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Preface 

My long and happy relationship with Scientific American, back 
in the days when Gerard Piel was publisher and Dennis Flanagan was 
the editor, began in 1952 when I sold the magazine an article on the his
tory of logic machines. These were curious devices, invented in pre
computer centuries, for solving problems in formal logic. The article 
included a heavy paper insert from which one could cut a set of win
dow cards I had devised for solving syllogisms. I later expanded the ar
ticle to Logic Machines and Diagrams, a book published in 1959. 

My second sale to Scientific American was an article on hexa
flexagons, reprinted here as Chapter 29. As I explain in that chapter's 
addendum, it prompted Piel to suggest a regular department devoted to 
recreational mathematics. Titled "Mathematical Games" (that M. G. are 
also my initials was a coincidence), the column ran for a quarter of a 
century. As these years went by I learned more and more math. There 
is no better way to teach oneself a topic than to write about it. 

Fifteen anthologies of my Scientific American columns have been 
published, starting with the Scientific American Book of Mathematical 
Puzzles and Diversions (1959) and ending with Last Recreations (1997). 

To my surprise and delight, Robert Weil, my editor at W. W. Norton, 
suggested that I select 50 of what I consider my "best" columns, mainly 
in the sense of arousing the greatest reader response, to make this hefty, 
and, in terms of my career, definitive book you now hold. I have not in
cluded any of my whimsical interviews with the famous numerologist 
Dr. Irving Joshua Matrix because all those columns have been gathered 
in The Magic Numbers of Dr. Matrix (1985). 

To each chapter I have added an addendum, often lengthy, to update 
the material. I also have provided selected bibliographies for further 
reading. 

Martin Gardner 
Hendersonville, NC 

xi 
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Chapter I The Monkey 
and the Coconuts 

In the October 9,1926, issue of The Saturday Evening Post ap
peared a short story by Ben Ames Williams entitled "Coconuts." The 
story concerned a building contractor who was anxious to prevent a 
competitor from getting an important contract. A shrewd employee of 
the contractor, knowing the competitor's passion for recreational math
ematics, presented him with a problem so exasperating that while he 
was preoccupied with solving it he forgot to enter his bid before the 
deadline. 

Here is the problem exactly as the clerk in Williams's story phrased it: 

Five men and a monkey were shipwrecked on a desert island, and they 
spent the first day gathering coconuts for food. Piled them all up to
gether and then went to sleep for the night. 

But when they were all asleep one man woke up, and he thought there 
might be a row about dividing the coconuts in the morning, so he de
cided to take his share. So he divided the coconuts into five piles. He 
had one coconut left over, and he gave that to the monkey, and he hid his 
pile and put the rest all back together. 

By and by the next man woke up and did the same thing. And he had 
one left over, and he gave it to the monkey. And all five of the men did 
the same thing, one after the other; each one taking a fifth of the co
conuts in the pile when he woke up, and each one having one left over 
for the monkey. And in the morning they divided what coconuts were 
left, and they came out in five equal shares. Of course each one must 
have known there were coconuts missing; but each one was guilty as the 
others, so they didn't say anything. How many coconuts were there in 
the beginning? 

Williams neglected to include the answer in his story. It is said that 
the offices of The Saturday Evening Post were showered with some 
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2,000 letters during the first week after the issue appeared. George Ho
race Lorimer, then editor-in-chief, sent Williams the following historic 
wire: 

FOR THE LOVE OF MIKE, HOW MANY COCONUTS? HELL POPPING AROUND HERE. 

For 20 years Williams continued to receive letters requesting the an
swer or proposing new solutions. Today the problem of the coconuts is 
probably the most worked on and least often solved of all the Dio
phantine brainteasers. (The term Diophantine is descended from Dio
phantus of Alexandria, a Greek algebraist who was the first to analyze 
extensively equations calling for solutions in rational numbers.) 

Williams did not invent the coconut problem. He merely altered a 
much older problem to make it more confusing. The older version is the 
same except that in the morning, when the final division is made, there 
is again an extra coconut for the monkey; in Williams's version the final 
division comes out even. Some Diophantine equations have only one 
answer (e.g., x2 + 2 = r); some have a finite number of answers; some 
(e.g., r + r = Z3) have no answer. Both Williams's version of the co
conut problem and its predecessor have an infinite number of answers 
in whole numbers. Our task is to find the smallest positive number. 

The older version can be expressed by the following six indetermi
nate equations which represent the six successive divisions of the co
conuts into fifths. N is the original number; F, the number each sailor 
received on the final division. The 1's on the right are the coconuts 
tossed to the monkey. Each letter stands for an unknown positive inte
ger: 

N=5A+ 1, 
4A = 5B+ 1, 
4B 5C+ 1, 
4C= 5D+ 1, 
4D= 5E+ 1, 
4E= 5F+ 1. 

It is not difficult to reduce these equations by familiar algebraic 
methods to the following single Diophantine equation with two un
knowns: 

1,024N= 15,625F+ 11,529. 

This equation is much too difficult to solve by trial and error, and al
though there is a standard procedure for solving it by an ingenious use 
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of continued fractions, the method is long and tedious. Here we shall 
be concerned only with an uncanny but beautifully simple solution 
involving the concept of negative coconuts. This solution is sometimes 
attributed to the University of Cambridge physicist P.A.M. Dirac 
(1902-1984), but in reply to my query Professor Dirac wrote that he ob
tained the solution from J.H.C. Whitehead, professor of mathematics 
(and nephew of the famous philosopher). Professor Whitehead, an
swering a similar query, said that he got it from someone else, and I 
have not pursued the matter further. 

Whoever first thought of negative coconuts may have reasoned some
thing like this. Since N is divided six times into five piles, it is clear 
that 56 (or 15,625) can be added to any answer to give the next highest 
answer. In fact any multiple of 56 can be added, and similarly any mul
tiple can be subtracted. Subtracting multiples of 56 will of course even
tually give us an infinite number of answers in negative numbers. 
These will satisfy the original equation, though not the original prob
lem, which calls for a solution that is a positive integer. 

Obviously there is no small positive value for N which meets the 
conditions, but possibly there is a simple answer in negative terms. It 
takes only a bit of trial and error to discover the astonishing fact that 
there is indeed such a solution: -4. Let us see how neatly this works 
out. 

The first sailor approaches the pile of -4 coconuts, tosses a positive 
coconut to the monkey (it does not matter whether the monkey is given 
his coconut before or after the division into fifths), thus leaving five 
negative coconuts. These he divides into five piles, a negative coconut 
in each. After he has hidden one pile, four negative coconuts remain
exactly the same number that was there at the start! The other sailors 
go through the same ghostly ritual, the entire procedure ending with 
each sailor in possession of two negative coconuts, and the monkey, 
who fares best in this inverted operation, scurrying off happily with six 
positive coconuts. To find the answer that is the lowest positive inte
ger, we now have only to add 15,625 to -4 to obtain 15,621, the solu
tion we are seeking. 

This approach to the problem provides us immediately with a gen
eral solution for n sailors, each of whom takes one nth of the coconuts 
at each division into nths. If there are four sailors, we begin with three 
negative coconuts and add 45. If there are six sailors, we begin with five 
negative coconuts and add 67, and so on for other values of n. More for-

The Monkey and the Coconuts 5 



mally, the original number of coconuts is equal to k(nn+l) - m(n - 1), 

where n is the number of men, m is the number of coconuts given to the 
monkey at each division, and k is an arbitrary integer called the para
meter. When n is 5 and m is 1, we obtain the lowest positive solution 
by using a parameter of 1. 

Unfortunately, this diverting procedure will not apply to Williams's 
modification, in which the monkey is deprived of a coconut on the 
last division. I leave it to the interested reader to work out the solution 
to the Williams version. It can of course be found by standard Dio
phantine techniques, but there is a quick shortcut if you take advantage 
of information gained from the version just explained. For those who 
find this too difficult, here is a very simple coconut problem free of all 
Diophantine difficulties. 

Three sailors come upon a pile of coconuts. The first sailor takes half 
of them plus half a coconut. The second sailor takes half of what is left 
plus half a coconut. The third sailor also takes half of what remains 
plus half a coconut. Left over is exactly one coconut which they toss to 
the monkey. How many coconuts were there in the original pile? If you 
will arm yourself with 20 matches, you will have ample material for a 
trial and error solution. 

Addendum 
If the use of negative coconuts for solving the earlier version of 

Ben Ames Williams's problem seems not quite legitimate, essentially 
the same trick can be carried out by painting four coconuts blue. Nor
man Anning, now retired from the mathematics department of the Uni
versity of Michigan, hit on this colorful device as early as 1912 when 
he published a solution (School Science and Mathematics, June 1912, 
p. 520) to a problem about three men and a supply of apples. Anning's 
application of this device to the coconut problem is as follows. 

We start with 56 coconuts. This is the smallest number that can be di
vided evenly into fifths, have one-fifth removed, and the process re
peated six times, with no coconuts going to the monkey. Four of the 56 

coconuts are now painted blue and placed aside. When the remaining 
supply of coconuts is divided into fifths, there will of course be one left 
over to give the monkey. 

After the first sailor has taken his share, and the monkey has his co
conut, we put the four blue coconuts back with the others to make a 
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pile of 55 coconuts. This clearly can be evenly divided by 5. Before 
making this next division, however, we again put the four blue co
conuts aside so that the division will leave an extra coconut for the 
monkey. 

This procedure-borrowing the blue coconuts only long enough to 
see that an even division into fifths can be made, then putting them 
aside again-is repeated at each division. After the sixth and last divi
sion, the blue coconuts remain on the side, the property of no one. 
They play no essential role in the operation, serving only to make 
things clearer to us as we go along. 

A good recent reference on Diophantine equations and how to solve 
them is Diophantus and Diophantine Equations by Isabella Bash
makova (The Mathematical Association of America, 1997). 

There are all sorts of other ways to tackle the coconut problem. John 
M. Danskin, then at the Institute for Advanced Study, Princeton, NJ, as 
well as several other readers, sent ingenious methods of cracking the 
problem by using a number system based on 5. Scores of readers wrote 
to explain other unusual approaches, but all are a bit too involved to ex
plain here. 

Answers 

The number of coconuts in Ben Ames Williams's version of the 
problem is 3,121. We know from the analysis of the older version that 
55 4, or 3,121, is the smallest number that will permit five even divi
sions of the coconuts with one going to the monkey at each division. 
After these five divisions have been made, there will be 1,020 coconuts 
left. This number happens to be evenly divisible by 5, which permits 
the sixth division in which no coconut goes to the monkey. 

In this version of the problem a more general solution takes the form 
of two Diophantine equations. When n, the number of men, is odd, the 
equation is 

Number of coconuts = (1 + nk)nn - (n - 1). 

When n is even, 

Number of coconuts = (n - 1 + nk)nn - (n - 1). 

In both equations k is the parameter that can be any integer. In 
Williams's problem the number of men is 5, an odd number, so 5 is sub-
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stituted for n in the first equation, and k is taken as 0 to obtain the low
est positive answer. 

A letter from Dr. J. Walter Wilson, a Los Angeles dermatologist, re
ported an amusing coincidence involving this answer: 

Sirs: 
I read Ben Ames Williams's story about the coconut problem in 1926, 

spent a sleepless night working on the puzzle without success, then 
learned from a professor of mathematics how to use the Diophantine 
equation to obtain the smallest answer, 3,121. 

In 1939 I suddenly realized that the home on West 80th Street, Ingle
wood, California, in which my family and I had been living for several 
months, bore the street number 3121. Accordingly, we entertained all of 
our most erudite friends one evening by a circuit of games and puzzles, 
each arranged in a different room, and visited by groups of four in rota
tion. 

The coconut puzzle was presented on the front porch, with the table 
placed directly under the lighted house number blazingly giving the se
cret away, but no one caught on! 

The simpler problem of the three sailors, at the end of the chapter, 
has the answer: 15 coconuts. If you tried to solve this by breaking 
matches in half to represent halves of coconuts, you may have con
cluded that the problem was unanswerable. Of course no coconuts 
need be split at all in order to perform the required operations. 

Ben Ames Williams's story was reprinted in Clifton Fadiman's an
thology, The Mathematical Magpie (1962), reissued in paperback by 
Copernicus in 1997. David Singmaster, in his unpublished history of 
famous mathematical puzzles, traces similar problems back to the Mid
dle Ages. Versions appear in numerous puzzle books, as well as in text
books that discuss Diophantine problems. My bibliography is limited 
to periodicals in English. 
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Chapter 2 The Calculus of 
Finite Differences 

The calculus of finite differences, a branch of mathematics that 
is not too well known but is at times highly useful, occupies a halfway 
house on the road from algebra to calculus. W. W. Sawyer, a mathe
matician at Wesleyan University, likes to introduce it to students by 
performing the following mathematical mind-reading trick. 

Instead of asking someone to "think of a number" you ask him to 
"think of a formula." To make the trick easy, it should be a quadratic 
formula (a formula containing no powers of x greater than x2). Suppose 
he thinks of 5x2 + 3x - 7. While your back is turned so that you cannot 
see his calculations, ask him to substitute 0,1, and 2 for x, then tell you 
the three values that result for the entire expression. The values he 
gives you are -7, 1, 19. After a bit of scribbling (with practice you can 
do it in your head) you tell him the original formula! 

The method is simple. Jot down in a row the values given to you. In 
a row beneath write the differences between adjacent pairs of num
bers, always subtracting the number on the left from its neighbor on the 
right. In a third row put the difference between the numbers above it. 
The chart will look like this 

-7 1 19 
8 18 

10 

The coefficient of x 2, in the thought-of formula, is always half the bot
tom number of the chart. The coefficient of x is obtained by taking half 
the bottom number from the first number of the middle row. And the 
constant in the formula is simply the first number of the top row. 

What you have done is something analogous to integration in calcu
lus. If y is the value of the formula, then the formula expresses a func-
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tion of y with respect to x. When x is given values in a simple arith
metic progression (0, 1, 2, ... ), thenyassumes a series of values (-7, 1, 
19, ... ). The calculus of finite differences is the study of such series. 
In this case, by applying a simple technique to three terms of a series, 
you were able to deduce the quadratic function that generated the three 
terms. 

The calculus of finite differences had its origin in Methodus Incre
mentorum, a treatise published by the English mathematician Brook 
Taylor (who discovered the "Taylor theorem" of calculus) between 
1715 and 1717. The first important work in English on the subject (after 
it had been developed by Leonhard Euler and others) was published in 
1860 by George Boole, of symbolic-logic fame. Nineteenth-century al
gebra textbooks often included a smattering of the calculus, then it 
dropped out of favor except for its continued use by actuaries in check
ing annuity tables and its occasional use by scientists for finding for
mulas and interpolating values. Today, as a valuable tool in statistics 
and the social sciences, it is back in fashion once more. 

For the student of recreational mathematics there are elementary pro
cedures in the calculus of finite differences that can be enormously 
useful. Let us see how such a procedure can be applied to the old prob
lem of slicing a pancake. What is the maximum number of pieces into 
which a pancake can be cut by n straight cuts, each of which crosses 
each of the others? The number is clearly a function of n. If the func
tion is not too complex, the method of differences may help us to find 
it by empirical techniques. 

No cut at all leaves one piece, one cut produces two pieces, two cuts 
yield four pieces, and so on. It is not difficult to find by trial and error 
that the series begins: 1, 2, 4,7,11, ... (see Figure 2.1). Make a chart as 
before, forming rows, each representing the differences of adjacent 
terms in the row above: 

NUMBER OF CUTS 

Number of pieces 
First differences 
Second differences 

o 1 2 3 4 

1 2 4 7 11 
1 2 3 4 

1 1 1 

If the original series is generated by a linear function, the numbers in 
the row of first differences will be all alike. If the function is a qua
dratic, identical numbers appear in the row of second differences. A 
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2 CUTS 
4 PIECES 

Figure 2.1. The pancake problem 

o CUTS 
1 PIECE 

3 CUTS 
7 PIECES 

1 CUT 
2 PIECES 

4 CUTS 
11 PIECES 

cubic formula (no powers higher than Xl) will have identical numbers 
in the row of third differences, and so on. In other words, the number 
of rows of differences is the order of the formula. If the chart required 
10 rows of differences before the numbers in a row became the same, 
you would know that the generating function contained powers as high 
as x10. 

Here there are only two rows, so the function must be a quadratic. Be
cause it is a quadratic, we can obtain it quickly by the simple method 
used in the mind-reading trick. 

The pancake-cutting problem has a double interpretation. We can 
view it as an abstract problem in pure geometry (an ideal circle cut by 
ideal straight lines) or as a problem in applied geometry (a real pancake 
cut by a real knife). Physics is riddled with situations of this sort that 
can be viewed in both ways and that involve formulas obtainable from 
empirical results by the calculus of finite differences. A famous exam
ple of a quadratic formula is the formula for the maximum number of 
electrons that can occupy each "shell" of an atom. Going outward from 
the nucleus, the series runs 0, 2, 8, 18, 32, 50 .... The first row of dif
ferences is 2, 6, 10, 14, 18 .... The second row is 4, 4, 4, 4 .... Apply-
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ing the key to the mind-reading trick, we obtain the simple formula 2n2 

for the maximum number of electrons in the nth shell. 
What do we do if the function is of a higher order? We can make use 

of a remarkable formula discovered by Isaac Newton. It applies in all 
cases, regardless of the number of tiers in the chart. 

Newton's formula assumes that the series begins with the value of the 
function when n is O. We call this number a. The first number of the 
first row of differences is b, the first number of the next row is c, and 
so on. The formula for the nth number of the series is 

b 
cn(n - 1) dn(n - 1)(n - 2) 

a + n + + --=-------'---'-----=-
2 2-3 

en(n - l)(n - 2)(n - 3) ... 
+--'-----'-'-------'-""""'-------'-

2-3-4 

The formula is used only up to the point at which all further addi
tions would be zero. For example, if applied to the pancake-cutting 
chart, the values of 1, 1, 1 are substituted for a, b, c in the formula. (The 
rest of the formula is ignored because all lower rows of the chart con
sist of zeros; d, e, f, ... therefore have values of zero, consequently the 
entire portion of the formula containing these terms adds up to zero.) 
In this way we obtain the quadratic function ~n2 + ~n + 1. 

Does this mean that we have now found the formula for the maxi
mum number of pieces produced by n slices of a pancake? Unfortu
nately the most that can be said at this point is "Probably." Why the 
uncertainty? Because for any finite series of numbers there is an infin
ity of functions that will generate them. (This is the same as saying 
that for any finite number of points on a graph, an infinity of curves can 
be drawn through those points.) Consider the series 0,1,2,3 .... What 
is the next term? A good guess is 4. In fact, if we apply the technique 
just explained, the row of first differences will be l's, and Newton's for
mula will tell us that the nth term of the series is simply n. But the 
formula 

1 
n + 24n(n l)(n - 2)(n - 3) 

also generates a series that begins 0, 1, 2, 3 .... In this case the series 
continues, not 4, 5, 6, ... but 5, 10, 21 .... 

There is a striking analogy here with the way laws are discovered in 
science. In fact, the method of differences can often be applied to phys-
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ical phenomena for the purpose of guessing a natural law. Suppose, for 
example, that a physicist is investigating for the first time the way in 
which bodies fall. He observes that after one second a stone drops 16 
feet, after two seconds 64 feet, and so on. He charts his observations 
like this: 

o 16 
16 48 

32 

64 
80 

32 

144 
112 

32 

256 

Actual measurements would not, of course, be exact, but the num
bers in the last row would not vary much from 32, so the physicist as
sumes that the next row of differences consists of zeros. Applying 
Newton's formula, he concludes that the total distance a stone falls in 
n seconds is 16n2• But there is nothing certain about this law. It repre
sents no more than the simplest function that accounts for a finite se
ries of observations: the lowest order of curve that can be drawn 
through a finite series of points on a graph. True, the law is confirmed 
to a greater degree as more observations are made, but there is never 
certainty that more observations will not require modification of the 
law. 

With respect to pancake cutting, even though a pure mathematical 
structure is being investigated rather than the behavior of nature, the 
situation is surprisingly similar. For all we now know, a fifth slice may 
not produce the sixteen pieces predicted by the formula. A single fail
ure of this sort will explode the formula, whereas no finite number of 
successes, however large, can positively establish it. "Nature," as 
George P6lya has put it, "may answer Yes or No, but it whispers one an
swer and thunders the other. Its Yes is provisional, its No is defini
tive." P6lya is speaking of the world, not abstract mathematical 
structure, but it is curious that his point applies equally well to the 
guessing of functions by the method of differences. Mathematicians do 
a great deal of guessing, along lines that are often similar to methods of 
induction in science, and P6lya has written a fascinating work, Math
ematics and Plausible Reasoning, about how they do it. 

Some trial and error testing, with pencil and paper, shows that five 
cuts of a pancake do in fact produce a maximum of sixteen pieces. This 
successful prediction by the formula adds to the probability that the 
formula is correct. But until it is rigorously proved (in this case it is not 
hard to do) it stands only as a good bet. Why the simplest formula is so 

14 ARITHMETIC AND ALGEBRA 



often the best bet, both in mathematical and scientific guessing, is one 
of the lively controversial questions in contemporary philosophy of 
science. For one thing, no one is sure just what is meant by "simplest 
formula." 

Here are a few problems that are closely related to pancake cutting 
and that are all approachable by way of the calculus of finite differ
ences. First you find the best guess for a formula, then you try to prove 
the formula by deductive methods. What is the maximum number of 
pieces that can be produced by n simultaneous straight cuts of a flat fig
ure shaped like a crescent moon? How many pieces of cheesecake can 
be produced by n simultaneous plane cuts of a cylindrical cake? Into 
how many parts can the plane be divided by intersecting circles of the 
same size? Into how many regions can space be divided by intersecting 
spheres? 

Recreational problems involving permutations and combinations 
often contain low-order formulas that can be correctly guessed by the 
method of finite differences and later (one hopes) proved. With an un
limited supply of toothpicks of n different colors, how many different 
triangles can be formed on a flat surface, using three toothpicks for the 
three sides of each triangle? (Reflections are considered different, but 
not rotations.) How many different squares? How many different tetra
hedrons can be produced by coloring each face a solid color and using 
n different colors? (Two tetrahedrons are the same if they can be turned 
and placed side by side so that corresponding sides match in color.) 
How many cubes with n colors? 

Of course, if a series is generated by a function other than a polyno
mial involving powers of the variable, then other techniques in the 
method of differences are called for. For example, the exponential func
tion 2n produces the series 1, 2,4,8, 16 .... The row of first differences 
is also 1, 2,4,8, 16, ... , so the procedure explained earlier will get us 
nowhere. Sometimes a seemingly simple situation will involve a series 
that evades all efforts to find a general formula. An annoying example 
is the necklace problem posed in one of Henry Ernest Dudeney's puz
zle books. A circular necklace contains n beads. Each bead is black or 
white. How many different necklaces can be made with n beads? Start
ing with no beads, the series is 0, 2, 3, 4, 6, 8, 13, 18, 30 .... (Figure 2.2 

shows the 18 different varieties of necklace when n = 7.) I suspect that 
two formulas are interlocked here, one for odd n, one for even, but 
whether the method of differences will produce the formulas, I do not 
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Figure 2.3. Five lines make ten triangles. 

n3 + 3n2 + an 
6 

that can be obtained by applying Newton's formula to results obtained 
empirically, but it does not seem to apply to the zero case. When a 
doughnut is not cut at all, clearly there is one piece, whereas the for
mula says there should be no pieces. To make the formula applicable, 
we must define "piece" as part of a doughnut produced by cutting. 
Where there is ambiguity about the zero case, one must extrapolate 
backward in the chart of differences and assume for the zero case a 
value that produces the desired first number in the last row of differ
ences. 

To prove that the formula given for the maximum number of regions 
into which a pancake (circle) can be divided by n straight cuts, consider 
first the fact that each nth line crosses n - 1 lines. The n - 1 lines di
vide the plane into n regions. When the nth line crosses these n regions, 
it cuts each region into two parts, therefore every nth line adds n re
gions to the total. At the beginning there is one piece. The first cut 
adds one more piece, the second cut adds two more pieces, the third 
cut adds three more, and so on up to the nth cut which adds n pieces. 
Therefore the total number of regions is 1 + 1 + 2 + 3 + ... + n. The sum 
of 1 + 2 + 3 + ... + n is %n(n - 1). To this we must add 1 to obtain the 
final formula. 

The bead problem was given by Dudeney as problem 275 in his Puz-
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zles and Curious Problems. John Riordan mentions the problem on 
page 162, problem 37, of his Introduction to Combinatorial Analysis 
(Wiley, 1958; now out of print), indicating the solution without giving 
actual formulas. (He had earlier discussed the problem in "The Com
binatorial Significance of a Theorem of P6Iya," Journal of the Society 
for Industrial and Applied Mathematics, Vol. 5, No.4, December 1957, 
pp. 232-34.) The problem was later treated in considerable detail, with 
some surprising applications to music theory and switching theory, by 
Edgar N. Gilbert and John Riordan, in "Symmetry Types of Periodic Se
quences," Illinois Journal of Mathematics, Vol. 5, No.4, December 
1961, pages 657-65. The authors give the following table for the num
ber of different types of necklaces, with beads of two colors, for neck
laces of 1 through 20 beads: 

NUMBER OF NUMBER OF 
BEADS NECKLACES 

1 2 
2 3 
3 4 
4 6 
5 8 
6 13 
7 18 
8 30 
9 46 

10 78 
11 126 
12 224 
13 380 
14 687 
15 1,224 
16 2,250 
17 4,112 
18 7,685 
19 14,310 
20 27,012 

The formulas for the necklace problem do not mean, by the way, that 
Dudeney was necessarily wrong in saying that a solution was not pos
sible, since he may have meant only that it was not possible to find a 
polynomial expression for the number of necklaces as a function of n 
so that the number could be calculated directly from the formula with-
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out requiring a tabulation of prime factors. Because the formulas in
clude Euler's phi function, the number of necklaces has to be calculated 
recursively. Dudeney's language is not precise, but it is possible that he 
would not have considered recursive formulas a "solution." At any 
rate, the calculus of finite differences is not in any way applicable to the 
problem, and only the recursive formulas are known. 

Several dozen readers (too many for a listing of names) sent correct 
solutions to the problem before Golomb's formulas were printed, some 
of them deriving it from Riordan, others working it out entirely for 
themselves. Many pointed out that when the number of beads is a 
prime (other than 2), the formula for the number of different necklaces 
becomes very simple: 

2n - 1 - 1 n-l ---- + 2-2 + 1. 
n 

The following letter from John F. Gummere, headmaster of William 
Penn Charter School, Philadelphia, appeared in the letters department 
of Scientific American in October 1961: 

Sirs: 
I read with great interest your article on the calculus of finite differ

ences. It occurs to me that one of the most interesting applications of 
Newton's formula is one I discovered for myself long before I had reached 
the calculus. This is simply applying the method of finite differences to 
series of powers. In experimenting with figures, I noticed that if you 
wrote a series of squares such as 4,9,16,25,36,49 and subtracted them 
from each other as you went along, you got a series that you could sim
ilarly subtract once again and come up with a finite difference. 

So then I tried cubes and fourth powers and evolved a formula to the 
effect that if n is the power, you must subtract n times, and your constant 
difference will be factorial n. I asked my father about this (he was for 
many years director of the Strawbridge Memorial Observatory at Haver
ford College and teacher of mathematics). In good Quaker language he 
said: "Why, John, thee has discovered the calculus of finite differences." 

Donald Knuth called my attention to the earliest known solution of 
Dudeney's bead problem. Percy A. MacMahon solved the problem as 
early as 1892. This and the problem are discussed in Section 4.9 of 
Concrete Mathematics (1994), by Ronald Graham, Donald Knuth, and 
Oren Patashnik. 
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Answers 
How many different triangles can be formed with n straight 

lines? It takes at least three lines to make one triangle, four lines will 
make four triangles, and five lines will make 10 triangles. Applying the 
calculus of finite differences, one draws up the table in Figure 2.4. 

NUMBER OF LINES 0 1 2 3 4 5 Figure 2.4. The answer 
to the triangle problem 

NUMBER OF TRIANGLES 0 0 0 1 4 10 

FIRST DIFFERENCES 0 0 1 3 6 
SECOND DIFFERENCES 0 1 2 3 

THIRD DIFFERENCES 1 1 1 

The three rows of differences indicate a cubic function. Using New
ton's formula, the function is found to be: %n(n - l)(n - 2). This will 
generate the series 0, 0, 0, 1, 4, 10, ... and therefore has a good 
chance of being the formula for the maxinlum number of triangles 
that can be made with n lines. But it is still just a guess, based on a 
small number of pencil and paper tests. It can be verified by the fol
lowing reasoning. 

The lines must be drawn so that no two are parallel and no more than 
two intersect at the same point. Each line is then sure to intersect every 
other line, and every set of three lines must form one triangle. It is not 
possible for the same three lines to form more than one triangle, so the 
number of triangles formed in this way is the maximum. The problem 
is equivalent, therefore, to the question: In how many different ways 
can n lines be taken three at a time? Elementary combinatorial theory 
supplies the answer: the same as the formula obtained empirically. 

Solomon W. Golomb, was kind enough to send me his solution to the 
necklace problem. The problem was to find a formula for the number 
of different necklaces that can be formed with n beads, assuming tha! 
each bead can be one of two colors and not counting rotations and re
flections of a necklace as being different. The formula proves to be far 
beyond the power of the simple method of differences. 

Let the divisors of n (including 1 and n) be represented by dl' d2 , 

d3 • ••• For each divisor we find what is called Euler's phi function for 
that divisor, symbolized <I>(d). This function is the number of positive 
integers, not greater than d, that have no common divisor with d. It is 
assumed that 1 is such an integer, but not d. Thus <1>(8) is 4, because 8 
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has the following four integers that are prime to it: 1, 3, 5, 7. By con
vention, <P(1) is taken to be 1. Euler's phi functions for 2, 3,4,5,6, 7 are 
1,2,2,4,2,6, in the same order. Let a stand for the number of differ
ent colors each bead can be. For necklaces with an odd number of 
beads the formula for the number of different necklaces with n beads 
is the one given at the top of Figure 2.5. When n is even, the formula is 
the one at the bottom of the illustration. 

1 [ .ll. n n 11] - q,(d1) • ad, + q,(d2) • ali; ... + - • (1 + a) • a"2 
2n 2 

Figure 2.S. Equations for the solution of the necklace problem 

The single dots are symbols for multiplication. Golomb expressed 
these formulas in a more compressed, technical form, but I think the 
above forms will be clearer to most readers. They are more general than 
the formulas asked for because they apply to beads that may have any 
specified number of colors. 

The formulas answering the other questions in the chapter are: 

1. Regions of a crescent moon produced by n straight cuts: 

n2 + 3n 
---+1. 

2 

2. Pieces of cheesecake produced by n plane cuts: 

n 3 + 5n 
---+1. 

6 

3. Regions of the plane produced by n intersecting circles: 

n2 - n + 2. 

4. Regions of the plane produced by n intersecting ellipses: 

2n2 2n + 2. 

5. Regions of space produced by n intersecting spheres: 

- 3n + 8) 

3 
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6. Triangles formed by toothpicks of n colors: 

n 3 + 2n 
3 

7. Squares formed with toothpicks of n colors: 

n4 + n 2 + 2n 
4 

8. Tetrahedrons formed with sides of n colors: 

n4 + 11n2 

12 

9. Cubes formed with sides of n colors: 

n 6 + 3n4 + 12n3 + 8n2 

24 
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A man} a a canal-Suez! 

-Ethel Merperso:n, 
in Son of Giant Sea Tortoise, 

Ann AY.lQ'UUW;;',I..l 

usually defined as a or 
.;J'\J..L.l.I..'\J.LJ.'-" .... LJl that spell the same backward as forward. The term is also ap-

are types 
long 

play, perhaps because of a 
aesthetic pleasure in the kind of symmetry palindromes possess. Palin-
dromes that are 

'-' ..... , ........ , ................ some 

3.1. seagull: a visual palindrome 

An old palindrome conjecture origin (there are 
enees it 

integer. it and add the 
is repeated with the sum to obtain a second sum, and the process COD-

a 
a 

68 generates a palindrome in three steps: 
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68 
+ 86 

154 
+451 

605 
+506 
1,111 

For all two-digit numbers it is obvious that if the sum of their digits 
is less than 10, the first step gives a two-digit palindrome. If their dig
its add to 10, 11, 12, 13, 14, 15, 16, or 18, a palindrome results after 2, 
1, 2, 2, 3, 4, 6, 6 steps, respectively. As Angela Dunn points out in 
Mathematical Bafflers (McGraw-Hill, 1964; Dover, 1980), the excep
tions are numbers whose two digits add to 17. Only 89 (or its reversal, 
98) meets this proviso. Starting with either number does not produce 
a palindrome until the 24th operation results in 8,813,200,023,188. 

The conjecture was widely regarded as being true until 1967, al
though no one had succeeded in proving it. Charles W. Trigg, a Cali
fornia mathematician well known for his work on recreational 
problems, examined the conjecture more carefully in his 1967 article 
"Palindromes by Addition." He found 249 integers smaller than 
10,000 that failed to generate a palindrome after 100 steps. The small
est such number, 196, was carried to 237,310 steps in 1975 by Harry 
J. Saal, at the Israel Scientific Center. No palindromic sum appeared. 
Trigg believed the conjecture to be false. (The number 196 is the 
square of 14, but this is probably an irrelevant fact.) Aside from the 
249 exceptions, all integers less than 10,000, except 89 and its rever
sal, produce a palindrome in fewer than 24 steps. The largest palin
drome, 16,668,488,486,661, is generated by 6,999 (or its reversal) and 
7,998 (or its reversal) in 20 steps. 

The conjecture has not been established for any number system and 
has been proved false only in number notations with bases that are 
powers of 2. (See the paper by Heiko Harborth listed in the bibliogra
phy.) The smallest binary counterexample is 10110 (or 22 in the deci
mal system). After four steps the sum is 10110100, after eight steps it 
is 1011101000, after 12 steps it is 101111010000. Every fourth step in
creases by one digit each of the two sequences of underlined digits. 
Brother Alfred Brousseau, in "Palindromes by Addition in Base Two," 
proved that this asymmetric pattern repeats indefinitely. He also found 
other repeating asymmetric patterns for larger binary numbers. 
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There is a small but growing literature on the properties of palin
dromic prime numbers and conjectures about them. Apparently there 
are infinitely many such primes, although so far as I know this has not 
been proved. It is not hard to show, however, that a palindromic prime, 
with the exception of 11, must have an odd number of digits. Can the 
reader do this before reading the simple proof in the answer section? 
Norman T. Gridgeman conjectured that there is an infinity of prime 
pairs of the form 30,103-30,203 and 9,931,399-9,932,399 in which all 
digits are alike except the middle digits, which differ by one. But 
Gridgeman's guess is far from proved. 

Gustavus J. Simmons wrote two papers on palindromic powers. After 
showing that the probability of a randomly selected integer being palin
dromic approaches zero as the number of digits in the integer increases, 
Simmons examined square numbers and found them much richer than 
randomly chosen integers in palindromes. There are infinitely many 
palindromic squares, most of which, it seems, have square roots that 
also are palindromes. (The smallest nonpalindromic root is 26). Cubes 
too are unusually rich in palindromes. A computer check on all cubes 
less than 2.8 x 1014 turned up a truly astonishing fact. The only palin
dromic cube with a nonpalindromic cube root, among the cubes ex
amined by Simmons, is 10,662,526,601. Its cube root, 2,201, had been 
noticed earlier by Thigg, who reported in 1961 that it was the only non
palindrome with a palindromic cube less than 1,953,125,000,000. It is 
not yet known if 2,201 is the only integer with this property. 

Simmons' computer search of palindromic fourth powers, to the 
same limit as his search of cubes, failed to uncover a single palindromic 
fourth power whose fourth root was not a palindrome of the general 
form 10 ... 01. For powers 5 through 10 the computer found no palin
dromes at all except the trivial case of 1. Simmons conjectured that 
there are no palindromes of the form Xk where k is greater than 4. 

"Repunits," numbers consisting entirely of l's, produce palindromic 
squares when the number of units is one through nine, but 10 or more 
units give squares that are not palindromic. It has been erroneously 
stated that only primes have palindromic cubes, but this is disproved 
by an infinity of integers, the smallest of which is rep unit 111. It is di
visible by 3, yet its cube, 1,367,631, is a palindrome. The number 836 

is also of special interest. It is the largest three-digit integer whose 
square, 698,896, is palindromic, and 698,896 is the smallest palin
dromic square with an even number of digits. (Note also that the num-
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ber remains palindromic when turned upside down.) Such palin
dromic squares are extremely rare. The next-larger one with an even 
number of digits is 637,832,238,736, the square of 798,644. 

Turning to language palindromes, we first note that no common Eng
lish words of more than seven letters are palindromic. Examples of 
seven-letter palindromes are reviver, repaper, deified, and rotator. The 
word "radar" (for radio detecting and ranging) is notable because it 
was coined to symbolize the reflection of radio waves. Dmitri 
Borgmann, whose files contain thousands of sentence palindromes in 
all major languages, asserts in his book Language on Vacation that the 
largest nonhyphenated word palindrome is saippuakauppias, a 
Finnish word for a soap dealer. 

Among proper names in English, according to Borgmann, none is 
longer than Wassamassaw, a swamp north of Charleston, sc. Legend 
has it, he writes, that it is an Indian word meaning "the worst place ever 
seen." Yreka Bakery has long been in business on West Miner Street in 
Yreka, CA. Lon Nol, the former Cambodian premier, has a palindromic 
name, as does U Nu, once premier of Burma. Revilo P. Oliver, a classics 
professor at the University of Illinois, has the same first name as his fa
ther and grandfather. It was originally devised to make the name 
palindromic. If there is anyone with a longer palindromic name I do 
not know of it, although Borgmann suggests such possibilities as 
Norah Sara Sharon, Edna Lala Lalande, Duane Rollo Renaud, and 
many others. 

There are thousands of excellent sentence palindromes in English, a 
few of which were discussed in a chapter on word play in my Sixth 
Book of Mathematical Games from Scientific American. The interested 
reader will find good collections in the Borgmann book cited above 
and in the book by Howard Bergerson. Composing palindromes at night 
is one way for an insomniac to pass the dark hours, as Roger Angell so 
amusingly details in his article" Ainmosni" (HInsomnia" backward) in 
The New Yorker. I limit myself to one palindrome that is not well 
known, yet is remarkable for both its length and naturalness: "Doc note, 
I dissent. A fast never prevents a fatness. I diet on cod." It won a prize 
for James Michie in a palindrome contest sponsored by the New States
man in England; results were published in the issue for May 5,1967. 
Many of the winning palindromes are much longer than Michie's, but, 
as is usually the case, the longer palindromes are invariably difficult to 
understand. 
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Palindromists have employed various devices to make the unintelli
gibility of long palindromes more plausible: presenting them as 
telegrams, as one side only of a telephone conversation, and so on. 
Leigh Mercer, a leading British palindromist (he is the inventor of the 
famous "A man, a plan, a canal-Panama!"), has suggested a way of 
writing a palindrome as long as one wishes. The sentence has the form, 
" , sides reversed, is ' .' " The first blank can be any se
quence of letters, however long, which is repeated in reverse order in 
the second blank. 

Good palindromes involving the names of U.S. presidents are ex
ceptionally rare. Borgmann cites the crisp "Taft: fat!" as one of the 
shortest and best. Richard Nixon's name lends itself to "No 'x' in 'Mr. 
R. M. Nixon'?" although the sentence is a bit too contrived. A shorter, 
capitalized version of this palindrome, NO X IN NIXON, is also in
vertible. 

The fact that "God" is "dog" backward has played a role in many sen
tence palindromes, as well as in orthodox psychoanalysis. In Freud's 
Contribution to Psychiatry A. A. Brill cites a rather farfetched analysis 
by Carl Jung and others of a patient suffering from a ticlike upward 
movement of his arms. The analysts decided that the tic had its origin 
in an unpleasant early visual experience involving dogs. Because of the 
"dog-god" reversal, and the man's religious convictions, his uncon
scious had developed the gesture to symbolize a warding off of the evil 
"dog-god." Edgar Allan Poe's frequent use of the reversal words "dim" 
and "mid" is pointed out by Humbert Humbert, the narrator of 
Vladimir Nabokov's novel Lolita. In the second canto of Pale Fire, in 
Nabokov's novel of the same title, the poet John Shade speaks of his 
dead daughter's propensity for word reversals: 

... She twisted words: pot, top, 
Spider, redips. And upowder" was ured wop. " 

Such word reversals, as well as sentences that are different sentences 
when they are spelled backward, are obviously close cousins of palin
dromes, but the topic is too large to go into here. 

Palindrome sentences in which words, not letters, are the units have 
been a specialty of another British expert on word play, J. A. Lindon. 
Two splendid examples, from scores that he has composed, are 

"You can cage a swallow, can't you, but you can't swallow a cage, can 
you?" 
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"Girl, bathing on Bikini, eyeing boy, finds boy eyeing bikini on 
bathing girl." 

Many attempts have been made to write letter-unit palindrome 
poems, some quite long, but without exception they are obscure, 
rhymeless, and lacking in other poetic values. Somewhat better poems 
can be achieved by making each line a separate palindrome rather than 
the entire poem or by using the word as the unit. Lindon has written 
many poems of both types. A third type of palindrome poem, invented 
by Lindon, employs lines as units. The poem is unchanged when its 
lines are read forward but taken in reverse order. One is allowed, of 
course, to punctuate duplicate lines differently. The following example 
is one of Lindon's best: 

As I was passing near the jail 
I met a man, but hurried by. 
His face was ghastly, grimly pale. 
He had a gun. I wondered why 
He had. A gun? I wondered . .. why, 
His face was ghastly! Grimly pale, 
I met a man, but hurried by, 
As I was passing near the jail. 

This longer one is also by Lindon. Both poems appear in Howard W. 
Bergerson's Palindromes and Anagrams (Dover, 1973). 
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DOPPELGANGER 

Entering the lonely house with my wife, 
I saw him for the first time 

Peering furtively from behind a bush
Blackness that moved, 

A shape amid the shadows, 
A momentary glimpse of gleaming eyes 

Revealed in the ragged moon. 
A closer look (he seemed to turn) might have 
Put him to flight forever-

I dared not 
(For reasons that I failed to understand), 

Though I knew I should act at once. 

I puzzled over it, hiding alone, 
Watching the woman as she neared the gate. 

He came, and I saw him crouching 
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Night after night. 
Night after night 

He came, and I saw him crouching, 
Watching the woman as she neared the gate. 

I puzzled over it, hiding alone-
Though I knew I should act at once, 

For reasons that I failed to understand 
I dared not 

Put him to flight forever. 

A closer look (he seemed to turn) might have 
Revealed in the ragged moon 

A momentary glimpse of gleaming eyes, 
A shape amid the shadows, 

Blackness that moved. 

Peering furtively from behind a bush, 
I saw him, for the first time, 

Entering the lonely house with my wife. 

Lindon holds the record for the longest word ever worked into a 
letter-unit palindrome. To understand the palindrome you must know 
that Beryl has a husband who enjoys running around his yard without 
any clothes on. Ned has asked him if he does this to annoy his wife. He 
answers: "Named un denominationally rebel, I rile Beryl? La, no! I tan. 
I'm, 0 Ned, nude, man!" 

Addendum 

A. Ross Eckler, editor and publisher of Word Ways, a quarterly 
journal on word play that has featured dozens of articles on palin
dromes of all types, wrote to say that the "palindromic gap" between 
English and other languages is perhaps not as wide as I suggested. The 
word "semitime" can be pluralized to make a 9-letter palindrome and 
"kinnikinnik" is an ii-letter palindrome. Dmitri Borgmann pointed 
out in Word Ways, said Eckler, that an examination of foreign dictio
naries failed to substantiate such long palindromic words as the 
Finnish soap dealer, suggesting that they are artificially created words. 

Among palindromic towns and cities in the United States, Borgmann 
found the 7-letter Okonoko (in West Virginia). If a state (in full or ab
breviated form) is part of the palindrome, Borgmann offers Apollo, PA, 
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and Adaven, Nevada. Some U.S. towns, Eckler continued, are inten
tional reversal pairs, such as Orestod and Dotsero, in Eagle County, 
Colorado, and Colver and Revloc, in Cambria County, Pennsylvania. 
Nova and Avon, he added, are Ohio towns that are an unintentional re
versal pair. 

George L. Hart III sent the following letter, which was published in 
Scientific American, November 1970: 

Sirs: 
Apropos of your discussion of palindromes, I would like to offer an ex

ample of what I believe to be the most complex and exquisite type of 
palindrome ever invented. It was devised by the Sanskrit aestheticians, 
who termed it sarvatobhadra, that is, "perfect in every direction." The 
most famous example of it is found in the epic poem entitled 
Sisupiilavadha. 

sa - ka - ra - na - na - ra - ka - sa -
ka - ya - sa - da - da- sa - ya - ka 
ra - sa - ha - va va - ha - sa - ra -
na - da - va - da - da - va - da - na. 
(na da va da da va da na 
ra sa ha va va ha sa ra 
ka ya sa da da sa ya ka 
sa ka ra na na ra ka sa) 

Here hyphens indicate that the next syllable belongs to the same word. 
The last four lines, which are an inversion of the first four, are not part 
of the verse but are supplied so that its properties can be seen more eas
ily. The verse is a description of an army and may be translated as fol
lows: "[That army], which relished battle [rasahava], contained allies 
who brought low the bodes and gaits of their various striving enemies 
[sakarananarakasakayasadadasayaka], and in it the cries of the best of 
mounts contended with musical instruments [vahasaranadavada
davadana]." 

Two readers, D. M. Gunn and Rosina Wilson, conveyed the sad news 
that the Yreka Bakery no longer existed. However, in 1970 its premises 
were occupied by the Yrella Gallery, and Ms. Wilson sent a Polaroid 
picture of the gallery'S sign to prove it. Whether the gallery is still there, 
I do not know. 

Lee Sallows repaired the "near miss" palindrome in this chapter's 
epigraph by adding a word: "Zeus! A man, a plan, a canal-Suez!" 
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Answers 
Readers were asked to prove that no prime except 11 can be a 

palindrome if it has an even number of digits. The proof exploits a well
known test of divisibility by 11 (which will not be proved here): If the 
difference between the sum of all digits in even positions and the sum 
of all digits in odd positions is zero or a multiple of 11, the number is a 
multiple of 11. When a palindrome has an even number of digits, the 
digits in odd positions necessarily duplicate the digits in even posi
tions; therefore the difference between the sums of the two sets must be 
zero. The palindrome, because it has 11 as a factor, cannot be prime. 

The same divisibility test applies in all number systems when the fac
tor to be tested is the system's base plus one. This proves that no palin
drome with an even number of digits, in any number system, can be 
prime, with the possible exception of11. The number 11 is prime if the 
system's base is one less than a prime, as it is in the decimal system. 
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II 
Plane Geometry 





Chapter 4 Curves of 
Constant Width 

If an enormously heavy object has to be moved from one spot 
to another, it may not be practical to move it on wheels. Axles might 
buckle or snap under the load. Instead the object is placed on a fiat plat
form that in turn rests on cylindrical rollers. As the platform is pushed 
forward, the rollers left behind are picked up and put down again in 
front. 

An object moved in this manner over a fiat, horizontal surface obvi-
0usly does not bob up and down as it rolls along. The reason is simply 
that the cylindrical rollers have a circular cross section, and a circle is 
a closed curve possessing what mathematicians call "constant width." 
If a closed convex curve is placed between two parallel lines and the 
lines are moved together until they touch the curve, the distance be
tween the parallel lines is the curve's "width" in one direction. An el
lipse clearly does not have the same width in all directions. A platform 
riding on elliptical rollers would wobble up and down as it rolled over 
them. Because a circle has the same width in all directions, it can be ro
tated between two parallel lines without altering the distance between 
the lines. 

Is the circle the only closed curve of constant width? Most people 
would say yes, thus providing a sterling example of how far one's math
ematical intuition can go astray. Actually there is an infinity of such 
curves. Anyone of them can be the cross section of a roller that will roll 
a platform as smoothly as a circular cylinder! The failure to recognize 
such curves can have and has had disastrous consequences in indus
try. To give one example, it might be thought that the cylindrical hull 
of a half-built submarine could be tested for circularity by just mea
suring maximum widths in all directions. As will soon be made clear, 
such a hull can be monstrously lopsided and still pass such a test. It is 
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Cross section of drill in hole 
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the compass and draw arc FG. Do the same at the other corners. The re
sulting curve has a width, in all directions, that is the sum of the same 
two radii. This of course makes it a curve of constant width. Other 
symmetrical curves of constant width result if you start with a regular 
pentagon (or any regular polygon with an odd number of sides) and fol
low similar procedures. 

~~~~----- G 

, 
H 

Figure 4.3. Symmetrical rounded-corner curve of constant width 

There are ways to draw unsymmetrical curves of constant width. 
One method is to start with an irregular star polygon (it will necessar
ily have an odd number of points) such as the seven-point star shown 
in black in Figure 4.4. All of these line segments must be the same 
length. Place the compass point at each corner of the star and connect 
the two opposite corners with an arc. Because these arcs all have the 
same radius, the resulting curve (shown in gray) will have constant 
width. Its corners can be rounded off by the method used before. Ex
tend the sides of the star a uniform distance at all points (shown with 
broken lines) and then join the ends of the extended sides by arcs 
drawn with the compass point at each corner of the star. The rounded
corner curve, which is shown in black, will be another curve of con
stant width. 

Figure 4.5 demonstrates another method. Draw as many straight lines 
as you please, all mutually intersecting. Each arc is drawn with the 
compass point at the intersection of the two lines that bound the arc. 
Start with any arc, then proceed around the curve, connecting each arc 
to the preceding one. If you do it carefully, the curve will close and will 
have constant width. (Proving that the curve must close and have con-
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Figure 4.4. Star-polygon method of drawing a curve of constant width 

stant width is an interesting and not difficult exercise.) The preceding 
curves were made up of arcs of no more than two different circles, but 
curves drawn in this way may have arcs of as many different circles as 
you wish. 

B 

Figure4.S. Crossed-lines method Random CUIve and tangents 

A curve of constant width need not consist of circular arcs. In fact, 
you can draw a highly arbitrary convex curve from the top to the bot
tom of a square and touching its left side (arc ABC in Figure 4.5), and 
this curve will be the left side of a uniquely determined curve of con
stant width. To find the missing part, rule a large number of lines, each 
parallel to a tangent of arc ABC and separated from the tangent by a dis
tance equal to the side of the square. This can be done quickly by using 
both sides of a ruler. The original square must have a side equal to the 
ruler's width. Place one edge of the ruler so that it is tangent to arc 
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ABC at one of its points, then use the ruler's opposite edge to draw a 
parallel line. Do this at many points, from one end of arc ABC to the 
other. The missing part of the curve is the envelope of these lines. In 
this way you can obtain rough outlines of an endless variety of lopsided 
curves of constant width. 

It should be mentioned that the arc ABC cannot be completely arbi
trary. Roughly speaking, its curvature must not at any point be less 
than the curvature of a circle with a radius equal to the side of the 
square. It cannot, for example, include straight-line segments. For a 
more precise statement on this, as well as detailed proofs of many ele
mentary theorems involving curves of constant width, the reader is re
ferred to the excellent chapter on such curves in The Enjoyment of 
Mathematics, by Hans Rademacher and Otto Toeplitz. 

If you have the tools and skills for woodworking, you might enjoy 
making a number of wooden rollers with cross sections that are various 
curves of the same constant width. Most people are nonplused by the 
sight of a large book rolling horizontally across such lopsided rollers 
without bobbing up and down. A simpler way to demonstrate such 
curves is to cut from cardboard two curves of constant width and nail 
them to opposite ends of a wooden rod about six inches long. The 
curves need not be of the same shape, and it does not matter exactly 
where you put each nail as long as it is fairly close to what you guess 
to be the curve's "center." Hold a large, light-weight empty box by its 
ends, rest it horizontally on the attached curves and roll the box back 
and forth. The rod wobbles up and down at both ends, but the box 
rides as smoothly as it would on circular rollers! 

The properties of curves of constant width have been extensively in
vestigated. One startling property, not easy to prove, is that the perime
ters of all curves with constant width n have the same length. Since a 
circle is such a curve, the perimeter of any curve of constant width n 
must of course be 1tn, the same as the circumference of a circle with di
ameter n. 

The three-dimensional analogue of a curve of constant width is the 
solid of constant width. A sphere is not the only such solid that will ro
tate within a cube, at all times touching all six sides of the cube; this 
property is shared by all solids of constant width. The Simplest exam
ple of a nonspherical solid of this type is generated by rotating the 
Reuleaux triangle around one of its axes of symmetry (see Figure 4.6, 

left). There is an infinite number of others. The solids of constant width 
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pentagons, hexagons, and even octagons. In three-space, Goldberg has 
shown, there are nonspherical rotors for the regular tetrahedron and oc
tahedron, as well as the cube, but none for the regular dodecahedron 
and icosahedron. Almost no work has been done on rotors in dimen
sions higher than three. 

Figure 4.1. 

Least-area rotor in equilateral triangle Line rotated in deltoid curve 

Closely related to the theory of rotors is a famous problem named the 
Kakeya needle problem after the Japanese mathematician Soichi 
Kakeya, who first posed it in 1917. The problem is as follows: What is 
the plane figure of least area in which a line segment of length 1 can be 
rotated 360 degrees? The rotation obviously can be made inside a cir
cle of unit diameter, but that is far from the smallest area. 

For many years mathematicians believed the answer was the deltoid 
curve shown at the right of Figure 4.7, which has an area exactly half 
that of a unit circle. (The deltoid is the curve traced by a point on the 
circumference of a circle as it rolls around the inside of a larger circle, 
when the diameter of the small circle is either one third or two thirds 
that of the larger one.) If you break a toothpick to the size of the line seg
ment shown, you will find by experiment that it can be rotated inside 
the deltoid as a kind of one-dimensional rotor. Note how its end points 
remain at all times on the deltoid's perimeter. 

In 1927, ten years after Kakeya popped his question, the Russian 
mathematician Abram Samoilovitch Besicovitch (then living in Copen
hagen) dropped a bombshell. He proved that the problem had no an
swer. More accurately, he showed that the answer to Kakeya's question 
is that there is no minimum area. The area can be made as small as one 
wants. Imagine a line segment that stretches from the earth to the moon. 
We can rotate it 360 degrees within an area as small as the area of a 
postage stamp. If that is too large, we can reduce it to the area of Lin
coln's nose on a postage stamp. 
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Besicovitch's proof is too complicated to give here (see references in 
bibliography), and besides, his domain of rotation is not what topolo
gists call simply connected. For readers who would like to work on a 
much easier problenl: What is the smallest convex area in which a line 
segment of length 1 can be rotated 360 degrees? (A convex figure is one 
in which a straight line, joining any two of its points, lies entirely on 
the figure. Squares and circles are convex; Greek crosses and crescent 
moons are not.) 

Addendum 

Although Watts was the first to acquire patents on the process 
of drilling square holes with Reuleaux-triangle drills, the procedure 
was apparently known earlier. Derek Beck, in London, wrote that he 
had met a man who recalled having used such a drill for boring square 
holes when he was an apprentice machinist in 1902 and that the prac
tice then seemed to be standard. I have not, however, been able to learn 
anything about the history of the technique prior to Watts's 1917 
patents. 

In 1969 England introduced a 50-pence coin with seven slightly 
curved sides that form a circle of constant width, surely the first seven
sided coin ever minted. The invariant width allows the coin to roll 
smoothly down coin-operated machines. 

Answers 

What is the smallest convex area in which a line segment of 
length 1 can be rotated 360 degrees? The answer: An equilateral trian
gle with an altitude of 1. (The area is one third the square root of 3.) 

Any figure in which the line segment can be rotated obviously must 
have a width at least equal to 1. Of all convex figures with a width of 
1, the equilateral triangle of altitude 1 has the smallest area. (For a 
proof of this the reader is referred to Convex Figures, by I. M. Yaglom 
and V. G. Boltyanskii, pp. 221-22.) It is easy to see that a line segment 
of length 1 can in fact be rotated in such a triangle (see Figure 4.8). 

The deltoid curve was believed to be the smallest simply connected 
area solving the problem until 1963 when a smaller area was discov
ered independently by Melvin Bloom and I. J. Schoenberg. 
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1 2 3 

4 5 6 

Figure 4.8. Answer to the needle-turning problem 

Bibliography 
W. Blaschke, Kreis und Kugel, Leipzig, 1916; Berlin: W. de Gruyter, 1956. 
J. H. Cadwell, Topics in Recreational Mathematics, Cambridge, England: Cam

bridge University Press, 1966, Chapter 15. 
J. Casey, "Perfect and Not-So-Perfect Rollers," The Mathematics Teacher, Vol. 91, 

January 1998, pp. 12-20. 
G. D. Chakerian and H. Groemer, "Convex Bodies of Constant Width," Convexity 

and Its Applications, P. M. Gruber and J. M. Wills (eds.), Boston: Birkhauser, 
1983. 

J. A. Dossey, "What?-A Roller with Corners?," Mathematics Teacher, December 
1972, pp. 720-24. 

J. C. Fisher, "Curves of Constant Width from a Linear Viewpoint," Mathematics 
Magazine, Vol. 60, June 1987, pp. 131-40. 

J. A. Flaten, "Curves of Constant Width," The Physics Teacher, Vol. 37, October 
1999, pp. 418-19. 

M. Goldberg, "Trammel Rotors in Regular Polygons," American Mathematical 
Monthly, Vol. 64, February 1957, pp. 71-78. 

M. Goldberg, "Rotors in Polygons and Polyhedra," Mathematical Tables and Other 
Aids to Computation, Vol. 14, July 1960, pp. 229-39. 

M. Goldberg, "N-Gon Rotors Making N + 1 Contacts with Fixed Simple Curves," 
American Mathematical Monthly, Vol. 69, June/July 1962, pp. 486-91. 

M. Goldberg, "Two-lobed Rotors with Three-Lobed Stators," Journal of Mecha
nisms, Vol. 3, 1968, pp. 55-60. 

C. G. Gray, "Solids of Constant Breadth," Mathematical Gazette, December 1972, 
pp.289-92. 

R. Honsberger, Mathematical Gems, Washington, D.C., 1973, Chapter 5. 
H. Rademacher and O. Toeplitz, The Enjoyment of Mathematics, Princeton, NJ: 

Princeton University Press, 1957; Dover, 1990. See pp. 163-77, 203. 

44 PLANE GEOMETRY 



F. Reuleaux, The Kinematics of Machinery, New York: Macmillan, 1876; Dover 
Publications, 1964, pp. 129-46. 

S. G. Smith, "Drilling Square Holes," The Mathematics Teacher, Vol. 86, October 
1993, pp. 579-83. 

I. M. Yaglom and V. G. Boltyanskii, Convex Figures, New York: Holt, Rinehart & 

Winston, 1961, Chapters 7 and 8. 

On I<.akeya's needle problem: 
A. S. Besicovitch, "The Kakeya Problem," American Mathematical Monthly, Vol. 

70, August/September 1963, pp. 697-706. 

A. A. Blank, "A Remark on the Kakeya Problem," American Mathematical Monthly, 
Vol. 70, August/September 1963, pp. 706-11. 

J. H. Cadwell, Topics in Recreational Mathematics, Cambridge, England: Cam
bridge University Press, 1966. See pp. 96-99. 

F. Cunningham, Jr., "The Kakeya Problem for Simply Connected and Star-shaped 
Sets," American Mathematical Monthly, Vol. 78, February 1971, pp. 114-29. 

I. M. Yaglom and V. G. Boltyanskii, Convex Figures, New York: Holt. Rinehart & 

Winston, 1961, pp. 61-62, 226-27. 

Curves of Constant Width 45 



Chapter 5 Rep-Tiles 

Only three regular polygons-the equilateral triangle, the 
square, and the regular hexagon-can be used for tiling a floor in such 
a way that identical shapes are endlessly repeated to cover the plane. 
But there is an infinite number of irregular polygons that can provide 
this kind of tiling. For example, a triangle of any shape whatever will 
do the trick. So will any four-sided figure. The reader can try the fol
lowing test. Draw an irregular quadrilateral (it need not even be con
vex, which is to say that it need not have interior angles that are all less 
than 180 degrees) and cut 20 or so copies from cardboard. It is a pleas
ant task to fit them all together snugly, like a jigsaw puzzle, to cover a 
plane. 

There is an unusual and less familiar way to tile a plane. Note that 
each trapezoid at the top of Figure 5.1 has been divided into four 
smaller trapezoids that are exact replicas of the original. The four repli
cas can, of course, be divided in the same way into four still smaller 
replicas, and this can be continued to infinity. To use such a figure for 
tiling we have only to proceed to infinity in the opposite direction: we 
put together four figures to form a larger model, four of which will in 
turn fit together to make a still larger one. The British mathematician 
Augustus De Morgan summed up this sort of situation admirably in the 
following jingle, the first four lines of which paraphrase an earlier jin
gle by Jonathan Swift: 
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Great fleas have little fleas 
Upon their backs to bite 'em, 

And little fleas have lesser fleas, 
And so ad infinitum. 

The great fleas themselves, in turn, 
Have greater fleas to go on; 



While these again have greater still, 
And greater still, and so on. 

Until 1962 not much was known about polygons that have this curi
ous property of making larger and smaller copies of themselves. In 
1962 Solomon W. Golomb, who was then on the staff of the Jet Propul
sion Laboratory of the California Institute of Technology and is now a 
professor at the University of Southern California, turned his attention 
to these "replicating figures"-or "rep-tiles," as he calls them. The re
sult was three privately issued papers that lay the groundwork for a 
general theory of polygon "replication." These papers, from which al
most all that follows is extracted, contain a wealth of material of great 
interest to the recreational mathematician. 

In Golomb's terminology a replicating polygon of order k is one that 
can be divided into k replicas congruent to one another and similar to 
the original. Each of the three trapezoids in Figure 5.1, for example, has 
a replicating order of 4, abbreviated as rep-4. Polygons of rep-k exist for 
any k, but they seem to be scarcest when k is a prime and to be most 
abundant when k is a square number. 

Three trapezoids that have a replicating order of 4 

Figure 5.1. The only known rep-2 polygons 

Only two rep-2 polygons are known: the isosceles right triangle and 
the parallelogram with sides in the ratio of 1 to the square root of 2 (see 
bottom of Figure 5.1). Golomb found simple proofs that these are the 
only possible rep-2 triangles and quadrilaterals, and there are no other 
convex rep-2 polygons. The existence of concave rep-2 polygons ap
pears unlikely, but so far their nonexistence has not been proved. 
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The interior angles of the parallelogram can vary without affecting its 
rep-2 property. In its rectangular form the rep-2 parallelogram is al
most as famous in the history of art as the "golden rectangle," discussed 
in the Second Scientific American Book of Mathematical Puzzles and 
Diversions. Many medieval and Renaissance artists (Albrecht Diirer, 
for instance) consciously used it for outlining rectangular pictures. A 
trick playing card that is sometimes sold by street-corner pitchmen ex
ploits this rectangle to make the ace of diamonds seem to diminish in 
size three times (see Figure 5.2). Under cover of a hand movement the 
card is secretly folded in half and turned over to show a card exactly 
half the size of the preceding one. If each of the three smaller aces is a 
rectangle similar to the original, it is easy to show that only a 1-by-v2 
rectangle can be used for the card. The rep-2 rectangle also has less friv
olous uses. Printers who wish to standardize the shape of the pages in 
books of various sizes find that in folio, quarto, or octavo form it pro
duces pages that are all similar rectangles. European writing paper also 
has a similar shape. 

A • 
+ 

• y 

• 
• 
• 

Figure S.2. A trick diminishing card based on the rep-2 rectangle 

The rep-2 rectangle belongs to the family of parallelograms shown in 
the top illustration of Figure 5.3. The fact that a parallelogram with 
sides of 1 and Vk is always rep-k proves that a rep-k polygon exists for 
any k. It is the only known example, Golomb asserts, of a family of fig
ures that exhibit all the replicating orders. When k is 7 (or any prime 
greater than 3 that has the form 4n - 1), a parallelogram of this family 
is the only known example. Rep-3 and rep-5 triangles exist. Can the 
reader construct them? 

A great number of rep-4 figures are known. Every triangle is rep-4 
and can be divided as shown in the second illustration from the top of 
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Every triangle and parallelogram is rep-4 

The Sphinx, the only known rep-4 pentagon 
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The three known varieties of rep-4 hexagons 

Figure S.3. 
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Figure 5.3. Among the quadrilaterals, any parallelogram is rep-4, as 
shown in the same illustration. The three trapezoids in the top illus
tration of Figure 5.1 are the only other examples of rep-4 quadrilater
als so far discovered. 

Only one rep-4 pentagon is known: the sphinx-shaped figure in the 
third illustration from the top of Figure 5.3. Golomb was the first to dis
cover its rep-4 property. Only the outline of the sphinx is given so that 
the reader can have the pleasure of seeing how quickly he can dissect 
it into four smaller sphinxes. (The name "sphinx" was given to this fig
ure by T. H. O'Beirne of Glasgow.) 

There are three known varieties of rep-4 hexagons. If any rectangle is 
divided into four quadrants and one quadrant is thrown away, the re
maining figure is a rep-4 hexagon. The hexagon at the right at the bot
tom of Figure 5.3 shows the dissection (familiar to puzzlists) when the 
rectangle is a square. The other two examples of rep-4 hexagons (each 
of which can be dissected in more than one way) are shown at the mid
dle and left in the same illustration. 

No other example of a standard polygon with a rep-4 property is 
known. There are, however, "stellated" rep-4 polygons (a stellated poly
gon consists of two or more polygons joined at single points), two exam
ples of which, provided by Golomb, are shown at the top of Figure 5.4. 
In the first example a pair ofidentical rectangles can be substituted for the 
squares. In addition, Golomb has found three nonpolygonal figures that 
are rep-4, although none is constructible in a finite number of steps. Each 
of these figures, shown at the left in the bottom illustration of Figure 5.4, 
is formed by adding to an equilateral triangle an endless series of smaller 
triangles, each one-fourth the size of its predecessor. In each case four of 
these figures will fit together to make a larger replica, as shown at the 
right in the same illustration. (There is a gap in each replica because the 
original cannot be drawn with an infinitely long series of triangles.) 

It is a curious fact that every known rep-4 polygon of a standard type 
is also rep-9. The rep-4 Nevada-shaped trapezoid of Figure 5.5 can be 
dissected into nine replicas in many ways, only one of which is shown. 
(Can the reader dissect each of the other rep-4 polygons, not counting 
the stellated and infinite forms, into nine replicas?) The converse is 
also true: All known standard rep-9 polygons are also rep-4. 

Three interesting examples of stellated rep-9 polygons, discovered 
and named by Golomb, are shown in Figure 5.B. None of these poly
gons is rep-4. 
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144. It is conjectured that none of the three has a lower replicating 
order. 

Figure 5.9. Three rep-144 polygons 

Golomb has noted that every known polygon of rep-4, including the 
stellated polygons, will divide a parallelogram with a multiplicity of 2. 
In other words, if any known rep-4 polygon is replicated, the pair can 
be fitted together to form a parallelogram! It is conjectured, but not yet 
proved, that this is true of all rep-4 polygons. 

An obvious extension of Golomb's pioneer work on replication the
ory (of which only the most elementary aspects have been detailed 
here) is into three or even higher dimensions. A trivial example of a 
replicating solid figure is the cube: it obviously is rep-B, rep-27, and so 
on for any order that is a cubical number. Other trivial examples result 
from giving plane replicating figures a finite thickness, then forming 
layers of larger replicas to make a model of the original solid. Less triv
ial examples certainly exist; a study of them might lead to significant 
results. 

In addition to the problems already posed, here are two unusual dis
section puzzles closely related to what we have been considering (see 

Figure 5.10). First the easier one: Can the reader divide the hexagon 
(left) into two congruent stellated polygons? More difficult: Divide the 
pentagon (right) into four congruent stellated polygons. In neither case 
are the polygons similar to the original figure. 

Addendum 

I gave the conjecture that none of the three polygons shown in 
Figure 5.9 has a replicating order lower than 144. Wrong for all three! 
MarkA. Mandel, then 14, wrote to show how the middle polygon could 
be cut into 36 replicas (see Figure 5.11). Robert Reid, writing from Peru, 
found a way for 121 copies of the first hexomino to replicate and 64 
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Figure S.ID. Two dissection problems 

Figure 5.11. Hexomino: rep-tile of order 36 

Figure 5.12. A Rep-at polygon 

copies of the third polygon to do the same. Reid also proved that the 
hexomino shown in Figure 5.12 is a rep-tile of order 81. 
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Ralph H. Hinrichs, Phoenixville, PA, discovered that if the middle 
hexagon at the bottom of Figure 5.3 is dissected in a slightly different 
way (the pattern within each rectangle is mirror-reflected), the entire 
figure can undergo an infinite number of affine transformations (the 90-
degree exterior angle taking any acute or obtuse value) to provide an in
finity of rep-4 hexagons. Only when the angle is 90 degrees is the figure 
also rep-9, thus disproving an early guess that all rep-4 standard poly
gons are rep-9 and vice versa. 

The three nonpolygon rep-tiles shown in Figure 5.4 are now called 
"self-similar fractals." Such fractals are being extensively studied. I 
have not listed recent references in my bibliography, but interested 
readers can consult Christoph Bandt's "Self-Similar Sets 5," in the Pro
ceedings of the American Mathematical Society, Vol. 112, June 1991, 
pages 349-62, and his list of references. 

The rep-tile triangle second from the top in Figure 5.12-incidently 
it is not accurately drawn-is mentioned in Plato's Timaeus. Timaeus 
points out that it is half of an equilateral triangle and that he considers 
it the "most beautiful" of all scalene triangles. (See the Random House 
edition of Plato, edited by Benjamin Jowett, Vol. 2, p. 34.) 

Sol Golomb is best known for his work on polyominoes-shapes 
formed by joining n unit squares along their edges. Golomb's classic 
study, Polyominoes, was reissued by Princeton University Press in 
1994. 

The most spectacular constructions of what Golomb calls "infin-tiles 
(rep-tiles with infinitely many sides) are in the papers by Jack Giles, Jr., 
cited in the bibliography. Giles calls them "superfigures." Many of 
Golomb's infin-tiles, and those of Giles, are early examples of fractals. 
Golomb tells me that Giles was a parking lot attendant in Florida when 
he sent his papers to Golomb, who in turn submitted them to the Jour
nal of Combinatorial Theory. 

Answers 
The problem of dissecting the sphinx is shown in Figure 5.13, 

top. The next two illustrations show how to construct rep-3 and rep-5 
triangles. The bottom illustration gives the solution to the two dissec
tion problems involving stellated polygons. The first of these can be 
varied in an infinite number of ways; the solution shown here is one of 
the simplest. 
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S.I l. Solutions to dissection problems 

second solution is an old-timer. Loyd, in his column 
Woman's Home Companion (October 1905) out that the fig-

a 

that he a year trying to cut the mitre shape into four congruent 
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parts, each simply connected, but was unable to do better than the so
lution reproduced here. It can be found in many old puzzle books an~ 
tedating Loyd's time. 
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Chapter 6 

There is one art, no more, no less: to do all 
things with artlessness. -Piet Hein 

Piet Hein's 
Superellipse 

Civilized man is surrounded on all sides, indoors and out, by 
a subtle, seldom-noticed conflict between two ancient ways of shaping 
things: the orthogonal and the round. Cars on circular wheels, guided 
by hands on circular steering wheels, move along streets that intersect 
like the lines of a rectangular lattice. Buildings and houses are made up 
mostly of right angles, relieved occasionally by circular domes and 
windows. At rectangular or circular tables, with rectangular napkins on 
our laps, we eat from circular plates and drink from glasses with cir
cular cross sections. We light cylindrical cigarettes with matches from 
rectangular packs, and we pay the rectangular bill with rectangular 
credit cards, checks, or dollar bills and circular coins. 

Even our games combine the orthogonal and the round. Most outdoor 
sports are played with spherical balls on rectangular fields. Indoor 
games, from pool to checkers, are similar combinations of the round 
and the rectangular. Rectangular playing cards are held in a fanlike cir
cular array. The very letters on this rectangular page are patchworks of 
right angles and circular arcs. Wherever one looks the scene swarms 
with squares and circles and their affinely stretched forms: rectangles 
and ellipses. (In a sense the ellipse is more common than the circle, be
cause every circle appears elliptical when seen from an angle.) In op 
paintings and textile designs, squares, circles, rectangles, and ellipses 
jangle against one another as violently as they do in daily life. 

The Danish writer and inventor Piet Hein asked himself a fascinat
ing question: What is the simplest and most pleasing closed curve that 
mediates fairly between these two clashing tendencies? Originally a 
scientist, Piet Hein (he is always spoken of by both names) was well 
known throughout Scandinavia and English-speaking countries for his 
enormously popular volumes of gracefully aphoristic poems (which 
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critics have likened to the epigrams of Martial) and for his writings on 
scientific and humanistic topics. To recreational mathematicians he is 
best known as the inventor of the game Hex, of the Soma cube, and of 
other remarkable games and puzzles. He was a friend of Norbert 
Wiener, whose last book, God and Golem, Inc., is dedicated to him. 

The question Piet Hein asked himself had been suggested by a knotty 
city-planning problem that first arose in 1959 in Sweden. Many years 
earlier Stockholm had decided to raze and rebuild a congested section 
of old houses and narrow streets in the heart of the city, and after World 
War IT this enormous and costly program got under way. Two broad 
new traffic arteries running north-south and east-west were cut through 
the center of the city. At the intersection of these avenues a large rec
tangular space (now called SergeI's Square) was laid out. At its center is 
an oval basin with a fountain surrounded by an oval pool containing 
several hundred smaller fountains. Daylight filters through the pool's 
translucent bottom into an oval self-service restaurant, below street 
level, surrounded by oval rings of pillars and shops. Below that there are 
two more oval floors for dining and dancing, cloakrooms, and kitchen. 

In planning the exact shape of this center the Swedish architects ran 
into unexpected snags. The ellipse had to be rejected because its 
pointed ends would interfere with smooth traffic flow around it; more
over, it did not fit harmoniously into the rectangular space. The city 
planners next tried a curve made up of eight circular arcs, but it had a 
patched-together look with ugly "jumps" of curvature in eight places. 
In addition, plans called for nesting different sizes of the oval shape, 
and the eight-arc curve refused to nest in a pleasing way. 

At this stage the architectural team in charge of the project consulted 
Piet Hein. It was just the kind of problem that appealed to his combined 
mathematical and artistic imagination, his sense of humor, and his 
knack of thinking creatively in unexpected directions. What kind of 
curve, less pointed than the ellipse, could he discover that would nest 
pleasingly and fit harmoniously into the rectangular open space at the 
heart of Stockholm? 

To understand Piet Hein's novel answer we must first consider the el
lipse, as he did, as a special case of a more general family of curves with 
the following formula in Cartesian coordinates: 
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where a and b are unequal parameters (arbitrary constants) that repre
sent the two semiaxes of the curve and n is any positive real number. 
The vertical brackets indicate that each fraction is to be taken with re
spect to its absolute value; that is, its value without regard to sign. 

When n =2, the real values of x and ythat satisfy the equation (its "so
lution set") determine the points on the graph that lie on an ellipse with 
its center at the origin of the two coordinates. As n decreases from 2 to 
1, the oval becomes more pointed at its ends ("subellipses," Piet Rein 
called them). When n = 1, the figure is a parallelogram. When n is less 
than 1, the four sides are concave curves that become increasingly con
cave as n approaches O. At n = 0 they degenerate into two crossed 
straight lines. 

If n is allowed to increase above 2, the oval develops flatter and flat
ter sides, becoming more and more like a rectangle; indeed, the rec
tangle is its limit as n approaches infinity. At what point is such a 
curve most pleasing to the eye? Piet Rein settled on n = 2%. With the 
help of a computer, 400 coordinate pairs were calculated to 15 decimal 
places and larger, precise curves were drawn in many different sizes, 
all with the same height-width ratios (to conform with the proportions 
of the open space at the center of Stockholm), The curves proved to be 
strangely satisfying, neither too rounded nor too orthogonal, a happy 
blend of elliptical and rectangular beauty. Moreover, such curves could 
be nested, as shown in Figures 6.1 and 6.2, to give a strong feeling of 
harmony and parallelism between the concentric ovals. Piet Rein 
called all such curves with exponents above 2 "superellipses." Stock
holm immediately accepted the 2 1/2-exponent superellipse as the 
basic motif of its new center. Already the large superelliptical pool has 
conferred upon Stockholm an unusual mathematical flavor, like the 
big catenary curve of St. Louis's Gateway Arch, which dominates the 
local skyline. 

Meanwhile Piet Rein's superellipse has been enthusiastically 
adopted by Bruno Mathsson, a well-known Swedish furniture designer. 
Re first produced a variety of superelliptical desks, now in the offices 
of many Swedish executives, and has since followed with superellip
tical tables, chairs, and beds. (Who needs the corners?) Industries in 
Denmark, Sweden, Norway, and Finland turned to Piet Rein for solu
tions to various orthogonal-versus-circular problems, and he worked on 
superelliptical furniture, dishes, coasters, lamps, silverware, textile 
patterns, and so on. The tables, chairs, and beds embodied another Piet 
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Figure 6.1. Concentric superellipses 

Figure 6.2. Plan of Stockholm's underground restaurants and the pools above them 
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In the same way, one can raise the exponent in the corresponding 
Cartesian formulas for spheres and ellipsoids to obtain what Piet Hein 
called "superspheres" and "superellipsoids." If the exponent is 2%, 
such solids can be regarded as spheres and ellipsoids that are halfway 
along the road to being cubes and bricks. 

The true ellipsoid, with three unequal axes, has the formula 

x2 Z2 

2" + b2 + 2 = 1, a c 

where a, b, and c are unequal parameters representing half the length 
of each axis. When the three parameters are equal, the figure is a 
sphere. When only two are equal, the surface is called an "ellipsoid of 
rotation" or a spheroid. It is produced by rotating an ellipse on either 
of its axes. If the rotation is on the longer axis, the result is a prolate 
spheroid-a kind of egg shape with circular cross sections perpendic
ular to the axis. 

It turns out that a solid model of a prolate spheroid, with homoge
neous density, will no more balance upright on either end than a 
chicken egg will, unless one applies to the egg a stratagem usually cred
ited to Columbus. Columbus returned to Spain in 1493 after having 
discovered America, thinking that the new land was India and that he 
had proved the earth to be round. At Barcelona a banquet was given in 
his honor. This is how Girolamo Benzoni, in his History of the New 
World (Venice, 1565), tells the story (I quote from an early English trans
lation): 

Columbus, being at a party with many noble Spaniards ... one of them 
undertook to say: "Mr. Christopher, even if you had not found the Indies, 
we should not have been devoid of a man who would have attempted 
the same thing that you did, here in our own country of Spain, as it is 
full of great men clever in cosmography and literature." Columbus said 
nothing in answer to these words, but having desired an egg to be 
brought to him, he placed it on the table saying: "Gentlemen, I will lay 
a wager with any of you, that you will not make this egg stand up as I 
will, naked and without anything at all." They all tried, and no one suc
ceeded in making it stand up. When the egg came round to the hands of 
Columbus, by beating it down on the table he fixed it, having thus 
crushed a little of one end; wherefore all remained confused, under
standing what he would have said: That after the deed is done, every
body knows how to do it. 
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The story may be true, but a suspiciously similar story had been told 
15 years earlier by Giorgio Vasari in his celebrated Lives of the Most Em
inent Painters, Sculptors and Architects (Florence, 1550). Young Fil
ippo Brunelleschi, the Italian architect, had designed an unusually 
large and heavy dome for Santa Maria del Fiore, the cathedral of Flo
rence. City officials had asked to see his model, but he refused, 
"proposing instead ... that whosoever could make an egg stand upright 
on a flat piece of marble should build the cupola, since thus each man's 
intellect would be discerned. Taking an egg, therefore, all those Masters 
sought to make it stand upright, but not one could find a way. Where
upon Filippo, being told to make it stand, took it graciously, and, giv
ing one end of it a blow on the flat piece of marble, made it stand 
upright. The craftsmen protested that they could have done the same; 
but Filippo answered, laughing, that they could also have raised the 
cupola, if they had seen the model or the design. And so it was re
solved that he should be commissioned to carry out this work." 

The story has a topper. When the great dome was finally completed 
(many years later, but decades before Columbus's first voyage), it had 
the shape of half an egg, flattened at the end. 

What does all this have to do with supereggs? Well, Piet Hein (my 
source, by the way, for the references on Columbus and Brunelleschi) 
discovered that a solid model of a 2Vz-exponent superegg-indeed, a 
superegg of any exponent-if not too tall for its width, balances im
mediately on either end without any sort of skulduggery! Indeed, 
dozens of chubby wooden and silver supereggs are now standing po
litely and permanently on their ends all over Scandinavia. 

Consider the silver superegg shown in Figure 6.3, which has an ex
ponent of 2Vz and a height-width ratio of 4 : 3. It looks as if it should 
topple over, but it does not. This spooky stability of the superegg (on 
both ends) can be taken as symbolic of the superelliptical balance be
tween the orthogonal and the round, which is in turn a pleasant sym
bol for the balanced mind of individuals such as Piet Hein who 
mediated so successfully between C. P. Snow's "two cultures." 

Addendum I 
The family of plane curves expressed by the formula I xl a In + 

I yl bin = 1 was first recognized and studied by Gabriel Lame, a 19th
century French physicist, who wrote about them in 1818. In France they 
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are called courbes de Lame; in Germany, Lamesche kurven. The curves 
are algebraic when n is rational, transcendent when n is irrational. 

When n = 2/3 and a = b (see Figure 6.4) the curve is an astroid. This 
is the curve generated by a point on a circle that is one-fourth or three
fourths the radius of a larger circle, when the smaller circle is rolled 
around the inside of the larger one. Solomon W. Golomb called atten
tion to the fact that if n is odd, and the absolute value signs are dropped 
in the formula for Lame curves, you get a family of curves of which the 
famous Witch of Agnesi (The curve studied by Maria Gaetana Agnesi) 
is a member. (The witch results when n = 3.) William Hogan wrote to 
say that parkway arches, designed by himself and other engineers, often 
are Lame curves of exponent 2.2. In the thirties, he said, they were 
called "2.2 ellipses." 

Figure 6.4. Supercircle and related curves 

When a superellipse (a Lame curve with exponent greater than 2) is 
applied to a physical object, its exponent and parameters a and b can, 
of course, be varied to suit circumstances and taste. For the Stockholm 
center, Piet Hein used the parameters n = 2% and alb = 6/5. A few years 
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later Gerald Robinson, a Toronto architect, applied the superellipse to 
a parking garage in a shopping center in Peterborough, a Toronto sub
urb. The length and width were required to be in the ratio alb = 9/7. 
Given this ratio, a survey indicated that an exponent slightly greater 
than 2.7 produced a superellipse that seemed the most pleasing to those 
polled. This suggested e as an exponent (since e = 2.718 ... ). 

Readers suggested other parameters. J. D. Turner proposed mediating 
between the extremes of circle and square (or rectangle and ellipse) by 
picking the exponent that would give an area exactly halfway between 
the two extreme areas. D. C. Mandeville found that the exponent me
diating the areas of a circle and square is so close to pi that he won
dered if it actually is pi. Unfortunately it is not. Norton Black, using a 
computer, determined that the value is a trifle greater than 3.17. Thrner 
also proposed mediating between ellipse and rectangle by choosing an 
exponent that sends the curve through the midpoint of a line joining 
the rectangle's corner to the corresponding point on the ellipse. 

Turner and Black each suggested that the superellipse be combined 
with the aesthetically pleasing "golden rectangle" by making alb the 
golden ratio. Turner's vote for the most pleasing superellipse went to 
the oval with parameters alb = golden ratio and n = e. Michel L. Balin
ski and Philetus H. Holt III, in a letter published in The New York 
Times in December 1968 (I failed to record the day of the month) rec
ommended a golden superellipse with n = 21fz as the best shape for the 
negotiating table in Paris. At that time the diplomats preparing to ne
gotiate a Vietnam peace were quarreling over the shape of their table. 
If no table can be agreed upon, Balinski and Holt wrote, the diplomats 
should be put inside a hollow superegg and shaken until they are in 
"su perelli ptic agreement." 

The superegg is a special case of the more general solid shape which 
one can call a superellipsoid. The superellipsoid's formula is 

IXl
n 

IYln IZl
n 

- + - + - = 1. 
abc 

When a = b = c, the solid is a supersphere, its shape varying from 
sphere to cube as the exponent varies. When a = b, the solid is super
circular in cross section, with the formula 
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Supereggs, with circular cross-sections, have the formula 

When I wrote my column on the superellipse, I believed that any 
solid superegg based on an exponent greater than 2 and less than in
finity would balance on its end provided its height did not exceed its 
width by too great a ratio. A solid superegg with an exponent of infin
ity would, of course, be a right circular cylinder that would, in princi
ple, stand on its flat end regardless of how much higher it was than 
wide. But short of infinity it seemed intuitively clear that for each ex
ponent there was a critical ratio beyond which the egg would be un
stable. Indeed, I even published the following proof that this is the case: 

If the center of gravity, CG, of an egg is below the center of curvature, CC, 
of the egg's base at the central point of the base, the egg will balance. It 
balances because any tipping of the egg will raise the CG. If the CG is 
above the CC, the egg is unstable because the slightest tipping lowers the 
CG. To make this clear, consider first the sphere shown at the left in Fig
ure 6.5. Inside the sphere the CG and CC are the same point: the center 
of the sphere. For any supersphere with an exponent greater than 2, as 
shown second from left in the illustration, the CC is above the CG be
cause the base is less convex. The higher the exponent, the less convex 
the base and the higher the CC. 

Now suppose the supersphere is stretched uniformly upward along its 
vertical coordinates, transforming it into a superellipsoid of rotation, or 
what Piet Hein calls a superegg. As it stretches, the CC falls and the CG 
rises. Clearly there must be a point X where the CC and the CG coincide. 
Before this crucial point is reached the superegg is stable, as shown third 
from left in Figure 6.5. Beyond that point the superegg is unstable (right). 

C. E. Gremer, a retired U.S. Navy commander, was the first of many 
readers to inform me that the proof is faulty. Contrary to intuition, at the 
base point of all supereggs, the center of curvature is infinitely high! If 
we increase the height of a superegg while its width remains constant, 
the curvature at the base point remains "flat." German mathematicians 
call it a flachpunkt. The superellipse has a similar flachpunkt at its 
ends. In other words, all supereggs, regardless of their height-width 
ratio, are theoretically stable! As a superegg becomes taller and thinner, 
there is of course a critical ratio at which the degree of tilt needed to 
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Figure 6.5. Diagrams for a false proof of superegg instability 

topple it comes so close to zero that such factors as inhomogeneity of 
the material, surface irregularity, vibrations, air currents, and so on 
make it practically unstable. But in a mathematically ideal sense there 
is no critical height-width ratio. As Piet Hein put it, in theory one can 
balance any number of supereggs, each an inch wide and as tall as the 
Empire State Building, on top of one another, end to end, and they will 
not fall. Calculating precise "topple angles" at which a given superegg 
will not regain balance is a tricky problem in calculus. Many readers 
tackled it and sent their results. 

Speaking of egg balancing, the reader may not know that almost any 
chicken egg can be balanced on its broad end, on a smooth surface, if 
one is patient and steady-handed. Nothing is gained by shaking the 
egg first in an attempt to break the yolk. Even more puzzling as a par
lor trick is the following method of balancing an egg on its pointed 
end. Secretly put a tiny amount of salt on the table, balance the egg on 
it, then gently blow away the excess grains before you call in viewers. 
The few remaining grains which hold the egg are invisible, especially 
on a white surface. For some curious reason, balancing chicken eggs le
gitimately on their broad ends became a craze in China in 1945-at 
least, so said Life in its picture story of April 9, 1945. 

The world's largest superegg, made of steel and aluminum and 
weighing almost a ton, was set up outside Kelvin Hall in Glasgow, Oc
tober 1971, to honor Piet Hein's appearance there as a speaker during 
an exhibition of modern homes. The superellipse has twice appeared 
on Danish postage stamps: In 1970 on a blue two-kroner honoring 
Bertel Thorvaldsen and in 1972 on a Christmas seal bearing portraits of 
the queen and the prince consort. 
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1. Nimbi. This is a 12-counter version of Piet Hein's nim-type game. 
The counters are locked-in, sliding pegs on a reversible circular 
board so that after a game is played by pushing the pegs down and 
turning the board over it is set for another game. 

2. Anagog. Here we have a spherical cousin ofPiet Hein's Soma cube. Six 
pieces of joined unit spheres are to be formed into a 20-sphere tetra
hedron or two 10-sphere tetrahedrons or other solid and flat figures. 

3. Crux. A solid cross of six projecting arms is so designed that each arm 
rotates separately. One of several problems is to bring three spots of 
different colors together at each intersection. 

4. Twitchit. A dodecahedron has rotating faces and the problem is to 
turn them until three different symbols are together at each corner. 

5. Bloxbox. W. W. Rouse Ball, discussing the standard 14-15 sliding
block puzzle in his Mathematical Recreations and Essays, wrote in 
1892: "We can conceive also of a similar cubical puzzle, but we could 
not work it practically except by sections." Eighty-one years later, 
Piet Hein found an ingenious practical solution. Seven identical unit 
cubes are inside a transparent plastic order-2 cube. When the cube is 
tilted properly, gravity slides a cube (with a pleasant click) into the 
hole. Each cube has three black and three white sides. Problems in
clude forming an order-2 cube (minus one corner) with all sides one 
color, or all sides checkered, or all striped, and so on. 

Does the parity principle involved in flat versions apply to the 
three-dimensional version? And what are the minimum required 
moves to get from one pattern to another? Bloxbox opens a Pandora's 
box of questions. 

Scantion International, a Danish management and consulting com
pany, adopted the superegg as its logo. In 1982 it moved its world head
quarters to Princeton, NJ, where Scantion-Princeton, as it is called, built 
a luxurious hotel and conference center hidden within the 25 acres of 
Princeton's Forrestal Center. An enormous stone superegg stands on the 
plaza in front of the hotel. The Schweppes Building, in Stamford, CT, just 
south of Exit 25 on the Merritt Parkway, has the shape of a superellipse. 

Hermann Zapf designed a typeface whose "bowls" are based on the 
superellipse. He called it "Melior" because the curve meliorates be
tween an ellipse and a rectangle. You'll find a picture of the upper- and 
lower-case letters on page 284 of Douglas Hofstadter's Metamagical 
Themas (Basic Books, 1985), with comments on page 291. 
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Chapter 7 Penrose Tiles 

At the end of a 1975 Scientific American column on tiling the 
plane periodically with congruent convex polygons (reprinted in my 
Time Travel and Other Mathematical Bewilderments) I promised a later 
column on nonperiodic tiling. This chapter reprints my fulfillment of 
that promise-a 1977 column that reported for the first time a remark
able nonperiodic tiling discovered by Roger Penrose, the noted British 
mathematical physicist and cosmologist. First, let me give some defin
itions and background. 

A periodic tiling is one on which you can outline a region that tiles 
the plane by translation, that is, by shifting the position of the region 
without rotating or reflecting it. M. C. Escher, the Dutch artist, was fa
mous for his many pictures of periodic tilings with shapes that resem
ble living things. Figure 7.1 is typical. An adjacent black and white 
bird constitute a fundamental region that tiles by translation. Think of 
the plane as being covered with transparent paper on which each tile 
is outlined. Only if the tiling is periodic can you shift the paper, with
out rotation, to a new position where all outlines again exactly fit. 

An infinity of shapes-for instance the regular hexagon-tile only pe
riodically. An infinity of other shapes tile both periodically and non
periodically. A checkerboard is easily converted to a nonperiodic tiling 
by identical isosceles right triangles or by quadrilaterals. Simply bisect 
each square as shown in Figure 7.2A, left, altering the orientations to 
prevent periodicity. It is also easy to tile nonperiodically with domi
noes. 

Isoceles triangles also tile in the radial fashion shown in the center 
of Figure 7.2(A). Although the tiling is highly ordered, it is obviously 
not periodic. As Michael Goldberg pointed out in a 1955 paper titled 
"Central Tessellations," such a tiling can be sliced in half, and then the 
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tiles spirally. Figure 7.3 shows a striking pattern obtained in this way 
from a nine-sided polygon. It was first found by Heinz Voderberg in a 
complicated procedure. Goldberg's method of obtaining it makes it al
most trivial. 

Figure 1.3. A spiral tiling by Heinz Voderberg 

In all known cases of nonperiodic tiling by congruent figures the fig
ure also tiles periodically. Figure 7.2(B}, right, shows how two of the 
Voderberg enneagons go together to make an octagon that tiles period
ically in an obvious way. 

Another kind of nonperiodic tiling is obtained by tiles that group to
gether to form larger replicas of themselves. Solomon W. Golomb calls 
them "reptiles." Figure 7.4 shows how a shape called the H sphinx" 
tiles nonperiodically by giving rise to ever larger sphinxes. Again, two 
sphinxes (with one sphinx rotated 180 degrees) tile periodically in an 
obvious way. 

Are there sets of tiles that tile only nonperiodically? By "only" we 
mean that neither a single shape or subset nor the entire set tiles peri
odically but that by using all of them a nonperiodic tiling is possible. 
Rotating and reflecting tiles are allowed. 

For many decades experts believed no such set exists, but the sup-
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should make at least 100 kites and 60 darts. The pieces need be colored 
on one side only. The number of pieces of the two shapes are (like their 
areas) in the golden ratio. You might suppose you need more of the 
smaller darts, but it is the other way around. You need 1.618 ... as 
many kites as darts. In an infinite tiling this proportion is exact. The ir
rationality of the ratio underlies a proof by Penrose that the tiling is 
nonperiodic because if it were periodic, the ratio clearly would have to 
be rational. 

A good plan is to draw as many darts and kites as you can on one 
sheet, with a ratio of about five kites to three darts, using a thin line for 
the curves. The sheet can be photocopied many times. The curves can 
then be colored, say, red and green. Conway has found that it speeds 
constructions and keeps patterns stabler if you make many copies of the 
three larger shapes as is shown in Figure 7.6(C). As you expand a pat
tern, you can continually replace darts and kites with aces and bow 
ties. Actually an infinity of arbitrarily large pairs of shapes, made up of 
darts and kites, will serve for tiling any infinite pattern. 

A Penrose pattern is made by starting with darts and kites around one 
vertex and then expanding radially. Each time you add a piece to an 
edge, you must choose between a dart and a kite. Sometimes the choice 
is forced, sometimes it is not. Sometimes either piece fits, but later you 
may encounter a contradiction (a spot where no piece can be legally 
added) and be forced to go back and make the other choice. It is a good 
plan to go around a boundary, placing all the forced pieces first. They 
cannot lead to a contradiction. You can then experiment with unforced 
pieces. It is always possible to continue forever. The more you play 
with the pieces, the more you will become aware of "forcing rules" 
that increase efficiency. For example, a dart forces two kites in its con
cavity, creating the ubiquitous ace. 

There are many ways to prove that the number of Penrose tilings is 
uncountable, just as the number of points on a line is. These proofs rest 
on a surprising phenomenon discovered by Penrose. Conway calls it 
"inflation" and "deflation." Figure 7.7 shows the beginning of inflation. 
Imagine that every dart is cut in half and then all short edges of the orig
inal pieces are glued together. The result: a new tiling (shown in heavy 
black lines) by larger darts and kites. 

Inflation can be continued to infinity, with each new "generation" of 
pieces larger than the last. Note that the second-generation kite, al
though it is the same size and shape as a first-generation ace, is formed 
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Not all possible sequences of the four symbols can be produced this 
way, but those that label different patterns can be shown to correspond 
in number with the number of points on a line. 

We have omitted the colored curves on our pictures of tilings be
cause they make it difficult to see the tiles. If you work with colored 
tiles, however, you will be struck by the beautiful designs created by 
these curves. Penrose and Conway independently proved that when
ever a curve closes, it has a pentagonal symmetry, and the entire region 
within the curve has a fivefold symmetry. At the most a pattern can 
have two curves of each color that do not close. In most patterns all 
curves close. 

Although it is possible to construct Penrose patterns with a high de
gree of symmetry (an infinity of patterns have bilateral symmetry), most 
patterns, like the universe, are a mystifying mixture of order and un
expected deviations from order. As the patterns expand, they seem to 
be always striving to repeat themselves but never quite managing it. G. 
K. Chesterton once suggested that an extraterrestrial being, observing 
how many features of a human body are duplicated on the left and the 
right, would reasonably deduce that we have a heart on each side. The 
world, he said, "looks just a little more mathematical and regular than 
it is; its exactitude is obvious, but its inexactitude is hidden; its wild
ness lies in wait." Everywhere there is a "silent swerving from accuracy 
by an inch that is the uncanny element in everything . . . a sort of se
cret treason in the universe." The passage is a nice description of Pen
rose's planar worlds. 

There is something even more surprising about Penrose universes. In 
a curious finite sense, given by the "local isomorphism theorem," all 
Penrose patterns are alike. Penrose was able to show that every finite 
region in any pattern is contained somewhere inside every other pat
tern. Moreover, it appears infinitely many times in every pattern. 

To understand how crazy this situation is, imagine you are living on 
an infinite plane tessellated by one tiling of the uncountable infinity of 
Penrose tilings. You can examine your pattern, piece by piece, in ever 
expanding areas. No matter how much of it you explore you can never 
determine which tiling you are on. It is no help to travel far out and ex
amine disconnected regions, because all the regions belong to one large 
finite region that is exactly duplicated infinitely many times on all pat
terns. Of course, this is trivially true of any periodic tessellation, but 
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Penrose universes are not periodic. They differ from one another in in
finitely many ways, and yet it is only at the unobtainable limit that one 
can be distinguished from another. 

Suppose you have explored a circular region of diameter d. Call it the 
"town" where you live. Suddenly you are transported to a randomly 
chosen parallel Penrose world. How far are you from a circular region 
that exactly matches the streets of your home town? Conway answers 
with a truly remarkable theorem. The distance from the perimeter of the 
home town to the perimeter of the duplicate town is never more than 
d times half of the cube of the golden ratio, or 2.11 + times d. (This is 
an upper bound, not an average.) If you walk in the right direction, 
you need not go more than that distance to find yourself inside an exact 
copy of your home town. The theorem also applies to the universe in 
which you live. Every large circular pattern (there is an infinity of dif
ferent ones) can be reached by walking a distance in some direction 
that is certainly less than about twice the diameter of the pattern and 
more likely about the same distance as the diameter. 

The theorem is quite unexpected. Consider an analogous isomor
phism exhibited by a sequence of unpatterned digits such as pi. If you 
pick a finite sequence of 10 digits and then start from a random spot in 
pi, you are pretty sure to encounter the same sequence if you move far 
enough along pi, but the distance you must go has no known upper 
bound, and the expected distance is enormously longer than 10 digits. 
The longer the finite sequence is, the farther you can expect to walk to 
find it again. On a Penrose pattern you are always very close to a du
plicate of home. 

There are just seven ways that darts and kites will fit around a ver
tex. Let us consider first, using Conway's nomenclature, the two ways 
with pentagonal symmetry. 

The sun (shown in white in Figure 7.8) does not force the placing of 
any other piece around it. If you add pieces so that pentagonal sym
metry is always preserved, however, you will be forced to construct the 
beautiful pattern shown. It is uniquely determined to infinity. 

The star, shown in white in Figure 7.9, forces the 10 light gray kites 
around it. Enlarge this pattern, always preserving the fivefold symmetry, 
and you will create another flowery design that is infinite and unique. 
The star and sun patterns are the only Penrose universes with perfect 
pentagonal symmetry, and there is a lovely sense in which they are 
equivalent. Inflate or deflate either of the patterns and you get the other. 
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about kites and darts can be translated into a theorem about the Penrose 
rhombuses or any other pair of Penrose tiles and vice versa. Conway 
prefers to work with darts and kites, but other mathematicians prefer 
working with the simpler rhombuses. Robert Ammann has found a be
wildering variety of other sets of nonperiodic tiles. One set, consisting 
of two convex pentagons and a convex hexagon, forces non periodicity 
without any edge markings. He found several pairs, each a hexagon 
with five interior angles of 90 degrees and one of 270 degrees. 

Figure 1.1 s. The Pythagorean E 

pentagram 

A~------~~----~--------~ 

Are there pairs of tiles not related to the golden ratio that force non
periodicity? Is there a pair of similar tiles that force non periodicity? Is 
there a pair of convex tiles that will force nonperiodicity without edge 
markings? 

Of course, the major unsolved problem is whether there is a single 
shape that will tile the plane only nonperiodically. Most experts think 
not, but no one is anywhere near proving it. It has not even been shown 
that if such a tile exists, it must be nonconvex. 

Addendum 

For much more on Penrose tiles, see Chapter 2 in my Penrose 
Tiles to Trapdoor Ciphers (Mathematical Association of America 1989; 

paperback, 1997) in which I discuss solid forms of the tiles and their as
tonishing application to what are called quasicrystals. Until Penrose's 
discovery, crystals based on fivefold symmetry were believed to be im-
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possible to construct. My bibliography gives only a small sampling of 
books and papers about quasicrystals that have been published in re
cent years. 

In 1993 John Horton Conway made a significant breakthrough when 
he discovered a convex solid called a biprism that tiles space only ape
riodically. (Aperiodic has replaced nonperiodic as a term for a tile that 
tiles only in a nonperiodic way.) A few years earlier Peter Schmitt, at 
the University of Vienna, found a nonconvex solid that fills space ape
riodically, though in a trivial fashion. Conway's subtler solid is de
scribed and pictured in Keith Devlin's The Language of Mathematics 
(W. H. Freeman, 1998, pp. 219-20; paperback, 2000). Doris Schatt
schneider kindly supplied me with the pattern shown in Figure 7.16 for 
constructing the Conway solid. 

To assemble, score on all interior 
lines, then cut around the outline of 
the pattern. Tabs labeled u are to be 
folded up, those with d are to be 
folded down. Two prisms are then 
assembled, one on each side of the 
common rhombus face. 

Figure 1.16. Conway's biprism. The central rhombus (which is inside the model when as
sembled) has sides of length 2 and short diagonal length Yz. The small angle of the 
rhombus is arcos(3/4) "" 41.4 degrees. Two triangular prisms are built on this common 
rhombus face. The diagonal of the prism parallelogram face has length Y(33/4) = 2.87. 
When assembled, the vertices of the rhombus that is a common face of the two prisms 
are the poles of 2 twofold rotation raxes. 

As Devlin explains, Conway's biprism fills space in layers. Every 
layer is periodic, but each adjacent layer must be rotated by an irra
tional angle that forces aperiodicity. Unfortunately neither of the two 
aperiodic solids leads to the construction of a flat tile that covers the 
plane aperiodically. Finding such a tile or proving it nonexistent is the 
top unsolved problem in tiling theory. 

In 1997 Penrose sued England's Kimberly-Clark Company for putting 
his tiling pattern on their quilted toilet paper without his permission. 
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See Time, May 5, 1997, page 26, for the story and a picture of the 
paper's pattern. I don't know the outcome of the lawsuit. 

For a long time Penrose tiles were unavailable for purchase. Happily 
they are now on the market in a variety of forms that can be obtained 
from Kadon Enterprises, 1227 Lorrene Drive, Pasadena, MD 21122. 
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Chapter 8 

Planiversal scientists are not a very 
common breed. 

-Alexander Keewatin Dewdney 

The Wonders 
of a Planiverse 

Jls far as anyone knows the only existing universe is the one 
we live in, with its three dimensions of space and one of time. It is not 
hard to imagine, as many science-fiction writers have, that intelligent 
organisms could live in a four-dimensional space, but two dimensions 
offer such limited degrees of freedom that it has long been assumed in
telligent 2-space life forms could not exist. Two notable attempts have 
nonetheless been made to describe such organisms. 

In 1884 Edwin Abbott Abbott, a London clergyman, published his 
satirical novel Flatland. Unfortunately the book leaves the reader al
most entirely in the dark about Flatland's physical laws and the tech
nology developed by its inhabitants, but the situation was greatly 
improved in 1907 when Charles Howard Hinton published An Episode 
of Flatland. Although written in a flat style and with cardboard char
acters, Hinton's story provided the first glimpses of the possible science 
and technology of the two-dimensional world. His eccentric book is, 
alas, long out of print, but you can read about it in the chapter "Flat
lands" in my book The Unexpected Hanging and Other Mathematical 
Diversions (Simon & Schuster, 1969). 

In "Flatlands" I wrote: "It is amusing to speculate on two
dimensional physics and the kinds of simple mechanical devices that 
would be feasible in a flat world." This remark caught the attention of 
Alexander Keewatin Dewdney, a computer scientist at the University 
of Western Ontario. Some of his early speculations on the subject were 
set down in 1978 in a university report and in 1979 in "Exploring the 
Planiverse," an article in Journal of Recreational Mathematics (Vol. 12, 
No.1, pp. 16-20; September). Later in 1979 Dewdney also privately 
published "Two-dimensional Science and Technology," a 97-page tour 
de force. It is hard to believe, but Dewdney actually lays the ground-
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work for what he calls a planiverse: a possible two-dimensional world. 
Complete with its own laws of chemistry, physics, astronomy, and bi
ology, the planiverse is closely analogous to our own universe (which 
he calls the steriverse) and is apparently free of contradictions. I should 
add that this remarkable achievement is an amusing hobby for a math
ematician whose serious contributions have appeared in some 30 pa
pers in technical journals. 

Dewdney's planiverse resembles Hinton's in having an earth that he 
calls (as Hinton did) Astria. Astria is a dislike planet that rotates in pla
nar space. The Astrians, walking upright on the rim of the planet, can 
distinguish east and west and up and down. Naturally there is no north 
or south. The "axis" of Astria is a point at the center of the circular 
planet. You can think of such a flat planet as being truly two
dimensional or you can give it a very slight thickness and imagine it as 
moving between two frictionless planes. 

As in our world, gravity in a planiverse is a force between objects that 
varies directly with the product of their masses, but it varies inversely 
with the linear distance between them, not with the square of that dis
tance. On the assumption that forces such as light and gravity in a 
planiverse move in straight lines, it is easy to see that the intensity of 
such forces must vary inversely with linear distance. The familiar text
book figure demonstrating that in our world the intensity of light varies 
inversely with the square of distance is shown at the top of Figure 8.1. 
The obvious planar analogue is shown at the bottom of the illustra
tion. 

To keep his whimsical project from" degenerating into idle specula
tion" Dewdney adopts two basic principles. The "principle of similarity" 
states that the planiverse must be as much like the steriverse as possi
ble: a motion not influenced by outside forces follows a straight line, 
the flat analogue of a sphere is a circle, and so on. The "principle of 
modification" states that in those cases where one is forced to choose 
between conflicting hypotheses, each one equally similar to a steriver
sal theory, the more fundamental one must be chosen and the other 
must be modified. To determine which hypothesis is more fundamen
tal Dewdney relies on the hierarchy in which physics is more funda
mental than chemistry, chemistry is more fundamental than biology, 
and so on. 

To illustrate the interplay between levels of theory Dewdney con
siders the evolution of the planiversal hoist in Figure 8.2. The engineer 
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who designed it first gave it arms thinner than those in the illustration, 
but when a metallurgist pointed out that planar materials fracture more 
easily than their 3-space counterparts, the engineer made the arms 
thicker. Later a theoretical chemist, invoking the principles of similar
ity and modification at a deeper level, calculated that the planiversal 
molecular forces are much stronger than had been suspected, and so 
the engineer went back to thinner arms. 

The principle of similarity leads Dewdney to posit that the planiverse 

Figure 8.2. 
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is a three-dimensional continuum of space-time containing matter 
composed of molecules, atoms, and fundamental particles. Energy is 
propagated by waves, and it is quantized. Light exists in all its wave
lengths and is refracted by planar lenses, making possible planiversal 
eyes, planiversal telescopes, and planiversal microscopes. The plani
verse shares with the steriverse such basic precepts as causality; the 
first and second laws of thermodynamics; and laws concerning inertia, 
work, friction, magnetism, and elasticity. 

Dewdney assumes that his planiverse began with a big bang and is 
currently expanding. An elementary calculation based on the inverse
linear gravity law-shows that regardless of the amount of mass in the 
planiverse the expansion must eventually halt, so that a contracting 
phase will begin. The Astrian night sky will of course be a semicircle 
along which are scattered twinkling points of light. If the stars have 
proper motions, they will continually be occulting one another. If As
tria has a sister planet, it will over a period of time occult every star in 
the sky. 

We can assume that Astria revolves around a sun and rotates, thereby 
creating day and night. In a planiverse, Dewdney discovered, the only 
stable orbit that continually retraces the same path is a perfect circle. 
Other stable orbits roughly elliptical in shape are possible, but the axis 
of the ellipse rotates in such a way that the orbit never exactly closes. 
Whether planiversal gravity would allow a moon to have a stable orbit 
around Astria remains to be determined. The difficulty is due to the 
sun's gravity, and resolving the question calls for work on the planar 
analogue of what our astronomers know as the three-body problem. 

Dewdney analyzes in detail the nature of Astrian weather, using 
analogies to our seasons, winds, clouds, and rain. An Astrian river 
would be indistinguishable from a lake except that it might have faster 
currents. One peculiar feature of Astrian geology is that water cannot 
flow around a rock as it does on the earth. As a result rainwater steadily 
accumulates behind any rock on a slope, tending to push the rock 
downhill: the gentler the slope is, the more water accumulates and the 
stronger the push is. Dewdney concludes that given periodic rainfall 
the Astrian surface would be unusually flat and uniform. Another con
sequence of the inability of water to move sideways on Astria is that it 
would become trapped in pockets within the soil, tending to create 
large areas of treacherous quicksand in the hollows of the planet. One 
hopes, Dewdney writes, that rainfall is infrequent on Astria. Wind too 
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would have much severer effects on Astria than on the earth because 
like rain it cannot "go around" objects. 

Dewdney devotes many pages to constructing a plausible chemistry 
for his planiverse, modeling it as much as possible on three
dimensional matter and the laws of quantum mechanics. Figure 8.3 

shows Dewdney's periodic table for the first 16 planiversal elements. 
Because the first two are so much like their counterparts in our world, 
they are called hydrogen and helium. The next 10 have composite 
names to suggest the steriversal elements they most resemble; for ex
ample, lithrogen combines the properties of lithium and nitrogen. The 
next four are named after Hinton, Abbott, and the young lovers in Hin
ton's novel, Harold Wall and Laura Cartwright. 

ATOMIC NAME SYMBOL SHELL STRUCTURE VALENCE 
NUMBER ls 2s 2p 3s 3p 3d 4s 4p ... 

1 HYDROGEN H 1 1 
2 HELIUM He 2 2 
3 LITROGEN Lt 2 1 1 
4 BEROXYGEN Bx 2 2 2 
5 FLUORON FI 2 2 1 3 
6 NEOCARBON Nc 2 2 2 4 
7 SODAUNUM Sa 2 2 2 1 1 
8 MAGNILICON Me 2 2 2 2 2 
9 ALUPHORUS Ap 2 2 2 2 1 3 

10 SULFICON Sp 2 2 2 2 2 4 
11 CHLOPHORUS Cp 2 2 2 2 2 1 5 
12 ARGOFUR At 2 2 2 2 2 2 B 
13 HINTONIUM Hn 2 2 2 2 2 2 1 1 
14 ABBOOEN Ab 2 2 2 2 2 2 2 2 
15 HAROLDIUM Wa 2 2 2 2 2 2 2 1 3 
16 LAURANIUM La 2 2 2 2 2 2 2 2 4 

FigureS.3. 

In the flat world atoms combine naturally to form molecules, but of 
course only bonding that can be diagrammed by a planar graph is al
lowed. (This result follows by analogy from the fact that intersecting 
bonds do not exist in steriversal chemistry.) As in our world, two 
asymmetric molecules can be mirror images of each other, so that nei
ther one can be "turned over" to become identical with the other. There 
are striking parallels between planiversal chemistry and the behavior 
of steriversal monolayers on crystal surfaces (see J. G. Dash, "Two
dimensional Matter," Scientific American, May 1973). In our world 
molecules can form 230 distinct crystallographic groups, but in the 
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pI ani verse they can form only 17. I am obliged to pass over Dewdney's 
speculations about the diffusion of molecules, electrical and magnetic 
laws, analogues of Maxwell's equations, and other subjects too techni
cal to summarize here. 

Dewdney assumes that animals on Astria are composed of cells that 
cluster to form bones, muscles, and connective tissues similar to those 
found in steriversal biology. He has little difficulty showing how these 
bones and muscles can be structured to move appendages in such a 
way that the animals can crawl, walk, fly, and swim. Indeed, some of 
these movements are easier in a planiverse than in our world. For ex
ample, a steriversal animal with two legs has considerable difficulty 
balancing while walking, whereas in the planiverse if an animal has 
both legs on the ground, there is no way it can fall over. Moreover, a fly
ing planiversal animal cannot have wings and does not need them to 
fly; if the body of the animal is aerodynamically shaped, it can act as a 
wing (since air can go around it only in the plane). The flying animal 
could be propelled by a flapping tail. 

Calculations also show that Astrian animals probably have much 
lower metabolic rates than terrestrial animals because relatively little 
heat is lost through the perimeter of their body. Furthermore, animal 
bones can be thinner on Astria than they are on the earth, because they 
have less weight to support. Of course, no Astrian animal can have an 
open tube extending from its mouth to its anus, because if it did, it 
would be cut in two. 

In the appendix to his book The Structure and Evolution of the Uni
verse (Harper, 1959) G. J. Whitrow argues that intelligence could not 
evolve in 2-space because of the severe restrictions two dimensions 
impose on nerve connections. "In three or more dimensions," he 
writes, "any number of [nerve] cells can be connected with [one an
other] in pairs without intersection of the joins, but in two dimensions 
the maximum number of cells for which this is possible is only four." 
Dewdney easily demolishes this argument, pointing out that if nerve 
cells are allowed to fire nerve impulses through "crossover points," 
they can form flat networks as complex as any in the steriverse. 
Planiversal minds would operate more slowly than steriversal ones, 
however, because in the two-dimensional networks the pulses would 
encounter more interruptions. (There are comparable results in the the
ory of two-dimensional automatons.) 

Dewdney sketches in detail the anatomy of an Astrian female fish 
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life-giving plants and animals, it is clear that very little of the Astrian 
surface can be disturbed without inviting the biological destruction of 
the planet. For example, here on earth we may build a modest highway 
through the middle of several acres of rich farmland and destroy no 
more than a small percentage of it. A corresponding highway on Astria 
will destroy all the 'acreage' it passes over .... Similarly, extensive 
cities would quickly use up the Astrian countryside. It would seem 
that the only alternative for the Astrian technological society is to go 
underground." A typical subterranean house with a living room, two 
bedrooms, and a storage room is shown in Figure 8.5. Collapsible chairs 
and tables are stored in recesses in the floors to make the rooms easier 
to walk through. 

BEDROOMS 

Figure B.S. 

The many simple three-dimensional mechanical elements that have 
obvious analogues on Astria include rods, levers, inclined planes, 
springs, hinges, ropes, and cables (see Figure 8.6, top). Wheels can be 
rolled along the ground, but there is no way to turn them on a fixed 
axle. Screws are impossible. Ropes cannot be knotted; but by the same 
token, they never tangle. Tubes and pipes must have partitions, to keep 
their sides in place, and the partitions have to be opened (but never all 
of them at once) to allow anything to pass through. It is remarkable that 
in spite of these severe constraints many flat mechanical devices can be 
built that will work. A faucet designed by Dewdney is shown in Figure 
8.6, bottom. To operate it the handle is lifted. This action pulls the 
valve away from the wall of the spout, allowing the water to flow out. 
When the handle is released, the spring pushes the valve back. 

The device shown in Figure 8.7 serves to open and close a door (or 
a wall). Pulling down the lever at the right forces the wedge at the bot
tom to the left, thereby allowing the door to swing upward (carrying the 
wedge and the levers with it) on a hinge at the top. The door is opened 
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from the left by pushing up on the other lever. The door can be lowered 
from either side and the wedge can be moved back to stabilize the wall 
by moving a lever in the appropriate direction. This device and the 
faucet are both mechanisms with permanent planiversal hinges: circu
lar knobs that rotate inside hollows but cannot be removed from them. 

Figure B.B depicts a planiversal steam engine whose operation par
allels that of a steriversal engine. Steam under pressure is admitted 
into the cylinder of the engine through a sliding valve that forms one 
of its walls (top). The steam pressure causes a piston to move to the 
right until steam can escape into a reservoir chamber above it. The sub
sequent loss of pressure allows the compound leaf spring at the right 
of the cylinder to drive the piston back to the left (bottom). The sliding 
valve is closed as the steam escapes into the reservoir, but as the pis
ton moves back it reopens, pulled to the right by a spring-loaded arm. 

Figure B.9 depicts Dewdney's ingenious mechanism for unlocking a 
door with a key. This planiversallock consists of three slotted tumblers 
(a) that line up when a key is inserted (b) so that their lower halves 
move as a unit when the key is pushed (e). The pushing of the key is 
transmitted through a lever arm to the master latch, which pushes 
down on a slave latch until the door is free to swing to the right (d). The 
bar on the lever arm and the lip on the slave latch make the lock diffi
cult to pick. Simple and compound leaf springs serve to return all the 
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Figure B.7. 

parts of the lock except the lever arm to their original positions when 
the door is opened and the key is removed. When the door closes, it 
strikes the bar on the lever arm, thereby returning that piece to its orig
inal position as well. This flat lock could actually be employed in the 
steriverse; one simply inserts a key without twisting it. 

"It is amusing to think," writes Dewdney, "that the rather exotic de
sign pressures created by the planiversal environment could cause us 
to think about mechanisms in such a different way that entirely novel 
solutions to old problems arise. The resulting designs, if steriversally 
practical, are invariably space-saving." 

Thousands of challenging planiversal problems remain unsolved. Is 
there a way, Dewdney wonders, to design a two-dimensional windup 
motor with flat springs or rubber bands that would store energy? What 
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ments) about what might be observed. "The experimentalist's loss," 
observes Dewdney, "is the theoretician's gain." 

A marvelous exhibit could be put on of working models of planiver
sal machines, cut out of cardboard or sheet metal, and displayed on a 
surface that slopes to simulate planiversal gravity. One can also imag
ine beautiful cardboard exhibits of planiversallandscapes, cities, and 
houses. Dewdney has opened up a new game that demands knowledge 
of both science and mathematics: the exploration of a vast fantasy 
world about which at present almost nothing is known. 

It occurs to me that Astrians would be able to play two-dimensional 
board games but that such games would be as awkward for them as 
three-dimensional board games are for us. I imagine them, then, play
ing a variety of linear games on the analogue of our 8 x 8 chessboard. 
Several games of this type are shown in Figure 8.10. Part (a) shows the 
start of a checkers game. Pieces move forward only, one cell at a time, 
and jumps are compulsory. The linear game is equivalent to a game of 
regular checkers with play confined to the main diagonal of a standard 
board. It is easy to see how the second player wins in rational play and 
how in misere, or "giveaway," checkers the first player wins just as 
easily. Linear checkers games become progressively harder to analyze 
as longer boards are introduced. For example, which player wins stan
dard linear checkers on the ll-cell board when each player starts with 
checkers on the first four cells at his end of the board? 

2 3 4 5 6 7 8 

a I r=J1r=J 1r=J I 

b 

a c 

E 

d 

e 

Figure 8. I O. 
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Part (b) in the illustration shows an amusing Astrian analogue of 
chess. On a linear board a bishop is meaningless and a queen is the 
same as a rook, so the pieces are limited to kings, knights, and rooks. 
The only rule modification needed is that a knight moves two cells in 
either direction and can jump an intervening piece of either color. If the 
game is played rationally, will either White or Black win or will the 
game end in a draw? The question is surprisingly tricky to answer. 

Linear go, played on the same board, is by no means trivial. The ver
sion I shall describe, called pinch, was invented in 1970 by James 
Marston Henle, a mathematician at Smith College. 

In the game of pinch players take turns placing black and white 
stones on the cells of the linear board, and whenever the stones of one 
player surround the stones of the other, the surrounded stones are re
moved. For example, both sets of white stones shown in part (c) of Fig
ure 8.10 are surrounded. Pinch is played according to the following two 
rules. 

Rule 1: No stone can be placed on a cell where it is surrounded un
less that move serves to surround a set of enemy stones. Hence in the 
situation shown in part (d) of the illustration, White cannot play on 
cells 1, 3, or 8, but he can play on cell 6 because this move serves to sur
round cell 5. 

Rule 2: A stone cannot be placed on a cell from which a stone was re
moved on the last play if the purpose of the move is to surround some
thing. A player must wait at least one turn before making such a move. 
For example, in part (e) of the illustration assume that Black plays on 
cell 3 and removes the white stones on cells 4 and 5. White cannot play 
on cell 4 (to surround cell 3) for his next move, but he may do so for any 
later move. He can play on cell 5, however, because even though a 
stone was just removed from that cell, the move does not serve to sur
round anything. This rule is designed to decrease the number of stale
mates, as is the similar rule in go. 

Two-cell pinch is a trivial win for the second player. The three- and 
four-cell games are easy wins for the first player if he takes the center 
in the three-cell game and one of the two central cells in the four-cell 
one. The five-cell game is won by the second player and the six- and 
seven-cell games are won by the first player. The eight-cell game jumps 
to such a high level of complexity that it becomes very exciting to play. 
Fortunes often change rapidly, and in most situations the winning 
player has only one winning move. 
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Addendum 
My column on the planiverse generated enormous interest. 

Dewdney received some thousand letters offering suggestions about 
flatland science and technology. In 1979 he privately printed Two
Dimensional Science and Technology, a monograph discussing these 
new results. Two years later he edited another monograph, A Sympo
sium of Two-Dimensional Science and Technology. It contained papers 
by noted scientists, mathematicians, and laymen, grouped under the 
categories of physics, chemistry, astronomy, biology, and technology. 
Newsweek covered these monographs in a two-page article, "Life in 
Two Dimensions" (January 18, 1980), and a similar article, "Scientific 
Dreamers' Worldwide Cult," ran in Canada's Maclean's magazine (Jan
uary 11,1982). Omni (March 1983), in an article on "Flatland Redux," 
included a photograph of Dewdney shaking hands with an Astrian. 

In 1984 Dewdney pulled it all together in a marvelous work, half 
nonfiction and half fantasy, titled The Planiverse and published by Po
seidon Press, an imprint of Simon & Schuster. That same year he took 
over the mathematics column in Scientific American, shifting its em
phasis to computer recreations. Several collections of his columns have 
been published by W. H. Freeman: The Armchair Universe (1987), The 
Turing Omnibus (1989), and The Magic Machine (1990). 

An active branch of physics is now devoted to planar phenomena. It 
involves research on the properties of surfaces covered by a film one 
molecule thick, and a variety of two-dimensional electrostatic and elec
tronic effects. Exploring possible flatlands also relates to a philosoph
ical fad called "possible worlds." Extreme proponents of this 
movement actually argue that if a universe is logically possible-that 
is, free of logical contradictions-it is just as "real" as the universe in 
which we flourish. 

In Childhood's End Arthur Clarke describes a giant planet where in
tense gravity has forced life to evolve almost flat forms with a vertical 
thickness of one centimeter. 

The following letter from J. Richard Gott III, an astrophysicist at 
Princeton University, was published in Scientific American (October 
1980): 

I was interested in Martin Gardner's article on the physics of Flatland, 
because for some years I have given the students in my general relativ-
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ity class the problem of deriving the theory of general relativity for Flat
land. The results are surprising. One does not obtain the Flatland ana
logue of Newtonian theory (masses with gravitational fields falling off 
like llr) as the weak-field limit. General relativity in Flatland predicts no 
gravitational waves and no action at a distance. A planet in Flatland 
would produce no gravitational effects beyond its own radius. In our 
four-dimensional space-time the energy momentum tensor has 10 in
dependent components, whereas the Riemann curvature tensor has 20 
independent components. Thus it is possible to find solutions to the 
vacuum field equations GJ,LV == 0 (where all components of the energy 
momentum tensor are zero) that have a nonzero curvature. Black-hole 
solutions and the gravitational-field solution external to a planet are ex
amples. This allows gravitational waves and action at a distance. Flat
land has a three-dimensional space-time where the energy momentum 
tensor has six independent components and the Riemann curvature ten
sor also has only six independent components. In the vacuum where all 
components of the energy momentum tensor are zero all the compo
nents of the Riemann curvature tensor must also be zero. No action at a 
distance or gravity waves are allowed. 

Electromagnetism in Flatland, on the other hand, behaves just as one 
would expect. The electromagnetic field tensor in four-dimensional 
space-time has six independent components that can be expressed as 
vector E and B fields with three components each. The electromagnetic 
field tensor in a three-dimensional space-time (Flatland) has three in
dependent components: a vector E field with two components and a 
scalar B field. Electromagnetic radiation exists, and charges have electric 
fields that fall off like llr. 

Two more letters, published in the same issue, follow. John S. Harris, 
of Brigham Young University's English Department, wrote: 

As I examined Alexander Keewatin Dewdney's planiversal devices in 
Martin Gardner's article on science and technology in a two-dimensional 
universe, I was struck with the similarity of the mechanisms to the lock
work of the Mauser military pistol of 1895. This remarkable automatic 
pistol (which had many later variants) had no pivot pins or screws in its 
functional parts. Its entire operation was through sliding cam surfaces 
and two-dimensional sockets (called hinges by Dewdney). Indeed, the 
lockwork of a great many firearms, particularly those of the 19th century, 
follows essentially planiversal principles. For examples see the cutaway 
drawings in Book of Pistols and Revolvers by W.H.B. Smith. 

Gardner suggests an exhibit of machines cut from cardboard, and that 
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is exactly how the firearms genius John Browning worked. He would 
sketch the parts of a gun on paper or cardboard, cut out the individual 
parts with scissors (he often carried a small pair in his vest pocket), and 
then would say to his brother Ed, "Make me a part like this." Ed would 
ask, "How thick, John?" John would show a dimension with his thumb 
and forefinger, and Ed would measure the distance with calipers and 
make the part. The result is that virtually every part of the 100 or so 
Browning designs is essentially a two-dimensional shape with an added 
thickness. 

This planiversality of Browning designs is the reason for the obsoles
cence of most of them. Dewdney says in his enthusiasm for the plani
verse that "such devices are invariably space-saving." They are also 
expensive to manufacture. The Browning designs had to be manufac
tured by profiling machines: cam-following vertical milling machines. In 
cost of manufacture such designs cannot compete with designs that can 
be produced by automatic screw-cutting lathes, by broaching machines, 
by stamping, or by investment casting. Thus although the Browning de
signs have a marvelous aesthetic appeal, and although they function 
with delightful smoothness, they have nearly all gone out of produc
tion. They simply got too expensive to make. 

Stefan Drobot, a mathematician at Ohio State University, had this to 
say: 

In Martin Gardner's article he and the authors he quotes seem to have 
overlooked the following aspect of a "planiverse": any communication 
by means of a wave process, acoustic or electromagnetic, would in such 
a universe be impossible. This is a consequence of the Huygens princi
ple, which expresses a mathematical property of the (fundamental) so
lutions of the wave equation. More specifically, a sharp impulse-type 
signal (represented by a "delta function") originating from some point is 
propagated in a space of three spatial dimensions in a manner essentially 
different from that in which it is propagated in a space of two spatial di
mensions. In three-dimensional space the signal is propagated as a 
sharp-edged spherical wave without any trail. This property makes it 
possible to communicate by a wave process because two signals follow
ing each other in a short time can be distinguished. 

In a space with two spatial dimensions, on the other hand, the funda
mental solution of the wave equation represents a wave that, although it 
too has a sharp edge, has a trail of theoretically infinite length. An ob
server at a fixed distance from the source of the signal would perceive the 
oncoming front (sound, light, etc.) and then would keep perceiving it, al-
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though the intensity would decrease in time. This fact would make com
munication by any wave process impossible because it would not allow 
two signals following each other to be distinguished. More practically 
such communication would take much more time. This letter could not 
be read in the planiverse, although it is (almost) two-dimensional. 

My linear checkers and chess prompted many interesting letters. Abe 
Schwartz assured me that on the ll-cell checker field Black also wins if 
the game is give-away. I. Richard Lapidus suggested modifying linear 
chess by interchanging knight and rook (the game is a draw), by adding 
more cells, by adding pawns that capture by moving forward one space, 
or by combinations of the three modifications. If the board is long 
enough, he suggested duplicating the pieces-two knights, two rooks
and adding several pawns, allowing a pawn a two-cell start option as in 
standard chess. Peter Stampolis proposed sustituting for the knight two 
pieces called "kops" because they combine features of knight and bishop 
moves. One kop moves only on white cells, the other moves on black. 

Of course many other board games lend themselves to linear forms, 
for example, Reversi (also called Othello), or John Conway's Phutball, 
described in the two-volume Winning Ways written by Elwyn 
Berlekamp, Richard Guy, and John Conway. 

Burr puzzles are wooden take-apart puzzles often referred to as Chi
nese puzzles. Dewdney's Scientific American column (October 1985) 

describes a clever planar version of a burr puzzle designed by Jeffrey 
Carter. It comes apart only after a proper sequence of pushes and pulls. 

A graduate student in physics, whose name I failed to record, had a 
letter in Science News, December 8,1984, protesting the notion that re
search in planar physics was important because it led to better under
standing of three-dimensional physics. On the contrary, he wrote, 
planar research is of great interest for its own sake. He cited the quan
tum Hall effect and the whole field of microelectronics which is based 
on two-dimensional research and has many technological applications. 

Answers 
In ll-celllinear checkers (beginning with Black on cells 1,2,3, 

and 4 and White on cells 8, 9, 10, and 11) the first two moves are forced: 
Black to 5 and White to 7. To avoid losing, Black then goes to 4, and 
White must respond by moving to 8. Black is then forced to 3 and 
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White to 9. At this point Black loses with a move to 2 but wins with a 
move to 6. In the latter case White jumps to 5, and then Black jumps to 
6 for an easy end -game victory. 

On the eight-cell linear chessboard White can win in at most six 
moves. Of White's four opening moves, RxR is an instant stalemate and 
the shortest possible game. R-5 is a quick loss for White if Black plays 
RxR. Here White must respond with N-4, and then Black mates on his 
second move with RxN. This game is one of the two "fool's mates," or 
shortest possible wins. The R-4 opening allows Black to mate on his 
second or third move if he responds with N-5. 

White's only winning opening is N-4. Here Black has three possible 
replies: 

1. RxN. In this case White wins in two moves with RxR. 
2. R-5. White wins with K-2. If Black plays R-6, White mates with NxR. 

If Black takes the knight, White takes the rook, Black moves N-5, and 
White mates by taking Black's knight. 

3. N-5. This move delays Black's defeat the longest. In order to win 
White must check with NxR, forcing Black's king to 7. White moves 
his rook to 4. If Black plays KxN, White's king goes to 2, Black's K-7 
is forced, and White's RxN wins. If Black plays N-3 (check), White 
moves the king to 2. Black can move only the knight. If he plays N-
1, White mates with N-8. If Black plays N-5, White's N-8 forces 
Black's KxN, and then White mates with RxN. 

The first player also has the win in eight-cell pinch (linear go) by 
opening on the second cell from an end, a move that also wins the six
and seven-cell games. Assume that the first player plays on cell 2. His 
unique winning responses to his opponent's plays on 3,4,5,6,7, and 
8 are respectively 5,7,7,7,5, and 6. I leave the rest of the game to the 
reader. It is not known whether there are other winning opening moves. 
James Henle, the inventor of pinch, assures me that the second player 
wins the nine-cell game. He has not tried to analyze boards with more 
than nine cells. 
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Chapter 9 

Rosy's instant acceptance of our model at 
first amazed me. I had feared that her sharp, 
stubborn mind, caught in her self-made an
tihelical trap, might dig up irrelevant results 
that would foster uncertainty about the cor
rectness of the double helix. Nonetheless, 
like almost everyone else, she saw the ap
peal of the base pairs and accepted the fact 
that the structure was too pretty not to be 
true. -James D. Watson, The Double Helix 

The Helix 

A straight sword will fit snugly into a straight scabbard. The 
same is true of a sword that curves in the arc of a circle: it can be 
plunged smoothly into a scabbard of the same curvature. Mathemati
cians sometimes describe this property of straight lines and circles by 
calling them "self-congruent" curves; any segment of such a curve can 
be slid along the curve, from one end to the other, and it will always 
"fit. " 

Is it possible to design a sword and its scabbard that are not either 
straight or curved in a circular arc? Most people, after giving this care
ful consideration, will answer no, but they are wrong. There is a third 
curve that is self-congruent: the circular helix. This is a curve that coils 
around a circular cylinder in such a way that it crosses the "elements" 
of the cylinder at a constant angle. Figure 9.1 makes this clear. The el
ements are the vertical lines that parallel the cylinder's axis; A is the 
constant angle with which the helix crosses every element. Because of 
the constant curvature of the helix a helical sword would screw its 
way easily in and out of a helical scabbard. 

Actually the straight line and the circle can be regarded as limiting 
cases of the circular helix. Compress the curve until the coils are very 
close together and you get a tightly wound helix resembling a Slinky 
toy; if angle A increases to 90 degrees, the helix collapses into a circle. 
On the other hand, if you stretch the helix until angle A becomes zero, 
the helix is transformed into a straight line. If parallel rays of light 
shine perpendicularly on a wall, a circular helix held before the wall 
with its axis parallel to the rays will cast on the wall a shadow that is 
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ral around cones), including bedsprings and spiral ramps such as the 
inverted conical ramp in Frank Lloyd Wright's Guggenheim Museum in 
New York City. 

Not so in nature! Helical structures abound in living forms, from the 
simplest virus to parts of the human body, and in almost every case the 
genetic code carries information that tells each helix precisely "which 
way to go." The genetic code itself is carried by a double-stranded he
lical molecule of DNA, its two right-handed helices twining around 
each other like the two snakes on the staff of Hermes. Moreover, since 
Linus Pauling's pioneer work on the helical structure of protein mole
cules, there has been increasing evidence that every giant protein mol
ecule found in nature has a "backbone" that coils in a right-handed 
helix. In both nucleic acid and protein, the molecule's backbone is a 
chain made up of units each one of which is an asymmetric structure 
of the same handedness. Each unit, so to speak, gives an additional 
twist to the chain, in the same direction, like the steps of a helical stair
case. 

Larger helical structures in animals that have bilateral symmetry usu
ally come in mirror-image pairs, one on each side of the body. The 
horns of rams, goats, antelopes, and other mammals are spectacular 
examples (see Figure 9.2). The cochlea of the human ear is a conical 
helix that is left-handed in the left ear and right-handed in the right. A 
curious exception is the tooth of the narwhal, a small whale that flour
ishes in arctic waters. This whimsical creature is born with two teeth 
in its upper jaw. Both teeth remain permanently buried in the jaw of the 
female narwhal, and so does the right tooth of the male. But the male's 
left tooth grows straight forward, like a javelin, to the ridiculous length 
of eight or nine feet-more than half the animal's length from snout to 
tail! Around this giant tooth are helical grooves that spiral forward in 
a counterclockwise direction (see Figure 9.3). On the rare occasions 
when both teeth grow into tusks, one would expect the right tooth to 
spiral clockwise. But no, it too is always left-handed. Zoologists dis
agree on how this could come about. Sir D' Arcy Thompson, in his book 
On Growth and Form, defends his own theory that the whale swims 
with a slight screw motion to the right. The inertia of its huge tusk 
would produce a torque at the base of the tooth that might cause it to 
rotate counterclockwise as it grows (see J. T. Bonner, "The Horn of the 
Unicorn," Scientific American, March 1951). 

Whenever a single helix is prominent in the structure of any living 
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Figure 9.2. Helical horns of the Pamir sheep have opposite handedness. 

Figure 9.3. Helical grooves of the narwhal tooth are always left-handed. 

plant or animal, the species usually confines itself to a helix of a spe
cific handedness. This is true of countless forms of helical bacteria as 
well as of the spermatozoa of all higher animals. The human umbilical 
cord is a triple helix of one vein and two arteries that invariably coil to 
the left. The most striking instances are provided by the conical helices 
of the shells of snails and other mollusks. Not all spiral shells have a 
handedness. The chambered nautilus, for instance, coils on one plane; 
like a spiral nebula, it can be sliced into identical left and right halves. 
But there are thousands of beautiful molluscan shells that are either 
left- or right-handed (see Figure 9.4). Some species are always left
handed and some are always right-handed. Some go one way in one lo
cality and the other way in another. Occasional "sports" that twist the 
wrong way are prized by shell collectors. 

A puzzling type of helical fossil known as the devil's corkscrew (Dae
monelix) is found in Nebraska and Wyoming. These huge spirals, six 
feet or more in length, are sometimes right-handed and sometimes left
handed. Geologists argued for decades over whether they are fossils of 
extinct plants or helical burrows made by ancestors of the beaver. The 
beaver theory finally prevailed after remains of small prehistoric 
beavers were found inside some of the corkscrews. 

In the plant world helices are common in the structure of stalks, 
stems, tendrils, seeds, flowers, cones, leaves-even in the spiral 
arrangement of leaves and branches around a stalk. The number of 
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Figure 9.4. Three molluscan shells that are right-handed conical helices 

turns made along a helical path, as you move from one leaf to the leaf 
directly above it, tends to be a number in the familiar Fibonacci series: 
1, 2, 3, 5, 8, 13, ... (Each number is the sum of the preceding two num
bers.) A large literature in the field known as "phyllotaxy" (leaf arrange
ment) deals with the surprising appearance of the Fibonacci numbers 
in botanical phenomena of this sort. 

The helical stalks of climbing plants are usually right-handed, but 
thousands of species of twining plants go the other way. The honey
suckle, for instance, is always left-handed; the bindweed (a family that 
includes the morning glory) is always right-handed. When the two 
plants tangle with each other, the result is a passionate, violent embrace 
that has long fascinated English poets. "The blue bindweed," wrote 
Ben Jonson in 1617, "doth itself enfold with honeysuckle." And Shake
speare, in A Midsummer Night's Dream, has Queen Titania speak of her 
intention to embrace Bottom the Weaver (who has been transformed 
into a donkey) by saying: "Sleep thou, and I will wind thee in my 
arms'! ... So doth the woodbine the sweet honeysuckle/Gently en
twist." In Shakespeare's day "woodbine" was a common term for 
bindweed. Because it later carne to be applied exclusively to honey
suckle many commentators reduced the passage to absurdity by su p
posing that Titania was speaking of honeysuckle twined with 
honeysuckle. Awareness of the opposite handedness of bindweed and 
honeysuckle heightens, of course, the meaning of Titania's metaphor. 
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More recently, a charming sQng called "Misalliance," celebrating the 
love of the honeysuckle for the bindweed, has been written by the 
British poet and entertainer Michael Flanders and set to music by his 
friend Donald Swann. With Flanders' kind permission the entire song 
is reproduced on the opposite page. (Readers who would like to learn 
the tune can hear it sung by Flanders and Swann on the Angel record
ing of At the Drop of a Hat, their hilarious two-man revue that made 
such a hit in London and New York.) Note that Flanders' honeysuckle 
is right-handed and his bindweed, left-handed. It is a matter of con
vention whether a given helix is called left- or right-handed. If you 
look at the point of a right-handed wood screw, you will see the helix 
moving toward you counterclockwise, so that it can just as legitimately 
be called left-handed. Flanders simply adopts the convention oppo
site to the one taken here. 

The entwining of two circular helices of opposite handedness is also 
involved in a remarkable optical-illusion toy that was sold in this coun
try in the 1930s. It is easily made by twisting together a portion of two 
wire coils of opposite handedness (see Figure 9.6). The wires must be 
soldered to each other at several points to make a rigid structure. The 
illusion is produced by pinching the wire between thumb and forefin
ger of each hand at the left and right edges of the central overlap. When 
the hands are moved apart, the fingers and thumbs slide along the wire, 
causing it to rotate and create a barber's-pole illusion of opposite hand
edness on each side. This is continuously repeated. The wire seems to 
be coming miraculously out of the inexhaustible meshed portion. Since 
the neutrino and antineutrino are now known to travel with screw mo
tions of opposite handedness, I like to think of this toy as demonstrat
ing. the endless production of neutrinos and their mirror-image 
particles. 

On the science toy market at the time I write (2000) is a device called 
"Spinfinity." It consists of two aluminum wire helices that are inter
twined. When rotated you see the two helices moving in opposite di
rections. 

The helical character of the neutrino's path results from the fusion of 
its forward motion (at the speed of light) with its "spin." Helical paths 
of a similar sort are traced by many inanimate objects and living things: 
a point on the propeller of a moving ship or plane, a squirrel running 
up or down a tree, Mexican free-tailed bats gyrating counterclockwise 
when they emerge from caves at Carlsbad, NM. Conically helical paths 
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Figure 9.S. 

MISALLIANCE 

The fragrant Honeysuckle spirals clockwise to the sun 
And many other creepers do the same. 
But some climb counterclockwise, the Bindweed does, for one, 
Or Convolvulus, to give her proper name. 

Rooted on either side a door, one of each species grew, 
And raced toward the window ledge above. 
Each corkscrewed to the lintel in the only way it knew, 
Where they stopped, touched tendrils, smiled and fell in love. 

Said the right-handed Honeysuckle 
To the left-handed Bindweed: 
"Oh, let us get married, 
If our parents don't mind. We'd 
Be loving and inseparable. 
Inextricably entwined, we'd 
Live happily ever after, JJ 

Said the Honeysuckle to the Bindweed. 

To the Honeysuckle's parents it came as a shock. 
"The Bindweeds," they cried, "are inferior stock. 
They're uncultivated, of breeding bereft. 
We twine to the right and they twine to the left!" 

Said the countercockwise Bindweed 
To the clockwise Honeysuckle: 
"We'd better start saving
Many a mickle maks a muckle
Then run away for a honeymoon 
And hope that our luck'll 
Take a turn for the better, JJ 

Said the Bindweed to the Honeysuckle. 

A bee who was passing remarked to them then: 
"I've said it before, and I'll say it again: 
Consider your offshoots, if offshoots there be. 
They'll never receive any blessing from me." 

Poor little sucker, how will it learn 
When it is climbing, which way to turn? 
Right-left-what a disgrace! 
Or it may go straight up and fall flat on its face! 

Said the right-hand-thread Honeysuckle 
To the left-hand-thread Bindweed: 
"It seems that against us all fate has combined. 
Oh my darling, oh my darling, 
Oh my darling Columbine 
Thou art lost and gone forever, 
We shall never intertwine. JJ 

Together they found them the very next day 
They had pulled up their roots and just shriveled away, 
Deprived of that freedom for which we must fight, 
To veer to the left or to veer to the right! 

MICHAEL FLANDERS 



Figure 9.6. Helical toy that suggests the production of neutrinos 

are taken by whirlpools, water going down a drain, tornadoes, and 
thousands of other natural phenomena. 

Writers have found helical motions useful on the metaphorical level. 
The progress of science is often likened to an inverted conical spiral: 
the circles growing larger and larger as science probes further into the 
unknown, always building upward on the circles of the past. The same 
spiral, a dark, bottomless whirlpool into which an individual or hu
manity is sliding, has also been used as a symbol of pessimism and de
spair. This is the metaphor that closes Norman Mailer's book 
Advertisements for Myself. "Am I already on the way out?" he asks. 
Time for Mailer is a conical helix of water flushing down a cosmic 
drain, spinning him off "into the spiral of star-lit empty waters." 

And now for a simple helix puzzle. A rotating barber's pole consists 
of a cylinder on which red, white, and blue helices are painted. The 
cylinder is four feet high. The red stripe cuts the cylinder's elements 
(vertical lines) with a constant angle of 60 degrees. How long is the red 
stripe? 

The problem may seem to lack sufficient information for determin
ing the stripe's length; actually it is absurdly easy when approached 
properly. 

Addendum 
In my Second Scientific American Book of Mathematical Puz

zles and Diversions (1961) I introduced the following brainteaser in
volving two helices of the same handedness: 

THE TWIDDLED BOLTS 

Two icl,entical bolts are placed together so that their helical grooves in
termesh (Figure 9.7). If you move the bolts around each other as you 
would twiddle your thumbs, holding each bolt firmly by the head so that 
it does not rotate and twiddling them in the direction shown, will the 
heads (a) move inward, (b) move outward, or (c) remain the same dis
tance from each other? The problem should be solved without resorting 
to actual test. 
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Figure 9.7. Twiddled bolts 

Two similar helices are also involved in a curious patent by someone 
named Socrates Scholfield of Providence, RI. I cannot now recall how 
I came across it. A picture of the device, from the patent's first page, is 
shown in Figure 9.B. It is to be used in classrooms for demonstrating the 
nature of God. One helix represents good; the other, evil. As you can 
see, they are holessly intertwined. The use of the device is given in de
tail in five pages of the patent. 

I know nothing about Mr. Scholfield except that in 1907 he pub
lished a 59-page booklet titled The Doctrine of Mechanicalism. I tried 
to check it in the New York Public Library many years ago, but the li
brary has lost its copy. I once showed Scholfield's patent to the philoso
pher Charles Hartshorne, one of my teachers at the University of 
Chicago. I expected him to find the device amusing. To my surprise, 
Hartshorne solemnly read the patent's pages and pronounced them ad
mirable. 

The Slinky toy furnishes an interesting problem in physics. If you 
stand on a chair, holding one end of Slinky so that the helix hangs 
straight down, then drop the toy, what happens? Believe it or not, the 
lower end of Slinky doesn't move until the helix has come together, 
then it falls with the expected rate. Throughout the experiment the 
toy's center of gravity descends with the usual acceleration. 

Jlnswers 
If a right triangle is wrapped around any type of cylinder, the 

base of the triangle going around the base of the cylinder, the triangle's 
hypotenuse will trace a helix on the cylinder. Think of the red stripe of 
the barber's pole as the hypotenuse of a right triangle, then "unwrap" 
the triangle froIfL the cylinder. The triangle will have angles of 30 and 
60 degrees. The hypotenuse of such a triangle must be twice the alti-
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tude. (This is easily seen if you place two such triangles together to 
form an equilateral triangle.) In this case the altitude is four feet, so that 
the hypotenuse (red stripe) is eight feet. 

The interesting part of this problem is that the length of the stripe is 
independent not only of the diameter of the cylinder but also of the 
shape of its cross section. The cross section can be an irregular closed 
curve of any shape whatever; the answer to the problem remains the 
same. 

The twiddled bolts move neither inward nor outward. They behave 
like someone walking up a down escalator, always staying in the same 
place. 
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Chapter 10 Packing Spheres 

Spheres of identical size can be piled and packed together in 
many different ways, some of which have fascinating recreational fea
tures. These features can be understood without models, but if the 
reader can obtain a supply of 30 or more spheres, he will find them an 
excellent aid to understanding. Ping-pong balls are perhaps the best for 
this purpose. They can be coated with rubber cement, allowed to dry, 
then stuck together to make rigid models. 

First let us make a brief two-dimensional foray. If we arrange spheres 
in square formation (see Figure 10.1, right), the number of balls in
volved will of course be a square number. If we form a triangle (see Fig
ure 10.1, left), the number of balls is a triangular number. These are the 
simplest examples of what the ancients called "figurate numbers." 
They were intensively studied by early mathematicians (a famous trea
tise on them was written by Blaise Pascal), and although little attention 
is paid them today, they still provide intuitive insights into many as
pects of elementary number theory. 

2 

3 

4 

5 

15 

25 

Figure 10.1. The basis of triangular numbers (left) and of square numbers (right) 
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For example, it takes only a glance at Figure 10.1, left, to see that the 
sum of any number of consecutive positive integers, beginning with 1, 
is a triangular number. A glance at Figure 10.1, right, shows that square 
numbers are formed by the addition of consecutive odd integers, be
ginning with 1. Figure 10.2 makes immediately evident an interesting 
theorem known to the ancient pythagoreans: Every square number is 
the sum of two consecutive triangular numbers. The algebraic proof is 
simple. A triangular number with n units to a side is the sum of 1 + 2 
+ 3 + ... n, and can be expressed by the formula ~n(n + 1). The pre
ceding triangular number has the formula ~n (n - 1). If we add the two 
formulas and simplify, the result is n 2• Are there numbers that are si
multaneously square and triangular? Yes, there are infinitely many of 
them. The smallest (not counting 1, which belongs to any figurate se
ries) is 36; then the series continues: 1225,41616, 1413721,48024900, 
.... It is not so easy to devise a formula for the nth term of this series. 

~21 

~28 

49 

F'lgUre 10.2. Square and triangular numbers are related. 

Three-dimensional analogies of the plane-figurate numbers are ob
tained by piling spheres in pyramids. Three-sided pyramids, the base 
and sides of which are equilateral triangles, are models of what are 
called the tetrahedral numbers. They form the series 1,4, 10, 20, 35, 56, 
84, ... and can be represented by the formula !n(n + l)(n + 2), where n 
is the number of balls along an edge. Four-sided pyramids, with square 
bases and equilateral triangles for sides (Le., half of a regular octahe
dron), represent the (square) pyramidal numbers 1, 5, 14, 30, 55, 91, 

140, .... They have the formula !n(n + 1)(2n + 1). Just as a square can 
be divided by a straight line into two consecutive triangles, so can a 
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1. We place each ball on a hollow A that is directly above a ball in the 
first layer. If we continue in this way, placing the balls of each layer 
directly over those in the next layer but one, we produce a structure 
called hexagonal close-packing. 

2. We place each ball in a hollow B, directly above a hollow in the first 
layer. If we follow this procedure for each layer (each ball will be di
rectly above a ball in the third layer beneath it), the result is known 
as cubic close-packing. Both the square and the tetrahedral pyramids 
have a packing structure of this type, though on a square pyramid the 
layers run parallel to the sides rather than to the base. 

In forming the layers of a close-packing we can switch back and forth 
whenever we please from hexagonal to cubic packing to produce vari
ous hybrid forms of close-packing. In all these forms-cubic, hexago
nal, and hybrid-each ball touches 12 other balls that surround it, and 
the density of the packing (the ratio of the volume of the spheres to the 
total space) is 1t/\118 = .74048 +, or almost 75 percent. 

Is this the largest density obtainable? No denser packing is known, 
but in an article published in 1958 (on the relation of close-packing to 
froth) H.S.M. Coxeter of the University of Toronto made the startling 
suggestion that perhaps the densest packing has not yet been found. It 
is true that no more than 12 balls can be placed so that all of them 
touch a central sphere, but a thirteenth ball can almost be added. The 
large leeway here in the spacing ofthe 12 balls, in contrast to the com
plete absence of leeway in the close-packing of circles on a plane, sug
gests that there might be some form of irregular packing that would be 
denser than .74. No one has yet proved that no denser packing is pos
sible, or even that 12 point-contacts for each sphere are necessary for 
densest packing. As a result of Coxeter's conjecture, George D. Scott of 
the University of Toronto made some experiments in random packing 
by pouring large numbers of steel balls into spherical flasks, then 
weighing them to obtain the density. He found that stable random
packings had a density that varied from about .59 to .63. So if there is 
a packing denser than. 74, it will have to be carefully constructed on a 
pattern that no one has yet thought of. 

Assuming that close-packing is the closest packing, readers may like 
to test their packing prowess on this exceedingly tricky little problem. 
The interior of a rectangular box is 10 inches on each side and 5 inches 
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deep. What is the largest number of steel spheres 1 inch in diameter 
that can be packed in this space? 

If close-packed circles on a plane expand uniformly until they fill the 
interstices between them, the result is the familiar hexagonal tiling of 
bathroom floors. (This explains why the pattern is so common in na
ture: the honeycomb of bees, a froth of bubbles between two flat sur
faces almost in contact, pigments in the retina, the surface of certain 
diatoms and so on.) What happens when closely packed spheres ex
pand uniformly in a closed vessel or are subjected to uniform pressure 
from without? Each sphere becomes a polyhedron, its faces corre
sponding to planes that were tangent to its points of contact with other 
spheres. Cubic close-packing transforms each sphere into a rhombic do
decahedron (see Figure 10.4, top), the 12 sides of which are congruent 
rhombi. Hexagonal close-packing turns each ball into a trapezo
rhombic dodecahedron (see Figure 10.4, bottom), six faces of which are 
rhombic and six, trapezoidal. If this figure is sliced in half along the 
gray plane and one half is rotated 60 degrees, it becomes a rhombic do
decahedron. 

In 1727 the English physiologist Stephen Hales wrote in his book 
Vegetable Staticks that he had poured some fresh peas into a pot, com
pressed them, and had obtained "pretty regular dodecahedrons." The 
experiment became known as the "peas of Buff on" (because the Comte 
de Buffon later wrote about a similar experiment), and most biologists 
accepted it without question until Edwin B. Matzke, a botanist at Co
lumbia University, repeated the experiment. Because of the irregular 
sizes and shapes of peas, their nonuniform consistency and the random 
packing that results when peas are poured into a container, the shapes 
of the peas after compression are too random to be identifiable. In ex
periments reported in 1939 Matzke compressed lead shot and found 
that if the spheres had been cubic close-packed, rhombic dodecahe
drons were formed; but if they had been randomly packed, irregular 14-

faced bodies predominated. These results have important bearing, 
Matzke has pointed out, on the study of such structures as foam and liv
ing cells in undifferentiated tissues. 

The problem of closest packing suggests the opposite question: What 
is the loosest packing; that is, what rigid structure will have the lowest 
possible density? For the structure to be rigid, each sphere must touch 
at least four others, and the contact points must not be all in one hemi
sphere or all on one equator of the sphere. In his Geometry and the 
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680. This is a tetrahedral number that can be split into two smaller 
tetrahedral numbers: 120 and 560. The edges of the three pyramids are 
8, 14, and 15. 

A box 10 inches square and 5 inches deep can be close-packed with 
1 inch-diameter steel balls in a surprising variety of ways, each ac
commodating a different number of balls. The maximum number, 594, 
is obtained as follows: Turn the box on its side and form the first layer 
by making a row of five, then a row of four, then of five, and so on. It 
is possible to make 11 rows (6 rows of five each, 5 rows of four each), 
accommodating 50 balls and leaving a space of more than .3 inch to 
spare. The second layer also will take 11 rows, alternating four and 
five balls to a row, but this time the layer begins and ends with four-ball 
rows, so that the number of balls in the layer is only 49. (The last row 
of four balls will project .28+ inch beyond the edge of the first layer, but 
because this is less than .3 inch, there is space for it.) Twelve layers 
(with a total height of 9.98+ inches) can be placed in the box, alternat
ing layers of 50 balls with layers of 49, to make a grand total of 594 
balls. 
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Chapter II Spheres and 
Hyperspheres 

A circle is the locus of all points on the plane at a given dis
tance from a fixed point on the plane. Let's extend this to Euclidean 
spaces of all dimensions and call the general n-sphere the locus of all 
points in n-space at a given distance from a fixed point in n-space. In 
a space of one dimension (a line) the i-sphere consists of two points at 
a given distance on each side of a center point. The 2-sphere is the cir
cle, the 3-sphere is what is commonly called a sphere. Beyond that are 
the hyperspheres of 4, 5, 6, ... dimensions. 

Imagine a rod of unit length with one end attached to a fixed point. 
If the rod is allowed to rotate only on a plane, its free end will trace a 
unit circle. If the rod is allowed to rotate in 3-space, the free end traces 
a unit sphere. Assume now that space has a fourth coordinate, at right 
angles to the other three, and that the rod is allowed to rotate in 4-
space. The free end then generates a unit 4-sphere. Hyperspheres are 
impossible to visualize; nevertheless, their properties can be studied by 
a simple extension of analytic geometry to more than three coordinates. 
A circle's Cartesian formula is a2 + b2 = r, where r is the radius. The 
sphere's formula is a2 + b2 + c2 = r. The 4-sphere's formula is a2 + b2 + 
c2 + cP = r, and so on up the ladder of Euclidean hyperspaces. 

The "surface" of an n-sphere has a dimensionality of n -1. A circle's 
"surface" is a line of one dimension, a sphere's surface is two
dimensional, and a 4-sphere's surface is three-dimensional. Is it possi
ble that 3-space is actually the hypersurface of a vast 4-sphere? Could 
such forces as gravity and electromagnetism be transmitted by the vi
brations of such a hypersurface? Many late-19th-century mathemati
cians and physicists, both eccentric and orthodox, took such 
suggestions seriously. Einstein himself proposed the surface of a 4-
sphere as a model of the cosmos, unbounded and yet finite. Just as 
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Flatlanders on a sphere could travel the straightest possible line in any 
direction and eventually return to their starting point, so (Einstein sug
gested) if a spaceship left the earth and traveled far enough in anyone 
direction, it would eventually return to the earth. If a Flatlander started 
to paint the surface of the sphere on which he lived, extending the 
paint outward in ever widening circles, he would reach a halfway point 
at which the circles would begin to diminish, with himself on the in
side, and eventually he would paint himself into a spot. Similarly, in 
Einstein's cosmos, if terrestrial astronauts began to map the universe in 
ever-expanding spheres, they would eventually map themselves into a 
small globular space on the opposite side of the hypersphere. 

Many other properties of hyperspheres are just what one would ex
pect by analogy with lower-order spheres. A circle rotates around a 
central point, a sphere rotates around a central line, a 4-sphere rotates 
around a central plane. In general the axis of a rotating n-sphere is a 
space of n - 2. (The 4-sphere is capable, however, of a peculiar double 
rotation that has no analogue in 2- or 3-space: it can spin simultane
ously around two fixed planes that are perpendicular to each other.) 
The projection of a circle on a line is a line segment, but every point on 
the segment, with the exception of its end points, corresponds to two 
points on the circle. Project a sphere on a plane and you get a disk, with 
every point inside the circumference corresponding to two points on 
the sphere's surface. Project a 4-sphere on our 3-space and you get a 
solid ball with every internal point corresponding to two points on the 
4-sphere's hypersurface. This too generalizes up the ladder of spaces. 

The same is true of cross sections. Cut a circle with a line and the 
cross section is a l-sphere, or a pair of points. Slice a sphere with a 
plane and the cross section is a circle. Slice a 4-sphere with a 3-space 
hyperplane and the cross section is a 3-sphere. (You can't divide a 4-
sphere into two pieces with a 2-plane. A hyperapple, sliced down the 
middle by a 2-plane, remains in one piece.) Imagine a 4-sphere moving 
slowly through our space. We see it first as a point and then as a tiny 
sphere that slowly grows in size to its maximum cross section, then 
slowly diminishes and disappears. 

A sphere of any dimension, made of sufficiently flexible material, 
can be turned inside out through the next-highest space. Just as we can 
twist a thin rubber ring until the outside rim becomes the inside, so a 
hypercreature could seize one of our tennis balls and turn it inside out 
through his space. He could do this all at once or he could start at one 
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spot on the ball, turn a tiny portion first, then gradually enlarge it until 
the entire ball had its inside outside. 

One of the most elegant of the formulas that generalize easily to 
spheres of all dimensions is the formula for the radii of the maximum 
number of mutually touching n-spheres. On the plane, no more than 
four circles can be placed so that each circle touches all the others, 
with every pair touching at a different point. There are two possible sit
uations (aside from degenerate cases in which one circle has an infinite 
radius and so becomes a straight line): either three circles surround a 
smaller one (Figure 11.1, left) or three circles are inside a larger one 
(Figure 11.1, right). Frederick Soddy, the British chemist who received 
a Nobel prize in 1921 for his discovery of isotopes, put it this way in 
the first stanza of The Kiss Precise, a poem that appeared in Nature 
(Vol. 137, June 20, 1936, p. 1021): 

4 

Figure 11.1. Find the radius of the fourth circle. 

For pairs of lips to kiss maybe 
Involves no trigonometry. 
'Tis not so when four circles kiss 
Each one the other three. 
To bring this off the four must be 
As three in one or one in three. 
If one in three, beyond a doubt 
Each gets three kisses from without. 
If three in one, then is that one 
Thrice kissed internally. 
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Soddy's next stanza gives the simple formula. His term "bend" is 
what is usually called the circle's curvature, the reciprocal of the ra
dius. (Thus a circle of radius 4 has a curvature or "bend" of 1/4.) If a cir
cle is touched on the inside, as it is in the case of the large circle 
enclosing the other three, it is said to have a concave bend, the value 
of which is preceded by a minus sign. As Soddy phrased all this: 

Four circles to the kissing come. 
The smaller are the benter. 
The bend is just the inverse of 
The distance from the center. 
Though their intrigue left Euclid dumb 
There's now no need for rule of thumb. 
Since zero bend's a dead straight line 
And concave bends have minus sign, 
The sum of the squares of all four bends 
Is half the square of their sum. 

Letting a, b, c, d stand for the four reciprocals, Soddy's formula is 
2(a2 + b2 + c2 + d2 ) = (a + b + c + dJ2. The reader should have little dif
ficulty computing the radii of the fourth kissing circle in each illustra
tion. In the poem's third and last stanza this formula is extended to five 
mutually kissing spheres: 

To spy out spherical affairs 
An oscular surveyor 
Might find the task laborious, 
The sphere is much the gayer, 
And now besides the pair of pairs 
A fifth sphere in the kissing shares. 
Yet, signs and zero as before, 
For each to kiss the other four 
The square of the sum of all five bends 
Is thrice the sum of their squares. 

The editors of Nature reported in the issue for January 9, 1937 (Vol. 
139, p. 62), that they had received several fourth stanzas generalizing 
Soddy's formula to n-space, but they published only the following, by 
Thorold Gosset, an English barrister and amateur mathematician: 
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And let us not confine our cares 
To simple circles, planes and spheres, 
But rise to hyper flats and bends 
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Where kissing multiple appears. 
In n-ic space the kissing pairs 
Are hyperspheres, and Truth declares
As n + 2 such osculate 
Each with an n + 1-fold mate. 
The square of the sum of all the bends 
Is n times the sum of their squares. 

In simple prose, for n-space the maximum number of mutually 
touching spheres is n + 2, and n times the sum of the squares of all 
bends is equal to the square of the sum of all bends. It later developed 
that the formula for four kissing circles had been known to Rene 
Descartes, but Soddy rediscovered it and seems to have been the first 
to extend it to spheres. 

Note that the general formula even applies to the three mutually 
touching two-point "spheres" of i-space: two touching line segments 
"inside" a third segment that is simply the sum of the other two. The 
formula is a great boon to recreational mathematicians. Puzzles about 
mutually kissing circles or spheres yield readily to it. Here is a pretty 
problem. Three mutually kissing spherical grapefruits, each with a ra
dius of three inches, rest on a flat counter. A spherical orange is also on 
the counter under the three grapefruits and touching each of them. 
What is the radius of the orange? 

Problems about the packing of unit spheres do not generalize easily 
as one goes up the dimensional ladder; indeed, they become increas
ingly difficult. Consider, for instance, the problem of determining the 
largest number of unit spheres that can touch a unit sphere. For circles 
the number is six (see Figure 11.2). For spheres it is 12, but this was not 
proved until 1874. The difficulty lies in the fact that when 12 spheres 
are arranged around a thirteenth, with their centers at the corners of an 
imaginary icosahedron (see Figure 11.3), there is space between every 
pair. The waste space is slightly more than needed to accommodate a 
thirteenth sphere if only the 12 could be shifted around and properly 
packed. If the reader will coat 14 ping-pong balls with rubber cement, 
he will find it easy to stick 12 around one of them, and it will not be at 
all clear whether or not the thirteenth can be added without undue 
distortions. An equivalent question (can the reader see why?) is: Can 13 
paper circles, each covering a 60-degree arc of a great circle on a sphere, 
be pasted on that sphere without overlapping? 

H.S.M. Coxeter, writing on "The Problem of Packing a Number of 
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Equal Nonoverlapping Circles on a Sphere" (in Transactions of the 
New York Academy of Sciences, Vol. 24, January 1962, pp. 320-31), 
tells the story of what may be the first recorded discussion of the prob
lem of the 13 spheres. David Gregory, an Oxford astronomer and friend 
of Isaac Newton, recorded in his notebook in 1694 that he and Newton 
had argued about just this question. They had been discussing how 
stars of various magnitudes are distributed in the sky and this had led 
to the question of whether or not one unit sphere could touch 13 oth
ers. Gregory believed they could. Newton disagreed. As Coxeter writes, 
"180 years were to elapse before R. Hoppe proved that Newton was 
right." Simpler proofs have since been published, the latest in 1956 by 
John Leech, a British mathematician. 

How many unit hyperspheres in 4-space can touch a unit hyper
sphere? It is not yet known if the answer is 24 or 25. Nor is it known 
for any higher space. For spaces 4 through 8 the densest possible pack
ings are known only if the centers of the spheres form a regular lattice. 
These packings give 24, 40, 72, 126, and 240 for the "kissing number" 
of spheres that touch another. 

Why the difficulty with 9-space? A consideration of some paradoxes 
involving hypercubes and hyperspheres may cast a bit of dim light on 
the curious turns that take place in 9-space. Into a unit square one can 
pack, from corner to diagonally opposite corner, a line with a length of 
Vz. Into a unit cube one can similarly pack a line of vi The distance 
between opposite corners of an n-cube is vIi, and since square roots in
crease without limit, it follows that a rod of any size will pack into a 
unit n-cube if n is large enough. A fishing pole 10 feet long will fit di
agonally in the one-foot 100-cube. This also applies to objects of higher 
dimension. A cube will accommodate a square larger than its square 
face. A 4-cube will take a 3-cube larger than its cubical hyperface. A 5-
cube will take larger squares and cubes than any cube of lower dimen
sion with an edge of the same length. An elephant or the entire Empire 
State Building will pack easily into an n-cube with edges the same 
length as those of a sugar cube if n is sufficiently large. 

The situation with respect to an n-sphere is quite different. No mat
ter how large n becomes, an n-sphere can never contain a rod longer 
than twice its radius. And something very queer happens to its n-vol
ume as n increases. The area of the unit circle is, of course, n. The vol
ume of the unit sphere is 4.1+. The unit 4-sphere's hypervolume is 
4.9+. In 5-space the volume is still larger, 5.2+, then in 6-space it de-
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creases to 5.1+, and thereafter steadily declines. Indeed, as n ap
proaches infinity the hypervolume of a unit n-sphere approaches zero! 
This leads to many unearthly results. David Singmaster, writing "On 
Round Pegs in Square Holes and Square Pegs in Round Holes" (Math
ematics Magazine, Vol. 37, November 1964, pp. 335-37), decided that 
a round peg fits better in a square hole than vice versa because the ratio 
of the area of a circle to a circumscribing square (re/4) is larger than the 
ratio of a square inscribed in a circle (2/re). Similarly, one can show that 
a ball fits better in a cube than a cube fits in a ball, although the differ
ence between ratios is a bit smaller. Singmaster found that the differ
ence continues to decrease through 8-space and then reverses: in 
9-space the ratio of n-ball to n-cube is smaller than the ratio of n-cube 
to n-ball. In other words, an n-ball fits better in an n-cube than an n
cube fits in an n-ball if and only if n is 8 or less. 

The same 9-space turn occurs in an unpublished paradox discov
ered by Leo Moser. Four unit circles will pack into a square of side 4 
(see Figure 11.4). In the center we can fit a smaller circle of radius Vz 
- 1. Similarly, eight unit spheres will pack into the corners of a cube of 
side 4 (see Figure 11.5). The largest sphere that will fit into the center 
has a radius of v'3 - 1. This generalizes in the obvious way: In a 4-cube 
of side 4 we can pack 16 unit 4-spheres and a central4-sphere of radius 
V4 -1, which equals 1, so that the central sphere now is the same size 
as the others. In general, in the corners of an n-cube of side 4 we can 
pack 2n unit n-spheres and presumably another sphere of radius vIi -
1 will fit at the center. But see what happens when we come to 9-space: 
the central hypersphere has a radius of y'g - 1 = 2, which is equal to 
half the hypercube's edge. The central sphere cannot be larger than 
this in any higher n-cube because it now fills the hypercube. No longer 
is the central hypersphere inside the spheres that surround the center 
of every hyperface, yet there is space at 29 = 512 corners to take 512 unit 
9-spheres! 

A related unpublished paradox, also discovered by Moser, concerns 
n-dimensional chessboards. All the black squares of a chessboard are 
enclosed with circumscribed circles (see Figure 11.6). Assume that 
each cell is of side 2 and area 4. Each circle has a radius of Vz and an 
area of 2re. The area in each white cell that is left white (is not enclosed 
by a circle) is 8 - 2re = 1.71+. In the analogous situation for a cubical 
chessboard, the black cubical cells of edge 2 are surrounded by spheres. 
The volume of each black cell is 8 and the volume of each sphere, 
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such packing lattices are closely related to the construction of error
correcting codes-efficient ways of transmitting information with a 
minimum number of errors. The definitive treatise on the topic, by 
John Horton Conway and N.J.A. Sloane (1988), runs 663 pages and has 
a bibliography of 1,500 entries! 

The densest packing of unit spheres, either lattice-based or irregu
lar, is known only for the circle, regarded as a two-dimensional 
"sphere." Densest lattice packings are known only for n-dimensional 
spheres when n = 2 through 8. Beyond n 8 there are only conjectures 
about such packings. In some cases irregular packings have been dis
covered that are denser than lattice packings. The most famous of 
higher space packings is a very dense lattice in 24 dimensions, known 
as the Leech lattice after the British Mathematician John Leech who 
discovered it. Each sphere in this remarkable structure touches 
196,560 others! 

Answers 

The first problem was to determine the sizes of two circles, 
each of which touches three mutually tangent circles with radii of one, 
two, and three units. Using the formula given in the chapter, 

21+~+~+-( 
1 1 1 ) 
4 9 x2 ( 

1 1 1)2 1+-+ +~ 
2 3 x' 

where x is the radius of the fourth circle, one obtains a value of 6/23 for 
the radius of the smaller circle, 6 for the larger one. 

The second problem concerned three grapefruits with three-inch 
radii and an orange, all resting on a counter and mutually touching. 
What size is the orange? The plane on which they rest is considered a 
fifth sphere of infinite radius that touches the other four. Since it has 
zero curvature it drops out of the formula relating the reciprocals of the 
radii of five mutually touching spheres. Letting x be the radius of the 
orange, we write the equation, 

which gives x a value of one inch. 
The problem can, of course, be solved in other ways. When it ap

peared as problem 43 in the Pi Mu Epsilon Journal, November 1952, 
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Leon Bankoff solved it this way, with R the radius of each large sphere 
and r the radius of the small sphere: 

"The small sphere, radius r, touches the table at a point equidistant 
from the contacts of each of the large spheres with the table. Hence it 
lies on the circumcenter of an equilateral triangle, the side of which is 
2R. Then (R + r) is the hypotenuse of a right triangle, the altitude of 
which is (R - r) and the base of which is 2Rv3/3. So 

(R + r)2 = (R - r)2 + 4R2/3, or r = R/3." 

The answer to Leo Moser's paradox of the hypercubic chessboard in 
four-dimensional space is that no portion of a white cell remains un
enclosed by the hyperspheres surrounding each black cell. The radius 
of each hypersphere is \14, or 2. Since the hypercubic cells have edges 
of length 2, we see at once that each of the eight hyperspheres around 
a white cell will extend all the way to the center of that cell. The eight 
hyperspheres intersect one another, leaving no portion of the white 
cell unenclosed. 
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Chapter 12 The Church of 
the Fourth Dimension 

"Could 1 but rotate my arm out of the limits 
set to it," one of the Utopians had said to 
him, "1 could thrust it into a thousand 
dimensions." -H. G. Wells. Men Like Gods 

Alexander Pope once described London as a "dear, droll, dis
tracting town." Who would disagree? Even with respect to recreational 
mathematics, I have yet to make an imaginary visit to London without 
coming on something quite extra-ordinary. Once, for instance, I was 
reading the London Times in my hotel room a few blocks from Pic
cadilly Circus when a small advertisement caught my eye: 

Weary of the world of three dimensions? Come worship with us Sunday 
at the Church of the Fourth Dimension. Services promptly at 11 A.M., in 
Plato's grotto. Reverend Arthur Slade, Minister. 

An address was given. I tore out the advertisement, and on the follow
ing Sunday morning rode the Underground to a station within walking 
distance of the church. There was a damp chill in the air and a light 
mist was drifting in from the sea. I turned the last corner, completely 
unprepared for the strange edifice that loomed ahead of me. Four enor
mous cubes were stacked in one column, with four cantilevered cubes 
jutting in four directions from the exposed faces of the third cube from 
the ground. I recognized the structure at once as an unfolded hyper
cube. Just as the six square faces of a cube can be cut along seven lines 
and unfolded to make a two-dimensional Latin cross (a popular floor 
plan for medieval churches), so the eight cubical hyperfaces of a four
dimensional cube can be cut along seventeen squares and "unfolded" 
to form a three-dimensional Latin cross. 

A smiling young woman standing inside the portal directed me to a 
stairway. It spiraled down into a basement auditorium that I can only 
describe as a motion-picture theater combined with a limestone cavern. 
The front wall was a solid expanse of white. Formations of translucent 
pink stalactites glowed brightly on the ceiling, flooding the grotto with 
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a rosy light. Huge stalagmites surrounded the room at the sides and 
back. Electronic organ music, like the score of a science-fiction film, 
surged into the room from all directions. I touched one of the stalag
mites. It vibrated beneath my fingers like the cold key of a stone xylo
phone. 

The strange music continued for 10 minutes or more after I had taken 
a seat, then slowly softened as the overhead light began to dim. At the 
same time I became aware of a source of bluish light at the rear of the 
grotto. It grew more intense, casting sharp shadows of the heads of 
the congregation on the lower part of the white wall ahead. I turned 
around and saw an almost blinding point oflight that appeared to come 
from an enormous distance. 

The music faded into silence as the grotto became completely dark 
except for the brilliantly illuminated front wall. The shadow of the 
minister rose before us. After announcing the text as Ephesians, Chap
ter 3, verses 17 and 18, he began to read in low, resonant tones that 
seemed to come directly from the shadow's head: " ... that ye, being 
rooted and grounded in love, may be able to comprehend with all saints 
what is the breadth, and length, and depth, and height. ... " 

It was too dark for note-taking, but the following paragraphs sum
marize accurately, I think, the burden of Slade's remarkable sermon. 

Our cosmos-the world we see, hear, feel-is the three-dimensional 
"surface" of a vast, four-dimensional sea. The ability to visualize, to 
comprehend intuitively, this "wholly other" world of higher space is 
given in each century only to a few chosen seers. For the rest of us, we 
must approach hyperspace indirectly, by way of analogy. Imagine a 
Flatland, a shadow world of two dimensions like the shadows on the 
wall of Plato's famous cave (Republic, Chapter 7). But shadows do not 
have material substance, so it is best to think of Flatland as possessing 
an infinitesimal thickness equal to the diameter of one of its funda
mental particles. Imagine these particles floating on the smooth surface 
of a liquid. They dance in obedience to two-dimensional laws. The in
habitants of Flatland, who are made up of these particles, cannot con
ceive of a third direction perpendicular to the two they know. 

We, however, who live in 3-space can see every particle of Flatland. 
We see inside its houses, inside the bodies of every Flatlander. We can 
touch every particle of their world without passing our finger through 
their space. If we lift a Flatlander out of a locked room, it seems to him 
a miracle. 
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In an analogous way, Slade continued, our world of 3-space floats on 
the quiet surface of a gigantic hyperocean; perhaps, as Einstein once 
suggested, on an immense hypersphere. The four-dimensional thick
ness of our world is approximately the diameter of a fundamental par
ticle. The laws of our world are the "surface tensions" of the hypersea. 
The surface of this sea is uniform, otherwise our laws would not be uni
form. A slight curvature of the sea's surface accounts for the slight, 
constant curvature of our space-time. Time exists also in hyperspace. 
If time is regarded as our fourth coordinate, then the hyperworld is a 
world of five dimensions. Electromagnetic waves are vibrations on the 
surface of the hypersea. Only in this way, Slade emphasized, can sci
ence escape the paradox of an empty space capable of transmitting en
ergy. 

What lies outside the sea's surface? The wholly other world of God! 
No longer is theology embarrassed by the contradiction between God's 
immanence and transcendence. Hyperspace touches every point of 3-
space. God is closer to us than our breathing. He can see every portion 
of our world, touch every particle without moving a finger through our 
space. Yet the Kingdom of God is completely "outside" 3-space, in a di
rection in which we cannot even point. 

The cosmos was created billions of years ago when God poured 
(Slade paused to say that he spoke metaphorically) on the surface of the 
hypersea an enormous quantity of hyperparticles with asymmetric 
three-dimensional cross sections. Some of these particles fell into 3-
space in right-handed form to become neutrons, the others in left
handed form to become antineutrons. Pairs of opposite parity 
annihilated each other in a great primeval explosion, but a slight pre
ponderance of hyperparticles happened to fall as neutrons and this ex
cess remained. Most of these neutrons split into protons and electrons 
to form hydrogen. So began the evolution of our "one-sided" material 
world. The explosion caused a spreading of particles. To maintain this 
expanding universe in a reasonably steady state, God renews its mat
ter at intervals by dipping his fingers into his supply of hyperparticles 
and flicking them toward the sea. Those which fall as antineutrons are 
annihilated, those which fall as neutrons remain. Whenever an an
tiparticle is created in the laboratory, we witness an actual "turning 
over" of an asymmetric particle in the same way that one can reverse 
in 3-space an asymmetric two-dimensional pattern of cardboard. Thus 
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the production of antiparticles provides an empirical proof of the real
ity of 4-space. 

Slade brought his sermon to a close by reading from the recently dis
covered Gnostic Gospel of Thomas: "If those who lead you say to you: 
Behold the kingdom is in heaven, then the birds will precede you. If 
they say to you that it is in the sea, then the fish will precede you. But 
the kingdom is within you and it is outside of you." 

Again the unearthly organ music. The blue light vanished, plunging 
the cavern into total blackness. Slowly the pink stalactites overhead 
began to glow, and I blinked my eyes, dazzled to find myself back in 3-
space. 

Slade, a tall man with iron-gray hair and a small dark mustache, was 
standing at the grotto's entrance to greet the members of his congrega
tion. As we shook hands I introduced myself and mentioned my Sci
entific American column. "Of course!" he exclaimed. "I have some of 
your books. Are you in a hurry? If you wait a bit, we'll have a chance 
to chat." 

After the last handshake Slade led me to a second spiral stairway of 
opposite handedness from the one on which I had descended earlier. 
It carried us to the pastor's study in the top cube of the church. Elabo
rate models, 3-space projections of various types of hyperstructures, 
were on display around the room. On one wall hung a large reproduc
tion of Salvador Dali's painting "Corpus Hypercubus." In the picture, 
above a flat surface of checkered squares, floats a three-dimensional 
cross of eight cubes; an unfolded hypercube identical in structure with 
the church in which I was standing. 

"Tell me, Slade," I said, after we were seated, "is this doctrine of 
yours new or are you continuing a long tradition?" 

"It's by no means new," he replied, "though I can claim to have es
tablished the first church in which hyperfaith serves as the corner
stone. Plato, of course, had no conception of a geometrical fourth 
dimension, though his cave analogy clearly implies it. In fact, every 
form of Platonic dualism that divides existence into the natural and su
pernatural is clearly a nonmathematical way of speaking about higher 
space. Henry More, the 17th-century Cambridge Platonist, was the first 
to regard the spiritual world as having four spatial dimensions. Then 
along came Immanuel Kant, with his recognition of our space and time 
as subjective lenses, so to speak, through which we view only a thin 
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slice of transcendent reality. After that it is easy to see how the concept 
of higher space provided a much needed link between modern science 
and traditional religions." 

"You say 'religions,' " I put in. "Does that mean your church is not 
Christian? " 

"Only in the sense that we find essential truth in all the great world 
faiths. I should add that in recent decades the Continental Protestant 
theologians have finally discovered 4-space. When Karl Barth talks 
about the 'vertical' or 'perpendicular' dimension, he clearly means it in 
a four-dimensional sense. And of course in the theology of Karl Heim 
there is a full, explicit recognition of the role of higher space." 

"Yes," I said. "I recently read an interesting book called Physicist 
and Christian, by William G. Pollard (executive director of the Oak 
Ridge Institute of Nuclear Studies and an Episcopal clergyman). He 
draws heavily on Heim's concept of hyperspace." 

Slade scribbled the book's title on a note pad. "I must look it up. I 
wonder if Pollard realizes that a number of late-19th-century Protes
tants wrote books about the fourth dimension. A. T. Schofield's Another 
World, for example (it appeared in 1888) and Arthur Willink's The 
World of the Unseen (subtitled "An Essay on the Relation of Higher 
Space to Things Eternal"; published in 1893). Of course modern oc
cultists and spiritualists have had a field day with the notion. Peter D. 
Ouspensky, for instance, has a lot to say about it in his books, although 
most of his opinions derive from the speculations of Charles Howard 
Hinton, an American mathematician. Whately Carington, the English 
parapsychologist, wrote an unusual book in 1920-he published it 
under the byline of W. Whately Smith-on A Theory of the Mecha
nism of Surviva1. " 

"Survival after death?" 
Slade nodded. "I can't go along with Carington's belief in such things 

as table tipping being accomplished by an invisible four-dimensional 
lever, or clairvoyance as perception from a point in higher space, but I 
regard his basic hypothesis as sound. Our bodies are simply three
dimensional cross sections of our higher four-dimensional selves. Ob
viously a man is subject to all the laws of this world, but at the same 
time his experiences are permanently recorded-stored as information, 
so to speak-in the 4-space portion of his higher self. When his 3-space 
body ceases to function, the permanent record remains until it can be 
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attached to a new body for a new cycle of life in some other 3-space 
continuum. " 

"I like that," I said. HIt explains the complete dependence of mind on 
body in this world, at the same time permitting an unbroken continu
ity between this life and the next. Isn't this close to what William James 
struggled to say in his little book on immortality?" 

"Precisely. James, unfortunately, was no mathematician, so he had to 
express his meaning in nongeometrical metaphors." 

"What about the so-called demonstrations of the fourth dimension by 
certain mediums," I asked. "Wasn't there a professor of astrophysics in 
Leipzig who wrote a book about them?" 

I thought I detected an embarrassed note in Slade's laugh. "Yes, that 
was poor Johann Karl Friedrich Zollner. His book Transcendental 
Physics was translated into English in 1881, but even the English copies 
are now quite rare. Zollner did some good work in spectrum analysis, 
but he was supremely ignorant of conjuring methods. As a consequence 
he was badly taken in, I'm afraid, by Henry Slade, the American 
medium." 

"Slade?" I said with surprise. 
"Yes, I'm ashamed to say we're related. He was my great-uncle. When 

he died, he left a dozen fat notebooks in which he had recorded his 
methods. Those notebooks were acquired by the English side of my 
family and handed down to me." 

"This excites me greatly," I said. "Can you demonstrate any of the 
tricks?" 

The request seemed to please him. Conjuring, he explained, was one 
of his hobbies, and he thought that the mathematical angles of several 
of Henry's tricks would be of interest to my readers. 

From a drawer in his desk Slade took a strip of leather, cut as shown 
at the left in Figure 12.1, to make three parallel strips. He handed me a 
ballpoint pen with the request that I mark the leather in some way to 
prevent later substitution. I initialed a corner as shown. We sat on op
posite sides of a small table. Slade held the leather under the table for 
a few moments, then brought it into view again. It was braided exactly 
as shown at the right in the illustration! Such braiding would be easy 
to accomplish if one could move the strips through hyperspace. In 3-
space it seemed impossible. 

Slade's second trick was even more astonishing. He had me examine 
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Figure 12.1. Slade's leather strip 
-braided in hyperspace? 

a rubber band of the wide, flat type shown at the left in Figure 12.2. 

This was placed in a matchbox, and the box was securely sealed at 
both ends with cellophane tape. Slade started to place it under the 
table, then remembered he had forgotten to have me mark the box for 
later identification. I drew a heavy X on the upper surface. 

Figure 12.2. Slade's rubber band -knotted in hyperspace? 

"If you like," he said, "you yourself may hold the box under the 
table." 

I did as directed. Slade reached down, taking the box by its other end. 
There was a sound of movement and I could feel that the box seemed 
to be vibrating slightly. 

Slade released his grip. "Please open the box." 
First I inspected the box carefully. The tape was still in place. My 

mark was on the cover. I slit the tape with my thumbnail and pushed 
open the drawer. The elastic band-mira bile dictu-was tied in a sim
ple knot as shown at the right in Figure 12.2. 

"Even if you managed somehow to open the box and switch bands," 
I said, "how the devil could you get a rubber band like this?" 

Slade chuckled. "My great-uncle was a clever rascal." 
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I was unable to persuade Slade to tell me how either trick was done. 
The reader is invited to think about them before he reads this chapter's 
answer section. 

We talked of many other things. When I finally left the Church of the 
Fourth Dimension, a heavy fog was swirling through the wet streets of 
London. I was back in Plato's cave. The shadowy forms of moving cars, 
their headlights forming flat elliptical blobs of light, made me think of 
some familiar lines from the Rubaiyat of a great Persian mathemati
cian: 

We are no other than a moving row 
Of magic shadow-shapes that come and go 
Round with the sun-illumined lantern held 
In midnight by the Master of the Show. 

Addendum 

Although I spoke in the first paragraph of this chapter of an 
"imaginary visit" to London, when the chapter first appeared in Sci
entific American several readers wrote to ask for the address of Slade's 
church. The Reverend Slade is purely fictional, but Henry Slade the 
medium was one of the most colorful and successful mountebanks in 
the history of American spiritualism. See my article on Slade in The 
Encyclopedia of the Paranormal, edited by Gordon Stein, Prometheus 
Books, 1996, and my remarks about Slade's fourth-dimensional trick
ery in The New Ambidextrous Universe (W. H. Freeman, 1990). 

At the time I wrote about the Church of the Fourth Dimension no em
inent physicist had ever contended that there might actually be spaces 
"out there," higher than our familiar 3-space. (The use of a fourth di
mension in relativity theory was no more than a way of handling time 
in the theory's equations.) Now, however, particle physicists are in a eu
phoric state over a theory of superstrings in which fundamental parti
cles are not modeled as geometrical points, but as extremely tiny closed 
loops, of great tensile strength, that vibrate in higher spaces. These 
higher spaces are "compacted"-curled up into tight little structures 
too small to be visible or even to be detected by today's atom smashers. 

Some physicists regard these higher spaces as mere artifices of the 
mathematics, but others believe they are just as real as the three spaces 
we know and love. (On superstrings, see my New Ambidextrous Uni-
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verse.) It is the first time physicists have seriously entertained the no
tion of higher spaces that are physically real. This may have stimu
lated the publication of recent books on the fourth and higher 
dimensions. I particularly recommend Thomas F. Banchoff's Beyond 
the Third Dimension, if for no other reason than for its wondrous com
puter graphics. 

In recent years the theory of superstrings has been extended to mem
brane or brane theory in which the strings are attached to vibrating 
surfaces that live in higher space dimensions. Some theorists are spec
ulating that our universe is an enormous brane floating in hyperspace 
along with countless other "island universes," each with its own set of 
laws. A possibility looms that these other universes could be detected 
by their gravity seeping into our universe and generating the elusive in
visible dark matter which physicists suspect furnishes 90 percent of the 
matter in our universe. For these wild speculations see George John
son's mind-boggling article, "Physicists Finally Find a Way to Test Su
perstring Theory," in The New York Times, April 4, 2000. 

Membrane theory is also called M-theory, the M standing for mem
brane, mystery, magic, marvel, and matrix. See "Magic, Mystery, and 
Matrix," a lecture by Edward Witten, the world's top expert on super
strings, published in Notices of the AMS (American Mathematical So
ciety), Vol. 45, November 1998, and his 1998 videotape M-Theory, 
available from the AMS. 

Answers 

Slade's method of braiding the leather strip is familiar to Boy 
Scouts in England and to all those who make a hobby of leathercraft. 
Many readers wrote to tell me of books in which this type of braiding 
is described: George Russell Shaw, Knots, Useful and Ornamental (p. 
86); Constantine A. Belash, Braiding and Knotting (p. 94); Clifford Pyle, 
Leather Craft as a Hobby (p. 82); Clifford W. Ashley, The Ashley Book 
of Knots (p. 486); and others. For a full mathematical analysis, see 
J.A.H. Shepperd, "Braids Which Can Be Plaited with Their Threads 
Tied Together at Each End," Proceedings of the Royal Society, A, Vol. 
265,1962, pages 229-44. 

There are several ways to go about making the braid. Figure 12.3 was 
drawn by reader George T. Rab of Dayton, OH. By repeating this pro
cedure one can extend the braid to any multiple of six crossings. An-

158 SOLID GEOMETRY AND HIGHER DIMENSIONS 



" 

159 



this when he started to put the box under the table, then "remembered" 
that I had not yet initialed it. The prepared box could have been stuck 
to the underside of the table with magician's wax. It would require 
only a moment to press the unprepared box against another dab of wax, 
then take the prepared one. In this way the switch occurred before I 
marked the box. The vibrations I felt when Slade and I held the box 
under the table were probably produced by one of Slade's fingers press
ing firmly against the box and sliding across it. 

Fitch Cheney, mathematician and magician, wrote to tell about a sec
ond and simpler way to create a knotted elastic band. Obtain a hollow 
rubber torus-they are often sold as teething rings for babies-and cut 
as shown by the dotted line in Figure 12.5. The result is a wide endless 
band tied in a single knot. The band can be trimmed, of course, to nar
rower width. 

Figure 12.S. A second way 
to produce a knotted 
rubber band 

It was Stover, by the way, who first suggested to me the problem of 
tying a knot in an elastic band. He had been shown such a knotted 
band by magician Winston Freer. Freer said he knew three ways of 
doing it. 
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Chapter 13 

The children were vanishing. 
They went in fragments, like thick smoke in a 
wind, or like movement in a distorting mirror. 
Hand in hand they went, in a direction Para
dine could not understand . ... 

-LEwIs PADGETI, from "Mimsy Were the Borogoves" 

Hypercubes 

The direction that Paradine, a professor of philosophy, could 
not understand is a direction perpendicular to each of the three coor
dinates of space. It extends into 4-space in the same way a chess piece 
extends upward into 3-space with its axis at right angles to the x and y 
coordinates of the chessboard. In Padgett's great science fiction story, 
Paradine's children find a wire model of a tesseract (a hypercube of four 
dimensions) with colored beads that slide along the wires in curious 
ways. It is a toy abacus that had been dropped into our world by a 4-
space scientist tinkering with a time machine. The abacus teaches the 
children how to think four-dimensionally. With the aid of some cryp
tic advice in Lewis Carroll's Jabberwocky they finally walk out of 3-
space altogether. 

Is it possible for the human brain to visualize four-dimensional struc
tures? The 19th-century German physicist Hermann von Helmholtz ar
gued that it is, provided the brain is given proper input data. 
Unfortunately our experience is confined to 3-space and there is not the 
slightest scientific evidence that 4-space actually exists. (Euclidean 4-
space must not be confused with the non-Euclidean four-dimensional 
space-time of relativity theory, in which time is handled as a fourth co
ordinate.) Nevertheless, it is conceivable that with the right kind of 
mathematical training a person might develop the ability to visualize 
a tesseract. "A man who devoted his life to it," wrote Henri Poincare, 
"could perhaps succeed in picturing to himself a fourth dimension." 

Charles Howard Hinton, an eccentric American mathematician who 
once taught at Princeton University and who wrote a popular book 
called The Fourth Dimension, devised a system of using colored blocks 
for making 3-space models of sections of a tesseract. Hinton believed 
that by playing many years with this "toy" (it may have suggested the 
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toy in Padgett's story), he had acquired a dim intuitive grasp of 4-space. 
"I do not like to speak positively," he wrote, "for I might occasion a loss 
of time on the part of others, if, as may very well be, I am mistaken. But 
for my own part, I think there are indications of such an intuition .... " 

Hinton's colored blocks are too complicated to explain here (the 
fullest account of them is in his 1910 book, A New Era a/Thought). Per
haps, however, by examining some of the simpler properties of the 
tesseract we can take a few wobbly first steps toward the power of vi
sualization Hinton believed he had begun to achieve. 

Let us begin with a point and move it a distance of one unit in a 
straight line, as shown in Figure 13.1(a). All the points on this unit line 
can be identified by numbering them from 0 at one end to 1 at the 
other. Now move the unit line a distance of one unit in a direction per
pendicular to the line (b). This generates a unit square. Label one cor
ner 0, then number the points from 0 to 1 along each of the two lines 
that meet at the zero corner. With these x and y coordinates we can now 
label every point on the square with an ordered pair of numbers. It is 
just as easy to visualize the next step. Shift the square a unit distance 
in a direction at right angles to both the x and the yaxes (e). The result 
is a unit cube. With x, y, z coordinates along three edges that meet at a 
corner, we can label every point in the cube with an ordered triplet of 
numbers. 

Although our visual powers boggle at the next step, there is no logi
cal reason why we cannot assume that the cube is shifted a unit dis
tance in a direction perpendicular to all three of its axes (d). The space 
generated by such a shift is a 4-space unit hypercube-a tesseract
with four mutually perpendicular edges meeting at every corner. By 
choosing a set of such edges as w, x, y, z axes, one might label every 
point in the hypercube with an ordered quadruplet of numbers. Ana
lytic geometers can work with these ordered quadruplets in the same 
way they work with ordered pairs and triplets to solve problems in 
plane and solid geometry. In this fashion Euclidean geometry can be ex
tended to higher spaces with dimensions represented by any positive 
integer. Each space is Euclidean but each is topologically distinct: a 
square cannot be continuously deformed to a straight line, a cube de
formed to a square, a hypercube to a cube, and so on. 

Accurate studies of figures in 4-space can be made only on the basis 
of an axiomatic system for 4-space, or by working analytically with the 
w, x, y, z equations of the four-coordinate system. But the tesseract is 
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Figure 13.1. Steps toward generating a hypercube 

such a simple 4-space structure that we can guess many of its proper
ties by intuitive, analogical reasoning. A unit line has two end points. 
When it is moved to generate a square, its ends have starting and stop
ping positions and therefore the number of corners on the square is 
twice the number of points on the line, or four. The two moving points 
generate two lines, but the unit line has a start and a stop position and 
so we must add two more lines to obtain four as the number of lines 
bounding the square. 

In similar fashion, when the square is moved to generate a cube, its 
four corners have start and stop positions and therefore we multiply 
four by two to arrive at eight corners on the cube. In moving, each of the 
four points generates a line, but to those four lines we must add the 
square's four lines at its start and the four lines at its stop, making 4 + 
4 + 4 = 12 edges on the cube. The four lines of the moving square gen
erate four new faces, to which the start and stop faces are added, mak
ing 4 + 1 + 1 = 6 faces on the cube's surface. 

Now suppose the cube is pushed a unit distance in the direction of 
a fourth axis at right angles to the other three, a direction in which we 
cannot point because we are trapped in 3-space. Again each corner of 
the cube has start and stop positions, so that the resulting tesseract has 
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2 x 8 = 16 corners. Each point generates a line, but to these eight lines 
we must add the start and stop positions of the cube's 12 edges to make 
8 + 12 + 12 = 32 unit lines on the hypercube. Each of the cube's 12 edges 
generates a square, but to those 12 squares we must add the cube's six 
squares before the push and the six after the push, making 12 + 6 + 6 = 
24 squares on the tesseract's hypersurface. 

It is a mistake to suppose the tesseract is bounded by its 24 squares. 
They form only a skeleton of the hypercube, just as the edges of a cube 
form its skeleton. A cube is bounded by square faces and a hypercube 
is bounded by cubical faces. When the cube is pushed, each of its 
squares moves a unit distance in an unimaginable direction at right 
angles to its face, thereby generating another cube. To the six cubes 
generated by the six moving squares we must add the cube before it is 
pushed and the same cube after it is pushed, making eight in all. These 
eight cubes form the hypercube's hypersurface. 

The chart in Figure 13.2 gives the number of elements in "cubes" of 
spaces one through four. There is a simple, surprising trick by which 
this chart can be extended downward to higher n-cubes. Think of the 
nth line as an expansion of the binomial (2x + l)n. For example, the line 
segment of 1-space has two points and one line. Write this as 2x+ 1 and 
multiply it by itself: 

2x + 1 

2x + 1 
4r + 2x 

2x + 1 
4x2 + 4x + 1 

n-SPACE POINTS 

0 1 

1 2 

2 4 

3 8 

4 16 

LINES 

0 

1 

4 

12 

32 

SQUARES CUBES TESSERACTS 

0 0 0 

0 0 0 

1 0 0 

6 1 0 

24 8 1 

Figure 13.2. Elements of structures analogous to the cube in various dimensions 
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Figure 13.4 is the analogous projection in 3-space of the edges of a 
tesseract; more accurately, it is a plane projection of a three
dimensional model that is in turn a projection of the hypercube. All the 
elements of the tesseract given by the chart are easily identified in the 
model, although six of the eight cubes suffer perspective distortions just 
as four of the cube's square faces are distorted in its projection on the 
plane. The eight cubes are the large cube, the small interior cube, and 
the six hexahedrons surrounding the small cube. (Readers should also 
try to find the eight cubes in Figure 13.1(d)-a projection of the tesser
act, from a different angle, into another 3-space model.) Here again the 
topological properties of both models are the same'as those of the edges 
of the tesseract. In this case a fly can walk along all the edges without 
traversing any edge twice. (In general the fly can do this only on hy
percubes in even spaces, because only in even spaces do an even num
ber of edges meet at each vertex.) 

Figure 13.4. Projection of the 
tesseract in 3-space 

Many properties of unit hypercubes can be expressed in simple for
mulas that apply to hypercubes of all dimensions. For example, the di
agonal of a unit square has a length of Vz. The longest diagonals on the 
unit cube have a length of vi In general a diagonal from corner to op
posite corner on a unit cube in n-space is Vn. 

A square of side x has an area of x2 and a perimeter of 4x. What size 
square has an area equal to its perimeter? The equation x2 = 4x gives x 
a value of 4. The unique answer is therefore a square of side 4. What 
size cube has a volume equal to its surface area? After the reader has 
answered this easy question he should have no difficulty answering 
two more: (1) What size hypercube has a hypervolume (measured by 
unit hypercubes) equal to the volume (measured by unit cubes) of its 
hypersurface? (2) What is the formula for the edge of an n-cube whose 
n-volume is equal to the (n - l)-volume of its "surface"? 
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Puzzle books often ask questions about cubes that are easily asked 
about the tesseract but not so easily answered. Consider the longest 
line that will fit inside a unit square. It is obviously the diagonal, with 
a length of Yz. What is the largest square that will fit inside a unit 
cube? If the reader succeeds in answering this rather tricky question, 
and if he learns his way around in 4-space, he might try the more dif
ficult problem of finding the largest cube that can be fitted into a unit 
tesseract. 

An interesting combinatorial problem involving the tesseract is best 
approached, as usual, by first considering the analogous problems for 
the square and cube. Cut open one corner of a square (see top drawing 
in Figure 13.5) and its four lines can be unfolded as shown to form a 
one-dimensional figure. Each line rotates around a point until all are in 
the same i-space. To unfold a cube, think of it as formed of squares 
joined at their edges; cut seven edges and the squares can be unfolded 
(bottom drawing) until they all lie in 2-space to form a hexomino (six 
unit squares joined at their edges). In this case each square rotates 
around an edge. By cutting different edges one can unfold the cube to 
make different hexomino shapes. Assuming that an asymmetric hex
omino and its mirror image are the same, how many different hexomi
noes can be formed by unfolding a cube? 

The eight cubes that form the exterior surface of the tesseract can be 
cut and unfolded in similar fashion. It is impossible to visualize how 
a 4-space person might "see" (with three-dimensional retinas?) the hol
low tesseract. Nevertheless, the eight cubes that bound it are true sur
faces in the sense that the hyperperson can touch any point inside any 
cube with the point of a hyperpin without the pin's passing through 
any other point in the cube, just as we, with a pin, can touch any point 
inside any square face of a cube without the pin's going through any 
other point on that face. Points are "inside" a cube only to us. To a hy
perperson every point in each cubical "face" of a tesseract is directly 
exposed to his vision as he turns the tesseract in his hyperfingers. 

Even harder to imagine is the fact that a cube in 4-space will rotate 
around any of its faces. The eight cubes that bound the tesseract are 
joined at their faces. Indeed, each of the 24 squares in the tesseract is a 
joining spot for two cubes, as can easily be verified by studying the 3-

space models. If 17 of these 24 squares are cut, separating the pair of 
cubes attached at that spot, and if these cuts are made at the right 
places, the eight cubes will be free to rotate around the seven uncut 
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to Flatlanders as a square. There are some remarkable adventures inside 
the tesseract and some unearthly views through its windows before 
the house, jarred by. another earthquake, falls out of our space alto
gether. 

The notion that part of our universe might fall out of 3-space is not 
so crazy as it sounds. The eminent American physicist J. A. Wheeler 
has a perfectly respectable" dropout" theory to explain the enormous 
energies that emanate from quasi-stellar radio sources, or quasars. 
When a giant star undergoes gravitational collapse, perhaps a central 
mass is formed of such incredible density that it puckers space-time 
into a blister. If the curvature is great enough, the blister could pinch 
together at its neck and the mass could fall out of space-time, releas
ing energy as it vanishes. 

But back to hypercubes and one final question. How many different 
order-8 polycubes can be produced by unfolding a hollow hypercube 
into 3-space? 

Addendum 
Hiram Barton, a consulting engineer of Etchingham, Sussex, 

England, had the following grim comments to make about Hinton's col
ored cubes: 

Dear Mr. Gardner: 
A shudder ran down my spine when I read your reference to Hinton's 

cubes. I nearly got hooked on them myself in the nineteen-twenties. 
Please believe me when I say that they are completely mind-destroying. 
The only person I ever met who had worked with them seriously was 
Francis Sedlak, a Czech neo-Hegelian philosopher (he wrote a book 
called The Creation of Heaven and Earth) who lived in an Oneida-like 
community near Stroud, in Gloucestershire. 

As you must know, the technique consists essentially in the sequen
tial visualizing of the adjoint internal faces of the poly-colored unit 
cubes making up the large cube. It is not difficult to acquire considerable 
facility in this, but the process is one of autohypnosis and, after a while, 
the sequences begin to parade themselves through one's mind of their 
own accord. This is pleasurable, in a way, and it was not until I went to 
see Sedlak in 1929 that I realized the dangers of setting up an au
tonomous process in one's own brain. For the record, the way out is to 
establish consciously a countersystem differing from the first in that the 
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core cube shows different colored faces, but withdrawal is slow and I 
wouldn't recommend anyone to play around with the cubes at all. 

The problem of pushing a larger cube through a hole in a smaller 
cube is known as Prince Rupert's problem. The question seems to have 
first been asked by Prince Rupert (1619-1682), a nephew of England's 
King Charles. If you hold a cube so one corner points directly toward 
you, you will see a regular hexagon. The largest square that will go 
into a cube has a face that can be inscribed within this hexagon. Note 
that two of the interior square's sides can be drawn on the outside of the 
cube. The other two edges are within the cube. 

Apparently I was the first to pose the analogous problem of deter
mining the largest cube that would go inside a hypercube. Over the 
years I received many letters from readers who claimed to have an
swered this question. Most of the letters were too technical for me to 
understand, and wildy different results were claimed. 

Richard Guy and Richard Nowakowski, in their feature on unsolved 
problems (American Mathematical Monthly, Vol. 104, December 1997, 
pp. 967-69) report on a lengthy proof by Kay R. Pechenick DeVicci of 
Moorestown, NJ, that the desired cube's edge is 1.007434775 .... It is 
the square root of 1.014924 ... , the smaller root of 4.0 - 28r - 7x2 + 
16x + 16. Her paper, which includes a generalization to the largest m
cube in an n-cube, has not been published. Guy and his two collabora
tors on Unsolved Problems in Geometry (1991), Section B4, refer to 
DeVicci's work as having solved the problem for the 3-cube in a 4-cube, 
but they refer to the more general problem of n dimensions as unsolved. 

When I began editing columns for this anthology I searched my files 
for all the letters I had received on this problem. One writer believed 
the answer was simply the unit cube of side 1, which turned out to be 
quite close to the truth. 

In going more carefully through my correspondence on this prob
lem I was astonished to find that no less than four readers had obtained 
the same answer as Da Vicci-a cube with an edge of 1.00743 .... I here 
list them alphabetically along with the year of their letter: Hermann 
Baer, Post Gilboa, Israel (1974); Eugen I. Bosch, Washington, D.C. 
(1966); G. de Josselin de Jong, Delft, The Netherlands (1971); and Kay 
R. Pechenick, Lafayette Hill, PA (1983). 

The problem of finding all the ways a hypercube can be "unfolded" 
to make distinct polycubes (unit cubes joined at their faces) was solved 
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by Peter Turney in his 1984 paper (see bibliography). Using graph the
ory, Turney found 261 unfoldings. His method extends easily to hy
percubes of any number of dimensions. 

In the Journal of Recreational Mathematics (Vol. 15, No.2. 1982-83, 
p. 146) Harry Nelson showed how the 11 polyominoes that fold into a 
cube would fit inside a 9 x 9 square and also inside a 7 x 11 rectangle. 
It is not known if they will fit inside a smaller rectangle. 

Answers 
A tesseract of side x has a hypervolume of .0. The volume of its 

hypersurface is 8x3. If the two magnitudes are equal, the equation gives 
x a value of 8. In general an n-space "cube" with an n-volume equal to 
the (n - l)-volume of its "surface" is an n-cube of side 2n. 

The largest square that can be fitted inside a unit cube is the square 
shown in Figure 13.7. Each corner of the square is a distance of % from 
a corner of the cube. The square has an area of exactly 9/8 and a side 
that is three-fourths of the square root of 2. Readers familiar with the 
old problem of pushing the largest possible cube through a square hole 
in a smaller cube will recognize this square as the cross section of the 
limiting size of the square hole. In other words, a cube of side not quite 
three-fourths of the square root of 2 can be pushed through a square 
hole in a unit cube. 

Figure 13.7. Packing a square in a cube 

Figure 13.8 shows the 11 different hexominoes that fold into a cube. 
They form a frustrating set, because they will not fit together to make 
any of the rectangles that contain 66 unit squares, but perhaps there are 
some interesting patterns they will form. 
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, 
F;.pre 13.8. The 11 hexominoes that fold into cubes 
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Chapter 14 

"Lines that are parallel 
meet at Infinity!" 
Euclid repeatedly, 
heatedly, 

urged. 
Until he died, 
and so reached that vicinity: 
in it he 
found that the damned things 

diverged. 

-Piet Hein, Grooks VI 

Non-Euclidean 
Qeometry 

Euclid's Elements is dull, long-winded, and does not make ex
plicit the fact that two circles can intersect, that a circle has an outside 
and an inside, that triangles can be turned over, and other assumptions 
essential to his system. By modern standards Bertrand Russell could 
call Euclid's fourth proposition a "tissue of nonsense" and declare it a 
scandal that the Elements was still used as a textbook. 

On the other hand, Euclid's geometry was the first major effort to or
ganize the subject as an axiomatic system, and it seems hardly fair to 
find fault with him for not anticipating all the repairs made when 
David Hilbert and others formalized the system. There is no more strik
ing evidence of Euclid's genius than his realization that his notorious 
fifth postulate was not a theorem but an axiom that had to be accepted 
without proof. 

Euclid's way of stating the postulate was rather cumbersome, and it 
was recognized early that it could be given the following simpler form: 
Through a point on a plane, not on a given straight line, only one line 
is parallel to the given line. Because this is not quite as intuitively ob
vious as Euclid's other axioms mathematicians tried for 2,000 years to 
remove the postulate by making it a theorem that could be established 
on the basis of Euclid's other axioms. Hundreds of proofs were at
tempted. Some eminent mathematicians thought they had succeeded, 
but it always turned out that somewhere in their proof an assumption 
had been made that either was equivalent to the parallel postulate or re
quired the postulate. 

175 



For example, it is easy to prove the parallel postulate if you assume 
that the sum of the angles of every triangle equals two right angles. Un
fortunately you cannot prove this assumption without using the paral
lel postulate. An early false proof, attributed to Thales of Miletus, rests 
on the existence of a rectangle, that is, a quadrilateral with four right an
gles. You cannot prove, however, that rectangles exist without using the 
parallel postulate! In the 17th century John Wallis, a renowned English 
mathematician, believed he had proved the postulate. Alas, he failed to 
realize that his assumption that two triangles can be similar but not 
congruent cannot be proved without the parallel postulate. Long lists 
can be made of other assumptions, all so intuitively obvious that they 
hardly seem worth asserting, and all equivalent to the parallel postu
late in the sense that they do not hold unless the postulate holds. 

In the early 19th century trying to prove the postulate became some
thing of a mania. In Hungary, Farkas Bolyai spent much of his life at the 
task, and in his youth he discussed it often with his German friend 
Karl Friedrich Gauss. Farkas' son Janos became so obsessed by the 
problem that his father was moved to write in a letter: "For God's sake, 
I beseech you, give it up. Fear it no less than sensual passions because 
it too may take all your time and deprive you of your health, peace of 
mind and happiness in life." 

Janos did not give it up, and soon he became persuaded not only 
that the postulate was independent of the other axioms but also that a 
consistent geometry could be created by assuming that through the 
point an infinity of lines were parallel to the given line. "Out of noth
ing I have created a new universe," he proudly wrote to his father in 
1823. 

Farkas at once urged his son to let him publish these sensational 
claims in an appendix to a book he was then completing. "If you have 
really succeeded, it is right that no time be lost in making it public, for 
two reasons: first, because ideas pass easily from one to another who 
can anticipate its publication; and secondly, there is some truth in this, 
that many things have an epoch in which they are found at the same 
time in several places, just as the violets appear on every side in spring. 
Also every scientific struggle is just a serious war, in which I cannot say 
when peace will arrive. Thus we ought to conquer when we are able, 
since the advantage is always to the first comer." 

Janos' brief masterpiece did appear in his father's book, but as it hap
pened the publication of the book was delayed until 1832. The Russ-
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ian mathematician Nikolai Ivanovitch Lobachevski had beat him to it 
by disclosing details of the same strange geometry (later called by Felix 
Klein hyperbolic geometry) in a paper of 1829. What is worse, when 
Farkas sent the appendix to his old friend Gauss, the Prince of Mathe
maticians replied that if he praised the work, he would only be prais
ing himself, inasmuch as he had worked it all out many years earlier 
but had published nothing. In other letters he gave his reason. He did 
not want to arouse an Houtcry" among the "Boeotians," by which he 
meant his conservative colleagues. (In ancient Athens the Boeotians 
were considered unusually stupid.) 

Crushed by Gauss's response, Janos even suspected that his father 
might have leaked his marvelous discovery to Gauss. When he later 
learned of Lobachevski's earlier paper, he lost interest in the topic and 
published nothing more. "The nature of real truth of course cannot but 
be one and the same in Marcos-Vasarhely as in Kamchatka and on the 
moon," he wrote, resigned to having published too late to win the 
honor for which he had so passionately hoped. 

In some ways the story of the Italian Jesuit Giralamo Saccheri is even 
sadder than that of Bolyai. As early as 1733, in a Latin book called Eu
clid Cleared of All Blemish, Saccheri actually constructed both types of 
non-Euclidean geometry (we shall come to the second type below) 
without knowing it! Or so it seems. At any rate Saccheri refused to be
lieve either geometry was consistent, but he came so close to accepting 
them that some historians think he pretended to disbelieve them just 
to get his book published. "To have claimed that a non-Euclidean sys
tem was as 'true' as Euclid's," writes Eric Temple Bell (in a chapter on 
Saccheri in The Magic of Numbers), "would have been a foolhardy in
vitation to repression and discipline. The Copernicus of Geometry 
therefore resorted to subterfuge. Taking a long chance, Saccheri de
nounced his own work, hoping by this pious betrayal to slip his heresy 
past the censors." 

I cannot resist adding two anecdotes about the Bolyais. Janos was a 
cavalry officer (mathematics had always been strictly a recreation) 
known for his swordsmanship, his skill on the violin, and his hot tem
per. He is said to have once challenged 13 officers to duels, provided 
that after each victory he would be allowed to play to the loser a piece 
on his violin. The elder Bolyai is reported to have been buried at his 
own request under an apple tree, with no monument, to commemorate 
history's three most famous apples: the apple of Eve, the golden apple 
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Paris gave Venus as a beauty-contest prize, and the falling apple that in
spired Isaac Newton. 

Before the 19th century had ended it became clear that the parallel 
postulate not only was independent of the others but also that it could 
be altered in two opposite ways. If it was replaced (as Gauss, Bolyai, 
and Lobachevski had proposed) by assuming an infinite number of "ul
traparallel" lines through the point, the result would be a new geome
try just as elegant and as "true" as Euclid's. All Euclid's other postulates 
remain valid; a "straight" line is still a geodesic, or shortest line. In this 
hyperbolic space all triangles have an angle sum less than 180 degrees, 
and the sum decreases as triangles get larger. All similar polygons are 
congruent. The circumference of any circle is greater than pi times the 
diameter. The measure of curvature of the hyperbolic plane is negative 
(in contrast to the zero curvature of the Euclidean plane) and every
where the same. Like Euclidean geometry, hyperbolic geometry gener
alizes to 3-space and all higher dimensions. 

The second type of non-Euclidean geometry, which Klein names "el
liptic," was later developed simultaneously by the German mathe
matician Georg Friedrich Bernhard Riemann and the Swiss 
mathematician Ludwig SchHifli. It replaces the parallel postulate with 
the assumption that through the point no line can be drawn parallel to 
the given line. In this geometry the angle sum of a triangle is always 
more than 180 degrees, and the circumference of a circle is always less 
than pi times the diameter. Every geodesic is finite and closed. The 
lines in every pair of geodesics cross. 

To prove consistency for the two new geometries various Euclidean 
models of each geometry were found showing that if Euclidean geom
etry is consistent, so are the other two. Moreover, Euclidean geometry 
has been "arithmetized," proving that if arithmetic is consistent, so too 
is Euclid's geometry. We now know, thanks to Kurt G6del, that the con
sistency of arithmetic is not provable in arithmetic, and although there 
are consistency proofs for arithmetic (such as the famous proof by Ger
hard Gentzen in 1936), no such proof has yet been found that can be 
considered entirely constructive by an intuitionist (see A. Calder, "Con
structive Mathematics," Scientific American, October 1979). God ex
ists, someone once said, because mathematics is consistent, and the 
Devil exists because we are not able to prove it. 

The various metaproofs of arithmetic's consistency, as Paul C. Rosen
bloom has put it, may not have eliminated the Devil, but they have re-
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though they are unaware of any change because all their measuring in
struments Similarly get smaller. At the boundary their size would be
come zero, but they can never reach the boundary. If they proceed 
toward it with uniform velocity, their speed (to us) steadily decreases, 
although to them it seems constant. Thus their universe, which we see 
as being finite, is to them infinite. Hyperbolic light follows geodesics, 
but because its velocity is proportional to its distance from the bound
ary it takes paths that we see as circular arcs meeting the boundary at 
right angles. 

In this hyperbolic world a triangle has a maximum finite area, as is 
shown in Figure 14.2, although its three "straight" sides go to infinity 
in hyperbolic length and its three angles are zero. You must not think 
of Escher's mosaic as being laid out on a sphere. It is a circle enclosing 
an infinity of fish-Coxeter calls it a "miraculous draught"-that get 
progressively smaller as they near the circumference. In the hyperbolic 
plane, of which the picture is only a model, the fish are all identical in 
size and shape. It is important to remember that the creatures of a hy
perbolic world would not change in shape as they moved about, light 
would not change in speed, and the universe would be infinite in all 
directions. 

figure 14.2. 

The curved white lines in Escher's woodcut do not, as many people 
have supposed, model hyperbolic geodesics. The lines are called 
equidistant curves or hypercycles. Each line has a constant perpendic
ular distance (measured hyperbolically) from the hyperbolic straight 
line that joins the arc's ends. Note that along each white curve fish of 
the same color swim head to tail. If you consider all the points where 
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four fins meet, these points are the vertexes of a regular tiling of the hy
perbolic plane by equilateral triangles with angles of 45 degrees. The 
centers of the triangles are the points where three left fins meet and 
three mouths touch three tails. The 45-degree angles make it possible 
for eight triangles to surround each vertex, where in a Euclidean tiling 
by equilateral triangles only six triangles can surround each vertex. 

Escher and Coxeter had corresponded from the time they met in 
1954, and Escher's interest in tilings of the hyperbolic plane had been 
aroused by the illustrations in a 1957 paper on crystal symmetry that 
Coxeter had written and sent to him. In a lovely article titled "The 
Non-Euclidean Symmetry of Escher's Picture 'Circle Limit III' " (in the 
journal Leonardo, Vol. 12, 1979, pp. 19-25) Coxeter shows that each 
white arc meets the boundary at an angle of almost 80 degrees. (The 
precise value is 27/4 + 25/4 arc secants.) Coxeter considers Circle Limit 
III the most mathematically sophisticated of all Escher's pictures. It 
even anticipated a discovery Coxeter did not make until five years after 
the woodcut was finished! 

Elliptic geometry is roughly modeled by the surface of a sphere. Here 
Euclidean straight lines become great circles. Clearly no two can be 
parallel, and it is easy to see that triangles formed by arcs of great cir
cles must have angles that add up to more than two right angles. The 
hyperbolic plane is similarly modeled by the saddle-shaped surface of 
a pseudosphere, generated by rotating a tractrix about its asymptote. 

It is a misuse of the word "crank" to apply it to mathematicians who 
erred in thinking, before the independence of the parallel postulate 
was established, that they had proved the postulate. The same cannot 
be said of those amateurs of later decades who could not understand 
the proofs of the postulate's independence or who were too egotistical 
to try. Augustus De Morgan, in his classic compendium of eccentric 
mathematics, A Budget of Paradoxes, introduces us to Britain's most in
defatigable 19th-century parallel-postulate prover, General Perronet 
Thompson. Thompson kept issuing revisions of his many proofs (one 
was based on the equiangular spiral), and although De Morgan did his 
best to dissuade him from his futile efforts, he was unsuccessful. 
Thompson also wanted to replace the tempered scale of the piano with 
an octave of 40 notes. 

The funniest of the American parallel-postulate provers was the Very 
Reverend Jeremiah Joseph Callahan, then president of Duquesne Uni
versity in Pittsburgh. In 1931, when Father Callahan announced he 
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had trisected the angle, Time gave the story sober treatment and ran his 
photograph. The following year Callahan published his major work, 
Euclid or Einstein: A Proof of the Parallel Theory and a Critique of 
MetageometIY(Devon-Adair, 1932), a 31D-page treatise in which he as
cended to heights of argumentem ad hominem. Einstein is "fuddled," 
he "has not a logical mind," he is in a "mental fog," he is a "careless 
thinker." "His thought staggers, and reels, and stumbles, and falls, like 
a blind man rushing into unknown territory." "Sometimes one feels 
like laughing," Callahan wrote, "and sometimes one feels a little irri
tated .... But there is no use expecting Einstein to reason." 

What Callahan found so irritating was Einstein's adoption of a gen
eralized non-Euclidean geometry, formulated by Riemann, in which 
the curvature of physical space varies from point to point depending on 
the influence of matter. One of the great revolutions brought about by 
relativity theory was the discovery that an enormous overall simplifi
cation of physics is obtained by assuming physical space to have this 
kind of non-Euclidean structure. 

It is now commonplace (how astonished, and I think delighted, Kant 
would have been by the notion!) to recognize that all geometric systems 
are equally "true" in the abstract but that the structure of physical space 
must be determined empirically. Gauss himself thought of triangulat
ing three mountain peaks to see if their angles added up to two right an
gles. It is said he actually made such a test, with inconclusive results. 
Although experiments can prove physical space is non-Euclidean, it is 
a curious fact that there is no way to prove it is Euclidean! Zero curva
ture is a limiting case, midway between elliptic and hyperbolic curva
tures. Since all measurement is subject to error, the deviation from zero 
could always be too slight for detection. 

Poincare held the opinion that if optical experiments seemed to show 
physical space was non-Euclidean, it would be best to preserve the 
simpler Euclidean geometry of space and assume that light rays do not 
follow geodesics. Many mathematicians and physicists, including Rus
sell, agreed with Poincare until relativity theory changed their mind. 
Alfred North Whitehead was among the few whose mind was never 
changed. He even wrote a book on relativity, now forgotten, in which 
he argued for preserving a Euclidean universe (or at least one of con
stant curvature) and modifying the physical laws as necessary. (For a 
discussion of Whitehead's controversy with Einstein, see Robert M. 
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Palter's Whitehead's Philosophy of Science, University of Chicago 
Press, 1960.) 

Physicists are no longer disturbed by the notion that physical space 
has a generalized non-Euclidean structure. Callahan was not merely 
disturbed; he was also convinced that all non-Euclidean geometries 
are self-contradictory. Einstein, poor fellow, did not know how easy it 
is to prove the parallel postulate. If you are curious about how Callahan 
did it, and about his elementary error, see D. R. Ward's paper in The 
Mathematical Gazette (Vol. 17, May 1933, pp. 101-4). 

Like their cousins who trisect the angle, square the circle, and find 
simple proofs of Fermat's last theorem, the parallel-postulate provers 
are a determined breed. A more recent example is William 1. Fischer 
of Munich, who in 1959 published a 100-page Critique of Non
Euclidean Geometry. Ian Stewart exposed its errors in the British jour
nal Manifold (No. 12, Summer 1972, pp. 14-21). Stewart quotes from 
a letter in which Fischer accuses establishment mathematicians of sup
pressing his great work and orthodox journals of refusing to review it: 
"The university library at Cambridge refused even to put my booklet on 
file .... I had to write to the vice-chancellor to overcome this boycott." 

There are, of course, no sharp criteria for distinguishing crank math
ematics from good mathematics, but then neither are there sharp crite
ria for distinguishing day from night, life from non-life, and where the 
ocean ends and the shore begins. Without words for parts of continu
ums we could not think or talk at all. If you, dear reader, have a way to 
prove the parallel postulate, don't tell me about it! 

Addendum 

Imagine a small circle around the north pole of the earth. If it 
keeps expanding, it reaches a maximum size at the equator, after which 
it starts to contract until it finally becomes a point at the south pole. In 
similar fashion, an expanding sphere in four-dimensional elliptical 
space reaches a maximum size, then contracts to a point. 

In addition to the three geometries described in this chapter, there is 
what Bolyai called "absolute geometry" in which theorems are true in 
all three. It is astonishing that the first 28 theorems of Euclid's Ele
ments are in this category, along with other novel theorems that Bolyai 
showed to be independent of the parallel postulate. 
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I was surprised to see in a 1984 issue of Speculations in Science and 
Technology (VoL 7, pp. 207-16), a defense of Father Callahan's proof of 
the parallel postulate! The authors are Richard Hazelett, vice president 
of the Hazelett Strip-Casting Corporation, Colchester, VT, and Dean E. 
Thrner, who teaches at the University of North Colorado, in Greeley. 
Hazelett is a mechanical engineer with master's degrees from the Uni
versity of Texas and Boston University. Taylor, an ordained minister in 
the Disciples of Christ Church, has a doctorate from the University of 
Texas. 

It is easy to understand why both men do not accept Einstein's gen
eral theory of relativity. Indeed, they have edited a book of papers at
tacking Einstein. Titled The Einstein Myth and the Ives Papers, it was 
published in 1979 by Devin-Adair. 

In an earlier column on geometrical fallacies, reprinted in Wheels, 
Life, and Other Mathematical Amusements (1983), I discussed in detail 
Father Callihan's false "proof" of the parallel postulate. For other false 
proofs, see Underwood Dudley's book cited in the bibliography. 

In the Encyclopaedia Britannica's tenth edition Bertrand Russell con
tributed an article on "Geometry, Non-Euclidean." It was revised for the 
eleventh edition (1910) with Whitehead's name added as coauthor. 
They argued that at present, on grounds of simplicity, if an experiment 
ever contradicted Euclidean geometry it would be preferable to ques
tion the experiment rather than give up Euclidean geometry. Of course 
they wrote this before relativity theory proved otherwise. Poincare's ob
jection to non-Euclidean geometry was unqualified. Russell changed 
his mind in the light of relativity theory, but if Whitehead ever changed 
his mind I've been unable to find evidence for it. 
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Chapter 15 Rotations 
and Reflections 

A geometric figure is said to be symmetrical if it remains un
changed after a "symmetry operation" has been performed on it. The 
larger the number of such operations, the richer the symmetry. For ex
ample, the capital letter A is unchanged when reflected in a mirror 
placed vertically beside it. It is said to have vertical symmetry. The 
capital B lacks this symmetry but has horizontal symmetry: it is un
changed in a mirror held horizontally above or below it. S is neither 
horizontally nor vertically symmetrical but remains the same if rotated 
180 degrees (twofold symmetry). All three of these symmetries are pos
sessed by H, I, 0, and X. X is richer in symmetry than H or I because, 
if its arms cross at right angles, it is also unchanged by quarter-turns 
(fourfold symmetry). 0, in circular form, is the richest letter of all. It is 
unchanged by any type of rotation or reflection. 

Because the earth is a sphere toward the center of which all objects 
are drawn by gravity, living forms have found it efficient to evolve 
shapes that possess strong vertical symmetry combined with an obvi
ous lack of horizontal or rotational symmetry. In making objects for his 
use man has followed a similar pattern. Look around and you will be 
struck by the number of things you see that are essentially unchanged 
in a vertical mirror: chairs, tables, lamps, dishes, automobiles, air
planes, office buildings-the list is endless. It is this prevalence of ver
tical symmetry that makes it so difficult to tell when a photograph has 
been reversed, unless the scene is familiar or contains such obvious 
clues as reversed printing or cars driving on the wrong side of the road. 
On the other hand, an upside-down photograph of almost anything is 
instantly recognizable as inverted. 

The same is true of works of graphic art. They lose little, if anything, 
by reflection, but unless they are completely nonrepresentational no 
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careless museum director is likely to hang one upside down. Of course, 
abstract paintings are often inverted by accident. The New York Times 
Magazine (October 5, 1958) inadvertently both reversed and inverted a 
picture of an abstraction by Piet Mondrian, but only readers who knew 
the painting could possibly have noticed it. In 1961, at the New York 
Museum of Modern Art, Matisse's painting, Le Bateau, hung upside 
down for 47 days before anyone noticed the error. 

So accustomed are we to vertical symmetry, so unaccustomed to see
ing things upside down, that it is extremely difficult to imagine what 
most scenes, pictures, or objects would look like inverted. Landscape 
artists have been known to check the colors of a scene by the undigni
fied technique of bending over and viewing the landscape through their 
legs. Its upside-down contours are so unfamiliar that colors can be seen 
uncontaminated, so to speak, by association with familiar shapes. 
Thoreau liked to view scenes this way and refers to such a view of a 
pond in Chapter 9 of Walden. Many philosophers and writers have 
found symbolic meaning in this vision of a topsy-turvy landscape; it 
was one of the favorite themes of G. K. Chesterton. His best mystery sto
ries (in my opinion) concern the poet-artist Gabriel Gale (in The Poet 
and the Lunatics), who periodically stands on his hands so that he can 
"see the landscape as it really is: with the stars like flowers, and the 
clouds like hills, and all men hanging on the mercy of God. " 

The mind's inability to imagine things upside down is essential to 
the surprise produced by those ingenious pictures that turn into some
thing entirely different when rotated 180 degrees. Nineteenth-century 
political cartoonists were fond of this device. When a reader inverted 
a drawing of a famous public figure, he would see a pig or jackass or 
something equally insulting. The device is less popular today, although 
Life for September 18, 1950, reproduced a remarkable Italian poster on 
which the face of Garibaldi became the face of Stalin when viewed up
side down. Children's magazines sometimes reproduce such upside
down pictures, and now and then they are used as advertising 
gimmicks. The back cover of Life for November 23,1953, depicted an 
Indian brave inspecting a stalk of corn. Thousands of readers probably 
failed to notice that when this picture was inverted it became the face 
of a man, his mouth watering at the sight of an open can of corn. 

I know of only four books that are collections of upside-down draw
ings. Peter Newell, a popular illustrator of children's books who died 
in 1924, published two books of color plates of scenes that undergo 
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amusing transformations when inverted: 
Topsys and Turvys Number 2 (1894). In 1946 a London publisher is-

a faces drawn by Rex 
an ............... " ...... 0..;, ......... in 1 

richly symmetrical title 
15.1.} 

(Its title page reproduced in 

on page 
invertible book 

The technique upside-down drawing was carried to unbelievable 
heights a 

he a six-panel color cornie for the Sunday of 

One took the panels in order, reading the cap-
one the page upside down and 

reverse to 
achieve continuity by means of two chief characters called Little Lady 

Old Man 

o;;;..,-,~ ........... mad surpasses all understanding. A collection of 25 of 
his comics was published by G. W. Dillingham in 1905 under the 
of 

cause it 
a Au..uL '-AU 'U U. "."..1 
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Figure 1S.2. A typical upside-down cartoon by Gustave Verbeek 

century Swiss painter Matthaus Merian that becomes a man's profile 
when the picture is given a quarter-turn counterclockwise. The rab
bit-duck in Figure 15.3 is the best-known example of a quarter-turn 
picture. Psychologists have long used it for various sorts of testing. 
Harvard philosopher Morton White once reproduced a rabbit-duck 
drawing in a magazine article to symbolize the fact that two historians 
can survey the same set of historical facts but see them in two essen
tially different ways. 

Our lifelong conditioning in the way we see things is responsible for 
a variety of startling upside-down optical illusions. All astronomers 
know the necessity of viewing photographs of the moon's surface so 
that sunlight appears to illuminate the craters from above rather than 
below. We are so unaccustomed to seeing things illuminated from 
below that when such a photograph of the moon is inverted, the craters 
instantly appear to be circular mesas rising above the surface. One of 
the most amusing illusions of this same general type is shown in Fig
ure 15.4. The missing slice of pie is found by turning the picture upside 
down. Here again the explanation surely lies in the fact that we almost 
always see plates and pies from above and almost never from below. 

Upside-down faces could not be designed, of course, if it were not for 
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Figure 15.3. A quarter-turn clockwise 
makes the duck into a rabbit. 

Figure 15.4. Where is the missing slice? 

the fact that our eyes are not too far from midway between the top of 
the head and the chin. School children often amuse themselves by 
turning a history book upside down and penciling a nose and mouth on 
the forehead of some famous person. 

When this is done on an actual face, using eyebrow pencil and lip
stick, the effect becomes even more grotesque. It was a popular party 
pastime of the late 19th century. The following account is from an old 
book entitled What Shall We Do Tonight? 

The severed head always causes a sensation and should not be suddenly 
exposed to the nervous .... A large table, covered with a cloth suffi
ciently long to reach to the floor all around and completely hide all be
neath, is placed in the center of the room .... A boy with soft silky hair, 
rather long, being selected to represent the head, must lie upon his back 
under the table entirely concealed, excepting that portion of his face 
above the bridge of his nose. The rest is under the tablecloth. 

His hair must now be carefully combed down, to represent whiskers, 
and a face must be painted ... upon the cheeks and forehead; the false 
eyebrows, nose and mouth, with mustache, must be strongly marked 
with black water color, or India ink, and the real eyebrows covered with 
a little powder or flour. The face should also be powdered to a deathlike 
pallor .... 

The horror of this illusion may be intensified by having a subdued 
light in the room in which the exhibition has been arranged. This 
conceals in a great degree any slight defects in the "making-up" of the 
head .... 

Needless to add, the horror is heightened when the "head" suddenly 
opens its eyes, blinks, stares from side to side, wrinkles its cheeks (fore
head). 

The physicist Robert W. Wood (author of How to Tell the Birds from 
the Flowers) invented a funny variation of the severed head. The face 
is viewed upside down as before, but now it is the forehead, eyes, and 
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nose that are covered, leaving only the mouth and chin exposed. Eyes 
and nose are drawn on the chin to produce a weird little pinheaded 
creature with a huge, flexible mouth. The stunt was a favorite of Paul 
Winchell, the television ventriloquist. He wore a small dummy's body 
on his head to make a figure that he called Ozwald, while television 
camera techniques inverted the screen to bring Ozwald right side up. 
In 1961 an Ozwald kit was marketed for children, complete with the 
dummy's body and a special mirror with which to view one's own face 
upside down. 

It is possible to print or even write in longhand certain words in 
such a way that they possess twofold symmetry. The Zoological Soci
ety of San Diego, for instance, publishes a magazine called ZOONOOZ, 
the name of which is the same upside down. The longest sentence of 
this type that I have come across is said to be a sign by a swimming pool 
designed to read the same when viewed by athletes practicing hand
stands: NOW NO SWIMS ON MON. (See Figure 15.5.) 

----

.".~." .. -• I' f ~ 
, I'/., ...r-
1\~ __ 

I.... -
sketch reproduced by courtesy of the artist, John McClellan 

Figure 15.5. An invertible sign 

It is easy to form numbers that are the same upside down. As many 
have noticed, 1961 is such a number. It was the first year with twofold 
symmetry since 1881, the last until 6009, and the twenty-third since the 
year 1. Altogether there are 38 such years between A.D. 1 and A.D. 10000 

(according to a calculation made by John Pomeroy), with the longest in
terval between 1961 and 6009. J. F. Bowers, writing in the Mathemati-
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cal Gazette for December 1961, explains his clever method of calculat
ing that by A.D. 1000000 exactly 198 invertible years will have passed. 
The January 1961 issue of Mad featured an upside-down cover with the 
year's numerals in the center and a line predicting that the year would 
be a mad one. 

Some numbers, for example 7734 (when the 4 is written so that it is 
open at the top), become words when inverted; others can be written 
to become words when reflected. With these quaint possibilities in 
mind, the reader may enjoy tackling the following easy problems: 

1. Oliver Lee, age 44, who lives at 312 Main Street, asked the city to 
give his car a license plate bearing the number 337-31770. Why? 

2. Prove the sum in Figure 15.6 to be correct. 

3 4 I 4 Figure 15.6. Is the sum correct? 

340 
74813 

43374813 

3. Circle six digits in the group below that will add up to exactly 21. 

1 
3 

5 
9 

1 
3 

5 
9 

1 
3 

5 
9 

4. A basket contains more than half a dozen eggs. Each egg is either 
white or brown. Let x be the number of white eggs, and y be the num
ber of brown. The sum of x and y, turned upside down, is the product 
of x and y. How many eggs are in the basket? 

Addendum 
George Carlson, art editor of John Martin's Book, a monthly 

magazine for children that flourished in the 1920s, contributed some 
dozen upside-down pictures to the magazine. Many other examples 
can be found in several books on optical illusions and related pictures 
by England's Keith Kay. In 1980 Lothrop published The Turn About, 
Think About, Look About Book, by Beau Gardner. It features pictures 
to be viewed both upside down and after quarter-turns. 
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three swans on a lake. Their reflections in the water are three elephants. 
The landscape is reproduced in color in Richard Gregory's book on 
mirrors, Mirrors in Mind (1997). 

Landscapes that turn into faces when rotated 90 degrees were popu
lar among German painters of the Renaissance. Two examples are re
produced in Figure 15.7. 

Answers 
1. The number 337-31770 upside down spells "Ollie Lee." 
2. Hold the sum to a mirror. 
3. Turn the picture upside down, circle three 6's and three 1 's to 

make a total of 21. 
4. The basket has nine white eggs and nine brown eggs. When the 

sum, 18, is inverted, it becomes 81, the product. Had it not been spec
ified that the basket contained more than six eggs, three white and 
three brown would have been another answer. 
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Chapter 16 The Amazing 
Creations of Scott Kim 

Scott Kim's Inversions, published in 1981 by Byte Publications, 
is one of the most astonishing and delightful books ever printed. Over 
the years Kim has developed the magical ability to take just about any 
word or short phrase and letter it in such a way that it exhibits some 
kind of striking geometrical symmetry. Consider Kim's lettering of my 
name in Figure 16.1. Turn it upside down and presto! It remains exactly 
the same! 

Students of curious wordplay have long recognized that short words 
can be formed to display various types of geometrical symmetry. On the 
Rue Mozart in Paris a clothing shop called "New Man" has a large sign 
lettered "NeW MaN" with the e and the a identical except for their ori
entation. As a result the entire sign has upside-down symmetry. The 
names VISTA (the magazine of the United Nations Association). 
ZOONOOZ (the magazine of the San Diego zoo) and NISSIN (a Japan
ese manufacturer of camera flash equipment) are all cleverly designed 
so that they have upside-down symmetry. 

BOO HOO, DIOXIDE, EXCEEDED, and DICK COHEN DIED 10 DEC 
1883 all have mirror symmetry about a horizontal axis. If you hold 
them upside down in front of a mirror, they appear unchanged. One 
day in a supermarket my sister was puzzled by the name on a box of 
crackers, "spep oop," until she realized that a box of "doo dads" was on 
the shelf upside down. Wallace Lee, a magician in North Carolina, liked 
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to amuse friends by asking if they had ever eaten any "ittaybeds," a 
word he printed on a piece of paper like this: 

1 ...... aLlbeds 

After everyone said no, he would add: 
"Of course, they taste much better upside down." 
Many short words in conventional typefaces turn into other words 

when they are inverted. MOM turns into WOW and "up" becomes the 
abbreviation "dn." SWIMS remains the same. Other words have mirror 
symmetry about a vertical axis, such as "bid" (and "pig" if the g is 
drawn as a mirror image of the p). Here is an amusing way to write 
"minimum" so that it is the same when it is rotated 180 degrees: 

o 0 

o 0 

It is Kim who has carried this curious art of symmetrical calligraphy 
to heights not previously known to be possible. By ingeniously dis
torting letters, yet never so violently that one cannot recognize a word 
or phrase, Kim has produced incredibly fantastic patterns. His book is 
a collection of such wonders, interspersed with provocative observa
tions on the nature of symmetry, its philosophical aspects, and its em
bodiment in art and music as well as in wordplay. 

Kim is no stranger to my Scientific American columns. He is of Ko
rean descent, born in the U.S., who in 1981 was doing graduate work 
in computer science at Stanford University. He was in his teens when 
he began to create highly original problems in recreational mathemat
ics. Some that have been published in Scientific American include his 
"lost-king tours" (April 1977), the problem of placing chess knights on 
the corners of a hypercube (February 1978), his solution to "boxing a 
box" (February 1979), and his beautifully symmetrical "m-pire map" 
given in Chapter 6 of my Last Recreations. In addition to a remarkable 
ability to think geometrically (not only in two and three dimensions but 
also in 4-space and higher spaces) Kim is a classical pianist who for 
years could not decide between pursuing studies in mathematics or in 
music. In the early 1980s he was intensely interested in the use of com-
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puters for designing typefaces, a field pioneered by his friend and men
tor at Stanford, the computer scientist Donald E. Knuth. 

For several years Kim's talent for lettering words to give them unex
pected symmetries was confined to amusing friends and designing fam
ily Christmas cards. He would meet a stranger at a party, learn his or her 
name, then vanish for a little while and return with the name neatly 
drawn so that it would be the same upside down. His 1977 Christmas 
card, with upside-down symmetry, is shown in Figure 16.2. (Lester 
and Pearl are his father and mother; Grant and Gail are his brother and 
sister.) The following year he found a way to make "Merry Christmas, 
1978," mirror-symmetrical about a horizontal axis, and in 1979 he 
made the mirror axis vertical. (See Figures 16.3 and 16.4.) 

Figure '6.2. 

For a wedding anniversary of his parents Kim designed a cake with 
chocolate and vanilla frosting in the pattern shown in Figure 16.5. 

("Lester" is in black, "Pearl" is upside down in white.) This is Kim's 
"figure and ground" technique. You will find another example of it in 
Godel, Escher, Bach: An Eternal Golden Braid, the Pulitzer-prize
winning book by Kim's good friend Douglas R. Hofstadter. Speaking of 
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Figure 16.3. 

Figure 16.S 

Figure 16.6. 

o o 

Kurt Gade!, J. S. Bach, and M. C. Escher, Figure 16.6 shows how Kim 
has given each name a lovely mirror symmetry. In Figure 16.7 Kim has 
lettered the entire alphabet in such a way that the total pattern has 
left-right symmetry. 

Kim's magic calligraphy came to the attention of Scot Morris, an ed
itor at Omni. Morris devoted a page of his popular column on games to 
Kim's work in Omni's September 1979 issue, and he announced a 
reader's contest for similar patterns. Kim was hired to judge the thou
sands of entries that came in. You will find the beautiful prizewinners 
in Omni's April 1980 issue and close runners-up in Morris' columns for 
May and November of the same year. 

All the patterns in Kim's book are his own. A small selection of a few 
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more is given in Figure 16.8 to convey some notion of the amazing va
riety of visual tricks Kim has up his sleeve. 

I turn now to two unusual mathematical problems originated by Kim, 
both of which are still only partly solved. In 1975, when Kim was in 
high school, he thought of the following generalization of the old prob
lem of placing eight queens on a chessboard so that no queen attacks 
another. Let us ask, said Kim, for the maximum number of queens that 
can be put on the board so that each queen attacks exactly n other 
queens. As in chess, we assume that a queen cannot attack through an
other queen. 

When n is 0, we have the classic problem. Kim was able to prove that 
when n is 1, 10 queens is the maximum number. (A proof is in Journal 
a/Recreational Mathematics, Vol. 13, No.1, 1980-81, p. 61.) A pleasing 
solution is shown in Figure 16.9 top. The middle illustration shows a 
maximal solution of 14 queens when n is 2, a pattern Kim described in 
a letter as being "so horribly asymmetric that it has no right to exist." 
There are only conjectures for the maximum when n is 3 or 4. Kim's best 
result of 16 queens for n = 3 has the ridiculously simple solution shown 
in Figure 16.9, bottom, but there is no known proof that 16 is maxi
mum. For n = 4 Kim's best result is 20 queens. Can you place 20 queens 
on a chessboard so each queen attacks exactly four other queens? 

The problem can of course be generalized to finite boards of any size, 
but Kim has a simple proof based on graph theory that on no finite 
board, however large, can n have a value greater than 4. For n = 1 Kim 
has shown that the maximum number of queens cannot exceed the 
largest integer less than or equal to 4k13, where k is the number of 
squares along an edge of the board. For n = 2 he has a more difficult 
proof that the maximum number of queens cannot exceed 2k - 2, and 
that this maximum is obtainable on all even-order boards. 

Kim's problem concerning polycube snakes has not previously been 
published, and he and I would welcome any light that readers can 
throw on it. First we must define a snake. It is a single connected chain 
of identical unit cubes joined at their faces in such a way that each cube 
(except for a cube at the end of a chain) is attached face to face to ex
actly two other cubes. The snake may twist in any possible direction, 
provided no internal cube abuts the face of any cube other than its two 
immediate neighbors. The snake may, however, twist so that any num
ber of its cubes touch along edges or at corners. A polycube snake may 
be finite in length, having two end cubes that are each fastened to only 
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• figure 16.9. 

• • 
:00 • II 

• • • • • n - 1 

• • • • • • • • • • • • • • n=2 

• • • • • • • • 
f--

OJ r--
I 

• • • • • • • • n-3 

one cube, or it may be finite and closed so that it has no ends. A snake 
may also have just one end and be infinite in length, or it may be infi
nite and endless in both directions. 

We now ask a deceptively simple question. What is the smallest 
number of snakes needed to fill all space? We can put it another way. 
Imagine space to be completely packed with an infinite number of unit 
cubes. What is the smallest number of snakes into which it can be dis
sected by cutting along the planes that define the cubes? 

If we consider the two-dimensional analogue of the problem (snakes 
made of unit squares), it is easy to see that the answer is two. We sim
ply intertwine two spirals of infinite one-ended flat snakes, one gray, 
one white, as in Figure 16.10. 
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16.10. 

how fill 
O.L.J..C:LI. ..... 'C:)O is not so easily answered. a 
four infinitely long one-ended snakes (it is convenient of 

as a interlocked 
helical shapes that fill all space. 
plain in a limited space; you will have to take my 

with two! "A solution with only two snakes," he wrote a letter, 
a yin-yang symbol: 

space left one snake 
beauty of such an entwining, and the possibility a .............. , .............. 
large enough me searching for a solution." 

can course 
cubes any number of dimensions. Kim has a 
space of n dimensions the minimum number of snakes that completely 
fill it 

I once 
John Horton Conway, the Cambridge mathematician now 

When I Kim had not yet shown that 
Conway 

stared into three-space for a minute or two, then exclainled, 
vious!" 

notob-

I no idea through I can only 
that if the impossibility of filling three-space with two snakes is not 
obvious to Conway or to Kim, it probably is not obvious to anyone 
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David Morice published this two-stanza "poem" in Wordways (No
vember 1987, p. 235). 

DICK HID 
CODEBOOK+ 
DOBIE KICKED 

HOBQ-OH HECK-I DECIDED 
I EXCEEDED ID-I BOXED 

HICK-ODD DODO-EH KID 
DEBBIE CHIDED-HOCK CHECKBOOK 

ED-BOB BEDDED CHOICE CHICK 
HO HQ-HE ECHOED-OH OH 

DOBIE ICED HOODED IBEX 
I COOKED OXHIDE COD 

EDIE HEEDED COOKBOOK + 
ED 

DECKED 
BOB 

To read the second stanza, hold the poem upside down in front of a 
mirror. 

Donald Knuth, Ronald Graham, and Oren Patashnik, in their mar
velous book Concrete Mathematics (the word is a blend of Continuous 
and Discrete mathematics), published by Addison-Wesley in 1989, in
troduce their readers to the "umop-apisdn" function. Rotate the word 
180 degrees to see what it means in English. 

One conjecture about the origin of the expression "Mind your ps and 
qs" is that printers often confused the two letters when they were in 
lower case. A more plausible theory is that British tavern owners had 
to mind their pints and quarts. 

In his autobiography Arrow in the Blue, Arthur Koestler recalls meet
ing many science cranks when he was a science editor in Berlin. One 
was a man who had invented a new alphabet. Each letter had fourfold 
rotational symmetry. This, he proclaimed, made it possible for four 
people, seated on the four sides of a table, to simultaneously read a 
book or newspaper at the table's center. 

Have you heard about the dyslexic atheist who didn't believe in dog? 
Or D.A.M.N., an organization of National Mothers Against Dyslexia? 

I could easily write another chapter about the amazing Scott Kim. He 
received his Ph.D. in Computers and Graphic Design, at Stanford Uni-
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versity, working under Donald Knuth. At a curious gathering of mathe
maticians, puzzle buffs, and magicians in Atlanta in 1995, Kim demon
strated how your fingers can model the skeleton of a tetrahedron and a 
cube, and how they can form a trefoil knot of either handedness. He also 
played an endless octave on a piano, each chord rising up the scale yet 
never going out of hearing range, and proved he could whistle one tune 
and hum another at the same time. During the Atlanta gathering, he 
and his friends Karl Schaffer and Erik Stern of the Dr. Schaffer & Mr. 
Stern Dance Ensemble presented a dance performance titled "Dances for 
the Mind's Eye." Choreographed by the three performers, the perfor
mance was based throughout on mathematical symmetries. 

Among books illustrated by Kim are my Aha! Gotcha (W. H. Free
man, 1982) and Han Vardi's Illustrated Computational Recreations in 
Mathematica (Addison-Wesley, 1991). Together with Ms. Robin Samel
son, Kim produced Letterform and illusion, a computer disk with an ac
companying 48-page book of programs designed for use with Claris's 
MacPaint. In 1994 Random House published Kim's Puzzle Workout, a 
collection of 42 brilliant puzzles reprinted from his puzzle column in 
New Media Magazine. It is the only book of puzzles known to me in 
which every single puzzle is totally original with the author. 

Scott Kim's queens problem brought many letters from readers who 
sent variant solutions for n = 2,3, and 4 on the standard chessboard, as 
well as proofs for maximum results and unusual ways to vary the prob
lem. The most surprising letters came from Jeffrey Spencer, Kjell 
Rosquist, and William Rex Marshall. Spencer and Rosquist, writing in 
1981, each independently bettered by one Kim's 20-queen solution for 
n = 4 on the chessboard. Figure 16.12 shows how each placed 21 
queens. It is not unique. Writing in 1989 from Dunedin, New Zealand, 
Marshall sent 36 other solutions! 

Marshall also went two better than Kim's chessboard pattern for n = 

3. He sent nine ways that 18 queens can each attack three others on the 
chessboard. The solution shown in Figure 16.13 is of special interest be
cause only three queens are not on the perimeter. Marshall found a sim
ple pigeonhole proof that for the order-8 board, n = 4, 21 queens is 
indeed maximum. His similar proof shows 18 maximum for n = 3. More 
generally, he showed that for n = 4, with k the order of the board, the 
maximum is 3k- 3 for k greater than 5. When n = 3, Marshall proved that 
the maximum number of queens is the largest even number less than or 
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Perhaps it is worth noting that when n = 4, no queen can occupy a 
corner 
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sider the topmost queen in the leftmost occupied row. At the most it 
can 

a 
independently obtained the same results, as 

obtained by William They were published in a paper ti-
Math-

264-71. 

In 1996 I received a second letter from William Marshall. He sent me 
the provided complete 

=1 

K N=l N=2 N=3 N=4 

3 0 4 2 0 
4 5 2 4 0 

5 0 1 31 0 

6 2 1 304 (307) 1 

7 138 (149) 5 2 3 

8 47 (49) 2 9 40 

9 1 15 755 655 

3 
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Chapter 17 

What I give form to in daylight is only one 
percent of what I've seen in darkness. 

-M. C. ESCHER 

The Art of 
M. C. Escher 

There is an obvious but superficial sense in which certain 
kinds of art can be called mathematical art. Op art, for instance, is 
"mathematical," but in a way that is certainly not new. Hard-edged, 
rhythmic, decorative patterns are as ancient as art itself, and even the 
modern movement toward abstraction in painting began with the geo
metric forms of the cubists. When the French Dadaist painter Hans Arp 
tossed colored paper squares in the air and glued them where they fell, 
he linked the rectangles of cubism to the globs of paint slung by the 
later "action" painters. In a broad sense even abstract expressionist art 
is mathematical, since randomness is a mathematical concept. 

This, however, expands the term "mathematical art" until it becomes 
meaningless. There is another and more useful sense of the term that 
refers not to techniques and patterns but to a picture's subject matter. 
A representational artist who knows something about mathematics can 
build a composition around a mathematical theme in the same way 
that Renaissance painters did with religious themes or Russian painters 
do with political themes. No living artist has been more successful 
with this type of "mathematical art" than Maurits C. Escher of the 
Netherlands. 

"I often feel closer to mathematicians than to my fellow artists," Es
cher has written, and he has been quoted as saying, "All my works are 
games. Serious games." His lithographs, woodcuts, wood engravings, 
and mezzotints can be found hanging on the walls of mathematicians 
and scientists in all parts of the world. There is an eerie, surrealist as
pect to some of his work, but his pictures are less the dreamlike fan
tasies of a Salvador Dali or a Rene Magritte than they are subtle 
philosophical and mathematical observations intended to evoke what 
the poet Howard Nemerov, writing about Escher, called the "mystery, 
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absurdity, and sometimes terror" of the world. Many of his pictures 
concern mathematical structures that have been discussed in books on 
recreational mathematics, but before we examine some of them, a word 
about Escher himself. 

He was born in Leeuwarden in Holland in 1898, and as a young man 
he studied at the School of Architecture and Ornamental Design in 
Haarlem. For 10 years he lived in Rome. After leaving Italy in 1934 he 
spent two years in Switzerland and five in Brussels, then settled in the 
Dutch town of Baarn where he and his wife lived until his death in 
1972. Although he had a successful exhibit in 1954 at the Whyte 
Gallery in Washington, he was much better known in Europe than here. 
A large collection of his work is now owned by the National Gallery of 
Art in Washington, D.C. 

Among crystallographers Escher is best known for his scores of in
genious tessellations of the plane. Designs in the Alhambra reveal how 
expert the Spanish Moors were in carving the plane into periodic rep
etitions of congruent shapes, but the Mohammedan religion forbade 
them to use the shapes of living things. By slicing the plane into jigsaw 
patterns of birds, fish, reptiles, mammals, and human figures, Escher 
has been able to incorporate many of his tessellations into a variety of 
startling pictures. 

In Reptiles, the lithograph shown in Figure 17.1, a little monster 
crawls out of the hexagonal tiling to begin a brief cycle of 3-space life 
that reaches its summit on the dodecahedron; then the reptile crawls 
back again into the lifeless plane. In Day and Night, the woodcut in Fig
ure 17.2, the scenes at the left and the right are not only mirror images 
but also almost "negatives" of each other. As the eye moves up the cen
ter, rectangular fields flow into interlocking shapes of birds, the black 
birds flying into daylight, the white birds flying into night. In the cir
cular wood-cut Heaven and Hell (Figure 17.3) angels and devils fit to
gether, the similar shapes becoming smaller farther from the center and 
finally fading into an infinity of figures, too tiny to be seen, on the rim. 
Good, Escher may be telling us, is a necessary background for evil, and 
vice versa. This remarkable tessellation is based on a well-known Eu
clidean model, devised by Henri Poincare, of the non-Euclidean hy
perbolic plane; the interested reader will find it explained in H.S.M. 
Coxeter's Introduction to Geometry (Wiley, 1961), pages 282-90. 

If the reader thinks that patterns of this kind are easy to invent, let 
him try it! "While drawing I sometimes feel as if I were a spiritualist 
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the International Union of Crystallography, reproduces 41 of Escher's 
tessellations, many in full color. 

Figures 17.4 and 17.5 illustrate another category of Escher's work, a 
play with the laws of perspective to produce what have been called 
"impossible figures." In the lithograph Belvedere, observe the sketch of 
the cube on a sheet lying on the checked floor. The small circles mark 
two spots where one edge crosses another. In the skeletal model held 
by the seated boy, however, the crossings occur in a way that is not re
alizable in 3-space. The belvedere itself is made up of impossible struc
tures. The youth near the top of the ladder is outside the belvedere but 
the base of the ladder is inside. Perhaps the man in the dungeon has 
lost his mind trying to make sense of the contradictory structures in his 
world. 

The lithograph Ascending and Descending derives from a perplexing 
impossible figure that first appeared in an article, "Impossible Objects: 
A Special Type of Visual Illusion," by L. S. Penrose, a British geneticist, 
and his son, the mathematician Roger Penrose (British Journal of Psy
chology, February 1958). The monks of an unknown sect are engaged 
in a daily ritual of perpetually marching around the impossible stair
way on the roof of their monastery, the outside monks climbing, the in
side monks descending. "Both directions," comments Escher, "though 
not without meaning, are equally useless. Two refractory individuals 
refuse to take part in this 'spiritual exercise.' They think they know bet
ter than their comrades, but sooner or later they will admit the error of 
their nonconformity." 

Many Escher pictures reflect an emotional response of wonder to the 
forms of regular and semiregular solids. "In the midst of our often 
chaotic society," Escher has written, "they symbolize in an unrivaled 
manner man's longing for harmony and order, but at the same time 
their perfection awes us with a sense of our own helplessness. Regular 
polyhedrons have an absolutely nonhuman character. They are not in
ventions of the human mind, for they existed as crystals in the earth's 
crust long before mankind appeared on the scene. And in regard to the 
spherical shape--is the universe not made up of spheres?" 

The lithograph Order and Chaos (Figure 17.6) features the "small 
stellated dodecahedron," one of the four "Kepler-Poinsot polyhedrons" 
that, together with the five Platonic solids, make up the nine possible 
"regular polyhedrons." It was first discovered by Johannes Kepler, who 
called it "urchin" and drew a picture of it in his Harmonices mundi 
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All any person can possibly know about the world is derived from 
what enters his skull through various sense organs; there is a sense in 
which one never experiences anything except what lies within the cir
cle of his own sensations and ideas. Out of this "phenomenology" he 
constructs what he believes to be the external world, including those 
other people who appear to have minds in egocentric predicaments 
like his own. Strictly speaking, however, there is no way he can prove 
that anything exists except himself and his shifting sensations and 
thoughts. Escher is seen staring at his own reflection in the sphere. 
The glass mirrors his surroundings, compressing them inside one per
fect circle. No matter how he moves or twists his head, the point mid
way between his eyes remains exactly at the center of the circle. "He 
cannot get away from that central point," says Escher. "The ego re
mains immovably the focus of his world." 

Escher's fascination with the playthings of topology is expressed in 
a number of his pictures. At the top of the woodcut Knots (Figure 17.8) 

we see the two mirror-image forms of the trefoil knot. The knot at top 
left is made with two long flat strips that intersect at right angles. This 
double strip was given a tw~st before being joined to itself. Is it a sin
gle one-sided band that runs twice around the knot, intersecting itself, 
or does it consist of two distinct but intersecting Mobius bands? The 
large knot below the smaller two has the structure of a four-sided tube 
that has been given a quarter-twist so that an ant walking inside, on one 
of the central paths, would make four complete circuits through the 
knot before it returned to its starting point. 

The wood engraving Three Spheres (Figure 17.9), a copy of which is 
owned by New York's Museum of Modern Art, appears at first to be a 
sphere undergoing progressive topological squashing. Look more care
fully, however, and you will see that it is something quite different. Can 
the reader guess what Escher, with great verisimilitude, is depicting here? 

Addendum 
When Escher died in 1972, at the age of 73, he was just begin

ning to become world-famous; not only among mathematicians and 
scientists (who were the first to appreciate him), but also with the pub
lic at large, especially with the young counterculture. The Escher cult 
is still growing. You see his pictures everywhere: on the covers of math
ematical textbooks, on albums of rock music, on psychedelic posters 
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Chapter 18 Klein Bottles 
and Other Surfaces 

Three jolly sailors from Blaydon-on-Tyne 
They went to sea in a bottle by Klein. 
Since the sea was entirely inside the hull 
The scenery seen was exceedingly dull. 

-Frederick Winsor, 
The Space Child's Mother Goose 

To a topologist a square sheet of paper is a model of a two
sided surface with a single edge. Crumple it into a ball and it is still 
two-sided and one-edged. Imagine that the sheet is made of rubber. 
You can stretch it into a triangle or circle, into any shape you please, 
but you cannot change its two-sidedness and one-edgedness. They are 
topological properties of the surface, properties that remain the same 
regardless of how you bend, twist, stretch, or compress the sheet. 

Two other important topological invariants of a surface are its chro
matic number and Betti number. The chromatic number is the maxi
mum number of regions that can be drawn on the surface in such a way 
that each region has a border in common with every other region. If 
each region is given a different color, each color will border on every 
other color. The chromatic number of the square sheet is 4. In other 
words, it is impossible to place more than four differently colored re
gions on the square so that any pair has a boundary in common. The 
term "chromatic number" also designates the minimum number of col
ors sufficient to color any finite map on a given surface. It is now 
known that 4 is the chromatic number, in this map-coloring sense, for 
the square, tube, and sphere, and for all other surfaces considered in 
this chapter, the chromatic number is the same under both definitions. 

The Betti number, named after Enrico Betti, a 19th-century Italian 
physicist, is the maximum number of cuts that can be made without di
viding the surface into two separate pieces. If the surface has edges, 
each cut must be a "crosscut": one that goes from a point on an edge to 
another point on an edge. If the surface is closed (has no edges), each 
cut must be a "loop cut": a cut in the form of a simple closed curve. 
Clearly the Betti number of the square sheet is O. A crosscut is certain 
to produce two disconnected pieces. 
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shows how the bottle is traditionally depicted. Imagine the lower end of 
a tube stretched out, bent up, and plunged through the tube's side, then 
joined to the tube's upper mouth. In an actual model made, say, of glass 
there would be a hole where the tube intersects the side. You must dis
regard this defect and think of the hole as being covered by a continua
tion of the bottle's surface. There is no hole, only an intersection of 
surfaces. This self-intersection is necessary because the model is in 3-
space. If we conceive of the surface as being embedded in 4-space, the 
self-intersection can be eliminated entirely. The Klein bottle is one-sided, 
no-edged, and has a Betti number of 2 and a chromatic number of 6. 

Daniel Pedoe, a mathematician at the University of Minnesota, is the 
author of The Gentle Art of Mathematics. It is a delightful book, but on 
page 84 Professor Pedoe slips into a careless bit of dogmatism. He de
scribes the Klein bottle as a surface that is a challenge to the glass 
blower, but one "which cannot be made with paper." Now, it is true that 
at the time he wrote this apparently no one had tried to make a paper 
Klein bottle, but that was before Stephen Barr, a science-fiction writer 
and an amateur mathematician of Woodstock, NY, turned his attention 
to the problem. Barr quickly discovered dozens of ways to make paper 
Klein bottles. Here I will describe a variation of my own that is made 
from a paper tube. The tube can be a sealed envelope with its left and 
right edges cut open. 

The steps are given in Figure 18.4. First, make a tube by folding the 
square in half and joining the right edges with a strip of tape as shown 
(Step 1). Cut a slot about a quarter of the distance from the top of the 
tube (Step 2), cutting only through the thickness of paper nearest you. 
This corresponds to the "hole" in the glass model. Fold the model in 
half along the broken line A. Push the lower end of the tube up through 
the slot (Step 3) and join the edges all the way around the top of the 
model (Step 4) as indicated by the arrows. It is not difficult to see that 
this flat, square model is topologically identical with the glass bottle 
shown in Figure 18.3. In one way it is superior: there is no actual hole. 
True, you have a slot where the surface self-intersects, but it is easy to 
imagine that the edges of the slot are joined so that the surface is every
where edgeless and continuous. 

Moreover, it is easy to cut this paper model and demonstrate many 
of the bottle's astonishing properties. Its Betti number of 2 is demon
strated by cutting the two loops formed by the two pairs of taped edges. 
If you cut the bottle in half vertically, you get two Mobius bands, one 
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along the solid black lines shown in Step 1. Fold the square along the 
diagonal A-A /, inserting slot C into slot B (Steps 2 and 3). You must 
think of the line where the slots interlock as an abstract line of self
intersection. Fold up the two bottom triangular flaps E and F, one on 
each side (Step 4), and tape the edges as indicated. 

The model is now what topologists call a cross-cap, a self
intersecting Mobius strip with an edge that can be stretched into a cir
cle without further self-intersection. This edge is provided by the edges 
of cut D, originally made along the square's diagonal. Note that unlike 
the usual model of a Mobius strip, this one is symmetrical: neither 
right- nor left-handed. When the edge of the cross-cap is closed by tap
ing it (Step 5), the model becomes a projective plane. You might expect 
it to have a Betti number of 2, like the Klein bottle, but it does not. It 
has a Betti number of 1. No matter how you loop-cut it, the cut pro
duces either two pieces or a piece topologically equivalent to a square 
sheet that cannot be cut again without making two pieces. If you re
move a disk from anywhere on the surface of the projective plane, the 
model reverts to a cross-cap. 

Figure lB.7 summarizes all that has been said. The square diagrams 
in the first column show how the edges join in each model. Sides ofthe 
same color join each to each, with the direction of their arrows coin
ciding. Corners labeled with the same letter are comers that come to
gether. Broken lines are sides that remain edges in the finished model. 
Next to the chromatic number of each model is shown one way the sur
face can be mapped to accommodate the maximum number of colors. 
It is instructive to color each sheet as shown, coloring the regions on 
both sides of the paper (as though the paper were cloth through which 
the colors soaked), because you must think of the sheet as having zero 
thickness. An inspection of the final model will show that each region 
does indeed border on every other one. 

Addendum 
Although I was not the first to model Klein bottles with paper 

(credit for this goes to Stephen Barr-see bibliography), my contribu
tion was to show how easily a model can be made from an envelope 
and cut in half to make two Mobius strips of opposite handedness. 

A simple way to demonstrate the one-sided property of a Klein bot
tle is to punch a hole in a model and insert a piece of string. No matter 
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where you make the hole, you can always tie the ends of the string to
gether. 

The Klein bottle continues to intrigue limerick writers. Here are three 
I have encountered: 

Topologists try hard to floor us 
With a nonorientable torus. 

The bottle of Klein 
They say is divine 

But it is so exceedingly porous. 

-Anonymous 

A geometrician named Klein 
Thought the Mobius band asinine. 
"Though its outside is in, 
Still it's ugly as sin; 

It ain't round like that bottle o'minef" 

-M. M. H. Coffee and J. J. Zeltmacher, Jr. 

An anti-strong-drinker named Klein 
Invented a bottle for wine. 

"There's no stopper," he cried, 
"And it has no inside, 

So the grapes have to stay on the vine!" 

-James Albert Lindon 

I confess that I have made use of a Klein bottle in two works of fic
tion. Professor Slapenarski falls into a Klein bottle and disappears at 
the end of my mathematically flawed story "The Island of Five Colors" 
(you'll find it in Clifton Fadiman's anthology Fantasia Mathematica), 
and again in my novel Visitors from Oz (1999) where it is used as a de
vice for transporting Dorothy, Scarecrow, and Tin Woodman from Oz 
(now in a parallel world) to Central Park in Manhattan. 

If you would like to own a glass Klein bottle, a firm called Acme, 
6270 Colby Street, Oakland, CA 94618, has five handsome glass Klein 
bottles for sale, of various sizes, shapes, and prices. The firm can also 
be reached on the Internet at www.kleinbottle.com. 

Answers 

The torus-cutting problem is solved by first ruling three paral
leI lines on the unfolded square (see Figure 18.8), When the square is 
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Figure 18.8. Solution to the torus
cutting problem 

folded into a torus, as explained, the lines make two closed loops. Cut
ting these loops produces two interlocked bands, each two-sided with 
two half-twists. 

How does one find a loop cut on the Klein bottle that will change the 
surface to a single Mobius strip? On both left and right sides of the nar
row rectangular model described you will note that the paper is creased 
along a fold that forms a figure-eight loop. Cutting only the left loop 
transforms the model into a Mobius band; cutting only the right loop 
produces an identical band of opposite handedness. 

What happens if both loops are cut? The result is a two-sided, two
edged band with four half-twists. Because of the slot the band is cut 
apart at one point, so that you must imagine the slot is not there. This 
self-intersecting band is mirror-symmetrical, neither right- nor left
handed. You can free the band of self-intersection by sliding it carefully 
out of the slot and taping the slot together. The handedness of the re
sulting band (that is, the direction of the helices formed by its edges) 
depends on whether you slide it out to the right or the left. This and the 
previous cutting problems are based on paper models that were in
vented by Stephen Barr and are described in his Experiments in Topol
ogy (Crowell, 1964). 
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Chapter 19 

"A knot!" said Alice, always ready to make 
herself useful, and looking anxiously about 
her. "Oh, do let me help to undo itl" 

-Alice in Wonderland, Chapter 3 

Knots 

To a topologist knots are closed curves embedded in three
dimensional space. It is useful to model them with rope or cord and to 
diagram them as projections on a plane. If it is possible to manipulate 
a closed curve-of course, it must not be allowed to pass through it
self-so that it can be projected on a plane as a curve with no crossing 
points then the knot is called trivial. In ordinary discourse one would 
say the curve is not knotted. "Links" are two or more closed curves that 
cannot be separated without passing one through another. 

The study of knots and links is now a flourishing branch of topology 
that interlocks with algebra, geometry, group theory, matrix theory, 
number theory, and other branches of mathematics. Some idea of its 
depth and richness can be had from reading Lee Neuwirth's excellent 
article "The Theory of Knots" in Scientific American (June 1979). Here 
we shall be concerned only with some recreational aspects of knat the
ory: puzzles and curiosities that to be understood require no more than 
the most elementary knowledge of the topic. 

Let's begin with a question that is trivial but that can catch even 
mathematicians off guard. Tie an overhand knot in a piece of rope as is 
shown in Figure 19.1. If you think of the ends of the rope as being 
joined, you have tied what knot theorists call a trefoil knot. It is the sim
plest of all knots in the sense that it can be diagrammed with a mini
mum of three crossings. (No knot can have fewer crossings except the 
trivial knot that has none.) Imagine that end A of the rope is passed 
through the loop from behind and the ends are pulled. Obviously the 
knot will dissolve. Now suppose the end is passed twice through the 
loop as is indicated by the broken line. Will the knot dissolve when the 
ends of the rope are pulled? 

Most people guess that it will form another knot. Actually the knot 
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Figure 19.1. 

dissolves as before. The end must go three times through the loop to 
produce another knot. If you try it, you will see that the new trefoil cre
ated in this way is not the same as the original. It is a mirror image. The 
trefoil is the simplest knot that cannot be changed to its mirror image 
by manipulating the rope. 

The next simplest knot, the only one with a minimum of four cross
ings, is the figure eight at the right in Figure 19.1. In this form it is eas
ily changed to its mirror image. Just turn it over. A knot that can be 
manipulated to make its mirror image is called amphicheiral because 
like a rubber glove it can be made to display either handedness. After 
the figure eight the next highest amphicheiral knot has six crossings, 
and it is the only 6-knot of that type. Amphicheiral knots become pro
gressively scarcer as crossing numbers increase. 

A second important way to divide knots into two classes is to dis
tinguish between alternating and nonalternating knots. An alternating 
knot is one that can be diagrammed so that if you follow its curve in ei
ther direction, you alternately go over and under at the crossings. Al
ternating knots have many remarkable properties not possessed by 
nonalternating knots. 

Still another important division is into prime and composite knots. 
A prime knot is one that cannot be manipulated to make two or more 
separated knots. For example, the square knot and the granny knot are 
not prime because each can be changed to two side-by-side trefoils. 
The square knot is the "product" of two trefoils of opposite handed-
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ness. The granny is the product of two trefoils of the same handed
ness, and therefore (unlike the square knot) it is not amphicheiral. Both 
knots are alternating. As an easy exercise, see if you can sketch a square 
knot with six (the minimum) alternating crossings. 

All prime knots of seven or fewer crossings are alternating. Among 
the 8-knots only the three in Figure 19.2 are nonalternating. No matter 
how long you manipulate a rope model of one of these knots, you will 
never get it to lie flat in the form of an alternating diagram. The knot at 
top right is a bowline. The bottom knot is a torus knot as explained 
below. 

Figure 19.2. 

A fourth basic binary division of knots is into the invertible and non
invertible. Imagine an arrow painted on a knotted rope to give a direc
tion to the curve. If it is possible to manipulate the rope so that the 
structure remains the same but the arrow points the other way, the knot 
is invertible. Until the mid-1960s one of the most vexing unsolved 
problems in knot theory was whether noninvertible knots exist. All 
knots of seven or fewer crossings, and all but one 8-knot and four 9-
knots had earlier been found invertible by manipulating rope models. 
It was in 1963 that Hale F. Trotter, now at Princeton University, an
nounced in the title of a surprising paper "Non-invertible Knots Exist" 
(Topology, Vol. 2, No.4, December 1963, pp. 275-80). 

Trotter described an infinite family of pretzel knots that will not in
vert. A pretzel knot is one that can be drawn, without any crossings, on 
the surface of a pretzel (a two-hole torus). It can be drawn as shown in 
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Figure 19.3 as a two-strand braid that goes around two "holes," or it can 
be modeled by the edge of a sheet of paper with three twisted strips. If 
the braid surrounds just one hole, it is called a torus knot because it can 
be drawn without crossings on the surface of a doughnut. 

Figure 19.3. 

Trotter found an elegant proof that all pretzel knots are noninvertible 
if the crossing numbers for the three twisted strips are distinct odd in
tegers with absolute values greater than 1. Positive integers indicate 
braids that twist one way and negative integers indicate an opposite 
twist. Later Trotter's student Richard L. Parris showed in his unpub
lished Ph.D. thesis that the absolute values can be ignored provided the 
signed values are distinct and that these conditions are necessary as 
well as sufficient for noninvertible pretzels. Thus the simplest nonin
vertible pretzel is the one shown. Its crossing numbers of 3, -3, and 5 
make it an ll-knot. 

It is now known that the simplest noninvertible knot is the am
phicheiral 8-knot in Figure 19.4. It was first proved noninvertible by 
Aldo Kawauchi in Proceedings o/the Japan Academy (Vol. 55, Series 
A, No. 10, December 1979, pp. 399-402). According to Richard Hartley, 
in "Identifying Non-invertible Knots" (Topology, Vol. 22, No.2, 1983, 
pp. 137-45), this is the only noninvertible knot of eight crossings, and 
there are only two such knots of nine crossings and 33 of 10. All 36 of 
these knots had earlier been declared noninvertible by John Horton 
Conway, but only on the empirical grounds that he had not been able 
to invert them. The noninvertible knots among the more than 550 knots 
with 11 crossings had not yet been identified. 

In 1967 Conway published the first classification of all prime knots 
with 11 or fewer crossings. (A few minor errors were corrected in a later 
printing.) You will find clear diagrams for all prime knots through 10 
crossings, and all links through nine crossings, in Dale Rolfsen's valu-
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Figure 19.4. 

able 1990 book Knots and Links. There are no knots with 1 or 2 cross
ings, one with 3, one with 4, two with 5, three with 6, seven with 7, 21 

with 8 crossings, 49 with 9, 165 with 10, and 552 with 11, for a total of 
801 prime knots with 11 or fewer crossings. At the time I write, the clas
sification has been extended through 16 crossings. 

There are many strange ways to label the crossings of a knot, then de
rive an algebraic expression that is an invariant for all possible dia
grams of that knot. One of the earliest of such techniques produces 
what is called a knot's Alexander polynomial, named after the Ameri
can mathematician James W. Alexander who discovered it in 1928. 

Conway later found a beautiful new way to compute a "Conway poly
nomial" that is equivalent to the Alexander one. 

For the unknotted knot with no crossings the Alexander polynomial 
is 1. The expression for the trefoil knot of three crossings is x2 - X + 1, 
regardless of its handedness. The figure-eight knot of four crossings 
has the polynomial x 2 - 3x + 1. The square knot, a product of two tre
foils, has an Alexander polynomial of (x2 - x+ 1)2, the square of the tre
foil's expression. Unfortunately, a granny knot has the same 
polynomial. If two knot diagrams give different polynomials, they are 
sure to be different knots, but the converse is not true. Two knots may 

Knots 243 



have the same polynomial yet not be the same. Finding a way to give 
any knot an expression that applies to all diagrams of that knot, and 
only that knot, is the major unsolved problem in knot theory. 

Although there are tests for deciding whether any given knot is triv
ial, the methods are complex and tedious. For this reason many prob
lems that are easy to state are not easy to resolve except by working 
empirically with rope models. For instance, is it possible to twist an 
elastic band around a cube so that each face of the cube has an 
under-over crossing as shown in Figure 19.5. To put it another way, can 
you tie a cord around a cube in this manner so that if you slip the cord 
off the cube, the cord will be unknotted? 

Figure 19.5. 

Note that on each face the crossing must take one of the four forms 
depicted in the illustration. This makes 46 = 4,096 ways to wrap the 
cord. The wrapping can be diagrammed as a 12-knot, with six pairs of 
crossings, each pair of which can have one of four patterns. The prob
lem was first posed by Horace W. Hinkle in Journal of Recreational 
Mathematics in 1978. In a later issue (Vol. 12, No.1, 1979-80, pp. 
60-62) Karl Scherer showed how symmetry considerations reduce the 
number of essentially different wrappings to 128. Scherer tested each 
wrapping empirically and found that in every case the cord is knotted. 
This has yet to be confirmed by others, and no one has so far found a 
simpler way to attack the problem. The impossibility of getting the de
sired wrapping with an unknotted cord seems odd, because it is easy 
to twist a rubber band around a cube to put the under-over crossings on 
just two or four faces (all other faces being straight crossings), and 
seemingly impossible to do it on just one face, three faces, or five faces. 
One would therefore expect six to be possible, but apparently it is not. 
It may also be impossible to get the pattern even if two, three, or four 
rubber bands are used. 
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Figure 19.6 depicts a delightful knot-and-link puzzle that was sent to 
me by its inventor, Majunath M. Regde, then a mathematics student in 
India. The rope's ends are tied to a piece of furniture, say a chair. Note 
that the two trefoil knots form a granny. The task is to manipulate the 
rope and ring so that the ring is moved to the upper knot as is indicated 
by the broken line. All else must remain identical. 

Figure 19.6. 

It is easy to do if you have the right insight. Of course, the rope must 
not be untied from the chair, nor are you allowed to open a knot and 
pass the chair through it. It will help if you think of the ends of the rope 
as being permanently fastened to a wall. 

The trick of dissolving or creating knots by passing a person through 
a loop was actually used by fake mediums in the days when it was 
fashionable to relate psychic phenomena to the fourth dimension. 
Knots in closed curves are possible only in 3-space. In 4-space all knots 
dissolve. If you could toss an unknotted loop of rope to a creature in 4-
space, it could tie any knot in the loop and toss it back to you with the 
knot permanently formed. There was a popular theory among physi
cists who believed in spiritualism that mediums had the power to move 
objects in and out of higher spaces. Some mediums, such as the Amer
ican mountebank Renry Slade, exploited this theory by pretending to 
put knots into closed loops of cord. Johann Karl F. Zollner, an Austrian 
physicist, devoted an entire book to Slade and hyperspace. Its English 
translation, Transcendental Physics (Arno Press, 1976), is worth read
ing as striking testimony to the ease with which an intelligent physicist 
can be gulled by a clever conjurer. 
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In another instance, psychic investigators William Cox and John 
Richards exhibited a stop-action film that purported to show two 
leather rings becoming linked and unlinked inside a fish tank. "Later 
examination showed no evidence that the rings were severed in any 
way," wrote National Enquirer when it reported this "miracle" on Oc
tober 27,1981. I was then reminded of an old conjuring stage joke. The 
performer announces that he has magically transported a rabbit from 
one opaque box to another. Then before opening either box he says 
that he will magically transport the rabbit back again. 

It is easy, by the way, to fabricate two linked "rubber bands." Just 
draw them linked on the surface of a baby's hollow rubber teething 
ring and carefully cut them out. Two linked wood rings, each of a dif
ferent wood, can be carved if you insert one ring into a notch cut into 
a tree, then wait many years until the tree grows around and through 
it. Because the trefoil is a torus knot, it too is easily cut from a teething 
ring. 

The trick I am about to describe was too crude for Slade, but less 
clever mediums occasionally resorted to it. You will find it explained, 
along with other knot-tying swindles, in Chapter 2 of Hereward Car
rington's The Physical Phenomena of Spiritualism, Fraudulent and 
Genuine (H. B. Turner & Co., Boston, 1907). One end of a very long 
piece of rope is tied to the wrist of one guest and the other end is tied 
to the wrist of another guest. After the seance, when the lights are 
turned on, several knots are in the rope. How do they get there? 

The two guests stand side by side when the lights go out. In the dark 
the medium (or an accomplice) makes a few large coils of rope, then 
passes them carefully over the head and body of one of the guests. The 
coils lie flat on the floor until later, when the medium casually asks that 
guest to step a few feet to one side. This frees the coils from the person, 
allowing the medium to pull them into a sequence of tight knots at the 
center of the rope. Stepping to one side seems so irrelevant to the phe
nomenon that no one remembers it. Ask the guest himself a few weeks 
later whether he changed his position, and he will vigorously and hon
estly deny it. 

Roger Penrose, the British mathematician and physicist, once 
showed me an unusual trick involving the mysterious appearance of a 
knot. Penrose invented it when he was in grade school. It is based on 
what in crocheting, sewing, and embroidery is called a chain stitch. 
Begin the chain by trying a trefoil knot at one end of a long piece of 
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heavy cord or thin rope and hold it with your left hand as in step 1 in 
Figure 19.7. With your right thumb and finger take the cord at A and 
pull down a loop as in step 2. Reach through the loop, take the cord at 
B, and pull down another loop (step 3). Again reach forward through 
the lowest loop, take the cord at D, and pull down another loop (step 
4). Continue in this way until you have formed as long a chain as pos
sible. 

Figure 19.7. 

With your right hand holding the lower end of the chain, pull the 
chain taut. Ask someone to select any link he likes and then pinch the 
link between his thumb and forefinger. Pull on both ends of the cord. 
All links dissolve, as expected, but when he separates his finger and 
thumb, there is a tight knot at precisely the spot he pinched! 

Joel Langer, a mathematician at Case Western Reserve University, 
made a remarkable discovery. He found a way of constructing what he 
calls "jump knots" out of stainless-steel wire. The wire is knotted and 
then its ends are bonded. When it is manipulated properly, it can be 
pressed flat to form a braided ring. Release pressure on the ring; tension 
in the wire causes it to spring suddenly into a symmetrical three
dimensional shape. It is now a frustrating puzzle to collapse the wire 
back to its ring form. 

In 1981 Langer and his associate Sharon O'Neil formed a company 
they called Why Knots. It made and sold three handsome jump knots: 
the Figure Eight, the Chinese Button Knot, and the Mathematician's 
Loop. When you slide one of these wire knots out of its square enve
lope, it pops into an elegant hanging ornament. The figure eight is the 
easiest to put back into its envelope. The Chinese button knot (so called 
because it is a form widely used in China for buttons on nightclothes) 
is more difficult. The mathematician's loop is the most difficult. 
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These shapes make it easier to understand how the 18th-century 
physicists could have developed a theory, respectable in its day, that 
molecules are different kinds of knots into which vortex rings of ether 
(today read "space-time") get themselves tied. Indeed, it was just such 
speculation that led the Scottish physicist Peter Guthrie Tait to study 
topology and conduct the world's first systematic investigation of knot 
theory. 

Addendum 
Enormous advances in knot theory have been made since this 

chapter was written in 1983, and knot theory is now one of the most ex
citing and active branches of mathematics. Dozens of new polynomials 
for classifying knots have been discovered. One is called the Homfly 
after the last initials of its six independent discoverers. The most sig
nificant new expression is the Jones polynomial found in 1984 by the 
New Zealand mathematician Vaughan F. R. Jones, now at the Univer
sity of California, Berkeley. It has since been improved and generalized 
by Louis Kauffman and others. Although these new polynomials are 
surprisingly simple and powerful, no one has yet come up with an al
gebraic technique for distinguishing all knots. Knots with different 
polynomials are different, but it is still possible that two distinct knots 
will have the same expression. 

The Alexander polynomial does not decide between mirror-image 
knots, and as we have seen, it does not distinguish the square knot 
from the granny. The Jones polynomial provides both distinctions. So 
far, it is not clear just why the Jones and the other new polynomials 
work. "They're magic" is how Joan Birman, a knot expert at Barnard 
College, put it. 

The most amazing development in recent knot theory was the dis
covery that the best way to understand the Jones polynomial was in 
terms of statistical mechanics and quantum theory! Sir Michael Atiyah 
now retired from the University of Edinburgh, was the first to see these 
connections, then Edward Witten, at the Institute for Advanced Study 
in Princeton, did the pioneer work in developing the connections. Knot 
theory now has surprising applications to superstrings, a theory that ex
plains basic particles by treating them as tiny loops, and to quantum 
field theory. There is intense interaction between today's physicists 
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and topologists. Discoveries in physics are leading to new discoveries 
in topology, and vice versa. No one can predict where it will all lead. 

Another unexpected application of knot theory is in broadening our 
understanding of the structure and properties of large molecules such 
as polymers, and especially the behavior of DNA molecules. DNA 
strands can become horribly knotted and linked, unable to replicate 
until they are untied or unlinked by enzymes called topoisom-erases. 
To straighten out a DNA strand, enzymes have to slice them so they can 
pass through themselves or another strand, then splice the ends to
gether again. The number of times this must occur to undo a knot or 
linkage of DNA determines the speed with which the DNA unknots or 
unlinks. 

There is a delightful three-color test for deciding if a knot diagram 
represents a knot. Draw the diagram, then see if you can color its "arcs" 
(portions of the line between two crossings) with three colors so that ei
ther all three colors meet at each crossing or there is only one color at 
each crossing, and provided at least one crossing shows all three col
ors. If you can do this, the line is knotted. If you can't, the line mayor 
may not be knotted. The three-coloring can also be used to prove that 
two knots are different. 

In 1908 the German mathematician Heinrich Tietze conjectured that 
two knots are identical if and only if their complements-the topolog
ical structure of the space in which they are embedded-are identical. 
His conjecture was proved in 1988 by two American mathematicians, 
Cameron M. Gordon and John E. Luecke. A knot's complement is a 
structure in 3-space, in contrast to the knot which is one-dimensional. 
Its topological structure is more complicated than the knot's, but of 
course it contains complete information about the knot. The theorem 
fails for links. Two links that are not the same can have identical com
plements. 

Associated with each knot's complement is a group. Like the poly
nomials, which can be extracted from the group, two knots can have the 
same group yet not be the same knots. An anonymous poet summed up 
the situation this way in the British periodical Manifold (Summer 
1972): 

Knots 

A knot and 
another 
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knot may 
not be the 

same knot, though 
the knot group of 
the knot and the 

other knot's 
knot group 

differ not; BUT 
if the knot group 

ofa knot 
is the knot group 
of the not 

knotted 
knot, 

the knot is 
not 

knotted. 

The American philosopher Charles Peirce, in a section on knots in 
his New Elements of Mathematics (Volume 2, Chapter 4), shows how 
the Borromean rings (three rings linked in such a way that although 
they can't be separated, no two rings are linked) can be cut from a 
three-hole torus. Peirce also shows how to cut the figure-eight knot 
and the bowline knot from a two-hole torus. 

Richard Parris called attention to the fact that not all of the 4,096 

ways to wrap string around the cube, in the problem I posed, are knots. 
Most of them are links of two, three, or four separate loops. 

Conway has proved that if you draw a complete graph for seven 
points located anywhere in space-that is, draw a line connecting each 
pair of points-the lines will form at least one knot. 

For the most recent results in knot theory there is now a Journal of 
Knot Theory and Its Ramifications. 

Answers 
Figure 19.8 shows how a square knot can be changed to an al

ternating knot of six crossings. Simply flip dotted arc a over to make 
arc b. 

Figure 19.9 shows one way to solve the ring-and-granny-knot puzzle. 
First make the lower knot small, then slide it (carrying the ring with it) 
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FigUI'e 19.8. 
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FigUI'e 19.9. 
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up and through the higher knot (a). Open it. Two trefoil knots are now 
side by side (b). Make the ringless knot small, then slide it through and 
down the other knot. Open it up and you have finished (e). 
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with one handle, a cube with one hole through it, and so on. Think of 
these surfaces as a thin membrane that can be stretched or compressed 
as much as one wishes. Each can be deformed until it becomes a per
fect toroidal surface. In what follows, "torus" will mean any surface 
topologically equivalent to a torus. 

A common misunderstanding about topology is the belief that a rub
ber model of a surface can always be deformed in three-dimensional 
space to make any topologically equivalent model. This often is not the 
case. A Mobius strip, for example, has a handedness in 3-space that 
cannot be altered by twisting and stretching. Handedness is an extrin
sic property it acquires only when embedded in 3-space. Intrinsically 
it has no handedness. A 4-space creature could pick up a left-handed 
strip, turn it over in 4-space and drop it back in our space as a right
handed modeL 

A similar dichotomy applies to knots in closed curves. Tie a single 
overhand (or trefoil) knot in a piece of rope and join the ends. The sur
face of the rope is equivalent to a knotted torus. It has a handedness, 
and no amount of fiddling with the rope can change the parity. Intrin
sically the rope is not even knotted. A 4-space creature could take from 
us an unknotted closed piece of rope and, without cutting it, return it 
to us as knotted in either left or right form. All the properties of knots 
are extrinsic properties of toruses (or, if you prefer, one-dimensional 
curves that may be thought of as toruses whose meridians have shrunk 
to points) that are embedded in 3-space. 

It is not always easy to decide intuitively if a given surface in 3-space 
can be elastically deformed to a different but topologically equivalent 
surface. A striking instance, discussed nearly 50 years ago (see Albert 
W. Tucker and Herbert S. Bailey, Jr., "Topology," Scientific American, 
January 1950), concerns a rubber torus with a hole in its surface. Can 
it be turned inside out to make a torus of identical shape? The answer 
is yes. It is hard to do with a rubber model (such as an inner tube), but 
a model made of wool reverses readily. Stephen Barr, in his Second 
Miscellany of Puzzles (Macmillan, 1969), recommends making it from 
a square piece of cloth. Fold the cloth in half and sew together oppo
site edges to make a tube. Now sew the ends of the tube together to 
make a torus that is square shaped when flattened. For ease in revers
ing, the surface hole is a slot cut in the outer layer of cloth (shown by 
the broken line in Figure 20.2). 

After the cloth torus is turned inside out, it is exactly the same shape 
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Figure 20.4. Three varieties of a two-hole torus 

Figure 20.5. R. H. Bing's proof 

is moved over the cube's surface, as indicated by the arrows, dragging 
the tube along with it. It goes left to the base of the other tube, climbs 
that tube's side, moves to the right across the top of the cube, circles its 
top hole counterclockwise, continues left around the other hole, over 
the cube's front edge, down the front face, around the lower edge to the 
cube's bottom face, and then across that face to the position it formerly 
occupied. It is easy to see that the tube attached to this hole has been 
untied. Naturally the procedure is reversible. If you had a sufficiently 
pliable doughnut surface with two holes, you could manipulate it until 
one hole became a knot tied around the other. 

Topologists worried for decades about whether two separate knots 
side by side on a closed rope could cancel each other; that is, could the 
rope be manipulated until both knots dissolved? No pair of canceling 
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knots had been found, but proving the impossibility of such a pair was 
another matter. It was not even possible to show that two trefoil knots 
of opposite handedness could not cancel. Proofs of the general case 
were not found until the early 1950s. One way of proving it is ex
plained by Ralph H. Fox in "A Quick Trip through Knot Theory," in 
Topology of 3-Manifolds and Related Topics, edited by M. K. Fort, Jr. 
(Prentice-Hall, 1963). It is a reductio ad absurdum proof that unfortu
nately involves the sophisticated concept of an infinity of knots on a 
closed curve and certain assumptions about infinite sets that must be 
carefully specified to make the proof rigorous. 

When John Horton Conway, a former University of Cambridge math
ematician now at Princeton University, was in high school, he hit on a 
simpler proof that completely avoids infinite sets of knots. Later he 
learned that essentially the same proof had been formulated earlier, 
but I have not been able to determine by whom. Here is Conway's ver
sion as he explained it years ago in a letter. It is a marvelous example 
of how a knotted torus can play an unexpected role in proving a fun
damental theorem of modern knot theory. 

Conway's proof, like the one for the infinite knots, is a reductio ad ab
surdum. We begin by imagining that a closed string passes through the 
opposite walls of a room (see Figure 20.6). Since we shall be concerned 
only with what happens inside the room, we can forget about the string 
outside and regard it as being attached to the side walls. On the string 
are knots A and B. Each is assumed to be genuine in the sense that it 
cannot be removed by manipulating the string if it is the only knot on 
the string. It also is assumed that the two knots will cancel each other 
when both are on the same closed curve. The proof applies to pairs of 
knots of any kind whatever, but here we show the knots as simple tre
foils of opposite parity. If the knots can cancel, it means that the string 
can be manipulated until it stretches straight from wall to wall. Think 
of the string as being elastic to provide all the needed slack for such an 
operation. In the center figure we introduce an elastic torus around the 
string. Note that the tube "swallows" knot A but "circumnavigates" 
knot B (Conway's terminology). Any parallel drawn on this tube, on the 
section between the walls, obviously must be knotted in the same way 
as knot B. Indeed, it can be shown that any line on the tube's surface, 
stretching from wall to wall and never crossing itself at any spot on the 
tube's surface, will be knotted like knot B. 

"Now," writes Conway, "comes the crunch." Perform on the string 

Doughnuts: Linked and Knotted 259 



A B 

Figure 20.6. John Horton Conway's proof 

the operation that we assumed would dissolve both knots. This can be 
done without breaking the tube. Because the string is never allowed to 
pass through itself during the deformation, we can always push the 
tube's wall aside if it gets in the way. The third drawing in Figure 20.6 

shows the final result. The string is unknotted. The tube may have 
reached a horribly complicated shape impossible to draw. Consider a 
vertical plane passing through the straight string and cutting the 
twisted tube. We can suppose that the tube's cross section will look 
something like what is shown with the possibility of various "islands," 
but there will necessarily be two lines, XYand MN, from wall to wall 
that do not cross themselves at any point on the vertical plane. Each 
line will be unknotted. Moreover, each line also is a curve that does not 
cross itself on the tube's surface. As we have seen, all such lines were 
(before the deformation) knotted like knot B. The deformation has 
therefore removed a knot equivalent to knot B from each of these two 
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There are doughnuts and doughnuts 
with knots and with no knots 
and many a doughnut 
so nuts that we know not. 

Here are three more toroidally knotty questions. 

1. How many closed curves can be drawn on a torus, each a trefoil knot 
of the same handedness, so that no two curves cross each other at any 
point? 

2. If two closed curves are drawn on a torus so that each forms a trefoil 
knot but the knots are of opposite parity, what is the minimum num
ber of points at which the two curves will intersect each other? 

3. Show how to cut a solid two-hole doughnut with one slice of a knife 
so that the result is a solid outside-knotted torus. The "slice" is not, 
of course, planar. More technically, show how to remove from a two
hole doughnut a section topologically equivalent to a disk so that 
what remains is a solid knotted torus. (This amusing result was dis
covered by John Stallings in 1957 and communicated to me by James 
Stasheff.) 

Addendum 
In studying the properties of topological surfaces, one must al

ways keep in mind the distinction between intrinsic properties, inde
pendent of the space in which the surface is embedded, and properties 
that arise from the embedding. The "complement" of a surface con
sists of all the points in the embedding space that are not in the surface. 
For example, a torus with no knot, one with an outside knot, and one 
with an inside knot all have identical intrinsic properties. No two have 
topologically identical complements; hence, no two are equivalent in 
their extrinsic topological properties. 

John Stillwell, a mathematician at Monash University, Australia, sent 
several fascinating letters in which he showed how an unknotted torus 
with any number of holes-such toruses are equivalent to the surfaces 
<;>f spheres with handles-could be turned inside out through a surface 
hole. He was not sure whether a knotted torus, even with only one 
hole, could be turned inside out through a hole in its surface. 

Many beautiful, counterintuitive problems involving links and knots 
in toruses have been published. See Rolfsen's book, cited in the bibli-
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2. Two topologists were discussing at lunch the two linked surfaces 
shown at the left in Figure 20.10, which one of them had drawn on 
a paper napkin. You must not think of these objects as solids, like 
ropes or solid rubber rings. They are the surfaces of toruses, one sur
face of genus 1 (one hole), the other of genus 2 (two holes). 

Figure 20.10. 

Thinking in the mode of "rubber-sheet geometry," assume that the 
surfaces in the illustration can be stretched or shrunk in any desired 
way provided there is no tearing or sticking together of separate parts. 
Can the two-hole torus be deformed so that one hole becomes un
linked as is shown at the right in the illustration? 

Topologist X offers the following impossibility proof. Paint a ring 
on each torus as is shown by the black lines. At the left the rings are 
linked. At the right they are unlinked. 

"You will agree," says X, "that it is impossible by continuous de
formation to unlink two linked rings embedded in three-dimensional 
space. It therefore follows that the transformation is impossible." 

"But it doesn't follow at all," says Y. 
Who is right? I am indebted to Herbert Taylor for discovering and 

sending this mystifying problem. 
3. Figure 20.11 depicts a familiar linkage known as the Borromean 

rings. No two rings are linked, yet all three are linked. It is impossi
ble to separate them without cutting at least one torus. Show how it 
is possible for any number of toruses to form a linked structure even 
though no two of them are linked. 

4. Are the two structures shown in Figure 20.12 topologically the same? 
That is, can one be transformed to the other by a continuous defor
mation? 
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is now closed at both ends. As indicated by the arrow, the hole is now 
surrounded by the knotted tube. 

Piet Hein's two-hole torus, with an internal knot passing through an 
external one, is easily shown to be the same as a two-haler with only 
an external knot. Simply slide one end of the inside knot around the 
outside knot (in the manner explained earlier) and back to its starting 
point. This unties the internal knot. Piet Hein's two-haler, with the ex
ternal knot going through a hole, can be unknotted by the deformation 
shown in Figure 20.14. 

5 6 7 

Figure 20.14. Unknotting a two-hole torus 

Answers to the first three toroidal questions are as follows: 

1. An infinity of noncrossing closed curves, each knotted with the same 
handedness, can be drawn on a torus (see Figure 20.15, top). If a 
torus surface is cut along any of these curves, the result is a two
sided, knotted band. 

2. Two closed curves on a torus, knotted with opposite handedness, 
will intersect each other at least 12 times. 

3. A rotating slice through a solid two-hole doughnut is used to produce 
a solid that is topologically equivalent to a solid, knotted torus (see 
Figure 20.15, bottom). Think of a short blade as moving downward 
and rotating one and a half turns as it descends. If the blade does not 
turn at all, two solid toruses result. A half-turn produces one solid, 

266 TOPOLOGY 



8 

b 

J,,, ... u,u .... <:> ...... nOWllterse~cti.n.R curves on a torus .. s..J..I., ......... ,;::O.1J. a 

1. 

267 



The torus with the mouth can, however, swallow the other one so 
that the eaten torus is inside in the first sense explained above. Fig
ure 20.16 shows how it is done. In the process it is necessary for the 
cannibal torus to turn inside out. 

A good way to understand what happens is to imagine that torus 
A is shrunk until it becomes a stripe of paint that circles B. Tum A 
inside out through its mouth. The painted stripe goes inside, but in 

Figure 20.16. How one torus eats another 
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1. Mouth starts 
to open. 

2. It lengthens to 
an enonnous grin. 

3. Grin widens until 
torus becomes 
two attached bands. 

4. Horizontal band 
enlarges, vertical 
band shrinks. 

5. Vertical band 
widens and creeps 
around victim. 

6. Mouth closes. 
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doing so it ends up circling B's hole. Expand the stripe back to a 
torus and you have the final picture of the sequence. 

2. Figure 20.17 shows how a continuous deformation of the two-hole 
torus will unlink one of its holes from the single-hole torus. The ar
gument for the impossibility of this task fails because if a ring is 
painted around one hole (as is shown by the black line), the ring be
comes distorted in such a way that after the hole is unlinked the 
painted ring remains linked through the one-hole torus. 

A B c 

D E F 

Figure 20.11. 

For a mind-boggling selection of similar problems involving linked 
toruses, see Herbert Taylor's article "Bicycle Tubes Inside Out," in 
The Mathematical Gardner (Wadsworth, 1981), edited by David 
Klarner. 

3. Figure 20.18 shows a circular chain that obviously can be enlarged 
to include any number of links. No two toruses are linked. If one 
link is cut and removed, all the others are free of one another. 

4. The two forms are topologically identical. To prove this, imagine the 
linked form deformed to a sphere with two "handles" as shown in 
Figure 20.19. 

Now imagine the base of one handle being moved over the surface, 
by shrinking the surface in front and stretching it in back, along the 
path shown by the dotted line. This links the two handles. The struc
ture is now easily altered to correspond with the linked form of the 
toroids. 
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Chapter 21 Probability 
and Ambiguity 

Charles Sanders Peirce once observed that in no other branch 
of mathematics is it so easy for experts to blunder as in probability the
ory. History bears this out. Leibniz thought it just as easy to throw 12 
with a pair of dice as to throw 11. Jean Ie Rond d' Alembert, the great 
18th-century French mathematician, could not see that the results of 
tossing a coin three times are the same as tossing three coins at once, 
and he believed (as many amateur gamblers persist in believing) that 
after a long run of heads, a tail is more likely. 

Today, probability theory provides clear, unequivocal answers to 
simple questions of this sort, but only when the experimental proce
dure involved is precisely defined. A failure to do this is a common 
source of confusion in many recreational problems dealing with 
chance. A classic example is the problem of the broken stick. If a stick 
is broken at random into three pieces, what is the probability that the 
pieces can be put together in a triangle? This cannot be answered with
out additional information about the exact method of breaking to be 
used. 

One method is to select, independently and at random, two points 
from the points that range uniformly along the stick, then break the 
stick at these two points. If this is the procedure to be followed, the an
swer is 1/4, and there is a neat way of demonstrating it with a geomet
rical diagram. We draw an equilateral triangle, then connect the 
midpoints of the sides to form a smaller shaded equilateral triangle in 
the center (see Figure 21.1). If we take any point in the large triangle 
and draw perpendiculars to the three sides, the sum of these three lines 
will be constant and equal to the altitude of the large triangle. When 
this point, like point A, is inside the shaded triangle, no one of the 
three perpendiculars will be longer than the sum of the other two. 
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represent the smaller piece. In order for this line to be smaller than the 
sum of the other two perpendiculars, the point where the lines meet 
cannot be inside the small triangle at the top of the diagram. It must 
range uniformly over the lower three triangles. The shaded triangle 
continues to represent favorable points, but now it is only one-third the 
area under consideration. The chances, therefore, are 1/3 that when 
we break the larger piece, the three pieces will form a triangle. Since 
our chance of picking the larger piece is 1/2, the answer to the original 
question is the product of 1/2 and 1/3, or 1/6. 

Geometrical diagrams of this sort must be used with caution because 
they too can be fraught with ambiguity. For example, consider this 
problem discussed by Joseph Bertrand, a famous French mathemati
cian. What is the probability that a chord drawn at random inside a cir
cle will be longer than the side of an equilateral triangle inscribed in the 
circle? 

We can answer as follows. The chord must start at some point on the 
circumference. We call this point A, then draw a tangent to the circle 
at A, as shown in the top illustration of Figure 21.2. The other end of 
the chord will range uniformly over the circumference, generating an 
infinite series of equally probable chords, samples of which are shown 
on the illustration as broken lines. It is clear that only those chords that 
cut across the triangle are longer than the side of the triangle. Since the 
angle of the triangle at A is 60 degrees, and since all possible chords lie 
within a 180-degree range, the chances of drawing a chord larger than 
the side of the triangle must be 60/180, or 113. 

Now let us approach the same problem a bit differently. The chord 
we draw must be perpendicular to one of the circle's diameters. We 
draw the diameter, then add the triangle as shown in the illustration at 
bottom left of Figure 21.2. All chords perpendicular to this diameter 
will pass through a point that ranges uniformly a] ong the diameter. 
Samples of these chords are again shown as broken lines. It is not hard 
to prove that the distance from the center of the circle to A is half the 
radius. Let B mark the midpoint on the other side of the diameter. It is 
now easy to see that only those chords crossing the diameter between 
A and B will be longer than the side of the triangle. Since AB is half the 
diameter, we obtain an answer to our problem of 1/2. 

Here is a third approach. The midpoint of the chord will range uni
formly over the entire space within the circle. A study of the illustra
tion at bottom right of Figure 21.2 will convince you that only chords 
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we draw the chord on which the fly is the midpoint. The probability 
that this chord is longer than the side of the triangle is 1/4. 

Each of these procedures is a legitimate method of obtaining a "ran
dom chord." The problem as originally stated, therefore, is ambiguous. 
It has no answer until the meaning of "draw a chord at random" is 
made precise by a description of the procedure to be followed. Appar
ently nothing resembling any of the three procedures is actually 
adopted by most people when they are asked to draw a random chord. 
In an interesting unpublished paper entitled "The Human Organism as 
a Random Mechanism" Oliver L. Lacey, professor of psychology at the 
University of Alabama, reports on a test which showed the probability 
to be much better than 1/2 that a subject would draw a chord longer 
than the side of the inscribed triangle. 

Another example of ambiguity arises from a failure to specify the 
randomizing procedure. Readers were told that Mr. Smith had two chil
dren, at least one of whom was a boy, and were asked to calculate the 
probability that both were boys. Many readers correctly pointed out 
that the answer depends on the procedure by which the information "at 
least one is a boy" is obtained. If from all families with two children, 
at least one of whom is a boy, a family is chosen at random, then the an
swer is 1/3. But there is another procedure that leads to exactly the 
same statement of the problem. From families with two children, one 
family is selected at random. If both children are boys, the informant 
says "at least one is a boy. If both are girls, he says "at least one is a girl." 
And if both sexes are represented, he picks a child at random and says 
"at least one is a ... ," naming the child picked. When this procedure 
is followed, the probability that both children are of the same sex is 
clearly 1/2. (This is easy to see because the informant makes a state
ment in each of the four cases-BB, BG, GB, GG-and in half of these 
cases both children are of the same sex.) 

The following wonderfully confusing little problem involving three 
prisoners and a warden is even more difficult to state unambiguously. 
Three men-A, B, and C-were in separate cells under sentence of 
death when the governor decided to pardon one of them. He wrote 
their names on three slips of paper, shook the slips in a hat, drew out 
one of them, and telephoned the warden, requesting that the name of 
the lucky man be kept secret for several days. Rumor of this reached 
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prisoner A. When the warden made his morning rounds, A tried to 
persuade the warden to tell him who had been pardoned. The warden 
refused. 

"Then tell me," said A, "the name of one of the others who will be 
executed. If B is to be pardoned, give me C's name. If C is to be par
doned, give me B's name. And if I'm to be pardoned, flip a coin to de
cide whether to name B or C." 

"But if you see me flip the coin," replied the wary warden, "you'll 
know that you're the one pardoned. And if you see that I don't flip a 
coin, you'll know it's either you or the person I don't name." 

"Then don't tell me now," said A. "Tell me tomorrow morning." 
The warden, who knew nothing about probability theory, thought it 

over that night and decided that if he followed the procedure suggested 
by A, it would give A no help whatever in estimating his survival 
chances. So next morning he told A that B was going to be executed. 

After the warden left, A smiled to himself at the warden's stupidity. 
There were now only two equally probable elements in what mathe
maticians like to call the "sample space" of the problem. Either C 
would be pardoned or himself, so by all the laws of conditional prob
ability, his chances of survival had gone up from 1/3 to 1/2. 

The warden did not know that A could communicate with C, in an 
adjacent cell, by tapping in code on a water pipe. This A proceeded to 
do, explaining to C exactly what he had said to the warden and what 
the warden had said to him. C was equally overjoyed with the news be
cause he figured, by the same reasoning used by A, that his own sur
vival chances had also risen to 1/2. 

Did the two men reason correctly? If not, how should each have cal
culated his chances of being pardoned? 

Addendum 
In giving the second version of the broken stick problem I could 

hardly have picked a better illustration of the ease with which experts 
can blunder on probability computations, and the dangers of relying on 
a geometrical diagram. My solution was taken from William A. Whit
worth's DCC Exercises in Choice and Chance, Problem 677; the same 
answer will be found in many other older textbooks on probability. It 
is entirely wrong! 
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In the first version of the problem, in which the two breaking points 
are simultaneously chosen, the representative point on the diagram 
ranges uniformly over the large triangle, permitting a comparison of 
areas to obtain a correct answer. In the second version, in which the 
stick is broken, then the larger piece is broken, Whitworth assumed that 
the point on the diagram ranged uniformly over the three lower trian
gles. It doesn't. There are more points within the central triangle than 
in the other two. 

Let the length of the stick be 1 and x be the length of the smallest 
piece after the first break. To obtain pieces that will form a triangle, 
the larger segment must be broken within a length equal to 1 - x. 
Therefore the probability of obtaining a triangle is xll - x. We now 
have to average all values of x, from 0 to 1/2, to obtain a value for this 
expression. It proves to be - 1 + 2 log 2, or .386. Since the probability 
is 1/2 that the larger piece will be picked for breaking, we multiply 
.386 by 1/2 to obtain .193, the answer to the problem. This is a trifle 
larger than 1/6, the answer obtained by following Whitworth's rea
soning. 

A large number of readers sent very clear analyses of the problem. In 
the above summary, I followed a solution sent by Mitchell P. Marcus of 
Binghamton, NY. Similar solutions were received from Edward Adams, 
Howard Grossman, Robert C. James, Gerald R. Lynch, G. Bach and R. 
Sharp, David Knaff, Norman Geschwind, and Raymond M. Redheffer. 
Professor Redheffer, at the University of California, is coauthor (with 
Ivan S. Sokolnikoff1 of Mathematics of Physics and Modern Engineer
ing (McGraw-Hill, 1958), in which will be found (p. 636) a full discus
sion of the problem. See also Ingenious Mathematical Problems and 
Methods by L. A. Graham (Dover, 1959, Problem 32) for other methods 
of solving the problem's first version. 

Frederick R. Kling, John Ross, and Norman Cliff, all with the Educa
tional Testing Service, Princeton, NJ, also sent a correct solution of the 
problem's second version. At the close of their letter they asked which 
of the following three hypotheses was most probable: 

1. Mr. Gardner honestly blundered. 
2. Mr. Gardner deliberately blundered in order to test his readers. 
3. Mr. Gardner is guilty of what is known in the mathematical world 

as keeping up with the d' Alemberts. 
The answer: number three. 
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Answers 
The answer to the problem of the three prisoners is that A's 

chances of being pardoned are 1/3, and that Cs chances are 2/3. 
Regardless of who is pardoned, the warden can give A the name of a 

man, other than A, who will die. The warden's statement therefore has 
no influence on A's survival chances; they continue to be 1/3. 

The situation is analogous to the following card game. Two black 
cards (representing death) and a red card (the pardon) are shuffled and 
dealt to three men: A, B, C (the prisoners). If a fourth person (the war
den) peeks at all three cards, then turns over a black card belonging to 
either B or C, what is the probability that A's card is red? There is a 
temptation to suppose it is 1/2 because only two cards remain face
down, one of which is red. But since a black card can always be shown 
for B or C, turning it over provides no information of value in betting 
on the color of A's card. 

This is easy to understand if we exaggerate the situation by letting 
death be represented by the ace of spades in a full deck. The deck is 
spread, and A draws a card. His chance of avoiding death is 51/52. 
Suppose now that someone peeks at the cards, then turns face up 50 
cards that do not include the ace of spades. Only two face-down cards 
are left, one of which must be the ace of spades, but this obviously 
does not lower A's chances to 112. It doesn't because it is always pos
sible, if one looks at the faces of the 51 cards, to find 50 that do not in
clude the ace of spades. Finding them and turning them face up, 
therefore, has no effect on A's chances. Of course if 50 cards are turned 
over at random, and none prove to be the ace of spades, then the chance 
that A drew the death card does rise to 1/2. 

What about prisoner C? Since either A or C must die, their respective 
probabilities for survival must add up to 1. A's chances to live are 1/3; 
therefore Cs chances must be 2/3. This can be confirmed by consider
ing the four possible elements in our sample space, and their respective 
initial probabilities: 

1. C is pardoned, warden names B (probability 1/3). 
2. B is pardoned, warden names C (probability 1/3). 
3. A is pardoned, warden names B (probability 1/6). 
4. A is pardoned, warden names C (probability 1/6). 
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Only cases 1 and 3 apply when it becomes known that B will die. The 
chances that it is case 1 are 1/3, or twice the chances (1/6) that it is case 
3, so Cs survival chances are two to one, or 213. In the card-game model 
this means that there is a probability of 2/3 that Cs card is red. 

This problem of the three prisoners brought a flood of mail, pro and 
con; happily, all objections proved groundless. Sheila Bishop of East 
Haven, CT, sent the following well-thought-out analysis: 

SIRS: 
I was first led to the conclusion that A's reasoning was incorrect by the 

following paradoxical situation. Suppose the original conversation be
tween A and the warden had taken place in the same way, but now sup
pose that just as the warden was approaching A's cell to tell him that B 
would be executed, the warden fell down a manhole or was in some 
other way prevented from delivering the message. 

A could then reason as follows: "Suppose he was about to tell me that 
B would be executed. Then my chance of survival would be 1/2. If, on 
the other hand, he was going to tell me that C would be executed, then 
my chances would still be 1/2. Now I know as a certain fact that he 
would have told me one of those two things; therefore, either way, my 
survival chances are bound to be 1/2." Following this line of thought 
shows that A could have figured his chances to be 1/2 without ever ask
ing the warden anything! 

After a couple of hours I finally arrived at this conclusion: Consider a 
large number of trios of prisoners all in this same situation, and in each 
group let A be the one who talks to the warden. If there are 3n trios al
together, then in n of them A will be pardoned, in n B will be pardoned, 
and in n C will be pardoned. There will be 3nl2 cases in which the war
den will say, "B will be executed." In n of these cases C will go free and 
in nl2 cases A will go free; Cs chances are twice as good as A's. Hence 
A's and C's chances of survival and 1/3 and 2/3 respectively .... 

Lester R. Ford, Jr., and David N. Walker, both with the Arizona office 
of General Analysis Corporation, felt that the warden has been unjustly 
maligned: 

SIRS: 
We are writing to you on behalf of the warden, who is a political ap

pointee and therefore unwilling to enter into controversial matters in his 
own behalf. 

You characterize him in a slurring manner as "The warden, who knew 
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nothing about probability theory, ... " and I feel that a grave injustice is 
being done. Not only are you incorrect (and possibly libelous), but I can 
personally assure you that his hobby for many years has been mathe
matics, and in particular, probability theory. His decision to answer A's 
question, while based on a humanitarian attempt to brighten the last 
hours of a condemned man (for, as we all now know, it was C who re
ceived the pardon), was a decision completely compatible with his in
structions from the governor. 

The only point on which he is open to criticism (and on this he has 
already been reprimanded by the governor) is that he was unable to pre
vent A from communicating with C, thereby permitting Cto more accu
rately estimate his chances of survival. Here too, no great damage was 
done, since C failed to make proper use of the information. 

If you do not publish both a retraction and an apology, we shall feel 
impelled to terminate our subscription. 

Addendum 

The problem of the two boys, as I said, must be very carefully 
stated to avoid ambiguity that prevents a precise answer. In my Aha, 
Gotcha I avoided ambiguity by imagining a lady who owned two par
rots--one white, one black. A visitor asks the owner, "Is one bird a 
male?" The owner answers yes. The probability both parrots are male 
is 1/3. Had the visitor asked, "Is the dark bird a male?'" a yes answer 
would have raised the probability that both birds are male to 1/2. 

Richard E. Bedient, a mathematician at Hamilton College, described 
the prisoner's paradox in a poem that appeared in The American Math
ematical Monthly, Vol. 101, March 1994, page 249: 
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THE PRISONER'S PARADOX REVISITED 

Awaiting the dawn sat three prisoners wary, 
A trio of brigands named Tom, Dick and Mary. 
Sunrise would signal the death knoll of two, 
Just one would survive, the question was who. 

Young Mary sat thinking and finally spoke. 
To the jailer she said, "You may think this a joke" 
But it seems that my odds of surviving 'til tea, 
Are clearly enough just one out of three. 

But one of my cohorts must certainly go, 
Without question, that's something I already know. 
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Telling the name of one who is lost, 
Can't possibly help me. What could it cost?" 

The shriveled old jailer himself was no dummy, 
He thought, «But why not?" and pointed to Tommy. 
"Now it's just Dick and [" Mary chortled with glee, 
((One in two are my chances, and not one in three!" 

Imagine the jailer's chagrin, that old elf, 
She'd tricked him, or had she? Decide for yourself. 

When I introduced the three prisoners paradox in my October 1959 
column, I received a raft of letters from mathematicians who believed 
my solution was invalid. The number of such letters, however, was 
small compared to the thousands of letters Marilyn vos Savant received 
when she gave a version of the problem in her popular Parade column 
for September 9,1990. 

Ms. Savant's version of the paradox was based on a then-popular 
television show called Let's Make a Deal, hosted by Monty Hall. Imag
ine three doors, Marilyn wrote, to three rooms. Behind one door is a 
prize car. Behind each of the other two doors is a goat. A guest on the 
show is given a chance to win the prize by selecting the door with the 
car. If she chooses at random, clearly the probability she will select the 
prize door is 1/3. Now suppose, that after the guest's selection is voiced, 
Monty Hall, who knows what is behind each door, opens one door to 
disclose a goat. Two closed doors remain. One might reason that be
cause the car is now behind one of just two doors, the probability the 
guest had chosen the correct door has risen to 1/2. Not so! As Marilyn 
correctly stated, it remains 1/3. Because Monty can always open a door 
with a goat, his opening such a door conveys no new information that 
alters the 1/3 probability. 

Now comes an even more counterintuitive result. If the guest 
switches her choice from her initial selection to the other closed door, 
her chances of winning rise to 2/3. This should be obvious if one grants 
that the probability remains 1/3 for the first selection. The car must be 
behind one of the two doors, therefore the probabilities for each door 
must add to 1, or certainty. If one door has a probability of 1/3 being 
correct, the other door must have a 2/3 probability. 

Marilyn was flooded with letters from irate readers, many accusing 
her of being ignorant of elementary probability theory and many from 
professional mathematicians. So awesome was the mail, and so con-
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troversial, that The New York Times, on July 21, 1991, ran a front page, 
lengthy feature about the flap. The story, written by John Tierney, was 
titled "Behind Monty Hall's Doors: Puzzle, Debate and Answer?" (See 
also letters about the feature in The Times, August 11,1991.) 

The red-faced mathematicians, who were later forced to confess they 
were wrong, were in good company. Paul Erdos, one of the world's 
greatest mathematicians, was among those unable to believe that 
switching doors doubled the probability of success. Two recent bi
ographies of the late Erdos reveal that he could not accept Marilyn's 
analysis until his friend Ron Graham, of Bell Labs, patiently explained 
it to him. 

The Monty Hall problem, as it came to be known, generated many ar
ticles in mathematical journals. I list some of them in this chapter's bib
liography. 
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Chapter 22 Nontransitive Dice 
and Other Paradoxes 

Probability theory abounds in paradoxes that wrench common 
sense and trap the unwary. In this chapter we consider a startling new 
paradox involving the relation called transitivity and a group of para
doxes stemming from the careless application of what is called the 
principle of indifference. 

Transitivity is a binary relation such that if it holds between A and B 
and between Band C; it must also hold between A and C. A common 
example is the relation "heavier than." If A is heavier than Band B is 
heavier than C; then A is heavier than C. The three sets of four dice 
shown "unfolded" in Figure 22.1 were designed by Bradley Efron, a sta
tistician at Stanford University, to dramatize some discoveries about a 
general class of probability paradoxes that violate transitivity. With any 
of these sets of dice you can operate a betting game so contrary to in
tuition that experienced gamblers will find it almost impossible to com
prehend even after they have completely analyzed it. 

The four dice at the top of the illustration are numbered in the sim
plest way that provides the winner with the maximum advantage. 
Allow someone to pick any die from this set. You then select a die 
from the remaining three. Both dice are tossed and the person who gets 
the highest number wins. Surely, it seems, if your opponent is allowed 
the first choice of a die before each contest, the game must either be fair 
or favor your opponent. If at least two dice have equal and maximum 
probabilities of winning, the game is fair because if he picks one such 
die, you can pick the other; if one die is better than the other three, your 
opponent can always choose that die and win more than half of the 
contests. This reasoning is completely wrong. The incredible truth is 
that regardless of which die he picks you can always pick a die that has 
a 2/3 probability of winning, or two-to-one odds in your favor! 
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Figure 22.1. Nontransitive dice 

The paradox (insofar as it violates common sense) arises from the 
mistaken assumption that the relation "more likely to win" must be 
transitive between pairs of dice. This is not the case with any of the 
three sets of dice. In each set the relation "more likely to win" is indi
cated by an arrow that points to the losing die. Die A beats B, B beats 
C, Cbeats D-and D beats A! In the first set the probability of winning 
with the indicated die of each pair is 2/3. This is easily verified by list
ing the 36 possible throws of each pair, then checking the 24 cases in 
which one die bears the highest number. 

The other two sets of four dice, also designed by Efron, have the 
same nontransitive property but fewer numbers are repeated in order 
to make an analysis of the dice more difficult. In the second set the 
probability of winning with the indicated die is also 2/3. Because ties 
are possible with the third set it must be agreed that ties will be broken 
by rolling again. With this procedure the winning probability for each 
of the four pairings in the third set is 11/17, or .647. 

It has been proved, Efron writes, that 2/3 is the greatest possible ad
vantage that can be achieved with four dice. For three sets of numbers 
the maximum advantage is .618, but this cannot be obtained with dice 
because the sets must have more than six numbers. If more than four 
sets are used (numbers to be randomly selected within each set), the 
possible advantage approaches a limit of 3/4 as the number of sets in
creases. 

A fundamental principle in calculating probabilities such as dice 
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throws is one that goes back to the beginnings of classical probability 
theory in the 18th century. It was formerly called "the principle of in
sufficient reason" but is now known as "the principle of indifference/' 
a crisper phrase coined by John Maynard Keynes in A Treatise on Prob
ability. (Keynes is best known as an economist, but his book on proba
bility has become a classic. It had a major influence on the inductive 
logic of Rudolf Carnap.) The principle is usually stated as follows: If 
you have no grounds whatever for believing that anyone of n mutually 
exclusive events is more likely to occur than any other, a probability of 
1/ n is assigned to each. 

For example, you examine a die carefully and find nothing that fa
vors one side over another, such as concealed loads, noncubical shape, 
beveling of certain edges, stickiness of certain sides, and so on. You as
sume that there are six equally probable ways the cube can fall; there
fore you assign a probability of 1/6 to each. If you toss a penny, or play 
the Mexican game of betting on which of two sugar cubes a fly will 
alight on first, your ignorance of any possible bias prompts you to as
sign a probability of 1/2 to each of the two outcomes. In none of these 
samples do you feel obligated to make statistical, empirical tests. The 
probabilities are assigned a priori. They are based on symmetrical fea
tures in the structures and forces involved. The die is a regular solid, 
the probability of the penny's balancing on its edge is virtually zero, 
there is no reason for a fly to prefer one sugar cube to another, and so 
on. Ultimately, of course, your analysis rests on empirical grounds, 
since only experience tells you, say, that a weighted die face would af
fect the odds, whereas a face colored red (with the others blue) would 
not. 

Some form of the principle of indifference is indispensable in prob
ability theory, but it must be carefully qualified and applied with ex
treme caution to avoid pitfalls. In many cases the traps spring from a 
difficulty in deciding which are the equally probable cases. Suppose, 
for instance, you shuffle a packet of four cards-two red, two black
and deal them face down in a row. Two cards are picked at random, say 
by placing a penny on each. What is the probability that those two 
cards are the same color? 

One person reasons: "There are three equally probable cases. Either 
both cards are black, both are red, or they are different colors. In two 
cases the cards match, therefore the matching probability is 2/3." 

"No," another person counters, "there are four equally probable 

288 PROBABILITY 



cases. Either both cards are black, both are red, card x is black and y is 
red, or x is red and y is black. More simply, the cards either match or 
they do not. In each way of putting it the matching probability clearly 
is 1/2." 

The fact is that both people are wrong. (The correct probability will 
be given in the Answer Section. Can the reader calculate it?) Here the 
errors arise from a failure to identify correctly the equally probable 
cases. There are, however, more confusing paradoxes-actually fallac
ies-in which the principle of indifference seems intuitively to be ap
plicable, whereas it actually leads straight to a logical contradiction. 
Cases such as these result when there are no positive reasons for be
lieving n events to be equally probable and the assumption of equiprob
ability is therefore based entirely, or almost entirely, on ignorance. 

For example, someone tells you: "There is a cube in the next room 
whose size has been selected by a randomizing device. The cube's edge 
is not less than one foot or more than three feet." How would you esti
mate the probability that the cube's edge is between one and two feet 
as compared with the probability that it is between two and three feet? 
In your total ignorance of additional information, is it not reasonable to 
invoke the principle of indifference and regard each probability as 1/2? 

It is not. If the cube's edge ranges between one and two feet, its vol
ume ranges between 13, or one, cubic foot and 23 , or eight, cubic feet. 
But in the range of edges from two to three feet, the volume ranges be
tween 23 (eight) and 33 (27) cubic feet-a range almost three times the 
other range. If the principle of indifference applies to the two ranges of 
edges, it is violated by the equivalent ranges of volume. You were not 
told how the cube's "size" was randomized, and since "size" is am
biguous (it could mean either the cube's edge or its volume) you have 
no clues to guide your guessing. If the cube's edge was picked at ran
dom, the principle of indifference does indeed apply. It is also applic
able if you are told that the cube's volume was picked at random, but 
of course you then have to assign a probability of 1/2 to each of the two 
ranges from one to 14 and from 14 to 27 cubic feet, and to the corre
sponding ranges for the cube's edge. If the principle applies to the edge, 
it cannot apply to the volume without contradiction, and vice versa. 
Since you do not know how the size was selected, any application of 
the principle is meaningless. 

Carnap, in attacking an uncritical use of the principle in Harold Jef
freys' Theory of Probability, gives the following example of its misuse. 
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You know that every ball in an urn is blue, red, or yellow, but you 
know nothing about how many balls of each color are in the urn. What 
is the probability that the first ball taken from the urn will be blue? Ap
plying the principle of indifference, you say it is 1/2. The probability 
that it is not blue must also be 1/2. If it is not blue, it must be red or yel
low, and because you know nothing about the number of red or yellow 
balls, those colors are equally probable. Therefore you assign to red a 
probability of 1/4. On the other hand, if you begin by asking for the 
probability that the first ball will be red, you must give red a probabil~ 
ity of 1/2 and blue a probability of 1/4, which contradicts your previ
ous estimates. 

It is easy to prove along similar lines that there is life on Mars. What 
is the probability that there is simple plant life on Mars? Since argu
ments on both sides are about equally cogent, we answer 1/2. What is 
the probability that there is simple animal life on Mars? Again, 1/2. 
Now we seem forced to assert that the probability of there being "either 
plant or animal life" on Mars is 1/2 + 1/2 = 1, or certainty, which is ab
surd. The philosopher Charles Sanders Peirce gave a similar argument 
that seems to show that the hair of inhabitants on Saturn had to be ei~ 
ther of two different colors. It is easy to invent others. 

In the history of metaphysics the most notorious misuse of the prin
ciple surely was by Blaise Pascal, who did pioneer work on probabil
ity theory, in a famous argument that became known as "Pascal's 
wager." A few passages from the original and somewhat lengthy argu
ment (in Pascal's Pensees, Thought 233) are worth quoting: 

"God is, or he is not." To which side shall we incline? Reason can de
termine nothing about it. There is an infinite gulf fixed between us. A 
game is playing at the extremity of this infinite distance in which heads 
or tails may turn up. What will you wager? There is no reason for back
ing either one or the other, you cannot reasonably argue in favor of ei
ther .... 

Yes, but you must wager .... Which will you choose? ... Let us weigh 
the gain and the loss in choosing "heads" that God is .... If you gain, you 
gain all. If you lose, you lose nothing. Wager, then, unhesitatingly that 
he is. 

Lord Byron, in a letter, rephrased Pascal's argument effectively: "In
disputably, the firm believers in the Gospel have a great advantage over 
all others, for this simple reason-that, if true, they will have their re-
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ward hereafter; and if there be no hereafter, they can be but with the in
fidel in his eternal sleep, having had the assistance of an exalted hope 
through life, without subsequent disappointment, since (at the worst 
for them) out of nothing nothing can arise, not even sorrow." Similar 
passages can be found in many contemporary books of religious apolo
getics. 

Pascal was not the first to insist in this fashion that faith in Christian 
orthodoxy was the best bet. The argument was clearly stated by the 
4th-century African priest Arnobius the Elder, and non-Christian forms 
of it go back to Plato. This is not the place, however, to go into the cu
rious history of defenses and criticisms of the wager. I content myself 
with mentioning Denis Diderot's observation that the wager applies 
with equal force to other major faiths such as Islam. The mathemati
cally interesting aspect of all of this is that Pascal likens the outcome 
of his bet to the toss of a coin. In other words, he explicitly invokes the 
principle of indifference to a situation in which its application is math
ematically senseless. 

The most subtle modern reformulation of Pascal's wager is by 
William James, in his famous essay The Will to Believe, in which he ar
gues that philosophical theism is a better gamble than atheism. In a still 
more watered-down form it is even used occasionally by humanists to 
defend optimism against pessimism at a time when the extinction of 
the human race seems as likely in the near future as its survival. 

"While there is a chance of the world getting through its troubles," 
says the narrator of H. G. Wells's little read novel Apropos of Dolores, 
"I hold that a reasonable man has to behave as though he was sure of 
it. If at the end your cheerfulness is not justified, at any rate you will 
have been cheerful." 

Addendum 

The following letter, from S. D. Turner, contains some surpris-
ing information: 

Your bit about the two black and two red cards reminds me of an exer
cise I did years ago, which might be called N-Card Monte. A few cards, 
half red, half black, or nearly so, are shown face up by the pitchman, 
then shuffled and dealt face down. The sucker is induced to bet he can 
pick two of the same color. 

The odds will always be against him. But because the sucker will 
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make erroneous calculations (like the 2/3 and 1/2 in your 2:2 example), 
or for other reasons, he will bet. The pitchman can make a plausible 
spiel to aid this: "Now, folks, you don't need to pick two blacks, and you 
don't need to pick two reds. If you draw either pair you win!" 

The probability of getting two of the same color, where there are R reds 
and B blacks, is: 

R2 + B2 - (R + B) 
P= 

(R + B) (R + B-1) 

This yields the figures in the table [see Figure 22.2], one in lowest-
terms fractions, the other in decimaL Only below and to the left of the 
stairstep line does the sucker get an even break or better. But no pitch-
man would bother with odds more favorable to the sucker than the 1/3 
probability for 2:2, or possibly the 2/5 for 3:3. 

Surprisingly, the two top diagonal lines are identicaL That is, if you 
are using equal reds and blacks, odds are not changed if a card is re-
moved before the two are selected! In your example of 2:2, the proba-

Red Cards 
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3 3 
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2 .333 .333 m 
3 .500 .400 .400 
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5 .667 .524 .465 .444 .444 
6 .714 .572 .500 .467 .455 .455 
7 .750 .611 .533 .491 .470 .462 .462 
8 .778 .645 .564 .515 .488 .472 .466 .466 
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26 .490 

Figure 22.2. Probability of drawing two cards of the same color 
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bility is 1/3 and it is also 1/3 when starting with 2:1 (as is evident be
cause the one card not selected can be anyone of the three). The gener
ality of this can be shown thus: If B = Rand B R 1 are substituted into 
the above equation, the result in each case is R - 1/ 2R 1. 

Some readers sent detailed explanations of why the arguments be
hind the fallacies that I described were wrong, apparently not realizing 
that these fallacies were intended to be howlers based on the misuse of 
the principle of indifference. Several readers correctly pointed out that 
although Pascal did invoke the principle of indifference by referring to 
a coin flip in his famous wager, the principle is not essential to his ar
gument. Pascal posits an infinite gain for winning a bet in which the 
loss (granting his assumptions) would always be finite regardless of 
the odds. 

Efron's nontransitive dice aroused almost as much interest among 
magicians as among mathematicians. It was quickly perceived that the 
basic idea generalized to k sets of n-sided dice, such as dice in the 
shapes of regular octahedrons, dodecahedrons, icosahedrons, or cylin
ders with n flat sides. The game also can be modeled by k sets of n
sided tops, spinners with n numbers on each dial, and packets of n 
playing cards. 

Karl Fulves, in his magic magazine The Pallbearers Review (January 
1971) proposed using playing cards to model Efron's dice. He suggested 
the following four packets: 2,3,4, 10,], Q; 1,2,8,9,9, 10; 6, 6, 7, 7,8, 

8; and 4,5, 5, 6, Q, K. Suits are irrelevant. First player selects a packet, 
shuffles it, and draws a card. Second player does the same with another 
packet. If the chosen cards have the same value, they are replaced and 
two more cards drawn. Ace is low, and high card wins. This is based 
on Efron's third set of dice where the winning probability, if the second 
player chooses properly, is 11/17. To avoid giving away the cyclic se
quence of packets, each could be placed in a container (box, cup, tray, 
etc.) with the containers secretly marked. Before each play, the con
tainers would be randomly mixed by the first player while the second 
player turned his back. Containers with numbered balls or counters 
could of course be substituted for cards. 

In the same issue of The Pallbearers Review cited above, Columbia 
University physicist Shirley Quimby proposed a set of four dice with 
the following faces: 
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3,4,5,20,21,22 
1,2,16,17,18,19 
10,11,12,13,14,15 
6,7,8,9,23,24 

Note that numbers 1 through 24 are used just once each in this ele
gant arrangement. The dice give the second player a winning proba
bility of 2/3. If modeled with 24 numbered cards, the first player would 
select one of the four packets, shuffle, then draw a card. The second 
player would do likewise, and high card wins. 

R.C.H. Cheng, writing from Bath University, England, proposed a 
novel variation using a single die. On each face are numbers 1 through 
6, each numeral a different color. Assume that the colors are the rain
bow colors red, orange, yellow, green, blue, and purple. The chart 
below shows how the numerals are colored on each face. 

FACE RED ORANGE YELLOW GREEN BLUE PURPLE 

A 1 2 3 4 5 6 

B 6 1 2 3 4 5 
C 5 6 1 2 3 4 
D 4 5 6 1 2 3 
E 3 4 5 6 1 2 

F 2 3 4 5 6 1 

The game is played as follows: The first player selects a color, then 
the second player selects another color. The die is rolled and the per
son whose color has the highest value wins. It is easy to see from the 
chart that if the second player picks the adjacent color on the right-the 
sequence is cyclic, with red to the "right" of purple-the second player 
wins five out of six times. In other words, the odds are 5 to 1 in his 
favor! 

To avoid giving away the sequence of colors, the second player 
should occasionally choose the second color to the right, where his 
winning odds are 4 to 2, or the color third to the right where the odds 
are even. Perhaps he should even, on rare occasions, take the fourth or 
fifth color to the right where odds against him are 4 to 2 and 5 to 1 re
spectively. Mel Stover has suggested putting the numbers and colors on 
a six-sided log instead of a cube. 
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This, too, models nicely with 36 cards, formed in six piles, each 
bearing a colored numeral. The chart's pattern is obvious, and easily ap
plied to n2 cards, each with numbers 1 through n, and using n differ
ent colors. In presenting it as a betting game you should freely display 
the faces of each packet to show that all six numbers and all six colors 
are represented. Each packet is shuffled and placed face down. The 
first player is "generously" allowed first choice of a color and to select 
any packet. The color with the highest value in that packet is the win
ner. In the general case, as Cheng pointed out in his 1971 letter, the sec
ond player can always choose a pile that gives him a probability of 
winning equal to (n -l)/n. 

A simpler version of this game uses 16 playing cards. The four pack
ets are 

AS, JH, QC, KD 
KS, AH, JC, QD 
QS, KH, AC, JD 
JS, QH, KC, AD 

Ace here is high, and the cyclic sequence of suits is spades, hearts, 
clubs, diamonds. The second player wins with 3 to 1 odds by choos
ing the next adjacent suit, and even odds if he goes to the next suit but 
one. 

These betting games are all variants of nontransitive voting para
doxes, about which there is extensive literature. 

Answers 

The probability that two randomly selected cards, from a set of 
two red and two black cards, are the same color is 1/3. If you list the 24 
equally probable permutations ofthe four cards, then pick any two po
sitions (for example, second and fourth cards), you will find eight cases 
in which the two cards match in color. One way to see that this proba
bility of 8/24 or 1/3 is correct is to consider one of the two chosen 
cards. Assume that it is red. Of the remaining three cards only one is 
red, and so the probability that the second chosen card will be red is 
1/3. Of course, the same argument applies if the first card is black. 
Most people guess that the odds are even, when actually they are 2:1 in 
favor of the cards' having different colors. 
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Chapter 23 More 
Nontransitive Paradoxes 

I have just so much logic, as to be able to see . .. 
that for me to be too good for you, and for you to 
be too good for me, cannot be true at once, both 
ways. 

-ELIZABETH BARRETT, in a letter to Robert Browning. 

When a relation R that is true with respect to xRy and yRz also 
holds for xRz, the relation is said to be transitive. For example, "less 
than" is transitive among all real numbers. If 2 is less than n, and the 
square root of 3 is less than 2, we can be certain that the square root of 
3 is less than n. Equality also is transitive: if a = band b = c, then a = c. 
In everyday life such relations as "earlier than," "heavier than," "taller 
than," "inside," and hundreds of others are transitive. 

It is easy to think of relations that are not transitive. If A is the father 
of Band B is the father of C, it is never true that A is the father of C. If 
A loves Band B loves C, it does not follow that A loves C. Familiar 
games abound in transitive rules (if poker hand A beats B and B beats 
C, then A beats C), but some games have nontransitive (or intransitive) 
rules. Consider the children's game in which, on the count of three, one 
either makes a fist to symbolize "rock," extends two fingers for "scis
sors," or all fingers for "paper." Rock breaks scissors, scissors cut paper, 
and paper covers rock. In this game the winning relation is not transi
tive. 

Occasionally in mathematics, particularly in probability theory and 
decision theory, one comes on a relation that one expects to be transi
tive but that actually is not. If the nontransitivity is so counterintuitive 
as to boggle the mind, we have what is called a nontransitive paradox. 

The oldest and best-known paradox of this type is a voting paradox 
sometimes called the Arrow paradox after Kenneth J. Arrow because of 
its crucial role in Arrow's "impossibility theorem," for which he shared 
a Nobel prize in economics in 1972. In Social Choice and Individual 
Values, Arrow specified five conditions that almost everyone agrees are 
essential for any democracy in which social decisions are based on in
dividual preferences expressed by voting. Arrow proved that the five 
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conditions are logically inconsistent. It is not possible to devise a vot
ing system that will not, in certain instances, violate at least one of the 
five essential conditions. In short, a perfect democratic voting system 
is in principle impossible. 

As Paul A. Samuelson has put it: "The search of the great minds of 
recorded history for the perfect democracy, it turns out, is the search for 
a chimera, for a logical self-contradiction .... Now scholars allover the 
world-in mathematics, politics, philosophy, and economics-are try
ing to salvage what can be salvaged from Arrow's devastating discov
ery that is to mathematical politics what Kurt Godel's 1931 
impossibility-of-proving-consistency theorem is to mathematical 
logic." 

Let us approach the voting paradox by first considering a funda
mental defect of our present system for electing officials. It frequently 
puts in office a man who is cordially disliked by a majority of voters but 
who has an enthusiastic minority following. Suppose 40 percent of the 
voters are enthusiastic supporters of candidate A. The opposition is 
split between 30 percent for Band 30 percent for C. A is elected even 
though 60 percent of the voters dislike him. 

One popular suggestion for avoiding such consequences of the split 
vote is to allow voters to rank all candidates in their order of preference. 
Unfortunately, this too can produce irrational decisions. The matrix in 
Figure 23.1 (left) displays the notorious voting paradox in its simplest 
form. The top row shows that a third of the voters prefer candidates A, 
B, and C in the order ABC. The middle row shows that another third 

A 

31 B 

C 

RANK ORDER 
2 

B 

c 

A 

3 

c 

A 

B 

D E F 

A 8 1 6 

3 5 7 

c 4 9 2 
-

Figure 23.1. The voting paradox (left) and the tournament paradox based on the magic 
square (right) 
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rank them BCA, and the bottom row shows that the remaining third 
rank them CAB. Examine the matrix carefully and you will find that 
when candidates are ranked in pairs, non transitivity rears its head. 
Two-thirds of the voters prefer A to B, two-thirds prefer B to C, and two
thirds prefer Cto A. If A ran against B, A would win. If B ran against C, 
B would win. If C ran against A, C would win. Substitute proposals for 
candidates and you see how easily a party in power can rig a decision 
simply by its choice of which paired proposals to put up first for a 
vote. 

The paradox was recognized by the Marquis de Condorcet and oth
ers in the late 18th century and is known in France as the Condorcet ef
fect. Lewis Carroll, who wrote several pamphlets on voting, 
rediscovered it. Most of the early advocates of proportional represen
tation were totally unaware of this Achilles' heel; indeed, the paradox 
was not fully recognized by political theorists until the mid-1940s, 
when Duncan Black, a Welsh economist, rediscovered it in connection 
with his monumental work on committee decision making. The ex
perts are nowhere near agreement on which of Arrow's five conditions 
should be abandoned in the search for the best voting system. One sur
prising way out, recommended by many decision theorists, is that 
when a deadlock arises, a "dictator" is chosen by lot to break it. Some
thing close to this solution actually obtains in certain democracies, 
England for instance, where a constitutional monarch (selected by 
chance in the sense that lineage guarantees no special biases) has a 
carefully limited power to break deadlocks under certain extreme con
ditions. 

The voting paradox can arise in any situation in which a decision 
must be made between two alternatives from a set of three or more. 
Suppose that A, B, and C are three men who have simultaneously pro
posed marriage to a girl. The rows of the matrix for the voting paradox 
can be used to show how she ranks them with respect to whatever 
three traits she considers most important, say intelligence, physical at
tractiveness, and income. Taken by pairs, the poor girl finds that she 
prefers A to B, B to C, and C to A. It is easy to see how similar conflicts 
can arise with respect to one's choice of a job, where to spend a vaca
tion, and so on. 

Paul R. Halmos once suggested a delightful interpretation of the ma
trix. Let A, B, and C stand for apple pie, blueberry pie, and cherry pie. 
A certain restaurant offers only two of them at any given meal. The 
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rows show how a customer ranks the pies with respect to three prop
erties, say taste, freshness, and size of slice. It is perfectly rational, says 
Halmos, for the customer to prefer apple pie to blueberry, blueberry to 
cherry, and cherry to apple. In his Adventures of a Mathematician 
(Scribner, 1976), Stanislaw Ulam speaks of having discovered the non
transitivity of such preferences when he was eight or nine and of later 
realizing that it prevented one from ranking great mathematicians in a 
linear order of relative merit. 

Experts differ on how often nontransitive orderings such as this one 
arise in daily life, but some recent studies in psychology and economics 
indicate that they are commoner than one might suppose. There are even 
reports of experiments with rats showing that under certain conditions 
the pairwise choices of individual rats are nontransitive. (See Warren S. 
McCulloch, "A Heterarchy of Values Determined by the Topology of Ner
vous Nets," Bulletin of Mathematical Biophysics 7,1945, pp. 89-93.) 

Similar paradoxes arise in round-robin tournaments between teams. 
Assume that nine tennis players are ranked in ability by the numbers 
1 through 9, with the best player given the number 9 and the worst 
given the number 1. The matrix in Figure 23.1 (right) is the familiar 
order-3 magic square. Let rows A, B, and C indicate how the nine play
ers are divided into three teams with each row comprising a team. In 
round-robin tournaments between teams, where each member of one 
team plays once against each member of the others, assume that the 
stronger player always wins. It turns out that team A defeats B, B de
feats C, and C defeats A, in each case by five games to four. It is im
possible to say which team is the strongest. The same non transitivity 
holds if columns D, E, and F of the matrix are the teams. 

Many paradoxes of this type were jointly investigated by Leo Moser 
and J. W. Moon. Some of the Moser-Moon paradoxes underlie striking 
and little-known sucker bets. For example, let each row (or each col
umn) of an order-3 magic-square matrix be a set of playing cards, say 
the ace, 6, and 8 of hearts for set A, the 3, 5, and 7 of spades for set B, 
and the 2, 4, and 9 of clubs for C (see Figure 23.2). Each set is random
ized and placed face down on a table. The sucker is allowed to draw a 
card from any set, then you draw a card from a different set. The high 
card wins. It is easy to prove that no matter what set the sucker draws 
from, you can pick a set that gives you winning odds of five to four. Set 
A beats B, Bbeats C, and Cbeats A. The victim may even be allowed to 
decide each time whether the high or the low card wins. If you play low 
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A 

c 

Figure 23.2. Nontransitive sucker bet based on magic square: A~B~C~A 

card wins, simply pick the winning pile with respect to a nontransitive 
circle that goes the other way. A good way to play the game is to use 
sets of cards from three decks with backs of different colors. The packet 
of nine cards is shuffled each time, then separated by the backs into the 
three sets. The swindle is, of course, isomorphic with the tennis
tournament paradox. 

Nontransitivity prevails in many other simple gambling games. In 
some cases, such as the top designed by Andrew Lenard (see Figure 
23.3), the nontransitivity is easy to understand. The lower part of the 
top is fixed but the upper disk rotates. Each of two players chooses a 
different arrow, the top is spun (in either direction), and the person 
whose arrow points to the section with the highest number wins. A 
beats B, B beats C, and C beats A, in each case with odds of two to one. 
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23.3. Nontransitive 

A B 

2 2 4 

3 4 5 6 

C D 

3 5 

4 5 2 6 

A-B-C-D-A 

23.4. Nontransitive 



covered (appropriately) by a mathematician named Walter Penney, was 
given as a problem in the Journal of Recreational Mathematics (October 
1969, p. 241). It is not well known, and most mathematicians simply 
cannot believe it when they first hear of it. It is certainly one of the finest 
of all sucker bets. It can be played with a penny, or as a side bet on the 
reds and blacks of a roulette wheel, or in any situation in which two al
ternatives are randomized with equal odds. We shall assume that a 
penny is used. If it is flipped three times, there are eight equally proba
ble outcomes: HHH, HHT, HTH, HTT, THH, THT, TTH, and TTT. One 
player selects one of these triplets, and the other player selects a differ
ent one. The penny is then flipped repeatedly until one of the chosen 
triplets appears as a run and wins the game. For example, if the chosen 
triplets are HHT and THT and the flips are THHHT, the last three flips 
show that HHThas won. In brief, the first triplet to appear as a run wins. 

One is inclined to assume that one triplet is as likely to appear first 
as any other, but it takes only a moment to realize that this is not the 
case even with doublets. Consider the doublets HH, HT, TH, and TT. 
HH and HT are equally likely to appear first because, after the first H 
appears, it is just as likely to be followed by an H as by a T. The same 
reasoning shows that TT and TH are equal. Because of symmetry, HH 
= TT and HT = TH. TH beats HH with odds of three to one, however, 
and HTbeats TTwith the same probability. Consider HT and TT. TTis 
always preceded by HT except when TT appears on the first two flips. 
This happens in the long run only once in four times. and so the prob
ability that HT beats TT is 3/4. Figure 23.5 shows the probability that 
B, the second player, will win for all pairs of doublets. 

HT TH TT 

114 112 

HT 112 3/4 

TH 3/4 112 

TT 112 114 112 

figure 23.S. Probabilities of B winning 
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When we turn to triplets, the situation becomes much more surpris
ing. Since it does not matter which side of a coin is designated heads, 
we know that HHH = TTT, TTH HHT, HTH = THT, and so on. When 
we examine the probabilities for unequal pairs, however, we discover 
that the game is not transitive. No matter what triplet the first player 
takes, the second player can select a better one. Figure 23.6 gives the 
probability that B, the second player, defeats A for all possible pairings. 
To find B's best response to a triplet chosen by A, find A's triplet at the 
top, go down the column until you reach a probability (shown in gray), 
then move left along the row to B's triplet on the left. 

A 

B HHT HTH HTT THH THT TTH TTT 

HHH 112 2/5 215 118 5/12 3/10 112 

HHT 112 213 2/3 1/4 5/8 112 7110 

HTH 3/5 113 112 112 112 3/8 7/12 

HTT 3/5 1/3 112 112 112 3/4 7/8 

THH 7/8 3/4 112 112 l/2 1/3 3/5 

THT 7/12 3/8 112 112 l/2 l/3 3/5 

TTH 7/10 112 5/8 1/4 213 213 112 

TTT 112 3/10 5112 1/8 2/5 2/5 112 

Figure 23.6. Probabilities of B winning in a triplet game 

Note that B's probability of winning is, at the worst, 2/3 (or odds of 
two to one) and can go as high as 7/8 (or odds of seven to one). The 
seven-to-one odds are easy to comprehend. Consider THH and HHH. If 
HHH first appears anywhere except at the start, it must be preceded by 
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a T, which means that THHhas appeared earlier. HHHwins, therefore, 
only when it appears on the first three flips. Clearly this happens only 
once in eight flips. 

Barry Wolk of the University of Manitoba has discovered a curious 
rule for determining the best triplet. Let X be the first triplet chosen. 
Convert it to a binary number by changing each H to zero and each T 
to 1. Divide the number by 2, round down the quotient to the nearest 
integer, multiply by 5, and add 4. Express the result in binary, then con
vert the last three digits back to Hand T. 

Nontransitivity holds for all higher n-tuplets. A chart supplied by 
Wolk gives the winning probabilities for B in all possible pairings of 
quadruplets (see Figure 23.7). Like the preceding two charts and charts 
for all higher n-tuplets, the matrix is symmetric about the center. The 
upper right quadrant is the lower left quadrant upside down, and the 
same holds for the upper left and lower right quadrants. The probabil
ities for B's best responses to A are shown in gray. 

In studying these figures, Wolk discovered another kind of anomaly 
as surprising as nontransitivity. It has to do with what are called wait
ing times. The waiting time for an n-tuplet is the average number of 
tosses, in the long run, until the specified n-tuplet appears. The longer 
you wait for a bus, the shorter becomes the expected waiting time. Pen
nies, however, have no memory, so that the waiting time for an n-tuplet 
is independent of all previous flips. The waiting time for Hand Tis 2. 
For doublets the waiting time is 4 for HT and TH, and 6 for HH and TT. 
For triplets the waiting times are 8 for HHT, HHT, THH, and TTH; 10 
for HTH and THT; and 14 for HHH and TTT. None of this contradicts 
what we know about which triplet of a pair is likely to show first. With 
quadruplets, however, contradictions arise with six pairs. For example, 
THTHhas a waiting time of 20 and HTHHhas a waiting time of 18. Yet, 
THTH is more likely to turn up before HTHH with a probability of 
9/14, or well over one-half. In other words, an event that is less frequent 
in the long run is likely to happen before a more frequent event. There 
is no logical contradiction involved here, but it does show that "aver
age waiting time" has peculiar properties. 

There are many ways to calculate the probability that one n-tuplet 
will precede another. You can do it by summing infinite series, by 
drawing tree diagrams, by recursive techniques that produce sets of 
linear equations, and so on. One of the strangest and most efficient 
techniques was devised by John Horton Conway of Princeton Univer-
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HHHT HHTH HHIT HTHH HTHT HITH HITT THHH THHT THTH THIT ITHH ITHT ITTH TTTT 

2/5 3/8 3/8 3/8 1/4 3/8 7122 112 

112 

517 112 5112 9/16 9116 5/14 112 7/16 5/8 

213 3/4 

112 5/8 

HTHT 7112 3/8 217 112 9/14 7/16 7/16 7/16 5/8 

HITH 7/11 317 112 1/3 112 9116 5112 7112 7112 7/16 5/8 

HITT 7/11 317 112 113 112 9/16 5/12 7/12 7/1 

7112 7/12 5112 9/16 112 112 1/3 

7116 7/12 7112 5/12 9116 112 112 112 113 

7/16 7/16 7116 9114 112 7116 7/16 

/16 7116 7/16 112 5/14 7112 7112 

112 9116 5112 9/16 9/16 9/16 1/8 

1TTT 112 7122 3/8 114 3/8 3/8 3/8 

Figure 23.7. Probabilities of B winning in a quadruplet game 

sity. I have no idea why it works. It just cranks out the answer as if by 
magic, like so many of Conway's other algorithms. 

The key to Conway's procedure is the calculation of four binary num
bers that Conway calls leading numbers. Let A stand for the 7-tuplet 
HHTHHHT and B for THHTHHH. We want to determine the probabil
ity of B beating A. To do this, write A above A, B above B, A above B, 
and B above A (see Figure 23.8). Above the top tuplet of each pair a bi
nary number is constructed as follows. Consider the first pair, AA. Look 
at the first letter of the top tuplet and ask yourself if the seven letters, 
beginning with this first one, correspond exactly to the first seven let
ters of the tuplet below it. Obviously they do, and so we put a 1 above 
the first letter. Next, look at the second letter of the top tuplet and ask 
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if the six letters, starting with this one, correspond to the first six let
ters of the tuplet below. Clearly they do not, and so we put zero above 
the second letter. Do the five letters starting with the third letter of the 
top tuplet correspond to the first five letters of the lower tuplet? No, and 
so this letter also gets zero. The fourth letter gets another zero. When we 
check the fifth letter of the top A, we see that HHT does correspond to 
the first three letters of the lower A, and so the fifth letter gets a 1. Let
ters six and seven each get zero. The "A leading A number," or AA, is 
1000100, in which each 1 corresponds to a yes answer; each zero, to a 
no. Translating 1000100 from binary to decimal gives us 68 as the lead
ing number for AA. 

Figure 23.8 shows the results of this procedure in calculating lead
ing numbers AA, BB, AB, and BA. Whenever an n-tuplet is compared 
with itself, the first digit of the leading number must, of course, be 1. 

When compared with a different tuplet, the first digit mayor may not 
be 1. 

1000100 = 68 
A=HHTHHHT 
A=HHTHHHT 

1000000 =64 
B= THHTHHH 
B= THHTHHH 

0000001 = 1 
A=HHTHHHT 
B=THHTHHH 

0100011=35 
B= THHTHHH 
A=HHTHHHT 

AA -AB:BB-BA 
68 - 1 :64 - 35 
67:29 

Figure 23.8. John Horton Conway's algorithm for calculating odds of B's n-tuplet beating 
A's n-tuplet 

The odds in favor of B beating A are given by the ratio AA-AB:BB
BA. In this case 68-1:64-35 = 67:29. As an exercise, the reader can try 
calculating the odds in favor of THH beating HHH. The four leading 
numbers will be AA = 7, BB = 4, AB = 0, and BA = 3. Plugging these into 
the formula, AA-AB:BB-BA gives odds of 7-0:4-3, or seven to one, 
as expected. The algorithm works just as well on tuplets of unequal 
lengths, provided the smaller tuplet is not contained within the larger 
one. If, for example, A = HH and B = HHT, A obviously wins with a 
probability of 1. 
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I conclude with a problem by David 1. Silverman, who was the first 
to introduce the Penney paradox in the problems department that he 
then edited for the Journal of Recreational Mathematics (Vol. 2, Octo
ber 1969, p. 241). The reader should have little difficulty solving it by 
Conway's algorithm. TTHH has a waiting time of 16 and HHH has a 
waiting time of 14. Which of these tuplets is most likely to appear first 
and with what probability? 

Addendum 

Numerous readers discovered that Barry Wolk's rule for picking 
the best triplet B to beat triplet A is equivalent to putting in front of A 
the complement of its next-to-last symbol, then discarding the last sym
bol. More than half these correspondents found that the method also 
works for quadruplets except for the two in which Hand T alternate 
throughout. In such cases the symbol put in front of A is the same as its 
next to last one. 

Since October 1974, when this chapter first appeared in Scientific 
American, many papers have been published that prove Conway's al
gorithm and give procedures for picking the best n-tuplet for all values 
of n. Two important early articles are cited in the bibliography. The 
paper by Guibas and Odlyzko gives 26 references. 

Readers David Sachs and Bryce Hurst each noted that Conway's 
"leading number," when an n-tuplet is compared with itself, automat
ically gives that tuplet's waiting time. Simply double the leading num
ber. 

Ancient Chinese philosophers (I am told) divided matter into five 
categories that form a nontransitive cycle: wood gives birth to fire, fire 
to earth, earth to metal, metal to water, and water to wood. Rudy 
Rucker's science-fiction story "Spacetime Donuts" (Unearth, Summer 
1978) is based on a much more bizarre nontransitive theory. If you 
move down the scale of size, to several steps below electrons, you get 
back to the galaxies of the same universe we now occupy. Go up the 
scale several stages beyond our galactic clusters, and you are back to the 
elementary particles-not larger ones, but the very same particles that 
make our stars. The word "matter" loses all meaning. 

The following letter was published in Scientific American Uanuary 
1975): 
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Sirs: 
Martin Gardner's article on the paradoxical situations that arise from 

non transitive relations may have helped me win a bet in Rome on the 
outcome of the Ali v. Foreman world heavyweight boxing title match in 
ZaIre on October 30. 

Ali, though slower than in former years, and a 4-1 betting underdog, 
may have had a psychological and motivational advantage for that par
ticular fight. But in addition, Gardner's mathematics might be relevant. 
Even though Foreman beat Frazier, who beat Ali, Ali could still beat 
Foreman because there may be a nontransitive relation between the 
three. 

I ranked the three fighters against the criteria of speed, power, and 
technique (including psychological technique) as reported in the press, 
and spotted a nontransitive relation worth betting on: 

Speed 
Power 
Technique 

ALI 

2 

3 
1 

FRAZIER 

1 

2 

3 

FOREMAN 

3 
1 

2 

Foreman's power and technique beat Frazier, but Ali's technique and 
speed beat Foreman. It was worth the bet. The future implications are, 
however, that Frazier can still beat Ali! 

ANTHONY PIEL 

Vaud, Switzerland 

David Silverman (Journal of Recreational Mathematics 2, October 
1969, p. 241) proposed a two-person game that he called "blind 
Penney-ante." It is based on the nontransitive triplets in a run of fair 
coin tosses. Each player simultaneously chooses a triplet without 
knowing his opponent's choice. The triplet that shows up first wins. 
What is a player's best strategy? This is not an easy problem. A full so
lution, based on an 8 x 8 game matrix, is given in The College Mathe
matics Journal as the answer to Problem 299 (January 1987, pp. 74-76). 

Answers 
Which pattern of heads and tails, TTHH or HHH, is more likely 

to appear first as a run when a penny is repeatedly flipped? Applying 
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John Horton Conway's algorithm, we find that TTHH is more likely to 
precede HHHwith a probability of 7/12, or odds of seven to five. Some 
quadruplets beat some triplets with even greater odds. For example, 
THHH precedes HHH with a probability of 7/8, or odds of seven to 
one. This is easy to see. HHH must be preceded by a T unless it is the 
first triplet of the series. Of course, the probability of that is 1/8. 

The waiting time for TTHH and for THHH is 16, compared with a 
waiting time of 14 for HHH. Both cases of the quadruplet versus the 
triplet, therefore, exhibit the paradox of a less likely event occurring be
fore a more likely event with a probability exceeding 1/2. 
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Chapter 24 Infinite Regress 
Chairman of a meeting of the Society of Lo
gicians: "Before we put the motion: 'That the 
motion be now put,' should we not first put 
the motion: That the motion: "That the mo
tion be now put" be now put'?" 

From an old issue of Punch 

The infinite regress, along which thought is compelled to march 
backward in a never ending chain of identical steps, has always aroused 
mixed emotions. Witness the varied reactions of critics to the central 
symbol of Broadway's most talked-about 1964 play, Edward Albee's Tiny 
Alice. The principal stage setting-the library of an enormous castle 
owned by Alice, the world's richest woman-was dominated by a scale 
model of the castle. Inside it lived Tiny Alice. When lights went on and 
off in the large castle, corresponding lights went on and off in the small 
one. A fire erupted simultaneously in castle and model. Within the 
model there was a smaller model in which a tinier Alice perhaps lived, 
and so on down, like a set of nested Chinese boxes. ("Hell to clean," 
commented the butler, whose name was Butler.) Was the castle itself, 
into which the play's audience peered, a model in a still larger model, 
and that in turn ... ? A similar infinite nesting is the basis ofE. Nesbit's 
short story, "The Town in the Library in the Town in the Library" (in her 
Nine Unlikely Tales); perhaps this was the source of Albee's idea. 

For many of the play's spectators the endless regress of castles stirred 
up feelings of anxiety and despair: Existence is a mysterious, impene
trable, ultimately meaningless labyrinth; the regress is an endless cor
ridor that leads nowhere. For theological students, who were said to 
flock to the play, the regress deepens an awareness of what Rudolf Otto, 
the German theologican, called the mysterium tremendum: the ulti
mate mystery, which one must approach with awe, fascination, hu
mility, and a sense of "creaturehood." For the mathematician and the 
logician the regress has lost most of its terrors; indeed, as we shall soon 
see, it is a powerful, practical tool even in recreational mathematics. 
First, however, let us glance at some of the roles it has played in West
ern thought and letters. 
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Aristotle, taking a cue from Plato's Parmenides, used the regress in 
his famous "third man" criticism of Plato's doctrine of ideas. If all men 
are alike because they have something in common with Man, the ideal 
and eternal archetype, how (asked Aristotle) can we explain the fact 
that one man and Man are alike without assuming another archetype? 
And will not the same reasoning demand a third, fourth, and fifth ar
chetype, and so on into the regress of more and more ideal worlds? 

A similar aversion to the infinite regress underlies Aristotle's argu
ment, elaborated by hundreds of later philosophers, that the cosmos 
must have a first cause. William Paley, an 18th-century English the
ologian, put it this way: "A chain composed of an infinite number of 
links can no more support itself than a chain composed of a finite num
ber of links." A finite chain does indeed require support, mathemati
cians were quick to point out, but in an infinite chain eve.lY link hangs 
securely on the one above. The question of what supports the entire se
ries no more arises than the question of what kind of number precedes 
the infinite regress of negative integers. 

Agrippa, an ancient Greek skeptic, argued that nothing can be 
proved, even in mathematics, because every proof must be proved valid 
and its proof must in turn be proved, and so on. The argument is re
peated by Lewis Carroll in his paper "What the Tortoise Said to 
Achilles" (Mind, April 1895). After finishing their famous race, which 
involved an infinite regress of smaller and smaller distances, the Tor
toise traps his fellow athlete in a more disturbing regress. He refuses to 
accept a simple deduction involving a triangle until Achilles has writ
ten down an infinite series of hypothetical assumptions, each necessary 
to make the preceding argument valid. 

F. H. Bradley, the English idealist, argued (not very convincingly) 
that our mind cannot grasp any type of logical relation. We cannot say, 
for example, that castle A is smaller than castle B and leave it at that, 
because "smaller than" is a relation to which both castles are related. 
Call these new relations c and d. Now we have to relate c and d to the 
two castles and to "smaller than." This demands four more relations, 
they in turn call for eight more, and so on, until the shaken reader col
lapses into the arms of Bradley's Absolute. 

In recent philosophy the two most revolutionary uses of the regress 
have been made by the mathematicians Alfred Tarski and Kurt Gade!. 
Tarski avoids certain troublesome paradoxes in semantics by defining 
truth in terms of an endless regress of "metalanguages," each capable 
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of discussing the truth and falsity of statements on the next lower level 
but not on its own level. As Bertrand Russell once explained it: "The 
man who says 'I am telling a lie of order n' is telling a lie, but a lie of 
order n + 1." In a closely related argument Godel was able to show that 
there is no single, all-inclusive mathematics but only an infinite regress 
of richer and richer systems. 

The endless hierarchy of gods implied by so many mythologies and 
by the child's inevitable question "Who made God?" has appealed to 
many thinkers. William James closed his Varieties of Religious Experi
ence by suggesting that existence includes a collection of many gods, 
of different degrees of inclusiveness, "with no absolute unity realized 
in it at all. Thus would a sort of polytheism return upon us .... " The 
notion turns up in unlikely places. Benjamin Franklin, in a quaint lit
tle work called Articles of Belief and Acts of Religion, wrote: "For I be
lieve that man is not the most perfect being but one, but rather that 
there are many degrees of beings superior to him." Our prayers, said 
Franklin, should be directed only to the god of our solar system, the 
deity closest to us. Many writers have viewed life as a board game in 
which we are the pieces moved by higher intelligences who in turn are 
the pieces in a vaster game. The prophet in Lord Dunsany's story "The 
South Wind" observes the gods striding through the stars, but as he 
worships them he sees the outstretched hand of a player "enormous 
over Their heads." 

Graphic artists have long enjoyed the infinite regress. The striking 
cover of the April 1965, issue of Scientific American showed the mag
azine cover reflected in the pupil of an eye. The cover of the Novem
ber 1964, Punch showed a magician pulling a rabbit out of a hat. The 
rabbit in turn is pulling a smaller rabbit out of a smaller hat, and this 
endless series of rabbits and hats moves up and off the edge of the 
page. It is not a bad picture of contemporary particle physics. It is now 
known that protons and neutrons are made of smaller units called 
quarks, and if superstring theory is correct, all particles are made of ex
tremely tiny loops that vibrate at different frequencies. Does the uni
verse have, as some physicists believe, infinite levels of structure? 

The play within the play, the puppet show within the puppet show, 
the story within the story have amused countless writers. Luigi Piran
delIo's Six Characters in Search of an Author is perhaps the best
known stage example. The protagonist in Miguel de Unamuno's novel 
Mist, anticipating his death later in the plot, visits Unamuno to protest 
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and troubles the author with the thought that he too is only the figment 
of a higher imagination. Philip Quarles, in Aldous Huxley's Point 
Counter Point, is writing a novel suspiciously like Point Counter Point. 
Edouard, in Andre Gide's The Counterfeiters, is writing The Counter
feiters. Norman Mailer's story "The Notebook" tells of an argument be
tween the writer and his girl friend. As they argue he jots in his 
notebook an idea for a story that has just come to him. It is, of course, 
a story about a writer who is arguing with his girl friend when he gets 
an idea .... 

J. E. Littlewood, in A Mathematician's Miscellany, recalls the fol
lowing entry, which won a newspaper prize in Britain for the best piece 
on the topic: "What would you most like to read on opening the morn
ing paper?" 

OUR SECOND COMPETITION 

The First Prize in the second of this year's competitions goes to Mr. 
Arthur Robinson, whose witty entry was easily the best of those we re
ceived. His choice of what he would like to read on opening his paper 
was headed "Our Second Competition" and was as follows: "The First 
Prize in the second ofthis year's competitions goes to Mr. Arthur Robin
son, whose witty entry was easily the best of those we received. His 
choice of what he would like to read on opening his paper was headed 
'Our Second Competition,' but owing to paper restrictions we cannot 
print all of it." 

One way to escape the torturing implications of the endless regress 
is by the topological trick of joining the two ends to make a circle, not 
necessarily vicious, like the circle of weary soldiers who rest them
selves in a bog by each sitting on the lap of the man behind. Albert Ein
stein did exactly this when he tried to abolish the endless regress of 
distance by bending three-dimensional space around to form the hy
persurface of a four-dimensional sphere. One can do the same thing 
with time. There are Eastern religions that view history as an endless 
recurrence of the same events. In the purest sense one does not even 
think of cycles following one another, because there is no outside time 
by which the cycles can be counted; the same cycle, the same time go 
around and around. In a similar vein, there is a sketch by the Dutch 
artist Maurits C. Escher of two hands, each holding a pencil and sketch
ing the other (see Figure 24.1). In Through the Looking Glass Alice 
dreams of the Red King, but the King is himself asleep and, as Twee-
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of old-Asgool, Trodath, Skun, and Rhoog-he sees the shadowy forms 
of three larger gods farther up the slope. He leads his disciples up the 
mountain only to observe, years later, two larger gods seated at the 
summit, from which they point and mock at the gods below. Shaun 
takes his followers still higher. Then one night he perceives across the 
plain an enormous, solitary god looking angrily toward the mountain. 
Down the mountain and across the plain goes Shaun. While he is carv
ing on rock the story of how his search has ended at last with the dis
covery of the ultimate god, he sees in the far distance the dim forms of 
four higher deities. As the reader can guess, they are Asgool, Trodath, 
Skun, and Rhoog. 

No branch of mathematics is immune to the infinite regress. Numbers 
on both sides of zero gallop off to infinity. In modular arithmetics they 
go around and around. Every infinite series is an infinite regress. The 
regress underlies the technique of mathematical induction. Georg Can
tor's transfinite numbers form an endless hierarchy of richer infinities. 
A beautiful modern example of how the regress enters into a mathe
matical proof is related to the difficult problem of dividing a square into 
other squares no two of which are alike. The question arises: Is it pos
sible similarly to cut a cube into a finite number of smaller cubes no 
two of which are alike? Were it not for the deductive power of the 
regress, mathematicians might still be searching in vain for ways to do 
this. The proof of impossibility follows. 

Assume that it is possible to "cube the cube." The bottom face of 
such a dissected cube, as it rests on a table, will necessarily be a 
"squared square." Consider the smallest square in this pattern. It can
not be a corner square, because a larger square on one side keeps any 
larger square from bordering the other side (see Figure 24.2{a)). Simi
larly, the smallest square cannot be elsewhere on the border, between 
corners, because larger squares on two sides prevent a third larger 
square from touching the third side (Figure 24.2{b)). The smallest 
square must therefore be somewhere in the pattern's interior. This in 
turn requires that the smallest cube touching the table be surrounded 
by cubes larger than itself. This is possible (Figure 24.2{ c)), but it means 
that four walls must rise above all four sides of the small cube-pre
venting a larger cube from resting on top of it. Therefore on this small
est cube there must rest a set of smaller cubes, the bottoms of which 
will form another pattern of squares. 

The same argument is now repeated. In the new pattern of squares 
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friend once said. the universe seems to be made of nothing, yet some
how it manages to exist. 

Some top mathematical physicists, Stanislaw Ulam and David Bohm 
for example, defended and defend the notion that matter has infinite 
layers of structure in both directions. One of H. G. Wells's fantasies 
portrayed our universe as a molecule in a ring worn by a gigantic hand. 

I described the snowflake curve before it became known as the old
est and simplest of Benoit Mandelbrofs famous fractals. For more on 
fractals, see this volume's Chapter 27 and Chapter 8 of my Penrose 
Tiles to Trapdoor Ciphers. 

Answers 
The cross-stitch curve has, like its analogue the snowflake, an 

infinite length. It bounds an area twice that of the original square. The 
drawing at the left in Figure 24.5 shows its appearance after the third 
construction. After many more steps it resembles (when viewed at a 
distance) the drawing at the right. Although the stitches seem to run di
agonally' actually every line segment in the figure is vertical or hori
zontal. Similar constructions of pathological curves can be based on 
any regular polygon, but beyond the square the figure is muddied by 
overlapping, so that certain conventions must be adopted in defining 
what is meant by the enclosed area. 

Samuel P. King, Jr., of Honolulu, supplied a good analysis of curves 
of this type, including a variant of the cross-stitch discovered by his fa
ther. Instead of erecting four squares outwardly each time, they are 

Figure 24.S. Solution to cross-stitch curve problem 
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erected inwardly from sides of each 
infinite but encloses zero area. 
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Chapter 25 

A graduate student at Trinity 
Computed the square of infinity. 

But it gave him the fidgets 
To put down the digits, 

Aleph-Null 
and Aleph-One 

So he dropped math and took up divinity 

-ANONYMOUS 

In 1963 Paul J. Cohen, then a 29-year-old mathematician at 
Stanford University, found a surprising answer to one of the great prob
lems of modern set theory: Is there an order of infinity higher than the 
number of integers but lower than the number of points on a line? To 
make clear exactly what Cohen proved, something must first be said 
about those two lowest known levels of infinity. 

It was Georg Ferdinand Ludwig Philipp Cantor who first discovered 
that beyond the infinity of the integers-an infinity to which he gave 
the name aleph-null-there are not only higher infinities but also an in
finite number of them. Leading mathematicians were sharply divided 
in their reactions. Henri Poincare called Cantorism a disease from 
which mathematics would have to recover, and Hermann Weyl spoke 
of Cantor's hierarchy of alephs as "fog on fog." 

On the other hand, David Hilbert said, "From the paradise created for 
us by Cantor, no one will drive us out," and Bertrand Russell once 
praised Cantor's achievement as "probably the greatest of which the age 
can boast." Today only mathematicians of the intuitionist school and a 
few philosophers are still uneasy about the alephs. Most mathemati
cians long ago lost their fear of them, and the proofs by which Cantor 
established his "terrible dynasties" (as they have been called by the 
world-renowned Argentine writer Jorge Luis Borges) are now univer
sally honored as being among the most brilliant and beautiful in the 
history of mathematics. 

Any infinite set of things that can be counted 1, 2, 3, ... has the car
dinalnumber alepho (aleph-null), the bottom rung of Cantor's aleph 
ladder. Of course, it is not possible actually to count such a set; one 
merely shows how it can be put into one-to-one correspondence with 
the counting numbers. Consider, for example, the infinite set of primes. 
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It is easily put in one-to-one correspondence with the positive inte
gers: 

1 

L 
2 

2 

L 
3 

3 
L 
5 

4 
L 
7 

5 6 ... 
J- J-

11 13 ... 

The set of primes is therefore an aleph-null set. It is said to be "count
able" or "denumerable." Here we encounter a basic paradox of all infi
nite sets. Unlike finite sets, they can be put in one-to-one 
correspondence with a part of themselves or, more technically, with 
one of their "proper subsets." Although the primes are only a small por
tion of the positive integers, as a completed set they have the same 
aleph number. Similarly, the integers are only a small portion of the ra
tional numbers (the integers plus all integral fractions), but the rationals 
form an aleph-null set too. 

There are all kinds of ways in which this can be proved by arranging 
the rationals in a countable order. The most familiar way is to attach 
them, as fractions, to an infinite square array of lattice points and then 
count the points by following a zigzag path, or a spiral path if the lat
tice includes the negative rationals. Here is another method of ordering 
and counting the positive rationals that was proposed by the American 
logician Charles Sanders Peirce. 

Start with the fractions 0/1 and 1/0. (The second fraction is mean
ingless, but that can be ignored.) Sum the two numerators and then the 
two denominators to get the new fraction 1/1, and place it between the 
previous pair: 0/1, 1/1, 1/0. Repeat this procedure with each pair of ad
jacent fractions to obtain two new fractions that go between them: 

0 1 1 2 1 

1 2 1 1 0 

The five fractions grow, by the same procedure, to nine: 

0 1 1 2 1 3 2 3 1 
- - - -

1 3 2 3 1 2 1 1 0 

In this continued series every rational number will appear once and 
only once, and always in its simplest fractional form. There is no need, 
as there is in other methods of ordering the rationals, to eliminate frac
tions, such as 10/20, that are equivalent to simpler fractions also on the 
list, because no reducible fraction ever appears. If at each step you fill 
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the cracks, so to speak, from left to right, you can count the fractions 
simply by taking them in their order of appearance. 

This series, as Peirce said, has many curious properties. At each new 
step the digits above the lines, taken from left to right, begin by re
peating the top digits of the previous step: 01, 011, 0112, and so on. 
And at each step the digits below the lines are the same as those above 
the lines but in reverse order. As a consequence, any two fractions 
equally distant from the central 111 are reciprocals of each other. Note 
also that for any adjacent pair, alb, eld, we can write such equalities as 
be - ad = 1, and eld - alb = llbd. The series is closely related to what 
are called Farey numbers (after the English geologist John Farey. who 
first analyzed them), about which there is now a considerable litera
ture. 

It is easy to show that there is a set with a higher infinite number of 
elements than aleph-null. To explain one of the best of such proofs, a 
deck of cards is useful. First consider a finite set of three objects, say a 
key, a watch, and a ring. Each subset of this set is symbolized by a row 
of three cards (see Figure 25.1.), a face-up card (white) indicates that the 
object above it is in the subset, a face-down card (black) indicates that 
it is not. The first subset consists of the original set itself. The next 
three rows indicate subsets that contain only two of the objects. They 
are followed by the three subsets of single objects and finally by the 
empty (or null) subset that contains none of the objects. For any set of 
n elements the number of subsets is 2n. (It is easy to see why. Each el
ement can be either included or not, so for one element there are two 
subsets, for two elements there are 2 x 2 = 4 subsets, for three elements 
there are 2 x 2 x 2 = 8 subsets, and so on.) Note that this formula applies 
even to the empty set, since 2° = 1 and the empty set has the empty set 
as its sole subset. 

This procedure is applied to an infinite but countable (aleph-null) set 
of elements at the left in Figure 25.2. Can the subsets of this infinite set 
be put into one-to-one correspondence with the counting integers? As
sume that they can. Symbolize each subset with a row of cards, as be
fore, only now each row continues endlessly to the right. Imagine these 
infinite rows listed in any order whatever and numbered 1., 2, 3, ... 

from the top down. 
If we continue forming such rows, will the list eventually catch all 

the subsets? No-because there is an infinite number of ways to pro
duce a subset that cannot be on the list. The simplest way is to consider 
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Figure 2S.2. A countable infinity has an uncountable infinity of subsets (left) that corre
spond to the real numbers (right). 

nal number 2 raised to the power of aleph-nulL This proof shows that 
such a set cannot be matched one-to-one with the counting integers. It 
is a higher aleph, an "uncountable" infinity. 

Cantor's famous diagonal proof, in the form just given. conceals a 
startling bonus. It proves that the set of real numbers (the rationals plus 
the irrationals) is also uncountable. Consider a line segment, its ends 
numbered 0 and 1. Every rational fraction from 0 to 1 corresponds to a 
point on this line. Between any two rational points there is an infinity 
of other rational points; nevertheless, even after all rational points are 
identified, there remains an infinity of unidentified points-points that 
correspond to the unrepeating decimal fractions attached to such alge
braic irrationals as the square root of 2 and to such transcendental ir
rationals as pi and e. Every point on the line segment, rational or 
irrational, can be represented by an endless decimal fraction. But these 
fractions need not be decimal; they can also be written in binary nota
tion. Thus every point on the line segment can be represented by an 
endless pattern of l's and O's, and every possible endless pattern of l's 
and O's corresponds to exactly one point on the line segment. See Ad
dendum. 

Now, suppose each face-up card at the left in Figure 25.2 is replaced 
by 1 and each face-down card is replaced by 0, as shown at the right in 
the illustration. Put a binary point in front of each row and we have an 
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infinite list of binary fractions between 0 and 1. But the diagonal set of 
symbols, after each 1 is changed to 0 and each 0 to 1, is not on the list, 
and the real numbers and points on the line are uncountable. By care
ful dealing with the duplications Cantor showed that the three sets
the subsets of aleph-null, the real numbers, and the totality of points on 
a line segment-have the same number of elements. Cantor called this 
cardinal number C, the "power of the continuum." He believed it was 
also Xl (aleph-one), the first infinity greater than aleph-null. 

By a variety of simple, elegant proofs Cantor showed that C was the 
number of such infinite sets as the transcendental irrationals (the alge
braic irrationals, he proved, form a countable set), the number of points 
on a line of infinite length, the number of points on any plane figure or 
on the infinite plane, and the number of points in any solid figure or in 
all of 3-space. Going into higher dimensions does not increase the num
ber of points. The points on a line segment one inch long can be 
matched one-to-one with the points in any higher-dimensional solid, or 
with the points in the entire space of any higher dimension. 

The distinction between aleph-null and aleph-one (we accept, for 
the moment, Cantor's identification of aleph-one with C) is important 
in geometry whenever infinite sets of figures are encountered. Imagine 
an infinite plane tessellated with hexagons. Is the total number of ver
tices aleph-one or aleph-null? The answer is aleph-null; they are eas
ily counted along a spiral path (see Figure 25.3). On the other hand, the 
number of different circles of one-inch radius that can be placed on a 
sheet of typewriter paper is aleph-one because inside any small square 
near the center of the sheet there are aleph-one points, each the center 
of a different circle with a one-inch radius. 

Consider in turn each of the five symbols J. B. Rhine uses on his 
"ESP" test cards (see Figure 25.4). Can it be drawn an aleph-one num
ber of times on a sheet of paper, assuming that the symbol is drawn 
with ideal lines of no thickness and that there is no overlap or inter
section of any lines? (The drawn symbols need not be the same size, but 
all must be similar in shape.) It turns out that all except one can be 
drawn an aleph-one number of times. Can the reader show which sym
bol is the exception? 

Richard Schlegel, a physicist, attempted to relate the two alephs to 
cosmology by calling attention to a seeming contradiction in the steady
state theory. According to that theory, the number of atoms in the cos
mos at the present time is aleph-null. (The cosmos is regarded as 
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blings, they would have grown to an aleph-one set. But the cosmos 
cannot contain an aleph-one set of atoms. Any collection of distinct 
physical entities (as opposed to the ideal entities of mathematics) is 
countable and therefore, at the most, aleph-nulL 

In his paper, "The Problem of Infinite Matter in Steady-State Cos
mology," Schlegel found the way out. Instead of regarding the past as 
a completed aleph-null set of finite time intervals (to be sure, ideal in
stants in time form an aleph-one continuum, but Schlegel is concerned 
with those finite time intervals during which doublings of atoms 
occur), we can view both the past and the future as infinite in the in
ferior sense of "becoming" rather than completed. Whatever date is 
suggested for the origin of the universe (remember, we are dealing with 
the steady-state model, not with a Big Bang or oscillating theory), we 
can always set an earlier date. In a sense there is a "beginning," but we 
can push it as far back as we please. There is also an "end," but we can 
push it as far forward as we please. As we go back in time, continually 
halving the number of atoms, we never halve them more than a finite 
number of times, with the result that their number never shrinks to 
less than aleph-nulL As we go forward in time, doubling the number of 
atoms, we never double more than a finite number of times: therefore 
the set of atoms never grows larger than aleph-nulL In either direction 
the leap is never made to a completed aleph-null set of time intervals. 
As a result the set of atoms never leaps to aleph-one and the disturbing 
contradiction does not arise. 

Cantor was convinced that his endless hierarchy of alephs, each ob
tained by raising 2 to the power of the preceding aleph, represented all 
the alephs there are. There are none in between. Nor is there an Ulti
mate Aleph, such as certain Hegelian philosophers of the time identi
fied with the Absolute. The endless hierarchy of infinities itself, Cantor 
argued, is a better symbol of the Absolute. 

All his life Cantor tried to prove that there is no aleph between aleph
null and C, the power of the continuum, but he never found a proof. In 
1938 Kurt Godel showed that Cantor's conjecture, which became 
known as the Continuum Hypothesis, could be assumed to be true, 
and that this could not conflict with the axioms of set theory. 

What Cohen proved in 1963 was that the opposite could also be as
sumed. One can posit that C is not aleph-one; that there is at least one 
aleph between aleph-null and C, even though no one has the slightest 
notion of how to specify a set (for example, a certain subset of the tran-
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scendental numbers) that would have such a cardinal number. This 
too is consistent with set theory. Cantor's hypothesis is undecidable. 
Like the parallel postulate of Euclidean geometry, it is an independent 
axiom that can be affirmed or denied. Just as the two assumptions about 
Euclid's parallel axiom divided geometry into Euclidean and non
Euclidean, so the two assumptions about Cantor's hypothesis now di
vide the theory of infinite sets into Cantorian and non-Cantorian. It is 
even worse than that. The non-Cantorian side opens up the possibility 
of an infinity of systems of set theory, all as consistent as standard the
ory now is and all differing with respect to assumptions about the 
power of the continuum. 

Of course Cohen did no more than show that the continuum hy
pothesis was undecidable within standard set theory, even when the 
theory is strengthened by the axiom of choice. Many mathematicians 
hope and believe that some day a "self-evident" axiom, not equivalent 
to an affirmation or denial of the continuum hypothesis, will be found, 
and that when this axiom is added to set theory, the continuum hy
pothesis will be decided. (By "self-evident" they mean an axiom which 
all mathematicians will agree is "true.") Indeed, G6del expected and 
Cohen expects this to happen and are convinced that the continuum 
hypothesis is in fact false, in contrast to Cantor, who believed and 
hoped it was true. So far, however, these remain only pious Platonic 
hopes. What is undeniable is that set theory has been struck a gigantic 
cleaver blow, and exactly what will come of the pieces no one can say. 

Addendum 
In giving a binary version of Cantor's famous diagonal proof 

that the real numbers are uncountable, I deliberately avoided compli
cating it by considering the fact that every integral fraction between 0 

and 1 can be represented as an infinite binary fraction in two ways. For 
example, % is .01 followed by aleph-null zeroes and also .001 followed 
by aleph-null ones. This raises the possibility that the list of real binary 
fractions might be ordered in such a way that complementing the di
agonal would produce a number on the list. The constructed number 
would, of course, have a pattern not on the list, but could not this be a 
pattern which expressed, in a different way, an integral fraction on the 
list? 

The answer is no. The proof assumes that all possible infinite binary 
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patterns are listed, therefore every integral fraction appears twice on the 
list, once in each of its two binary forms. It follows that the constructed 
diagonal number cannot match either form of any integral fraction on 
the list. 

In every base notation there are two ways to express an integral frac
tion by an aleph-null string of digits. Thus in decimal notation V4 = 

.2500000 ... = .2499999 .... Although it is not necessary for the validity 
of the diagonal proof in decimal notation, it is customary to avoid am
biguity by specifying that each integral fraction be listed only in the 
form that terminates with an endless sequence of nines, then the diag
onal number is constructed by changing each digit on the diagonal to 
a different digit other than nine or zero. 

Until I discussed Cantor's diagonal proof in Scientific American, I 
had not realized how strongly the opposition to this proof has per
sisted; not so much among mathematicians as among engineers and 
scientists. I received many letters attacking the proof. William Dil
worth, an electrical engineer, sent me a clipping from the LaGrange 
Citizen, LaGrange, IL, January 20,1966, in which he is interviewed at 
some length about his rejection of Can tori an "numerology." Dilworth 
first delivered his attack on the diagonal proof at the International Con
ference on General Semantics, New York, 1963. 

One of the most distinguished of modern scientists to reject Canto
rian set theory was the physicist P. W. Bridgman. He published a paper 
about it in 1934, and in his Reflections of a Physicist (Philosophical Li
brary, 1955) he devotes pages 99-104 to an uncompromising attack on 
transfinite numbers and the diagonal proof. "I personally cannot see an 
iota of appeal in this proof," he writes, "but it appears to me to be a per
fect nonsequitur-my mind will not do the things that it is obviously 
expected to do if it is indeed a proof." 

The heart of Bridgman's attack is a point of view widely held by 
philosophers of the pragmatic and operationalist schools. Infinite num
bers, it is argued, do not "exist" apart from human behavior. Indeed, all 
numbers are merely names for something that a person does, rather 
than names of "things." Because one can count 25 apples but cannot 
count an infinity of apples, "it does not make sense to speak of infinite 
numbers as 'existing' in the Platonic sense, and still less does it make 
sense to speak of infinite numbers of different orders of infinity, as 
does Cantor." 

"An infinite number," declares Bridgman, "is a certain aspect of what 
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one does when he embarks on carrying out a process . . . an infinite 
number is an aspect of a program of action." 

The answer to this is that Cantor did specify precisely what one must 
"do" to define a transfinite number. The fact that one cannot carry out an 
infinite procedure no more diminishes the reality or usefulness of Can
tor's alephs than the fact that one cannot fully compute the value of pi di
minishes the reality or usefulness of pi. It is not, as Bridgman maintained, 
a question of whether one accepts or rejects the Platonic notion of num
bers as "things." For an enlightened pragmatist, who wishes to ground all 
abstractions in human behavior, Cantorian set theory should be no less 
meaningful or potentially useful than any other precisely defined ab
stract system such as, say, group theory or a non-Euclidean geometry. 

Several readers attacked Schlegel's claim that Cantor's alephs expose 
a contradiction in a steady-state theory of the universe. They focused 
on his argument that after a countable infinity of atom doublings the 
cosmos would contain an uncountable infinity of atoms. For details on 
this objection see Rudy Rucker's Infinity and the Mind (The Mathe
matical Association of America, 1982), pages 241-42. 

For an account of crank objections to Cantor's alephs, see "Cantor's 
Diagonal Process," in Underwood Dudley's Mathematical Cranks (The 
Mathematical Association of America, 1992). 

Answers 

Which of the five ESP symbols cannot be drawn an aleph-one 
number of times on a sheet of paper, assuming ideal lines that do not 
overlap or intersect, and replicas that may vary in size but must be 
similar in the strict geometric sense? 

Only the plus symbol cannot be aleph-one replicated. Figure 25.5 

shows how each of the other four can be drawn an aleph-one number 
of times. In each case points on line segment AB form an aleph-one 
continuum. Clearly a set of nested or side-by-side figures can be drawn 
so that a different replica passes through each of these points, thus 
putting the continuum of points into one-to-one correspondence with 
a set of nonintersecting replicas. There is no comparable way to place 
replicas of the plus symbol so that they fit snugly against each other. 
The centers of any pair of crosses must be a finite distance apart (al
though this distance can be made as small as one pleases), forming a 
countable (aleph-null) set of points. The reader may enjoy devising a 
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H++H++ts 

A S 

Figure 25.5. Proof for "ESP" -symbol problem 

formal proof that aleph-one plus symbols cannot be drawn on a page. 
The problem is similar to one involving alphabet letters that can be 
found in Leo Zippin 's Uses of Infinity (Random House, 1962), page 57. 

So far as I know, no one has yet specified precisely what conditions 
must be met for a linear figure to be aleph-one replicable. Some figures 
are aleph-one replicable by translation or rotation, some by shrinkage, 
some by translation plus shrinkage, some by rotation plus shrinkage. I 
rashly reported in my column that all figures topologically equivalent 
to a line segment or a simple closed curve were aleph-one replicable, 
but Robert Mack, then a high school student in Concord, MA, found a 
simple counterexample. Consider two unit squares, joined like a verti
cal domino, then eliminate two unit segments so that the remaining 
segments form the numeral 5. It is not aleph-one replicable. 
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Chapter 26 

Points 
Have no parts or joints. 
How then can they combine 
To form a line? 

-J. A. LINDON 

Supertasks 

Every finite set of n elements has 2n subsets if one includes the 
original set and the null, or empty, set. For example, a set of three ele
ments, ABC, has 23 = 8 subsets: ABC, AB, BC, AC, A, B, C, and the null 
set. As the philosopher Charles Sanders Peirce once observed (Col
lected Papers Vol. 4, p. 181), the null set "has obvious logical pecu
liarities." You can't make any false statement about its members 
because it has no members. Put another way, if you say anything logi
cally contradictory about its members, you state a truth, because the so
lution set for the contradictory statement is the null set. Put 
colloquially, you are saying something true about nothing. 

In modern set theory it is convenient to think of the null set as an 
"existing set" even though it has no members. It can also be said to have 
2n subsets because 2° = 1, and the null set has one subset, namely itself. 
And it is a subset of every set. If set A is included in set B, it means that 
every member of set A is a member of set B. Therefore, if the null set is 
to be treated as a legitimate set, all its members (namely none) must be 
in set B. To prove it by contradiction, assume the null set is not in
cluded in set B. Then there must be at least one member of the null set 
that is not a member of B, but this is impossible because the null set has 
no members. 

The n elements of any finite set obviously cannot be put into one-to
one correspondence with its subsets because there are always more 
than n subsets. Is this also true of infinite sets? The answer is yes, and 
the general proof is one of the most beautiful in all set theory. 

It is an indirect proof, a reductio ad absurdum. Assume that all ele
ments of N, a set with any number or members, finite or infinite, are 
matched one-to-one with all of N's subsets. Each matching defines a 
coloring of the elements: 
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1. An element is paired with a subset that includes that element. Let us 
call all such elements blue. 

2. An element is paired with a subset that does not include that ele
ment. We call all such elements red. 

The red elements form a subset of our initial set N. Can this subset 
be matched to a blue element? No, because every blue element is in its 
matching subset, therefore the red subset would have to include a blue 
element. Can the red subset be paired with a red element? No, because 
the red element would then be includ~d in its subset and would there
fore be blue. Since the red subset cannot be matched to either a red or 
blue element of N, we have constructed a subset of Nthat is not paired 
with any element of N. No set, even if infinite, can be put into one-to
one correspondence with its subsets. If n is a transfinite number, then 
2n-by definition it is the number of subsets of n-must be a higher 
order of infinity than n. 

Georg Cantor, the founder of set theory, used the term aleph-null for 
the lowest transfinite number. It is the cardinal number of the set of all 
integers, and for that reason is often called a "countable infinity." Any 
set that can be matched one-to-one with the counting numbers, such as 
the set of integral fractions, is said to be a countable or aleph-null set. 
Cantor showed that when 2 is raised to the power of aleph-null-giving 
the number of subsets of the integers-the result is equal to the cardi
nal number of the set of all real numbers (rational or irrational), called 
the "power of the continuum," or C. It is the cardinal number of all 
points on a line. The line may be a segment of any finite length, a ray 
with a beginning but no end, or a line going to infinity in both direc
tions. Figure 26.1 shows three intuitively obvious geometrical proofs 
that all three kinds of line have the same number of points. The slant 

p P A A P B 

Figure 26.1. The number of points on a line segment AB is the same as on a longer line 
segment (left), a ray (center), and a line (right). 
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lines projected from point P indicate how all points on the line segment 
AB can be put into one-to-one correspondence with all points on the 
longer segment, on a ray, and on an endless line. 

The red-blue proof outlined above (Cantor published it in 1890) of 
course generates an infinite hierarchy of transfinite numbers. The lad
der starts with the set of counting numbers, aleph-null, next comes C, 
then all the subsets of C, then all the subsets of all the subsets of C, and 
so on. The ladder can also be expressed like this: 

1 h 11 C 2c 22c 2 22C a ep -nu , , , , , .... 

Cantor called C "aleph-one" because he believed that no transfinite 
number existed between aleph-null and C. And he called the next num
ber aleph-two, the next aleph-three, and so on. For many years he tried 
unsuccessfully to prove that C was the next higher transfinite number 
after aleph-null, a conjecture that came to be called the Continuum 
Hypothesis. We now know, thanks to proofs by Kurt G6del and Paul 
Cohen, that the conjecture is undecidable within standard set theory, 
even when strengthened by the axiom of choice. We can assume with
out contradiction that Cantor's alephs catch all transfinite numbers, or 
we can assume, also without contradiction, a non-Cantorian set theory 
in which there is an infinity of transfinite numbers between any two 
adjacent entries in Cantor's ladder. (See the previous chapter for a brief, 
informal account of this.) 

Cantor also tried to prove that the number of points on a square is the 
next higher transfinite cardinal after C. In 1877 he astounded himself 
by finding an ingenious way to match all the points of a square to all 
the points of a line segment. Imagine a square one mile on a side, and 
a line segment one inch long (see Figure 26.2). On the line segment 
every point from 0 to 1 is labeled with an infinite decimal fraction: 
The point corresponding to the fractional part of pi is .14159 ... , the 
point corresponding to 1/3 is .33333 ... , and so on. Every point is rep
resented by a unique string of aleph-null digits, and every possible 
aleph-null string of digits represents a unique point on the line seg
ment. (A slight difficulty arises from the fact that a fraction such as 
.5000 ... is the same as .4999 ... , but it is easily overcome by dodges 
we need not go into here.) 

Now consider the square mile. Using a Cartesian coordinate system, 
every point on the square has unique x and y coordinates, each of 
which can be represented by an endless decimal fraction. The illustra-
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.73205 ... - ---< 

• . 14159 ... .1743125095 ... 

Figure 26.2. Points in square mile and on line segment 

tion shows a point whose x coordinate is the fractional part of pi and 
whose y coordinate is the fractional part of the square root of 3, or 
.73205 .... Starting with the x coordinate, alternate the digits of the two 
numbers: .lZ4g,lZ5Q9.Q. .... The result is an endless decimal labeling a 
unique point on the line segment. Clearly this can be done with every 
point on the square. It is equally obvious that the mapping procedure 
can be reversed: we can select any point on the line segment and, by 
taking alternate digits of its infinite decimal, can split it into two end
less decimals that as coordinates label a unique point on the square. 
(Here we must recognize and overcome the subtle fact that, for exam
ple, the following three distinct points on the segment-.449999 ... , 
.459090 ... , and .540909 ... -all map the same point [V2, V2] in the 
square.) In this way the points of any square can be put into one-to-one 
correspondence with the points on any line segment; therefore the two 
sets are equivalent and each has the cardinal number C. 

The proof extends easily to a cube (by interlacing three coordinates) 
or to a hypercube of n dimensions (by interlacing n coordinates). Other 
proofs show that C also numbers the points in an infinite space of any 
finite number of dimensions, even an infinite space of aleph-null di
mensions. 

Cantor hoped that his transfinite numbers would distinguish the dif
ferent orders of space but, as we have seen, he himself proved that this 
was not the case. Mathematicians later showed that it is the topologi
cal way the points of space go together that distinguishes one space 
from another. The matchings in the previous paragraphs are not con
tinuous; that is, points close together on, for instance, the line are not 
necessarily close together on the square, and vice versa. Put another 
way, you cannot continuously deform a line to make it a square, or a 
square to make it a cube, or a cube to make a hypercube, and so on. 
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Is there a set in mathematics that corresponds to 2c? Of course we 
know it is the number of all subsets of the real numbers, but does it 
apply to any familiar set in mathematics? Yes, it is the set of all real 
functions of x, even the set of all real one-valued functions. This is the 
same as the nurnber of all possible permutations of the points on a line. 
Geometrically it is all the curves (including discontinuous ones) that 
can be drawn on a plane or even a small finite portion of a plane the 
size, say, of a postage stamp. As for 2 to the power of 2c, no one has yet 
found a set, aside from the subsets of 2c, equal to it. Only aleph-null, 
C, and 2c seem to have an application outside the higher reaches of set 
theory. As George Gamow once said, "We find ourselves here in a po
sition exactly opposite to that of ... the Hottentot who had many sons 
but could not count beyond three." There is an endless ladder of trans
finite numbers. but most mathematicians have only three "sons" to 
count with them. This has not prevented philosophers from trying to 
find metaphysical interpretations for the transfinite numbers. Cantor 
himself, a deeply religious man, wrote at length on such matters. In the 
United States, Josiah Royce was the philosopher who made the most 
extensive use of Cantor's alephs, particularly in his work The World 
and the Individual. 

The fact that there is no highest or final integer is involved in a vari
ety of bewildering paradoxes. Known as supertasks, they have been 
much debated by philosophers of science since they were first sug
gested by the mathematician Hermann Weyl. For instance, imagine a 
lamp (called the Thomson lamp after James F. Thomson, who first 
wrote about it) that is turned off and on by a push-button switch. Start
ing at zero time, the lamp is on for 1/2 minute, then it is off for 1/4 
minute, then on for 1/8 minute, and so on. Since the sum of this halv
ing series, 1/2 + 1/4 + 1/8 + ... +, is 1, at the end of one minute the 
switch will have been moved aleph-null times. Will the lamp be on or 
off? 

Everyone agrees that a Thomson lamp cannot be constructed. Is such 
a lamp logically conceivable or is it nonsense to discuss it in the ab
stract? One of Zeno's celebrated paradoxes concerns a constant-speed 
runner who goes half of a certain distance in 1/2 minute, a fourth of the 
distance in the next 114 minute, an eighth of the distance in the next 
1/8 minute, and so on. At the end of one minute he has had no diffi
culty reaching the last point of the distance. Why, then, cannot we say 
that at the end of one minute the switch of the Thomson lamp has 
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made its last move? The answer is that the lamp must then be on or off 
and this is the same as saying that there is a last integer that is either 
even or odd. Since the integers have no last digit, the lamp's operation 
seems logically absurd. 

Another supertask concerns an "infinity machine" that calculates 
and prints the value of pi. Each digit is printed in half the time it takes 
to print the preceding one. Moreover, the digits are printed on an ide
alized tape of finite length, each digit having half the width of the one 
before it. Both the time and the width series converge to the same limit, 
so that in theory one might expect the pi machine, in a finite time, to 
print all the digits of pi on a piece of tape. But pi has no final digit to 
print, and so again the supertask seems self-contradictory. 

One final example: Max Black (1909-1988) imagined a machine that 
transfers a marble from tray A to tray B in one minute and then rests for 
a minute as a second machine returns the marble to A. In the next half
minute the first machine moves the marble back to B; then it rests for 
a half-minute as the other machine returns it to A. This continues, in a 
halving time series, until the machines' movements become, as Black 
put it, a "grey blur." At the end of four minutes each machine has made 
aleph-null transfers. Where is the marble? Once more, the fact that 
there is no last integer to be odd or even seems to rule out the possi
bility, even in principle, of such a supertask. (The basic articles on su
pertasks, by Thomson, Black, and others, are reprinted in Wesley C. 
Salmon's 1970 paperback anthology Zeno's Paradoxes.) 

One is tempted to say that the basic difference between supertasks 
and Zeno's runner is that the runner moves continuously whereas the 
supertasks are performed in discrete steps that form an aleph-null set. 
The situation is more complicated than that. Adolph Griinbaum, in 
Modern Science and Zeno's Paradoxes, argues convincingly that Zeno's 
runner could also complete his run by what Griinbaum calls a "stac
cato" motion of aleph-null steps. The staccato runner goes the first half 
of his distance in 1/4 minute, rests 1/4 minute, goes half of the re
maining distance in 1/8 minute, rests 1/8 minute, and so on. When he 
is running, he moves twice as fast as his "legato" counterpart, but his 
overall average speed is the same, and it is always less than the veloc
ity of light. Since the pauses of the staccato runner converge to zero, at 
the end of one minute he too will have reached his final point just as 
an ideal bouncing ball comes to rest after an infinity of discrete 
bounces. Griinbaum finds no logical objection to the staccato run, even 
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though it cannot be carried out in practice. His attitudes toward the su
pertasks are complex and controversial. He regards infinity machines 
of certain designs as being logically impossible and yet in most cases, 
with suitable qualifications, he defends them as logically consistent 
variants of the staccato run. 

These questions are related to an old argument to the effect that Can
tor was mistaken in his claim that aleph-null and C are different orders 
of infinity. The proof is displayed in Figure 26.3. The left side is an end
less list of integers in serial order. Each is matched with a number on 
the right that is formed by reversing the order of the digits and putting 
a decimal in front of them. Since the list on the left can go to infinity, 
it should eventually include every possible sequence of digits. If it 
does, the numbers on the right will also catch every possible sequence 
and therefore will represent all real numbers between 0 and 1. The real 
numbers form a set of size C. Since this set can be put in one-to-one cor
respondence with the integers, an aleph-null set, the two sets appear to 
be equivalent. 

INTEGERS 
1 
2 
3 

10 
11 
12 

100 
101 

1234 

DECIMAL FRACTIONS 
.1 
.2 
.3 

.01 

.11 

.21 

.001 

.101 

.4321 

Figure 26.3. Fallacious proof concerning two alephs 

I would be ashamed to give this proof were it not for the fact that 
every year or so I receive it from a correspondent who has rediscovered 
it and convinced himself that he has demolished Cantorian set theory. 
Readers should have little difficulty seeing what is wrong. 
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Addendum 
Among physicists, no one objected more violently to Cantorian 

set theory than Percy W. Bridgman. In Reflections of a Physicist (1955) 

he says he "cannot see an iota of appeal" in Cantor's proof that the real 
numbers form a set of higher infinity than the integers. Nor can he find 
paradox in any of Zeno's arguments because he is unable to think of a 
line as a set of points (see the Clerihew by Lindon that I used as an epi
graph) or a time interval as a set of instants. 

"A point is a curious thing," he wrote in The Way Things Are (1959), 

"and I do not believe that its nature is appreciated, even by many math
ematicians. A line is not composed of points in any real sense .... We 
do not construct the line out of points, but, given the line, we may con
struct points on it. 'All the points on the line' has the same sort of 
meaning that the 'entire line' has .... We create the points on a line just 
as we create the numbers, and we identify the points by the numerical 
values of the coordinates." 

Merwin J. Lyng, in The Mathematics Teacher (April 1968, p. 393), 

gives an amusing variation of Black's moving-marble supertask. A box 
has a hole at each end: Inside the box a rabbit sticks his head out of hole 
A, then a minute later out of hole B, then a half-minute later out of hole 
A, and so on. His students concluded that after two minutes the head 
is sticking out of both holes, "but practically the problem is not possi
ble unless we split hares." 

For what it is worth, I agree with those who believe that paradoxes 
such as the staccato run can be stated without contradiction in the lan
guage of set theory, but as soon as any element is added to the task that 
involves a highest integer, you add something not permitted, therefore 
you add only nonsense. There is nothing wrong in the abstract about an 
ideal bouncing ball coming to rest, or a staccato moving point reaching a 
goal, but nothing meaningful is added if you assume that at each bounce 
the ball changes color, alternating red and blue; then ask what color it is 
when it stops bouncing, or if the staccato runner opens and shuts his 
mouth at each step and you ask if it is open or closed at the finish. 

A number of readers called my attention to errors in this chapter, as 
I first wrote it as a column, but I wish particularly to thank Leonard 
Gillman, of the University of Texas at Austin for reviewing the column 
and suggesting numerous revisions that have greatly simplified and 
improved the text. 
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Answers 
The fundamental error in the false proof that the counting num

bers can be matched one-to-one with the real numbers is that, no mat
ter how long the list of integers on the left (and their mirror reversals 
on the right), no number with aleph-null digits will ever appear on 
each side. As a consequence no irrational decimal fraction will be listed 
on the right. The mirror reversals of the counting numbers, with a dec
imal point in front of each, form no more than a subset of the integral 
fractions between 0 and 1. Not even 1/3 appears in this subset because 
its decimal form requires aleph-null digits. In brief, all that is proved 
is the well-known fact that the counting numbers can be matched one
to-one with a subset of integral fractions. 

The false proof reminds me of a quatrain I once perpetrated: 

Pi vs e 
Pi goes on and on and on ... 
And e is just as cursed. 
I wonder: Which is larger 
When their digits are reversed? 
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Chapter 27 Fractal Music 
For when there are no words [accompanying 
music] it is very difficult to recognize the 
meaning of the harmony and rhythm, or to 
see that any worthy object is imitated by 
them. -PLATO, Laws, Book II 

Plato and Aristotle agreed that in some fashion all the fine arts, 
including music, "imitate" nature, and from their day until the late 
18th century "imitation" was a central concept in western aesthetics. 
It is obvious how representational painting and sculpture "represent," 
and how fiction and the stage copy life, but in what sense does music 
imitate? 

By the mid-18th century philosophers and critics were still arguing 
over exactly how the arts imitate and whether the term is relevant to 
music. The rhythms of music may be said to imitate such natural 
rhythms as heartbeats, walking, running, flapping wings, waving fins, 
water waves, the periodic motions of heavenly bodies, and so on, but 
this does not explain why we enjoy music more than, say, the sound of . 
cicadas or the ticking of clocks. Musical pleasure derives mainly from 
tone patterns, and nature, though noisy, is singularly devoid of tones. 
Occasionally wind blows over some object to produce a tone, cats 
howl, birds warble, bowstrings twang. A Greek legend tells how Her
mes invented the lyre: he found a turtle shell with tendons attached to 
it that produced musical tones when they were plucked. 

Above all, human beings sing. Musical instruments may be said to 
imitate song, but what does singing imitate? A sad, happy, angry, or 
serene song somehow resembles sadness, joy, anger, or serenity, but if 
a melody has no words and invokes no special mood, what does it 
copy? It is easy to understand Plato's mystification. 

There is one exception: the kind of imitation that plays a role in 
"program music." A lyre is severely limited in the natural sounds it can 
copy, but such limitations do not apply to symphonic or electronic 
music. Program music has no difficulty featuring the sounds of thun
der, wind, rain, fire, ocean waves, and brook murmurings; bird calls 
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(cuckoos and crowing cocks have been particularly popular), frog 
croaks, the gaits of animals (the thundering hoofbeats in Wagner's Ride 
of the Valkyries), the flights of bumblebees; the rolling of trains, the 
clang of hammers; the battle sounds of marching soldiers, clashing 
armies, roaring cannons, and exploding bombs. Slaughter on Tenth Av
enue includes a pistol shot and the wail of a police-car siren. In Bach's 
Saint Matthew Passion we hear the earthquake and the ripping of the 
temple veil. In the Alpine Symphony by Richard Strauss, cowbells are 
imitated by the shaking of cowbells. Strauss insisted he could tell that 
a certain female character in Felix Mottl's Don Juan had red hair, and 
he once said that someday music would be able to distinguish the clat
tering of spoons from that of forks. 

Such imitative noises are surely a trivial aspect of music even when 
it accompanies opera, ballet, or the cinema; besides, such sounds play 
no role whatsoever in "absolute music," music not intended to "mean" 
anything. A Platonist might argue that abstract music imitates emo
tions, or beauty, or the divine harmony of God or the gods, but on more 
mundane levels music is the least imitative of the arts. Even nonobjec
tive paintings resemble certain patterns of nature, but nonobjective 
music resembles nothing except itself. 

Since the turn of the century most critics have agreed that "imitation" 
has been given so many meanings (almost all are found in Plato) that it 
has become a useless synonym for "resemblance." When it is made 
precise with reference to literature or the visual arts, its meaning is ob
vious and trivial. When it is applied to music, its meaning is too fuzzy 
to be helpful. In this chapter we take a look at a surprising discovery by 
Richard F. Voss, a physicist from Minnesota who joined the Thomas J. 
Watson Research Center of the International Business Machines Cor
poration after obtaining his Ph.D. at the University of California at 
Berkeley under the guidance of John Clarke. This work is not likely to 
restore "imitation" to the lexicon of musical criticism, but it does sug
gest a curious way in which good music may mirror a subtle statistical 
property of the world. 

The key concepts behind Voss's discovery are what mathematicians 
and physicists call the spectral density (or power spectrum) of a fluc
tuating quantity, and its" autocorrelation." These deep notions are tech
nical and hard to understand. Benoit Mandelbrot, who is also at the 
Watson Research Center, and whose work makes extensive use of spec
tral densities and autocorrelation functions, has suggested a way of 
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avoiding them here. Let the tape of a sound be played faster or slower 
than normal. One expects the character of the sound to change consid
erably. A violin, for example, no longer sounds like a violin. There is a 
special class of sounds, however, that behave quite differently. If you 
playa recording of such a sound at a different speed, you have only to 
adjust the volume to make it sound exactly as before. Mandelbrot calls 
such sounds "scaling noises." 

By far the simplest example of a scaling noise is what in electronics 
and information theory is called white noise (or "Johnson noise"). To 
be white is to be colorless. White noise is a colorless hiss that is just as 
dull whether you play it faster or slower. Its autocorrelation function, 
which measures how its fluctuations at any moment are related to pre
vious fluctuations, is zero except at the origin, where of course it must 
be 1. The most commonly encountered white noise is the thermal noise 
produced by the random motions of electrons through an electrical re
sistance. It causes most of the static in a radio or amplifier and the 
"snow" on radar and television screens when there is no input. 

With randomizers such as dice or spinners it is easy to generate white 
noise that can then be used for composing a random "white tune," one 
with no correlation between any two notes. Our scale will be one oc
tave of seven white keys on a piano: do, re, me, fa, so, la, ti. Fa is our 
middle frequency. Now construct a spinner such as the one shown at 
the left in Figure 27.1. Divide the circle into seven sectors and label 
them with the notes. It matters not at all what arc lengths are assigned 
to these sectors; they can be completely arbitrary. On the spinner 
shown, some order has been imposed by giving fa the longest arc (the 
highest probability of being chosen) and assigning decreasing proba-

Figure 21.1. Spinners for white music (left) and brown music (right) 
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bilities to pairs of notes that are equal distances above and below fa. 
This has the effect of clustering the tones around fa. 

To produce a "white melody" simply spin the spinner as often as you 
like, recording each chosen note. Since no tone is related in any way to 
the sequence of notes that precedes it, the result is a totally uncorre
lated sequence. If you like, you can divide the circle into more parts 
and let the spinner select notes that range over the entire piano key
board, black keys as well as white. 

To make your white melody more sophisticated, use another spinner, 
its circle divided into four parts (with any proportions you like), and 
labeled 1, 1/2, 1/4, and 1/8 so that you can assign a full, a half, a quar
ter, or an eighth of a beat to each tone. After the composition is com
pleted, tap it out on the piano. The music will sound just like what it 
is: random music of the dull kind that a two-year-old or a monkey 
might produce by hitting keys with one finger. Similar white music 
can be based on random number tables or the digits in an irrational 
number. 

A more complicated kind of scaling noise is one that is sometimes 
called Brownian noise because it is characteristic of Brownian motion, 
the random movements of small particles suspended in a liquid and 
buffeted by the thermal agitation of molecules. Each particle executes 
a three-dimensional "random walk," the positions in which form a 
highly correlated sequence. The particle, so to speak, always "remem
bers" where it has been. 

When tones fluctuate in this fashion, let us follow Voss and call it 
Brownian music or brown music. We can produce it easily with a spin
ner and a circle divided into seven parts as before, but now we label the 
regions, as shown at the right in Figure 27.1, to represent intervals be
tween successive tones. These step sizes and their probabilities can be 
whatever we like. On the spinner shown, plus means a step up the 
scale of one, two, or three notes and minus means a step down of the 
same intervals. 

Start the melody on the piano's middle C, then use the spinner to 
generate a linear random walk up and down the keyboard. The tune 
will wander here and there, and it will eventually wander off the key
board. If we treat the ends of the keyboard as "absorbing barriers," the 
tune ends when we encounter one of them. We need not go into the 
ways in which we can treat the barriers as reflecting barriers, allowing 
the tune to bounce back, or as elastic barriers. To make the barriers 
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elastic we must add rules so that the farther the tone gets from middle 
C, the greater is the likelihood it will step back toward C, like a marble 
wobbling from side to side as it rolls down a curved trough. 

As before, we can make our brown music more sophisticated by vary
ing the tone durations. If we like, we can do this in a brown way by 
using another spinner to give not the duration but the increase or de
crease of the duration-another random walk but one along a different 
street. The result is a tune that sounds quite different from a white tune 
because it is strongly correlated, but a tune that still has little aesthetic 
appeal. It simply wanders up and down like a drunk weaving through 
an alley, never producing anything that resembles good music. 

If we want to mediate between the extremes of white and brown, we 
can do it in two essentially different ways. The way chosen by previ
ous composers of "stochastic music" is to adopt transition rules. These 
are rules that select each note on the basis of the last three or four. For 
example, one can analyze Bach's music and determine how often a cer
tain note follows, say, a certain triplet of preceding notes. The random 
selection of each note is then weighted with probabilities derived from 
a statistical analysis of all Bach quadruplets. If there are certain transi
tions that never appear in Bach's music, we add rejection rules to pre
vent the undesirable transitions. The result is stochastic music that 
resembles Bach but only superficially. It sounds Bachlike in the short 
run but random in the long run. Consider the melody over periods of 
four or five notes and the tones are strongly correlated. Compare a run 
of five notes with another five-note run later on and you are back to 
white noise. One run has no correlation with the other. Almost all sto
chastic music produced so far has been of this sort. It sounds musical 
if you listen to any small part but random and uninteresting when you 
try to grasp the pattern as a whole. 

Voss's insight was to compromise between white and brown input by 
selecting a scaling noise exactly halfway between. In spectral termi
nology it is called llfnoise. (White noise has a spectral density of llf; 
brownian noise has a spectral density of llf. In "one-over-/' noise the 
exponent of fis 1 or very close to 1.) Tunes based on llfnoise are mod
erately correlated, not just over short runs but throughout runs of any 
size. It turns out that almost every listener agrees that such music is 
much more pleasing than white or brown music. 

In electronics llf noise is well known but poorly understood. It is 
sometimes called flicker noise. Mandelbrot, whose book The Fractal 
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Geometry of Nature (W. H. Freeman, 1982) has already become a mod
ern classic, was the first to recognize how widespread 11fnoise is in na
ture, outside of physics, and how often one encounters other scaling 
fluctuations. For example, he discovered that the record of the annual 
flood levels of the Nile is a 1lffluctuation. He also investigated how the 
curves that graph such fluctuations are related to "fractals," a term he 
invented. A scaling fractal can be defined roughly as any geometrical 
pattern (other than Euclidean lines, planes, and surfaces) with the re
markable property that no matter how closely you inspect it, it always 
looks the same, just as a slowed or speeded scaling noise always sounds 
the same. Mandelbrot coined the term fractal because he assigns to 
each of the curves a fractional dimension greater than its topological di
mension. 

Among the fractals that exhibit strong regularity the best-known are 
the Peano curves that completely fill a finite region and the beautiful 
snowflake curve discovered by the Swedish mathematician Helge von 
Koch in 1904. The Koch snowflake appears in Figure 27.2 as the bound
ary of the dark "sea" that surrounds the central motif. (For details on 
the snowflake's construction, and a discussion of fractals in general, see 
Chapter 3 of my Penrose Tiles to Trapdoor Ciphers [W. H. Freeman, 
1989]). 

The most interesting part of Figure 27.2 is the fractal curve that forms 
the central design. It was discovered by Mandelbrot and published for 
the first time as the cover of Scientific American's April 1978 issue. If 
you trace the boundary between the black and white regions from the 
tip of the point of the star at the lower left to the tip of the point of the 
star at the lower right, you will find this boundary to be a single curve. 
It is the third stage in the construction of a new Peano curve. At the 
limit this lovely curve will completely fill a region bounded by the tra
ditional snowflake! Thus Mandelbrot's curve brings together two path
breaking fractals: the oldest of them all, Giuseppe Peano's 1890 curve, 
and Koch's later snowflake! 

The secret of the curve's construction is the use of line segments of 
two unequal lengths and oriented in 12 different directions. The curve 
is much less regular than previous Peano curves and therefore closer to 
the modeling of natural phenomena, the central theme of Mandelbrot's 
book. Such natural forms as the gnarled branches of a tree or the shapes 
of flickering flames can be seen in the pattern. 

At the left in Figure 27.3 is the first step of the construction. A 
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vertical cross section of the topography has a profile that models a ran
dom walk. The white patches, representing water or snow in the hol
lows below a certain altitude, were added to enhance the relief. 

The profile at the top of the mountain range is a scaling fractal. This 
means that if you enlarge any small portion of it, it will have the same 
statistical character as the line you now see. If it were a true fractal, this 
property would continue forever as smaller and smaller segments are 
enlarged, but of course such a curve can neither be drawn nor appear 
in nature. A coastline, for example, may be self-similar when viewed 
from a height of several miles down to several feet, but below that the 
fractal property is lost. Even the Brownian motion of a particle is lim
ited by the size of its microsteps. 

Since mountain ranges approximate random walks, one can create 
"mountain music" by photographing a mountain range and translating 
its fluctuating heights to tones that fluctuate in time. Villa Lobos actu
ally did this using mountain skylines around Rio de Janeiro. If we view 
nature statically, frozen in time, we can find thousands of natural 
curves that can be used in this way to produce stochastic music. Such 
music is usually too brown, too correlated, however, to be interesting. 
Like natural white noise, natural brown noise may do well enough, 
perhaps, for the patterns of abstract art but not so well as a basis for 
music. 

When we analyze the dynamic world, made up of quantities con
stantly changing in time, we find a wealth of fractal like fluctuations 
that have 11 f spectral densities. In his book Mandelbrot cites a few: 
variations in sunspots, the wobbling of the earth's axis, undersea cur
rents, membrane currents in the nervous system of animals, the fluc
tuating levels of rivers, and so on. Uncertainties in time measured by 
an atomic clock are llf: the error is 10-12 regardless of whether one is 
measuring an error on a second, minute, or hour. Scientists tend to 
overlook llf noises because there are no good theories to account for 
them, but there is scarcely an aspect of nature in which they cannot be 
found. 

T. Musha, a physicist at the Tokyo Institute of Technology, discovered 
that traffic flow past a certain spot on a Japanese expressway exhibited 
llf fluctuation. In a more startling experiment, Musha rotated a radar 
beam emanating from a coastal location to get a maximum variety of 
landscape on the radar screen. When he rotated the beam once, varia
tions in the distances of all objects scanned by the beam produced a 
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Brownian spectrum. But when he rotated it twice and then subtracted 
one curve from the other the resulting curve-representing all the 
changes of the scene-was close to 11 f. 

We are now approaching an understanding of Voss's daring conjec
ture. The changing landscape of the world (or, to put it another way, the 
changing content of our total experience) seems to cluster around llf 
noise. It is certainly not entirely uncorrelated, like white noise, nor is 
it as strongly correlated as brown noise. From the cradle to the grave 
our brain is processing the fluctuating data that comes to it from its sen
sors. If we measure this noise at the peripheries of the nervous system 
(under the skin of the fingers), it tends, Mandelbrot says, to be white. 
The closer one gets to the brain, however, the closer the electrical fluc
tuations approach llf. The nervous system seems to act like a complex 
filtering device, screening out irrelevant elements and processing only 
the patterns of change that are useful for intelligent behavior. 

On the canvas of a painting, colors and shapes are static, reflecting 
the world's static patterns. Is it possible, Mandelbrot asked himself 
many years ago, that even completely nonobjective art, when it is pleas
ing, reflects fractal patterns of nature? He is fond of abstract art and 
maintains that there is a sharp distinction between such art that has a 
fractal base and such art that does not, and that the former type is 
widely considered the more beautiful. Perhaps this is why photogra
phers with a keen sense of aesthetics find it easy to take pictures, par
ticularly photomicrographs, of natural patterns that are almost 
indistinguishable from abstract expressionist art. 

Motion can be added to visual art, of course, in the form of the mo
tion picture, the stage, kinetic art, and dance, but in music we have 
meaningless, nonrepresentational tones that fluctuate to create a pat
tern that can be appreciated only over a period of time. Is it possible, 
Voss asked himself, that the pleasures of music are partly related to 
scaling noise of llf spectral density? That is, is this music "imitating" 
the llf quality of our flickering experience? 

That mayor may not be true, but there is no doubt that music of al
most every variety does exhibit llf fluctuations in its changes of pitch 
as well as in the changing loudness of its tones. Voss found this to be 
true of classical music, jazz, and rock. He suspects it is true of all music. 
He was therefore not surprised that when he used a llf flicker noise 
from a transistor to generate a random tune, it turned out to be more 
pleasing than tunes based on white and brown noise sources. 
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Figure 27.5, supplied by Voss, shows typical patterns of white, llf, 
and brown when noise values (vertical) are plotted against time (hori
zontal). These patterns were obtained by a computer program that sim
ulates the generation of the three kinds of sequences by tossing dice. 
The white noise is based on the sum obtained by repeated tosses of 10 
dice. These sums range from 10 to 60, but the probabilities naturally 
force a clustering around the median. The Brownian noise was gener-
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ated by tossing a single die and going up one step on the scale if the 
number was even and down a step if the number was odd. 

The llfnoise was also generated by simulating the tossing of 10 dice. 
Although llf noise is extremely common in nature, it was assumed 
until recently that it is unusually cumbersome to simulate llfnoise by 
randomizers or computers. Previous composers of stochastic music 
probably did not even know about llf noise, but if they did, they would 
have had considerable difficulty generating it. As this article was being 
prepared Voss was asked if he could devise a simple procedure by 
which readers could produce their own llf tunes. He gave some 
thought to the problem and to his surprise hit on a clever way of sim
plifying existing llf computer algorithms that does the trick beauti
fully. 

The method is best explained by considering a sequence of eight 
notes chosen from a scale of 16 tones. We use three dice of three col
ors: red, green, and blue. Their possible sums range from 3 to 18. Select 
16 adjacent notes on a piano, black keys as well as white if you like, 
and number them 3 through 18. 

Write down the first eight numbers, 0 through 7, in binary notation, 
and assign a die color to each column as is shown in Figure 27.6. The 
first note of our tune is obtained by tossing all three dice and picking 
the tone that corresponds to the sum. Note that in going from 000 to 001 

only the red digit changes. Leave the green and blue dice undisturbed, 
still showing the numbers of the previous toss. Pick up only the red die 

\I) ~ '0 :;, 
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5 101 
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Figure 27.6. Binary chart for Voss's llf dice algorithm 
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and toss it. The new sum of all three dice gives the second note of your 
tune. In the next transition, from 001 to 010, both the red and green dig
its change. Pick up the red and green dice, leaving the blue one undis
turbed, and toss the pair. The sum of all three dice gives the third tone. 
The fourth note is found by shaking only the red die; the fifth, by shak
ing all three. The procedure, in short, is to shake only those dice that 
correspond to digit changes. 

It is not hard to see how this algorithm produces a sequence halfway 
between white and brown. The least significant digits, those to the 
right, change often. The more significant digits, those to the left, are 
more stable. As a result, dice corresponding to them make a constant 
contribution to the sum over long periods of time. The resulting se
quence is not precisely llfbut is so close to it that it is impossible to 
distinguish melodies formed in this way from tunes generated by nat
uralllfnoise. Four dice can be used the same way for a llf sequence 
of 16 notes chosen from a scale of 21 tones. With 10 dice you can gen
erate a melody of 210, or 1,024, notes from a scale of 55 tones. Similar 
algorithms can of course be implemented with generalized dice (octa
hedrons, dodecahedrons, and so on), spinners, or even tossed coins. 

With the same dice simulation program Voss has supplied three typ
ical melodies based on white, brown, and llf noise. The computer 
printouts of the melodies are shown in 27.7-27.9. In each case Voss var
ied both the melody and the tone duration with the same kind of noise. 
Above each tune are shown the noise patterns that were used. 

Over a period of two years, tunes of the three kinds were played at 
various universities and research laboratories, for many hundreds of 
people. Most listeners found the white music too random, the brown 
too correlated, and the llf "just about right." Indeed, it takes only a 
glance at the music itself to see how the 11 f property mediates between 
the two extremes. Voss's earlier llf music was based on natural llf 
noise, usually electronic, even though one of his best compositions de
rives from the record of the annual flood levels of the Nile. He has 
made no attempt to impose constant rhythms. When he applied llf 
noise to a pentatonic (five-tone) scale and also varied the rhythm with 
llf noise, the music strongly resembled Oriental music. He has not 
tried to improve his llfmusic by adding transition or rejection rules. 
It is his belief that stochastic music with such rules will be greatly im
proved if the underlying choices are based on 11 f noise rather than the 
white noise so far used. 
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Note that tlfmusic is halfway between white and brown in a fractal 
sense, not in the manner of music that has transition rules added to 
white music. As we have seen, such music reverts to white when we 
compare widely separated parts. But tlf music has the fractal self
similarity of a coastline or a mountain range. Analyze the fluctuations 
on a small scale, from note to note, and it is tlf. The same is true if you 
break a long tune into to-note sections and compare them. The tune 
never forgets where it has been. There is always some correlation with 
its entire past. 

It is commonplace in musical criticism to say that we enjoy good 
music because it offers a mixture of order and surprise. How could it 
be otherwise? Surprise would not be surprise if there were not suffi
cient order for us to anticipate what is likely to come next. If we guess 
too accurately, say in listening to a tune that is no more than walking 
up and down the keyboard in one-step intervals, there is no surprise at 
all. Good music, like a person's life or the pageant of history, is a won
drous mixture of expectation and unanticipated turns. There is nothing 
new about this insight, but what Voss has done is to suggest a mathe
matical measure for the mixture. 

I cannot resist mentioning three curious ways of transforming a 
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melody to a different one with the same l/t spectral density for both 
tone patterns and durations. One is to write the melody backward, an
other is to turn it upside down, and the third is to do both. These trans
formations are easily accomplished on a player piano by reversing 
and/or inverting the paper roll. If a record or tape is played backward, 
unpleasant effects result from a reversal of the dying-away quality of 
tones. (Piano music sounds like organ music.) Reversal or inversion 
naturally destroys the composer's transition patterns, and that is prob
ably what makes the music sound so much worse than it does when it 
is played normally. Since Voss composed his tunes without regard for 
short-range transition rules, however, the tunes all sound the same 
when they are played in either direction. 

Canons for two voices were sometimes deliberately written, partic
ularly in the 15th century, so that one melody is the other backward, 
and composers often reversed short sequences for contrapuntal ef
fects in longer works. Figure 27.10 shows a famous canon that Mozart 
wrote as a joke. In this instance the second melody is almost the same 
as the one you see taken backward and upside down. Thus if the sheet 
is placed flat on a table, with one singer on one side and the other 
singer on the other, the singers can read from the same sheet as they 
harmonize! 

No one pretends, of course, that stochastic l/t music, even with 
added transition and rejection rules, can compete with the music of 
good composers. We know that certain frequency ratios, such as the 
three-to-two ratio of a perfect fifth, are more pleasing than others, either 
when the two tones are played simultaneously or in sequence. But just 
what composers do when they weave their beautiful patterns of mean
ingless sounds remains a mystery that even they do not understand. 

It is here that Plato and Aristotle seem to disagree. Plato viewed all 
the fine arts with suspicion. They are, he said (or at least his Socrates 
said), imitations of imitations. Each time something is copied some
thing is lost. A picture of a bed is not as good as a real bed, and a real 
bed is not as good as the universal, perfect idea of bedness. Plato was 
less concerned with the sheer delight of art than with its effects on 
character, and for that reason his Republic and Laws recommend strong 
state censorship of all the fine arts. 

Aristotle, on the other hand, recognized that the fine arts are of value 
to a state primarily because they give pleasure and that this pleasure 
springs from the fact that artists do much more than make poor copies. 
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Figure 21.'0. Mozart's palindromic and invertible canon 

They said, "You have a blue guitar, 
You do not play things as they are. " 
The man replied, ((Things as they are 
Are changed upon the blue guitar. " 

Wallace Stevens intended his blue guitar to stand for all the arts, but 
music, more than any other art and regardless of what imitative as
pects it may have, involves the making of something utterly new. You 
may occasionally encounter natural scenes that remind you of a paint
ing, or episodes in life that make you think of a novel or a play. You will 
never come on anything in nature that sounds like a symphony. As to 
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whether mathematicians will someday write computer programs that 
will create good music-even a simple, memorable tune-time alone 
will tell. 

Addendum 
Irving Godt, who teaches music history at the Indiana Univer

sity of Pennsylvania, straightened me out on the so-called Mozart 
canon with the following letter. It appeared in Scientific American (July 
1978): 

A few musical errors slipped past Martin Gardner's critical eye when he 
took up "Mozart's palindromic and invertible canon" in his report on 
fractal curves and "one-over-!, fluctuations. 

Mozart scholars now agree that the canon is almost certainly not by 
Mozart, even though publishers have issued it under his name. For more 
than 40 years the compilers of the authoritative Kochel catalogue of 
Mozart's compositions have relegated it to the appendix of doubtful at
tributions, where along with three other pieces of a similar character, it 
bears the catalogue number K. Anh. C 10.16. We have no evidence that 
the piece goes back any further than the last century. 

The piece is not for two singers but for two violins. Singers cannot pro
duce the simultaneous notes of the chords in the second measure (and 
elsewhere), and the ranges of the parts are quite impractical. To perform 
the piece the two players begin from opposite ends of the sheet of music 
and arrive at a result that falls far below the standard of Mozart's au
thentic canons and other jeux d 1esprit. The two parts combine for long 
stretches of parallel octaves, they rarely achieve even the most rudi
mentary rhythmic or directional independence, and their harmony con
sists of little more than the most elementary writing in parallel thirds. 
This little counterfeit is not nearly as interesting as Mr. Gardner's 
columns. 

John G. Fletcher wrote to suggest that because Ilfmusic lies between 
white and brown music it should be called tan music. The term "pink" 
has also been suggested, and actually used by some writers. Fate mag
azine (October 1978) ran a full-page advertisement for an LP record 
album produced by "Master Wilburn Burchette," of Spring Valley, CA, 
titled Mind Storm. The ad calls it "fantastic new deep-hypnotic music 
that uses a phenomenon known in acoustical science as 'pink sound' 
to open the mind to thrilling psychic revelations! This astonishing new 
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music acts something like a crystal ball reflecting back the images pro
jected by the mind .... Your spirit will soar as this incredible record 
album carries you to new heights of psychic awareness!" 

Frank Greenberg called my attention to some "mountain music" 
composed by Sergei Prokofiev for Sergei Eisenstein's film Alexander 
Nevsky in 1938. "Eisenstein provided Prokofiev with still shots of in
dividual scenes of the movie as it was being filmed. Prokofiev then 
took these scenes and used the silhouette of the landscape and human 
figures as a pattern for the position of the notes on the staff. He then or
chestrated around these notes." 
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Chapter 28 

Some said "John, print it"; 
others said, "Not so." 

Some said "It might do good"; 
others said, "No." 

-JOHN BUNYAN, Apology for His Book 

Surreal Numbers 

John Horton Conway, the almost legendary mathematician of 
the University of Cambridge (now at Princeton University)' quotes the 
above lines at the end of the preface to his book, On Numbers and 
Games (Academic Press, 1976), or ONAG, as he and his friends call it. 
It is hard to imagine a mathematician who would say not so or no. The 
book is vintage Conway: profound, pathbreaking, disturbing, original, 
dazzling, witty, and splattered with outrageous Carrollian wordplay. 
Mathematicians, from logicians and set theorists to the humblest ama
teurs, will be kept busy for decades rediscovering what Conway has left 
out or forgotten and exploring the strange new territories opened by his 
work. 

The sketch of Conway reproduced below could be titled "John 
'Horned' (Horton) Conway." The infinitely regressing, interlocking 
horns form, at the limit, what topologists call a "wild" structure; this 
one is termed the Alexander horned sphere. Although it is equivalent 
to the simply connected surface of a ball, it bounds a region that is not 
simply connected. A loop of elastic cord circling the base of a horn can
not be removed from the structure even in an infinity of steps. 

Conway is the inventor of the computer game Life, discussed in de
tail in Chapter 31 of this text. By carefully choosing a few ridiculously 
simple transition rules Conway created a cellular automaton structure 
of extraordinary depth and variety. Soon after, by invoking the sim
plest possible distinction-a binary division between two sets-and 
adding a few simple rules, definitions, and conventions, he constructed 
a rich field of numbers and an equally rich associated structure of two
person games. 

The story of how Conway's numbers are created on successive 
"days," starting with the zeroth day, is told in Donald E. Knuth's nov-
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John "Horned" (Horton) Conway, 
as sketched by a colleague on 
computer-printout paper 

eleUe Surreal Numbers (Addison-Wesley, 1974). Because I discuss 
Knuth's book in chapter 48, I shall say no more about it here except to 
remind readers that the construction of the numbers is based on one 
rule: If we are given a left set L and a right set R and no member of Lis 
equal to or greater than any member of R, then there is a number {L I R} 
that is the "simplest number" (in a sense defined by Conway) in be
tween. 

By starting with literally nothing at all (the empty set) on the left 
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and the right, { I }, one obtains a definition of zero. Everything else fol
lows by the technique of plugging newly created numbers back into the 
left-right arrangement. The expression {o I o} is not a number, but {o I }, 
with the null set on the right, defines 1, { I o} defines -1, and so on. 

Proceeding inductively, Conway is able to define all integers, all in
tegral fractions, all irrationals, all of Georg Cantor's transfinite numbers, 
a set of infinitesimals (they are the reciprocals of Cantor's numbers, 
not the infinitesimals of nonstandard analysis), and infinite classes of 
weird numbers never before seen by man, such as 

V(ro + 1) 
1t 

ro 

where co is omega, Cantor's first infinite ordinal. 
Conway's games are constructed in a similar but more general way. 

The fundamental rule is: If Land R are any two sets of games, there is 
a game {L I R}. Some games correspond to numbers and some do not, but 
all of them (like the numbers) rest on nothing. "We remind the reader 
again," Conway writes, "that since ultimately we are reduced to ques
tions about members of the empty set, no one of our inductions will re
quire a 'basis.' " 

In a "game" in Conway's system two players, Left and Right, alternate 
moves. (Left and Right designate players, such as Black and White or 
Arthur and Bertha, not who goes first or second.) Every game begins 
with a first position, or state. At this state and at each subsequent state 
a player has a choice of "options," or moves. Each choice completely 
determines the next state. In standard play the first person unable to 
make a legal move loses. This is a reasonable convention, Conway 
writes, "since we normally consider ourselves as losing when we can
not find any good move, we should obviously lose when we cannot 
find any move at all!" In "misere" play, which is usually much more 
difficult to analyze, the person who cannot move is the winner. Every 
game can be diagrammed as a rooted tree, its branches signifying each 
player's options at each successive state. On Conway's trees Left's op
tions go up and to the left and Right's go up and to the right. 

Games may be "impartial," as in Nim, which means that any legal 
move can be made by the player whose turn it is to move. If a game is 
not impartial, as in chess (where each player must move only his own 
pieces), Conway calls it a partizan game. His net thus catches both an 
enormous variety of familiar games, from Nim to chess, and an infin-
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ity of games never before imagined. Although his theory applies to 
games with an infinity of states or to games with an infinity of options 
or to both, he is concerned mainly with games that end after a finite 
number of moves. "Left and Right," he explains, "are both busy men, 
with heavy political responsibilities." 

Conway illustrates the lower levels of his theory with positions taken 
from a partizan domino-placing game. (Conway calls it Domineering.) 
The board is a rectangular checkerboard of arbitrary size and shape. 
Players alternately place a domino to cover two adjacent squares, but 
Left must place his pieces vertically and Right must place his horizon
tally. The first player who is unable to move loses. 

An isolated empty square 

D· 
allows no move by either player. "No move allowed" corresponds to 
the empty set, so that in Conway's notation this simplest of all games 
is assigned the value { I } = 0, the simplest of all numbers. Conway calls 
it Endgame. Its tree diagram, shown at the right of the square, is merely 
the root node with no branches. Because neither side can move, the sec
ond player, regardless of whether he is Left or Right, is the winner. HI 
courteously offer you the first move in this game," writes Conway. 
Since you cannot move, he wins. 

A vertical strip of two (or three) cells 

offers no move to Right but allows one move for Left. Left's move leads 
to a position of value 0, so that the value of this region is {o I } = 1. It is 
the simplest of all positive games, and it corresponds to the Simplest 
positive number. Positive games are wins for Left regardless of who 
starts. The region's tree diagram is shown at the right above. 

A horizontal strip of two (or three) cells 

ITJ/ 

allows one move for Right but no move for Left. The value of the region 
is { I o} = -1. It is the simplest of all negative games and corresponds to 
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the simplest negative number. Negative games are wins for Right re
gardless of who starts. 

A vertical strip of four (or five) cells 

has a value of 2. Right has no moves. Left can, if he likes, take the two 
middle cells in order to leave a zero position, but his "best" move is to 
take two end cells, because that leaves him an additional move. If this 
region is the entire board, then of course either play wins, but if it is an 
isolated region in a larger board or in one of many boards in a "com
pound game," it may be important to make the move that maximizes 
the number of additional moves it leaves for the player. For this reason 
the tree shows only Left's best line of play. The value of the game is 
{l,o I } = {11 } = 2. A horizontal strip of four cells has a value of -2. If 
only one player can move in a region and he can fit n of his dominoes 
into it but no more, then clearly the region has the value +n if the player 
is Left and -n if the player is Right. 

Things get more interesting if both players can move in a region, be
cause then one player may have ways of blocking his opponent. Con
sider the following region: 

Left can place a domino that blocks any move by Right, thus leaving a 
zero position and winning. Right cannot similarly block Left because 
Right's only move leaves a position of value 1. In Conway's notation the 
value of this position is to, 111} = {Oil}, an expression that defines 
1/2. The position therefore counts as half a move in favor of Left. By 
turning the L region on its side one finds that the position is { - 11 O,l} 

= { - 11 O} = -1/2, or half a move in favor of Right. 
More complicated fractions arise in Conway's theory. For example, 
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has a value of {1/211} = 314 of a move for Left, since 3/4 is the simplest 
number between 1/2 and 1, the values of the best options for Left and 
Right. In a game called partizan Hackenbush, Conway gives an exam
ple of a position in which Left is exactly 5/64 move ahead! 

The values of some game positions are not numbers at all. The sim
plest example is illustrated in Domineering by this region: 

EbV 
Both Left and Right have opening moves only, so that the first person 

to play wins regardless of whether he is Left or Right. Since each player 
can reduce the value to 0, the value of the position is {o I O}. This is not 
a number. Conway symbolizes it with * and calls it "star." Another ex
ample would be a Nim heap containing a single counter. It is the sim
plest "fuzzy" game. Fuzzy values correspond to positions in which 
either player can win if he moves first. 

The value of a compound game is simply the sum of the values of its 
component games. This statement applies also to the value of a position 
in a game in progress that has been divided by play into a set of sub
games. For example, Figure 28.1 shows a position in a game of Domi
neering played on a standard chessboard. The values of the isolated 
regions are indicated. The position seems to be well balanced, but the 
regions have a sum of 1 %, which means that Left is one and one-fourth 
of a move ahead and therefore can win regardless of who moves next. 
This outcome would be tedious to decide by drawing a complete tree, 
but Conway's theory gives it quickly and automatically. 

A game is not considered "solved" until its outcome (assuming that 
both players make their best moves) is known (that is, whether the 
game's value is zero, positive, negative, or fuzzy) and a successful strat
egy is found for the player who has the win. This stricture applies only 
to games that must end, but such games may offer infinite options, as 
in the game Conway calls "My Dad Has More Money than Yours." Play
ers alternately name a sum of money for just two moves and the high
est sum wins. Although the tree, Conway admits, is complicated, the 
outcome is clearly a second-player win. 

Are these not trivial beginnings? Yes, but they provide a secure foun
dation on which Conway, by plugging newly created games back into 
his left-right scheme, carefully builds a vast and fantastic edifice. I 
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I a few un-
usual the light 
games we assume standard play in that the first person who unable 
to move ... ""u· ............ 

on 
paper. L has black paint, R has white. They alternately color a region 

be same 
....... V ........... JL,c:;. a 

all regions bordering a black one as ....,' .. H ........................ 'L ............ ...., ........ , ............ . 

A region acquiring both tints drops out of the map as being an un-
..................... ,...., ....... one. 

Colon the dual 28.2)' 

defining what he calls "explosive nodes" and marking with light
ning bolts. Of course, can played on white paper with pen-

distinct connected maps of one re-
gions 9 are first-player wins are second-player wins. The 

2. same as that 
neighboring regions must be the same color. It too is unsolved. Conway 
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reader is familiar with Nim and knows how to determine the winning 
strategy. If not, he can consult any number of books, including Con
way's book or my Scientific American Book of Mathematical Puzzles 8' 

Diversions [Simon and Schuster, 1959]). Corresponding to the Nim 
heaps (or rows) of counters are the vacant cells between pennies, start
ing with the vacancy at the extreme right and including only alternate 
vacancies. In the illustration the Nim heaps are indicated by brackets 
and one arrow. The heaps are 3, 4, 0, and 5, so that the game is equiv
alent to playing Nim with rows of three, four, and five counters. 

Rational play is exactly as in Nim: Move to reduce the Nim sum of 
the heaps to 0, a game with a second-player win. The one trivial dif
ference is that here a heap can increase in size. If, however, you have 
the win and your opponent makes such a move, you immediately re
store the heap to its previous size by moving the coin that is just to the 
right of the heap. 

If in the illustrated position it is your move, you are sure to win if you 
make the move indicated by the curved arrow. If your opponent re
sponds by moving counter A two cells to the left, the move raises the 
empty heap to 2. Your response is to move B two cells to the left, thus 
returning the heap to 0. 

4. Silver Dollar Game with the Dollar. This is the same as the pre
ceding game except that one of the coins (anyone) is a silver dollar and 
the cell farthest to the left is a money bag (see Figure 28.3(B)). A coin 
farthest to the left can move into the bag. When the dollar is bagged, the 
game ends and the next player wins by taking the bag. 

This game too is Nim disguised. Count the bag as being empty if the 
coin at its right is a penny and full if it is the dollar, and play Nim as 
before. If you have the win, your opponent will be forced to drop the 
dollar in the bag. If the winner is deemed to be the player who bags the 
dollar, count the bag as being full if the coin at its right is the coin just 
to the left of the dollar and count it as being empty otherwise. The po
sition shown corresponds to Nim with heaps of 4,3,0, and 2. The first 
player wins in both versions only if he makes the move indicated by the 
curved arrow. 

5. Rims. The initial position of this pleasant way of playing a variant 
of Nim consists of two or more groups of spots. The move is to draw a 
simple closed loop through any positive number of spots in one group. 
The loop must not cross itself or cross or touch any other loop. A game 
is shown in Figure 28.4. 
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7. Cutcake. This is a partizan game invented by Conway. It is played 
with a set of rectangular cakes, each scored into unit squares like a 
waffle. Left's move is to break a piece of cake into two parts along any 
horizontal lattice line, Right's is to break a piece along any vertical 
line. The game has a surprisingly simple theory. 

Figure 28.5 shows a 4 x 7 cake. In Conway's notation its value is 0, 

which means it is a second-player win regardless of who goes first. It 
looks as if the vertical breaker, who has twice as many opening moves 
as his opponent, would have the advantage, but he does not if he goes 
first. Assume that the vertical breaker goes first and breaks along the line 
indicated by the arrow. What is the second player's winning response? 

figure 28.5. A format for Cutcake, with the first move being a vertical break at the arrow 

1 have given only a few examples of Conway's exotic nomenclature. 
Games can be short, small, all small, tame, restive, restless, divine, ex
traverted, and introverted. There are ups, downs, remote stars, semi
stars, and superstars. There are atomic weights and sets with such 
names as On, No, Ug, and Oz. Conway has a temperature theory, with 
thermographs on which hot positions are cooled by pouring cold water 
on them. He has a Mach principle for the small world: the atomic 
weight of a short all-small game is at least 1 if and only if the game ex
ceeds the remote stars! 

Conway's theorem 99 conveys some notion of the book's whimsical 
flavor. It tells us (I paraphrase to remove a slight error that Conway 
discovered too late to correct) that any short all-small game of atomic 
weight zero is dominated by some superstar. Only a feeling of incom
pleteness, Conway adds, prompts him to give a final theorem. Theorem 
100 is: "This is the last theorem in this book." 
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Addendum 
Since this chapter first ran as a Scientific American column in 

1976, Conway has written other books and papers, and articles about 
him have appeared, some of which are listed in the bibliography. Es
pecially notable is the two-volume Winning Ways, on which he col
laborated with Elwyn Berlekamp and Richard Guy. It has already 
become a classic of recreational mathematics and has made important 
technical contributions to game theory and combinatorics. For Con
way's work on Penrose tiling, see Chapters 1 and 2 of my Perrose Tiles 
to Trapdoor Ciphers. For his work on sporadic groups and knot theory, 
see my Last Recreations, Chapters 9 and 5 respectively. 

Conway spoke on his game theories at a conference on recreational 
mathematics at Miami University in September 1976. His lecture, 
reprinted as "A Gamut of Game Theories" in Mathematics Magazine 
(see bibliography), concludes: 

The theories can be applied to hundreds and thousands of games-really 
lovely little things; you can invent more and more and more of them. It's 
especially delightful when you find a game that somebody's already 
considered and possibly not made much headway with, and you find 
you can just turn on one of these automatic theories and work out the 
value of something and say, "Ah! Right is 47/64ths of a move ahead, and 
so she wins." 

Martin Kruskal, now a mathematician at Rutgers University, became 
fascinated by Conway's surreal numbers. For many years he has been 
working on their clarification and elaboration, and their potential ap
plications to other fields of mathematics. For an introduction to this ex
citing work, see the last two entries, by Polly Shulman and Robert 
Matthews, in the chapter's bibliography under the subhead of "Surreal 
Numbers." Kruskal is working on what he calls "surreal calculus," in 
which Conway's numbers take care of the infinitesimals so essential in 
the calculus of Newton and Leibniz. 

Answers 
The problem was to find the winning response to a first-player 

move in Cutcake. The cake is a 4 x 7 rectangle. If the first player breaks 
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the cake vertically into a 4 x 4 square and a 4 x 3 rectangle, the unique 
winning reply is to break the 4 x 3 piece into two 2 x 3 rectangles. 
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Chapter 29 Hexaflexagons 

Flexagons are paper polygons, folded from straight or crooked 
strips of paper, which have the fascinating property of changing their 
faces when they are "flexed." Had it not been for the trivial circum
stance that British and American notebook paper are not the same size, 
flexagons might still be undiscovered, and a number of top-flight math
ematicians would have been denied the pleasure of analyzing their cu
rious structures. 

It all began in the fall of 1939. Arthur H. Stone, then a 23-year-old 
graduate student from England, in residence at Princeton University on 
a mathematics fellowship, had just trimmed an inch from his American 
notebook sheets to make them fit his English binder. For amusement he 
began to fold the trimmed-off strips of paper in various ways, and one 
of the figures he made turned out to be particularly intriguing. He had 
folded the strip diagonally at three places and joined the ends so that 
it made a hexagon (see Figure 29.1). When he pinched two adjacent tri
angles together and pushed the opposite corner of the hexagon toward 
the center, the hexagon would open out again, like a budding flower, 
and show a completely new face. If, for instance, the top and bottom 
faces of the original hexagon were painted different colors, the new 
face would come up blank and one of the colored faces would disap
pear! 

This structure, the first flexagon to be discovered, has three faces. 
Stone did some thinking about it overnight, and on the following day 
confirmed his belief (arrived at by pure cerebration) that a more com
plicated hexagonal model could be folded with six faces instead of 
only three. At this point Stone found the structure so interesting that he 
showed his paper models to friends in the graduate schooL Soon 
"flexagons" were appearing in profusion at the lunch and dinner tables. 
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Figure 29.1. Trihexaflexagon is con
structed by cutting a strip of paper so 
that it may be marked off in 10 equi
lateral triangles (A). 
The strip is folded backward along 

the line ab and turned over (B). 
It is then folded backward again along 

the line cd and the next to the last 
triangle is placed on top of the first 
(C). 

The last triangle is now folded back
ward and glued to the other side of 
the first (D). 

The figure may be flexed but it is not 
meant to be cut out. Fairly stiff 
paper at least an inch and a half 
wide is recommended. 
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A "Flexagon Committee" was organized to probe further into the mys
teries of flexigation. The other members besides Stone were Bryant 
Tuckerman, a graduate student of mathematics; Richard P. Feynman, a 
graduate student in physics; and John W. Tukey, a young mathematics 
instructor. 

The models were named hexaflexagons-"hexa" for their hexagonal 
form and "flexagon" for their ability to flex. Stone's first model is a tri
hexaflexagon ("tri" for the three different faces that can be brought into 
view); his elegant second structure is a hexahexaflexagon (for its six 
faces). 

To make a hexahexaflexagon you start with a strip of paper which is 
divided into 19 equilateral triangles (see Figure 29.2). You number the 
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Figure 29.4. Diagram of a Tuckerman traverse on a hexahexaflexagon 

straight edges) it was possible to produce a tetrahexaflexagon (four 
faces) or a pentahexaflexagon. There are three different hexahexa
flexagons-one folded from a straight strip, one from a chain bent into 
a hexagon, and one from a form that somewhat resembles a three-leaf 
clover. The decahexaflexagon (10 faces) has 82 different variations, all 
folded from weirdly bent strips. Flexagons can be formed with any de
sired number of faces, but beyond 10 the number of different species for 
each increases at an alarming rate. All even-numbered flexagons, by the 
way, are made of strips with two distinct sides, but those with an odd 
number of faces have only a single side, like a Mobius surface. 

A complete mathematical theory of flexigation was worked out in 
1940 by Tukey and Feynman. It shows, among other things, exactly 
how to construct a flexagon of any desired size or species. The theory 
has never been published, though portions of it have since been redis
covered by other mathematicians. Among the flexigators is Tucker
man's father, the distinguished physicist Louis B. Tuckernmn, who was 
formerly with the National Bureau of Standards. Tuckerman senior de
vised a simple but efficient tree diagram for the theory. 

Pearl Harbor called a halt to the committee's flexigation program, 
and war work soon scattered the four charter members to the winds. 
Stone became a lecturer in mathematics at the University of Manches
ter in England, and is now at the University of Rochester, NY. Feynman 
became a famous theoretical physicist at the California Institute of 
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Technology. Tukey, a professor of mathematics at Princeton, has made 
brilliant contributions to topology and to statistical theory which have 
brought him worldwide recognition. Tuckerman became a mathemati
cian at IBM's research center in Yorktown Heights, NY. 

One of these days the committee hopes to get together on a paper or 
two which will be the definitive exposition of flexagon theory. Until 
then the rest of us are free to flex our flexagons and see how much of 
the theory we can discover for ourselves. 

Addendum 
In constructing flexagons from paper strips it is a good plan to 

crease all the fold lines back and forth before folding the model. As a 
result, the flexagon flexes much more efficiently. Some readers made 
more durable models by cutting triangles from poster board or metal 
and joining them with small pieces of tape, or by gluing them to one 
long piece of tape, leaving spaces between them for flexing. Louis Tuck
erman keeps on hand a steel strip of such size that by wrapping paper 
tape of a certain width around it he can quickly produce a folded strip 
of the type shown in Figure 29.2(B J. This saves considerable time in 
making flexagons from straight chains of triangles. 

Readers passed on to me a large variety of ways in which flexagon 
faces could be decorated to make interesting puzzles or display strik
ing visual effects. Each face of the hexahexa, for example, appears in at 
least two different forms, owing to a rotation of the component trian
gles relative to each other. Thus if we divide each face as shown in Fig
ure 29.5, using different colors for the A, B, and C sections, the same 
face may appear with the A sections in the center as shown, or with the 
B or C sections in the center. Figure 29.6 shows how a geometrical pat
tern may be drawn on one face so as to appear in three different con
figurati ons. 

Of the 18 possible faces that can result from a rotation of the trian
gles, three are impossible to achieve with a hexahexa of the type made 
from a straight strip. This suggested to one correspondent the plan of 
pasting parts of three different pictures on each face so that by flexing 
the model properly, each picture could presumably be brought together 
at the center while the other two would be fragmented around the rim. 
On the three inner hexagons that cannot be brought together, he pasted 
the parts of three pictures of comely, undraped young ladies to make 
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advertise their service award banquet in 1955. A handsome hexahexa, 
designed to display a variety of colored snowflake patterns, was used 
by Scientific American for their 1956 Christmas card. 

For readers who would like to construct and analyze flexagons other 
than the two described in the chapter, here is a quick run-down on 
some low-order varieties. 

1. The unahexa. A strip of three triangles can be folded flat and the op
posite ends can be joined to make a Mobius strip with a triangular 
edge. Since it has one side only, made up of six triangles, one might 
call it a unahexaflexagon, though of course it isn't six-sided and it 
doesn't flex. 

2. The duahexa. Simply a hexagon cut from a sheet of paper. It has two 
faces but doesn't flex. 

3. The trihexa. This has only the one form described in this chapter. 
4. The tetrahexa. This likewise has only one form. It is folded from the 

crooked strip shown in Figure 29.7(A). 
5. The pentahexa. One form only. Folded from the strip in Figure 29.7 

(B). 

6. The hexahexa. There are three varieties, each with unique properties. 
One of them is described in this chapter. The other two are folded 
from the strips pictured in Figure 29.7(C). 

7. The heptahexa. This can be folded from the three strips shown in Fig
ure 29.7(D). The first strip can be folded in two different ways, mak
ing four varieties in all. The third form, folded from the overlapping 
figure-eight strip, is the first of what Louis Thckerman calls the 
"street flexagons." Its faces can be numbered so that a Tuckerman tra
verse will bring uppermost the seven faces in serial order, like pass
ing the street numbers on a row of houses. 

The octahexa has 12 distinct varieties, the enneahexa has 27, and the 
decahexa, 82. The exact number of varieties of each order can be fig
ured in more than one way depending on how you define a distinct va
riety. For example, all flexagons have an asymmetric structure which 
can be right-handed or left-handed, but mirror-image forms should 
hardly be classified as different varieties. For details on the number of 
nonequivalent hexaflexagons of each order, consult the paper by Oak
ley and Wisner listed in the bibliography. 

Straight chains of triangles produce only hexaflexagons with orders 
that are multiples of three. One variety of a 12-faced hexa is particularly 
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29.1. Crooked strips fOT folding hexaflexagons. 
pasting. 

easy to fold. Start with a straight chain twice as long as the one used for 
the hexahexa. it form shown in Figure 29.2(B). The strip 

now same length as the one for 
rolled exactly as if you were making a hexahexa. a dodec-
ahexaflexagon. 
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In experimenting with higher-order flexagons, a handy rule to bear in 
mind is that the sum of the number of leaves (thicknesses of paper) in 
two adjacent triangular sections always equals the number of faces. It 
is interesting to note also that if each face of a flexagon is given a num
ber or symbol, and the symbol is marked on each triangular component, 
the order of symbols on the unfolded strip always exhibits a threefold 
symmetry. For example. the strip for the hexahexa in Figure 29.2 bears 
the following top and bottom pattern of digits: 

123123 123123 123123 
445566 445566 445566 

A triple division similar to this is characteristic of all hexahexa
flexagons. although on models of odd order one of the three divisions 
is always inverted. 

Of the hundreds of letters received about flexagons, the following 
two were the most amusing. They appeared in the March and May is
sues of Scientific American, 1957. 

SIRS: 
I was quite taken with the article entitled "Flexagons" in your De

cember issue. It took us only six or seven hours to paste the hexahexa
flexagon together in the proper configuration. Since then it has been a 
source of continuing wonder. 

But we have a problem. This morning one of our fellows was sitting 
flexing the hexahexaflexagon idly when the tip of his necktie became 
caught in one of the folds. With each successive flex. more of his tie van
ished into the flexagon. With the sixth flexing he disappeared entirely. 

We have been flexing the thing madly, and can find no trace of him, 
but we have located a sixteenth configuration of the hexahexaflexagon. 

Here is our question: Does his widow draw workmen's compensation 
for the duration of his absence, or can we have him declared legally 
dead immediately? We await your advice. 

Allen B. Du Mont Laboratories, Inc. 
Clifton, N.J. 

SIRS: 

NEIL UPTEGROVE 

The letter in the March issue of your magazine complaining of the 
disappearance of a fellow from the Allen B. Du Mont Laboratories 
"down" a hexahexaflexagon, has solved a mystery for us. 
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One day, while idly flexing our latest hexahexaflexagon, we were con
founded to find that it was producing a strip of multicolored material. 
Further flexing of the hexahexaflexagon finally disgorged a gum
chewing stranger. 

Unfortunately he was in a weak state and, owing to an apparent loss 
of memory, unable to give any account of how he came to be with us. His 
health has now been restored on our national diet of porridge, haggis and 
whisky, and he has become quite a pet around the department, answer
ing to the name of Eccles. 

Our problem is, should we now return him and, if so, by what 
method? Unfortunately Eccles now cringes at the very sight of a hexa
hexaflexagon and absolutely refuses to "flex." 

The Royal College of Science and Technology 
Glasgow, Scotland 

ROBERT M. HILL 

Although this chapter first ran as an article in Scientific American 
(December 1956), it became the first of my monthly columns to be 
headed "Mathematical Games." I had learned about hexaflexagons from 
Royal Vale Heath, a New York City broker who was also an amateur ma
gician and mathematician. His little book Mathemagic (1933) was one 
of the earliest books about magic tricks that operate with mathematical 
principles. 

I cannot now recall how Heath discovered flexagons, but he was able 
to steer me to the four Princeton University inventors. To gather mater
ial for my article, I made a trip to Princeton where I interviewed Tukey 
and Tuckerman. (Stone was then in England; Feynman was at Cal Tech.) 

After my piece appeared, people all over Manhattan were flexing 
flexagons. Gerry Piel, publisher of Scientific American, called me into 
his office to ask if there was enough similar material to make a regular 
column. I assured him there was and immediately made the rounds of 
Manhattan's used bookstores to buy as many books on recreational 
math (there were not many) as I could find. Once the column got un
derway, I began to receive fresh ideas from mathematicians and writing 
the column became an easy and enjoyable task that lasted more than a 
quarter-century. 

Although flexagons, as far as anyone knows, are completely free of 
applications (except of course as playthings), mathematicians continue 
to be intrigued by their whimsical properties. In The Second "Scientific 
American" Book of Mathematical Puzzles and Diversions I introduced 
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their square-shaped cousins, the tetraflexagons. Both types have been 
discussed in many subsequent articles, but no one has yet written a de
finitive work on flexagon theory. Frank Bernhart, who taught mathe
matics at the Rochester Institute of Technology, knows more about 
flexagons than anyone. Some day, let us hope, he will find a publisher 
for a monograph about them. 
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Chapter 30 The Soma Cube 
", .. no time, no leisure . .. not a moment to 
sit down and think-or if ever by some un
lucky chance such a crevice of time should 
yawn in the solid substance of their dis
tractions, there is always soma, delicious 
soma ... " -Aldous Huxley, Brave New World 

The Chinese puzzle game called tangrams, believed to be thou
sands of years old, employs a square of thin material that is dissected 
into seven pieces. The game is to rearrange those pieces to form other 
figures. From time to time efforts have been made to devise a suitable 
analog in three dimensions. None, in my opinion, has been as suc
cessful as the Soma cube, invented by Piet Hein, the Danish writer 
whose mathematical games, Hex and Tac Tix, are discussed in the first 
Scientific American Book of Mathematical Puzzles. (In Denmark, Piet 
Hein was best known for his books of epigrammatic poems written 
under the pseudonym Kumbel.) 

Piet Hein conceived of the Soma cube during a lecture on quantum 
physics by Werner Heisenberg. While the noted German physicist was 
speaking of a space sliced into cubes, Piet Hein's supple imagination 
caught a fleeting glimpse of the following curious geometrical theo
rem. If you take all the irregular shapes that can be formed by combin
ing no more than four cubes, all the same size and joined at their faces, 
these shapes can be put together to form a larger cube. 

Let us make this clearer. The simplest irregular shape-"irregular" in 
the sense that it has a concavity or corner nook in it somewhere-is 
produced by joining three cubes as shown in Figure 30.1, piece 1. It is 
the only such shape possible with three cubes. (Of course no irregular 
shape is possible with one or two cubes.) Turning to four cubes, we find 
that there are six different ways to form irregular shapes by joining the 
cubes face to face. These are pieces 2 to 7 in the illustration. To iden
tify the seven pieces Piet Hein labels them with numerals. No two 
shapes are alike, although 5 and 6 are mirror images of each other. Piet 
Hein points out that two cubes can be joined only along a single coor
dinate, three cubes can add a second coordinate perpendicular to the 
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of three cubes. This gives us a total of eight white cubes and 19 black, 
quite an astounding disparity. 

The next step is to examine each of the seven components, testing it 
in all possible orientations to ascertain the maximum number of black 
cubes it can possess if placed within the checkerboard structure. The 
chart in Figure 30.5 displays this maximum number for each piece. As 
you see, the total is 18 black to nine white, just one short of the 19-8 

split demanded. If we shift the top black block to the top of one of the 
columns of white blocks, then the black-white ratio changes to the re
quired 18-9, and the structure becomes possible to build. 

SOMA MAXIMUM MINIMUM Figure 30.5. Table for the 
PIECE BLACK CUBES WHITE CUBES impossibility proof 

I. 2 

1. 3 

:1 3 

2 2 

~). 3 

I>. 3 

7 2 :2 

18 9 

I must confess that one of the structures in Figure 30.3 is impossible 
to make. It should take the average reader many days, however, to dis
cover which one it is. Methods for building the other figures will not 
be given in the answer section (it is only a matter of time until you suc
ceed with anyone of them), but I shall identify the figure that cannot 
be made. 

The number of pleasing structures that can be built with the seven 
Soma pieces seems to be as unlimited as the number of plane figures 
that can be made with the seven tangram shapes. It is interesting to note 
that if piece 1 is put aside, the remaining six pieces will form a shape 
exactly like 1 but twice as high. 

Addendum 
When I wrote the column about Soma, I supposed that few 

readers would go to the trouble of actually making a set. I was wrong. 
Thousands of readers sent sketches of new Soma figures and many 
complained that their leisure time had been obliterated since they were 
bitten by the Soma bug. Teachers made Soma sets for their classes. Psy-
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sible to form siInilar models of each of the other seven pieces. Katsanis 
also found that the eight pieces can be divided into two sets of four, 
each set making a 2 x 2 x 4 rectangular solid. These two solids can 
then be put together in different ways to make double-sized models of 
six of the eight pieces. 

In a previous column I described the 12 pentominoes: flat shapes 
formed by connecting unit squares in all possible ways. Mrs. R. M. 
Robinson, wife of a mathematics professor at the University of Califor
nia in Berkeley, discovered that if the pentominoes are given a third di
mension, one unit thick, the twelve pieces will form a 3 x 4 x 5 
rectangular solid. This was independently discovered by several others, 
including Charles W. Stephenson, M.D., of South Hero, VT. Dr. 
Stephenson also found ways of putting together the three-dimensional 
pentominoes to make rectangular solids of 2 x 5 x 6 and 2 x 3 x 10. 

The next step in complexity is to the 29 pieces formed by putting five 
cubes together in all possible ways. Katsanis, in the same letter men
tioned above, suggested this and called the pieces "pentacubes." Six 
pairs of pentacubes are mirror-image forms. If we use only one of each 
pair, the number of penta cubes drops to 23. Both 29 and 23 are primes, 
therefore no rectangular solids are possible with either set. Katsanis 
proposed a triplication problem: choose one of the 29 pieces, then use 
27 of the remaining 28 to form a model of the selected piece, three 
times as high. 

A handsome set of pentacubes was shipped to me in 1960 by David 
Klamer of Napa, CA. I dumped them out of the wooden box in which 
they were packed and have not yet succeeded in putting them back in. 
Klarner has spent considerable time developing unusual pentacube fig
ures, and I have spent considerable time trying to build some of them. 
He writes that there are 166 hexacubes (pieces formed by joining six
unit cubes), of which he was kind enough not to send a set. 

The seven Soma pieces are a subset of what are now called poly
cubes-polyhedrons formed by joining unit cubes by their faces. Since 
I introduced the Soma cube in a 1958 column it has been made and 
sold by numerous toy companies around the world. Here Parker Broth
ers sold the cube along with an instruction booklet written by Piet 
Hein. The firm also distributed three issues of Soma Addict, a newslet
ter edited by game agent Thomas Atwater. 

Several computer programs verified that there are 240 ways, not 
counting rotations and reflections, to make the Soma cube. John Con-
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way produced what he called the Somap. You'll find a picture of it in 
Winning Ways, Vol. 2, by Elwyn Berlekamp, Conway, and Richard Guy, 
pages 802-3. This amazing graph shows how you can start with any of 
239 solutions to the cube, then transform it to any other solution by 
moving no more than two or three pieces. There is one solution unob
tainable in this way. 

J. Edward Hanrahan wrote to me about a Soma task he invented. The 
challenge is to form a 4 x 4 x 2 structure so that its five "holes" on the 
top layer have the shape of each of the 12 pentominoes. The problem 
is solvable for each pentomino except the straight one which obviously 
can't fit into the structure. 

Puzzle collector Jerry Slocum owns dozens of different dissections of 
a 33 cube into seven or fewer pieces, most of them marketed after my 
column on the Soma cube appeared. In the chapter on polycubes in 
Knotted Doughnuts and Other Mathematical Entertainments, I describe 
the Diabolical cube, sold in Victorian England. The earliest dissection 
of a 33 cube known, its six polycube pieces form the cube in 13 ways. 
I also describe the Miksinski cube, another six-piece dissection-one 
that has only two solutions. 

Many later 33 dissections limit the number of solutions by coloring 
or decorating the unit cube faces in various ways. For example, the 
unit cubes are either black or white and the task is to make a cube that 
is checkered throughout or just on its six faces. Other dissections put 
one through six spots on the unit cubes so that the assembled cube 
will resemble a die. The unit cubes can be given different colors. The 
task is to form a cube with a specified pattern of colors on each face. 
Another marketed cube had digits 1 through 9 on the unit cubes, and 
the problem was to make a cube with each face a magic square. A puz
zle company in Madison, WI, advertised a game using a set of nine 
polycubes. Players selected any seven at random by rolling a pair of 
dice, then tried to make a 33 cube with the pieces. In 1969 six different 
dissections of the cube, each made with five, six, or seven polycubes, 
were sold under the name Impuzzibles. 

It's easy to cut a 33 cube into six or fewer polycubes that will make a 
cube in just one way, but with seven unmarked pieces, as I said earlier, 
it is not so easy. 1Wo readers sent such dissections which they believed 
solved this problem, but I was unable to verify their claims. Rhoma, a 
slant version of Soma produced by a shear distortion that changes each 
unit cube as well as the large cube to a rhomboid shape, went on sale 
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here. A more radically squashed Soma was sold in Japan. With such 
distortions the solution becomes unique. 

John Brewer, of Lawrence, KS, in a little magazine he used to publish 
called Hedge Apple and Devil's Claw (Autumn 1995 issue), introduced 
the useful device of giving each Soma piece a different color. Solutions 
could then be represented by showing three sides of the cube with its 
unit cubes properly colored. He sent me a complete Somap using such 
pictures for each solution. His article also tells of his failed effort to lo
cate Marguerite Wilson, the first to publish a complete set of solutions 
to the Soma cube. 

Alan Guth, the M.l. T. physicist famous for his conjecture that a mo
ment after the big bang the universe rapidly inflated, was quoted as fol
lows in Discover (December 1997): 

My all-time favorite puzzle was a game called Soma, which I think was 
first marketed when I was in college. A set consisted of seven odd
shaped pieces that could be put together to make a cube, or a large vari
ety of other three-dimensional shapes. Playing with two sets at once 
was even more fun. The instruction book claims that there are a certain 
number of different ways of making the cube, and I remember writing a 
computer program to verify this number. They were right, but I recall 
that they counted each of the 24 different orientations of the cube as a 
different "way" of making it. 

Answer 

The only structure in Figure 30.3 that is impossible to construct 
with the seven Soma pieces is the skyscraper. 
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Chapter 31 Theqame 
of Life 

Most of the work of John Horton Conway, a distinguished 
Cambridge mathematician now at Princeton University, has been in 
pure mathematics. For instance, in 1967 he discovered a new group
some call it "Conway's constellation"-that includes all but two of the 
then-known sporadic groups. (They are called "sporadic" because they 
fail to fit any classification scheme.) It is a breakthrough that has had 
exciting repercussions in both group theory and number theory. It ties 
in closely with an earlier discovery by John Leech of an extremely 
dense packing of unit spheres in a space of 24 dimensions where each 
sphere touches 196,560 others. As Conway has remarked, "There is a 
lot of room up there." 

In addition to such serious work Conway also enjoys recreational 
mathematics. Although he is highly productive in this field, he sel
dom publishes his discoveries. In this chapter we consider Conway's 
most famous brainchild, a fantastic solitaire pastime he calls "Life." 
Because of its analogies with the rise, fall, and alterations of a soci
ety of living organisms, it belongs to a growing class of what are 
called "simulation games." To play Life without a computer you 
need a fairly large checkerboard and a plentiful supply of flat coun
ters of two colors. (Small checkers or poker chips do nicely.) An Ori
ental "Go" board can be used if you can find flat counters small 
enough to fit within its cells. (Go stones are awkward to use because 
they are not flat.) It is possible to work with pencil and graph paper 
but it is much easier, particularly for beginners, to use counters and 
a board. 

The basic idea is to start with a simple configuration of counters (or
ganisms), one to a cell, then observe how it changes as you apply Con
way's "genetic laws" for births, deaths, and survivals. Conway chose 
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his rules carefully, after a long period of experimentation, to meet three 
desiderata: 

1. There should be no initial pattern for which there is a simple proof 
that the population can grow without limit. 

2. There should be initial patterns that apparently do grow without 
limit. 

3. There should be simple initial patterns that grow and change for a 
considerable period of time before coming to an end in three possi
ble ways: Fading away completely (from overcrowding or from be
coming too sparse), settling into a stable configuration that remains 
unchanged thereafter, or entering an oscillating phase in which they 
repeat an endless cycle of two or more periods. 

In brief, the rules should be such as to make the behavior of the pop
ulation both interesting and unpredictable. 

Conway's genetic laws are delightfully simple. First note that each 
cell of the checkerboard (assumed to be an infinite plane) has eight 
neighboring cells, four adjacent orthogonally, four adjacent diagonally. 
The rules are: 

1. Survivals. Every counter with two or three neighboring counters sur
vives for the next generation. 

2. Deaths. Each counter with four or more neighbors dies (is removed) 
from overpopulation. Every counter with one neighbor or none dies 
from isolation. 

3. Births. Each empty cell adjacent to exactly three neighbors-no more, 
no fewer-is a birth celL A counter is placed on it at the next move. 

It is important to understand that all births and deaths occur simul
taneously. Together they constitute a single generation or, as we shall 
usually call it, a "tick" in the complete "life history" of the initial con
figuration. Conway recommends the following procedure for making 
the moves: 

1. Start with a pattern consisting of black counters. 
2. Locate all counters that will die. Identify them by putting a black 

counter on top of each. 
3. Locate all vacant cells where births will occur. Put a white counter 

on each birth cell. 
4. After the pattern has been checked and double-checked to make sure 
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no mistakes have been made, remove all the dead counters (piles of 
two) and replace all newborn white organisms with black counters. 

You will now have the first generation in the life history of your ini
tial pattern. The same procedure is repeated to produce subsequent 
generations. It should be clear why counters of two colors are needed. 
Because births and deaths occur simultaneously, newborn counters 
play no role in causing other deaths or births. It is essential, therefore, 
to be able to distinguish them from live counters of the previous gen
eration while you check the pattern to be sure no errors have been 
made. Mistakes are very easy to make, particularly when first playing 
the game. After playing it for a while you will gradually make fewer 
mistakes, but even experienced players must exercise great care in 
checking every new generation before removing the dead counters and 
replacing newborn white counters with black. 

You will find the population constantly undergoing unusual, some
times beautiful, and always unexpected change. In a few cases the so
ciety eventually dies out (all counters vanishing), although this may not 
happen until after a great many generations. Most starting patterns ei
ther reach stable figures-Conway calls them "stilllifes"-that cannot 
change or patterns that oscillate forever. Patterns with no initial sym
metry tend to become symmetrical. Once this happens the symmetry 
cannot be lost, although it may increase in richness. 

Conway originally conjectured that no pattern can grow without 
limit. Put another way, any configuration with a finite number of coun
ters cannot grow beyond a finite upper limit to the number of counters 
on the field. Conway offered a prize of $50 to the first person who 
could prove or disprove the conjecture before the end of 1970. One 
way to disprove it would be to discover patterns that keep adding coun
ters to the field: A "gun" (a configuration that repeatedly shoots out 
moving objects such as the "glider," to be explained below) or a "puffer 
train" (a configuration that moves but leaves behind a trail of "smoke"). 

Let us see what happens to a variety of simple patterns. 
A single organism or any pair of counters, wherever placed, will ob

viously vanish on the first tick. 
A beginning pattern of three counters also dies immediately unless 

at least one counter has two neighbors. Figure 31.1 shows the five con
nected triplets that do not fade on the first tick. 

(Their orientation is of course irrelevant.) The first three (a, b, c) van-
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One of the remarkable of 
counter glider shown 31 

slightly and 
) hence the name. 

glider has righted itself and moved one cell diagonally the 
right We earlier that the speed of a 

cause highest speed at which any can occur 
on the board. No pattern can itself rapidly enough to move at 

light. 
same orientation after four ticks, and has traveled one cell diagonally, 
one says that it one"fourth the speed of light. 

l'.S. The "glider" 

any reader find a relatively simple figure that travels at such a 
speed? Remember, the by dividing the number of 

four the same traveling 
unit squares horizontally or vertically, its speed will be half that of 

light. Figures that move across by self-replication are ex-

which he calls "spacesbips" (the glider is a "featherweight 
the others have more I will their patterns in the An-
swer Section. 

by 
collaborators. The stable honey farm (a in Figure 31.6) results after 14 
ticks from a row of seven a 5 x 5 block one 

IUv ................... ULV ..... a 
The "figme 8 U (b in .6), an oscilla" 

tor found by Norton, both resembles an 8 and has a period The 
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Addendum 
My 1970 column on Conway's "Life" met with such an instant 

enthusiastic response among computer hackers around the world that 
their mania for exploring HLife" forms was estimated to have cost the 
nation millions of dollars in illicit computer time. One computer ex
pert, whom I shall leave nameless, installed a secret switch under his 
desk. If one of his bosses entered the room he would press the button 
and switch his computer screen from its "Life" program to one of the 
company's projects. 

The troublesome R pentomino becomes a 2-tick oscillator after 1,103 
ticks. Six. gliders have been produced and are traveling outward. The 
debris left at the center (see Figure 31.7) consists of four blinkers, one 
ship, one boat, one loaf, four beehives, and eight blocks. This was first 
established at Case Western Reserve University by Gary Filipski and 
Brad Morgan and later confirmed by scores of "Life" hackers here and 
abroad. 

The fate of the 5-5-5-5-5-5-5 was first independently found by 
Robert T. Wainwright and a group of hackers at Honeywell's Computer 
Control Division, later by many others. The pattern stabilizes as a 2-tick 
oscillator after 323 ticks with four traffic lights, eight blinkers, eight 
loaves, eight beehives, and four blocks. Figure 31.8 reproduces a print
out of the final steady state. Because symmetry cannot be lost in the his
tory of any life form, the vertical and horizontal axes of the original 
symmetry are preserved in the final state. The maximum population 
(492 bits) is reached in generation 283, and the final population is 192. 

When Conway visited me in 1970 and demonstrated his game of Life 
on my Go board, neither he nor I had any inkling of how famous the 
game would become, and what surprises about it would soon be dis
covered. It is far and away the most played, most studied of all cellu
lar automata recreations. 

Bill Gosper, when he worked in M.l. T. 's artificial intelligence labo
ratory run by Marvin Minsky, won Conway's $50 prize by discovering 
the glider gun. I can still recall my excitement when I received Gosper's 
telegram describing the gun. This is a Life pattern that shoots off a con
stant stream of gliders. The gun soon provided the base for proving 
that Life could function as a Turing machine capable, in principle, of 
performing all the calculations possible by a digital computer. The 
gun's reality was at once verified by Robert Wainwright who later 
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Chapter 32 Paper Folding 

The easiest way to refold a road map is dif
ferently. -JONES'S Rule ofthe Road 

One of the most unusual and frustrating unsolved problems in 
modern combinatorial theory, proposed many years ago by Stanislaw 
M. Ulam, is the problem of determining the number of different ways 
to fold a rectangular "map." The map is precreased along vertical and 
horizontal lines to form a matrix of identical rectangles. The folds are 
confined to the creases, and the final result must be a packet with any 
rectangle on top and all the others under it. Since there are various 
ways to define what is meant by a "different" fold, we make the defin
ition precise by assuming that the cells of the unfolded map are num
bered consecutively, left to right and top to bottom. We wish to know 
how many permutations of these n cells, reading from the top of the 
packet down, can be achieved by folding. Cells are numbered the same 
on both sides, so that it does not matter which side of a cell is "up" in 
the final packet. Either end of the packet can be its "top," and as a re
suit every fold will produce two permutations, one the reverse of the 
other. The shape of each rectangle is irrelevant because no fold can ro
tate a cell 90 degrees. We can therefore assume without altering the 
problem that all the cells are identical squares. 

The simplest case is the 1 x n rectangle, or a single strip of n squares. 
It is often referred to as the problem of folding a strip of stamps along 
their perforated edges until all the stamps are under one stamp. Even 
this special case is still unsolved in the sense that no nonrecursive for
mula has been found for the number of possible permutations of n 
stamps. Recursive procedures (procedures that allow calculating the 
number of folds for n stamps provided that the number for n 1 stamps 
is known) are nonetheless known. The total number of permutations of 
n objects is n! (that is, factorial n, or n x (n - 1) x (n - 2) ... x 1). All n! 
permutations can be folded with a strip of two or three stamps, but for 
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2 x 3 map (lettering from left to right and from the top down) so that the 
map can be folded into a packet that spells, from the top down, an ana
gram of the original word. Each cell should be labeled the same on 
both sides to make it easier to identify in the packet. For example, it is 
not hard to fold ILL-FED to spell FILLED and SQUIRE to spell RISQUE. 
On the other hand, OSBERG (an anagram for the last name of the Ar
gentine writer Jorge Luis Borges that appears on page 361 of Vladimir 
Nabokov's novel Ada) cannot be folded to BORGES, nor can BORGES 
be folded to OSBERG. Can the reader give a simple proof of both im
possibilities? 

The 2 x 4 rectangle is the basis of two map-fold puzzles by Henry 
Ernest Dudeney (see page 130 of his 536 Puzzles &- Curious Problems, 
Scribner's, 1967). Dudeney asserts there are 40 ways to fold this rec
tangle into a packet with cell No.1 on top, and although he speaks 
tantalizingly of a "little law" he discovered for identifying certain pos
sible folds, he offers no hint as to its nature. I have no notion how 
many of the 8! = 40,320 permutations can be folded. 

When one considers the 3 x 3, the smallest nontrivial square, the 
problem becomes fantastically complex. As far as I know, the number 
of possible folds (of the 9! = 362,880 permutations) has not been cal
culated, although many paperfold puzzles have exploited this square. 
One was an advertising premium, printed in 1942 by a company in 
Mt. Vernon, NY, that is shown in Figure 32.2. 

On one side of the sheet are pictures of Hitler and Mussolini. In the 
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Figure 32.2. A map-fold problem from World War II 
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top left corner is a window with open spaces die-cut between the bars. 
The illustration incorrectly shows a picture of Tojo and a second win
dow below him. Those two cells should have been blank. Tojo and the 
second window are on the underside of the two cells. The task is to im
prison two of the three dictators by folding the square along its grid 
lines into a 1 x 1 packet so that on each side of the packet is a window 
through which you see the face of a dictator. The fold is not difficult, 
though it does require a final tuck. 

A much tougher puzzle using a square of the same size is the creation 
of Robert Edward Neale, a Protestant minister, retired professor of psy
chiatry and religion from the Union Theological Seminary, and the au
thor of the influential book In Praise of Play (Harper & Row, 1969). 

Neale is a man of many avocations. One of them is origami, the Orien
tal art of paper folding, a field in which he is recognized as one of the 
country's most creative experts. Magic is another of Neale's side inter
ests; his famous trick of the bunny in the top hat, done with a folded 
dollar bill, is a favorite among magicians. The hat is held upside down. 
When its sides are squeezed, a rabbit's head pops up. 

Figure 32.3 shows Neale's hitherto unpublished Beelzebub puzzle. 
Start by cutting a square from a sheet of paper or thin cardboard, crease 
it to make nine cells, then letter the cells (the same letter on opposite 
sides of each cell) as indicated. First try to fold the square into a packet 
that spells (from the top down) these eight pseudonyms of the fallen 
angel who, in Milton's Paradise Lost, is second in rank to Satan him
self: Bel Zeebub, Bub Blezee, Ube Blezbe, Bub Zelbee, Bub Beelze, Zee 
Bubble, Buz Lebeeb, Zel Beebub. If you can master these names, you are 
ready to tackle the really fiendish one: Beelzebub, the true name of 
"the prince of the devils" (Matthew 12:24). Its extremely difficult fold 
will be explained in the Answer Section. No one who succeeds in fold-
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ing all nine names will wonder why the general map-folding problem 
is still unsolved. 

Neale has invented a variety of remarkable paper-fold puzzles, but 
there is space for only two more. One is in effect a nonrectangular 
"map" with a crosscut at the center (see Figure 32.4). The numbers 
may represent six colors: all the i-cells are one color, the 2-cells are a 
second color, and so on. Here opposite sides of each cell are different. 
After numbering or coloring as shown at the top in the illustration, 
turn the sheet over (turn it sideways, exchanging left and right sides) 
and then number or color the back as shown at the bottom. The sheet 
must now be folded to form a curious species of tetraflexagon. 

To fold the tetraflexagon, position the sheet as shown at the top in the 
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illustration. (It helps if you first press the creases so that the solid lines 
are what origamians call "mountain folds" and the dotted lines are 
"valley folds.") Reach underneath and seize from below the two free 
corners of the i-cells, holding the corner of the upper cell between the 
tip of your left thumb and index finger and the corner ofthe lower cell 
between the tip of your right thumb and finger. A beautiful maneuver 
can now be executed, one that is easy to do when you get the knack 
even though it is difficult to describe. Pull the corners simultaneously 
down and away from each other, turning each i-cell over so that it be
comes a 5-cell as you look down at the sheet. The remaining cells will 
come together to form two opentop boxes with a 6-cell at the bottom of 
each box (see Figure 32.5). 

Figure 32.S. First step in folding the 
tetraflexagon 

Shift your grip to the two inside corners of the 5-cells-corners di
agonally opposite the corners you were holding. Push down on these 
corners, at the same time pulling them apart. The boxes will collapse 
so that the sheet becomes a flat 2 x 2 tetraflexagon with four i-cells on 
top and four 2-cells on the underside (see Figure 32.6). If the collaps
ing is not properly done, you will find a 4-cell in place of a i-cell, 
and/ or a 3-cell in place of a 2-cell. In either case simply tuck the wrong 
square out of sight, replacing it with the correct one. 

The tetraflexagon is flexed by folding it in half (the two sides going 
back), then opening it at the center crease to discover a new "face," all 

Figure 32.6. Final step in folding the tetraflexagon 
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Samuel Randlett's The Best of Origami (E. P. Dutton, 1963). Some of his 
dollar-bill folds (including the jumping frog) are in Folding Money: 
Volume II, edited by Randlett (Magic, Inc., 1968). 

Addendum 

The "little law" that Henry Ernest Dudeney hinted about in 
connection with his map-fold problem has probably been rediscov
ered. Mark B. Wells of the Los Alamos Scientific Laboratory used a 
computer to confirm that the 2 x 3 map has 10 folds for each cell on top. 
The program also found that the order-3 square has 152 folds for each 
cell on top. In his 1971 paper Lunnon proved that for any rectangular 
map every cyclic permutation of every possible fold is also a possible 
fold. Thus it is necessary to determine only the folds for one cell on top 
because the cyclic permutations of these folds give all the other folds. 
For example, since 123654789 is a possible fold, so also are 236547891, 
365478912, and so on. It is a strange law because the folds for cyclic 
permutations differ wildly. It is not yet known whether the law ap
plies to all polyomino-shaped maps or to maps with equilateral trian
gles as cells. 

In his 1971 paper Lunnon used an ingenious diagram based on two 
perpendicular slices through the center of the final packet. He was able 
to write a simple backtrack program for x x y maps, extend the problem 
to higher dimensions, and discover several remarkable theorems. For 
example, the edges of one cross section always diagram x linear maps 
of y cells each, and the edges of the other cross section diagram y lin
ear maps of x cells each. 

The 2 x 3, 2 x 4, 2 x 5, 2 x 6, and 3 x 4 maps have respectively 60, 320, 
1,980, 10,512, and 15,552 folds. The order-3 square has 1,368 folds, the 
order-4 has 300,608, the order-5 has 186,086,600. In all cases the num
ber of folds is the same for each cell on top, as required by cyclic law. 
The order-2 cube, folded through the fourth dimension, has 96 folds. 
The order-3 cube has 85,109,616. Many other results are tabulated by 
Lunnon in his 1971 paper, but a non recursive formula for even planar 
maps remains elusive. 

The linear map-fold function, as Lunnon calls it, is the limit ap
proached by the ratio between adjacent values of the number of possi
ble folds for a 1 x n strip. It is very close to 3.5. In his unpublished 1981 
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paper Lunnon narrows the upper and lower bounds to 3.3868 and 
3.9821. 

In 1981 Harmony Books in the United States, and Pan Books in Eng
land, brought out a large paperback book called Folding Frenzy. It con
tains six 3 x 3 squares, with red and green patterns on both sides, and 
five pages partially die-cut. Without removing any pages, there are nine 
puzzles to solve by folding the squares. The puzzles are credited to Je
remy Cox. 

In describing one of his map-fold puzzles (Modern Puzzles, No. 214) 
Dudeney mentioned a curious property of map folds that is not at all 
obvious until you think about it carefully. It applies not only to rec
tangular maps, but also to maps in the shape of any polyomino; that is, 
a shape formed by joining unit squares at their edges. Assume that any 
such map is red on one side, white on the other. No matter how it is 
folded into a 1 x 1 packet, the colors on the tops of each cell will alter
nate regardless of which side ofthe packet is up. If the cells of the map 
are colored like a checkerboard, with each cell the same color on both 
sides, the final packet (after any sort of folding) will have leaves that al
ternate colors. If the checkerboard coloring is such that each cell is red 
on one side, white on the other, all cells in the folded packet will have 
their red sides facing one way, their white sides facing the other way. 

It occurred to me in 1971 that the parity principles involved here 
could be the basis for a variety of magic tricks. One appeared under the 
title "Paradox Papers" in Karl Fulves' magic periodical, The Pallbear
ers Review. It goes like this: Fold a sheet of paper twice in each direc
tion so that the creases make 16 cells. It is a good plan to fold the paper 
each way along every crease to make refolding easier later on. 

Assume in your mind that the cells are checkerboard colored black 
and red, with red at the top left corner. Five red playing cards are taken 
from a deck and someone selects one of them. With a red pencil jot the 
names of the five cards in five cells, using abbreviations such as 4D and 
QH. Tell your audience that you are taking cells at random, but actually 
you must put the name of the chosen card on one of the "black" cells, 
and the other four names on "red" cells. 

Have another card chosen, this time from a set of five black cards. 
Turn the sheet over, side for side, and jot the names of the five black 
cards on cells, again apparently at random. Use a black pencil. Put the 
chosen card on a "red" cell, the others on "black" cells. 

Paper Folding 431 



Ask someone to fold the sheet any way he likes to make a 1 x 1 

packet. With a pair of shears, trim around the four sides of the packet. 
Deal the 16 pieces on the table. Five names will be seen, all the same 
color except for one-the chosen card of the other color. Turn over the 
16 pieces. The same will be true of the other sides. 

Gene Nielsen, in the May 1972 issue of the same journal, suggested 
the following variant. Pencil X's and O's on all the cells, alternating 
them checkerboard fashion. Thrn over the sheet horizontally, and put 
exactly the same pattern on the other side. Spectators will not realize 
that each cell has an X on one side, an 0 on the other. Someone folds 
the sheet randomly into a packet. Pretend you are using PK to influence 
the folding so that it will produce a startling result. Trim the sides of the 
packet and spread the pieces on the table. All X's face one way, all O's 
face the other way. 

Swami, a magic periodical published in Calcutta by Sam Dalal, 
printed my "Paper Fold Prediction" in its July 1973 issue. Start by 
numbering the cells of a 3 x 3 sheet from 1 through 9, taking the cells 
in the usual way from left to right and top down. Put the digits on one 
side of the paper only. After someone folds the sheet randomly, trim the 
sides of the packet and spread the pieces. Add all the numbers show
ing. Reverse the pieces and add the digits on the other sides. The two 
sums will be different. Explain that by randomly folding the sheet, the 
nine digits are randomly split into two sets. Clearly there is no way to 
know in advance what either sum will be when the pieces are spread. 

Repeat the same procedure, but this time use a 4 x 4 square with 
cells numbered 1 through 16. The sheet is randomly folded and the 
edges are trimmed. Before spreading the pieces, hold them to your fore
head and announce that the sum will be 68. Put down the packet, ei
ther side uppermost, and spread the pieces. The numbers showing will 
total 68. Discard the pieces before anyone discovers that the sum on the 
reverse sides also is 68. 

The trick works because if the original square has an odd number of 
cells, the sums on the two sides will not be equal. (On the 3 x 3 they 
will be 20 and 25.) However, if the square has an even number of cells, 
the sum is a constant equal to (n2 + n)/4 where n is the highest number. 
You can now repeat the trick with a 5 x 5 square, but instead of pre
dicting a sum, predict that the difference between the sums on the two 
sides of the pieces will be 13. 

The principle applies to cells numbered with other sequences. For 
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example, hand a wall calendar to someone and ask him to tear out the 
page for the month of his birth. He then cuts from the page any 4 x 4 

square of numbers. The sheet is folded, the packet is trimmed, the 
pieces are spread, and the visible numbers are added. The sum will be 
equal to four times the sum of the sheet's lowest and highest numbers. 
You can predict this as soon as you see the square that has been cut, or 
you can divine the number later by ESP. 

Some other suggestions. Allow a spectator to write any digit he likes 
in each cell of a sheet of any size, writing left to right and top down. As 
he writes, keep a running total in your head by subtracting the second 
number from the first, adding the third, subtracting the fourth, and so 
on. The running total is likely to fluctuate between plus and minus. 
The number you end with, whether plus or minus, will be the differ
ence between the two sums after the sheet is folded, trimmed, and the 
pieces are spread. 

Magic squares lend themselves to prediction tricks of a similar na
ture. For example, suppose a 4 x 4 map bears the numbers of a magic 
square. After folding, trim only on two opposite sides of the packet. 
This will produce four strips. Have someone select one ofthe four. The 
other three are destroyed. You can predict the sum of the numbers on 
the selected strip because it will be the magic square's constant. Of 
course you do not tell the audience that the numbers form a magic 
square. 

Many of these tricks adapt easily to nons quare sheets, such as a 3 x 
4. See my Mental Magic (Sterling, 1999), page 54, for a trick using a 3 

x 4 sheet bearing the letters A through G. 
In 1984 C. MaIorana, of Washington, DC, printed what he called "The 

Delayed Justice Puzzle." It is the same as the 3 x 3 fold puzzle I de
scribed except that the faces of the three dictators are replaced by three 
faces of Nixon. "01' Tricky Dick escaped justice once," the instructions 
read, "but this time I think we'll get him! Try and fold the paper (only 
along the dashed lines of course) so that 01' Tricky is behind the bars 
on each side of the packet." 

Answers 
A simple proof that on the 2 x 3 rectangle OSBERG cannot be 

folded to spell BORGES (or vice versa) is to note that in each case the 
fold requires that two pairs of cells touching only at their corners would 
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have to be brought together in the final packet. It is evident that no fold 
can put a pair of such cells together. 

The square puzzle with the faces and prison windows is solved from 
the starting position shown. Fold the top row back and down, the left 
column toward you and right, the bottom row back and up. Fold the 
right packet of three cells back and tuck it into the pocket. A face is now 
behind bars on each side of the final packet. The central face of the 
square cannot be put behind bars because its cell is diagonally adjacent 
to each of the window cells. 

Space prevents my giving solutions for the eight pseudonyms of 
Beelzebub, but Beelzebub itself can be obtained as follows. Starting 
with the layout shown, fold the bottom row toward you and up to cover 
BBE. Fold the left column toward you and right to cover ZU. Fold the 
top row toward you and down, but reverse the crease between L and Z 
so that LZ goes between Band B on the left and the upper E goes on top 
of the lower E. You now have a rectangle of two squares. On the left, 
from the top down, the cells are BLZBUB, on the right EEE. The final 
move is difficult. Fold the right panel (EEE) toward you and left. The 
three E's are tucked so that the middle E goes between Z and B, and the 
other two Ks together go between Band L. Once you grasp what is re
quired it is easier to combine this awkward move with the previous 
one. The result is a tightly locked packet that spells Beelzebub. The so
lution is unique. If the cells of the original "map" are numbered 1 
through 9, the final packet is 463129785. 

To find the 5-face of the tetraflexagon, start with face 1 on the top 
and 2 on the bottom. Mountain-fold in half vertically, left and right 
panels going back, so that if you were to open the flexagon at the cen
ter crease you would see the 4-face. Instead of opening it, however, 
move left the lower inside square packet (with 4 and 3 on its outsides) 
and move right the upper square packet (also with 4 and 3 on its out
sides). Insert your fingers and open the flexagon into a cubical tube 
open at the top and bottom. Collapse the tube the other way. This cre
ates a new tetraflexagon structure that can be flexed to show faces 1, 
3, and 5. 

A similar maneuver creates a structure that shows faces 2, 4, and 6. 
Go back to the original structure that shows faces 1, 2, 3, and 4 and re
peat the same moves as before except that you begin with the 2-face up
permost and the 1-face on the underside. 

Figure 32.8 shows how to separate the sheep from the goats: 
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hold the square out of sight under a table for just a few moments and 
produce the change almost as if by magic. 
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Chapter 33 Ramsey Theory 

Prove that at a gathering of any six people, 
some three of them are either mutual ac
quaintances or complete strangers to each 
other. -PROBLEM E 1321, The American 

Mathematical Monthly, June-July, 1958 

This chapter was originally written in 1977 to honor the ap
pearance of The Journal of Gmph Theory, a periodical devoted to one 
of the fastest growing branches of modern mathematics. Frank Harary, 
the founding editor, is the author of the world's most widely used in
troduction to the subject. The current managing editor is Fan Chung. 

Graph theory studies sets of points joined by lines. Two articles in the 
first issue of the new journal dealt with Ramsey graph theory, a topic 
that has a large overlap with recreational mathematics. Although a few 
papers on Ramsey theory, by the Hungarian mathematician Paul Erdos 
and others, appeared in the 1930s, it was not until the late 1950s that 
work began in earnest on the search for what are now called Ramsey 
numbers. One of the great stimulants to this search was the innocent
seeming puzzle quoted above. It was making the mathematical-folklore 
rounds as a graph problem at least as early as 1950, and at Harary's sug
gestion it was included in the William Lowell Putnam Mathematical 
Competition of 1953. 

It is easy to transform this puzzle into a graph problem. Six points 
represent the six people. Join every pair of points with a line, using a 
red pencil, say, to indicate two people who know each other and a blue 
pencil for two strangers. The problem now is to prove that no matter 
how the lines are colored, you cannot avoid producing either a red tri
angle (joining three mutual acquaintances) or a blue triangle (joining 
three strangers). 

Ramsey theory, which deals with such problems, is named for an 
extraordinary University of Cambridge mathematician, Frank Plump
ton Ramsey. Ramsey was only 26 when he died in 1930, a few days 
after an abdominal operation for jaundice. His father, A. S. Ramsey, 
was president of Magdalene College, Cambridge, and his younger 
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brother Michael was archbishop of Canterbury from 1961 to 1974. 

Economists know him for his remarkable contributions to economic 
theory. Logicians know him for his simplification of Bertrand Russell's 
ramified theory of types (it is said that Ramsey Ramseyfied the ramified 
theory) and for his division of logic paradoxes into logical and seman
tical classes. Philosophers of science know him for his subjective in
terpretation of probability in terms of beliefs and for his invention of 
the "Ramsey sentence," a symbolic device that greatly clarifies the na
ture of the "theoretical language" of science. 

In 1928 Ramsey read to the London Mathematical Society a now 
classic paper, "On a Problem of Formal Logic." (It is reprinted in The 
Foundations of Mathematics, a posthumous collection of Ramsey's es
says edited by his friend R. B. Braithwaite.) In this paper Ramsey 
proved a deep result about sets that is now known as Ramsey's theo
rem. He proved it first for infinite sets, observing this to be easier than 
his next proof, for finite sets. Like so many theorems about sets, it 
turned out to have a large variety of unexpected applications to com
binatorial problems. The theorem in its full generality is too compli
cated to explain here, but for our purposes it will be sufficient to see 
how it applies to graph-coloring theory. 

When all pairs of n points are joined by lines, the graph is called a 
complete graph on n points and is symbolized by Kn' Since we are con
cerned only with topological properties, it does not matter how the 
points are placed or the lines are drawn. Figure 33.1 shows the usual 
ways of depicting complete graphs on two through six points. The lines 
identify every subset of n that has exactly two members. 

Suppose we arbitrarily color the lines of a Kn graph red or blue. We 
might color the lines all red or all blue or any mixture in between. This 
is called a two-coloring of the graph. The coloring is of course a simple 
way to divide all the two-member subsets of n into two mutually ex
clusive classes. Similarly, a three-coloring of the lines divides them 
into three classes. In general, an r-coloring divides the pairs of points 
into r mutually exclusive classes. 

A "subgraph" of a complete graph is any kind of graph contained in 
the complete graph in the sense that all the points and lines of the sub
graph are in the larger graph. It is easy to see that any complete graph 
is a subgraph of any complete graph on more points. Many simple 
graphs have names. Figure 33.2 shows four families: paths, cycles, 
stars, and wheels. Note that the wheel on four points is another way of 
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Figure 33.1. Complete graphs on two through six points 
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Figure 33.2. Four important families of simple graphs 
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drawing K4 . It is often called a tetrahedron because it is a planar pro
jection of the tetrahedron's skeleton. 

Consider now the following problem involving six pencils of differ
ent colors. To each color we assign any kind of graph we like. For ex
ample: 

1. Red: a pentagon (five-point cycle). 
2. Orange: a tetrahedron. 
3. Yellow: a seven-point star. 
4. Green: a 13-point path. 
5. Blue: an eight-point wheel. 
6. Purple: a bow tie (two triangles sharing just one point). 

We now ask a curious question. Are there complete graphs that, if 
their lines are arbitrarily six-colored, are certain to contain as a sub
graph at least one of the six graphs listed above? In other words. no mat
ter how we color one of these complete graphs with the six pencils are 
we certain to get either a red pentagon or an orange tetrahedron or a yel
low seven-point star, and so on? Ramsey's theorem proves that beyond 
a certain size all complete graphs have this property. Let's call the 
smallest graph of this infinite set the Ramsey graph for the specified set 
of subgraphs. Its number of points is called the Ramsey number for 
that set of subgraphs. 

Every Ramsey graph provides both a game and a puzzle. For our ex
ample, the game is as follows. Two players take turns picking up any 
one of the six pencils and coloring a line of the Ramsey graph. The first 
person to complete the coloring of one of the specified subgraphs is the 
loser. Since it is a Ramsey graph, the game cannot be a draw. Moreover, 
it is the smallest complete graph on which a draw is not possible. 

The related puzzle involves a complete graph with one fewer point 
than the Ramsey graph. This obviously is the largest complete graph on 
which the game can be a draw. Such a graph is called the critical col
oring for the specified set of subgraphs. The puzzle consists in finding 
a coloring for the critical graph in which none of the subgraphs ap
pears. 

I have no idea what the Ramsey number is for the six subgraphs 
given. Its complete graph would be so large (containing hundreds of 
points) that playing a game on it would be out of the question, and the 
associated puzzle is far too difficult to be within the range of a feasible 
computer search. Nevertheless, Ramsey games and puzzles with 

440 COMBINATORICS 



smaller complete graphs and with pencils of just two colors can be 
quite entertaining. 

The best-known Ramsey game is called Sim after mathematician 
Gustavus Simmons who was the first to propose it. Sim is played on the 
complete graph with six points (K6), which models the problem about 
the party of six people. It is not hard to prove that 6 is the Ramsey 
number for the following two subgraphs: 

1. Red: triangle (K3 ). 

2. Blue: triangle (K3 ). 

In "classical" Ramsey theory it is customary to use solitary numbers 
for complete graphs, and so we can express the above result with this 
compact notation: R(3,3) = 6. The R stands for Ramsey number, the 
first 3 for a triangle of one color (say, red) and the second 3 for a trian
gle of another color (say, blue). In other words, the smallest complete 
graph that forces a "monochromatic" (all red or all blue) triangle when 
the graph is two-colored is 6. Thus if two players alternately color the 
K6 red and blue, one player is certain to lose by completing a triangle 
of his color. The corresponding and easy puzzle is to two-color the crit
ical graph, K5 , so that no monochromatic triangle appears. 

It turns out that when K6 is two-colored, at least two monochromatic 
triangles are forced. (If there are exactly two and they are of opposite 
color, they form a bow tie.) This raises an interesting question. If a com
plete graph on n points is two-colored, how many monochromatic tri
angles are forced? A. W. Goodman was the first to answer this in a 1959 

paper, "On Sets of Acquaintances and Strangers at Any Party." Good
man's formula is best broken into three parts: If n has the form 2u, the 
number of forced monochromatic triangles is lhu(u -l)(u - 2). If n is 4u 

+ 1, the number is %2u(u - 1)(4u + 1). If n is 4u + 3, it is %2u(u + 1)(4u 

- 1). Thus for complete graphs of 6 through 12 points the numbers of 
forced one-color triangles are 2, 4, 8, 12, 20, 28, and 40. 

Random two-coloring will usually produce more monochromatic tri
angles than the number forced. When the coloring of a Ramsey graph 
contains exactly the forced number of triangles and no more, it is called 
extremal. Is there always an extremal coloring in which the forced tri
angles are all the same color? (Such colorings have been called blue
empty, meaning that the number of blue triangles is reduced to zero.) 
In 1961 Leopold Sauve showed that the answer is no for all odd n, ex
cept for n = 7. This suggests a new class of puzzles. For example, draw 
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the complete graph on seven points. Can you two-color it so that there 
are no blue triangles and no more than four red triangles? It is not easy. 

Very little is known about "classical" Ramsey numbers. They are the 
number of points in the smallest complete graph that forces a given set 
of smaller complete graphs. There is no known practical procedure for 
finding classical Ramsey numbers. An algorithm is known: One simply 
explores all possible colorings of complete graphs, going up the ladder 
until the Ramsey graph is found. This task grows so exponentially in 
difficulty and at such a rapid rate, however, that it quickly becomes 
computationally infeasible. Even less is known about who wins-the 
first player or the second-if a Ramsey game is played rationally. Sim 
has been solved (it is a second-player win), but almost nothing is 
known about Ramsey games involving larger complete graphs. 

So far we have considered only the kind of Ramsey game that Harary 
calls an avoidance game. As he has pointed out, at least three other 
kinds of game are possible. For example, in an "achievement" game 
(along the lines of Sim) the first player to complete a monochromatic 
triangle wins. In the other two games the play continues until all the 
lines are colored, and then either the player who has the most triangles 
of his color or the player who has the fewest wins. These last two games 
are the most difficult to analyze, and the achievement game is the eas
iest. In what follows "Ramsey game" denotes the avoidance game. 

Apart from R(3,3) = 6, the basis of Sim, only the following seven 
other nontrivial classical Ramsey numbers are known for two
colorings: 

1. R(3,4) = 9. If Kg is two-colored, it forces a red triangle (K3) or a blue 
tetrahedron (K4 ). No one knows who wins if this is played as a Ram
sey game, or who wins on any R(n,n) game with n larger than 3. 

2. R(3,5) = 14. 

3. R(4,4) = 18. If K18 is two-colored, a monochromatic tetrahedron (K4 ) 

is forced. This is not a bad Ramsey game, although the difficulty of 
identifying tetrahedrons makes it hard to play. The graph and its col
oring correspond to the fact that at a party of 18 people there is either 
a set of four acquaintances or four total strangers. 

4. R(3,6) = 18. At the same party there is either a set of three acquain
tances or six total strangers. In coloring terms, if a complete graph of 
18 points is two-colored it forces either a red triangle or a blue com
plete graph of six points. 
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5. R(3,7) = 23. 

6. R(3,8) = 28. 

7. R(3,9) = 36. 

8. R(4,5) = 25. 

9. R(6,7) = 298. 

As of March 1996, here are known bounds for eight other Ramsey 
numbers: 

R(3,10) = 40-43. 

R(4,6) = 35-41. 

R(4,7) = 49-61. 

R(5,5) = 43-49. 

R(5,6) = 58-87. 

R(5,7) = 80-143. 

R(6,6) = 102-165. 

R(7,7) = 205-540. 

What is the smallest number of people that must include either a set 
of five acquaintances or a set of five strangers? This is equivalent to ask
ing for the smallest complete graph that cannot be two-colored without 
producing a monochromatic complete graph with five points, which is 
the same as asking for the Ramsey number of R(5,5). So great is the 
jump in complexity from R(4,4) to R(5,5) that Stefan Burr, a leading ex
pert on Ramsey theory who now teaches computer science at City Col
lege of the CUNY in New York City, thinks it possible that the number 
will never be known. Even R(4,5), he believes, is so difficult to analyze 
that it is possible its value also may never be found. 

Only one other classical Ramsey number is known, and it is for three 
colors. R(3) = 3 is trivial because if you one-color a triangle, you are sure 
to get a one-color triangle. We have seen that R(3,3) equals 6. R(3,3,3) 

equals 17. This means that if K17 is three-colored, it forces a mono
chromatic triangle. Actually it forces more than one, but the exact num
ber is not known. 

R( 3,3,3) = 17 was first proved in 1955. The Ramsey game for this graph 
uses pencils of three different colors. Players alternately color a line, 
using any color they want to, until a player loses by completing a mono
chromatic triangle. Who wins if both players make their best possible 
moves? No one knows. The corresponding Ramsey puzzle is to three
color K16, the critical graph, so that no monochromatic triangle appears. 
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What about R(3,3,3,3), the minimum complete graph that forces a 
one-color triangle when it is four-colored? It is unknown, although an 
upper bound of 64 was proved by Jon Folkman, a brilliant combinato
rialist who committed suicide in 1964 at the age of 31, following an op
eration for a massive brain tumor. The best lower bound, 51, was 
established by Fan Chung, who gave the proof in her Ph.D. thesis. 

Classical Ramsey theory generalizes in many fascinating ways. We 
have already considered the most obvious way: the seeking of what 
are called generalized Ramsey numbers for r-colorings of complete 
graphs that force graphs other than complete ones. Vaclav Chvatal and 
Harary were the pioneers in this territory, and Burr has been mining it 
for many years. Consider the problem of finding Ramsey numbers for 
minimum complete graphs that force a monochromatic star of n points. 
Harary and Chvatal were the first to solve it for two-coloring. In 1973 

Burr and J. A. Roberts solved it for any number of colors. 
Another generalized Ramsey problem is to find Ramsey numbers for 

two-colorings of Kn that force a specified number of monochromatic 
"disjoint" triangles. (Triangles are disjoint if they have no common 
point.) In 1975 Burr, Erdos, and J. H. Spencer showed the number to be 
5d, where d is the number of disjoint triangles and is greater than two. 
The problem is unsolved for more than two colors. 

The general case of wheels is not even solved for two colors. The 
Ramsey number for the wheel of four points, the tetrahedron, is, as we 
have seen, 18. The wheel of five points (a wheel with a hub and four 
spokes) was shown to have a Ramsey number of 15 by Tim Moon, a 
Nigerian mathematician. The six-point wheel is unsolved, although its 
Ramsey number is known to have bounds of 17 to 20 inclusive, and 
there are rumors of an unpublished proof that the value is 17. 

Figure 33.3, a valuable chart supplied by Burr and published for the 
first time in my 1977 column, lists the 113 graphs with no more than 
six lines and no isolated points, all of which have known generalized 
Ramsey numbers. Note that some of these graphs are not connected. In 
such cases the entire pattern, either all red or all blue, is forced by the 
complete graph with the Ramsey number indicated. 

Every item on Burr's chart is the basis of a Ramsey game and puzzle, 
although it turns out that the puzzles-finding critical colorings for 
the critical graphs-are much easier than finding critical colorings for 
classical Ramsey numbers. Note that the chart gives six variations of 
Sim. A two-coloring of K6 not only forces a monochromatic triangle but 
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also forces a square, a four-point star (sometimes called a "claw"), a 
five-point path, a pair of disjoint paths of two and three points (both the 
same color), a square with a tail and the simple "tree" that is 15 on 
Burr's chart. The triangle with a tail (8), the five-point star (12), the 
Latin cross (27), and the fish (51) might be worth looking into as Ram
sey games on K7• 

Ronald L. Graham of Bell Laboratories, one of the nation's top com
binatorialists, has made many significant contributions to generalized 
Ramsey theory. It would be hard to find a creative mathematician who 
less resembles the motion-picture stereotype. In his youth Graham and 
two friends were professional trampoline performers who worked for 
a circus under the name of the Bouncing Baers. He is also one of the 
country's best jugglers and former president of the International Jug
gler's Association. The ceiling of his office is covered with a large net 
that he can lower and attach to his waist, so that when he is practicing 
with six or seven balls, any missed ball obligingly rolls back to him. 

In 1968 Graham found an ingenious solution for a problem of the 
Ramsey type posed by Erdos and Andras Hajnal. What is the smallest 
graph of any kind, not containing K6 , that forces a monochromatic tri
angle when it is two-colored? Graham's unique solution is the eight
point graph shown in Figure 33.4. The proof is a straightforward 
reductio ad absurdum. It begins with the assumption that a two
coloring that avoids monochromatic triangles is possible and then 
shows that this forces such a triangle. At least two lines from the top 
point must be, say, gray, and the graph's symmetry allows us to make 
the two outside lines gray with no loss of generality. The end points of 
these two lines must then be joined by a colored line (shown dotted) to 
prevent the formation of a gray triangle. Readers may enjoy trying to 
complete the argument. 

What about similar problems when the excluded subgraph is a com
plete graph other than K6? The question is meaningless for K3 because 
K3 is itself a triangle. Ks is unsolved. The best-known solution is a 16-

point graph discovered by two Bulgarian mathematicians. K4 is even 
further from being solved. Folkman, in a paper published posthu
mously, proved that such a Ramsey graph exists, but his construction 
used more than 2 iii 2901 points. This is such a monstrous number 
that there is no way to express it without using a special arrow nota
tion. The notation is introduced by Donald E. Knuth in his article 
"Mathematics and Computer Science: Coping with Finiteness" in Sci-
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Figure 33.4. Graham's solution 
to a problem by Erdos 

ence (December 17, 1976). The number has since been lowered to a 
more respectable size. 

Imagine the universe tightly packed with spheres the size of elec
trons. The total number of such spheres is inconceivably smaller than 
the number occurring in Folkman's graph. 

Folkman's graph dramatically illustrates how enormously difficult a 
Ramsey problem can be even when the problem's statement mentions 
no graph with more than four points. But, as Al Jolson liked to say, you 
ain't heard nothin' yet. Graham has found an even more mind-boggling 
example. 

Consider a cube with lines joining every pair of corners. The result 
is a complete graph on eight points, except now we have added a Eu
clidean geometric structure. Imagine the lines of this spatial K8 arbi
trarily colored red and blue. Can it be done in such a way that no 
monochromatic K4 results that lies on a plane? The answer is yes, and 
it is not hard to do. 

Let us generalize to n-dimensional cubes. A hypercube has 2n cor
ners. On the four-dimensional hypercube, it also is possible to two
color the lines of the complete graph of 24 , or 16, points so that no 
one-color complete planar graph of four points results. The same can 
be done with the 25 hypercube of 32 points. This suggests the follow
ing Euclidean Ramsey problem: What is the smallest dimension of a 
hypercube such that if the lines joining all pairs of corners are 
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two-colored, a planar K4 of one color will be forced? Ramsey's theorem 
guarantees that the question has an answer only if the forced K4 is not 
confined to a plane. 

The existence of an answer when the forced monochromatic K4 is 
planar was first proved by Graham and Bruce L. Rothschild in a far
reaching generalization of Ramsey's theorem that they found in 1970. 
Finding the actual number, however, is something else. Graham has es
tablished an upper bound, but it is a bound so vast that it holds the 
record for the largest number ever used in a serious mathematical proof. 

To convey at least a vague notion of the size of Graham's number we 
must first attempt to explain Knuth's arrow notation. The number writ
ten 3 i 3 is 3 x 3 x 3 = 33 = 27. The number 3 i i 3 denotes the expres
sion 3 i (3 i 3). Since 3 i 3 equals 27, we can write 3 i i 3 as 3 i 27 or 
327• As a slanting tower of exponents it is 

The tower is only three levels high, but written as an ordinary number 
it is 7,625,597,484,987. This is a big leap from 27, but it is still such a 
small number that we can actually print it. 

When the huge number 3 iii 3 = 3 i i (3 i i 3) = 3 i i 327 is writ
ten as a tower of 3's, it reaches a height of 7,625,597,484,987 levels. 
Both the tower and the number it represents are now too big to be 
printed without special notation. 

Consider 3 iii i 3 = 3 iii (3 iii 3). Inside the parentheses is 
the gigantic number obtained by the preceding calculation. It is no 
longer possible to indicate in any simple way the height of the tower of 
3's that expresses 3 iii i 3. The height is another universe away 
from 3 iii 3. If we break 3 iii i 3 down to a series of the double
arrow operations, it is 3 i i (3 i i (3 i i ... i i (3 i i 3) ... )), where 
the number of steps to be iterated is 3 iii 3. As Knuth says, the dots 
"suppress a lot of detail." 3 iii i 3 is unimaginably larger than 3 i i 
i 3, but it is still small as finite numbers go, since most finite numbers 
are very much larger. 

We are now in a position to indicate Graham's number. It is repre
septed in Figure 33.5. At the top is 3 iii i 3. This gives the number 
of arrows in the number just below it. That number in turn gives the 
number of arrows below it. This continues for 26 , or 64, layers. It is the 
bottom number that Graham has proved to be an upper bound for the 
hypercube problem. 
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Figure 33.S. Graham's upper bound for the solution to a Euclidean Ramsey problem 

Now hold on to your hat. Ramsey-theory experts believe the actual 
Ramsey number for this problem is probably 6. As Stanislaw M. Ulam 
said many times in his lectures, "The infinite we shall do right away. 
The finite may take a little longer." 

Addendum 
Since this chapter first appeared in Scientific American in 

1977, such rapid progress has been made in Ramsey theory that a bib
liography of papers would run to more than a thousand titles and any 
effort to summarize here even the main results would be impossible. 
Fortunately, two excellent books are now available as introductions to 
the general field (of which Ramsey graph theory is only a part): Ronald 
Graham's Rudiments of Ramsey Theory and Ramsey Theory, a book 
Graham coauthored with two colleagues. 

Ramsey theory now includes, among many other things, problems in
volving the partitioning of lines in any graph or the partitioning of 
points in any space. Euclidean Ramsey theory, pioneered in the 1970s 
by Graham, Erdos, and others, concerns the k-coloring of all points in 
a given Euclidean space and determining what patterns are forced. For 
example, no matter how the points on the plane are two-colored, the 
coloring will force the vertices of a monochromatic triangle of any spec
ified size and shape except the equilateral triangle. (The plane can be 
colored with stripes of two alternating colors of such widths that no 
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equilateral triangle, say of side 1, can have all its corners the same 
color.) 

If all the points in Euclidean three-dimensional space are two
colored, will it force an equilateral triangle of any size? Yes. Consider 
the four points of any regular tetrahedron. No matter how the points are 
two-colored, at least three must be the same color, and of course those 
three will form a monochromatic equilateral triangle. For other theo
rems of this type, much harder to prove, see the 1973 paper by Erdos, 
Graham, and others. 

During the past decade Frank Harary and his associates have been an
alyzing Ramsey games. Only a small fraction of their results have been 
published, but Harary is planning a large book on what he calls 
achievement and avoidance games of the Ramsey type. 

In Stefan Burr's chart (Figure 33.3) showing all graphs with six or 
fewer lines, you will see that in the interval of integers 2 through 18, 

only 4 and 16 are missing as generalized Ramsey numbers. There are 
three graphs of seven lines each that have generalized Ramsey numbers 
of 16, but there is no graph that has a generalized Ramsey number of 4. 

Is every positive integer except 4 (ignoring 1, which is meaningless) a 
generalized Ramsey number? In 1970 Harary showed that the answer 
is yes. The impossibility of 4 is easily seen by inspecting Burr's chart. 
The tetrahedron (complete graph for four points) cannot be the small
est graph that forces a subgraph because every possible subgraph of a 
tetrahedron has a Ramsey number higher or lower than 4. 

What is the smallest complete graph which, if two-colored, will force 
a monochromatic complete graph for five points? In other words, what 
is the generalized Ramsey number R(5,5)? In 1975 Harary offered $100 

for the first solution, but the prize remains unclaimed. 
"Ramsey theory is only in its infancy," writes Harary in his tribute to 

Ramsey in the special 1983 issue of The Journal of Graph Theory cited 
in the bibliography and adds: "There is no way that Frank Ramsey 
could have foreseen the theory his work has inspired." D. H. Mellor, in 
another tribute to Ramsey in the same issue, has this memorable sen
tence: "Ramsey's enduring fame in mathematics ... rests on a theorem 
he didn't need, proved in the course of trying to do something we now 
know can't be done!" 

The discovery that Ramsey Number R(4,5) equals 25 was first an
nounced in 1993 by the Rochester Democrat and Chronicle because one 
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of the discoverers, Stanislaw Radziszowski, was a professor at the 
Rochester Institute of Technology. Someone using the initials B.V.B. 
reported this to Ann Landers who published the letter in her syndi
cated advice column on June 22, 1993. B.V.B. put it this way: 

Two professors, one from Rochester, the other from Australia, have 
worked for three years, used 110 computers, and communicated 10,000 
miles by electronic mail, and finally have learned the answer to a ques
tion that has baffled scientists for 63 years. The question is this: If you 
are having a party and want to invite at least four people who know 
each other and five who don't, how many people should you invite? 
The answer is 25. Mathematicians and scientists in countries world
wide have sent messages of congratulations. 

I don't want to take anything away from this spectacular achievement, 
but it seems to me that the time and money spent on this project could 
have been better used had they put it toward finding ways to get food to 
the millions of starving children in war-torn countries around the world. 

Miss Landers replied as follows: 

Dear B.V.B.: There has to be more to this "discovery" than you re
counted. The principle must be one that can be applied to solve impor
tant scientific problems. If anyone in my reading audience can provide 
an explanation in language a lay person can understand, I will print it. 
Meanwhile I am "Baffled in Chicago." 

I sent Miss Landers this letter: 

You asked (June 22) for an explanation ofthe proof that 25 people are re
quired at a party if at least four are mutually acquainted, and at least five 
are mutual strangers. This is a theorem in what is called Ramsey theory. 
It can be modeled by points on paper; each point representing a person. 
Every point is joined to every other point by a line. 

If a line is colored red it means that its two points are persons who 
know each other. If a line is blue, it means its two persons are strangers. 
We now can ask: what is the smallest number of points needed so that 
no matter how the lines are bicolored, there is sure to be either four 
points mutually joined by red lines, or five mutually joined by blue 
lines? The answer, 25; was not proved until recently. For the problem's 
background, see the chapter on Ramsey theory in my book Penrose Tiles 
to Trapdoor Ciphers (W. H. Freeman, 1989). 

As far as I know, the letter was not printed. Perhaps Miss Landers re
mained baffled as to what earthly use this result could possibly have. 
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Radziszowski and his associate Brendon McKay published their 
proof in a paper titled "R(4,5) = 25" in The Journal of Graph Theory 
(Vol. 19, No.3, 1995, pp. 309-21). 

Answers 
Figure 33.6 (note the color symmetry) shows how to two-color 

the complete graph on seven points so that it is blue-empty (gray lines) 
and contains four (the minimum) red triangles (black lines). If you en
joyed working on this problem, you might like to tackle Ka by two
coloring the complete graph on eight points so that it is blue-empty and 
has eight (the minimum) red triangles. 

Garry Lorden, in his 1962 paper, "Blue-Empty Chromatic Graphs," 
showed that problems of this type are uninteresting. If the number of 
points n is even, Goodman had earlier shown that the graph can be 
made blue-empty extremal simply by coloring red two complete sub
graphs of n/2 points. If n is odd, K7 is (as I said earlier) the only com
plete graph that can be made blue-empty extremal by two-coloring. 
When two-coloring complete graphs where n is odd and not 7, how do 
you create a blue-empty graph that is not extremal but has the smallest 
number of red triangles? Lorden showed that this is easily done by par
titioning the graph into two complete red subgraphs, one of (n + 1)/2 
points, the other of (n - 1)/2 points. Some extra red lines may be re
quired, but their addition is trivial. 

Ramsey Theory 

Figure 33.6. Solution to a 
Ramsey graph puzzle 
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Chapter 34 

With useless endeavor, 
Forever, forever, 
Is Sisyphus rolling 
His stone up the mountain! 

Bulgarian Solitaire 
and Other Seemingly 

Endless Tasks 

-Henry Wadsworth Longfellow, 
The Masque of Pandora 

Suppose you have a basket containing 100 eggs and also a sup
ply of egg cartons. Your task is to put all the eggs into the cartons. A 
step (or move) consists of putting one egg into a carton or taking one egg 
from a carton and returning it to the basket. Your procedure is this: 
After each two successive packings of an egg you move an egg from a 
carton back to the basket. Although this is clearly an inefficient way to 
pack the eggs, it is obvious that eventually all of them will get packed. 

Now assume the basket can hold any finite number of eggs. The task 
is unbounded if you are allowed to start with as many eggs as you like. 
Once the initial number of eggs is specified, however, a finite upper 
bound is set on the number of steps needed to complete the job. 

If the rules allow transferring any number of eggs back to the basket 
any time you like, the situation changes radically. There is no longer an 
upper bound on the steps needed to finish the job even if the basket ini
tially holds as few as two eggs. Depending on the rules, the task of 
packing a finite number of eggs can be one that must end, one that can
not end, or one that you can choose to make either finite or infinite in 
duration. 

We now consider several entertaining mathematical tasks with the 
following characteristic. It seems intuitively true that you should be 
able to delay completing the task forever, when actually there is no 
way to avoid finishing it in a finite number of moves. 

Our first example is from a paper by the philosopher-writer-Iogician 
Raymond M. Smullyan. Imagine you have an infinite supply of pool 
balls, each bearing a positive integer, and for every integer there is an 
infinite number of balls. You also have a box that contains a finite 
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quantity of numbered balls. Your goal is to empty the box. Each step 
consists of removing a ball and replacing it with any finite number of 
balls of lower rank. The 1 balls are the only exceptions. Since no ball 
has a rank lower than 1, there are no replacements for a 1 ball. 

It is easy to empty the box in a finite number of steps. Simply replace 
each ball higher than 1 with a 1 ball until only 1 balls remain, then take 
out the 1 balls one at a time. The rules allow you, however, to replace 
a ball with a rank above 1 with any finite number of balls of lower 
rank. For instance, you may remove a ball of rank 1,000 and replace it 
with a billion balls of rank 999, with 10 billion of rank 998, with a bil
lion billion of rank 987, and so on. In this way the number of balls in 
the box may increase beyond imagining at each step. Can you not pro
long the emptying of the box forever? Incredible as it may seem at first, 
there is no way to avoid completing the task. 

Note that the number of steps needed to empty the box is unbounded 
in a much stronger way than it is in the egg game. Not only is there no 
bound on the number of eggs you begin with but also each time you re
move a ball with a rank above 1 there is no bound to the number of 
balls you may use to replace it. To borrow a phrase from John Horton 
Conway, the procedure is "unboundedly unbounded." At every stage of 
the game, as long as the box contains a single ball other than a 1 ball, 
it is impossible to predict how many steps it will take to empty the box 
of all but 1 balls. (If all the balls are of rank 1, the box will of course 
empty in as many steps as there are 1 balls.) Nevertheless, no matter 
how clever you are in replacing balls, the box eventually must empty 
after a finite number of moves. Of course, we have to assume that al
though you need not be immortal, you will live long enough to finish 
the task. 

Smullyan presents this surprising result in a paper, "Trees and Ball 
Games," in Annals of the New York Academy of Sciences (Vol. 321, 
1979, pp. 86-90). Several proofs are given, including a simple argument 
by induction. I cannot improve on Smullyan's phrasing: 

If all balls in the box are of rank 1, then we obviously have a losing 
game. Suppose the highest rank of any ball in the box is 2. Then we 
have at the outset a finite number of 2's and a finite number of l's. We 
can't keep throwing away l's forever; hence we must sooner or later 
throw out one of our 2's. Then we have one less 2 in the box (but possi
bly many more l's than we started with). Again, we can't keep throwing 
out l's forever, and so we must sooner or later throw out another 2. We 
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see that after a finite number of steps we must throwaway our last 2, and 
then we are back to the situation in which we have only l's. We already 
know this to be a losing situation. This proves that the process must ter
minate if the highest rank present is 2. Now, what if the highest rank is 
3? We can't keep throwing away just balls of rank::; 2 forever (we just 
proved that!); hence we must sooner or later throw out a 3. Then again 
we must sooner or later throw out another 3, and so we must eventually 
throw out our last 3. This then reduces the problem to the preceding case 
when the highest rank present is 2, which we have already solved. 

Smullyan also proves that the game ends by modeling it with a tree 
graph. A "tree" is a set of line segments each of which joins two points, 
and in such a way that every point is connected by a unique path of seg
ments leading to a point called the tree's root. The first step of a ball 
game, filling the box, is modeled by representing each ball as a point, 
numbered like the ball and joined by a line to the tree's root. When a 
ball is replaced by other balls of lower rank, its number is erased and 
the new balls indicated by a higher level of numbered points are joined 
to the spot where the ball was removed. In this way the tree grows 
steadily upward, its "end points" (points that are not the root and are 
attached to just one segment) always representing the balls in the box 
at that stage of the game. 

Smullyan proves that if this tree ever becomes infinite (has an infin
ity of points), it must have at least one infinite branch stretching up
ward forever. This, however, is clearly impossible because the numbers 
along any branch steadily decrease and therefore must eventually ter
minate in 1. Since the tree is finite, the game it models must end. As in 
the ball version, there is no way to predict how many steps are needed 
to complete the tree. At that stage, when the game becomes bounded, 
all the end points are labeled 1. The number of these 1 points may, of 
course, exceed the number of electrons in the universe, or any larger 
number. Nevertheless, the game is not Sisyphean. It is certain to end 
after a finite number of moves. 

Smullyan's basic theorem, which he was the first to model as a ball 
game, derives from theorems involving the ordering of sets that go back 
to Georg Cantor's work on the transfinite ordinal numbers. It is closely 
related to a deep theorem about infinite sets of finite trees that was 
first proved by Joseph B. Kruskal and later in a simpler way by C. St. J. 
A. Nash-Williams. More recently Nachum Dershowitz and Zohar 
Manna have used similar arguments to show that certain computer 
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programs, which involve "unboundedly unbounded" operations, must 
eventually come to a halt. 

A special case of Smullyan's ball game is modeled by numbering a fi
nite tree upward from the root as in Figure 34.1, left. We are allowed to 
chop off any end point, along with its attached segment, then add to the 
tree as many new branches as we like, and wherever we like, provided 
all the new points are of lower rank than the one removed. For exam
ple, the figure at the right in the illustration shows a possible new 
growth after a 4 point has been chopped off. In spite of the fact that after 
each chop the tree may grow billions on billions of new branches, after 
a finite number of chops the tree will be chopped down. Unlike the 
more general ball game, we cannot remove any point we like, only the 
end points, but because each removed point is replaced by points of 
lower rank, Smullyan's ball theorem applies. The tree may grow in
conceivably bushier after each chop, but there is a sense in which it al
ways gets closer to the ground until eventually it vanishes. 

A more complicated way of chopping down a tree was proposed by 
Laurie Kirby and Jeff Paris in The Bulletin of the London Mathemati
cal Society (Vol. 14, Part 4, No. 49, July 1982, pp. 285-93). They call 
their tree graph a hydra. Its end points are the hydra'S heads, and Her
cules wants to destroy the monster by total decapitation. When a head 
is severed, its attached segment goes with it. Unfortunately after the 
first chop the hydra acquires one or more new heads by growing a new 
branch from a point (call it k) that is one step below the lost segment. 
This new branch is an exact replica of the part of the hydra that extends 
up from k. The figure at the top right in Figure 34.2 shows the hydra 
after Hercules has chopped off the head indicated by the sword in the 
figure at the top left. 

The situation for Hercules becomes increasingly desperate because 
when he makes his second chop, two replicas grow just below the sev
ered segment (Figure 34.2, bottom left). And three replicas grow after 
the third chop (Figure 34.2, bottom right), and so on. In general, n repli
cas sprout at each nth chop. There is no way of labeling the hydra'S 
points to make this growth correspond to Smullyan's ball game; nev
ertheless, Kirby and Paris are able to show, utilizing an argument based 
on a remarkable number theorem found by the British logician R. L. 
Goodstein, that no matter what sequence Hercules follows in cutting off 
heads, the hydra is eventually reduced to a set of heads (there may be 
millions of them even if the starting form of the beast is simple) that are 
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Figure 34.1. 

all joined directly to the root. They are then eliminated one by one 
until the hydra expires from lack of heads. 

A useful way to approach the hydra game is to think of the tree as 
modeling a set of nested boxes. Each box contains all the boxes reached 
by moving upward on the tree, and it is labeled with the maximum 
number of levels of nesting that it contains. Thus in the first figure of 
the hydra the root is a box of rank 4. Immediately above it on the left 
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Figure 34.2. 

is a 3 box and on the right is a 2 box, and so on. All end points are 
empty boxes of rank o. Each time a 0 box (hydra head) is removed the 
box immediately below gets duplicated (along with all its contents), but 
each of the duplicates as well as the original box now contains one 
fewer empty box. Eventually you are forced to start reducing ranks of 
boxes, like the ranks of balls in the ball game. An inductive argument 
similar to Smullyan's will show that ultimately all boxes become 
empty, after which they are removed one at a time. 

lowe this approach to Dershowitz, who pointed out that it is not 
even necessary for the hydra to limit its growth to a consecutively in
creasing number of new branches. After each chop as many finite du
plicates as you like may be allowed to sprout. It may take Hercules 
much longer to slay the monster, but there is no way he can perma
nently avoid doing so if he keeps hacking away. Note that the hydra 
never gets taller as it widens. Some of the more complicated growth 
programs considered by Dershowitz and Manna graph as trees that can 
grow taller as well as wider, and such trees are even harder to prove ter
minating. 

Our next example of a task that looks as if it could go on forever when 
it really cannot is known as the 18-point problem. You begin with a 
line segment. Place a point anywhere you like on it. Now place a second 
point so that each of the two points is within a different half of the line 
segment. (The halves are taken to be "closed intervals," which means 
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Warmus, a Warsaw mathematician, did not publish his shorter proof 
until six years later in the same journal (Vol. 8, No.3, August 1976, pp. 
260-63). He gives a 17-point solution, and he adds that there are 768 
patterns for such a solution, or 1,536 if you count their reversals as 
being different. 

Our last example of a task that ends suddenly in a counterintuitive 
way is one you will enjoy modeling with a deck of playing cards. Its ori
gin is unknown, but Graham, who told me about it, says that European 
mathematicians call it Bulgarian solitaire for reasons he has not been 
able to discover. Partial sums of the series 1 + 2 + 3 + ... are known as 
triangular numbers because they correspond to triangular arrays such 
as the 10 bowling pins or the 15 pool balls. The task involves any tri
angular number of playing cards. The largest number you can get from 
a standard deck is 45, the sum of the first nine counting numbers. 

Form a pile of 45 cards, then divide it into as many piles as you like, 
with an arbitrary number of cards in each pile. You may leave it as a 
single pile of 45, or cut it into two, three, or more piles, cutting any
where you want, including 44 cuts to make 45 piles of one card each. 
Now keep repeating the following procedure. Take one card from each 
pile and place all the removed cards on the table to make a new pile. 
The piles need not be in a row. Just put them anywhere. Repeat the pro
cedure to form another pile, and keep doing it. 

As the structure of the piles keeps changing in irregular ways it 
seems unlikely you will reach a state where there will be just one pile 
with one card, one pile with two cards, one with three, and so on to one 
with nine cards. If you should reach this improbable state, without get
ting trapped in loops that keep returning the game to a previous state, 
the game must end, because now the state cannot change. Repeating the 
procedure leaves the cards in exactly the same consecutive state as be
fore. It turns out, surprisingly, that regardless of the initial state of the 
game, you are sure to reach the consecutive state in a finite number of 
moves. 

Bulgarian solitare is a way of modeling some problems in partition 
theory that are far from trivial. The partitions of a counting number n 
are all the ways a positive integer can be expressed as the sum of pos
itive integers without regard to their order. For example, the triangular 
number 3 has three partitions: 1 + 2, 1 + 1, and 3. When you divide a 
packet of cards into an arbitrary number of piles, any number to a pile, 
you are forming a partition of the packet. Bulgarian solitaire is a way of 
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changing one partition to another by subtracting 1 from each number 
in the partition, then adding a number equal to the number of sub
tracted l's. It is not obvious this procedure always gives rise to a chain 
of partitions, without duplicates, that ends with the consecutive parti
tion. I am told it was first proved in 1981 by J0rgen Brandt, a Danish 
mathematician, but I do not know his proof or whether it has been 
published. 

Bulgarian solitaire for any triangular number of cards can be dia
grammed as a tree with the consecutive partition labeling its root and 
all other partitions represented by the tree's points. The picture at the 
left in Figure 34.4 shows the simple tree for the three-card game. In the 
picture at the right of the illustration is the less trivial tree for the 11 

partitions of six cards. The theorem that any game ends with the con
secutive partition is equivalent to the theorem that all the partitions of 
a triangular number will graph as a connected tree, with each partition 
one step above its successor in the game and the consecutive partition 
at the tree's root. 

1,1,2,2 (WORST CASE) 

1,1,1 

3 

1,2 

Figure 34.4. 

Note that the highest point on the six-card tree is six steps from the 
root. This partition, 1,1,2,2, is the "worst" starting case. It is easy to see 
that the game must end in no more than six steps from any starting par
tition. It has been conjectured that any game must end in no more than 
k(k - 1) steps, where k is any positive integer in the formula for trian
gular numbers lIzk(k + 1). The computer scientist Donald E. Knuth 
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asked his Stanford University students to test the conjecture by com
puter. They confirmed it for k = 10 or less, so that the conjecture is al
most certainly true, but so far a proof has been elusive. 

Figure 34.5 shows the tree for Bulgarian solitaire with 10 cards (k = 
4). There are now three worst cases at the top, each 12 steps from the 
root. Note also that the tree has 14 end points. We can call them Eden 
partitions because unless you start with them they never arise in a 
game. They are all those partitions whose number of parts exceeds the 
highest number of parts by 2 or more. 

The picture at the left in Figure 34.6 shows the standard way of using 
dots to diagram partition 1,1,2,3,3, at the tree's top. If this pattern is ro-

A 
1.2.2.2.3 1.1.1.2.2.3 1.1.2,3,3 

B 
1,2.2,5 

C 1,1,1,1,1,1,2,2 
1,1,4,4 

D 
3,3,4 

E 1,1,1,1,3,3 
2,2,3,3 

1,1,1,1,1,1.4 
1,1,8 

F 1,1,1,1.1,1,1,1,1,1 
1,1,2,2,4 

F 
1,1,3,5 

C 
2,4,4 

1,1,1,1,2,2,2 D 
1,3,3,3 

C 1,1,1,1,2,4 
2,2,2,4 

Figure 34.S. 1,2,3,4 

1,1.1,1,1,1.1,1.2 
1,0 

1,1,1,1,1.1,1,3 

1,1,1,1,1,2,3 
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1. 1. 
2 •• 

3 ••• 

3 ••• 

Figure 34.6. 

2 •• 

3 ••• 

5 ••••• 

tated and mirror-reflected, it becomes the pattern at the right in the il
lustration.lts rows now give the partition 2,3,5. Each partition is called 
the conjugate of the other. The relation is obviously symmetrical. A 
partition unchanged by conjugation is said to be self-conjugate. On the 
10 tree there are just two such partitions, the root and 1,1,1,2,5. When 
the remaining partitions are paired as conjugates, an amazing pattern 
appears along the trunk. The partitions pair as is shown by the letters. 
This symmetry holds along the main trunk of all Bulgarian trees so far 
investigated. 

If the symmetry holds for all such trees, we have a simple way to de
termine the worst case at the top. It is the conjugate of the partition (there 
is always only one) just above the root. An even faster way to find the 
trunk's top is to prefix 1 to the root and diminish its last number by 1. 

The Bulgarian operation can be diagrammed by removing the left
most column of its flush-left dot pattern, turning the column 90 de
grees, and adding it as a new row. Only diagrams of the 1, 2, 3,4, ... 

form are unaltered by this. If you could show that no sequence of oper
ations on any partition other than the consecutive one would return a 
diagram to its original state, you would have proved that all Bulgarian 
games graph as trees and therefore must end when their root is reached. 

If the game is played with 55 cards (k = 10), there are 451,276 ways 
to partition them, so that drawing a tree would be difficult. Even the 15-

card tree, with 176 points, calls for computer aid. How are these num
bers calculated? Well, it is a long and fascinating story. Let us say 
partitions are ordered, so that 3, for example, would have four ordered 
partitions (usually called "compositions"): 1 + 2, 2 + 1, 1 + 1 + 1, and 
3. It turns out that the formula for the total number of compositions is 
simply 2n-l. But when the partitions are unordered, as they are in the 
solitaire card game, the situation is unbelievably disheveled. Although 
there are many recursive procedures for counting unordered partitions, 
using at each step the number of known partitions for all smaller num
bers, an exact asymptotic formula was finally obtained. The big break
through was made by the British mathematician G. H. Hardy, working 
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with his Indian friend Srinivasa Ramanujan. Their not quite exact for
mula was perfected by Hans A. Rademacher in 1937. The Hardy
Ramanujan-Rademacher formula is a horribly shaggy infinite series 
that involves (among other things) pi, square roots, complex roots, and 
derivatives of hyperbolic functions! George E. Andrews, in his standard 
textbook on partition theory, calls it an "unbelievable identity" and 
"one of the crowning achievements" in the history of his subject. 

The sequence of partitions for n = 1, n = 2, n = 3, n = 4, n = 5, and n 
= 6 is 1,2,3,5,7,11, and so you might expect the next partition to be the 
next prime, 13. Alas, it is 15. Maybe all partitions are odd. No, the next 
partition is 22. One of the deep unsolved problems in partition theory 
is whether, as n increases, the even and odd partitions approach equal
ity in number. 

If you think partition theory is little more than a mathematical pas
time, let me close by saying that a way of diagramming sets of parti
tions, using number arrays known as the Young tableaux, has become 
enormously useful in particle physics. But that's another ball game. 

Addendum 

Many readers sent proofs of the conjecture that Bulgarian soli
taire must end in k(k - 1) steps, and the proof was later given in several 
articles listed in the bibliography. Ethan Akin and Morton Davis began 
their 1983 paper as follows: 

Blast Martin Gardner! There you are, minding your own business, and 
Scientific American comes along like a virus. All else forgotten, you 
must struggle with infection by one of his fascinating problems. In the 
August 1983 issue he introduced us to Bulgarian solitaire. 
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Chapter 35 A Matchbox 
Qame-Learning Machine 

I knew little of chess, but as only a few 
pieces were on the board, it was obvious that 
the game was near its close . ... [Moxon's] 
face was ghastly white, and his eyes glittered 
like diamonds. Of bis antagonist I had only 
a back view, but that was sufficient; I should 
not have cared to see his face. 

The quotation is from Ambrose Bierce's classic robot story, 
"Moxon's Master" (reprinted in Groff Conklin's science-fiction anthol
ogy, Thinking Machines). The inventor Moxon has constructed a chess
playing robot. Moxon wins a game. The robot strangles him. 

Bierce's story reflects a fear that someday computers will develop a 
will of their own. Let it not be thought that this wOITies only those who 
do not understand computers. Before his death Norbert Wiener antici
pated with increasing apprehension the day when complex govern
ment decisions would be turned over to sophisticated game-theory 
machines. Before we know it, Wiener warned, the machines may shove 
us over the brink into a suicidal war. 

The greatest threat of unpredictable behavior comes from the learn
ing machines: computers that improve with experience. Such machines 
do not do what they have been told to do but what they have learned 
to do. They quickly reach a point at which the programmer no longer 
knows what kinds of circuits his machine contains. Inside most of 
these computers are randomizing devices. If the device is based on the 
random decay of atoms in a sample radioactive material, the machine's 
behavior is not (most physicists believe) predictable even in principle. 

Much of the research on learning machines has to do with comput
ers that steadily improve their ability to play games. Some of the work 
is secret-war is a game. The first significant machine of this type was 
an IBM 704 computer programed by Arthur L. Samuel of the IBM re
search department at Poughkeepsie, NY. In 1959 Samuel set up the 
computer so that it not only played a fair game of checkers but also was 
capable of looking over its past games and modifying its strategy in the 
light of this experience. At first Samuel found it easy to beat his ma-
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chine. Instead of strangling him, the machine improved rapidly, soon 
reaching the point at which it could clobber its inventor in every game. 
So far as I know no similar program has yet been designed for chess, al
though there have been many ingenious programs for nonlearning 
chess machines. 

In 1960 the Russian chess grandmaster Mikhail Botvinnik was 
quoted as saying that the day would come when a computer would 
play master chess. "This is of course nonsense," wrote the American 
chess expert Edward Lasker in an article on chess machines in the Fall 
1961 issue of a magazine called The American Chess Quarterly. But it 
was Lasker who was talking nonsense. A chess computer has three 
enormous advantages over a human opponent: (1) it never makes a 
careless mistake; (2) it can analyze moves ahead at a speed much faster 
than a human player can; (3) it can improve its skill without limit. 
There is every reason to expect that a chess-learning machine, after 
playing thousands of games with experts, will someday develop the 
skill of a master. It is even possible to program a chess machine to play 
continuously and furiously against itself. Its speed would enable it to 
acquire in a short time an experience far beyond that of any human 
player. 

It is not necessary for the reader who would like to experiment with 
game-learning machines to buy an electronic computer. It is only nec
essary to obtain a supply of empty matchboxes and colored beads. This 
method of building a simple learning machine is the happy invention 
of Donald Michie, a biologist at the University of Edinburgh. Writing on 
"Trial and Error" in Penguin Science Survey 1961, VoL 2, Michie de
scribes a ticktacktoe learning machine called MENACE (Matchbox Ed
ucable Naughts And Crosses Engine) that he constructed with 300 

matchboxes. 
MENACE is delightfully simple in operation. On each box is pasted 

a drawing of a possible ticktacktoe position. The machine always 
makes the first move, so only patterns that confront the machine on odd 
moves are required. Inside each box are small glass beads of various 
colors, each color indicating a possible machine play. A V-shaped card
board fence is glued to the bottom of each box, so that when one shakes 
the box and tilts it, the beads roll into the V. Chance determines the 
color of the bead that rolls into the V's corner. First-move boxes contain 
four beads of each color, third-move boxes contain three beads of each 
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color, fifth-move boxes have two beads of each color, seventh-move 
boxes have single beads of each color. 

The robot's move is determined by shaking and tilting a box, open
ing the drawer, and noting the color of the "apical" bead (the bead in 
the V's apex). Boxes involved in a game are left open until the game 
ends. If the machine wins, it is rewarded by adding three beads of the 
apical color to each open box. If the game is a draw, the reward is one 
bead per box. If the machine loses, it is punished by extracting the api
cal bead from each open box. This system of reward and punishment 
closely parallels the way in which animals and even humans are taught 
and disciplined. It is obvious that the more games MENACE plays, the 
more it will tend to adopt winning lines of play and shun losing lines. 
This makes it a legitimate learning machine, although of an extremely 
simple sort. It does not make (as does Samuel's checker machine) any 
self-analysis of past plays that causes it to devise new strategies. 

Michie's first tournament with :MENACE consisted of 220 games over 
a two-day period. At first the machine was easily trounced. After 17 

games the machine had abandoned all openings except the comer 
opening. After the twentieth game it was drawing consistently, so 
Michie began trying unsound variations in the hope of trapping it in a 
defeat. This paid off until the machine learned to cope with all such 
variations. When Michie withdrew from the contest after losing eight 
out of ten games, MENACE had become a master player. 

Since few readers are likely to attempt building a learning machine 
that requires 300 matchboxes, I have designed hexapawn, a much sim
pler game that requires only 24 boxes. The game is easily analyzed
indeed, it is trivial-but the reader is urged not to analyze it. It is much 
more fun to build the machine, then learn to play the game while the 
machine is also learning. 

Hexapawn is played on a 3 x 3 board, with three chess pawns on each 
side as shown in Figure 35.1. Dimes and pennies can be used instead 
of actual chess pieces. Only two types of move are allowed: (1) A pawn 
may advance straight forward one square to an empty square; (2) a 
pawn may capture an enemy pawn by moving one square diagonally, 
left or right, to a square occupied by the enemy. The captured piece is 
removed from the board. These are the same as pawn moves in chess, 
except that no double move, en passant capture, or promotion of pawns 
is permitted. 
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35.1. The game of nex:apl:lWD 

won in any of three ways: 

1. a row. 
By capturing all enemy pieces. 

a position in which the move. 

Players moves, one piece at a time. A draw clearly 
impossible, but it is not inunediately apparent first or 

Robot) need 24 empty 
matchboxes and a supply colored beads. Small candies that Come in 

colors-M&M's or Skittles-work nicely. 
one 
move. Patterns positions open to HER on 

have a choice between a center or an end open-the 
end is considered right 

would 
play. Patterns marked eleven positions that can confront 

on fourth (its second) move. Patterns are the 
eleven last) move. (I 
included the 

otherwise 19 would suffice.) 
box place a single bead to ... .A-LY. ........ ..LL arrow 

now move 
can therefore make all possible moves 

moves. The robot has no strategy. In an idiot. 
as follows. 

on 
close your eyes, open the drawer, remove one bead. Close the 

box, place 
.......................... "'" arrow move ac-

it to move Continue this procedure 
..... ~.A~~ ends. If the robot wins, replace play 
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Westminster College. Salt Lake City, UT, made good use of HER as a 
concession at a college carnival. The machine was designed to learn by 
rewards only, so that customers would always have a chance (though 
a decreasing one) of winning. and prizes to winners were increased in 
value as HER became more proficient. 

Several readers built two matchbox machines to be pitted against 
each other. John Chambers, Toronto, called his pair THEM (Two-way 
Hexapawn Educable Machines). Kenneth W. Wiszowaty. science 
teacher at Phillip Rogers Elementary School, Chicago, sent me a report 
by his seventh-grade pupil, Andrea Weiland, on her two machines 
which played against each other until one of them learned to win every 
time. John House, Waterville, OH, called his second machine RAT (Re
lentless Autolearning Tyrant), and reported that after 18 games RAT 
conceded that HER would win all subsequent games. 

Peter J. Sandiford, director of operations research for Trans-Canada 
Air Lines, Montreal, called his machines Mark I and Mark II. As ex
pected, it took 18 games for Mark I to learn how to win every time and 
Mark II to learn how to fight the longest delaying action. Sandiford 
then devised a devilish plan. He arranged for two students, a boy and 
a girl from a local high school mathematics club, who knew nothing 
about the game, to play hexapawn against each other after reading a 
handout describing the rules. "Each contestant was alone in a room," 
writes Sandiford, "and indicated his moves to a referee. Unknown to 
the players the referees reported to a third room containing the jelly
bean computers and scorekeepers. The players thought they were play
ing each other by remote control, so to speak, whereas they were in fact 
playing independently against the computers. They played alternately 
black and white in successive games. With much confusion and muf
tled hilarity we in the middle tried to operate the computers, keep the 
games in phase, and keep the score." 

The students were asked to make running comments on their own 
moves and those of their opponent. Some sample remarks: 

"It's the safest thing to do without being captured; it's almost sure to 
win." 

"He took me, but I took him too. If he does what I expect, he'll take 
my pawn, but in the next move I'll block him." 

"Am I stupid!" 
"Good move! I think I'm beat." 
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"I don't think he's really thinking. By now he shouldn't make any 
more careless mistakes." 

"Good game. She's getting wise to my action now." 
"Now that he's thinking, there's more competition." 
"Very surprising move ... couldn't he see I'd win if he moved for

ward?" 
"My opponent played well. I guess I just got the knack of it first." 
When the students were later brought face to face with the machines 

they had been playing, they could hardly believe, writes Sandiford, 
that they had not been competing against a real person. 

Richard L. Sites, at M.LT., wrote a FORTRAN program for an IBM 
1620 so that it would learn to play Octapawn, a 4 x 4 version of hexa
pawn that begins with four white pawns on the first row and four black 
pawns on the fourth row. He reports that the first player has a sure win 
with a corner opening. At the time of his writing, his program had not 
yet explored center openings. 

Judy Gomberg, Maplewood, NJ, after playing against a matchbox ma
chine that she built, reported that she learned hexapawn faster than her 
machine because "every time it lost I took out a candy and ate it." 

Robert A. Ellis, at the computing laboratory, Ballistics Research Lab
oratories, Aberdeen Proving Ground, MD, told me about a program he 
wrote for a digital computer which applied the matchbox-learning tech
nique to a ticktacktoe-learning machine. The machine first plays a stu
pid game, choosing moves at random, and is easily trounced by human 
opponents. Then the machine is allowed to play 2,000 games against it
self (which it does in two or three minutes), learning as it goes. After 
that, the machine plays an excellent strategy against human opponents. 

My defense of Botvinnik's remark that computers will some day 
play master chess brought a number of irate letters from chess players. 
One grandmaster assured me that Botvinnik was speaking with tongue 
in cheek. The interested reader can judge for himself by reading a 
translation of Botvinnik's speech (which originally appeared in Kom
somolskaya Pravda, January 3,1961) in The Best in Chess, edited by 
L A. Horowitz and Jack Straley Battell (New York: Dutton, 1965, pp. 
63-69). "The time will corne," Botvinnik concludes, "when mechani
cal chessplayers will be awarded the title of International Grandmas
ter ... and it will be necessary to promote two world championships, 
one for humans, one for robots. The latter tournament, naturally, will 
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not be between machines, but between their makers and program op
erators." 

An excellent science-fiction story about just such a tournament, Fritz 
Leiber's "The 64-Square Madhouse," appeared in If, May 1962, and 
was reprinted in Leiber's A Pail of Air (New York: Ballantine, 1964). 
Lord Dunsany, by the way, has twice given memorable descriptions of 
chess games played against computers. In his short story "The Three 
Sailors' Gambit" (in The Last Book of Wonder) the machine is a magic 
crystal. In his novel The Last Revolution (a 1951 novel about the com
puter revolution that has never, unaccountably, been published in the 
United States) it is a learning computer. The description of the narra
tor's first game with the computer, in the second chapter, is surely one 
of the funniest accounts of a chess game ever written. 

The hostile reaction of master chess players to the suggestion that 
computers will someday play master chess is easy to understand; it 
has been well analyzed by Paul Armer in a Rand report (p-2114-2, June 
1962) on Attitudes Toward Intelligent Machines. The reaction of chess 
players is particularly amusing. One can make out a good case against 
computers writing top-quality music or poetry, or painting great art, but 
chess is not essentially different from ticktacktoe except in its enor
mous complexity, and learning to play it well is precisely the sort of 
thing computers can be expected to do best. 

Master checker-playing machines will undoubtedly come first. 
Checkers is now so thoroughly explored that games between champi
ons almost always end in draws, and in order to add interest to such 
games, the first three moves are now chosen by chance. Richard Bell
man, writing "On the Application of Dynamic Programming to the De
termination of Optimal Play in Chess and Checkers," Proceedings of the 
National Academy of Sciences (Vol. 53, February 1965, pp. 244-47), 
says that "it seems safe to predict that within ten years checkers will be 
a completely decidable game." 

Chess is, of course, of a different order of complexity. One suspects 
it will be a long time before one can (so goes an old joke in modern 
dress) play the first move of a chess game against a computer and have 
the computer print, after a period of furious calculation, "I resign." In 
1958 some responsible mathematicians predicted that within 10 years 
computers would be playing master chess, but this proved to be wildly 
overoptimistic. Tigran Petrosian, when he became world chess cham
pion, was quoted in The New York TImes (May 24,1963) as expressing 
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doubts that computers would play master chess within the next 15 or 
20 years. 

Hexapawn can be extended simply by making the board wider but 
keeping it three rows deep. John R. Brown, in his paper "Extenda
pawn-An Inductive Analysis" (Mathematics Magazine, Vol. 38, No
vember 1965, pp. 286-99) gives a complete analysis of this game. If n 

is the number of columns, the game is a win for the first player if the 
final digit of n is 1, 4, 5, 7, or 8. Otherwise the second player has the 
win. 

My hexapawn game was marketed in two forms. In 1969 IBM 
adapted it to a board that used a spinner to choose one of four colors 
and buttons to place on game positions to reward or punish the prim
itive "learning machine." Titled "Hexapawn: A Game You Play to 
Lose," it was distributed by IBM to high school science and mathe
matics classes, and to the general public. In 1970 Gabriella, a Farm
ingdale, NY, firm, produced and sold a similar product they called the 
Gabriella Computer Kit. See Science News (October 26, 1970) for an ad
vertisement. The game was also described in the first chapter of We 
Build Our Own Computers, a projects handbook by A. B. Bolt and oth
ers (Cambridge University Press, 1966). 

Computers that learn from experience may offer the most promising 
way to simulate the human mind. Based on what are called neural net
works, they rely heavily on the parallel processing of data. The neural 
network literature is so vast that I made no attempt to cite references. 
Our brain is, of course, an enormously complicated, parallel-processing 
learning machine, the operation of which is still only dimly under
stood. 

Computer chess has made rapid progress since this chapter was pub
lished as a Scientific American column in 1962. Programs now play on 
the master level, and on occasion have defeated grand masters. The 
best programs do not learn from experience, but owe their skill to the 
fantastic speed with which they explore long sequences of moves. It is 
only a matter of time before chess programs achieve grand master rat
Ings. 

A proof of first player win on the 3 x 3 Go field is given in the 1972 

paper by Edward Thorp and William Walden. As far as I know, my 5 x 
5 minichess has not been solved in the sense that it is not known 
whether the first or second player has the win when the game is played 
rationally, or whether the game is a draw. It is possible that many chess 
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computer programs would be able to crack it if someone only bothered 
to give them the game as a problem. 

Another curious form of minichess was created by a young woman 
named Chi Chi Hackenberg, whose invention was featured in Eye (No
vember 1968, pp. 93-94). It uses a field of 4 x 8, or half the standard 
chessboard. 

At the start, all eight white pieces are on the first row, in their usual 
formation. The second row has five white pawns, three pawns missing 
on the king's bishop and knight columns and the queen's knight col
umn. The 13 black pieces are in mirror-image formation on the other 
two rows, making six vacant cells on the board. There are two new 
rules. White is not allowed to move a pawn on its opening move, and 
pawns are permitted to move vertically backward either one step or to 
capture diagonally backward. 

Hackenberg says that she thinks White's best opening is to take the 
rook's pawn with its king's knight, threatening checkmate with KB to 
N2. However, Black can mount a counteroffensive by taking the white 
queen's pawn with its queen's bishop's pawn for the first in a series of 
checks that include a capture of White's queen. This seems so disas
trous for White that the opening suggested by Hackenberg may not be 
the best after all. Or can White, after the checks subside, mount a viable 
counterattack? As far as I know, this miniversion of chess also has not 
been exhaustively analyzed. 

Richard Bellman's prediction that checkers would be solved by the 
end of 1975-that is, it would become known if the first or second 
player had the win or the game is a draw-proved wide of the mark. As 
I write now (in 2000), checkers is far from decided, although checker 
programs today play on the same level as the best players. 

Mikhail Botvinnik accurately predicted that computers would soon 
reach grand master level and that tournaments would be held between 
computer programs. Such contests are now annual events. In 1997 
Deep Blue, IBM's chess program, defeated Gary Kasparov, the world's 
chess champion, in a six-game contest in Manhattan. Kasparov won 
only one game, tied three, and lost two. 

There is now an enormous literature on the designing of computers 
that learn from experience and on the construction of better and better 
chess programs. I have made no attempt to introduce this literature in 
my brief bibliography. 
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Chapter 36 

I made sprouts fontaneously. ... 

-JAMES JOYCE, Finnegans Wake, p. 542 

Sprouts and 
Brussels Sprouts 

1171 .n friend of mine, a classics student at Cambridge, introduced 
me recently to a game called 'Sprouts' which became a craze at Cam
bridge last term. The game has a curious topological flavor." 

So began a letter I received in 1967 from David Hartshorne, then a 
mathematics student at the University of Leeds. Soon other British 
readers were writing to me about this amusing pencil-and-paper game 
that had sprouted suddenly on the Cambridge grounds. 

I am pleased to report that I successfully traced the origin of this 
game to its source: the joint creative efforts of John Horton Conway, 
then a teacher of mathematics at Sidney Sussex College, Cambridge, 
and Michael Stewart Paterson, then a graduate student working at Cam
bridge on abstract computer programming theory. 

The game begins with n spots on a sheet of paper. Even with as few 
as three spots, Sprouts is more difficult to analyze than ticktacktoe, so 
that it is best for beginners to play with no more than three or four ini
tial spots. A move consists of drawing a line that joins one spot to an
other or to itself and then placing a new spot anywhere along the line. 
These restrictions must be observed: 

1. The line may have any shape but it must not cross itself, cross a pre
viously drawn line, or pass through a previously made spot. 

2. No spot may have more than three lines emanating from it. 

Players take turns drawing curves. In normal Sprouts, the recom
mended form of play, the winner is the last person able to play. As in 
Nim and other games of the "take-away" type, the game can also be 
played in "misere" form, a French term that applies to a variety of card 
games in the whist family in which one tries to avoid taking tricks. In 
misere Sprouts the first person unable to play is the winner. 
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The typical three-spot normal game shown in Figure 36.1 was won 
on the seventh move by the first player. It is easy to see how the game 
got its name, for it sprouts into fantastic patterns as the game pro
gresses. The most delightful feature is that it is not merely a combina
torial game, as so many connect-the-dots games are, but one that 
actually exploits the topological properties of the plane. In more tech
nicallanguage, it makes use of the Jordan-curve theorem, which asserts 
that simple closed curves divide the plane into outside and inside re
gions. 

One might guess at first that a Sprouts game could keep sprouting for-

START • 
• 

• • 

7 

Figure 36.1. A typical game of three-spot Sprouts 
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ever, but Conway offers a simple proof that it must end in at most 3n -

1 moves. Each spot has three "lives"-the three lines that may meet at 
that point. A spot that acquires three lines is called a "dead spot" be
cause no more lines can be drawn to it. A game that begins with n spots 
has a starting life of 3n. Each move kills two lives, at the beginning and 
at the end of the curve, but adds a new spot with a life of 1. Each move 
therefore decreases the total life of the game by 1. A game obviously 
cannot continue when only one life remains, since it requires at least 
two lives to make a move. Accordingly no game can last beyond 3n -

1 moves. It is also easy to show that every game must last at least 2n 

moves. The three-spot game starts with nine lives, must end on or be
fore the eighth move, and must last at least six moves. 

The one-spot game is trivial. The first player has only one possible 
move: connecting the spot to itself. The second player wins in the nor
mal game (loses in miserel by joining the two spots, either inside or out
side the closed curve. These two second moves are equivalent, as far as 
playing the game is concerned, because before they are made there is 
nothing to distinguish the inside from the outside of the closed curve. 
Think of the game as being played on the surface of a sphere. If we 
puncture the surface by a hole inside a closed curve, we can stretch the 
surface into a plane so that all points previously outside the curve be
come inside, and vice versa. This topological equivalence of inside and 
outside is important to bear in mind because it greatly simplifies the 
analysis of games that begin with more than two spots. 

With two initial spots, Sprouts immediately takes on interest. The 
first player seems to have a choice of five opening moves (see Figure 
36.2), but the second and third openings are equivalent for reasons of 
symmetry. The same holds true of the fourth and fifth, and in light of 
the inside-outside equivalence just explained, all four of these moves 
can be considered identical. Only two topologically distinct moves, 
therefore, require exploring. It is not difficult to diagram a complete 

START 

A B 
• • 

A B - A B 

\)' 
A B 

'() 
Figure 36.2. Initial spots (A and B) and first player's possible opening moves in two-spot 
game 
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tree chart of all possible moves, inspection of which shows that in both 
normal and misere forms of the two-spot game the second player can 
always win. 

Conway found that the first player can always win the normal three
spot game and the second player can always win the misere version. 
Denis P. Mollison has shown that the first player has the win in normal 
four- and five-spot games. In response to a 10-shilling bet made with 
Conway that he could not complete his analysis within a month, Mol
lison produced a 49-page proof that the second player wins the normal 
form of the six-spot game. The second player wins the misere four-spot 
game. 

Although no strategy for perfect play has been formulated, one can 
often see toward the end of a game how to draw closed curves that will 
divide the plane into regions in such a way as to lead to a win. It is the 
possibility of this kind of planning that makes Sprouts an intellectual 
challenge and enables a player to improve his skill at the game. But 
Sprouts is filled with unexpected growth patterns, and there seems to 
be no general strategy that one can adopt to make sure of winning. 

Sprouts was invented on the afternoon of Thesday, February 21, 
1967, when Conway and Paterson had finished having tea in the math
ematics department's common room and were doodling on paper in an 
effort to devise a new pencil-and-paper game. Conway had been work
ing on a game invented by Paterson that originally involved the fold
ing of attached stamps, and Paterson had put it into pencil-and-paper 
form. They were thinking of various ways of modifying the rules when 
Paterson remarked, "Why not put a new dot on the line?" 

"As soon as this rule was adopted," Conway has written me, "all the 
other rules were discarded, the starting position was simplified to just 
n points, and Sprouts sprouted." The importance of adding the new 
spot was so great that all parties concerned agree that credit for the 
game should be on a basis of 3/5 to Paterson and 2/5 to Conway. "And 
there are complicated rules," Conway adds, "by which we intend to 
share any monies which might accrue from the game." 

"The day after Sprouts sprouted," Conway continues, "it seemed that 
everyone was playing it. At coffee or tea times there were little groups 
of people peering over ridiculous to fantastic Sprout positions. Some 
people were already attacking Sprouts on toruses, Klein bottles, and the 
like, while at least one man was thinking of higher-dimensional ver
sions. The secretarial staff was not immune; one found the remains of 
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Sprout games in the most unlikely places. Whenever r try to acquaint 
somebody new to the game nowadays, it seems he's already heard of it 
by some devious route. Even my three- and four-year-old daughters 
play it, though r can usually beat them." 

The name "Sprouts" was given the game by Conway. An alternative 
name, "measles," was proposed by a graduate student because the game 
is catching and it breaks out in spots, but Sprouts was the name by 
which it quickly became known. Conway later invented a superficially 
similar game that he calls "Brussels Sprouts" to suggest that it is a joke. 
r shall describe this game but leave to the reader the fun of discovering 
why it is a joke before the explanation is given in the answer section. 

Brussels Sprouts begins with n crosses instead of spots. A move con
sists of extending any arm of any cross into a curve that ends at the free 
arm of any other cross or the same cross; then a crossbar is drawn any
where along the curve to create a new cross. Two arms ofthe new cross 
will, of course, be dead, since no arm may be used twice. As in Sprouts, 
no curve may cross itself or cross a previously drawn curve, nor may 
it go through a previously made cross. As in Sprouts, the winner of the 
normal game is the last person to play and the winner of the misere 
game is the first person who cannot play. 

After playing Sprouts, Brussels Sprouts seems at first to be a more 
complicated and more sophisticated version. Since each move kills 
two crossarms and adds two live crossarms, presumably a game might 
never end. Nevertheless, all games do end and there is a concealed 
joke that the reader will discover if he succeeds in analyzing the game. 
To make the rules clear, a typical normal game of two-cross Brussels 
Sprouts is shown that ends with victory for the second player on the 
eighth move (see Figure 36.3). 

A letter from Conway reports several important breakthroughs in 
Sproutology. They involve a concept he calls the "order of moribun
dity" of a terminal position, and the classification of "zero order" po
sitions into five basic types: louse, beetle, cockroach, earwig, and 
scorpion (see Figure 36.4). The larger insects and arachnids can be in
fested with lice, sometimes in nested form, and Conway draws one 
pattern he says is "merely an inside-out earwig inside an inside-out 
louse." Certain patterns, he points out, are much lousier than others. 
And there is the FTOZOM (fundamental theorem of zero-order mori
bundity), which is quite deep. Sproutology is sprouting so rapidly that 
r shall have to postpone my next report on it for some time. 
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Figure 36.3. Typical game of two-cross Brussels Sprouts 

Figure 36.4. 

Louse Beetle Cockroach Earwig Scorpion 

Addendum 
Sprouts made an instant hit with Scientific American readers, 

many of whom suggested generalizations and variations of the game. 
Ralph J. Ryan III proposed replacing each spot with a tiny arrow, ex
tending from one side of the line and allowing new lines to be drawn 
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only to the arrow's point. Gilbert W. Kessler combined spots and cross
bars in a game he called "succotash." George P. Richardson investi
gated Sprouts on the torus and other surfaces. Eric L. Gans considered 
a generalization of Brussels Sprouts (called "Belgian Sprouts") in 
which spots are replaced by "stars"-n crossbars crossing at the same 
point. Vladimir Y gnetovich suggested the rule that a player, on each 
turn, has a choice of adding one, two, or no spots to his line. 

Several readers questioned the assertion that every game of normal 
Sprouts must last at least 2n moves. They sent what they believed to be 
counterexamples, but in each case failed to notice that every isolated 
spot permits two additional moves. 

Since this chapter appeared in Scientific American in 1967, David 
Applegate, Guy Jacobson, and Danny Sleator wrote the first computer 
program for analyzing Sprouts (see bibliography). They found that in 
normal Sprouts the first player wins when n (the number of spots) is 3, 

4, 5, 9, 10, and 11. Beyond n = 11 their program w&s unable to cope 
with sprouting complexity. They did not go beyond n = 9 for misere 
Sprouts. The program proved a first player win when n = 1,5, and 6. 

The authors conjecture that in normal Sprouts the first player wins 
if n = 3, 4, or 5 (modulo 6) and wins in misere Sprouts if n = a or 1 
(modulo 5). They add that Sleator believes both conjectures, but Ap
plegate disbelieves both. Details about their program can be obtained 
from Applegate or Jacobson at Bell Labs, in Murray Hill, NJ, or Sleator 
at Carnegie Mellon University. 

Answers 

Why is the game of Brussels Sprouts, which appears to be a 
more sophisticated version of Sprouts, considered a joke by its inven
tor, John Horton Conway? The answer is that it is impossible to play 
Brussels Sprouts either well or poorly because every game must end in 
exactly 5n 2 moves, where n is the number of initial crosses. If played 
in standard form (the last to play is the winner), the game is always won 
by the first player if it starts with an odd number of crosses, by the sec
ond player if it starts with an even number. (The reverse is true, of 
course, in misere play.) After introducing someone to Sprouts, which 
is a genuine contest, one can switch to the fake game of Brussels 
Sprouts, make bets, and always know in advance who will win every 
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game. I leave to the reader the task of proving that each game must end 
in 5n - 2 moves. 
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Chapter 37 Harary's 
Qeneralized 
Ticktacktoe 

The world's simplest, oldest, and most popular pencil-and
paper game is still ticktacktoe, and combinatorial mathematicians, 
often with the aid of computers, continue to explore unusual varia
tions and generalizations of it. In one variant that goes back to ancient 
times the two players are each given three counters, and they take turns 
first placing them on the 3 x 3 board and then moving them from cell 
to cell until one player gets his three counters in a row. Moving-counter 
ticktacktoe is the basis for a number of modern commercial games, 
such as John Scarne's Teeko and a game called Touche, in which con
cealed magnets cause counters to flip over and become opponent 
pieces. 

Standard ticktacktoe can obviously be generalized to larger fields. 
For example, the old Japanese game of Go-Moku ("five stones") is es
sentially five-in-a-row ticktacktoe played on a Go board. Another way 
to generalize the game is to play it on "boards" of three or more di
menSIOns. 

In March, 1977, Frank Harary devised a delightful new way to gen
eralize ticktacktoe. Harary was then a mathematician at the University 
of Michigan. He is now the Distinguished Professor of Computer Sci
ence at New Mexico State University, in Las Cruces. He has been called 
Mr. Graph Theory because of his tireless, pioneering work in this 
rapidly growing field that is partly combinatorial and partly topologi
cal. Harary is the founder of the Journal of Combinatorial Theory and 
the Journal of Graph Theory, and the author of Graph Theory, consid
ered the world over to be the definitive textbook on the subject. His pa
pers on graph theory, written alone or in collaboration with others, 
number more than 500. Harary ticktacktoe, as I originally called his 
generalization of the game, opens up numerous fascinating areas of 
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recreational mathematics. Acting on his emphatic request, I now call it 
animal ticktacktoe for reasons we shall see below. 

We begin by observing that standard ticktacktoe can be viewed as a 
two-color geometric-graph game of the type Harary calls an achieve
ment game. Replace the nine cells of the ticktacktoe board with nine 
points joined by lines, as is shown in Figure 37.1. The players are each 
assigned a color, and they take turns coloring points on the graph. The 
first player to complete a straight line of three points in his color wins. 
This game is clearly isomorphic with standard ticktacktoe. It is well 
known to end in a draw if both players make the best possible moves. 

Figure 31.1. Ticktacktoe as a two-coloring game 

Let us now ask: What is the smallest square on which the first player 
can force a win by coloring a straight (non-diagonal) three-point path? 
It is easy to show that it is a square of side four. Harary calls this side 
length the board number b of the game. It is closely related to the Ram
sey number of generalized Ramsey graph theory, a number that plays 
an important part in the Ramsey games. (Ramsey theory is a field in 
which Harary has made notable contributions. It was in a 1972 survey 
paper on Ramsey theory that Harary first proposed making a general 
study of games played on graphs by coloring the graph edges.) Once we 
have determined the value of b we can ask a second question. In how 
few moves can the first player win? A little doodling shows that on a 
board of side four the first player can force a win in only three moves. 
Harary calls this the move number m of the game. 

In ticktacktoe a player wins by taking cells that form a straight, order-
3 polyomino that is either edge- or corner-connected. (The corner-
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If the animal chosen as the objective of a game is a loser, the second 
player can always force a draw, but he can never force a win. The clever 
proof of this fact is well known and applies to most ticktacktoelike 
games. Assume that the second player has a winning strategy. The first 
player can "steal" the strategy by first making an irrelevant opening 
move (which can never be a liability) and thereafter playing the win
ning strategy. This finding contradicts the assumption that the second 
player has a winning strategy, and so that assumption must be false. 
Hence the second player can never force a win. If the animal is a win
ner and b is known, we next seek m, the minimum number of moves 
in which the game can be won. 

For the i-cell animal (the monomino), which is trivially a winner, b 
and m are both equal to 1. When, as in this case, m is equal to the num
ber of cells in the animal, Harary calls the game economical, because a 
player can win it without having to take any cell that is not part of the 
animal. The game in which the objective is the only 2-cell animal (the 
domino) is almost as trivial. It is also economical, with band m both 
equal to 2. The games played with the two 3-cell animals (the tromi
noes) are slightly more difficult to analyze, but the reader can easily 
demonstrate that both are economical: for the L-shaped 3-cell animal b 
and m are both equal to 3, and for the straight 3-cell animal b equals 4 
and m equals 3. This last game is identical with standard ticktacktoe ex
cept that corner-connected, or diagonal, rows of three cells are not 
counted as wins. 

It is when we turn to the 4-cell animals (the tetrominoes) that the pro
ject really becomes interesting. Harary has given each of the five order-
4 animals names, as is shown in Figure 37.2. Readers may enjoy 
proving that the band m numbers given in the illustration are correct. 
Note that Fatty (the square tetromino) has no such numbers and so is 
labeled a loser. It was Andreas R. Blass, then one of Harary's colleagues 
at Michigan, who proved that the first player cannot force Fatty on a 
field of any size, even on the infinite lattice. Blass's result was the first 
surprise of the investigation into animal ticktacktoe. From this finding 
it follows at once that any larger animal containing a 2 x 2 square also 
is a loser: the second player simply plays to prevent Fatty'S formation. 
More generally, any animal that contains a loser of a lower order is it
self a loser. Harary calls a loser that contains no loser of lower order a 
basic loser. Fatty is the smallest basic loser. 

The proof that Fatty is a minimal loser is so simple and elegant that 
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depending on the animal chosen either the first player will win or the 
second player will force a draw. As in ticktacktoe between inexpert 
players, however, if this knowledge is lacking, the game can be enter
taining. If the animal chosen as the objective of the game is a winner, 
the game is best played on a board of side b or b - 1. (Remember that a 
square of side b - 1 is the largest board on which the first player can
not force a win.) 

All the variations and generalizations of animal ticktacktoe that have 
been considered so far are, as Harary once put it, "Ramseyish." For ex
ample, one can play the misere, or reverse, form of any game-in 
Harary's terminology an avoidance game-in which a player wins by 
forcing his opponent to color the chosen animal. 

Avoidance games are unusually difficult to analyze. The second 
player trivially wins if the animal to be avoided is the monomino. If the 
domino is to be avoided, the second player obviously wins on the 2 x 
2 square and almost as obviously on the 2 x 3 rectangle. 

On a square board of any size the first player can be forced to com
plete the L-shaped 3-cell animal. Obviously the length of the square's 
side must be at least 3 for the game to be meaningful. If the length of 
the side is odd, the second player will win if he follows each of his op
ponent's moves by taking the cell symmetrically opposite the move 
with respect to the center of the board. If the first player avoids taking 
the center, he will be forced to take it on his last move and so will lose. 
If he takes it earlier in the game without losing, the second player 
should follow with any safe move. If the first player then bikes the cell 
that is symmetrically opposite the second player's move with respect 
to the center, the second player should again make a harmless move, 
and so on; otherwise he should revert to his former strategy. If the 
length of the square's side is even, this type of symmetrical play leads 
to a draw, but the second player can still win by applying more com
plicated tactics. 

On square boards the straight 3-cell animal cannot be forced on the 
first player. The proof of this fact is a bit difficult, even for the 3 x 3 
square, but as a result no larger animal containing the straight 3-cell 
species can be forced on any square board. (The situation is analogous 
to that of basic losers in animal-achievement games.) Hence among the 
4-cell animals only Fatty and Tippy remain as possible nondraws. Fatty 
can be shown to be a draw on any square board, but Tippy can be 
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forced on the first player on all square boards of odd side. The complete 
analysis of all animal-avoidance games is still in the early stages and 
appears to present difficult problems. 

Harary has proposed many other nontrivial variants of the basic an
imal games. For example, the objective of a game can be two or more 
different animals. In this case the first player can try to form one ani
mal and the second player, the other, or both players can try to form ei
ther one. In addition, achievement and avoidance can be combined in 
the same game, and nonrectangular boards can be used. It is possible 
to include three or more players in any game, but this twist introduces 
coalition play and leads to enormous complexities. The rules can also 
be revised to accept corner-connected animals or animals that are both 
edge- and corner-connected. At the limit, of course, one could make 
any pattern whatsoever the objective of a ticktacktoelike game, but such 
broad generalizations usually lead to games that are too complicated to 
be interesting. 

Another way of generalizing these games is to play them with polyi
amonds (identical edge-joined equilateral triangles) or polyhexes (iden
tical edge-joined regular hexagons) respectively on a regular triangular 
field or a regular hexagonal field. One could also investigate games 
played with these animals on less regular fields. An initial investigation 
of triangular forms, by Harary and Heiko Harborth, is listed in the bib
liography. 

The games played with square animals can obviously be extended to 
boards of three or more dimensions. For example, the 3-space analogue 
of the polyomino is the polycube: n unit cubes joined along faces. 
Given a polycube, one could seek b and m numbers based on the small
est cubical lattice within which the first player can force a win and try 
to find all the polycubes that are basic losers. This generalization is al
most totally unexplored, but see the bibliography for a paper on the 
topic by Harary and Michael Weisbach. 

As I have mentioned, Blass, now at Pennsylvania University, is one 
ofHarary's main collaborators. The others include Exoo, A. Kabell, and 
Heiko Harborth, who is investigating games with the triangular and 
hexagonal cousins of the square animals. Harary is still planning a book 
on achievement and avoidance games in which all these generaliza
tions of ticktacktoe and many other closely related games will be 
explored. 
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Addendum 
In giving the proof that a second player cannot have the win in 

most ticktacktoelike games, I said that if the first player always wins on 
a board of a certain size, he also wins on any larger board. This is true 
of the square boards with which Harary was concerned, but is not nec
essarily true when such games are played on arbitrary graphs. A. K. 
Austin and C. J. Knight, mathematicians at the University of Sheffield, 
in England, sent the following counterexample. 

Consider the graph at the left of Figure 37.5, on which three-in-a-row 
wins. The first player wins by taking A. The second player has a choice 
of taking a point in either the small or the large triangle. Whichever he 
chooses, the first player takes a corner point in the other triangle. The 
opponent must block the threatened win, then a play in the remaining 
corner of the same triangle forces a win. 

__ ----~~----__ A ~------4_------~A 

Figure 31.5. First player wins on graph at left, but second player can force a draw on en
larged graph at right. 

Now enlarge the "board" by adding two points as shown on the right 
in Figure 37.5. The second player can draw by playing at B. If the first 
player does not start with A, the second player draws by taking A. 
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Chapter 38 The New Eleusis 
I shall always consider the best guesser 
the best Prophet. -CICERO, De Divinatione 

Don't never prophesy-onless ye know. 

-JAMES RUSSELL LOWELL, The Biglow Papers 

In June 1959, I had the privilege of introducing in Scientific 
American a remarkable simulation game called Eleusis. The game, 
which is played with an ordinary deck of cards, is named for the an
cient Eleusinian mysteries, religious rites in which initiates learned a 
cult's secret rules. Hundreds of ingenious simulation games have been 
developed for modeling various aspects of life, but Eleusis is of special 
interest to mathematicians and scientists because it provides a model 
of induction, the process at the very heart of the scientific method. 
Since then Eleusis has evolved into a game so much more exciting to 
play than the original version that I feel I owe it to readers to bring them 
up to date. I will begin, however, with some history. 

Eleusis was invented in 1956 by Robert Abbott of New York, who at 
the time was an undergraduate at the University of Colorado. He had 
been studying that sudden insight into the solution of a problem that 
psychologists sometimes call the "Aha" reaction. Great turning points 
in science often hinge on these mysterious intuitive leaps. Eleusis 
turned out to be a fascinating simulation of this facet of science, even 
though Abbott did not invent it with this in mind. In 1963 Abbott's 
complete rules for the game appeared in his book, Abbott's New Card 
Games (hardcover, Stein & Day; paperback, Funk & Wagnalls). 

Martin D. Kruskal, a distinguished mathematical physicist at Prince
ton University, became interested in the game and made several im
portant improvements. In 1962 he published his rules in a monograph 
titled Delphi: A Game of Inductive Reasoning. Many college profes
sors around the country used Eleusis and Delphi to explain scientific 
method to students and to model the Aha process. Artificial intelli
gence scientists wrote computer programs for the game. At the System 
Development Corporation in Santa Monica, research was done on Eleu-
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sis under the direction of J. Robert Newman. Litton Industries based a 
full-page advertisement on Eleusis. Descriptions of the game appeared 
in European books and periodicals. Abbott began receiving letters from 
allover the world with suggestions on how to make Eleusis a more 
playable game. 

In 1973 Abbott discussed the game with John Jaworski, a young 
British mathematician who had been working on a computer version of 
Eleusis for teaching induction. Then Abbott embarked on a three-year 
program to reshape Eleusis, incorporating all the good suggestions he 
could. The new game is not only more exciting, its metaphorical level 
has been broadened as well. With the introduction of the roles of 
Prophet and False Prophet the game now simulates the search for any 
kind of truth. Here, then, based on a communication from Abbott, are 
the rules of New Eleusis as it is now played by aficionados. 

At least four players are required. As many as eight can play, but be
yond that the game becomes too long and chaotic. 

Two standard decks, shuffled together are used. (Occasionally a 
round will continue long enough to require a third deck.) A full game 
consists of one or more rounds (hands of play) with a different player 
dealing each round. The dealer may be called by such titles as God, Na
ture, Tao, Brahma, the Oracle (as in Delphi), or just Dealer. 

The dealer's first task is to make up a "secret rule." This is simply a 
rule that defines what cards can be legally played during a player's 
turn. In order to do well, players must figure out what the rule is. The 
faster a player discovers the rule, the higher his score will be. 

One of the cleverest features of Eleusis is the scoring (described 
below), which makes it advantageous to the dealer to invent a rule that 
is neither too easy to guess nor too hard. Without this feature dealers 
would be tempted to formulate such complex rules that no one would 
guess them, and the game would become dull and frustrating. 

An example of a rule that is too simple is: "Playa card of a color dif
ferent from the color of the last card played." The alternation of colors 
would be immediately obvious. A better rule is: "Play so that primes 
and nonprimes alternate." For mathematicians, however, this might be 
too simple. For anyone else it might be too difficult. An example of a 
rule that is too complicated is: "Multiply the values of the last 3 cards 
played and divide by 4. If the remainder is 0, playa red card or a card 
with a value higher than 6. If the remainder is 1, playa black card or a 
picture card. If the remainder is 2, play an even card or a card with a 
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value lower than 6. If the remainder is 3, play an odd card or a 10." No 
one will guess such a rule, and the dealer's score will be low. 

Here are three examples of good rules for games with inexperienced 
players: 

1. If the last legally played card was odd, playa black card. Otherwise 
playa red one. 

2. If the last legally played card was black, playa card of equal or higher 
value. If the last card played was red, playa card of equal or lower 
value. (The values of the jack, queen, king, and ace are respectively 
11, 12, 13, and 1.) 

3. The card played must be either of the same suit or the same value as 
the last card legally played. 

The secret rules must deal only with the sequence of legally played 
cards. Of course, advanced players may use rules that refer to the en
tire pattern of legal and illegal cards on the table, but such rules are 
much harder to guess and are not allowed in standard play. Under no 
circumstances should the secret rule depend on circumstances external 
to the cards. Examples of such improper rules are those that depend on 
the sex of the last player, the time of day, whether God scratches his (or 
her) ear, and so on. 

The secret rule must be written down in unambiguous language, on 
a sheet of paper that is put aside for future confirmation. As Kruskal 
proposed, the dealer may give a truthful hint before the play begins. For 
example, he may say "Suits are irrelevant to the rule," or "The rule de
pends on the two previously played cards." 

After the secret rule has been recorded, the dealer shuffles the dou
ble deck and deals 14 cards to each player and none to himself. He 
places a single card called the "starter" at the extreme left of the play
ing surface, as is indicated in Figure 38.1. To determine who plays first 
the dealer counts clockwise around the circle of players, starting with 
the player on his left and excluding himself. He counts until he reaches 
the number on the starter card. The player indicated at that number be
gins the play that then continues clockwise around the circle. 

A play consists of placing one or more cards on the table. To playa 
single card the player takes a card from his hand and shows it to every
one. If according to the rule the card is playable, the dealer says "Right." 
The card is then placed to the right of the starter card, on the "main line" 
of correctly played cards extending horizontally to the right. 
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Figure 38.1. A typical round of Eleusis at an early stage 

String played 
incorrectly 
(the 9. is wrong) 

If the card fails to meet the rule, the dealer says "Wrong." In this 
case the card is placed directly below the last card played. Vertical 
columns of incorr€!ct cards are called "sidelines." (Kruskal introduced 
both the layout and the terminology of the main line and sidelines.) 
Thus consecutive incorrect plays extend the same sideline downward. 
If a player displays a wrong card, the dealer gives him two more cards 
as a penalty, thereby increasing his hand. 

If a player thinks he has discovered the secret rule, he may playa 
"string" of 2, 3, or 4 cards at once. To playa string he overlaps the 
cards slightly to preserve their order and shows them to everyone. If all 
the cards in the string conform to the rule, the dealer says "Right." 
Then all the cards are placed on the main line with no overlapping, as 
if they were correctly played single cards. 

If one or more cards in a string are wrong, the dealer declares the en
tire string wrong. He does not indicate which cards do not conform to 
the rule. The wrong cards are left overlapping to keep their identity as 
a string and the entire string goes below the last card played. The player 
is then dealt twice as many cards as there are in the string. 

The layout shown in Figure 38.1 demonstrates all the rules of Eleu
sis mentioned so far. The dealer's secret rule for this layout is the first 
of the three given above. 

Players improve their score by getting rid of as many cards as possi
ble, and of course they can do this best if they guess the secret rule. At 
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the start of a round there is little information to go on, and plays are 
necessaril y random. As the round continues and more and more infor
mation is added to the layout, the rule becomes steadily easier to guess. 

It may happen that a player thinks he knows the secret rule but finds 
he has no card that can be legally played. He then has the option of de
claring "No play." In this case he shows his hand to everyone. If the 
dealer declares him right and his hand contains four cards or less, the 
cards are returned to the deck and the round ends. If he is right and has 
five or more cards, then his cards are put back into the deck, and he is 
dealt a fresh hand with four fewer cards than he previously held. 

If the player is wrong in declaring no play, the dealer takes one of his 
correct cards and puts it on the main line. The player keeps the rest of 
his hand and, as a penalty, is dealt five more cards. A player who thinks 
he has no correct play but has not figured out the secret rule should re
alize that the odds are against his using the no play option successfully. 
He would do better to playa card at random. 

When a player thinks he knows the secret rule, he has the opportu
nity to prove it and increase his score. He does so by declaring himself 
a Prophet. The Prophet immediately takes over the dealer's duties, call
ing plays right or wrong and dealing penalty cards when the others 
play. He can declare himself a Prophet only if all the following condi
tions prevail: 

1. He has just played (correctly or incorrectly), and the next player has 
not played. 

2. There is not already a Prophet. 
3. At least two other players besides himself and the dealer are still in 

the round. 
4. He has not been a Prophet before in this round. 

When a player declares himself a Prophet, he puts a marker on the 
last card he played. A chess king or queen may be used. The Prophet 
keeps his hand but plays no more cards unless he is overthrown. The 
play continues to pass clockwise around the player'S circle, skipping 
the Prophet. 

Each time a player plays a card or string, the Prophet calls the play 
right or wrong. The dealer then either validates or invalidates the 
Prophet's statement by saying "Correct" or "Incorrect." If the Prophet 
is correct, the card or string is placed on the layout-on the main line 
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if right or on a sideline if wrong-and the Prophet gives the player 
whatever penalty cards are required. 

If the dealer says "Incorrect," the Prophet is instantly overthrown. He 
is declared a False Prophet. The dealer removes the False Prophet's 
marker and gives him five cards to add to his hand. He is not flllowed 
to become a Prophet again during the same round, although any other 
player may do so. The religious symbolism is obvious, but as Abbott 
points out, there is also an amusing analogy here with science: "The 
Prophet is the scientist who publishes. The False Prophet is the scien
tist who publishes too early." It is the fun of becoming a Prophet and 
of overthrowing a False Prophet that is the most exciting feature of 
New Eleusis. 

After a Prophet's downfall the dealer takes over his former duties. He 
completes the play that overthrew the Prophet, placing the card or 
string in its proper place on the layout. If the play is wrong, however, 
no penalty cards are given. The purpose of this exemption is to en
courage players to make unusual plays-even deliberately wrong 
ones-in the hope of overthrowing the Prophet. In Karl Popper's lan
guage, it encourages scientists to think of ways of "falsifying" a col
league's doubtful theory. 

If there is a Prophet and a player believes he has no card to play, 
things get a bit complicated. This seldom happens, and so you can skip 
this part of the rul~s now and refer to it only when the need arises. 
There are four possibilities once the player declares no play: 

1. Prophet says, "Right"; dealer says, "Correct." The Prophet simply 
follows the procedure described earlier. 

2. Prophet says, "Right"; dealer says, "Incorrect." The Prophet is im
mediately overthrown. The dealer takes over and handles everything 
as usual, except that the player is not given any penalty cards. 

3. Prophet says, "Wrong"; dealer says, "Incorrect." In other words, the 
player is right. The Prophet is overthrown, and the dealer handles the 
playas usual. 

4. Prophet says, "Wrong"; dea~er says, "Correct." In this case the 
Prophet now must pick one correct card from the player's hand and 
put it on the main line. If he does this correctly, he deals the player 
the five penalty cards and the game goes on. It is possible, however, 
for the Prophet to make a mistake at this point and pick an incorrect 

The New Eleusis 509 



card. If that happens, the Prophet is overthrown. The wrong card 
goes back into the player's hand and the dealer takes over with the 
usual procedure, except that the player is not given penalty cards. 

After 30 cards have been played and there is no Prophet in the game, 
players are expelled from the round when they make a wrong play, 
that is, if they playa wrong card or make a wrong declaration of no 
play. An expelled player is given the usual penalty cards for his final 
play and then drops out of the round, retaining his hand for scoring. 

If there is a Prophet, expulsions are delayed until at least 20 cards 
have been laid down after the Prophet's marker. Chess pawns are used 
as markers so that it is obvious when expulsion is possible. As long as 
there is no Prophet, a white pawn goes on every tenth card placed on 
the layout. If there is a Prophet, a black pawn goes on every tenth card 
laid down after the Prophet's marker. When a Prophet is overthrown, 
the black pawns and the Prophet's marker are removed. 

A round can therefore go in and out of the phase when expulsions are 
possible. For example, if there are 35 cards on the layout and no 
Prophet, Smith is expelled when he plays incorrectly. Next Jones plays 
correctly and declares herself a Prophet. If Brown then plays incor
rectly, she is not expelled because 20 cards have not yet been laid down 
after the Prophet's marker. 

A round can end in two ways: (1) when a player runs out of cards or 
(2) when all players (excluding a Prophet, if there is one) have been ex
pelled. 

The scoring in Eleusis is as follows: 

1. The greatest number of cards held by anyone (including the Prophet) 
is called the "high count." Each player (including the Prophet) sub
tracts the number of cards in his hand from the high count. The dif
ference is his score. If he has no cards, he gets a bonus of four points. 

2. The Prophet, if there is one, also gets a bonus. It is the number of 
main-line cards that follow his marker plus twice the number of side
line cards that follow his marker, that is, a point for each correct card 
since he became a Prophet and two points for each wrong card. 

3. The dealer's score equals the highest score of any player. There is one 
exception: If there is a Prophet, count the number of cards (right and 
wrong) that precede the Prophet's marker and double this number; if 
the result is smaller than the highest score, the dealer's score is that 
smaller number. 
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If there is time for another round, a new dealer is chosen. In princi
ple the game ends after every player has been dealer, but this could take 
most of a day. To end the game before everyone has dealt, each player 
adds his scores for all the rounds played plus 10 more points if he has 
not been a dealer. This compensates for the fact that dealers tend to 
have higher-than-average scores. 

The layout in Figure 38.2 shows the end of a round with five play
ers. Smith was the dealer. The round ended when Jones got rid of her 
cards. Brown was the Prophet and ended with 9 cards. Robinson was 
expelled when he incorrectly played the 10 of spades; he had 14 cards. 
Adams had 17 cards at the end of the game. 

The high count is 17. Therefore Adams' score is 17 minus 17, or O. 

Robinson's score is 17 minus 14, or 3. Jones receives 17 minus 0, or 17, 
plus a 4-point bonus for having no cards, so that her score is 21. Brown 
gets 17 minus 9, or 8, plus the Prophet's bonus of 34 (12 main-line and 
11 sideline cards following his marker), making a total score of 42. 
This is the highest score for the round. Twice the number of cards pre
ceding the Prophet's marker is 50. Smith, the dealer, receives 42 be
cause it is the smaller of the two numbers 42 and 50. 

Readers are invited to look over this layout and see if they can guess 
the secret rule. The play has been standard, and so that the rule is con
fined strictly to the main-line sequence. 

Some miscellaneous advice from Abbott should help inexperienced 
Eleusis players. Since layouts tend to be large, the best way to play the 
game is on the floor. Of course a large table can be used as well as 
miniature cards on a smaller table. If necessary, the main line can be 
broken on the right and continued below on the left. 

Remember that in Eleusis the dealer maximizes his score by choos
ing a rule that is neither too easy nor too difficult. Naturally this de
pends both on how shrewdly the dealer estimates the ability of the 
players and how accurately he evaluates the complexity of his rule. 
Both estimates require considerable experience. Beginning players tend 
to underestimate the complexity of their rules. 

For example, the rule used in the first layout is simple. Compare it 
with: "Playa red card, then a black card, then an odd card, then an even 
card, and repeat cyclically." This rule seems to be simpler, but in prac
tice the shift from the red-black variable to the even-odd variable 
makes it difficult to discover. Abbott points out that in general restric
tive rules that allow only about a fourth of the cards to be acceptable on 
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Figure 38.2. Layout at the end of a round of Eleusis includes 
a main line, several sidelines, and various markers. White 
chess pawns are placed on every tenth card played in the 
round and black pawns are placed on every tenth card 
played after a Prophet's marker. 
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any given play are easier to guess than less restrictive rules that allow 
half or more of the cards to be acceptable. 

I shall not belabor the ways in which the game models a search for 
truth (scientific, mathematical, or metaphysical) since I discussed them 
in my first column on the game. I shall add only the fantasy that God 
or Nature may be playing thousands, perhaps a countless number, of si
multaneous Eleusis games with intelligences on planets in the uni
verse, always maximizing his or her pleasure by a choice of rules that 
the lesser minds will find not too easy and not too hard to discover if 
given enough time. The supply of cards is infinite, and when a player 
is expelled, there are always others to take his place. 

Prophets and False Prophets come and go, and who knows when 
one round will end and another begin? Searching for any kind of truth 
is an exhilarating game. It is worth remembering that there would be no 
game at all unless the rules were hidden. 

Addendum 

Two unusual and excellent induction games have been in
vented since Eleusis and Delphi, both with strong analogies to scien-
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tific method. For Sid Sackson's board game Patterns, see Chapter 4 of 
my Mathematical Circus (Knopf, 1979). Pensari, using 32 special cards, 
was the brainchild of Robert Katz. His Pensari Guide Book (1986), 

which accompanies the cards, runs to 42 pages. Full-page advertise
ments for Pensari appeared in Science News in a number of 1987 is
sues. 

Years ago, while reading The Life and Letters of Thomas H. Huxley, 
edited by his son Leonard (Vol. 1, Appleton, 1901, p. 262), I came 
across the following delightful paragraph. It is from a letter Huxley 
sent to Charles Kingsley in 1863. 

This universe is, I conceive, like to a great game being played out, and 
we poor mortals are allowed to take a hand. By great good fortune the 
wiser among us have made out some few of the rules of the game, as at 
present played. We call them "Laws of Nature," and honour them be
cause we find that if we obey them we win something for our pains. The 
cards are our theories and hypotheses, the tricks our experimental veri
fications. But what sane man would endeavour to solve this problem: 
given the rules of a game and the winnings, to find whether the cards are 
made of pasteboard or goldleaf? Yet the problem of the metaphysicians 
is to my mind no saner. 

In recent years Robert Abbott has been inventing bizarre mazes. 
Many of them can be found in his book Mad Mazes, published in 1990 
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by Bob Adams. "A Genius for Games," an article about Abbott by David 
Buxbaum, appeared in the Mensa Bulletin, May 1979. 

Answers 
The problem was to guess the secret rule that determined the 

final layout for a round in the card game Eleusis. The rule was: "If the 
last card is lower than the preceding legally played card, playa card 
higher than the last card, otherwise play a lower one. The first card 
played is correct unless it is equal to the starter card." 
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Chapter 39 Time Travel 
"It's against reason," said Filby. 
"What reason?" said the Time Traveller. 

-B.G. WELLS, The Time Machine 

H. G. Wells's short novel The Time Machine, an undisputed 
masterpiece of science fiction, was not the first story about a time ma
chine. That distinction belongs to "The Clock That Went Backward," a 
pioneering but mediocre yarn by Edward Page Mitchell, an editor of the 
New York Sun. It was published anonymously in the Sun on Septem
ber 18, 1881, seven years before young Wells (he was only 22) wrote the 
first version of his famous story. 

Mitchell's tale was so quickly forgotten that science-fiction buffs did 
not even know of its existence until Sam Moskowitz reprinted it in his 
anthology of Mitchell's stories, The Crystal Man (1973). Nor did anyone 
pay much attention to Wells's fantasy when it was serialized in 1888 in 
The Science Schools Journal under the horrendous title "The Chronic 
Argonauts." Wells himself was so ashamed of this clumsily written 
tale that he broke it off after three installments and later destroyed all 
the copies he could find. A completely rewritten version, "The Time 
Traveller's Story," was serialized in The New Review beginning in 1894. 
When it came out as a book in 1895, it brought Wells instant recogni
tion. 

One of the many remarkable aspects of Wells's novella is the intro
duction in which the Time Traveller (his name is not revealed, but in 
Wells's first version he is called Dr. Nebo-gipfel) explains the theory be
hind his invention. Time is a fourth dimension. An instantaneous cube 
cannot exist. The cube we see is at each instant a cross section of a 
"fixed and unalterable" four-dimensional cube having length, breadth, 
thickness, and duration. "There is no difference between Time and any 
of the three dimensions of Space," says the Time Traveller, "except 
that our consciousness moves along it." If we could view a person from 
outside our space-time (the way human history is viewed by the Eter-
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nals in Isaac Asimov's The End of Eternity or by the Tralfamadorians in 
Kurt Vonnegut's Slaughterhouse-Five), we would see that person's past, 
present, and future all at once, just as in 3-space we see all parts of a 
wavy line that traces on a time chart the one-dimensional spatial move
ments of mercury in a barometer. 

Reading these remarks today, one might suppose that Wells had been 
familiar with Hermann Minkowski's great work of tidying up Einstein's 
special theory of relativity. The line along which our consciousness 
crawls is, of course, our "world line": the line that traces our move
ments in 3-space on a four-dimensional Minkowski space-time graph. 
(My World Line is the title of George Gamow's autobiography.) But 
Wells's story appeared in its final form 10 years before Einstein pub
lished his first paper on relativity! 

When Wells wrote his story, he regarded the Time Traveller's theories 
as little more than metaphysical hanky-panky designed to make his fan
tasy more plausible. A few decades later physicists were taking such 
hanky-panky with the utmost seriousness. The notion of an absolute 
cosmic time, with absolute simultaneity between distant events, was 
swept out of physics by Einstein's equations. Virtually all physicists 
now agree that if an astronaut were to travel to a distant star and back, 
moving at a velocity close to that of light, he could in theory travel thou
sands of years into the earth's future. Kurt Godel constructed a rotating 
cosmological model in which one can, in principle, travel to any point 
in the world's past as well as future, although travel to the past is ruled 
out as physically impossible. In 1965 Richard P. Feynman received a 
Nobel prize for his space-time approach to quantum mechanics in which 
antiparticles are viewed as particles momentarily moving into the past. 

Hundreds of science-fiction stories and in recent years many movies, 
have been based on time travel, many of them raising questions about 
time and causality that are as profound as they are sometimes funny. To 
give the most hackneyed example, suppose you traveled back to last 
month and shot yourself through the head. Not only do you know be
fore making the trip that nothing like this happened but, assuming that 
somehow you could murder your earlier self, how could you exist next 
month to make the trip? Fredric Brown's "First Time Machine" opens 
with Dr. Grainger exhibiting his machine to three friends. One of them 
uses the device to go back 60 years and kill his hated grandfather when 
the man was a youth. The story ends 60 years later with Dr. Grainger 
showing his time machine to two friends. } 

/ 
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It must not be thought that logical contradictions arise only when 
people travel in time. The transportation of anything can lead to para
dox. There is a hint of this in Wells's story. When the Time Traveller 
sends a small model of his machine into the past or the future (he does 
not know which), his guests raise two objections. If the time machine 
went into the future, why do they not see it now, moving along its 
world line? If it went into the past, why did they not see it there before 
the Time Traveller brought it into the room? 

One of the guests suggests that perhaps the model moves so fast in 
time it becomes invisible, like the spokes of a rotating wheel. But what 
if a time-traveling object stops moving? If you have no memory of a 
cube on the table Monday, how could you send it back to Monday's 
table on Tuesday? And if on Tuesday you go into the future, put the 
cube on the table Wednesday, then return to Tuesday, what happens on 
Wednesday if on Tuesday you destroy the cube? 

Objects carried back and forth in time are sources of endless confu
sion in certain science-fiction tales. Sam Mines once summarized the 
plot of his own story. "Find the Sculptor," as follows: "A scientist builds 
a time machine, goes 500 years into the future. He finds a statue of him
self commemorating the first time traveler. He brings it back to his own 
time and it is subsequently set up in his honor. You see the catch here? 
It had to be set up in his own time so that it would be there waiting for 
him when he went into the future to find it. He had to go into the future 
to bring it back so it could be set up in his own time. Somewhere a 
piece of the cycle is missing. When was the statue made?" 

A splendid example of how paradox arises, even when nothing more 
than messages go back in time, is provided by the conjecture that 
tachyons, particles moving faster than light, might actually exist. Rela
tivity theory leaves no escape from the fact that anything moving faster 
than light wou~d move backward in time. This is what inspired A. H. 
Reginald Buller, a Canadian botanist, to write his often quoted limerick: 

There was a young lady named Bright 
Who traveled much faster than light. 

She started one day 
In the relative way, 

And returned on the previous night. 

Tachyons, if they exist, clearly cannot be used for communication. 
G. A. Benford, D. L. Book, and W. A. Newcomb have chided physicists 
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who are searching for tachyons for overlooking this. In "The Tachyonic 
Antitelephone," they point out that certain methods of looking for 
tachyons are based on interactions that make possible, in theory, com
munication by tachyons. Suppose physicist Jones on the earth is in 
communication by tachyonic antitelephone with physicist Alpha in 
another galaxy. They make the following agreement. When Alpha re
ceives a message from Jones, he will reply immediately. Jones promises 
to send a message to Alpha at three o'clock earth time, if and only ifhe 
has not received a message from Alpha by one o'clock. Do you see the 
difficulty? Both messages go back in time. If Jones sends his message at 
three, Alpha's reply could reach him before one. "Then," as the au
thors put it, "the exchange of messages will take place if and only if it 
does not take place ... a genuine ... causal contradiction." Large sums 
of money have already gone down the drain, the authors believe, in ef
forts to detect tachyons by methods that imply tachyonic communica
tion and are therefore doomed to failure. 

Time dilation in relativity theory, time travel in G6del's cosmos, and 
reversed time in Feynman's way of viewing antiparticles are so care- I 

fully hedged by other laws that contradictions cannot arise. In most 
time-travel stories the paradoxes are skirted by leaving out any incident 
that would generate a paradox. In some stories, however, logical con
tradictions explicitly arise. When they do, the author may leave them 
paradoxical to bend the reader's mind or may try to escape from para
dox by making clever assumptions. 

Before discussing ways of avoiding the paradoxes, brief mention 
should be made of what might be called pseudo-time-travel stories in 
which there is no possibility of contradiction. There can be no paradox, 
for example, if one simply observes the past but does not interact with 
it. The electronic machine in Eric Temple Bell's "Before the Dawn," 
which extracts motion pictures of the past from imprints left by light 
on ancient rocks, is as free of possible paradox as watching a video 
tape of an old television show. And paradox cannot arise if a person 
travels into the future by going into suspended animation, like Rip van 
Winkle, or Woody Allen in his motion picture Sleeper, or the sleepers 
in such novels as Edward Bellamy's Looking Backward or Wells's When 
the Sleeper Wakes. No paradox can arise if one dreams of the past (as 
in Mark Twain's A Connecticut Yankee at King Arthur's Court or in the 
1986 motion picture Peggy Sue Got Married), or goes forward in a rein
carnation, or lives for a while in a galaxy where change is so slow in re-
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lation to earth time that when he returns, centuries on the earth have 
gone by. But when someone actually travels to the past or the future, in
teracts with it, and returns, enormous difficulties arise. 

In certain restricted situations paradox can be avoided by invoking 
Minkowski's "block universe," in which all history is frozen, as it were, 
by one monstrous space-time graph on which all world lines are eter
nal and unalterable. From this deterministic point of view one can 
allow certain kinds of time travel in either direction, although one must 
pay a heavy price for it. Hans Reichenbach, in a muddled discussion in 
The Philosophy of Space and Time (Dover, 1957, pp. 140-2), puts it this 
way: Is it possible for a person's world line to "loop" in the sense that 
it returns him to a spot in space-time, a spot very close to where he 
once had been and where some kind of interaction, such as speech, oc
curs between the two meeting selves? Reichenbach argues that this 
cannot be ruled out on logical grounds; it can only be ruled out on the 
ground that we would have to give up two axioms that are strongly con
firmed by experience: (1) A person is a unique individual who main
tains his identity as he ages, and (2) a person's world line is linearly 
ordered so that what he considers "now" is always a unique spot along 
the line. (Reichenbach does not mention it, but we would also have to 
abandon any notion of free will.) If we are willing to give up these 
things, says Reichenbach, we can imagine without paradox certain 
kinds of loops in a person's world line. 

Reichenbach's example of a consistent loop is as follows. One day 
you meet a man who looks exactly like you but who is older. He tells 
you he is your older self who has traveled back in time. You think him 
insane and walk on. Years later you discover how to go back in time. 
You visit your younger self. You are compelled to tell him exactly what 
your older duplicate had told you when you were younger. Of course, 
he thinks that you are insane. You separate. Each of you leads a normal 
life until the day comes when your older self makes the trip back in 
time. 

Hilary Putnam, in "It Ain't Necessarily So," argues in similar fashion 
that such world-line loops need not be contradictory. He draws a Feyn
man graph (see Figure 39.1) on which particle pair-production and 
pair-annihilation are replaced by person pair-production and pair
annihilation. The zigzag line is the world line of time traveler Smith. 
At time t2 he goes back to t1 , converses with his younger self, then con
tinues to lead a normal life. How would this be observed by someone 
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Figure 39.1. Feynman graph for a time traveler to the past 

whose world line is normal? Simply put a ruler at the bottom of the 
chart, its edge parallel to the space axis, and move it slowly upward. At 
to you see young Smith. At tl an older Smith suddenly materializes 
out of thin air in the same room along with an anti-Smith, who is seated 
in his time machine and living backward. (If he is smoking, you see his 
cigarette butt lengthen into a whole cigarette, and so on.) Perhaps the 
two forward Smiths converse. Finally, at tz, young Smith, backward 
Smith, and the backward-moving time machine vanish. The older 
Smith and his older time machine continue on their way. The fact that 
we can draw a space-time diagram of these events, Putnam insists, is 
proof that they are logically consistent. 

It is true that they are consistent, but note that Putnam's scenario, like 
Reichenbach's, involves such weak interaction between the Smiths that 
it evades the deeper contradictions that arise in time-travel fiction. 
What happens if the older Smith kills the younger Smith? Will Putnam 
kindly supply a Feynman graph? 

There is only one good way out, and science-fiction scribblers have 
been using it for more than half a century. According to Sam 
Moskowitz, the device was first explicitly employed to resolve time
travel paradoxes by David R. Daniels in "Branches of Time," a tale that 
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appeared in Wonder Stories in 1934. The basic idea is as simple as it is 
fantastic. Persons can travel to any point in the future oftheir universe, 
with no complications, but the moment they enter the past, the uni
verse splits into two parallel worlds, each with its own time track. 
Along one track rolls the world as if no looping had occurred. Along the 
other track spins the newly created universe, its history permanently 
altered. When I say "newly created," I speak, of course, from the stand
point of the time traveler's consciousness. For an observer in, say, a fifth 
dimension the traveler's world line simply switches from one space
time continuum to another on a graph that depicts all the universes 
branching like a tree in a metauniverse. 

Forking time paths appear in many plays, novels, and short stories by 
non-science-fiction writers. J. B. Priestley uses it in his popular play 
Dangerous Corner, as Lord Dunsany had done earlier in his play If. 
Mark Twain discusses it in The Mysterious Stranger. Jorge Luis Borges 
plays with it in his "Garden of Forking Paths." But it was the science
fiction writers who sharpened and elaborated the concept. 

Let's see how it works. Suppose you go back to the time of Napoleon 
in Universe 1 and assassinate him. The world forks. You are now in 
Universe 2. If you like, you can return to the present of Universe 2, a 
universe in which Napoleon had been mysteriously murdered. How 
much would this world differ from the old one? Would you find a du
plicate of yourself there? Maybe. Maybe not. Some stories assume that 
the slightest alteration of the past would introduce new causal chains 
that would have a multiplying effect and produce vast historical 
changes. Other tales assume that history is dominated by such power
ful overall forces that even major alterations of the past would damp 
out and the future would soon be very much the same. 

In Ray Bradbury's "A Sound of Thunder," Eckels travels back to an 
ancient geological epoch under elaborate precautions to prevent any se
rious alteration of the past. For example, he wears an oxygen mask to 
prevent his microbes from contaminating animal life. But Eckels vio
lates a prohibition and accidentally steps on a living butterfly. When he 
returns to the present, he notices subtle changes in the office of the firm 
that arranged his trip. He is killed for having illegally altered the future. 

Hundreds of other stories by fantasy and science-fiction writers have 
played variations on this theme. One of the saddest is Lord Dunsany's 
"Lost" (in The Fourth Book of Jorkens, 1948). A man travels to his past, 
by way of an Oriental charm, to right some old mistakes. Of course, this 
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alters history. When he gets back to the present, he is missing his wife 
and home. "Lost! Lost!" he cries. "Don't go back down the years trying 
to alter anything. Don't even wish to .... And, mind you, the whole 
length of the Milky Way is more easily traveled than time, amongst 
whose terrible ages I am lost." 

It is easy to see that in such a metacosmos of branching time paths, 
it is not possible to generate paradox. The future is no problem. If you 
travel to next week, you merely vanish for a week and reappear in the 
future a week younger than you would have been. But if you go back 
and murder yourself in your crib, the universe obligingly splits. Uni
verse 1 goes on as before, with you vanishing from it when you grow 
up and make the trip back. Perhaps this happens repeatedly, each cycle 
creating two new worlds. Perhaps it happens only once. Who knows? 
In any case, Universe 2 with you and the dead baby in it rolls on. You 
are not annihilated by your deed, because now you are an alien from 
Universe 1 living in Universe 2. 

In such a metacosmos it is easy (as many science-fiction writers have 
done) to fabricate duplicates of yourself. You can go back a year in Uni
verse 1, live for a year with yourself in Universe 2, then again go back 
a year to visit two replicas of yourself in Universe 3. Clearly, by re
peating such loops you can create as many replicas of yourself as you 
please. They are genuine replicas, not pseudo-replicas as in the sce
narios by Reichenbach and Putnam. Each has his independent world 
line. History might become extremely chaotic, but there is one type of 
event that can never occur: a logically contradictory one. 

This vision of a metacosmos containing branching worlds may seem 
crazy, but respectable physicists have taken it quite seriously. In Hugh 
Everett Ill's Ph.D. thesis" 'Relative State' Formulation of Quantum Me
chanics" (Reviews of Modern Physics 29, July 1957, pp. 454-62) he 
outlines a metatheory in which the universe at every micromicroinstant 
branches into countless parallel worlds, each a possible combination of 
micro events that could occur as a result of microlevel uncertainty. The 
paper is followed by John A. Wheeler's favorable assessment in which 
he points out that classical physicists were almost as uncomfortable at 
first with the radical notions of general relativity. 

"If there are infinite universes," wrote Fredric Brown in What Mad 
Universe, "then all possible combinations must exist. Then, some
where, everything must be true . ... There is a universe in which Huck
leberry Finn is a real person, doing the exact things Mark Twain 

524 PHYSICS 



described him as doing. There are, in fact, an infinite number of uni
verses in which a Huckleberry Finn is doing every possible variation of 
what Mark Twain might have described him as doing .... And infinite 
universes in which the states of existence are such that we would have 
no words or thoughts to describe them or to imagine them." 

What if the universe never forks? Suppose there is only one world, 
this one, in which all world lines are linearly ordered and objects pre
serve their identity, come what may. Brown considers this possibility 
in his story "Experiment." Professor Johnson holds a brass cube in his 
hand. It is six minutes to three o'clock. At exactly three, he tells his col
leagues, he will place the cube on his time machine's platform and 
send it five minutes into the past. 

"Therefore," he remarks, "the cube should, at five minutes before 
three, vanish from my hand and appear on the platform, five minutes 
before I place it there." 

"How can you place it there, then?" asked one of his colleagues. 
"It will, as my hand approaches, vanish from the platform and appear 

in my hand to be placed there." 
At five minutes to three the cube vanishes from Professor Johnson'S 

hand and appears on the platforin, having been sent back five minutes 
in time by his future action of placing the cube on the platform at three. 

"See? Five minutes before I shall place it there, it is there!" 
"But," says a frowning colleague, "what if, now that it has already ap

peared five minutes before you place it there, you should change your 
mind about doing so and not place it there at three o'clock? Wouldn't 
there be a paradox of some sort involved?" 

Professor Johnson thinks this is an interesting idea. To see what hap
pens, he does not put the cube on the platform at three. 

There is no paradox. The cube remains. But the entire universe, in
cluding Professor Johnson, his colleagues, and the time machine, dis
appears. 

Addendum 
J. A. Lindon, a British writer of comic verse, sent me his sequel 

to the limerick about Miss Bright: 

When they questioned her, answered Miss Bright, 
"I was there when I got home that night; 
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So I slept with myself, 
Like two shoes on a shelf, 

Put-up relatives shouldn't be tight!" 

Many readers called attention to two difficulties that could arise from 
time travel in either direction. If travelers stay at the same spot in space
time, relative to the universe, the earth would no longer be where it 
was. They might find themselves in empty space, or inside something 
solid. In the latter case, would the solid body prevent them from arriv
ing? Would one or the other be shoved aside? Would there be an ex
plosion? 

The second difficulty is thermodynamic. After the time traveler de
parts, the universe will have lost a bit of mass-energy. When he arrives, 
the universe gains back the same amount. During the interval between 
leaving and arriving, the universe would seem to be violating the law 
of mass-energy conservation. 

I mentioned briefly what is now called the "many-worlds interpre
tation" of QM (quantum mechanics). The best reference is a 1973 col
lection of papers on the topic, edited by Bryce DeWitt and Neill 
Graham. Assuming that the universe constantly splits into billions of 
parallel worlds, the interpretation provides an escape from the inde
terminism of the Copenhagen interpretation of QM, as well as from the 
many paradoxes that plague it. 

Some physicists who favor the many-worlds interpretation have ar
gued that the countless duplicate selves and parallel worlds produced 
by the forking paths are not "real," but only artifacts of the theory. In 
this interpretation of the many-worlds interpretation, the theory col
lapses into no more than a bizarre way of saying the same things that 
are said in the Copenhagen interpretation. Everett himself, in his orig
inal 1957 thesis, added in proof this famous footnote: 

In reply to a preprint of this article some correspondents have raised the 
question of the "transition from possible to actual," arguing that in "re
ality" there is-as our experience testifies-no such splitting of observer 
states, so that only one branch can ever actually exist. Since this point 
may occur to other readers the following is offered in explanation. 

The whole issue of the transition from "possible" to "actual" is taken 
care of in the theory in a very simple way-there is no such transition, 
nor is such a transition necessary for the theory to be in accord with our 
experience. From the viewpoint of the theory all elements of a super-
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position (all "branches") are "actual," none any more "real" than the 
rest. It is unnecessary to suppose that all but one are somehow de
stroyed, since all the separate elements of a superposition individually 
obey the wave equation with complete indifference to the presence or 
absence ("actuality" or not) of any other elements. This total lack of ef
fect of one branch on another also implies that no observer will ever be 
aware of any "splitting" process. 

Arguments that the world picture presented by this theory is contra
dicted by experience, because we are unaware of any branching process, 
are like the criticism of the Copernican theory that the mobility of the 
earth as a real physical fact is incompatible with the common sense in
terpretation of nature because we feel no such motion. In both cases the 
argument fails when it is shown that the theory itself predicts that our 
experience will be what it in fact is. (In the Copernican case the addition 
of Newtonian physics was required to be able to show that the earth's in
habitants would be unaware of any motion of the earth.) 

The many-worlds interpretation has been called a beautiful theory no
body can believe. Nevertheless, a number of top physicists have indeed 
accepted-some still do-its outrageous multiplicity of logically possi
ble worlds. Here is DeWitt defending it in "Quantum Mechanics and Re
ality," a 1970 article reprinted in the collection he edited with Graham: 

The obstacle to taking such a lofty view of things, of course, is that it 
forces us to believe in the reality of all the simultaneous worlds ... in 
each of which the measurement has yielded a different outcome. Nev
ertheless, this is precisely what [the inventors ofthe theory] would have 
us believe .... This universe is constantly splitting into a stupendous 
number of branches, all resulting from the measurement like interac
tions between its myriads of components. Moreover, every quantum 
transition taking place on every star, in every galaxy, in every remote cor
ner of the universe is splitting our local world on earth into myriads of 
copies of itself. 

I still recall vividly the shock I experienced on first encountering this 
multiworld concept. The idea of 10100+ slightly imperfect copies of one
self all constantly splitting into further copies, which ultimately become 
unrecognizable, is not easy to reconcile with commonsense. 

Although John Wheeler originally supported the many-worlds inter
pretation, he has since abandoned it. I quote from the first chapter of 
his Frontiers of Time (Center for Theoretical Physics, 1978): 
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Imaginative Everett's thesis is, and instructive, we agree. We once sub
scribed to it. In retrospect, however, it looks like the wrong track. First, 
this formulation of quantum mechanics denigrates the quantum. It de
nies from the start that the quantum character of nature is any clue to the 
plan of physics. Take this Hamiltonian for the world, that Hamiltonian, 
or any other Hamiltonian, this formulation says. I am a principle too 
lordly to care which, or why there should be any Hamiltonian at all. You 
give me whatever world you please, and in return I give you back many 
worlds. Don't look to me for help in understanding this universe. 

Second, its infinitely many unobservable worlds make a heavy load of 
metaphysical baggage. They would seem to defy MendeIeev's demand of 
any proper scientific theory, that it should "expose itself to destruction." 

Wigner, Weizsacker, and Wheeler have made objections in more detail, 
but also in quite contrasting terms, to the relative-state or many-worlds 
interpretation of quantum mechanics. It is hard to name anyone who 
conceives of it as a way to uphold determinism. 

In the paper titled "Rotating Cylinders and the Possibility of Global 
Causality Violation," physicist Frank Tipler raised the theoretical pos
sibility of constructing a machine that would enable one to go forward 
or backward in time. (Tipler is one of the enthusiasts for the many
worlds interpretation, the coauthor of a controversial book (The An
thropic Cosmological Principle, Oxford University Press, 1986) and 
sole author of an even more controversial book, The Physics of Im
morality (1994)). Taking off from G6del's rotating cosmos and from re
cent work on the space-time pathologies surrounding black holes, 
Tipler imagines a massive cylinder, infinitely long, and rotating so 
rapidly that its surface moves faster than half the speed of light. Space
time near the cylinder would be so distorted that, according to Tipler's 
calculations, astronauts could orbit the cylinder, going with or against 
its spin, and travel into their past or future. 

Ti.pler speculated on the possibility that such a machine could be 
built with a cylinder of finite length and mass, but later concluded that 
such a device was impossible to construct with any known forms of 
matter and force. Such doubts did not inhibit Poul Anderson from 
using Tipler's cylinder for time travel in his novel The Avatar, nor did 
it stop Robert Forward from writing "How to Build a Time Machine" 
(Omni, May 1980). "We already know the theory," Omni editors com
mented above Forward's backward article, "All that's needed is some 
advanced engineering." 
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I can understand the attraction of the many-world's interpretation of 
quantum mechanics provided it is taken as no more than another way 
of talking about quantum mechanics. If, however, the countless other 
universes are assumed to be as real as the one we are in,-real in the 
sense that the moon is real and unicorns are not-then the price one 
has to pay is horrendous. It is true that the many-world's interpretation 
simplifies concepts, but the multiplicity of other worlds is the greatest 
violation of Occam's razor in the history of theoretical physics. I ap
plaud Wheeler for abandoning his early defense of the theory and ad
mire Roger Penrose and other quantum experts for having the courage 
to reject the realistic interpretation of the many-world's interpretation 
as wild and temporary fashionable nonsense. 

In 1995 England issued a stamp honoring H.G. Wells's The Time Ma
chine. 

I close with two pearls of wisdom from the stand-up comic "Profes
sor" Irwin Corey: "The past is behind us" and "the future lies ahead." 
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Chapter 40 

It is impossible to meditate on time and the 
mystery of the creative passage of nature with
out an overwhelming emotion at the limitations 
of human intelligence. 

-ALFRED NORTH WHITEHEAD, The Concept of Nature 

Does Time 
Ever Stop? 

There has been a great deal of interest among physicists as to 
whether there are events on the elementary-particle level that cannot be 
time-reversed, that is, events for which imagining a reversal in the di
rection of motion of all the particles involved is imagining an event that 
cannot happen in nature. Richard Feynman has suggested an approach 
to quantum mechanics in which antiparticles are viewed as particles 
momentarily traveling backward in time. Cosmologists have specu
lated about two universes for which all the events in one are reversed 
relative to the direction of time in the other: in each universe intelligent 
organisms would live normally from past to future, but if the organisms 
in one universe could in some way observe events in the other (which 
many physicists consider an impossibility), they would find those 
events going in the opposite direction. It has even been conjectured that 
if our universe stops expanding and starts to contract, there will be a 
time reversal, but it is far from clear what that would mean. 

In this chapter I shall consider two bizarre questions about time. In
deed, these questions are of so little concern to scientists that only 
philosophers and writers of fantasy and science fiction have had much 
to say about them: Is it meaningful to speak of time stopping? Is it 
meaningful to speak of altering the past? 

Neither question should be confused with the familiar subject of 
time's relativity. Newton believed the universe was pervaded by a sin
gle absolute time that could be symbolized by an imaginary clock off 
somewhere in space (perhaps outside the cosmos). By means of this 
clock the rates of all the events in the universe could be measured. The 
notion works well within a single inertial frame of reference such as the 
surface of the earth, but it does not work for inertial systems moving in 
relation to each other at high speeds. According to the theory of rela-
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tivity, if a spaceship were to travel from our solar system to another 
solar system with a velocity close to that of light, events would proceed 
much slower on the spaceship than they would on the earth. In a sense, 
then, such a spaceship is traveling through time into the future. Pas
sengers on the spaceship might experience a round-trip voyage as tak
ing only a few years, but they would return to find that centuries of 
earth-years had elapsed. 

The notion that different parts of the universe can change at different 
rates of time is much older than the theory of relativity. In the Scholas
tic theology of the Middle Ages angels were considered to be nonmate
rial intelligences living by a time different from that of earthly creatures; 
God himself was thought to be entirely outside of time. In the first act 
of Lord Byron's play, Cain, A Mystery, the fallen angel Lucifer says: 

With us acts are exempt from time 
and we 

Can crowd eternity into an hour 
Or stretch an hour into eternity 
We breathe not by a mortal 

measurement
But that's a mystery. 

In the 20th century hundreds of science-fiction stories played with 
the relativity of time in different inertial systems, but the view that 
time can speed up or slow down in different parts of our universe is 
central to many older tales. A popular medieval legend tells of a monk 
who is entranced for a minute or two by the song of a magical bird. 
When the bird stops singing, the monk discovers that several hundred 
years have passed. In a Moslem legend Mohammed is carried by a mare 
into the seventh heaven. After a long visit the prophet returns to the 
earth just in time to catch a jar of water the horse had kicked over be
fore starting its ascent. 

Washington Irving's "Rip Van Winkle" is this country's best-known 
story about someone who sleeps for what seems to him to be a normal 
time while two decades of earth-years rush by. King Arthur's daughter 
Gyneth slept for 500 years under a spell cast by Merlin. Every culture 
has similar sleeper legends. H. G. Wells used the device in When the 
Sleeper Wakes, and it is a common practice in science fiction to put as
tronauts into a cryogenic sleep so they can survive interstellar voyages 
that are longer than their normal life span. In Wells's short story "The 
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New Accelerator" a scientist discovers a way to speed up a person's bi
ological time so that the world seems to come almost to a halt. This de
vice too is frequently encountered in later science fiction. 

The issue under consideration here, however, is not how time can 
vary but whether time can be said to stop entirely. It is clearly mean
ingful to speak of all motion ceasing in one part of the universe, 
whether or not such a part exists. In the theory of relativity the speed 
of light is an unattainable limit for any object with mass. If a spaceship 
could attain the speed of light (which the theory of relativity rules out 
because the mass of the ship would increase to infinity), then time on 
the spaceship would stop in the sense that all change on it would cease. 
In earth time it might take 100 years for the spaceship to reach a desti
nation, but to astronauts on the spaceship the destination would be 
reached instantaneously. One can also imagine a piece of matter or 
even a human being reduced to such a low temperature (by some as yet 
unknown means) that even all subatomic motions would be halted. 
For that piece of matter, then, one could say that time had stopped. Ac
tually it is hard to understand why the piece of matter would not 
vanish. 

The idea of time stopping creates no problems for writers of fantasy 
who are not constrained by the real world. For example, in 1. Frank 
Baum's "The Capture of Father Time," one of the stories in his Ameri
can Fairy Tales, a small boy lassoes Time, and for a while everything 
except the movements of the boy and Father Time stops completely. In 
Chapter 22 of James Branch Cabell's Jurgen: A Comedy of Justice, out
side time sleeps while Jurgen enjoys a pleasurable stay in Cocaigne 
with Queen Analtis. Later in the novel Jurgen stares into the eyes of the 
God of his grandmother and is absolutely motionless for 37 days. In 
Jorge Luis Borges' story "The Secret Miracle" a writer is executed by a 
firing squad. Between the command to fire and the writer's death God 
stops all time outside the writer's brain, giving him a year to complete 
his masterpiece. 

Many similar examples from legend and literature show that the no
tion of time stopping in some part of the universe is not logically in
consistent. But what about the idea of time stopping throughout the 
universe? Does the notion that everything stops moving for a while 
and then starts again have any meaning? 

If it is assumed that there is an outside observer-perhaps a god
watching the universe from a region of hypertime, then of course the 
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notion of time stopping does have meaning, just as imagining a god in 
hyperspace gives meaning to the notion of everything in the universe 
turning upside down. The history of our universe may be like a three
dimensional motion picture a god is enjoying. When the god turns off 
the projector to do something else, a few millenniums may go by before 
he comes back and turns it on again. (After all, what are a few millen
niums to a god?) For all we can know a billion centuries of hypertime 
may have elapsed between my typing the first and the second word of 
this sentence. 

Suppose, however, all outside observers are ruled out and "universe" 
is taken to mean "everything there is." Is there still a way to give a 
meaning to the idea of all change stopping for a while? Although most 
philosophers and scientists would say there is not, a few have argued 
for the other side. For example, in "Time without Change" Sydney S. 
Shoemaker, a philosopher at Cornell University, makes an unusual ar
gument in support of the possibility of change stopping. 

Shoemaker is concerned not with the real world but with possible 
worlds designed to prove that the notion of time stopping everywhere 
can be given a reasonable meaning. He proposes several worlds of this 
kind, all of them based on the same idea. I shall describe only one such 
world here, in a slightly dramatized form. 

Imagine a universe divided into regions A, B, and C. In normal times 
inhabitants of each region can observe the inhabitants of the other two 
and communicate with them. Every now and then, however, a myste
rious purple glow permeates one of the regions. The glow always lasts 
for a week and is invariably followed by a year in which all change in 
the region ceases. In other words, for one year absolutely nothing hap
pens there. Shoemaker calls the phenomenon a local freeze. Since no 
events take place,light cannot leave the region, and so the region seems 
to vanish for a year. When it returns to view, its inhabitants are unaware 
of any passage of time, but they learn from their neighbors that a year, 
as measured by clocks in the other two regions, has elapsed. To the in
habitants of the region that experienced the local freeze it seems that in
stantaneous changes have taken place in the other two regions. As 
Shoemaker puts it: "People and objects will appear to have moved in 
a discontinuous manner or to have vanished into thin air or to have ma
terialized out of thin air; saplings will appear to have grown instanta
neously into mature trees, and so on." 

In the history of each of the three regions local freezes, invariably pre-
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ceded by a week of purple light, have happened thousands of times. 
Now suppose that suddenly, for the first time in history, purple light 
appears simultaneously in regions A, B, and C and lasts for a week. 
Would it not be reasonable, Shoemaker asks, for scientists in the three 
regions to conclude that change had ceased for a year throughout the 
entire universe even though no minds were aware of it? 

Shoemaker considers several objections to his thesis and counters all 
of them ingeniously. Interested readers can consult his paper and then 
read a technical analysis of it in the fifth chapter of G. Schlesinger's 
Confirmation and Confirmability Schlesinger agrees with Shoemaker 
that an empirical, logically consistent meaning can be found for the 
sentence "A period of time t has passed during which absolutely noth
ing happened." Note that similar arguments about possible worlds can 
provide meanings for such notions as everything in a universe turning 
upside down, mirror-reversing, doubling in size, and so on. 

The question of whether the past can be changed is even stranger 
than that of whether time can stop. Writers have often speculated about 
what might have happened if the past had taken a different turn. J. B. 
Priestley's play Dangerous Corner dealt with this question, and there 
have been innumerable "what if" stories in both science fiction and 
other kinds of literature. In all time-travel stories where someone enters 
the past, the past is necessarily altered. The only way the logical con
tradictions created by such a premise can be resolved is by positing a 
universe that splits into separate branches the instant the past is en
tered. In other words, while time in the old branch "gurgles on" (a 
phrase from Emily Dickinson) time in the new branch gurgles on in a 
different way toward a different future. When I speak of altering the 
past, however, I mean altering it throughout a single universe with no 
forking time paths. (Pseudoalterations of the past, such as the rewriting 
of history satirized by George Orwell in 1984, obviously do not qualify.) 
Given this context, can an event, once it has happened, ever be made 
not to have happened? 

The question is older than Aristotle, who in his Ethics (Book 6) 
writes: "It is to be noted that nothing that is past is an object of choice, 
for example, no one chooses to have sacked Troy; for no one deliberates 
about the past, but about what is future and capable of being otherwise, 
while what is past is not capable of not having taken place; hence 
Agathon is right in saying: 'For this alone is lacking even to God, to 
make undone things that have once been done.' " 
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Thomas Aquinas believed God to be outside of time and thus capa
ble of seeing all his creation's past and future in one blinding instant. 
(Even though human beings have genuine power of choice, God knows 
how each one will choose; it is in this way that Aquinas sought to har
monize predestination and free will.) For Aquinas it was not possible 
for God to do absolutely impossible things, namely those that involve 
logical contradiction. For example, God could not make a creature that 
was both a human being and a horse (that is, a complete human being 
and a complete horse, rather than a mythical combination of parts such 
as a centaur), because that would involve the contradiction of assum
ing a creature to be simultaneously rational and nonrationaL 

Similarly, God cannot alter the past. That would be the same as as
serting that the sack of Troy both took place and did not take place. 
Aquinas agreed with Aristotle that the past must forever be what it 
was, and it was this view that became the official position of medieval 
Scholasticism. It is not so much that God's omnipotence is limited by 
the law of contradiction but rather that the law is part of God's nature. 
"It is best to say," Aquinas wrote, "that what involves contradiction 
cannot be done rather than that God cannot do it." Modern philoso
phers would say it this way. God can't make a four-sided triangle, not 
because he can't make objects with four sides but because a triangle is 
defined as a three-sided polygon. The phrase H four-sided triangle" is 
therefore a nonsense phrase, one without meaning. 

Edwyn Bevan, in a discussion of time in his book Symbolism and Be
lief, finds it odd that Aquinas would deny God the ability to alter the 
past and at the same time allow God to alter the future. In the 10th 
question of Summa Theologica (la. 10, article 5.3), Aquinas wrote: 
"God can cause an angel not to exist in the future, even if he cannot 
cause it not to exist while it exists, or not to have existed when it al
ready has." For Aquinas to have suggested that for God the past is un
alterable and the future is not unalterable, Bevan reasons, is surely to 
place God in some kind of time, thus contradicting the assertion that 
God is outside of time. 

I know of no scientist or secular philosopher who has seriously be
lieved the past could be altered, but a small minority of theologians 
have maintained that it could be. The greatest of them was Peter 
Damian, the zealous Italian reformer of the Roman Catholic church in 
the 11th century. In On Divine Omnipotence, his most controversial 
treatise, Damian argued that God is in no way bound by the law of con-
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tradiction, that his omnipotence gives him the power to do all contra
dictory things including changing the past. Although Damian, who 
started out as a hermit monk, argued his extreme views skillfully, he re
garded all reasoning as superfluous, useful only for supporting revealed 
theology. It appears that he, like Lewis Carroll's White Queen, would 
have defended everyone's right to believe six impossible things before 
breakfast. (Damian was also a great promoter of self-flagellation as a 
form of penance, a practice that became such a fad during his lifetime 
that some monks flogged themselves to death.) 

One of my favorite Lord Dunsany stories is the best example I know 
of from the literature of fantasy that illustrates Damian's belief in the 
possibility of altering the past. It is titled "The King That Was Not," and 
you will find it in Dunsany's early book of wonder tales Time and the 
Gods. It begins as follows: "The land of Runazar hath no King nor ever 
had one; and this is the law of the land of Runazar that, seeing that it 
hath never had a King, it shall not have one for ever. Therefore in 
Runazar the priests hold sway, who tell the people that never in 
Runazar hath there been a King." 

The start of the second paragraph is surprising: "Althazar, King of 
Runazar .... " The story goes on to recount how Althazar ordered his 
sculptors to carve marble statues of the gods. His command was 
obeyed, but when the great statues were undraped, their faces were 
very much like the face of the king. Althazar was pleased and rewarded 
his sculptors handsomely with gold, but up in Pegana (Dunsany's 
Mount Olympus) the gods were outraged. One of them, Mung, leaned 
forward to make his sign against Althazar, but the other gods stopped 
him: "Slay him not, for it is not enough that Althazar shall die, who 
hath made the faces of the gods to be like the faces of men, but he must 
not even have ever been." 

"Spake we of Althazar, a King?" 
asked one of the gods. 

"Nay, we spake not." 
"Dreamed we of one Althazar?" 
"Nay, we dreamed not." 

Below Pegana, in the royal palace, Althazar suddenly passed out of 
the memory of the gods and so "became no longer a thing that was or 
had ever been." When the priests and the people entered the throne 
room, they found only a robe and a crown. "The gods have cast away 
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the fragment of a garment," said the priests, "and lo! from the fingers 
of the gods hath slipped one little ring." 

Addendum 
When I wrote about time stopping I was using a colloquial ex

pression to mean that change ceases. Because there are no moving 
"clocks" of any sort for measuring time, one can say in a loose sense 
that time stops. Of course time does not move or stop any more than 
length can extend or not extend. It is the universe that moves. You can 
refute the notion that time "flows" like a river simply by asking: "At 
what rate does it flow?" Shoemaker wanted to show in his paper not 
that time stops, then starts again, but that all change can stop and some 
sort of transcendental hypertime still persists. Change requires time, 
but perhaps, Shoemaker argued, time does not require change in our 
universe. 

Harold A. Segal, in a letter in The New York Times (January 11,1987) 

quoted a marvelous passage from Shakespeare's As You Like It (Act III, 
Scene 2) in which Rosalind explains how time can amble, trot, gallop, 
or stand still for different persons in different circumstances. It trots for 
the "young maid" between her engagement and marriage. It ambles for 
a priest who knows no Latin because he is free from the burden of 
"wasteful learning." It ambles for the rich man in good health who 
"lives merrily because he feels no pain." It gallops for the thief who 
awaits his hanging. For whom does it stand still? "With lawyers in the 
vacation; for they sleep between term and term, and then they perceive 
not how Time moves." 

Isaac Asimov, in an editorial in Asimov's Science-Fiction Magazine 
(June 1986) explained why it would not be possible for a person to 
walk about and observe a world in which all change had stopped. To 
move, she would have to push aside molecules, and this would inject 
time into the outside world. She would be as frozen as the universe, 
even though dancing atoms in her brain might continue to let her think. 
Asimov could have added that she would not even be able to see the 
world because sight depends on photons speeding from the world into 
one's eyes. 

Two readers, Edward Adams and Henry Lambert, independently 
wrote to say that the god Koschei, in lurgen, could alter the past. At the 
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end of the novel he eliminates all of Jurgen's adventures as never hav
ing happened. However, Jurgen recalls that Horvendile (the name Ca
bell often used for himself) once told him that he (Horvendile) and 
Koschei were one and the same! 

Edward Fredkin is a computer scientist who likes to think of the uni
verse as a vast cellular automaton run by an inconceivably complex al
gorithm that tells the universe how to jump constantly from one state 
to the next. Whoever or whatever is running the program could, of 
course, shut it down at any time, then later start it running again. We 
who are part of the program would have no awareness of such gaps in 
time. 

On the unalterability of the past, readers reminded me of the stanza 
in Omar's Rubaiyat about the moving finger that having writ moves 
on, and all our piety and wit cannot call it back to cancel half a line. Or 
as Ogden Nash once put it: 

One thing about the past, 
It's likely to last. 

I touched only briefly on the many science-fiction stories and novels 
that deal with time slowing down or halting. For references on some of 
the major tales see the section HWhen time stands still" on page 153 of 
The Visual Encyclopedia of Science Fiction. The most startling possi
bility, seriously advanced by some physicists, is that the universe 
comes to a complete stop billions of times every microsecond, then 
starts up again. Like a cellular automaton it jumps from state to state. 
Between the jumps, nothing changes. The universe simply does not 
exist. Time is quantized. An electron doesn't move smoothly from here 
to there. It moves in tiny jumps, occupying no space in between. 

The fundamental unit of quantized time has been called the 
"chronon." Between chronons one can imagine one or more parallel 
universes operating within our space, but totally unknown to us. Think 
of a film with two unrelated motion pictures running on alternate 
frames. Between the frames of our universe, who knows what other ex
otic worlds are unrolling in the intervals between our chronons? Both 
motion pictures and cellular automata are deterministic, but in this vi
sion of parallel universes running in the same space, there is no need to 
assume determinism. Chance and free will could still play creative roles 
in making the future of each universe unpredictable in principle. 
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Chapter 41 

The universe, so far as known to us, 
is so constituted, that whatever is 
true in anyone case, is true in all 
cases of a certain description; the only 
difficulty is, to find what description. 

-JOHN STUART MILL, A System of Logic 

Induction and 
Probability 

'magine that we are living on an intricately patterned carpet. It 
mayor may not extend to infinity in all directions. Some parts of the 
pattern appear to be random, like an abstract expressionist painting; 
other parts are rigidly geometrical. A portion of the carpet may seem to
tally irregular, but when the same portion is viewed in a larger context, 
it becomes part of a subtle symmetry. 

The task of describing the pattern is made difficult by the fact that the 
carpet is protected by a thick plastic sheet with a translucence that 
varies from place to place. In certain places we can see through the 
sheet and perceive the pattern; in others the sheet is opaque. The plas
tic sheet also varies in hardness. Here and there we can scrape it down 
so that the pattern is more clearly visible. In other places the sheet re
sists all efforts to make it less opaque. Light passing through the sheet 
is often refracted in bizarre ways, so that as more of the sheet is re
moved, the pattern is radically transformed. Everywhere there is a mys
terious mixing of order and disorder. Faint lattices with beautiful 
symmetries appear to cover the entire rug, but how far they extend is 
anyone's guess. No one knows how thick the plastic sheet is. At no 
place has anyone scraped deep enough to reach the carpet's surface, if 
there is one. 

Already the metaphor has been pushed too far. For one thing, the pat
terns of the real world, as distinct from this imaginary one, are con
stantly changing, like a carpet that is rolling up at one end while it is 
unraveling at the other end. Nevertheless, in a crude way the carpet can 
introduce some of the difficulties philosophers of science encounter in 
trying to understand why science works. 

Induction is the procedure by which carpetologists, after examining 
parts of the carpet, try to guess what the unexamined parts look like. 
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Suppose the carpet is covered with billions oftiny triangles. Whenever 
a blue triangle is found, it has a small red dot in one corner. After find
ing thousands of blue triangles, all with red dots, the carpetologists 
conjecture that all blue triangles have red dots. Each new blue triangle 
with a red dot is a confirming instance of the law. Provided that no 
counterexample is found, the more confirming instances there are, the 
stronger is the carpetologists' belief that the law is true. 

The leap from "some" blue triangles to "all" is, of course, a logical 
fallacy. There is no way to be absolutely certain, as one can be in work
ing inside a deductive system, what any unexamined portion of the car
pet looks like. On the other hand, induction obviously works, and 
philosophers justify it in other ways. John Stuart Mill did so by posit
ing, in effect, that the carpet's pattern has regularities. He knew this rea
soning was circular, since it is only by induction that carpetologists 
have learned that the carpet is patterned. Mill did not regard the circle 
as vicious, however, and many contemporary philosophers (R. B. 
Braithwaite and Max Black, to name two) agree. Bertrand Russell, in his 
last major work, tried to replace Mill's vague "nature is uniform" with 
something more precise. He proposed a set of five posits about the 
structure of the world that he believed were sufficient to justify induc
tion. 

Hans Reichenbach advanced the most familiar of several pragmatic 
justifications. If there is any way to guess what unexamined parts of the 
carpet look like, Reichenbach argued, it has to be by induction. If in
duction does not work, nothing else will, and so science might as well 
use the only tool it has. "This answer is not fallacious," wrote Russell, 
"but I cannot say that I find it very satisfying." 

Rudolf Carnap agreed. His opinion was that all these ways of justi
fying induction are correct but trivial. If "justify" is meant in the sense 
that a mathematical theorem is justified, then David Hume was right: 
There is no justification. But if "justify" is taken in any of several 
weaker senses, then, of course, induction can be defended. A more in
teresting task, Carnap insisted, is to see whether it is possible to con
struct an inductive logic. 

It was Carnap's great hope that such a logic could be constructed. He 
foresaw a future in which a scientist could express in a formalized lan
guage a certain hypothesis together with all the relevant evidence. Then 
by applying inductive logic, he could assign a probability value, called 
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the degree of confirmation, to the hypothesis. There would be nothing 
final about that value. It would go up or down or stay the same as new 
evidence accumulated. Scientists already think in terms of such a logic, 
Carnap maintained, but only in a vague, informal way. As the tools of 
science become more powerful, however, and as our knowledge of 
probability becomes more precise, perhaps eventually we can create a 
calculus of induction that will be of practical value in the endless 
search for scientific laws. 

In Carnap's Logical Foundations o/Probability (University of Chicago 
Press, 1950) and also in his later writings, he tried to establish a base 
for such a logic. How successful he was is a matter of dispute. Some 
philosophers of science share his vision Uohn G. Kemeny for one) and 
have taken up the task where Carnap left off. Others, notably Karl Pop
per and Thomas S. Kuhn, regard the entire project as having been mis
conceived. 

Carl G. Hempel, one of Carnap's admirers, has argued sensibly that 
before we try to assign quantitative values to confirmations, we should 
first make sure we know in a qualitative way what is meant by "con
firming instance." It is here that we run into the worst kinds of diffi
culty. 

Consider Hempel's notorious paradox of the raven. Let us approach 
it by way of 100 playing cards. Some of them have a picture of a raven 
drawn on the back. The hypothesis is: "All raven cards are black." You 
shuffle the deck and deal the cards face up. After turning 50 cards 
without finding a counterinstance, the hypothesis certainly becomes 
plausible. As more and more raven cards prove to be black, the degree 
of confirmation approaches certainty and may finally reach it. 

Now consider another way of stating the same hypothesis: "All non
black cards are not ravens." This statement is logically equivalent to the 
original one. If you test the new statement on another shuffled deck of 
100 cards, holding them face up and turning them as you deal, clearly 
each time you deal a nonblack card and it proves to have no raven on 
the back, you confirm the guess that all nonblack cards are not ravens. 
Since this is logically equivalent to "All raven cards are black," you 
confirm that also. Indeed, if you deal all the cards without finding a red 
card with a raven, you will have completely confirmed the hypothesis 
that all raven cards are black. 

Unfortunately, when this procedure is applied to the real world, it 
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seems not to work. "All ravens are black" is logically the same as "All 
nonblack objects are not ravens." We look around and see a yellow ob
ject. Is it a raven? No, it is a buttercup. The flower surely confirms (al
beit weakly) that all nonblack objects are not ravens, but it is hard to see 
how it has much relevance to HAll ravens are black." If it does, it also 
confirms that all ravens are white or any color except yellow. To make 
things worse, "All ravens are black" is logically equivalent to "Any ob
ject is either black or not a raven." And that is confirmed by any black 
object whatever (raven or not) as well as by any nonraven (black or 
not). All of which seems absurd. 

Nelson Goodman's "grue" paradox is equally notorious. An object is 
"grue" if it is green until, say, January 1, 2500, and blue thereafter. Is the 
law "All emeralds are grue" confirmed by observations of green emer
alds? A prophet announces that the world will exist until January 1, 

2500, when it will disappear with a bang. Every day the world lasts 
seems to confirm the prediction, yet no one supposes that it becomes 
more probable. 

To make matters still worse, there are situations in which confirma
tions make a hypothesis less likely. Suppose you turn the cards of a 
shuffled deck looking for confirmations of the guess that no card has 
green spots. The first 10 cards are ordinary playing cards, then sud
denly you find a card with blue spots. It is the eleventh confirming in
stance, but now your confidence in the guess is severely shaken. Paul 
Berent has pointed out several similar examples. A man 99 feet tall is 
discovered. He is a confirming instance of "All men are less than 100 

feet tall," yet his discovery greatly weakens the hypothesis. Finding a 
normal-size man in an unlikely place (such as Saturn's moon Titan) is 
another example of a confirming instance that would weaken the same 
hypothesis. 

Confirmations may even falsify a hypothesis. Ten cards with all val
ues from the ace through the 10 are shuffled and dealt face down in a 
row. The guess is that no card with value n is in the nth position from 
the left. You turn the first nine cards. Each card confirms the hypothe
sis. But if none of the turned cards is the 10, the nine cards taken to
gether refute the hypothesis. 

Here is another example. Two piles of three cards each are on the 
table. One pile consists of the jack, queen, and king of hearts, the other 
consists of the jack, queen, and king of clubs. Each has been shuffled. 
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Smith draws a card from the heart pile, Jones takes a card from the 
club pile. The hypothesis is that the pair of selected cards consists of a 
king and queen. The probability of this is 2/9. Smith looks at his card 
and sees that it is a king. Without naming it, he announces that his card 
has confirmed the hypothesis. Why? Because knowing that his card is 
a king raises the probability of the hypothesis being true from 2/9 to 3/9 
or 1/3. Jones now sees that he (Jones) has drawn a king, so he can make 
the same statement Smith made. Each card, taken in isolation, is a con
firming instance. Yet, both cards taken together falsify the hypothesis. 

Carnap was aware of such difficulties. He distinguished sharply be
tween "degree of confirmation," a probability value based on the total 
relevant evidence, and what he called "relevance confirmation," which 
has to do with how new observations alter a confirmation estimate. 
Relevance confirmation cannot be given simple probability values. It is 
enormously complex, swarming with counterintuitive arguments. In 
Chapter 6 of Carnap's Logical Foundations he analyzes a group of 
closely related paradoxes of confirmation relevance that are easily mod
eled with cards. 

For example, it is possible that data will confirm each of two hy
potheses but disconfirm the two taken together. Consider a set of 10 

cards, half with blue backs and half with green ones. The green-backed 
cards (with the hearts and spades designated Hand S) are QH, 10H, 9H, 
KS, QS. The blue-backed cards are KH, /H, lOS, 9S, 8S. The 10 cards are 
shuffled and dealt face down in a row. 

Hypothesis A is that the property of being a face card (a king, a queen, 
or a jack) is more strongly associated with green backs than with blue. 
An investigation shows that this is true. Of the five cards with green 
backs, three are face cards versus only two face cards with blue backs. 
Hypothesis B is that the property of being a red card (hearts or dia
monds) is also more strongly associated with green backs than with 
blue. A second investigation confirms this. Three green-backed cards 
are red, but there are only two red cards with blue backs. Intuitively 
one assumes that the property of being both red and a face card is more 
strongly associated with green backs than blue, but that is not the case. 
Only one red face card has a green back, whereas two red face cards 
have blue backs! 

It is easy to think of ways, fanciful or realistic, in which similar sit
uations can arise. A woman wants to marry a man who is both rich and 
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kind. Some of the bachelors she knows have hair and some are bald. 
Being a statistician, she does some sampling. Project A establishes that 
3/5 of the men with hair are rich but only 2/5 of the bald men are rich. 
Project B discloses that 3/5 of the men with hair are kind but only 2/5 
of the bald men are kind. The woman might hastily conclude that she 
should marry a man with hair, but if the distribution of the attributes 
corresponds to that of the face cards and red cards mentioned in the 
preceding example, her chances of getting a rich, kind man are twice 
as great if she sets her sights on a bald man. 

Another research project shows that 3/5 of a group of patients taking 
a certain pill are immune to colds for five years, compared with only 
2/5 in the control group who were given a placebo. A second project 
shows that 3/5 of a group receiving the pill were immune to tooth cav
ities for five years, compared with 2/5 who got the placebo. The com
bined statistics could show that twice as many among those who got 
the placebo are free for five years from both colds and cavities, com
pared with those who got the pill. 

A striking instance of how a hypothesis can be confirmed by two in
dependent studies, yet disconfirmed by the total results, is provided by 
the following game. It can be modeled with cards, but to vary the equip
ment let's use 41 poker chips and four hats (see Figure 41.1). On table 
A is a black hat containing five colored chips and six white chips. Be
side it is a gray hat containing three colored chips and four white chips. 
On table B is another pair of black and gray hats. In the black hat there 
are six colored chips and three white chips. In the gray hat there are 
nine colored chips and five white chips. The contents of the four hats 
are shown by the charts in the illustration. 

You approach table A with the desire to draw a colored chip. Should 
you take a chip from the black hat or from the gray one? In the black hat 
five of the eleven chips are colored. so that the probability of getting a 
colored chip is 5/11. This is greater than 3/7. which is the probability 
of getting a colored chip if you take a chip from the gray hat. Clearly 
your best bet is to take a chip from the black hat. 

The black hat is also your best choice on table B. Six of its nine chips 
are colored, giving a probability of 6/9, or 2/3, that you will get a col
ored chip. This exceeds the probability of 9/14 that you will get a col
ored chip if you choose to take a chip from the gray hat. 

Now suppose that the chips from both black hats are combined in 
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(See "Sex Bias in Graduate Admissions: Data from Berkeley," by P. J. 
Bickel, E. A. Hammel, and J. W. O'Connell.) 

Blyth has invented another paradox that is even harder to believe 
than Simpson's. It can be modeled with three sets of cards or three un
fair dice that are weighted to give the required probability distribu
tions to their faces. We shall model it with the three spinners shown in 
Figure 41.2, because they are easy to construct by anyone who wants 
to verify the paradox empirically. 

.56 .51 

\ 
Figure 41.2. The three spinners for Colin R. Blyth's paradox 

Spinner A, with an undivided dial, is the simplest. No matter where 
the arrow stops, it gives a value of 3. Spinner B gives values of 2, 4, or 
6 with the respective probability distributions of .56, .22, and .22. Spin
ner C gives values of 1 or 5 with the probabilities of .51 and .49. 

You pick a spinner; a friend picks another. Each of you flicks his 
arrow, and the highest number wins. If you can later change spinners 
on the basis of experience, which spinner should you choose? When 
the spins are compared in pairs, we find that A beats B with a proba
bility of 1 x .56 = .56. A beats C with a probability of 1 x .51 = .51. B 
beats C with a probability of (1 x .22) + (.22 x .51) + (.56 x .51) = .6178. 

Clearly A, which beats both of the others with a probability of more 
than 1/2, is the best choice. C is the worst because it is beaten with a 
probability of more than 1/2 by both of the others. 

Now for the crunch. Suppose you play the game with two others and 
you have the first choice. The three spinners are flicked, and the high 
number wins. Calculating the probabilities reveals an extraordinary 
fact. A is the worst choice; C is the best! A wins with a probability of 
.56 x .51 = .2856, or less than 1/3. B wins with a probability of (.44 x 
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.51) + (.22 x .49) = .3322, or almost 1/3. C wins with a probability of .49 

x .78 = .3822, or more than 1/3. 

Consider the havoc this can wreak in statistical testing. Assume that 
drugs for a certain illness are rated in effectiveness with numbers 1 

through 6. Drug A is uniformly effective at a value of 3 (spinner A). 
Studies show that drug C varies in effectiveness. Fifty-one percent of 
the time it has value 1, and 49 percent of the time it has value 5 (spin
ner C). If drugs A and C are the only two on the market and a doctor 
wants to maximize a patient's chance of recovery, he clearly chooses 
drug A. 

What happens when drug B, with values and a probability distribu
tion corresponding to spinner B, becomes available? The bewildered 
doctor, if he considers all three drugs, finds C preferable to A. 

Blyth has an even more mind-blowing way of dramatizing the para
dox. Every night, a statistician eats at a restaurant that offers apple pie 
and cherry pie. He rates his satisfaction with each kind of pie in values 
1 through 6. The apple pie is uniformly 3 (spinner A); the cherry varies 
in the manner of spinner C. Naturally, the statistician always takes 
apple. 

Occasionally the restaurant has blueberry pie. Its satisfaction varies 
in the manner of spinner B. 

Waitress: Shall I bring your apple pie? 
Statistician: No. Seeing that today you also have blueberry, I'll take 

the cherry. 

The waitress would consider that a joke. Actually, the statistician is 
rationally maximizing his expectation of satisfaction. (An error. See 
Addendum.) Is there any paradox that points up more spectacularly the 
kinds of difficulty Carnap's followers must overcome in their efforts to 
advance his program? 

Addendum 
Many readers quite properly chided me for carelessness when 

I described Colin R. Blyth's paradox of the man and the three pies. It 
was I (not Blyth) who said that the man's decision was to maximize his 
"expectation of satisfaction." What he is maximizing is, in Blyth's 
words, "his best chance" of getting the most satisfying pie. It is a sub-
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tIe but important difference. Both the dining statistician and the doc
tor have a choice between two intents: maximizing their average of sat
isfaction in the long run or maximizing their chance of getting the best 
pie or drug on a particular occasion. 

To put it another way, Blyth's pie eater is minimizing his regret: the 
probability that he will see a better pie on the next table. His doctor 
counterpart, as Paul Chernick suggested, could be trying to avoid a 
malpractice suit that might result if a dissatisfied patient went to an
other doctor and got more effective treatment. "Is the case of a scientist 
closer to that of a player in the spinner game," asked George Mavrodes, 
"or is it closer to that of the statistical pie eater? ... I do not know the 
answer to that question." 

John F. Hamilton, Jr., revised the dialogue between the waitress and 
the statistician as follows: 

Waitress: Which pie will be better tonight, A or B? 
Statistician: The odds are on A. 

Waitress: What about A and C? 
Statistician: Again, A will probably win. 

Waitress: I see, you mean A will probably be the best of all. 
Statistician: No, actually Chas the greatest chance of being the best. 

Waitress: OK, cut the funny stuff. Which pie do you want to order, 
AorC? 

Statistician: Neither. I'll have a slice of B, please. 

The paradoxes of confirmation are not, of course, paradoxes in the 
sense of being contradictions, but paradoxes in the wider sense of being 
counterintuitive results that make nonsense of earlier naYve attempts, 
by John Stuart Mill and others, to define the meaning of "confirming in
stance." Philosophers who discuss the paradoxes are not ignorant of 
statistical theory. It is precisely because statistical theory demands so 
many careful distinctions that the task of formulating an inductive 
logic is so difficult. 

Richard C. Jeffrey, in The Logic of Decision Making (University of 
Chicago Press, 2 ed., 1983), formulates an amusing variant of Good
man's "grue" paradox. We define a "goy" as a girl born before 2000 

or a boy born after that date, and a "birl" as a boy born before 2000 

or a girl born after that date. Until now, no goy has had a penis, and 
all birls have. Hence by induction, (A) the first goy born after 2000 

will have no penis, and (B) the first birl born after that date will. 
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However, the first goy born after 2000 will be a boy, which contra
dicts A. Similarly, the first birl born after 2000 will be a girl, which 
contradicts B. 

England's famous recent philosopher of science, Karl Popper, spent 
most of his life arguing against Rudolf Carnap that the so-called straight 
rule-that the more confirming evidence is found for a conjecture, the 
more the conjecture is probably true-has no role in deciding the worth 
of a theory. Instead, he insisted that science advances by having its 
conjectures pass tests for falsification. Carnap's commonsense view 
was that both confirmation and disconfirmation are essential to the 
scientific method. 

Indeed, the falsification of a conjecture always adds confirmation to 
its opposite, and confirmation of a conjecture always tends to discon
firm its opposite. Consider the conjecture: There are life forms on Mars. 
If a Martian probe finds life forms it will confirm the conjecture and si
multaneously falsify the conjecture that there are no life forms on Mars. 
And if the probe finds no life on Mars it will confirm the second con
jecture and falsify the first. Moreover, falsification can be as fallible 
and uncertain as a confirmation. Popper got a lot of contorted debate 
out of his attack on what he called "induction." In my opinion his at
tack was extreme and is destined to fade from the history of the phi
losophy of science. 
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Chapter 42 

Fulfilling absolute decree 
In casual simplicity. 

-EMILY DICKINSON 

Simplicity 

Ms. Dickinson's lines are about a small brown stone in a road, 
but if we view the stone as part of the universe, fulfilling nature's laws, 
all sorts of intricate and mysterious events are taking place within it on 
the microlevel. The concept of "simplicity," in both science and math
ematics, raises a host of deep, complicated, still unanswered questions. 
Are the basic laws of nature few in number, or many, or perhaps infi
nite, as Stanislaw Vlam believed and others believe? Are the laws 
themselves simple or complex? Exactly what do we mean when we 
say one law or mathematical theorem is simpler than another? Is there 
any objective way to measure the simplicity of a law or a theory or a 
theorem? 

Most biologists, especially those who are doing research on the brain, 
are impressed by the enormous complexity of living organisms. In con
trast, although quantum theory has become more complicated with the 
discovery of hundreds of unexpected particles and interactions, most 
physicists retain a strong faith in the ultimate simplicity of basic phys
icallaws. 

This was especially true of Albert Einstein. "Our experience," he 
wrote, "justifies us in believing that nature is the realization of the sim
plest conceivable mathematical ideas." When he chose the tensor equa
tions for his theory of gravitation, he picked the simplest set that would 
do the job, then published them with complete confidence that (as he 
once said to the mathematician John G. Kemeny) "God would not have 
passed up an opportunity to make nature that simple." It has even been 
argued that Einstein's great achievements were intellectual expressions 
of a psychological compulsion that Henry David Thoreau, in Walden, 
expressed as follows: 

"Simplicity, simplicity, simplicity! I say, let your affairs be as two or 
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three, and not a hundred or a thousand; instead of a million count half 
a dozen, and keep your accounts on your thumb nail." 

In Peter Michelmore's biography of Einstein, he tells us that "Ein
stein's bedroom was monkish. There were no pictures on the wall, no 
carpet on the floor .... He shaved roughly with bar soap. He often went 
barefoot around the house. Only once every few months he would 
allow Elsa [his wife] to lop off swatches of his hair .... Most days he 
did not find underwear necessary. He also dispensed with pajamas 
and, later, with socks. 'What use are socks?' he asked. 'They only pro
duce holes.' Elsa put her foot down when she saw him chopping off the 
sleeve of a new shirt from the elbow down. He explained that cuffs had 
to be buttoned or studded and washed frequently-all a waste of time." 

"Every possession," Einstein said, "is a stone around the leg." The 
statement could have come straight out of Walden. 

Yet nature seems to have a great many stones around her legs. Basic 
laws are simple only in first approximations; they become increasingly 
complex as they are refined to explain new observations. The guiding 
motto of the scientist, Alfred North Whitehead wrote, should be: "Seek 
simplicity and distrust it." Galileo picked the simplest workable equa
tion for falling bodies, but it did not take into account the altitude of the 
body and had to be modified by the slightly more complicated equa
tions of Newton. Newton too had great faith in simplicity. "Nature is 
pleased with simplicity," he wrote, echoing a passage in Aristotle, "and 
affects not the pomp of superfluous causes." Yet Newton's equations in 
turn were modified by Einstein, and there are physicists, such as Robert 
Dicke, who believe that Einstein's gravitational equations must be mod
ified by still more complicated formulas. 

It is dangerous to argue that because many basic laws are simple, the 
undiscovered laws also will be simple. Simple first approximations 
are obviously the easiest to discover first. Because the "aim of science 
is to seek the simplest explanations of complex facts," to quote White
head again (Chapter 7 of The Concept of Nature), we are apt to "fall into 
the error" of thinking that nature is fundamentally simple "because 
simplicity is the goal of our quest." 

This we can say. Science sometimes simplifies things by producing 
theories that reduce to the same law phenomena previously considered 
unrelated-for example, the equivalence of inertia and gravity in gen
eral relativity. Science equally often discovers that behind apparently 
simple phenomena, such as the structure of matter, there lurks unsus-

554 PHYSICS 



pected complexity. Johannes Kepler struggled for years to defend the 
circular orbits of planets because the circle was the simplest closed 
curve. When he finally convinced himself that the orbits were ellipses, 
he wrote of the ellipse as "dung" he had to introduce to rid astronomy 
of vaster amounts of dung. It is a perceptive statement because it sug
gests that the introduction of more complexity on one level of a theory 
can introduce greater overall simplicity. 

Nevertheless, at each step along the road simplicity seems to enter 
into a scientist's work in some mysterious way that makes the simplest 
workable hypothesis the best bet. "Simplest" is used here in a strictly 
objective sense, independent of human observation, even though no 
one yet knows how to define it. Naturally there are all sorts of ways one 
theory can be simpler than another in a pragmatic sense, but these 
ways are not relevant to the big question we are asking. As philosopher 
Nelson Goodman has put it, "If you want to go somewhere quickly, 
and several alternate routes are equally likely to be open, no one asks 
why you take the shortest." In other words, if two theories are not 
equivalent-lead to different predictions-and a scientist considers 
them equally likely to be true, he will test first the theory that he con
siders the "simplest" to test. 

In this pragmatic sense, simplicity depends on a variety of factors: 
the kind of apparatus available, the extent of funding, the available 
time, the knowledge ofthe scientist and his assistants, and so on. More
over, a theory may seem simple to one scientist because he understands 
the mathematics and complicated to another scientist less familiar with 
the math. A theory may have a simple mathematical form but predict 
complex phenomena that are difficult to test, or it may be a compli
cated theory that predicts simple results. As Charles Peirce pointed 
out, circumstances may be such that it is more economical to test first 
the least plausible of several hypotheses. 

These subjective and pragmatic factors obviously play roles in re
search, but they fail to touch the heart of the mystery. The deep ques
tion is: Why, other things being equal, is the simplest hypothesis 
usually the most likely to be on the right track-that is, most likely to 
be confirmed by future research? 

Consider the following "simple" instance of a scientific investigation. 
A physicist, searching for a functional relationship between two vari
ables, records his observations as spots on a graph. Not only will he 
draw the simplest curve that comes close to the spots but also he allows 
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their power to predict new observations, although the predictions are 
different. Both theories cannot be true. Both may be false. Each de
mands a different test and each test costs $1 million. If simplicity en
ters into the probability of a theory's being right, there is an obvious 
advantage in being able to measure simplicity so that the simplest the
ory can be tested first. 

No one today knows how to measure this kind of simplicity or even 
how to define it. Something in the situation must be minimized, but 
what? It is no good to count the terms in a theory's mathematical for
mulation, because the number depends on the notation. The same for
mula may have 10 terms in one notation and three in another. Einstein's 
famous E = mc2 looks simple only because each term is a shorthand 
symbol for concepts that can be written with formulas involving other 
concepts. This happens also in pure mathematics. The only way to ex
press pi with integers is as the limit of an infinite series, but by writing 
1t the entire series is squeezed into one symbol. 

Minimizing the powers of terms also is misleading. For one thing, a 
linear equation such as x = 2y graphs as a straight line only when the 
coordinates are Cartesian. With polar coordinates it graphs as a spiral. 
For another thing, minimizing powers is no help when equations are 
not polynomials. Even when they are polynomial, should one say that 
an equation such as W= 13x+ 23y+ 132z is "simpler" than x= y2? 

In comparing the simplest geometric figures the notion of simplicity 
is annoyingly vague. In one of Johnny Hart's B.C. comic strips a cave
man invents a square wagon wheel. Because it has too many corners 
and therefore too many bumps, he goes back to his drawing board and 
invents a "simpler" wheel in the shape of a triangle. Comers and 
bumps have been minimized, but the inventor is still further from the 
simplest wheel, the circle, which has no corners. Or should the circle 
be called the most complicated wheel because it is a "polygon" with an 
infinity of corners? The truth is that an equilateral triangle is simpler 
than a square in that it has fewer sides and corners. On the other hand, 
the square is simpler in that the formula for its area as a function of its 
side has fewer terms. 

One of the most tempting of many proposed ways to measure the 
simplicity of a hypothesis is to count its number of primitive concepts. 
This, alas, is another blind alley. One can artificially reduce concepts 
by combining them. Nelson Goodman brings this out clearly in his fa
mous "grue" paradox about which dozens of technical papers have 

Simplicity 557 



been written. Consider a simple law: All emeralds are green. We now 
introduce the concept "grue." It is the property of being green if ob
served, say, before January 1, 2001, and being blue if observed there
after. We state a second law: All emeralds are grue. 

Both laws have the same number of concepts. Both have the same 
"empirical content" (they explain all observations). Both have equal 
predictive power. A single instance of a wrong color, when an emerald 
is examined at any future time, can falsify either hypothesis. Everyone 
prefers the first law because "green" is simpler than "grue"-it does not 
demand new theories to explain the sudden change of color of emer
alds on January 1, 2001. Although Goodman has done more work than 
anyone on this narrow aspect of simplicity, he is still far from final re
sults, to say nothing of the more difficult problem of measuring the 
overall simplicity of a law or theory. The concept of simplicity in sci
ence is far from simple! It may turn out that there is no single measure 
of simplicity but many different kinds, all of which enter into the com
plex final evaluation of a law or theory. 

Surprisingly, even in pure mathematics similar difficulties arise. 
Mathematicians usually search for theorems in a manner not much dif
ferent from the way physicists search for laws. They make empirical 
tests. In pencil doodling with convex quadrilaterals-a way of experi
menting with physical models-a geometer may find that when he 
draws squares outwardly on a quadrilateral's sides and joins the cen
ters of opposite squares, the two lines are equal and intersect at 90 de
grees (see Figure 42.2). He tries it with quadrilaterals of different 
shapes, always getting the same results. Now he sniffs a theorem. Like 

Figure 42.2. A "simple" geometrical theorem 
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a physicist, he picks the simplest hypothesis. He does not, for example, 
test first the conjecture that the two lines have a ratio of one to 1.00007 

and intersect with angles of 89 and 91 degrees, even though this con
jecture may equally well fit his crude measurements. He tests first the 
simpler guess that the lines are always perpendicular and equal. His 
"test," unlike the physicist's, is a search for a deductive proof that will 
establish the hypothesis with certainty. 

Combinatorial theory is rich in similar instances where the simplest 
guess is usually the best bet. As in the physical world, however, there 
are surprises. Consider the following problem discovered by Leo Moser. 
Two or more spots are placed anywhere on a circle's circumference. 
Every pair is joined by a straight line. Given n spots, what is the max
imum number of regions into which the circle can be divided? Figure 
42.3 gives the answers for two, three, and four spots. The reader is 
asked to search for the answers for five and six spots and, if possible, 
find the general formula. 

Figure 42.3. A combinatorial problem 

Addendum 
The beautiful theorem about the squares on the sides of an ar

bitrary convex quadrilateral is known as Von Aubel's theorem. Many 
readers, disappointed that I did not provide a proof, sent excellent 
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proofs of their own. I lack space for any here, but you will find a sim
ple vector proof in "Von Aubel's Quadrilateral Theorem," by Paul J. 
Kelly, Mathematics Magazine, January 1966, pages 35-37. A different 
proof based on symmetry operations is in Geometric Transformations, 
by I. M. Yaglom (Random House, 1962, pp. 95-96, problem 24b). 

As Kelly points out, the theorem can be generalized in three ways 
that make it even more beautiful. 

1. The quadrilateral need not be convex. The lines joining the centers 
of opposite squares may not intersect, but they remain equal and 
perpendicular. 

2. Any three or even all four of the quadrilateral's corners may be 
collinear. In the first case the quadrilateral degenerates into a trian
gle with a "vertex" on one side; in the second case, into a straight line 
with two "vertices" on it. 

3. One side of the quadrilateral may have zero length. This brings two 
corners together at a single point which may be treated as the center 
of a square of zero size. 

The second and third generalizations were discovered by a reader, W. 
Nelson Goodwin, Jr., who drew the four examples shown in Figure 
42.4. Note that the theorem continues to hold if opposite sides of a 
quadrilateral shrink to zero. The resulting line may be regarded as one 
of the lines connecting midpoints of opposite squares of zero size, and 
of course it equals and is perpendicular to a line joining midpoints of 
two squares drawn on opposite sides of the original line. 

Answers 

Leo Moser's circle-and-spots problem is an amusing example of 
how easily an empirical induction can go wrong in experimenting with 
pure mathematics. For one, two, three, four, and five spots on the cir
cle, the maximum number of regions into which the circle can be di
vided by joining all pairs of spots with straight lines is 1, 2,4,8, 16 .... 
One might conclude that this simple doubling series continues and 
that the maximum number of regions for n spots is 2n- 1• Unfortunately 
this formula fails for all subsequent numbers of spots. Figure 42.5 
shows how six spots give a maximum of 31, not 32, regions. The cor
rect formula is: 
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Figure 42.4. Curious generalizations of Von Aubel's theorem 

A parenthetical expression (t) is the number of ways m objects can 
be combined, taken k at a time. (It equals m!/k!(m - k)!) Moser has 
pointed out that the formula gives the sum of the rows of numbers at 
the left of the diagonal line drawn on Pascal's triangle, as shown in the 
illustration. 

Written out in full, the formula is: 
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SPOTS 

1 
2 
3 2 
4 3 3 
5 4 6 
6 5 10 10 
7 6 15 20 

Figure 42.5. Solution to Leo Moser's spot problem 

n 4 - 6n3 + 23n2 18n + 24 

24 

4 

REGIONS 

1 

2 
4 

8 
16 
31 
57 

When the positive integers are plugged into n, the formula generates 
the sequence: 1,2,4,8, 16, 31, 57,99, 163,256,386,562 .... Theprob
lem is a delightful illustration of Whitehead's advice to seek simplic
ity but distrust it. 

I have been unable to determine where or when Moser first pub
lished this problem, but in a letter he says he thinks it was in Mathe
matics Magazine about 1950. It has since appeared in numerous books 
and periodicals, with varying methods of solution. A partial list of ref
erences is given in the bibliography for this chapter. 

Almost no progress, if any, has been made in finding a way to mea
sure the simplicity of a theory in a manner that would be useful to sci
entists. One recent suggestion, based on a technique for defining 
random numbers, is to translate a theory into a string of binary digits. 
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The theory's simplicity is then defined by the length of the shortest 
computer program that will print the string. This isn't much help. 
Quite apart from the difficulty of finding the shortest algorithm for a 
long binary expression, how is the string formed in the first place? 
How, for example, can you express superstring theory by a string ofbi
nary digits? 

Scientists all agree that somehow the simpler of two theories, each 
with the same explanatory and predictive power, has the better chance 
of being fruitful, but no one knows why. Maybe it's because the ultimate 
laws of nature are simple, but who can be positive there really are ul
timate laws? Some physicists suspect there may be infinite levels of 
complexity. At each level the laws may get progressively simpler until 
suddenly the experimenters open a trap door and another complicated 
subbasement is discovered. 
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Chapter 43 The Unexpected 
Hanging 

]I new and powerful paradox has come to light." This is the 
opening sentence of a mind-twisting article by Michael Scriven that ap
peared in the July 1951 issue of the British philosophical journal Mind. 
Scriven, who bears the title of "professor of the logic of science" at the 
University of Indiana, is a man whose opinions on such matters are not 
to be taken lightly. That the paradox is indeed powerful has been amply 
confirmed by the fact that more than 20 articles about it have appeared 
in learned journals. The authors, many of whom are distinguished 
philosophers, disagree sharply in their attempts to resolve the para
dox. Since no consensus has been reached, the paradox is still very 
much a controversial topic. 

No one knows who first thought of it. According to the Harvard Uni
versity logician W. V. Quine, who wrote one ofthe articles, the paradox 
was first circulated by word of mouth in the early 1940s. It often took 
the form of a puzzle about a man condemned to be hanged. 

The man was sentenced on Saturday. "The hanging will take place at 
noon," said the judge to the prisoner, "on one ofthe seven days of next 
week. But you will not know which day it is until you are so informed 
on the morning of the day of the hanging." 

The judge was known to be a man who always kept his word. The 
prisoner, accompanied by his lawyer, went back to his cell. As soon as 
the two men were alone the lawyer broke into a grin. "Don't you see?" 
he exclaimed. "The judge's sentence cannot possibly be carried out." 
(see Figure 43.1.) 

"I don't see," said the prisoner. 
"Let me explain. They obviously can't hang you next Saturday. Sat

urday is the last day of the week. On Friday afternoon you would still 
be alive and you would know with absolute certainty that the hanging 
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Figure 43.1. The prisoner 
eliminates all possible days. 

would be on Saturday. You would know this before you were told so on 
Saturday morning. That would violate the judge's decree." 

"True," said the prisoner. 
"Saturday, then is positively ruled out," continued the lawyer. "This 

leaves Friday as the last day they can hang you. But they can't hang you 
on Friday because by Thursday afternoon only two days would remain: 
Friday and Saturday. Since Saturday is not a possible day, the hanging 
would have to be on Friday. Your knowledge of that fact would violate 
the judge's decree again. So Friday is out. This leaves Thursday as the 
last possible day. But Thursday is out because if you're alive Wednes
day afternoon, you'll know that Thursday is to be the day." 

"I get it," said the prisoner, who was beginning to feel much better. 
"In exactly the same way I can rule out Wednesday, Tuesday, and Mon
day. That leaves only tomorrow. But they can't hang me tomorrow be
cause I know it today!" 

In brief, the judge's decree seems to be self-refuting. There is nothing 
logically contradictory in the two statements that make up his decree; 
nevertheless, it cannot be carried out in practice. That is how the para
dox appeared to Donald John O'Connor, a philosopher at the University 
of Exeter, who was the first to discuss the paradox in print (Mind, July 
1948). O'Connor's version of the paradox concerned a military com
mander who announced that there would be a Class A blackout during 
the following week. He then defined a Class A blackout as one that the 
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participants could not know would take place until after 6 P.M. on the 
day it was to occur. 

"It is easy to see," wrote O'Connor, "that it follows from the an
nouncement of this definition that the exercise cannot take place at 
all." That is to say, it cannot take place without violating the definition. 
Similar views were expressed by the authors of the next two articles (L. 
Jonathan Cohen in Mind for January 1950, and Peter Alexander in Mind 
for October 1950), and even by George Gamow and Marvin Stern when 
they later included the paradox (in a man-to-be-hanged form) in their 
book Puzzle Math (New York: Viking, 1958). 

Now, if this were all there was to the paradox, one could agree with 
O'Connor that it is "rather frivolous." But, as Scriven was the first to 
point out, it is by no means frivolous, and for a reason that completely 
escaped the first three authors. To make this clear, let us return to the 
man in the cell. He is convinced, by what appears to be unimpeachable 
logic, that he cannot be hanged without contradicting the conditions 
specified in his sentence. Then on Thursday morning, to his great sur
prise, the hangman arrives. Clearly he did not expect him. What is 
more surprising, the judge's decree is now seen to be perfectly correct. 
The sentence can be carried out exactly as stated. "I think this flavour 
of logic refuted by the world makes the paradox rather fascinating," 
writes Scriven. "The logician goes pathetically through the motions 
that have always worked the spell before, but somehow the monster, 
Reality, has missed the point and advances stilL" 

In order to grasp more clearly the very real and profound linguistic 
difficulties involved here, it would be wise to restate the paradox in 
two other equivalent forms. By doing this we can eliminate various ir
relevant factors that are often raised and that cloud the issue, such as 
the possibility of the judge's changing his mind, of the prisoner's dying 
before the hanging can take place, and so on. 

The first variation of the paradox, taken from Scriven's article, can be 
called the paradox of the unexpected egg (see Figure 43.2). 

Imagine that you have before you 10 boxes labeled from 1 to 10. 
While your back is turned, a friend conceals an egg in one of the boxes. 
You turn around. "I want you to open these boxes one at a time," he 
tells you, "in serial order. Inside one of them I guarantee that you will 
find an unexpected egg. By 'unexpected' I mean that you will not be 
able to deduce which box it is in before you open the box and see it." 

Assuming that your friend is absolutely trustworthy in all his state-
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Figure 43.2. The paradox of 
the unexpected egg 

ments, can his prediction be fulfilled? Apparently not. He obviously 
will not put the egg in box 10, because after you have found the first 
nine boxes empty you will be able to deduce with certainty that the egg 
is in the only remaining box. This would contradict your friend's state
ment. Box 10 is out. Now consider the situation that would arise if he 
were so foolish as to put the egg in box 9. You find the first eight boxes 
empty. Only 9 and 10 remain. The egg cannot be in box 10. Ergo it 
must be in 9. You open 9. Sure enough, there it is. Clearly it is an ex
pected egg, and so your friend is again proved wrong. Box 9 is out. But 
now you have started on your inexorable slide into unreality. Box 8 can 
be ruled out by precisely the same logical argument, and similarly 
boxes 7, 6, 5, 4, 3, 2, and 1. Confident that all 10 boxes are empty, you 
start to open them. What have we here in box 5? A totally unexpected 
egg! Your friend's prediction is fulfilled after all. Where did your rea
soning go wrong? 

To sharpen the paradox still more, we can consider it in a third form, 
one that can be called the paradox of the unexpected spade (see Figure 
43.3). Imagine that you are sitting at a card table opposite a friend who 
shows you that he holds in his hand the 13 spades. He shuffles them, 
fans them with the faces toward him, and deals a single card face down 
on the table. You are asked to name slowly the 13 spades, starting with 
the ace and ending with the king. Each time you fail to name the card 
on the table he will say no. When you name the card correctly, he will 
say yes. 

"I'll wager a thousand dollars against a dime," he says, "that you 
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Figure 43.3. The paradox of 
the unexpected spade 

will not be able to deduce the name of this card before I respond with 
'Yes.' " 

Assuming that your friend will do his best not to lose his money, is 
it possible that he placed the king of spades on the table? Obviously 
not. After you have named the first 12 spades, only the king will re
main. You will be able to deduce the card's identity with complete 
confidence. Can it be the queen? No, because after you have named the 
jack only the king and queen remain. It cannot be the king, so it must 
be the queen. Again, your correct deduction would win you $1,000. 

The same reasoning rules out all the remaining cards. Regardless of 
what card it is, you should be able to deduce its name in advance. The 
logic seems airtight. Yet it is equally obvious, as you stare at the back 
of the card, that you have not the foggiest notion which spade it is! 

Even if the paradox is simplified by reducing it to two days, two 
boxes, two cards, something highly peculiar continues to trouble the 
situation. Suppose your friend holds only the ace and deuce of spades. 
It is true that you will be able to collect your bet if the card is the deuce. 
Once you have named the ace and it has been eliminated you will be 
able to say: "I deduce that it's the deuce." This deduction rests, of 
course, on the truth of the statement "The card before me is either the 
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ace or the deuce of spaces." (It is assumed by everybody, in all three 
paradoxes, that the man will be hanged, that there is an egg in a box, 
that the cards are the cards designated.) This is as strong a deduction 
as mortal man can ever make about a fact of nature. You have, therefore, 
the strongest possible claim to the $1,000. 

Suppose, however, your friend puts down the ace of spades. Cannot 
you deduce at the outset that the card is the ace? Surely he would not 
risk his $1,000 by putting down the deuce. Therefore it must be the ace. 
You state your conviction that it is. He says yes. Can you legitimately 
claim to have won the bet? 

Curiously, you cannot, and here we touch on the heart of the mystery. 
Your previous deduction rested only on the premise that the card was 
either the ace or the deuce. The card is not the ace; therefore, it is the 
deuce. But now your deduction rests on the same premise as before 
plus an additional one, namely, on the assumption that your friend 
spoke truly; to say the same thing in pragmatic terms, on the assump· 
tion that he will do all he can to avoid paying you $1,000. But if it is 
possible for you to deduce that the card is the ace, he will lose his 
money just as surely as if he put down the deuce. Since he loses it ei
ther way, he has no rational basis for picking one card rather than the 
other. Once you realize this, your deduction that the card is the ace 
takes on an extremely shaky character. It is true that you would be wise 
to bet that it is the ace, because it probably is, but to win the bet you 
have to do more than that: you have to prove that you have deduced the 
card with iron logic. This you cannot do. 

You are, in fact, caught up in a vicious circle of contradictions. First 
you assume that his prediction will be fulfilled. On this basis you de· 
duce that the card on the table is the ace. But if it is the ace, his pre
diction is falsified. If his prediction cannot be trusted, you are left 
without a rational basis for deducting the name of the card. And if you 
cannot deduce the name of the card, his prediction will certainly be 
confirmed. Now you are right back where you started. The whole cir- . 
cle begins again. In this respect the situation is analogous to the vicious 
circularity involved in a famous card paradox first proposed by the 
English mathematician P.E.B. Jourdain in 1913 (see Figure 43.4). Since 
this sort of reasoning gets you no further than a dog gets in chasing its 
tail, you have no logical way of determining the name of the card on the 
table. Of course, you may guess correctly. Knowing your friend, you 
may decide that it is highly probable he put down the ace. But no self-
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Figure 43.4. P.E.B. Jourdain's 
card paradox 

respecting logician would agree that you have "deduced" the card with 
anything close to the logical certitude involved when you deduced that 
it was the deuce. 

The flimsiness of your reasoning is perhaps seen more clearly if you 
return to the 10 boxes. At the start you "deduce" that the egg is in box 
1, but box 1 is empty. You then "deduce" it to be in box 2, but box 2 is 
empty also. Then you "deduce" box 3, and so on. (It is almost as if the 
egg, just before you look into each box in which you are positive it 
must be, were cleverly transported by secret trap doors to a box with a 
higher number!) Finally you find the "expected" egg in box 8. Can you 
maintain that the egg is truly "expected" in the sense that your deduc
tion is above reproach? Obviously you cannot, because your seven pre
vious "deductions" were based on exactly the same line of reasoning, 
and each proved to be false. The plain fact is that the egg can be in any 
box, including the last one. 

Even after having opened nine empty boxes, the question of whether 
you can "deduce" that there is an egg in the last box has no unam
biguous answer. If you accept only the premise that one of the boxes 
contains an egg, then of course an egg in box 10 can be deduced. In that 
case, it is an expected egg and the assertion that it would not be is 
proved false. If you also assume that your friend spoke truly when he 
said the egg would be unexpected, then nothing can be deduced, for 
the first premise leads to an expected egg in box 10 and the second to 
an unexpected egg. Since nothing can be deduced, an egg in box 10 
will be unexpected and both premises will be vindicated, but this vin
dication cannot come until the last box is opened and an egg is found 
there. 
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We can sum up this resolution of the paradox, in its hanging form, as 
follows. The judge speaks truly and the condemned man reasons 
falsely. The very first step in his chain of reasoning-that he cannot be 
hanged on the last day-is faulty. Even on the evening of the next-to
last day, as explained in the previous paragraph with reference to the 
egg in the last box-he has no basis for a deduction. This is the main 
point of QUine's 1953 paper. In Quine'S closing words, the condemned 
man should reason: "We must distinguish four cases: first, that I shall 
be hanged tomorrow noon and I know it now (but I do not); second, that 
I shall be unhanged tomorrow noon and know it now (but I do not); 
third, that I shall be unhanged tomorrow noon and do not know it now; 
and fourth, that I shall be hanged tomorrow noon and do not know it 
now. The latter two alternatives are the open possibilities, and the last 
of all would fulfill the decree. Rather than charging the judge with self
contradiction, therefore, let me suspend judgment and hope for the 
best." 

The Scottish mathematician Thomas H. O'Beirne, in an article with 
the somewhat paradoxical title "Can the Unexpected Never Happen?" 
(The New Scientist, May 25, 1961), has given what seems to me an ex
cellent analysis of this paradox. As O'Beirne makes clear, the key to re
solving the paradox lies in recognizing that a statement about a future 
event can be known to be a true prediction by one person but not 
known to be true by another until after the event. It is easy to think of 
simple examples. Someone hands you a box and says: "Open it and you 
will find an egg inside." He knows that his prediction is sound, but you 
do not know it until you open the box. 

The same is true in the paradox. The judge, the man who puts the egg 
in the box, the friend with the 13 spades-each knows that his predic
tion is sound. But the prediction cannot be used to support a chain of 
arguments that results eventually in discrediting the prediction itself. 
It is this roundabout self-reference that, like the sentence on the face of 
jourdain's card, tosses the monkey wrench into all attempts to prove 
the prediction unsound. 

We can reduce the paradox to its essence by taking a cue from 
Scriven. Suppose a man says to his wife: "My dear, I'm going to sur
prise you on your birthday tomorrow by giving you a completely un
expected gift. You have no way of guessing what it is. It is that gold 
bracelet you saw last week in Tiffany's window." 

What is the poor wife to make of this? She knows her husband to be 
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truthful. He always keeps his promises. But if he does give her the gold 
bracelet, it will not be a surprise. This would falsify his prediction. 
And if his prediction is unsound, what can she deduce? Perhaps he 
will keep his word about giving her the bracelet but violate his word 
that the gift will be unexpected. On the other hand, he may keep his 
word about the surprise but violate it about the bracelet and give her in~ 
stead, say, a new vacuum cleaner. Because of the self~refuting charac~ 
ter of her husband's statement, she has no rational basis for choosing 
between these alternatives; therefore, she has no rational basis for ex~ 
pecting the gold bracelet. It is easy to guess what happens. On her birth
day she is surprised to receive a logically unexpected bracelet. 

He knew all along that he could and would keep his word. She could 
not know this until after the event. A statement that yesterday appeared 
to be nonsense, that plunged her into an endless whirlpool of logical 
contradictions, has today suddenly been made perfectly true and non
contradictory by the appearance of the gold bracelet. Here in the stark~ 
est possible form is the queer verbal magic that gives to all the 
paradoxes we have discussed their bewildering, head~splitting charm. 

Addendum 

A great many trenchant and sometimes bewildering letters were 
received from readers offering their views on how the paradox of the 
unexpected hanging could be resolved. Several went on to expand their 
views in articles that are listed in the bibliography for this chapter. 

Lennart Ekbom, a mathematics teacher at Ostermalms College, in 
Stockholm, pinned down what may be the origin of the paradox. In 
1943 or 1944, he wrote, the Swedish Broadcasting Company an
nounced that a civil-defense exercise would be held the following 
week, and to test the efficiency of civil-defense units, no one would be 
able to predict, even on the morning of the day of the exercise, when it 
would take place. Ekbom realized that this involved a logical paradox, 
which he discussed with some students of mathematics and philoso
phy at Stockholm University. In 1947 one of these students visited 
Princeton, where he heard Kurt G6del, the famous mathematician, 
mention a variant of the paradox. Ekbom adds that he originally be~ 
lieved the paradox to be older than the Swedish civil~defense an
nouncement, but in view of Quine's statement that he first heard of the 
paradox in the early forties, perhaps this was its origin. 
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Papers on the unexpected hanging paradox continue to proliferate. I 
have greatly lengthened the chapter's bibliography to catch all the ref
erences in English that have come to my attention since 1969. It is 
amazing that philosophers continue to be bemused by this paradox 
and are still unable to agree on how best to resolve it. 

The paradox has many variants. Douglas Hofstadter suggested that 
instead of an unexpected egg in a box there be an unexpected deadly 
snake. Roy Sorensen, in his 1982 paper, offered three versions in which 
a time sequence is not involved: one concerning what are called 
Moorean sentences, another about moves on a 3 x 3 game matrix, and 
a third based on a chain of sacrificial virgins. 
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Chapter 44 Newcomb's Paradox 

A common opinion prevails that the juice has 
ages ago been pressed out of the free-will con
troversy, and that no new champion can do 
more than warm up stale arguments which 
every one has heard. This is a radical mis
take. I know of no subject less worn out, or in 
which inventive genius has a better chance of 
breaking open new ground. -WILLIAM JAMES 

One of the perennial problems of philosophy is how to ex
plain (or explain away) the nature of free will. If the concept is expli
cated within a framework of determinism, the will ceases to be free in 
any commonly understood sense, and it is hard to see how fatalism can 
be avoided. Che sara, sara. Why work hard for a better future for your
self or for others if what you do must always be what you do do? And 
how can you blame anyone for anything ifhe could not have done oth
erwise? 

On the other hand, attempts to explicate will in a framework of in
determinism seem equally futile. If an action is not caused by the pre
vious states of oneself and the world, it is hard to see how to keep the 
action from being haphazard. The notion that decisions are made by 
some kind of randomizer in the mind does not provide much support 
for what is meant by free will either. 

Philosophers have never agreed on how to avoid the horns of this 
dilemma. Even within a particular school there have been sharp dis
agreements. William James and John Dewey, America's two leading 
pragmatists, are a case in point. Although Dewey was a valiant de
fender of democratic freedoms, his metaphysics regarded human be
havior as completely determined by what James called the total "push 
of the past." Free will for Dewey was as illusory as it is in the psy
chology of B. F. Skinner. In contrast, James was a thoroughgoing inde
terminist. He believed that minds had the power to inject genuine 
novelty into history-that not even God himself could know the future 
except partially. "That," he wrote, "is what gives the palpitating real
ity to our moral life and makes it tingle ... with so strange and elabo
rate an excitement." 
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A third approach, pursued in depth by Immanuel Kant, accepts both 
sides of the controversy as being equally true but incommensurable 
ways of viewing human behavior. For Kant the situation is something 
like that pictured in one of Piet Hein's "grooks": 

A bit beyond perception's reach 
I sometimes believe I see 
That Life is two locked boxes, each 
Containing the other's key. 

Free will is neither fate nor chance. In some unfathomable way it par
takes of both. Each is the key to the other. It is not a contradictory con
cept, like a square triangle, but a paradox that our experience forces on 
us and whose resolution transcends human thought. That was how 
Niels Bohr saw it. He found the situation similar to his "principle of 
complementarity" in quantum mechanics. It is a viewpoint that Ein
stein, a Spinozist, found distasteful, but many other physicists, J. 
Robert Oppenheimer for one, found enormously attractive. 

What has free will to do with mathematical games? The answer is 
that in recent decades philosophers of science have been wrestling 
with a variety of queer "prediction paradoxes" related to the problem 
of wilL Some of them are best regarded as a game situation. One draws 
a payoff matrix and tries to determine a player's best strategy, only to 
find oneself trapped in a maze of bewildering ambiguities about time 
and causality. 

A marvelous example of such a paradox came to light in 1970 in the 
paper "Newcomb's Problem and Two Principles of Choice" by Robert 
Nozick, a philosopher at Harvard University. The paradox is so pro
found, so amusing, so mind-bending, with thinkers so evenly divided 
into warring camps, that it bids fair to produce a literature vaster than 
that dealing with the prediction paradox of the unexpected hanging. 

Newcomb's paradox is named after its originator, William A. New
comb, a theoretical physicist at the University of California's Lawrence 
Livermore Laboratory. (His great-grandfather was the brother of Simon 
Newcomb, the astronomer.) Newcomb thought of the problem in 1960 

while meditating on a famous paradox of game theory called the pris
oner's dilemma. A few years later Newcomb's problem reached Nozick 
by way of their mutual friend Martin David Kruskal, a Princeton Uni
versity mathematician. "It is not clear that I am entitled to present this 
paper," Nozick writes. "It is a beautiful problem. I wish it were mine." 
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Although Nozick could not resolve it, he decided to write it up anyway. 
His paper appears in Essays in Honor of Carl G. Hempel, edited by 
Nicholas Rescher and published by Humanities Press in 1970. What 
follows is largely a paraphrase of Nozick's paper. 

Two closed boxes, B1 and B2, are on a table. B1 contains $1,000. B2 
contains either nothing or $1 million. You do not know which. You 
have an irrevocable choice between two actions: 

1. Take what is in both boxes. 
2. Take only what is in B2. 

At some time before the test a superior Being has made a prediction 
about what you will decide. It is not necessary to assume determinism. 
You only need be persuaded that the Being's predictions are "almost 
certainly" correct. If you like, you can think of the Being as God, but the 
paradox is just as strong if you regard the Being as a superior intelli
gence from another planet or a supercomputer capable of probing your 
brain and making highly accurate predictions about your decisions. If 
the Being expects you to choose both boxes, he has left B2 empty. If he 
expects you to take only B2, he has put $1 million in it. (If he expects 
you to randomize your choice by, say, flipping a coin, he has left B2 
empty.) In all cases B1 contains $1,000. You understand the situation 
fully. the Being knows you understand, you know that he knows, and 
so on. 

What should you do? Clearly it is not to your advantage to flip a 
coin, so that you must decide on your own. The paradox lies in the dis
turbing fact that a strong argument can be made for either decision. 
Both arguments cannot be right. The problem is to explain why one is 
wrong. 

Let us look first at the argument for taking only B2. You believe the 
Being is an excellent predictor. If you take both boxes, the Being almost 
certainly will have anticipated your action and have left B2 empty. 
You will get only the $1,000 in B1. On the other hand, if you take only 
B2, the Being, expecting that, almost certainly will have placed $1 mil
lion in it. Clearly it is to your advantage to take only B2. 

Convincing? Yes, but the Being made his prediction, say a week ago, 
and then left. Either he put the $1 million in B2, or he did not. "If the 
money is already there, it will stay there whatever you choose. It is not 
going to disappear. If it is not already there, it is not going to suddenly 
appear if you choose only what is in the second box." It is assumed that 
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no "backward causality" is operating; that is, your present actions can
not influence what the Being did last week. So why not take both boxes 
and get everything that is there? If B2 is filled, you get $1,001,000. If it 
is empty, you get at least $1,000. If you are so foolish as to take only B2, 
you know you cannot get more than $1 million, and there is even a 
slight possibility of getting nothing. Clearly it is to your advantage to 
take both boxes! 

"I have put this problem to a large number of people, both friends 
and students in class," writes Nozick. "To almost everyone it is per
fectly clear and obvious what should be done. The difficulty is that 
these people seem to divide almost evenly on the problem, with large 
numbers thinking that the opposing half is just being silly. 

"Given two such compelling opposing arguments, it will not do to 
rest content with one's belief that one knows what to do. Nor will it do 
to just repeat one of the arguments, loudly and slowly. One must also 
disarm the opposing argument; explain away its force while showing 
it due respect." 

Nozick sharpens the "pull" of the two arguments as follows. Suppose 
the experiment had been done many times before. In every case the 
Being predicted correctly. Those who took both boxes always got only 
$1,000; those who took only B2 got $1 million. You have no reason to 
suppose your case will be different. If a friend were observing the 
scene, it would be completely rational for him to bet, giving high odds, 
that if you take both boxes you will get only $1,000. Indeed, if there is 
a time delay after your choice of both boxes, you know it would be ra
tional for you yourself to bet, offering high odds, that you will get only 
$1,000. Knowing this, would you not be a fool to take both boxes? 

Alas, the other argument makes you out to be just as big a fool if you 
do not. Assume that Bl is transparent. You see the $1,000 inside. You 
cannot see into B2, but the far side is transparent and your friend is sit
ting opposite. He knows whether the box is empty or contains $1 mil
lion. Although he says nothing, you realize that, whatever the state of 
B2 is, he wants you to take both boxes. He wants you to because, re
gardless of the state of B2, you are sure to come out ahead by $1,000. 
Why not take advantage of the fact that the Being played first and can
not alter his move? 

Nozick, an expert on decision theory, approaches the paradox by 
considering analogous game situations in which, as here, there is a 
conflict between two respected principles of choice: the "expected-
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utility principle" and the "dominance principle." To see how the prin
ciples apply, consider the payoff matrix for Newcomb's game (see Fig
ure 44.1). The argument for taking only B2 derives from the principle 
that you should choose so as to maximize the expected utility (value to 
you) of the outcome. Game theory calculates the expected utility of 
each action by multiplying each ofits mutually exclusive outcomes by 
the probability of the outcome, given the action. We have assumed that 
the Being predicts with near certainty, but let us be conservative and 
make the probability a mere .9. The expected utility of taking both 
boxes is 

(.1 x $1,001,000) + (.9 x $1,000) = $101,000. 

The expected utility of taking only B2 is 

(,9 x $1,000,000) + (.1 x $0) = $900,000. 

Guided by this principle, your best strategy is to take only the second 
box. 

BEING 

MOVE 1 MOVE 2 
(PREDICTS YOU (PREDICTS YOU 

TAKE ONLY BOX 2) TAKE BOTH BOXES) 

MOVE 1 
(TAKE ONLY BOX 2) $1,000,000 $0 

YOU 

MOVE 2 
(TAKE BOTH BOXES) $1,001,000 $1,000 

Figure 44.1. Payoff matrix for Newcomb's paradox 

The dominance principle, however, is just as intuitively sound. Sup
pose the world divided into n different states. For each state k mutually 
exclusive actions are open to you. If in at least one state you are better 
off choosing a, and in all other states either a is the best choice or the 
choices are equal, then the dominance principle asserts that you should 
choose a. Look again at the payoff matrix. The states are the outcomes 
of the Being's two moves. Taking both boxes is strongly dominant. For 
each state it gives you $1,000 more than you would get by taking only 
the second box. 

That is as far as we can go into Nozick's analysis, but interested read-
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ers should look it up for its mind-boggling conflict situations related to 
Newcomb's problem. Nozick finally arrives at the following tentative 
conclusions: 

If you believe in absolute determinism and that the Being has in truth 
predicted your behavior with unswerving accuracy, you should 
"choose" (whatever that can mean!) to take only B2. For example, sup
pose the Being is God and you are a devout Calvinist, convinced that 
God knows every detail of your future. Or assume that the Being has a 
time-traveling device he can launch into the future and use to bring 
back a motion picture of what you did on that future occasion when 
you made your choice. Believing that, you should take only B2, firmly 
persuaded that your feeling of having made a genuine choice is sheer 
illusion. 

Nozick reminds us, however, that Newcomb's paradox does not as
sume that the Being has perfect predictive power. If you believe that 
you possess a tiny bit of free will (or alternatively that the Being is 
sometimes wrong, say once in every 20 billion cases), then this may be 
one of the times the Being has erred. Your wisest decision is to take 
both boxes. 

Nozick is not happy with this conclusion. "Could the difference be
tween one in n and none in n, for arbitrarily large finite n, make this dif
ference? And how exactly does the fact that the predictor is certain to 
have been correct dissolve the force of the dominance argument?" Both 
questions are left unanswered. Nozick hoped that publishing the prob
lem might "call forth a solution which will enable me to stop returning, 
periodically, to it." 

One such solution, "to restore [Nozick's] peace of mind," was at
tempted by Maya Bar-Hillel and Avishai Margalit, of Hebrew University 
in Jerusalem, in their paper "Newcomb's Paradox Revisited." They 
adopt the same game-theory approach taken by Nozick, but they come 
to an opposite conclusion. Even though the Being is not a perfect pre
dictor, they recommend taking only the second box. You must, they 
argue, resign yourself to the fact that your best strategy is to behave as 
iithe Being has made a correct prediction, even though you know there 
is a slight chance he has erred. You know he has played before you, but 
you cannot do better than to playas if he is going to play after you. "For 
you cannot outwit the Being except by knowing what he predicted, 
but you cannot know, or even meaningfully guess, at what he predicted 
before actually making your final choice." 
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It may seem to you, Bar-Hillel and Margalit write, that backward 
causality is operating-that somehow your choice makes the $1 million 
more likely to be in the second box-but this is pure flim-flam. You 
choose only B2 "because it is inductively known to correlate remark
ably with the existence of this sum in the box, and though we do not 
assume a causal relationship, there is no better alternative strategy than 
to behave as if the relationship was, in fact, causal." 

For those who argue for taking only B2 on the grounds that causality 
is independent of the direction of time-that your decision actually 
"causes" the second box to be either empty or filled with $1 million
Newcomb proposed the following variant of his paradox. Both boxes 
are transparent. Bl contains the usual $1,000. B2 contains a piece of 
paper with a fairly large integer written on it. You do not know whether 
the number is prime or composite. If it proves to be prime (you must 
not test it, of course, until after you have made your choice), then you 
get $1 million. The Being has chosen a prime number if he predicts you 
will take only B2 but has picked a composite number if he predicts you 
will take both boxes. 

Obviously you cannot by an act of will make the large number 
change from prime to composite, or vice versa. The nature of the num
ber is fixed for eternity. So why not take both boxes? If it is prime, you 
get $1,001,000. If it is not, you get at least $1,000. (Instead of a number, 
B2 could contain any statement of a decidable mathematical fact that 
you do not investigate until after your choice.) 

It is easy to think of other variations. For example, there are 100 lit
tle boxes, each holding a $10 bill. If the Being expects you to take all 
of them, he has put nothing else in them. But if he expects you to take 
only one box-perhaps you pick it at random-he has added to that box 
a large diamond. There have been thousands of previous tests, half of 
them involving you as a player. Each time, with possibly a few excep
tions, the player who took a single box got the diamond, and the player 
who took all the boxes got only the money. Acting pragmatically, on the 
basis of past experience, you should take only one box. But then how 
can you refute the logic of the argument that says you have everything 
to gain and nothing to lose if the next time you play you take all the 
boxes? 

These variants add nothing essentially new. With reference to the 
original version, Nozick halfheartedly recommends taking both boxes. 
Bar-Hillel and Margalit strongly urge you to "join the millionaire's 
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club" by taking only B2. That is also the view of Kruskal and Newcomb. 
But has either side really done more than just repeat its case "loudly 
and slowly"? Can it be that Newcomb's paradox validates free will by 
invalidating the possibility, in principle, of a predictor capable of 
guessing a person's choice between two equally rational actions with 
better than 50 percent accuracy? 

Addendum 
Scientific American received such a flood of letters about New

comb's paradox that I asked Robert Nozick if he would be willing to 
look them over and write a guest column about them. To my delight, he 
agreed. I packed a large carton with the correspondence and took it 
along on a visit to Cambridge where I had the pleasure of lunching 
with Nozick and giving him the carton. You will find his trenchant 
discussion of the letters in my Knotted Doughnuts and Other Mathe
matical Entertainments. Nozick concluded that the paradox remains 
unsolved. 

In 1974 Basic Books published Nozick's controversial defense of po
liticallibertarianism, Anarchy, State, and Utopia. It was followed by 
Philosophical Explanations and other books that have elevated Nozick 
into the ranks of major U.S. philosophers. 

As my annotated bibliography indicates, philosophers are still far 
from agreement on how to resolve Newcomb's paradox. For whatever 
they are worth, here are my own tentative opinions. 

My sympathies are with those who say the predictor cannot exist. 
Even if strict determinism in some sense holds for every event in the 
history of the universe, I believe that certain events are in principle un
predictable when predictions are allowed to interact causally with the 
event being predicted. We have here, I am persuaded, something anal
ogous to the resolution of semantic paradoxes. Contradictions arise 
whenever a language is allowed to talk about the truth or falsity of its 
own statements, or when sets are allowed to be members of themselves. 
We can escape the semantic paradoxes by permitting talk about the 
truth of a sentence only in a metalanguage. "This sentence is false" 
simply is not a sentence. The notorious paradox of the barber who 
shaves every person and only those persons who do not shave them
selves, and who himself belongs to the set of persons, is a barber who 
cannot exist. It is not logically inconsistent to suppose that the future 
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is totally determined, whether or not an omniscient God exists, but as 
soon as we permit a superbeing to make predictions that interact with 
the event being predicted, we encounter contradictions that render the 
existence of such a superpredictor impossible. 

Consider the simplest case. A superbeing knows that when you go to 
bed next Thursday you will take off your shoes. If the superbeing keeps 
this knowledge from you, there is no problem; but if the superbeing in
forms you of the prediction, you can falsify it easily by going to bed 
with your shoes on. I agree with those who say that Newcomb's prob
lem in no way settles the question of whether the future is completely 
determined, but I do maintain that it brings us face to face with the eter
nal, and to me unanswerable, problem of defining what is meant by free 
choice. 

Although I don't believe it, the state of the world a hundred years 
from now may be determined in every detail by the state of the world 
now. Innumerable future events obviously can be predicted with al
most certain accuracy, but other events are the outcome of such complex 
causes that even if determinism is true it seems likely there is no pos
sible way they could be predicted by any technique faster than allow
ing the universe itself to unroll to see what happens. (We leave aside the 
notion of a God outside of time who sees the past and future simulta
neously, whatever that means.) All this is by the way. The main point 
is that when a prediction interacts with the predicted event, whether 
human wills are involved or not, logical contradictions can arise. A fa
miliar example is the supercomputer asked to predict if a certain event 
will occur in the next three minutes. If the prediction is no, it turns on 
a green light. If yes, it turns on a red light. The computer is now asked 
to predict whether the green light will go on. By making the event part 
of the prediction, the computer is rendered logically impotent. 

It is my view that Newcomb's predictor, even if accurate only 51 per
cent of the time, forces a logical contradiction that makes such a pre
dictor, like Bertrand Russell's barber, impossible. We can avoid 
contradictions arising from two different "shoulds" (should you take 
one or two boxes?) by stating the contradiction as follows. One flawless 
argument implies that the best way to maximize your reward is to take 
only the closed box. Another flawless argument implies that the best 
way to maximize your reward is to take both boxes. Because the two 
conclusions are contradictory, the predictor cannot exist. Faced with a 
Newcomb decision, I would share the suspicions of Max Black and 
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others that I was either the victim of a hoax or of a badly controlled ex
periment that had yielded false data about the predictor's accuracy. On 
this assumption, I would take both boxes. 

But, you may ask, how would I decide if I made what I would regard 
as a counterfactual posit that the predictor was what it was claimed to 
be? I suppose if I could persuade myself that the predictor existed I 
might take only the closed box even though it would be logically irra
tional. But I cannot so persuade myself. It is as if someone asked me to 
put 91 eggs in 13 boxes, so each box held seven eggs, and then added 
that an experiment had proved that 91 is prime. On that assumption, 
one or more eggs would be left over. I would be given a million dollars 
for each leftover egg, and 10 cents ifthere were none. Unable to believe 
that 91 is a prime, I would proceed to put seven eggs in each box, take 
my 10 cents and not worry about having made a bad decision. 
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Chapter 45 

Nobody seems to know how to deal with it. 
(He would, of course.) -Po 1. Heath 

Nothing 

Our topic is nothing. By definition nothing does not exist, but 
the concepts we have of it certainly exist as concepts. In mathematics, 
science, philosophy, and everyday life it turns out to be enormously 
useful to have words and symbols for such concepts. 

The closest a mathematician can get to nothing is by way of the null 
(or empty) set. It is not the same thing as nothing because it has what
ever kind of existence a set has, although it is unlike all other sets. It is 
the only set that has no members and the only set that is a subset of 
every other set. From a basket of three apples you can take one apple, 
two apples, three apples, or no apples. To an empty basket you can, if 
you like, add nothing. 

The null set denotes, even though it doesn't denote anything. For ex
ample, it denotes such things as the set of all square circles, the set of 
all even primes other than 2, and the set of all readers of this book who 
are chimpanzees. In general it denotes the set of all x's that satisfy any 
statement about x that is false for all values of x. Anything you say 
about a member of the null set is true, because it lacks a single mem
ber for which a statement can be false. 

The null set is symbolized by 0. It must not be confused with 0, the 
symbol for zero. Zero is (usually) a number that denotes the number of 
members of 0. The null set denotes nothing, but 0 denotes the number 
of members of such sets, for example, the set of apples in an empty bas
ket. The set of these nonexisting apples is 0, but the number of apples 
is O. 

A way to construct the counting numbers, discovered by the great 
German logician Gottlob Frege and rediscovered by Bertrand Russell, 
is to start with the null set and apply a few simple rules and axioms. 
Zero is defined as the cardinal number of elements in all sets that are 
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large part psychological. John von Neumann, for example, shortened 
Frege's procedure by one step. He preferred to define 0 as the null set, 
1 as the set whose sole member is the null set, 2 as the set whose mem
bers are the null set and 1, and so on. 

John Horton Conway then at the University of Cambridge hit on a re
markable new way to construct numbers that also starts with the null 
set. He first described his technique in a photocopied typescript of 13 

pages, "All Numbers, Great and Small." It begins: "We wish to con
struct all numbers. Let us see how those who were good at construct
ing numbers have approached the problem in the past." It ends with 10 

open questions, of which the last is: "Is the whole structure of any 
use?" 

Conway explained his new system to Donald E. Knuth, a computer 
scientist at Stanford University, when they happened to meet at lunch 
one day in 1972. Knuth was immediately fascinated by its possibilities 
and its revolutionary content. In 1973 during a week of relaxation in 
Oslo, Knuth wrote an introduction to Conway's method in the form of 
a novelette. It was issued in paperback in 1974 by Addison-Wesley, 
which also publishes Knuth's well-known series titled The Art of Com
puter Programming. I believe it is the only time a major mathematical 
discovery has been published first in a work of fiction. A later book by 
Conway, On Numbers and Games, opens with an account of his num
ber construction, then goes on to apply the theory to the construction 
and analysis of two-person games. 

Knuth's novelette, Surreal Numbers, is subtitled How Two Ex
Students Turned On to Pure Mathematics and Found Total Happiness. 
The book's primary aim, Knuth explains in a postscript, is not so much 
to teach Conway's theory as "to teach how one might go about devel
oping such a theory." He continues: "Therefore, as the two characters 
in this book gradually explore and build up Conway's number system, 
I have recorded their false starts and frustrations as well as their good 
ideas. I wanted to give a reasonably faithful portrayal of the important 
principles, techniques, joys, passions, and philosophy of mathemat
ics, so I wrote the story as I was actually doing the research myself." 

Knuth's two ex-mathematics students, Alice and Bill (A and B), have 
fled from the "system" to a haven on the coast of the Indian Ocean. 
There they unearth a half-buried black rock carved with ancient He
brew writing. Bill, who knows Hebrew, manages to translate the open
ing sentence: "In the beginning everything was void, and J.H.W.H. 
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Conway began to create numbers." JHWH is a transliteration of how the 
ancient Hebrews wrote the name Jehovah. "Conway" also appears with
out vowels, but it was the most common English name Bill could think 
of that fitted the consonants. 

Translation of the "Conway stone" continues: "Conway said, 'Let 
there be two rules which bring forth all numbers large and small. This 
shall be the first rule: Every number corresponds to two sets of previ
ously created numbers, such that no member of the left set is greater 
than or equal to any member of the right set. And the second rule shall 
be this: One number is less than or equal to another number if and 
only if no member of the first number's left set is greater than or equal 
to the second number, and no member of the second number's right set 
is less than or equal to the first number.' And Conway examined these 
two rules he had made, and behold! they were very good." 

The stone's text goes on to explain how on the zero day Conway cre
ated zero. He did it by placing the null set on the left and also on the 
right. In symbolic notation 0 = {0 I 0}, where the vertical line divides 
the left and right sets. No member of the left 0 is equal to or greater than 
a member of the right 0 because 0 has no members, so that Conway's 
first rule is satisfied. Applying the second rule, it is easy to show that 
o is less than or equal to o. 

On the next day, the stone reveals, Conway created the first two 
nonzero integers, 1 and -1. The method is simply to combine the null 
set with 0 in the two possible ways: 1 = {O I 0} and -1 = {0 I O}. It 
checks out. Minus 1 is less than but not equal to 0, and 0 is less than 
but not equal to 1. Now, of course, 1 and -1 and all subsequently cre
ated numbers can be plugged back into the left-right formula, and in 
this way all the integers are constructed. With 0 and 1 forming the left 
set and 0 on the right, 2 is created. With 0, 1, and 2 on the left and 0 
on the right, 3 is created, and so on. 

At this point readers might enjoy exploring a bit on their own. Jill C. 
Knuth's illustration for the front cover of Surreal Numbers shows some 
huge boulders shaped to symbolize {O Ii}. What number does this de
fine? And can the reader prove that {-1 I 1} = O? 

"Be fruitful and multiply," Conway tells the integers. By combining 
them, first into finite sets, then into infinite sets, the "copulation" of 
left-right sets continues, aided by no more than Conway's ridiculously 
simple rules. Out pour all the rest of the real numbers: first the integral 
fractions, then the irrationals. At the end of aleph-null days a big bang 
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occurs and the universe springs into being. That, however, is not all. 
Taken to infinity, Conway's construction produces all of Georg Can
tor's transfinite numbers, all infinitesimal numbers (they are recipro
cals of infinite numbers), and infinite sets of queer new quantities such 
as the roots of transfinites and infinitesimals! 

It is an astonishing feat of legerdemain. An empty hat rests on a table 
made of a few axioms of standard set theory. Conway waves two sim
ple rules in the air, then reaches into almost nothing and pulls out an 
infinitely rich tapestry of numbers that form a real and closed field. 
Every real number is surrounded by a host of new numbers that lie 
closer to it than any other "real" value does. The system is truly "sur
real." 

"Man, that empty set sure gets around!" exclaims Bill. "I think I'll 
write a book called Properties of the Empty Set. "This notion that noth
ing has properties is, of course, commonplace in philosophy, science, 
and ordinary language. Lewis Carroll's Alice may think it nonsense 
when the March Hare offers her nonexistent wine or when the White 
King admires her ability to see nobody on the road and wonders why 
nobody did not arrive ahead of the March Hare because nobody goes 
faster than the hare. It is easy, however, to think of instances in which 
nothing actually does enter human experience in a positive way. 

Consider holes. An old riddle asks how much dirt is in a rectangular 
hole of certain dimensions. Although the hole has all the properties of 
a rectangular parallelepiped (corners, edges, faces with areas, volume, 
and so on), the answer is that there is no dirt in the hole. The various 
holes of our body are certainly essential to our health, sensory aware
ness, and pleasure. In Dorothy and the Wizard in Oz, the braided man, 
who lives on Pyramid Mountain in the earth's interior, tells Dorothy 
how he got there. He had been a manufacturer of holes for Swiss 
cheese, doughnuts, buttons, porous plasters, and other things. One day 
he decided to store a vast quantity of adjustable postholes by placing 
them end to end in the ground, making a deep vertical shaft into which 
he accidentally tumbled. 

The mathematical theory behind Sam Loyd's sliding-block puzzle 
(15 unit cubes inside a 4 x 4 box) is best explained by regarding the hole 
as a moving cube. It is analogous to what happens when a gold atom 
diffuses through lead. Bubbles of nothing in liquids, from the size of a 
molecule on up, can move around, rotate, collide, and rebound just 
like things. Negative currents are the result of free electrons jostling one 
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another along a conductor, but holes caused by an absence of free elec
trons can do the same thing, producing a positive "hole current" that 
goes the other way. 

Lao-tzu writes in Chapter 11 of Tao Te Ching: 

Thirty spokes share the wheel's hub; 
It is the center hole that makes it usefu1. 
Shape clay into a vessel; 
It is the space within that makes it usefu1. 
Cut doors and windows for a room; 
It is the holes which make it usefu1. 
Therefore profit comes from what is there; 
Usefulness from what is not there. 

Osborne Reynolds, a British engineer who died in 1912, invented an 
elaborate theory in which matter consists of microparticles of nothing 
moving through the ether the way bubbles move through liquids. His 
two books about the theory, On an Inversion of Ideas as to the Structure 
of the Universe and The Sub-Mechanics of the Universe, both pub
lished by the Cambridge University Press, were taken so seriously that 
W. W. Rouse Ball, writing in early editions of his Mathematical Recre
ations and Essays, called the theory "more plausible than the electron 
hypothesis. " 

Reynolds' inverted idea is less crazy than it sounds. P.A.M. Dirac, in 
his famous theory that predicted the existence of antiparticles, viewed 
the positron (antielectron) as a hole in a continuum of negative charge. 
When an electron and positron collide, the electron falls into the 
positron hole, causing both particles to vanish. 

The old concept of a "stagnant ether" has been abandoned by physi
cists, but in its place is not nothing. The "new ether" consists of the 
metric field responsible for the basic forces of nature, perhaps also for 
the particles. John Archibald Wheeler proposes a substratum, called su
perspace, of infinitely many dimensions. Occasionally a portion of it 
twists in such a peculiar way that it explodes, creating a universe of 
three spatial dimensions, changing in time, with its own set of laws and 
within which the field gets tied into little knots that we call "matter." 
On the microlevel, quantum fluctuations give space a foamlike struc
ture in which the microholes provide space with additional properties. 
There is still a difference between something and nothing, but it is 
purely geometrical and there is nothing behind the geometry. 
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Empty space is like a straight line of zero curvature. Bend the line, 
add little bumps that ripple back and forth, and you have a universe 
dancing with matter and energy. Outside the utmost fringes of our ex
panding cosmos are (perhaps) vast regions unpenetrated by light and 
gravity. Beyond those regions may be other universes. Shall we say 
that these empty regions contain nothing, or are they still saturated 
with a metric of zero curvature? 

Greek and medieval thinkers argued about the difference between 
being and nonbeing, whether there is one world or many, whether a 
perfect vacuum can properly be said to "exist," whether God formed 
the world from pure nothing or first created a substratum of matter that 
was what st. Augustine called prope nihil, or close to nothing. Exactly 
the same questions were and are debated by philosophers and theolo
gians of the East. When the god or gods of an Eastern religion created 
the world from a great Void, did they shape nothing or something that 
was almost nothing? The questions may seem quaint, but change the 
terminology a bit and they are equivalent to present controversies. 

A special Christmas 1901 issue of the British philosophical magazine 
Mind consisted entirely of joke papers. Its frontispiece (reproduced 
here as Figure 45.1) was titled "Portrait of Its Immanence the Absolute." 
The Absolute was a favorite term of Hegelian philosophers. 

"Turn the eye of faith," the instructions read, "fondly but firmly on 
the centre of the page, wink the other, and gaze fixedly until you see It." 

The Absolute's picture was a totally blank rectangle, protected by 
covering tissue. Above the picture were the words, "This side up." 

There are endless examples from the arts-some jokes, some not-of 
nothing admired as something. In 1951 Ad Reinhardt, a respected 
American abstractionist who died in 1967, began painting all-blue and 
all-red canvases. A few years later he moved to the ultimate-black. His 
all-black 5 x 5-foot pictures were exhibited in 1963 in leading galleries 
in New York, Paris, Los Angeles, and London. (See Figure 45.2) Al
though one critic called him a charlatan (Ralph F. Colin, "Fakes and 
Frauds in the Art World," Art in America, April 1963), more eminent 
critics (Hilton Kramer, The Nation, June 22,1963, and Harold Rosen
berg, The New Yorker, June 15, 1963) admired his black art. An "ulti
mate statement of esthetic purity," was how Kramer put it (The New 
York Times, October 17, 1976) in praising an exhibit ofthe black paint
ings at the Pace Gallery. 

In 1965 Reinhardt had three simultaneous shows at top Manhattan 
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galleries: one of all-blacks, one of all-reds, one of all-blues. Prices 
ranged from $1,500 to $12,000. 

Since black is the absence of light, Reinhardt's black canvases come 
as close as possible to pictures of nothing, certainly much closer than 
the all-white canvases of Robert Rauschenberg and others. A New 
Yorker cartoon (September 23, 1944) by R. Taylor showed two ladies at 
an art exhibit, standing in front of an all-white canvas and reading from 
the catalogue: "During the Barcelona period he became enamored of the 
possibilities inherent in virgin space. With a courage born of the most 
profound respect for the enigma of the imponderable, he produced, at 
this time, a series of canvases in which there exists solely an expanse 
of pregnant white." 

The Museum of Modem Art 

Figure 45.2. Ad Reinhardt's Abstract Painting, 1960-61 (Oil, 60- x 60-) 

I know of no piece of "minimal sculpture" that is reduced to the ab
solute minimum of nothing, though I expect to read any day now that 
a great museum has purchased such a work for many thousands of dol
lars. Henry Moore certainly exploited the aesthetics of holes (see Fig
ure 45.3). In 1950 Ray Bradbury received the first annual award of The 
Elves', Gnomes', and Little Men's Science-Fiction Chowder and March
ing Society at a meeting in San Francisco. The award was an invisible 
little man standing on the brass plate of a polished walnut pedestal. 
This was not entirely nothing, says my informant, Donald Baker Moore, 
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because there were two black shoe prints on the brass plate to indicate 
that the little man was actually there. 

There have been many plays in which principal characters say noth
ing. Has anyone ever produced a play or motion picture that consists, 
from beginning to end, of an empty stage or screen? Some of Andy 
Warhol's early films come close to it, and I wouldn't be surprised to 
learn that the limit was actually attained by some early avant-garde 
playwright. 

John Cage's 4'33#is a piano composition that calls for four minutes 
and thirty-three seconds of total silence as the player sits frozen on the 
piano stool. The duration of the silence is 273 seconds. This corre
sponds, Cage has explained, to -273 degrees centigrade, or absolute 
zero, the temperature at which all molecular motion quietly stops. I 
have not heard 4'33"performed, but friends who have tell me it is 
Cage's finest composition. 

There are many outstanding instances of nothing in print: Chapters 
18 and 19 of the final volume of Tristram Shandy, for example. Elbert 
Hubbard's Essay on Silence, containing only blank pages, was bound in 
brown suede and gold-stamped. I recall as a boy seeing a similar book 
titled What I Know about Women, and a Protestant fundamentalist tract 
called What Must You Do to Be Lost? Poeme Collectif, by Robert Filliou, 
issued in Belgium in 1968, consists of sixteen blank pages. 

In 1972 the Honolulu Zoo distributed a definitive monograph called 
Snakes of Hawaii: An authoritative, illustrated and complete guide to 
exotic species indigenous to the 50th State, by V. Ralph Knight, Jr., B.S. 
A correspondent, Larry E. Morse, informs me that this entire mono
graph is reprinted (without credit) in The Nothing Book. This volume 
of blank pages was published in 1974, by Harmony House, in regular 
and deluxe editions. It sold so well that in 1975 an even more expen
sive ($5) deluxe edition was printed on fine French marble design 
paper and bound in leather. According to The Village Voice (December 
30, 1974), Harmony House was threatened with legal action by a Euro
pean author whose blank-paged book had been published a few years 
before The Nothing Book. He believed his copyright had been in
fringed, but nothing ever came of it. 

Howard Lyons, a Toronto correspondent, points out that the null set 
has long been a favorite topic of song writers: "I ain't got nobody," "No
body loves me," "I've got plenty of nothing," "Nobody lied when they 
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said that I cried over you," "There ain't no sweet gal that's worth the 
salt of my tears," and hundreds of other lines. 

Events can occur in which nothing is as startling as a thunderclap. 
An old joke tells of a man who slept in a lighthouse under a foghorn 
that boomed regularly every 10 minutes. One night at 3:20 A.M., when 
the mechanism failed, the man leaped out of bed shouting, "What was 
that?" As a prank all the members of a large orchestra once stopped 
playing suddenly in the middle of a strident symphony, causing the 
conductor to fall off the podium. One afternoon in a rural section of 
North Dakota, where the wind blew constantly, there was a sudden 
cessation of wind. All the chickens fell over. A Japanese correspon
dent tells me that the weather bureau in Japan issues a "no-wind warn
ing" because an absence of wind can create damaging smog. 

There are many examples that are not jokes. An absence of water 
can cause death. The loss of a loved one, of money, or of a reputation 
can push someone to suicide. The law recognizes innumerable occa
sions on which a failure to act is a crime. Grave consequences will fol
low when a man on a railroad track, in front of an approaching train 
and unable to decide whether to jump to the left or to the right, makes 
no decision. In the story "Silver Blaze," Sherlock Holmes based a fa
mous deduction on the "curious incident" of a dog that "did nothing 
in the night-time." 

Moments of escape from the omnipresent sound of canned music 
are becoming increasingly hard to obtain. Unlike cigar smoke, writes 
Edmund Morris in a fine essay, "Oases of Silence in a Desert of Din" 
(The New York Times, May 25, 1975), noise can't be fanned away. There 
is an old joke about a jukebox that offers, for a quarter, to provide three 
minutes of no music. Drive to the top of Pike's Peak, says Morris, 
"whose panorama of Colorado inspired Katharine Lee Bates to write 
'America the Beautiful: and your ears will be assailed by the twang and 
boom of four giant speakers-N, S, E, and W-spraying cowboy tunes 
into the crystal air." Even the Sistine Chapel is now wired for sound. 

"At first," continues Morris, "there is something discomforting, al
most frightening, about real silence .... You are startled by the appar
ent loudness of ordinary noises. . . . Gradually your ears become 
attuned to a delicate web of sounds, inaudible elsewhere, which George 
Eliot called 'that roar which lies on the other side of silence.' " Morris 
provides a list of a few Silent Places around the globe where one can 
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escape not only from Muzak but from all the aural pollution that is the 
by-product of modern technology. 

These are all examples of little pockets in which there is an absence 
of something. What about that monstrous dichotomy between all 
being-everything there is-and nothing? From the earliest times the 
most eminent thinkers have meditated on this ultimate split. It seems 
unlikely that the universe is going to vanish (although I myself once 
wrote a story, "Oom," about how God, weary of existing, abolished 
everything, including himself), but the fact that we ourselves will soon 
vanish is real enough. In medieval times the fear of death was mixed 
with a fear of eternal suffering, but since the fading of hell this fear has 
been replaced by what Soren Kierkegaard called an "anguish" or 
"dread" over the possibility of becoming nothing. 

This brings us abruptly to what Paul Edwards has called the "super
ultimate question." "Why," asked Leibniz, Schelling, Schopenhauer, 
and a hundred other philosophers, "should something exist rather than 
nothing?" 

Obviously it is a curious question, not like any other. Large numbers 
of people, perhaps the majority, live out their lives without ever con
sidering it. If someone asks them the question, they may fail to under
stand it and believe the questioner is crazy. Among those who 
understand the question, there are varied responses. Thinkers of a mys
tical turn of mind, the late Martin Heidegger for instance, consider it 
the deepest, most fundamental of all metaphysical questions and look 
with contempt on all philosophers who are not equally disturbed by it. 
Those of a positivistic, pragmatic turn of mind consider it trivial. Since 
everyone agrees there is no way to answer it empirically or rationally, 
it is a question without cognitive content, as meaningless as asking if 
the number 2 is red or green. Indeed, a famous paper by Rudolf Carnap 
on the meaning of questions heaps scorn on a passage in which Hei
degger pontificates about being and nothingness. 

A third group of philosophers, including Milton K. Munitz, who 
wrote an entire book titled The Mystery of Existence, regards the ques
tion as being meaningful but insists that its significance lies solely in 
our inability to answer it. It mayor may not have an answer, argues 
Munitz, but in any case the answer lies totally outside the limits of sci
ence and philosophy. 

Whatever their metaphysics, those who have puzzled most over the 
superultimate question have left much eloquent testimony about those 
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unexpected moments, fortunately short-lived, in which one is sud
denly caught up in an overwhelming awareness of the utter mystery of 
why anything is. That is the terrifying emotion at the heart of Jean
Paul Sartre's great philosophical novel Nausea. Its red-haired protago
nist, Antoine Roquentin, is haunted by the superultimate mystery. "A 
circle is not absurd," he reflects. "It is clearly explained by the rotation 
of a straight segment around one of its extremities. But neither does a 
circle exist." Things that do exist, such as stones and trees and himself, 
exist without any reason. They are just insanely there, bloated, ob
scene, gelatinous, unable not to exist. When the mood is on him, 
Roquentin calls it "the nausea." William James had earlier called it an 
"ontological wonder sickness." The monotonous days come and go, 
all cities look alike, nothing happens that means anything. 

G. K. Chesterton is as good an example as any of the theist who, 
stunned by the absurdity of being, reacts in opposite fashion. Not that 
shifting to God the responsibility for the world's existence answers the 
superultimate question; far from it! One immediately wonders why 
God exists rather than nothing. But although none of the awe is less
ened by hanging the universe on a transcendent peg, the shift can give 
rise to feelings of gratitude and hope that relieve the anxiety. Chester
ton's existential novel Manalive is a splendid complement to Sartre's 
Nausea. Its protagonist, Innocent Smith, is so exhilarated by the priv
ilege of existing that he goes about inventing whimsical ways of shock
ing himself into realizing that both he and the world are not nothing. 

Let P. L. Heath, who had the first word in this article, also have the 
last. "If nothing whatsoever existed," he writes at the end of his article 
on nothing in The Encyclopedia of Philosophy, "there would be no 
problem and no answer, and the anxieties even of existential philoso
phers would be permanently laid to rest. Since they are not, there is ev
idently nothing to wony about. But that itself should be enough to keep 
an existentialist happy. Unless the solution be, as some have suspected, 
that it is not nothing that has been worrying them, but they who have 
been worrying it." 

Addendum 
When this chapter first appeared in Scientific American (Feb

ruary 1975), it prompted many delightful letters on aspects ofthe topic 
I had not known about or had failed to mention. 
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Hester Elliott was the first of several readers who were reminded, by 
my story of the lighthouse keeper, of what some New Yorkers used to 
call the "Bowery EI phenomenon." After the old elevated on Third Av
enue was torn down, police began receiving phone calls from people 
who lived near the El. They were waking at regular intervals during the 
night, hearing strange noises, and having strong feelings of foreboding. 
"The schedules of the absent trains," as Ms. Elliott put it, "reappeared 
in the form of patterned calls on the police blotters." This is discussed, 
she said, by Karl Pribram in his book Languages of the Brain as an ex
ample of how our brain, even during sleep, keeps scanning the flow of 
events in the light of past expectations. It is aroused by any sharp de
viation from the accustomed pattern. 

Psychologist Robert B. Glassman also referred in a letter to the EI ex
ample, and gave others. The human brain, he wrote, has the happy fa
cility of forgetting, of pushing out of consciousness whatever seems 
irrelevant at the moment. But the irrelevant background is still per
ceived subliminally, and changes in this background bring it back into 
consciousness. Russian psychologists, he said, have found that if a 
human or animal listens long enough to the repeated sound of the same 
tone, they soon learn to ignore it. But if the same tone is then sounded 
in a different way, even if sounded more softly or more briefly, there is 
instant arousal. 

Vernon Rowland, a professor of psychology at Case Western Reserve, 
elaborated similar points. His letter, which follows, was printed in Sci
entific American, April 1975: 

Sirs: 
I enjoyed Martin Gardner's essay on "nothing." John Horton Conway's 

rule and Gardner's analysis of "nothing" are, like all human activity, ex
pressions of the nervous system, the study of which helps in under
standing the origins and evolution of "nothing." 

The brain is marvelously tuned to detect change as well as constancies 
in the environment. Sharp change between constancies is a perceptually 
or intellectually recognizable boundary. "Nothing" is "knowable" with 
clarity only if it is well demarcated from the "non-nothing." Even if it is 
vaguely bounded, nothingness cannot be treated as an absolute. This is 
an example ofthe illogicality of absolutes, because "nothing" cannot be 
in awareness except as it is related to (contrasted with) non-nothing. 

One can observe in the brains of perceiving animals, even animals as 
primitive as the frog, special neurons responding specifically to spatial 
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boundaries and to temporal boundaries. In the latter, for instance, neu
rons called "off" neurons, go into action when "something," say light, 
becomes "nothing" (darkness). "Nothing" is therefore positively signaled 
and is thereby endowed with existence. The late Polish neuropsycholo
gist Jerzy Konorski pointed out the possibility that closing the eyes may 
activate off neurons, giving rise to "seeing" darkness and recognizing it 
as being different from not seeing at all. 

I and others have used temporal nothingness as a food signal for cats 
by simply imposing 10 seconds of silence in an otherwise c<?ntinuously 
clicking environment. Their brains show the learning of the significance 
of this silence in ways very similar to those for the inverse: 10 seconds 
of clicking presented on a continuous background of silence. "Nothing" 
and "something" can be treated in the same way as psychologists deal 
with other forms of figure-ground or stimulus-context reversal. 

The nothingness of which we become aware by specific brain signals 
can be known only by discriminating it from other brain signals that re
veal the boundaries and constancies of existing objects. This requires an 
act of attention. There is another form of "nothing" that is based on an 
attentional shift from one sense modality to another (as in the example 
of listening to music) or to a failure of the attentional mechanism. In cer
tain forms of strokes the person "forgets" one part of his body and acts 
as if it simply does not exist, for example a man who shaves only one 
half of his face. 

Animate systems obtain and conserve life-supporting energy by evolv
ing mechanisms to offset or counter perturbations in their energy supply. 
Detecting absences ("nothings") in the energy domain had to be acquired 
early or survival could not have gone beyond the stage of actually living 
in the energy supply (protozoa in nutritious pools) rather than near it 
(animals that can leave the water and return). 

If this pragmatic view of the biopsychological origins of "nothing" 
and "absence" is insufficient for trivializing the Leibnizian question 
("Why should something exist rather than nothing?"), I would argue 
that the philosopher faces the necessity of showing that the statement 
"Nothing [in the absolute sense] exists" is not a self-contradiction. 

The reference to my story "Gom" reminded Ms. Elliott of the fol
lowing paragraph from Jorge Luis Borges' essay on John Donne's 
Biathanatos (a work which argues that Jesus committed suicide), in 
Other Inquisitions, 1937-1952: 

As I reread this essay, I think of the tragic Philipp Batz, who is called 
Philipp Mainlander in the history of philosophy. Like me, he was an im-

Nothing 605 



passioned reader of Schopenhauer, under whose influence (and perhaps 
under the influence of the Gnostics) he imagined that we are fragments 
of a God who destroyed Himself at the beginning of time, because He did 
not wish to exist. Universal history is the obscure agony of those frag
ments. Mainlander was born in 1841; in 1876 he published his book 
Philosophy of the Redemption. That same year he killed himself. 

Is Mainlander one of Borges' invented characters? No, he actually ex
isted. You can read about him and his strange two-volume work in The 
Encyclopedia of Philosophy, Vol. 6, page 119. 

Several readers informed me of the amusing controversy among 
graph theorists over whether the "null-graph" is useful. This is the 
graph that has no points or edges. The classic reference is a paper by 
Frank Harary and Ronald C. Read, "Is the Null-Graph a Pointless Con
cept?" (The paper was given at the Graphs and Combinatorial Confer
ence at George Washington University in 1973 and appears in the 
conference lecture notes published by Springer-Verlag.) 

"Note that it is not a question of whether the null-graph 'exists,' " the 
authors write. "It is simply a question of whether there is any point in 
it." The authors survey the literature, give pros and cons, and finally 
reach no conclusion. Figure 45.3, reproduced from their paper, shows 
what the null-graph looks like. 

Figure 45.3. The null-graph 
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Wesley Salmon, the philosopher of science, sent a splendid ontolog
ical argument for the existence of the null set: 

I have just finished reading, with much pleasure, your column on "noth
ing." It reminded me of a remark made by a brilliant young philosopher 
at the University of Toronto, Bas van Fraassen, who, in a lecture on phi
losophy of mathematics, asked why there might not be a sort of onto
logical proof for the existence of the null set. It would begin, "By the null 
set we understand that set than which none emptier can be conceived 
... " Van Fraassen is editor in chief of the Journal of Philosophical Logic. 
I sent him the completion of the argument: 

"The fool hath said in his heart that there is no null set. But if that 
were so, then the set of all such sets would be empty, and hence, it 
would be the null set. Q.E.D." 

I still do not know why he did not publish this profound result. 

Frederick Mosteller, a theoretical statistician at Harvard, made the 
following comments on the superultimate question: 

Ever since I was about fourteen years old I have been severely bothered 
by this question, and by and large not willing to talk to other people 
about it because the first few times I tried I got rather unexpected re
sponses, mainly rather negative putdowns. It shook me up when it first 
occurred to me, and has bothered me again and again. I could not un
derstand why it wasn't in the newspapers once a week. I suppose, in a 
sense, all references to creation are a reflection of this same issue, but it 
is the simplicity of the question that seems to me so scary. 

When I was older I tried it once or twice on physicists and again did 
not get much of a response-probably talked to the wrong ones. I did 
mention it to John Tukey once, and he offered a rather good remark. He 
said something like this: contemplating the question at this time doesn't 
seem to be producing much information-that is, we aren't making 
much progress with it-and so it is hard to spend time on it. Perhaps it 
is not yet a profitable question. 

It seems so much more reasonable to me that there should be nothing 
than something that I have secretly concluded for myself that quite pos
sibly physicists will ultimately prove that, were there a system contain
ing nothing, it would automatically create a physical universe. (Of 
course, I know they can't quite do this.) 

When my column on nothing was reprinted in my Mathematical 
Magic Show (1977) an editor at Knopf asked me if it was necessary to 
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obtain MOMA's (Museum of Modern Art) permission to reprint Ad 
Reinhardt's all-black painting (Figure 45.2). I convinced her it was not 
necessary. And as I anticipated, somewhere along the production line 
I was asked for the missing art of Figure 45.3. This picture of the null 
graph, by the way, is reproduced (without credit to the artist) as Figure 
257 in the Dictionary of Mathematics, edited by E. J. Borowski and J. M. 
Borwein (London: Collins, 1989). 

Meditating on the recent flurry of interest in what is called the "an
thropic principle" I suddenly realized that I could answer the supe
rultimate question: Why is there something rather than nothing? 
Because if there wasn't anything we wouldn't be here to ask the ques
tion. I think this points up the essential absurdity of the weak anthropic 
principle. It's not wrong, but it contributes nothing significant to any 
philosophical or scientific question. The Danish poet Piet Hein, in one 
of his "grook" verses, says it this way: 

The universe may 
Be as great as they say, 
But it wouldn't be missed 
If it didn't exist. 

Lakenan Barnes, an attorney in Missouri, reminded me that Joshua 
was the son of Nun (Joshua 1:1), that "love" in tennis means nothing, 
that the doughnut's hole is the "dough naught." He also passed along 
a quatrain of his that had appeared in the 8t. Louis Post-Dispatch (July 
7,1967): 

In the world of math 
That Man has wrought, 
The greatest gain 
Was the thought of naught. 

Some readers were mystified by the chapter's epigraph. It is the sec
ond sentence of Heath's article on nothing in the Encyclopedia of Phi
losophy. Like Lewis Carroll, in the second Alice book, Heath is taking 
Nobody to be the name of a person. Here is the sentence in the context 
of Heath's playful opening paragraph: 

NOTHING is an awe-inspiring yet essentially undigested concept, highly 
esteemed by writers of a mystical or existentialist tendency. but by most 
others regarded with anxiety, nausea, or panic. Nobody seems to know 
how to deal with it (he would, of course), and plain persons generally are 
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reported to have little difficulty in saying, seeing, hearing, and doing 
nothing. Philosophers, however, have never felt easy on the matter. Ever 
since Parmenides laid it down that it is impossible to speak of what is 
not, broke his own rule in the act of stating it, and deduced himself into 
a world where all that ever happened was nothing, the impression has 
persisted that the narrow path between sense and nonsense on this subject 
is a difficult one to tread and that altogether the less said of it the better. 

Will Shortz, The New York Times crossword puzzle editor, presented 
an April Fools' crossword in Games magazine, March/April1979, page 
31. The solution was to leave all the cells blank because "nothing" was 
the answer to each of the puzzle's 49 definitions of words. 

One of Gary Larson's Far Side cartoons showed a man equipped for 
mountain climbing but who was about to descend into a huge hole in 
the ground. A reporter asks him why he is doing this. He replies, "Be
cause it's not there." 

Ray Smullyan on Discover's puzzle page (November 1996) gave this 
riddle which readers should have little difficulty answering: "What is 
it that is larger than the universe, the dead eat it, and if the living eat 
it, they die?" 
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How far can we extend the universal set without losing our ability to 
reason about it? It depends on our concern. If we expand the universe 
of Figure 46.1 to include all concepts, the intersection set is no longer 
empty because it is easy to imagine a person growing feathers. The 
proofs of Euclid are valid only if the universe of discourse is confined 
to points in a Euclidean plane or in 3-space. If we reason that a dozen 
eggs can be equally divided only between one, two, three, four, six, or 
12 people, we are reasoning about a universal set that ranges over the 
integers. John Venn (who invented the Venn diagram) likened the uni
verse of discourse to our field of vision. It is what we are looking at. We 
ignore everything behind our head. 

Nevertheless, we can extend the universe of discourse amazingly far. 
We certainly can include abstractions such as the number 2, pi, com
plex numbers, perfect geometric figures, even things we cannot visu
alize such as hypercubes and non-Euclidean spaces. We can include 
universals such as redness and cowness. We can include things from 
the past or in the future and things real or imaginary, and can still rea
son effectively about them. Every dinosaur had a mother. If it rains 
next week in Chicago, the old Water Tower will get wet. If Sherlock 
Holmes had actually fallen off that cliff at Reichenbach Falls, he would 
have been killed. 

Suppose we extend our universe to include every entity that can be 
defined without logical contradiction. Every statement we can make 
about that universe, if it is not contradictory, is (in a sense) true. The 
contradictory objects and statements are not allowed to "exist" or be 
"true" for the simple reason that contradiction introduces meaning
lessness. When a philosopher such a~ Leibniz talks about "all possible 
worlds," he means worlds that can be talked about. You can talk about 
a world in which humans and typewriters have feathers. You cannot 
say anything sensible about a square triangle or an odd integer that is 
a multiple of 2. 

Is it possible to expand our universe of discourse to the ultimate and 
call it the set of all possible sets? No, this is a step we cannot take with
out contradiction. Georg Cantor proved that the cardinal number of 
any set (the number of its elements) is always lower than the cardinal 
number of the set of all its subsets. This is obvious for any finite set (if 
it has n elements, it must have 2n subsets), but Cantor was able to show 
that it also applies to infinite sets. When we try to apply this theorem 
to everything, however, we get into deep trouble. The set of all sets 
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must have the highest aleph (infinite number) for its cardinality; oth
erwise it would not be everything. On the other hand, it cannot have 
the highest aleph because the cardinality of its subsets is higher. 

When Bertrand Russell first came across Cantor's proof that there is 
no highest aleph, and hence no "set of all sets," he did not believe it. 
He wrote in 1901 that Cantor had been "guilty of a very subtle fallacy, 
which I hope to explain in some future work," and that it was "obvi
ous" there had to be a greatest aleph because "if everything has been 
taken, there is nothing left to add." When this essay was reprinted in 
Mysticism and Logic 16 years later, Russell added a footnote apologiz
ing for his mistake. ("Obvious" is obviously a dangerous word to use in 
writing about everything.) It was Russell's meditation on his error that 
led him to discover his famous paradox about the set of all sets that are 
not members of themselves. 

To sum up, when the mathematician tries to make the final jump 
from lots of things to everything, he finds he cannot make it. "Every
thing" is self-contradictory and therefore does not exist! 

The fact that tp.e set of all sets cannot be defined in standard 
(Zermelo-Fraenkel) set theory, however, does not inhibit philosophers 
and theologians from talking about everything, although their syn
onyms for it vary: being, ens, what is, existence, the absolute, God, re
ality, the Tao, Brahman, dh arm a-kaya, and so on. It must, of course, 
include everything that was, is, and will be, everything that can be 
imagined and everything totally beyond human comprehension. Noth
ing is also part of everything. When the universe gets this broad, it is 
difficult to think of anything meaningful (not contradictory) that does 
not in some sense exist. The logician Raymond Smullyan, in one of his 
several hundred marvelous unpublished essays, retells an incident he 
found in Oscar Mandel's book Chi Po and the Sorcerer: A Chinese Tale 
for Children and Philosophers. The sorcerer Bu Fu is giving a painting 
lesson to Chi Po. "No, no!" says Bu Fu. "You have merely painted what 
is. Anybody can paint what is! The real secret is to paint what isn't!" 
Chi Po, puzzled, replies: "But what is there that isn't?" 

This is a good place to come down from the heights and consider a 
smaller, tidier universe, the universe of contemporary cosmology. Mod
ern cosmology started with Einstein's model of a closed but unbounded 
universe. If there is sufficient mass in the cosmos, our 3-space curves 
back on itself like the surface of a sphere. (Indeed, it becomes the 3-
space hypersurface of a 4-space hypersphere.) We now know that the 
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universe is expanding from a primordial fireball, but there does not 
seem to be enough mass for it to be closed. The steady-state theory gen
erated much discussion and stimulated much valuable scientific work, 
but it now seems to have been eliminated as a viable theory by such 
discoveries as that ofthe universal background radiation (which has no 
reasonable explanation except that it is radiation left over from the pri
mordial fireball, or "big bang"). 

The large unanswered question is whether there is enough mass hid
den somewhere in the cosmos (in black holes?) to halt the expansion 
and start the universe shrinking. If that is destined to happen, the con
traction will become runaway collapse, and theorists see no way to 
prevent the universe from entering the "singularity" at the core of a 
black hole, that dreadful spot where matter is crushed out of existence 
and no known laws of physics apply. Will the universe disappear like 
the fabled Poof Bird, which flies backward in ever decreasing circles 
until-poof!-it vanishes into its own anus? Will everything go through 
the black hole to emerge from a white hole in some completely differ
ent spacetime? Or will it manage to avoid the singularity and give rise 
to another fireball? If reprocessing is possible, we have a model of an 
oscillating universe that periodically explodes, expands, contracts, and 
explodes again. 

Among physicists who have been building models of the universe 
John Archibald Wheeler has gone further than anyone in the direction 
of everything. In Wheeler's wild vision our universe is one of an infin
ity of universes that can be regarded as embedded in a strange kind of 
space called superspace. 

In order to understand (dimly) what Wheeler means by superspace 
let us start with a simplified universe consisting of a line segment oc
cupied by two particles, one black and one gray (see Figure 46.3, top). 
The line is one-dimensional, but the particles move back and forth (we 
allow them to pass through each other) to create a space-time of two di
mensions: one of space and one of time. 

There are many ways to graph the life histories of the two particles. 
One way is to represent them as wavy lines, called world lines in rel
ativity theory, on a two-dimensional space-time graph (see Figure 
46.3). Where was the black particle at time k? Find k on the time axis, 
move horizontally to the black particle's world line, then move down 
to read off the particle's position on the space axis. 

To see how beautifully the two world lines record the history of our 
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figuration space. Let us see how to do this with our two particles. Our 
configuration space again is two-dimensional, but now both coordi
nates are spatial. One coordinate is assigned to the black particle and 
the other, to the gray particle (see Figure 46.4). The positions of both 
particles can be represented by a single point called the configuration 
point. As the point moves, its coordinate values change on both axes. 
One axis locates one particle; the other axis, the other particle. The tra
jectory traced by the moving point corresponds to the changing pattern 
of the system of particles; conversely, the history of the system deter
mines a unique trajectory. It is not a space-time graph. (Time enters 
later as an added parameter.) The line cannot form branches because 
that would split each particle in two. It may, however, intersect itself. 
If a system is periodic, the line will be a closed curve. To transform the 
graph into a spacetime graph we can, if we like, add a time coordinate 
and allow the point to trace a curve in three dimensions. 

The technique generalizes to a system of N particles in a space with 
any number of dimensions. Suppose we have 100 particles in our lit-
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Figure 46.4. A configuration-space graph of the history of two particles in a one
dimensional universe 
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tIe line-segment cosmos. Each particle has one degree of freedom, so 
our configuration point must move in a space of 100 dimensions. If our 
universe is a system of Nparticles on a plane, each particle has two de
grees of freedom, so our configuration space must be a hyperspace of 
2N dimensions. In 3-space a particle has three degrees of freedom, so 
the configuration space must have 3N dimensions. In general the hy
perspace has an order equal to the total degrees of freedom in the sys
tem. Add another coordinate for time and the space becomes a 
space-time graph. 

Unfortunately the position of a configuration point at any instant 
does not enable us to reconstruct the system's past or predict its future. 
Josiah Willard Gibbs, working on the thermodynamics of molecules, 
found a slightly more complicated space in which he could graph a sys
tem of molecules so that the record was completely deterministic. This 
is done by assigning six coordinates to each molecule: three to deter
mine position and three to specify momentums. The movement of a 
single phase point in what Gibbs called a "phase space" of 6N dimen
sions will record the life history of N particles. Now, however, the po
sition of the phase point provides enough information to reconstruct (in 
principle) the entire previous history of the system and to predict its fu
ture. As before, the trajectory cannot branch, but now it also cannot in
tersect itself. An intersection would mean that a state could be reached 
from two different states and could lead to two different states, but 
both possibilities are ruled out by the assumption that position and 
momentums (which include a vector direction) fully determine the 
next state. The curve may still loop, however, indicating that the sys
tem is periodic. 

Our universe, with its non-Euclidean space-time and its quantum 
uncertainties, cannot be graphed in anything as simple as phase space, 
but Wheeler has found a way to do it in superspace. Like configuration 
space, superspace is timeless, but it has an infinity of dimensions. A 
single point in superspace has an infinite set of coordinates that spec
ify completely the structure of our non-Euclidean 3-space: its size, the 
location of every particle, and the structure of every field (including the 
curvature of space itself) at every point. As the superpoint moves, its 
changing coordinate numbers describe how our universe changes, not 
failing to take into account the role of observers' frames of reference in 
relativity and the probability parameters of quantum mechanics. The 
motion of the superpoint gives the entire history of our universe. 
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At the same time (whatever that means!) that the present drama of 
our cosmos is being acted on the stage of superspace countless other su
perpoints, representing other 3-space universes, are going through their 
cycles. Superpoints close to one another describe universes that most 
resemble one another, like the parallel worlds that H. G. Wells intro
duced into science fiction with his Men Like Gods. These parallel uni
verses, cut off from one another because they occupy different slices of 
superspace, are continually bursting into space-time through a singu
larity, flourishing for a moment of eternity, then vanishing back through 
a singularity into the pure and timeless "pregeometry" from whence 
they came. 

Whenever such a cosmos explodes into being, random factors gen
erate a specific combination of logically consistent (Leibniz called them 
compossible) particles, constants, and laws. The resulting structure 
has to be tuned exceedingly fine to allow life. Alter the fine-structure 
constant a trifle either way and a sun such as ours becomes impossible. 
Why are we here? Because random factors generated a cosmic structure 
that allowed us to evolve. An infinity of other universes, not so finely 
tuned, are living and dying without there being anyone in them capa
ble of observing them. 

These "meaningless" universes, meaningless because they contain 
no participator-observers, do not even "exist" except in the weak sense 
of being logically possible. Bishop Berkeley said that to exist is to be 
perceived, and Charles Sanders Peirce maintained that existence is a 
matter of degree. Taking cues from both philosophers, Wheeler argues 
that only when a universe develops a kind of self-reference, with the 
universe and its observers reinforcing one another, does it exist in a 
strong sense. "All the choir of heaven and furniture of earth have no 
substance without a mind" was how Berkeley put it. 

As far as I can tell, Wheeler does not take Berkeley's final step: the 
grounding of material reality in God's perception. Indeed, the fact that 
a tree seems to exist in a strong sense, even when no one is looking at 
it, is the key to Berkeley'S way of proving God's existence. Imagine a 
god experimenting with billions of cosmic models until he finds one 
that permits life. Would not these universes be "out there," observed by 
the deity? There would be no need for flimsy creatures like ourselves, 
observing and participating, to confer existence on these models. 

Wheeler seems anxious to avoid this view. He argues that quantum 
mechanics requires participator-observers in the universe regardless of 

618 LOGIC AND PHILOSOPHY 



whether there is an outside observer. In one of his metaphors, a uni
verse without internal observers is like a motor without electricity. The 
cosmos "runs" only when it is "guaranteed to produce somewhere, and 
for some little length of time in its history-to-be, life, consciousness, 
and observership." Internal observers and the universe are both essen
tial to the existence of each other, even if the observers exist only in a 
potential sense. This raises unusual questions. How strongly does a 
universe exist before the first forms of life evolve? Does it exist in full 
strength from the moment of the big bang, or does its existence get 
stronger as life gets more complex? And how strong is the existence of 
a galaxy, far removed from the Milky Way, in which there may be no 
participator-observers? Does it exist only when it is observed by life in 
another galaxy? Or is the universe so interconnected that the observa
tion of a minute portion of it supports the existence of all the rest? 

There is a famous passage in which William James imagines a thou
sand beans flung onto a table. They fall randomly, but our eyes trace 
geometrical figures in the chaos. Existence, wrote James, may be no 
more than the order which our consciousness singles out of a disor
dered sea of random possibilities. This seems close to Wheeler's vi
sion. Reality is not something out there, but a process in which our 
consciousness is an essential part. We are not what we are because the 
world is what it is but the other way around. The world is what it is be
cause we are what we are. 

When relativity theory first won the day, many scientists and 
philosophers with a religious turn of mind argued that the new theory 
supported such a view. The phenomena of nature, said James Jeans, are 
"determined by us and our experience rather than by a mechanical 
universe outside us and independent of us." The physical world, wrote 
Arthur Stanley Eddington, "is entirely abstract and without 'actuality' 
apart from its linkage to consciousness." Most physicists today would 
deny that relativity supports this brand of idealism. Einstein himself 
vigorously opposed it. The fact that measurements of length, time, and 
mass depend on the observer's frame of reference in no way dilutes the 
actuality of a space-time structure independent of all observers. 

Nor is it diluted by quantum mechanics. What bearing does the sta
tistical nature of quantum laws have on the independent existence of 
a structure to which those laws apply whenever it is observed? The fact 
that observations alter state functions of a system of particles does not 
entail that there is nothing "out there" to be altered. Einstein may have 
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thought that quantum mechanics implies this curious reduction of 
physics to psychology, but there are not many quantum experts today 
who agree. 

In any case, belief in an external world, independent of human exis
tence but partly knowable by us, is certainly the simplest view and the 
one held today by the vast majority of scientists and philosophers. As 
I have suggested, to deny this commonsense attitude adds nothing of 
value to a theistic or pantheistic faith. Why adopt an eccentric termi
nology if there is no need for it? 

But this is not the place for debating these age-old questions. Let me 
turn to a strange little book called Eureka: A Prose Poem, written by 
Edgar Allan Poe shortly before his death. Poe was convinced that it was 
his masterpiece. "What I have propounded will (in good time) revolu
tionize the world of Physical & Metaphysical Science," he wrote to a 
friend. "I say this calmly-but I say it." In another letter he wrote, "It 
is no use to reason with me now; I must die. I have no desire to live 
since I have done Eureka. I could accomplish nothing more." (I quote 
from excellent notes in The Science Fiction of Edgar Allan Poe, edited 
by Harold Beaver, Penguin Books, 1976.) 

Poe wanted his publisher, George P. Putnam, to print 50,000 copies. 
Putnam advanced Poe $14 for his "pamphlet," and printed 500 copies. 
Reviews were mostly unfavorable. The book seems to have been taken 
seriously only in France, where it had been translated by Baudelaire. 
Now suddenly, in the light of current cosmological speculation, Poe's 
prose poem is seen to contain a vast vision that is essentially a theist's 
version of Wheeler's cosmology! As Beaver points out, the "I" in Poe's 
"Dreamland" has become the universe itself: 

By a route obscure and lonely, 
Haunted by ill angels only, 
Where an Eidolon, named NIGHT, 

On a black throne reigns upright, 
I have reached these lands but newly 
From an ultimate dim Th ule-
From a wild weird clime that lieth, sublime, 

Out of SPACE-out of TIME. 

A universe begins, said Poe, when God creates a "primordial parti
cle" out of nothing. From it matter is "irradiated" spherically in all di
rections, in the form of an "inexpressibly great yet limited number of 
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unimaginably yet not infinitely minute atoms." As the universe ex
pands, gravity slowly gains the upper hand and the matter condenses 
to form stars and planets. Eventually gravity halts the expansion and 
the universe begins to contract until it returns again to nothingness. 
The final "globe of globes will instantaneously disappear" (how Poe 
would have exulted in today's black holes!) and the God of our universe 
will remain "all in all." 

In Poe's vision each universe is being observed by its own deity, the 
way your eye watched the two particles dance in our created world of 
i-space. But there are other deities whose eyes watch other universes. 
These universes are "unspeakably distant" from one another. No com
munication between them is possible. Each of them, said Poe, has "a 
new and perhaps totally different series of conditions." By introducing 
gods Poe implies that these conditions are not randomly selected. The 
fine-structure constant is what it is in our universe because our deity 
wanted it that way. In Poe's superspace the cyclical birth and death of 
an infinity of universes is a process that goes on "for ever, and for ever, 
and for ever; a novel Universe swelling into existence, and then sub
siding into nothingness at every throb of the Heart Divine." 

Did Poe mean by "Heart Divine" the God of our universe or a higher 
deity whose eye watches all the lesser gods from some abode in super
superspace? Behind Brahma the creator, goes Hindu mythology, is 
Brahman the inscrutable, so transcendent that all we can say about 
Brahman is Neti neti (not that, not that). And is Brahman being ob
served by a supersupersupereye? And can we posit a final order of su
perspace, with its Ultimate Eye, or is that ruled out by the contradiction 
in standard set theory of the concept of a greatest aleph? 

This is the great question asked in the final stanza of the Hymn of 
Creation in the Rig Veda. The "He" of the stanza is the impersonal One 
who is above all gods: 

Whether the world was made or was self-made, 
He knows with full assurance, He alone, 
Who in the highest heaven guards and watches; 
He knows indeed, but then, perhaps, He knows not! 

It is here that we seem to touch-or perhaps we are still infinitely far 
from touching-the hem of Everything. Let C. S. Lewis (I quote from 
Chapter 2 of his Studies in Words) make the final comment: " 'Every
thing' is a subject on which there is not much to be said." 
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Addendum 
Charles Peirce once complained that universes are not as plen

tiful as blackberries, but today there are many top cosmologists who 
think otherwise. The notion that our universe is only one of an enor
mous number, perhaps an infinite number, of other universes is now a 
popular conjecture. Andrei Linde at Stanford University is the leading 
proponent of such a view. His "multiverse" should not be confused 
with the countless universes assumed in the many-worlds interpreta
tion of quantum mechanics. In that theory the other universes are all 
part of a single metaverse that is sprouting countless branches as its 
monstrously complicated tree evolves. The many worlds of Linde and 
his sympathizers are modern versions of Poe's beautiful vision-uni
verses unrelated to ours, each with its unique set of laws, particles, 
and physical constants. 

There is no need to invoke intelligent design to explain why our uni
verse is so finely tuned that it can evolve stars, planets, life, and such 
strange creatures as you and me. Naturally we could exist, as the an
thropic principle maintains, only in one of the myriad of universes 
that had the necessary laws and constants. David Lewis and a few other 
eccentric philosophers plunge even deeper into fantasy. They argue 
that every logically possible universe-one free of contradictions-ex
ists and is just as real as the one we are in! Leibniz considered what he 
called logically "compossible" worlds that are in the mind of God, but 
God chose only one, the best possible, to actually exist. 

Defenders of Linde's multi verse , the many world's interpretation of 
quantum mechanics, and Lewis's logically possible worlds tend to be 
atheists or agnostics. The total ensemble of universes is all there is. No 
creator occupies a transcendent realm. On the other hand, cosmological 
and philosophical theists invoke Occam's razor. Is it not much simpler, 
they maintain, to posit a wholly other deity who, for reasons we cannot 
know, created the one universe in which we find ourselves? It is a uni
verse destined either to last forever, or expand and die of the cold, or 
eventually to contract, as Poe imagined, to be annihilated in a Big Crunch. 
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Chapter 47 Melody-Making 
Machines 

Mathematics and music! The most glaring 
possible opposites of human thought! Yet 
connected, mutually sustained! 

-HERMANN VON HELMHOLTZ, 

Popular Scientific Lectures 

There is a trivial sense in which any work of art is a combina
tion of a finite number of discrete elements. Not only that, the precise 
combination of the elements can be expressed by a sequence of digits 
or, if you will, by one enormous number. 

Consider a poem. Assign distinct numbers to each letter of the al
phabet, to each punctuation symbol, and so on. A certain digit, say 
zero, can be used to separate the numbers. It is obvious that one long 
string of digits can express the poem. If the books of a vast library con
tain every possible combination of words and punctuation marks, as 
they do in Jorge Luis Borges's famous story "The Library of Babel," 
then somewhere in the collection is every poem ever written or that can 
be written. Imagine those poems coded as digital sequences and in
dexed. If one had enough time, billions on billions of years, one could 
locate any specified great poem. Are there algorithms by which one 
could find a great poem not yet written? 

Consider a painting. Rule the canvas into a matrix of minute cells. 
The precise color of each cell is easily coded by a number. Scanning the 
cells yields a chain of numbers that expresses the painting. Since num
bers do not decay, a painting can be re-created as long as the number 
sequence is preserved. Future computers will be able to reproduce a 
painting more like the original than the original itself, since after a few 
decades the original will have physically deteriorated to some extent. 
If a vast art museum contains every combination of colored cells for 
matrixes not exceeding a certain size, somewhere in that monstrous 
museum will hang every picture ever painted or that can be painted. 
Are there algorithms by which a computer could search a list of the mu
seum's code numbers and identify a sequence for a great painting not 
yet painted? 
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Consider a symphony. It is a fantastically complex blend of dis
creteness and continuity; a violin or a slide trombone can move up 
and down the scale continuously, but a piano cannot produce quarter
tones. We know, however, from Fourier analysis that the entire sound 
of a symphony, from beginning to end, can be represented by a single 
curve on an oscilloscope. "This curve," wrote Sir James Jeans in Sci
ence and Music (Dover, 1968), "is the symphony-neither more nor 
less, and the symphony will sound noble or tawdry, musical or harsh, 
refined or vulgar, according to the quality of this curve." On a long
playing record a symphony is actually represented by one long space 
curve. 

Because curves can be coded to any desired precision by numbers, a 
symphony, like a painting or a poem, can be quantized and expressed 
by a number chain. A vast library recording all combinations of sym
phonic sounds, would contain every symphony ever written or that 
could be written. Are there algorithms by which a computer could scan 
the number sequences of such a library and pick out a great symphony 
not yet written? 

Such procedures would, of course, be so stupendously complex that 
man may never come close to formulating them, but that is not the 
point. Do they exist in principle? Is it worthwhile to look for bits and 
pieces of them? Consider one of the humblest of such aesthetic tasks, 
the search for rules that govern the invention of a simple melody. Is 
there a procedure by which a person or a computer can compose a 
pleasing tune, using no more than a set of combinatorial rules? 

If we restrict the tune to a finite length and a finite number of pure 
tones and rhythms, the number of possible melodies is finite. John Stu
art Mill, in his autobiography, recalls that as a young man he was once 
"seriously tormented by the thought of the exhaustibility of musical 
compositions." Suppose our tune is made up of just 10 notes chosen 
from the set of eight notes in a single octave. The number of melodies 
is the same as the number of 10-letter words that can be formed with 
eight distinct letters, allowing duplications. It is 810 = 1,073,741,824, 
and this without even considering varying rhythms which create, in ef
fect, varying melodies. Many of these tunes will be dull (mi, mi, mi, mi, 
mi, mi, mi, mi, mi, mi for instance), but some will be extremely pleas
ing. Are there rules by which a computer or a person could pick out the 
pleasing combinations? 

Attempts to formulate such rules and embody them in a mechanical 
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device for composing tunes have a curious history that began in 1650 
when Athanasius Kircher. a German Jesuit, published in Rome his 
Musurgia universalis sive ars magna Gonsoni et dissoni (see Figure 
47.1). Kircher was an ardent disciple of Ram6n Lull, the Spanish me
dieval mystic whose Ars magna derived from the crazy notion that sig
nificant new knowledge could be obtained in almost every field simply 
by exploring all combinations of a small number of basic elements. It 
was natural that Kircher, who later wrote a 500-page elaboration of 
Lull's "great art," would view musical composition as a combinatorial 
problem. In his music book, he describes a Lullian technique of creat
ing polyphony by sliding columns alongside one another, as with 
Napier's bones, and reading off rows to obtain various permutations 
and combinations. Like all of Kircher's huge tomes, the book is a fan
tastic mix of valuable information and total nonsense, illustrated with 
elaborate engravings of vocal cords, bones in the ears of various ani
mals, birds and their songs, musical instruments, mechanical details of 
music boxes, water-operated organ pipes with animated figures of an
imals and people, and hundreds of other curious things. 

The Lullian device described by Kircher was actually built, circa 
1670, for the diarist Samuel Pepys, who owned a copy of Kircher's 
music book and much admired it. The original machine, called 
"musarithmica mirifica," is in the Pepys Museum at Pepys's alma 
mater, Magdalene College, Cambridge. 

During the early 18th century many German music scholars became 
interested in mechanical methods of composition. Lorenz Christoph 
Mizler wrote a book in 1739 describing a system that produced figured 
bass for baroque ensemble music. In 1757 Bach's pupil, Johann Philipp 
Kirnberger, published in Berlin his Ever-ready Composer of Polonaises 
and Minuets, using a die for randomizing certain choices. In 1783 an
other book by Kirnberger extended his methods to symphonies and 
other forms of music. 

Toward the close of the 18th century the practice of generating 
melodies with the aid of tables and randomizers such as dice or teeto
turns became a popular pastime. Maximilian Stadler, an Austrian com
poser, published in 1779 a set of musical bars and tables for producing 
minuets and trios with the help of dice. At about the same time, a Lon
don music publisher, Welcker, issued a "tabular system whereby any 
person, without the least knowledge of music, may compose ten thou
sand minuets in the most pleasing and correct manner." Similar anony-
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mous works were falsely attributed to well-known composers such as 
C.P.E. Bach (son of Johann Sebastian Bach) and Joseph Haydn. The 
"Haydn" work, "Gioco fHarmonico" ("Philharmonic Joke")' Naples, 
1790, was discovered by the Glasgow mathematician Thomas H. 
Q'Beirne to be a plagiarism. Its bars and tables are identical with 
Stadler's. 

The most popular work explaining how a pair of dice can be used "to 
compose without the least knowledge of music" as many German 
waltzes as one pleases was first published in Amsterdam and in Berlin 
in 1792, a year after Mozart's death. The work was attributed to Mozart. 
Most Mozart scholars say it is spurious, although Mozart was fond of 
mathematical puzzles and did leave handwritten notes showing his 
interest in musical permutations. (The same pamphlet was issued in 
Bonn a year later, with a similar work, also attributed to Mozart, for 
dice composition of country dances. The contredanses pamphlet was 
reprinted in 1957 by Heuwekemeijer in Amsterdam.) 

Mozart's Musikalisches Wiirfelspiel, as the waltz pamphlet is usually 
called, has been reprinted many times in many languages. In 1806 it ap
peared in London as Mozart's Musical Game, Fitted in an Elegant Box, 
Showing by Easy System How to Compose an Unlimited Number of 
Waltzes, Rondos, Hornpipes and Reels. In New York in 1941 the Hun~ 
garian composer and concert pianist Alexander Laszlo brought it out 
under the title The Dice Composer, orchestrating the music so that it 
could be played by chamber groups and orchestras. The system popped 
up again in West Germany in 1956 in a score published by B. Schott. 
Photocopies of Schott's charts and musical bars appear in the instruc~ 
tion booklet for The Melody Dicer, issued early in 1974 by Carousel 
Publishing Corporation, Brighton, MA. This boxed set also includes a 
pair of dice and blank sheets of music paper. 

The "Mozart" system consists of a set of short measures numbered 1 
through 176. The two dice are thrown 16 times. With the aid of a chart 
listing 11 numbers in each of eight columns, the first eight throws de
termine the first eight bars of the waltz. A second chart is used for the 
second eight throws that complete the 16-bar piece. The charts are con
structed so that the waltz opens with the tonic or keynote, modulates 
to the dominant, then finds its way back to the tonic on its final note. 
Because all bars listed in the eighth column of each chart are alike, the 
11 choices (sums 2 through 12 on the dice) are available for only 14 
bars. This allows the system to produce 1114 waltzes, all with a distinct 
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Mozartean flavor. The number is so large that any waltz you generate 
with the dice and actually play is almost certainly a waltz never heard 
before. If you fail to preserve it, it will be a waltz that will probably 
never be heard again. 

The first commercial recording of "Mozart" dice pieces was made by 
O'Beirne. Both the randomizing of the bars and the actual playing of the 
melodies was done by Solidac, a small and slow experimental com
puter designed and built between 1959 and 1964 by the Glasgow firm 
of Barr and Stroud, where O'Beirne was then chief mathematician. It 
was the first computer built in Scotland. O'Beirne programmed Solidac 
to play the pieces in clarinetlike tones, and a long-playing recording of 
selected waltzes and contredanses was issued by Barr and Stroud in 
1967. (This recording is no longer available.) O'Beirne is the author of 
an excellent book on mathematical recreations, Puzzles and Paradoxes 
(Oxford University Press, 1965). He has been of invaluable help in the 
preparation of this account. 

Other methods of producing tunes mechanically were invented in 
the early 19th century. Antonio Calegari, an Italian composer, used two 
dice for composing pieces for the pianoforte and harp. His book on the 
system was published in Venice in 1801, and later in a French transla
tion. The Melographicon, an anonymous and undated book issued in 
London about 1805, is subtitled: "A new musical work, by which an in
terminable number of melodies may be produced, and young people 
who have a taste for poetry enabled to set their verses to music for the 
voice and pianoforte, without the necessity of a scientific knowledge of 
the art." The book has four parts, each providing music for poetry with 
a certain meter and rhyme scheme. Dice are not used. One simply se
lects any bar from group A, any from group B, and so on to the last let
ter of the alphabet for that section. 

A photograph of a boxed dice game appears in Plate 42 of The Oxford 
Companion to Music, but without mention of date, inventor, or place 
of publication. Apparently, it uses 32 dice, their sides marked to indi
cate tones, intervals, chords, modulations, and so on. There also are 
ivory men whose purpose, the caption reads, is "difficult to fathom." 

In 1822 a machine called the Kaleidacousticon was advertised in a 
Boston music magazine, The Euterpiad. By shuffling cards it could 
compose 214 million waltzes. The Componium, a pipe organ that 
played its own compositions, was invented by M. Winkel of Amster-
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dam and created a sensation when it was exhibited in Paris in 1824. 
Listeners could not believe that the machine actually constructed the 
melodies it played. Scientists from the French Academy investigated. 

"When this instrument has received a varied theme," their report 
stated, "which the inventor has had time to fix by a process of his own, 
it decomposes the variations of itself, and reproduces their different 
parts in all the orders of possible permutation .... None of the airs 
which it varies lasts above a minute; could it be supposed that but one 
of these airs was played without interruption, yet, the principle of vari
ability which it possesses, it might, without ever resuming precisely the 
same combination, continue to play ... during so immense a series of 
ages that, though figures might be brought to express them, common 
language could not." 

The report, endorsed by physicist Jean Baptiste Biot, appeared in a 
British musical journal (The Harmonicon 2, 1824, pp. 40-41). Winkel's 
machine inspired a Vienna inventor, Baron J. Giuliani, to build a sim
ilar device, the construction of which is given in detail on pages 
198-200 of the same volume. 

In 1865, a composing system called the Quadrille Melodist, invented 
by J. Clinton, was advertised in The Euterpiad. By shuffling a set of 
composing cards, a pianist at a quadrille party could "keep the 
evening's pleasure going by means of a modest provision of 
428,000,000 quadrilles." 

Joseph Schillinger, a Columbia University teacher who died in 1943, 
published his mathematical system of musical composition in a book
let, Kaleidophone, in 1940. George Gershwin is said to have used the 
system in writing Porgy and Bess. In 1940 Reitor Villa-Lobos, using the 
system, translated a silhouette of New York City'S skyline into a piano 
composition (see Figure 47.2). The Schillinger System of Musical Com
position is a two-volume work by L. Dowling and A. Shaw, published 
by Carl Fischer in 1941. A footnote on page 673 of Schillinger's eccen
tric opus The Mathematical Basis of the Arts (Philosophical Library, 
1948) says that he left plans for music-composing machines, protected 
by patents, but nothing is said about their construction. 

In the 1950s, information theory was applied to musical composition 
by J. R. Pierce and others. In a pioneering article "Information Theory 
and Melody," chemist Richard C. Pinkerton included a graph which he 
called the "banal tune-maker." By flipping a coin to determine paths 
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Figure 47.2. New York skyline translated into music by Villa-Lobos, who used the 
Schillinger system 

along the network, one can compose simple nursery tunes. Most of 
them are monotonous, but hardly more so, Pinkerton reminds us, than 
"A Tisket, a Tasket." 

During the 1960s and early 1970s the proliferation of computers and 
the development of sophisticated electronic tone synthesizers opened 
a new era in machine composition of music. It is now possible to write 
computer programs that go far beyond the crude devices of earlier days. 
Suppose one wishes to compose a melody in imitation of one by 
Chopin. A computer analysis is made of all Chopin melodies so that the 
computer has in its memory a set of "transition probabilities." These 
give the probability that any set of one, two, three, or more notes in a 
Chopin melody is followed by any other note. Of course, one must also 
take into account the type of melody one wishes to compose, the 
rhythms, the position of each note within the melody, the overall pat
tern, and other things. In brief, the computer makes random choices 
within a specified general structure, but these choices are subject to 
rules and weighted by Chopin's transition preferences. The result is a 
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"Markoff chain" melody, undistinguished but nevertheless sounding 
curiously like Chopin. The computer can quickly dash off several hun
dred such pieces, from which the most pleasing may be selected. 

There is now a rapidly growing literature on computer composition, 
not only of music in traditional styles but also music that takes full ad
vantage of the computer's ability to synthesize weird sounds that re
semble none of the sounds made by familiar instruments. Microtones, 
strange timbres, unbelievably complex rhythms, and harmonics are no 
problem. The computer is a universal musical instrument. In principle, 
it can produce any kind of sound the human ear is capable of hearing. 
Moreover, a computer can be programmed to play one of its own com
positions at the same time it is composing it. 

How can we sum up? Computers certainly can compose mediocre 
music, frigid and forgettable, even though the music has the flavor of a 
great composer. No one, however, has yet found an algorithm for pro
ducing even a simple melody that will be as pleasing to most people of 
a culture as one of their traditional popular songs. We simply do not 
know what magic takes place inside the brain of a composer when he 
creates a superior tune. We do not even know to what extent a tune's 
merit is bound up with cultural conditioning or even with hereditary 
traits. About all that can be said is that a good melody is a mixture of 
predictable patterns and elements of surprise. What the proportions 
are and how the mixture is achieved, however, still eludes everybody, 
incl uding composers. 

O'Beirne has called my attention to how closely some systems of 
musical composition resemble the buzz-phrase generator (see Figure 
47.3). This is a give-away of Honeywell Incorporated. Pick at random 
any four-digit number, such as 8,751, then read off phrase 8 of module 
A, phrase 7 of module B, and so on. The result is a SIMP (Simplified In
tegrated Modular Prose) sentence. "Add a few more four-digit num
bers," the instructions say, "to make a SIMP paragraph. After you have 
mastered the basic technique, you can realize the full potential of SIMP 
by arranging the modules in DACB order, BACD order, or ADCB order. 
In these advanced configurations, some additional commas may be 
required. " 

SIMP sounds very much like authentic technical prose, but on closer 
inspection one discovers that something is lacking. Computer
generated melodies are perhaps less inane, closer to the random ab
stract art of a kaleidoscope, but still something essential (nobody knows 
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SIMP TABLE A 

1. In particular, 
2. On the other hand, 
3. However, 
4. Similarly, 
5. As a resultant implication, 
6. In this regard, 
7. Based on integral subsystem 

considerations, 
8. For example, 
9. Thus, 
o. In respect to specific goals, 

SIMP TABLE B 

1. a large portion of the interface 
coordination communication 

2. a constant flow of effective information 
3. the characterization of specific criteria 
4. initiation of critical subsystem 

development 
5. the fully integrated test program 
6. the product configuration baseline 
7. any associated supporting element 
8. the incorporation of additional mission 

constraints 
9. the independent functional principle 
O. a primary interrelationship between 

subsystem and! or subsystem technologies 

Figure 47.3. Honeywell's buzz-phrase generator for writing Simplified Integrated Modu
lar Prose (SIMP) 

what) is missing. Indeed, a good simple tune is much harder to com
pose than an orchestral piece in the extreme avant-garde manner, so 
loaded with randomness and dissonance that one hesitates to say, as 
Mark Twain (or was it Bill Nye1) said of Wagner's music: It is better than 
it sounds. 

When a computer generates a melody that becomes as popular as 
(think of the title of your favorite song), you will know that a colossal 
breakthrough has been made. Will it ever occur? If so, when? Experts 
disagree on the answers as much as they do on if and when a computer 
will write a great poem, paint a great picture, or play grand-master 
chess. 

Addendum 

Carousel, the company that brought out Mozart's The Melody 
Dicer, later issued a similar set called The Scott Joplin Melody Dicer. 
Using the same system of dice and cards, one can compose endless 
rags of the Scott Joplin variety. 

In 1977 a curious 284-page book titled The Directory of Tunes and 
Musical Themes, by Denys Parsons, was published in England by the 
mathematician G. Spencer Brown. Parsons discovered that almost 
every melody can be identified by a ridiculously simple method. Put 
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SIMP TABLE C 

1. must utilize and be functionally 
interwoven with 

2. maximizes the probability of project 
success and minimizes the cost 
time required for 

3. adds explicit performance limits to 
4. necessitates that urgent 

consideration be applied to 
5. requires considerable systems 

analysis and trade off studies to 
arrive at 

6. is further compounded, when 
taking into account 

7. presents extremely interesting 
challenges to 

8. recognizes the importance of other 
systems and the necessity for 

9. effects a significant implementation of 
O. adds overriding performance 

constraints to 

SIMP TABLE D 

1. the sophisticated hardware 
2. the anticipated fourth-generation 

equipment 
3. the subsystem compatibility and 

testing 
4. the structural design, based on 

system engineering concepts 
5. the preliminary qualification 

limit 
6. the evolution of specifications 

over a given time period 
7. the philosophy of commonality 

and standardization 
8. the greater fight-worthiness 

concept 
9. any discrete configuration mode 

down an asterisk for the first note. If the second note is higher, write 
down U for "up." If lower, write D for "down." If the same, use R for 
"repeat." Continue with succeeding notes until you have a sequence of 
up to 16 letters. This is almost always sufficient to identify the melody. 
For example * UDDUUUU is enough to key "White Christmas." The 
book lists alphabetically in two sections, popular and classical, some 
15,000 different sequences followed by the title of the work, its com
poser, and the date. 

The idea behind the buzz-phrase generator-random selection of 
words and phrases to create prose or poetry-is an old idea. Rational 
Recreations, a four-volume work by W. Hooper (the fourth edition was 
published in London in 1794), has a section in Volume 2 on how to use 
dice for composing Latin verse. The technique surely is much older. 
Similar randomizing is used in modern computer programs that gen
erate "poems" and various kinds of imitation prose. 

First-grade teachers, who call it "stringing," use the technique for 
teaching reading. Children are given a simple pattern sentence with 
blanks into which they insert words. The New York Times Book Review 
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Gune 4, 1978), printed Randolph Hogan's list of buzzwords that en
able anyone to write impressive literary criticism. (Someone should 
do a similar list, perhaps already has, for art critics.) Mad Magazine 
(October 1974) featured Frank Jacobs's 12 columns of buzzwords and 
phrases for writing impeachment newspaper stories. Tom Koch (Mad 
Magazine, March 1982) gave a similar technique for stand-up comics. 
Jacobs returned in Mad (September 1982) with another 12 columns of 
words and phrases for writing the lyrics of country-western songs. 

Donald Knuth, after reading this chapter, told me that Glenn Miller 
also studied under Schillinger, who is mentioned in the book The 
Glenn Miller Story. Knuth also informed me that circa 1960 Fred 
Brooks, a computer scientist at the University of North Carolina, Chapel 
Hill, published some computer-generated hymn tunes based on data 
from Methodist hymnals. 

The best imitations so far of great music are the computer composi
tions of David Cope, professor of music at the University of California, 
Santa Cruz. His program EMI (Experiments in Musical Intelligence), 
pronounced Emmy, has created very convincing music in the styles of 
Mozart, Bach, Beethoven, Brahms, Chopin, Scott Joplin, and others. 
Douglas Hofstadter has expressed amazement at how authentic the 
music sounds. After his "Mozart's 42nd Symphony" was produced by 
the college orchestra at Santa Cruz in 1997, Cope told a reporter: 
"There's no expert in the world who could, without knowing its source, 
say for certain that it's not Mozart .... " 
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Chapter 48 Mathematical 
Zoo 

There has never been a zoo designed to display animals with 
features of special interest to recreational mathematicians, yet such a 
zoo could be both entertaining and instructive. It would be divided, as 
I visualize it, into two main wings, one for live animals, the other for 
pictures, replicas, and animated cartoons of imaginary creatures. Pa
trons of the "mathzoo" would be kept informed of new acquisitions by 
a newsletter called ZOONOOZ (with the permission of the Zoological 
Society of San Diego, which issues a periodical of that name), a title 
that is both palindromic and the same upside down. 

A room of the live-animal wing would contain microscopes through 
which one could observe organisms too tiny to be seen otherwise. Con
sider the astonishing geometrical symmetries of radiolaria, the one
celled organisms that flourish in the sea. Their intricate silica skeletons 
are the nearest counterparts in the biological world to the patterns of 
snow crystals. In his Monograph of the Challenger Radiolaria, the Ger
man biologist Ernst Haeckel described thousands of radiolaria species 
that he discovered on the Challenger expedition of 1872-76. The book 
contains 140 plates of drawings that have never been excelled in dis
playing the geometric details of these intricate, beautiful forms. 

Figure 48.1, which originally appeared in Haeckel's book, is of spe
cial interest to mathematicians. The first radiolarian is basically spher
ical, but its six clawlike extensions mark the corners of a regular 
octahedron. The second skeleton has the same solid at its center. The 
third is a regular icosahedron of 20 faces. The fifth is the 12-sided do
decahedron. Other plates in Haeckel's book show radiolaria that ap
proximate cubical and tetrahedral forms. 

It is well known that there are just five Platonic solids, three of which 
have faces that are equilateral triangles. Not so widely known is that 
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Figure 48.1. Radiolaria skeletons in Ernst Haeckel's Monograph of the Challenger Radi
olaria 

there are an infinite number of semi-regular solids also with sides that 
are equilateral triangles. They are called "deltahedra" because their 
faces resemble the Greek letter delta. Only eight deltahedra are convex: 
those with 4, 6, 8, 10, 12, 14, 16, and 20 faces. The missing 18-sided 
convex deltahedron is mysterious. One can almost prove it should 
exist, and it is not so easy to show why it cannot. It is hard to believe, 
but the proof that there are only eight convex deltahedra was not 
known until B. 1. van der Waerden and Hans Freudenthal published it 
in 1947. If concavity is allowed, a deltahedron can have any number of 
faces of eight or greater. 

The four-faced deltahedron is the regular tetrahedron, the simplest of 
the Platonic solids. The six-faced deltahedron consists of two tetrahe
dra sharing one face. Note the fourth radiolarian in Haeckel's picture. 
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It is a lO-faced deltahedron, or rather one that is inflated slightly toward 
a sphere. It may surprise you to learn that there are two topologically 
distinct eight-sided deltahedra. One is the familiar regular octahedron. 
Can you construct a model of the other one (it is not convex)? 

Surfaces of radiolaria are often covered with what seems to be a net
work of regular hexagons. The regularity is particularly striking in 
Aulonia hexagona, shown in Figure 48.2. Such networks are called 
"regular maps" if each cell has the same number of edges and each 
vertex has the same number of edges joined to it. Imagine a regular 
tetrahedron, octahedron, or icosahedron inflated like a balloon but pre
serving its edges as lines on the resulting sphere. The tetrahedron will 
form a regular map of triangles with three edges at each vertex, the oc
tahedron will form a map of triangles with four edges at each vertex, 
and the icosahedron will form a map of triangles with five edges at 
each vertex. Inflating a cube produces a regular map of four-sided cells 
with three edges at each vertex. Inflating a dodecahedron produces a 
regular map of pentagons with three edges at each vertex. 

Figure 48.2. The radiolarian Aulonia hexagona 

Aulonia hexagona raises an interesting question. Is it possible to 
cover a sphere with a regular map of hexagons, three edges at each ver
tex? Only the topological properties of the map concern us. The hexa
gons need not be regular or even convex. They may have any size or 
shape, and their edges may twist and curve any way you like provided 
they do not intersect themselves or one another and provided three of 
them meet at each vertex. 

The answer is no, and it is not hard to prove impossibility with a fa-
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mous formula that Leonhard Euler discovered for the skeletons of all 
simply connected (no "holes") polyhedra. The formula is F + C - E = 2, 

where the letters stand for faces, corners, and edges. Since all such 
polyhedra can be inflated to spheres, the formula applies also to maps 
on the sphere. In Chapter 13 of Enjoyment of Mathematics, by Hans 
Rademacher and Otto Toeplitz, you will find it explained how Euler's 
formula can be used in proving that no more than five regular maps can 
be drawn on a sphere and that therefore no more than five regular con
vex solids can exist. As a second problem, can you use Euler's formula 
to show that a regular map of hexagons is impossible on a sphere? 

D' Arcy Wentworth Thompson, whose classic work On Growth and 
Form contains an excellent section on radiolaria, liked to tell about a 
biologist who claimed to have seen a spherical radiolarian covered 
with a perfect map of hexagons. But, said Thompson, Euler had proved 
this impossible. "That," replied the biologist, "proves the superiority of 
God over mathematics." 

"Euler's proof happened to be correct," writes Warren S. McCulloch 
in an essay where I found this anecdote, "and the observations, inac
curate. Had both been right, far from proving God's superiority to logic, 
they would have impugned his wit by catching him in a contradic
tion." If you look carefully at the picture of Aulonia hexagona you will 
see cells with more or fewer than six sides. 

Under electron microscopes in our zoo's micro room would be the 
many viruses that have been found to crystallize into macromolecules 
shaped like regular icosahedra: the measles virus, the herpes, the triola 
iridescent, and many others (see R. W. Horne's article cited in the bib
liography). Viruses may also have dodecahedral shapes, but as far as I 
know this remains unsettled. Another modern discovery is that some 
viruses, such as the one that causes mumps, are helical. It had formerly 
been thought that helical structures were restricted to plants and to 
parts of animals: hair, the umbilical cord, the cochlea of the human ear, 
the DNA molecule, and so on. A section of our zoo would feature such 
spectacular helical structures as molluscan seashells, the twisted horns 
of certain sheep, goats, antelopes, and other mammals, and such cu
riosities as "devil's corkscrews"-the huge fossil burrows of extinct 
beavers. 

In the macro world of fishes, reptiles, birds, insects, mammals, and 
human beings the most striking geometrical aspect of the body is its 
overall bilateral symmetry. It is easy to understand why this symmetry 
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evolved. On the earth surface gravity creates a marked difference be
tween up and down, and locomotion creates a marked difference be
tween front and back. But for any moving, upright creature the left and 
right sides of its surroundings-in the sea, on the land, or in the air
are fundamentally the same. Because an animal needs to see, hear, 
smell, and manipulate the world equally well on both sides, there is an 
obvious survival value in having nearly identical right and left sides. 

Animals with bilateral symmetry are of no interest for our mathzoo
you can see them at any zoo-but it would be amusing to assemble an 
exhibit of the most outrageous violations of bilateral symmetry. For ex
ample, an aviary would feature the crossbill, a small red bird in the 
finch family that has its upper and lower beaks crossed in either of the 
two mirror-image ways. The bird uses its crossed bill for prying open 
evergreen cones in the same way a cook uses a plierlike device to pry 
off the lid of a jar or can. A medieval legend has it that the bill became 
twisted as the bird was trying vainly to pull the nails from the cross 
when Jesus was crucified; in the effort the bird's plumage became 
stained with blood. In the same aviary would be some wry-billed 
plovers from New Zealand. The entire bill of this funny bird is twisted 
to the right. The bill is used for turning over stones to find food. As you 
would expect, foraging wry-billed plovers search mainly on the right. 

An aquarium in our mathzoo would exhibit similar instances of pre
posterous asymmetry among marine life: the male fiddler crab, for ex
ample, with its enormous left (or right) claw. Flatfish are even more 
grotesque examples. The young are bilaterally symmetric, but as they 
grow older one eye slowly migrates over the top of the head to the 
other side. The poor fish, looking like a face by Picasso, sinks to the bot
tom, where it lies in the ooze on its eyeless side. The eyes on top turn 
independently so that they can look in different directions at the same 
time. 

Another tank would contain specimens of the hagfish. This absurd 
fish looks like an eel, has four hearts, teeth on its tongue, and repro
duces by a technique that is still a mystery. When its single nostril is 
clogged, it sneezes. The hagfish is in our zoo because of its amazing 
ability to tie itself into an overhand knot of ei~her handedness. By slid
ing the knot from tail to head it scrapes sliriie from its body. The knot 
trick is also used for getting leverage when the hagfish tears food from 
a large dead fish and also for escaping a predator's grasp (see David 
Jensen's article listed in the bibliography). 
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Knots are, of course, studied by mathematicians as a branch of topol~ 
ogy. Another exhibit in our aquarium would be beakers filled with Leu
cothrix mucor, a marine bacterium shaped like a long filament. A 
magnifying glass in front of each beaker would help visitors see the 
flimsy filaments. They reproduce by tying themselves into knots--over
hands, figure-eights, even more complicated knots-that get tighter and 
tighter until they pinch the filament into two or more parts (see Thomas 
D. Brock's paper listed in the bibliography). Do higher animals ever tie 
parts of themselves into knots? Fold your arms and think about it. 

The most popular of our aquarium exhibits would probably be a tank 
containing specimens of AnabJeps, a small (eight~inch) Central Amer~ 
ican carp sometimes called the stargazer. It looks as if it has four eyes. 
Each of its two bulging eyes is divided into upper and lower parts by 
an opaque band. There is one lens but separate corneas and irises. This 
little BEM (bug-eyed monster) swims with the band at water level. The 
two upper "eyes" see above water while the two lower ones see below. 
The AnabJeps is in our zoo because of its asymmetric sex life. The 
young are born alive, which means that the male must fertilize the eggs 
inside the female. The female opening is on either the left side or the 
right. The male organ also is either on the left or the right. This makes 
it impossible for two fish of the same handedness to mate. Fortunately 
both males and females are equally left- or right-sexed, and so the 
species is in no danger of extinction. 

In a larger tank one would hope to see some narwhals, although until 
now they have not survived in captivity. This small whale, from north
polar seas, has been called the sea unicorn because the male has a sin
gle Hhorn" that projects straight forward from its upper jaw and is about 
half the whale's body length. Both sexes are born with two small side
by-side teeth. The teeth stay small on the female, but the male's left 
tooth grows into an ivory tusk, straight as a javelin and seven to 10 feet 
long. This ridiculous tooth, the longest in the world, has a helical 
groove that spirals around it like a stripe on a barber pole. Nobody 
knows what function the tusk serves. It is not used for stabbing enemies 
or punching holes in ice, but during the mating season narwhals have 
been seen fencing with each other, so that its main purpose may be a 
role in sexual ritual (see John Tyler Bonner's article in the bibliogra
phy). Incidentally, the narwhal is also unusual in having a name start
ing with the letter n. It is easy to think of mammalian names beginning 
with any letter of the alphabet except n. 
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Among snakes, sp~cies that sidewind across the desert sands are 
mathematically interesting because of their highly asymmetric tracks: 
sets of parallel line segments that slant either right or left at angles of 
about 60 degrees from the line of travel. Many species of snakes are ca
pable of sidewinding, notably the sidewinder itself, a small rattlesnake 
of Mexico and the U.S. Southwest, and the African desert viper. Exactly 
how sidewinding works is rather complicated, but you will find it 
clearly explained in Carl Gans's article. 

The insect room of our mathzoo would certainly display the nests of 
bees and social wasps. They exhibit a hexagonal tessellation even more 
regular than the surfaces of radiolaria. A large literature, going back to 
ancient Greece and still growing, attempts to explain the factors that 
playa role in producing this pattern. D' Arcy Thompson, in his book 
cited earlier, has a good summary of this literature. In times before Dar
win bees were usually regarded as being endowed by the Creator with 
the ability to design nests so that the cells use the least amount of wax 
to hold a maximum amount of honey. Even Darwin marveled at the 
bee's ability to construct a honeycomb, calling that ability "the most 
wonderful of known instincts," and "absolutely perfect in economizing 
labor and wax." 

Actual honeycombs are not as perfect as early writers implied, and 
there are ways of tessellating space with polyhedral cells that allow an 
even greater economy of wax. Moreover, it seems likely that the hon
eycomb pattern is less the result of evolution finding a way to con
serve wax than an accidental product of how bees use their bodies and 
the way they form dense clusters when they work. Surface tension in 
the semiliquid wax may also playa role. The matter is still far from set
tled. The best discussion I know is a paper by the Hungarian mathe
matician L. Fejes T6th. 

No actual animal propels itself across the ground by rolling like a 
disk or a sphere, but our insect room would be incomplete without an 
exhibit of a remarkable insect that transports its food by rolling near
perfect spheres. I refer to the dung beetle, the sacred scarab of ancient 
Egypt. These sometimes beautiful insects (in the Tropics they have 
bright metallic colors) use their flat, sharp-edged heads as shovels to 
dig a supply of fresh ordure that their legs then fashion into spheres. By 
pushing with its hind legs and walking backward the dung beetle will 
roll the little ball to its burrow where it will be consumed as food. No 
one has described the process with more literary skill and humor than 
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the French entomologist, Jean Henri Fabre, in his essay on "The Sacred 
Beetle." 

Our zoo's imaginary wing would lack the excitement of living crea
tures but would make up for it in wild fantasy. In Flaubert's Temptation 
of st. Anthony, for example, there is a beast called the Nasnas that is half 
of an animal bisected by its plane of symmetry. Jorge Luis Borges, in his 
delightful Book of Imaginary Beings, refers to an earlier invention of 
such a creature by the Arabs. L. Frank Baum's fantasy, Dot and Tot of 
Merryland, tells of a valley inhabited by wind-up animals. The toys are 
kept wound by a Mr. Split, whose left half is bright red and whose right 
half is white. He can unhook his two sides, each of which hops about 
on one leg so that he gets twice as much winding done. Conversing 
with a half of Mr. Split is difficult because Mr. Left Split speaks only the 
left halves of words and Mr. Right Split speaks only the right halves. 

A variety of mythical "palindromic" beasts violate front and back 
asymmetry by having identical ends. Borges writes of the fabled am
phisbaena (from the Greek for "go both ways"), a snake with a head at 
each end. Dante puts the snake in the seventh circle of Hell, and in Mil
ton's Paradise Lost some of Satan's devils are turned into amphisbae
nas. Alexander Pope writes in his Dunciad: 

Thus Amphisbaena (I have read) 
At either end assails; 
None knows which leads, 

or which is led, 
For both Heads are but Tails. 

The fable is not without foundation. There are actual snakes called 
amphisbaenas that crawl both ways and have such tiny eyes that it is 
hard to distinguish one end from the other. If a flatworm's head is cut 
off, another grows at the base of the severed head, so palindromic ani
mals actually can exist. In Baum's John Dough and the Cherub one 
meets Duo, a dog with a head and forelegs at both ends (see Figure 
48.3). The animal anticipates the Pushmi-Pullyu (it has a two-horned 
head at each end) that flourishes in the African jungle of Hugh Lofting's 
Dr. Dolittle books. 

Rectangular parallelepipeds are never the parts of real animals, but 
in Baum's Patchwork Girl of Oz there is a block-headed, thick-skinned, 
dark blue creature called the Woozy (see Figure 48.4). The animal's 
head, body, legs, and tail are shaped like blocks. It is friendly as long 
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Baum also imagined spherical creatures. The Roly-Rogues, in Queen 
Zixi of Ix, are round like a ball and attack enemies by rolling at them. In 
John Dough and the Cherub, one of the main characters is Para Bruin, a 
large rubber bear that likes to roll into a rubber ball and bounce around. 

Borges, writing about animals in the form of spheres, tells us that 
Plato, in the Laws, conjectures that the earth, planets, and stars are 
alive. The notion that the earth is a living, breathing organism was later 
defended by such mystics as Giordano Bruno, Kepler, the German psy
chologist Gustav Theodor Fechner, and Rudolf Steiner (who broke 
away from theosophy to found his rival cult of anthroposophy). The 
same notion is basic to the plot of one of Conan Doyle's stories about 
Professor George Edward Challenger of Lost World fame. When Profes
sor Challenger drills a deep hole through the earth's epidermis, in a 
story called "When the Earth Screamed," the planet howls with pain. 

Rotating wheels and propellers are common mechanisms for trans
porting man-made vehicles across ground, and through the sea and the 
air, but until a few decades ago it was assumed that evolution had been 
unable to exploit rotational devices for propulsion. Biologists were 
amazed to discover that the flagella of bacteria actually spin like pro
pellers (see the article by Howard C. Berg). 

The imaginary wing of our zoo would display two of Baum's crea
tures that use the wheel for propulsion. In Ozma of Oz Dorothy has an 
unpleasant encounter with the Wheelers, a race of fierce, four-legged 
humanoids that have wheels instead of feet (see Figure 48.5). In The 
Scarecrow of Oz we read about the Ork, a huge bird with a propeller at 
the tip ofits tail (see Figure 48.6). The propeller can spin both ways, en
abling the bird to fly backward as well as forward. 

I know of only two imaginary beasts that bend themselves into 
wheels and roll across the ground. From time to time, in most parts of 
the world, people have claimed to have seen "hoop snakes" that bite 
their tails to form a hoop and then go rolling across the terrain. Some 
snakes, such as the American milk snake, travel by gathering their body 
into large vertical loops and pushing forward so rapidly that they cre
ate an optical illusion of a rolling ring. These animals may be the ori
gin of hoop-snake fables. 

The Dutch artist M. C. Escher made several pictures featuring his 
curl-up, the beast shown in Figure 48.7. This unlikely animal moves 
slowly on six humanlike feet, but when it wants to go faster it curls up 
and rolls like a wheel. 
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Figure 48.S. A Wheeler 

Figure 48.6. The Ork 

Most animals, particularly the earthworm, may be thought of as being 
basically toroidal-a shape topologically equivalent to a doughnut. 
There must be many science-fiction animals shaped like toruses, but I 
can recall only the undulating silver ringfish, floating on the canals of 
Ray Bradbury's Martian Chronicles, that closes like an eye's iris around 
food particles. 

Topologists know that any torus can be turned inside out through a 
hole in its surface. There is no parallel in earth zoology, but there is a 
spherical organism called volvox that actually does turn inside out 
through a hole. It is a strange freshwater-pond colony of hundreds of 
flagellated cells bound together in a spherical jellylike mass that rotates 
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THE TA-TA 

There is a cosy Kitchen 
Inside his roomy head 
Also a tiny bedroom 
In which he goes to bed. 

So when his walk is ended 
And he no more would roam 
Inside out he turns himself 
To find himself at Home. 

He cleared away his brain stuff 
Got pots and pans galore! 
Sofas, chairs, and tables, 
And carpets for the floor. 

He found his brains were useless, 
As many others would 
If they but tried to use them 
A great unlikelihood. 

He pays no rent, no taxes 
No use has he for pelf 
Infested not with servants 
He plays with work himself 

And when his chores are ended 
And he would walk about, 
Outside in he turns himself 
To get himself turned out. 

Addendum 

I was mistaken in saying that no animal propels itself across the 
ground by rolling like a disk or sphere. Brier Lielst, Philip Schultz, 
and a geologist with the appropriate name of Paul Pushcar, were among 
many who informed me of a National Geographic television special on 
March 6, 1978, about the Namib desert of Africa. It showed a small 
spider that lives in burrows in the sides of sand dunes. When attacked 
by a wasp, it extends its legs like the spokes of a wheel and escapes by 
rolling down the dune. 

Peter G. Trei of Belgium sent me a copy of a note in Journal of Mam
malogy (February 1975) by Richard R. Tenaza, an American zoologist. 
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The concept of animals developing wheels for locomotion is not so far
fetched. A wheel with a diameter of one foot has a circumference a lit
tle over three feet. If it were mounted on a bone-bearing joint, with 
flexible veins and arteries, and a continuous series of circumferential 
pads (as on a dog's paw), the wheel could be wound back one turn by its 
internal muscles, then placed on the ground and rotated forward two full 
turns, traveling about six and a quarter feet. While one wheel (or pair of 
wheels in a four-legged animal) is driving the creature along the ground, 
the other would be lifted up and rotated back in preparation for its next 
turn at propulsion. At a speed often m.p.h., the creature would be trav
eling about 15 feet per second-not an impossible pace. 

Matthew Hodgart, writing from England, reminded me that the 
human animal is capable of moving by repeated somersaults, cart
wheels, forward and back flips, and that two persons can grab each 
other's feet and roIl like a hoop. Hodgart quoted these lines from An
drew Marvell's poem "To His Coy Mistress": 

Let us roll all our strength, and all 
Our sweetness, up into one ball: 
And tear our pleasures with rough strife, 
Through the iron gates of Life. 

"I don't quite know what's going on here," Hodgart adds. 
Chandler Davis supplemented my list of imaginary creatures that 

roll by calling attention to such an animal in George MacDonald's fan
tasy The Princess and Curdie. Ian F. Rennie thought I should have men
tioned the Wumpetty-Dumps, found in The Log of the Ark, by Kenneth 
Walker and Geoffrey Boumphrey. 

Is the narwhal the only animal with a name starting with N? Garth 
Slade cited the numbat, a small marsupial that lives in Western Aus
tralia. An article in Word Ways (May 1973) gave two other examples: 
the nutria, a web-footed South American aquatic rodent (now also 
flourishing on the Gulf Coast and the coasts of the Pacific northwest), 
and the nilgai, an antelope in India that is commonly called a "blue 
bull" because of its bluish-gray color. It is curious that the best one can 
do with common names are the colloquial nag and nanny-goat. 

Arthur C. Statter sent his reasons for thinking that the drawing by 
Haeckel which is reproduced in Figure 48.1 (I picked it up from D' Arcy 
Thompson's On Growth and Form), was one of many drawings that 
Haeckel deliberately faked. The forms shown, Statter says, simply do 
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not exist. I have not tried to investigate this, and would welcome opin
ions from radiolaria experts. 

Rufus P. Isaacs, commenting on the impossibility of tessellating a 
sphere with hexagons, sent a proof of a surprising theorem he discov
ered many years earlier. If a sphere is tessellated with hexagons and 
pentagons, there must be exactly 12 pentagons, no more and no fewer. 

A soccerball is tessellated with 20 hexagonal "faces" and 12 that are 
pentagons. In 1989 chemists succeeded in creating the world's tiniest 
soccerball-a carbon molecule with 60 atoms at the vertices of a spher
ical structure exactly like that of a soccerball (see Figure 48.9). It is 
called a buckyball, or more technically, a buckminsterfullerene, after its 
resemblance to Buckminster Fuller's famous geodesic domes. It be
longs to a class of highly symmetrical molecules called fullerenes. 

figure 48.9. The "buckyball" molecule-the world's smallest soccerball 

The buckyball is known to geometers as a truncated icosahedron be
cause it can be constructed by slicing off the 12 corners of a regular 
icosahedron. It is still not clear what properties this third form of car
bon (the other two are graphite and diamond) might have. Because of 
the molecule's near spherical shape, it might provide a marvelous lu
bricant. (See "Buckyball: The Magic Molecule," Edward Edelson, Pop
ular Science, August 1991, p. 52ff.) 

It also can be shown that if a sphere is tessellated with hexagons and 
triangles, there must be an even number of hexagons and exactly four 
triangles. These results suggest the following general question: What 
are the integral values of k such that the sphere can be tessellated with 
hexagons and exactly k polygons of side n? As far as I know, this ques-
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"deceptahedron." It is a pity that teachers are not as familiar with the 
eight convex deltahedra as they are with the five Platonic solids be
cause constructing models and proving the set unique by way of Euler's 
formula are splendid classroom challenges. 

As early as 1993 more than 1,500 papers were published on bucky
balls, and a thousand more have appeared since then. In 1996 the Nobel 
Prize in chemistry went to three discoverers of buckyballs: Robert Curl, 
Harold Kyoto, and Richard Smalley. 

Answers 

Figure 48.11 shows the answer to the first problem: an eight
sided deltahedron (all faces equilateral triangles) that is not a regular 
octahedron. The regular octahedron has four edges meeting at each 
corner. On this solid two corners are meeting spots for three edges, two 
for four edges, and two for five edges. 

Figure 48.11. The "other" eight-sided 
deltahedron 

The second problem was to use Euler's formula, F + C - E = 2, to show 
that no sphere can be covered with a "regular map" of hexagons, each 
vertex the meeting point of three edges. Assume such a map exists. 
Each hexagon has six edges and six comers. Therefore if the hexagons 
did not share corners and edges, there would be six times as many 
edges as faces. Each comer is shared, however, by three faces; therefore, 
the number of corners in such a map must be 6F/3. Similarly, each 
edge is shared by two faces; therefore, the number of corners in such a 
map must be 6F/2. Substituting these values in Euler's formula gives 
the equation F + 6F/3 - 6F/2 = 2, which simplifies to F + 2F - 3F= 2, or 
0= 2. This contradiction proves the original assumption to be false. 

What happens when the above argument is applied to the regular 
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maps formed by the edges of the five Platonic solids? In each case we 
get a formula that gives F a unique value: 4, 8, and 20 for the tetrahe
dron, octahedron, and icosahedron respectively, 6 for the cube, and 12 

for the dodecahedron. Since a regular polyhedron cannot have faces 
with more than six edges, we have proved that no more than five reg
ular solids can exist. 

Euler's formula also underlies an elementary proof that there are ex
actly eight convex deltahedra. See the paper by Beck, Bleicher, and 
Crowe cited in the bibliography. 
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Chapter 49 

This sentence no verb. 

-DOUGLAS R. HOFSTADTER, 

Codel, Escher, Bach: an 
Eternal Colden Braid 

C;odel, Escher, Bach 

Every few decades an unknown author brings out a book of 
such depth, clarity, range, wit, beauty, and originality that it is recog
nized at once as a major literary event. Godel, Escher, Bach: an Eternal 
Golden Braid, a hefty (777 pages) volume published by Basic Books 
(1979), is such a work. The author (and the illustrator and typesetter) 
is Douglas R. Hofstadter, then a young computer scientist at Indiana 
University who is the son of the well-known physicist Robert Hofs
tadter. 

What can Kurt G6del, M. C. Escher, and Johann Sebastian Bach have 
in common? The answer is symbolized by the objects shown in the 
photograph that is Figure 49.1, and in the photograph on the book's 
jacket. In each photograph two wood blocks floating in space are illu
minated so that their shadows on the three walls meeting at the comer 
of a room form the initials of the three surnames G6del, Escher, and 
Bach. More precisely, the upper block casts "GEB" (G6del, Escher, 
Bach) the heading of the book's first half, and the lower block casts 
"EGB" (Eternal Golden Braid) the heading of its second half. The letters 
G, E, and B may be thought of as the labels for three strands that are 
braided by repeatedly switching a pair of letters. Six steps are required 
to complete a cycle from GEB (through EGB) back to GEB. 

Dr. Hofstadter (his Ph.D. is in physics from the University of Oregon) 
calls such a block a "trip-let," a shortened form of "three letters." The 
idea came to him, he explains, "in a flash." Intending to write a pam
phlet about G6del's theorem, his thoughts gradually expanded to in
clude Bach and Escher until finally he realized that the works of these 
men were "only shadows cast in different directions by some central 
solid essence." He "tried to reconstruct the central object, and came up 
with this book." 

660 



661 



words, and so on. (For this description of trip-lets I am indebted to 
Hofstadter's friend Scott Kim, who worked closely with him on many 
aspects of the book.) 

What reality does Hofstadter see behind the work of his three giants? 
One aspect of that reality is the formal structure of mathematics: a 
structure that, as Godel's famous undecidability proof shows, has infi
nitely many levels, none of which are capable of capturing all truth in 
one consistent system. Hofstadter puts it crisply: "Provability is a 
weaker notion than truth." In any formal system, rich enough to con
tain arithmetic, true statements can be made that cannot be proved 
within the system. To prove them one must jump to a richer system, in 
which again true statements can be made that cannot be proved, and so 
on. The process goes on forever. 

Is the universe Godelian in the sense that there is no end to the dis
covery of its laws? Perhaps. It may be that no matter how deeply sci
ence probes there will always be laws uncaptured by the theories, an 
endless sequence of wheels within wheels. Hofstadter argues elo
quently for a kind of Platonism in which science, at any stage of its his
tory, is like the shadow projections on the wall of Plato's cave. The 
ultimate reality is always out of reach. It is the Tao about which noth
ing can be said. "In a way," Hofstadter writes at the end of his preface, 
"this book is a statement of my religion." 

For laymen I know of no better explanation than this book presents 
of what Godel achieved and of the implications of his revolutionary 
discovery. That discovery concerns in particular recursion, self
reference, and endless regress, and Hofstadter finds those three themes 
vividly mirrored in the art of Escher, the most mathematical of graphic 
artists, and in the music of Bach, the most mathematical of the great 
composers. The book's own structure is as saturated with complex 
counterpoint as a Bach composition or James Joyce's Ulysses. The first 
half of the book serves as a prelude to the second, just as a Bach pre
lude introduces a fugue. Moreover, each chapter is preceded by a kind 
of prelude, which early in the book takes the form of a "Dialogue" be
tween Achilles and the Tortoise. Other characters enter later: the Sloth, 
the Anteater, the Crab, and finally Alan Turing, Charles Babbage, and 
the author himself. Each Dialogue is patterned on a composition by 
Bach, and in several instances the mapping is strict. For example, if the 
composition has n voices, so does the corresponding Dialogue. If the 
composition has a theme that is turned upside down or played back-
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ward, so does the Dialogue. Each Dialogue states in a comic way, with 
incredible wordplay (puns, acrostics, acronyms, anagrams, and more), 
the themes that will be more soberly explored in the chapter that fol
lows. 

There are two main reasons for Achilles and the Tortoise having been 
chosen to lead off the Dialogues. First, they play the major roles in 
Zeno's paradox (the topic of the book's first Dialogue), in which 
Achilles must catch the Tortoise by escaping from an infinite regress. 
Second, they are the speakers in an equally ingenious but less familiar 
paradox devised by Lewis Carroll. In Carroll's paradox, which Hofs
tadter reprints as his second Dialogue, Achilles wishes to prove Z, a 
theorem of Euclid's, from premises A and B. The Tortoise, however, 
will not accept the theorem until Achilles postulates a rule of inference 
C, which explicitly states that Z follows from A and B. Achilles adds 
the rule to his proof, thinking the discussion is over. The Tortoise then, 
however, jumps to a higher level, demanding another rule of inference 
D, which states that Z follows from A, B, and C, and so it goes. The re
sulting endless regress seems to invalidate all reasoning in much the 
same way that Zeno's paradox seems to invalidate all motion. "Plenty 
of blank leaves, I see!" exclaims Carroll's Tortoise, glancing at Achilles' 
notebook. "We shall need them ALL!" The warrior shudders. 

One of Hofstadter's Dialogues, "Contracrostipunctus," is an acrostic 
(complete with punctuation marks) asserting that if the words in it are 
taken backward, they provide a second-order acrostic spelling out "J. S. 
Bach." Another Dialogue, "Crab Canon," which is illustrated with an 
Escher periodic tessellation of crabs, is based on Bach's "Crab Canon" 
in his Musical Offering. As the Tortoise discusses Bach, his sentences 
are interspersed with those of Achilles, who is discussing Escher. The 
Tortoise and Achilles use the same sentences in reverse order. The Crab 
enters briefly at the crossing point to knot the halves of their discourse 
together, halves that interweave in time in the same way that the posi
tive and negative crabs of Escher's tessellation interweave in space. 

The initials A, T, and C (for Achilles, Tortoise, and Crab) correspond 
to the initials of adenine, thymine, and cytosine, three of the four nu
cleotides of DNA, the molecule with the extraordinary ability to repli
cate itself. Just as Achilles pairs with the Tortoise, so adenine pairs 
with thymine along the DNA double helix. Cytosine pairs with gua
nine. The fact that the initial G can be taken to stand for "gene" 
prompted Hofstadter to do a "little surgery on the Crab's speech" so that 
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it would reflect this coincidence. The striking parallel between the 
tenets of mathematical logic and the "central dogma" of molecular bi
ology is dramatized in a chart Hofstadter calls the "Central Dogmap." 

The letter G also stands for G6del's sentence: the sentence at the 
heart of his proof that asserts its own unprovability. To Hofstadter the 
sentence provides an example of what he calls a Strange Loop, exem
plifying the self-reference that is one of the book's central themes. (A 
framework in which a Strange Loop can be realized is called a Tangled 
Hierarchy, and the letters of "sloth" tum out to stand for "Strange 
Loops, or Tangled Hierarchies. ") Dozens of examples of Strange Loops 
are discussed, from Bach's endlessly rising canon (which modulates to 
higher and higher keys until it loops back to the original key) to the 
looping flow of water in Escher's Waterfall and the looping staircase of 
his Ascending and Descending (see Figure 17.5). One of the most amus
ing models of G is a record player X that self-destructs when a record 
titled "I Cannot Be Played on Record Player X" is played on it. 

A particularly striking example of a two-step Strange Loop is Es
cher's drawing of two hands (see Figure 24.1), each one sketching the 
other. We who see the picture can escape the paradox by "jumping out 
of the system" to view it from a metalevel, just as we can escape the tra
ditional paradoxes of logic by jumping into a metalanguage. We too, 
however, have Strange Loops, because the human mind has the ability 
to reflect on itself, that is, the firing of neurons creates thoughts about 
neurons. From a broader perspective the human brain is at a level of the 
universe where matter has acquired the awesome ability to contem
plate itself. 

By the end of Godel, Escher, Bach Hofstadter has introduced his 
readers to modern mathematical logic, non-Euclidean geometries, com
putability theory, isomorphisms, Henkin sentences (which assert their 
own provability), Peano postulates (the pun on "piano" is not over
looked), Feynman diagrams for particles that travel backward in time, 
Fermat's last theorem (with a pun on "fermata"), transfinite numbers, 
Goldbach's conjecture (which is cleverly linked with Bach's Goldberg 
Variations), Turing machines, computer chess, computer music, com
puter languages (Terry Winograd, an expert on the computer simulation 
of natural language, appears in one Dialogue under the anagrammed 
name of Dr. Tony Earrwig), molecular biology, the "mind" of an anthill 
called Aunt Hillary, artificial intelligence, consciousness, free will, 
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holism v. reductionism, and a kind of sentence philosophers call a 
counterfactual. 

Counterfactuals are statements based on hypotheses that are con
trary to fact, for example, "If Lewis Carroll were alive today, he would 
greatly enjoy Hofstadter's book." These statements pose difficult prob
lems in the semantics of science, and there is now a great deal of liter
ature about them. For Hofstadter they are instances of what he calls 
slipping, progressing from an event to something that is almost a copy 
of it. The Dialogue that precedes a chapter on counterfactuals and arti
ficial intelligence concerns a Subjunc-TV set that enables an observer 
to get an "instant replay" of any event in a football game and see how 
the action would have looked if certain parameters were altered, that 
is, if the ball were spherical, if it were raining, if the game were on the 
moon, if it were played in four-dimensional space, and so on. 

The book's discussion of artificial intelligence is also enormously 
stimulating. Does the human brain obey formal rules of logic? Hofs
tadter sees the brain as a Tangled Hierarchy: a multilevel system with 
an intricately interwoven and deep self-referential structure. It follows 
logical rules only on its molecular substrate, the "formal, hidden, hard
ware level" where it operates with eerie silence and efficiency. No com
puter, he believes, will ever do all a human brain can do until it 
somehow reproduces that hardware, but he has little patience with the 
celebrated argument of the Anglican philosopher J. R. Lucas that 
Godel's work proves a human brain can think in ways that are in prin
ciple impossible for a computer. 

Only a glimpse can be given here of the recreational aspects of this 
monstrously complicated book. In "The Magnificrab, Indeed" (a pun on 
Bach's Magnificat in D), the Dialogue that introduces a discussion of 
deep theorems of Alonzo Church, Turing, Alfred Tarski, and others, 
appears a whimsical Indian mathematician named Mr. Najunamar. Na
junamar has proved three theorems: he can color a map of India with 
no fewer than 1,729 colors; he knows that every even prime is the sum 
of two odd numbers, and he has established that there is no solution to 
an + fI! = en when n is zero. All three are indeed true. 

Some readers will recognize 1,729 as the number of the taxi in which 
G. H. Hardy rode to visit the Indian mathematician Srinivasa Ramanu
jan ("Najunamar" spelled backward) in a British hospital. Hardy re
marked to Ramanujan that 1,729 was a rather dull number. Ramanujan 
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rejoined instantly that on the contrary it was the smallest positive in
teger that is the sum of two different pairs of cubes. Hardy then asked 
his friend if he knew the smallest such number for fourth powers. Ra
manujan did not know the number, although he guessed that it would 
turn out to be fairly big. Hofstadter supplies the answer: 635,318,657, 

or 1344 + 1334 or 1584 + 594 . He also wonders if his readers can find the 
smallest number that can be expressed as the sum of two squares in two 
different ways, but he hides the answer. Can you determine it before I 
supply it in the answer section? 

To explain the meaning ofthe term Hformal system" Hofstadter opens 
his book with a simple example that uses only the symbols M, I, and U. 
These symbols can be arranged in strings called theorems according to 
the following rules: 

1.1f the lastletter of a theorem is I, U can be added to the theorem. 
2. To any theorem Mx, x can be added. (For example, MUM can be 

transformed into MUMUM, and MU can be transformed into MUU.) 
3. If III is in a theorem, it can be replaced by U, but the converse oper

ation is not acceptable. (For example, MIll can be transformed into 
MU, and UMIIIMU can be transformed into UMUMU.) 

4. If UU is in a theorem, it can be dropped. (For example, UUU can be 
transformed into U, and MUUUIII can be transformed into MUIII.) 

There is only one Haxiom" in the system: In forming theorems one 
must begin with MI. Every string that can be made by applying the 
rules, in any order, is a theorem of the system. Thus MUIIU is a theo
rem because it can be generated from MI in six steps. If you play with 
the M, I, and U system, constructing theorems at random, you will soon 
discover that all theorems begin with M and that M can occur nowhere 
else. 

Now for a puzzle: Is MU a theorem? I shall say no more about MU 
here except that it plays many other roles in the book, in particular 
serving as the first two letters of "Mumon," the name of a Zen monk 
who appears in a delightful chapter on Zen koans. 

Even as simple a system as that of M, I, and U enables Hofstadter to 
introduce a profound question. If from all the possible strings in the 
system we subtract all the strings that are theorems, we are left with all 
the strings that are not theorems. Hence the "figure" (the set of theo
rems) and the "ground" between the theorems (the set of nontheorems) 
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seem to carry equivalent information. Do they really? Is the system like 
an Escher tessellation in which the spaces between animals of one kind 
are animals of another kind, so that reproducing the shapes of either set 
automatically defines the other? (Or so that a black zebra with white 
stripes is the same as a white zebra with black stripes?) In this con
nection Hofstadter reproduces a remarkable tessellation by Kim in 
which the word "FIGURE" is periodically repeated in black so that the 
white ground between the black letters forms the same shapes (see Fig
ure 49.2). The same concept is playfully illustrated in the Dialogue 
"Sonata for Unaccompanied Achilles" (modeled on Bach's sonatas for 
unaccompanied violin), in which we hear only Achilles' end of a tele-

From Inversions (W. H. Freeman & Co., 1989) 

Figure 49.2. Scott Kim's FIGURE FIGURE figure 
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phone conversation with the Tortoise about "figure" and "ground." 
From Achilles' half of the conversation we can reconstruct the Tor
toise's. 

Other figure-ground examples are provided by the counting num
bers. For example, given all the primes, we can determine all the non
primes simply by removing the primes from the set of positive integers. 
Is the same true of all formal systems? Can we always take all the the
orems from the set of all possible statements in the system and find that 
what is left-the set of nontheorems-is another complementary formal 
system? An unexpected discovery of modern set theory is that this is 
not always the case. To put it more technically, there are recursively 
enumerable sets that are not recursive. Thus does Hofstadter lead his 
readers from trivial beginnings into some of the deepest areas of mod
ern mathematics. 

The book closes with the wild Dialogue "Six-Part Ricercar," which is 
simultaneously patterned after Bach's six-part ricercar and the story of 
how Bach came to write his Musical Offering. (A ricercar is a compli
cated kind of fugue.) In this Dialogue the computer pioneers Turing and 
Babbage improvise at the keyboard of a flexible computer called a 
"smart-stupid," which can be as smart or as stupid as the programmer 
wants. (The computer's name is a play on "pianoforte," which means 
"soft-loud.") Turing produces on his computer screen a simulation of 
Babbage. Babbage, however, is seen looking at the screen of his own 
smart-stupid, on which he has conjured up a simulation of Turing. 
Each man insists he is real and the other is no more than a program. An 
effort is made to resolve the debate by playing the Turing Game, which 
was proposed by Turing as a way to distinguish a human being from a 
computer program by asking shrewd questions. The conversation in 
this scene parodies the conversation Turing gives in his classic paper 
on the topic. 

At this point Hofstadter himself walks into the scene and convinces 
Turing, Babbage, and all the others that they are creatures of his own 
imagination. He, however, is as unreal as any of the other characters of 
the Dialogue, because he too is imagined by the author. The situation 
resembles a painting by Rene Magritte titled The Two Mysteries, in 
which a small picture of a tobacco pipe is displayed with a caption that 
says (to translate from the French) "This is not a pipe." (see Figure 
49.3.) Floating above the fake pipe is a presumably genuine larger pipe, 
but of course it too is painted on the canvas. 
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1979 by Acidic Books (Hofstadter's publisher being Basic Books). Here 
is Hofstadter's comment: "A formidable hodgepodge, turgid, and con
fused-yet remarkably similar to the present work. Contains some ex
cellent examples of indirect self-reference. Of particular interest is a 
reference in its well-annotated bibliography to an isomorphic, but 
imaginary, book." 

Addendum 
Hofstadter's GEB took off like a rocket, staying long on the best 

seller lists, and winning the 1980 Pulitzer Prize for general nonfiction. 
Vintage Books paid $200,000 for paperback rights-the largest sum it 
had ever paid for nonfiction rights, and the largest sum Basic Books 
ever received for such a work. 

Reviews in 1979 were lavish in their praise. Especially noteworthy 
were reviews by Brian Hayes (The New York Times Book Review, April 
29), Walter Kerrick (Village Voice, November 19), and Edward Roth
stein (New York Review of Books, December 6). Other reviews ran in 
Commonweal, Technology Review, Psychology Today, American Sci
entist, Yale Review, American Scholar, and New Republic. 

In an amusing review in the Journal of Recreational Mathematics 
(14, 1981-82, pp. 52-54), Leon Bankoff observed that GEB has exactly 
777 pages, and by using the cipher A = 1, B = 2, C = 3, and so on, one 
discovers that G = E + B. 

Hofstadter became my successor in writing the Mathematical Games 
column in Scientific American, after he changed the department's name 
to Metamagical Themas, an anagram of its former title. His columns 
were reprinted in Metamagical Themas: Questing For the Essence of 
Mind and Pattern (Basic Books, 1985), a work of 852 pages. A few years 
earlier, Hofstadter and Daniel C. Dennett had edited a marvelous an
thology, The Mind's I: Fantasies and Reflections on Self and Soul (Basic 
Books, 1981). At present Hofstadter is professor of cognitive science 
and computer science and technology at the Indiana University in 
Bloomington. 

I must confess that I could never have written my review of GEB had 
I not had on hand a 33-page analysis of the book written by Scott Kim 
titled Strange Loop Gazette. Kim has since obtained his doctorate under 
Donald Knuth, in the computer science department of Stanford Uni
versity. Kim's beautiful book Inversions, containing scores of names 
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and phrases drawn in such a way that they magically remain the same 
when inverted or mirror-reflected (or turn into another word or phrase) 
has been reissued by W. H. Freeman. (A book of similar inversions by 
Hofstadter, titled Ambigrammi, was published in Italy in 1987 but has 
yet to have a U.S. edition.) Kim is now working on a book about how 
to use one's fingers to model such things as the skeleton of a cube or 
tetrahedron, or to entwine the fingers to produce such topological 
structures as a trefoil knot. 

Answers 

I showed how MUIIU could be generated from MI in six steps. 
Several readers lowered this to five, and one reader, Raymond Aaron, 
did it in four: MIto MIl (rule 2), to MIlIl (rule 2), to MIIlIlIlI (rule 2), and 
finally to MUIIU (rule 3). 

I did not give a proof that MU is not a theorem. Here is how Hofs
tadter handled it. Every theorem begins with M, which occurs nowhere 
else. The number of 1's in a theorem is not a multiple of 3 because this 
is true for the axiom MI, and every permissible operation preserves 
this property. Therefore MU, whose number (zero) ofI's is a multiple of 
3, cannot be obtained by the permissible operations. 

Several readers wrote programs for determining Ramanujan num
bers that solve the Diophantine equation An + Bn = en + lY'. When n is 
3, William J. Butler, Jr.'s program found 4,724 solutions for values less 
than 1010, of which the largest is 

1,9563 + 1,3603 = 2,0883 + 9643• 

Of the 4,724 solutions, 26 are triples, the smallest being 

4143 + 2553 = 423 3 + 2283 = 4363 + 1673• 

The number of primitive solutions (no common factor of the four 
numbers) is infinite, but the number of triples, Butler conjectures, 
could be finite because their density declines rapidly as the numbers 
grow In SIze. 

Hofstadter disclosed in a letter that the phrase "formidable hodge
podge" in his joke review of GEB (quoted in my final paragraph) was 
taken from a reviewer's comment when Indiana University considered 
publishing the book. (The book was also rejected, incidentally, by an 
editor then at W. H. Freeman.) Because W. V. Quine, the Harvard 
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philosopher, was one of the two reviewers, the chances are fifty percent 
that the phrase was Quine's. "Turgid and confused" (the phrase also ap
pears on p. 3 of GEB) is from a comment on Bach's style by one of his 
pupils. In GEB's second printing Hofstadter added the following to his 
hoax review: "Professor Gebstadter's Shandean digressions include 
some excellent examples of indirect self-reference." The first four 
words, with the change of name, are from Brian Hayes's The New York 
Times review of GEB. 

Answers 
The first problem was to find the smallest positive integer that 

can be expressed as the sum of two squares in two different ways. The 
number is 50, which equals 52 + 52 or 12 + 72. If zero squares are al
lowed, however, the number is 25, which equals 52 + 02 or 32 + 42. If the 
two squares must be nonzero and different, the solution is 65, which 
equals 82 + 12 or 72 + 42• 

The second problem was to determine whether or not MU is a theo
rem in the M, I, and U formal system. A simple proof of why MU is not 
a theorem can be found on pages 260 and 261 of COdel, Escher, Bach: 
an Eternal Golden Braid. 
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Chapter 50 Six Sensational 
Discoveries 

As a public service, I shall comment briefly on six major dis
coveries of 1974 that for one reason or another were inadequately re
ported to both the scientific community and the public at large. The 
most sensational of that year's discoveries in pure mathematics was 
surely the finding of a counterexample to the notorious four-color-map 
conjecture. That theorem is that four colors are both necessary and suf
ficient for coloring all planar maps so that no two regions with a com
mon boundary are the same color. It is easy to construct maps that 
require only four colors, and topologists long ago proved that five col
ors are enough to color any map. Closing the gap, however, had eluded 
the greatest minds in mathematics. Most mathematicians have believed 
that the four-color theorem is true and that eventually it would be es
tablished. A few suggested it might be Godel-undecidable. H.S.M. Cox
eter, a geometer at the University of Toronto, stood almost alone in 
believing that the conjecture is false. 

Coxeter's insight was vindicated. In November 1974 William Mc
Gregor, a graph theorist of Wappingers Falls, NY., constructed a map of 
110 regions that cannot be colored with fewer than five colors (see Fig
ure 50.1). McGregor's technical report appeared in 1978 in the Journal 
of Combinatorial Theory, Series B. 

In number theory the most exciting discovery of 1974 was that when 
the transcendental number e is raised to the power of 1t times v'i63, the 
result is an integer. The Indian mathematician Srinivasa Ramanujan 
had conjectured that e to the power of 1tv'i63 is integral in a note in 
the Quarterly Journal of Pure and Applied Mathematics (vol. 45, 1913-

1914, p. 350). Working by hand, he found the value to be 
262,537,412,640,768,743.999,999,999,999, .... The calculations were 
tedious, and he was unable to verify the next decimal digit. Modern 
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Figure 50.1. The four-color-map theorem is exploded. 

computers extended the 9's much farther; indeed, a French program of 
1972 went as far as two million 9's. Unfortunately, no one was able to 
prove that the sequence of 9's continues forever (which, of course, 
would make the number integral) or whether the number is irrational 
or an integral fraction. 

In May 1974 John Brillo of the University of Arizona found an inge
nious way of applying Euler's constant to the calculation and managed 
to prove that the number exactly equals 262,537,412,640,768,744. How 
the prime number 163 manages to convert the expression to an integer 
is not yet fully understood. 

There were rumors late in 1974 that 1t would soon be calculated to six 
million decimal places. This may seem impressive to laymen, but it is 
a mere computer hiccup compared with the achievement of a special
purpose chess-playing computer built in 1973 by the Artificial Intelli
gence Laboratory at the Massachusetts Institute of Technology. Richard 
Pinkleaf, who designed the computer with the help of ex-world-chess-
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champion Mikhail Botvinnik of the former U.S.S.R., calls his machine 
MacHic because it so often plays as if it were intoxicated. 

Unlike most chess-playing programs, MacHic is a learning machine 
that profits from mistakes, keeping a record of all games in its memory 
and thus steadily improving. Early in 1974 Pinkleaf started MacHic 
playing against itself, taking both sides and completing a game on an 
average of every 1.5 seconds. The machine ran steadily for about seven 
months. 

At the end of the run, MacHic announced an extraordinary result. It 
had established, with a high degree of probability, that pawn to king's 
rook 4 is a win for White. This was quite unexpected because such an 
opening move has traditionally been regarded as poor. MacHic could 
not, of course, make an exhaustive analysis of all possible replies. In 
constructing a "game tree" for the opening, however, MacHic extended 
every branch of the tree to a position that any chess master would un
hesitatingly judge to be so hopeless for Black that Black should at once 
resign. 

Pinkleaf has been under enormous pressure from world chess lead
ers to destroy MacHic and suppress all records of its analysis. The Rus
sians are particularly concerned. I am told by one reliable source that 
a meeting between Kissinger and Brezhnev will take place in June, at 
which the impact on world chess of MacHic's discovery will be dis
cussed. 

Bobby Fischer reportedly said that he had developed an impregnable 
defense against P-KR4 at the age of 11. He has offered to play it against 
MacHic, provided that arrangements can be made for the computer to 
play silently and provided that he (Fischer) is guaranteed a win-or-Iose 
payment of $25 million. 

The reaction of chess grand masters to MacHic's discovery was mild 
compared with the shock waves generated among leading physicists by 
the discovery that the special theory of relativity contains a logical 
flaw. The crucial "thought experiment" is easily described. Imagine a 
meterstick traveling through space like a rocket, on a straight line col
inear with the stick. A plate with a circular hole one meter in diameter 
is parallel to the stick's path and moving perpendicularly to it (see Fig
ure 50.2), We idealize the experiment by assuming that both the plate 
and the meterstick have zero thickness. The two objects are on a pre
cise collision course. At the same instant, the center of the meter stick 
and the center of the hole will coincide. 
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in channels inside walls, a ventilating shaft to the roof, and suspended 
weights to make sure the entrance door closed. Until now, however, the 
first valve flush toilet has always been credited to Sir John Harington, 
a godson of Queen Elizabeth. Harington described it amusingly in his 
book The Metamorphosis of Ajax (1596) a cloacal satire that got him 
banished from the court. Although his "Ajax" actually was built at Kel
ston near Bath, it was not until 200 years later that it came into general 
use. 

The first English patent for a valve flush toilet was granted in 1775 
to Alexander Cummings, a watchmaker. Modern mechanisms, in which 
a ball float and automatic cutoff stopper limit the amount of water re
leased with each flush, date from the early 19th-century patents of 
Thomas Crap per, a British manufacturer of plumbing fixtures who died 
in 1910. (See L. Wright, R. Paul, and K. Paul, Clean and Decent: The 
Fascinating History of the Bathroom and Water Closet, 1960 and W. 
Reyburn, Flushed with Pride: The Story of Thomas Crapper, Prentice
Hall, 1971.) 

Although hundreds of books on parapsychology spewed forth from 
reputable publishing houses in 1974, not one reported the most sensa
tional psi discovery of the century: a simple motor that runs on psi en
ergy. It was constructed in 1973 by Robert Ripoff, the noted Prague 
parapsychologist and founder of the International Institute for the In
vestigation of Mammalian Auras. When Henrietta Birdbrain, an Amer
ican expert on Kirlian photography, visited Prague in early 1974, Dr. 
Ripoff taught her how to make his psychic motor. Ms. Birdbrain 
demonstrated the device many times in her lectures, but as far as I am 
aware the only published report on it appeared in the Boston monthly 
newspaper East West Journal (May 1974, p. 21). 

Readers are urged to construct and test a model of the motor. The first 
step is to cut a three-by-seven-inch rectangle from a good grade of bond 
paper. Make a tiny slot in the paper at the spot shown (see Figure 50.4). 
The slot must be three-eighths inch long and exactly in the center of the 
strip, one-eighth inch from the top edge. Bend the paper into a cylin
der, overlapping the ends five-sixteenths inch, and glue the ends to
gether. Cut a second slot in the center of the overlap, directly opposite 
the preceding one. It must be the same size and the same distance from 
the top. 

From a file card or a piece of pasteboard of similar weight, cut a strip 
three-eighths inch by three inches. Insert a fine, sharp-pointed needle 
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The motor underwent extensive investigation at numerous parapsy
chology laboratories around the world. Russian experts were convinced 
the energy that turns the motor is the same as the psychokinetic energy 
that enabled the Israeli psychic Uri Geller to bend silverware, the Rus
sian "sensitive" Ninel Kulagina to levitate table-tennis balls, and the 
Brooklyn psychic Dean Kraft to make pieces of candy leap out of bowls 
and pens crawl across rugs. When Kulagina held both hands near the 
motor, the cylinder flew straight up in the air for several meters. A 
book on the Ripoff rotor (as it is called in Prague), with papers by 12 of 
the world's leading parapsychologists, was edited by Ms. Birdbrain. 

James Randi, the magician, contends that by using trickery, he can 
make the motor spin rapidly in either direction. Of course, that does 
not explain why the motor operates so efficiently for thousands ofpeo
pIe who know nothing about conjuring. 

Addendum 
The foregoing chapter, when it ran in the April 1975 issue of 

Scientific American, was intended as an April Fools' joke. It was so 
crammed with preposterous ideas and outlandish names that I never 
dreamed anyone would take it seriously, yet it produced more than a 
thousand letters from readers who did not recognize the column as a 
hoax. 

The map was designed by correspondent William McGregor (his real 
name), who gave me permission to print it. Hundreds of readers sent 
me copies of the map, colored with four colors. Some said they had 
worked on it for days before they found a way to do it. The four-color 
map theorem is no longer a conjecture. It was proved in 1976 by Wolf
gang Haken and Kenneth Appel, with the aid of a long-running com
puter program. (See "The Solution of the Four-Color-Map Problem," 
Scientific American, October 1977, pp. 108-21.) Whether a simple, el
egant proof not requiring a computer will ever be found, is still an open 
question. 

When Norman K. Roth published an article, "Map Coloring," in 
Mathematics Teacher (December 1975), many readers informed him 
that Scientific American had published a map disproving the four-color 
theorem. A letter from Roth in the following May issue pointed out 
that my column was "an apparently successful April Fools' article." 

In 1977 the Vancouver Sun reported a British mathematician's claim 
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(it turned out to be invalid) that he had proved the four-color map the
orem. On January 17, 1977, the newspaper ran a letter from a lady in 
Port Moody, which said in part: 

To set the record straight, I would like to bring to your notice the fact that 
the theorem has already been disproved by William McGregor, a graph 
theorist ... in November 1975. He constructed a map ofl10 regions that 
cannot be colored with less than five colors .... 

Artificial Intelligence (Vol. 10, 1978, p. 116) reported that a com
puter program had managed to color McGregor's map with four colors, 
with only two backtracks in the tree search. Apparently the author did 
not realize the map was a joke. 

The following letter, signed by "Ivan GuffvanofflII," who claimed to 
be a mathematician at the University of Wisconsin, was a bit frighten
ing to the staff of Scientific American, until they realized that it, too, 
was a joke: 

This is to inform you that my lawyer will soon be contacting you for a 
damage case of $25 million. 

In the mathematics section of your April 1975 issue, Martin Gardner 
wrote that the four-color problem had been solved. I have been working 
on this problem for 25 years. I had prepared a paper to be submitted to 
the American Mathematical Monthly. The paper was over 300 pages in 
length. In it I had proved that the answer to the four-color problem was 
no and that it would take five colors instead of four. Upon reading Gard
ner's article that someone else would publish the solution before I could, 
I destroyed my paper. Last week I read in Time magazine that Gardner's 
article was a farce. I did not read Gardner's entire article, only the part 
on the four-color problem, so I was not aware of the farce. Now that I 
have destroyed my article, it will not be possible to reproduce all 300 
pages, since the work has extended over such a long time. I therefore be
lieve that damages are due me. 

I believe that Gardner's article was the most unprofessional article I 
have ever seen in your's or any other journal. This kind of activity is 
below the dignity of what I thought your magazine stood for. I am not 
only suing you but I am cancelling my membership, and I will ask all my 
friends to cancel theirs. 

In Italy the noted mathematician Beniamino Segre published a seri
ous research note (Rendiconti 59, 1975, pp. 411-12) in which he re
produced McGregor's map, showing how it could be four-colored. "It is 
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shown the falsehood," his summary reads, "of a presumed counterex
ample for the four-color conjecture." 

Manifold, a journal published by mathematics students at the Uni
versity of Warwick, ran the following lines in its Autumn 1975 issue. 
They are to be sung to the tune of "Oh Mr. Porter, what shall I do?" 

it Oh Mr. Gardner, 
What have you done? 

You've started up a rumour 
You should never have begun! 

A four-colour hoax can't 
Be undone so quick . .. 
Oh Mr. Gardner, what 
A bloody silly trick!" 

When e is raised to the power of the product of 1t and the square 
root of 163, the result is the 18-digit number I gave, minus 
.000,000,000,000,75 .... John Brillo, to whom I attributed this hoax, is 
a play on the name of the distinguished number theorist John Brillhart. 
The reference to Ramanujan's paper is legitimate. In it the Indian math
ematician discusses a family of remarkable near-integer numbers to 
which this one belongs, but of course he knew that none were integral. 
Indeed, as many readers pointed out, it is not hard to prove that they 
are transcendental. 

The value of the number to 39 significant decimal digits was given 
by D. H. Lehmer in Mathematical Tables and Aids to Computation 
(Vol. 1, January 1943, pp. 30-31). The digit following the run of 9's is 
2. See also "What Is the Most Amazing Approximate Integer in the 
Universe?" by I. J. Good, in the Pi Mu Epsilon Journal (Vol. 5, Fall 1972, 
pp. 314-15). 

The description of Richard Pinkleaf's chess-playing program, 
MacHic, is a play on the chess program MacHack, written by Richard 
Greenblatt of the Massachusetts Institute of Technology. The relativity 
paradox that I hung on Humbert Pringle (a play on the name of Herbert 
Dingle, a British physicist who maintained that relativity theory is dis
proved by the famous twin paradox) is well known. It appears as a 
problem on page 99 of the paperback edition of Spacetime Physics, by 
Edwin F. Taylor and John A. Wheeler (W. H. Freeman and Company, 
1966), and the solution is given on page 25 of the answer section. The 
paradox is discussed at greater length by George Gamow in Mr. Tomp-
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kins in Wonderland (Macmillan, 1947), W. Rindler in American Jour
nal of Physics, (Vol. 29, 1961, p. 365 ff.), R. Shaw (ibid., Vol. 30, 1962, 

p. 72 ff.), and P. T. Landsberg in The Mathematical Gazette, (Vol. 47, 

1964, p. 197 ff). 
A stationary outside observer will see the meterstick just make it 

through the hole. If the plate and the stick have thickness, the stick 
must, of course, be a trifle shorter than the hole to prevent an end from 
catching. To an observer on the plate the stick will appear Lorentz
contracted, but it will also appear rotated, so that it seems to approach 
the hole on a slant. The stick's back end actually seems to go through 
the hole before its front end, so that it gets through with the same clear
ance as before. To an observer on the stick the plate will appear 
Lorentz-contracted, its hole becoming elliptical, but the plate also ap
pears to be rotated. In this case the hole first goes over the front end of 
the slanted stick, again with the same close fit. "Contractions" and "ro
tations" are ways of speaking in a Euclidean language. In a four
dimensional, non-Euclidean language of space-time the objects retain 
their shapes and orientations. Having at one time written a book on rel
ativity, I was abashed to receive more than 100 letters from physicists 
pointing out the stupid "blunder" I had made. 

Those who enjoyed explaining the paradox may wish to consider 
how to escape from the following variant. Assume that the meterstick 
is sliding at high speed along the surface of an enormous flat plate of 
metal toward a hole slightly larger than the stick. We idealize the 
thought experiment by assuming that there is no friction and that the 
stick and the plate are extremely thin. When the stick is over the hole, 
gravity (or some other force) pulls it down and through. For an ob
server on the stick the sheet slides under it, and the hole is Lorentz
contracted enough to prevent the stick from dropping through. In this 
case the stick and the plate cannot rotate relative to each other. How 
does the stick get through? (Please, no letters! I know the answer.) 

The Leonardo da Vinci drawing was done by Anthony Ravielli, a 
graphic artist well known for his superb illustrations in books on 
sports, science, and mathematics. It was an earlier version of the sketch 
that suggested to me the idea of a hoax column. Many years ago a friend 
of Ravielli's had jokingly made a bet with a writer that Leonardo had in
vented the first valve flush toilet. The friend persuaded Ravielli to do 
a Leonardo drawing in brown ink on faded paper. It was smuggled into 
the New York Public Library, stamped with a catalogue file number, 
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and placed in an official library envelope. Confronted with this evi
dence, the writer paid off the bet. 

Augusto Macaroni is a play on Augusto Marinoni, a da Vinci spe
cialist at the Catholic University of Milan, and Ram6n Paz y Bicuspid 
is a play on Ram6n Paz y Remolar, the man who actually found the two 
missing da Vinci notebooks. My data on the history of the water closet 
are accurate, including the reference to Thomas Crapper. The book by 
Wallace Reyburn Flushed with Pride: The Story of Thomas Crapper 
does exist. 

For many years I assumed that Reyburn's book was the funniest 
plumbing hoax since H. L. Mencken wrote his fake history of the bath
tub. I thought this for two reasons: (1) The book implies that the slang 
words "crap" and "crapper" derived from Mr. Crapper's name, but 
"crap" and "crapping case" are both listed in The Slang Dictionary, 
published in London in 1873. (2) Reyburn wrote a later book titled 
Bust-up: The Uplifting Tale of Otto Titzling and the Development of the 
Bra. It turns out, though, that both Thomas Crapper and Otto Titzling 
were real people, and neither of Reyburn's books is entirely a hoax. 

The Ripoff Rotor is a modification of a psychic motor described in 
Hugo Gernsback's lurid magazine Science and Invention (November 
1923, p. 651). Prizes were awarded in March 1924 to readers who gave 
the best explanations of why the cylinder turned. The motion can be 
caused by any of three forces: slight air currents in the room, convec
tion currents produced by heat from the hand, and currents from 
breathing. The three forces combine in unpredictable ways. If a person 
who believes he or she has psychokinetic powers is willing the motor 
to turn, it may turn in the direction willed, or it may go the other way. 

Nandor Fodor, in his Encyclopedia of Psychic Science (Citadel, 
1966), under the heading "Fluid Motor," credits the paper-cylinder de
vice to one Count de Thome lin , but he doesn't say who the Count was 
or when he invented the motor. 

I had no individual in mind when I mentioned Ms. Henrietta Bird
brain, but there is an East West newspaper in Boston, and the reader 
who bothers to check the issue cited, will find a sober report by Stan
ley Krippner on a psychic motor that was demonstrated to him in 
Prague by Robert Pavalita. (On Pavalita, see S. Ostrander and L. 
Schroeder, Psychic Discoveries behind the Iron Curtain, Prentice-Hall, 
1970, Chapter 28.) 

Hereward Carrington, in The Story of Psychic Science (1931, p. 138), 
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mentions half a dozen early French psychic motors. Opposite page 138 

is a photograph of Paul Joire's "sthenometer," a straw balanced on a 
needle and under a bell jar. Incidently, Dr. Joseph B. Rhine for years 
tried to find evidence that a person could turn an arrow delicately bal
anced on a needle in a vacuum, but without success. His negative re
sults were never published. Surely one of the great scandals of 
parapsychology is its claim that the mind can affect heavy objects like 
falling dice-and if Uri Geller is taken seriously, can bend spoons and 
keys-but as yet no one has been able, under controlled conditions, to 
rotate a featherweight pointer. 

After my hoax column appeared, several psychic motors went on 
sale. The most colorful was a cardboard device called the Mind Ma
chine, sold by Unicorn Products in Santa Fe. "As with the Ouiji Board," 
the instructions said, "results are not always immediate, and often vary 
from time to time .... Yet for countless people the phenomenon is a re
ality. At parties, skeptics have been known to chop the base apart, ex
pecting to find a hidden motor. How does the Mind Machine work? 
Theories abound-but no one really knows." A similar cardboard de
vice called a "psionic generator," marketed by Monarch Manufacturing 
Company, in Roseville, MI, was advertised in Fate (July 1975, p. 91). 

Professor L. E. van der Tweel, at the University of Amsterdam, sent 
the photograph reproduced in Figure 50.6. It shows the noted neuro
physiologist and philosopher Warren McCulloch demonstrating a 
paper psychic motor to several colleagues. The picture was taken in 
1953. 

Some readers who believed in psychokinesis took the Ripoff Rotor 
seriously, but most readers did not. Mark J. Hagmann reported his dis
covery that the motor's rotation relative to the room was an inverse 
function of the contents of the liquor bottle he used to support the nee
dle. The rotation's speed increased as the level of booze went down. 

I've selected the following four letters as the funniest: 

Dear Mr. Gardner: 
As a citizen deeply concerned about the energy crisis and full public 

disclosure, I express my gratitude for your release of the psi-engine data. 
I took drawings of a larger model, coupled to an electric generator, to 
Ralph Nadir and obtained his tentative endorsement that, used as a 
power generator, the Ripoff system would have a minimum environ
mental impact. 
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average be used which is room temperature plus 100°. To operate with 
maximum power output, the Ripoff machine must "feel" this tempera
ture. This is accomplished by filling the bottle with water heated to 100° 
above room temperature-but in no case above boiling. 

The machine, thus adjusted and filled, will work well with only a 
watchful look from the experimenter. He does not need to use his hands. 

Another finding of great importance was his measurement of aura 
power from various types of printed material. Using a torsion balance 
wire tipped with a psi-magnetically oriented crystal of mezzanine sul
phate, he found that purely scientific material was more potent than the 
religious material used by Ripoff. Four volumes of Tom Swift or the 
equivalent weight in AAAS Science magazines will do nicely. Greater 
power levels can be sustained if these are also warmed to the psi
temperature. 

Finally, in a personal (telepathic) communication with Dr. Ripoff, Dr. 
Feckless learned that the northern orientation favored by Dr. Ripoff was 
empirically determined. Analysis showed that one of Europe's greatest 
intellectual centers was due north of the Ripoff lab. Considering a great 
focus of intellectual power to be the critical variable, the most favorable 
orientation for U.S. experiments would therefore be toward Washington 
D.C. 

I hope these findings will be helpful and will move us closer to the era 
of psi-power. 

Dear Mr. Gardner: 

Sincerely yours, 
George N. Chatham 

Your psi energy motor. I've got it! I know how it works. It really does 
work! And I know how it works. Even Eureka! 

But first let me tell you, in a scholarly fashion, how I came to this un
expected revelation of the psi energy motor's operational mechanism 
through your lucid instructions in the April Scientific American. Let 
me also reassure you that, although I know several people who teach 
psychology, I know very little of the subject myself, other than infre
quent casual reading about their feeling bumps on other people's heads 
to tell fortunes. The psychologists I do know, during our Friday
afternoon beer drinking sessions, do not talk of parapsychology; here in 
Seattle we call parasols umbrellas. The rain, you know. As for my knowl
edge of energy sources, I know almost nothing of physics, aside from an 
occasional Ex-Lax, as needed. 

The experiment, though. I was going to tell you about the experiment. 
I came home on a wet Friday afternoon to find my wife out on some do-
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gooding mission so I picked up the April issue of Scientific American 
and chanced on your startling article. I immediately went to work build
ing the motor you described. I used the recommended good grade of 
bond paper. It was stationery from the college where I teach political sci
ence. I cut the three by seven inch piece from the center, lest the letter
head portion might influence the psychic energy. The cardboard portion 
of the assembly was easily cut from a student grade-change request card 
on my desk. Finding the needle was more difficult, since my wife was 
out and I had to hunt down where she hides her sewing equipment. I 
found it. I found the needles, too, scattered in the bottom of her thread
filled case. I can report that the motor runs with a slight smear of blood 
on the paper and a band-aid on the finger. 

With the psychic energy motor assembled on my desk, I set out in 
search of the rest of the equipment necessary to make it operate. There 
was no hard, smooth, plastic bottle in the house. A glass catsup bottle 
could not function because of its metal cap. A water glass was too great 
in diameter. At that point I spied a half-full scotch bottle in the bar. It had 
a long enough neck to allow the motor to hang perfectly. But it was half 
full. I poured that into the too-big water glass. I do not have a copy of I 
Ching around the house, and I found the family Bible had so many pho
tographs, pressed flowers, decades-old dance programs, baby footprints, 
and grade-school report-cards that the family Bible could not have pro
vided a flat surface on which to set the bottle. 

North and south, for the alignment of the book, was not difficult to as
certain because the house faces west and the desk in the study is along 
that wall. But a book. I first tried the required text in an introductory 
American government course. The results were inconclusive; nothing 
but turbulent action and indecision from the psi motor. I then tried a 
tract from the John Birch Society, and the motor rotated to the right. 
Wondering if that had any political significance, I tried an anthology of 
the works of Lenin, and sure enough, it turned to the left. I then placed 
the motor assembly on Merkin Swiver's Collected Speeches of President 
Ford, and noted that the motor revolved in a quite mediocre fashion, 
again to the right. It did not turn at all with a football helmet over it. 
Barry Goldwater's Conscience of a Conservative made the motor spin so 
rapidly I could feel the draft. When placed on N. Comium's biography 
of Henry M. "Stoop" Jackson, the motor rose slowly accelerating mar
velously toward the north on what I assumed was a great-circle course. 
I then tried a copy of M. P. Chment's long study of ex-President Nixon. 
The motor kept falling off the bottle to the South, toward California, and 
kept rolling into hiding under the desk. At last, I was beginning to gain 
insight into the motive power of the psychic energy motor. But by now 
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the glass into which I had poured the scotch was empty, and I had to go 
open a new bottle. 

On my return to the study, I placed the refilled glass on the desk and 
I pried the phlebitic motor out from under the desk. Then, finding a 
monograph on the functioning of Congress, I placed the bottle and the 
psi motor on that legislative tome. You will not believe it. I did only after 
I had closed one eye to focus more carefully. The motor was turning 
both directions-right and left-at the same time and was doing so in a 
most indecisive fashion. 

At that instant, in a flash of intuition, I learned the secret of the mo
tive power of the psychic motor: hot air. 

Soon thereafter, however, other psychokinetic manifestations oc
curred. The floor rose up rapidly, and with a thump, hit the side of the 
chair in which I was sitting. From that position, most curiously, the 
books on their shelves did not fall from their obviously unaccustomed 
position on the ceiling, even though the room, too, was rotating. 

Some time later my wife returned. I attempted to show her how the 
psychic energy motor would work, but it was damaged beyond repair by 
the floor rising to hit it during those psychokinetic events. The nearly 
finished glass of scotch, quite unaccountably, still maintained its posi
tion on the desk. 

Dear Sirs: 

Yours in learning, 
Char les W. Harrington 

This evening I was sitting in my garage, which is Vi63 meters long 
and has a door at each end, waiting for my friend Wade Wykert to drive 
his psychic energy powered automobile through it at his usual speed of 
0.995 times the velocity of light. His automobile is also Vi63 meters 
long, but it is Lorentz-contracted by a factor of 10, so I have no difficulty 
in closing the entrance door before I have to open the exit door to let him 
out of the garage. My friend, however, thinks that my garage is Lorentz
contracted to one-tenth the length of his automobile and that, as he 
passes through both doors have to be open at the same time. So far, I 
have managed to open and close the doors at appropriate times so that 
his belief in the special theory of relativity has not been destroyed. 

As he passed by he threw out to me a copy of the April 1975 issue of 
Scientific American open to Martin Gardner's Mathematical Games Sec
tion. I hoped that he had not read the part about Humbert Pringle's 
Gedanken-experiment disproving special relativity. At best this knowl
edge would make him nervous next time he drove through, and might 
result in the splintering of my garage doors. 
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I noticed that Wade had succeeded in coloring William McGregor's 
110-region map with only four colors, thus unvindicating H. S. M. Cox
eter's foursighted insight. A handwritten note indicated a desire to have 
his achievement publicized before 1978, when McGregor's report is 
scheduled to appear. 

I then read with great interest the rest of Martin Gardner's article on in
adequately reported major discoveries of 1974, noticing that I was sitting 
in an attitude rather similar to that of Leonardo (the figure in the draw
ing must surely be Leonardo himself) in the reproduction on page 127. 

I was surprised that Gardner was not aware of the analysis made by 
the chess-playing computer built at the editorial offices of Ms. and 
named MacHaec. (One of the editors is a Latin scholar as well as a fem
inist.) MacHaec's analysis indicates that the pawn to king's rook 4 open
ing leads to a sure win for black. Clearly a match between MacHic and 
Mac Haec is indicated, and there have been rumors that Bobby Fischer 
might put up the $25 million prize money. 

Martin Gardner's point that such discoveries as these are frequently 
not brought to the public notice is well taken. There is, however, a sat
isfactory alternative for the authors of such world-shaking communica
tions. They should be submitted to either the International Journal of 
Hypercritical Obfuscation or the Archives of Information Pollution. I am 
the editor of both these journals and I will guarantee that articles sub
mitted will be dealt with expeditiously. 

Dear Sir, 

Sincerely yours, 
John L. Howarth 

Professor of Physics 

Having completed reading your article in the April issue of Scientific 
American I feel that it is my duty to inform you that the reason the psi 
motor runs was discovered approximately one year ago. You see there is 
an aura of glacomoridine which can envelop the person's hands. 

According to the papers I have received over the past five years, it 
seems that some humans produce more of it than others. It now appears 
certain that glacomoridine is a hormone. However, there was much dis
cussion on whether or not it was produced internally or not. This prob
lem was cleared by R.E. Coleman et al. After many arduous months of 
searching for this elusive organ, they discovered what appeared to be a 
satellite on the pituitary gland. Analyzation proved that this was what 
they were looking for. Because of its white appearance it was decided to 
name it the glacier gland. 

But this doesn't really explain how the psi motor is able to work. It re-
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mained for Richard Douglas of Washington and Jefferson College to pro
vide a mechanism which would solve this problem. It appears that 
glacomoridine enters the blood stream after being secreted by the glac
ier gland. (There would seem to be a conscious control of the gland by 
the individual.) After being circulated it is then collected in some way 
(still unknown) in the sweat glands of the hands. From there it is re
leased along with any perspiration. However, instead of diffusing into air 
the physical properties of glacomoridine enable it to remain close to the 
hand. The glacomoridine begins to "flow" distally. As can be imagined 
this movement would cause the psi motor to move. Your term psi motor 
can still be used, because studies have shown that the level of glaco
moridine actually increases when thoughts are directed to moving the 
motor. More concrete evidence of the increase is demonstrated by ob
serving an EEG taken during the tests. It was shown that both the alpha 
and delta waves were dominant. 

One problem which wasn't adequately answered until a month ago 
dealt with why some people were able to rotate the psi motor in the re
verse direction. The answer to this is also credited to Richard Douglas. 
A recessive gene, which when homozygous, is responsible for the flow 
of glacomoridine in the opposite direction than is normal. 

Sincerely yours. 
William Hughes 

And now for the sad story of Martin von Strasser Caidin, prolific au
thor and pilot who died of cancer at age 69 in 1997. He wrote some 140 

books, most of them nonfiction, about such topics as aviation, space 
flight, and UFOs, but more than 30 were science-fiction novels. His 
novel Cyborg was the basis of the TV series The Six Million Dollar Man 
and its spinoff The Bionic Woman. Marooned became a movie with 
Gregory Peck and Gene Hackman as stranded astronauts. Other novels 
include The Messiah Stone, Exit Earth, Prison Ship, Three Corners to 
Nowhere, Zoboa, and Ghosts in the Air. 

Why do I mention Caidin here? Because in his declining years he 
convinced himself that his mind could rotate psychic motors. His home 
contained a "target room" filled with little paper, cardboard, and foil 
"umbrellas" suspended on needles and toothpicks. The room had no 
ventilation. Caidin would sit for hours in an adjoining room, staring 
through a window and trying to control the movements of the little ro
tors with his brain. The devices behaved erratically; sometimes not 
moving, sometimes rotating one way, sometimes the other way. The 
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motions were surely caused by heat convection currents, or perhaps by 
air moving under doors, but Caidin believed he had proved the reality 
of a mysterious force totally unknown to science, a force responsible for 
what he called telekinesis. He was convinced that his discovery would 
lift him into the ranks of Tesla and Einstein! He couldn't understand 
why physicists ignored him. Here are a few references: 

M. Caidin, "Fiction That Ain't," New Destinies, Summer 1988, pp. 211-22. 
M. Caidin, "Telekinesis Demonstrated," Fate, January 1994, pp. 52-68. Includes 

photos of Caidin's "rotors." 
W. Cox, "Mind Moving Matter," Florida Today, January 8,1989, pp.1D-2D. 
W. Robkin, "Martin Caidin," Star log, October 1985, pp. 63-65. 

In concluding this long addendum, let me pass along some sage ad
vice supplied by my brother Jim. Every responsible science writer 
should constantly keep in mind the following four words: "Accuracy 
above all." 
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Selected Titles by 
the Author on 
Mathematics 

The "Mathematical Games" columns in this book are arranged 
by subject. The entire collection of "Mathematical Games" columns 
that appeared in Scientific American has been brought together by Mar
tin Gardner in chronological order in the series of books listed below. 
In 2001 all of them were in print or being reissued. If you enjoyed the 
selection here, you will want to look at these books by Martin Gardner 
as well. 

Martin Qardner's IIMathematical Qames" books: 
The Scientific American Book of Mathematical Puzzles and Games, Simon and 

Schuster, 1959 (later retitled The First Scientific American Book of Mathemati
cal Puzzles and Games), republished as Hexaj1exagons and Other Mathematical 
Diversions: The Scientific American Book of Mathematical Puzzles and Games, 
University of Chicago Press, 1988. 

The Second Scientific American Book of Mathematical Puzzles &- Diversions, 
Simon and Schuster, 1961, republished by University of Chicago Press, 1987. 

New Mathematical Diversions from Scientific American, Simon and Schuster, 
1966; revised edition, New Mathematical Diversions, The Mathematical Asso
ciation of America, 1995. 

The Unexpected Hanging and Other Mathematical Diversions, Simon and Schus
ter, 1969, republished by University of Chicago Press, 1991. 

The Numerology of Dr. Matrix, Simon and Schuster, 1967; expanded and repub
lished as The Incredible Dr. Matrix, Scribner, 1979. See below. 

Martin Gardner's Sixth Book of Mathematical Games from Scientific American, 
W. H. Freeman and Company, 1971, revision in press by The Mathematical As
sociation of America, 2001. 

Mathematical Carnival, Knopf, 1975, revised with a foreword by John H. Conway, 
The Mathematical Association of America, 1992. 
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Mathematical Magic Show, Knopf, 1977, revised with a foreword by Ronald L. 
Graham, The Mathematical Association of America, 1990. 

Mathematical Circus, Knopf, 1979, revised with a foreword by Donald E. Knuth, 
The Mathematical Association of America, 1992. 

The Incredible Dr. Matrix, Scribner, 1979 (see The Numerology of Dr. Matrix, 
above), revised and expanded as The Magic Numbers of Dr. Matrix, Prometheus 
Books, 1985. 

Wheels, Life, and Other Mathematical Amusements, W. H. Freeman and Company, 
1983. 

Knotted Doughnuts and Other Mathematical Entertainments, W. H. Freeman and 
Company, 1986. 

Time Travel and Other Mathematical Bewilderments, W. H. Freeman and Com
pany, 1988. 

Penrose Tiles to Trapdoor Ciphers, W. H. Freeman and Company, 1989. 

Fractal Music, Hypercards, and More . .. : Mathematical Recreations from Scien
tific American, W. H. Freeman and Company, 1992. 

Last Recreations: Hydras, Eggs, and Other Mathematical Mystifications, Coperni
cus Books, Springer Verlag, 1997. 
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antiparticles, 597 
Apology for His Book (Bunyan), 369 
Appel, Kenneth, 682 
Applegate, David, 491 
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Arnobius the Elder, 291 
Arp, Hans, 212 
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Arrow in the Blue (Koestler), 207 
Arrow paradox, 297-300 
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art: 

absrract, 190, 212, 359,398 
algorithms for, 627-28 
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Art of Computer Programming, The 
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Ascending and Descending (Escher), 77, 
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Asimov, Isaac, 518, 538 
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As You Like It (Shakespeare), 538 
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Atiyah, Michael, 248 
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Attitudes Toward Intelligent Machines 
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Barr, Stephen, 231, 233-34, 237, 255 
Barth, Karl, 154 
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Bashmakova, Isabella, 7 
Bateau, Le (Matisse), 190 
Bates, Katharine Lee, 601 
Batman, 85, 86-87 
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B.C., 557 
Bean, R. J., 257 
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"Before the Dawn" (Bell), 520 
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Bellamy, Edward, 520 
Bellman, Richard, 480, 482 
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Benzoni, Girolamo, 64 
Berent, Paul, 544 
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108-11 
Dewey, John, 580 
DeWitt, Bryce, 526, 527 
Diabolical cube, 407 
"Diamond Lens, The" (F. O'Brien), 319 
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125, 126 
as metaphors, 124 

Helmholtz, Hermann von, 162, 627 
Hempel, Carl G., 543 
Henkin sentences, 664 
Henle, James Marston, 107, 112 
heptahexaflexagons, 392,393 
HER (Hexapawn Educable Robot), 474-76, 

475, 476,478 
Hermes, 350 
"Heterarchy of Values Determined by the 

Topology of Nervous Nets, A" (Mc
Culloch), 300 

"He Who Shrank" (Hasse), 319 
Hex, 60, 70, 398 
hexacubes, 406 
hexaflexagons, 386 
hexagonal close-packing, 130-32, 130 
hexagons,42,52,54,56,385,642,643,655 

convex,89 
regular, 46, 73 
rep-4,50 

hexahexaflexagons,386-88, 380 389, 
390-95,391,393 

hexahexafrustragon, 391 
hexapawn, 473-76,474, 475, 476,478-79, 

481 
"Hexapawn: A Game You Play to Lose," 

481 
hexominoes, 53,54-55,414 

problem, 168, 173, 174 
Hight, Stuart c., 476-77 
Hilbert, David, 132-33, 175, 327 
Hill, Robert M., 394-95 
HIM (Hexapawn Instructable Matchboxes), 

476 
Hinduism, 621 
Hinkle, Horace W, 244 
Hinrichs, Ralph H., 56 
Hinton, Charles Howard, 94, 95, 98, 154, 

162,171-72 I 
History of the New World (Benzoni), 64 
Hitler, Adolf, 425 
Hodgart, Matthew, 654 
HofUnan, Dean, 209 
Hofstadter, Douglas R., 71, 200, 576, 638, 

660-73 

Index 



Hofstadter, Robert, 660 
Hogan, Randolph, 638 
Hogan, William, 66 
holes, 596-97, 599 
holism, 665 
Holt, Philetus H., III, 67 
Homfly polynomial, 248 
honeycombs, 646 
honeysuckle, 121-22. 123 
Honeywell Incorporated, 635, 636 
Honolulu Zoo, 600 
Hooper, W., 637 
hoop snakes, 649 
Hoppe, R., 143 
horizontal symmetry, 189 

of words, 198 
Home, R. W., 643 
"Hom of the Unicorn, The" (Bonner), 119 
Horowitz, I. A., 479 
House. John, 478 
Howarth, John L .• 691-92 
"How to Build a Time Machine" (Forward), 

528 
How to Tell the Birds from the Flowers 

(Wood),193-94 
Hsiang, Wu-Yi, 135 
Hubbard, Elbert, 600 
Hubley Toys, 70-71 
Hughes, William, 692-93 
"Human Organism as a Random Mecha-

nism, The" (Lacey), 277 
Hume, David, 542 
Hurst, Bryce, 308 
Huxley, Aldous, 318, 398 
Huxley, Leonard, 513 
Huxley, Thomas H .• 513 
Huygens principle. 110 
hybrid close-packing. 131 
hydra game, 458-60, 460 
Hymn of Creation (Rig Veda). 621 
hyperbolic: 

curvature, 182 
geometry, 177-78 
plane, 179-80, 181, 213 
triangles, 180, 180 

hyperchessboard, 144-46, 146, 148 
hypercubes, 162-74,448-49 

chess problems with, 199 
elements of, 165-66, 166 
generation of, 163-65, 164 
into order 8-polycube problem, 171, 

172-73 
packing of, 143 
points in, 343 
properties of, 167 

hyperspace, 152,534,617 
hyperspheres, 134. 137-49, 152,613 

packing of, 143 
see also n-spheres 
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