nations 

will behave as sensibly as individuals. F i f ty - f i f t y  Jones, 
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against his own best interests, soill blaze atoay tohen able at 
the opponent he imagines to Be most dangerous. Even so, he 
still has the best chance of survival, 44.722 per cent. Bro.zon 
and Smith find their chances reversed. Eighty-twenty 
Brozon's chances are 31.111 per cent and sure-shot Smith 
comes in last with 24.167 per cent. Maybe the moral for in- 
ternational politics is even better here. 

The problem, in variant forms, appears in several puzzle 
books. The earliest reference known to me is Hubert Phillip's 
Question Time, 1938, Problem 223. A different version of 
the problem can be found in Clark Kinnaird's Encyclopedia 
of Puzzles and Pastimes, 1946, but the answer is incorrect. 
Correct probability figures for Kinnaird's version are  given 
in The American Mathematical Monthly, December 1948, 
page 640. 
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The Soma Cube 

". . . no time, no leisure . . . not a moment to sit down 
und think - or if ever by some unlucky chance such a 
crevice of  time should yawn in the solid substance of  
their distractions, there is  alwaz~s soma, delicious soma 

19 ... 
- Aldous Huxley, Brave New World 

T HE CHINESE puzzle game called tangrams, believed to 
be thousands of years old, employs a square of thin 

material that is dissected into seven pieces (see Chapter 18). 
The game is to rearrange those pieces to form other figures. 
From time to time efforts have been made to devise a suit- 
able analog in three dimensions. None, in my opinion, has 
been as successful as the Soma cube, invented by Piet Hein, 
the Danish writer whose mathematical games, Hex and Tac 



66 The Soma Cube 

Tix, are discussed in the first Scienti f ic Amer ican  Book of 
Mathematical Puzzles.  ( In  Denmark, Piet Hein is best known 
for his books of epigrammatic poems written under the 
pseudonym Kumbel.) 

Piet Hein conceived of the Soma cube during a lecture on 
quantum physics by Werner Heisenberg. While the noted 
German physicist was speaking of a space sliced into cubes, 
Piet Hein's supple imagination caught a fleeting glimpse of 
the following curious geometrical theorem. If you take all 
the irregular shapes that  can be formed by combining no 
more than four cubes, all the same size and joined a t  their 
faces, these shapes can be put together to form a larger cube. 

Let us make this clearer. The simplest irregular shape - 
"irregular" in the sense that  i t  has a concavity or corner 
nook in it somewhere - is produced by joining three cubes 
a s  shown a t  1 in Figure 27. I t  is  the only such shape possible 
with three cubes. (Of course no irregular shape is possible 
with one or two cubes.) Turning to four cubes, we find that  
there are six different ways to form irregular shapes by 
joining the cubes face to face. These are pieces 2 to 7 in the 
illustration. To identify the seven pieces Piet Hein labels 
them with numerals. No two shapes are alike, although 5 
and 6 are mirror images of each other. Piet Hein points out 
that  two cubes can be joined only along a single coordinate, 
three cubes can add a second coordinate perpendicular to 
the first, and four cubes are  necessary to supply the third 
coordinate perpendicular to the other two. Since we cannot 
enter the fourth dimension to join cubes along a fourth co- 
ordinate supplied by five-cube shapes, i t  is reasonable to 
limit our set of Soma pieces to seven. I t  is an unexpected fact 
that these elementary combinations of identical cubes can be 
joined to form a cube again. 

As Heisenberg talked on, Piet Hein swiftly convinced 
himself by doodling on a sheet of paper that  the seven 
pieces, containing 27 small cubes, would form a 3 X 3 X 3 
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3 3 

FIG. 2 7 .  
The seven Soma pieces. 

cube. After the lecture he glued 27 cubes into the shapes of 
the seven components and quickly confirmed his insight. A 
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set of the pieces was marketed under the t rade name Soma, 
and the puzzle has since become a popular one in the Scan- 
dinavian countries. 

To make a Soma cube - and the reader is urged to do so, 
for  i t  provides a game tha t  will keep every member of the 
family entranced for  hours- you have only to obtain a 
supply of children's blocks. The seven pieces a re  easily con- 
structed by spreading rubber cement on the appropriate 
faces, letting them dry,  then sticking them together. Ac- 
tually, the toy is a kind of three-dimensional version of poly- 
ominoes, discussed in the first Scienti f ic Amer ican  Book o f  
Mathematical Puzzles. 

As a first lesson in the a r t  of Soma, see if you can combine 
any two pieces to form the stepped structure in Figure 28. 

F I G .  2 8 .  
A f o r m  made u p  of two Soma pieces. 

Having mastered this trivial problem, t r y  assembling all 
seven pieces into a cube. I t  is one of the easiest of all Soma 
constructions. More than 230 essentially different solutions 
(not counting rotations and reflections) have been tabulated 
by Richard K. Guy of the University of Malaya, in Singa- 
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pore, but the exact number of such solutions has not yet 
been determined. A good strategy to adopt on this a s  well a s  
other Soma figures is t o  set the more irregular shapes (5, 6 
and 7) in place first, because the other pieces adjust  more 
readily to remaining gaps in a structure. Piece 1 in particu- 
lar  is best saved until last. 

After  solving the cube, t r y  your hand a t  the more difficult 
seven-piece structures in Figure 29. Instead of using a time- 
consuming trial and er ror  technique, i t  is much more satis- 
fying to analyze the constructions and cut down your build- 
ing time by geometrical insights. For  example, i t  is obvious 
tha t  pieces 5, 6 and 7 cannot form the steps to the well. 
Group competition can be introduced by giving each player 
a Soma set and seeing who can build a given figure in the 
shortest length of time. To avoid misinterpretations of these 
structures i t  should be said that  the f a r  sides of the pyramid 
and steamer a re  exactly like the near sides; both the hole in 
the well and the interior of the bathtub have a volume of 
three cubes; there a re  no holes or  projecting pieces on the 
hidden sides of the skyscraper; and the column tha t  forms 
the back of the dog's head consists of four cubes, the bottom 
one of which is hidden from view. 

After working with the  pieces for  several days, many peo- 
ple find that  the shapes become so familiar tha t  they can 
solve Soma problems in their heads. Tests made by Euro- 
pean psychologists have shown tha t  ability to solve Soma 
problems is roughly correlated with general intelligence, but 
with peculiar discrepancies a t  both ends of the I.Q. curve. 
Some geniuses a re  very poor a t  Soma and some morons seem 
specially gifted with the kind of spatial imagination tha t  
Soma exercises. Everyone who takes such a test wants  to 
keep playing with the pieces a f te r  the test is over. 

Like the two-dimensional polyominoes, Soma constructions 
lend themselves to fascinating theorems and impossibility 
proofs of combinatorial geometry. Consider the structure in 
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SKYSCRAPER 

FIG.  29 .  
One of these 12 forms cannot be built up from Soma pieces. 
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the top illustration of Figure 30. No one had succeeded in 
building it, but i t  was not until recently that  a formal im- 
possibility proof was devised. Here is the clever proof, 
discovered by Solomon W. Golomb, mathematician a t  the Je t  
Propulsion Laboratory of the California Institute of Tech- 
nology. 

We begin by looking down on the structure a s  shown in 
the bottom illustration and coloring the columns in checker- 
board fashion. Each column is two cubes deep except for  the 
center column, which consists of three cubes. This gives us 

An impossible Soma form.  A means of labeling the  form.  
FIG.  3 0 .  

a total of eight white cubes and 19 black, quite a n  astound- 
ing disparity. 

The next step is to examine each of the seven components, 
testing i t  in all possible orientations to ascertain the maxi- 
mum number of black cubes i t  can possess if placed within 
the checkerboard structure. The chart  in Figure 31 displays 
this maximum number for  each piece. As you see, the total 
is 18  black to  nine white, just one short of the  19-8 split 
demanded. If we shif t  the top black block to the top of one 
of the columns of white blocks, then the black-white ratio 
changes to the required 18-9, and the structure becomes 
possible to build. 

I must confess tha t  one of the structures in Figure 29 is 
impossible to make. I t  should take the average reader many 
days, however, t o  discover which one i t  is. Methods for  



FIG.  31.  
Table fo r  the impossibility proof. 
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building the other figures will not be given in the answer 
section ( i t  is only a matter of time until you succeed with 
any one of them),  but I shall identify the figure that  cannot 
be made. 

The number of pleasing structures that can be built with 
the seven Soma pieces seems to be as unlimited as the num- 
ber of plane figures that  can be made with the seven tan- 
gram shapes. I t  is interesting to note that  if piece 1 is put 
aside, the remaining six pieces will form a shape exactly 
like 1 but twice as  high. 

A D D E N D U M  

WHEN I WROTE the column about Soma, I supposed that  few 
readers would go to the trouble of actually making a set. I 
was wrong. Thousands of readers sent sketches of new Soma 
figures and many complained that  their leisure time had 
been obliterated since they were bitten by the Soma bug. 
Teachers made Soma sets for their classes. Psychologists 
added Soma to their psychological tests. Somaddicts made 
sets for friends in hospitals and gave them as Christmas 
gifts. A dozen firms inquired about manufacturing rights. 
Gem Color Company, 200 Fifth Avenue, New York, N.Y., 
marketed a wooden set - the only set authorized by Piet 
Hein - and i t  is still selling in toy and novelty stores. 

From the hundreds of new Soma figures received from 
readers, I have selected the twelve that  appear in Figure 32. 

MAXIMUM 

BLACK CUBES 

2 

3 

3 

2 

3 

3 

2 

18 

MINIMUM 

WHITE CUBES 

I 

I 

I 

2 

I 

I 

2 

9 
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Some of these figures were discovered by more than one 
reader. All a re  possible to construct. 

The charm of Soma derives in part ,  I think, from the fact 
that  only seven pieces a re  used ; one is not overwhelmed by 
complexity. All sorts of variant sets, with a larger number 
of pieces, suggest themselves, and I have received many 
letters describing them. 

Theodore Katsanis of Seattle, in a letter dated December 
23, 1957 (before the article on Soma appeared), proposed 
a set consisting of the eight different pieces tha t  can be 
formed with four cubes. This set includes six of the Soma 
pieces plus a s traight  chain of four cubes and a 2 X 2 square. 
Katsanis called them "quadracubes"; other readers later 
suggested "tetracubes." The eight pieces will not, of course, 
form a cube; but they do fit neatly together to make a 2 X 

4 X 4 rectangular solid. This is a model, twice a s  high, of 
the square tetracube. I t  is possible to form similar models 
of each of the other seven pieces. Katsanis also found tha t  
the eight pieces can be divided into two sets of four, each 
set making a 2 X 2 X 4 rectangular solid. These two solids 
can then be put together in different ways to make double- 
sized models of six of the eight pieces. 

In  a previous column (reprinted in the first Scienti f ic 
A m e r i c a n  Book of Mathemcttical Puxxles) I described the 
twelve pentominoes: flat shapes formed by connecting unit 
squares in all possible ways. Mrs. R. M. Robinson, wife of 
a mathematics professor a t  the University of California in 
Berkeley, discovered that  if the pentominoes are  given a 
third dimension, one unit thick, the twelve pieces will form 
a 3 X 4 X 5 rectangular solid. This was independently dis- 
covered by several others, including Charles W. Stephenson, 
M.D., of South Hero, Vermont. Dr. Stephenson also found 
ways of putting together the 3-D pentominoes to  make rec- 
tangular solids of 2 X 5 X 6 and 2 X 3 X 10. 
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The next step in complexity is to the 29 pieces formed by 
putting five cubes together in all possible ways. Katsanis, in 
the same letter mentioned above, suggested this and called 
the pieces "pentacubes." Six pairs of pentacubes are  mirror- 
image forms. If we use only one of each pair, the number of 
pentacubes drops to 23. Both 29 and 23 are  primes, there- 
fore no rectangular solids a re  possible with either set. Kat- 
sanis proposed a triplication problem: choose one of the 29 
pieces, then use 27 of the remaining 28 to form a model of 
the selected piece, three times a s  high. 

A handsome set of pentacubes was shipped to me in 1960 
by David Klarner of Napa, California. I dumped them out 
of the wooden box in which they were packed, and have not 
yet succeeded in putting them back in. Klarner has spent 
considerable time developing unusual pentacube figures, and 
I have spent considerable time trying to build some of them. 
He writes tha t  there a re  166 hexnclrbes (pieces formed by 
joining six-unit cubes), of which he was kind enough rlot to  
send a set. 

A N S W E R S  

THE ONLY structure in Figure 29 tha t  is impossible to con- 
s truct  with the seven Soma pieces is the skyscraper. 
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Recreational Topology 

T OPOLOGISTS have been called mathematicians who do 
not know the difference between a cup of coffee and a 

doughnut. Because an object shaped like a coffee cup can 
theoretically be changed into one shaped like a doughnut by 
a process of continuous deformation, the two objects are 
topologically equivalent, and topology can be roughly de- 
fined as the study of properties invariant under such defor- 
mation. A wide variety of mathematical recreations ( includ- 
ing conjuring tricks, puzzles and games) are closely tied to 
topological analysis. Topologists may consider them trivial, 
but for the rest of us they remain diverting. 

A few years ago Stewart Judah, a Cincinnati magician, 
originated an unusual parlor trick in which a shoelace is 
wrapped securely around a pencil and a soda straw. When 
the ends of the shoelace are pulled, i t  appears to penetrate 
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the pencil and cut the straw in half. The trick is disclosed 
here with Judah's permission. 

Begin by pressing the soda straw flat and attaching one 
end of it, by means of a short rubber band, to the end of an 
unsharpened pencil [ I  in Fig. 331. Bend the straw down and 
ask someone to hold the pencil with both hands so that the 
top of the pencil is tilted away from you a t  a 45-degree 
angle. Place the middle of the shoelace over the pencil [2], 
then cross the lace behind the pencil [3]. Throughout the 
winding, whenever a crossing occurs, the same end - say 
end a - must always overlap the other end. Otherwise the 
trick will not work. 

Bring the ends forward, crossing them in front  of the 
pencil [4]. Bend the straw upward so that  it lies along the 
pencil [5] and fasten its top end to the top of the pencil with 
another small rubber band. Cross the shoelace above the 
straw [6], remembering that end b goes beneath end a. Wind 
the two ends behind the pencil for another crossing [7], then 
forward for a final crossing in front [a] .  In these illustrations 
the lace is spread out along the pencil to make the winding 
procedure clear. In practice the windings may be tightly 
grouped near the middle of the pencil. 

Ask the spectator to grip the pencil more firmly while you 
tighten the lace by tugging outward on its ends. Count three 
and give the ends a quick, vigorous pull. The last illustra- 
tion in Figure 33 shows the surprising result. The shoelace 
pulls straight, apparently passing right through the pencil 
and slicing the straw, which (you explain) was too weak to 
withstand the mysterious penetration. 

A careful analysis of the procedure reveals a simple expla- 
nation. Because the ends of the shoelace spiral around the 
pencil in a pair of mirror-image helices, the closed curve 
represented by performer and lace is not linked with the 
closed curve formed by spectator and pencil. The lace cuts 
the straw that holds the helices in place ; then the helices an- 
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FIG.  3 3 .  
Stewart Judah's penetration trick. 
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nihilate each other as  neatly as a particle of matter is anni- 
hilated by its antiparticle. 

Many traditional puzzles are  topological. In fact topology 
had its origin in Leonhard Euler's classic analysis in 1736 
of the puzzle of finding a path over the seven bridges a t  
Kijnigsberg without crossing a bridge twice. Euler showed 
that  the puzzle was mathematically identical with the prob- 
lem of tracing a certain closed network in one continuous 
line without going over any part of the network twice. 
Route-tracing problems of this sort are common in puzzle 
books. Before tackling one of them, first note how many 
nodes (points that  are  the ends of line segments) have an 
even number of lines leading to them, and how many have 
an odd number. (There will always be an  even number of 
"odd" nodes; cf., problem 8 in Chapter 5.) If all the nodes 
are  "even," the network can be traced with a "re-entrant" 
path beginning anywhere and ending a t  the same spot. If 
two points are  odd, the network can still be traced, but only 
if you start  a t  one odd node and end a t  the other. If the 
puzzle can be solved a t  all, i t  can also be solved with a line 
that  does not cross itself a t  any point. If there are  more 
than two odd nodes, the puzzle has no solution. Such nodes 
clearly must be the end points of the line, and every con- 
tinuous line has either two end points or none. 

With these Eulerian rules in mind, puzzles of this type 
are  easily solved. However, by adding additional features 
such puzzles can often be transformed into first-class prob- 
lems. Consider, for example, the network shown in Figure 
34. All its nodes are  even, so we know it can be traced in one 
re-entrant path. In this case, however, we permit any por- 
tion of the network to be retraced as  often as  desired, and 
you may begin a t  any point and end a t  any point. The prob- 
lem: What is the minimum number of corner turns required 
to trace the network in one continuous line? Stopping and 
reversing direction is of course regarded as  a turn. 
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FIG.  34 .  
The network-tracing puzzle. 

Mechanical puzzles involving cords and rings often have 
close links with topological-knot theory. In my opinion the 
best of such puzzles is the one pictured in Figure 35. I t  is 
easily made from a piece of heavy cardboard, string and any 
ring that  is too large to pass through the central hole of the 
panel. The larger the cardboard and the heavier the cord, 
the easier i t  will be to manipulate the puzzle. The problem 
is simply to move the ring from loop A to loop B without 
cutting the cord or untying its ends. 

This puzzle is described in many old puzzle books, usu- 
ally in a decidedly inferior form. Instead of tying the ends 
of the cord to the panel, as shown here, each end passes 
through a hole and is fastened to a bead which prevents the 
end from coming out of the hole. This permits an inelegant 
solution in which loop X is drawn through the two end holes 
and passed over the beads. The puzzle can be solved, how- 
ever, by a neat method in which the ends of the cord play 
no role whatever. I t  is interesting to note that the puzzle has 
no solution if the cord is strung so that  loop X passes over 
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and under the double cord as shown in the illustration a t  
upper right of Figure 35. 

Among the many mathematical games which have in- 
teresting topological features are the great Oriental game 
of Go and the familiar children's game of "dots and squares." 
The latter game is played on a rectangular array of dots, 
players alternately drawing a horizontal or vertical line to 
connect two adjacent dots. Whenever a line completes one or 
more unit squares, the player initials the square and plays 
again. After all the lines have been filled in, the player who 

FIG.  3 5 .  
Can the ring 

be moved to loop B? 
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has taken the most squares is the winner. The game can be 
quite exciting for  skillful players, because i t  abounds in op- 
portunities for  gambits in which squares a r e  sacrificed in 
return for  capturing a larger number later. 

Although the game of dots and squares is played almost 
a s  widely a s  ticktacktoe, no complete mathematical analysis 
of i t  has yet been published. In  fact  i t  is surprisingly com- 
plicated even on a square field a s  small a s  sixteen dots. This 
is the smallest field on which the play cannot end in a draw, 
for  there a re  nine squares to be captured, but so f a r  a s  I 
know i t  has not been established whether the first or  second 
player has the winning strategy. 

David Gale, associate professor of mathematics a t  Brown 
University, has devised a delightful dot-connecting game 
which I shall take the liberty of calling the game of Gale. I t  
seems on the surface to be similar to the topological game 
of Hex explained in the first Scienti f ic Amer ican  Book of 
Mathematical Puzzles.  Actually i t  has a completely different 
structure [see Fig. 361. The field is a rectangular a r ray  of 
black dots embedded in a similar rectangular a r r ay  of col- 
ored dots. ( I n  the illustration, colored dots a re  shown a s  
circles and colored lines a s  dotted.) Player A uses a pencil 
with a black lead. On his turn  he connects two adjacent 
black dots, either horizontally or  vertically. His objective is 
a continuous line connecting the left and right sides of the 
field. Player B uses a colored pencil to  join two adjacent 
colored dots. His objective is a line connecting the top and 
bottom of the field. No line is permitted to cross a n  oppo- 
nent's line. Players draw one line only a t  each turn,  and the 
winner is the first to complete a continuous line between his 
two sides of the field. The illustration depicts a winning 
game for  the player with the colored pencil. 

Gale can be played on fields of any size, though fields 
smaller than the one shown here a re  too easily analyzed to 
be of interest except to novices. I t  can be proved tha t  the 
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F I G .  36. 
The topological game of Gale. 

first player on any size board has the winning strategy; the 
proof is the same as  the proof of first-player advantage in 
the game of Hex. Unfortunately, neither proof gives a clue 
to the nature of the winning strategy. 

A D D E N D U M  

IN 1960 the game of Gale, played on a board exactly like the 
one pictured here, was marketed by Hasenfield Brothers, 
Inc., Central Falls, Rhode Island, under the trade name of 
Bridg-it. Dots on the Bridg-it board are raised, and the 
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game is played by piacing small plastic bridges on the board 
to connect two dots. This permits an  interesting variation, 
explained in the Bridg-it instruction sheet. Each player is 
limited to a certain number of bridges, say 10. If no one has 
won after all 20 bridges have been placed, the game con- 
tinues by shifting a bridge to a new position on each move. 

In 1951, seven years before Gale was described in my 
column, Claude E. Shannon (now professor of communica- 
tions science and mathematics a t  the Massachusetts Institute 
of Technology) built the first Gale-playing robot. Shannon 
called the game Bird Cage. His machine plays an  excellent, 
though not perfect, game by means of a simple computer 
circuit based on analog calculations through a resistor net- 
work. In 1958 another Gale-playing machine was designed 
by W. A. Davidson and V. C. Lafferty, two engineers then 
a t  the Armour Research Foundation of the Illinois Institute 
of Technology. They did not know of Shannon's machine, 
but based their plan on the same basic principle that  Shan- 
non had earlier discovered. 

This principle operates as  follows. A resistor network cor- 
responds to the lines of play open to one of the players, say 
player A [see Fig. 371. All resistors are  of the same value. 
When A draws a line, the resistor corresponding to that  line 
is short circuited. When B draws a line, the resistor, corres- 
ponding to A's line that  is intersected by B's move, is open 
circuited. The entire network is thus shorted (i.e., resistance 
drops to zero) when A wins the game, and the current is cut 
off completely ( i .e . ,  resistance becomes infinite) when B 
wins. The machine's strategy consists of shorting or opening 
the resistor across which the maximum voltage occurs. If 
two or more resistors show the same maximum voltage, one 
is  picked a t  random. 

Actually, Shannon built two Bird Cage machines in 1951. 
In his first model the resistors were small light bulbs and 
the machine's move was determined by observing which bulb 
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was brightest. Because i t  was often difficult to  decide which 
of several bulbs was brightest, Shannon built a second model 
in which the bulbs were replaced by neon lamps and a net- 
work that  permitted only one lamp to go on. When i t  goes 
on, a lockout circuit prevents any other lamp from lighting. 
Moves are  made by switches that  a r e  all in intermediate 
positions a t  the s ta r t  of the game. One player moves by 
closing a switch, the other by opening a switch. 

When the machine has first move, Shannon reports, i t  
almost always wins. Out of hundreds of games played, the 
machine has had only two losses when i t  had the first move, 
and they may have been due to circuit failures or  improper 
playing of the game. If the human player has first move, i t  
is not difficult to  beat the machine, but the machine wins if 
a gross error  is made. 

0 0 

0 0 

CURRENT 
o o SOURCE 

0 0 

0 0 

F I G .  37. 
Resistor network fo r  robot Gale player. 
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A N S W E R S  

THE FIGURE-TRACING puzzle can be solved with as few as 13 
corner turns. Start  a t  the second node from the left on the 
large triangle. Move up and to the right as fa r  as possible, 
then left, then down and right to the base of the triangle, up 
and right, left as f a r  as possible, down and right, right to 
the corner of the large triangle, up to the top of the triangle, 
down to the triangle's left corner, all the way around the 
circle, right to the third node on the triangle's base, up and 
left as fa r  as possible, right as f a r  as possible, then down 
and left to the base. 

The cord-and-ring puzzle is solved as follows. Loosen the 
center loop enough so that the ring can be pushed up through 
it. Hold the ring against the front side of the panel while 
you seize the double cord where i t  emerges from the center 
hole. Pull the double cord toward you. This will drag a dou- 
ble loop out of the central hole. Pass the ring through this 
double loop. Now reach behind the panel and pull the double 
loop back through the hole so that  the cord is restored to 
starting position. I t  only remains to slide the ring down 
through the center loop and the puzzle is solved. 
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Phi: The Golden Ratio 

P I, THE RATIO of the circumference of a circle to its 
diameter, is the best known of all irrational numbers; 

that  is, numbers with decimal expansions that  are unending 
and nonrepeating. The irrational number phi ( y )  is not so 
well known, but i t  expresses a fundamental ratio that  is 
almost as ubiquitous as pi, and i t  has the same pleasant pro- 
pensity for popping up where least expected. (For  example, 
see the discussion of the spot game in Chapter 13.) 

A glance a t  the line in Figure 38 will make the geometri- 
cal meaning of phi clear. The line has been divided into what 

FIG .  38. 
The golden ratio: A is to B a s  A + B  is to A. 
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is commonly called the "golden ratio." The length of the 
line is to segment A as the length of segment A is to seg- 
ment B. In each case the ratio is phi. If the length of B is 1, 
we can compute the value of phi easily f r ~ m  the following 
equation : 

This can be written as  the simple quadratic A' - A - 1 
= 0, for which A has the positive value: 

This is the length of A and the value of phi. I ts  decimal 
expansion is 1.61803398. . . . If the length of A is taken as 
1, then B will be the reciprocal of phi ( l / y ) .  Curiously, this 
value turns out to be .61803398. . . . Phi is the only positive 
number that  becomes its own reciprocal by subtracting 1. 

Like pi, phi can be expressed in many ways as the sum of 
an infinite series. The extreme simplicity of the following 
two examples underscores phi's fundamental character : 

The ancient Greeks were familiar with the golden ratio; 
there is little doubt that i t  was consciously used by some 
Greek architects and sculptors, particularly in the structure 
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of the Parthenon. The U. S. mathematician Mark Barr  had 
this in mind 50 years ago when he gave the ratio the name 
of phi. I t  is the first Greek letter in the name of the great 
Phidias who is believed to have used the golden proportion 
frequently in his sculpture. Perhaps one reason why the 
Pythagorean brotherhood chose the pentagram or five- 
pointed s tar  as  the symbol of their order is the fact that  
every segment in this figure is in golden ratio to the next 
smallest segment. 

Many medieval and Renaissance mathematicians, espe- 
cially confirmed occultists such as  Kepler, became intrigued 
by phi almost to the point of obsession. H. S. M. Coxeter, a t  
the head of his splendid article on the golden ratio (see the 
bibliography for this chapter), quotes Kepler as  follows: 
"Geometry has two great treasures: one is the theorem of 
Pythagoras; the other, the division of a line into extreme 
and mean ratio. The first we may compare to a measure of 
gold; the second we may name a precious jewel." Renais- 
sance writers spoke of the ratio as a "divine proportion" or, 
following Euclid, as  "extreme and mean ratio." The term 
"golden section" did not come into use until the 19th cen- 
tury. 

A 1509 treatise by Luca Pacioli, entitled De Divina Pro- 
portione and illustrated by Leonardo da Vinci ( a  handsome 
edition was published in Milan in 1956), is a fascinating 
compendium of phi's appearances in various plane and solid 
figures. I t  is, for example, the ratio of the radius of a circle 
to the side of an  inscribed regular decagon. And if we place 
three golden rectangles (rectangles with sides in golden 
ratio) so that they intersect each other symmetrically, each 
perpendicular to the other two, the corners of the rectangles 
will mark the 12 corners of a regular icosahedron as  well as  
the centers of the 12 sides of a regular dodecahedron. [See 
Figs. 30 and 40.1 
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F I G .  39 .  
The corners of three golden rectangles coincide with the corners of an 
icosahedron. 

F I G .  4 0 .  
The corners of the same rectangles coincide with the centers of the 
sides of a dodecahedron. 
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The golden rectangle has many unusual properties. If we 
cut a square from one end, the remaining figure will be a 
smaller golden rectangle. We can keep snipping off squares, 
leaving smaller and smaller golden rectangles, as shown in 
Figure 41. (This is an  example of a perfect squared rectan- 
gle of order infinity. See Chapter 17.) Successive points 
marking the division of sides into golden ratio lie on a loga- 
rithmic spiral that  coils inward to infinity, its pole being the 
intersection of the two dotted diagonals. Of course these 
"whirling squares," as  they have been called, can also be 
whirled outward to infinity by drawing larger and larger 
squares. 

FIG.  41 .  

A logarithmic spiral indicated by "whirling squares." 

The logarithmic spiral is traceable in many other con- 
structions involving phi. An elegant one makes use of an 
isosceles triangle that  has sides in golden ratio to its base 
/see Fig. 421. Each base angle is 72 degrees, which is twice 
the top angle of 36 degrees. This is the golden triangle in- 
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volved in the construction of the pentagram. If we bisect a 
base angle, the bisector cuts the opposite side in golden ratio 
to produce two smaller golden triangles, one of which is 
similar to the original. This triangle can in turn be divided 
by a base-angle bisector, and the process can be continued 

F I G .  42 .  
A loga~, i thmic  sp i r a l  indicated by "whirl ing tr iangles." 
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endlessly to generate a series of whirling triangles which, 
like whirling squares, also stake out a logarithmic spiral. 
The pole of this spiral lies a t  the intersection of the two 
medians shown as dotted lines. 

The logarithmic spiral is the only type of spiral that  does 
not alter in shape as  it grows, a fact that  explains why i t  is 
so often found in nature. For example, as  the mollusk inside 
a chambered nautilus grows in size, the shell enlarges along 
a logarithmic spiral so that i t  always remains an  identical 
home. The center of a logarithmic spiral, viewed through a 
microscope, would look exactly like the spiral you would see 
if you continued the curve until i t  was as  large as  a galaxy 
and then viewed it from a vast distance. 

The logarithmic spiral is intimately related to the Fibo- 
nacci series (1, 1, 2, 3, 5, 8, 13, 21, 34 . . .), in which every 
term is the sum of the two preceding terms. Biological 
growth often exhibits Fibonacci patterns. Commonly cited 
examples concern the spacing of leaves along a stalk and the 
arrangements of certain flower petals and seeds. Phi is in- 
volved here also, for the ratio between any two consecutive 
terms of the Fibonacci series comes closer and closer to phi 
as the series increases. Thus 5/3 is fairly close to phi (a 
three-by-five file card is hard to distinguish from a golden 
rectangle), but 8/5 is closer, and 21/13 is 1.619, which is 
closer still. In fact, if we start  with any two numbers what- 
ever and form an additive series (e.g., 7, 2, 9, 11, 20 . . .), 
the same convergence takes place. The higher the series 
goes, the closer the ratio between consecutive terms ap- 
proaches phi. 

This can be illustrated neatly by whirling squares. We 
begin with two small squares of any size, say the squares 
marked A and B in Figure 43. The side of square C is the 
sum of the sides of A and B. D is the sum of B and C, E is 
the sum of C and D, and so on. Regardless of the sizes of the 
two initial squares, the whirling squares get closer and closer 
to forming a golden rectangle. 
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There is a classic geometrical paradox that  brings out 
strikingly how phi is linked to the Fibonacci series. If we 
dissect a square of 64 unit squares [see Fig. 441, the four 
pieces can be put together again to make a rectangle of 65 
square units. The paradox is explained by the fact that  the 
pieces do not fit exactly along the long diagonal where there 
is a narrow space equal to one square unit. Note that  the 
lengths of line segments in these figures are terms in a 
Fibonacci series. In fact, we can dissect the square so that  
these segments are consecutive terms in any additive series 
and we will always get a form of the paradox, though in 
some cases the long rectangle will gain in area and in other 
cases it will lose area because of overlapping along the 
diagonal. This reflects the fact that consecutive terms in 
any additive series have a ratio that is alternately greater 
or less than phi. 

The only way to cut the square so that there is no loss or 
gain of area in the rectangle is to cut i t  with segment lengths 
taken from the additive series 1, (p, (p + 1, 2(p + 1, 3(p + 2, 
. . . Another way to write this series is 1, (9, (p2,  (p3,  Q4. . . . 
It is the only additive series in which the ratio between any 
two consecutive terms is constant. (The ratio is of course 
phi.) I t  is the golden series that all additive series strive 
vainly to become. 

In  recent times an enormous literature has developed 
around phi and related topics that is almost as eccentric as 
the circle-squaring literature revolving about pi. The classic 
is a 457-page German work, Der goldene Schnitt ,  written by 
Adolf Zeising and published in 1884. Zeising argues that  
the golden ratio is the most artistically pleasing of all pro- 
portions and the key to the understanding of all morphology 
(including human anatomy), art ,  architecture and even 
music. Less crankish but comparable are Samuel Colman's 
Nature's Harmonic Unity  (1913) and Sir Theodore Cook's 
The  Curves o f  L i f e  (1914). 
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Experimental esthetics may be said to have started with 
Gustav Fechner's attempts to give empirical support to 
Zeising's views. The great  German psychologist measured 
thousands of windows, picture frames, playing cards, books 
and other rectangles, and checked the points a t  which grave- 
yard crosses were divided. He found the average ratio close 
to phi. He  also devised many ingenious tests in which sub- 
jects picked the most pleasing rectangle from a group, drew 
the most pleasing rectangle, placed the bar  of a cross a t  the 
spot they liked best, and so on. Again, he found tha t  prefer- 
ences averaged close to phi. But his pioneer experiments 
were crude and more recent work along similar lines has 
yielded only the cloudy conclusion tha t  most people prefer 
a rectangle somewhere between a square and a rectangle 
tha t  is twice a s  long a s  i t  is wide. 

The American J a y  Hambidge, who died in 1924, wrote 
many books defending what he called "dynamic symmetry," 
an  application of geometry (with phi in  a leading role) t o  
a r t ,  architecture, furni ture design and even type fonts. Few 
today take his work seriously, though occasionally a promi- 
nent painter or  architect will make deliberate use of the 
golden ratio in some way. George Bellows, for  example, 
sometimes employed the golden ratio in planning the com- 
position of a picture. Salvador Dali's "The Sacrament of 
the Last Supper" (owned by the National Gallery of Art ,  
Washington, D.C.), is painted inside a golden rectangle, and 
other golden rectangles were used for  positioning the figures. 
P a r t  of a n  enormous dodecahedron floats above the table. 

F rank  A. Lonc of New York has  given considerable 
thought to phi. His booklets used to be obtainable from 
Tiffany Thayer's Fortean Society, which also peddled a 
German slide rule on which phi appears. (The Society did 
not continue after  Thayer's death in 1959.) Lonc has con- 
firmed one of Zeising's pet theories by measuring the 
heights of 65 women and comparing these figures to the 
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THE SACRAMENT OF THE LAST SUPPER 
Salvador Dali. National Gallery of Ar t ,  Wasltington, I).C. Ch,ester 
Dale Collection. 

heights of their navels, finding the ratio to average 1.618+. 
He calls this the Lonc Relativity Constant. "Subjects whose 
measurements did not fall within this ratio," he writes, 
"testified to hip-injuries or other deforming accidents in 
childhood." Lonc denies that  the decimal expansion of pi is 
3.14159 . . . , as  is widely believed. He has computed i t  more 
accurately by squaring phi, multiplying the result by 6, then 
dividing by 5 to get 3.14164078644620550. 

I close with an  interesting problem involving phi and the 
emblem made familiar by Charles de Gaulle, the two-beamed 
cross depicted in Figure 45. The cross is here formed of 13 
unit squares. The problem is to draw a straight line through 
point A so that  the total area on the shaded side of the line 
equals the area on the other side. Exactly how long is BC if 
the line is accurately placed? (In the illustration the diag- 
onal is incorrectly drawn so as to give no clue to its correct 
position.) 
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F I G .  45 .  
How long is the  line RC? 

A D D E N D U M  

MANY INFORMATIVE letters were received about the phi 
article. Several readers pointed out t ha t  in most mathemat- 
ical books and journals the common symbol for  the golden 
ratio is "tau" instead of "phi." This is true, but phi is used 
in many crank books on the subject, and i t  is coming to be 
the symbol most often encountered in the literature of rec- 
reational mathematics. William Schaaf, for  instance, uses i t  
in his introductory remarks to the section on the golden ratio 
in his bibliographic work, Recreational Mathemat ics ,  re- 
cently published by the  National Council of Teachers of 
Mathematics. 

David Johnson, of the Philco Corporation, Palo Alto, Cali- 
fornia, used the firm's TRANSAC S-2000 computer to cal- 
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culate phi to 2,878 decimal places. I t  took the machine a little 
less than four minutes to do the job. For  numerologists I 
can report tha t  the unusual sequence 177111777 occurs 
among the first 500 decimals. 

L. E. Hough, a reader in Nome, Alaska, wrote to say that  
the two dotted diagonals in Figure 41, a s  well a s  the two 
dotted medians in Figure 42, a re  in golden ratio t o  each other. 

Stephen Barr ,  whose father  Mark Barr  gave phi its name, 
sent me a clipping of an  article by his father  (in the London 
Sketch, about 1913) in which the concept of phi is general- 
ized a s  follows. If we form a three-step series in which each 
term is the sum of the three previous terms, the terms ap- 
proach a ratio of 1.8395+. A four-step series, each term the 
sum of four previous terms, approaches a ratio of 1.9275+. 
In general : 

log (2  - x)-I 
n = log x 

where n is the number of steps and x is the ratio that  the 
series approaches. When n is 2, we have the familiar 
Fibonacci series in which x is phi. As n approaches infinity, 
x approaches 2. 

Zeising's theory about navel heights continues to turn  up 
in modern books. For  example, in The Geometry o f  Art and 
Life by Matila Ghyka, published by Sheed and Ward in 1946, 
we read that  "one can, in fact, state that  if one measures the 
ratio for  a great  number of male and female bodies, the 
average ratio obtained will be 1.618." This makes about a s  
much sense a s  computing the "average ratio" of the length 
of a bird's bill to  the length of its leg. What  group does one 
use for  obtaining an  average: people picked a t  random in 
New York, or  Shanghai, or  from the world population? To 
make things worse, the mixtures of body types in the world, 
or  even in a small section of the world, is f a r  from constant. 
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Kenneth Walters, of Seattle, and his friends took some 
measurements of the navel heights of their wives and ar- 
rived at an average ratio of 1.667, a bit higher than Lonc's 
1.618. "Please understand," Walters wrote, "that our Hi-Phi 
wives were measured by their respective and respected hus- 
bands. It  seems advisable that Mr. Lonc take up studies other 
than navel architecture." 

ANSWERS 

THE PROBLEM of bisecting the Gaullist cross can be solved 
algebraically by letting x be the length CD [see Fig. 461 and 
y be the length MN. If the diagonal line bisects the cross, 
the shaded triangle must have an area of 2% square units. 
This permits us to write the equation (x + 1) (y + 1) = 5. 
Because triangles ACD and AMN are similar, we can also 
write the equation x / l  = l/y. 

FIG. 46. 

Solution to cross problem. 
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The two equations combine to give x a value of (3-d5). 
BC therefore has a length of 1h (d5-I), or .618+, which is 
the reciprocal of phi (l/?). In other words, BD is divided 
by C in golden ratio. The lower end of the diagonal line 
similarly divides the side of the unit square in golden ratio. 
The bisecting line has a length of 615. 

To find point C with compass and straightedge we can 
adopt any of several simple methods that go back to Euclid. 
One is as follows: 

Draw BE as shown in Figure 47. This bisects AD, making 
D F  one half of BD. With the point of the compass a t  F ,  
draw arc of circle with radius DF, intersecting B F  a t  G. 

FIG. 47.  

With point of compass a t  B, draw arc of circle with radius 
BG, intersecting BD at C .  BD is now divided into the re- 
quired golden ratio. 

Several readers found easier ways to solve this problem. 
Nelson Max of Baltimore gave the simplest construction for 
the bisecting line. A semicircle, with one end a t  A (in Fig- 
ure 46) and the other end a t  a point three units directly 
beneath A, intersects the right side of the cross a t  point N. 



C H A P T E R  N I N E  

The Monkey and the 
Coconuts 

I N THE October 9, 1926, issue of The Saturday Evening 
Post appeared a short story by Ben Ames Williams en- 

titled "Coconuts." The story concerned a building contractor 
who was anxious to prevent a competitor from getting a n  
important contract. A shrewd employee of the contractor, 
knowing the competitor's passion for  recreational mathe- 
matics, presented him with a problem so exasperating tha t  
while he was preoccupied with solving i t  he forgot to enter 
his bid before the deadline. 

Here is the problem exactly a s  the clerk in Williams's story 
phrased i t  : 

"Five men and a monkey were shipwrecked on a desert 
island, and they spent the first day gathering coconuts for  
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food. Piled them all up together and then went to sleep for 
the night. 

"But when they were all asleep one man woke up, and he 
thought there might be a row about dividing the coconuts in 
the morning, so he decided to take his share. So he divided 
the coconuts into five piles. He had one coconut left over, 
and he gave that  to the monkey, and he hid his pile and put 
the rest all back together. 

"By and by the next man woke up and did the same thing. 
And he had one left over, and he gave i t  to the monkey. And 
all five of the men did the same thing, one after the other; 
each one taking a fifth of the coconuts in the pile when he 
woke up, and each one having one left over for the monkey. 
And in the morning they divided what coconuts were left, 
and they came out in five equal shares. Of course each one 
must have known there were coconuts missing ; but each one 
was guilty as  the others, so they didn't say anything. How 
many coconuts were there in the beginning?" 

Williams neglected to include the answer in his story. I t  is 
said that  the offices of The Saturday Evening Post were 
showered with some 2,000 letters during the first week after 
the issue appeared. George Horace Lorimer, then editor-in- 
chief, sent Williams the following historic wire: 

FOR THE LOVE OF MIKE, HOW M A N Y  COCONUTS? HELL POP- 

PING AROUND HERE. 

For 20 years Williams continued to receive letters request- 
ing the answer or proposing new solutions. Today the prob- 
lem of the coconuts is probably the most worked on and least 
often solved of all the Diophantine brain-teasers. (The term 
Diophantine is descended from Diophantus of Alexandria, 
a Greek algebraist who was the first to analyze extensively 
equations calling for solutions in rational numbers.) 

Williams did not invent the coconut problem. He merely 
altered a much older problem to make i t  more confusing. 
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The older version is the same except tha t  in the morning, 
when the final division is made, there is again an  extra coco- 
nut  for  the monkey; in Williams's version the final division 
comes out even. Some Diophantine equations have only one 
answer (e.g., xz + 2 = y:i) ; some have a finite number of 
answers;  some (e.g., xi{ + y3 = 2") have no answer. Both 
Williams's version of the coconut problem and its predeces- 
sor  have a n  infinite number of answers in whole numbers. 
Our task is to find the smallest positive number. 

The older version can be expressed by the following six 
indeterminate equations which represent the six successive 
divisions of the coconuts into fifths. N is the original num- 
ber ;  F, the number each sailor received on the final division. 
The 1's on the right a r e  the coconuts tossed to the monkey. 
Each letter stands for  an  unknown positive integer. 

It is not difficult to reduce these equations by familiar 
algebraic methods to the following single Diophantine equa- 
tion with two unknowns : 

This equation is much too difficult to  solve by trial and 
error ,  and although there is a standard procedure for  solv- 
ing i t  by a n  ingenious use of continued fractions, the method 
is long and tedious. Here we shall be concerned only with 
a n  uncanny but beautifully simple solution involving the 
concept of negative coconuts. This solution is sometimes at- 
tributed to the University of Cambridge physicist P. A. M. 
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Dirac, but in reply to my query Professor Dirac writes that  
he obtained the solution from J. H. C. Whitehead, professor 
of mathematics a t  Oxford University ( and nephew of the 
famous philosopher). Professor Whitehead, answering a 
similar query, says that  he got i t  from someone else, and I 
have not pursued the matter further. 

Whoever first thought of negative coconuts may have rea- 
soned something like this. Since N is divided six times into 
five piles, it is clear that  5" (or 15,625) can be added to any 
answer to give the next highest answer. In fact any multiple 
of 5" can be added, and similarly any multiple can be sub- 
tracted. Subtracting multiples of 5" will of course eventually 
give us an infinite number of answers in negative numbers. 
These will satisfy the original equation, though not the 
original problem, which calls for a solution that  is a positive 
integer. 

Obviously there is no small positive value for N which 
meets the conditions, but possibly there is a simple answer 
in negative terms. I t  takes only a bit of trial and error to 
discover the astonishing fact that  there is indeed such a solu- 
tion : -4. Let us see how neatly this works out. 

The first sailor approaches the pile of - 4  coconuts, tosses 
a positive coconut to the monkey ( i t  does not matter whether 
the monkey is given his coconut before or after the division 
into fifths), thus leaving five negative coconuts. These he 
divides into five piles, a negative coconut in each. After he 
has hidden one pile, four negative coconuts remain - exactly 
the same number that  was there a t  the start!  The other 
sailors go through the same ghostly ritual, the entire pro- 
cedure ending with each sailor in possession of two negative 
coconuts, and the monkey, who fares best in this inverted 
operation, scurrying off happily with six positive coconuts. 
To find the answer that  is the lowest positive integer, we 
now have only to add 15,625 to - 4  to obtain 15,621, the 
solution we are  seeking. 
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This approach to the problem provides us immediately 
with a general solution for  n sailors, each of whom takes one 
n th  of the coconuts a t  each division into nths. If there a re  
four sailors, we begin with three negative coconuts and add 
4:. If there a re  six sailors, we begin with five negative coco- 
nuts and add 6 7 ,  and so on for  other values of n. More for- 
mally, the  original number of coconuts is equal t o  k(nn+') 
-m  (n -  1) , where n is the number of men, m the number of 
coconuts given to the monkey a t  each division, and k a n  a r -  
bitrary integer called the parameter. When n is 5 and m is 1, 
we obtain the lowest positive solution by using a parameter 
of 1. 

Unfortunately, this diverting procedure will not apply to 
Williams's modification, in which the monkey is deprived of 
a coconut on the last division. I leave i t  to  the interested 
reader to work out the solution to  the  Williams version. I t  
can of course be found by standard Diophantine techniques, 
but there is a quick short  cut  if you take advantage of in- 
formation gained from the version just explained. Fo r  those 
who find this too difficult, here is a very simple coconut 
problem free of all Diophantine difficulties. 

Three sailors come upon a pile of coconuts. The first sailor 
takes half of them plus half a coconut. The second sailor 
takes half of what is left plus half a coconut. The third 
sailor also takes half of what  remains plus half a coconut. 
Left over is exactly one coconut which they toss to the 
monkey. How many coconuts were there in the original pile? 
If you will a r m  yourself with 20 matches, you will have 
ample material for  a trial-and-error solution. 

A D D E N D U M  

IF THE USE of negative coconuts for  solving the earlier ver- 
sion of Ben Anies Williams's problem seems not quite legiti- 
mate, essentially the same trick can be carried out by paint- 
ing four coconuts blue. Norman Anning, now retired f rom 
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the mathematics department of the University of Michigan, 
hit on this colorful device as early as  1912 when he pub- 
lished a solution (School Science and Mathematics, June, 
1912, page 520) to a problem about three men and a supply 
of apples. Anning's application of this device to the coconut 
problem is as follows. 

We s tar t  with 56 coconuts. This is  the smallest number 
that can be divided evenly into fifths, have one fifth removed 
and the process repeated six times, with no coconuts going 
to the monkey. Four of the 5" coconuts are  now painted blue 
and placed aside. When the remaining supply of coconuts is 
divided into fifths, there will of course be one left over to 
give the monkey. 

After the first sailor has taken his share, and the monkey 
has his coconut, we put the four blue coconuts back with the 
others to make a pile of 55 coconuts. This clearly can be 
evenly divided by 5. Before making this next division, how- 
ever, we again put the four blue coconuts aside so that  the 
division will leave an extra coconut for the monkey. 

This procedure - borrowing the blue coconuts only long 
enough to see that  an even division into fifths can be made, 
then putting them aside again - is repeated a t  each divi- 
sion. After the sixth and last division, the blue coconuts 
remain on the side, the property of no one. They play no 
essential role in the operation, serving only to make things 
clearer to us as  we go along. 

Readers interested in mastering the standard method of 
solving first-degree Diophantine equations by the use of con- 
tinued fractions are  referred to a clear exposition of the 
method in Helen Merrill's Mathematical Excursions, reissued 
in 1957 as  a Dover paperback. I t  is a handy technique for 
puzzlists to know because so many popular brain teasers 
rest on this type of equation (see, for example, problem 8 in 
Chapter 14). 

There are all sorts of other ways to tackle the coconut 
problem. John M. Danskin, a t  the Institute for Advanced 



110 T h e  Monkey and the Coconuts 

Study, Princeton, N.J., as  well as  several other readers, sent 
ingenious methods of cracking the problem by using a num- 
ber system based on 5. Scores of readers wrote to explain 
other unusual approaches, but all are a bit too involved to 
explain here. 

A N S W E R S  

THE NUMBER of coconuts in Ben Ames Williams's version of 
the problem is 3,121. We know from the analysis of the older 
version that  5; - 4, or 3,121, is the smallest number that 
will permit five even divisions of the coconuts with one 
going to the monkey a t  each division. After these five divi- 
sions have been made, there will be 1,020 coconuts left. This 
number happens to be evenly divisible by 5, which permits 
the sixth division in which no coconut goes to the monkey. 

In this version of the problem a more general solution 
takes the form of two Diophantine equations. When n, the 
number of men, is odd, the equation is : 

Number of coconuts = (1 + nk) nn - ( n  - 1 )  

When n  is even : 

Number of coconuts = ( n  - 1 + nk) nn - ( n  - 1)  

In both equations k is the parameter that  can be any in- 
teger. In  Williams's problem the number of men is 5, an  
odd number, so 5 is substituted for n  in the first equation, 
and k is taken as  0 to obtain the lowest positive answer. 

A letter from Dr. J. Walter Wilson, a Los Angeles derma- 
tologist, reports an  amusing coincidence involving this an- 
swer : 

SIRS : 
I read Ben Ames Williams's story about the coconut prob- 
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l e m  in 1926, spent  a sleepless n i g h t  work ing  o n  t h e  puzzle 
w i thou t  success, t h e n  learned f rom a professor  of ma the -  
mat ics  hoz~l t o  use  t h e  Diophant ine  equation t o  obtain  t h e  
smallest answer ,  3,121. 

I n  1939 I suddenly  realized t h a t  the  home  o n  W e s t  8 0 t h  
S t ree t ,  Inglewood,  Cali fornia,  in w h i c h  mu f a m i l y  and I had 
been l iving f o r  several m o n t h s ,  bore t h e  street  n u m b e r  3121. 
Accordingly ,  zc3e entertained all o f  our  m o s t  erudi te  f r i ends  
one evening b y  a circuit  o f  games  and puzzles, each arranged 
in a di f ferent  room,  and visi ted b y  groups  o f  f o u r  in rotation.  

T h e  coconut puzzle zoas presented o n  t h e  f r o n t  porch, w i t h  
the  table placed direct ly  u n d e r  t h e  lighted house  n u m b e r  
blazingly giving t h e  secret a w a y ,  but  n o  one caught  on! 

The simpler problem of the three sailors, a t  the end of 
the chapter, has the answer:  15 coconuts. If you tried to 
solve this by breaking matches in half to represent halves of 
coconuts, you may have concluded tha t  the problem was 
unanswerable. Of course no coconuts need be split a t  all in 
order to perform the required operations. 
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Mazes 

W H E N  YOUNG THESEUS entered the Cretan lab- 
yrinth a t  Knossos in search of the dreaded Minotaur, 

he unwound a silken cord given him by Ariadne so tha t  he 
could find his way out again. Architectural labyrinths of 
this sort  - buildings with intricate passageways designed 
to bewilder the uninitiated - were not uncommon in the 
ancient world. Herodotus describes an  Egyptian labyrinth 
tha t  contained 3,000 chambers. Coins of Knossos bore a sim- 
ple maze design, and more complicated maze patterns ap- 
peared on Roman pavements and on the robes of early 
Roman emperors. Throughout the Middle Ages the walls and 
floors of many cathedrals in Continental Europe were dec- 
orated with similar designs. 

In England the most famous architectural labyrinth was 
Rosamond's Bower. I t  was reportedly built in a park a t  



Woodstock in the 12th century by King Henry 11, who 
sought to conceal his mistress, Rosamond the Fair, from his 
wife, Eleanor of Aquitaine. Using Ariadne's string tech- 
nique, goes the tale, Eleanor found her way to the center of 
the bower, where she forced the unhappy Rosamond to drink 
poison. The story caught the fancy of many writers - no- 
tably Joseph Addison, who wrote an opera about it, and 
Algernon Charles Swinburne, whose dramatic poem "Rosa- 
mond" is perhaps its most moving literary version. 

Curiously, the Continental custom of decorating the in- 
terior of a cathedral with maze mosaics was not adopted in 
England. I t  was a common English practice, however, to cut 
mazes in the turf outside the church, where they were tra- 
versed as part of a religious ritual. These "quaint mazes in 
the wanton green," as Shakespeare called them, flourished 
in England until the 18th century. Garden mazes made of 
high hedges and intended solely for amusement became 
fashionable during the late Renaissance. In  England the 
most popular of the hedge mazes, through which confused 
tourists still wind their way, was designed in 1690 for the 
Hampton Court Palace of William of Orange. The present 
plan of the maze is reproduced in Figure 48. 

The only hedge maze of historic significance in the U. S. 
was one constructed early in the 19th century by the Har- 

FIG.  4 8 .  
Plan of a hedge maze at Hampton Court. 



monists, a German Protestant sect which settled a t  Har- 
mony, Indiana. (The town is now called New Harmony, the 
name given it in 1826 by the Scottish socialist Robert Owen, 
who established a Utopian colony there.) The Harmony lab- 
yrinth, like the medieval church mazes, symbolized the 
snakelike twists of sin and the difficulty of keeping on the 
true path. I t  was restored in 1941. Unfortunately no record 
of the original plan had survived, so the restoration was 
made in an entirely new pattern. 

From the mathematical standpoint a maze is a problem 
in topology. If its plan is drawn on a sheet of rubber, the 
correct path from entrance to goal is a topological invariant 
which remains correct no matter how the rubber is de- 
formed. You can solve a maze quickly on paper by shading 
all the blind alleys until only the direct routes remain. But 
when you are  faced, as  Queen Eleanor was, with the task of 
threading a maze of which you do not possess a map, it is a 
different matter. If the maze has one entrance, and the ob- 
ject is to find your way to the only exit, it can always be 
solved by placing your hand against the right (or left) wall 
and keeping it there as you walk. You are sure to reach the 
exit, though your route is not likely to be the shortest one. 
This procedure also works in the more traditional maze in 
which the goal is within the labyrinth, provided there is no 
route by which you can walk around the goal and back to 
where you started. If the goal is surrounded by one or more 
such closed circuits, the hand-on-wall method simply takes 
you around the largest circuit and back out of the maze; i t  
can never lead you to the "island" inside the circuit. 

Mazes that  contain no closed circuits, such as the maze 
shown in the illustration a t  left in Figure 49, are called by 
topologists "simply connected." This is the same as saying 
that  the maze has no detached walls. Mazes with detached 
walls are sure to contain closed circuits, and are known as 
"multiply connected" mazes (an example is depicted in the 



FIG. 49.  

A "simply connected" maze (left) and a "multiply connected" one 
(r ight) .  

illustration a t  r ight ) .  The hand-on-wall technique, used on 
simply connected mazes, will take you once in each direction 
along every path, so you are  sure, somewhere along the 
route, to enter the goal. The Hampton Court maze is mul- 
tiply connected, but its two closed loops do not surround the 
goal. The hand-on-wall technique will therefore carry you to 
the goal and back, but one corridor will be missed entirely. 

Is there a mechanical procedure -an algorithm, to use a 
mathematical term - which will solve all mazes, including 
multiply connected ones with closed loops that  surround the 
goal? There is, and the best formulation of it is given in 
Edouard Lucas's Rdcrdations mathe'matiques (Volume I ,  
1882), where i t  is credited to M. Trbmaux. As you walk 
through the maze, draw a line on one side of the path, say 
your right. When you come to a new juncture of paths take 
any path you wish. If in walking along a new path you re- 
turn to a previously visited juncture, or reach a dead end, 
turn around and go back the way you came. If in walking 
along an old path (a path marked on your left) you come to 
a previously visited juncture, take any new path, if one is 
available; otherwise take an old path. Never enter a path 
marked on both sides. 
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The illustration a t  right in Figure 49 shows a multiply 
connected maze in which two closed circuits surround the 
central cell. If the reader will apply Trkmaux's algorithm, 
using a red pencil to mark his trail, he will find that  i t  will 
indeed take him to the center and back to the entrance after 
passing twice (once in each direction) through each portion 
of the maze. Better still, if you stop marking the paths once 
the goal is reached, you will have automatically recorded a 
direct route from entrance to goal. Simply follow the paths 
marked with one trail only. 

For readers who might care to test this technique on a 
more difficult labyrinth, Figure 50 shows the plan of a mul- 

FIG.  5 0 .  

A maze in the garden of W.W. Rouse Ball. 
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tiply connected maze which the British mathematician W. 
W. Rouse Ball had traced out in his garden. The goal is the 
dot inside the maze. 

Today's adults a re  no longer entertained by such puzzles, 
but there a re  two fields of science in which interest in mazes 
remains high : psychology and the designing of computers. 
Psychologists have of course been using mazes for  several 
decades to study the learning behavior of men and animals. 
Even the lowly earthworm can be taught  to run a maze of 
one fork, and the an t  can learn mazes with a s  many a s  10 
points of choice. Fo r  computer designers, robot maze runners 
a re  par t  of a n  exciting program to build machines which, 
like animals, profit f rom their experience. 

One of the earliest of these picturesque devices is Theseus, 
the famous maze-solving robot mouse invented by Claude E. 
Shannon, now a t  the Massachusetts Institute of Technology. 
(Theseus is a n  improvement on Shannon's earlier maze- 
solving "finger.") The "mouse" first works its way syste- 
matically through an  unfamiliar maze, which may be multi- 
ply connected, by using a variation of Trkmaux's algorithm. 
When the mouse reaches a juncture where i t  must make a 
choice, i t  does not do so in a random manner, a s  a man 
might, but always takes the nearest path on a certain side. 
"It is rather  difficult to  trouble-shoot machines containing 
random elements," Shannon has explained. "It is difficult to  
tell when such a machine is misbehaving if you can't predict 
what  i t  should do !" 

Once the mouse has found its way to the goal, memory 
circuits enable i t  to run  the maze a second time without 
error .  In terms of Trkmaux's system, this means tha t  the 
mouse avoids all doubly traversed paths and tracks only the 
paths i t  has traveled once. This does not guarantee tha t  i t  
will take the shortest route to the goal, but only tha t  i t  will 
reach the goal without entering any blind alleys. A real 
mouse is much slower in learning a maze because its explora- 
tion technique is largely (but  not entirely) random trial 
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and error, calling for many successes before the correct path 
is memorized. 

Other robot maze runners have been built more recently. 
The most sophisticated, devised by Jaroslav A. Deutsch of 
the University of Oxford, is capable of transferring its 
training from one maze to another which is topologically 
equivalent even though its lengths and shapes have been 
altered. Deutsch's maze-runner also takes advantage of short 
cuts added to the maze, and does several other surprising 
things. 

These devices are surely only crude beginnings. Future 
learning machines are likely to acquire enormous powers 
and to play unsuspected roles in the automatic machines of 
the space age. Mazes and space flight - the combination 
carries us back to the Greek myth mentioned a t  the begin- 
ning of this chapter. The maze of the Minotaur was built for 
King Minos by none other than Daedalus, who invented a 
pair of mechanical wings and whose son perished from fly- 
ing too near the sun. "So cunningly contrived a mizmaze 
was never seen in the world, before nor since," writes 
Nathaniel Hawthorne in his Tanglewood Tales account of 
the story. "There can be nothing else so intricate, unless i t  
were the brain of a man like Daedalus, who planned it, or 
the heart of any ordinary man. . . ." 
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Recreational Logic 

''Hou? o f ten  have I said to  you tha t  w h e n  you have 
eliminated the impossible, whatever  remains,  however 
improbable, m u s t  be the  truth?" 

- Sherlock Hoimes, T h e  S ign  o f  Four 

A BRAIN TEASER that  calls for  deductive reasoning 
with little or  no numerical calculation is usually labeled 

a logic problem. Of course such problems are  mathematical 
in the sense that  logic may be regarded a s  very general, 
basic mathematics; nevertheless i t  is convenient to distin- 
guish logic brain teasers from their more numerous nu- 
merical cousins. Here we shall glance a t  three popular types 
of recreational logic problems and discuss how to go about 
tackling them. 
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The most frequently encountered type is sometimes called 
by puzzlists a "Smith-Jones-Robinson" problem after an 
early brain-teaser devised by the English puzzle expert 
Henry Dudeney (see his Puzzles and Curious Problems, 
Problem 49) .  I t  consists of a series of premises, usually 
about individuals, from which one is asked to  make certain 
deductions. A recent American version of Dudeney's prob- 
lem goes like this : 

1. Smith, Jones and Robinson are the engineer, brakeman 
and fireman on a train, but not necessarily in that  order. 
Riding the train are three passengers with the same three 
surnames, to be identified in the following premises by a 
"Mr." before their names. 

2. Mr. Robinson lives in Los Angeles. 
3. The brakeman lives in Omaha. 
4. Mr. Jones long ago forgot all the algebra he learned 

in high school. 
5. The passenger whose name is the same as  the brake- 

man's lives in Chicago. 
6. The brakeman and one of the passengers, a distin- 

guished mathematical physicist, attend the same church. 
7. Smith beat the fireman a t  billiards. 
Who is the engineer? 
It is possible to translate this problem into the notation 

of symbolic logic and solve i t  by appropriate techniques, but 
this is needlessly cumbersome. On the other hand, i t  is diffi- 
cult to grasp the problem's logical structure without some 
sort of notational aid. The most convenient device to use is 
a matrix with vacant cells for all possible pairings of the 
elements in each set. In this case there are  two sets and 
therefore we need two such matrices [see Fig. 511. 

Each cell is to be marked with a "1" to indicate that  the 
combination is valid, or "0" to indicate that  i t  is ruled out 
by the premises. Let us see how this works out. Premise 7 
obviously eliminates the possibility that  Smith is the fire- 
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man, so we place a "0" in the upper r ight  corner cell of the 
matr ix a t  left. Premise 2 tells us tha t  Mr. Robinson lives in 
Los Angeles so we place a "1" in the lower left corner of the 
matr ix on the right,  and "0's" in the other cells of the same 
row and the same column to show tha t  Mr. Robinson doesn't 
live in Omaha o r  Chicago and tha t  Mr. Smith and Mr. Jones 
do not live in Los Angeles. 

SMITH 

JONES 

ROBINSON 

MR. SMITH 

MR. JONES 

MR. ROBINSON 

FIG.  5 1 .  

Two matrices fo r  the "Smith-Jones-Robinson" problem 

Now we have to do a bit of thinking. Premises 3 and 6 
inform us tha t  the physicist lives in Omaha, but what  is his 
name? He cannot be Mr. Robinson, nor can he be Mr. Jones 
(who has forgotten his algebra) ,  so he must be Mr. Smith. 
We indicate this with a "1" in the middle cell of the top row 
in the matr ix a t  right,  and "0's" in the remaining empty 
cells of the same row and column. Only one cell in the matr ix 
is now available for  the third "1," proving tha t  Mr. Jones 
lives in Chicago. Premise 5 now permits us to identify the 
brakeman a s  Jones, so we place a "1" in the central cell of 
the left-hand matr ix and "0's" in the other cells of the same 
row and column. The appearance of our matrices a t  this 
stage is shown in Figure 52. 
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SMITH 

JONES 

ROBINSON 

MR. SMITH 

MR. JONES 

MR. ROBINSON 

FIG. 5 2 .  
The matrices in use. 

The remaining deductions are  obvious. Only the bottom 
cell of the fireman's column is available for  a "1." This puts 
a "0" in the lower left corner, leaving vacant only the top 
left corner cell for  the final "1" which proves that  Smith is 
the engineer. 

Lewis Carroll was fond of inventing quaint and enor- 
mously complicated problems of this sort.  Eight  a re  to be 
found in the appendix of his Svmbolic Logic. One monstrous 
Carrollian problem (involving 13 variables and 12 premises 
from which one is to deduce that  no magistrates a re  snuff- 
takers) was fed to a n  IBM 704 computer by John G. Kemeny, 
chairman of the mathematics department a t  Dartmouth 
College. The machine solved the problem in about four min- 
utes, although a complete printing of the problem's "truth 
table" ( a  matr ix showing the validity o r  invalidity of every 
possible combination of t rue and false values for  the varia- 
bles) would have taken 13 hours! 

For  readers who care to t r y  their luck on a more difficult 
Smith-Jones-Robinson problem, here is a new one devised 
by Raymond Smullyan of the mathematics department a t  
Princeton University. 
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1. In 1918, on the day that the armistice of World War  
I was signed, three married couples celebrated by having 
dinner together. 

2. Each husband is the brother of one of the wives, and 
each wife is the sister of one of the husbands; that  is, there 
are three brother-sister pairs in the group. 

3. Helen is exactly 26 weeks older than her husband, who 
was born in August. 

4. Mr. White's sister is married to Helen's brother's 
brother-in-law. She (Mr. White's sister) married him on 
her birthday, which is in January. 

5. Marguerite White is not as  tall as  William Black. 
6. Arthur's sister is prettier than Beatrice. 
7. John is 50 years old. 
What is Mrs. Brown's first name? 
Another familiar type of logic poser may be called the 

"colored-hat" variety after the following best-known exam- 
ple. Three men - A, B and C - are  blindfolded and told 
that either a red or a green hat will be placed on each of 
them. After this is done, the blindfolds are removed; the 
men are asked to raise a hand if they see a red hat, and to 
leave the room as soon as  they are sure of the color of their 
own hat. All three hats happen to be red, so all three men 
raise a hand. Several minutes go by until C, who is more 
astute than the others, leaves the room. How did he deduce 
the color of his hat?  

C asks himself: Can my hat be green? If so, then A will 
know immediately that he has a red hat for only a red hat 
on his head would cause B to lift his hand. A would there- 
fore leave the room. B would reason the same way and also 
leave. Since neither has left, C deduces that  his own hat 
must be red. 

As George Gamow and Marvin Stern point out in their 
delightful little book Puzzle-Muth, this can be generalized 
to any number of men who are all given red hats. Suppose 



124 Recreationr~l L o g i c  

there is a fourth man, D, who is more astute than C. He rea- 
sons tha t  if his ha t  is green, then A, B and C are  in a situa- 
tion exactly like the one just described. After  several min- 
utes the most astute member of the t r io will surely leave 
the room. But if five minutes go by and no one leaves, D can 
deduce that  his hat  is red. If there is a fifth man more astute 
than D, he will decide that  his hat  is red af te r  a time lapse 
of, say, 10 minutes. Of course all this is weakened by the 
assumption of different levels of astuteness and by vague- 
ness about the length of the various time lapses. 

Less ambiguous are  some other colored-hat problems such 
a s  the following, also invented by Smullyan. Three men -A,  
B and C - are  aware that  all three of them are  "perfect 
logicians" who can instantly deduce all the consequences of 
a given set of premises. There a re  four red and four green 
stamps available. The men are  blindfolded and two stamps 
a re  pasted on each man's forehead. The blindfolds a re  re- 
moved. A, B and C are  asked in t u r n :  "Do you know the 
colors of your stamps?" Each says: "No." The question is 
then asked of A once more. He again says:  "No.'' B is now 
asked the question, and replies: "Yes." What  a re  the colors 
of B's s tamps? 

A third class of popular logic puzzles involves t ru th  telling 
and lying. The classic example concerns an  explorer in a 
region inhabited by the usual two tr ibes;  the members of 
one tribe always lie, the members of the other always tell 
the t ruth.  He meets two natives. "Are you a t ru th  teller?" 
he asks the tall one. "Goom," the native replies. "He say 
'Yes,' " explains the short native, who speaks English, "but 
him big liar." What tribe did each belong to?  

A systematic approach would be to jot down the four 
possibilities - TT, TL, LT, LL - then eliminate the pairs 
that  a re  inconsistent with the premises. A quicker solution 
is reached if one has the insight to see tha t  the tall n a t '  ive 
must answer "Yes" regardless of ~vhether  he lies or  tells the 
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t ruth.  Since the short  native told the t ruth,  he must be a 
t ru th  teller and his companion a liar. 

The most notorious problem of this type, complicated by 
probability factors and semantic obscurity, was dropped 
casually by the British astronomer Si r  Arthur Eddington 
into the middle of the sixth chapter of his N e w  P a t h z ~ m y s  in 
Science. "If A, B, C, D each speak the  t ru th  once in three 
times (independently), and A affirms that  B denies tha t  C 
declares tha t  D is a liar, what is the probability tha t  D was 
speaking the t ruth?" 

Eddington's answer of 25/71 was greeted by howls of 
protest from his readers, touching off a droll and confusing 
controversy tha t  was never decisively resolved. The English 
astronomer Herbert Dingle, reviewing Eddington's book in 
Nature  (March 23, 1935),  dismissed the problem as  mean- 
ingless and symptomatic of Eddington's confused thinking 
about probability. Theodore Sterne, an  American physicist, 
replied (Nutzrt3e, June  29, 1935) that  the problem was not 
meaningless, but lacked sufficient data for  a solution. 

Dingle responded (Natzrre,  September 14, 1935) by con- 
tending that,  if one granted Sterne's approach, there were 
enough data to reach a solution of exactly 1/3. Eddington 
then re-entered the f r ay  with a paper entitled "The Prob- 
lem of A, B, C and D" (The Mathe?natical Gazet te ,  October, 
1935), in which he explained in detail how he had calculated 
his answer. The controversy terminated with two articles 
in the same magazine ( T h e  Mutherncitical Gaxette,  Decem- 
ber 1936),  one defending Eddington and the other taking 
a position differing f rom all former ones. 

The difficulty lies chiefly in deciding exactly how to in- 
terpret Eddington's statement of the problem. If B is t ruth-  
ful in making his denial, a re  we justified in assuming that  C 
said tha t  D spoke the t ru th?  Eddington thought not. Sim- 
ilarly, if A is lying, can we then be sure tha t  B and C said 
anything a t  all? Fortunately we can side-step all these ver- 
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bal difficulties by making (as Eddington did not) the follow- 
ing assumptions : 

1. All four men made statements. 
2. A, B and C each made a statement that either affirmed 

or denied the statement that  follows. 
3. A lying affirmation is taken to be a denial and a lying 

denial is taken to be an affirmation. 
The men lie a t  random, each averaging two lies out of 

every three statements. If we represent each man's true 
statement by T and his two lies by L1 and L2, we can con- 
struct a table of 81 different combinations of T's and L's 
for the four men. We must then decide which of these com- 
binations are made impossible by the logical structure of 
the statement. The number of possible combinations termi- 
nating in T (that  is, ending with a true statement by D) 
divided by the total number of possible combinations will 
then be our answer. 

A D D E N D U M  

IN GIVING the problem about the explorer and the two na- 
tives, I should have made i t  more precise by saying that  the 
explorer recognized the word "Goom" as  a native word 
meaning either yes or no, but that he didn't know which. 
This would have forestalled a number of letters, such as  the 
following one from John A. Jonelis of Indianapolis : 

SIRS : 
I enjoyed t h e  article o n  logic brain  teasers.  . . . W i s h i n g  

t o  share  t h i s  en joymen t  w i t h  m y  w i f e ,  and probably t o  in- 
dulge m y  male  ego,  I teased h e r  w i t h  t h e  truth-teller-liar 
puzzle. W i t h i n  t w o  m i n u t e s  she  had a completely sound an-  
s w e r ,  diametrically opposed t o  your  published one. 

T h e  tall na t i ve  apparent ly  cannot unders tand a n y  E n g -  
l i sh  o r  he  would be able t o  a n s w e r  yes or  n o  in Engl ish .  H i s  
"Goom," therefore ,  m e a n t  something l ike " I  do n o t  under -  
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stand" o r  "Welcome  t o  Bongo Bongo land." Consequent ly ,  
t h e  small  na t i ve  zoas ly ing w h e n  he  said h is  compa?zion an-  
swered yes, and being a liar, lied w h e n  he  called h is  com- 
panion a liar. T h e  tall  nat ive  i s  t here fore  a truth-tel ler.  

T h i s  female logic threzo m y  male  ego f o r  a loop. Does it 
deflate yours a b i t?  

A N S W E R S  

THE FIRST logic problem is best handled by three matrices: 
one for combinations of first and last names of wives, one 
for first and last names of husbands and one to show sibling 
relationships. Since Mrs. White's first name is Marguerite 
(premise 5 ) '  we have only two alternatives for the names of 
the other wives: (1) Helen Black and Beatrice Brown or 
(2) Helen Brown and Beatrice Black. 

Let us assume the second alternative. White's sister must 
be either Helen or Beatrice. I t  cannot be Beatrice, because 
then Helen's brother would be Black; Black's two brothers- 
in-law would be White (his wife's brother) and Brown (his 
sister's husband) ; but Beatrice Black is not married to 
either of them, a fact inconsistent with premise 4. Therefore 
White's sister must be Helen. This in turn allows us to de- 
duce that  Brown's sister is Beatrice and Black's sister is 
Marguerite. 

Premise 6 leads to the conclusion that  Mr. White's first 
name is Arthur (Arthur Brown is ruled out because that 
would make Beatrice prettier than herself, and Arthur Black 
is ruled out because we know from premise 5 that Black's 
first name is William). Therefore Brown's first name must 
be John. Unfortunately premise 7 informs us that  John was 
born in 1868 (50 years before the Armistice), which is a 
leap year. This would make Helen older than her husband 
by one day more than the 26 weeks specified in premise 3. 
(Premise 4 tells us that  her birthday i s  in January, and 
premise 3 tells us her husband's birthday is in August. She 
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can be exactly 26 weeks older than he only if her birthday 
is January 31, his on August 1, and there is no February 29 
in between !) This eliminates the second of the two alterna- 
tives with which we started, forcing us to conclude that  the 
wives are Marguerite White, Helen Black and Beatrice 
Brown. There are no inconsistencies because we do not know 
the year of Black's birth. The premises permit us to deduce 
that  Marguerite is Brown's sister, Beatrice is Black's sister, 
and Helen is White's sister, but leave undecided the first 
names of White and Brown. 

In the problem of the stamps on the foreheads, B has three 
alternatives: his stamps are (1) red-red, (2) green-green, 
or (3) red-green. Assume they are  red-red. 

After all three men have answered once, A can reason as  
follows: "I cannot have red-red (because then C would see 
four red stamps and know immediately that  he had green- 
green, and if C had green-green, B would see four green 
stamps and know that  he had red-red). Therefore I must 
have red-green." 

But when A was asked a second time, he did not know the 
color of his stamps. This enables B to rule out the possibility 
that  his own stamps are red-red. Exactly the same argument 
enables B to eliminate the possibility that  his stamps are 
green-green. This leaves for him only the third alternative : 
red-green. 

A dozen readers were quick to point out that  there is a 
quick way to solve this problem without bothering to an- 
alyze any of the questions and answers ! Brockway McMillan 
of Summit, New Jersey, expressed it this way: 

" T h e  s ta temen t  of t h e  problem i s  completely symmetr ical  
a s  regards  red and green  s tamps .  T h e r e f o r e ,  a n y  dis tr ibu-  
t i o n  o f  s t a m p s  o n  foreheads w h i c h  satisfies the  stated con- 
d i t ions  wil l ,  i f  red and green are  in terchanged,  aga in  become 
a d is tr ibut ion sa t i s f y ing  t h e  condit ions.  There fore ,  i f  t h e  
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solution i s  unique, it m u s t  be invariant under  the  interchange 
o f  red and green. T h e  onlzy such .solution i s  that  R have a 
red and a green stamp." 

As Wallace Manheimer, chairman of the mathematics de- 
partment of a high school in Brooklyn, put it, this  short-cut 
approach is based not on the fact tha t  A, B and C are  per- 
fect logicians, a s  stated in the problem, but on the fact  tha t  
Raymond Smullyan is ! 

The answer to  Eddington's problem of the four men is 
13/41 a s  the probability that  D is telling the t ruth.  All com- 
binations of t ru th  telling and lying that  have an  odd num- 
ber of lies (or  t ru ths)  prove to be inconsistent with Edding- 
ton's statement. This eliminates from the table of 81 possi- 
ble combinations all but 41, of which 13 end with a t rue  
statement by D. Because each of the other three men is tell- 
ing the t ru th  in exactly the same number of valid combina- 
tions, the probability of having told the t ru th  is the same 
for  all four  men. 

Using the symbol of equivalence (-), which means that  
the statements connected by the symbol a re  either both t rue  
o r  both false, and the symbol of negation ( -),  we can write 
Eddington's problem in the propositional calculus of sym- 
bolic logic a s  follows: 

A =[I3 ( N U ) ]  
This can be simplified to :  

A = [ R  = (C  = D,l 
The t ru th  table for  this expression will confirm the results 

given in the previous analysis. 
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Magic Squares 

T HE TRADITIONAL magic square is a set of integers in 
serial order, beginning with 1, arranged in square for- 

mation so tha t  the total of each row, column and main diag- 
onal is the same. Some notion of the fantastic lengths to 
which this largely frivolous topic has been analyzed may be 
gained from the fact that  in 1838, when much less was un- 
derstood about magic squares than is known today, a French 
work on the subject ran  to three volumes. From ancient 
times until nowr the study of magic squares has flourished a s  
a kind of cult, often with occult trappings, whose initiates 
range from such eminent mathematicians a s  Arthur Cayley 
and Osulald Veblen to laymen such a s  Benjamin Franklin. 

The "order" of a magic square is the number of cells on 
one of its sides. There a re  no magic squares of order two, 
and only one (not counting its rotations and reflections) of 
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order three. An easy way to remember this square is a s  fol- 
lows: F i rs t  write the digits in order a s  shown on the left in 
Figure 53, then move each corner digit to  the f a r  side of the 
central digit a s  indicated by the arrows. The result is the 
magic square shown on the right, which has a constant of 
15. (The constant is always half the sum of n:{ and n, where 
n is the order.) In China, where this square is called the 
lo-shu, i t  has a long history a s  a charm. Today i t  is still 
found on amulets worn in the F a r  East  and India, and on 

F I G .  5 3 .  
How the lo - shu  can be formed. 
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many large passenger ships i t  is the pattern for games of 
shuffleboard. 

Magic squares grow quickly in complexity when we turn 
to order four. There are exactly 880 different types, again 
ignoring rotations and mirror images, many of which are 
much more magical than required by the definition of a 
magic square. One interesting species, known as a symmetri- 
cal square, appears in Albrecht Durer's famous engraving 
Melencolia [see Fig .  541. 

Durer never explained the rich symbolism of this master- 
piece, but most authorities agree that  i t  depicts the sullen 
mood of the thinker unable to engage in action. In the Renais- 
sance the melancholy temperament was thought charac- 
teristic of creative genius; it was the affliction of scholars 
"sicklied o'er with the pale cast of thought." (This notion 
that  brilliant intellects are unable, like Hamlet, to make 
decisions is still with us; witness Harry Truman's public 
criticism of Adlai Stevenson on precisely such grounds.) 

In Durer's picture unused tools of science and carpentry 
lie in disorder about the disheveled, brooding figure of 
Melancholy. There is nothing in the balance scales, no one 
mounts the ladder, the sleeping hound is half-starved, the 
winged cherub waits for dictation while time is running out 
in the hourglass above. The wooden sphere and curiously 
truncated stone tetrahedron suggest the mathematical base 
of the building arts. Apparently the scene is bathed in moon- 
light. The lunar rainbow arching over what appears to be a 
comet may signify the hope that the somber mood will pass. 

Giorgio de Santillana, in his book The A g e  of A d v e n t t ~ ~ e ,  
sees in this strange picture "the mysterious wondering pause 
of the Renaissance mind a t  the threshold of the as-yet-only- 
dreamt-of powerhouse of Science." James Thomson con- 
cludes his great poem of pessimism, T h e  City of D ~ e a d f u l  
N i g h t ,  with a magnificent twelve-stanza description of this 
picture, seeing in it a "confirmation of the old despair." 



Magic Squares  133 

F I G .  54 .  
Albrecht Diirer's Melencolia. At upper right is a magic square. 
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The sense that every s t ~ u g g l e  brings defeat 
Because Fate holds no prize to crozun success; 

That  all the oracles are dumb or cheat 
Because they have no secret to express; 

That  none can pierce the vast black veil uncertain 
Because there is  no  light beyond the curtain; 

That  all is  vanity and nothingness. 

Fourth-order magic squares were linked to Jupiter by 
Renaissance astrologers and were believed to combat mel- 
ancholy (which was Saturnian in origin). This may explain 
the square in the upper right-hand corner of the engraving. 
It is called symmetric because each number added to  the 
number symmetrically opposite the square's center yields 
17. Owing to this fact there are many four-cell groups (in 
addition to rows, columns and main diagonals) that total 
the fourth-order constant of 34 ; for example, the four cor- 
ner cells, the four central cells, the two-by-two squares a t  
each corner. A square of this type can be constructed by an 
absurdly simple method. Merely write in square array and 
in serial order the numbers 1 to 16, then invert the two 
main diagonals. The result is a symmetrical magic square. 
Diirer interchanged the two middle columns of this square 
(which does not affect its properties) so that the two middle 
cells of the bottom row would indicate the year he made the 
engraving. 

The earliest recorded fourth-order square, found in an 
11th- or 12th-century inscription a t  Khajuraho, India, is 
shown a t  the top of Figure 55. I t  belongs to a species known 
as  diabolic squares (also called "pandiagonal" and "Nasik") , 
which are even more astonishing than the symmetrical ones. 
In addition to the usual properties, diabolic squares are also 
magic along all "broken diagonals." For example, cells 2, 12, 
15 and 5, and cells 2, 3, 15 and 14, are broken diagonals that 
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can be restored by putting two duplicate squares alongside 
each other. A diabolic square remains diabolic if a row is 
shifted from top to bottom or bottom to top, and if a column 
is moved f rom one side to the other. If we form a mosaic by 
fitting together a large number of duplicate diabolic squares, 
we have a field on which any four-by-four group of cells will 
be diabolic. Any four adjacent cells on the field, up and 
down, left and r ight  o r  diagonally, will yield the constant. 

Perhaps the most dramatic way of exhibiting the diabolic 
properties of such a square is described by mathematicians 
J. Barkley Rosser and Robert J. Walker, both of Cornell 
University, in a paper published in 1938. We simply bring 
together the top and bottom of the square to make a cylin- 
der, then stretch and bend the cylinder into a torus [see Fig. 
551. All rows, columns and diagonals now become closed 
loops. If we s t a r t  a t  any cell and move two squares away in 
any direction along a diagonal, we always arrive a t  the same 
cell. This cell is called the "antipode" of the cell where we 
began. Every pair of antipodes on this  diabolic doughnut 
will total 17. Every loop of four cells, diagonally or  orthogo- 
nally, adds up to 34, a s  does any square group of four cells. 

A diabolic square remains diabolic under five different 
transformations: (1)  a rotation, (2)  a reflection, (3)  a 
t ransfer  of a row f rom top to bottom o r  vice versa, (4)  a 
t ransfer  of a column from one side to the other, (5) a re- 
arrangement of cells according to the plan shown in Figure 
56. By combining these five transformations one can obtain 
48 basic types of diabolic squares (384 if rotations and re- 
flections are  included). Rosser and Walker show that  these 
five transformations constitute a "group" (an  abstract 
structure with certain properties) that  is identical with the 
group of transformations of the hypercube (four-dimen- 
sional cube) into itself. 

The relation of diabolic squares to the  hypercube is easily 
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FIG.  55. 
The diabolic doughnut. 
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seen by transferring the 16 cells of such a square to the 16 
corners of a hypercube. This can be shown on the familiar 

FIG. 56 .  

One of five t ransformat ions  which do not destroy the  diaholism of a 
diabolic square.  

two-dimensional projection of a hypercube [see Fig. 571. The 
sum of the four corners of each of the 24 square faces of 
this hypercube will be 34. The antipodal pairs, which add up 
to 17, are  the diagonally opposite corners of the hypercube. 
By rotating and reflecting the hypercube, it can be placed 
in exactly 384 different positions, each of which maps back 
to the plane as one of the 384 diabolic squares. 

Claude Fayette Bragdon, a prominent U. S. architect and 
occultist who died in 1946, was fascinated by his discovery 
that  on most magic squares a line traced from cell to cell in 
serial order will produce an artistically pleasing pattern. 
Other patterns can be found by tracing only the odd or only 
the even cells. Bragdon used "magic lines" obtained in this 
manner as  a basis for textile patterns, book covers, archi- 
tectural ornaments, and the decorative chapter headings of 
his autobiography More Lives Than One. His design for the 
ventilating grill in the ceiling of the Chamber of Commerce 
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FIG.  5 7 .  
Diabolic hypercube and one of i ts 384 diabolic squares. 
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in Rochester, New York, where he lived, is derived from the 
magic line of the lo-shu. A typical example of a magic line 
is shown in Figure 58, where i t  is drawn on the Diirer square. 

One of the great unsolved problems of recreational mathe- 
matics is that of finding a method for calculating the num- 
ber of different squares of a given order. At present not 
even the number of fifth-order squares is known, though i t  
has been estimated a t  more than 13 million. The number of 
fifth-order diabolic squares, however, has been established 

FIG.  5 8 .  
The "magic line" of Diirer's square. 
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by Rosser and Walker as 28,800 (this includes rotations and 
reflections). Diabolic squares are  possible in all orders above 
four except those divisible by 2 but not by 4. There is none, 
for example, of order six. Diabolic cubes and hypercubes 
also exist, but (as Rosser and Walker have shown in unpub- 
lished papers) there are no cubes of orders 3, 5, 7, 8k plus 
2, 8k plus 4 or 8k plus 6, where k is any integer. Diabolic 
cubes are  possible in all other orders. 



C H A P T E R  T H I R T E E N  

James Hugh Riley 
Shows, Inc. 

T HE JAMES HUGH RILEY Shows, Inc., is one of the 
country's largest nonexistent carnivals. When I heard i t  

had opened a t  the edge of town, I drove out to the lot to see 
my old friend J im Riley; we had been classmates some 20 
years ago a t  the University of Chicago. Riley was then tak- 
ing graduate courses in mathematics, but one summer he 
joined a carnival a s  a "talker" for  the girlie show, and dur- 
ing most of the subsequent years he had been, as  the carnies 
say, "with it." To everyone on the lot he was known simply 
as The Professor. Somehow he had managed to keep alive 
his passion for  mathematics, and whenever we got together 
I could always count on picking up some unusual items for  
this department. 
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I found The Professor chatting with the ticket collector in 
front of the freak show. He was wearing a white Stetson 
hat and seemed older and heavier than when I had last seen 
him. "Read your column every month," he said as we pumped 
hands. "Ever thought about writing up Spot-the-spot?" 

"Come again?" 1 said. 
"It's one of the oldest games on the lot." He grabbed my 

arm and pushed me down the midway until we came to a 
concession where a red circular spot a yard in diameter was 
painted on the counter. The object of the game was to place 
five metal disks one a t  a time on this spot in such a way that 
they completely covered the spot. Each disk was about 22 
inches across. Once a disk had been placed the player was 
not permitted to move it, and the game was lost if even the 
tiniest bit of red remained visible after the fifth disk was 
down. 

"Of course," said The Professor, "we use the largest pos- 
sible spot that can still be covered by the disks. Most people 
think the disks should go like so." He arranged them sym- 
metrically on the spot as shown in Figure 59. The circum- 

FIG. 59 .  
An inferior method of placing the disks in "Spot-the-spot." 
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ference of each disk touched the spot's center, and the cen- 
ters  of the disks formed the corners of a regular pentagon. 
Five minute areas of red were visible around the spot's rim. 

"Unfortunately," Riley continued, "that doesn't quite do 
it. To cover the maximum circular area, you have to arrange 
them this way." He pushed the disks with his finger until 
they assumed the formation shown in Figure 60. Disk 1, he 

F I G .  6 0 .  
The correct method of placing the  disks in "Spot-the-spot." 

explained, has its center on diameter AD and its circumfer- 
ence on point C, which is slightly below the spot's center 
(B) .  Disks 3 and 4 are  then placed so their edges pass 
through C and D. Disks 2 and 5 cover the rest of the spot a s  
shown. 

Naturally I wanted to know the distance of BC. Riley 
couldn't remember exactly, but he later sent me the refer- 
ence to an  article in which this difficult problem is worked 
out in detail: "On the Solution of Numerical Functional 
Equations, Illustrated by a n  Account of a Popular Puzzle 
and I t s  Solution," by Eric H. Neville (Proceedings of the 
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London Mathematical Society, Second Series, Vol. 14, pages 
308-326; 1915). If the radius of the spot is 1, the distance 
kC is a trifle more than .0285 and the smallest radius pos- 
sible for the disks is .609+. If the disks are  placed as shown 
in Figure 59, they must have a radius of .6180339 + in order 
to cover the spot completely. (This number is the reciprocal 
of phi, the golden ratio discussed in Chapter 8.) The curious 
feature of the problem is the smallness of difference between 
the areas covered by the two methods of arranging the disks. 
Unless the spot is about a yard in diameter, the difference is 
scarcely detectable. 

"This reminds me," said I, "of a fascinating minimal-area 
problem still unsolved. You define the diameter of an  area 
as the longest straight line that  will join two points on it. 
The question is: What are the shape and area of the smallest 
plane figure that will cover any area of unit diameter?" 

The Professor nodded. "The smallest regular polygon that 
does it is a hexagon with a side of l / k l x b u t  about 30 years 
ago someone improved this by chopping off two corners." 
He took a pencil and pad of paper from his jacket and 
sketched the pattern reproduced in Figure 61. The corners 
are sliced off along lines tangent to the inscribed circle (which 

FIG. 61. 
A truncated hexagon t h a t  will cover any  a rea  with a "diameter" of 1. 
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has a unit diameter) and perpendicular to lines from the 
circle's center to the corners. 

"Is that  the best solution so far?" I asked. 
Riley shook his head. "I've heard that  a few years ago 

someone a t  the University of Illinois sliced off another small 
piece, but I don't know the details.'' 

We sauntered down the midway and stopped in front of 
a concession where three enormous dice were tumbling down 
a corrugated incline to a flat surface below. Large white 
digits from 1 to 6 were painted on the counter. A player 
could put as much money as he wished on any digit. The dice 
were rolled. If his number appeared once on the dice, he re- 
ceived back his bet plus the same amount of money. If the 
number appeared twice, he got back his bet plus twice the 
amount. If the number showed on all three dice, he got back 
his bet plus three times the amount. Of course if the num- 
ber did not show a t  all, he lost his bet. 

"How can this game show a profit?" I asked. "The proba- 
bility of a certain number showing on one die is 1/6, so with 
three dice the probability is 3/6 or 1/2 that  the number will 
show a t  least once. If the number shows more than once, the 
player can win even more than he bets, so i t  looks to me like 
the game favors the player." 

The Professor chuckled. "That's just how we want the 
marks [carny slang for suckers] to figure it. Think about i t  
again." When I did think about i t  later, I was astonished. 
Perhaps some readers will enjoy calculating just how much, 
in the long run, a player can expect to win for every dollar 
that  he bets. 

Before I left the lot, Riley took me into one of his "grab 
joints" (as he called them) for a bite to eat. Our coffee was 
served a t  once, but I decided not to touch i t  until our sand- 
wiches came. 

"If you want to keep your coffee hot," The Professor said, 
"better pour your cream now instead of later. The hotter 
the coffee, the faster its rate of heat loss." 
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I dutifully poured my cream. 
When The Professor's ham sandwich arrived, sliced neatly 

through the middle, he gazed a t  i t  for  a moment and said, 
"Have you ever come across a paper by Tukey and Stone on 
the  generalized ham-sandwich theorem?" 

"You mean John Tukey and Ar thur  Stone? Two of the co- 
discoverers of flexagons ?" 

"The same." 
I shook my head. "I don't even know about the ungeneral- 

ized ham-sandwich theorem." 
Riley took out his pad again and drew a line segment on 

it. "Any one-dimensional figure can always be bisected by one 
point. Right?" I nodded while he drew two irregular closed 
curves, then a straight line tha t  sliced both of them [see Fig.  
621. "Any pair of areas on a plane can be exactly bisected by 
one straight line. Correct ?" 

FIG.  6 2 .  

The "sandwich theorem" i n  two dimensions. 

"I'll take your word for  it." 
"It's not hard to prove. There's an  elementary proof in 

What Is Mnthenlrrtics? by Richard Courant and Herbert 
Robbins. It makes use of Bolzano's theorem." 

"Ah, yes," I said. "If a continuous function of r has posi- 
tive and negative values, i t  has tc, have a t  least one zero value." 
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"Right. I t  seems trivial, but it's a powerful tool in all 
sorts of existence proofs. Of course in this case the proof 
doesn't tell you how to construct the line. I t  only proves that  
the line exists." 

"Where do ham sandwiches come in?" 
"When we move on to three dimensions. The volumes of 

any three solids, of any size or  shape, placed anywhere in 
space, can always be exactly and simultaneously bisected by 
a plane - like bisecting two pieces of bread and a slice of 
ham in between. Stone and Tukey generalized this for  all 
dimensions. They proved tha t  there is always a hyperplane 
that  bisects four four-dimensional solids placed anywhere 
in four-dimensional space, or  five five-dimensional solids, and 
SO on.'' 

The Professor drained his cup, then pointed across the 
counter to a pile of doughnuts. "Speaking of slicing solids, 
here's a curious question you might ask your readers some- 
time. What's the maximum number of pieces you can get 
with three simultaneous plane cuts through one doughnut? 
It's a problem I thought of myself." 

I closed my eyes and tried to visualize i t  while the merry- 
go-round calliope wheezed off key, but the problem made my 
head throb and I finally gave up. 

A D D E N D U M  

THE CARNIVAL GAME with the three dice is known in thc 
United States a s  Chuck-a-luck or  Bird Cage. I t  is a popular 
dice game in gambling casinos, where the dice a re  tumbled 
inside a wire cage called the chuck cage. I t  is sometimes 
gaffed with electromagnets (see Scnrne o n  Dice, by John 
Scarne and Clayton Rawson, Military Service Publishing 
Company, 1945, pages 333-335). The game is also discussed 
in Chapter 7 of Facts from Figures,  a Penguin paperback 
by M. J. Moroney. Moroney calls i t  the Crown and Anchor 
game because in England i t  is often played with dice bear- 
ing hearts, clubs, spades, diamonds, crowns, and anchors. 
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"The game is  beautifully designed," Moroney writes. "In 
over half the throws the banker sees nothing for himself. 
Whenever he makes a profit, he pays out more bountifully 
to other people, so that  the losers' eyes turn to the lucky 
winner in envy, rather than to the banker in suspicion. 
Spectacular wins are kept to the minimum, but when they 
do fall the blow is always softened by apparent generosity." 

A number of readers took issue with The Professor's sug- 
gestion that  it is best to pour cream immediately in order 
to conserve the heat of a cup of coffee. Unfortunately, these 
readers were about equally divided between those who 
thought heat was best conserved by pouring the cream later 
and those who thought i t  made no difference when the cream 
was poured. 

I asked Norman T. Gridgeman, a statistician with the Na- 
tional Research Council of Canada, in bttawa, to look into 
the matter and I am happy to say that his analysis confirms 
The Professor's statement. On the basis of Newton's law of 
cooling (which states that  the rate of heat loss is propor- 
tional to the difference between the temperature of the hot 
material and the temperature of the ambient), and taking 
into consideration the significant and easily overlooked fact 
that  the volume of the coffee increases after the cream is 
added, it turns out that  an  immediate mixing of the liquids 
always conserves heat. This is true regardless of whether 
the cream is a t  ambient temperature or below. Other factors 
such as  changes in the rate of radiation due to the lightened 
color of the liquid, an increased surface area in cups with 
sloping sides, and so on, have a negligible influence. 

A typical example is as follows. The initial temperature of 
250 grams of coffee is 90 degrees, the initial temperature of 
50 grams of cream is 10 degrees, and the ambient is 20 
degrees. If the cream is added immediately, the tempera- 
ture of the coffee thirty minutes later will be about 48 de- 
grees. If the cream is not added until after thirty minutes 
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have elapsed, the resulting temperature will be about 45 
degrees - a difference of 3 degrees. 

A N S W E R S  

A PERSON playing the carnival dice game can expect to win 
a trifle more than 92 cents for  every dollar bet. There a re  
216 equally probable ways three dice can fall, of which 91 
are  wins for  the player. His chances of winning something 
on each bet, therefore, a re  91/216. Assume tha t  he plays the 
game 216 times, betting one dollar each time, and that  each 
time the three dice fall a different way. On 75 of his wins 
his number appears only once, so he is paid $150 by the 
operator. On 15  wins the number shows twice, so he is paid 
$45. On one win all three dice will show the number, earn- 
ing him $4. The total paid to him is $199. To win this, he 
bet $216, consequently he expects in the long run, for  every 
dollar wagered, to win 199/216 dollars, or  $.9212+. This 
gives a little more than 7.8 cents to the operator on every 
dollar bet: a profit of about 7.8 percent. 

Figure 63 shows how a doughnut can be sliced into 13  
pieces by three simultaneous plane cuts. A large number of 
correspondents sent correct solutions, but a majority failed 
to find that  elusive 13th piece. The formula for  the largest 
number of pieces tha t  can be produced with n cuts is :  

If one is permitted to rearrange the pieces af ter  each cut, 
a s  many a s  18  pieces can be obtained. 

Many interesting letters about the doughnut-slicing prob- 
lem were received. Derrill Bordelon, of the U.S. Naval Ord- 
nance Laboratory a t  Silver Spring, Maryland, sent a detailed 
proof of the formula for  n cuts. Dan Massey, Jr., of Chatta- 
nooga, Tennessee, speculated on a formula for  n-dimensional 
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F I G .  63. 

How to slice a doughnut into 13 pieces with only three plane cuts. 

doughnuts. Richard Gould, Menlo Park, California, wrote 
in the margin of a letter that  he had obtained such a general- 
ized formula but tha t  the margin was too small to contain 
it. John McClellan, Woodstock, New York, raised the diffi- 
cult question: What  is the optimum proportion of the diam- 
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eter of the doughnut's hole to the diameter of its cross section, 
in order to obtain the largest possible smallest  piece? 

David B. Hall, Towson, Maryland, after some careful tests 
with actual doughnuts, wrote : 

SIRS : 
A little s t u d y  of t h e  problem indicated t h a t  there  should 

be a m a x i m u m  of th i r t een  pieces. T h i s  would  have  closed t h e  
m a t t e r ,  except t h a t  the  n e x t  t i m e  I w a s  a t  t h e  grocer's I 
bought  a box of doughnu t s  and discovered t h a t  t h e  technical 
problems w e r e  as  in tr iguing as  t h e  mathemat ical  one. 

Obtaining th i r t een  pieces involves  carving out  a slender 
p y m m i d  w i t h  i t s  v e r t e x  embedded in t h e  body of t h e  dough- 
nut. A f t e r  finding t h a t  reasonably predictable cu t s  could be 
x a d e  w i t h  embedded toothpicks  a s  guides,  I m a d e  m y  first 
full-scale section,  only  t o  discover t h a t  no.trace o f  t he  t w o  
smallest  pyramids  could be found.  ( T h e r e  were  plenty o f  
c rumbs ,  but  I suppose t h e y  don't  count.)  I t  t u r n s  out  t h a t  
the  requirement  t h a t  three  planes be cut  th rough  a doughnu t  
necessitates n o t  only  care in cut t ing  bu t  v e r y  thorough  pro- 
vision agains t  m o v e m e n t  o f  wedge-shaped pieces u n d e r  
pressure a s  successive cuts  are made.  I n  th i s  case the  parts 
containing t h e  t i n y  pyramids  had spread v e r y  s l ight ly ,  b u t  
enough  t o  escape t h e  k n i f e  completely.  

O n  m y  final doughnu t ,  us ing steel s kewers  instead o f  tooth- 
picks, I achieved complete success and obtained f i f teen well- 
defined pieces. T h e  pyramids  w e r e  more  t h a n  successful .  B y  
overzealously preventing t h e  previous spreading I w a s  able 
t o  get  a l i t t le  overlap ins tead.  T h e  t w o  bonus  pieces resulted 
f r o m  t h e  fac t  t h a t  t h e  hole 2uas no t  v e r y  round and each o f  
t h e  first t w o  cu t s  yielded a small  bu t  honest  knob.  

A v e r y  t h i n  hula-hoop-shaped doughnu t  m i g h t  m a k e  cut-  
t ing  easier,  bu t  th i s  ar rangemen t  w a s  discovered a f t e r  t h e  
doughnu t s  w e r e  eaten  and has  ?;ot been explored. 
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Nine More Problems 

1 .  C R O S S I N G  T H E  DESERT 

A N UNLIMITED SUPPLY of gasoline is available a t  
one edge of a desert 800 miles wide, but there is no 

source on the desert itself. A truck can carry enough gas- 
oline to go 500 miles (this will be called one "load"), and i t  
can build up its own refueling stations a t  any scot along the 
way. These caches may be any size, and it is assumed that 
there is no evaporation loss. 

What is the minimum amount (in loads) of gasoline the 
truck will require in order to cross the desert? Is there a 
limit to the width of a desert the truck can cross? 

2 .  THE T W O  C H I L D R E N  

MR. SMITH has two children. At least one of them is a boy. 
What is the probability that both children are boys? 
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Mr. Jones has two children, The older child is a girl. What 
is the probability that  both children are  girls? 

3 .  LORD D U N S A N Y ' S  CHESS PROBLEM 

ADMIRERS of the Irish writer Lord Dunsany do not need to 
be told that  he was fond of chess. (Surely his story "The 
Three Sailors' Gambit" is the funniest chess fantasy ever 
written.) Not generally known is the fact that he liked to 
invent bizarre chess problems which, like his fiction, com- 
bine humor and fantasy. 

The problem depicted in Figure 64 was contributed by 
Dunsany to The Week-End Problems Book, compiled by 
Hubert Phillips. I ts  solution calls more for logical thought 
than skill a t  chess, although one does have to know the rules 
of the game. White is to play and mate in four moves. The 
position is one that  could occur in actual play. 

F I G .  64.  
Lord Dunsany's chess problem. 

4 .  PROFESSOR O N  THE ESCALATOR 

WHEN Professor Stanislaw Slapenarski, the Polish mathe- 
matician, walked very slowly down the down-moving esca- 
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lator, he reached the bottom after taking 50 steps. As an 
experiment, he then ran up the same escalator, one step a t  
a time, reaching the top after taking 125 steps. 

Assuming that  the professor went up five times as fast as 
he went down (that is, took five steps to every one step be- 
fore), and that he made each tr ip a t  a constant speed, how 
many steps would be visible if the escalator stopped running? 

5 .  THE LONESOME 8 

THE MOST POPULAR problem ever published in The American 
Mathematical Monthly, its editors recently disclosed, is the 
following. I t  was contributed by P. L. Chessin of the West- 
inghouse Electric Corporation to the April, 1954, issue. 

"Our good friend and eminent numerologist, Professor 
Euclide Paracelso Bombasto Umbugio, has been busily en- 
gaged in testing on his desk calculator the 81 X 1 0 ~ o s s i b l e  
solutions to the problem of reconstructing the following exact 
long division in which the digits were indiscriminately re- 
placed by x save in the quotient where they were almost 
entirely omitted : 

X X X  
X X X X  

X  X  X  
X  X  X  X  
X X X X  

"Deflate the Professor! That is, reduce the possibilities to 
(81 X 109) 0.'' 

Because any number raised to the power of zero is one, 
the reader's task is to discover the unique reconstruction of 
the problem. The 8 is in correct position above the line, mak- 
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ing i t  the third digit of a five-digit answer. The problem is 
easier than i t  looks, yielding readily to a few elementary 
insights. 

6 .  D I V I D I N G  THE C A K E  

THERE IS a simple procedure by which two people can divide 
a cake so that  each is satisfied he has a t  least half: One cuts 
and the other chooses. Devise a general procedure so that  n 
persons can cut a cake into n portions in such a way that  
everyone is satisfied he has a t  least l /n  of the cake. 

7 .  THE FOLDED SHEET 

MATHEMATICIANS have not yet succeeded in finding a for- 
mula for the number of different ways a road map can be 
folded, given n creases in the paper. Some notion of the com- 
plexity of this question can be gained from the following 
puzzle invented by the British puzzle expert Henry Ernest 
Dudeney. 

Divide a rectangular sheet of paper into eight squares 
and number them on one side only, as  shown a t  top left in 
Figure 65. There are 40 different ways that  this "map" can 
be folded along the ruled lines to form a square packet which 

FIG.  6 5 .  

Dudeney's map-folding puzzle. 
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has the "1" square face-up on top and all other squares be- 
neath. The problem is to fold this sheet so tha t  the squares 
a re  in serial order from 1 to 8, with the 1 face-up on top. 

If you succeed in doing this, t r y  the much more difficult 
task of doing the same thing with the sheet numbered in the 
manner pictured a t  the bottom of the illustration. 

8 .  THE A B S E N T - M I N D E D  TELLER 

A N  ABSENT-MINDED bank teller switched the dollars and 
cents when he cashed a check for  Mr. Brown, giving him 
dollars instead of cents, and cents instead of dollars. After 
buying a five-cent newspaper, Brown discovered tha t  he had 
left exactly twice a s  much a s  his original check. What  was 
the amount of the check? 

9 .  WATER A N D  W I N E  

A FAMILIAR chestnut concerns two beakers, one containing 
water, the other wine. A certain amount of water is trans- 
ferred to the wine, then the same amount of the mixture is 
transferred back to the water.  I s  there now more water in 
the wine than there is wine in the water?  The answer is tha t  
the two quantities a re  the same. 

Raymond Smullyan writes to raise the fur ther  question: 
Assume tha t  a t  the outset one beaker holds 10 ounces of 
water and the other holds 10 ounces of wine. By transfer- 
r ing three ounces back and forth any number of times, stir- 
r ing af te r  each transfer,  is i t  possible to reach a point a t  
which the percentage of wine in each mixture is the same? 

A N S W E R S  

1. The following analysis of the desert-crossing problem 
appeared in a recent issue of E u ~ e k a ,  a publication of mathe- 
matics students a t  the University of Cambridge. Five hun- 
dred miles will be called a "unit"; gasoline sufficient to take 
the truck 500 miles will be called a "load"; and a "trip" is 
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a journey of the truck in either direction from one stopping 
point to the next. 

Two loads will carry the truck a maximum distance of 1 
and 1 /3  units. This is done in four trips by first setting up 
a cache a t  a spot 1 /3  unit from the start. The truck begins 
with a full load, goes to the cache, leaves 1 /3  load, returns, 
picks up another full load, arrives a t  the cache and picks up 
the cache's 1 /3  load. I t  now has a full load, sufficient to take 
it the remaining distance to one unit. 

Three loads will carry the truck 1 and 1/3  plus 1/5 units 
in a total of nine trips. The first cache is 1/5 unit from the 
start.  Three trips put 6/5 loads in the cache. The truck re- 
turns, picks up the remaining full load and arrives a t  the 
first cache with 4/5 load in its tank. This, together with the 
fuel in the cache, makes two full loads, sufficient to carry 
the truck the remaining 1 and 1/3 units, as  explained in the 
preceding paragraph. 

We are asked for the minimum amount of fuel required 
to take the truck 800 miles. Three loads will take i t  766 and 
2/3 miles ( 1  and 1/3  plus 1/5 units), so we need a third 
cache a t  a distance of 33 and 1/3  miles (1/15 unit) from the 
start.  In five trips the truck can build up this cache so that 
when the truck reaches the cache a t  the end of the seventh 
trip, the combined fuel of truck and cache will be three 
loads. As we have seen, this is sufficient to take the truck 
the remaining distance of 766 and 2/3 miles. Seven trips 
are made between starting point and first cache, using 7/15 
load of gasoline. The three loads of fuel that remain are just 
sufficient for the rest of the way, so the total amount of 
gasoline consumed will be 3 and 7/15, or a little more than 
3.46 loads. Sixteen trips are required. 

Proceeding along similar lines, four loads will take the 
truck a distance of 1 and 1/3  plus 1/5 plus 1/7 units, with 
three caches located a t  the boundaries of these distances. 
The sum of this infinite series diverges as  the number of 
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loads increases; therefore the truck can cross a desert of 
any width. If the desert is 1,000 miles across, seven caches, 
64 trips and 7.673 loads of gasoline are required. 

Hundreds of letters were received on this problem, giving 
general solutions and interesting sidelights. Cecil G. Phipps, 
professor of mathematics a t  the University of Florida, 
summed matters up succinctly as follows: 

"The general solution is given by the formula: 

where d is the distance to be traversed and m is the number 
of miles per load of gasoline. The number of depots to be 
established is one less than the number of terms in the series 
needed to exceed the value of d. One load of gasoline is used 
in the travel between each pair of stations. Since the series 
is divergent, any distance can be reached by this method 
although the amount of gasoline needed increases exponen- 
tially. 

"If the truck is to return eventually to its home station, 
the formula becomes : 

This series is also divergent and the solution has properties 
similar to those for the one-way trip." 

Many readers called attention to three previously pub- 
lished discussions of the problem : 

"The Jeep Problem: A More General Solution." C. G .  
Phipps in the American Mathematical Monthly, Vol. 54, No. 
8, pages 458-462, October 1947. 

"Crossing the Desert." G. G. Alway in the Mathematical 
Gazette, Vol. 41, No. 337, page 209, October 1947. 

Problem in Logistics: The Jeep Problem. Olaf Helmer. 
Project Rand Report No. RA-15015, December 1, 1946. 
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(This was the first unclassified report of the Rand publica- 
tions, issued when the project was still under the wing of 
Douglas Aircraft Company. I t  is the clearest analysis of the 
problem, including the return-trip version, tha t  I have seen.) 

2. If Smith has two children, a t  least one of which is a 
boy, we have three equally probable cases: 

Boy-boy 
Boy-girl 
Girl-boy 

In  only one case are  both children boys, so the probability 
tha t  both are  boys is 1/3. 

Jones's situation is different. We are  told that  his older 
child is a girl. This limits us to only two equally probable 
cases : 

Girl-girl 
Girl-boy 

Therefore the probability t ha t  both children are  girls 
is 1/2. 

[This is how I answered the problem in my column. After 
reading protests from many readers, and giving the matter 
considerable further  thought, I realized tha t  the problem 
was ambiguously stated and cou!d not be answered without 
additional data. For  a later discussion of the problem, see 
Chapter 19.1 

3. The key to Lord Dunsany's chess problem is the fact  
that  the black queen is not on a black square a s  she must be 
a t  the s t a r t  of a game. This means that  the black king and 
queen have moved, and this could have happened only if 
some black pawns have moved. Pawns cannot move back- 
ward, so we are  forced to conclude tha t  the black pawns 
reached their present positions from the other side of the 
board! With this in mind, i t  is easy to discover that  the 
white knight on the right has an  easy mate in four moves. 

White's first move is to jump his knight a t  the lower right 
corner of the board to the square just above his king. If 
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black moves the upper left knight to the rook's file, white 
mates in two more moves. Black can, however, delay the 
mate one move by first moving his knight to the bishop's 
file instead of the rook's. White jumps his knight forward 
and r ight  to the bishop's file, threatening mate on the next 
move. Black moves his knight forward to block the mate. 
White takes the knight with his queen, then mates with his 
knight on the fourth move. 

4. Let .rz be the number of steps visible when the escalator 
is not moving, and let a unit of time be the time i t  takes 
Professor Slapenarski to walk down one step. If he walks 
down the down-moving escalator in 50 steps, then n - 50 
steps have gone out of sight in 50 units of time. I t  takes him 
125 steps to run up the same escalator, taking five steps to 
every one step before. In this trip, 125 - n steps have gone 
out of sight in 125/5,  or 25, units of time. Since the escalator 
can be presumed to run a t  constant speed, we have the fol- 
lowing linear equation tha t  readily yields a value for  12 of 
100 steps: 

5. In long division, when two digits a re  brought down in- 
stead of one, there must be a zero in the quotient. This oc- 
curs twice, so we know a t  once that  the quotient is ~ 0 8 0 ~ .  
When the divisor is multiplied by the quotient's last digit, 
the product is a four-digit number. The quotient's last digit 
must therefore be 9, because eight times the divisor is a 
three-digit number. 

The divisor must be less than 125 because eight times 125 
is 1,000, a four-digit number. We now can deduce that  the 
quotient's first digit must be more than 7, for  seven times a 
divisor less than 125 would give a product tha t  would leave 
more than two digits af ter  it was subtracted from the first 
four digits in the dividend. This first digit cannot be 9 
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(which gives a four-digit number when the divisor is mul- 
tiplied by i t ) ,  so i t  must be 8, making the full quotient 80809. 

The divisor must be more than 123 because 80809 times 
123 is a seven-digit number and our dividend has eight dig- 
its. The only number between 123 and 125 is 124. We can 
now reconstruct the entire problem as  follows: 

6. Several procedures have been devised by which n per- 
sons can divide a cake in n pieces so that  each is satisfied 
that  he has a t  least l/n of the cake. The following system 
has the merit of leaving no excess bits of cake. 

Suppose there are  five persons: A, B, C, D, E. A cuts off 
what he regards as  1/5 of the cake and what he is content 
to keep as his share. B now has the privilege, if he thinks 
A's slice is more than 1/5, of reducing i t  to what he thinks 
is 1/5 by cutting off a portion. Of course if he thinks i t  is 
1/5 or less, he does not touch it. C, D and E in turn now 
have the same privilege. The lai t  person to touch the slice 
keeps i t  as  his share. Anyone who thinks that  this person 
got less than 1/5 is naturally pleased because it means, in 
his eyes, that  more than 4/5 remains. The remainder of the 
cake, including any cut-off pieces, is now divided among the 
remaining four persons in the same manner, then among 
three. The final division is made by one person cutting and 
the other choosing. The procedure is clearly applicable to 
any number of persons. 

For a discussion of this and other solutions, see the section 
"Games of Fair  Division," pages 363-368, in Games and 
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Decisions, by R. Duncan Luce and Howard Raiffa, John 
Wiley and Sons, Inc., 1957. 

7.  The first sheet is folded as  follows. Hold i t  face down 
so that when you look down on it the numbered squares are  
in this position : 

Fold the right half on the left so that  5 goes on 2, 6 on 3, 
4 on 1 and 7 on 8. Fold the bottom half up so that 4 goes on 
5 and 7 on 6. Now tuck 4 and 5 between 6 and 3, and fold 1 
and 2 under the packet. 

The second sheet is first folded in half the long way, the 
numbers outside, and held so that 4536 is uppermost. Fold 
4 on 5. The right end of the strip (squares 6 and 7) is 
pushed between 1 and 4, then bent around the folded edge 
of 4 so that  6 and 7 go between 8 and 5, and 3 and 2 go be- 
tween 1 and 4. 

8. To determine the value of Brown's check, let x stand 
for the dollars and y for the cents. The problem can now be 
expressed by the following equation: 100y + x - 5 = 2 
(100x + y) . This reduces to 98y - 199x = 5, a Diophantine 
equation with an  infinite number of integral solutions. A 
solution by the standard method of continued fractions gives 
as  the lowest values in positive integers: x = 31 and y = 63, 
making Brown's check $31.63. This is a unique answer to the 
problem because the next lowest values are  : x = 129, y = 262, 
which fails to meet the requirement that  y be less than 100. 

There is a much simpler approach to the problem and 
many readers wrote to tell me about it. As before, let x stand 
for the dollars on the check, 21 for the cents. After buying 
his newspaper, Brown has left 22 + 2y. The change that  he 
has left, from the x cents given him by the cashier, will be 
2 - 5 .  
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We know that  y is less than 100, but we don't know yet 
whether i t  is less than 50 cents. If it is  less than 50 cents, 
we can write the following equations: 

If y is 50 cents or more, then Brown will be left with an 
amount of cents (2y) that  is a dollar or more. We therefore 
have to modify the above equations by taking 100 from 2y 
and adding 1 to 2x. The equations become : 

Each set of simultaneous equations is easily solved. The 
first set gives x a minus value, which is ruled out. The second 
set gives the correct values. 

9. Regardless of how much wine is in one beaker and how 
much water is in the other, and regardless of how much 
liquid is transferred back and forth a t  each step (provided 
i t  is not all of the liquid in one beaker), it is impossible to 
reach a point a t  which the percentage of wine in each mix- 
ture is the same. This can be shown by a simple inductive 
argument. If beaker A contains a higher concentration of 
wine than beaker B, then a transfer from A to B will leave 
A with the higher concentration. Similarly a transfer from 
B to A - from a weaker to a stronger mixture - is sure to 
leave B weaker. Since every transfer is one of these two 
cases, it follows that  beaker A must always contain a mix- 
ture with a higher percentage of wine than B. The only way 
to equalize the concentrations is by pouring all of one beaker 
into the other. 

There is a fallacy in the above solution. I t  assumes that  
liquids are infinitely divisible, whereas they are composed of 
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discrete molecules. P. E. Argyle of Royal Oak, British Colum- 
bia, set me straight with the following letter: 

SIRS : 
Y o u r  solution t o  t h e  problem of m i x i n g  wine  and water  

seems t o  ignore t h e  physical nature  of t h e  objects involved. 
W h e n  a sample of fluid i s  t a k e n  f r o m  a m i x t u r e  o f  tzvo 
fluids, the  proportion of one fluid present in t h e  sample will 
be di.flerent f rom i t s  proportion in t h e  m i x t u r e .  T h e  depar- 
ture  f r o m  t h e  "correct" amount  zoill be of t h e  order * 
where  n i s  the  n u m b e r  of molecules expected to  be present. 

Consequently it i s  possible to  have equal amounts  o f  w i n e  
in t h e  tzuo glasses. T h e  probability o f  t h i s  occurring becomes 
significant a f t e r  t h e  expected lack o f  equality in t h e  mix ture  
has  been reduced to  t h e  order o f  ~ T T h i s  requires only  47 
double intercharzges f o r  the  problenz a s  it w a s  stated.  . . . 



C H A P T E R  F I F T E E N  

Eleusis: The Induction 
Game 

M OST mathematical games, from ticktacktoe to  chess, 
call for  deductive reasoning on the par t  of tke players. 

In contrast, Eleusis, a remarkable new card game devised 
by Robert Abbott, is a n  induction game. Abbott is a young 
New York writer who has invented a large number of off- 
beat card and board games, but this one is of special interest 
to mathematicians and other scientists because of its strik- 
ing analogy with scientific method and its exercise of pre- 
cisely those psychological abilities in concept formation tha t  
seem to underlie the "hunches" of creative thinkers. 

Eleusis (pronounced ee-loo-sis) is a game for  three or 
more players. I t  makes use of the standard deck of playing 
cards. Players take turns  a t  being the "dealer," who has no 
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part  in the actual play except to serve as  a kind of umpire. 
He deals to the other players until one card remains. This is 
placed face up in the center of the table as the first card of 
the "starter pile." T o  make sure that  players receive equal 
hands, the dealer must remove a certain number of cards 
before dealing. For three players (including the dealer, who 
of course does not get a hand) he removes one card;  for 
four players, no cards; five players, three cards, and so on. 
The removed cards are  set aside without being shown. 

After the cards are  dealt and the "starter card" is in 
place, the dealer makes up a secret rule that  determines 
what cards can be played on the starter pile. I t  is this rule 
that corresponds to a law of science; the players may think 
of the dealer as Nature, or, if they prefer, as  God. The 
dealer writes his rule on a piece of paper, which he folds 
and puts aside. This is for later checking to make sure that  
the dealer does not upset Nature's uniformity by changing 
his rule. For each player the object of the game is to get rid 
of as  many cards as  possible. This can be done rapidly by 
any player who correctly guesses the secret rule. 

An example of a very simple rule is: "If the top card of 
the starter pile is red, play a black card. If the top card is 
black, play a red card." Beginners should limit themselves 
to extremely simple rules of this type, then move on to more 
complicated rules as  their ability to play improves. One of 
the most ingenious features of Eleusis is that  the method of 
scoring (to be explained later )puts  pressure on the dealer 
to choose a rule which not everyone will guess quickly, but 
which is simple enough so that  one player is  likely to guess 
i t  ahead of the others and fairly early in the game. Here 
again we have a pleasant analogy. The basic laws of physics 
are  difficult to detect, yet once they are discovered they 
usually turn out to be based on relatively simple equations. 

After the rule is written, the "first stage" of the game 
begins. The first player takes any card from his hand and 



Eleusis : The Induction Game 167 

places i t  face up on the starter card. If the card conforms to 
the secret rule, the dealer says "Right" and the card remains 
on the starter pile. If i t  violates the rule, the dealer says 
"Wrong." The player then takes back the card, places i t  
face up in front of him, and the turn passes to the next 
player on the left. Each player must play one card from his 
hand a t  each turn. His "mistake cards" are left face up in 
front of him and spread slightly so that they can be clearly 
identified. The correctly played cards which form the starter 
pile are also fanned along the table so that all the cards can 
be seen. A typical starter pile is shown in Figure 66. 

FIG. 6 6 .  

A typical "starter pile" for the game of Eleusis. What is the secret 
rule that determines the order of the cards? 

Each player tries to analyze the cards in the starter pile 
to discover the rule governing their sequence. He then forms 
a hypothesis that he can test by playing what he thinks is a 
correct card, or by playing a card he suspects will be re- 
jected. The first stage of the game ends when all the cards 
in the players' hands have been played. 

The dealer's score is now figured. I t  is based on how far  
the leading player (the person with the fewest mistake 
cards) is ahead of the others. If there are two players (not 
counting the dealer), the dealer's score is the number of 
cards in the leading player's mistake pile subtracted from 
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the number of cards in the other player's pile. For three 
players, multiply the leading player's mistake cards by two, 
then subtract from the total of mistake cards belonging to 
the other players. For four players, multiply by three and 
do the same. For five players, the multiplier is four;  for six 
the multiplier is five, and so on. The suits and values of cards 
do not enter into the scoring. 

For example, suppose there are three players and the 
dealer. The mistake cards number 10, five and three. Twice 
three is six, which is taken from 15 to give the dealer a score 
of 9. This is recorded and the game goes into its second and 
final stage, during which the mistake cards are played. 

The mistake cards remain fanned face up on the table in 
front of each player, but a player may rearrange his cards 
if he wishes. Plays are made in turn as  before, each player 
taking any card and putting it on the starter pile. The dealer 
tells him if i t  is right or wrong. If i t  is wrong, he replaces 
the card among his mistake cards. The second stage ends 
when one player gets rid of all his cards, or when the dealer 
sees that  it is impossible for more cards to be accepted on 
the starter pile. 

The slip of paper is now opened and the rule read. This 
corresponds in a sense to the mathematician's final deduc- 
tive proof of a theorem that  was first suggested to him by 
an inductive guess based on a set of particular observations. 
Scientists are of course denied this final verification and 
must rest content with establishing their hypotheses to a 
high degree of probability. If the scientist accepts the prag- 
matic epistemology of, say, William James and John Dewey, 
he may not believe in the existence of the folded sheet of 
paper. The successful operation of his hypothesis will be the 
only meaning of its "truth." Or he may agree with Bertrand 
Russell and others that the truth of his theory is its corre- 
spondence with an external structure, even though he has no 
way of seizing the structure and unfolding it. Still another 
point of view is favored by Rudolf Carnap and his friends. 
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To ask if there "exists" a folded slip of paper ( i .e . ,  a final 
structure of some sort to which scientific theories corre- 
spond) is to ask a pseudo-question. Since there is no way 
such a question can be answered, i t  should be replaced by 
the practical question : Given a certain context for discourse, 
what is the best language form to use when talking about 
scientific laws and theories? 

Players are now scored in a manner similar to the way 
in which the dealer was scored. Each takes the number of 
cards he holds, multiplies by the number of players exclu- 
sive of himself and the dealer, then subtracts the product 
from the total number of cards held by the other players. 
If the result is a minus number, he is given a score of 0. A 
bonus of 6 goes to the player who went out. If no one went 
out, it goes to the player with the fewest cards, and if two 
or more tie, the bonus is divided between them. For exam- 
ple, if there are  four players (excluding the dealer) who 
hold two, three, 10 and no cards, their respective scores will 
be 7, 3, 0 and 21. 

The deal passes to the left after each hand. The game con- 
tinues until each person has been dealer twice; then the 
player with the highest score is the winner of the set. 

If the rule is not applicable until two cards are on the 
starter pile, then the first card played is correct no matter 
what i t  is. If a rule involves numbers, the ace is 1, the jack 
11, the queen 12 and the king 13. If i t  is permissible to "turn 
the corner" (continue in cyclic fashion : J-Q-K-A-2-3 . . .) , 
the dealer must state this in his rule. 

Rules should be avoided that  restrict a player, on most of 
his turns, to less than a fifth of the cards in the deck. For 
example, the rule "Play a card with a value of one unit above 
the value of the top card" is not acceptable, because a t  each 
turn a player would be limited to only four cards out of the 52. 

After writing down his rule, the dealer may, if he wishes, 
give a hint of it. He might say: "This rule involves the two 
top cards of the starter  pile," or "This rule involves the 
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suits." After the play begins, no further hints are  permitted 
unless the play is very informal. 

The following secret rules are  typical, and are listed in 
order of increasing complexity. 

1. Alternate even and odd cards. 
2. The card played must have either the same suit or the 

same value as  the card on top of the pile (as in the card 
game called Eights) .  

3. If the top two cards are of the same color, play a card 
from ace to 7. If they are  of different colors, play a card 
from 7 to king. 

4. If the second card from the top is red, play a card with 
a value equal to or higher than this card. If the second card 
is black, play a card of equal or lower value. 

5. Divide the value of the top card by four. If the remain- 
der is one, play a spade; if two, play a heart ;  if three, play 
a diamond ; if zero, play a club. 

If the players have some mathematical sophistication, the 
rules can of course be more advanced. The dealer, however, 
must always shrewdly estimate the skill of the players so 
that he can raise his score by choosing a rule that  one player 
is likely to discover ahead of the others. 

It is permissible to make up rules in which the players 
themselves are  involved. (One thinks of the physicist whose 
apparatus influences what he is trying to observe, or the 
anthropologist whose investigation of a culture changes the 
culture.) For example, "If your last name has an  odd num- 
ber of letters, play a color other than the color of the top 
card;  otherwise play the same color." I t  ~ ~ u l d  be unfair, 
however, for a dealer not to tell the players when a rule of 
this tricky type is used. 

The complete rules for Eleusis have been printed by the 
Association of American Playing Card Manufacturers, 420 
Lexington Avenue, New York 17, N.Y., and will be sent by 
the Association to any reader who sends a four-cent stamp 
to cover the cost of mailing. 



Eleusis: The Indz~ct ion  Game 171 

The cards in the illustration have been played according 
to a simple rule not mentioned in this article. The reader 
may enjoy puzzling it out before it is explained. Note that  
the first seven cards follow a pattern of alternate colors. 
This often happens in a game as  well as in the history of 
science. Players have in mind a condition that  is not really 
part  of the rule, but they stick by i t  until an experiment 
proves that  the rule is simpler than they suspected or that  
their successes were merely accidental. 

A D D E N D U M  

ALTHOUGH many games contain inductive features, only a 
few have sufficiently strong inductive aspects to justify call- 
ing them induction games. I can think only of Battleship 
(sometimes called Salvo), a children's pencil and paper 
game; Jotto and similar word games; and a parlor game 
called "Going on a Trip." This last game was called to my 
attention by I. Richard Lapidus of the physics department 
a t  Columbia University. The leader writes on a slip of paper 
a rule for determining what objects may be taken on a trip. 
He then says, "I plan to take a ," naming an object 
that  conforms to the rule. Guests take turns asking "Can I 
take a ?" and are told by the leader whether the 
object they name is permitted. The first to guess the rule is 
the winner. Rules may be simple or complicated. A tricky 
rule: the object must begin with the same letter as the last 
name of the person taking it. 

I suspect that there are many possibilities for unusual 
induction games that  have not yet been explored - the guess- 
ing of concealed visual patterns, for example. Imagine a 
square-shaped box into which 100 square tiles will fit. Six 
hundred tiles are  available, colored on one side, black on the 
other. There are six different colors, 100 tiles of each color. 
The leader secretly places 100 tiles in the box, forming a 
pattern that  is strongly ordered (patterns can vary from one 
solid color to very complicated structures). He turns the 
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box upside down on the table, then removes it, leaving the 
tiles in square formation, black sides up. Players take turns 
choosing a single tile and reversing it. The first person to 
sketch a correct picture of the entire pattern is the winner. 
Players should sketch their guesses without letting other 
players see them, showing them only to the leader. 

In playing Eleusis, the tendency to think of the dealer as 
God is so strong that  players often find themselves drifting 
into a kind of theological lingo. A deal may be spoken of as 
a player's "turn to be God." If a dealer makes a mistake 
and violates his own rule by calling a card right that  should 
have been wrong, the event is spoken of as  a "miracle." 
Robert Abbott recalls one game in which the dealer, seeing 
that no one was capable of guessing his rule, pointed to a 
card in a player's hand and said, "Play that  one." 

"I've just had a divine revelation," the player responded. 

A N S W E R S  

THE SECRET rule determining the order of the cards in Fig- 
ure 66 is:  "Play a club or diamond if the top card of the 
pile is even ; a heart or spade if the card is odd." 

I t  is possible to formulate other rules. Howard Givner of 
Brooklyn, Gerald Wasserman, Woodmere, New York, and 
Federicn Fink of Buenos Aires suggested this one: "Play 
any card that differs in value from the top card of the pile." 
This is a simpler rule, but if correct it is difficult to explain 
how the stronger ordering of the cards, expressed by the 
first rule, could have come about. It is possible that  all players 
erroneously guessed the first rule and played accordingly, 
and no one happened to play a card that  matched in value 
the top card of the pile. In actual play, of course, the dis- 
carded cards provide additional clues for distinguishing be- 
tween rival hypotheses. 

C. A. Griscom, of New York, N.Y., was one of several 
readers who thought of extremely complicated rules. Gris- 
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com's rule concerns only the values of the cards, and assumes 
that  the ace has a value of 14. No "going around the corner" 
is permitted. Play a card that  either is larger or smaller than 
the top card of the pile, but if you continue the direction of 
change adopted by the previous player, you must increase 
the increment of change. If a larger increment is impossible, 
then the increment is given a value of 1. 

I t  is an  important insight into scientific method to realize 
that  many hypotheses can be formulated to explain a given 
set of facts, and that  any hypothesis can always be patched 
up, so to speak, to fit new facts that  contradict it. For in- 
stance, if someone were to play the Eight of Diamonds on 
the Eight of Clubs, the last rule could be saved by adding 
that  the Eight of Diamonds was an  exceptional card that  
could be played a t  any time. Many a scientific hypothesis 
( e . g . ,  the Ptolemaic model of the universe) has been elab- 
orated to a fantastic degree in efforts to accommodate em- 
barrassing new facts before i t  finally gave way to a simpler 
explanation. 

All of which raises two profound questions in the philoso- 
phy of science: Why is the simplest hypothesis the best 
choice? How is "simplicity" defined? 



C H A P T E R  S I X T E E N  

Origami 

A MONG the many aspects of Japanese culture that  have 
recently engaged the interest of Americans is Origami, 

the ancient Japanese a r t  of paper folding. Several books on 
the subject are now available in England, an Origami work- 
shop flourishes in Manhattan (sponsored by Mrs. Harry C. 
Oppenheimer), and in 1959 the country's first paper-folding 
exhibit was held in New York a t  Cooper Union's Museum 
for the Arts of Decoration. 

The origins of Origami are lost in the haze of early Ori- 
ental history. Folded-paper birds appear as kimono decora- 
tions in 18th-century Japanese prints, but the a r t  is certainly 
many centuries older in both China and Japan. At one time 
i t  was considered an accomplishment of refined Japanese 
ladies ; now its chief practitioners seem to be the geisha girls 
and the Japanese children who learn it in school. During the 
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past 20 years there has been a marked upsurge of interest 
in Origami in Spain and South America. The great Spanish 
poet and philosopher Miguel de Unamuno helped pave the 
way by writing a mock-serious treatise on the subject and 
by developing a basic fold tha t  led to his invention of many 
remarkable new Origami constructions. 

Traditionally, Origami is the a r t  of folding realistic ani- 
mals, birds, fish and other objects from a single sheet of 
paper, without cutting, pasting, or  decorating. In modern 
Origami these restrictions a re  sometimes bypassed - a small 
scissor snip here, a dab of paste there, a penciled pair of 
eyes and so on. But just a s  the charm of Oriental poetry lies 
in suggesting a s  much a s  possible with a minimum of words 
and within a rigid framework of rules, so the attraction of 
Origami lies in the extraordinary realism that  can be ob- 
tained with nothing more than a square of paper and a pair 
of deft hands. A sheet is folded along dull geometrical lines. 
Suddenly i t  is transformed into a delicate piece of miniature 
semiabstract sculpture that  is often breathtakingly lovely. 

In view of the geometrical aspect of paper folding, i t  is 
not surprising tha t  many mathematicians have been fasci- 
nated by this whimsical, gentle a r t .  Lewis Carroll, for  exam- 
ple, who taught  mathematics a t  Oxford, was an  enthusiastic 
paper folder. (His diary records the occasion on which he 
first learned with delight how to fold a device that  made a 
loud pop when i t  was swished through the air.) The litera- 
ture of recreational mathematics includes many booklets and 
articles on folded-paper models, including those curious toys 
called flexagons [see Chapter 21. 

The very act of folding raises an  interesting mathematical 
question. Why is i t  that  when we fold a sheet of paper the 
crease is a straight line? High-school geometry texts some- 
times cite this a s  an  illustration of the fact that  two planes 
intersect in a straight line, but this is clearly not correct 
because the parts  of a folded sheet a re  parallel planes. Here 
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is the proper explanation, as given by L. R. Chase in T h e  
Amer ican  Mathematical Monthly  for June-July 1940. 

"Let p and p' be the two points of the paper that  are 
brought into coincidence by the process of folding, then any 
point a of the crease is equidistant from p and p', since the 
lines ap  and ap' are pressed into coincidence. Hence the 
crease, being the locus of such points a ,  is the perpendicular 
bisector of pp'." 

The folding of regular polygons, though not part of classic 
Origami, is a challenging classroom exercise. The equilat- 
eral triangle, square, hexagon and octagon are quite easy to 
fold, but the pentagon offers special difficulties. The simplest 
way to do it is to tie a knot in a strip of paper and press it 
flat [see i l lustration a t  l e f t  in Fig.  671. This model conceals 

F I G .  67.  
A st r ip  is folded in a pentagon by tying i t  in a knot ( l e f t ) .  If the s t r ip  
is folded again, and held up to the light, a "pentagram" appears. 

a topper. If we fold over one end of the str ip and hold the 
knot up to a strong light [see i l lustration a t  r igh t ] ,  we see 
the famous pectagram of medieval witchcraft. 



Paper can also be folded to produce tangents that  have a s  
their envelope various low-order curves. The parabola is 
particularly easy to  demonstrate. We first mark a point a 
few inches from one edge of the paper, then we crease the 
paper about 20 times a t  various spots, making sure tha t  each 
crease is made when the edge is folded so that  the edge in- 
tersects the point. Figure 68 shows the striking illusion of a 

FIG. 68. 

The tangents  of a parabola a r e  formed by folding the  bottom edge of 
paper  to the  focus. 



parabola t ha t  results. The point is the focus of the curve, 
the edge of the paper is i ts directrix, and each crease is tan- 
gent  to the curve. I t  is easy to see that  this method of fold- 
ing ensures t ha t  every point on the  curve is  equally distant 
from the focus and the directrix, a property which defines 
the parabola. 

Closely related to  this  folding procedure is an  interesting 
problem in elementary calculus. Suppose we have a sheet of 
paper t ha t  is 8 by 11 inches in size. We fold i t  so tha t  corner 
A [see Fig. 6.91 just touches the left edge. By moving the 

F I G .  69.  

A calculus problem in  paper-folding. 

corner up and down the edge, creasing a t  each position, we 
obtain tangents to  a parabola t ha t  has corner A for  its focus. 
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At what spot along the left edge must corner A be placed so 
that  a crease that intersects the bottom edge will be as short 
as possible? What is the length of such a crease? Readers 
unfamiliar with calculus may enjoy tackling the following 
simpler variation. If the paper's width is reduced to 7.68 
inches and the corner is folded to a spot 5.76 inches above 
the base, exactly how long will the crease be? 

And now, without apologies, I leave the more mathemat- 
ical aspects of paper folding to explain how to make what is 
in many ways the most remarkable of all Origami construc- 
tions: the bird that  flaps its wings. This object is both a 
thing of beauty and a mechanical masterpiece. The reader 
is urged to take a square of paper (patterned wrapping pa- 
per is excellent) and master the intricate folds. 

A square eight inches on a side is a convenient size to use. 
(Some experts like to make a miniature bird from a dollar 
bill that  is first folded into a square.) Crease the sheet along 
the two diagonals, then turn i t  over [ I  in Fig.  701 so that  the 
"valley folds" become "mountain folds." (In the illustrations 
all valley folds are  shown as  broken lines; all mountain folds 
as  solid lines.) 

Fold the paper in half, unfold, then fold in half the other 
way and unfold. This adds the two valley folds shown a t  2 
in the illustration. 

Fold two adjacent sides over to meet [3 in illustration]. 
Unfold, then do the same thing a t  each of the other three 
corners. The paper will now be creased as  shown a t  4. (Note 
that  the creases outline a regular octagon in the center of 
the square.) 

The next step is extremely difficult to describe, though it 
is easily done once you get the hang of it. Note the four 
short valley-segments indicated by arrows a t  4 in the illus- 
tration. Pinch these segments so that  they become mountain 
folds. The centers of each side [labeled A, B, C and D at  41 
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F I G .  70. 
How to fold the  Japanese  flapping bird. 
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a re  pushed inward. The result is shown a t  5. This raises the 
corners of the square [labeled J, K, L and MI so that  an  
oblique view of the model now appears a s  a t  6. 

If all the folds a re  in neat order (be sure the center of the 
square is pushed down as  f a r  a s  i t  will go ) ,  i t  should now be 
easy to bring all four corners together a t  the top a s  illus- 
trated a t  7. Flatten the model by bringing the sides together 
a s  shown a t  8. 

Flap A [at 81 is folded down along the line B. Turn  the 
paper over and do the same on the other side. The paper 
now has the form shown a t  9. 

Flap A [at 91 is folded to the left along vertical line B. Turn  
the model over and do the same on the other side. The result 
is depicted a t  10. 

Flap A [at 101 is folded up along line B. Turn  the model 
over and repeat on the other side. Hold the resulting isos- 
celes triangle so tha t  i t  points upward [l l] .  For  the remain- 
ing steps i t  will be more convenient to hold the model in the 
a i r  rather  than to rest i t  on a table. 

Pull M to the angle shown a t  12 and press the paper flat 
a t  the base. Do the same with N. Now push down the corner 
of M, reversing the fold, and press flat to form the bird's 
head [l 31. 

Shape the wings (do not fold them) so that  from their 
base to top they curve slightly outward and forward. Hold 
the bird a s  shown a t  14. When you pull gently on the tail, 
the wings flap gracefully. 

A number of Origami animals have action features : a fish 
tha t  opens its mouth, a frog that  hops when its back is 
stroked, and so on. Unamuno's translator tells us tha t  the 
Spanish writer liked to fold such animals while he sipped 
his midday coffee in a Salamanca caf6. Little wonder that  
wide-eyed street urchins kept their noses glued to the win- 
dow panes ! 



A D D E N D U M  

SINCE this chapter appeared in Scienti f ic Amer ican ,  Mrs. H .  
C .  Oppenheimer has resumed publishing The Origamian,  a 
periodical devoted to paper folding. She continues to direct 
The Origami Center of New York, 26 Gramercy Park South, 
New York 3, N.Y., and to promote the a r t  of paper folding 
in innumerable ways. 

New books on paper folding are  being written every year, 
and several Origami construction kits a re  now on sale in the 
U. S. The Encyclopaedia Britannica has decided to add an  
article on Origami to its next printing. Some kindergarten 
and primary grade teachers a re  beginning to discover the 
ar t ,  but perhaps most teachers a re  still allergic to i t  because 
they associate i t  with the sterile practice, so widespread in 
kindergartens early in the century, of folding elaborate de- 
signs from colored paper. (The practice had been introduced 
by Friedrich Froebel, German founder of the kindergarten, 
and many U. S. teachers came under its baleful influence.) 

The flapping bird was first described in English in Hal f  
Hours  of Scientific Amusenzent ,  by Gaston Tissandier, Lon- 
don, 1890 ( a  translation of an  1889 French book). There is a 
simpler way to fold the bird than the one I chose for  this 
chapter, but i t  is more difficult to  explain in print. 

The description of Unamuno folding animals in a Spanish 
restaurant appears in the English translation of his Es.sny.s 
and So l i loqu i~s ,  Knopf, 1925. Ortega y Gasset, in a book 
about his friend Unamuno, tells of the occasion on which 
the philosopher folded some paper animals for  a small boy 
who asked, "Do the little birds speak?" The question in- 
spired one of Unamuno's best-known poems. His humorous 



essay on paper folding is in Amor. 1~ pedagogin, Barcelona, 
1902. A more important article by Unamuno on paper folding 
appears in the Argentine magazine Cnrn.s y caretns,  March 
1, 1902. 

Akira Yoshizawa of Tokyo is considered the world's great- 
est living Origami artist .  He has written several books on 
the subject, and many articles for  Japanese newspapers and 
magazines. In South America the best Origami manuals a re  
by Vicente Sol6rzano Sagredo, a dentist in Buenos Aires. 
There is an  extensive literature on the a r t  in both Japanese 
and Spanish, but I have confined the references in the bibli- 
ography for  this chapter to books in English that  a re  not 
too difficult to  find. 

A N S W E R S  

THE PROBLEM of the folded sheet is best handled a s  a maxima- 
minima problem in calculus. If x be the distance from cor- 
ner A ( the  corner t ha t  is folded over) to where the crease 
strikes the bottom edge, then 8 - x will be the distance re- 
maining on the bottom edge. The distance from the lower 
left corner to the point where corner A touches the left edge 

- 
will be 4\ lz - 4, the distance from the corner A to the spot 
where the crease strikes the right edge will be 2 x /  \/x - 4, 

-- 

and the crease itself will be \ / g / \ l x  - 4. If the derivative 
of this last function is equated to zero, x will have a value of 
6. The corner therefore touches the side edge a t  a point 4\/2 
above the bottom, and the crease will be 6\13 or  a little more 
than 10.392 inches. 

The interesting feature of this problem is that,  regardless 
of the paper's width, the minimum crease intersecting the 
bottom edge is obtained by folding so that  x is exactly three 
fourths of the paper's width. This three-quarter length mul- 
tiplied by the square root of three gives the length of the 
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crease. If the value to be minimized is the area of the part  
folded over, then x is always two thirds of the paper's width. 

The crease in the simpler problem (in which the paper's 
width is 7.68 and the corner is folded to a point 5.76 above 
the base) is exactly 10 inches long. 



C H A P T E R  S E V E N T E E N  

Squaring the Square 

Can a square be subdivided into  smaller squares o f  zohich 
n o  t w o  are alike? T h i s  enormouslg difficult problem zoas long 
thought  to  be unsolvable, bzit nozo it has been defeated b y  
translating it into  electrical-network theory, t h e n  back into  
plane geometry again. Here Wi l l iam T .  T u t t e ,  associate pro- 
fessor of m t h e m a t i c s  at  the  Universi ty  of Toronto, presents 
a fascinating account of how he and three fellow students at  
the  Universi ty  o f  Cambridge finally squared the square. 

T HIS  I S  the story of a mathematical research conducted by 
four students of Trinity College, Cambridge, in the years 

1936-38. One was the author of this article. Another was 
C. A. B. Smith, now a statistical geneticist a t  the University 
of London. He is also well known a s  a writer on the theory 
of games and the counterfeit-coin problem. Another was A. 
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H. Stone, now researching a t  Manchester into recondite 
regions of point-set topology. He is one of the inventors of 
the flexagons described in the first Scientific Amer ican  Book 
o f  Mathematical Puzzles. The fourth was R. L. Brooks. He 
has now left the academic world for the Civil Service. But 
he retains an  enthusiasm for mathematical recreations, and 
an important theorem in the theory of graph colorings bears 
his name. These four students referred to themselves, with 
characteristic modesty, as  the "Important Members" of the 
Trinity Mathematical Society. 

In 1936 there were a few references in the literature to 
the problem of cutting up a rectangle into unequal squares. 
Thus i t  was known that  a rectangle of sides 32 and 33 units 
can be dissected into nine squares with sides of 1, 4, 7, 8, 9, 
10, 14, 15 and 18 units [Fig.  711. Stone was intrigued by a 

FIG.  71  

statement in Dudeney's Canterbury  Puzzles which seemed 
to imply that it is impossible to cut up a square into unequal 
smaller squares. He tried to prove the impossibility for him- 
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self, but without success. He did, however, discover a dis- 
section of the rectangle of sides 176 and 177 into 11 unequal 
squares [Fig. 731. 

This partial success fired the imaginations of Stone and 
his three friends and soon they were spending much time 
constructing, and arguing about, dissections of rectangles 
into squares. Any rectangle cut up into unequal squares was 
called by them a "perfect" rectangle. Years later the term 
"squared rectangle" was introduced to describe any rec- 
tangle cut up into two or more squares, not necessarily 
unequal. 

The construction of perfect rectangles proved to be quite 
easy. The method used was as  follows. First we sketch a rec- 
tangle cut up into rectangles, as in Figure 72. We then think 
of the diagram as  a bad drawing of a squared rectangle, the 
small rectangles being really squares, and we work out by 
elementary algebra what the relative sizes of the squares 
must be on this assumption. Thus in Figure 72 we have de- 
noted the sides of two adjacent small squares by x and y. 
We can then say that  the side of the square immediately 
below them is x + y and then that  the side of the square 
next on the left is x + 2 ~ ,  and so on. Proceeding in this way 
we get the formulas shown in Figure 72 for the sides of the 
11 small squares. These formulas make the squares fit to- 
gether exactly except along the one segment AB. But we 
can make them fit on AB too by choosing x and y to satisfy 
the equation (32 + y) + (32 - 3y) = (14y - 3x),  that is, 
16y = 9x. Accordingly we put x = 16 and y = 9. This gives 
the perfect rectangle of Figure 73, which is the one first 
found by Stone. 

Sometimes this method gave negative values for the sides 
of some small squares. It was found, however, that  such 
negative squares could always be converted into positive 
ones by minor modifications of the original diagram. They 
therefore gave no trouble. In some of the more complicated 
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F I G .  7 3 .  

F I G .  7 2 .  

diagrams i t  proved necessary to s ta r t  with three unknown 
squares, with sides x, y and 2 ,  and solve two linear equations 
instead of one a t  the end of the algebraic computations. 
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Sometimes the squared rectangle finally obtained proved 
not to be perfect, and the attempt was considered a failure. 
Fortunately this did not happen very often. We recorded 
only "simple" perfect rectangles, that  is perfect rectangles 
containing no smaller ones. For example, the perfect rec- 
tangle obtained from Figure 71 by erecting a new compo- 
nent square of side 32 on the upper horizontal side is not 
simple, and we did not include it in our catalog. 

In this first stage of the research, large numbers of per- 
fect rectangles were constructed in which the number of 
component squares ranged from 9 to 26. In the final form of 
each rectangle the sides of the component squares were rep- 
resented as  integers without a common factor. Of course we 
all hoped that  if we constructed enough perfect rectangles 
by this method we would eventually obtain one which was a 
"perfect square." But as the list of perfect rectangles length- 
ened this hope faded. Production slowed down accordingly. 

Inspection of the catalog we had constructed revealed 
some very odd phenomena. We had classified our rectangles 
according to their "order," that  is, the number of component 
squares. We noticed a tendency for numbers representing 
sides to be repeated in any one order. Moreover the semi- 
perimeter of a rectangle in one order often reappeared 
several times as a side in the next order. For example, us- 
ing the full information now available, one finds that  four 
of the six simple perfect rectangles of order 10 have semi- 
perimeter 209 and that five of the 22 simple perfect rec- 
tangles of order 11 have 209 as  a side. There was much 
discussion of this "Law of Unaccountable Recurrence," but 
i t  led to no satisfactory explanation. 

In the next stage of the research we abandoned experi- 
ment in favor of theory. We tried to represent squared rec- 
tangles by diagrams of different kinds. The last of these 
diagrams, introduced by Smith, was a really big step for- 
ward. The other three researchers called it the Smith Dia- 
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gram. But Smith objected to this name, alleging that  his 
diagram was only a minor modification of one of the earlier 
ones. However tha t  may be, Smith's diagram suddenly made 
our problem par t  of the theory of electrical networks. 

Figure 74 shows a perfect rectangle together with its 
Smith diagram. Each horizontal line-segment in the draw- 
ing of the rectangle is represented in the Smith diagram by 

F I G .  7 4 .  

a dot, or  "terminal." In the Smith diagram the terminal is 
made to lie on a continuation to the r ight  of its correspond- 
ing horizontal segment in the rectangle. Any component 
square of the rectangle is bounded above and below by two 
of the horizontal segments. Accordingly i t  is represented by 
a line, or  "wire," in the diagram joining the two correspond- 
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ing terminals. We imagine an  electric current flowing in 
each wire. The magnitude of the current is numerically 
equal to the side of the corresponding square, and its direc- 
tion is from the terminal representing the upper horizontal 
segment to the terminal representing the lower one. 

The terminals corresponding to the upper and lower hori- 
zontal sides of the rectangle may conveniently be called the 
positive and negative poles, respectively, of the electrical 
network. 

Surprisingly enough the electric currents assigned by the 
above rule really do obey Kirchhoff's Laws for  the flow of 
current in a network, provided tha t  we take each wire to 
be of unit resistance. Kirchhoff's first law states that,  except 
a t  a pole, the algebraic sum of the currents flowing to any 
terminal is zero. This corresponds to  the  fact  t ha t  the sum 
of the sides of the squares bounded below by a given hori- 
zontal segment is equal to the sum of the sides of the squares 
bounded above by the same segment, provided of course tha t  
the segment is not one of the horizontal sides of the rec- 
tangle. The second law says that  the algebraic sum of the 
currents in any circuit is zero. This is equivalent to saying 
that  when we describe the circuit the net corresponding 
change of level in the rectangle must be zero. 

The total current entering the network a t  the positive 
pole, or  leaving i t  a t  the negative pole, is evidently equal to 
the horizontal side of the rectangle, and the potential differ- 
ence between the two poles is equal to the vertical side. 

The discovery of this electrical analogy was important to 
us because i t  linked our problem with a n  established theory. 
We could now borrow from the theory of electrical networks 
and obtain formulas for  the currents in a general Smith dia- 
gram and the sizes of the corresponding component squares. 
The main results of this borrowing can be summarized a s  
follows. With each electrical network there is associated a 
number calculated from the structure of the network, with- 
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out any reference to which particular pair of terminals is 
chosen as  poles. We called this number the complexity of the 
network. If the units of measurement for the corresponding 
rectangle are chosen so that the horizontal side is equal to 
the complexity, then the sides of the component squares are  
all integers. Moreover, the vertical side is equal to the com- 
plexity of another network obtained from the first by identi- 
fying the two poles. 

The numbers giving the side of the rectangle and its com- 
ponent squares in this system of measurement were called 
the "full" sides and "full" elements of the rectangle respec- 
tively. For some rectangles the full elements have a common 
factor greater than unity. In any case division by their 
common factor gives the "reduced" sides and elements. It 
was the reduced sides and elements that  had been recorded 
in our catalog. 

These results imply that  if two squared rectangles corre- 
spond to networks of the same structure, differing only in 
the choice of poles, then the full horizontal sides are equal. 
Further, if two rectangles have networks which acquire the 
same structure when the two poles of each are  identified, 
then the two vertical sides are  equal. These two facts ex- 
plained all the cases of "unaccountable recurrence" which 
we had encountered. 

The discovery of the Smith diagram simplified the proced- 
ure for producing and classifying simple squared rectangles. 
I t  was an easy matter to list all the permissible electrical 
networks of up to 11 wires, and to calculate all the corre- 
sponding squared rectangles. We then found that  there were 
no perfect rectangles below the 9th order, and only two of 
the 9th. [Figs. 71 and 741. There were six of the 10th order 
and 22 of the 11th. The catalog then advanced, though more 
slowly, through the 12th order (67 simple perfect rectan- 
gles) and into the 13th. 

I t  was a pleasing recreation to work out perfect rectan- 
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gles corresponding to networks with a high degree of sym- 
metry. We considered, for example, the network defined by 
a cube, with corners for terminals and edges for wires. This 
failed to give any perfect rectangles. However, when com- 
plicated by a diagonal wire across one face, and flattened 
into a plane, it gave the Smith diagram of Figure 75 and the 
corresponding perfect rectangle of Figure 76. This rectangle 

FIG. 7 5 .  

was especially interesting because i ts  reduced elements are  
unusually small for the 13th order. The common factor of 
the full elements is 6. Brooks was so pleased with this rec- 
tangle that  he made a jigsaw puzzle of it, each of the pieces 
being one of the component squares. 

It was a t  this stage that Brooks's mother made the key 
discovery of the whole research. She tackled Brooks's puzzle 
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and eventually succeeded in putting the pieces together to 
form a rectangle. But i t  was not the squared rectangle 
which Brooks had cut up! Brooks returned to Cambridge to 
report the existence of two different perfect rectangles with 
the same reduced sides and the same reduced elements. Here 
was unaccountable recurrence with a vengeance! The Im- 
portant Members met in emergency session. 

FIG.  76.  

We had sometimes wondered whether i t  was possible for 
different perfect rectangles to have the same shape. We 
would have liked to obtain two such rectangles with no com- 
mon reduced element, and thus get a perfect square by the 
construction shown in Figure 77. The shaded regions in this 
diagram represent the two perfect rectangles. Two unequal 
squares are then added to make the large perfect square. 
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But no rectangles of the same shape had hitherto appeared in 
our catalog, and we had reluctantly come to believe that the 
phenomenon was impossible. Mrs. Brooks's discovery re- 
newed our hopes, even though her rectangles failed in the 
worst possible way to have no common reduced element. 

There was much excited discussion a t  the emergency ses- 
sion. Eventually the Important Members calmed down suffi- 

FIG. 77 .  

ciently to draw the Smith diagrams of the two rectangles. 
Inspection of these soon made clear the relationship between 
them. 

The second rectangle is shown in Figure 78 and its Smith 
diagram in Figure 79. I t  is evident that  the network of Fig- 
ure 79 can be obtained from that  of Figure 75 by identify- 
ing the terminals p and p'. As p and p' happen to have the 
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same electrical potential in Figure 75 this operation causes 
no change in the currents in the individual wires, no change 
in the total current, and no change in the potential difference 
between the poles. We thus have a simple electrical explana- 
tion of the fact that the two rectangles have the same reduced 
sides and the same reduced elements. 

But why do p and p' have the same potential in Figure 75? 
Before the emergency session broke up i t  had obtained an 
answer to this question also. The explanation depends on 
the fact that the network can be decomposed into three 
parts meeting only a t  the poles A, and A, and the terminal 
A,. One of these parts consists solely of the wire joining A, 
and A,. A second part is made up of the three wires meeting 
a t  p', and a third is constituted by the remaining nine wires. 
Now the third part has threefold rotational symmetry with 
p as the center of rotation. Moreover, current enters or 
leaves this part of the network only a t  A,, A, and A:,, which 
are equivalent under the symmetry. This is enough to ensure 
that if any potentials whatever are applied to A,, A, and A:, 
the potential of p will be their average. The same argument 
applied to the second part of the network shows that the 
potential of p' must also be the average of the potentials of 
A,, A, and A,,. Hence p and p' have the same potential, 
whatever potentials are applied to A,, A2 and A::, and in 
particular they have the same potential when A, and A, are 
taken as poles in the complete network, and the potential of 
A,, is fixed by Kirchhoff's Laws. 

The next advance was made accidentally by the present 
writer. We had just seen Mrs. Brooks's discovery completely 
explained in terms of a simple property of symmetrical 
networks. I t  seemed to me that i t  should be possible to use 
this property to construct other examples of pairs of perfect 
rectangles with the same reduced elements, I could not have 
explained how this would help us in our main object of con- 
structing, or proving the impossibility of, a perfect square. 
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But I thought we should explore the possibilities of the new 
ideas before abandoning them. 

The obvious thing to do was to replace the third par t  of 
the network of Figure 75 by another network having three- 
fold rotational symmetry about a central terminal. But  this 
can be done only under severe limitations, which should now 
be explained. 

I t  can be shown tha t  the Smith diagram of a squared rec- 
tangle is always planar, tha t  is, i t  can be drawn in the plane 
with no crossing wires. And the drawing can always be made 
so that  no circuit separates the two poles. There is also a 
converse theorem which states that  if a n  electrical network 
of unit resistances can be drawn in the plane in this way, 
then it is the Smith diagram of some squared rectangle. I t  
would not be proper to take up space in this book with rig- 
orous proofs of these theorems. I t  would not even be his- 
torically accurate ; the four researchers did without rigorous 
proofs r ight  up to  the  time when they began to  prepare 
their technical paper for  publication. 

I t  is not always advisable to disregard rigor in this way 
in the course of a mathematical research. In a research aim- 
ing a t  a proof of the Four Color Theorem, for  example, 
such an  attitude would be, and indeed often is, disastrous. 
But our research was largely experimental, and its experi- 
mental results were perfect rectangles. Our methods were 
justified, for  the time being, by the rectangles they pro- 
duced, even when their theory had not been precisely worked 
out. 

But let us return to Figure 75 and the replacement of its 
third par t  by a new symmetrical network with center p. 
The complete network obtained in this way must not only be 
planar but i t  must remain planar when p and p' a re  identified. 

After a few trials I found two closely related networks 
satisfying these conditions. The corresponding Smith dia- 
grams are  shown in Figures 80 and 81. As was expected, 
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each diagram allowed of the identification of p and p', and 
so gave rise to two squared rectangles with the same reduced 
elements. But all four rectangles had the same reduced sides, 
and this result was quite unexpected. 

Essentially the new discovery was that  the rectangles 
corresponding to Figures 80 and 81 have the same shape, 
though they do not have their reduced elements all the same. 
A simple theoretical explanation of this was soon found. 
The two networks have the same structure, apart  from the 
choice of poles, and therefore the rectangles have the same 
full horizontal side. Moreover the networks remain identical 
when poles are  coalesced, and therefore the two rectangles 
have the same vertical side. We felt, however, that  this ex- 
planation did not probe sufficiently deep, since i t  made no 
reference to rotational symmetry. 

We eventually agreed to refer to the new phenomenon as  
"rotor-stator" equivalence. I t  was always associated with a 
network which could be decomposed into two parts, the 
"rotor" and the "stator," with the following properties. 
The rotor had rotational symmetry, the terminals common 
to the rotor and stator were all equivalent under the sym- 
metry of the rotor, and the poles were terminals of the 
stator. In Figure 80, for example, the stator is made up of 
the three wires joining p' to A,,  A, and A,,, and the wire 
linking A, with A:,. A second network could then be ob- 
tained by an operation called "reversing" the rotor. With a 
properly drawn figure this could be explained as a reflection 
of the rotor in a straight line passing through its center. 
Thus, starting with Figure 80 we can reflect the rotor in the 
line PA:: and so obtain the network of Figure 81. 

After studying a few examples of rotor-stator equivalence 
the researchers convinced themselves that reversing the 
rotor made no difference to the full sides of the rectangle, 
and no difference to the currents in the wires of the stator. 
But the currents in the rotor might change. Satisfactory 
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proofs of these results were obtained only a t  a much later 
stage. 

Rotor-stator equivalence proved to have no very close re- 
lationship with the phenomenon discovered by Mrs. Brooks. 
It was merely another one associated with networks having 
a part with rotational symmetry. The importance to us of 
Mrs. Brooks's discovery was that  it led us to study such 
networks. 

A very tantalizing question now arose. What was the least 
possible number of common elements in a rotor-stator pair 
of perfect rectangles? Those of Figures 80 and 81 had seven 
common elements, three of which corresponded to currents 
in the rotor. The same rotor with a stator consisting of a 
single wire A2A3 gave two perfect rectangles of the 16th 
order with four common elements. Using a one-wire stator 
there seemed no theoretical reason why we should not obtain 
a pair of perfect rectangles having only one element, corre- 
sponding to the stator, in common. But we saw that if we 
could do this we could also obtain a perfect square. For with 
the rotors of threefold symmetry which we were studying, 
a one-wire stator always represented a corner element of 
each corresponding rectangle. From two perfect rectangles 
with only a corner element in common we can expect to ob- 
tain a perfect square by the construction illustrated in Fig- 
ure 82. Here the shaded regions represent the two rectangles. 
The square in which they overlap is the common corner 
element. 

Naturally we got to work calculating rotor-stator pairs. 
We made the rotors as simple as we could, partly to save 
labor and partly in the hope of getting a perfect square with 
small reduced elements. But one construction after another 
failed, because of common elements in the rotor, and we 
became discouraged. Was there some theoretical barrier still 
to be explored ? 

I t  occurred to some of us that perhaps our rotors were too 
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F I G .  8 2 .  

simple. Something more complicated might be better. The 
numbers involved would be much bigger and the likelihood 
of a chance coincidence would be reduced. So i t  came to pass 
that Smith and Stone sat down to compute a complicated 
rotor-stator pair while Brooks, unknown to them, worked 
on another in a different part of the College. After some 
hours Smith and Stone burst into Brooks's room crying "We 
have a perfect square !" To which Brooks replied "So have I !" 

Both these squares were of the 69th order. But Brooks 
went on to experiment with simpler rotors and obtained a 
perfect square of the 39th order. This corresponds to the 
rotor shown in Figure 83. A brief description of i t  is pro- 
vided by the following formula: 

[2,378, 1,163, 1,0981, [65, 1,0331, [737, 4911, [249, 2421, [7, 
2351, [478, 2591, [256], [324, 9441, [219, 2961, [1,030, 829, 519, 
6971, [620], [341, 1781, [163, 712, 1,5641, [201, 440, 157, 311, 
[126, 4091, [283], [1,231], [992, 1401, [852]. 
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In this formula each pair of brackets represents one of 
the horizontal segments in the subdivision pattern of the 

F I G .  8 3  

perfect square. These segments are taken in vertical order, 
beginning with the upper horizontal side of the square, and 
the lower horizontal side is omitted. The numbers enclosed 
by a pair of brackets are the sides of those component 
squares which have their upper horizontal sides in the cor- 
responding segment. They are taken in order from left to 
right. The reduced side of the perfect square is the sum of 
the numbers in the first pair of brackets, that is, 4,639. 

The notation we have just used is that  of C. J. Bouwkamp. 
He has employed i t  in his published list of the simple squared 
rectangles up to the 13th order. 

This really completes the story of how this particular 
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team solved the problem of the perfect square. We did more 
work on the problem, i t  is true. All the perfect squares ob- 
tained by the rotor-stator method had certain properties 
which we regarded a s  blemishes. Each contained a smaller 
perfect rectangle; that  is, was not simple. Each had a point 
a t  which four of the component squares met ;  tha t  is, was 
"crossed." Finally, each had a component square, not one of 
the four corner squares, which was bisected by a diagonal 
of the complete figure. Using a more advanced theory of 
rotors we were able to get perfect squares without the first 
two blemishes. Years later, by a method based on a com- 
pletely different kind of symmetry, I obtained a perfect 
square of the 69th order free of all three kinds of blemish. 
But for  an  account of this work I must refer the interested 
reader to our technical papers. 

There a re  three more episodes in the history of the per- 
fect square which ought to be mentioned, though each one 
may seem like an  anticlimax. To begin with, we kept adding 
to the list of simple perfect rectangles of the 13th order. 
Then one day we found tha t  two of these rectangles had the 
same shape and no common element. They gave rise t o  a 
perfect square of the 28th order by the construction of Fig- 
ure 77. Later we found a 13th-order perfect rectangle which 
could be combined with one of the 12th order and one extra 
component square to give a perfect square of the 26th order. 
If the merit of a perfect square is measured by the small- 
ness of its order, then the empirical method of cataloging 
the perfect rectangles had proved superior to our beautiful 
theoretical method. 

Other researchers have used the empirical method with 
spectacular results. R. Sprague of - .  Berlin fitted a number of 
perfect rectangles together in a most ingenious way to pro- 
duce a perfect square of the 55th order. This was the first 
perfect square to be published (1939). More recently T. H. 
Willcocks of Bristol, who did not confine his catalog to  sim- 
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ple and perfect squared rectangles, obtained a perfect square 
of the 24th order [Fig. 841. Its formula is as  follows: [55, 39, 

811, 116, 9, 141, [4, 51, [3, 11, [201, [56, 181, [381, [30, 511, [64, 
31, 291, [8, 431, [2, 351, [33]. This perfect square still holds 
the low-order record. 

F I G .  8 4 .  

Unlike the theoretical method, the empirical one has not 
yet given rise to any simple perfect square. 

In case any reader should like to do some work on perfect 
rectangles himself, here are two unsolved problems. The 
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first is to.determine the smallest possible order for a perfect 
square. The second is to find a simple perfect rectangle 
whose horizontal side is twice the vertical side. 

- W. T. TUTTE 

A D D E N D U M  

I N  1960 C. J. Bouwkamp published a catalog of all simple 
squared rectangles (that is, squared rectangles that do not 
contain smaller squared rectangles) through order 15. With 
the aid of an  IBM-650 computer, Bouwkamp and his asso- 
ciates tabulated the following results: 

Order of rectangle 9 10 11 12 13 14 15 

Imperfect 1 0 0 9 34 104 283 
Perfect 2 6 22 67 213 744 2,609 

The imperfect simple squared rectangles are those con- 
taining a t  least two squares of the same size. The perfect 
ones are those in which the squares are all of different sizes. 
The total number of simple squared rectangles through order 
15 is 4,094. I t  is interesting to note that  no simple squared 
rectangles of orders 10 and 11 are possible without being 
perfect. The single imperfect simple rectangle of order 9 
has the formula: [6,4,5] [3, 11 [6] [5, 11 [4]. I t  has a pleasing 
symmetry and makes an excellent dissection puzzle for a child. 

Several squared rectangles appear in the puzzle books of 
Sam Loyd and H. E. Dudeney, but none that is either simple 
or perfect. A 26th order squared square, perfect but not sim- 
ple, is depicted in Hugo Steinhaus's Mathematical Snapshots ,  
and Maurice Kraitchik's Mathematical Recreations. So f a r  as 
I know, no squared rectangles have been marketed as dissec- 
tion puzzles. One reader, William C. Spindler of Arlington, 
California, sent me a photograph of a handsome rectangular 
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patio that he built with 19 square blocks of concrete sepa- 
rated by two-inch redwood strips. 

The smallest published square that is both simple and per- 
fect is a 38th-order square with a side of 4,920, discovered 
by R. L. Brooks. In 1959 this was bettered by T. H. Willcocks 
of Bristol, England, with a 37th-order square, 1,947 on the 
side. I s  it possible to dissect a cube into a finite number of 
smaller cubes, all different sizes? No, and a beautiful proof 
of this is given by the "Important Members" in the fourth 
entry in the list of references. The proof runs as follows: 

Imagine that you have before you, resting on a table, a 
cube cut into smaller cubes, no two the same size. The bot- 
tom face of this cube will of course be a squared square. 
Within this square will be a smallest square. I t  is easy to 
see that this smallest square cannot be touching an edge of 
the large square that is the cube's bottom face. Therefore 
the smallest cube that rests directly on the table top - we 
will call it cube A - must be surrounded by other cubes. 
None of the surrounding cubes can be smaller than cube A, 
therefore i t  will be surrounded by walls that rise above it. 
On cube A still smaller cubes will rest. They form a squared 
square on the top face of cube A. Within this squared square 
will be a smallest square, calling for a cube B that is the 
smallest cube resting directly on top of cube A. 

The same argument in turn will call for a cube C that is 
the smallest cube resting on cube B. Thus we are faced with 
an endless regress of smaller and smaller cubes, like the 
fleas in Dean Swift's familiar jingle that have lesser fleas 
to bite 'em, and so on ad infinitum. No cube, therefore, can 
be dissected into a finite number of smaller cubes of different 
sizes. 

A hypercube of four dimensions has "faces" that are 
cubes. If a hypercube could be hypercubed, then its faces 
would be cubed cubes; this is impossible, so it follows that 
no hypercube can be hypercubed. For similar reasons, no 
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fifth-dimensional cube can be cut into smaller fifth-dimen- 
sional cubes of different sizes, and so on for all cubes of 
higher dimensions. 

For an example of a perfect squared rectangle of order 
infinity, see Figure 41 in Chapter 8. 



C H A P T E R  E I G H T E E N  

Mechanical Puzzles 

M ECHANICAL puzzles, in contrast to the pencil-and- 
paper variety, a r e  puzzles requiring some sort of 

special equipment that  must be operated by hand. The equip- 
ment may be nothing more than a few pieces of cardboard, 
o r  i t  may be a n  elaborate construction of wood or'metal tha t  
is beyond the ability of most home craftsmen to duplicate. 
Manufactured puzzles of the mechanical type, sold in toy 
and novelty shops, a re  often extremely interesting from a 
mathematical standpoint, and for  this reason are  sometimes 
collected by students of recreational mathematics. The largest 
such collection known to me is owned by Lester A. Grimes, 
a retired fire-protection engineer who lives in New Rochelle, 
New York. ( A  smaller collection, though stronger on 19th- 
century items and old Chinese puzzles, is owned by Thomas 
Ransom of Belleville, Ontario.) Grimes's collection numbers 
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about 2,000 different puzzles, many of them exceedingly rare. 
The following account is based largely on this collection. 

No history of puzzles has been written, but there is little 
doubt that the oldest mechanical puzzle is the ancient Chinese 
puzzle-game of tangrams. Known in China as the ch'i ch'iao 
t'u (meaning "ingenious seven-piece plan"), i t  has been a 
popular Oriental pastime for several thousand years. In the 

Lester A. Grimes of New Rochelle, N. Y., 
and some of his 2,000 mechanical puzzles. 

- -- 
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early 19th century i t  became a fad in western countries, and 
i t  is said that  the exiled Napoleon whiled away his hours 
with a set. The name tangrams (unknown in China) seems 
to have been coined by an  anonymous U. S.  or  British toy 
manufacturer in the mid-19th century. Many books of tan- 
gram figures have been published, one of them a booklet by 
the famous U. S. puzzlist Sam Loyd tha t  is highly prized by 
collectors. 

F I G .  8 5 .  
Chinese t angrams  ( top lef t )  and some of the figures t h a t  can be made 
with the seven "tans." 
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Dissection puzzle-games similar to tangrams have ap- 
peared from time to time (the ancient Greeks and Romans 
amused themselves with a 14-piece dissection of a rectangle, 
attributed to Archimedes), but tangrams has outlived them 
all. To understand why, you need only cut a set of "tans" 
from a square of heavy cardboard, then try your skill a t  solv- 
ing a few tangram puzzles or devising some new ones. Fig- 
ure 85 shows how the square is dissected. The rhomboid 
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should be colored black on both sides so that  i t  can be turned 
over if desired. All seven tans must be used in every figure. 
Only the geometrical patterns require a bit of effort to 
solve; a variety of picture-figures are included to show the 
graceful effects that  can be achieved. 

Simple dissection-puzzles of this type occasionally pro- 
voke mathematical problems that  are f a r  from trivial. Sup- 
pose, for example, you wish to find all the different convex 
polygons (polygons with no outside angles less than 180 
degrees) that  can be formed with the seven tans. You might 
find them by prolonged trial and error, but how can you 
prove that  you have indeed discovered all of them? Two 
mathematicians a t  the National University of Chekiang - 
Fu Traing Wang and Chuan-Chih Hsiung- published a 
paper in 1942 on just this problem. Their approach was 
ingenious. Each of the five largest tans can be divided into 
isosceles right-angle triangles congruent with the two small 
tans, so that  altogether the seven tans are made up of 16 
identical isosceles right-angle triangles. By a clever chain of 
arguments the two Chinese authors show that  20 different 
convex polygons (not counting rotations and reflections) 
can be formed with 16 such triangles. I t  is then easy to 
prove that  exactly 13 of these 20 polygons are tangrams. 

Of the 13 possible convex tangrams, one is a triangle, six 
are quadrilaterals, two are  five-sided and four are six-sided. 
The triangle and three quadrilaterals are  shown in the illus- 
tration. I t  is a pleasant but by no means easy task to dis- 
cover the other nine. Each can be formed in more than one 
way, but there is one hexagon that  is considerably more elu- 
sive than the other 12 figures. 

Another popular genus of mechanical puzzle, species of 
which can be traced back many centuries, involves counters 
or pegs that  are  moved across a board according to pre- 
scribed rules in order to achieve a certain result. One of the 
best puzzles of this type, widely sold in Victorian England, 
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is shown in Figure 86. The object of the puzzle is to ex- 
change the positions of the black and white pegs in the fewest 
number of moves. A move is either (1) from one square to 
an  adjacent vacant square, or (2) a jump over an  adjacent 
peg to a vacant square. A peg may jump a peg of the same 

FIG.  86.  
How can the black and white pegs be transposed in the sma!lest num- 
ber of moves? 

or  opposite color. All moves are  "rook-wise"; no diagonal 
moves are  permitted. Most puzzle books give a solution in 
52 moves, but Henry Ernest Dudeney, the English puzzle 
expert, discovered a n  elegant solution in 46 moves. The puz- 
zle can be worked by placing small counters on top of the 
pegs in the illustration. The squares a re  numbered to facili- 
ta te  recording the answer. 

This and the preceding puzzle were singled out because 
the reader can construct them with little effort. Most of the 
puzzles in Grimes's collection cannot be made easily; since 
they must be handled to be appreciated, I shall content my- 
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self with a brief description of their variety. There are  puz- 
zle boxes, purses and other containers to be opened by 
cleverly hidden methods, hundreds of odd-shaped wire puz- 
zles to be taken apart,  silver bracelets and finger rings made 
of separate pieces that  interlock ingeniously, cords to be re- 
moved from objects without cutting or untying, glass-topped 
dexterity puzzles containing objects that are rolled or shaken 
into desired positions, rings to be removed from rods, eggs 
to be balanced on end, mazes in three dimensions, Chinese 
puzzles of interlocked wooden pieces, items involving moving 
counters and sliding blocks, and hundreds of curious puzzles 
that  defy all classification. Who invents such toys? To trace 
them back to their origins would be an impossible task. In 
most cases it is not even known in what country a puzzle 
originated. 

There is one happy exception. A section of Grimes's col- 
lection is reserved for about 200 remarkable puzzles invented 
and constructed by L. D. Whitaker, a retired veterinarian 
of Farmville, Virginia. The puzzles are beautifully made of 
fine woods (Whitaker turns them out in a basement work- 
shop), and many of them are enormously complicated and 
diabolically clever. A typical puzzle is a box with an open- 
ing a t  the top into which you drop a steel ball. The object 
is to get the ball out through a hole in the side of the box. 
One is allowed to manipulate the box in any manner, pro- 
vided, of course, it is not damaged or taken apart. Much 
more is required than just tipping the box to roll the ball 
through concealed passageways. Certain impediments must 
be removed by tapping the box in certain ways. Other bar- 
riers have to be lifted by applying magnets or blowing 
through small holes. Interior magnets are so placed that  
they grab the ball and hold it. You are unaware of this be- 
cause there are dummy balls inside that  you hear rattling 
about. On the outside of the box there may be wheels, levers 
and plungers of various types. Some of them must be manip- 
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ulated a certain way to get the ball through the box ; others 
are there just to confuse you. It may be necessary a t  some 
point to push a pin through an inconspicuous hole. 

For several years Grimes and Whitaker had an arrange- 
ment whereby Grimes received a new puzzle a t  regular in- 
tervals. If he solved i t  in a month, he was permitted to keep 
i t  ; otherwise he had to buy it. In some instances the challenge 
was accompanied by vigorous side bets. Once Grimes worked 
for almost a year on a Whitaker puzzle without cracking it. 
He had gone over i t  with a small compass to locate all con- 
cealed magnets. He had carefully probed all the openings 
with bent wires. The bottleneck was a plunger that  had to 
be pushed in, but apparently some interior steel balls pre- 
vented this. Grimes correctly deduced that these balls were 
to be tilted out of the way, but all his attempts to do this 
were unsuccessful. He finally solved the puzzle by having i t  
X-rayed [see Fig. 871. The prints disclosed one large cavity 

FIG.  8 7 .  
To solve and keep one of his puzzles (left) Grimes had to have it 
X-rayed (right).  
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into which four balls had to  be rolled, and a smaller cavity 
into which a fifth ball had to be maneuvered. When all five 
balls were out of the way, the plunger yielded. 

The rest of the puzzle was not so difficult, though a t  one 
point i t  required three hands. While the r ight  and left hands 
applied pressure a t  certain spots, another plunger, attached 
to a strong spring, had to be pulled out. Grimes finally man- 
aged i t  by tying one end of a cord to the plunger and the 
other end to his foot! 

A N S W E R S  

THE TANGRAM hexagon, usually the hardest to find of the 1 3  
possible convex tangrams, is depicted in Figure 88. The solu- 
tion is unique except for  the fact  tha t  the two shaded pieces 
may be transposed. 

FIG. 8 8 .  
The elusive polygon. 

The peg-jumping puzzle is solved in 46 moves a s  follows: 
10-8-7-9-12-6-3-9-15-16-10-8-9-1 1-14- 
12-6-5-8-2-1-7-9-11-17-16-10-13-12-6- 
4-7-9-10-8-2-3-9-15-12-6-9-11-10-8-9. 
A t  the halfway point the black and white counters form a 
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symmetrical pattern on the board. The remaining moves re- 
peat in reverse order the pattern of moves in the first half. 

Many readers sent other elegant solutions in 46 moves. 
James R. Lawson of Schenectady, New York, age 14, found 
48 basically different 46-move solutions. Charles A. Dunning, 
Jr., of Baltimore and F. B. Exner, M.D., of Seattle, sent 
proofs that  46 was indeed the minimum number. 



C H A P T E R  N I N E T E E N  

Probability and Ambigu i ty  

C HARLES SANDERS PEIRCE once observed that  in no 
other branch of mathematics is i t  so easy for experts to 

blunder as  in probability theory. History bears this out. 
Leibniz thought i t  just as  easy to throw 12 with a pair of 
dice as to throw 11. Jean le Rond d'Alembert, the great 
18th-century French mathematician, could not see that  the 
results of tossing a coin three times are the same as  tossing 
three coins a t  once, and he believed (as many amateur gam- 
blers persist in believing) that  after a long run of heads, a 
tail is more likely. 

Today, probability theory provides clear, unequivocal an- 
swers to simple questions of this sort, but only when the 
experimental procedure involved is precisely defined. A fail- 
ure to do this is a common source of confusion in many 
recreational problems dealing with chance. A classic exam- 
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ple is the problem of the broken stick. If a stick is broken 
a t  random into three pieces, what is the probability that  the 
pieces can be put together in a triangle? This cannot be an- 
swered without additional information about the exact 
method of breaking to be used. 

One method is to select, independently and a t  random, 
two points from the points that  range uniformly along the 
stick, then break the stick a t  these two points. If this is the 
procedure to be followed, the answer is 1/4,  and there is a 
neat way of demonstrating it with a geometrical diagram. 
We draw an equilateral triangle, then connect the midpoints 
of the sides to form a smaller shaded equilateral triangle in 
the center [see Fig. 891. If we take any point in the large 

F I G .  89.  

If a stick is broken in three pieces, the probability is 1 /4  tha t  they will 
form a triangle. 
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triangle and draw perpendiculars to the three sides, the sum 
of these three lines will be constant and equal to the altitude 
of the large triangle. When this point, like point A, is inside 
the shaded triangle, no one of the three perpendiculars will 
be longer than the sum of the other two. Therefore the three 
line-segments will form a triangle. On the other hand, if the 
point, like point B, is outside the shaded triangle, one per- 
pendicular is sure to be longer than the sum of the other 
two, and consequently no triangle can be formed with the 
three line-segments. 

We now have a neat geometrical analogy to the problem 
of the broken stick. The sum of the three perpendiculars 
corresponds to the length of the stick. Each point on the 
large triangle represents a unique way of breaking the stick, 
the three perpendiculars corresponding to the three broken 
pieces. The probability of breaking the stick favorably is the 
same as  the probability of selecting a point a t  random and 
finding that its three perpendiculars will form a triangle. As 
we have seen, this happens only when the point is inside the 
shaded triangle. Since this area is one fourth the total area, 
the probability is 1/4. 

Suppose, however, that  we interpret in a different way 
the statement "break a stick a t  random into three pieces." 
We break the stick a t  random, we select randomly one of 
the two pieces, and we break that  piece a t  random. What 
are  the chances that  the three pieces will form a triangle? 

The same diagram will provide the answer. If after the 
first break we choose the smaller piece, no triangle is possi- 
ble. What happens when we pick the larger piece? Let the 
vertical perpendicular in the diagram represent the smaller 
piece. In order for this line to be smaller than the sum of the 
other two perpendiculars, the point where the lines meet 
cannot be inside the small triangle a t  the top of the diagram. 
I t  must range uniformly over the lower three triangles. The 
shaded triangle continues to represent favorable points, but 
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now i t  is only one third the area under consideration. The 
chances, therefore, a re  1 /3  tha t  when we break the larger 
piece, the three pieces will form a triangle. Since our chance 
of picking the larger piece is 1/2, the answer to the original 
question is the product of 1/2 and 1/3, or  1/6. 

Geometrical diagrams of this sort must be used with cau- 
tion because they too can be fraught  with ambiguity. For  
example, consider this problem discussed by Joseph Bertrand 
in a famous 19th-century French work on probability. What  
is the probability that  a chord drawn a t  random inside a 
circle will be longer than the side of an  equilateral triangle 
inscribed in the circle? 

We can answer a s  follows. The chord must s ta r t  a t  some 
point on the circumference. We call this point A, then draw 
a tangent to the circle a t  A, a s  shown in the top illustration 
of Figure 90. The other end of the chord will range uni- 
formly over the circumference, generating a n  infinite series 
of equally probable chords, samples of which are  shown on 
the illustration a s  broken lines. I t  is clear that  only those 
chords tha t  cut across the triangle a re  longer than the side of 
the triangle. Since the angle of the triangle a t  A is 60 de- 
grees, and since all possible chords lie within a 180-degree 
range, the chances of drawing a chord larger than the side 
of the triangle must be 60/180, or  1/3. 

Now let us approach the same problem a bit differently. 
The chord we draw must be perpendicular to one of the cir- 
cle's diameters. We draw the diameter, then add the triangle 
a s  shown in the illustration a t  bottom left of Figure 90. All 
chords perpendicular to this diameter will pass through a 
point tha t  ranges uniformly along the diameter. Samples of 
these chords a re  again shown as  broken lines. I t  is not hard 
to prove that  the distance from the center of the circle to A 
is half the radius. Let B mark the midpoint on the other side 
of the diameter. I t  is now easy to see tha t  only those chords 
crossing the diameter between A and B will be longer than 
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F I G .  90.  
Probability that  random chord is longer than side of inscribed equilat- 
eral triangle is proved to be 1/3 (top), 1/2 (left) and 1/4 ( r igh t ) .  

the side of the triangle. Since AB is half the diameter, we 
obtain an  answer to our problem of 1/2. 

Here is a third approach. The midpoint of the chord will 
range uniformly over the entire space within the circle. A 



Probabil i ty and Ambigu i t y  225 

study of the illustration a t  bottom right of Figure 90 will 
convince you that only chords whose midpoints lie within 
the smaller shaded circle are longer than the side of the tri- 
angle. The area of the small circle is exactly one fourth the 
area of the large circle, so the answer to our problem now 
appears to be 1/4. 

Which of the three answers is right? Each is correct in 
reference to a certain mechanical procedure for drawing a 
random chord. Examples of the three procedures are as 
follows : 

(1) Two spinners are mounted a t  the center of a circle. 
They rotate independently. We spin them, mark the two 
points a t  which they stop, connect the points with a straight 
line. The probability that this line will be longer than the 
side of the inscribed triangle is 1/3. 

(2)  A large circle is chalked on the sidewalk. We roll a 
broom handle toward it, from a distance of fifty feet, until 
the handle stops somewhere on the circle. The probability 
that i t  will mark a chord longer than the side of the tri- 
angle is 1/2. 

(3) We paint a circle with molasses and wait until a fly 
lights on it, then we draw the chord on which the fly is the 
midpoint. The probability that this chord is longer than the 
side of the triangle is 1/4. 

Each of these procedures is a legitimate method of obtain- 
ing a "random chord." The problem as originally stated, 
therefore, is ambiguous. I t  has no answer until the meaning 
of "draw a chord a t  random" is made precise by a descrip- 
tion of the procedure to be followed. Apparently nothing 
resembling any of the three procedures is actually adopted 
by most people when they are asked to draw a random chord. 
In  an  interesting unpublished paper entitled "The Human 
Organism as a Random Mechanism" Oliver L. Lacey, pro- 
fessor of psychology a t  the University of Alabama, reports 
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on a test which showed the probability to be much better 
than 1 /2  t ha t  a subject would draw a chord longer than the 
side of the inscribed triangle. 

Another example of ambiguity arising from a failure t o  
specify the  randomizing procedure appears in Chapter 14, 
Problem 2. Readers were told that  Mr. Smith had two chil- 
dren, a t  least one of whom was a boy, and were asked to 
calculate the probability tha t  both were boys. Many readers 
correctly pointed out that  the answer depends on the pro- 
cedure by which the information "at least one is a boy" is 
obtained. If from all families with two children, a t  least one 
of whom is a boy, a family is chosen a t  random, then the 
answer is 1/3. But there is another procedure tha t  leads to 
exactly the same statement of the problem. From families 
with two children, one family is selected a t  random. If both 
children are  boys, the informant says "at least one is a boy. 
If both are  girls, he says "at least one is a girl." And if both 
sexes a re  represented, he picks a child a t  random and says 
"at least one is a . . .," naming the child picked. When this 
procedure is followed, the probability tha t  both children a re  
of the same sex is clearly 1/2. (This is easy to see because 
the informant makes a statement in each of the four cases - 
BB, BG, GB, GG - and in half of these cases both children 
are  of the same sex.) That  the best of mathematicians can 
overlook such ambiguities is indicated by the fact that  this 
problem, in unanswerable form, appears in one of the best 
of recent college textbooks on modern mathematics. 

A wonderfully confusing little problem involving three 
prisoners and a warden, even more difficult to  s tate  un- 
ambiguously, is now making the rounds. Three men - A, 
B and C - were in separate cells under sentence of death 
when the governor decided to pardon one of them. He wrote 
their names on three slips of paper, shook the slips in a hat, 
drew out one of them and telephoned the warden, requesting 



Probabil i ty  and A m b i g u i t y  227 

that the name of the lucky man be kept secret for several 
days. Rumor of this reached prisoner A. When the warden 
made his morning rounds, A tried to persuade the warden 
to tell him who had been pardoned. The warden refused. 

"Then tell me," said A, "the name of one of the others 
who will be executed. If B is to be pardoned, give me C's 
name. If C is to be pardoned, give me B's name. And if I'm 
to be pardoned, flip a coin to decide whether to name B or C." 

"But if you see me flip the coin," replied the wary warden, 
"you'll know that  you're .the one pardoned. And if you see 
that  I don't flip a coin, you'll know it's either you or  the per- 
son I don't name." 

"Then don't tell me now," said A. "Tell me tomorrow 
morning." 

The warden, who knew nothing about probability theory, 
thought i t  over that  night and decided that  if he followed 
the procedure suggested by A, i t  would give A no help what- 
ever in estimating his survival chances. So next morning he 
told A that  B was going to be executed. 

After the warden left, A smiled to himself a t  the warden's 
stupidity. There were now only two equally probable ele- 
ments in what mathematicians like to call the "sample space" 
of the problem. Either C would be pardoned or himself, so 
by all the laws of conditional probability, his chances of 
survival had gone up from 1/3 to 1/2. 

The warden did not know that  A could communicate with 
C, in an  adjacent cell, by tapping in code on a water pipe. 
This A proceeded to do, explaining to C exactly what he had 
said to the warden and what the warden had said to him. C 
was equally overjoyed with the news because he figured, by 
the same reasoning used by A, that his own survival chances 
had also risen to 1/2. 

Did the two men reason correctly? If not, how should each 
have calculated his chances of being pardoned? 
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A D D E N D U M  

IN GIVING the second version of the broken stick problem I 
could hardly have picked a better illustration of the ease 
with which experts can blunder on probability computa- 
tions, and the dangers of relying on a geometrical diagram. 
My solution was taken from William A. Whitworth's DCC 
Exercises in Choice and Chance, Problem 677; the same an- 
swer will be found in many other older textbooks on proba- 
bility. I t  is entirely wrong! 

In the first version of the problem, in which the two 
breaking points are simultaneously chosen, the representa- 
tive point on the diagram ranges uniformly over the large 
triangle, permitting a comparison of areas to obtain a cor- 
rect answer. In the second version, in which the stick is 
broken, then the larger piece is broken, Whitworth assumed 
that  the point on the diagram ranged uniformly over the 
three lower triangles. I t  doesn't. There are  more points 
within the central triangle than in the other two. 

Let the length of the stick be 1, and x be the length of the 
smallest piece after the first break. To obtain pieces that  will 
form a triangle, the larger segment must be broken within 
a length equal to 1 - x. Therefore the probability of obtain- 
ing a triangle is x / l  - x. We now have to average all values 
of x, from 0 to 1/2, to obtain a value for this expression. It 
proves to be - 1 + 2 log 2, or .386. Since the probability is 
1/2 that the larger piece will be picked for breaking, we 
multiply .386 by 1/2 to obtain .193, the answer to the prob- 
lem. This is a trifle larger than 1/6, the answer obtained by 
following Whitworth's reasoning. 

A large number of readers sent very clear analyses of the 
problem. In the above summary, I followed a solution sent 
by Mitchell P. Marcus, Binghamton, New York. Similar solu- 
tions were received from Edward Adams, Howard Grossman, 
Robert C. James, Gerald R. Lynch, G .  Bach and R. Sharp, 
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David Knaff, Norman Geschwind, and Raymond M. Red- 
heff er. Professor Redheff er, a t  the University of California, 
is co-author (with Ivan S. Sokolnikoff) of Mathemat ics  of 
Physics  and Modern  Engineer ing (McGraw-Hill, 1958), in 
which will be found (page 636) a full discussion of the prob- 
lem. See also Ingenious  Mathematical  Problems and Methods  
by L. A. Graham, Dover, 1959, Problem 32, for other methods 
of solving the problem's first version. 

Frederick R. Kling, John Ross, and Norman Cliff, all with 
the Educational Testing Service, Princeton, New Jersey, 
also sent a correct solution of the problem's second version. 
At the close of their letter they asked which of the following 
three hypotheses was most probable : 

1. Mr. Gardner honestly blundered. 
2. Mr. Gardner deliberately blundered in order to test his 

readers. 
3. Mr. Gardner is guilty of what is known in the mathe- 

matical world as keeping up with the d'Alemberts. 
The answer : number three. 

A N S W E R S  

THE ANSWER to the problem of the three prisoners is that 
A's chances of being pardoned are 1/3, and that C's chances 
are 2/3. 

Regardless of who is pardoned, the warden can give A the 
name of a man, other than A, who will die. The warden's 
statement therefore has no influence on A's survival chances ; 
they continue to be 1/3. 

The situation is analogous to  the following card game. 
Two black cards (representing death) and a red card (the 
pardon) are shuffled and dealt to three men: A, B, C (the 
prisoners). If a fourth person (the warden) peeks a t  all 
three cards, then turns over a black card belonging to either 
B or C, what is the probability that A's card is red? There 



is a temptation to suppose it is 112 because only two cards 
remain face-down, one of which is red. But since a black card 
can always be shown for B or C, turning i t  over provides no 
irlforrrlatiorl of value in betting on tlle color of A's card. 

This is easy to urlderstarld if we exaggerate the situation by 
letting death be represented by tlle ace of spades in a full deck. 
The deck is spread, and A draws a card. His chance of avoid- 
ing death is 51152. Suppose now that someone peeks at the 
cards, then turns face up .50 cards that do not include the ace 
of spades. Only two face-down cards are left, one of which must 
be tlle ace of spades, but this obviously does not lower A's 
chances to 112. It doesn't because it is always possible, if one 
looks at the fices of the 5 1 cards, to find 50 that do not include 
the ace of spades. Finding them and turning them fBce up, 
therefore, has no effect on A's chances. Of course if' 50 cards 
are turned over at random, and none prove to be the ace of 
spades, then the chance that A drew the death card does rise to 
112. 

What about prisoner C? Since either A or C must die, their 
respective probabilities for survival 111ust add up to 1. A's 
chances to live are 113; therefore C's chances must be 213. This 
can be confirmed by considering the four possible elements in 
our sample space, and their respective initial probabilities: 

1. C is pardoned, warden names B (probability 113). 

2. B is pardoned, warden narrles C (probability 113). 

3. A is pardoned, warder1 rlarrles B (probability 116). 

4. A is pardoned, warden names C (probability 116). 

Only cases 1 and 3 apply when it becomes known that B will 
die. The chances that it is case 1 are 115, or twice the chances 
(116) that it is case 3, so C's s~rrvival chances are two to 



oric, or 213, a~i t l  A's arc 113. In tlic. cartl-garric ~iiodcl this ~ i i ~ a t i s  
that there is a probability of' 213 that Cl's card is red. 

This problem of' tlle tllree prisoners brougllt a flood of' mail, 
pro and con; happily, all objections proved gro~rndless. Sheila 
Bishop of East H;tveri, C:orniecticut, sent the fi)llowiilg well- 
tliouglit-out analysis: 

SIRS: 
I W ( ~ S  /ir.s1 l ~ ( l  to the cortclm.sio?r tk(rl A'.s r(?(~.so~i~i~t~g W(IS i ~ ~ ~ ~ o r r ( ? c ~  

1 9  1lze li)llouli?tg pnrc~doxic.cil silti,tr/io?t. S~i f j f~o.s(~ ~ I Z P  or<qin/;(~l ~077,- 
versci,tiolr, b(jtwe(jn A ci,n,d the iocilden had tcllzen, ploc(j in the .strv,re 
i o q ,  htrl ~roio st~,/)fjos(? tlil(r,l ,jtr.sl (1,s I I I P  u~crr(L(jn ioas (rf)f)7~otlc/r,irr,g A7,s 
cr.11 to tr.11 Iti7tr t l t ~ t  B -ioorrlcl he r<xecrltc<d, tltr zorrr~lort ,fill do-iorr (I 

~~tunlrolo or i1)cr.s irr .sovno ot1rt.r wcq firc.-i/errtc?d f i . 0 7 ~  delivt!rirtg tlrc? 
?I/ osscicq-0. 

A cotild lhen recrsori asji~llows: "Szl#ose he ulcrs crbouL Lo lell me 
tltclt B would be r<xecrlted. Tl'ltert 711y clt~~n('(< qf s ~ r ~ i v c l ~ l  zllorrld bo 
1/2. IL 071  he o ~ h ~ r  11,a7z(l, 11,e zoas going 10 lell jttw 6hal (: iiio.ml(i br 
me~ctslo(i, lhmr, 1riy c. l t~~n(.~.s ~ L J O I ~ M  .s/ill 1 ) ~  1/2. No.lo I know (13 (I c(v- 
Loin /hc1 1/1,01 /I,(> u)oii,kl / 1 , 0 ~ ( 2  1okl ?)I(< err,(; 0/'1lt,o.s(< lu!o 1/r,irr,g.s; 1/1,(1771- 

/il re, (jill1>(?7. WNJl, 11lJ s I L ~ U ~ U ( I /  C//>/I'YIC(?.~ 11,7.(? ho llrl d 10 I)(? 1/2. " 
fiollou~irt~g tlt,is line (~f'tlior~~,yht .slr,ou~s t l t~it  4 colil(l' 1 i c l - o ~  .figrcred Iiis 
c~(I?L(.P.s 10  h~ 1/2 iilj~ho11/ PaPr (~.skj?tg LJZP i~1arde.n an~/lri?tg! 

A / i w  a coill,le oJ' hours I /inally crrrived (11 lhis co~r,clzlsio!n: 
(,'on.sid~r tr I N T ~ P  ?t,tl,tn,h~r ?/'1rios (?/'fjri.sort~j'~~ (111 irt 111,ix . S N I I I M  .siltr- 
cxlion, crnti! in rtrth gwt l f )  lel A br 11r,(' one u)11,o ~(~1k.s lo ~ h r  -iocrr.(l~n. 
I f  tlt,~r(? ( ~ Y P  311 trios ci,ltoCg~theu; thpn i ~ ,  r i  of thern A will b~ pnr- 
dort~d,  /TI ,  1 1  B mill he p(r,r7louc<d, and irt ri (: u~i l l  h(1 f~cnr(lo?rt?cl. 
7'11,rrt. ifiill be ?n/2 ccr.sc:.s irt u~lt,ic.lt, the ioc~l-clerr will suy, "B will be 

oxet.t~tod." Irt n of tlic!.sc~ c.a.sc?.s I," il~ill go ji-cx c~rrd in 11/13 c.rr.se.s A will 
go /reg; C'~s c1~crnc.e~ crre 1wic.e (1,s good as A's. IIe~zce A'.$ crnd C'~s 
chn?ic,es oJ'survivc11 are I/? crnd 2/? resfiecliirely .... 
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Lester R. Ford, Jr., and David N .  Walker ,  both w i t h  t he  
Arizona office o f  General Analysis Corporation, felt  that  t he  
warden has been unjustly maligned : 

SIRS : 
W e  are writing to you on behalf of the warden, who i s  a 

political appointee and therefore unwilling to enter into con- 
troversial matters in his own behalf. 

Y o u  characterize h im  in a slurring manner as "The  war- 
den, who knew nothing about probability theory, . . . " and 
I feel that a grave injustice is  being done. Not  only are you 
incorrect (and possibly libelous), but I can personally assure 
you that his hobby for  many years has been mathematics, 
and in particular, probability theory. His decision to answer 
A's question, while based on a humanitarian at tempt to 
brighten the last hours o f  a condemned m a n  ( f o r ,  as we all 
now know, it was C zuho received the pardon), was a deci- 
sion completely compatible w i th  his instructions from the 
governor. 

The  only point on which he i s  open to criticism (and on 
this he has already been reprimanded by the governor) is  
that he was unable to prevent A from communicating wi th  
C,  thereby permitting C to more accurately estimate his 
chances o f  survival. Here too, no great damage zoas done, 
since C failed to make proper use of the information. 

If you do not publish both a retraction and an  apology, 
we  shall feel impelled to terminate our subscription. 
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w 

The Mysterious Dr. Matrix 

N UMEROLOGY, the study of the mystical significance 
of numbers, has a long, complicated history that  in- 

cludes the ancient Hebrew cabalists, the Greek Pythagoreans, 
Philo of Alexandria, the Gnostics, many distinguished theo- 
logians, and those Hollywood numerologists who prospered 
in the 1920's and 1930's by devising names (with proper 
"vibrations") for would-be movie stars. I must confess that  
I have always found this history rather boring. Thus when a 
friend of mine suggested that  I get in touch with a New 
York numerologist who calls himself Dr. Matrix, I could 
hardly have been less interested. 

"But you'll find him very amusing," my friend insisted. 
"He claims to be a reincarnation of Pythagoras, and he 
really does seem to know something about mathematics. For 
example, he pointed out to me that  1960 had to be a n  unusual 
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year because 1,960 can be expressed as  the sum of two 
squares - 1 4 k n d  422 - and both 14 and 42 are  multiples 
of the mystic number 7." 

I made a quick check with pencil and paper. "By Plato, 
he's right!," I exclaimed. "He might be worth talking to 
a t  that." 

I telephoned for an  appointment, and several days later a 
pretty secretary with dark, almond-shaped eyes ushered me 
into the doctor's inner sanctum. Ten huge numerals from 1 
to 10, gleaming like gold, were hanging on the f a r  wall be- 
hind a long desk. They were arranged in the triangular pat- 
tern made commonplace today by the arrangement of bowl- 
ing pins, but which the ancient Pythagoreans viewed with 
awe as the "Holy Tetractys." A large dodecahedron on the 
desk bore a calendar for each month of the new year on each 
of its 12 sides. Soft organ music was coming from a hidden 
loudspeaker. 

Dr. Matrix entered the room through a curtained side 
door; he was a tall, bony figure with a prominent nose and 
bright, penetrating eyes. He motioned me into a chair. "I 
understand you write for Scientific American," he said with 
a crooked smile, "and that  you're here to inquire about my 
methods rather than for a personal analysis." 

"That's right," I said. 
The doctor pushed a button on a side wall, and a panel in 

the woodwork slid back to reveal a small blackboard. On the 
blackboard were chalked the letters of the alphabet, in the 
form of a circle that  joined Z to A [see Fig. 911. "Let me be- 
gin," he said, "by explaining why 1960 is likely to be a 
favorable year for your magazine." With the end of a pencil 
he began tapping the letters, starting with A and proceeding 
around the circle until he counted 19. The 19th letter was S. 
He continued around the circle, starting with the count of 1 
on T, and counted up to 60. The count ended on A. S and A, 
he pointed out, a re  the initials of Scientific American. 
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FIG. 91.  
Dr. Matrix's alphabet circle. 

"I'm not impressed," I said. "When there are  thousands 
of different ways that  coincidences like this can arise, it 
becomes extremely probable that  with a little effort you can 
find a t  least one." 

"I understand," said Dr. Matrix, "but don't be too sure 
that's the whole story. Coincidences like this occur f a r  more 
often than can be justified by probability theory. Numbers, 
you know, have a mysterious life of their own." He waved 
his hand toward the gold numerals on the wall. "Of course 
those are  not numbers. They're only symbols for numbers. 
Wasn't i t  the German mathematician Leopold Kronecker 
who said : 'God created the integers; all the rest is the work 
of man'?" 

"I'm not sure I agree with that," I said, "but let's not 
waste time on metaphysics." 
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"Quite right," he replied, seating himself behind the desk. 
"Let me cite a few examples of numerological analysis that 
may interest your readers. You've heard, perhaps, the theory 
that Shakespeare worked secretly on part  of the King 
James translation of the Bible?" 

I shook my head. 
"To a numerologist, there's no doubt about it. If you turn 

to the 46th Psalm you'll find that  its 46th word is 'shake.' 
Count back to the 46th word from the end of the same psalm 
[the word selah a t  the end is not part of the psalm] and you 
reach the word 'spear.' " 

"Why 46?" I asked, smiling. 
"Because," said Dr. Matrix, "when the King James Author- 

ized Version was completed in 1610, Shakespeare was ex- 
actly 46 years old." 

"Not bad," I said as  I scribbled a few notes. "Any more?" 
"Thousands,'' said Dr. Matrix. "Consider the case of Rich- 

ard Wagner and the number 13. There are 13 letters in his 
name. He was born in 1813. Add the digits of this year and 
the sum is 13. He composed 1 3  great works of music. Tann- 
hauser, his greatest work, was completed on April 13, 1845, 
and first performed on March 13, 1861. He finished Parsifal 
on January 13, 1882. Die Walkure was first performed in 
1870 on June 26, and 26 is twice 13. Lohengrin was com- 
posed in 1848, but Wagner did not hear it played until 1861, 
exactly 13 years later. He died on February 13, 1883. Note 
that the first and last digits of this year also form 13. These 
are only a few of the many important 13's in Wagner's life." 

Dr. Matrix waited until I had finished writing; then he 
continued. "Important dates are never accidental. The atomic 
age began in 1942, when Enrico Fermi and his colleagues 
achieved the first nuclear chain reaction. You may have read 
in Laura Fermi's biography of her husband how Arthur 
Compton telephoned James Conant to report the news. Comp- 
ton's first remark was: 'The Italian navigator has reached 
the New World.' Did i t  ever occur to you that  if you switch 
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the middle digits of 1942, it becomes 1492, the year that  
Columbus, an  earlier Italian navigator, discovered the New 
World?" 

"Never," I answered. 
"The life of Kaiser Wilhelm I is numerologically interest- 

ing," he went on. "In 1849 he crushed the socialist revolu- 
tion in Germany. The sum of the digits in this date is 22. 
Add 22 to 1849 and you get 1871, the year Wilhelm was 
crowned emperor. Repeat this procedure with 1871 and you 
arrive a t  1888, the year of his death. Repeat once more and 
you get 1913, the last year of peace before World War  I 
destroyed his empire. Unusual date patterns are common in 
the lives of all famous men. I s  i t  coincidence that  Raphael, 
the great painter of sacred scenes, was born on April 6 and 
died on April 6, and that  both dates fell on Good Friday? 
Why is evolution a key to the philosophies of both John 
Dewey and Henri Bergson? Because both men were born in 
1859, the year Darwin's Origin of Species was published. 
Do you think i t  accidental that  Houdini, the lover of mys- 
tery, died on October 31, the date of Halloween?" 

"Could be," I murmured. 
The doctor shook his head vigorously. "I suppose you'll 

think it coincidental that  in the library's Dewey decimal sys- 
tem the classification for books on number theory is 512.81." 

"Is there something unusual about that?" 
"The number 512 is 2 to the ninth power and 81 is 9 to 

the second power. But here's something even more remark- 
able. First,  11 plus 2 minus 1 is 12. Let me show you how 
this works out with letters." He moved to the blackboard 
and chalked on i t  the word ELEVEN. He added TWO to 
make ELEVEN-TWO, then he erased the letters of ONE, 
leaving ELEVTW. "Rearrange those six letters," he said, 
"and they spell TWELVE." 

I dabbed a t  my forehead with my handkerchief. "Do you 
have any opinion about 666," I asked, "the so-called Number 
of the Beast [Revelation 13:181? I recently came across a 
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book called Our T i m e s  and T h e i r  Mean ing ,  by a Seventh- 
Day Adventist named Carlyle B. Haynes. He identified the 
number with the Roman Catholic Church by adding up all 
the Roman numerals in one of the Latin titles of the Pope: 
VICARIUS FILII DEI. It comes to exactly 666." [V = 5, 
I = l , C = l O O , I  = l , U = 5 , I = l , L = 5 0 ,  I = l , I = l ,  
D = 500, I = 1. U is taken as V because that  is how it used 
to be written.] 

"I could talk for hours about 666," the doctor said with a 
heavy sigh. "This particular application of the Beast's num- 
ber is quite old. Of course it's easy for a skillful numerolo- 
gist to find 666 in any name. In fact, if you add the Latin 
numerals in the name ELLEN GOULD WHITE, the inspired 
prophetess who founded Seventh-Day Adventism - count- 
ing W as a 'double U' or two V's - it also adds up to 666. 
[ L = 5 0 , L = 5 0 7 U = 5 , L = 5 0 ,  D = 5 0 0 ,  W = 1 0 ,  I = l . ]  
Tolstoy's W a r  a n d  Peace [Volume 111, Pa r t  1, Chapter 191 
has a neat method of extracting 666 from L'EMPEREUR 
NAPOLEON. When the prime minister of England was 
William Gladstone, a political enemy wrote GLADSTONE 
in Greek, added up the Greek numerals in the name and got 
666. HITLER adds up neatly to the number if we use a 
familiar code in which A is 100, B is 101, C is 102, and so on." 

"I think i t  was the mathematician Eric Temple Bell," I 
said, "who discovered that  666 is the sum of the integers 
from 1 to 36, the numbers on a roulette wheel." 

"True," said Dr. Matrix. "And if you put down from right 
to left the first six Roman numerals, in serial order, you get 
this." He wrote DCLXVI (which is 666) on the blackboard. 

"But what does it all mean?" I asked. 
Dr. Matrix was silent for a moment. "The true meaning 

is known only to a few initiates," he said unsmilingly. "I'm 
afraid I can't reveal it a t  this time." 

"Would you be willing to comment on the coming presi- 
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dential campaign?" I asked. "For instance, will Nixon or  
Rockefeller get the Republican nomination?" 

"That's another question I prefer not to answer," he said, 
"but I would like to call your attention to some curious 
counterpoint involving the two men. 'Nelson' begins and 
ends with N. 'Rockefeller' begins and ends with R. Nixon's 
name has the same pattern in reverse. 'Richard' begins and 
almost ends with R. 'Nixon' begins and ends with N. Do you 
know when and where Nixon was born?" 

"NO," I said. 
"At Yorba Linda, California - in January,  1913." Dr. 

Matrix turned back to the blackboard and wrote this date a s  
1-1913. He added the digits to get 15. On the circular alpha- 
bet he circled Y, L and C, the initials of Nixon's birthplace, 
then he counted from each letter t o  the 15th letter f rom i t  
clockwise to obtain NAR, the initials of Nelson Aldrich 
Rockefeller! "Of course," he added, "of the two men, Rocke- 
feller has the better chance to be elected." 

"How is that?" 
"His name has a double letter. You see, because of the 

number 2 in 20th century, every president of this century 
must have a double letter in his name, like the 00 in 
Roosevelt and the RR in Harry  Truman." 

"Ike doesn't have a double letter," I said. 
"Eisenhower is the one exception so far .  We must remem- 

ber, however, that  he r an  twice against Adlai Ewing Steven- 
son, who also lacks the double letter. Ike's double initials 
'D. D.' were sufficient to give him the advantage." 

I glanced toward the blackboard. "Any other uses for  that  
circular alphabet ?" 

"It has many uses," he replied. "Let me give you a recent 
example. The other day a young man from Brooklyn came 
to see me. He had renounced a vow of allegiance to a gang 
of hoodlums and he thought he ought to leave town to avoid 
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punishment by gang members. Could I tell him by numer- 
ology, he wanted to know, where he should go? I convinced 
him he should go nowhere by taking the word ABJURER 
[one who renounces] and substituting for each letter the 
letter directly opposite i t  on the alphabet circle." 

Dr. Matrix drew chalk lines on the blackboard from A to 
N, B to 0 ,  and so on. The new word was NOWHERE. "If 
you think that's a coincidence," he said, "just t ry  i t  with 
even shorter words. The odds against starting with a seven- 
letter word and finding a second one by this technique are 
astronomical." 

I glanced nervously a t  my wrist watch. "Before I leave, 
could you give me a numerological problem or two that I 
could ask my readers to solve?" 

"I'll be delighted," he said. "Here's an easy one." On my 
notepaper he wrote the letters: OTTFFSSENT. 

"On what basis are  those letters ordered?" he asked. "It's 
a problem I give my beginning students of Neo-Pytha- 
goreanism. Please note that the number of letters is the same 
as the number of letters in the name Pythagoras." 

Beneath these letters he wrote: 

FORTY 
+ TEN 
+ TEN 
SIXTY 

"Each letter in that addition problem stands for a differ- 
ent digit," he explained. "There's only one solution, but i t  
takes a bit of brain work to find it." 

I pocketed my pencil and paper and stood up. Organ music 
continued to pour into the room. "Isn't that  a Bach record- 
ing?" I asked. 

"It is indeed," answered the doctor as  he walked me to 
the door. "Bach was a deep student of our science. Have you 
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read Leonard Bernstein's J o y  o f  Music? It has an  interest- 
ing paragraph about Bach's numerological investigations. 
He knew that  the sum of the values of BACH -taking A 
as  1, B as  2, and so on -is 14, a multiple of the divine 7. 
He also knew that  the sum of his entire name, using an old 
German alphabet, is 41, the reverse of 14, as  well as  the 14th 
prime number when you include 1 as a prime. The piece 
you're hearing is V o r  deinen T h r o n  tret' i c h  allhier, a hymn 
in which the musical form exploits this 14-41 motif. The 
first phrase has 14 notes, the entire melody has 41. Mag- 
nificent harmony, don't you think? If only our modern com- 
posers would learn a little numerology, they might come as 
close as  this to the music of the spheres !" 

I left the office in a slightly dazed condition; but not too 
dazed to notice again on my way out that  the doctor's secre- 
tary had 1 upturned nose, 2 luminous eyes and a most in- 
teresting over-all figure. 

A D D E N D U M  

THE 1960 presidential election provided a dramatic confir- 
mation of Dr. Matrix's remarks about the law of double 
letters. Among the top contenders for the Democratic nomi- 
nation only John Fitzgerald Kennedy had the double letter, 
and he won both the nomination and election. 

Dr. Matrix pointed out that  Enrico Fermi obtained the 
first chain reaction in 1942, and that reversing the 94 gives 
1492, the year another Italian made a great discovery. Luis 
W. Alvarez, a physicist a t  the University of California's 
Radiation Laboratory, in Berkeley, carried this analysis to 
new numerological heights. His letter appeared in Scienti f ic 
Amer ican ,  April 1960 : 
SIRS : 

I enjoyed reading M a r t i n  Gardner's  account of h is  v is i t  
w i t h  Dr. Matr ix .  W h e n  t h e  doctor w a s  discussing t h e  first 
nuclear chain  reaction,  he w a s  certainly o n  t h e  r igh t  t rack ,  
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bu t  because he  did no t  w o r k  actively o n  t h e  Manhat tan  Dis- 
t r ic t  project ,  he missed some impor tan t  verifications of h is  
conclusions. He  zcould have knozcm, of course, tha t  t h e  only 
reason t h e  pile zoas built d w i n g  t h e  zoar zoas to  prodz~ce 
plutonium, t h e  9 4 t h  element in the  periodic sys tem.  W h a t  
Dr.  Matr ix  missed b y  no t  having Manhat tan  District  clear- 
ance u7as  t h e  fact tha t  t h e  code designation for plutoniunz, 
all during the  ?car,  aoas "49." If t h e  good doctor had had th is  
fact available to  h i m ,  he aoould also have pointed ozct tha t  
element 94 zuas discovered in Cal i fornia ,  the  land o f  the  49'ers. 

S ince  t h e  real tes t  of a nelc theory  i s  i t s  abil i ty to  predict 
nezo relationships w h i c h  t h e  au thor  of t h e  theory  could no t  
have foreseen, you have convinced m e  tha t  numerology i s  
here  to s tay .  

A N S W E R S  

THE LETTERS OTTFFSSENT are  the initials of the names 
of the cardinal numbers from one to ten. 

Dr. Matrix's addition problem was originated by Alan 
Wayne, a high-school teacher of mathematics in New York, 
N.Y., and first appeared in the Amer ican  Mathematical 
Monthly ,  August-September 1947, page 413. In  introducing 
the problem, i;he magazine's problem editor pointed out that  
a "cryptarithm," to be considered "charming," should ex- 
hibit four features : 

1. The letters should make sense. 
2. All digits should be used. 
3. The solution must be unique. 
4. I t  should be solvable by logic rather  than by tedious 

trial and error .  
Wayne's cryptarithm has all four  features. The unique 

solution is: 

29786 
850 
850 

31486 
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Note that  the sum differs in only one digit from the four- 
decimal value of pi. 

For readers who may wonder how to go about solving a 
cryptarithm, I quote a letter of Monte Dernham, of San 
Francisco, who sent the best explanation of how Wayne's 
problem could be analyzed : 

T h e  repet i t ion  of T Y  in t h e  first and four th  lines neces- 
s i ta tes  zero for N and 5 for E ,  zuith u n i t y  carried t o  t h e  hun- 
dreds  column. T h e  double space preceding each T E N  requires 
t h a t  0 in F O R T Y  equal 9 ,  w i t h  2 carried f r o m  t h e  h z ~ n d r e d s  
column,  zuhence I denotes t h e  unit digi t  1 in 11, w i t h  F plus 
1 equal t o  S .  T h i s  leaves 2; 3, 4 ,  6 ,  7 and 8 unass igned.  

S ince  t h e  hundreds  column (viz., R plus 2 T  plus 1 )  m u s t  
be equal t o  o r  greater  t h a n  22, T and R m u s t  each be greater  
t h a n  5 ,  relegating F and S t o  2, 3, and 4 .  Nozc X i s  n o t  equal 
t o  3 ;  else F and S could n o t  be consecutive in tegers .  T h e n  X 
equals 2 o r  4 ,  w h i c h ,  it zs readily found,  i s  impossible 6f T i s  
equal t o  o r  less t h a n  7 .  Hence T equals 8 ,  w i t h  R equal t o  7 
and X equal t o  4.  T h e n  F equals 2 and S eqztals 3,  leaving t h e  
remain ing  le t ter ,  Y ,  equal t o  6 .  
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P O S T S C R I P T ,  1987 

No EFFORT has  been m a d e  to update the ??laterial in this see- 
ond collection of m y  Scientific American co lumns ,  bz~ t  per- 
haps  some remarks  about the m a i n  topics will be of interest. 

H e n r y  Ernes t  Dudeney's  two p o s t / ~ u m o u s  books, Puzzles 
and Curious Problems a?zd Modern Puzzles,  are lzozc avail- 
able i n  a single vo lume ,  536 Puzzles and Curious Problems, 
which I edited for Scribner's in 1967. The follozcing year I 
also edited Dudeney's  loxg out-of-print book o n  word puzzles 
for Scribner's. 

A second c o l u ~ n n  about Piet  Hein's  famous  So?na Cube,  
and other polycube puzzles,  i s  reprinted i n  m y  Knotted 
Doughnuts and Other  Mathematical Enter ta inments  (Free- 
m a n ,  1986). For  recent results  on  Ynagic squares and cubes, 
two excellent original paperbacks are available . from Dozler: 
N e w  Recreations w i t h  Magic Squares (1976) alzd Magic 
Cubes  (1981), both by W i l l i a m  H .  B e n s o ~ z  and Oswald 
Jacoby.  

The  induct ion card game  of Eleus is  has  been improved.  
The  rzeuj Eleus is  was  the topic of m y  Scientific American col- 
umn for October 1977. E n t h u s i a s m  for origarrti has r isen  so 
rapidly  since I wrote a chapter about i t  here that hundreds of 
books o n  the art  have been published around the world. 

The  mos t  signijicant n e w  discouery about squared squares 
was  the solution to  the task  of determining the s?nallest order 
for a s imple  perfect squared square. I t  i s  d l .  You'l l  .find the 
details  in T h e  Journal o f  Combinatorial Theory ,  vol. 35B 
(1978), pp. 260-63, and i n  Scientific American of J u n e  1978, 
pp. 86-87. 



The  j r s t  solution to tlze problem of jifindi?~g a simple perfect 
rectangle w i th  sides i n  a 2:1 ratio was published by R. L. 
Brooks i n  T h e  Journal o f  Combinatorial Theory ,  vol. 8 
(1970), pp. 232-43. I t  has  1,323 squares. Examples  of 07-ders 
23, 24,  and 25 are given by P .  J .  Federico in the same issue,  
pp. 244-46. Federico's excellel-zt history of the topic, "Sqibar- 
i r ~ g  Rectangles and Squares," can be found i n  Graph Theory  
and Related Topics,  edited by J .  A. Bondy  and V .  K.  M u r t y  
(Academic  Press,  1979). I t s  bibliography lists 73 references. 

I n  recent years Jerry  S locum,  of Beverly Hi l ls ,  California,  
has  become the nation's top collector oj' and expert orz m e -  
clzanical puzzles. His  collection i s  so vast  that he has had to 
build a house to hold i t .  Puzzles Old and N e w ,  a beaut$ul 
book o n  mechanical puxxles that S l o c u m  wrote wi th  Jack 
Boternzans, was published il-z 1986. I t  i s  obtainable f rom the 
Univers i ty  of Washi?zgton Press,  i?z Seattle. 

F o r  more o n  tangrams,  see m y  two Scientific American 
columns of Augus t  and September 1974, and corrections and 
commentary  i?z later columns.  Erpanded versions of the two 
c o l u ~ n n s  will appear i n  nzy forthcoming collection T i m e  
Travel  and Other  Mathematical Bewilderments (Freeman ,  
1987). 

F ina l l y ,  all m y  m a n y  subsequent colurzzns about Dr.  M a -  
t r i x ,  ending wi th  the revelation of h is  tragic kil l ing i n  1980 
by a R u s s i a n  KGB agent,  are gathered in one uolume: T h e  
Magic Numbers  of Dr. Matrix (Prometlzeus Books,  1985). 



A B O U T  T H E  A U T H O R  

M A R T I N  G A R D N E R  has turitterz and edited over forty hooks 
o n  science, ?nathernatics, magic ,  philosophy, and literary crit- 
icisnz, rangirzg frorn The Annotated Alice to The Relativity Ex- 
plosion. H i s  colunln,  "Mathematical  Games," delighted readers 
of the Scientific American for t w e ~ t y - J i v e  years; his inven-  
t iveness arzd h z ~ m o r  continue to delight readers of his  marly 
collections of mathematical  diversions.  

M r .  Gardner  was  born i n  T u l s a ,  0klahor)ln.  He majored i n  
philosoplzy a t  the Ur~ ivers i t y  of Chicago and started his ~cr i t i i lg  
career a s  a reporter on  the Tu l sa  Tribune. H e  nou: 1i1)es in 
Hendersonvil le,  North  Carol ixa  and conti?zues to wr i t e jor  72u- 
rnerozts pel-iodicals. H i s  rnore recent publicatiorzs include: 

The Annotated "Casey at the Bat" (ed.)  
Logic Machines & Diagrams 
The Magic Numbers of Dr. Matrix 
Martin Gardner's New Mathematical Diversions from Scz- 

ertttfic Anlel-ican 
Martin Gardner's Sixth Book of Mathematical Diversions 

from ScientiJic Anlericav 
Order & Surprise 
Puzzels from Other Worlds 
The Sacred Beetle & Other Essays in Science (ed . )  
Wheels, Life, and Other Mathematical Entertainments 
The Whys of a Philosophical Scrivener 
The No-sided Professor 
The Annotated Innocence of Father  Brozc~z (ed.) 



This delightful collection of Martin 
Gardner's mathematical entertain- 
ments introduces readers to the 
Generalized Ham Sandwich Theorem, 
origami, digital roots, magic squares, 
the mathematics of cooling coffee, 
an update of the Induction Game of 
Eleusis, Dudeney puzzles, the maze at 
Hampton Court Palace, and many 
more mathematical puzzles and prin- 
ciples. Reading Gardner is like watch- 
ing a dazzling performance by a 
magician who explains every trick so 
quickly and neatly that each explana- 
tion seems like a new trick in itself. 
He may begin with disarmingly simple 
instructions for constructing a tetra- 
hedron out of an envelope, and after a 
few surprises ("a cube can be passed 
through a hole in a smaller cube") * 

move straight fmm tricks with rubber 
bands into Eudid's proof of why there 
can be no more than five Platonic solids. 

This edition includes a postscript by 
Martin Gardner that notes new discov- 
eries and recommends further reading. 

"Gardner is the clown prince of sci- 
ence. . . . His Mathematical Games col- 
umn in Scientific American is one of the 
few bridges over C. I? Snow's famous 
'gulf of mutual incomprehension' that 
lies between the technical and literary 
cultures."- Time 

"Only a creative mind could show the 
relation between pure play and pure 
mathematics, and Mr. Gardner has 
done just that with consummate 
skill. . . . No lover of mathematics can 
afford to miss [this book], first, be- 
cause of the author's delightful com- 
mentaries and asides; secondly, 
because much of the material is fresh 
and new; and finally, because Mr. 
Gardner has been eminently successful 
in linking mathematical recreations to 
important aspects of modem mathe- 
matical thin king." 
-William Schaaf, editor of A Biblog- 
mphy of Recreational Mathematics 

MARTIN GARDNER wrote the 
Mathematical Games column in 
Scientific American for twenty4 ive 
years. He is the author of many books 
on science, mathematics, philosophy, 
and literary criticism, including The 
Annotated Alice and The Whys of a 
Philosophical Scrivener: His books 
published by the University of Chicago 
Press include The Annotated "Casey at 
the Bat, " Martin Gafdner S New Math- 
ematical Diversions, Logic Machines 
and Diagrams, and Martin GardnerB 
Sikth Book of Mathematical Divemims. 

M UmVERSlTY OF CHICAGO PRESS 


	HOME
	CONTENTS
	INTRODUCTION
	The Five Platonic Solids
	Tetraflexagons
	Henry Ernest Dudeney: England's Greatest Puzzlist
	Digital Roots
	Nine Problems
	The Soma Cube
	Recreational Topology
	Phi: The Golden Ratio
	The Monkey and the Coconuts
	Mazes
	Recreational Logic
	Magic Squares
	James Hugh Riley Shows, Inc.
	Nine More Problems
	Eleusis: The Induction Game
	Origami
	Squaring the Square
	Mechanical Puzzles
	Probability and Ambiguity
	The Mysterious Dr. Matrix
	References for Further Reading
	Postscript




