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HEURISTIC REASONING IN THE THEORY OF NUMBERS 

G. POLYA, Stanford University 

A deep but easily understandable problem about prime numbers is used in 
the following to illustrate the parallelism between the heuristic reasoning of the 
mathematician and the inductive reasoning of the physicist. The experts may 
judge whether the parallelism is more serious than the tone of presentation 
which is adapted to a wider audience. 

1. "Till now the mathematicians tried in vain to discover some order in the 
sequence of the prime numbers and we have every reason to believe that there 
is some mystery which the human mind shall never penetrate. To convince 
oneself, one has only to glance at the tables of primes which some people took 
the trouble to compute beyond a hundred thousand, and one perceives that 
there is no order and no rule. This is so much more surprising as the arithmetic 
gives us definite rules with the help of which we can continue the sequence of the 
primes as far as we please, without noticing, however, the least trace of order."* 

So wrote Euler about two centuries ago, yet the prime numbers may inspire 
the contemporary mathematician with the same feeling of mystery that Euler 
so vividly expressed. The primes remain puzzling in spite of many important 
discoveries made in the meantime. Let us look at some of these discoveries. 

The intervals between successive primes are irregular, but these intervals 
seem to become larger "on the whole" (the primes seem to become scarcer) as 
we proceed in the sequence of numbers. Since Euler's time a definite law of this 
phenomenon was discovered (conjectured by Legendre and Gauss, investigated 
by Chebyshev and Riemann, finally proved by Hadamard and de la Vallee 
Poussin, proved recently in an essentially different "elementary" manner by 
Atle Selberg and Paul Erd6s). We may formulate this law, the "prime number 
theorem," intuitively although not quite precisely, as follows: The probability 

* See L. Euler, Opera Omnia, ser. 1, vol. 2, p. 241 or G. P61ya, Mathematics and Plausible 
Reasoning, Princeton, vol. 1, p. 91. 
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376 HEURISTIC REASONING IN THE THEORY OF NUMBERS [May 

that a large integer x should be a prime, is 1/log x (where log x is the natural 
logarithm of x).* 

The following short table exhibits the first primes (with two exceptions) 
classified according to their last digit. 

11 31 41 61 71 101 

3 13 23 43 53 73 83 103 113 

7 17 37 47 67 97 107 

19 29 59 79 89 109 

If we set apart 2 and 5, the prime factors of 10, the last figure in the decimal 
symbol of a prime cannot be 0, 2, 4, 5, 6, or 8 (since neither 2 nor 5 should be a 
divisor) and must, therefore, be 1, 3, 7, or 9. Thus, with respect to ten (modulo 
10) there are four kinds of primes which are listed in the four horizontal lines 
of the foregoing table, respectively. Since Euler's time, a general law has been 
discovered (most of the credit for its discovery is due to Dirichlet) which, applied 
to our particular case, asserts that there are infinitely many prime numbers of 
each kind and, what is more, that each kind is equally probable. Therefore, in 
an extensive table of prime numbers there must be roughly as many primes 
ending with 1 as primes ending with 3. 

Euler mentions a table of primes that goes beyond 106. Since his time much 
more extensive tables have been computed, especially in the last decade with 
the help of machines. Data derived from these tables may suggest problems 
not yet considered by Euler. 

2. The least possible distance between two consecutive primes is 2, if we 
set apart the unique case of the primes 2 and 3. Two primes having this mini- 
mum distance are called twin primes. Here is a list of the twin primes under 100: 

3,5 5, 7 11, 13 17,19 29,31 41,43 59,61 71,73 

We can generalize this situation and consider a prime p that is escorted at a 
given distance d by another prime p'=p+d. (This situation is uninteresting 
unless d is even; we do not care whether there are or are not other primes be- 
tween p and p'.) Here is a list of all such pairs at the distance 6, in which the 

* The irregular distribution of primes ("there is no order and no rule") strongly suggests the 
idea of probability and chance. Yet this is paradoxical: Whether any given integer is a prime or 
not, can be decided by the "definite rules" of arithmetic-where and how could chance enter the 
picture? The paradox can be somewhat explained (or deepened) by a physical analogy. The kinetic 
theory of matter considers the probability distribution of the velocities of the molecules in a gas. 
Yet this is paradoxical: The velocities resulting from the collision of two molecules can be exactly 
predicted from the data of the collision by the "definite rules" of classical deterministic mechanics 
-where and how could chance enter the picture? The determinateness of the simple single event 
and the probabilistic theory of the highly composite whole may seem to be equally compatible (or 
incompatible) in both cases. 
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first prime does not (but its escort may) exceed 100: 

5,11 7,13 11,17 13,19 17,23 23,29 31,37 37,43 

41,47 47,53 53,59 61,67 67,73 73,79 83,89 97,103 

It is curious that the second kind of pairs is more numerous. We count 8 pairs 
of twin primes and exactly twice as many pairs of primes at the distance 6. Let 
us take now instead of 102 the considerably higher bound 3 107. Under thirty 
million there are 152892 primes followed by another prime at the distance 2, 
but nearly twice as many, namely 304867 primes followed by another at the 
distance 6. 

The numbers of these prime pairs have been obtained by Professor and Mrs. 
D. H. Lehmer with the use of appropriate computing apparatus; they computed, 
up to the same limit 3. 107, the number of primes escorted by another prime at 
the distance d for d=2, 4, 6, 8, * * *, 70. I wish to thank them here for their 
kind permission to use their interesting material. I wish to use some of their 
results to offer the unprejudiced reader a particularly suitable opportunity for 
an inductive investigation in pure mathematics. 

It will be convenient to introduce here some notation. Let 7rd(X) stand for the 
number of those prime numbers p that satisfy two conditions: 

p _ x, p + d is a prime number. 

For instance, 

72(100) = 8, 7r2(30 000 000) = 152892, 

76(100) = 16, 76(30 000 000) = 304867. 

I set 

Td(3 107)/D2(3 107) = Rd. 

For instance, R6 = 304867/152892 = 1.9940, approximately. A small part of the 
material computed by Professor and Mrs. Lehmer is collected in Table I. 

d Rd 12 1.9985 24 1.9976 36 1.9997 48 1.9965 60 2.6632 

2 1.0000 14 1.1985 26 1.0910 38 1.0566 50 1.3308 62 1.0341 

4 0.9979 16 1.0001 28 1.1974 40 1.3330 52 1.0892 64 0.9999 

6 1.9940 18 1.9982 30 2.6632 42 2.3987 54 1.9981 66 2.2186 

8 0.9996 20 1.3311 32 0.9970 44 1.1097 56 1.1957 68 1.0663 

10 1.3317 22 1.1088 34 1.0645 46 1.0467 58 1.0349 70 1.5977 

TABLE I. VALUES OF Rd 
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378 HEURISTIC REASONING IN THE THEORY OF NUMBERS [May 

3. Now, let us start our inductive research. At any moment at which the 
reader feels inspired, he should interrupt the reading and try to guess the result 
by himself. 

The four kinds of prime numbers that we have considered in Section 1 
(ending with 1, 3, 7 or 9 in the decimal notation, respectively) are known to 
be equally frequent. Are the 35 kinds of prime numbers with which Table I is 
concerned also equally frequent? If it were so, all the ratios Rd contained in 
Table I should be approximately equal to one. In fact, remarkably enough, a 
few entries in Table I are pretty close to the value 1, but the majority seem to 
deviate significantly from 1. The analogy with the previous case does not seem 
to go far. Yet, perhaps, the analogy holds at least in one respect: the ratio 
7rd(X)/7r2(X) may converge towards some limit (not necessarily 1) when x tends 
to infinity, and the ratio Rd =Wrd(3- 107)//r2(3* 107) entered into Table I may be 
an approximation to that limit. 

We face here a situation somewhat analogous to the situation that the chem- 
ists faced around 1800 when they were about to discover the Law of Multiple 
Proportions. They had to perceive behind their experimental data distorted by 
unavoidable errors of observation the ratios of simple multiples of the atomic 
weights, and we have to perceive behind the approximate ratios Rd collected in 
Table I the true limiting ratios. To guess these limiting ratios is a challenging 
task. 

We have already observed that some values of Rd are very close to 1; they 
correspond to d=2, 4, 8, 16, 64. (For d=2 the value is exactly 1, but this is 
trivial.) We can scarcely fail to notice here the powers of 2. By the way, these 
values of Rd SO close to 1 are also the smallest values in the table. Are there other 
entries in the table so nearly equal to each other? 

In trying to answer this question we may notice that the entries correspond- 
ing to 

d = 6, 12, 24, 48 

are approximately equal to each other, and so are those corresponding to 

d = 10, 20, 40 

or those corresponding to 

d -14, 28, 56. 

In general, multiplication of d by 2 seems to leave the value of Rd almost un- 
changed. 

What about multiplication by 3? It approximately doubles the value of Rd 

in certain transitions, as from 

2to 6, 4to 12, 8to24, 16to48, 

10 to 30, 20 to 60, 14 to 42, 22 to 66. 
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Yet it is not so in other cases, as 

6 to 18, 12 to 36, 18 to 54; 

in these latter cases the multiplication of d by 3 leaves the value of Rd almost 
unchanged. How can you account for this different behavior? 

And so on, from question to question, by observation and tentative general- 
ization, carefully checking each guess, the reader may discover that many of 
the values Rd contained in Table I come very close to simple fractions; see Table 
II. 

2 16 6 36 10 14 22 30 42 66 70 
d 4 32 12 48 20 28 44 60 

8 64 18 54 40 56 
24 50 

2 4 6 10 8 12 20 8 
Rd (approx.) - - - - - - 

1 3 5 9 3 5 9 5 

TABLE II. SIMPLE APPROXIMATIONS TO SOME Rd 

Table II strongly suggests that Rd depends only on the decomposition of d into 
prime factors. More precisely, just the presence of a prime factor in, or its 
absence from, the decomposition seems to be relevant; for instance, to all values 
of d of the form 2a3fl with a, f=1, 2, 3, . . . there corresponds the same value 
of Rd (approximately). 

Moreover, to each prime factor of d there seems to correspond a factor of 
Rd; to the (unavoidable) factor 2 of d, the (trivial) factor 1 of Rd; to the prime 
factors 

3, 5, 7, 11 

of d, the following factors of Rd: 

2 4 6 10 
- y -, y , -, 

1 3 5 9 

respectively. Then, when d is a product of different primes (or powers of differ- 
ent primes) Rd seems to be the product of the corresponding factors. 

4. All such observations point to the (conjectural) formula 

(l) 7rd(X) -- r2 (x) II -n 
pld p - 2 

where the product UIpd is extended over all different odd prime factors p of the 
even number d.* The sign --' can be interpreted either vaguely or strictly. In a 

* The usual abbreviation al b means "a divides b" or "a is a divisor of b. " We shall need later 
also the abbreviation a b which means "a is not a divisor of b." 
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vague interpretation -- means "approximately equal;" in the strict sense it 
means "the ratio of the two sides tends to 1 when x tends to oo." The formula 
is merely a conjecture which we can conceive quite naively by examining Table 
I. In Table III, the observed values of Rd, taken from Table I and styled now 
Rd (obs.), are compared with the corresponding conjectural limiting values, 
styled Rd (theor.). This comparison yields strong inductive evidence for the 
conjecture which could be further strengthened by use of other data computed 
by Professor and Mrs. Lehmer. 

d Rd (obs.) Rd (theor.) 24 1.9976 2.0000 48 1.9965 2.0000 

2 1.0000 1.0000 26 1.0910 1.0909 50 1.3308 1.3333 

4 0.9979 1.0000 28 1.1974 1.2000 52 1.0892 1.0909 

6 1.9940 2.0000 30 2.6632 2.6667 54 1.9981 2.0000 

8 0.9996 1.0000 32 0.9970 1.0000 56 1.1957 1.2000 

10 1.3317 1.3333 34 1.0645 1.0667 58 1.0349 1.0370 

12 1.9985 2.0000 36 1.9997 2.0000 60 2.6632 2.6667 

14 1.1985 1.2000 38 1.0566 1.0588 62 1.0341 1.0345 

16 1.0001 1.0000 40 1.3330 1.3333 64 0.9999 1.0000 

18 1.9982 2.0000 42 2.3987 2.4000 66 2.2186 2.2222 

20 1.3311 1.3333 44 1.1097 1.1111 68 1.0663 1.0667 

22 1.1088 1.1111 46 1.0467 1.0476 70 1.5977 1.6000 

TABLE III. VALUES OF Rd, OBSERVED AND "THEORETICAL" 

5. We have before us a precise, general, but enigmatic formula derived from, 
and quite well verified by, observations. Of course, we wish to understand it, 
we wish to explain it. When we are looking at it, our situation is similar to that 
of Newton looking at the laws of Kepler or to that of Niels Bohr looking at 
Balmer's formula. The word "similar" must be correctly understood. Similar 
figures may be very different in magnitude, but they show the same propor- 
tions, and so do in a sense the three situations we have just compared. 

We wish to explain that conjectural formula about prime numbers. Both the 
irregular distribution of the primes and the structure of the conjectural formula 
strongly suggest an explanation by probability. I wish to present such an ex- 
planation. We shall arrive at it in two steps (of which the second is much more 
dangerous). 
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PROBLEM I. Let p denote a given prime number, d a given integer, and x a large 
integer chosen at random. Find the probability that neither x nor x+d is divisible 
by p. 

The reader may visualize the integers as successive intervals of equal length 
along an infinite straight line, some sort of super-roulette. The interval is red 
or green, according as the integer is, or is not, divisible by p; among any p con- 
secutive intervals there is always just one that is red. A ball is rolled along the 
line and steps in the interval x. 

We have to distinguish two cases.* 
First case: p| d. In this case x+d falls on a multiple of p (a red space) if, 

and only if, x itself falls on such a multiple. Therefore, out of any p consecutive 
numbers (spaces), p -1 are favorable (green) and so the required probability is 
(p- 1)/p. 

Second case: pfd. Even if x does not fall on a multiple of p, x+d may. There- 
fore, out of any p consecutive numbers just p-2 are favorable. The required 
probability is (p-2)/p. 

PROBLEM II. Let d denote a given even integer, and x a large integer chosen at 
random. Find the probability Pd that both x and x+d are prime numbers. 

In order that both x and x+d should be prime numbers, a sequence of con- 
ditions must be satisfied: 

First, neither x nor x+d is divisible by 2; 
then, neither x or x+d is divisible by 3; 
then, neither x nor x+d is divisible by 5; 

and so on. The general form of this condition is: neither x nor x+d is divisible 
by p where p is a prime number. 

We have computed above the probability for the fulfillment of any single 
one of these conditions. Now we have to compute the probability that all these 
conditions are fulfilled at the same time, all these events are realized simultane- 
ously. 

Two difficulties arise here: Are these events independent? How far should 
we go with p? In fact, these two difficulties may be connected, but at this stage 
of the game it will be better not to examine them too thoroughly; let us now 
proceed quickly and see whether anything worthwhile turns up. 

Are the events independent? We do not know, but let us assume it. Also the 
physicist is inclined to assume the independence of the probabilities he deals 
with-not because he knows that they are independent, but interdependent 
probabilities are so much more difficult to handle -and so let us assume inde- 
pendence in our case too, although we have no better reasons than the physicist. 

Having made this assumption all we have to do is to multiply probabilities 
computed above. We distinguish three cases: 

* For the symbols | and f, see footnote p. 379. 

This content downloaded from 69.181.208.161 on Tue, 19 Nov 2013 14:52:55 PM
All use subject to JSTOR Terms and Conditions



382 HEURISTIC REASONING IN THE THEORY OF NUMBERS [May 

p =2 (which is a divisor of the even number d); 
p is odd and is a divisor of d; 
p is odd and is not a divisor of d. 
Accordingly, the required probability Pd is a product of three kinds of fac- 

tors: 

1 p - 1 p - 2 
2 vid P vr d p 

In this formula (2) (and in the following formulas (3), (4)) the letter p 
stands for an odd prime number. 

How far should we go with p? Of course, on the right hand side of formula 
(2) we extend the first product over all odd prime factors of the given number d. 
In the second product, we take all the odd primes not dividing d up to a certain 
large upper bound, depending on the considered large number x-but let us 
postpone the decision, how far to go, how large that upper bound should pre- 
cisely be. 

We can transform formula (2) as follows: 

(3) Pd =11 p-i 1 
vId p - 2 2 p P 

the second product on the right hand side of (3) is extended over all odd primes 
p under a certain (large, but not yet definitely characterized) upper bound. The 
first product is extended over the odd prime divisors of d; if d happens to be 2 
(or a power of 2) there are no odd prime divisors, that first product is empty, 
and has to be replaced by 1. Therefore 

p- 
(4) Pd = H . P2. 

pld P - 2 

Yet the ratio of the probabilities Pd/P2 should be approximately the same 
as the ratio of the observed numbers lTd(X)/7r2(x)-and so the formula (4) just 
derived justifies the conjectural formula (1)-complete success! 

6. Unfortunately, our reasoning is vulnerable and the success is illusory. We 
left a gap in our derivation (we did not decide how far to go with p) and if we 
try to fill this gap, we run into trouble. The trouble becomes manifest if we try 
to apply our reasoning to the simplest analogous problem, the result of which is 
well known. 

PROBLEM III. Find the probability that x, a large integer chosen at random, is a 
prime number. 

By reasoning as we did in solving Problem I and assuming the independence 
of the probabilities involved as we did in solving Problem II we obtain the an- 
swer l(p - 1)/p; the product is extended to all primes p not surpassing a cer- 
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tain bound-but what should be the bound? The number x is certainly prime if 
it is not divisible by any prime p <x. This leads to the evaluation of the desired 
probability 

(5) pI 
PX p logx 

where ,u=0.5.61459 . . . =e-c and c=0.577215 . . . is the familiar constant of 
Mascheroni and Euler; the asymptotic evaluation in (5) (on the right hand side 
of the sign ') which is valid for x-* oo, is due to Mertens.* 

Now, the value (5) is too small. The probability in question is known to be 
1/log x; this is just the prime number theorem. And we can "explain" somehow 
why the result is wrong: If the integer x is not divisible by any prime p which 
does not exceed x112, x itself must be a prime-and so divisibility by primes ex- 
ceeding x112 is, in fact, not independent of the smaller primes. 

Let us try to modify (5) by considering only primes p not exceeding x112. 

This leads us to 

p(6 _ _- _ _ 1.122 ... 
(6) III _ _ 

P:51I2 p log (x1/2) log x 

(we used Mertens' result (5)) and this value is too large. 
Let us, however, imitate the physicists who, without hesitation, modify 

their theories to fit the observed facts. And so let us do a thing between (5) and 
(6) and extend the product to all primes not exceeding xA. We obtain so 

p-i 1 
(7) HII 

p<ZA p logx 

the right result. 
I do not pretend to understand why the introduction of the upper bound x/ 

should yield the right result. For that matter, when the quanta were introduced, 
no physicist pretended to understand why energy should be obtainable (as 
salt or sugar is in the self-service store) only in uniform little packages, in mul- 
tipla of a certain unit. Yet the criterion of a physical theory is its applicability. 
Let us apply the (unintelligible) trick that gave us the right expression for the 
prime number theorem to our formula (3). Extending the second product to odd 
primes p inferior to xA, we are led to 

p -i 1 p- 2 
Pd = II - 

(8) pld p- 2 2 P<X p 
_1 (p-2)p 1 

pld p -2 p<$ (p - 1) 2 (log x) 2 

* Cf. G. H. Hardy and E. M. Wright, An Introduction to the Theory of Numbers, Oxford, 
1938, p. 349, Th. 430. 
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we have used Mertens' result (5). It is easily seen that (8) is equivalent to 

p - 
(9) Pd SC2 u 2C( ) 

pld p- 2 (log x)2 

where C2 stands for the convergent infinite product 

11(1 - (p_ 1)2) 

extended to all odd primes p = 3, 5, 7, 11, * - - . The asymptotic formula (9) is 
due to Hardy and Littlewood, yet even their argument, which is incomparably 
deeper and more difficult than the one presented here, does not prove (9); it 
just confers on (9) another kind of plausible evidence. Yet all available numeri- 
cal data also seem to support (9). 

Let us recall that we have attained (9) by combining two analogies, one of 
which was extremely "natural" and the other (the "trick of the magic ,u") ex- 
tremely "artificial." And let us try to draw the moral: mathematicians and 
physicists think alike; they are led, and sometimes misled, by the same patterns 
of plausible reasoning.* 

A CHAIN OF CYCLIC GROUPS 

ROY DUBISCH, Fresno State College 

1. Introduction. Consider the chain of groups (3o, (1, * * *, (i, * * * where @o 
is a cyclic group of order m, and j is the automorphism group of ~i-, 
i= 1, 2, * i - . We ask when the chain consists entirely of cyclic groups. Obvi- 
ously, when m = 1 this will be so, and we suppose henceforth that m> 1. 

When 65 is cyclic of order m with generator a it is well known that its auto- 
morphism group, (5i, is of order t =q+(m) and that (51 is isomorphic to the multi- 
plicative group modulo m of integers less than and relatively prime to m. 

* See G. H. Hardy and J. E. Littlewood, Some problems of "Partitio numerorium": On the 
expression of a number as a sum of primes, Acta Math., vol. 44, 1922, pp. 1-70, especially Conjec- 
ture B on p. 42. The more general conjecture on p. 61 (Theorem X 1) is also obtainable by the 
foregoing reasoning. See also the literature quoted (and criticized) on pp. 32-34, especially the 
writings of Sylvester, concerning the use of probabilities in questions of similar nature. The crux 
of the matter may be so expressed: When we consider a fixed number of primes, the "probabilities" 
introduced can be regarded as "independent," but they cannot be so regarded when the number of 
primes considered increases in an arbitrary manner. (Added in proof. Profesor E. M. Wright drew 
my attention to a paper by the late Lord Cherwell in the Quart. J. Math., vol. 17, 1946, pp. 46-62, 
which has a certain contact with the present paper, and to a paper by Lord Cherwell and himself 
which is scheduled to appear in a coming volume of the Quarterly.) 
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