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CHAPTER I 

COMPLEX NUMBERS 

1* * * §1. Rational numbers. 

The idea of a set of numbers is derived in the first instance from the 

consideration of the set of positive^ integral, numbers^ or positive integers\ 

that is to say, the numbers 1, 2, 3, 4, .... Positive integers have many 

properties, which will be found in treatises on the Theory of Integral 

Numbers, but at a very early stage in the development of mathematics 

it was found that the operations of Subtraction and Division could only be 

performed among them subject to inconvenient restrictions; and consequently, 

in elementary Arithmetic, classes of numbers are constructed such that the 

operations of subtraction and division can always be performed among them. 

To obtain a class of numbers among which the operation of subtraction 

can be performed without restraint we construct the class of mtegers, which 

consists of the class of positive"f* integers (+1, +2, +3, ...) and of the class 

of negative integers (~ 1, - 2, - 3, ...) and the number 0. 

To obtain a class of numbers among which the operations both of sub¬ 

traction and of division can be performed freelyj, we construct the class of 

rational numJbers. Symbols which denote members of this class are 3, 

We have thus introduced three classes of numbers, (i) the signless xntegers^ 

(ii) the integers, (iii) the raMonal numbers. 

It is not part of the scheme of this work to discuss the construction of 

the class of integers or the logical foundations of the theory of rational 

numbers§. 

The extension of the idea of number, which has just been described, was not effected 

without some opposition from the more conservative mathematicians. In the latter half 

of the eighteenth century, Maseres (1731-1824) an<l Frend (1757-1841) published works 

on Algebra, Trigonometry, etc., in which the use of illative numbers was disallowed, 

although Descartes had used them unrestrictedly more than a hundred years before. 

* Strirtly speaking, a more appropriate epithet would be, not positive, but signless. 
t In the strict sense. 
:J: With the exception of division by the rational number 0. 
§ Such a discussion, defining a rational number as an ordered number-pair of integers in a 

similar manner to that in which a complex number is defined in § 1*3 as an ordered number-pair 
of real numbers, will be found in Hobson’s Functions of a Real Variable, §§ 1-12. 
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A rational number x may be represented to the eye in the following 
manner: 

If, on a straight line, we take an origin 0 and a fixed segment OPi 

(Pi being on the right of 0), we can measure from 0 a length OP^ such that 
the ratio OP^IOPi is equal to x; the point P^ is taken on the right or left of 
0 according as the number x is positive or negative. We may regard either 

the point P^ or the displacement OPg; (which will be written OP^) as repre¬ 
senting the number x. 

All the rational numbei's can thus be represented by points on the line, 
but the converse is not true. For if we measure oflF on the line a length OQ 

equal to the diagonal of a square of which OPj is one side, it can be proved 
that Q does not correspond to any rational number. 

Points on the line which do not represent rational numbers may be said to represent 

irrational numbers j thus the point Q is said to represent the irrational number 

^/2=1*414213.... But while such an explanation of the existence of irrational numbers 

satisfied the mathematicians of the eighteenth century and may still be sufficient for 

those whose interest lies in the applications of mathematics rather than in the logical 

upbuilding of the theory, yet from the logical standpoint it is improper to introduce 

geometrical intuitions to supply deficiencies in arithmetical arguments; and it was 

shewn by Dedekind in 1858 that the theory of irrational numbers can be established on 

a purely arithmetical basis without any appeal to geometry. 

1*2. Bedekind's* theory of irrational numbers. 

The geometrical property of points on a line which suggested the starting 
point of the arithmetical theory of irrationals was that, if all points of a line 
are separated into two classes such that every point of the first class is on 
the right of every point of the second class, there exists one and only one 
point at which the line is thus severed. 

Following up this idea, Dedekind considered rules by which a separation "f* 
or section of all rational numbers into two classes can be made, these classes 
(which will be called the i-class and the E-class, or the left class and the 
right class) being such that they possess the following properties: 

(i) At least one member of each class exists. 

(ii) Every member of the i-class is less than every member of the 
E-class. 

It is obvious that such a section is made by any rational number x; and 
X is either the greatest number of the i-class or the least number of the 

* The theory, though elaborated in 1858, was not published before the appearance of Bede- 
kind’s tract, Stetigkeit und iirationale ZaJUen, Brunswick, 1872. Other theories are due to 
Weierstrass [see von Dantscher, Die Weia-itraxu’sclie Theorie der irratiomleu Zahlen (Leipzig, 
1908)] and Cantor, Math. Ann. v. (1872), pp. 123-130. 

+ This procedure formed the basis of the treatment of irrational numbers by the Greek 

mathematicians in the sixth aud fifth centuries b.c. The advance made by Dedekind consisted in 
observing that a purely arithmetical theory could be built up on it. 
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-class. But sections can be made in which no rational number x plays this 

irt. Thus, since there is no rational number^ whose square is 2, it is easy 

I see that we may form a section in which the B-class consists of the positive 

tional numbers whose squares exceed 2, and the i-class consists of all 

her rational numbers. 

Then this section is such that the J2-class has no least member and the 

-class has no greatest member; for, if x be any positive rational fraction, 

id y= 3^":j.-2 ' 3^4-2 ^ ^ ^“(30^4-2)^’ ’ ^ 

id 2 are in order of magnitude; and therefore given any member x of the 

-class, we can always find a- greater member of the i-class, or given any 

lember x of the E-class, we can always find a smaller member of the 

5-class, such numbers being, for instance, y and y. where y is the same 

inction of as y of x. 

If a section is made in which the E-class has a least member J.2, or if the 

-class has a greatest member Ai^ the section determines a ratioixcd-real 

umber; which it is convenient to denote by the symbol A^ or ili. 

If a section is made, such that the E-class has no least member and the 

1- class has no greatest member, the section determines an irrationaUreal 

umherl. 

If X, y are real numbers (defined by sections) we say that x is greater 

han y if the i-class defining x contains at least two§ members of the E-class 

efining y. 

Let a, be real numbers and let Ai, Ei, ... be any members of the 

orresponding £-classes while Eg,... are any members of the corresponding 

2- classes. The classes of which Au ^2, are respectively members will be 

lenoted by the symbols {A^, (Ida), •••* * * § 

Then the sum (written a + /3) of two real numbers a and /3 is defined as 

he real number (rational or irrational) which is determined by the i-class 

Ax 4- El) and the E-class {A^ 4- Ej). 

It is, of course, necessary to prove that these classes determine a section of the rational 

lumbers. It is evident that ^i4-^<^2+^2 member of each of the 

jlasses (.4i4-A), (-42 4-A) exists. It remains to prove that there is, at most, one rational 

* For if piq be such a number, this fraction being in its lowest terms, it may be seen that 

[2q-p)l{p -q) is another such number, and Qcp -q<q, so that pjq is not in its lowest terms. 

The contradiction implies that such a rational number does not exist. 

+ This causes no confusion in practice, 
+ B. A. W. Bussell defines the class of real numbers as actually being the class of all L-classes; 

the class of real numbers whose L-classes have a greatest member corresponds to the class of 
rational numbers, and though the rational-real number x which corresponds to a rational number 
X is conceptually distinct from it, no confusion arises from denoting both by the same symbol. 

§ If the classes had only one member in common, that member might be the greatest 

member of the L-class of x and the least member of the B-class of y. 
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Sthan every J,+£,; suppose, if possible, 

of fJ )■ and let Y ^ f «i be a member of (A,) and let 02 be a member 
of (d2), and let ^be the mteger next gi^ter than (a*-a,)/{i(yTake the last of 

the numbers a,+^(a,-aO, (where m=0, 1, ... A), which belongs to (A,) and the first of 

them which belongs to (A,); let these two numbers be c,. Then 

Cj - Cl =— (Oj -flj) (y _ 

Choose di, rfj in a similar manner from the classes defining /3; then 

C2+fllj—1 < y - ar. 

arriv^at a^tmfLr therefore C2+<^!-Cj-c^>y-x; we have therefore 

»i.wi ““*** *’ ” 

*!’ «>■ to the olu, 
exists belnniriinr + * • u’ * define an irrational number. If one rational number a: 

is caUed the sm ^ wnal-real number ar. In either case, the number defined 

£-cU^ ^At^^ “-/S of two real numbers is defined by the Z-class (A^-Bi) and the 

-a'IT ® 
bore and thrqu^ilm '(^tno the product of ncgatiro real num- 
numbers mavbe mnf aa.j • numbers; and further, it may be shewn that real 
tive lawa ^ «>“bined m accordance with the associative, distributive and commuta- 

irrational-real number is called the 

rEmbel «tional-real numbers and irrational- 
are called rational and irrational numbers respectively. 

1'3. Complex numh«rs. 

alone a dpfi^>^^+ *^^1! number may be visualised as a displacement 
vZ tho d ^ It however, P fi .« .nj, „„ . 

. e differences of the coordinates of P and Q referred to fixed 
rectangular axes. Ifthe coordinates of P be r,) and those of Q (f-i-a: 77-1- wl 
he displacement PQ may be described by thVsUbol [T;] We a.’^ 

“ r-—rrrsir^r 
[*> y] + [«', y'] = [tc + «', y + jf']. 

numbl^aht' ^ ‘he ordered number-pair [x, y] from the ordered 
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The product of a number-pair and a real number x* is then naturally 

defined by the equation 

x' X [x, y] = [xx, afy]. 

We are at liberty to define the product of two number-pairs in any 

convenient manner; but the only definition, which does not give rise to 

results that are merely trivial, is that symbolised by the equation 

lx, yl X {x, y'] = Ixx' - yy\ xy -h x y^. 

It is then evident that 

lx, 0] X lx, y] = lxx\ xy} =^xx [x, y] 

and [0, y} x [x, y} = [- yy, x'y} == y x [- y\ x'}. 

The geometrical interpretation of these results is that the effect of 

multiplying by the displacement lx, 0] is the same as that of multiplying by 

the real number x\ but the effect of multiplying a displacement by [0, y} 

is to multiply it by a real number y and turn it through a right angle. 

It is convenient to denote the number-pair lx, y] by the compound 

symbol ty; and a number-pair is now conveniently called (after Gauss) 

a complex numher; in the fundamental operations of Arithmetic, the complex 

number x -h tO may be replaced by the real number x and, defining i to mean 

0 + il, we have i® = [0, 1] x [0,1] — [— 1,0]; and so may be replaced by — 1. 

The reader will easily convince himself that the definitions of addition 

and multiplication of number-pairs have been so framed that we may perform 

the ordinary operations of algebra with complex numbers in exactly the same 

way as with real numbers, treating the symbol i as a number and replacing 

the product ii by — 1 wherever it occurs. 

Thus he will verify that, if a, h, c are complex numbers, we have 

5 = 6 -}- u, 

ah = ba, 

(a + 6) -h c = a 4- (6 -f- c), 

ah .c = a .he, 

a (6 + c) = a6 4 ac, 

and if ah is zero, then either a or 5 is zero. 

It is found that algebraical operations, direct or inverse, when applied to 

complex numbers, do not suggest numbers of any fresh type; the complex 

number will therefore for our purposes be taken as the most general type 

of number. 

The introduction of the complex number has led to many important developments in 

mathematics. Functions which, when real variables only are considered, ap^^r as 

essentially distinct, ai^e seen to be connected when complex variables are introduced : 
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thus the circular functions are found to be expressible in terms of exponential functions 
of a complex argument, by the equations ponentiai mnctions 

oos.r=^(e**+e **), sinar=i(e“ — 

numl£.“’r^“^ it**'® important theorems of modern analysis am not true if the 
eoimS^ restncted to be real; thus, the theorem that every algebraic 

“ *•““* 

of ‘ 

i numbers tr, a:, y, and four number-units 1, i, j, A in the same 
that the ordinary complex number x+iy might be regarded as teing formed from 

tTe T* number-units 1, f. Quatfrnions however “ oZ 
the commutative law of multiplication. ^ 

14. The modulus of a complex numheT, 

Let » + ij, be a eompUi number, . and y being real number. Then 

™tS. ' “"“i ‘1“ ’»»<<“'>“ «f (* + iy), and is 

\a: + iy\. 

Let us consider the complex number which is the sum of two given 
complex numbers, x + iy and u + iv. We have ° 

{x -I- iy) + iv) =:{x + u)-\-i{y+ v). 

Ihe modulus of the sum of the two numbers is therefore 

„ {i^^ + f) + {n’‘ + ii‘) + 2{xu + yv)}K 

{(«-f ty| + jlt-f.fyjj2_ + (m® -1- 

= (^ + yO + (W° + tl®) + 2 («= -h yS)^ .}. |,S)i 

= (^ + y-) + (m® + »®) -f- 2 {{xu + yof + {xv - yit)=;i, 

and this latter expression is greater than (or at least equal to) 

(*® + f) + (tt® -1-1>®) ^ 2 {xu + yv). 

We have therefore 

I * + W i + I W + I ^ K* -1- fy) (iJ -I- fy) 

i.e. th^ mMis of the sum of two complex numbers cannot be greater than the 

sum ofthmr moduli ; and it follows by induction that the modulus of t 

^f^y number of complex numbem cannot be greater than the sum ofVhTr 
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Let us consider next the complex number which is the product of two 

given complex numbers, x-k~iy and u + tv; we have 

(x + iij) {u + iv) — (xti - yv) + i (osv + yu\ 

and so | {x + iy) (u + w) | = {(^ — yvf + (xv + yuY\^ 

= {(^ 4- y^) {u^ + 

— \x’^iy\ \ u-\-iv[ 

The modulus of the product of two complex nmnbers (and hence, by in¬ 
duction, of any number of complex numbers) is therefore equal to the product 

of their moduli. 

1'6. The Argand diagram. 

We have seen that complex numbers may be represented in a geometrical 
diagram by taking rectangular axes Ox, Oy in a plane. Then a point P 
whose coordinates referred to these axes are x, y may be regarded as 
representing the complex number x-\-iy. In this way, to every point of 
the plane there corresponds some one complex number; and, conversely, to 
every possible complex number there corresponds one, and only one, point of 
the plane. The complex number ^ + may be denoted by a single letter"*^ .3:. 
The point P is then called the representative point of the number 5; we 
shall also speak of the number z as being the affix of the point P. 

If we denote (^-f by r and choose 9 so that rco^d = x, rsin0 —y, 
then r and 9 are clearly the radius vector and vectorial angle of the point P, 

referred to the origin 0 and axis Ox. 

The representation of complex numbers thus afforded is often called the 

Argand diagram^. 

By the definition already given, it is evident that r is the modulus of z. 

The angle 9 is called the argument, or amplitude, or phase, of z. 

We write 9 = arg -sr. 

From geometrical considerations, it appeal's that (although the modulus of a complex 

number is unique) the argument is not unique J; if d be a value of the argument, the 

other values of the argument are comprised in the expression 2nfr+B where n is any 

integer, not zei*o. The principal value of arg 2 is that which satisfies the inequality 

- XT < arg z^TT. 

* It is convenient to call x and y the real and imaginary parts of z respectively. We fre¬ 

quently write x = R (z), y = I{z). 

f It was published by J. B. Argand, Essai sur une vmniere de reyriaentcr les quantiles imagin- 

aires dam les constructions geometriques (1806); it had however previously been used by Gauss, 
in his Helmstedt dissertation, 1799 {Werke, m, pp. 20“23), who had discovered it in Oct. 1797 
{Math. Ann. lvii. p. 18); and Caspar Wessel had discussed it in a memoir presented to th/: 
Danish Academy in 1797 and published by that Society in 1798-9. The phrase complex number 

first occurs in 1831, Gauss, Werke, ii. p. 102. 

X See the Appendix, § A*521. 
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If P, and P, are the representative points cofresponding to values Zi 

and ^ respectively of then the point which represents the value z,+z^ is 
cl^ly the terminus of a line drawn from P^, equal and parallel to that 
wnicn joins the origin to Pg. 

To find the point which represents the complex number z-^z^, where z, and 
axe two given complex numbers, we notice that if 

then, by multiplication, 

Zi Tj (cos $1 + i sin d^\ 

Z2 == Tq (cos ^2 + i sin 0^) 

ZiZ^ = riXg {cos (0^ + 0^) + i sin {0^ + 0^)}. 

The point which represents the number z^z^ has therefore a radius vector 
measured by the product of the radii vectores of P, and P„ and a vectorial 
angle equal to the sum of the vectorial angles of P^ and P,. 
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CHAPTER II 

THE THEORY OF CONVERGENCE 

2T. The definition* of the limit of a sequence. 

Let Zi,Zi,z^,... be an unending sequence of numbers, real or complex. 

Then, if a number I exists such that, corresponding to every positivet 

number e, no matter how small, a number rij can be found, such that 

\zn-l\<e 

for all values of n greater than n,, the sequence (z„) is said to tend to the limxt I 

as n tends to infinity. 

Symbolic forms of the statement^ ‘ the limit of the sequence (^n), as n 

tends to infinity, is I ’ are: 

\vm zn=l, lim^:„=Z, z„-^l as n-* co. 

If the sequence be such that, given an arbitrary number N (no matter 
how large), we can find n, such that | «„ | > A for all values of n greater than 

we say that ‘ 1 1 tends to infinity as n tends to infinity,’ and we write 

In the corresponding case when -w^>N when n>n, we say that 

— 00 . 

If a sequence of real numbers does not tend to a limit or to oo or to - oo , 

the sequence is said to oscillate. 

211. Definition of the phrase ‘ of the order of’ 

If (f„) and (zn) are two sequences such that a number n, exists such that 

1 (?„/«„) I < K whenever n > n,, where K is independent of n, we say that is 

‘ of the order of’ and we write§ 

&» = 0 {^n) ) 

thus 
I5n + 19 _ ^ 

^ \nV 

If lim(?nK) = 9, we write ^n = o{Zn)- 

* A definition equivalent to this was first given by John Wallis in 1655. [C^era, i. (1695), 

p 382.1 
+ The number zero is excluded from the class of positive numbera. 

+ The arrow notation is due to Leathern, Camb. Math. Tracts, No. 
§ This notation is due to Bachmann, Zahlmtheorie (1894), p. 401. and Lan au, 

I. (1909), p. 61. 
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2'2. The limit of an increasing sequence. 

Let (a;„) be a sequence of real numbers such that for all values 

of M, then the sequence tends to a limit or else tends to infinity (and so it does 
not oscillate). 

Let X be any rational-real number; then either: 

(i) ^ a? for all values of n greater than some number n, dependino- on 
the value of a;. r o 

Or (ii) Xn<x for every value of 

If (ii) is not the case for any value of x (no matter how large), then 
iPn 00 . ® 

But if values of x exist for which (ii) holds, we can divide the rational 
numbers into two classes, the Z-class consisting of those rational numbers x 

for which (i) holds and the .B-class of those rational numbers x for which (ii) 
holds. This section defines a real number a, rational or irrational. 

And if f be an arbitrary positive number, a-\e belongs to the i-class 
which defines a, and so we can find n, such that > a - whenever n > n,; 

and « + IS a member of the iJ-class and so Xn<a + ie. Therefore, 
whenever n>m„ 

Therefore Xn-*a. 
® - «» I < e. 

Corollary. A decreasing sequence tends to a limit or to - oo. 

Fxam^ 1. If lim^„=Z, then lira (z„+z„')=:l+l'., 

For, given e, we can find n and n’ such that 

(i) when Mt > 71, I - ZI < (ii) when m > nl, 12,„' - T | < 

Let 7!, be the greater of n and n'; then, when m>ni, 

I (‘m+!m)-(l + l') I < I (2„ -f) I + I {z^-l') I, 
<*: 

and this is the condition that lim (2»,+2„')=f+r. 

lim(2„,-2^')=f_f- lim(2,„V)=«', .and, if f'+O, 

Emmple 3. If 0 < .r < 1, 0. 

Forif^=(l+a)~i, a>0and 

0 < - 

+ 1+i 
j the binomial theorem for a positive integral index 

positive number c, we can choose such that (1 + na)- 
And it is obvious that, given a 
< f when n> rio; and so ^ 0. 

2-21. Limit-points and the Bolzano- Weierstrass* theorem. 

Let (*„) be a sequence of real numbers. If any number G exists such 

seems to have been known to Cauchy. No. 153.] It 
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that, for eveiy positive value of e, no matter how small, an unlimited number 

of terms of the sequence can bo found such that 

(? — € <a:„ < G+ e, 

then G is called a limit-point, or cluster-point, of the sequence. 

Bolzano’s theorem is that, if ivhei'e X, p are independent of n, 

then the sequence (a;„) has at least one limit-point. 

To prove the theorem, choose a section in which (i) the E-class consists 

of all the rational numbers which are such that, if A be any one of them, 
there are only a limited number of terms a:„ satisfying x„> A; and (ii) the 
I-class is such that there are an unlimited number of terms such that Xn>a 

for all members a of the X-class. 
This section defines a real number G; and, if e be an arbitrary positive 

number, G - Je and (? + are members of the L and B classes resj^ctively, 

and so there are an unlimited number of terms of the sequence satisfying 

G—e<G — ^€^Xn^G + i€<G+e, 

and so G satisfies the condition that it should be a limit-point. 

2*211. Definition of ‘ the greatest of the limits. 

The number G obtained in § 2*21 is called ‘the gi-eatest of the limits of 

the sequence («„).’ The sequefice («„) cannot have a hmit-pomt greater 
than G-, for if G' were such a limit-point, and e = h{G -G), G is a 
member of the E-class defining G, so that there are only a limited number of 
terms of the sequence which satisfy x„>G' -e. This condition is mcon- 

sistent with G' being a limit-point. We write 

G= lima:„. 

The ‘ least of the limits,’ L, of the sequence (written Urn <e„) is defined to be 

- lim (- «»)• 

2’22. Cauchy^s* theorem on the necessary and sufficient con¬ 

dition FOR THE existence OF A LIMIT. 

We shall now shew that the necessary and sufficient condition for the 

existence of a Umiting value of a sequence of numbers z„z„ z„ ... is that, 
corresponding to any given positive number e, however small, it shat e 

possible to find a number n such that 

1 ^n+p ^ 

for all positive integral values ofp. This result is one of the most important 
and fundamental theorems of analysis. It is sometimes called the Principle 

of Convergence* 

* Analyit Algihrique (18*21), p. 125. 
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First, we have to shew that this condition is necessary, i.e. that it is 
^tisfied whenever a limit exists. Suppose then that a limit I exists; then 
(S corresponding to any positive number v, however small, an integer n 
can be chosen such that ® 

for all positive values of p; therefore 

I ^n+p — j = I (s„^p — 1) — — 1) j 

^ I ^n+p ~ ^ i + [ ^ I < 6, 
which shews the necessity of the condition 

I ^n+p ~ I < e, 
and thus establishes the first half of the theorem. 

it V is sufficient, he. that if 
It IS satisfied, then a limit exists* 

condSnn^Trr* ^quence of real numbers (a;^) satisfies Cauchy’s 

inw *"1 \ to any positive number e, an 
integer n can be chosen such that 

I S!n+p —«„[<« 
for all positive integral values of p. 

Let the value of n, corresponding to the value 1 of e, be m. 

Let p, be the least and greatest of a;,, x^, ... then 

"" 1 < ^« < />! 4-1, 

for all values of «; write X,-l=x, ft + l-p. 

a em^ts such that | a:,,,-a:„ | < Xr every ‘positiveVle^S’p "Tt 
and H are limit-points, positive numbers g ^ind r exist such that 

I® —«n+v|<e, \H — Xn+r\<e. 

Then I + 

But, by § 1-4, the sum on the left is greater than or equal to | tf-fl-i. 

onehmft TOhit^ contrary to hypothesis; so there is only 

outside ""“’’"vf icr d, + d), where B is an arbitraiy positive number; 

proof iB given by Stolz and Qmeiner, Theoretisehe Arithmetik, n. (1902), p, 144, 
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for, if there were an unlimited number of such terms, these would have a 

limit-point which would be a limit-point of the given sequence and which 

would not coincide with 0 5 dnd iiierefore G is the limit of 

(II) Now let the sequence {z^ of real or complex numbers satisfy 

Cauchy’s condition; and let + iyn, where and yn are real; then for 

all values of n and p 

I ^n+p — 1 ^ 1 ^n+p I Vn^p y® I ^ I ^n+p 1 • 

Therefore the sequences of real numbers and (y«) satisfy Cauchy s 

condition; and so, by (I), the limits of {x^ and (y^) exist. Therefore, by 

§ 2*2 example 1, the limit of {z^) exista The result is therefore established. 

2*3. Convergence of an infinite series. 

Let til, Va, Ws, ••• ••• te a sequence of numbers, real or complex. Let 

the sum 
til + '2^ ■+■ • • • “h Un 

be denoted by Sn> 

Then, if Sn tends to a limit jS as n tends to infinity, the infinite series 

tii + tia + 2/s + ti4+ ... 

is said to he convergent^ or to converge to the sum 8, In other cases, the 

infinite series is said to be divergent. When the series converges, the 

expression S-S^y which is the sum of the series 

lin+i + tiw+2 d* 'Mn+s + . -., 

is called the remainder after n terms, and is frequently denoted by the 

symbol iJ». 

The sum iin+i + M«+B +•••+«»+,> 

will be denoted by S„,p. 

It follows at once, by combining the above definition with the results 
of the last paragraph, that the necessary and sufficient condition for the 
convergence of an infinite series is that, given an arbitrary positive number e, 

we can find n such that | [ < e for every positive value of p. 

Since ti»+i = S*,,, it follows as a particular case that lim = 0—^in other 
words, the nth term of a convergent series must tend to zero as n tends to 
infinity. But this last condition, though necessary, is not sufficient in itself 
to ensure the convergence of the series, as appears from a study of the series 

l+l+i+i+l+, 

In this series, = ^ + ^ + 

The expression on the right is diminished by writing (2n.) ' in place of 

each term, and so 
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Therefore jSa»+i 1 + + & 2 + 5i_4 + jSg^j + S^e,ie + • •. + S^ j, 

> a(n + 3)—^oo; 

so the series is divergent; this result was noticed by Leibniz in 1673. 

There are two general classes of problems which we are called upon to 
investigate in connexion with the convergence of series; 

(i) We may arrive at a series by some formal process, e.g. that of 
solving a linear differential equation by a series, and then to justify the 
process it will usually have to be proved that the series thus formally ob¬ 

tained is convergent. Simple conditions for establishing convergence in 
such circumstances are obtained in ^ 2-31-2-61. 

(ip Given an expression S, it may be possible to obtain a development 

+ -Kb, valid for all values of n; and, from the definition of a limit. 

It follows that, if we can prove that 0, then the series X u„, converges 

and its sum is S. An example of this problem occurs in § 5’4. 

Infinite series were used* by Lord Brouncker in FMl. Tran,, n. (1668), pp. 645-649, 

Snh introduced by James Gregory, Professor of Mathematics at 
oufgn, m the same year; the term divergent was introduced by N. Bernoulli in 1713 

^y Newton in 1669, £>e analyn per aequat. num. 

Put “''estig^ted the convergence of hypergeometric series (§ 14-1) in 1704. 

for f ho ^ mathematicians of the eighteenth century used infinite series freely without, 
for the most part, examining their convergence. Thus Euler gave the sum of the series 

as zero, on the ground that 
••(«) 

1 -Z .(6) 

and _i- 
Z Z* 2-1 ••(«)• 

The error of course arises from the fact that the series (i) converges only when I z I ^ 1 

and the series (o) converges only when | z | > 1, so the seriL (a) never convLges 

d/sZ mZaT7iZLZTZ^Z P««g«heim and Molk, Bneyclopedie 
•» • ( ) d Reiff, Geschichte der unendlichen Reihm (Tiibingen, 1889). 

2'301o AbeVs inequality'f, 

Letfn > 0 >• all integer values of n. Then, | X a,f„ L 4/;, where 

A is the yveatest of ike sums 

i®i|, iai + Ojj, lai-f-oj-t a,!, ..., j a, + a,-)-a„ |. 
* See also the note to § 2*7. 

+ Journal f Hr Math. i. (1826) nn qn a a- i 
CoroUaiy (i), also appears in that mLoir. ' ‘he theorem of § 2-31, 
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For, writing % 4* cz® + . • • + 0% == we have 

i On/n = «i/i + (*5i “ ~ + • • • + (Sm - Sm_i)/m 

*“' = Sj (/i - /a) + Ss (/2 -/s) + • • • + Sm-i (/m-i “/m) + »»/»»• 

Since/»-/>. •••are no* negative, we have, when n= 2, 3, ... m, 

1 «n-i 1 ifn-i -/«) < ^ (/*-' i Sm ! /m < -4/m. 
and so, summing and using § 1*4, we get 

X 0*nfn ^ -dyj. 
»—1 

It ch, “J. - ’<’1. «'»• - are any numbers, real or complex, I5JI I I I I 

«=i 1 U=*i ^ 

(Hardy.) 
where is the greatest of the sums j ••• ^0- 

2-31. DirichMs* test for convergence, 

Let 
1 «=i I 

and lim/„=0t, i an/n converges, 
n=l 

For, since lim/„ = 0, given an arbitrary positive number «. we can find m 

1 a„ < iT, wAere .S' is independent of p. Then, if /» >/«+i > 0 

such that fm+i< €l2K. 

Then 
i»+gr 
2 On 

m+g 
2 Un + 

m 
X a„ 

»ssm+l 11=1 

where A <2K, 

Therefore 

T anfn 
»=>»+i 

< 2K, for all positive values of g; so 

I positive values of p, 

^ Affn.jf.\, 

m+p 
2 dnfn 

n-m+l 
< 2Z/m+i < 6; and SO, by § 2-3, t chfn converges. 

11 = 1 

CoroiZary (i). Abe^t test for contergence. If J^a» converges and the sequence (»«) is 

monotonic (Le. always or else always) and la.l<K, where k is 

00 
independent of 71, then 2 a^Un converges. 

For, by §2-2, «» tends to a limit it; let lM-it«i=/*. Then /«-^0 steadily; and 

therefore i aj,, converges. But, if (a„) is an increasing sequence, /»=it-it„ and so- 

S (u-u„)an converges; therefore since converges,^2^ii»a» conveiges. If (a.) is 

a decreasing sequence /»=«»—it, and a similar proof holds. 

* Journal de Math. (2). vn. (1862), pp. 253-235. Before the publication of the 2nd edition 

of Jordan’s Court d'Analyte (1893), Diriohlet’s test and Abel’s test were frequently jomtly described 

as the DirichUt-Abel test, see e.g. Pringsheim, Math. Ann. xxv. (1885), p. 423. 

t In these circumstances, we say/»-»0 tteadily. 
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CwMary (ii). Taking a»=(-)““^ in Dirichlet’s test, it foEows that, if/»>/u+i 

andEm/»=0,/j-/s+/3-/4+... converges. 

ExampU 1. Shew that if 0<5<2n-, sinB5|<cosecW; and deduce that, if 

/„-^0 steadily, 2 /iSinnfl converges for aU real values of 6, and that^2/* cosjid converges 
W—I 

if 0 is not an even multiple of tt. 

Exam-^t 2. Shew that, if0 steadily, (-)«/«cos«« converges if 6 is real and 

not an odd multiple of ir and i (-)»/nainnd converges for aE real values of 6. [Write 

ir+fl for 6 in example 1.] 

2-32. Absolute and conditional convergence. 

In order that a series S «„ of real or complex terms may converge, it is 

00 

sufficient (but not necessary) that the series of moduli ^2^ | u„ i should 

00 

converge. For, if <r„,, =! I +! i + • • • +1 1 and if | w„ | converges, 

we can find n, corresponding to a given number e, such that a„,p < e for all 
00 

v£ilii6s of j?. But I Sn^p I *£, Sriid so 2 Un con verges. 

The condition is not necessary; for, writing/« = 1/n in § 2*31, corollary (ii), 

we see that+ converges, though (§ 2-3) the series of moduli 

1 + 14.1+14.,,. is known to diverge. 

In this case, therefore, the divergence of the series of moduli does not 

entail the divergence of the series itself. 

Series, which are such that the series formed by the moduli of their terms 
are convergent, possess special properties of great importance, and are called 
absolutely convergent series. Series which though convergent are not abso¬ 
lutely convergent (i.e. the series themselves converge, but the series of moduli 

diverge) are said to be conditionally convergent. 

00 2 

2-33. The geometric seil'ies, and the series 2 —. 
41=1 ^ 

The convergence of a particular series is in most cases investigated, nol 
by the direct consideration of the sum Sn,p, but (as will appear fi:om th< 
following articles) by a comparison of the given series with some other serie! 
which is known to he convergent or divergent. We shall now investigatt 
the convergence of two of the series which are most frequently used ai 

standards for comparison. 
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(I) The geometric series. 

The geometric series is defined to be the series 

l+2 + ^ + l^ + l!^+.... 

Consider the series of moduli 

for this series <S„,p = 1 1”+* +1 |«+» + ... + U ]»+*’ 

_ I g j»+i ^ ~ I ^ 

1 z 
Hence, if | -sr | < 1, then 8n,p < J—i for all values of p, and, by § 2*2, 

i —1^1 
example 3, given any positive number €, we can find n such that 

I ^I«+i{1 — I ^||-i<c. 

Thus, given e, we can find n such that, for all values of p, Sn,p < €. Hence, 

by 5 2*22, the series 

is convergent so long as \ z\<l, and therefore the geometric series is absolutely 

convergent ^y* | ^ | < 1. 

When 1^1 ^1, the terms of the geometric series do not tend to zero as n 

tends to infinity, and the series is therefore divergent, 

(II) The semes + 

n \ 
Consider now the series Sn - where s is greater than 1. 

112 1 
We have ^ 3^ ’ 

^ 1 1 i 

and so on. Thus the sum of 2^^ — 1 terms of the series is less than 

_i_ j__ JL 
2«—1 2*—1 ^a—1 d" gtf-i + • •. + 2(i>-i) {«-i) 1 — ’ 

and so the sum of any number of terms is less than (1 — 2* *) ^ Therefore 

the increasing sequence 2 m”* cannot tend to infinity; therefore, hy § 2*2, 
>»=i 

00 

the semes 2 — is convergent if s^l) and since its terms are all real and 
n=\ ^ 

positive, they are equal to their own moduli, and so the series of moduli of 
the terms is convergent; that is, the convergeme is absolute. 
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If #= 1, the series becomes 

1 4- 1 + i 4- 

which we ha¥e already shewn to be divergent; and when 5 < 1, it is a fortiori 
divergent, since the effect of diminishing s is to increase the terms of the 

series. The series 2 - is therefore divergent if s^ l, 
Klsal n 

2*34 The Comparison Theorem, 

We shall now shew that a series % + Ws 4- «3 +... is absolutely con¬ 
vergent, provided that \un\ is always less than C \vn\, where G is some number 
indepmdmt of n, and Vn is the nth term of another series which is known to 

he absolutely convergent 

For, under these conditions, we have 

1 %+i 1 + I «n+2 I + ... + 1 t£«+p 1 < {| 1 + 1 | + ... + | |}> 
where n and p are any integers. But since the series 2v^ is absolutely 
convergent, the series ^\Vn \ is convergent, and so, given €, we can find n 
such that 

I i + ! ^n+2 I + ... + ] Vn+p 1 < e/G, 

for all values of p. It follows therefore that we can find n such that 

I 'n>n+i i + I | + ... + ] Un+p | < €, 

for all values of p, i.e. the series 2 | | is convergent. The series is 
therefore absolutely convergent. 

Cordlary. A series is absolutely convergent if the ratio of its wth term to the Tith 

term of a ^ri^ which is known to he absolutely convergent is less than some number 
independent of «. 

Exmmfie 1. Shew that the series 

cos 2 + p cos 2^+p cos 32cos 4z+... 

is absolutely convergent for all real values of z. 

When z is real, we have lcosn2|:$l, and therefore The moduli of 
I I 

the terms of the given series are therefore less than, or at most equal to, the corresponding 
terms of the series 

i+^+p+p+—, 

which by § 2-33 is absolutely convergent. The given series is therefore absolutely 
coQvei^nt. 

Example 2. Shew that the series 

1 1,1.1 

z,=e**', (n=l, 2,3, ...) 

is convergent for all values of z, which are not on the circle | z | = 1. 
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The geometric representation of complex numbers is helpful in discussing a question of 

this kind. Let values of the complex number z be represented on a plane; then the 

numbei*s ... will give a sequence of points which lie on the circumference of the 
circle whose centre is the origin and whose radius is unity; and it can be shewn that 

every point on the circle is a limit-point (§ 2*21) of the points 

For these special values 2^ of z, the given series does not exist, since the denomi¬ 

nator of the nth term vanishes when z—z^- For simplicity we do not discuss the sefies 

for any point z situated on the circumference of the circle of radius unity. 

Suppose now that \z\=^l. Then for all values of n, \z--z^\ ^\{1 - lz\}\>c-\ for 

some value of c; so the moduli of the terms of the given seiies are less than the corre¬ 

sponding terms of the series 

4.^4. 
12^22 32^42^*"’ 

w'hich is known to be absolutely convergent. The given series is therefore absolutely 

convergent for all values of z, except those which are on the circle 101 = 1. 

It is inter^ting to notice that the area in the 2-plane over which the series converges 

is divided into two parts, between which there is no intercommunication, by the circle 

|2l = l. 

Example 3. Shew that the series 

2sm|-f4sin |-i-8sin^2’"sin 

converges absolutely for all values of 2. 

Since* lim 3® sin (2/3**) =2, we can find a number independent of n (but depending 
w-**co 

on 2), such that 13® sin (2/3®) |<Ir; and therefore 

2»sin|; 

Since 'S.h, 
«=i 

converges, the given series converges absolutely. 

2’36. Cauchy 8 test for ahsolute convergence'f. 

_ao 

1/lim i «„!•/» <1, 2 Un converges absolutely. 
9t-».ao n=l 

For we can find m such that, when n^m, \un\^^^^p <1, where p is 
oo 

independent of n. Then, when n>m,\un\< p^] and since 2 p” converges, 
^ «SS|»l41 

00 / 00 \ 

it follows from § 2-34 that S «n (and therefore 2 converges ah- 
» —W-l-l > » = 1 * 

solutely. 

[Kote. If Hm 1m,J^/®>1, does not tend to zero, and, by § 2*3, does not 

converge.] 

* This is evident from results proved in the Appendix. 

t Analyse Algihriqne, pp. 132-135. 
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236. D Alemberts* ratio test for ahsolute convergence. 

We shall now shew that a series 

is absolutely convergent, provided that for all values of n greater than some 

JMwlu.r.ih, ra&> (to, p, p i. , 

independent of n and less than tmity. 

For the terms of the series 

I ^+1 1 + I W^+9 1 + I -Mr+s I 4- ... 
are respectively less than the corresponding terms of the series 

I Ur+i I (1 + ...), 
which is absolutely convergent when p<l; therefore 2 Un (and hence 

the given series) is absolutely convergent, 

A particular case of this theorem is that if Jim | («„+,/«„) | = Z < the 

series is absolutely convergent. 

For, by the definition of a limit, we can find r such that 

and then 

when n>r. 

“^11 <5(1-0. when w>r. 

«n+i <Ui + i)<i, 

[Nora If hm j>l, does not tend to zero, and, by § 2-3, 2 does not 
iverge.] ,=i converge.] 

ExampU 1. If |c|<1, shew that the series 

2 
»S=1 

converges absolutely for aU values of r. 

[For as a-^oo, if |e|<i.] 

Example 2. Shew that the series 

converges absolutely if | r | <| 6 )-i. 

[For y»-n_g-”5 , 
Un »+l as a-*®; so the condition for absolute convergence is 

16rj<l, i.e. |z|<|6|-i.] 

Opuieules, t. v. (1768), pp. 171-182. 
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Example 3. Shew that the series S ——convei^es absolutely if 10|<1. 

[For, when |*|<1, |2»-(l+»i-i)’>|Xl+m-i)»-|z»|^l + l+i^+..._l>l, so the 

moduli of the terms of the series are less than the corresponding terms of the series 
«5 

^2^ 711 I; but this latter series is absolutely convergent, and so the given series con¬ 

verges absolutely.] 

= 1. 2*37. A general theorem on series for which lim I -—- 
n00 j 

It is obvious that if, for all values of n greater than some fixed value r, 
I Wn+21 is greater than | j, then the terms of the series do not tend to zero as 

n —» 00, and the series is therefore divergent. On the other hand, if 

is less than some number which is itself less than unity and independent 
of n (when n > r), we have shewn in § 2*36 that the series is absolutely con¬ 

vergent. The critical case is that in which, as n increases, 1 tends to 
I I 

the value unity. In this case a further investigation is necessary. 

We shall now shew that^ a series Wj -f- % + + • • •> which lim = 1 
n-*-cjo I 1 

taill be absolutely convergmit if a positive number c exists such that 

lim n 

For, compare the series 2 | | with the convergent series where 

and is a constant; we have 

\n+lJ V^nJ 
= !■ 

n \7i^. 

As n 00, n 1 - 

and hence we can find m such that, when n > m. 

By a suitable choice of the constant A, we can therefore secure that for 
all values of n we shall have 

I I • 

As 2v» is convergent, 2 1 | is also convergent, and so 2t^n is absolutely 
convergent. 

This is the second (D’Alembert’s theorem given in § 2’36 being the first) of a hierarchy of 
theorems due to Be Morgan. See Chrystal, Algebra, Ch. xxvi. for an historical account of 
these theorems. 
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Cordlary. If -1 + 
/ 1 \ 

r ^ b)> is independent of n, 

then the series is absolutely convergent if < — 1. 

Example. Investigate the convergence of 2 exp (^-^2 ~V when r>k and when 

r<k. ^ 

2*38. Convergence of the hypergeometric series. 

The theorems which have been given may be illustrated by a discussion 
of the convergence of the hypergeometric series 

^ ^a.h ^ ^ a(a.4l)&(6 4-l)^, . a{a^l)(a^m(h + l')(h^2\ ^ 
^1.0 ^ 1.2.c(c + l) 1:2.3.0(0 + 1) (0 + 2) 

which is generally denoted (see Chapter XIV) by F (a, b; c; z). 

If c is a negative integer, all the terms after the (l~c)th have zero 
denominators; and if either a or 6 is a negative integer the series will 
terminate at the (1 - a)th or (1 - 6)th term as the case may be. We shall 

these cases set aside, so that a, h, and c are assumed not to be 
negative integers. 

In this series 

Un ! n(c + Jl~l) 
as n—» 00 . 

We see therefore, by § 2*36, that the series is absolutely convergent when 
12^ I < 1, and divei^gent when j .2: | > 1. 

When II = 1, we have * 

n \nV I 
«n+i 
«n 

1+' 

, a+6—c—1 
1+-+ 

Let a, 6, c be complex numbers, and let them be given in terms of their real 
and imaginary parts by the equations 

a^a -hia , 5 = 5 4*iE^, c = 4-ic^^. 
Then we have 

^±l 1 + £+ T "'r ^ - 0") ^ 0 I 

a' + 6'-c'-lV . /g" + b"-c'y ^ q ^ 1 
= 1 + 

, a' + b' — c' — l 
1 + --^ + 

-M 

»(.)■ 
By § 2*37, Corollary, a condition for absolute convergence is 

a 4" < 0. 

* The symbol 0 (!/«-} does not denote the same function of n throughout. See § 2*11. 



THE THEOBY OF CONYERGENCE 25 2*38~2-41] 

Hence when \z\-=^l, a sufficient condition"^ for the absolute convergence of 
the hypergeometric series is that the real part q/ a + & — c shaM he negative, 

2*4. Effect of changing the order of the terms in a series. 

In an ordinary sum the order of the terms is of no importance, for it 
can be varied without affecting the result of the addition. In an infinite 
series, however, this is no longer the casef, as will appear from the following 
example. 

Let 2 = 1 + s — 2 + 4+9 + n“g+ 

and <?-i 
/b-.l-2+3-4 + 5-g+ . 

and let 2,^ and 8n denote the sums of their first n terms. These infinite 
series are formed of the same terms, but the order of the terms is different, 
and so and Sn are quite distinct functions of n. 

Let 

Then 

0’n = X + 2 + 

2sn= 1+3 + 

+ ,, j SO that ^tn — O’M ~ ®’n • 

4ii-1 

_L 
'2n 

Making n oo 

_ 1 1 
— ^4» 2 2^^ 

= (<r4n — <r2n) + 2 " 

” ^4n d* 2 ^2»* 

, we see that 

(Tn) 

t = s+ls-, 

and so the derangement of the terms of S has altered its sum. 

Example. If in the series 
- 1 1 1 

the order of the terms be altered, so that the ratio of the number of positive terms to the 
number of negative terms in the first n terms is ultimately a\ shew that the sum of the 
series will become log (2a). (Manning.*) 

2*41. The fundamental property of absolutely convergent series. 

We shall shew that the sum of an absolutely convergent series is not 
affected by changing the order in which the terms occur. 

Let /S*=«i + t42 + tq, + ... 

* The condition is also necessary. See Bromwich, Infinite Series, pp. 202-204. 
» 00 

+ We say that the series 2consists of the terms of 2 14,, in a different order if a law 
n=l n=l 

is given by which corresponding to each positive integer p we can find one (and onlj one) 
integer q and vice versa, and Vq is taken equal to Up. The result of this section was noticed by 
Dirichlet, Berliner Ahh, (1837), p. 48, Journal de Math. iv. (1839), p. 397. See also Cauchy, 
Resumes analytiques (Turin, 1833), p. 57. 
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be an absolutely convergent series, and let be a series formed by the same 
terms in a different order. 

Let e be an arbitrary positive number, and let n be chosen so that 

I '^n+i 1 + I 1 + • • • + ! I "<2 ^ 
for all values ofp. 

Suppose that in order to obtain the first n terms of S we have to take 
m terms of S'; then if A; > m, 

Sk =>Sn +terms of S with suflSces greater than ?i, 
so that 

Sjfe' - = jSn — /S + terms of S with suffices greater than n. 

Now the modulus of the sum of any number of terras of S with suffices 
greater than n does not exceed the sum of their moduli, and therefore is less 

than I €. 

Therefore | — /S | < [ - /S | +1 e. 

But \Sn-S\^lim { |ttn+i| + |tin+2|+ ... 
p-*.oo 

1 

Therefore given e we can find m such that 

->S|<e 

when k>ifn; therefore S, which is the required result. 

If a series of real terms converges, but not absolutely, and if be the 
sum of the first p positive terms, and if <r„ be the sum of the first n negative 
terms, then oo, cr,i—» — oo ; and lim {Sp 4- <rn) does not exist unless we 
are given some relation between p and n. It has, in fact, been shewn by 
Kiemann that it is possible, by choosing a suitable relation, to make 
lim (Sp + iTn) equal to any given real number*. 

2*5. Double series^, 

bet Ujn,n he a number determinate for all positive integral values of m 

and n; consider the array 

^2.1, ^2,21 

^3,1> '^,29 

* Gis. Werke^ p. 221. 

t A complete theory of double scries, on which this account is based, is given by Pringsheim, 

Miinchener Sitzungsberichte, xxvii. (1897), pp. 101-152. See further memoirs by that writer, 

Mettk Ann, liii. (1900), pp. 289-321 and by London, ibid. pp. 322-370, and also Bromwich, 

Infinite Series, which, in addition to an account of Pringsheim’s theory, contains many develop¬ 

ments of the subject. Other important theorems are given by Bromwich, Proc. London Math, 
Soc, (2), I. (1904), pp. 176-201. 
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Let the sum of the terms inside the rectangle, formed by the first 
m rows of the first n columns of this array of terms, be denoted by 

If a number 8 exists such that, given any arbitrary positive number €, it 

is possible to find integers m and n such that 

Sl<€ 

whenever both > m and v > n, we say* that the double series of which the 

general element is y converges to the sum 8, and we write 

lim S^^y=8. 
y-«-ao 

If the double series, of which the general element is | |, is convergent, 
we say that the given double series is absolutely convergent. 

Since — it is easily seen that, if 

the double series is convergent, then 

lim ti^,v = 0. 
v-^co 

8tolz* necessary and sufficient^ condition for convergence. A condition for 
convergence which is obviously necessaiy (see § 2*22) is that, given €, we can 
find m and n such that | v | <€ whenever fjL>m and v>n and 
p, cr may take any of the values 0, 1, 2,.... The condition is also suflScient; 
for, suppose it satisfied; then, when /^ > m + n, | | < e 

Therefore, by § 2*22, has a limit 8; and then making p and a tend to 
infinity in such a way that /a + p = + o*, we see that 18 — -Sp,,. | ^ € when¬ 
ever p>m and j; > n; that is to say, the double series converges. 

Corollary. An absolutely convergent double series is convergent. For if the double 

series converges absolutely and if be the sum of m rows of n columns of the series of 

moduli, then, given e, we can find pL such .that, when p>m>pL and q>n>fii 

But \Sp^g-S,n,n\^ip.q-tfn.n and SO \ wheu q>n>fi; and this 

is the condition that the double series should converge. 

2*51. MethodsX of summing double series. 

Let us suppose that 2 converges to the sum Then 2 is 
1^=1 * /i»i 

called the sum by rows of the double series; that is to say, the sum by rows 
cc/oo\ ^ OOXOOX 

is 2 ( 2 Similarly, the sum by columns is defined as 2 ( 2 • 
/Jt = l \v = l ' V—l = 1 / 

That these two sums are not necessarily the same is shewn by the example 

^ ^ ^, in which the sum by rows is — 1, the sum by columns is 4* 1; 
/X + v 

and 8 does not exist. 

* This definition is practically due to Cauchy, Analyse Alyebrique, p. 540. 
t This condition, stated by Stolz, Math. Anri. xxiv. (1884), pp. 157-171, appears to have 

been first proved by Pringsheim. 

t These methods are due to Cauchy. 
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PgiKGSHEiM’s THEOEEM^: If S eodsts and the sums by rows and columns 
mid, mdi of these sums is equal to S, 

For since S exists, then we can find m such that 

—>S^1 <e, if fjL>m, p>m. 

And therefore, since lim /S^,, exists, [ ( lim ^ — S \ ^ ^ that is to say, 

"S, Sp — S when fi>m, and so (§ 2*22) the sum by rows converges to 5. 
yssl 

In like manner the sum by columns converges to S. 

2'62. Absolutely convergent double series. 

We can prove the analogue of § 2*41 for double series, namely that if the 
Imns of an absolutely convergent double smdes are taken in any order' as a 

series, iheiT sum tends to the same limit, provided that svery term occur's 
in the summation. 

Let be the sum of the rectangle of g. rows and v columns of the 
double series whose general element is 1(; and let the sum of this double 
seri^ be cr. Then given € we can find m and n such that e 
whenever both ji>m and v>n. 

Now suppc^e that it is necessary to take N terms of the deranged series 
(in the order in which the terms are taken) in order to include all the terms 
of and let the sum of these terms be t^. 

Then 4-1,jf+i consists of a sum of terms of the type Up^q in which 
p>ffi, qyn whenever M>m and H>7ii and therefore 

I In - I ^ o- - m+i < | e. 

Also, consists of terms Up^q in which p>m,q>n; therefore 

I ^ Jf+i I < o* — <rM+i, M+i < 2 ^»therefore 15—j < e; and, corresponding 

to any given number e, we can find and therefore t^-^S, 

EmmpU 1. Prove that in an absolutely com^ergent double series, 1 exists, and 

thence that the sums by rows and columns respectively converge to S, 

[Let the sum of ^ rows of y columns of the series of moduH be t. ^ and let t be the sum 
m ti» senes of moduH. 

converges; let its sum be ; then 

l^l|+i&2l + —+ nm 
m y-*-® 

Md 80^2^6^ converges absolutely. Therefore the sum by rows of the double series 

* Loc. eit. p. 117. 
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Exo/nvple 2. Shew from first principles that if the terms of on absolutely <x)nvei)B|[eiit 
double series be arranged in the order 

this series converges to JS. 

2*53. Gauchy^s theorem^ on ike multiplicaiion of absolutely convergent 
series. 

We shall now shew that if two series 

= + + 

4- 172 +%+.•. 

are absolutely convergent, then the series 

p = Ut,Vt, 4 u^Vi 4 UiV^ 4 

formed hy the prodmts of their terms, written in any order, is absolutely con¬ 
vergent, and has for sum ST. 

% 4 ^ 4 ... 4 Uni 

Tn-Vi 4t?24...4t7n- 

ST = lim Sn Urn T^ = Ikn {SnTn) 

by example 2 of § 2*2. Now 

SnTn = UiVi 4 UiV^ 4 ... 4 UnVi 

Let 

Then 

4 u^v^ 4 4 ... 4 UnV^ 

4. 

4Wit;n4t^2Vn4... -^UnVn^ 

But this double series is absolutely convergent; for if these terms are 

replaced by their moduli, the result is a-nTm where 

0*n = 1 Wi I 4 I 1/2 1 4 ... 4 I , 

I Vi i 4 |172 ! + ... 4| I, 
and cr„Tn is known to have a limit. Therefore, by § 2*52, if the elements of 

the double series, of which the general term is be taken in any order, 

their sum converges to ST. 

Example. Shew that the series obtained by multiplying the two series 

^ 2^ 
z ^ ^ 2 2^ £3 2^ 

and rearranging according to powers of z, convei'ges so long as the representative point of z 

lies in tbe ring-shaped r^ou bounded by the circles 131 = 1 and j r |=2. 

2*6. Poioer-Sejnes^. 

A series of the type 
Oq 4 4 02^^ 4 a^!^ 4 •. 

in which the coefficients a^, ai, Ug, Og,... are independent of z, is called a series 

proceeding according to ascending powers of z, or briefly a po^/;er-5mV.s. 

* Analyse Algihrique, Note vii. 

t The results of this section are due to Cauchy, Analyse Alg€hrique, Ch. ix. 
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We shiai now shew that if a power-Beries converges for any value z, of z, 
it will he absolvtdy convergent for all valves of z whose representative points 
are within a cirde which passes through z,cmd has zts centre at the origin. 

00 

For, if ^ be such a point, we have 1 | < | r. I • Now, since convei^es, 

a»a.» must tend to zero as n-»oo, and so we can find If (independent of n) 

sucli that , ^ I ilt 

Thos 
o^z^IkM 

zj" 

Zo\ * 

Therefore every term in the series^Sj Onz" i is 

term in the conTcrgent geometric series 

IM 
«=0 

z 

Zq 

n 

3 

less than the corresponding 

the series is therefore convergent; and so the power-series is absolutely 
convergent, as the series of moduli of its terms is a convergent series; 

the result stated is therefore established. ^ 

Let lim |o»|-''* = r; then, from §2-35, 2 a„^“ converges absolutely when 
- «=0 

00 

|zi<r;if|r|>r, o»z" does not tend to zero and so ^2^ a^^ diverges (§ 2-3). 

The circle |^| = r, which includes all the values of z for which the 

power-series 

converge, is called the circle of convergence of the series. The radius of 

the circle is called the radius of convergence. 

In practice is usually a simpler way of finding r, derived from d^Alembert^s 

test {§ 2*36); r is lim if this limit exists. 

A power-series may converge for all values of the variable, as happens, for 

instance, in the case of the series* 

which represents the function sin z; in this case the series converges over the 
whole jr-plane. 

On the other hand, the radius of convergence of a power-series may be 

zero; thus in the case of the series 

l + l!^4'2l£:® + 3!z» + 4U^+... 

we have ^n\z\, 
Un 

* Thm serias for a*, siuz^ oosz and the fundamental properties of these functions and of 
wili be assumed throughout. A brief account of the theory of the functions is given 

in the Afpendix, 
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which, for all values of n after some fixed value, is greater than unity when 
z has any value different firom zero. The series converges therefore only at 
the point z — and the radius of its circle of convergence vanishea 

A power-series may or may not converge for points which are actually on 
the periphery of the circle; thus the series 

-f 
^ 

whose radius of convergence is unity, converges or diverges at the point z^\ 

according as ^ is greater or not greater than unity, as was seen in § 2*33. 

Corollary. If (a^) be a sequence of positive terms such that lim(a,j+i/<%) exists, this 

limit is equal to lim 

2*61. Gonvergeme of series derived from a power-series. 

Let a^-^aiZ + a^z^ -f a^z^ + a4Z* + ... 

be a power-series, and consider the series 

Oi + 202^ + 4- 4^4^ -f 

which is obtained by differentiating the power-series term by term. We 
shall now shew that the derived series has the same circle of convergence as the 
original series. 

For let « be a point within the circle of convergence of the power-series; 
and choose a positive number r^, intermediate in value between | z | and r the 

00 
radius of convergence. Then, since the series % a^ri^ converges absolutely, its 

»“0 

terms must tend to zero as n—> x ; and it must therefore be possible to find a 
positive number M, independent of w, such that | | < Mr{~^ for all values 

of n. 

Then the terms of the series 2 nla»| are less than the corre- 
«5S1 

spending terms of the series 

M ^ 

M '1 

But this series converges, by §2*36, since lz\<ri. Therefore, by § 2*34, the 

series 

X n\an \ 

converges; that is, the series 2 na^z^"^^ converges absolutely for all points z 
n*»l 

00 
situated within the circle of convergence of the original series 2 When 

|ir|>r, OnZ^ does not tend to zero, and a fortiori na^z^^ does not tend to 
zero; and so the two series have the same circle of convergence. 
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Corollary, The series 2 -—^ , obtained by integrating the original power-series 

oo 

term by term, has the same circle of convergence as 2 
»=o 

2*7. Infinite Products, 

We next consider a class of limits, known as infinite products. 

Let 1 +ai, 1 -f Os, 1 +Os, be a sequence such that none of its members 

vanish. If, as n oo, the product 

(1 + Oi) (1 + %) (1 + Us) • • • (1 *+■ 

(which we denote by n«) tends to a definite limit other than zero, this limit 

is called the value of the infinite product 

n — (1 + Oi) (1 -f Oa) (1 + Us) .. 

and the product is said to be convergent*. It is almost obvious that a necessary 
condition for convergence is that lim 0,^ = 0, since lim II^i = lim 11^ + 0. 

00 

The limit of the product is written 11 (1 4- Un). 
4*=1 

Now n (l+a„) = exp| 2 log(l+o»)l, 
»=i t «=i ) 

andf exp { lim = lim {exp Um\ 

if the former limit exists; hence a suflScient condition that the product 
CO 

should converge is that 2 log(l4-a„) should converge when the logarithms 
n*»l 

have their principal values. If this series of logarithms converges absolutely, 

the convergence of the product is said to be absolute. 

The condition for absolute convergence is given by the following theorem: 

in order that the infinite product 

(l+Ui) (l+OaXl + Oa)... 

may he absolutely convergent, it is necessary and sufficient that the series 

Oj + da 4* Us +... 

should be absolutely convergent 

For, by definitioD, 11 is absolutely convergent or not according as the 

series 
log (1 + Oi) + log (1 + Os) + log (1 + a,) +... 

is absolutely convergent or not. 

* The convergence of the product in which - 1/n® was investigated by Wallis as early 
as 1655. 

t See the Apptndix, § A*2. 
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Now, since lim = 0, we can find m such that, when fj. > m, | | < |; and 

hen 

! log (1 + a») - 11 = 

Lnd thence, when 

2 3 4 ^*** 

^ 22 “h 23 2 * 

^ I; therefore, by the comparison 
log (1 + On) I 

heorem, the absolute convergence of 2 log (1 4* dn) entails that of and 

onversely, provided that + *“ 1 for any value of n. 

This establishes the result*. 

If, in a product, a finite number of factors vanish, and if, when these are suppressed, 
ae resulting product converges, the original product is said to com>erge to zero. But such 

00 

product as n (1 — is said to diverge to zero. 
ns=2 

Corollary. Since, if exp (jS'jJ-^-exp it follows from § 2*41 that the factors 
f an absolutely convergent product can be deranged without afiPecting the value of the 
roduct. 

^ OO 00 

ExamfU 1. Shew that if n (1+a^) converges, so does 2 log (1+0,^), if the logarithms 
»—1 «scl 

ave their principal values. 

Example 2. Shew that the infinite product 

sin^r sinsin \z sin^z 

‘ i* 
i absolutely convergent for all values of z. 

[For j<5an be written in the form 1—p, where | X» and k is inde- 

« X 
endent of n; and the series 2 is absolutely convergent, as is seen on comparing 

nssl w 
« I 

> with 2 The infinite product is therefore absolutely convergent.] 

271. Some examples of infinite products. 

Consider the infinite product 

^hich, as will be proved later (§ 7'5), represents the function £r^ sin z. 

In order to find whether it is absolutely convergent, we must consider the 
00 * 1 

3ries 2 or — 2 —; this series is absolutely convergent, and so the 

roduct is absolutely convergent for all values of z. 

Now let the product be written in the form 

* A discussion of the convergenoe of infinite products, in which the results are obtained 
rithout making use of the logarithmic function, is given by Pringsheim, Math, Ann. xxxiii. 
L8S9), pp. 119-154, and also by Bromwich, Infinite Series, Gh. vi. 
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The absolute convergence of this product depends on that of the series 

Z £ r _1_ 

27r 

But this series is only coaditioimlly convergent, since its series of moduli 

w V ATT Iw 

is divergent In this form therefore the infinite product is not absolutely 

convergent, and so, if the order of the factors is deranged, there is 

a ri^ of altering the value of the product. 

Lastly, let the same product be written in the form 

{(^" J) 4 {(^ + J) {(^ ■ A) {(^+i) •••■ 

in which each of the expressions 

fl±- WTT/ 
e mrt 

is counted as a single &ctor of the infinite product. The absolute convergence 
of this product depends on that of the series of which the (2m — l)th and 
(2»t)th terms are 

fl + 
mitj 

But it is easy to verify that 

\ mvj \m^J 

and so the absolute convergence of the series in question follows by comparison 
with the series 

I + I+ ^ + 2a“^82 + ^ + p + |2+..., 

The infinite product in this last form is*therefore again absolutely 

convergent, the adjunction of the fectors having changed the con¬ 

vergence from conditional to absolute. This result is a particular case of 

the first part of the factor theorem of Weierstrass (§ 7-6). 

Example 1. Prove that^n e * | is absolutely convergent for all values of 

z, if c is a constant other than a native integer. 

For the infinite product converges absolutely with the series 
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Now the general term of this series is 

©} © • 

convei^^es, and so, by § 2*34, 2 convei^ges absolutely, 

and therefore the product converges absolutely. 

Eaam^ple 2. Shew that n |l —^1—converges for all points z situated 

outside a circle whose centre is the origin and radius unity. 

For the infinite product is absolutely convergent provided that the series 

i 
fi»2 rij 

is absolutely convergent. But lim (1 — i J *«, so the limit of the ratio of the (w.-|-l)th 

term of the series to the ?ith term is - ; there is th^fore absolute convergence when 
z 

i j < 1, i.e. when | s | > 1. 

Esamjple 3. Shew that 
1.2.3...(m-l) ^ 

(^4-1) («+2)... {z+m-1) ^ 

tends to a finite limit as m-*-ao, unless a; is a native integer. 

For the expression can be written as a product of which the wtk factor is 

This product is therefore absolutely convergent, provided the series 

«* 1 
is absolutely convergent; and a comparison with the convergent series 2 --s shews that 

*=i ^ 

this is the case. When ^ is a negative integer the expression does not exist because one of 
the factors in the denominator vanishes. 

Example 4. Prove that 

-?log2 . 
e ^ sin z. 

For the given product 

^ 2^^ 8 4‘^2 •“ %k-l 2k^k) 
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since the product whose factors are 

is ahwluidy convergent, and so the order of its factors can be altered. 

Since 

this shews that the given product is equal to 

~log2 . 
€ ® smz. 

2*8. Infinite Determinants, 

Infinite series and infinite products are not by any means the onl 
known cases of limiting processes which can lead to intelligible results. Th 
researches of G. W. Hill in the Lunar Theory* brought into notice th 
possibilities of infinite determinafits. 

The actual investigation of the convergence is due not to Hill but to Poincar^, BuU, c 

la So€, Math, de France^ xiY, (1886)j p. 87. We shall follow the exposition given b 
H. von Koch, Acta Math, xvi. (1892), p. 217. 

Let A ache defined for all integer values (positive and negative) of t, I 
and denote by 

the determinant formed of the numbers Ai^e(i^ k then i 
as , the expression D^ tends to a determinate limit D, we shall sa 
that the infinite determinant 

_oo...4.oo 

is ^vergmt and has the value D. If the limit D does not exist, the deter 
minant in question will be said to be divergent. 

The elements An, (where % takes all values), are said to form the prindpcL 

diagonal of the determinant D; the elements A^t, (where i is fixed and . 
takes all values), are said to form the row i; and the elements Ang^ (where j 
is fixed and i takes all values), are said to form the column k. Any elemen 
Aifc is called a diagonal or a non^diagonal element, according as t = ifc or i 
The element Ao,o is called the origin of the determinant. 

2*81. Convergence of an infinite determinant. 

We Khali now shew that an infinite determinant converges^ provided die prodvet of th 

diagonal ele^nents convergee aheolutdy^ and the mm of die Twn^iagoTial demenU converge 
ahsolutely. 

For let the diagonal elements of an infinite determinant D be denoted by 1 

and let the non-diagonal elements be denoted by <%, {i^h\ so that the determinant is 

Beprinted in Acta Mathemaiica^ viii. (1886), pp. 1-36. Infiuite determinants had previously 

occurred in the researches of Furstenau on the algebraic equation of the 7ith degree, Darstellwu 

der reellen Wurzeln algehraiacher Gleickmgen durch Beterminanten der Coeffizienten (Marburg 

I860). Special types of infinite determinants (known as continuanU) occur in the theory o 

infinite continued fractions; see Sylvester, Math, Papers, i, p. 504 and m, p. 249 
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... 1 -f 1 0-10 a_n . 

... ao_i 1 +Ooo 

ai-i Olo l+Oi, . 

Then, since the series 2 1 a* | is convergent, the product 
i, 

P= n (1+ 2 loai) 
iss-ao \ *=:-oo / 

is convergent. 

Now form the products 
m/m\_ m/m \ 

P„= n (1+ 2 Oat), P„= n (1+ S loal); 

then if, in the expansion of certain terms are replaced by zero and certain other 

terms have their signs changed, we shall obtain ; thus, to each term in the expansion 

of Dm there corresponds, in the expansion of P^&j ^ term of equal or greater modulus. 

Now Dm+p-Dm represents the sum of those terms in the determinant D^^p which vanish 

when the numbers ±(m+l)... ± (w-fj?)} are replaced by zero; ai^ to each of 

these terms there corresponds a term of equal or greater modulus in P,»+p—P,n- 

Hence | + I <Pm + p“Pm. 

Therefore, since tends to a limit as m-^cc, so also D^ tends to a limit. This 

establishes the proposition. 

2*82, The rearrmigerrwnX Theorem for comergeM injmite determinants. 

We shall now shew that a determinant^ of the convergent form already coumde^-ed^ 

remains convergent when ike dements of any row are replaced by any set of elements whose 

omdvli are all less than some fixed positive number. 

Eeplace, for example, the elements 

• ••-d-o, —••• ^0 ••• 

of the row through the origin by the elements 

which satisfy the inequality 
1 Mr I 

where ft is a positive number; and let the new values of D^, and D be denoted by 

Dm and D'. Moreover, denote by Fm' and F' the products obtained by suppressing in 

Fm and P the factor corresponding to the index zero; we see that no terms of Dm can 

have a greater modulus than the corresponding term in the expansion of fiPm ; and 

consequently, reasoning as in the last article, we have 

which is sufficient to establish the result stated. 

Example. Shew that the necessary and sufficient condition for the absolute conver¬ 

gence of the infinite determinant 

lim 1 cti 0 0 ... 0 
m-»^oo 

1 02 0 ... 0 

0 ^ \ 03 ... 0 

0 ... 0 ^m 1 
is that the series 

shall be absolutely convergent. 
/3l + 02^2 + * * * 

(von Koch.) 
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Miscellaneous Examples. 

1. Evaluate lim («"»^#), lim (?i.“® log?i) when a>0, &>0. 
«-JP-00 

2. Investigate the convergence of 

(Trinity, 1904.) 

3. Investigate the convergence of 

2 
n—l 

ri.3. 
2.4 

2n-l 4n+ZY 
.. 2n * 2n + 2J 

(Peterhouse, 1906.) 

4. Find the range of values of z for which the series 

2 sin^ a - 4 sin^ 2?+8 sin® « -.., + ( - ^ 2« sin^ 2;-f... 
is convergent. 

5, Shew that the series 

z ;j+l'^-PHh2 ^+3 

is conditionally convergent, except for certain exceptional values of z; but that the series 

1 J_ _1 1 1 1 _I_ . 
2 —1 Z+P z+p + l "* 2:+2p+g —1 2+2jp+? 

in which ( p+S') negative terms always follow p positive terms, is divergent, (Simon.) 

6- Shew that 

7. Shew that the series 

is convergent, although 

8. Shew that the series 

is convergent although 
a++Cl®+4-... 

(Trinity, 1908.) 

(KaO) 

(Cesltro.) 

(0<oO<l) 

(Ces2ux).) 
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9. Shew that the aeries 
* +»“*)»-1} 

converges absolutely for all values of z, except the values 

(a=0, 1; 1, m—1; m=l, 2, 3, ...)- 

10. Shew that, when «> 1, 

and shew that the series on the right converges when 0 <«< 1. 

(de la Valine Poussin, Mim. de VAcad. de Belgique, liii, (1896), no. 6.) 

11. In the series whose general term is 

(0< g < 1 <x) 

where v denotes the number of digits in the expression of n in the ordinary decimal scale 

of notation, shew that 
lim 

and that the series is convergent, although Hm oo, 

12. Shew that the series 

gi+gi®+q^+qi^+q^+g/+g/ +..., 
where (0<g<l) 

is convergent, although the ratio of the (7i-+l)th term to the is greater than unity 
when n is not a triangular number. (Ceskro.) 

13. Shew that the series 
00 ^nitix 

»Eo («'+»)*’ 
where u> is real, and where (ic^+ia)* is understcxxl to mean ^ the logarithm being 
taken in its arithmetic sense, is convergent for all values of a, when 1 {x) is positive, and 
is convergent for values of « whose real part is positive, when x is real and not an integer. 

14. If M»>0> shew that if lu^ converges, then lim (yw„)=0, and that, if in addition 
«-^ao 

then lim 
n-a^ao 

15. If 
m — n (m+7i’~l) t 

m.\ n\ ’ 
(w, n>0) 

shew that 
o.fc0“2-“ 00^.=-2-* ao,o=Oj 

®/oo \ m / eo \ 

S ( 2 Om.n) = -l, 2 ( 2 <1™,,) = !. 
msO \«.=0 / i»=0 \mssO / 

(Trinity, 1904.) 

16. By converting the series 

8? 16?> 242* 
1+1_j + ]+jS + 1_33+-. 

(in which | g | < 1), into a double series, shew that it is equal to 

1 I 8g I V I _ I 
(I-?)* (1+?*)* (!-?")* 

(Jacobi.) 
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17. Assuming that ahiz=*z n ^1— 

shew that if m-^oo aud in such a way that lim (m/n)where k is finite, then 

lim 5' 
\ rwj z ' 

the prime indicating that the factor for which r—O is omitted. (Math. Trip., 1904.) 

18. If when w > 1, 

1 11,1 

then n (l+i<,i) converges, though 2 u^&ad 2 are divei^nt. 
n—o »=o »=o 

19. Prove that 

(Math. Trip., 1906.) 

where k is any positive integer, converges absolutely for all values of z. 

20. If 2 be a conditionally convergent series of real terms, then n (l+On) con- 
ussi »ssl 

<» 
verges (but not absolutely) or diverges to zero according as 2 converges or diverges. 

»=i 
(Cauchy.) 

40 
21. Let 2 be an absolutely convergent series. Shew that the infinite determinant 

»s=l 

A(c)* 

{c-4y-6o -e^ -63 — ^3 -0, 
- 4>-tfo 4*-<»o 4?-60 4^-63 ^-00 

-0i (o-2)>-Oo -6i — ^2 — ^3 

2*-fl, 2>-tfo 2*-<9o “* 

-Si ^-63 -0. -03 
0»-do 0»-tfo 0»-tfo 

1 
04 ©

 

—6i -6, (c+2)*- ̂ 0 
2»-tf„ 2»-tfo 2*-tfo 2‘-tfo ■■■ 

-6, — 63 -6% (c+4)»-tf. 

4?-63 4*-^o 4“-(?o 42-^0 ■■■ 

converges; and shew that the equation 

is equivalent to the equation 
A(c)«0 

sin* J7rc=A (0) sin* . (Hill; see § 19*42.; 



CHAPTEE III 

CONTINUOUS FUNCTIONS AND UNIFORM CONVERGENCE 

3'1. The dependence of one complex number on another. 

The problems with which Analysis is mainly occupied relate to the 

dependence of one complex number on another. If and f are two complex 

numbers, so connected that, if is given any one of a certain s^t of values, 

corresponding values of ^ can be determined, e.g. if f is the square of z, or if 

?= 1 when is real and ? = 0 for all other values of z, then f is said to be a 
function of z. 

This dependence must not be confused with the most important case of 

It, which will be explained later under the title of analytic functionality. 

If f ia a real function of a real variable 2, then the relation between ( and 2, which 
may be written 

can be visualised by a curve in a plane, namely the locus of a point whose coordinates 
reterr^ to rectangular axes in the plane are (2, 0- No such simple and convenient 
geometrical method can be found for visualising an equation 

considered as dehning the dependence of one complex number f=f+ii7 on another 
complex number z=x+iy. A representation strictly analogous to the one already given 
for real vanables would require four-dimensional space, since the number of variables 

Vi y is now four. 

One suggestion (made by Lie and Weierstrass) is to use a doubly-manifold system of 
lines in the quadruply-manifold totality of lines in three-dimensional space. 

Another suggestion is to represent f and 17 separately by means of surfaces 

A third suggestion, due to Heflfter*, is to write 

f=re", 

then draw the surface r=r(x, y)—which may be called the modular-gurface of the 
function—and on it to express the values of $ by Surface-markings. It might be 
possible to modify this suggestion in various ways by representing 6 by curves drawn 
oil the surface y). 

3*2. Continuity of functions of real variables. 

The reader will have a general idea (derived from the graphical represen¬ 

tation of functions of a real variable) as to what is meant by continuity. 

* ZeitschHftfilT Math, nnd Phys. xhix, (1899), p. 235. 
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We now have to give a precise definition which shall embody this vague 
idea. 

Lety’(«) be a function of x defined when a ^h. 

Let be such that a^x,^h. If there exists a number I such that, 

corresponding to an arbitrary positive number e, we can find a positive 
number ij such that 

whenever | a - | < ^, a; + iCi, and a ^ a; ^ then I is called the limit of f(x) 
as 

It may happen that we can find a number (even when I does not exist) 

such that \f(x) -l+\<€ when a;, < « < a, +We call 1+ the limit of f(x) 

when a! approaches arj from the right and denote it by/(a!i + 0); in a Himikr 

manner we define/(xj - 0) if it exists. 

!' If + 0)i fi^), — 0) all exist and are equal, we say that /(x) is 

continuous at ajj; so that itf(x) is continuous at x^, then, given e, we can find 
such that 

l/(®) -/(a^i) I < €, 

whenever !a;-j < 17 and a^x^b. 

If 1+ ^d L exist but are unequal, f(x) is said to have an ordinary 

dwonUnuvly* at x^,; and if = l_ ^f(x^), f (x) is said to have a removable 
discontinuity at 

If/(a:) is a complex function of a real variable, and if/(a:) =g(x) + ih (a;) 

where g{x) and h{x) are real, tbe continuity of f{x) at a^^ implies the con¬ 

tinuity of y (a:) and of A (.a;). Forwhen |/(a;)-/(ar.)i < e, then |^(®)-^(a:0|<6 
and IA (a:) - A (a;,) | < e; and the result stated is obvioua 

EmmpU. From § 2-2 examples 1 and 2 deduce that if f{x) and <h{x) are con- 
tmuous at xi, so a.Te/(x)±(f,(x),/(x) x 4, (x) and, if 4} (a:i)+0, f(x)/4> (x). 

The popular idea of continuity, so far as it relates to a real variable f(x) depeudine 
vanable a; is somewhat different from that just considered, and may 

^rhaps best be expressed by the statement “The function/(a;) is said to depend con- 
tmuoi^ly on a. If, as ^ pa^s through the set of aU values intermediate between any 

o adjacent values xj and .r^, /(x) passes through the set of all values intermediate 
between the corresponding values/(^i) and/(a?2).” 

detoRiorjvrabi^ equivalent to the precise 

Cauchy shewed that if a real function/(ar), of a real variable x, satisfies the precise 
definition, then it also satisfies what we have called the populai- definition ;■ this result 

discontinuities at certain points of an interval it 
IS unpbed that it is continuous at all other points of the interval. 
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will be proved in § 3*63. But tbe convert is not trae, as was shewn by DarboiOL This 
fact may be illustrated by the following example^. 

Between ;r= -1 and +1 (except at 4r=0), let f{x) = sin ~ ; and let/(0)=:0. 

Jt can then be proved that/(^) depends continuously on x near x=0, in the sense of 
the popular definition, but is not continuous at ;27ssO in the sense of the precise definition. 

Example. If / {x) be defined and be an increasing function in the range (a, 5), the 
limits/(^r+O) exist at all points in the interior of the range. 

[If f{x) be an increasing function, a section of rational numbers can be found such 
that, if a, be any members of its X-class and its jS-class, a <.f{x+h) for every positive 
value of h and A'^f{x + k) for some positive value of h. The number defined by this 
section is / -f 0).] 

3*21. Simple curves. Gontinua. 

Let X and y be two real functions of a real variable t which are continuous 
for every value of t such that a^t^b. We denote the dependence of x and y 
on t by writing 

x:=x{i), y^y(t). (a^t^b) 

The functions x (t\ y (t) are supposed to be such that they do not assume the 
same pair of values for any two different values of t in the range a <t<b. 

Then the set of points with coordinates (x^ y) corresponding to these values 
of t is called a simple curve. If 

x{a)-=-x{b), y{a) = y{h\ 

the simple curve is said to be closed. 

Exam'll. The circle a^-^y^tsr \ is a simple closed curve; for we may write f 

^;x«cos^, y=sin^. (O^^^Stt) 

A two-dimensional continuum is a set of points in a plane possessing the 
following two properties: 

(i) If {x, y) be the Cartesian coordinates of any point of it, a positive 
number S (depending on x and y) can be found such that every point whose 
distance from {x, y) is less than h belongs to the set. 

(ii) Any two points of the set can be joined by a simple curve consisting 
entirely of points of the set. 

Example. The points for which form a continuum. For if P be any 
point inside the unit circle such that OP=r <cl, we may take 5=1 —r; and any tw’o 
points inside the circle may be joined by a straight line lying wholly inside the circle. 

The following two theoremsJ will be assumed in this work; simple cases 
of them appear obvious from geometrical intuitions and, generally, theorems 
of a similar nature will be taken for granted, as formal proofr are usually 
extremely long and difficult. 

♦ Due to Mansion, MathesU, (2) xix. (1899), pp. 129-131. 
t For a proof that the sine and cosine are continuous functions, see the Appendix, § A*41. 

+ Forma) proofs will be found in Watson’s Complex Integration and Cauchy^s Theorem. 
(Cambridge Math. Tracts, No. 15.) 
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(I) A simple closed curve divides the plane into two continua (the 

‘ interior' and the ‘ exterior ’). 

(II) If P be a point on the curve and Q be a point not on the curve, 

the angle between QP and Ox increases by ± 2^ or by zero, as P describes 

the curve, according as Q is an interior point or an exterior point. If the 

increase is + 27r, P is said to describe the curve * counterclockwise.’ 

A continuum formed by the interior of a simple curve is sometimes called 

an open two-dimensional region, or briefly an open region, and the curve is 

called its boundary] such a continuum with its boundary is then called a 

closed two-dimmsional region, or briefly a closed region or domain, 

A simple curve is sometimes called a closed one-dimensional region] a 

simple curve with its end-points omitted is then called an open one-dimensional 

region, 

3*22. Continuous functions of complex variables. 

Let f{z) be a function of z defined at all points of a closed region (one- or 

two-dimensional) in the Argand diagram, and let Zj be a point of the region. 

Then f{z) is said to be continuous at if given any positive number e, 

we can find a corresponding positive number 7} such that 

l/(ir)-/(^i)|<e, 

whenever \z — Zi\<n and is a point of the region, 

3*3. Series of variable terms. Uniformity of convergence. 

Consider the series 

^ t I ^ I • ^ • 

^ 1+^ (TT^ (T+^f ■ 
This series converges absolutely (§ 2*33) for all real values of x. 

If Sn {(v) be the sum of n terms, then 

(») = 1 + a® - (1 I; 

and so lim 8^ (^r) = 1 + ; {x^jzQ) 
00 

but Sn (0) = 0, and therefore lim Sn (0) = 0. 
CO 

Consequently, although the series is an absolutely convergent series of 

continuous functions of x, the sum is a discontinuous function of x. We 

naturally enquire the reason of this rather remarkable phenomenon, which 

was investigated in 1841-1848 by Stokes*, Seidelf and WeierstrassJ, who 

shewed that it cannot occur except in connexion with another phenomenon, 

that of non-uniform convergence, which will now be explained. 

* Cumb. Phil. Trans, tui. (1847), pp. 533-583. [Collected Papers, i. pp. 236-313.] 
t Miinehener Abhandlungen, v. (1848), p. 381, 
X Ges. Math. Werke, i. pp, 67, 75. 



3*22-3'3l] CONTINUOUS FUNCTIONS AND UNIFORM CONVERGENCE 45 

Let the functions Uj (js), {z),... be defined at all points of a closed region 

of the Argand diagram. Let 

/Sn(^) = Zii(«)+ Uj («) + ... +Un{z). 
00 

The condition that the series 2 Un (^) should comerge for any particular 
«=i 

value of z is that, given e, a number n should exist such that 

for all positive values of p, the value of n of course depending on e. 

Let n have the smallest integer value for which the condition is satisfied. 
This integer will in general depend on the particular value of z which has 
been selected for consideration. We denote this dependence by writing 
11 {z) in place of n. Now it may happen that we can find a number N, 

INDEPENDENT OF Z, SUch that 
n{z) <N 

for all values of z in the region under consideration. 

If this number N exists, the series is said to converge uniformly 

throughout the region. 

If no such number N exists, the convergence is said to be non-uniform^. 

Uniformity of convergence is thus a property depending on a whole set of 
values of z, whereas previously we have considered the convergence of a series 
for various particular values of z^ the convergence for each value being con¬ 

sidered withoul reference to the other values. 

We define the phrase ‘ uniformity of convergence near a point z' to mean 
that there is a definite positive number B such that the series converges 
uniformly in the domain common to the circle | 2: — 2^1! ^ S and the region in 

which the series converges. 

3*31. On the condition for uniformity of convergence^. 

If ii„,,(^') = Wn+i(^') + ««+.('®)+--+«n+p(«). we have seen that the 
00 

necessary and suflficient condition that 2 Un {z} should converge uniformly 

in a region is that, given any positive number e, it should be possible to 

choose N INDEPENDENT OF z (but depending on e) such that 

I p (^) I < ^ 
for ALL positive integral values of p. 

* The reader who is unsicquainted with the concept of uniformity of convergence will liiid it 
made much clearer by consulting Bromwich, Injinite Series, Ch. vii, where an illuiiiinating 

account of Osgood’s graphical investigation is given. 
t This section shews that it is indifferent whether uniformity of convergence is defined by 

means of the partial remainder Writers differ in the definition taken 

as fundamental. 
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If the condition is satisfied, by § 2 22, tends to a limit, S{z), say for 

each value of z under consideration; and then, since « is independent of p, 

I {lim Rir,p (i^)} 1 < 

and therefore, when n>W, 

S {s) — Sn * f p n-N 
jE>-9* OO 

and so 1 ^ if) ~ i^) i 

Thus (writing Je for e) a necessary condition for uniformity of convergence 
is that |^f(^)-/Sf„(^)|<e, whenever n>N and N \s independent of z; the 
condition is also sufficient; for if it is satisfied it follows as in § 2'22 (I) 
that I JSjr.p {z) 1 < 26, which, by definition, is the condition for uniformity. 

Examffie 1. Shew that, if x be real, the sum of the series 

X ^ <3? 

is discontinuous at «=0 and the series is non-uniformly conve^nt near x=0. 

The sum of the first n terms is easily seen to be 5 ^ 

sum is 0; when the sum is 1. 

The value of R„{x)=:S{x)-S^(jt) is if a:+0; so when « is small, say 

x=one-hun<ired-millionth, the remainder after a million terms is — or so 

166 

the first million terms of the series do not contribute one per cent, of the sum. And in 

general, to make it is necessary to take 

CJorresponding to a given no number N exists, independent of a?, such that n<W foT 

all values of x in any interval including :p=0 ; for by taking x sufficiently small we can 

make n greater than any number F which is independent of x. There is therefore non- 

uniform convergence near ar=0. 

Exam^e 2. Discuss the series 

« x{w(7i-f 1) ^ —1} 

nil {1+3iM{1 + (^+1)2^/’ 

in which x is real. 

The nth term can bo written «> S(«) = “d 

R (x\=z 

[Note. In this example the sum of the series is not discontinuous at ^=0.] 

But (taking €<|, and ^?^=0), I I <€ if €“^(?i+l) I ^ i<l + (»+l)®-a^; i*o« if 

»+l>^{€“^+^€“2-4} I ^or 7i+l<J{e"^—>/€”*-4} 1^1“^ 
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Now it is Bot the case tliat the second inequality is satisfied for all valu^ of n greater 

han a certain value and for all values of x; and the first inequality gives a value of 

i (x) which tends to infinity as x-»^0; so that, corresponding to any interval containing the 

>oint ^*=0, there is no number # independent of x. The series, therefore, is non-uniformly 

50iivergent near x^O, 

The reader will observe that 7i{x) is discontinuous at x—0; for ^(a;)-*-co as 

)ut «i(0)=*0. 

3‘32. Connexion of discontinuity with non-uniform convergence. 

We shall now shew that if a series of continuous functions of z is uniformly 

mivergeat for oil values of z in a given closed domain^ the sum is a continuous 

Unction of z at all points of the domain. 

For let the series be f{z)^Ui{z')-k’U^{z')-\-... + u^{z)-^ ... = (^) 4-i2n(^)> 

where J2» {z) is the remainder after n terms. 

Since the series is uniformly convergent, given any positive number c, we 

san find a corresponding integer n independent of z, such that | J?n {z) | < 3 ^ 

for all values of z within the domain. 

Now n and e being thus fixed, we can, on account of the continuity of 

8n if), find a positive number tj such that 

\8^{z)- S^{/)\<\e, 

whenever j ^ /1 < ^. 

We have then 

I /(^) -M I = I (^) - Sn (/) +Rn{z)- Rn (/) 1 

< i {Z) - 8^ (/) I + 1 J2. {^) I + I ii. (^0 ! 

< €, 
which is the condition for continuity at z. 

Example 1. Shew that near x^Q the series 

1 1 

where Ui{x)^x, 

and real values of x are concerned, is discontinuous and non-uniformly convergent. 

In this example it is convenient to take a slightly different form of the test; we shall 

shew that, given aii arbitrarily small number f, it is possible to choose values of x, as 

small as we please, depending on n in such a way that | ^ (x) | is not less than # for any 

value of n, no matter how larga The reader will easily see that the existence of such 

values of x is inconsistent with the condition for uniformity of convergence. 
1 

The value of S^{x) is ; as n tends to infinity, (x) tends to 1, 0, or -1, accord¬ 

ing as X is positive, zero, or negative. The series is therefore absolutely convergent for all 

values of x, and has a discontinuity at x=0. 
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In this series ^(a;) = I (a: >0) ; however great n may be, by taking* a=e (*“-‘1 

we can cause this remainder to take the value 1 -e-\ which is not arbitrarily small. The 

series is therefore non-unifonnly convergent near x—0. 

Example Shew that near a=0 the series 

“ — 2a(H-a)*~* 

is non-unifonnly convergent and its sum is discontinuous. 

The nth term can be written 

l-(l+a)» l-(l+a)»-t 

1 + il+a)" l-b(H-a)*-‘’ 

so the sum of the first n terms is . Thus, considering real values of a greater 

than -1, it is seen that the sum to infinity is 1, 0, or -1, according as a is negative, zero, 

or positive. There is thus a discontinuity at z=0. This discontinuity is explained by the 

fact that the series is non-unifonnly convergent near j for the remainder after n terms 

in the series when z is positive is 
-2 

and, however great n may be, by taking a=i, this can be made numerically greater 

than — which is not arbitrarily small. The series is therefore non-uniformly con- 
1+e’ 

vergent near z^O. 

3*33. The distinction between absolute and uniform convergence. 

The unifm-m convergence of a series in a domain does not necessitate 
its absolute convergence at any points of the domain, nor conversely. Thus 

the series 1 i<5onverges absolutely, but (near not uniformly] 
(1 + 

while in the case of the series 

the series of moduli is 

2 

i ^ 

which is divergent, so the series is only conditionally convergent ] but for all 
real values of z, the terms of the series are alternately positive and negative 
and numerically decreasing, so the sum of the series lies between the sum of 

its first n terms and of its first (n + 1) terms, and so the remainder after 
n terms is numerically less than the nth term. Thus we only need take a 
finite number (independent of z) of terms in order to ensure that for all real 
values of z the remainder is less than any assigned number e, and so the 

series is uniformly convergent. 

Absolutely emvergmt series behave like series with a finite number of 
terms in that we can multiply them together and transpose their terms. 

* This value of x satisfies the condition | a? |<5 whenever 2/i- l>log3”^. 
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UnifoTTnly convergeTit series behave like series with a finite number of 
terms in that they are continuous if each term in the series is continuous 
and (as we shall see) the series can then be integrated term by term. 

3*34 A condition, due to Weierstrass*, for wniform convergence. 

A sufficient, though not necessary, condition for the uniform convergence 

of a series may be enunciated as follows:— 

If, for all values of z within a domain, the moduli of the terms of a series 

/S = lii . 

are respectively less than the corresponding terms in a convergent series 

of positive terms 
T=Afi + M2 + Ms + ..., 

where Mn is INDEPENDENT OF z, then the series S is uniformly convergent in 
this region. This follows from the fact that, the series T being convergent, 
it is always possible to choose n so that the remainder after the first n terms 
of T, and therefore the modulus of the remainder after the first n terms 
of S, is less than an assigned positive number €; and since the value of n 
thus found is independent of z, it follows (§ 3*31) that the series S is uni¬ 

formly convergent j by § 2*34, the series S also converges absolutely. 

Example, The series 

cos a:+^ cos®+ p cos^ ... 

is uniformly convergent for all real values of z, because the moduli of its terms are not 
greater than the corresponding terms of the convergent series 

whose terms are positive constants. 

3 *341. Uniformity of convergence of infinite products +. 

A convergent product n {1 + Wn («)} is said to converge uniformly in a domain of values 

of z if, given €, we can find m independent of z such that 

n {!+«»(*)}- n {!+»,(«)} <* 
«=1 I 

for all positive integral values of jp. 

The only condition for imiformity of convergence which will be used in this work 
is that the product converges uniformly if | t«n («) I < where Jf« is independent of z and 

00 

2 if,* converges. 
n=l 

* AhhandUmgen am der Funktionerdehre, p. 70. The test given by this condition is usually 

described (e.g. by Osgood, Annals of Mathematics, m. (1889), p. 180) as the Jf-test. 
f The definition is, effectively, that given by Osgood, Funktionentheorie, p. 462. The condition 

here given for uniformity of convergence is also established in that work. 
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To pro'^® **^® condition we obaer?e that converges (§ 2-7), 

and so we can choose m, such that 

and then we have 

«t+1? 
n 

”n + 5 {i+J^n}<«; 
«=! n-l 

'u {!+«*(*)}- n {1 +M»W} 1 = 1 51 

<5 (i+J/»)r “n" {x+if.}-i1 
«=! L R=m+1 J 

and the choice of m is independent of z. 

3*35. Bard^s tezts for unifcrm conv&rgmce’’^. 

The reader will see, from § 2-31, that if, in a given domain, j 
is real and k is finite and independent of p and 2, and if /»W^/»+i W /n 

nnifomlf ixs ^ oo, then {z) /«{z) converges uniformly. 

Also that if , v ^ 

where k is independent of z and i a^(«) converges uniformly, then 2 <z^{z)u^{z) con- 
»=i 

verges uniformly. [To prove the latter, observe that m can be found such that 

0™+l(*), Om + l(2)+a»+s(4 «m + lW+®m+jW + —+®”*+pW 

are numerically less than t/i ; and therefore (§ 2-301) 

S tl» (s) Itn (*) < *“in+l *> 
»=s»i4-l » 

and the choice of e and «i is independent of z.] 

ExampU 1. Shew that, if d >0, the series 

* cmnB 
2 2 

n=l 

sin^^ 
«=i ^ 

converge uniformly in the range 
d<d<2ir-a. 

Obtain the corresponding result for the series 

{■^Yco^nB * i-YsinnO 

.._i n ^ n=i w 

by writing ^+ir for d. 

Examples. If, when a^x^b, and (»)-«, (®) I <*»> vlier® 

ii, is are independent of n and x, and if S a„ is a convergent series independent of x, 

2 
n=l 

then i «»«»(*) converges uniformly when a4,x^b. (Hardy.) 

* Proe. London Math. Soc. (2) iv. (1907), pp. 247-265. These results, which are generaUsa- 
tions of Abel’s theorem (S 8-71, below), though weU known, do not appear to have been published 
before 1907. From their resemblance to the teste of Diriohlet and Abd for oonveigenoe, 

Bromwich proposes to call diem Dirioblet’s and Abel’s tests respectively. 
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2 a^\<€^ and then, by § 2*301 
»=«+! I 

I 
2 {x) < (l?i+c.] 

%istm+l I 

3*4. Discussion of a particular double smi£s. 

Let mj and ^ be any constants whose ratio is not purely real; and let 

a be positive. 

The series 2 7--r , i^i which the summation extends over 

all positive and negative integral and zero values of m and n, is of great 

importance in the theory of Elliptic Functions. At each of the points 

= — Swoi — 2na)2 the series does not exist. It can be shewn that the series 

converges absolutely for all other values of ir if a>% and the convergence is 

uniform for those values of z such that | z 4* 2mG)i + 2nca21 ^ h for all integral 

values of m and n, where S is an arbitrary positive number. 

Let X denote a summation for all integral values of m and n, the term for 

which m = ri = 0 being omitted. 

Now, if M and n are not both zero, and if | z 4- 2mci5i 4 j ^ S > 0 for 

all integral values of m and n, then we can find a positive number O. de¬ 

pending on S but not on such that 

{z 4- 2ma)i 4- 
< G 

{2mmi 4* 

Consequently, by § 3*34, the given series is absolutely and uniformly^ 

convergent in the domain considered if 

X 
1 

I moi 4- noi | “ 

converges. 

To discuss the convergence of the latter series, let 

€iai = Ofi 4 i^i^ 0)2 = «2 4 i02, 

where Ui, ot2> 0ij real. Since o^layi is not real, 

the series is 

_I_ 
{{a^m 4 Osn)® 4 

This converges (§ 2*5 corollary) if the series 

(m* + n»)i* 

converges; for the quotient of corresponding terms is 

((«! + ga/*)* + (A + 
l+/i* 

Then 

* The reeder will easily define nniformity of conTergence of double series (see § 3-5). 
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where This expressioB, qua function of a continuous real variable fi, 

can be proved to have a positive minimum* (not zero) since aiA — OsA + 0; 
and so the quotient is always greater than a positive number K (independent 

of/x). 

We have therefore only to study the convergence of the series 8, Let 

p 
s i' ^ 

^4 2 2' 
=0 (m® + 

Separating Sp^q into the terms for which m = m>n, and m<n, re¬ 

spectively, we have 

I 1 I 1 

w=:i n=o (m® + ^ »=.! w«o(m® + 
+ 22 

But 

Therefore 

2 
m 

«=o (m® + 

00 *! oo 1 CO 1 

iS^ S S —+ 2 
n^l 2^® W* w* OT*i m* 

But these last series are known to be convergent if a — 1 > 1. So the series S 
is convergent if a >2, The original series is therefore absolutely and uni¬ 
formly convergent, when a > 2, for the specified range of values of z. 

Example, Prove that the series 

2^_, 
(mi®+-f... + 

in which the summation extends over all positive and negative integral values and zero 

values of mi, m2, ...m,., except the set of simultaneous zero values, is absolutely convergent 

if ^>|r. (Eisenstein, Journal fUr Math, xxxv.) 

3*5. The concept of uniformity. 

There are processes other than that of summing a series in which the idea 

of uniformity is of importance. 

Let € be an arbitrary positive number; and let f{z, f) be a function of 
two variables z and f, which for each point 5 of a closed region, satisfies the 
inequality \f{z, ?) | < e when f is given any one of a certain set of values 
which will be denoted by (f^); the particular set of values of course depends 
on the particular value of z under consideration. If a set (^0 be found 
such that every member of the set is a member of all the sets (£r), the 
function /(z, f) is said to satisfy the inequality vmformly for all points z of 

* The reader will find no difficulty in verifying this statement; the minimum value in 

question is given by 

[ai® + 02® + i5l® + iS2®” {(«l- 
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the region. And if a function <j> {z) possesses some property, for every positive 

value of €, in virtue of the inequality 1 /(^, D1 < «. ^ (^) then said to possess 

the property uniformly• 

In addition to the uniformity of convergence of series md p^ucts, we sMl have 

to consider uniformity of convergence of int^als and also uniformity of continuity; thus 

a series is uniformly convergent when <f. f(=») assuming integer values in- 

dependent of z only. 
Further, a function f{z) is continuous in a closed region if, given *, we can find a 

positive number ij, such that \f (z-tf.) —f (2) 1 * whenever 

and 2+f is a point of tlie region. 

The function will be uniformly continuous if we <^n find a positive number 17 inde¬ 

pendent of such that yj<rjg and |/(^+f) —/WI < ^ whenever 

and z+S is a point of the region, (in this case the set (f)o is the set of points whose 

moduli are less than »?). 

We shall find later (§ 3-61) that continuity involves uniformity of continuity; this is 

in marked contradistinction to the fact that convergence does not involve uniformity 

of convergence. 

3-6. Thfi modified Eeine-Borel theorem. 

The following theorem is of great importance in connexion with properties 

of uniformity; we give a proof for a one-dimensional closed region* 

Oivm (i) a straight line GD and (ii) a law by. which, corresponding to 

each point-f P of GD, we can determine a closed interval I (P) of GD, P being 

an interiorl point of I (P). 

Then the line GD can be divided into a finite number of closed intervals 

Ji, Js,... Jt, such that each interval Jr contains at least one point (not an end 

point) Pr, such that no point of Jr lies outside the interval I (P,) associated 

(by means of the given law) with that point Pr%- 

A closed interval of the nature just described will be called a suitable 

interval, and will be said to satisfy condition (A). 

If GD satisfies condition (A), what is required is proved. If not, bisect GD; 

if either or both of the intervals into which GD is divided is not suitable, 

bisect it or theni|l. 

♦ A formal proof of the theorem for a two-dimensional region will be found in Watson’s 

Complex Integration and Cauchy^s Theorem (Camb. Math. Tracts, No, 15). 
t Examples of such laws associating intervals with points will be found in §§ 3*61, 5*13. 

t Except when P is at C or D, when it is an end point. 
§ This statement of the Heine-Borel theorem (which is sometimes called the Borel-Lebesgue 

theorem) is due to Baker, Proc. London Math. Soc. (2) i. (1904), p. 24. Hobson, The Theory of 

Functions of a Real Variable (1907), p. 87, points out that the theorem is practically given in 
Goursat’a proof of Cauchy’s theorem (Trans. American Math. Soc. i. (19<K)), p. 14); the ordinary 

form of the Heine-Borel theorem will be found in the treatise cited. 
jl A suitable interval is not to be bisected; for one of the parts into which it is divided 

might not he suitable. 
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This process of bisecting intervals which are not suitable either will 
terminate or it will not. If it does terminate, the theorem is proved, for OD 
will have been divided into suitable intervals. 

Suppose that the process does not terminate; and let an interval, which 
co/ii be divided into suitable intervals by the process of bisection just described, 

be said to satisfy condition (B). 
Then, by hypothesis, CD does not satisfy condition (5); therefore at least 

one of the bisected portions of CD does not satisfy condition {B). Take that 
one which does not (if neither satisfies condition (£) take the left-hand one) \ 
bisect it and select that bisected part which does not satisfy condition {B), 
This process of bisection and selection gives an unending sequence of intervals 

... such that; 
(i) The length of Sn is 2~^CD. 
(ii) No point of 5^1 is outside Sn^ 
(iii) The interval does not satisfy condition (A). 

Let the distances of the end points of Sn from 0 be Wny ynl then 
< y»+i Therefore, by § 2% and yn have limits; and, by the 

condition (i) above, these limits are the same, say f; let Q be the point whose 
distance from C is But, by hypothesis, there is a number Sq such that 
eveiy point of GD^ whose distance from Q is less than Sq, is a point of the 
associated interval I (Q). Choose n so large that 2r^^CD< Sq ; then Q is an 
internal point or end point of Sn and the distance of every point of Sn from 
Q is less than Sq. And therefore the interval Sn satisfies condition (A), which 
is contrary to condition (iii) above. The hypothesis that the process of 
bisecting intervals does not terminate therefore involves a contradiction; 
therefore the process does terminate and the theorem is proved. 

In die two-dimensional form of the theorem*, the int^val CD is replaced by a closed 

two-dimeosional region, the interval I{P) by a circlet with centre P, and the interval 

by a square with sides parallel to the axes. 

3*61. Uniformity of continuity. 
From the theorem just proved, it follows without difficulty that if a 

function f{x) of a real variable x is continuous when a^x^h, then f{x) 
is uniformly continuous]: throughout the range a^x^h. 

For let € be an arbitrary positive number; then, in virtue of the con¬ 
tinuity of f{x\ corresponding to any value of x^ we can find a positive 
number S^^ depending on x, such that 

for all values of x' such that \x' — a? | < 8®. 

* The reader will see that a proof may be constructed on similar lines by drawing a square 
circumscribing the region and carrying out a process of dividing squares into four equal squares. 

t Or the portion of the circle which lies inside the region. 

X This result is due to Heine; see Journal fiir Math, ljxl (1870), p. 361, and lxxiv, (1872), 
p. 188. 
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Then by § 3'6 we can divide the range {a, b) into a finite number of closed 

intervals with the property that in each interval there is a number x^, such 

that ]/{«:') 1 < 5 e. whenever x' lies in the interval in which a;, lies. 

Let So be the length of the smallest of these intervals; and let f, ^ be 

any two numbers in the closed range (a, b) such that 1 f f 1 < So- Then 

f, lie in the same or in adjacent intervals; if they lie in adjacent intervals 

let fo be the common end point. Then we can find numbers x^, x^, one in 

each interval, such that 

1/(1) I /(fo) -/(*0 I < i e, 

|/(r)-/(®0 I < i I/(fo) -/(^»)1 < i 

SO that 

i/(?)-/(r) 1=I {/(I) -/(*>)} - {/(?.) -/(^)} 
- !/(r) -/(*«)} + {/(^») -/(®»)} 1 

< €. 
If f lie in the same interval, we can prove similarly that 

i/(r)-/(r)i<i^- 
In either case we have shewn that, for any number ^ in the range, 

we have 
!/(?)-/(?+r)|<e 

whenever f + f is in the range and - So< ?< Sj, where S« is independent of 

The uniformity of the continuity is therefore established. 

Corollary (i). From the two-dimensional form of the theorem of § 3*6 we can prove 

that a function of a complex variable, continuous at aU points of a closed region of the 

Argand diagram, is uniformly continuous throughout that region. 

Corollary (ii). A function f{x) which is continuous throughout the range a is 

hounded in the range; that is to say we can find a number k independent of x such that 

1 f{x) 1 < K for all points x in the range. 

[Let n be the number of parts into which the range is divided. 

Let a, ^1, h be their end points; then if be any point of .the rth interval 

we can find numbers ^^2, ... x^ such that 

|/(a)-/(^i)i<i‘, |/«i)-/(^2)l<i*. l/w-/(fj)l<i‘.- 
... l/(ar,_i)-/(iE)|<i€. 

Therefore 1/(«)-/W so 

\f(x)\<\f{a)\+in€, 

which is the required result, since the right-hand side is independent of x.] 

The corresponding theorem for functions of complex variables is left to the reader. 

3*62. A. redl function, of cl real vcivicihlB, continuous in d closed intevvdl, 

attains its upper hound. 

Let f{x) be a real continuous function of x when a^x^b. Form a 
section in which the iJ-class consists of those numbers r such that r >f{x) 



3*63. A rmi function^ of a real variable^ cGn£nmw in m chsmi interwd 
attains all wdum betwtm its upper and lower bounds. 

Let If, m be the upper and lower bounds of f{s); then we cmn find number 
by I 3*62, such that f(x) = M,f{x)« m; let be any niiaiber such thai 

m< p< M. Given any positive number c, we cmi (by 13*61) divide the mngi 
(«, «) into a number, r, of clc»ed intervals such that 

I/(*!«)-/(^«)1<€, 
where are any points of the rdi intermi; toke to b 
the end pointa of the interval; then there is at least one of the intervali 
for which— p have oppc»ite signs; and since 

it follows that j ^ 

Since we can find a number to »tisfy this inecjttality for all value 
of €, no matter how small, the lower bound of the function i /(a?) — /a | i 
zero; since this is a continuous function of it follows from | 3*62 «>r. (i 
that/(ir) —/i vanishes for some value of x, 

3*64 The fluctuation of a fiimti&m of a rmd mrmUe*, 

Let/(ir) be a real bounded function, define! when a Let 

a ^ Xi ^ ® *. jsj ^ k 

Then \f{a) | + \f(x,) -/(xa) | + ... + i/C«J-/(6) 1 is mliM th 
fluctuation of f{x) in the mnge (a, b) for the set of subdivision *j, ... 

• The termiiiolc^ 0! this se^on. is |m»41j tli*t of The Theory of FumeUmM of m Mei 

VarmMe (1907) and partly that of Yoang, TM Tkmry «/ Sm of Pomti {1906). 
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If the fluctuation have an upper bound FJ>, independent of n, for all choices of 

a-,,... ®n, then f(x) is said to have limited total fivctuaMon in the range 

(a. b). is called the total fluctuation in the range. 

&afn.ple 1. If f{x) be monotomc*in the range (a, 6), its total fluctuation in the range 

is|/(a)-/(«>)l- 
Example 2. A function with limited total fluctuation can be expressed as the diSer- 

ence of two positive increasing monotonic functions. 

[These functions may be taken to be i {Fa*+f (x)}, i {Fa -f 

Exam^e 3. If f{x) have hmited total fluctuation in the range (a, 6), then the limits 

/(x±0) exist at all pointe in the interior of the range. [See § 3-2 example.] 

ExampU 4. If f{x\ g{x) have limited total fluctuation in the range (a, 5) so has 

[For \f{xf)g{xf)-f{x)g{x)\^|. I^-S' (^) I + 1F(^) 1 • >’ 

and so the total fluctuation of f(x) g {x) cannot exceed g. F^->rf- Cfa\ -where /, S' are 

upper bounds of l/(^) [) \9 (^) 1 •] 

3*7. Uniformity of convergeme of power serteSa 

Let the power series 

ao + ai-? + ...+an^’‘+ 

converge absolutely when z=^Zq. 

Then, if | | ^ | { 

But since 2 la„^„»| converges, it follows, by § 3-34, that converges 

uniformly with regard to the variable z when I ^ | ^ | i • 

Hence, by § 3 32, a power series is a continuous function of the vamble 

throughout the closed region formed by the interior and boundary of ^y 

circle concentric with the circle of convergence and of smaller radius i'b). 

3-71. Abel’s theorem^ m continuity up to the circle of convergence. 

Let 2 dnZ” be a power series, whose radius of convergence is unity, and 

let it be such that 2 a.„ converges; and let then Abels theorem 

asserts that lim ^ 2 

For, with The "notation of § 3-35, the function ^tisfies the conditions 

laid on «,.(:«), when consequently/(a.) = converges 

• The function is monotonic if {/(*)-/(a=') }/(*-*') « 

“ "It “''(1826). PP. BU-SS9. Theomm xv. Abel. P-f-pjoys « the 
arguments by which the theorems of § 3-32 and § 3-35 are proved. In the case when .. 1 »| 

converges, the theorem is obvious from § 3*7. 
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formly throughout the range 0 < 1; it is therefore, by § 3'32, a continuous 

function of x throughout the range, and so lim^/(^)=y*(l), which is the 

theorem stated. 

3‘72. AheVs theorem* on multiplication of series. 

This is a modification of the theorem of § 2*53 for absolutely convergent 

series. 

Let- Cn == a^bn + Oibn^i + ... + Un^o. 

Then the convergence of X a^, 2 b^ and 'I. Cnic a sufficient condition that 
ftsO fft~0 assQ 

(£ a„) (i 6.) = i c„. 
\»=o / W=o / 

For, let 

^(a!)= 2 B(x)-= 2 X c„a^. 
nssQ !»=0 

Then the series for A {x), B (x\ G (x) are absolutely convergent when 

1 ic 1 < 1, (§ 2*6); and consequently, by | 2*53, 

A (x) B{x)=^C (x) 

when ()<x<l; therefore, by § 2*2 example 2, 

{ lim A{x)][ lim 5(ir)} = { lim C{x)\ 
*-*►1—0 afH>>l~0 x-*^l—0 

provided that these three limits exist; but, by § 3*71, these three limits are 
eo <30 OD 

2 X bn i 'Z Cnl and the theorem is proved. 
»s=0 n-Q 

3*73. Power series which vanish identically. 

If a convergent power series vanishes for all values of z such that | ^ | ^ 

where rj > 0, then all the coefficients in the power series vanish. 

For, if not, let a^^ be the first coefficient which does not vanish. 

Then aTO + aw+i-2^ + cw+22?®+ ... vanishes for all values of z (zero excepted) 

and converges absolutely when | -2^ [ ^r < n; hence, if 5 == a^t+i + -f..we 

have 

1 5 I ^ i I Ont+n I 
«=1 

and so we can findf a positive number S^r such that, whenever j ^ | ^ S, 

I + ... I < i 1 1; 

and then |am + ^l>|u7»| — |5|>|ia,rt|, and so j | ^ when \ z\<S. 

* Journal f Ur Math, i. (1826), pp. 311-339, Theorem vi. This is Abel’s original proof. In 
some text-books a more elaborate proof, by the use of Cesiro’s sums (§ 8A3), is given. 

» 
t It is suflScient to take 3 to be the smaller of the numbers r and ^ | l-f- 2 1 \ 
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We have therefore arrived at a contradiction by supposing that some 

coefficient does not vanish. Therefore all the coefficients vanish. 

(JoroUary 1. We may ‘equate corresponding coefficients’ in two power senes whose 

mmu are equal throv^hout the r^on j i | < «, where 8 >0. 

Corollary 2. We may also equate coefficients in two power series which are proved 

equal only wiien z is real. 
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Miscellaneous Examples. 

1. Shew that the series 
ee 

is equal to when | r | < 1 and is equal to ^ ^ when | a 1 > 1. 

Is this feet connected with the theory of uniform convergence ? 

2. Shew that the series 

converges absolutely for all values of a (a=0 excepted), but does not converge uniformly 

near z*«0. 

3. If -2 (»-!)» 

(Math. Trip., 1907.) shew that S (a;) does not converge uniformly near *=0. 
»=1 

4. Shew that the series ^ ^ « convergent, but that its square (formed 

by AbePs rule) ^ 

’72' 

is divergent. 

5. If the convergent series - 1+i-i+...(r>0) be multiplied by itself 

the terms of the product being arranged as in Abel’s result, shew th^ the 

diverges if r < J but converges to the sum a» if r > i. (Cauchy and Cajon.) 

^ + (:i i) ■ (+Je) ■ ■ 
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6. If the two conditionally convergent series 

2 
if 

and 2 
1=1 

where r and s lie between 0 and 1, be multiplied together, and the product arranged as in 

AbeFs result, shew that the necessary and sufficient condition for the convergence of the 

resulting series is r+« > 1. (Cajori.) 

7. Shew that if the series 1 -+ 

be multiplied by itself any number of times, the terms of the product being arranged as 

in AbeFs result, the resulting series converges. (Cajori.) 

8. Shew that the g^th power of the series 

otisin ^-foasin 2d + ...+<3twSin 

is convergent whenever (1 — r)^ 1, t being the greatest number satisfying the relation 

for all values of n. 

9. Shew that if is not equal to 0 or a multiple of 2ir, and if %, Mj, ... be a 

sequence such that u^-*~0 steadily, then the series Siq, cos (nd+a) is convergent 

Shew also that, if the limit of m. is not zero, but is still monotonic, the sum of the 

series is oscillatory if - is rational but that, if - is irrational, the sum may have any value 

between certain bounds whose difference is a cosec where a= lim 

(Math. Trip., 1896.) 



CHAPTER IV 

THE THEORY OF RIEMANN INTEGRATION 

4'1. The concept of integration. 

The reader is doubtless famiUar with the idea of integration as the 

operation inverse to that of differentiation; and he is equally well aware that 

the integral (in this sense) of a given elementary function is not always 

expressible in terms of elementary functions. In order therefore to give 

a definition of the integral of a function which shall be always available, 

even though it is not practicable to obtain a function of which the given 

function is the differential coefficient, we have recourse to the result that the 

integral* of/(ic) between the limits a and b is the area bounded by the 

curve y =/(*), the axis of a; and the ordinates a> = a,x^b. We proceed to 

frame a formal definition of integration with this idea as the starting-point. 

4-11. Upper and lower inlegrals'\. 

Let /(«) be a bounded function of a; in the range (a, b). Divide the 

interval at the points , ... a:„_, (a < a;, ^ a^ <... < a;„_i ^ 6). Let U, L be 

the bounds of /(as) in the range (o, b), and let Ur, Lr be the bounds of f (as) 

in the range (a:,_i, av), where a!„ = a, a!„ = b. 

Consider the sumsj 

Sn = U^ (®i -a)+U^(.a!,-X,)+...+ Un(b- 

Sn — (*i — o) + Lj (a^ — a;i) . 4- Xn (6 — a^n-i)- 

yfren U(b — a)^Sn'^s,,'^ L(b — a). 

For a given n, Sn and are bounded functions of a^i, a^, ... a!„_i. Let 

their lower and upper bounds§ respectively be Sn, 5„, so that Sn, Sn depend 

only on n and on the form affix), and not on the particular way of dividing 

the interval into n parts. 

* Defined as the (elementary) function whose differential coeflioient iaf{x). , - . 

+ The following procedure for estabUshing existence theorems concerning integrals is based 

on that given by Goursat. Cour. d?Analyse, i. Ch. iv. The concepts of upper and lower integrals 

are due to Darboux, 4nn. de I’icole nom. suj). (2) rr. (1876). p. 64. ^ .. 

The reader wiU find a figure of great assistance in following the argument of this sechon. 

S. Ind represent the sums of the areas of a number of rectangles which are respectivdy 

gJLter i^d less than the area bounded by y=f(x), x=a, x = b and y=0, if this area be 

assumed to exist. . ai. 
§ The bounds of a function of n variables are defined in just the same manner as the bounds 

of a function of a single variable (§ 3’62). 
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Let the lower and upper bounds of these functions of n be S, s. Then 

Sn^S. 

We proceed to shew that s is at most equal to J3; i.e. 

Let the intervals (a, Sj), (sj, ... be divided into smaller intervals by 

new points of subdivision, and let 

(h vu ya, — Vk+i* ••• yi+u ••• * 

be the end points of the smaller intervals; let U/, X/ be the bounds of f(x) 

in the interval (yy_i, yr)- 

Let — 2 il/r "*■ yr—i) ^r > 

r=l 
^ (yr — yr-0 • 

r=l 

Since fT/, ... i?*' do not exceed Hi, it follows without difficulty that 

Now consider the subdivision of (a, 6) into intervals by the points 

Xi, X., ... Xn-i, and also the subdivision by a different set of points 

icV-i. Let S'n'jS'n' be the sums for the second kind of sub¬ 

division which correspond to the sums Sm for the first kind of subdivision. 

Take all the points Xj, ... ••• as the points yi, 3/2, ••• J/m- 

Then Sn, 

and S Tm s 

Hence every expression of the type Sn exceeds (or at least equals) every 

expression of the t3rpe Sn^; and therefore S cannot be less than s. 

[For if and s — S=^2i] we could find an and an sV that 

Sn-'S<7j, 8 — Sn'<rj and so s'n’>Sn, which is impossible.] 

The bound S is called the upper integral of f(x), and is 'written I f{x) dx; 
J a 

s is called the lower integral, and written 1 f(x) dx, 
J a 

If S = 8, their common value is called the integral of f{x) taken between 

the limits* of integration a and h. 

The integral is written J f(x) dx, 

ra ® ^5 
We define I f(x)dx, when a<b, to mean ~ f f(x)dx, 

J b J a 

Example 1. (3^)}clx = J” /(x) <i!r+j'’^{.x) dx. 

MxampU 2, By means of example 1, define the integral of a continuous complex 
function of a real variable. 

* ‘Extreme values’ would be a more appropriate term but ‘limits’ has the sanction of 

custom. * Termini ’ has been suggested by Lamb, InJinitenmaX Calculus (1897), p. 207. 
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412. Riemann's condition of irdegrability^, 

A function is said to be ‘ integrable in the sense of Riemann" if (with the 

Qotation of § 4*11) Sn and Sn have a common limit (called the Riemann 
integral of the function) when the number of intervals {xr-i, tends to 

infinity in such a way that the length of the longest of them tends to zero. 

The necessary and sujficient condition that a hounded function should he 
integrable is that Sn — Sn should tend to zero when the number of intervals 

Xr) tends to infinity in such a way that the length of the longest tends 

to zero. 

The condition is obviously necessary, for if Sn and Sn have a common limit 

0 as 71 00. And it is sufficient; for, sinceSn>S'^s'^Sn/it follows 

that if lim {Sn — -^n) = 0, then 

lim Sn = lim Sn — S = s. 

Note. A continuous funotion f{x) is ‘integrable.* For, given e, we can find B such 

that \f{:x/)-f{a/')\<€l{b-a) whenever \ x'-x"\<b. Take all the intervals (Xg„i, Xg) 

less than d, and then Ug-Lg< €/(h — a) and so N,j — < c ; therefore S,^—under the 

circumstances specified in the condition of int^rabiHty. 

Corollary. If Sn and in have the same limit S for one mode of subdivision of (a, 6) 

into intervals of the specified kind, the limits of Sn and of Sn for any other such mode of 

subdivision are both S. 

Examfle 1. The product of two integrable functions is an integrable function. 

Example 2. A function which is continuous except at a finite number of ordinary 

discontinuities is integrable. 

\li f{x) have an ordinary discontinuity at c, enclose c in an interval of length di ; 

givenc, wecanfinddsothat |/(a;')-/Wl<€when | 1 <5 and d/are notin this 

interval. 

Then Sn-Sn^€(b-a-8i)+JbSi, where Ir is the greatest value of l/(^)-/WI> ’^hen 

X, of lie in the interval. 

When ai-^0, ;t-^l/(c+0)-/(c-0) j, and hence lim 

Example 3. A function with limited total fluctuation and a finite number of ordinary 

discontinuities is integrable. (See § 3*64 example 2.) 

4*13. A general theorem on integration. 

Let f{x) be integrable, and let e be any positive number. Then it is 

possible to choose S so that 

'Z (Xf - iCp-i)/(«V-i) -f /(«) I < e. 
p=l Ja 1 

provided that x^ — ^ 8, x^^^ ^ x'^^ ^ x^. 

* Riemann {Qes. Math. Werkey p. 239) bases his definition of an integral on the limit of the 

sum occurring in § 4*13; but it is then difficult to prove the uniqueness of the limit. A more 

general definition of integration (which is of very great importance in the modem theory of 

Functions of Real Variables) has been given by Lebesgue, AnTiali di Mat. (3) vn. (1902), 

pp. 231-869. See also his Legom tur Vintigration (Paris, 1904). 
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To prove the theorem we observe that, given e, we can choose the length 

of the longest interval, S, so small that Sn< e. 

Also 

Therefore 

Sn ^ X ('3^ ^ Sn,} 

Sn'^\ f(3i)dx'^Sn> 
J a 

2 («, - )/(«',_,) - f f(jc) dx 
p=l J a 

< €. 

As an example* of the evaluation of a definite integral directly from the theorem 

of this section consider 
fX 

lider I 
Jo 

doc 
, where X< 1. 

Take §■=- arc sin X and let 4;,=sin (0<sd<.i tr), so that 
P 

^s+i'-“2 sincos (#+i)S<$ ; 

also let 

Then 

a:/—sin (^+J) B. 

I _ I sin sin (g-l)d 
8=1 cos(«-i)d 

«s2/>sin 

a=arc sin X. {sin iB/(^S)}. 

By taking sufficiently large we can make 

dx ^ Xg—x^^\ 1 

/: 0 (l-arS')i *=> 

I - arc sin X < c 

arbitrarily small. 

We can also make arc sin 

arbitrarily small. e 

That is, given an arbitrary number e, we can make 

rx dx 

'« I 

by taking j? sufficiently large. But the expression now under consideration do€9 not 

depend on p ; and therefore it must be zero ; for if not we could take « to be less than it, 
and we should have a contradiction. 

P dx 
That 18 to say J 

Example 1. Shew that 
(1-^)4 

=arc sin X. 

lim 

- ^ . 2ar . , (n~l)x 
1+cos—hcos—t-.-.+cos^- 

n n n sino? 
n X 

Example 2. If f {x) has ordinary discontinuities at the points cti, 02> ••• <*«? then 

P/(a7)<^ = lim|f ' + ( f{x)dbX, 
J a U a J ai+cj J a*+€* J 

where the limit is taken by making di, ^3,... ci, eg,... c* tend to -hO independently. 

* Netto, Zeitschrift fUr Math, und Fk^t, xl. (1895). 
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Example 3. ltf{x) is integrable when and if, when <H^a<b<h, we write 

I f{x)dx-^{a,b), 

and if/(6+0) exists, then 
liia 4> (<=^. ^^ ■^)-fihJrCi)- 

8-..+0 ^ 

Deduce that, if f{x) is continuous at o and 6, 

I/>)*■- -/:«). a />)*-/(»)■ 

ExampU 4. Prove by differentiation that, if <#, (x) is a continuous function of x and 

^ a continuous function of then 
at * ^ 

ExampU 5. If /' (^) and 4>' W are continuous when « 5, shew from example 3 

that 
j" f {x) <l>(x)dx+ j^ <t>' (a!)/(«) ■/^ 

ExampU 6. If/(«) is int^able in the range (a, c) and a < 5 < c, shew that fix) dx 

is a continuous function of 6. 

4-14, Mean Value Theorems. 

The two following general theorenos are frequently useful 

(I) Let r and £ be the upper and lower bounds of the integrable function/(x) in the 

range (a, h). 

Then from the definition of an integral it is obvious that 

are not negative; and so 

I" { U-fix)} dx, {/W -L)dx 

Uib-a)-^ j” f(x)dx-^Lib-a). 

This is known as the Firet Mean Fofwe Theorem,. 

If fix) is we can find a number | such that a<f <6 and such t^t/(J) has 
any givL value lying between U and L (§ 3-63). Therefore we can find i such that 

J f{x)dx=ib—a)fii)‘ 

If Fix) has a continuous differential coefficient F'ix) in the range (a, 6), we have, on 

writing F' ix) tor fix), p. 

for some value of f such that 

ExampU. If fix) is continuous and <t> (x) >0. shew that f can be found such that 

I” fix) <t> ix) dx^f iS) 4> W 
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(II) Let f{x) and {x) be integrable in the range (a, h) and let <l>(x) he a. pcmtive 

dm^eamng function of x» Then Bonnetform of iJie Bec<md Mean Valm Theorem is 

that a number ^ exists such that a ^ ^ ^ 6, and 

jy(.^)<t>(x)dx=<f>(a) jfx)dx. 

For, with the notation of §§ 4*1-4T3, consider the sum 

p 

«=l 

Writing <#> , ao+«i + ... + a«^&a, we have 

p-i 
2 (<#>«-!- +bp^i (jijy^i. 

a=l 

Each term in the summation is increased by writing b for bg^i and decreased by 

writing b for 6a_i, if 6, b be the greatest and least of 5oj ^i> .*• ^p-i; and so b<f>Q^B^b<l>o, 
m 

Therefore B lies between the greatest and least of the sums (jjq) 2 f 
i=l 

where m = l, 2, 3,... p. But, given f, we can find 8 such that, when Xg-x^^iKBj 

I 2 {Xg — Xg^i) f (Xg^i) <|> (^g—i) — I f(^) <l> (f) dx I <C 
1 p=i J *b I 

j m 
<ti (xo) 2 {Xg -Xg^i) f{Xg_i) - ^ (Xo) I fix) dx\<€, 

I a=l J xo \ 

and so, writing a, b for Xq^ Xp^ we find that j fix) <l> ix)dx lies between the upper and 

lower bounds oft (l>ia) fix)dx±2€i where may take all values between a and b. 

Let U and L be the upper and lower bounds of <f) (a) fix) dx. 

Then J7-h 2^ > f fix) <t>(x)dx^Z-2€ for oUl positive values of c; therefore 
J a 

j fix)<l)ix)dx'^L. 
Since <l> (a) fix) dx qua function of takes all values between its upper and lower 

bounds, there is some value f, say, of for which it is equal to ^ fi^)(f>ix) dx. This 

proves the Second Mean Value Theorem. 

Example. By writing [ (^ (j?) - (b) | in place of (f) ix) in Bonnet’s form of the mean 

value theorem, shew that if (l>{x) is a monotonic fiinction, then a number ^ exists 

such that a ^^^b and 

j fix)it>ix)dx=<liia) fix)dx-b<t>ib) J^f(x)dx. 

(Du Bpis Reymond.) 

* Journal de Math. xrr. (1849), p. 249. The proof given is a modified form of an investigation 
due to Holder, GoU. Nach. (1889), pp. 38-47. 

t By § 4T3 example 6, since f{z) is bounded, ♦ fi^) dx is a continuous function of . 
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4-2. Differentiation of integrals containing a parameter. 

The equation*^|V(®. = if «) VO«sesses a 

Biemann integral with respect to x and fa is a continuous function of 

both'f the variables x and a. 

d r’> a+A)-/(«;,«) 
-h ^ 

if this limit exists. But, by. the first mean value theorem, since /. is a 

continuous function of o, the second integrand is/.(«, a+6h), where 

But, for any given e, a number S independent of x exists (since the con¬ 

tinuity of/, is uniform! with respect to the variable x) such that 

I/, (x, d) -fa {x, a) I < ejQ) - a), 

whenever | a' — a | < 8. 

Taking | A | < 8 we see that \6h\< B, and so whenever | A. [ < 8, 

r >>f(x,a + h\-fix,a) ^ (a;, a) da: | $ J* | /. (®, a -h 8h) - fa (*, a) | dx 

J H 
< e. 

Therefore by the definition of a limit of a function (§ 3 2), 

lim rV(^.« + ^)-/(^d^ 
h-^Q J a " 

Cb fb 

exists and is equal to fidv. 
J a 

Example 1. If a, h be not constants but functions of a with continuous differential 

coefficients, shew that 

^ ff(^, a)dx^f(b, a)^-/(«, 
Example 2, If/(^, a) is a continuous function of both variables, j ^f{x, a)dx la a 

continuous function of a. 

* This formula was given by Leibniz, without specifying the restrictions laid on/(a;, o). 

t 4> (*, y) is defined to be a continuous function of both variables if, given c, we can find 

Jsuchthlt 10(*',?')j/)|<e’ifheneyer {(x'-x)i + (^'-y)‘}i<S. It can be sh^n by §3-6 

that if 0(®. V) is a continuous function of both variables at aU points of a closed region m 

a diagram, it is uniformly continuous throughout the region (the proof is almoa 

identical with that of § 3-61). It should be noticed that, if 0(x, y) is a continuous function 

of each variable, it is not necessarily a continuous function of both; as an example take 

this is a continuous function of x and of y at (0, 0), but not of both x and y. • x i 

t It is obvious that it would have been sufficient to assume that had a Biemann integral 

and was a continuous function of a (the continuity being uniform with respect to x), instead 

of assuming that /. was a continuous function of both variables. This is actually done by 

Hobson, Functions of a Real Variable., p. 699. 
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4*3. Bovhle integrals and repeated integrals, 

Letfia, y) be a function which is continuous with regard to both of the 
variables x and y, when 

By § 4*2 example 2 it is clear that 

la {1/II ila-^^^’ 
both exist. These are called repeated integrals. 

Also, as in § 3*62, f{x, y\ being a continuous function of both variables, 
attains its upper and lower bounds. 

Consider the range of values of x and y to be the points inside and on a 
rectangle in a Cartesian diagram; divide it into nv rectangles by lines parallel 
to the axes. 

Let be the upper and lower bounds of f{x, y) in one of the 
smaller rectangles whose area is, say, and let 

n y n y 

TO=1 m=l ii~l 

Then Sn,^ >^n,Fj and, as in § 4*11, we can find numbers which 
are the lower and upper bounds of Sn,^ respectively, the values of 

depending only on the number of the rectangles and not on their 
shapes; and We then find the lower and upper bounds (S and s) 
respectively of s^^^qua functions of n and v\ and Sn^y>S^s>Sn,y> as in 

§ 4*11. 

Also, fix>m the uniformity of the continuity of f(x, y), given e, we can find 
S such that 

(for all values of m and p) whenever the sides of all the small rectangles are 
less than the number S which depends only on the form of the function/(x, y) 
and on e. 

And then Sn,y-Sn^^<€(b - a) (/3 - ct), 

and so S — s < e {ba) - a). 

But S and s are independent of e, and so 

The common value of 5 and s is called the double integral oi f{x, y) and 
is written 

f y)(dxdy). 
J a J a 

It is easy to shew that the repeated integrals and the double integral are all equal 
when/(a:, y) is a continuous function of both variables. 
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For let Yniy ^ upper and lower bounds of 

j^^f{x,y)dy 

as X varies between 47^1-1 

Then S > T j / /(^, y) cfyj 2 A„(x„-j:,^i). 
»i=l J a U « J 

But* 2 i) i)* 
^-1 M=1 

Multiplying these last inequalities by using the preceding inequalities and 

summing, we get 

2 ^ r ir/(x,y)dy\dx^ S 
m=l M=1 J a {J ^ J M=1 

and so, proceeding to the limit, 

j" ■UV(af,y)<iy|«£r>*. 
But S=:t=P^py(x,y)(dxdy), 

and so one of the repeated integrals is equal to the double integral. Similarly the other 

repeated integral is equal to the double integral 

Corollary. If/(^, be a continuous function of both variables, 

V(^.y)‘^y} = />r ^ f{x,y)dx^. 

4*4. Infinite integrals. 

If lim Q f{x)do^ exists, we denote it by J f{x)dx] 

question is called an infinite integral f. 

Examples. 

(1) 

(2) 

(3) 

j a X^ 6^00 \a oj a 

By integrating by parts, shew that p^e~^dt^n!. 

and the limit in 

(Euler.) 

Similarly we define f{x)dx to mean ]^^Pjix)dx, if this limit exists; and 

P f(x)dx is defined as p f(x)dx‘hP^f(x)dx. In this last definition the choice 

of a is a DGiatter of indifference. 

* The upper bound of /(«, y) in the rectangle ^4,,,,^ is not less than the upper bound 

of f[x, y ) on that portion of the line x=^ which lies in the rectangle. 
■j* This phrase, due to Hardy, Proc. London Math. Soc. xxxiv. (1902), p. 16, suggests the 

analogy between an infinite int^ral and an infinite series. 
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4'3. Double integrals and repeated integrals. 

Let fix, y) be a function which is continuous with regard to both of the 

variables x and y, when a%x^b, 

By § 4-2 eiample 2 it is clear that 

I I j (x, y) dy| dx, j ||^/(x, y) dy 

both e-xist. These are called repeated integrals. 

Also, as in § 3‘62, /(x, y), being a continuous function of both variables, 

attains its upper and lower bounda 

Consider the range of values of ^ and y to be the points inside and on a 

rectangle in a Cartesian diagram; divide it into np rectangles by lines parallel 

to the axes. 

Let be the upper and lower bounds of f{x, y) in one of the 

smaller rectangles whose area is, say, ; and let 

« r » p 

m-1 /s.s=l #4-1 

Then and, as in § 4-11, we can find numbers which 

are the lower and upper bounds of respectively, the values of 

depending only on the number of the rectangles and not on their 

shapes; and We then find the lower and upper bounds {S and s) 

respectively of functions of n and v\ and Sn,y^S^s^Sn,yy as in 

§4*1L 

Also, from the uniformity of the continuity of f{x, y), given e, we can find 

B such that 

I for all values of m and y,) whenever the sides of all the small rectangles are 

less than the number S which depends only on the form of the function f(x, y) 

and on e. 

And then Su,„ < e (6 - a) — a), 

and so S - 5 < e (6 - ci) (/3 - a). 

But S and s are independent of €, and so S ^ s. 

The common value of S and s is called the double integral of f{x, y) and 
is written 

It is easj to shew that the repeated integrals and the double integral are all equal 
when/[x^ y; is a continuous function of both variables. 
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(I) Absolutely convergent integrals. It may be shewn that J f{^) dso 

certainly converges if J* \f{x) ] dx does so; and the former integral is then 

aaid to be absolutely convergent. The proof is similar to that of § 2-32. 

Exam^. The campariton test. If |/(■v) | and j^<j{x)dx converges, then 

j f(x)dx coQverges absolutely. 

[Note. It was observed by Dirichlet* that it is not necessary for the convergence of 

P f{x)dx that/(3r)^0 as :c-^c30 : the reader may see this by considering the function 

f(x)=0 -'(^ + 1)“*®)? 

/(^)«(7i+l)^(7i4-l -a;) {x-(?i + l) + (?t+l)*"®} (71+1 + + 

where n takes all integral values. 

P(,r j^/{x)clx inci-eases with f and j f(.v)dx=^{n.+l)~^; whence it follows 

without difficulty that J /(jf) ctr converges. But when x=n + l(n + l)"*,/W=i : 

and so/(^) does not tend to zero.] 

(II) The Maxlaurin-Cauchy'f test. If / {so) > 0 and f {so) 0 steadily, 

f{x)dx and i f{n) converge or diverge together. 

For ^ r VW 
J m 

n fn+l , n+1 

and so 2 /(»»)> 2 /(m). 
m=l J 1 

The first inequality shews that, if the series converges, the increasing sequence 

f{x)dx converges (§ 2-2) when n-^oo through integral values, and hence it follows 

without difficulty that j“^f(x)dx converges when aZ-^-co ; also if the integral diverges, 

SO does the series. 

The second shews that if the series diverges so does the integral, and if the integral 

converges so does the series (§ 2-2}. 

(Ill) Bertrand’s* test. If f (x) = 0 converges when 

X < 0 i and if/(a:) = 0 (loga;}^-i), f“ f{x) dx converges when X < 0. 
- a 

These results are particular cases of the comparison test given in (1). 

* Dirichlet’s example was /(.r) = sin ; Journal fiir Math. xvii. (1837), p. 60. 

t Maclanrin (Fluxions, i. pp. 289, 290) makes a verbal statement practically equivalent to this 

result. Cauchy’s result is given in his Oeuvres (2), vii. p. 269. 

X Journal de Math. vii. (1842), pp. 38, 39. 
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(IV) Chartier'$ test* for integrals involving periodic functions. 

is bounded as r-*^oo, If f(s) 0 steadily as a; oo and if f ip {x)dx 
1 J a 

then f(r) if> (x) dx is convergent, 
J a 

For if the upper hound j J* (t>ir)dx be A» we can choose X such that f(x)<€l2A 

when a^X; and then by the second mean value theorem, when x" we have 

Ifix) <^ («) j = j /(y) (x) dU j =/(a/) j <p (x) dx-j^^ 4>(x)clx ^ 24/(3/) < t, 
which is the condition for convergence. 

_ , _ /* sin ar , 
Example 1. I -dx converges. 

JO r 

Example 2. J x-'^Bm{!x^-^Qx)dx converges. 

4‘431. Teds for uniformity of'convergence of an infinite integral^. 

(I) Be la Vallie Poussins testl. The reader will easily see by using 

the reasoning of § 3*34 that j f{x, a) dx converges uniformly with regard 
J a 

to a in a domain of values of a if \f{x, a)\< p(x% where /i(x) is independent 

of a and j fi{x)dx converges. [For, choosing X so that j fj,{x)dx<€ 
J a J af 

when x'*'^x we have f{x, a)dx < e, and the choice of X is inde- 
I J 

pendent of a.] 

Example, x^^^e^^dx converges uniformly in any interval (A, B) such that 

(II) Tke method of change of variable. 

This may be illustrated by an example. 

Consider / dx where a is real, 
io r 

We have dir = ^^dy. 
Jr' r jar! y ^ 

Since j dy converges we can find T such that j dy j<f whenF. 

So 

/ 

dx\<€ whenever \ ax'\'^T; if | a j ^ d > 0, wo therefore get 

sin CL 

J X' 
dx\< 

* Journal de Math. xvin. (1853), pp. 201-212. It is remarkable that this test for conditionally 
convergent integrals should have been given some years before formal definitions of absolutely 
convergent integrals. 

t The results of this section and of § 4*44 are -due to de la Vallde Poussin, Ann. de la Soc. 
Scientijique de Bruxelles^ xvi. (1892), pp. 150-180. 

X This name is due to Osgood. 
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when F/»; and this choice of JT is independent of a. So the convergence is 

uniform when a ^ d > 0 and when a ^ — d < 0. 

Exam^e. f i sin (0‘^) ^ i® uniformly convergent in any range of real 

values of a. “ (de la VaUte Poussin.) 

[Write and observe that j *-i8in2(fe | does not exceed a constant inde¬ 

pendent of a and a; since z-isisxzdz converges.] 

(TIT) T/ie method of integration by parts. 

If j f{x, a)dx=<f> {x, o-)+j X (^. “) 

and if ^(ar, a)-*-0 uniformly as x—aj and x (^> “) ^ converges umformly with regard /3D 

f(x, a) dx converges uniformly with r^rd to a. 

(IV) The Tnethod of decomposition, 

ExampU. "da,-^i/" ; 

both of the latter integrals converge unifoi-mly in any closed domain of real values of 

a from which the points a= ± 1 are excluded. 

4*44. Theorems concerning uniformly convergent infinite integrals. 

(I) [* f{x, a) dx converge uniformly when a lies in a domain 8. 
J a 

Then, if f(x, a) is a continuous function of both variables when x>aand 

a lies in S, [” f (x, a) dx is a continuous function* of a. 

“ 1 /■“ 
For, given e, we can find X independent of a, such that | j ^ fix, a)dx <e 

whenever 

Also we can find S independent of x and a, such that 

!/(«, a)-fix, a') 1 < e/(X - a) 

whenever | o — a' | < 8. 

That is to say, given e, we can find 8 independent of a, such that 

[“ fix, o') dx - 1“ fix, a)dx ^ {fix, a)-fix, a')} dx 

-J- j f(x,a')dx -b j^fix,a.)dx{ 

< 36, 
whenever [ a - o | < 8 ; and this is the condition for continuity. 

* This result is due to Stokes. His statement is that the integral is a continuous function 

of tt if it does not ‘ converge infinitely slowly.’ 
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(II) Jf f{x, a) satisfies tke same conditions as in (I), and if a lies in S 
token A^a^B, then 

For, by § 4-3, 

Therefore 

t, 
IJ^/ («. o) da;| (ia = I 1/(x, a) daj dx. 

i I J„ ^ ‘^“1 i 

~ |/^ l/{ 
< f eda < € (B — A), 

J A 

for all suflSciently large values of 

But, from ^ 2*1 and 4*41, this is the condition that 

lim [ if f{x,a)da^ dx 
J a [J A 

should exist, and be equal to 

Corollary. The equation 

fj{f 
da J —J 0~ true if the integral on the 

right converges uniformly and the integrand is a continuous function of both variables, 

when x^a and a lies in a domain S, and if the integial on the left is convergent. 

Let j1 be a point of S, and let a), so that, by § 4*13 example 3, 

/(^» a) da-<t> (^5 «)-'<#» (*2^, -4). 

Then j^ {j^ converges, that is J {<#» {x, {x, A)} dx converges, 

and therefore, since j <f) {x, a) dx converges, so does j <f){x. A) dx. 

Then. ~ (f, (x, a) dx~J = ^ {(#. (x^ a) -1#> {x, A)} d^ 

- a 

•>*}'* 

=iyix,a)dx=jy±dx, 

which is the required result; the change of the order of the int^rations has been justified 

above, and the diffei*entiation of j with regard to a is justified by § 4*44 (I) and § 4*13 

example 3. 
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4'5. Improper integrals. Principal values. 

If I fix) l->oo asaj-^a + O, then lim [ f(‘r)dx may exist, and is 

written simply f f{a>) dx; this limit is called an improper integral. 
J a 

If |y(a;) 1 —>00 as c, where a<c<b, then 

fe-i fb 
lim I f(x)dx‘h lim f{x)dx 

d a S'-s^+O J c+4' 

may exist; this is also written j f{x)dx, and is also called an improper 

integral; it might however happen that neither of these limits exists when 

S, S' -> 0 independently, but 

lim I f /(x)clx+f f(x)dA 
a-«-4-o [J a d c+S ) 

exists; this is called ‘ Cauchy’s, principal value of J ^/(x)dx’ and is written 

for brevity P f fim) dx. 
J a 

Eesults similar to those of §§ 4-4-4-44 may be obtained for improper 

integrals. But all that is required in practice is (i) the idea of absolute 

convergence, (ii) the analogue of Bertrand’s test for convergence, (iii) the 

analogue of de la Vallde Poussin’s test for uniformity of convergence. The 

construction of these is left to the reader, as is also the consideration 

of integrals in which the integrand has an infinite limit at more than one 

point of the range of integration^. 

Examples. (1) j^ cos ^ c£a? is an improper integral. 

(1 (ia: is an improper integral if 0<X<1, 0<f4<l. 

It does not converge for negative values of X and ;x. 

(3) P • dx is 
t; 

0<a<l. 

the principal value of an improper integral when 

4-51. The inversion of the order of integration of a certain repeated integral. 

General conditions for the legitimacy of inverting the order of integration when the 

integrand is not continuous are difficult to obtain. 

The following is a good example of the difficulties to be overcome in inverting the 

order of integration in a repeated improper integral. 

• For a detailed dieoussion of improper integrals, the reader is referred either to Robson’s or 

to Pierpont's Function, of a Real VariabU. The connexion between mfimte int^als and 

improper integrals is exhibited by Bromwich, InfniU Ser%et, S 164. 
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Xei /(^j y) he a continuous fimction of both vanahles^ and let 0<X<1, 

0<y<l; then 

dx I V”^ (1 V(^^ y) ^y] 

=dy I (1 -a;-y)‘’"^/(*, y) cir|. 

This integral, which was first employed by Dirichlet, is of importance in the theory of 

integral equations; the investigation which we shall give is due to W. A. Hurwitz*. 

Let (1 V(^,y)=<#> (^, y); and let M be the upper boimd of \f{x,y) 1. 

Let d be any positive number less than J. 

Draw the triangle whose sides are y=d, .a?+y== 1 — d; at all points on and inside 

this triangle <l> (x, y) is continuous, and hence, by § 4*3 corollary, 

-/f ^ ♦(-, j)*}. 
Now 

where 

But 

<#• («) y) ‘^yj- = ^ ’’’/j 

■fi “ ^ (^. y) ^ j <#> (^. y) %• 

1 /i 1 <J* (1 rfy 

^(1 -X-S)'"^ y*"'rfy, 

since (l-x--y)*'“^^(l-x-'3)*'“^ 

Therefore, writing x=(1 ~ 3) xi, we have t 

Ipfr^dx I (l-:5-dr^dx 

<1/^* (1 - 

O—O as a-*-0. 

The reader will prove similarly that /,^dx -»• 0 as 3 0» 

Hence J j ^ <#> (^> y) ^y| — f^o/s ^ {/o 

= I™ IJj <#’ y) ‘^y} 

* ^nnal» of Mathematics^ iz. (1908), p. 183. 

t j Xi^“^(l-xi)*'''^ dxi^zB (X, v) exists if X>0, y>0 (§ 4*6 example 2). 

X The repeated integral exists, and is, in fact, absolutely convergent; for 
r\-9 

Jo 
writing y 

e repeated integral exists, and is, in fact, absolutely convergent; for 

“*|x^-'ly^*l(l-x^y)>'“V(aJ, y)dy|<Mx^“l(l-x)^-‘-*'"l fV-l(lds, 

' n f ^ 
rss(l--x)s; and / (1dx . | *^(1^ d« exista And since the 

. . *x , ° . ri-2« B'WvflTa iTo vralnA Itiwi I *v»n«r Ih^m I integral exists, its value which is lim I 
if •-^►0 y s 

may be written lim / ^ 
a 
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by what has been already preyed; but, by a precisely similar piece of work, the last 

integral is , 

We have consequently proved the theorem in question. 

Corollary. Writing |=o+(6-o)a;, ri=h-{b-a)y, we see that, if <#> (|, ij) is con- 

timious, 

r I(6 - (-? - f)"" 4> (I. >?) 

=/'’di, IJ’ (I. • 

This is called Dirichlet’s formula. 

INote What are now called infinite and improper inte^ls were defined by Cauchy, 

Lefcu sur le calc. inf. 1823, though the idea of 
Maclaurin (1742). The test for convergence was employed by Chartier ( ). 
(1847) distinguished between ‘essentiaUy’ (absolutely) and non-easentially convergent 

integmls thoil^i be did not give a formal definition. Such a de&ition was pven by 

DiriSet in 1854 and 1868 (see his VorhcuTujm, 1904, p. 39). In the 

nineteenth century improper integrals received more attention than intote ’ 

probably because it was not fully realised that an infinite mtegral is reaUy the hmtt 

of an integral.] 

4*6. Complex integration*. 

Integration with regard to a real variable ® may be regarded as integration 

along a particular path (namely part of the real axis) in the Argand diagram. 

Let /(.?), (= P + iQ), he a function of a complex variable z, which is continuous 

along a simple curve AB in the Argand diagram. 

Let the equations of the curve be 

as = a; (t), y — y(P) (a < f < ^•)- 

Let x{a) + iy{a)-z,i, xQ})-\-iyQ>) = Z. 

Then iff x{t), y(t) have continuous differential coefficients J we define 

f{z) dz taken along the simple curve AB to mean 

The 'length- of the eutee .15 wUl be defined aa /^V (a) +(s) * 

It obviously exists if f are continuous; we have thus reduced the 

discussion of a complex integral to the discussion of four real integrals, viz. 

/>s* !»■ jy> 
and Cauchy’s Theorem. 

f This assumption will be made throughout the subsequent work. 

+ Cp. § 4*13 example 4. 
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By § 4‘13 example 4, this definition is consistent with the definition of an 

integral when A.B happens to be part of the real axis. 

f{z) /(*) dz, the paths of int^ration being the same (but in 

0|^EK»ifce directions) In each integral. 

=- V)* 

4*61. The fundammtal theorem of complex integration. 

From § 4*13, the reader will easily deduce the following theorem: 

Let a sequencje of points be taken on a simple curve ; and let the first 

n of them, rearranged in order of magnitude of their parameters, be called 

== -2^0, ^; let their parameters be tf^, tf^\ ... 

and let the sequence be such that, given any number S, we can find N such 

that, when n >i^, 2,...,n; let be any point 

whose imrameter lies between ; then we can make 

r=a J 

arbitrarily small by taking % sufficiently large. 

4'62, An upper limit to the value of a complex integral. 

Let M be the upper bound of the continuous function \f{z) |. 

Then |/VW‘*'l<fj/Wll(S + *S)|'« 
-T+ dt) ^ (irf dt 

where I is the ‘ length ’ of the curve z^. 

That is to say, j J f{z) dz cannot exceed Ml. 

4*7. Integration of infinite series. 

We shall now shew that ii S{z)==Ui{z)-\-U2(z) +... is a uniformly con¬ 

vergent series of continuous functions of z, for values of z contained within 

some region, then the series 

I Ui(z)dz-\- I U2(z)dz-\- 
J c J c 

(where aU the integrals are taken along some path C in the regioil) is con¬ 

vergent, and has for sum f 8 (z) dz. 
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For, writing 

S (z) = (z) + «, (z) +... + (z:) + Rn (A 

79 

we have 

j S(z)dz=i j (z) dz + ,.. -h (z) dz + (^) 

Now since the series is uniformly convergent, to every positive number e 
there corresponds a number r independent of z, such that when n ^ r we have 

1 Rn I < values of ^ in the region considered. 

Therefore if I be the length of the path of integi'ation, we have (§ 4*62) 

f Rn{^) 
J c 

dz < eh 

Therefore the modulus of the difference between | S{z)dz and 
J c 

if «».(«) dz can be made less than any positive number, by giving n any 
j»»li c f 
sufficiently large value. This proves both that the series ^ 

convergent, and that its sum is j^S(z)dz. 

Corollary. As in § 4-44 corollary, it may be shewn that* 

C? * / N * d .V 
^ 2 u^{z)= 2 
az »=o «=o ^ 

if the series on the right converges uniformly and the series on the left is convergent. 

Example 1. Consider the series 

2^ {n (ti+1) sin-* X® — 1} cos ^ 

nil { 
in which x is real. 

The nth term is 

{1 +«* sin»a^} {1 + (»+1)» sin“ ar“} ’ 

^xncoBO^ 2a; (^4-1) cos ^ 

l+Ti^sin^a;^ l + (7i-4‘l)*5in*a;^* 

and the sum of n terms is therefore 

2a? cos'a^ 2a; 4-1) cos xl^ 

r+wn^“’ I4“(w4-l)^sin^^^‘ 

Hence the series is absolutely convergent for all real values of x except ±>/(m7r) 

where 2,...; but 
2a? (^4-1) cos ay* 

K w - siii2 ^ > 

and if w be any integer, by taking a?=(n4“ 1)”^ i^bis has the limit 2 as n-^cc. The series is 

therefore non-uniformly convergent near a?=0. 

means where h-^0 along a definite simple curve; this definition * d/(z) 
W --- XUeOAlD JIAAU. —-, 

dz 
U modified sUghtly in §6-12 in the case when/(z) U an analytic function 
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Now the sum to infinity of the series is > and so the integral from 0 to a; of 
A “i sm 

the sum of the series is arc tan {sin :r®}. On the other hand, the sum of the integrals from 

0 to ar of the first n terms of the series is 

arc tan {sin a^} - arc tan {(^4-1) sin 3^}, 

and as this tends to arc tan {sin a?2}-~^fr. 

Therefore the integral of the sum of the series differs from the sum of the integrals of 

the terms by 

Example 2. Discuss, in a similar manner, the series 

H=i n {n + 1) (14*s*^a?2) +1^2) 

for real values of a;. 

Example 3. Discuss the series 

t^i+W2 4-af3 + ..*, 

where 

for real values of z. 

The sum of the first n terms is so the sum to infinity is 0 for all real values 

of z. Since the terms Un are real and ultimately all of the same sign, the convergence 

is absolute. 

In the series /Uidz+I U2dz-h I u^dz+...y 
0 Jo Jo 

the sum of n terms is J (1 - and this tends to the limit ^ as n tends to infinity; this 

is not equal to the integral from 0 to 2^ of the suna of the series 2?^. 

The explanation of this discrepancy is to he found in the non-uniformity of the 

convergence near 2:==0, for the remainder after 91 terms in the series ^1+^2 + ••• Is - nze~^^; 

and by taking z^nr^ we can make this equal to which is not ar)?itrarily small; the 

series is therefore non-uniformly convergent near 

Example 4. 

whei*e 

Compare the values of 

/ I 2 v.Xdz and 2 / u^dz^ 
Jo ln=l J n=lj 0 

2n^z_2(n^iyz 
(1 4.n^z^) log (71+1) {1 + (« +1 log (71+2) 

(Trinity, 1903.) 
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Miscellaneous Examples. 

1. Shew that the integrals 

I sm(^)<£ar, I co^ {3p)cbc^ I x exp (— sin'-* a?) 
Jo Jo Jo 

converge. (Diiichlet and Dti Bois Reymond.) 

2. If a be real, the integral 

is a continuous function of cu (Stokes.) 

3. Discuss the unifonnity of the convergence of I x sin - ax) dx. 
Jo 

1^3 jxsin (x^ — ax) dx^ “ {^-ctx) 

” j{h i) ] 
(de la Yall^ Poussin.) 

4. Shew that I exp[-e^(x^-7ix)]dx converges uniformly in the range (—iir, W) 

^ (Stokes.) of values of a. 

5. Discuss the convergence of f - 
Jo I 

af'dx 
; when iJLt V, p are positive. 

+x^ I sin^ |p 
(Hardy, Meismger^ xxxi. (1902), p. 177.) 

6. Examine the convergence of the integrals 

Jo \x 2 l~c*/ a; Jo 

7. Shew that /: 
(Math. Trip. 1914.) 

dx 
■ exists. 

x^ (sin a:)^ 

8. Shew that J j7“ sin 2x<i!r converges if a > 0, n>0. (Math. Trip. 1908.) 

9. If a series ff(z)= i (c„-c„ + i)sin (2v+l) ir2, (in which Co=0), converges uniformly 
v=0 

yr * C 
in an interval, shew that a (z) -is the derivative of the series /(^)« 2 — sin Spttz. 

sin irz »r=i V 

(Lerch, Ann. de VEc. norm. mp. (3) xil. (1895), p. 351.y 

X, r r dxxdx....dx^ , r r r dx^dx^i...dx\ 
10. Shew that I ... . . * and I ... ■ .-r 

J J J (V + ^2 +*-+^nT J J J Xi'^ + X2^+...+Xn^ 
converge when a>in and a-^+/3’-'^ + ...+X-^ < 1 respectively. (Math. Trip. 1904.) 

11. If / (Xj y) be a continuous function of both x and p in the ranges (a ^x^d), (a^y^b) 

except that it has ordinary discontinuities at points on a finite number of curves, with 

continuously turning tangents, each of which meets any line parallel to the coordinate axes 

only a finite numl)er of times, then J^/ix, y) dx is a continuous function of y. 

[Consider {/(.r, i/+A)-/(.v, y)}dx, where the numbers 
J a J fli+e| J 

bjy ^2, ... «!, ^2) — »re so chosen as to exclude the discontinuities of /(x, y+A) from the 

range of integration; Uj, Oa, ... being the discontinuities of/(.t?, y).] (Bdcher.) 



CHAPTER V 

THE FUNDAMENTAL PROPERTIES OF ANALYTIC FUNCTIONS ; 
TAYLORS, LAURENTS AND LIOUVILLRS THEOREMS 

61. Property of the elementary functions. 

The reader will be already familiar with the term elementary function, as 
used (in text-books on Algebra, Trigonometry, and the Differential Calculus) 
to denote certain analytical expressions* depending on a variable z, the 
symbols involved therein being those of elementary algebra together with 
exponentials, logarithms and the trigonometrical functions; examples of such 
expressions are 

eF, logz, arc sin 

Such combinations of the elementary functions of analysis have in common 
a remarkable property, which will now be investigated 

Take as an example the function e®. 

Write ^—fif)- 

Then, if be a fixed point and if / be any other point, we have 

-f{^) - 1 
^ z' — z ‘ / —^ 

21 31 

and since the last series in brackets is uniformly convergent for all values of 
z\ it follows (§ 3*7) that, as z-^z, the quotient 

m-f{^) 
z' — z 

tehds to the limit e*, uniformly for all values of arg {z* — z). 

This shews that the limit of 

f{z^)^f{z) 

£ ’-z 

is in this case independent of the path by which the point £ tends towards 
coincidence with z. 

It will be found that this property is shared d>y many of the well-known 
elementary functions; namely, that if f{z) be one of these functions and h be 

* The reader will observe that this is not the sense in which the term function is defined 
(§ 3’1) in this work. Thus e.g. x-iy and | z | are functums of z(=zx+iy) in the sense of § 3*1, 
but are not elementary ftmctions of the type under consideration. 
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any complex number, the limiting value of 

€txdsts ctfudf is vfidspssid&nt of ths Tuodo tti which h tends to zero. 

The reader will, however, easily prove that, if /(«)= x -iy, where z = x + iv 

then lim is not independent of the mode in which A—»0. 

511. Occcmonal failure of the property. 

For each of the elementary functions, however, there will be certain points 
^ at which this property will cease to hold good. Thus it does not hold for 
the function l/(z — a) at the point z^a, since 

h {z — a + h z—aj 

does not exist when z = a. Similarly it does not hold for the functions log z 

and ^ at the point z = 0. 

These exceptional points are called singular points or singularities of the 

function/(z) under consideration; at other points f{z) is said to be analytic. 

The property does not hold good at any point for the function \z\. 

512. Cauchy’s* definition of an analytic function of a complex variable. 

The property considered in § 5-11 will be taken as the basis of the 

definition of an analytic function, which may be stated as follows. 

Let a two-dimensional region in the ^-plane be given; and let it be a 

function of z defined uniquely at all points of the region. Let z,z + Zz be 

values of the variable z at two points, and u, u Su the corresponding values 

of u. Then, if, at any point within the area, ^ tends to a limit when Sx->0, 

Sy->0, independently (where Sz=Sx + iSy), u is said to be a function of 

which is monogenic or analyticf at the point. If the function is analytic and 

one-valued at all points of the region, we say that the function is analytic 
throughout the regionX. 

We shall frequently use the word ‘ function ’ alone to denote an analytic 
function, as the functions studied in this work will be almost exclusively 
analytic functions. 

* See the memoir cited in § 5-2. 

t The words * regular ’ and ‘ holomorphic ’ are sometimes used. A distinction has been made 

bj Borel between * monogenic ’ and ‘ analytic ’ functions in the case of functions with an infinite 
number of singularities. See § 5*51. 

i See § 5*2 cor. 2, footnote. 
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In. the foregoing definition, the function u has been defined only within 

a cer^ region in the xr-plane. As will be seen subsequently, however, the 

function u can generally be defined for other values of z not included in this 

region; and (as in the case of the elementary functions already discussed) 

may have siryuiaritm, for which the fundamental property no longer holds, 
at certain points outside the limits of the region. 

We shall now state the definition of analytic functionality in a more 
arithmetical form. 

<€ 

Let jT(z^ be analytic at and let e be an arbitrary positive number; 
then we can find numbers I and S, (S depending on e) such that 

/(^)-/(^) 

whenever | / — ^ [ < S. 

is analytic at all points of a region, I obviously depends on «; we 
consequently write 

Hence /(/) + + v(z'-z), 

where » is a function of sr and s' such that |o|< e when \ z'-z\<S. 

Example 1. Find the points at which the following functions are not analytic : 

*—1 (iii) r*-5r+e (^=2,3). 
(i) 

1 

(iv) e* (2=0). 

fanSrSew thit V, y are real and / is an analytic 

du dv dp 

(ii) cosec 2 (2=nir, n any int^r). 

(v) {(r-1)*}* (4=0,1). 

ds dy^ dy dx' (Riemann.) 

6-13. An applimtion of the modified Heme-Borel aieorem. 

Let f{z) be analytic at all points of a continuum; and on any point z of 

the bomdary of the continuum let numbers f (z), 8 (8 depending on z) exist 
such that ^ o / 

1/(^')-/(^)-W-z)f(z)\<€\z'-z\ 

whenever |« — ^ (< 8 and z' is a point of the continuum or its boundary. 

[We TOte A (4) instep of/'(r) as the differential coefficient might not exist when 

4'approache84from outside theboundaryso that A (x) is not necessarily a unique derivate.] 

The above inequality is obviously satisfied for all points « of the continuum 
as well as boundary points. 

Applying the two-dimensional form of the theorem of § S'fi, we see that 

the region formed by the continuum and its boundary can be divided into 

a finde number of parts (squares with sides parallel to the axes and their 
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interiors, or portions of such squares) such that indde or on the boundary of 
any part there is one point Zj such that the inequality 

\f{z*) -f{z^) ~ {Z* - Z^)fj (^i) I < € I y - -STj I 

is satisfied by all points / inside or on the boundary of that part. 

5*2. Cauchy's theorem* on the integral of a function round a 

CONTOUR. 

A simple closed curve C in the plane of the variable ^ is often called 
a contour j if Ay D be points taken in order in the counter-clockwise sense 
along the arc of the contour, and if y (^z) be a one-valued continuous■f* 
function of ^ (not necessarily analytic) at all points on the arc, then the 
integral 

f f{z)dz or f f{z)dz 
J ABBA J«J> 

taken round the contour, starting from the point A and returning to A again, 
is called the integral off{z) taken along the contour. Clearly the value of the 
integral taken along the contour is unaltered if some point in the contour 
other than A is taken as the starting-point. 

We shall now prove a result due to Cauchy, which may be stated as 
follows. If f(z) is a function of Zy analytic at all points onX and inside a 
contour 0, then 

f f(z)dz = 0. 
‘'(C) 

For divide up the interior of C by lines parallel to the real and imaginaiy 
axes in the manner of § 5*13; then the interior of C is divided into a number 
of regions whose boundaries are squares Ci, Cg, ... Cm and other regions 
whose boundaries A> ••• -Djy are portions of sides of squares and parts 
of G; consider 

2 f /(z)<U+ 2 f /(s)dz, 
n=l-J (On) n=lJ (Bn) 

each of the paths of integration being taken counter-clockwise; in the 
complete sum each side of each square appears twice as a path of integration, 
and the integrals along it are taken in opposite directions and consequently 
cancel§; the only parts of the sum which survive are the integrals of f{z) 

* Mimoire sur Us intSgraUs Mfinies prises entre des limites imaginaires (1825). The proof 
here given is that due to Goursat, Trans. American Math. Soc. i. (1900), p. 14. 

t It is sufficient for f(z) to be continuous when variations of z along the arc only are 
considered. 

t It is not necessary that / (z) should be analytic on C (it is sufficient that it be continuous 
on and inside 0), but ii f{z) is not analytic on C, the theorem is much harder to prove. This 

proof merely assumes that /' (r) exists at all points on and inside C. Earlier proofs made more 

extended assumptions; thus Cauchy's proof assumed the continuity of f'{z). Riemann's 

proof made an equivalent assumption. Goursat’a first proof assumed that f(z) was uniformly 
differentiable throughout C. 

§ See § 4*6, example. 
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taken along a number of arcs which together make up C, each arc being 

taken in the same sense as in I* f {z) dz; these integrals therefore just make 
ho 

lip I 
J (C) 

Now consider f f{z)dz. With the notation of § 5-12, 
hc») 

[ f{z) dz==[ {/(z,) + (z-Z,)f (z.) + (i' - Z,) i)} dz 
J {c%) J (CW) 

But f d« = [^]cw = 0, / 
J (C») L J^n 

by th© exaniples of § 4*6, sine© the end points of coincide. 

Now let In be the side of Gn and An the area of (?». 

Then, using § 4*62, 

If f(z)dz = [ (z-zi)vdz\^[ \{z-Zi)vdz\ 
\hc*) '•'(c.) 1 

<el„V2.[ \dzl=el„V2.4,l„=‘4>eA„>/2. 
J On 

In like manner 

If f{z)dz\4:\ \{z-z^)vdz\ 

^ 4€ (j4/ + ln\t^ s/^i 

where An is the area of the complete square of which Dn is part, In is the 
side of this square and Xn is the length of the part of G which lies inside this 
square. Hence, if X be the whole length of (7, while I is the side of a square 
which encloses all the squares Gn and !)„, 

1 f f{z)dz < 2 1 f f{z)dz + S I f f{z)dz 
IJ (O n=l 1 i (Ch) »=1 I J (JDw) 

( M N ^ ) 

<4€V2i S A„+ 2 An' + l 2 
U“i 1 

< 4e V2 * + ^X). 

Now e is arbitrarily small, and I, X and I f{z)dz are independent of e. 
J (O 

It therefore follows from this inequality that the only value which I / (z) dz 
" c 

can have is zero; and this is Cauchy’s result. 
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Cordlarv 1. If there are two paths 20AZ and from 26 to Z, and if/(z) is a 

function of 2 analytic at aU points on these curves and throughout the domain enclosed by 

these two paths, then has the same value whether the path of integration is 

S.AZ or z^Z. This follows from the fact that zoAZBz, is a contour, and so t^ integral 

taken round it (which is the difference of the integrals along z^AZ and zoBZ) is zero. 

Thus, if /(z) be an analytic function of 2, the value of j^^/iz) dz is to a certain extent 

independent of the choice of the arc AB, and depends only on the terminal points A and R. 

It must be borne in mind that this is only the case when f{z) is an analytic funaton in tbe 

sense of § 5‘12. 

Corollary 2. Suppose that two simple closed curves and Uj are given, such that 

completely encloses Cu as e.g. would be the case if Ci, and U, were confocal ellipses. 

Suppose moreover that/(2) is a function which is analytic* at all ^“^s ^0 and Uj 

and throughout the ring-shaped region contained between Co and C\. T en y a 

network of intersecting lines in this ring-shaped space, we can shew, exactly as m the 

thoorem just proved, that th^ integrcil 

J /(«) 

is zero where the integration is taken rmnd the whole boundary of Hng-sha-ped sp^; 

this boundary contistZg of two ewmes C„ and C„ tht one described in the counter-clochmse 

direction and the other described in the clockwise direction. 

GoroUary 3. In general, if any connected region be given in the 2-plane, bounded by 
, . 1 1 A P and ifbe any function of ^ which 

any number of simple closed curves 6o, Oi, 1/2? •••» ^ 
is analytic and one-valued everywhere in this region, then 

I f(z)dz 

is zero, where the integral is taken round the whole boundary of the region ; thu hounda^ 

consisting of the curves Co, C.,.... each described in such a s^e thot the 
either Zays on the right or always on the left of a person walking in the sense in question 

round the boundary. 

An extension of Cauchy’s theorem f f(z) dz=Q, to curves lying on a cone whose vertex 

is at the origin, has been made by Bavut {Nouv. Annales de Math f) 
pp. 365-7). Morera, Rend, del 1st. Lombardo, xxil. (1889), p. 191, and Osgood, Bull. 

Amer. Math. Sac. il. (1896), pp. 296-302, have shewn that the property J f(z)dz=0 

may be taken as the property defining an analytic function, the other properties being 

deducible from it. (See p. 110, example 16.) 

JSivample. A ring-shaped region is bounded by the two circles | z ]=1 and 121 = 2 in the 

a-plane. Verify that the value of J where the integral is taken round the boundary 

of this region, is zero. 

* The phrase ‘ analytic throughout a region’ implies one-valuedness (§ 5*12); 

that after 2 has described a closed path surrounding Co, /(^) has ^ ^t 

function such as logs considered in the region 1<|2|<2 wiU be said to be analytic 

points of the region.* 



88 THE PBOCE88ES OF ANALYSIS [OHAF. 

For the boundary consists of the circumference |^|—1, described in the clockwise 

direction, together with the circumference |«|=2, described in the counter-clockwise 

direction. Thus, if for points on the first circumference we write and for points on 

the second circumference we write then 6 and (f> are real, and the integral becomes 

jo 2e’4> 
— 2iri+2ir2==0. 

5*21. The value of an ainalytic function at a pointy expressed as an integral 
taken round a contour enclosing the point 

Let Che a contour within and on which f(z) is an analytic function of z. 

Then, if a be any point within the contour, 

/(^) 

^ — a 

is a function of which is analytic at all points within the contour C except 

the point z=^a^ 

Now, given e, we can find B such that 

\f{2) -/(a) -(«- a)/'(o) I - a| 

whenever | — a | < S; with the point a as centre describe a circle y of radius 
r < S, r being so small that y lies wholly inside C7. 

Then in the space between y and C f{z)l{z--a) is analytic, and so, by 
I 5*2 corollary 2, we have 

f r f{z)dz 
j (1 z — a J y z — a * 

where I and I denote integrals taken counter-clockwise along the curves 
J C J y 

0 and y respectively. 

But, since | ^ — a | < S on % we have 

f /(^) dz ^ f f(a) +(z- a)/' (a) +v(z-a) 
Jy z — a Jy z--a * 

where 11; i < e; and so 

Now, if 2? be on y, we may write 

a = re^^, 

where r is the radius of the circle y, and consequently 

dz f^^ire*^d6 

and 

r dz ire'^dd . _ . 
-- - ~ ^ 27rt, 

JyZ-a Jo re^ Jo 

f dz ^ f ire^^dd *= 0; 
J y Jo 

\L vdz < €,2irr. also, by § 4-62, 
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Thus I j "^“7“ ~ 2'7ri/' (a) I = I j < 27Tr€. 

Blit the left-hand side is independent of e, and so it must be zero, since e 

is arbitrary; that is to say 

f(a)-— f 
^ 27nJc ‘ 

This remarkable result expresses the value of a function f{z\ (which is 
analytic on and inside (7) at any point a within a contour C, in terms of an 
integral which depends only on the value of f{z) at points on the contour 
itsel£ 

Coi'ollary. If /(it) is an analytic one-valued function of 2 in a ring-shaped region 

bounded by two curves C and C\ and a is a point in the region, then 

/(.).• j KI -Qi*, 
^ Stti J c'Z—a 

where € is the outer of the curves and the integrals are taken counter-clockwise. 

5*22. The derimtes of an analytic function f{z)* 

The function f'{z\ which is the limit of 

f{z + h)^f{z) 
h 

as h tends to zero, is called the derivate of f(z). We shall now shew that 
f' (z) is itself an analytic function of z, and consequently itself possesses a 

denvate. 

For if (7 be a contour surrounding the point a, and situated entirely 

within the region in which f(z) is analytic, we have 

/.(„). Urn 

== lim J- If f 
27rtA \j cz—a-h J c . 

f /(^) 
•iJc 27ri j <7 (« - a) (•* - “ - 

= J_ f lim A-. f _. 
27ri j ci.^~ J c ~ {z — a — h) 

Now, on C, f(z) is continuous and therefore bounded, and so is (z — a) 

while we can take ] h j less than the lower bound of ^ — a |. 
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Therefore 

Then, if Z be 

yXf) 
{z — af{z--a — h) 

the length of (7, 

is bounded; let its upper bound be K. 

Um — f -_. 
2'7nJc7(^ ——a —A) 

< lim 1 k I {2w)r^Kl = 0, 

_ , x 1 f dz 
and consequently / (a) = J , 

a formula which expresses the value of the derivate of a function at a point 
as an integral taken along a contour enclosing the point. 

From this formula we have, if the points a and a + A are inside G, 

f'{a-¥h)-f{a) f{z)dz f 1 _ _1_1 
h 27nJc A l(z — a-A/ (z-a)^) 

1 
27n 

2m 

2(z-a-lhj 

J — a — Ilf (z — af 

and it is easily seen that .4 a is a bounded function of z when | h | U-a 

Therefore, as h tends to zero, A“"^ {/' (a + A) — /' (a)| tends to a limit, 
namely 

2 f f{z) dz 

2m J c{z — af* 

Since f\a) has a unique differential coeflScient, it is an analytic function 
of a; its derivate, which is represented by the expression just given, is 
denoted by (a), and is called the second derivate of /(a). 

Similarly it can be shewn that(a) is an analytic function of a, possessing 

a derivate equal to 
2.3/' f{z) dz ^ 

2m J c {z — af’ 

this is denoted by and is called the third derivate of /(a). And in 
general an nth .derivate (a) of /(a) exists, expressible by the integral 

n! r f(z) dz 

2m J c ’ 

and having itself a derivate of the form 

(n + l)l r f(z)dz ^ 

27n J c a)"**"* ’ 

the reader will see that this can be proved by induction without difficulty. 
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A function which possesses a first derivate with respect to the complex 
variable z at all points of a closed two-dimensional region in the ir-plane 

therefore possesses derivates of all orders at all points inside the region. 

5*23. Cauchy’s inequality for f (a). 

Let f(z) he analytic on and inside a circle C with centre a and radius r. 
Let M he the upper hound of f(js) on the circle. Then, by § 4'62, 

^M.n\ 

Example. If f{z) is aBalytic, z=:x -f iy and ^ 

V® log \f{z) 1 = 0; and | /(2:) | > 0 

unless / {«)=0 or /' {z) = 0. (Trinity, 1910.) 

5*3. Analytic functions represented hy uniformly convergeTVt senes. 

Let i fn(,z) be a series such that (i) it converges uniformly along a 
»ssO 

contour C, (ii) fnif) is analytic throughout G and its interior. 

Then 1 fn(z) converges, and the sum of the series is an analytic 
n=0 

function throughout C and its interior. 
00 

For let a be any point inside C; on 0, let 2 fn (^) = ^ (^)* 
it'—O 

Then 

by* § ®tit this last series, by § 5*21, is ^^fn(ci)> series under 

consideration therefore converges at all points inside G; let its sum inside 
G (as well as on G) be called Then the function is analytic if it 

has a unique differential coefficient at all points inside G. 

But if a and a + hhe inside G, 

^{a+h)-^(a) ^ ^ r ^iz)dz_ 
h 27ri J c (z — a) (z ah)^ 

and hence, as in § 5*22, lim [{^ (a + A) - <l> {a)} A“^] exists and is equal to 

* Since \z-a\-^is bounded when a is fixed and z is on C, the uniformity of the convergence 
00 «> 

of S f^{z)l{z-a) follows from that of S fn{z). 
nB>0 
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±.f 
2m J c 

#(^) 
o~ •! y \2 therefore (z) is analytic inside C. Further, by 

transforming the last integral in the same way as we transformed the first 
oo 00 

one, we see that 4>' (a) = 2 /„' (a), so that 2 /«(a) may be ‘ differentiated 
n~0 n—0 

term by term.* 

If a series of analytic functions converges only at points of a curve which is not closed 

nothing can be inferred as to the convergence of the derived series* 

cos 
Thus 2 (- )** .- convej^es uniformly for real values of x (§ 3*34). But the derived 

00 sin me 
series 2 (— -converges non-uniformly near ^=(2m+1) w, (m any integer); and 

nsl n 
m 

the derived series of this, viz. 2 (— cos nx, does not converge at all 
n=l 

Corollary. By § 37, the sum of a power series is analytic inside its circle of con- 

veigence. 

6*31. Analytic functions represented by integrals. 

Let f{t, z) satisfy the following conditions when t lies on a certain path 
of integration (a, 5) and z is any point of a region 8: 

(i) /and ~ are continuous functions of t 

(ii) / is an analytic function of 

(iii) The continuity of ^ qua function of z is uniform with respect to 

the variable t. 

Then J f{t, z)dt is an analytic function of z. For, by § 4*2, it has the 

unique derivate J dt 

6*32. Analytic functions represented by infinite integrals. 

From § 4*44 (II) corollary, it follows that I f{t, z) dt is an analytic 
J a 

function of z at all points of a region S if (i) the integral converges, (ii) f{t, z) 
is an analytic function of z when t is on the path of integration and z is on S, 

j a 

r® y-f \ 

(iii) ... ^ is a continuous function of both variables, (iv) ^ 
oz J a OZ 

converges uniformly throughout S. 

For if these conditions are satisfied f f(t, z) dt has the unique derivate 

/■ 
df^ 

dz 
dt 

* This might have been anticipated as the main theorem of this section deals with uniformity 
of convergence over a two-dimensional region. 
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A case of very great importance is afforded by the integral I dt, 
J 0 

where f(t) is continuous and \f{t) \ <Ke^ where K, r are independent of t] 
it is obvious from the conditions stated that the integral is an analytic 
function of z when R (z) > n > r. [Condition (iv) is satisfied, by § 4*481 (I), 

since I converges.] 
Jo 

6*4 Taylok's Theorem * 

Consider a function f(z\ which is analytic in the neighbourhood of a 
point z=^a. Let C be a circle with a as centre in the ^r-plane, which does 
not have any singular point of the function f {z) on or inside it; so that f (z) 
is analytic at all points on and inside 0, Let z^a be any point inside 

the circle C. Then, by § 6*21, we have 

_ 1 j 1 . h . , ] 
^ls-a'^(s-ay‘ ■" (z - a)’^+^ (z - a - A) 

-/w+r (.)+!;/" (a)+... 

But when z is on 0, the modulus of —-r is 
Z ““ d “■ ft 

by § 3*61 cor. (ii), will not exceed some finite number M. 

Therefore, by § 4*62, 

is continuous, and so, 

I 1 r f{z)dz.h^-^^ 
2-n- \R) ' 

where R is the radius of the circle (7, so that 27riJ is the length of the path 
of integration in the last integral, and JB = [ -? — a | for points z on the cir¬ 

cumference of C. 

The right-hand side of the last inequality tends to zero as n—^ oo , We 

have therefore 

f(a + h) =/(a) + hf (a) +1-,/" (a) + ... + -,/<»• (a) + 

which we can write 

f(z)=f(a) + iz- a)r (a) + («) + ... + («)+-. 

M.^irR /|A|\"+' 
© 

This result is known as Taylors Theorem,\ and the proof given is due to 
Cauchy. It follows that the radius of convergence of a power series is always 

* The formal expansion was first published by Dr Brook Taylor (1715) in his Methodus 

Inerementorum, 
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at least so large as cmly just to exclude from the intenor of the circle of con¬ 

vergence the nearest singularity of the function represented by the series. And 

by § 5‘3 corollary, it follows that the radius of convergence is not larger 

than the number just spemjied. Hence the radius of convergence is just such 

as to exclude from the interior of the circle that singularity of the function 

which is nearest to a. 

At this stage we may introduce some terms which will be frequently 

used. 
Ify'(a) = 0, the function f{z) is said to have a zero at the point z = a. 

If at such a point f (a) is different from zero, the zero of /(a) is said to be 

simpU] if, however,/'(a).•••/'”-"(“) are ^11 zero, so that the Taylor’s 

expansion oi f(z) at a begins with a term in {z-of, then the function 

f{z) is said to have a zero of the nth order at the point z^a, 

Exam^ 1. Find the function/(2), which is analytic throughout the circle G and its 

interior, whose centre is at the origin and whose radius is unity, and has the value 

g-cos^ sin^ 

flt2-2gcosd + l ^ a® —2gco8 d+1 

(where a>l and 6 is the vectorial angle) at points on the circumference of C. 

[We have 

J iirijc 

^ • g® —2acos^ + l ’ 

n\ n I C dz 
“sir Jo a —J (cb-z) 

(putting 

=1——1 
\jix^a~“ZjxxzQ 

n! 

Therefore by Maclaurin’s Theorem*, 

tt=0 “ 

or/(js)**(g-2)“^ for all points within the circle. 

This example raises the interesting question, Will it still be convenient to define /(2) 

as (g“2)~^ at points outside the circle ? This will be discussed in § 5*51,] 

EzampU 2. Prove that the arithmetic mean of all values of 2“** 2 for points 2 on 

the circumference of the circle 121 = 1, is if 2gy2»' is analytic throughout the circle and 

its interior. 

[Let 2 a,^*'=/(2), so that , Then, writing 2=e*«, and calling G the circle 
ys=0 *' • 

' ' ' 1 !^f{z)d6_ 1 ( f{z)dz /’•‘HO), I 
2tr Jo z^ j c 

* The re8ult/(2) =/(0) +2/' (0) + (0) +..., obtained by putting a=0 in Taylor’s Theorem, 

is usually called Maclaurin'z Theorem,; it was discovered by Stirling (1717) and published by 
Maclaurin (1742) in his Fluxioru. 
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ExanipleZ. Let f{z)=z'-, then f{z + h) is an analytic function of h when |A|< |z| 

for all values of r; and so this series converging 

when \h\<\z\. This is the binomial theorem. 

ExampU 4. Prove that if A is a positive constant, and (1 - SaA + A2)-i is expanded in 

l+APi(a)+A*Pj(a)+A3P3W +. 

(where P,(r) is easily seen to be a polynomial of degree « in a), then this senes converg^ 

so long as a is in the interior of an ellipse whose foci are the points a=l and a- -1, and 

whose semi-major axis is | (A-f 4"*). 

Let the series be first regarded as a function of A. It is a POwer 

therefore converges so long as the point A lies within a cij^le in the 
of this circle is the point A=0, and its circumference will be such as to pass through that 

singularity of (l-2aA+A*)“i which is nearest to A=0. 

But 1 - 2aA+A2={A-a+ (a»-1)^} {A- a- -1)*}, 

so the singularities of (l-2aA+A*)-i are the points A-a-(a»-l)i and A=a+(a»-l)4. 

[These singularities are branch points (see § 6-7).] 

Thus the series (A) converges so long as | A | is less than both 

13_(2S_ l)i I and | a + (a*- l)i (. 

Draw an ellipse in the a-plane passing through the point a and having its fofci at ±1. 

Let <a be its semi-major axis, and 6 the eccentric angle of a on it. 

Then cos d-l-t (a* - 1)^ si** 

which gives a± (2? - l)i = {a ± («* -1)*} (cos « ± ^ 

ao |a±(a*-l)4| = <i±(a*-l)^- 

Thus the series (A) converges so long as A is less than the smaller of the numbers 

a H- (aS -1)^ and o - (o» - 1) ie. so long as A is less than a - (a® -1)4. But A=a - (o* -1) 

when a=^ (A -H A”" ^)- 
• Therefore the series (A) converges so long as a is within an ellipse whose foci are 1 and 

— 1, and whose semi-major axis is \ (A+•4“^). 

§•41. Forms of the remainder in Taylors series. 

Let f{x) be a real function of a real variable; and let it have continuous 

differential coefficients of the first n orders when a^x^a + h. 

If we have 

^ |"2 ^ (1 -(a 4- ~ 

Integrating this between the limits 0 and 1, we have 

/(. + h)./(a) +3‘ £/"<“> + f. 

and let ji be a positive integer such that p^n. 
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Then ■ (1 - (» + "•) *• 

Let U, L be the upper and lower bounds of (1 - i)""*’/'”’ + **)• 

Then 

J' X (1 - <)P-' < J] (1 - ~ 0’^^/'”’ (« + ih)dt<j^U(l-dt. 

<3inp^ a - tl""P /■'"> (a + iA) is a continuous function it passes through all 

values between U and L, and hence we can find 0 such that 0 < 5 ^ 1. and 

(1 - /<“’ (a + th) dt = p-^ (1 - (a + 6h). j: 
Therefore R. = (“ + 

Writing p = n, we get ii„ = /<»> (« + eh), which is lagranffe’s fcyniv for 

the remainder; and writing p = 1, we get Bn = ''' 

which is Cauchy’s form for the remainder. 

Taking a=l in this result, we get 

f{a+h)-f {a)=hf' {a-\r6h) 

if /'(X) is continuous when a<:r<a+A; this result is usually known as the Fint 

Mean Value Theor&ni (see also § 4*14). 

Darbonx gave in 1876 {Journal de Math. (3) IL p. 291) a form for the remaind^ m 

Taylor’s SeriL, which is applicable to complex variables and resembles the above form 

given by Lagrange for the case of real variables. 

5-5. The Process of Continuation. 

Near every point P, z^, in the neighbourhood of which a function /(^) is 

analytic, we have seen that an expansion exists for the functwn as a sen^ 

of ascending positive integral powers of {z -z^), the coefficients m which 

involve the successive derivates of the function at z„. 

Now let A be the singularity of f{z) which is nearest to P. 

circle within which this expansion is valid has P for centre and PA for 

radius. 

Suppose that we are merely given the values of a function at all pomts of 

the circumference of a circle slightly smaller than the circle of convergence 

and concentric with it together with the condition that the function is to be 

analytic throughout the interior of the larger circle. Then the preceding 

theorems enable us to find its value at all points mthin the smaller circle 

and to determine the coefficients in the Taylor series proceeding in powers 

of z-zt. The question arises, Is it possible to define the function at pomts 

outside the circle in such a way that the function is analytic throughout 

a larger domain than the interior of the circle? 
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In other words, given a power sen-ies which converges and represents a 

function only at points within a circle, to define by means of it the valves 

of the function at points outside the circle. 

For this purpose choose any point Pi within the circle, not on the line 

PA. "We know the value of the function and all its derivates at Pi, firom 

the series, and so we can form the Taylor series (for the same function) 

with Pi as origin, which will define a function analytic throughout some 

circle of centre Pi- Now this circle will extend as far as the singularity* 

which is nearest to Pi, which may or may not be A ; but in either case, this 

new circle will usuallyf lie partly outside the old circle of convergence, and 

for points in the region which is included in the new circle but not in the old 

circle, the new series may be used to define the values of the function, although 

the old series failed to do so. 

Similarly we can take any other point Pj, in the region for which the 

values of the function are now known, and form the Taylor series with Pj 

as origin, which will in general enable us to define the function at other 

points, at which its values were not previously known; and so on. 

This process is called continuation*. By means of it, starting from a 

representation of a function by any one power series we can find any number 

of other power series, which between them define the value of the function 

at all points of a domain, any point of which can be reached from P without 

passing through a singularity of the function; and the aggregate § of all 

the power series thus obtained constitutes the analytical expression of the 

function. 

It is impoitant to know whether continuation by two dififerent paths PBQ, PBQ will 

give the same final power series ; it will be seen that this is the case, if the function 

have no singularity inside the closed curve PBQBP, in the foUowing way; Let A be any 

point on PBQ, inside the circle C with centre P; obtain the continuation of the function 

v^th P, as origin, and let it converge inside a circle (7,; let Pf be any point inside both 

ciicles and also inside the curve PBQffP-, let 5, S,, S{ be the power senes with P, P^, 
P,' as origins: thenjl over a certain domain which will contain Px, if Pi be taken 

sufficiently near P^; and hence Ax will be the continuation of Ax'; for if P, were 

continuation of S^, we have = over a domain contaming Pi, and so (§ 3-73) 

corresponding coefficients in S, and Pj are the same. By carrying out such a process a 

suffici^t number of times, we deform the path PBQ into the path PBQ if no singukr 

point is inside PBQBP. The reader will convince himself by drawing a figure that 

the process can be carried out in a finite number of steps. 

* Of the function defined by the new series. , 
t The word ‘ usually ’ must be taken as referring to the cases which are likely to come 

under the reader^s notice while studying the less advanced parts of the subject. 

+ French, prolonpem^nt; Geim&n, ForUetzung. , t xr u-n 
§ Such an aggregate of power series has been obtained for various functions by M. J. M. Hill, 

by purely algebraical processes, Proc. London Math. Soc. xxiv. (1903), pp. 388-416. 

11 Since each is equal to S* 
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Example, The series 

represents the function 

i+j.+^+ 

/(*) = 
!_ 
— 2 

only for points z within the circle \z\^\a\. 

But any number of other power series exist, of the type 

1 ^ z-^h {z-hf {z-bf 

if bja is not real and positive these converge at points inside a circle which is partly 

inside and partly outside |«1 = 1 a h series represent this same function at points 

outride this circle. 

5*501. On functions to which the continuation-process cannot be applied. 

It is not always possible to carry out the process of continuation. Take as an example 

the function/(2) defined by the power series 

/(5) == 1+2®+2H2?®+-2^®+..., 

which clearly converges in the interior of a circle whose radius is unity and whose centre 

is at the origin. 

Now it is obvious that, as z^l-0, /W—+® ; the point +1 is therefore a 

singularity of/(«). 

But /W=2’+/Wi 

and if z*-.-!—0, /(z*)-."® snd so /(z)-.-® j hence the points for which z“=l are 

singularities of/(z); the point z= -1 is therefore also a singularity of/(z). 

Similarly since 
/(*)=z*+z*+/(z*), 

we see that if z is such that z*=1, then z is a singularity of / (z); and, in general, any root 

of any of the equations 

is a singularity of/(z). But these points all lie on the circle |zl-l; and in any arc 

of this circle, however small, there are an unlimited number of them. The attempt to 

carry.out the process of continuation will therefore be fr^trated by the existence of this 

unbroken front of singularities, beyond which it is impossible to pass. 

In such a case the function/(z) cannot he ccmHnued at all to points z situated outside 

the circle | z |=1: such a function is called a laeunary fanctwn, and the circle is said to be 

a limiting circle for the function. 

6-61. The identity of two furwtions. 

The two series 
1 + z + + +... 

and -l + (z-2)-(z-2y + (z-2y-iz-2y + ... 

do not both converge for any value of z. and are distinct expansions. 

Nevertheless, we generally say that they represent the same function, on the 

strength of the fact that they can both be represented by the same rational 

1 
expression i" —~ - 
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This raises the question of the identity of two fonctions. When can two 

different expansions be said to represent the same function ? 

We might define a function (after Weierstrai^), by means of the last 
article, as consisting of one power series together with all the other power 
series which can be derived from it by the process of continuation. Two 
diflferent analytical expressions will then define the same function, if they 
represent power series derivable from each other by continuation. 

Since if a function is analytic (in the sense of Cauchy, § 5-12) at and near 
a point it can be expanded into a Taylor s series, and since a convergent 
power series has a unique differential coefiScient (§ 5‘3), it follows that the 

definition of Weierstrass is really equivalent to that of Cauchy. 

It is important to observe that the limit of a combination of analytic 

functimis can represent different analytic functions %n diffei'ent parts of the 

plane. This can be seen by considering the series 

The sum of the first n +1 terms of this series is 

z 

1 

The series therefore converges for all values of z (zero excepted) not on the 

circle 1^1 = 1. But, asn-»oo,jz»|->Oor|z”i->oo according as 1 x j is less 

or greater than unity; hence we see that the sum to infinity of the senes is 

z when |zj< 1, and i when \z\>l. This series therefore represents one 

function at points in the interior of the circle | z | = 1, and an entirely different 

function at points outside the same circle. The reader will see from §53 

that this result is connected with the non-uniformity of the convergence of 

the series near | ^ | = 1. 

It has been shewn by Borel* that if a region C is taken and a set of points S such that 

points of the set JS are arbitrarily near every point of (7, it may be possible to define 

a function which has a unique differential coefficient (Le. is mon<^enic) at all points 

of € which do not belong to /S'; but the function is not analytic in C in the sense of 

Wei^trass. 

Such a function is 
m n % 

f(z)s. S S 2 
n=l P=0 «=0 

exp(-expn*) 

z- {pJtqi)ln * 

* Proc. Math. Congren, Cambridge (1912), i. pp. 137-138. iejon. tur let fonetion, imnio- 
ginet (1917). The functions are not monogenic strictly in the sense of § 51 because, m the 
example quoted, in working out {f{z + h)-m}lh,it must be supposed that B(*+h)andI(* + ft) 

are not both rational fraotions. 
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S'O. Laxjrekt’s Theorem. 

A very importiant theorem was published in 1843 by Laurent*; it relates 

to expansions of functions to which Taylor’s Theorem cannot be applied. 

Let G and C' he two concentric circles of centre a, of which G' is the inner; 

and let /(a) be a function which is analyticf at all points on C and C' and 

throughout the annulus between C and G'. Let a + h be any point in this 

ring-shaped space. Then we have (§ 6'21 corollary) 

f{a-¥k) - dz 
27nJ O'' 

dz, 
' 2irij” 27n: jcT'if* 

tv’-here the integrals are supposed taken in ^he positive or counter-clockwise 

direction round the circles. 

This can be written 

1 r f 1 h A” 
/^n+i 

'C ■ ■ 
■a—A)} (a—a)”+* ^ {z—aY+^{z 

iz-aY 

- a-’h)) 

dz 

h^i (z 

We find, as in the proof of Taylor’s Theorem, that 

r fiz)dz.h-^^ , f /(z)dz(z-ar+^ 
j c(z-aY+^z-a-A) Jc (z-a-h)h"+‘^ 

tend to zero as n -» «; and thus we have 

/(a + h) = Oo + ajh + Oih? + -”+T'hp"l'‘"> 

This result is Laurmis Theorem-, changing the notation, it can be 

expressed in the following form: If f(z) he analytic on the concentric circles 

C and O' of centre a, and throughout the annvlus between them, then at any 

point z of the annulus f{z) can he expanded in the form 

hi hq 

where 

f{z) = a^-^a^{z-a) + ai{z-af+ ••• +(7Z^ + (7lf^+"-> 

An important case of Laurent’s Theorem arises when there is only one 

singularity within the inner circle C , namely at the centre a. In this case 

the circle G' can be taken as small as we please, and so Laurent s expansion 

is valid for all points in the interior of the circle G, except the centre a. 

* Comptes Bendus, xvii. (1843), pp. 348-349. The theorem is contained in a paper which was 
written by Weierstrass in 1841, but apparently not published before 1894, Werke, i. pp. 61-66. 

t See § 5'2 corollary 2, footnote. 
+ We cannot write (a)/n! as in Taylor’s Theorem since/(z) is not necessarily analytic 

inside C\ 
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Example 1. Prove that 

e® {X) +zJ^ (a:) + +... 

1 f*' 

Jo 
COS {nB - X sin 6) dB. where 

—j 

[For the function of z under consideration is analytic in any domain which does not 

include the point z=^0 ; and so by Laurent’s Theorem, 

^OQ^aiZ+a^z^-hi 

and where C and C' are any circles with the origin as centre. Taking <7 to be the circle of 

radius unity, and writing z—e% we have 

a ss=_!_ idB = J- f co8 (nB — x sin. B) dB, 
** 2wt Jo j 0 

since j^’'sm(ng-xmng)d6 vanishes, as may be seen by writing 2ir-<#> for A Thus 

a^=J»(x), and i»=(-)"an, since the function expanded is unaltered if be written 

for z, so that 6»=(-)" (^). proof is complete.] 

Example 2. Shew that, in the annulus defined by [ a | < | z | < 1 h |, the function 

/_ 
\(z-a)(h-z)) 

can be expanded in the form 
* / ^ \ 

„ “1.3...02f-l).1.3...(2;+2n-l) ^ay 

2“+*.l! (i+»)! \bj ' where 

The function is one-valued and analytic in the annulus (see § 5*7), for the branch-points 

0, a neutralise each other, and so, by Laurent’s Theoiem, if C denote the circle ] 2 |=r, 

where | a | < r < [ 6 j, the coefficient of in the required expansion is 

_L { f bz 1* 

2wi j c 2”* ‘ 1(2 - a) (6 - 2)J 
Putting z»»re*, this becomes 

the series being absolutely convergent and uniformly convergent with regard to 0. 

The only terms which give integrals different from zero are those for which 1:^1+n. 

So the coefficient of z'^ is 

'• ,, - 1.3...(2Z-1) 1.3... (2Z4*271-1) 
^Jo^iio~ 2*.Z! 2*+’‘.(Z+n) ! ‘ 

1 . 

i- 

2«‘Jo 

Similarly it can be shewn that the coefficient of — is Sn<^\ 



102 THE PROCESSES OF ANALYSIS [chap. V 

Examfie 3. Shew that 

where /o 

, , 1 r%r 
and 1(1 ^^'*'^*^^GOs{{v — n)sin3 — 7iB}d6, 

S'Sl. The nature of the singularities of om-valmd fumtims. 

Consider first a function f{z) which is anaijrfcic throughout a closed 
region 5, except at a single point a inside the region. 

Let it be possible to define a function <f> (z) such that 

(i) ^ {z) is analytic throughout S, 

(ii) .h» .^a, /W. ^ W + i 

Then f{z) is said to have a *pole of order n at a*; and the terms 
S B B 

JIT^“*■ (717^2 + ... + ^ called the principal part of f{z) near a. 

By the definition of a singularity (§ 5*12) a pole is a singularity. If ti = 1, 
the singularity is called a simple pole. 

Any singularity of a one-valued function other than a pole is called an 
essential singularity. 

If the essential singularity, a, is isolated (i.e. if a region, of which a is an 
interior point, can be found containing no singularities other than a), then a 
Laurent expansion can be found, in ascending and descending powers of {z — a) 

valid when A > 12r — a | > S, where A depends on the other singularities of the 
function, and S is arbitrarily small. Hence the ' principal part' of a function 
near an isolated essential singularity consists of an infinite series. 

It should be noted that a pole is, by definition, an isolated singularity, so 
that all singularities which are not isolated (e.g. the limiting point of a 
sequence of poles) are essential singularities. 

There does not exist, in general, an expansion of a function valid near a non-isolated 

singularity in the way that Laurent^s expansion is valid near an isolated singularity. 

Corollary, If f{z) has a pole of order n at a, and ^{z)^{z-aYf{z) {z^a\ 

'^(a)= lim {z—a)^f{z\ then i^(z) is analytic at a. 

Example 1. A function is not bounded near an isolated essential singularity. 

[Prove that if the function were boimded near zaso, the coefficients of negative powers 
of z^a would all vanish.] 
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e £ 

Example 2. Find the singularities of the function 

At -2=0, the numerator is analytic, and the denominator has a simple zero. Hence 

the function has a simple pole at z=0. 

Similarly there is a simple pole at each of the points 2ji7rui i Ij i2, +3,...) j the 

denominator is analytic and does not vanish for other values of z. 

At z=o, the numerator has an isolated singularity, so Laurent’s Theorem is applicable, 

and the coefficients in the Laurent expansion may be obtained from the quotient 

/» 
1 + z-a^ 2l(z^a)^ 

+ ... 

which gives an expansion involving all positive and negative powers of (z - a). So there is 

an essential singularity-at z=a. 

Example 3. Shew that the function defined by the series 

has simple poles at the points + (^»0, 1, 2, ... n~l; w=l, 2, 3, ...). 

(Math. Trip. 1899.) 

6‘62. The 'point at infinity! 

The behaviour of a function f (z) as | ^ ! —► oo can be treated in a similar 

way to its behaviour as z tends to a finite limit. 

If we write z=^\, so that large values of z are represented by small 
‘ z 

values of / in the /-plane, there is a one-one correspondence between 
z and /, provided that neither is zero; and to make the correspondence 
complete it is sometimes convenient to say that when / is the origin, z: is 

the ‘point at infinity.' But the reader must be careful to observe that this 
is not a definite point, and any proposition about it is really a proposition 

concerning the point / =*= 0. 

Let f(z) = <#>(/). Then <#>(/) is not defined at / = 0, but its behaviour 
near /=-0 is determined by its Taylor (or Laiirenty expansion in powers 
of /; and we define <^(0) as lim <f>(z') if that limit exists. For instance 

;r' 0 

the function (f> (/) may have a zero of order m at the point z' = 0; in this 

case the Taylor expansion of ^ {z') will he of the form 

+ Bz'”'+^ + Cz'”'*^ + ..., 
and so the expansion of /(z) valid for sufficiently large values of | | will be 

of the fonn ^ 

J W ~ ^m+i - 

In this caae.fiz) is said to have a zero of order m at ‘ infinity.’ 
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Again, the function ^(J) may have a pole of order m at the point z'^0; 

in this case 

« W - ^ + + ;« + ■•• +7 + ^+; 

and so, for sufficiently large values of \z\, f{z) can be expanded in the form 

f(z) = Az'‘'^^Bz”^'- + Cz”'-^+ ...■>rLz + M-¥ — + —„-ii-.... 

In this QBBQ,f{z) is said to have a pole of order m at' infinity! 

Similarly f{z) is said to have an essential singularity at infinity, if <j>{z) 

has an essential singularity at the point / = 0. Thus the function has an 
1 

e®ential singularity at infinity, since the function or 

,11 1 

^ + ? + + ■*■••• 

has an essential singularity at / = 0. 

Emm]fie. Discuss the function represented by the ^ries 

(a>l). 
}i=o a ’• l + a‘^2^’ 

The function represented by this series has singularities at and 

(a=l, 2, 3, ...)» since at each of these points the denominator of one of the terms in the 
series is zero. These singularities are on the imaginary axis, and have 2=0 as a limiting 
|x>int; so no Taylor or Laurent expansion can be formed for the function valid throughout 
any region of which the origin is an interior point. 

For values of 2, other than these singularities, the series converges absolutely, since the 
limit of the ratio of the (^i+l)th term to the wth is lim (n-f l)‘'iu^2=o. The function is 

n-*^oo 
an even function of 2 (i.e. is unchanged if the sign of 2 be changed), tends to zero as 
12 |-^oc, and is analytic on and outside a circle C of radius greater than unity and centi-e 
at the origin. So, for points outside this circle, it can be expanded in the form 

22+j4+j8 + -> 
where, by Laurent’s Theorem, 

"”■1J c 71=0 n ! a 2714.22 

Now 
« oc oc , 

»=0 l»^0 

• ( — )»» 2- 2>n 

This double series converges absolutely when | 21 > 1, and if it be rearranged in powers 
of 2 it converges uniformly. 

Since the coefficient of 2“^ is 2 -;-and the only term which furnishes a non- 
H=o n! 

zero integral is the term in z~\ we have 

" (-)*-* = 2 
n=0 n\ w 
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Therefore, when 12 [ > 1, the function can be expanded in the fcmn 

1 Jl i 

■? “ +2® •••• 

The function has a zero of the ^cond order at infinity, since tl» exf^imon b^ns with 

t term in 2”® 

6*63. Liouville's Thiobem* 

Let f{z) he analytic for all vaktes of z and let \f{z) | < K for all milms 
)/z, where K is a constant (so that [/(j) 1 is hounded as \z\-^ m), Thm 
f{z) is a constant. 

Let Zy z* be any two points and let C be a contour such that z' are 

nside it. Then, by § 5*21, 

bake £7 to be a circle whose centre is z and whose radius is p > 21 / — ^ j; on 

V write ^=z + p&*-, since ? is on 0 it follows from |4-62 

bhat 

1/O) -f (01 - Lt fcCt-z') a- m)dK\ 

=s 2 I / — I Kp 
Make p -> oo, keeping z and /fixed; then it is obvious that/(/)-/(x) = 0; 

that is to say, f(ji) is constant. 

As wUl he seen in the next article, and again frequently in the latter half of this 

volume (Chapters xx, xxi and xxn), Liouville’s theorem furnishes short and convenient 

proofs of some of the most important results in Analysis 

6 64 Functions with no essential singularities. 

We shall now shew that the only one-valued functions which have no 
gingvlarities, except poles, at any point (including oo ) are rational functions. 

For let f(z) be such a function; let its singularities in the finite part 

of the plane be at the points Ci, c., ... 0*; and let the principal part ^ 5-61) 

of its expansion at the pole Cr be 

j Or, 2 _j_ 

(X- CrY ■■■ (^ - CrT^’ 

Let the principal part of its expansion at the pole at infinity be 

OiZ + 0^2^ + ... + 
if there is not a pole infinity, then all the coefficients in this expansion 

will be zero. 
• This theorem, which is really due to Cauchy, Gomptet Rendm, m. W- 1377, mS, 

was given this name by Borohardt, Journal fUr Math, naxrm. (1880). pp. 377-SlO, who heard it 

in Liouville*® lectures in 1847. 
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Now the function 

/(«)- 2 
r=l 

^,2 I 
{Z-Cry'^- 

+ gr.nr ] 
{Z-Cry^] 

— Oi^ — ... — 

has clearly no singularities at the points Ci, Ca, ... Cjb, or at infinity; it is 

therefore analjrtic everywhere and is bounded as j | oo, and so, by 

Liouville's Theorem, is a constant; that is, 

/(^) = 0+OjZ + +... -I-+ 
h 
X 
►=1 

^,1 , ®r,a , 
-r }-r; + 
Z-Cr {Z-Crj 

+ ^r.nF ] 

where G is constant; f{z) is therefore a rational function, and the theorem is 

established. 

It is evident from Liouville's theorem (combined with § 3*61 corollary (ii)) 

that a function which is analytic everywhere (including oo) is merely a 

constant. Functions which are analytic everywhere except at oo are of 

considerable importance; they are known as integral functions*. Examples 

of such functions are sin z, ef. From § 5*4 it is apparent that there is no 

finite radius of convergence of a Taylor s series which represents an integral 

function; and from the result of this section it is evident that all integral 

functions (except mere polynomials) have essential singularities at oo. 

6*7. Many-valued functions. 

In all the previous work, the functions under consideration have had a 

unique value (or limit) corresponding to each value (other than singularities) 
of z. 

But functions may be defined which have more than one value for each 

value of z\ thus if z = r (cos 6+ i sin 6), the function has the two values 

(cos i ^ 4-1 sin i jcos \{6 -¥ Stt) + i sin ^{6 + 27r)|; 

and the function arc tan x (x real) has an unlimited number of values, viz. 

Arc tan x 4* nrr, where — | tt < Ajc tan x and n is any integer; further 

examples of many-valued functions are log^:, z'^^^ sin 

Either of the two functions which z^ represents is, however, analytic 

except at 2? = 0, and we can apply to them the theorems of this chapter; and 

the two functions are called * branches of the many-valued function 

There will be certain points in general at which two or more branches 

coincide or at which one branch has an infinite limit; these points are called 

‘ branch-points.’ Thus z^ has a branch-point at 0; and, if we consider the 

change in as describes a circle counter-clockwise round 0, we see that d 

Frencli, fonction entire; German, game Funktion. 
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increases by Stt, r remains unchanged, and either branch of the fimcUm passes 

over into the other branch. This will be found to be a general characteristic 

of branch-points. It is not the purpose of this book to give a Ml discussion 

of the properties of many-valued functions, as we shall always have to 

consider particular branches of functions in regions not containing branch¬ 

points, so that there will be comparatively little difficulty in seeing whether 

or not Cauchy’s Theorem may be applied. 

Thus we cannot apply Cauchy's Theorem to such a function as when the path of 

integration is a circle surrounding the origin; but it is permissible to apply it to one of 

the branches of when thfe path of integration is like that shewn in § 6*24, for through¬ 

out the contour and its interior the function has a single definite value. 

Example, Prove that if the diiferent values of a\ corresponding to a given v^ue of z, 

are represented on an Argand diagram, the representative points will be the vertices of an 

^^uiangular polygon inscribed in an equiangular spiral, the angle of the spiral being 

independent of cl 
(Math. Trip. 1899.) 

The idea of the different branches of a function helps us to understand such a paradox 

as the following. 

Consider the function 

for which ^=45(l+logx). 

When X is negative and real, ^ is not real. But if X is n^ative and of the form 

—(where p and q are positive or negative integers), y is real. 
2gr + l 

If therefore we draw the real curve 

we have for negative values of x a set of conjugate points, one point con-esponding to each 

rational value of x with an odd denominator ; and then we might think of proceeding to 

form the tangent as the limit of the chord, just as if the curve were continuous; and 

th\is —, when derived from the inclination of the tangent to the axis of x, would appear 
dx , . . 

to be real The question thus arises. Why does the ordinary process of differentiation 

give a non-real value for The explanation is, that these conjugate points do not all 

arise from the same branch of the function y=jt®. We have in fact 

where Ic is any integer. To each value of Jc corresponds one branch of the function y. 

Now in order to get a real value of y when x is negative, we have to choose a suitable 

value for k: and this value of k varies as we go from one conjugate point to an adjacent one. 

So the conjugate points do not represent values of y arising from the same branch of the 

function y=^x^y and consequently we cannot expect the value of ^ when evaluated 

for a definite branch to be given by the tangent of the inclination to the axis of x of the 

line joining two arbitrarily close members of the series of conjugate points. 
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Miscellaneous Examples. 

1. Obtain the expansion 

/«-/(.)+* ('-?)+fcfS/" ('-?)(=±-“)....), 

and determine the circumahinces and range of its validity. 

2. Obtain, under suitable circiiinstances, the expansion 

fe“)‘ \f {. 
(2m-1) (z-g) 

2. r- 
5! \ 2m 

3. Shew that for the series 

’)] 
I ' 2m 

(Coi-ey, Ann. of Math. (2), i, (1900), p. 77.) 

2 —L 
n=0 + Z 

the repon of convergence consists of two distinct areas, namely outside and inside a circle 

of radius unity, and that in each of those the series represents one function and represents 
it completely. 

(Weierstrass, Berliner MonateherichU, 1880, p. 731; Gee. Werke, n. (1895), p. 227.) 

4. Shew that the function 
« 
2 

Jl=0 

tends to infinity as i:--»-exp {^iripjm !) along the radius through the point; where m is any 
integer and p takes the values 0, 1, 2,... (m! — 1). 

Deduce that the function cannot be continued beyond the unit circle. 

(Lerch, Sitz. Bohm. Acad.., 1885-6, pp. 671-582.) 

5. Shew that, if 2® — 1 is not a positive real number, then 

+(1 -11V- (■ -<■) - * a 
(Jacobi and Scheibner.) 
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6. Shew that, if « ~ 1 is not a positive real number, then 

•¥—- 

(Jacobi and Scheibner.) 

7. Shew that, if z and 1-z are not negative real numbers, then 

(m+3)... (m^2n-l) 

i-n (m + 2) (m4-4)(m+2n) /** ^i»+2»n _ 

(Jacobi and Scheibner.) 

8. If, in the expansion of (a-haiz+a^z^)^ by the multinomial theorem, the remainder 

after n terms be denoted by R^z)^ so that 

shew that 

9. If 

(a;) = (a+% «+<H^y^ 
na^,^<*~^4-(27n —gi + l)a2^n-i^ 

(a+ai«+a2<2)’»+i 
dt. 

(00+01^+02^)”’"“^J (aQ+ait‘^a2t^y>^dt 

(Scheibner.) 

be expanded in ascending powers of z in the form 

AiZ + A2^-^ ..., 

shew that the remainder after ti- 1 terms is 

(aQ+aiZ + a2Z^'“^~^ J (ao+ait+a^f^j^lnooA^-C^m+n+l) a2A^^it}t^-^{ii. 

(Scheibner*.) 

10. Shew that the series 

dz^ ’ 

where X„(r)= -l-}-2- — + 

and where (z) is'analytic near 2=0, is convergent near the point 2=0 ; and shew that if 

the sum of the series be denoted by/(2), then f(z) satisfies the differential equation 

/'(2)=/(2)-<^(2). 

(Pincherle, Bend, dei Lincei (5), v. (1896), p. 27.) 

11. Shew that the arithmetic mean of the squares of the moduli of all the values of 
«0 

the series 2a,»2** on a circle |2|=r, situated within its circle of convergence, is equal 
nssO 

to the sum of the squares of the moduli of the separate terms. 

(Gutzmer, Math. Ann. xxxii. (1888), pp. 596-6(X).) 

* The results of examples 5, 6 and 7 are special cases of formulae contained in Jacobi's dis¬ 
sertation (Berlin, 1825) published in his Get. JVerke, ni. (1884), pp. 1-44. Jacobi's formulae 

were generalised by Scheibner, Leipziger Berichte, xnv. (1893), pp. 432-443. 
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12. Shew that the series 

*»=i 
converg^a when \zl<il; and that, when a>0, the function which it represents can also 

be represented when 1«f < 1 by the int^;ral 

and that it has no singularities except at the point 2= 1. 
(Lerch, Monaishefte filr MaXh. und Fhy$, viii.) 

13. Shew that the series 

2 _ 2 f z 1 
-(2+2-‘)+- S |(i_2v_2v'«-)(2v+2„'n-)2 + (i-2v-2v'z-‘t) (2v+2.,'z-»i)*/’ 

in which the summation extends over all integral values of v, v\ except the combination 

(v=0, /=0), converges absolutely for all values of z except purely imaginary values; and 

that its sum is +1 or -1, according as the real part of z is positive or negative. 
(Weierstrass, Berliner MonaUhericktey 1880, p. 736.) 

14. Shew that sin ^ expanded in a series of the type 

_ hi 62 
ao+Ui^4*<*2<2;*+... -i-h 

in which the coefficients, both of 2* and of 2“*, are 

1 fSa- 
~ I sin(2wcos^)cosn^<2^. 
zw J 0 

15. If /(*)= 2 
7l=sl 

2* 

71^ z^+a^^ 

Aew that/(2) is finite and continuous for all real values of 2, but cannot be expanded as 

a Maclaurin’s series in ascending powers of 2; and explain this apparent anomaly. 

[For other cases of failure of Maclaurin’s theorem, see a posthumous memoir by Celldrier, 

BuK des ScL Math, (2), ziv. (1890), pp. 145-699 ; Lerch, Journal filr Math. era. (1888), 

pp. 126-138; Pringsheim, Math. Ann. ZLii. (1893), pp. 163-184; and Du Bois Reymond, 

MUnchener Sitzungeherichtey VL (1876), p. 236.] 

16. If f{z) be a &mtmuous one-valued function of 2 throughout a two-dimensional 

region, and if 

for all closed contours G lying inside the region, then f{z) is an analytic function of 2 

throughout the interior of the region. 

[Let a be any point of the region and let 

r{z)=fj(z) dz. 

It follows from the data that F{z) has the unique derivate f{z). Hence F{z) is 

analytic (§ 6*1) and so (§ 6*22) its derivate f{z) is also analytic. This important converse 

of Cauchy’s theorem is due to Morera, Bendiconti del R. let Lombardo {Milano)y xxii. 
(1889), p. 191.] 



CHAPTER VI 

EE THEOEY OF EE8IDUES; APPLICATION TO THE EVALUATION OF 

DEFINITE INTEGRALS 

6'1. Resid/ues. 

If the function/(«) has a pole of order mat z = a, then, by the definition 

i pole, an equation of the form 

ere (f> {z) is analytic near and at a, is true near a. 

The coefiacient a_, in this expansion is called the residv^ of the function 

i) relative to the pole a. 

Consider now the value of the integral f{z)dz, where the path of 

.egration is a circle* a, whose centre is the point a and whose radius p is so 

all that fiz) is analytic inside and on the circle. 

We have j 
Now I <^(^)= 0 by § 5 2; and (putting z-a== pe“) we have, if r ^ 1, 

P'e^* Jo 

But, when r = 1, we have 

f”=r id6 = 27ri. 

Hence finally J /(^) — 27ria_i. 

Now let C he any contour, containing in the region interior to it a number 

poles a, h, c, ... of a function f(,z), with residues a_>, 5-i, 

vdy: and suppose that the function /{z) is analytic throughout G and its 

iterior, except at these poles. 

Surround the points a, b, c, ... by circles a, R, % so small that their 

■spective centres are the only singularities inside or on e^h cirole; then the 

motion/(^) is analytic in the closed region bounded by C, a, R,y, .... 

• The existence of such a circle is implied in the definition of a pole as an isolated 

3gularity. 
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Hence, by § 5 2 corollary 3, 

j^/(^) dz=j f{z) dz + f{z)dz+ ... 

= 2iria^i + + .... 

Thus we have the theorem of residues^ namely that if f{z) be analytic 

throughout a contour C and its interior except at a number of poles inside the 
contourj then 

f f {z)dz^2m^R, 
J a 

where 2J? denotes the sum of the residues of the function f{z) at those of its 

poles which are situated within the contour C, 

This is an extension of the theorem of § 5*21. 

Note. If a is a simple pole oif{z) the residue of f{z) at that pole is lim {{z-a)f{z)}. 

6*2. The evaluation of definite integrals. 

We shall now apply the result of § 6*1 to evaluating various classes 

of definite integrals, the methods to be employed in any particular case may 

usually be seen from the following typical examples. 

6 21. The evaluation of the integrals of certain periodic functions taken 
between the limits 0 and 27r. 

An integral of the type 

I R (cos 0, sin 6) d6, 
J 0 

where the integrand is a rational function of cos 6 and sin 0 finite on the 

range of integration, can be evaluated by writing e^^ = z; since 

cos ^ (.2: + Z-’^\ sin ^ ~ (,21 - ^-1), 

the integral takes the form f S (z) dz, where S (z) is a rational function of z 
J c 

finite on the path of integration (7, the circle of radius unity whose centre is 
the origin. 

Therefore, by § 6 1, the integral is equal to 27ri times the sum of the residues 

of S (z) at those of its poles which are inside that circle. 

Example 1. If 0 <p < 1, 

de _ t 
jo l-^pcosd+p^~‘ J cil 

dz 
-2pcQse+p2 J i(^i ^pz){z^p) * 

The only pole of the integrand inside the circle is a simple pole at o; and the residue 
there is 

lim 
.piO.-pz){z-p) i (1 -pi) ■ 
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f2tr 

Jo 1^ 2j?cos^+p^ 1-p^’ 

Example 2, If 0 <p < 1, 

rSiT go^ZB 

Jo l-~2pcos2B +p^ 

= 2ffSA 

{^+Vf 
where Sfl denotes the sum of the residues of -. „ '—^ at its poles inside C; these 

42" (1 —p2*) (2* — p) 

1 i l+o^+c* (p^+V? (f^+Vf 
poles are 0, -p4, ; and the residues at them are-. 8^(1 ’ 

and hence the integral is equal to 

ir(l -p+J^) 

1-p ■ 

Example 3. If be a positive integer, 

gcosa^jos (71.^ —sin (Ti^-sin ^)cW = 0. 

Example 4. If a > 5 > 0, 

pir dB _ 27ra dB _ vr (2a-^h) 

Jo (a+bcoBBf'^(a^-b^)^' Jo (a-hbcos^ B)^^ (a+bf ^ 

6’22. The evaluation of certain types of integrals taken between the limits 

— 00 and +00. 

We shall now evaluate I Q (x) dx, where Q {£) is a function such that 
J —oo 

(i) it is analytic when the imaginary part of z is positive or zero (except at a 

jfinite number of poles), (ii) it has no poles on the real axis and (iii) as p » oo, 

uniformly for all values of arg^ such that O^arg-^^-Tr; provided 

that (iv) when x is real, xQ(x)—>0y as x-^±oo, in such a way* that 

f Q(x)dx and f Q (x) dx both converge. 
Jo J —ao 

Given e, we can choose po (independent of arg z) such that | zQ (z) | < c/tt 

whenever p | > and 0 < arg z^tt. 

Consider I Q (z) dz taken round a contour G consisting of the part of the 
J c 

real axis joining the points ± p (where p > po) and a semicircle F, of radius p, 

having its centre at the origin, above the real axis. 

Then, by § 6T, j Q (z) dz = 2m2Ry where 2jB denotes the sum of the 

residues of Q (z) at its poles above the real axisf. 

* The condition xQ (x) 0 is not in itself sufficient to secure the convergence of I Q(x)dx; 
Jo 

consider Q (x)=(x log x)'~^, 
t Q {z) has no poles above the real axis outside the contour. 
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Therefore j J" Q (z) dz — 2in2i2 = j Q(z)dz 

In the last integral write z^pe^, and then 

If q{z)dz\^\rQ{pe^)p^idd 
Mr I iJo 

: r(e/7r)dd 
Jd 

by § 4-62. 

Hence 

< 

= e. 

lim r Q(z)dz = 27nSE, 
p-^-OB J -p 

But the meaning of f Q{x)dx is lim Q{x)dx; and since 
J —ao p, tr-^oo J —p 

lim f Q(x)dx and lim f Q{x)dx both exist, this double limit is the 
O'Ha'OO Jo p-^» J -p 

same as lim j Q (x) dx, 
pH^CO J —p 

Hence we have proved that 

f Q(x)dx— 
J -00 

This theorem is particularly useful in the special case when Q{x) is a 

rational function. 

[Note. Even if condition (iv) is not satisfied, we still have 

[ {§(x) + §(-47)}dir =11131 P Q(x)<ix=^2in2EJ 
J 0 p-m^m J —p 

Example L The only pole of in the upper half plane is a pole at z^i with 
3 

residue there Therefore 
ID 

/: dx _ 3 

,(a^+iy 's’ 

Example 2. If a > 0, 6 > 0, shew that. 

x^dx 1 

corners are Example 3. By integrating je-i^elz mtmd a parallelogram whose 

--Ry Ry R-k‘aiy — R-^ai and making R-^co, shew that, if X >0, then 

j c--^co8 (2Xar)<fr=e-^*J e-“^dr=2X-^«-Aa* j e-^dx, 

6*221. Certain infinite integrals involving sines and cosines. 

If Q (z) satisfies the conditions (i), (ii) and (iii) of § 6*22, and m > 0, then 

Q(z)^ also, satisfies those conditions. 
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Hence f is equal to 2mlR\ where 2E' 
Jo 

means the sum of the residues of Q (z) at its poles in the upper half plane; 

and so 

(i) If Q (x) is an even function, i.e. if Q (— a?) = Q (x), 

I Q (x) cos {mx) dx = iri%R\ 
Jo 

(ii) If Q {x) is an odd function, 

I Q{x)sm{mx)dx^'!ftR!, 
Jo 

6*222. Jordan'» lernma^. 

The results of § 6*221 are true if Q {z) be subject to the less stringent 

condition Q(^)—>0 uniformly when O^arg^r^Tr as \z\—¥<Xi in place of the 

condition zQ{z)’^(} uniformly. 

To prove this we require a theorem known as Jordan s lemma, viz. 

ifq{z)^Q uniformly with regard to argz as \ z\-^(X> when O^arg^^-r, 

and ifQ{z) is analytic when both \z\ >c(a constant) and 0 ^argz then 

lim ^ J Q {z) d^ = 0, 

where Vis a semicircle of radius p above the real axis with centre at the origin. 

Given €, choose po so that \ Q{z)\< ejir when |^1 >po and O^arg^^Tr; 

then, if p > po> 

But I e*^vcoae I — and so 

j Q (^) I < J (c/tt) pe^^^^^dO 

= (26/'7r) P’" de. 

Now sin 6 > 2dltr, whenf 0 $ 0 | w, and so 

(2e/7r) [*’' 
J 0 

= (26/w).(7r/2m) 

< e/m. 

y—impe/w 
Jr 

0 

* Jordan, Cour$ d'AnalysZi ii. (1894), pp. 285, 286. 
t Tliis inequality appears obvious when we draw the graphs y=siDx, y = 2x/r; it may be 

proved by shewing that (sin 0)1$ decreases as 0 increases from 0 to ^x. 
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Hence lim f e”^ Q(z)dz = 0. 
J T 

This result is Jordan’s lemma. 

Now 

r Q (x) 4- Q (~ x)} dx « 27ri2B' -I {z) dz, 
i© Jr 

and, making p-^oo, we see at once that 

> 
{e^ Q (a:) + e-^ Q (- a;)} dai = 2mSR', / 

Jo 

which is the result corresponding to the result of § 6*221. 

Example 1, Shew that, if a > 0, then 

C08X I. a-S <£l?=X—e""®. 
0 2a 

Example 2, Shew that, if ^^>0, then 

’ co8 2€M?~cos 2bx 

! 0 ^ /: dx=iv{b — a). 

(Take a contour consisting of a laige semicircle of radius p, a small semicircle of 

radius a, both having their cmitres at the origin, and the parts of the real axis joining their 
ends ; then make ao, d-^-O.) 

Example 3. Shew that, if a > 0, m ^ 0, then 

r* yre^mb 

Jo 

Example 4. Shew that, if it > 0, a > 0, then 

xainax , 

Jo 

Example 5. Shew that, if m ^ 0, a > 0, then 

f* sinwu? , w tre-^ f 2\ 

jo “ -455” • 

(Take the contour of example 2.) 

Example 6. Shew that, if the real part of s be positive, 

^dt 
\ 0 

[We have 

/ (e-'-e-**)- lim 
I frT*~ -»«• 0, p -*• ao Uj « }s t / 

lim 
t^O, p-^oo u* < Its U. J 

lim 
-*»0, p-*» 00 ■in'^ 

since is analytic inside the quadrilateral whose comers are 3, hz^ pz^ p. 
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Now J'‘ t~^e~*dt-»-0 as 00 when E(z)>0; and 

/Bz fSz 
^ 6“^^dialog Z--I dt-^logzy 

since (1 — e”*)-*-! as ^-*-0.] 

6*23. Frincipal values of integrals. 

It was assumed in §§ 6*22, 6*221, 6*222 that the function Q (x) had no poles on the real 

axis; if the function has a finite number of simple poles on the real axis, we can obtain 

theorems corresponding to those already obtained, except that the int^rals are ah principal 

values (§ 4*5) and 2B has to be replaced by where 2Bq means the sum of 

the residues at the poles on the real axis. To obtain this result we see that, instead of 

the former contour, we have to take as contour a circle of radius p and the portions of the 

real axis joining the points 

— p, iz—djj 6 + 63, C —§3, ... 

and small semicircles above the real axis of radii ^2,... with centres a, 5, c,where 

a, 5, c,... are the poles of Q (z) on the real axis ; and then we have to make 3^, dg,... -^0; 

call these semicircles yi, .... Then instead of the equation 

Q(z)dz+ j^Q(z)dz^ 27ri^R, 

we get P| §(2:) fife4*2 Mm i Q(z)dz+f Q{z)dz^%d7,R, 
J J yn Jr 

Let d be the residue of Q {z) at a; then writing z=a+bi on y^ we get 

j Q(z) dzz= Q {a+^ie^) §1 e’® id6. 

But uniformly as and therefore Mm j Q(z)dz= -nia'; 
Si -^0 J yi 

we thus get 

F Q (z) dz+j^ Q (z) dz^27ril^R + rri^Ro, 

and hence, using the arguments of § 6*22, we get 

P j Qi^) dx^^vi (2jK+^2i2o)- 

The reader will see at once that the theorems of §§ 6*221, 6*222 have precisely similar 

generalisations. 

The process employed above of inserting arcs of smaU circles so as to diminish the area 

of the contour is called indenting the contour. 

6*24. Evaluation of integrals of the form J Q (x) dx. 

Let Q{x) be a rational function of x such that it has no poles on the 

positive part of the real axis and aFQ{x)‘-^0 both when x-^Q and when 
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Consider J(— Q (z) dz taken round the cjontour C shewn in the figure, 

consisting of the arcs of circles of radii 
p, S and the straight lines joining their —-- 

end points; (— is to be interpreted 
as / \ 

exp{(a-l)log(-^)} / \ 
and / \ 

I o \ 
log(~i')*log|ir| + ^arg(-4 ^ > ... IP 

where —‘7r^arg(--2r)^7r; \ A 

with these conventions the integrand is \ / 
one-valned and analytic on and within \ / 
the contour save at the poles of Q (z). 

Hence, if 2r denote the sum of the - 
residues of (— z)^^ Q (z) at all its poles, 

f ^yr-i Q(^z)dz^ 
J c 

On the small circle write ^z^ and the integral along it becomes 

—J (js) id6, which tends to zero as 8-^0. 

On the large semicircle write --z^pe^, and the integral along it becomes 

—J (— zy Q (z) idO, which tends to zero as oo, 

On one of the lines we write -’Z^ae^, on the other ^z — xe~^ and 
(—^)o-i becomes 

Hence 

lim r ^Q(x)- Q (x)} dx - 2mlr; 
►0, p-*»oo) J S 

and therefore Q (x) dx=^ir cosec (aw) 2r. 

CoroUary. If Q{x) have a number of simple poles on the positive part 
of the real axis, it may be shewn by indenting the contour that 

-P Q{(c)dx^ircosec (aw) 2r — wcot (aw) 2r', 

where 2r' is the sum of the residues of Q (z) at these poles. 

Exampk 1. If 0 < a < 1, 

r* T 
I -—03?*= IT cosec air, P\ --dlar^ircot air. 

JO Jo 1—^ 
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2. If 0 < z < 1 and — «• < a < «•, 

^-1 
..'vr # • 
<+e“ sm ir« 

r m 
J» t+e* 

Example 3. Shew that, if -1 < * < 3, then 

r_£i_, «i(Lif). 
jo (1+a!*)* 4c08§*rz' 

Example 4. Shew that, if -1 <p< 1 and -«■ <X<ir^ then 
'« x'^pdx __ w sinyX 
0 l +2:i7 00sX-f ^~smy*r sinX * / 

(Minding.) 

(Euler.) 

6*3. Cauchys mtegnd. 
We sliall next discuss a class of contoiir-integrals which are sometimes found useful 

in analytical investigations. 

Let <7 be a contour in the z-plane, and let/(z) be a function analytic inside and on C. 

Let if) (z) be another function which is analytic inside and on C except at a finite number 

of poles ; let the zeros of <#> (z) in the interior* of <7 be Oj, oo,, and let their d^rees of 

multiplicity be n, rj,...; and let its poles in the interior of U be bi, 6*,..., and let their 

d^rees of multiplicity be . a.' r \ 

Then, by the fundamental theorem of residues, j (z) dz is equal to the sum 

of the residues at its poles inside C. 
9 W 

can have singularities only at the poles and zeros of (z). Near one 
^(z) 

of the zeros, say Ui, we have 
<\) {z) = .4 (5 - aiYx + B{z- ui)**! + ^ +... • 

Therefore W=-dri (a—ai)n-i4- -5 (^i +1) (^~ <%)^i +... j 

and / {z) =/ (ui)+(^ -“ «i)/' (%)+• • • • 

Therefore ““ 1 is analytic at ai. 
( ^(ij) 2-ai J 

Thus the residue at the point z^Oi, is ri/(ai). 
<p{z) 

Similarly the residue at z=hi is —Zif (^i); for near z—hi, we have 

and / {z) —f i^i)+(^ — hi)f' (&i) + •. • y 

(t>{z) z-bi 

Hence 2^. j'^/(z)^^rfz=2n/(“t)-2«i/(6i). 

the summations being extended over all the zeros and pol^ of <j) {z). 

6*31. The number of roots of an equation contained within a contour. 

The result of the preceding paragraph can be at once applied to find how many roots of 

an equation <i>{z)^0 lie within a contour C. 

For, on putting/(z)==l in the preceding result, we obtain the result that 

JL f 3^ 
2fl'i j c 4>(z) 

dz 

is equal to the excess of the number of zeros over the number of poles of 4> (2) contained in 

the interior of (7, each pole and zero being reckoned according to its d^ree of multiplicity. 

* <p (z) must not have any zeros or poles on C. 
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Example 1. Shew that a polynomial ^ {2) of degree m has m roots. 

(oo+O). 

Then + 
<t>{z) aos^+...+a^ 

Consequently, for large values of {2; |, 

Thus, if 0 be a circle of radius p whose centre is at the origin, we have 

But, as in § 6*22, 
//© 

dz^O 

as p-^Qo ; and hence as <f>{z) has no poles in the interior of <7, the total number of 
zeros of ^ (z) is 

lim ^ I 
PHI.® c4>iz) 

JSsample 2. If at aU points of a contour 0 the inequality 

I %^|>| + I 

is satisfied, then the contour contains k roots of the equation 

+Op, _ 1-1 +...+ai ^+Oo=0. 

For write /(2)=+ 

Then 

wh^re 1 fT" I ^ a < 1 on the contour, a being independent* of 2. 

Therefore the number of roots of jf(3:) contained in G 

c f{z) 2iri} o\z I + 1/ dz ) 

“““ I we can expand (1+ «7)-» in the uniformly con¬ 

vergent series 

l-U+U^-U^+..., 

-U^~ l-” 2“ rgw -...Jp= 

Therefore the number of roots contained in C is equal to k. 

Example 3. Find how many roots of the equation 

2^+62+10=0 

lie in each quadrant of the Argand diagram. 
(Clare, 1900.) 

1^1 is a oontmuoua function of 2 on <7, and so attains its upper bound (§ 3*d2). Henoe its 
upper bound a must be less than 1. ^ 
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6*4. Connexion between the zeros of a function and the zeros of its derivate. 

Macdonald * has shewn that iff(z) he a function of z analytic throughout the interior of 

a nngU closed contour 0, defined by the equation \f{z) [ = if, where Mis a constant, then the 

number of zeros of f{z) in this region exceeds the number of zeros of the derived function 

f’ {£) in the same region by unity. 

On C\ebf{z)—Md^ ; then at points on C 

Hence, by § 6-31, the exceas of the number of zeros of f{z) over the number of zeros 

of /' (2) inside f € is 

/i> 27ti J cf\^)^ 27ri j <?/' (2) j c 
Let s be the arc of C measured from a fixed point and let be the angle the tangent to 

C makes with Ox; then 

1 f (dfB /^\ 

%ni J c 

Now log ^ is purely real and its initial value is the same as its final value, and 

: hence the excess of the number of zeros of/(z) over the number of zeros of 
ds ^ 

f (2) is the change in i/^/27r in describing the curve C; and it is obvious J that if 0 is any 

ordinary curve, yjr increases by 27r as the point of contact of the tangent describes the 

curve O; this gives the required result. 

Example 1. Deduce from Macdonald’s result the theorem that a polynomial of degree 

n has n zeros. 

Example 2. Prove that, if a polynomial f{z) has real coefficients and if its zeros are ail 

real and different, then between two consecutive zeros of/(2) there is one zero and one only 

of/(2). ^ 
[Dr Pdlya has pointed out that this result is not necessarily true for functions other 

than polynomials, as may be seen by considering the function (2^ “ 4) exp (2^/3)-] 
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Miscellaneous Examples. 

1. A function <f> (z) is zero when z=0, and is real when z is real, and is analytic when 

I z 1 $ 1; if/(ar, y) is the coefficient of i in ^ (a!+iy), prove that if -1 < :c < 1, 

/, 
^ xsm$ i / X 

-z—5-sm 6) dB={x), 
0 1-2a7C08^+J!®*' ^ ^ 

2. By integrating 
±aiz 

(Trinity, 1898.) 

round a contour formed by the rectangle whose comers are 
V”-i 

0, R, R-i-i, i (the rectangle being indented at 0 and i) and making R-^oo, shew that 

/: sin cw: , 1 e^+1 
—, ■ I , ... 

4«®-l '2a' 
(Legendre.) 

3. By integrating log ( —e) §(2) round the contour of § 6*24, whei^ Q(z) is a rational 

function such that zQ(z)’~»^0 as 121 *^0 and as 121 oo, shew that if $ (2) has no poles 

sum of the on the positive part of the real axis, J Q (x) dx is equal to minus the 

residues of log (-2) §(2) at the poles of Q (2); where the imaginary part of log (-2) lies 
between ±w. 

4 Shew that, if a>0, 6>0, 

/, 
.dx 

^coaiwgjn (asin (e“—1). 

5. Shew that 

fl*' asin2^ t 1 , . . 

= -wlog(I+a-*), (aa>l) 

6. Shew that 

^ sin ^ix 8m<fy^x sin tf^^x 

(Cauchy.) 

/: EUkOX - ST 
COSaiX... C0Sa,„2r — 

} ^ X X X * X 

if <hi V* ihiy Om be real and a be positive and 

^>1^1 l+l<^|*f +1 <#>»! + ! Cl 1+ ...+| Om I- 
(StSrmer, Acta Math, xix.) 

7. If a point 2 describes a circle C of centre a, and if f(z) be analytic throughout 

C and its interior except at a number of poles inside C, then the point u=f{z) will 

describe a closed curve y in the te-plane. Shew that if to each element of y be attributed 

a mass proportional to the corresponding element of €, the centre of gravity of y is the 

point r, where r is the sum of the residues of at its poles in the interior of C, 
a ^ 

(Amigues, Nouv, Ann, de Math, (3), xn. (1893), pp. 142-148.) 

8. Shew that 

dx ^ 2r(2u4*&) /: . («*+6*) (a:*+ osp “ 2a36 (a+6)*' 

/, 
dx V 1.3...(271-3) 1 

0 {a+hx^Y 1.2... (ti-I) 

9. Shew that 
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la ifF^izy i (1 — shew that the series 
m=l 

“ F^Czn^^) 

an analytic function when ^ is not a root of any of the equations 2“-n»; that the 
m of the residues of /(c) contained in the ring-shaped space included between two 
rcles whose centres are at the origin, one having a smaU radius and the other having 
radius between ,1 and «-)-1, is equal to the number of prime numbers 1^ ^h^ \ 

(Laurent, Nouv. Ann. de MaO,. (3), xvnn (1899), pp. 234-241.) 

11 If .4 and B represent on the Argand diagram two given roots (real or ima^nary) 
' the equatioa/(i!)=0 of degree n, with real or imaginary coefficients, shew that there is 
, least one root of the equation/' (^)=0 within a circle whose centre is the middle point 

Ftoc. OufTih. Fhil^ Soc. xi.) 
’ AB and whose radius is cot -. 

12. Shew that, if 0 < v < 1, 

t=-» i—^ 

rConsider f— round a circle of radius n-t-i; and make ®.] 
•- j sinwi e-x ^ i 

/ITT’__TMumtnrtl -Him A 

13. Shew that, if w > 0, then 

(Kronecker, Journal filr Math, cv.) 

/: sin* mt 
dt 

Discuss the discontinuity of the int^ral at m=0. 

14. If^+B+U+...=Oanda, 6, c,... are positive, shewthat 

^ Acmasc^BQmhx-¥...'¥Komhx^^^_^ loga~jBlog6- /; ..-Alogi. 

(Wolstenhohne.) 

15. By considering J dt taken round a rectangle indented at the origin, shew 

;hat,iflr>0, 

and thence deduce, by using the contour of § 6-222 example 2, or its reflexion in the real 

B-ria (according as a? ^ 0 or < 0), that 

according as jr>0, ar=0 or ^<0. 

[This int^ral is known as Cauchy’s diMonUnuom fcLCtor.'l 

16. Shewthat, if 0<a<2, 6>0, r>0, then 

rdx 
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17. Let J>0 and let 

By considering round a rectangle whose comers are ±(37'+^) ±t, where 

^ is an integer, and making iV-^oo, shew that 

roo-i /-oo+i 

By expanding these integrands in powers of respectively and integrating 

term-by-term, deduce from § 6*22 example 3 that 

1 ^{1/0 f" e-’^dx. 
(nty J 

Hence, by putting ^=1 shew that 

(This result is due to Poisson, Journal de Vikole folyUchniqvs^ xii. (cahier xix), (1823), 
p. 420; see also Jacobi, Journal fur Math, xxxvi. (1848), p. 109 [Ges, Werke^ ii. (1882), 

p. 188].) 

18. Shew that, if j{> 0, 

2 g“n*;rt*-2iiirorf_-|5- 4 jl 2 COS 2nfl-aV . 

n=i-oo I «=1 J 

(Poisson, MSm. de VAcad. dee ScL vi. (1827), p. 692; Jacobi, Journal fur Math. ni. 
(1828), pp. 403-404 [Gee. Werke, i. (1881), pp. 264-265]; and Landsberg, Journal fUr 

Math. CXL (1893), pp. 2.34-253 ; see also § 21-51.) 



CHAPTEE VII 

THE EXPANSION OF FUNCTIONS IN INFINITE SERIES 

7'1. A formula due to Darhoux*. 

Let f{z) be analytic at all points of the straight line joining a to and 

let tf) (t) be any polynomial of degree n in t. 

Then if 0 < « < 1, we have by differentiation 

dtm=i 
= -(z-a) <#>'”' (0 f'ia + tiz- a)) + (-)“ (z - a)«+* <#> (a + i (^r - a)). 

Noting that <#»'"> (t) is constant = (0), and integrating between the 

limits 0 and 1 of t, we get 

+ (-)“ {z - a)“+' r <l> (t) f (a+ t(z — a)) dt. 

which is the formula in question. 
Taylor^s series may be obtained as a special case of this by writing 

^ (t) = (f -1)" and making n-^ oo. 

Example. By substituting 2w for n in the formula of Darboux, and taking!^ (t)=<"(f-1)”, 

obtain the expansion (supposed convergent) 

and find the expression for the remainder after n terms in this series. 

7*2. The Bernoullian numbers and the Bemonllian polynomials. 

The function cot is analytic when | -2^ | < 27r, and, since it is an even 

function of z, it can be expanded into a Maclaurin series, thus 

1 .1 
2^cot2^ = 1 R ^ 7? ^ B, 6f 

then Bn is called the nth Bernoullian number f. It is found thatj 

-53 = 70, -84 = ^» •*** 

* Journal de Math, (3), ii. (1876), p. 271. , vi- .i 
t These numbers were introduced by Jakob Bernoulli in his Ars Cmyectandi, p. 97 (publiahe 

posthumously, 1713). 

X The first sixty-two Bernoullian numbers were computed by Adams, Brit. Ass, Reports, 1877; 

the first nine significant figures of the first 230 Bernoullian numbers were subsequently published 

by Glaisher, Trans. Gavib, Phil. Soc. xn. (1879), pp. 384-391. 
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These numbers can be expressed as definite integrals as follows; 

We have, by example 2 (p. 122) of Chapter VI, 

1 i 

jo «** —1 2p 2 ^ 

^ 4. ^ Il4. J? 
41 

+... 

Since 

in^pir + i «ir 

g«S_ 1 
dx 

converges uniformly (by de la Vallde Poussin’s test) near jp = 0 we may, by 

§ 4-44 corollary, differentiate both sides of this equation any number of 
times and then put p = 0; doing so and writing 2t for x, we obtain 

B, t„ = 4a[ 
Jo 

^t_i- 

A proof of this result, depending on contour integration, is given by Carda, Mouatshefte 

/tir Maih. v.nd Pky». v. (1894), pp. 321-4. 

Example. Shew that 

5.= 
sinh:?? 

>0. 

^-1 
Now consider the function t , which may be expanded into a 

Maclauiin series in powers of t valid when 1 ^ | < 27r. 

The Bemotdlian polynomial* of order n is defined to be the coeflficient of 

~ in this expansion. It is denoted by <f>n {z\ so that 

?i=i n\ 

This polynomial possesses several important properties. Writing ir+1 
for z in the preceding equation and subtracting, we find that 

te** = 2 {if}n (^ +1) — (z)] —. 
»=! ^ i 

On equating coeflScients of on both sides of this equation we obtain 

= + 1) - 

which is a difference-equation satisfied by the function (z). 

* The name was given by Baabe, Journal fitr Math. xwi. (1851), p. 348. For a full discassion 
of their properties, see Norland, .dcta Math. xuii. (1920), pp. 121-196. 
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An explicit expression for the Bernoullian polynomials can be obtained 

as follows. We have 

and 

zH^ . — + -gY + ..., 

^ ^ ^ ^ — 1 ^ I. -^2^ j. 

= 2! 4!"^ 

Hence 

i iSat* . ] 

From this, by equating coefficients of t“ (§ 3*73), we have 

4,^ (^) = ;*« - i + nC,B, 2”^ - „0,5a^"-‘ + «Ce J3,2»- - • • • . 

the last term being that in n or 2* and ^Ca, nCi, ... being the binoimal 

coefficients; this is the Maclaurin series for the nth Bernoullian polynomial. 

When 2 is an integer, it may be seen from the difference-equation that 

^ (2)/n= ... +(z- 

The Maclaurin series for the expression on the right was given by BemoullL 

Example. Shew that, when »>• 1, 

fl! - 

7*21. The Euler-Maclaurin expansion. 

In the formula of Darboux (§ 7'1) wnte ^»(t) for where is the 

nth Bernoullian polynomial. 

Differentiating the equation 

times, we have 

(^ +1) - (0 = n (fi -1) ... kfi‘'\ 

Putting e = 0 in this, we have (1) = (0). 

Now, from the Maclaurin series for we have if k>0 

in I 

(0) = - 5 • «!> (0) = «!• 

Substituting these values of (1) and (0) in Darboux’s result, 

we obtain the Euler-Maclaurin sum formula*, 

• A history of the formula is given by Barnes, Proc. London Math. Soc. (2), ni. (1905), p. 253. 
It was discovered by Euler (1732), but was not published at the time. Euler communicated 

it (June 9, 1736) to Stirling who replied (April 16, 1738) that it included his own ^eorern (see 
§ 12:33) as a particular case, and also that the more general theorem had been discovered by 

Madauiin; and Euler, in a lengthy reply, waived his claims to priority. 1^® theorem was 
by Euler, Comm. Acad. Imp. Petrop. vr. (1732), [Published 1738], pp. 68-97, and by 

iqnM.T.rin in 1742, Treatite on Fluxumt, p. 672. For information concerning the correspondence 

'between Staler and Stirling, we are indebted to Mr 0. Tweedie. 
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(^-a)/'(a)=/(^)-/(a)- {/'(^)-/'(«)} 

+ 2 
m=l (2m)! 

r3 

(2«) 

{/(»») (^) _/(«-) (a)) 

»+i rj 

— {a + (;? - a) i} dt. 

In certain cases the last term tends to zero as n-^oo ^ and we can thus 

obtain an infinite series for f(z) —f (a). 

If we write © for 2? — a and F{w) for f' (x), the last formula becomes 

ra+m 1 

I F{x)dx = ^(o{F{a)’hF{a + <i>)} 
J o 

+ 2 
(2m) 1 

, (a 4. a,) ~ (a)} 

Writing a + ©, a + 2cd, ... a 4*(r — 1) cd for a in this result and adding up, 

we get 

jF (a;) da; = o) |i J5'(a) + if* (a + w) + J (a + 2<a) + ... +1(a + rft))| 

+ 2 ^ (a + rm) ~F (a)} + 

where i2» = 

m—l 

®»*+l fl 

(2»i) IS- 
^(2») (a4-me» 4- g>^) 

This last formula is of the utmost importance in connexion with the 

numerical evaluation of definite integrals. It is valid if F{x) is analytic at 

all points of the straight line joining a to u 4- rm. 

Example 1. If f{£) be an odd function of 2, shew that 

n n 92n22» + l Tl 

Example 2. Shew, by integrating by parts, that the remainder after n terms of the 

be written in the form 

(^Tsin^ j^4>2.{t)cos 

expansion of ^ « cot ^ 2 may be written in the form 

(Math. Trip. 1904.) 

7‘3. Bii/nnann's theorem^ 

We shall next consider several theorems which have for their object the 

expansion of onefwiction in powers of another funcUon. 

* Mimoirea de VInstitut, n. (1799), p. 13. See also Dixon, Proc. London Math. Soc, xxxiv. 
(1902), pp. 151-163. 
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Let if> (z) be a fiinction of z which is analytic in a closed region S of which 

a is an interior point; and let 
<f) (a) = b. 

Suppose also that <#)'(a) + 0. Then Taylor’s theorem famishes the 

expansion 
* Iff /_\ 

and if it is legitimate to revert this series we obtain 

which expresses z as an analytic function of the variable {<^(-2^) foi 

sufficiently small values of |^ —a|. If then y(-3^) be analytic near z = a, it 

follows that f{z) is an analytic function of {z) — b} when | ^ - a j is sufficiently 

smalb and so there will be an expansion of the form 

f(z) =/(a) + <h{<f> (z) - 6} + f, [<!> (^) - + li {z)-bY+.... 

The actual coefficients in the expansion are given by the following 

theorem, which is generally known as Bilrviann's theorem. 

Bet '^(z) be a Jwfictiou of z defired by the eQuotiou 

Z €L 

then an analytic function f(z) can, in a certain domain of values of z, be 

expanded in the form 

/(,) ./(a) + ^ f + 

1 f* f [^(z)-b'Y~^f'{z)dtdz 

where = L?(^J <^>(0"^^) ’ 

and y is a contour in the Pplane, enclosing the points a and z and such that, if 
f be any point inside it^ the equation if>(t)^<f> (?) has no roots on or inside the 

contour except* a simple root ^ = ?- 

To prove this, we have 

f{z)-fia)^\j 4>(t)-4>a) 

_ 1 I* f f'{t)4>'(i)dtdi [■-* 
ZrriJaJy 

(<)-«#>(?)}]■ 

* It is assumed that such a contour can be chosen if ] * - a | be sufficiently small; see § 7*31. 
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But, by § 4-3, 

_i_ r* f r4> (O - 6]"/' (t) f (0 dtd^- [<i> (^) - f 
^vtJa Jy\_<l>it) — bj <^{t) — b 2'7ri(w+1) Jy —6}”*+^ 

_ {4> (z) - (■ f (t) (t)j>»+> dt _ {4, (z) - 6}'»+> d* , 
~ 27n(m + l) Jy (t - ~ (m + 1) ! da“-*• 

Therefore, writing m — 1 for m. 

2-nijJ^l<l,(t)-bj ■ 

If the last integral tends to zero as n—^oo, we may write the right-hand 

side of this equation as an infinite series. 

Example 1. Prove that 

z=a-\> 2 -—-j-, 
»=! n I 

{7^=(2wa)» 
w(n-l)(?i-2) .g {n-Z){n-4) 

To obtain this expansion, write 

in the above expression of Biirmann^s theorem ; we thus have 

2=a+ 2 —, 1-^—j 
J,-a 

But, putting «=«+?, 

=(?i-1) I X the coefficient of ^““Mn the expansion of e~«*(2«+*) 

= (ti — 1)! X the coefficient of in 2 - 
r-O 

-(n-lVx V 

(-yn'r(aa+t)’- 

The highest value of r which gives a term in the summation is r—ti-I. Arranging 

therefore the summation in descending indices r, beginning with r=w-1, we have 

which gives the required result. 

Example 2. Obtain the expansion 

o . 2 ,2 1 . , ,2.4 1 . . 
«2=sm2 3: + - . -sm*;S + 5-^ . ^ sin® 

o Z S,0 6 
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Exanv^ A Let a line be drawn through the origin in the r-plane, perpendiaito to 

the line which joins the origin to any point a. If z be any point on the 2-plane which is 

on the same side of the liney> as the point a is, shew that 

» 1 /2-o\»“+‘ 
log2-loga-l-2J^ 

7'31. Teixdra'a extended form of Bwrnumn's theorem. 

In the last section we have not investigated closely the conditions of 

convergence of BUrmann’s series, for the reason that a much more general 

form of the theorem will next be stated; this generalisation hears the same 

relation to the theorem just given that Laurent’s theorem bears to Taylor’s 

theorem: viz., in the last paragraph we were concerned only with the 

expansion of a function in positive powers of another function, whereas we 

shall now discuss the expansion of a function in positive and negative powers 

of the second function. 

The general statement of the theorem is due to Teixeira*, whose exposi- 

tion wc sliBin follow in tliis soction. 

Suppose (i) that/(«) is a function of z analytic in a ring-shap^ region 4, 

bounded by an outer curve G and an iimer curve c; (ii) that 6 (z) is a function 

analytic on and inside G, and has only one zero a within this contour, the zero 

being a simple one; (iii) that ® is a given point within A ; (iv) that for all 

points 2 of (7 we have , a / \ i 

and for all points z of c we have 

l^(a;)l >10(2)1. 

The equation 0(z) — 6 (x) = 0 

has, in this case, a single root 2 = * in the interior of G, as is seen from the 

equation f 

j_ j- e'iz)dz_j_ rr ^ciz+0(x)f 
2iriJc 271^^0 0(^) 7cl0(*)} J 

^ 1 r 0' (z) dz 

27ri j c 0 (■®^) ' 
of which the left-hand and right-hand members represent respectively the 

number of roots of the equation considered (§ 6-31) and the number of the 

roots of the equation 0 (2) = 0 contained within G. 

Cauchy’s theorem therefore gives 

, 1 rr /(^)0'(^)d^ /•/(2)0’(2)d2-| 

= 0(^)-0(^) Jc 

• Journal fUr Math. cxxn. (1900), pp. 97-123. See aUo Bateman. Trans. A,r.er. Math. So,:. 

xxvm. (1926), pp. 340-366. 

t The expansion is justified by §4-7. since converges uniformly when 2 is on C. 



132 THE PB0CES8ES OP ANALYSIS [chap, vn 

The integrals in this formula can be expanded, as in Laurent’s theorem, 

in powers of 6(x), by the formulae 

fiz)ffiz)dz 

We thus have the formula 

/(x)= i A„{0(x)}-+ 2 Bn 

where 
«=i [6{<o)Y’ 

Integrating by parts, we get, if 914=0, 

This gives a development of /(a?) in positive and negative powers of 
tf (x), valid for all points a? within the ring-shaped space A, 

If the zeros and poles of f(z) and 6{z) inside G are known, and can 
he evaluated by | 5*22 or by § 6‘1. 

Example 1. Shew that, if | | < 1, then 

^ . 1 / 2^ V , 1.3 / 24? V . 

2 Vi+W 2.4 \i+4?2; 076 vi+^y 

Shew that, when 14? | > 1, the second member represents 4?““^. 

Example 2. If denote the sum of all combinations of the numbers 

22, 4^ 62, ...(2^-2)*, 
taken w at a time, shew that 

z 8in2^ ,=o (2»+Xj!'[2n+3 2»+l'^'"'^ 3 | (sma)*" , 

the expansion being valid for all values of z represented by points within the oval whose 

equation is | sin z | — 1 and which contains the point «=0. (Teixeira.) 

7*32. Lagrange s theorem. 

Suppose now that the function f{z) of § 7*31 is analytic at all points in 
the interior of (7, and let ^ (a?)« (a; - a) ^i (x). Then d^ {x) is analytic and 
not zero on or inside C and the contour c can be dispensed with; therefore 
the formulae which give An and Bn now become, by § 5*22 and § 6*1, 

A =-!-[ 1 
2mn Jc(z- a)" {^j (z)}” n! do""* (di" (a)J 

27nJc ffr(z) 

5« = 0. 

(n>l). 
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The theorem of the last section accordingly takes the following form, if 

we write 6i{z) — 1/^ '• 
Let f{z) and 4> (z) be functions of z analytic on and inside a contour G 

surroundiny a point a, and let t he such that the inequality 

\t(^{z)\<\z~a\ 

is satisfied at all points z on the perimeter of G; then the equation 

^=a + t<f>(0> 
regarded as an equation in has one root in the interior of G; and furth^ 

any fmction of ? analytic on and inside G can he expanded as a power senes 

in t by the formula _ 

/(t) -/(«)+ s. S W I* WI'I 
This result was published by Lagrange* in 1770. 

ExampUl. Within the contour surrounding o defined by the inequality 1 *(*-«) 

where [ a \ [ a j, the equation 

has one root f, the expansion of which is given by Lagiange-s theorem m the form 
m / W —1 I - (-)»-! (2»-2) ! , 

n=l «■- 
Now, from the elementary theory of quadratic equations, we know that the equation 

2_a_“=0 
z 

represenu th> of these only-nn example of the need for care in the discussion of 

these series. 

Example 2. If y he that one of the roots of the equation 

which tends to 1 when shew that 

?i(u+3) o . 7i(w+4) (72-+6)^ 
3^==!+/^?+ 2!~^^-31-^ 

7i(w+5)(7i+6) (n+7) a (Tt-f6) (?i+7) (^+8) (7i+9) 
+ 4! 5 1 

so long as I 01 <i. 

Example Z. If ^ be that one of the roots of the equation 

x=l+y^ 

which tends to 1 when y-^0, shew that 

q 2a-l ,_,(3a-l)(3a-2) 3 
logar=y+-^ y*+ 2 3 y+•“> 

the expansion being valid so long as 

l3^|<|(a-l)«-ia--|. 

* Mim. de VAcad. de Berlin, xxiv.; Oeuvres, n. p. 25. 

t The latter is outside the given contour. 

(MeClintock.) 
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7*4 The expansion of a class of functions in rational fractions^. 

Consider a function /(^X whose only singularities in the finite, part 
of the plane are simple poles Uj ,04,03, .where | Oi | ^ | O21 ^ | Oj | < ...: let 
h> 6s, ... be the residues at these poles, and let it be possible to choose a 
sequence of circles G^n, (the radius of Cm being Bm) with centre at 0, not 
passing through any poles, such that \f{z) | is bounded on Cm- (The function 
cosec z may be cited as an example of the class of functions considered, and 
we take Bm = (m + !■) tt.) Suppose further that Bm-^ 00 as 00 and that 
the upper boundf of \f{z) 1 on Cm is itself bounded asj m —^00; so that, for all 
points on the circle 0^, \ f{z) | < If, where if is independent of m. 

Then, if x be not a pole of f{z), since the only poles of the integrand are 
the poles of f{z) and the point z=^x,^q have, by § 61, 

where the summation extends over all poles in the interior of C^.. 

But Af 1 f J 
c^z — x 

f(z) dz 

'^Ic 
m -dz 

27n J (^z(z —x) 

’^far^27njc„z(z-a))’ 

if we suppose the function f{z) to be analytic at the origin. 

Now as m-^00, [ is 0(jBm*“^X so tends to zero as m tends 

to mfimty. 

i.e. 

Therefore, making m-»oo, we have 

0 ^/(x) -/(O) + i (-A_ - 1) - lim f . 
»-i \a„-® aj ] c^z{z-x) 

which is an expansion of f{ic) in rational fiiactions of x) and the summatior. 
extends over all the poles of f{x\ 

If \(tn. \ <\^n+i\ this series converges uniformly throughout the region given by 

1^1 where a is any constant (except near the points a»). For if ^ be the radius 

of the circle which encloses the points | cti |, ••• 1 I, the modulus of the remainder of the 

terms of the series after the hrst n is 

I ^ W I ifu 

by § 4'62; and, given €, we can choose n indepmdmt of x such that < t. 

* Mittag-Leffler, Acta Soc, Scient Fennicae, xi. (1S80), pp. 273-293. See also Acta Math. nr. 
(1884), pp. 1-79. 

t Whioh is a function of m 

t Of course need not (and frequently most not) tend to infinity continuously; e.g. in the 
example taken E»,=:(ja+y ir, where m assumes only integer values. 
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The convergence is obviously still uniform even if 1 <*» 1 < I ®»+i I provi<^ iJie ter^ of 

the scries sre grouped so as to combine the terms corresponding to poles of equal moduli. 

If, instead of the conditionwe have the condition I -f ^ 

independent of when . is on <7«, and p is a positive integer, then we should have to 

expand f — by writing 

1 ^ - 
z-a~ 

and should obtain a similar but somewhat more complicated expansion. 

ExdfnplB 1. Prove that 

cosec x=i+S (-)» , 

the summation extending to all positive and negative values of n. 

To obtain this result, let cosec z-\=f{z). The singularities of this function are at the 

points 2=)iir, where n is any positive or negative integer. 

The residue of/(r) at the singularity nir is therefore and the reader wiU easily 

see that \f{z) \ is bounded on the circle [«l=(»i+i) »• as . 

Applying now the general theorem 

where is the residue at the singularity we have 

m =/(o)+s (-)' +ji} • 

^ Z'-sinz ^ 
But /(0)= ^sina 

Therefore cosec 2=-+S (—)" ,J’ 

which is the required result 

Example 2. If 0 «!< 1, shew that 

^ 1 ® 22 cos 2nafr — 4»7r sin ^naur 

Examjie 3. Prove that 

2,r;r»<co8t^r-oos;iri»“«'^^^ (2,r)'‘+K 

The general term of the series on the right is 

- e-^) ’ 

which is the residue at each of the four singularities r, -r, n, - n of the function 

(irV+i^f*) (e« - «-”) sin ' 
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The sing^ularities of this latter function which are not of the type r, - r, ri, — ri are 
at the five points 

At if=sO the residue is 

at QBch of the four points z> (±l±t)x 

2w 

a 
" 27r * 

A 

, the residue is 

Therefore 
{2w3^ (cos X - cosh 

4 2 _ I .- 
=1 {twY+wx* tta^ (cosh x - cos x) 

I. Ttzdz 

c sin irz ’ 

where Cis the circle wh(Be radius is (« an int^er), and whose centre is the origin. 

But, at points on <7, this integrand is 0 (| £ |”3); the limit of the integral round C is there¬ 
fore zero. 

From the last equation the r^uired result is now obvious. 

Example. 4 

Example 5. 

Example 6. 

Example 7. 

Example 8. 

Prove that sec ^=4ir 3 

Prove that cosech x=^-—2r f—si 

4cS 9jr2-4^2“^25^-4r2 

1 
• 

Prove that sech x^4w (-s-i—^ - —J-+_^_ 
\^+4x^ 9ir2+4»a^25ir2-f4^ **7* 

Prove that coth x^--^2x (  + ~ J + ^ 

Prove that 2 2 
m*-« »s=~« (m^-f a^) (Ti^-f 62) ah = ^ coth Tra coth rrh. 

(Math. Trip. 1899.) 

7 6. The expansion of a class of functions as infinite products. 

The theorem of the last article can be applied to the expansion of a certain 
class of functions as infinite producta 

For let f{z) be a function which has simple zeros at the points* 
«b. o.. a,,..., where lim | a„ | is infinite; and let/(z) be analytic for all values 
of Z, 

Then f{z) is analytic for all values of z (§ 5-22), and so can have 

singularities only at the points ch> ce», .... ^ 

Consequently, by Taylor's theorem, 

f(z)^(z--ar)f'{ar)-h--f"((ir)+--. 

f (^) = /' (Or) + - o,) f" (a,) + .... 

* These being the only zeros ©1 f(z); and a„4»0. 

and 
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* fi^) 
It follows immediately that at each of the points the function 

has a simple pole, with residue 4-1. 

If then we can find a sequence of circles of the nature described in 

5 7‘4, such that is bounded on Cm as m—^oo, it follows, from the 
^ /(^) 
expansion given in § 7*4, that 

m /(O) 
Since this series converges uniformly when the terms are suitably grouped 

(I 7*4), we may integrate term-by-term (§ 4*7). Doing so, and taking the 

exponential of each side, we get 

where c is independent of z. 

Putting z Of we see that f(0) = c, and thus the general result becomes 

- 
\^an 

This furnishes the expansion, in the form of an infinite product, of any 

function f{z) which fulfils the conditions stated. 

Example 1. Consider the function which has simple zeros at the points 

rvr, where r is any positive or native integer. 

In this case we have / (0) == 1, f (0)=0, 

and so the theorem gives immediately 

sin 

z 
f (2) 

for it is easily seen that the condition concerning the behaviour of as | z |~^qo is 

fulfilled. 

Example 2. Prove that 

{'<)) . 
cosh h-^ooQX 

1 - cos X 
rTrinitv. 1899.1 

7*6. The factor theorem of W eierstrass^, 

The theorem of § 7*5 is very similar to a more general theorem in which 

the character of the function fiz), as | >2r |—»oo, is not so narrowly restricted. 

* Berliner Ahh. (1876), pp. 11-60 j Math, WerkBf n. (1895), pp. 77-124. 
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Let f{z) be a fiinction of z with no essential singularities (except at ‘the 

point infinity'); and let the zeros and poles of f{z) be at Oi, Ogj Cfs* * * § • • • > where 

0<jai|^[a2|^|c^|.... Let the zero* at an be of (integer) order m«. 

If the number of zeros and poles is unlimited, it is necessary that 

ja»|—>Qo, as for, if not, the points On would have a limit pointf, 

which would be an essential singularity of f{z)* 

We proceed to shew first of all that it is possible to find polynomials 

gn {z) such that 
00 

1/ z\ , n . (1- — 
n=l _ [\ OnJ J J 

converges for allj finite values of z. 

Let K be any constant, and let \z\<K\ then, since |a»|-»oo, we can 

find N such that, when n>Ny ] | > 2jK’. 

The first N factors of the product do not affect its convergence^; consider 

any value of n greater than and let 

Then -lie. \ Wl 

-) +5-«W X 
msskn -(-) m \CLn/ 

^ * z ^ 
< - X — 

m=(i ^ 

since | | < ^. 

Hence |^1 — —^ 

where \un{z)\^2\mn {KarT^f^ |. 

Now Mn and are given, but is at our disposal; since Kan^^ < we 

choose kn to be the smallest number such that 2 | rrin {Ka^r^y^! < hn, where 

2 hn is any convergent series § of positive terms. 
»=i 

Hence n 
»=W+1 LI 

00 
n 

«»^+i 

where \un{z)\<hn; and therefore, since hn is independent of z, the product 

converges absolutely and uniformly when \z\<Ky except near the points On* 

* We here regard a pole aa being a zero of negative order, 
t Prom the two-dimensional analogue of § 2*21. 

t Provided that z is not at one of the points for which is negative. 
§ E.g. we might take 
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Now let n 
»=i 

'' S!\ ) 
1 _ esnw I 

Then, if f{z)-i-F{z) = Gi{z), Gi{z) is an integral function (§ 5’f;4-) of z 

and has no zeros. 

1 d 
It follows that ^ -Y- Gi (z) is analytic for all finite Yalues of z; and 

Oi(z) dz ^ ' 
m 

SO, by Taylors theorem, this function can be expressed as a series X^nbuZ"^'^ 

converging everywhere; integrating, it follows that 

00 

where G(z)= 2 6„z’* and c is a constant; this series converges everywhere, 

and so Q (z) is an integral function. 

Therefore, finally, 

/W-AO)'”"’5, [l(»-i) 
where G (z) is some integral function such that G (0) = 0. 

[Note. The presence of the arbitrary element Q {z) which occurs in this formula for 
f{z) is due to the lack of conditions as to the behaviour of /(«) as 12? |-«^oo.] 

Cm-oUary, If it is sufficient to take by § 2*36. 

7*7. The ewpansion of a class of periodic functions in a series of 

cotangents. 

Let f{z) be a periodic function of Zy analytic except at a certain number 

of simple poles; for convenience, let tt be the period of f{z) so that 

f{z)=^f{z + ir). 

Let z==^x-¥iy and let f{z)-¥l uniformly with respect to iJ? as oo, 

when similarly let f{z)-^V uniformly 

Let the poles of f{z) in the strip 0<be at Os,... o^; and let the 

residues at them be Ci, Cg, ... c». 

Further, let ABOD be a rectangle whose comers are* -ip, tt —ip, 

w + ip' and ip' in order. 

Consider 2^* J f ^ 

taken round this rectangle; the residue of the integrand at Oy is Cr cot (uy — z\ 

and the residue at ^ is f{z). 

Also the integrals along DA and GB cancel on account of the periodicity 

of the integrand; and as p-»oo, the integrand on AB tends uniformly to 1% 

while as p'-^oo the integrand on GD tends uniformly to - li\ therefore 

\ (V +1) =^f{z) +% Cr cot (Oy - z). 
^ r—l 

* If any of the poles are on ajssw-, shift the rectangle slightly to the right; p, /)' are to be 

taken so large that ai, og* — are inside the rectangle. 
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That is to say, we have the expansion 

/(^) — 5 d’ + 0 + ^ cot (z — a,). 
r-=l 

Example 1. 

oot(i:-<ii)cot(a?-as)... oot 2 cot (a^-Oj)...... cot(<ir-a»)cot(a;-a,) + (-)i", 
^•=sl 

n 
=2 cot(a^—cot a^)cot 

1*—1 

according as m is even or odd; the • means that the factor cot (a,-a,) is omitted. 

Example 2. Prove that 

sin {x - hi) sin (x-k^)... sin (x- b,) sin (a, -5,)... sin ra, -6.^ 

sin {x-a^) sin (x-cti)... sin {x-a,) sin (aj-Oa)... sin (aj-OH) 

sm (a^ - ^i)... sm (a2 - o») ^ 

-f cos(ai+a2+... + a»~6i~62-... 

7*8. BoreVs theoremf. 

analytic when 12: i < r, so that, by § 5-23, | a„r» | < M, 

where M is independent of n. 

Hence, if ^(i)= S ^ («) is an integral function, and 
»=:0 ^ • 

and similarly | (^) | < 

r® 
Now considere~* <f> (zt) dt ■, this integral is an analytic function 

of z when | ir j < r, by § 5-32. 

Also, if we integrate by parts, 

/. d)=^\-e-*<t> (zt)] + ^ (2t) dt 
L Jo Jo 

(^t) dt 

(^) = Om; and, when 1 ^| <r, lim(zt) = 0. 

/i(«)= I + Therefore 

+ Lesom tur le$ tiria divergenUt (1901), p. 94. See also the memoirs there cited. 
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where 1 I < i | dt 

as I if {1 — I ir I as n—#oo. 

Consequently, when \z\<r, 

m5=0 

and 

where 6(z)=^2 is called function associated with 2 

If /S'= 2 and <^(«)= 2 and if we can establish the relation I {t) dt, 
nsO n-a n, i 0 ^ 

the series S is said (§ 8*41) to be ^mmmahle (BY; so that the theorem just pro%'ed 

shews that a Taylort series representing an analytic function is summable (B). 

/(^)= re'-^tf>(zt)dt, 
J 0 

7*81. BoreVi integral and analytic continvalion. 

We next obtain BorePs result that his integral represents an analytic function in 

a more extended region than the interior of the circle | z | = r. 

This extended region is obtained as follows: take the singularities a, c,... oif (z) and 

through each of them draw a line perpendicular to the line joining that singularity to the 

origin. The Unes so drawn will divide the plane into r^ions of which one is a polygon 

with the origin inside it. 

Then BoreVs iniegral repreeents an analytic function (which, by § 5 5 and § 7 8, is 

obviously that defined by f(z) and its continuations) throughout ih^ interior of this 

polygon. The reader wiU observe that this is the first actual formula obtained for the 

analytic continuation of a function, except the trivial one of § 5*5, example. 

For, take any point P with affix C inside the polygon; then the circle on OP as 

diameter has no singularity on or inside it*; and consequently we can draw a slightly 

* The reader will see this from the figure; for if there were such a singffiarity the correspond¬ 

ing side of the polygon would pass between 0 and P; i.e. P would be outside the polygon. 
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larger concentric circle^ G with no singularity on or inside it. Then, by § 5*4, 

maz, 

»nd8o 1 i 
n=o nl J 

« ff£i 
but converges uniformly (§ S*34) on C since f(z) is bounded and \z\'; 

where § is independent of z; therefore, by § 4*7, 

and so, when t is real, \ <t>({t)\<F(C) where F(C) is bounded in any closed regie 

wholly inside the polygon and is independent of i; and X is the greatest value 
real part of Cjz on 0. 

If we draw the cii*cle traced out by the point z/{, we see that the real part c 

greatest when z is at the extremity of the diameter through and so the value 

AOO 

We can get a similar inequality for <]/((t) and hence, by § 6*32, I 

analytic at f and is obviously a one-valued function of 

This is the result stated above. 

7’82. Expansions in s&ries of inverse factoirials, 

A mode of development of functions, which, after being used by N 

and Stirlingl in the eighteenth century, was systematically investigat 

Schl6milch§ in 1863, is that of expansion in a series of inverse factoria" 

To obtain such an expansion of a function analytic when | ^ | > r, ^ 

the function be f{z)-^ and use the formula f(z) = J 
00 ® 

where <p{t)^ 2 ani^l{n^)\ this result maybe obtained in the same \ 
«=sO 

that of § 7-8. Modify this by writing e"* = 1 - 0 (t) = then 

J 0 

Now if t = U’j-iv and if t be confined to the strip —7r<t;<7r, ^isi 

valued function of f and F(|) is an analytic function of f; and f is rest 

so that -7r<arg(l-|)<7r. Also the interior of the circle 1 = 1 corres 

* The difference of the radii of the circles being, say, S, 

t Mem de VAcad. des ScL (Paris, 1717); see Tweedie. Proc. Bdin, Math. Soc. xxxvi. (] 
+ Methodus BifferentialU (London, 1730). 

§ Compendium dtr hdheren Analysis, More recent investigations are due to Kluyver, 
and Pinoherle. See Compta Sendus, cxxxm. (1901), chut. (1902), Annale$ de I'icoU 
eup. (8), HI., nil., xxni., Sendiconti dei Lined, (5), xi. (1902), and Palermo Rendieonti, 
(1912). PropertiM of functions defined by eeries of Inverse faotoriale have been studlei 
important memoir by Korlund, Acta liatjf. xhth. (1914), pp. 327-iJ87. 
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to the interior of the curve traced out by the point t = — log ^2 cos § 2 

(writing ^ = exp {i (6 + w)}); and inside this curve 

\t\-R(t)^i{R (t)}> + TT*]^ - 

as >00. 
It follows that, when \F(^)\<M^'*'<M,\^*\, where ifx is in¬ 

dependent of t; and so F(^< Jfi |(1 — |. 

Now suppose that 0 < f < 1; then, by § 5'23, | F^’*^ (f) 1 < M3. where 
M3 is the upper bound of \F{z)\ on a circle with centre f and radius 

p<l-f 

Taking p = -^(1 “ ?) observing that* (14-n'^)” < e we find that 

+ ly.»!(!- !)■ 

.nl 
n + \ 

Eemembering that, by § 4-5, j means liu^ , we have, by repeated 

integrations by parts, 

/(z)= lim r\i-irF'w<ii 

- .5?. [-<^ - [-«- ®]i 
r\i-?r^F"(od^ 

z-t 1 Jo 

“ l-€ 

0 

= 60 + ^ +1'*’(«-1-1) (if + 2)+ 1) -H 2) ... (2:4-n) 
6» 

+ -Knj 

Jo 
where K = li^^a 

L 

if the real part of-2r4-n-r-n>0,ie. if R(z)>r; farther 

1 
\RnH I (-3^ + 1) (^ + 2) ... (i? + n.) I e-M) 

Mie (n + 2y,nl 
|(^+l)(i-l-2)...(z + n)|.i?(^-r) 

lim r 
e^J 0 

_Mie (n-h2y.nl_ _ 
(r +1 + S) (r + 2 + 8) ... (r + n + S).S’ 

where S ==* ii(-^ — r). 

* (l+x-y increases with ar; for ^ 

say, putting ^iclog(l+a:”^)=log (l+or^)- 
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Now n |(i 4-^ 
m=l [\ m J 

tends to a limit (§ 2*71) as n—^oo, and so | if (71 + tends 
to zero; but 

2 1/m >1 — = log (n 4-1), 

by § 4*43 (ii), and (n + 2)^(72 + when S >0; therefore Rn-^0 as 
w—»oo , and so, when R (z) > r, we have the convergent expansion 

A - A. 1 1 

^ ^^^+l^(^ + l)(^ + 2)‘^*"‘^(^ + l)(0 + 2)...(.^ + n)'^-'- 

Example 1. Obtain the same expansion by using the results 

(«4l)(if+2)... (247i + l) “iTi /o ^ 

Example 2. Obtain the expansion 

log('l+-')=^__ 
*V 2 Z(2+1) 2(*+1)(2+2) .. 

o»=(1 - /) (2- <)... («-1 -i) 

and discuss the r^ion in which it converges. (Schlomilch.) 

REFERENCES. 

E. Gouksat, Court d?Analyse (Paris, 1911), Chs. xv, xvi. 

E. Borel, Legem mr let series divergentes (Paris, 1901). 

T. J. I’a. Bromwich* Theory of Infinite Series (1908), Chs. viii, x, xi. 

0. SohlOmilch, Compendium der kokeren Analysis^ 11. (Dresden, 1874). 

Miscellaneous Examples. 

1. If y — where <p ia a, given function of its argument, obtain the 
expansion 

ii (r4^) 
wh^ / denotes any analytic function of its argument, and discuss the range of its 

validity. (Levi-Civit^ Rend, dei Lincei, (5), xvi. (1907), p. 3.) 

2. Obtain (from the formula of Darboux or otherwise) the expansion 

/ (2) -/(a) = {/t.) (.) - ^a)}; 

find the remainder after n terms, and discuss the convergence of the series. 

- The expansions considered by Bromwich are obtained by elementary methods, i.e. without 
the use of Cauch/a theorem. 
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3. Shew that 

/(x+A)-/(x)=(-)-*{/'*>(^+A)-(-)"/“>(X)} 

+(-)»A*+i f’y*(«)/<"■*■**(^+A<}rf<, 
J 0 

where 

and shew that (a?) is the coefficient of nl in the expansion of {(1 — tx) (1 + ^ — ix)| ^ in 

ascending powers of t. 

4. By taking 
,,,, I fd^ Kl’-r)^\l 

<l> (a^+.l) „ ; 11 -r«-“ J J._o 

in the formula of Darboux, shew that 

/(x+A)-/(;r)= - {/(-)(^+A)-;-/(■»>(X)} 

1-r - u , u^- 
where 

5. Shew that 

/«-/(»)- s (a)4-./t^-» (z)} 
m~l * 

Ve‘^jJu-o‘ 

6. Prove that. 

/(■Sj) -/M=<^1 (.H - h)f W +C's (2j-Zl)®/' (*l) - ^3 (*S - 2l)’/"' (^) 

- Ci (3s - 3l)*(3l) + ... + (-)" (3S ' 

in the series plus signs and minus signs occur in pairs, and the last term before the 
integral'is that involving (zj-*!)': also is the coefficient of 3“ in the expansion of 

cot in ascending powers of z. (Trinity, 1899.) 

7. If Xi and are integers, and tj> (z) is a function which is analytic and bounded for 

all values of z such that R (z) shew (by integrating 

r ^{z)dz 

J 
round uidented rectangles whose comers are Xi, Xj, xt±eci, xi±cot) that 

(a-j) + </> (z^i +1)+<#> (^i+2) +... + <#> (3^2 -1) + 4<#> (^») 

f “ <6 (r,+ty) - <f> (z:i+iy)-i> (^2 - (y)+» (^1 - »y) 
= <i)(2)d3+jJo - " ^ 

Uence, by applying the theorem 
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where are BemouUfs numbeFs, shew that 

4.(1)+^ (2)+...+«/. (n)~.C+i<p(n) +j'<l> (z) <*+ ^ w> 

(where (7 is a constant not involving provided that the last series converges. 

(This Important formula is due to Plana, Mem. della R. Acoad, di Torino^ xxv. (1820), 

|>|). 403-418; a proof by means of contour integration was published by Kronecker, 

Journal fUr Math. cv. (1889), pp. 345-348. For a detailed history, see Lindelof, Le Calmd 

dee Rdsidm. Some applications of the formula are given in Chapter xil) 

8. Obtain the expansion 

^n-2^ 1 2^ 

for one root of the equation and shew that it converges so long as | ar | < 1. 

9. If denote the sum of ail combinations of the numbers 

l\ 6®, ... (2n-l)2 
taken m at a time, shew that 

z 8in*^.=o(2n+2)!\2«+3 ■' "a{»+i) 3J 

(Teixeira.) 

10. If the function f{z) is analytic in the interior Of that one of the ovals whose 

equation Is |8m^|={7 (where <7<1), which include the origin, shew that f{z) can, for all 

points z within this oval, be expanded in the form 

/W*/(0}+ 2 
/w (0)(0)+■■■ (0) . 

%n! 

- + + + /(O) . 
gijl2a + l 

taken m at a time, and denotes the sum of all combinations of the numbers 

■‘■.lo (2n + l)! 

where is the sum of all combinations of the numbers 

22, 42, 62, ... (2?i-2)2, 

3f all coml 

12, 32, 52, ...(2b-1)2, 
taken m at a tima 

11. Shew that the two series 

(Teixeira.) 

■32 ■ 
^ . 
52' 

and 
2^ 

1^’ 
2 / %z Y , 2.4 / %z Y 

1.32 Vi-22/ ^z.h^\i^zy 

represent the same function in a certain region of the z plane, and can be tmnsformed 
into each other by Biirmann’s theorem. 

(Kapteyn, Nieuw Archief^ (2), ill. (1897), p. 225.) 

12. If a function f (z) is periodic, of period 2}r, and is analytic at all points in the 

indnite si^p of the plane, included between the two branches of the curve | sinz\=^0 

(where (7>-1), shew that at all points in the strip it can be expanded in an infinite series 
of the ft)rm 

/(z)=iil^+Ji8in;2+...+^nSm»z*f. 

+cos;?(.^i+J3 sin 2+... + jg„sin»‘”i«+,..); 

and find the coefficients and 
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13. If ^ and f are connected by the equation 

of which one root is a, shew that , za wx i ., ,19 (9 ) U ^ I 

(<#>*)" +-. 
^ ^ ^ : (f/" 

lh.g»,»li™ Wng (-r i,a. ,T(^»)W-*^I 

ih. dm»« rf lb. tel te w. («. (/” f") J*,5* 
differential coefficient of the preceding one with respect to a; and A, /, I* ,... denote 

P{a),f{a\F{a). 

(WronsM, PhUosophie de la Technic, Section IL p. 381. For proofs of 

see Wley, (Quarterly Joumcd, xii. (1873), Transon, Aoa®. Ann. de Math. xiii. (1874), and 

C. Lagknge, Brux. Mem. Couronnie, 4<>, xlvii. (1886), no. 2.) 

14. If the function (®j \ ^ defined by the series 

a-h „ « 
W{a,h, so)^3C^-Yr ^ TF 

which converges so long as I ^ I [F] * 

shew that ^ : 

and shew that if y= 

then ^=lP(6,a,y). 

Examples of this function are 

1F(1,0, j;)=«*-l, 

1F(0, l,a;)=log(l+a:), 

TF(a, 1.^)=^ 
(Jezek.) 

15. Prove that 

where G.= 

<30 

2 a^x”- 

n=0 

2ai Oo 

4a2 3ai 

fias Sfla 

(2n-2) .. 

na^ (n-l)a, 

0 

2ao 

4ai 

0 

0 

3ao 

0 

0 

0 

and obtain a similar expression for 

j 2 
U=o ) 

(Mangeot, Ann, de VEcole norm, sup, (3), xiv.) 

1 ; 
-'‘^or+l 3ai ’ 

2 
r=0 

16- Shew that 
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where is the siun of the rth powers of the reciprocals of the roots of the equation 

n 

r=0 ^ ^ . 
(Gambioli, Bdlogmi Memorie^ 1892.) 

17. If {z) denote the nth derivate of f{z\ and if /.„ (z) denote that one of the nth 

int^rals of f{z) which has an n-ple zero at 2rs=:0, shew that if the series 

2 fn{2)g^^{x) 
Mas —CO 

is convergent it represents a function of 2+^ ; and if the domain of convergence includes 
the origin in the ^-plane, the series is equal to 

2 «S=0 
Obtain Taylor’s series from this result, by putting g{z)^h (Guichard.) 

18. Shew that^ if be not an integer, 

as , provided that all temas for which m^n are omitted from the summation. 

(Math. Trip. 1895.) 
19. Sum the series 

I (_\_+i) 
\(-)’*^-a-n n/ 

where the value n=0 is omitted, and jo, q are positive integers to be increased without 
limit 

(Math. Trip. 1896.) 

20. If shew that 

and that the hinction thus defined satisfies the relations 

^(_ar)=j^, F(a!)F{l-x)^2amxir. 

Further, if + + _y*iog(i_«) 1', 

shew that 

21. Shew that 

(Trinity, 1898.) 

n {1 - 2e-«. cos {x+/3,) + {1 - cos (x - $„)+e 
=£rl__ 

2** (I-cos x)*”*-*®”''" 

re aj=itsin'^^—^ ir, pg=hcoB——^ w, 
ft n 

0<x<2fr, (Mildner.) 
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22. If 1 X* 1 < 1 and a is not a positive int^er, shew that 

® of- , X f fit 

where C is a contour in the i-plane enclosing the points 0, x. 
(Lerch, Casopis, xxi. (1892), pp. 65-68.) 

23. If <^i(«), ^ integrable 

function, and if (2), ^gC^), ..*1^)6 polynomials defined by the equations 

j. 

I* Fix) <t>i ix) = ij^2 W, 

I* 2f'(:t) ix) <hix)... <#.„_: (a:) W, 

.V, .v.* r ^ _ ±i^ u. 4._+. 
j^ z-x <^i(2) <#>i(*)<h(*) ^ 

J_J_-i-—~ r F(x) *1 ix) 4>zi'^) — <l>mi^) ^Z- 
<l>li^)<j>ti^) •••<l>mi^) ^1 (2)'^2(^) ••" W ■' • 

24. A system of functions po («). Pi («)i Pa (*)i — « defined by the equations 

Po W=1> P.+1W - (f++*») (*)’ 
■where a, and 6, are given functions of n, which tend respectively to the Umits 0 and -1 

as n-*-oo. 

Shew that the r^on of convergence of a series of the form 2e„pn(^)> where 6-2, ... 

are independent of 2, is a Cassini’s oval with the foci +1, — 1. 

Shew that every function/(z), which is analytic on and inside the oval, can, for points 

inside the oval, be expanded in a series 

/(*)=2(c»+zc,')P«(4 
where 

(a.+s)y,(r)/«cfe, 0.' = ^./?. W/«*- 

the integrals being taken round the boundary of the region, and the functions (z) being 

defined by the equations 

=?+i+6o’ 
(Pincherle, Rend, dei Lincei^ (4), v. (1889), p. 8.) 

25. Let C be a contour enclosing the point a, and let 4> (s) and/(«) be analytic when 

« is on or inside 0. Let 11 j be so small that 

\t4>{z)\<\z^a\ 

-when 2 is on the periphery of C, 

27n ] z-a-ti^{z) 

in ascending powers of shew that it is equal to 

Hence, by using §§ 6-3, 6-31, obtain Lagrange’s theorem. 



CHAPTER VIII 

ASYMPTOTIC EXPANSIONS AND SUMMABLE SERIES 

8'1. Simple example of an asymptotic expansion. 

Consider the function /(«) = j t~^ dt, where x is real and positive, 
J X 

Qd the path of integration is the real axis. 

By repeated integrations by parts, we obtain 

(-)n-x („_!)! ^-^dt 

n connexion with the function/(^), we therefore consider the expression 

ud we shall write 

2 
j»satO a? 

+ 
{—Yn\ 

= Sn (a;). 

hen we have = oo as m-^oo. The series is there^ 
)re divergent for all values of x. In spite of this, however, the series can 
e used for the calculation off{x)\ this can be seen in the following way. 

Take any fixed value for the number n, and calculate the value of 8^, 
le have 

f{x)-S,{x)^(-)n+^(n + l)l 

id therefore, since 6®“^ ^ 1, 

or values of x which are sufficiently large, the right-hand member of this 
luation is very small. Thus, if we take x > 2n, we have 

1 
< 2"+'n“ ’ 

bich for large values of n is very small. It follows therefore that the value 
the fuTiction f {x) can he calculated unth great accuracy for large values of x, 
taking the sum of a suitable number of terms of the series %u^. 

Taking even fairly small values of x and n 

N5(10)=0'09152, and 0</(10)-Ns (10) <0-00012. 
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The series is on this account said to be an asymptotic eapansion of the 

Tinction /(«). The precise definition of an asymptotic expansion will now 

given. 

8iS. Definition of an asymptotic expansion, 

A divergent series 
. jAj A2 I Afi 

in which the sum of the first (n + 1) terms is Sn {z), is said to be an asymptotic 
expansion of a function f{z) for a given range of values of arg^, if the 

expression {z) — \f (z) — Sn (^)} satisfies the condition 

lim =0 (n fixed), 
El¬ 

even thongh lim fixed). 

When this is the case, we can make 

where € is arbitrarily small, by taking | z j sufficiently large. 

We denote the feet that the series is the asymptotic expansion of/^) by 

writing 

f {z) ■A.n.Z 
n=0 

The definition which has just been given is due to Poin^r6*. Special 

asymptotic expansions had, however, been discovered and used m the 

eight^nth century by Stirling. Maclaurin and Euleu Asymptote expan¬ 

sions are of great importance in the theory of Linear Differential Equations 

and in Dynamical Astronomy; some applications will be given in subsequent 

chapters of the present work. 

The example discussed in § 8-1 clearly satisfies the defimtion just 

given: for, when ^ is positive, | {f{x) - Sn (*)} | < n U- 0 as a; =0. 

For the sake of simplicity, in this chapter we shall for the 
asymptotic expansions only in connexion with real po.s.t.ve values of the ^Vi™e'.t 

The theory for complex values of the argument may be discussed by an extension 

analysis. 

8*21. Another example of an asymptotic expansion. 

As a second example, consider the function/(.r), represented by the senes 

0* 

where > 0 and 0 < c < 1- 

Acta Mathematical vm. (1886), pp. 295-344. 
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The ratio of the kth, term of this series to the {h— l)th is less than c, and con8e<iuently 

the series convei^ for all positive values of x. We shall confine our attention to positive 
values of w. We have, when 

X+k X 3^ sfi x^ 3* 

If, therefore, it were allowable* to expand each firaetion in this way, and to 

rearrange the series for/(a?) in descending powers of x, we should obtain the formal series 

—+—+ +-’■+ 

where 2 

But this procedure is not legitimate, and in fact 2 diverges. We can, however, 
»*=i 

shew that it is an asymptotic expansion of f{x). 

For let 

^+1 

that l/W->5„(a:)|= 2 (--) __ ^ k^<^, 
|jk=l \ a?4**' A:=l 

w 
Now^2 converges for any given value of n and is equal to <?„, say; and hence 

\f[x)-Sn{x)\<C,^\ 

Consequently f{x)~ 2 A„x-^. 
n=l 

Exartvpk. If /(x)=J where x is positive and the path of integration is the 

real axis, prove that 

1.3.6 

2x 22^'3‘^2V 2V 

[In fact, it was shewn by Stokas in 1857 that 

the upper or lower sign is to be taken according as - ^tt <arg x<-^7r or ^rr <arg x < f-Tr.] 

8*3. Midtiplication of asymptotic expansions. 

We shall now shew that two asymptotic expansions, valid for a common 
range of values of argir, can be multiplied together in the same way as 
ordinary series, the result being a new as3rmptotic expansion. 

For let f(z)^ i i 
w~0 }»=0 

It is not allowable, since k>-x for all terms of the series after some definite term. 
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and let S„(«) and Tn(^) be the sums of their first (n + 1) terms; so that, 

n being fixed, 
/(z) - S„ (z) = 0 (z-«), <f> (^) - T„ (z) = 0 («-»). 

Then, if C„ = AoB^+AA-r + ...+A„B„ it is obvious that* 

Sniz)Tn{z)= i C^z-”' + o(z-”). 

But / (z) <f> {z) = [8n (z) + 0 (Z-”)} [Tn (z) + 0 (*-")} 

= Sniz)T„(z) + 0{z-^) 

= i + 0 (,z-^). 
t3l = 0 

This result being true for any fixed value of n, we see that 

f{z)4,{z)~ I G^zr^- 

8-31. Integration of asymptotic expansions. 

We shall now shew that it is permissible to integrate an asymptotic 
expansion term by term, the resulting series being the asymptotic expansion 

of the integral of the function represented by the original series. 

For let f(x)'^ i and let (*) = _ 2^ 
7lt==2 

Then, given any positive number e, we can find Xo such that 

!/(»)-S„(ii:)|<6la!l-” when x>x^, 

and therefore 

I j* fix) dx-^ -S„(ic) da: I -g l/W - S„ (■«)! 

€ 

But 
foo 

Sn (^) dx = 
Jx 

-^2 , -^3 , 4_ ^ 

and therefore J / f^’1 ^ ~ („i -1) jc’"-' ‘ 

On the other hand, it is not in general permissible t to dieferentiate an asymptotic 

expansion; this may be seen by considering c ^sm (<;*). 

8-32. Uniqueness of an asymptotic expansion. 

A question naturally suggests itself, as to whether a given series can be 

• See « 2-11 • we use 0 (2-») to denote any function ^ (z) such that r“ V- (*) - 0 as 1 r 1 » . 
t ?:.rl tilorem conciJg diflerentiation of asymptouc expansions representmg analyt.c 

functions, see Bitt, Bull. Anunean Math. Soc. xxiv. (1918), pp. 225-227. 
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the asymptotic expansion of several distinct functions. The answer to this 
is in the affirmative. To shew this, we first observe that there are functions 
L (x) which are represented as)unptotically by a series all of whose terms are 
zero, i.e. functions such that lim af'Ii {x) = 0 for every fixed value of n. The 

function er^ is such a function when x is positive. The asymptotic expansion * 
of a function J(x) is therefore also the asymptotic expansion of 

J{x)-hL (x). 

On the other hand, a function cannot be represented by more than one distinct 
asymptotic expansion over the whole of a given range of values of z; for, if 

/(^)~ 2 f(z)^ 2 
mssiQ msssO 

\ ^ « 2»/ 

which can only be if ; Aj-Si, .... 

Important example of asymptotic expansions will be discussed later, in connexion 

with the Qamma-function (Chapter xii) and Bessel functions (Chapter xvii). 

8'4. Metiiods of ‘ summing ’ series. 

We have seen that it is possible to obtain a development of the form 

/(i»)= 2 A^ar^A-Rn{x), 
j«=0 

where as > oo, and the series 2 Amxr^ does not converge 
m=0 ° 

We now consider what meaning, if any, can be attached to the ‘ sum ’ of 
a non-convexgent series. That is to say, given the numbers o^, Oj, Oj, ..., 
we wish to formulate definite rules by which we can obtain from them a 

number 8 such that S= 2 a, if 2 a„ converges, and such that 8 exists 
»=0 #=0 

when this series does not converge. 

8’41. BoreL's^ meikod of summation* 

We have seen (§ 7‘81) that 

2 
n-Q Jo 

where ^ the equation certainly being true inside the circle 

00 

of convergence o{ X^a^z^, If the integral exists at points z outside this 

circle, we define the ‘Borel sum’ of S a^z^ to mean the integral. 

* coefficients in the expansion satisfy certain inequalities, 
there 18 only one analytic function with that asymptotic expansion. See Phil. Trans, 213, a 
(1911), pp. 279-313. 

t Borel, Lemons sur Us Siries Divergcntes (1901), pp. 97-115. 
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Thus, whenever R (z) < 1, the ‘ Bore] sum ’ of the series 2 is 
OO 

I =s (1 — z)"^. 
J 0 

If the * Borel sum' exists we say that the series is ' summable (B)/ 

8*42. Eulers^ method of summation. 

A method, practically due to Euler, is suggested by the theorem of § 3*71; 
00 00 

the ' sum ’ of 2 may be defined as lim 2 a^x^^, when this limit exists. 
»=0 0 n=0 

Thus the ‘ sum' of the series 1 —1 + 1-“1 + ... would be 

lim (1 — a? + a;® — ...) = lim (1 + 

8’43. (/esdro’sf method of summatio-n. 

Let s„ = 01 + 08+... + a«; then if 5= lim -(sj + Sj+ ... + s„) exists, we 

say that % ia 'summable ((71),' and that its sum (Cl) is S. It is 
n-=l 

oc 

necessary to establish the * condition of consistency J,' namely that >?= 2 
n=l 

when this series is convergent. 
CO- n 

To obtain the required result, let 2 == 2 = nSn; then we have 
l»=sl 

to prove that » s. 

1 

Given e, we can choose n such that 

so I 5 — I < e. 

Then, if v>n, we have 

n+p 

1 a„ 
m=«.+l 

< € for all values of p, and 

= 01 + 08 - ^) + ... + a„(^l - ^j + ...+0,^1 - 

Since 1, l — 1 —... is a positive decreasing sequence, it follows 

from Abel’s inequality (§ 2*301) that 

re 

S,-|oi + 08(l-i) + ...+o„(l-^)}|<(l-3^- 

Therefore 

* Imtit, Oalc. Diff. (1755). See Borel, toe. cit. Introduction, 

t Bulletin des Sciences Math. (2), xiv. (1890), p. 114. 

X See the end of § 8-4. 
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Making v—*co,we see that, if /S be any one of the limit points (§ 2'21) 
of S,, then 

S- t a„ 
m=l 

Therefore, since \ we have 

IS--s\^2€. 

This in^uality being true for ever^ positive value of e we infer, as in § 2'21, 
that 8 = g; that is to say 8^ has the unique limit s; this is the theorem which 
had to be proved. 

Example L Frame a definition of ‘uniform summability (C 1) of a series of variable 
terms/ 

Exaw^e 2. If i, p ^ 0 when ^^ < v, and i:^ when n is fixed^ lim ^ «1, and 
^ y-^oo 

if then^lim 

S 4SI. g&mrcd mMhx^ of summation, 

A *ri« 2 a. is said to be ‘summable (Or)’ if lim 2 exists, where 
»BrO 

^'“1’ '"'’{('■'.■to) ('•'7to)-(i+.4t)P- 
It foUoTO fix)m § 8-43 example 2 that the ‘condition of consistency’ is satisfied; in 

^ ^ series is summable (Cr') it is also summable ((7r) when 
> : the condition of consistency is the particular case of this result when r=0. 

8^ The nutAod of summation ‘of Rieszi. 

A more extended method of ‘summing’ a series than the preceding is by means of 

lim 2 
y-*** u.5=si \ y^vj 

m which X. is any real function of n which tends to infinity with n A series for 
this limit exists is said to be ‘summable (Er) with sum-funinX " 

8 6. Habdy s J cokveegence theorem. 
60 

Let ^^0^ he a series which is summable (C1). Then if 

* 
the series 2 converges. 

a» = 0(l/n), 

* Bromwich, Infinite Series, § 122. 

t Comptes Sendus, czLSx. (1910), pp. 18-21 

*««•p»-!.«. 1#™.. we are 
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Let fi„ = 01 + 02 + ... + Oa; then since 2 a„ is summable (C1), we have 
»=i 

«i + «2+... +«» = n }« + o(l)}, 

CO 

where $ is the sum {G1) of 2 

XiOtr f {W2f “ 1, • tl), 

ind let ^1 + 4+ ••• 

With this notation, it is sufficient to shew that, if j u» j < Kn'~^j where K 

IS independent of n, and if <Tn = n.o(l), then oo. 

Suppose first that cti, Ua, ... are real. Then, if tn does not tend to zero, 
there is some positive number h such that there are an unlimited number of 
the numbers tn which satisfy either (i) tn>h or (ii) tn<—h. We shall shew 
bhat either of these hypotheses implies a contradiction. Take the former*, 

and choose n so that tn > h. 

Then, when r = 0,1, 2, ..., 

\an+r\<^ln^ 

Now plot the points Pr whose coordinates are (r, tn+r) ho a Cartesian 

diagram. Since ^4^+1 —tn+r=o^+r+ij slope of the line PrPr+i is less 

than 0 = arc tan (JT/n). 

Therefore the points P®, Pi, P3, ... He above the line y = A-a?tanft 
Let Pjt be the last of the points Po, Pi,... which lie on the left of x==hcot6, 

so that k^hcot0. 

Draw rectangles as shewn in the figure. The area of these rectangles 
exceeds the area of the triangle bounded by y — h — x\^jx0 and the axes; 

that is to say 
0*71+1? <^n-i = 4^ + ^71+1 + ... + tnjfh 

> J A® cot 0 = I A® 

* The reader will see that the latter hypothesis involves a contradiction by using arguments 

of a precisely similar character to those which wiU be employed in dealing with the fonner 

hypothesis. 
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But [ i <1 | + | j 

= (n + ifc).o(l) + (/i — l).o(l) 

= n.o(l), 

rince k ^ hnK'"\ and h, K are independent of n. 

Therefore, for a set of values of n tending to inj&nity, 

<n.o (1), 

vhich is impossible since is not o(l)asw—►oo. 

This is the contradiction obtained on the hypothesis that lim tn^h>0] 

therefore lim 4 ^ 0. Similarly, by taking the corresponding case in which 

n ^ — A, we arrive at the result 1^ tn ^ 0. Therefore since lim 4 ^ hua 

ve have lim 4 = hna 4 = 0, 

md so 4 0. 
00 

That is to say ^ and so ^ is convergent and its sum is s. 
n=i 

If On be complex, we consider R (an) and I (on) separately, and find 
OO 00 

hat 2 R(an) and X I (an) converge by the theorem just proved, and so 
«=i 

00 

2 On converges. 
1*1 

The reader will see in Chapter ix that this result is of great importance 
n the modem theory of Fourier series. 

tx> 
CoroUary. Jf a^{^) be a function of $ tuck that 2 (|) U nniforndy eummable (C1) 

iroughout a dornam of values of and if \an{^)\<where K is independent of 

2 «»(^) converges unifonydg throughout the domain. 

For, retaining the notation of the preceding section, if t^(^) does not tend to zero 

niformly, we can find a positive number A independent of n and f such that an infinite 

squence of values of n can be found for which tn ((n)>k or t^ (fn) < - A for some point 

f the domain*; the value of depends on the value of n under consideration. 

We then find, as in the original theorem, 

71 <71, o (1) 

>r a set of values of n tending to infinity. The contradiction implied in the inequality 
lewst that A does not exist, and so t^ (i)-^O uniformly. 

♦ It is assumed that {Q is real; the extension to complex variables can be made as in the 
irmer theorem. If no such number h existed, {|) would tend to zero uniformly. 

t It is essential to observe that the constants involved in the inequality do not depend on 

or if, say, A depended on JT-i would really be a function of w and might be o (1} qua function 
‘ n. and the inequality would not imply a contxadiction. 
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Miscellaneous Examples. 

/■* 12 14^ 
I. Shew that I ——dte^-+ ... when x is real and pc«itive. 

Jo l+P ^ 

2. Discuss the repr^entation of the function 

(whero X is supposed real and positive, and ^ is a function suhjwfc to c^rtam cxm- 

ditions) by means of the series 

Shew that in certain cas«s (e.g. f the seri^ is ateolutely convergent, ai^ 

represents/(^) for large positive values of x; but that in certain other ca^ the aeri« is 

the asymptotic expansion of/(a:). 

3. Shew that 

e®2‘ 

/“ , , 1 . a-1 . (a"-l)(a-2) , 
® I e'~-^x°''“^ dx'^- -{-i—I-i i" 
Jz 2 

(L^^wlre, Exercices de Calc, Ini. (1811), p. 340.) 
for large positive values of z, 

4. Shew that if, when 4? 3> O, 

“/o ^’ 

then "" 2%^ 4 V ' 

Shew also that f{x) can be expanded into an absolutely convergent series of the form 

1 , fSchlSmilch.) 

5 Shew that if the series 1+0+0-1+0+1+0+0-1 + ..., in which two ^ 
precede each -1 and one zero precedes each +1, he ‘summed’ by C^’s me^ 

„ (Euler, Borel.) 
its sum is f. V J 

6. Shew that the series 1 - 2!+4! -... cannot be summed by Borel’s meihod, but the 

series 1+0-21+0-P414-... can be so summed. 

* This paper contains many references to recent developments of the subfeet. 
+ A bibliography of the literature of summ^Ie ^ries win be found on p. 372 of this 

memoir. 



CHAPTER IX 

FOURIER SERIES AND TRIGONOMETRICAL SERIES 

9T. Definition of Fourier series*. 

Series of the type 

-f (oi cos a; + 6i sm x) -f (og cos 2x + bz sin 2x) + ... 
OO 

= |ao + X (an cos nx + bn sin yix), 
n=l 

where (in, bn are independent of x^ are of great importance in many investi¬ 
gations. They are called trigonometrical series. 

If there is a function f(t) snch that J f(t) dt exists as a Riemann integral 

or as an improper integral which converges absolutely, and such that 

van = J f(t) cos ntdt, vbn = j f(t) sin ntdt, 

then the trigonometrical series is called a Fourier series. 

Trigonometrical series first appeared in analysis in connexion with the investigations 

of Daniel Bernoulli on vibrating strings ; d’Alembert had previously solved the equation of 

motion the form {f{X’^at)+f(x--at)}, wherey«/(a') is the initial shape 

of the string starting from rest; and Bernoulli shewed that a formal solution is 

» , . nwx 
y= S On sin -y- cos 

n=l i 

n-rrat 

the fixed ends of the string being (0, 0) and (Z, 0); and he asserted that this was the most 

general solution of the problem. This appeared to d’Alembert and Euler to be impossible, 

since such a series, having period 2^, could not possibly represent such a function ast 

cx{l-x) when A controversy arose between these mathematicians, of which an 

account is given in Hobson’s Functions of a Real Variable, 

Fourier, in his Tkiorie de la Gkaleur^ investigated a number of trigonometrical series 

and shewed that, in a large number of particular cases, a Fourier series actually converged 

to the sum f(x), Poisson attempted a general proof of this theorem, Journal de Vtcole 

polytechniqucy xii. (1823), pp. 404-609. Two proofs were given by Cauchy, Mem, de 

rAcad, R. des Sd. vi. (1823, published 1826), pp. 603-612 {Oeuvres, (1), ii. pp. 12-19) 

and Exercices de Math, ii. (1827), pp. 341-376 {Oeuvres, (2), vii. pp. 393-430); these proofs, 

which are based on the theory of contour integration, are concerned with rather particular 

classes of functions and one is invalid. The second proof has been investigated by 
Hamack, Math, Ann, xxxii. (1888), pp. 175-202. 

* Throughout this chapter (except in § 9*11) it is supposed that all the numbers involved are 
real. 

t This function gives a simple form to the initial shape of the string. 
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In 1829, Diriohlet gave the first rigorous proof* that, for a general cl^ of funotioM, 

the Fourier series, defined as above, does converge to the sum /(^r). A modification of this 

proof was given later by Bonnet t. 

The result of Diriohlet is that t is defined and bounded in the range (- ir) ^d 

if m has only a finite number of maiima and minima and a finite number of dis- 

continuities in this range and, further, iff (t) is defined by the equation 

/(e-h2^)-/W 

outside the range (—tt, ?r), then, provided that 

f {t) (x»ntdt, 

the series i<io+ 2 (a,cosJu;+6»sinna:) converges to the sum ^{/(3'+0)+/(^'-0)}. 

Later, Riem^n and Cantor developed the theory of 

while still more recently Hurwits, Fejdr and others have 

series when the series does not necessarily converge. Thus ^ 

markable theorem that a Fourier series (even if not 
at all points at which /(ir±0) exist, and its sum (Cl) is i{/(^+0)+/(^ )}. 

provided that [" /(<) df is an absolutely convergent integral One of the investigations 

of the convergence of Fourier series which we shall give later (§ 9-42) is based on this result. 

For a fuUer account of investigations subsequent to Riemann, the r^er is ^ 
Hobson’s Functions of a Real VariahU, and to de la Vallde Poussms Cours <tAn^yse 

Infirdtenmcde. 

9T1. Nature of the region within which a trigonometrical series converges. 

Consider the series 

-ao4- 2 (a,iCOS7W+5»sin7i2:), 
2 n=l 

where x may be complex. If we write the series becomes 

I ■ 
This Uurent series will converge, if it converges at all, in a region in which a < 1 f | <6, 

where a, h are positive constants. 

But, if *=a-+ty, 1 f !=«-», and so we get, as the r^on of convergence of the trigono¬ 

metrical series, the strip in the z plane defined by the inequality 

loga^-y ^ log6. 

The case which is of the ^test importance in practice is that in which a=6=l, and 

the strip consists of a single line, namely the real axis. 

Example 1. Let ^ ^ 

/ (2)=sin 2-1 sin 22+^ sin 32r--sin4«+..., 

where z^X‘\‘ty: 

* Journal/Hr Math, iv. (1829), pp. 157-169. 
+ MgvwiTCS de. Savant, itranger, of the Belgian Academy, am. (1848-1850) ®°““* 

ploi the second mean value theorem directly, while Diriohlet s original proof makes 

arguments precisely similar to those by which that theorem is proved. See § 9J3. 
t The conditions postulated for /(t) are known as DinchUt, condition,, as wi 

§§ 9*2, 9*42, they are unnecesBarily stringent. 
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Writing this in the form 

/« = e««-...) +1 i e-^+l 

we notice that the first series converges* only if y ^ 0, and the second only if y ^ 0. 

Writing x in place of z (a being real), we see that by AbePs theorem (§ 3*71), 

/ (x) = lim^ (rsin sin 2^7+1 sin 3.2? -. 

= lim 

+11 (rer^-l r**-**^.! , 

This is the limit of one of the values of 

- it log (14-re^)+log (1+r6“<*), 

and as r-*-l (if *- r < 4? <?r), this tends to ^s+kw, where k is some integer. 

XT « (- sin 2LV 
JNow - converges uniformly (§ 3*36 example 1) and is therefore con¬ 

tinuous in the range —fr+3 —3, where d is any positive constant. 

Since |r47 is continuous, k has the same value wherever x lies in the range; and putting 
27=0, we see that ir=:0. 

Thereforey when - w x < ir, f{x)=\x. 

But, when tr < < 37r, 

/(^) =/(^* - 2w)=J (ar - 2ir) « J.v tr, 

and generally, if (2?t -1) tt < ^ < (2n+1) «*, 

/ {x)=^x^nir. 

We have thus arrived at an example in which f (x) is not represented by a single 
analytical expression. 

It must be ol^rved that this phenomenon can only occur when the stiip in which the 

Fourier s^es converges is a single line. For if the strip is not of zero breadth, the 

associated Laurent series converges in an annulus of non-zei-o breadth and represents an 

analytic function of f in that annulus; and, since f is an analytic function of z, the Fourier 

series represents an analytic fimction of z; such a series is given by 

r sin —Jr® sin 2x+Jr® sin 3:r —..., 

- • • f* SlU JC 
where 0 < r < 1; its sum is arc tan , the arc tan always representing an angle 

between ±j5r. 

Example % When -w^x^tt, 

s 
H=1 

(- )**"* cos nx 

The series converges only when x is real; by § 3*34 the convergence is then absolute 
and uniform. 

Since Jar=sin:r-Jsin24?+Jsin3a7~... (~Tr+a<^*<ir-3, a>0). 

and this series converges uniformly, we may integrate term-by-term from 0 to ^ (§ 4*7), 
p.nd consequently 

1^^ V (~)**~H1 -COSTU?) 

4 «2 (-ir-f-a^or^w-a). 

* The series do converge if y=0, see § 2*31 example 2. 
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Tlmt is to say, when + 

1 o * ( - cos 71^ 
C^-3?= S ^ 2-I 

4 »=1 

,ri,ere C is a constant, at present undetermined. 

Rnt since the series on the right converges uniformly throi^hout the range -j < 

its sam is a continuous function of a in this extended range; and so, proceeding to the 

when ± ir, we see that the last equation is stiU true when x= ± ir. 

To determine C, integiate each side of the equation (§ 4-7) between the limits -ir, w; 

aiid we get , 
2^(7-f ^3-0. 

Consequently 

3. By writing w- for a: in example 2, shew that 

* sin^Ma; 
V (-7r<X!$9r). 

9-12. Values of the coefficimts in terms of the sum of a trigonomancal 

smes. 
Let the trigonometrical series jrCo+ 'Z^(CnCoanx+ d„smnx)he uniformly 

convergent in the range (— tt, v) and let its sum be / (x). Using the obvious 

results 
r-r j f=0 (rti^^n), 
J_^cosma>cosrM;dsi|^^ (m = n=jt0), 

r ■ ■ J r dx = 2ir 
J_^smmaismrw(foj^^ (m = n,fe0). J ' |=s tt 0), 

we find, on multiplying the equation ^Co 4* 2 (cncos+ dnsintw?)—/(a?) 
ti=i 

by* cosrup or by sinna: and integrating term-by-termf (§ 4'7), 

rrCn=J f{x)co&nxdx, ardn = j /(*) 

Corollary. A trigonometrical series uniformly convergent in the range (- w, «•) is a 

Fourier series. 

Note. Lebesgue has given a proof (S^ trigonom^riques, p. 124) of a theorem 

communicated to him by Fatou that the trigonometrical series^S^sinnxAogra, which con¬ 

verges for all real values of a; (§ 2-.31 example 1), is not a Fourier series. 

9-2. On Dirichlet’s conditions and Fourier’s theorem. 

A theorem, of the type described in § 9'1, concerning the expansibility of 
a function of a real variable into a trigonometrical series is usually descnbed 

* Multiplying by these factors does not destroy the uniformity of the convergence, 
t These were given by Enler (with Umits 0 and 2t), Nova Acta Acad. Petrop. xi. (1793). 
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as Fourier 8 theorem, Oa accoimt of the length and difficulty of a forma 
proof of the theorem (even when the function to be expanded is subjected t< 
unnece^rily stringent conditions), we defer the proof until % 9*42,9*43. It is 
however, convenient to state here certain 8ujfficient conditions under whict 
a function can be expanded into a trigonometrical series. 

Let f (t) be defined arbitrarily when and defined* for all othm 

real values of t by means of the equation 

f(t + 27r)=^f(t% 

so that f {t) is a periodic function with period 2rr, 

Let f{t) he such that J f{t)dt exists ; and if this is an improper integral^ 

let it be absolutely convergent. 

Let Om bn be defined by the equations f 

wan = I fit) cos ntdt, wbn = ( f(t) sin ntdt (n == 0,1, 2, ...). 
J -ft J -IT 

Thenj if x be an interior point of any interval (a, 6) in which f (t) has 
limited total fluctuation, the series 

00 

•J-Oo + 2 {an cos nx + bn sin nx) 
n*l 

is convergent, and its suml is ^ {f{x + 0) + f{x - 0)}. If f{t) is continuous 
att^x, this sum reduces to fix). 

This theorem will be assumed in §§ 9*21-9‘32; these sections deal with theorems con¬ 

cerning Fourier series which are of some importance in practical applications. It should 

be stated here that every function which Applied Mathematicians need to expand into 

Fourier series satisfies the conditions just imposed on f{t), so that the analysis given later 

in this clmpter establishes the validity of all the expansions into Fourier series which are 
required in physical inve.stigations. 

The reader wiU observe that in the theorem just stated,/(<) is subject to less stringent 

conditions than those contemplated by Dirichlet, and this decrease of stringency is of 

considerable practical importance. Thus, so simple a series as 5 (- )»-i (cos is the 

expansion of the functiong log| 2cosix|; and this function does not satisfy Dirichlefs 
condition of boundedness at +7r. 

It IS convenient to describe the series Jao+ S (o„ cos tut + sin wa;) as 
. n=l 

th£ Founer series associated with f(t). This description must, however, be 

This definition frequently results in /(l) not being expressible by a single analytical ex- 
pression for all real valaes of t. Cf. § 9-11 example 1. 

t The numbers a„, 6,^ are called the Fourier constauU of /(t), and the symbols will be 
used in this sense throughout §§ 9*2-9-6. It may be shewn that the convergence and Ibsolute 
convergence of the integrals defining the Fourier constants are consequences of the convergence 

and absolute convergence of j* f(t) dt. Cf. §§ 2*32, 4*5. 

t The limits/(ar±0) exist, by § 3*64 example 3. 

I Cf. example 6 at the end of the chapter (p, 190). 
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taken as implying nothing concerning the convergence of the series in 

question. 

9*21. The representation of a function hy Fourier series for ranges other 

than (— TT, tt). 

Consider a function f{x) with an (absolutely) convergent integral, and 

with limited total fluctuation in the range 

Write a: = |(a + 6)-i(a-6)w-V, f(x) = F(a/). 

Then it is known (§ 9'2) that 

l[FOlf + 0) + F(/-0)}=\(h+ S {OnOOBtl^ + bnsuinx'), 
S'" ■* »3=1 

and so 

|{/{^ + 0)+/(®-0)} 

. mr(2x —a — 6)1 1 “ f »7r(2a;-a-6) , 
= i0.4-J Jo, cos - ^ -+ K 

where by an obvious transformation 

1,7 X f* j-/ \ n7r(2a! —0-6) l(b-a)a„=Jy(x)ooB-^- 

1,7 s, f* ,./ 7 • nir (2x — a — b) j 
|(6-o)6»«Jy(a!)sm ^ -dx. 

b’-a 

dx. 

9*22. The cosine series and the sine series. 

Let fix) be defined in the range (0, V) and let it have an (absolutely) 
convergent integral and also let it have limited total fluctuation in that range. 

Define f{x) in the range (0, -1) by the equation 

/(- oi) --fix). 

Then 
1 , 1 ^ f nrrx , . mrx\ 
\ {f{oo+0) +/(a? -0)} = P“T^“Tj ’ 

where, by § 9*21, 

lon-j^ ^ fit) cos '^dt-2 j^fiO ^ dt, 

Z6„-J*^/(t)sin^dt = 0, 

so that when — i ^ a? ^ if, 

I {/(x 4- 0) 4-/(X - 0)} = gO. -i- fa„C0B^; 

this ia called the cosine series. 

If, however, we define in the range (0, — i) by the equation 

/(-®)=-/(-*)> 
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we get, when — II, 

;{/(^ + 0)+/(*-0)}= I 6„8in^, 
-« «=1 t' 

where lbn^2 f{t) 

this is calM the sine^sertes. 

Thus the series 

ao+ 2 a„cos ■ 
* , . nww 
2 bnsm-j-, 

«=i if 

where 5“/odt, ^ ^h» = /(t)sindt, 

have the same sum when O^x^l; but their sums are numerically equal and 
opposite in sign when — L 

The cosine series was given by Olairaut, Hist de VAcad, R. des Sci. *754 [published, 

1759], in a memoir dated July 9, 1757; the sine series was obtained between 1762 and 

1765 by Lagrange, Oeuvres, i. p. 553. 

Example 1. Expand ^ («• — j?) sinx in a cosine series in the range 

[We have, by the formula just obtained, 
00 

•|(fr“x)smxs*|ao+ 2 0^00371^, 
n»l 

where ^ {n —x) sin x cos nxdx. 

But, integrating by parts, if =i= 1, 

J^2(rr-s)amxcoanxdx 

^ J (ir -x) {sin (n-f 1) x - sin (n—1) x} dx 

— fC0S(^ + l)x C0S(7fc—l)x] fC0S(7i4-l) X C0S(7l —l)x'| ^ 

“L "’'n n+1 " n-1 jJo“'iot“^+l 
_ / 1 1 \ -2«- 

^Vn + 1 a-iy (n + l)(w-l)* 

Whereas if 1, we get J 2 (tt—x) sinx cosxdx=s|tr. 

Therefore the required series is 

i + icoax-ji^cos 2x-ji^cos3x-^ cos 4x~.... 

It will be observed that it is only for values of x between 0 and w that the sum of this 

series is proved to be |(ir~x) sinx ; thus for instance when x has a value between 0 and 

— ^r, the sum of the series is not ^(»r — x) sin x, but — ^ (tr+x^) sinx; when x has a value 

l>etween «r and 2^, the sum of the series happens to be again J (»r-x) sin x, but this is a 

mere coincidence arising from the special function considered, and does not follow from 
the general theorem.] 

Example 2. Expand Jirx(jr—x) in a sine series, valid when 0 ^x ^jr. 

[The series is sinx-f-^^—4- ^?^+,...] 
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Example 3. Shew that, when O^x^ir, 

1 cx^ 3x <x>s bx 
^jr(jr-ar)(ir®+2»ra:-2*®)=coBarH—34—-<—gj- +•••• 

[Denoting the left-hand side by/(a:), we have, on int^ting by parts and observing 

that/'(0)=/'W=0, 

j''/(x)oo8nxdx=^ sin ^ JV' (x)^nxdx 

j^/'(ar)cos»M;J*-^ j’'f"{x)co8nxdx 

= - -SL F/" (x) sin jurl +-\ [ f" Bianxdx 
J 0 ^ J 0 

= - ^ [/"' W 00s »u:J' = (1 - cos mr).] 

Example 4. Shew that for values of x between 0 and *r, e« can be expanded in the 

cosine series 

2<,_ . cos as , cos 4a; , \ 2* 

and draw graphs of the fnnction e*® and of the sum of the series. 

Example 5. Shew that for values of x between 0 and r, the function Jir (tt- 2:r) can 

be expanded in the cc^ine series 
. cos 3x . cos 5a? , 

cos a? 4—IT” ^p 

and draw graphs of the function ^ (it -- 2a;) and of the sum of the series. 

9*3. The nature of the coefficients in a Fourier series^^ 

Suppose that (as in the numerical examples which have been discussed) 

•the interval (— tt, nr) can be divided into a finite number of ranges 
(-W, *i), {ku h) ••• (*n, -tt) such that throughout each range f(x) and all its 
differential coefiBcients are continuous with limited total fluctuation and that 
they have limits on the right and on the left (| 3'2) at the end points of these 

ranges. 

Then 

^ f(t)cosmtdt + ry(t) C08 mtdt + .^. + f"/(t) cos mtdt 

Integrating by parts we get 

'JTihn = sin mt^ + * "^ * * "^ 

- I f' (t) sin mtdt - f "/'(t) sin mtdt - ... - f /'(t) sm mtdt, 
J -w ifcl 

so that 
.A. m 

* The analysis of this section and of § 9*31 is contained in Stokes’ great memoir, Camb. Phil. 

Tram. vin. (1849), pp. 533-583 [AfatA. Papers, i. pp. 236-313]. 



168 THE PROCESSES OF ANALYSIS [chap, is 

where 2 sinmA:r{/(l;r —0)~/(^r + 0)}, 

and bj is a Fourier constant of f'(x). 

Similarly 6^ ■= — + —, 
mm 

where 

wBm = - 2 cos {/(ir — 0) —/{hr + 0)} — cos mir {/(tt — 0) -/(— tt + 0)}, 
j-ssl 

and is a Fourier constant of/' (x). 

Similarly* we get 

Om =- 
A. ,hl 
m m ’ 

' where are the Fourier constants of f"(x) and 

6 13 A 
/ -Om 

mm 

vAm= 2 sinwil;,{/'(fc,-0)-/'(Ar + 0)}, 
r=l 

2 cosmiy —0)—/'(iy + 0)} 
r*l 

Therefore 
— cos mTT {/' (tt — 0) —(— TT + 0)}. 

Am, Bm, dm Bm Am bn, n — L _ 

m m® m® ’ m m® m® ‘ 

Now as m->oo, we see that 

a; = 0(1), Bj^0(i\ 

and, since the integrands involved in and 6^'" are bounded, it is evideni 
that 

a^"=0(l), 6^" = 0(1). 

Hence if J.^ = 0, J?^ = 0, the Fourier series for f{x) converges absolutely 
and uniformly, by § 3*34. 

The necessary and sufficient conditions that Am — Bm = 0 for all values o 
m are that 

/(*.-0)=/(Ar,4-0), /(7r~0)=/(-7r + 0), 

that is to say that*/(;??) should he continuous for all values of x. 

9*31. Differentiation of Fourier series. 

The result of differentiating 

^00+ 2 (a,„cos7mi’-t*6,»sinmj:.) 
n—\ 

term by term is 2 {mbm cos mx — mo^ sin mx], 
W=:l 

* Of course / (x) is also subject to the conditions stated at the beginning of the section. 
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With the notation of § 9'3, this is the same as 

5 0^' + 2 {a^ cos mx + bj^ sin mx% 
^ im = l 

provided that = 0 and j /'(x)ds = 0; 

these conditions are satisfied if /* (a?) is continuons for all values of x. 

Consequently sufficient conditions for the legitimacy of differentiating 
a Fourier series term by term are that f(x) should be continuous for all 
values of x and /' (xj should have only a finite number of points of diseoB- 
tinuity in the range (— w, tt), both functions having limited total fiGCtuation 

throughout the range. 

9*32. Determination of points of dzscmitinuii^. 

The expressions for and whicb have been found in § 9*3 can frequently be appli^ 

in practical examples to determine the |>oints at which the aiim of a given Fourier series 

may be discontinuous. Thus, let it be required to determine the placw at which the siim 

of the series 
sin^r+i sin 3.r+|BiQ 5x+... 

is discontinuous. 

Assuming that the series is a Fourier seri^ and not any trigonometriml 8eri« and 

observing that o^-O, (1 - cosm?r), we get on considering the formula found in 

§ 9*3, 

Hence if iri, ... are the places at which the analytic character of the sum is broken, 

we have 

[sin mhi {f {Jc^ -> 0) (irj+0)} + sin mh {f {h -0) -/(A+0)| +..•]• 

Since this is true for all values of m, the numbers hy k^y... must be multiples of r; but 

there is only one even multiple of tt in the range <X‘^Vy namely zero. So i=»0, 

and i*2, >^3,... do not exist. Substituting 4=0 in the equation - i cos wir, we have 

n (^-IcosmTr)** -[cosmw* {/(«'-0)-/(-fr4-0)}+/(-0)-/( + 0)]. 

Since this is true for all values of m, we have 

( + 0) --/( - 0), |fr=/(tr -0)-/ ( - » +0). 

This shews that, if\he series is a Fourier series,/(r) has discontinuiti^ at the points 

(« any integer), and since we should expect*/(x) to be oonstaiR m the 

open range (- n-, 0) and to be another constant in the open range (0, v). 

9-4 Fej6r’s theorem. 
We now begin the discussion of the theory of Fourier series by proving 

the following theorem, due to Fejdrf, concerning the summability of the 

Fourier series associated with an arbitrary function, f (t). 

Let fit) be a function of the real variable t, defined arhitraril;/ when 

— rr ■it< rr, and defined by the equation 

fit + 2rr) =fit) 

• In point of fact /(r)=-i»- (-t<x<0); 

f{x) = i;Tr (0<x<x). 

t Math. A/III. LVIII. (1904), pp. 51-69. 
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for all other real values oft; and let j’' f{t) dt exist and (jf it is an improper 

integral) let it he ahsolutely convergent. 

Then the Fourier series assodaled with the function f{t) is summahle* ((71) 
at all points x at which the two limits f(x + 0) exist. 

And its sum (Cl) is 

^{f(a> + 0)+f(x-0)]. 

On. hn, (n — 0, 1, 2, ...) denote the Fourier constants (§9‘2) of/(t) 
and let 

|ao = Jo, a„cosna;+ i„sinna: = ^„ (a;), 2 (a:) = (a:). 
n=:0 

Then we have to prove that 

^(a:) +... + (x)]=i{f(x+0)+f(x-0)}, 

provided that the limits on the right exist. 

If we substitute for the Fourier constants their values in the form of 
integrals (§ 9*2), it is easy to verify thatf 

«=i ~ ~ “^1 ~ 2) J.J (a:) + ... + Am-i (x) 

1 f* 

“““j {\m + (m — 1)cos(a! —t) + (m —2)cos2(a! —1)+... 

+ cos (m — 1) (a; — t)} f(t) dt 

^ -1 fsin» (x -1) 
27r j sin4(a;-t) •' 

the last step following from the periodicity of the integrand. 

If now we bisect the path of integration and write a: T 20 in place of t in 
the two parts of the path, we get 

n=l TtJq 8111^6 

Consequently it is sufficient to prove tkat, m-^oo, then 

1 „ 1 ri 

0 

* See § 8-43. 

t It is obvions that, if we write X for «<{»-‘) in the second line, then 

OT+(m-1) (X+X-i) + (»»-2)(XS+X~*) + ... + (X*^l+Xi-'») 

= (l-X)-i {X»-” + X*-«+... + X-i + l-X-X»-...-X”*} 

= (I - X)-> {Xi— - 2X+X«+i} = (X*® - X"^®/(X*- X'V. 
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Now, if we integrate the equation 

1 sin’* mg _ 1 ^ + (wi _ 1) cos 2g +... + cos 2 (m -1) g, 
2 sin^g ** 

we find that 

, dd = iwm, J 0 sin^ u 
and so we have to prove that 

i f^5^^^(g)dg-»0 as m-^oo, 
mJo sitfg 

where ^(g) stands in turn for each of the two functions 

/{a; + 2g)-/(a;+0), /(« - 2g)-/(» - 0). 

Now, given an arbitrary positive number e, we can choose S so that* 

!^(g)l<e 

whenever 0 < g « i 8. This choice of 8 is obviously independent of m. 

Then 

€ r^sin®M^ 
m J 0 sin* u m sm* f o J o 

Now the convergence of J 1/(01 eutails the convergence of 

\ ^ {6) \d0, 
Jo 

and so, given € (and therefore S), we can make 

^Tremsin*>j^ \4^(0)\dOy 

by taking m sufficiently large. 

Hence, by taking m sufficiently large, we can make 

<W6, 
1 m J 0 sm* 0 

where e is an arbitrary positive number; that is to say, from the definition of 

a limit, , . „ 

m-^oo^Jo sin*Cf 

and so Fej6r s theorem is established. 

* On the assumption that/(a? ±0) exist. 
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CoroUary 1. Let U and L be the upper and lower bounds of f{t) in any interval (a, h) 

whose length does not exceed Stt, and let 

SO that 

Then, where ri is any positive number, we have 

3mir [j-T+x Jx+-nf sin*ii) 

i {4„+“s‘5»(^)j- < U-k-{\ (7|+iA}/{«8in»J,}. 

Similarly 

|io+V w} >L-{\L\+iA}l{m. 8in4,}. 

Corollary 2. Let f(t) be continuous in the interval Since continuity implies 

uniformity of continuity (§ 3*61), the choice of d corresponding to any value of x in (a, h) 

is independent of 47, and the upper bound of |/(4?+0) |, i.e. of \f{x) |, is also independent 
of 47, so that 

\<t>{e)\d0^ J*' \f{a;±S0) -/(x+D) I <U 

and the upper bound of the last expression is independent of x. 

Hence the choice of m, which makes 

I 1 6m^m$ . ,,, I 
Imjo 

is independent of x, and comequmtly ^IAq+ 2 tends to the limit f{x), as 
^ I ftssl J 

30, uniformly throughout the interval a^x^L 

9'41. The RietnanrirLehesgue lemmas. 

In order to be able to apply Hardy^s theorem (§ 8*5) to deduce the con¬ 
vergence of Fourier series from Fej4r s theorem, we need the two following 
lemmas: 

(I) Let '^{6)dd exist and {if it is an improper integral) let it he 

absolutely comergent Then, as 00 , 

rh 
^ {d)sm{hd)d6 is o(l). 

/ J a 

(II) If further, yjr (ff) has limited total fluctuation in the range {a, h) then, 
as X—>oo, 

^ {6) sin (X^) dd is 0 (1/X). f 
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Of these results (I) was stated by W. E. Hamilton* and by Eiemannt in the case of 

bounded functions. The truth of (II) seems to have been well known before its importance 

was realised; it is a generalisation of a result established by Dirksen t and Stokes 

(see § 9*3) in the case of functions with a continuous differential coefficient. 

The reader should observe that the analysis of this section remains valid when the 

sines are replaced throughout by cosines. 

(I) It is conveiiieiit§ to establish this lemma first in the case in which 
^ (6) is bounded in the range (a, 6). In this case, let K be the upper bound 
of \^fr{0)\t and let € be an arbitrary positive number. Divide the range (a, b) 

into n parts by the points Xj, ... Xn-u and form the sums Snt Sn associated 
with the function ^ (6) after the manner of § 4*1. Take n so large that 

Sn — Sj^<€] this is possible since ^(0) is integrable. 

In the interval (xr-.i, Xr) write 

l|r (0) *= fr (^r-i) + cn,. (0), 

so that I n?r (^) | ^ — Lry 

where Ur and Lr are the upper and lower bounds of ^(0) in the interval 

(Xr^l, Xr). 

It is then clear that 

If ^(0) sin {X0) d0 I 
\j a 1 

= iBin (X0) d6 t (' a>r{6) sin {xe)de 
r^l r=^lJxr-i 

^ I f sm(X0)dd|+ I f ’’ 
r=l \J Zr-i I r==lJa;r-i 

^ TiK . (2/X) 4" {Sn Sn) 

< {2nK/X) 4* €. 

By taking X sufficiently large {n remaining fixed after € has been chosen), 

the last expression may be made less than 26, so that 

lini f tWsm(X<9)d[<9 = 0, 
X->-cc J a 

and this is the result stated. 

When f{0) is unbounded, if it has an absolutely convergent integral, by 
§ 4*5, we may enclose the points at which it is unbounded in a finite|1 number 

♦ Trans. Dublin Acad. xix. (1843), p. 267. 

t Ges. Math. Werke, p. 241. For Lebesgue’s investigation see his S^iies trigonomctriques 

(1906), Ch. III. 

X Journal filr Math. iv. (1829), p. 172. 

§ For this proof we are indebted to Mr Hardys it seems to be neater than the proofs given by 

other writers, e.g. de la Vallee Poussin, Cmirs d'Analyse InjiniUsimale., ii. (1912), pp. 140-141. 

11 The Jiniteness of the number of intervals is assumed in the definition of an improper 

integral, § 4*5. 



174 THE PEOCESSES OP ANALYSIS [chap. IX 

of intervals Sj, S,, ... Sp such that 

I f lf($)ld0<e. 
r-lJSr 

If jST denote the upper bound of \'^{^)\ for values of 6 outside these 
intervals, and if 71, 73,... 7jp+i denote the portions of the interval (a, h) which 
do not belong to S2, we may prove as before that 

! I p+i r p r 
■y^ifi)sm{-KJd)dd = 2 ■<]r{e)s\ji{\e)de+ 2 / ■^{6)sm(^)de 

\ja \r=^lJyr r=lJ ihr 

^^1^2 [ (0) sin (X0) dff + S f l^lr(0)8in(X0)l d0 
|r=lJyr r=lJ 8r 

< +2€. 

Now the choice of e fixes n and K, so that the last expression may be 
made less than Se by taking X sufficiently large. That is to say that, even 

if (0) be unbounded, 

lim f ^fr(0)8in(X0)d0==O, 
X-*.oo J a 

provided that (0) has an (improper) integral which is absolutely convergent. 

The first lemma is therefore completely proved. 

(II) When (0) has limited total fluctuation in the range (a, 6), by § 3*64 

example 2, we may write 

where (^). Xs (^) ^ positive increasing bounded functions. 

Then, by the second mean-value theorem (§ 4T4) a number | exists such 

that a $ f $ h and 

j J Xi (^) = j Xi (^) 
«2x,(6)/X. 

If we treat ^2 (^) i^i ^ similar manner, it follows that 

If ylr(0) sin (X0) j < I f xi (^) siu (X0) I + I j* %2 (d) sin (X0) d0 
\ J a I IJ a I I J a 

<2 {xi(^)+x*(W^ 
= 0(l/\), 

and the second lemma is established. 

Corollary, If f{t) be such that j f{t) exists and is an absolutely convergent 

integral, the Fourier constants of f{t) are o(l) as n-*-oo ; and if, ftirther,/(0 has 

limited total fluctuation in the range (- ir, ir), the Fourier constants are 0 (l/n). 

[Of course these results are not sufficient to ensure the convergence of the Fourier 

series associated with f{t); for a series, in which the terms are of the order of magnitude 

of the terms in the harmonic series (§ 2*3), is not necessarily convergent.] 
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9*42, The proof of Fourier's theorem. 

We shall now prove the theorem enunciated in § 9*2, namely: 

Let f (t) be a function defined arbitrarily when — tt < i < -Tr, and defined by 

the equation y*(^ + 27r) =/ (t) for all other real values of t; and let J f(t)dt 

eaist and (if it is an improper integral) let it be absolutely convergent. 

Let a«, bn be defined by the equations 

TTOn = J f(t) cos ntdt, irhn = J /(O sin ntdt 

Then, if x he an interior point of any interval (a, b) within which f{() has 

limited total fiuctuation, the series 
00 

^00+ 2 (a» cos »ia! + 6n sin m;) 
n=l 

is convergent and its sum is js [f Qn + 0) +f {x — 0)}. 

It is convenient to give two proofe, one applicable to functions for which 

it is permissible to take the interval (a, b) to be the interval (-ir + x,Tr + x), 

the other applicable to functions for which it is not permissible. 

(I) When the interval (a, b) may be taken to be (— w + », tt + x),.it follows 

from § 9-41 (11) that a„ cos na; + 6„ sin nx is 0 (1/n) as n-*oo. Now by Fej6r’s 

theorem (§9'4) the series under consideration is summable (Cl) and its sum 

(Cl) is* i {fix + 0) +fix — 0)}. Therefore, by Hardy’s convergence theorem 

(18-6), the series under consideration is conveegent and its sum (by § 8-43) 

is i {fix + 0) +fix - 0)}. 

(II) Even if it is not permissible to take the interval (a, 6) to be the 

whole interval i—ir + x, ir + x), it is possible, by hypothesis, to choose a 

positive number 8, less than tt, such that fit) has limited total fluctuation in 

the interval (a; - 8, ® + 8). We now define an auxiliary function g (t), which 

is equal to fit) when a;-8$t$a; + 8, and which is equal to zero throughout 

the rest of the interval (— w + a;, tt + ar); and g it + 2ir) is to be equal to g it) 

for all real values of t. 

Then git) satisfies the conditions postulated for the functions imder 

consideration in (I), namely that it has an integral which is absolutely 

convergent and it has limited total fluctuation in the interval (— tt 4" a?, it -\~x)i 

and so, if a,“’, denote the Fourier constants of git), the arguments used 

in (I) prove that the Fourier series associated with g it), namely 
00 

^ Uo"* + 2 (a„“’ cos nx + sin nx), 
»=! 

is convergent and has the sum (^ + 0) + S' (* - 0)}, and this is equal to 

i {/(«? + 0) +/ix — 0)}. 

* The limits/(x±0) exist, by § 8*64 example 3. 
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Now let Sm(^) (^) denote the sums of the first m +1 tetms of 
the Fourier series associated with f{t) and g (t) respectively. Then it is 
easily seen that 

(^) = "~ I + cos (a; — ^) + cos 2 (a? — ^) -I-. + cos m(x-1)] f{t) dt 
irj 

=-r 27rJ_. 
sin (m -f i) (a: — t) 

f{t)dt 
sin i (ic — f) 

"27rJ_,+^ sinH^^-0 

_1 r^am(2m+l)ff 
~TrJo sin^ 

fix + 2e)dd+- r-2^)(Id, 
TT J 0 Sin C7 

hy steps analogous to those given in § 9*4. 

In like manner 

^”'sin(2w“h 1)^ 
sin 6 

g{x-\- 26) d6 + — I ^ ^ g(x — 26) d6, 
TT j 0 Sin u 

and so, using the definition of g (^), we have 

[ sin (2m -¥1)6^^^, d6 
TT J ^ sin u 

+ - sin {2m+1)6 dd. 
TTj^ ^ ^ sm6 

Since cosec ^ is a continuous fuoction in the range (^5, it follows that 
f{x ± 26) cosec 6 are integrable functions with absolutely convergent integrals; 
and so, by the Biemann-Lebesgue lemma of § 9*41 (I), both the integrals on the 

right in the last equation tend to zero as m—» 30. 

That is to say lim [S^ (oi) — (ii?)} = 0. 

Hence, since lim (x) == -J- {f(x + 0) + f(x — 0)}, 
m-^co 

it follows also that 

lim (x) = i {/(a: + 0) +/(a; - 0)}. 

We have therefore proved that the Fourier series associated with f{t\ 

namely + 2 cos nx + sin nx), is convergent and its sum is 

\ {/(^ -b 0) +/(^ - 0)}. 

9*43. The Dirichlet-Bonnet proof of Fourier s theorem. 

It is of some interest to prove directly th§ theorem of § 9*42, without 
making use of the theory of summability; accordingly we now give a proof 
which is on the same general lines as the proofs due to Dirichlet and Bonnet. 
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As usual we denote the sum of the first m + 1 terms of the Fourier series 

y 8m (®)> then, by the analysis of § 9‘42, we have 

sin^ yv -f- / sme 

Again, on integrating the equation 

re have 

0 that 

{/(^ + 26) -/(^ + 0)} d0 

1 f^sin (2m +1) ^ . 

= 1 + 2 cos 20 + 2 cos 4d + ... + 2 cos 2m 
sin^ 

sin (2m+ 1)0^^^^^^ 

Jo sm0 

, 1 fi'sin (2m 4-1) 0 

1 r*-8mc^m + i;t>, _2^^ 

Trio sin^ 

In order to prove that 

lim S„ (a;) - f {/(x + 0) +f(x - 0)}, 

t is therefore sufficient to prove that 

f^sin(2m + l)0 

«-«Jo sm0 

vhere <j) (0) stands in turn for each of the functions 

/(a; + 20)-/(x + 0), /(x-20)-/(x-0). 

Now, by §3-64 example 4, 0<f>(0)oo8ec 0 is a function with limited total 
Juctuation in an interval of which 0 = 0 is an end-point*; and so we may 

ivrite 
d<f>(d) cosec 0 = Xi (0) — Xj(^). 

where %! (0). X, (0) are hounded positive increasing functions of 0 such that 

Xi (+ 0) = Xj (*h 
Hence, given an arbitrary positive number e, we can choose a positive 

number S such that 

^ < Xi (^) < ^» ^ ^ (^) ^ 
whenever 0 ^ ^ ^ J S. 

We now obtain inequalities satisfied by the three integrals on the right 

of the obvious equation 

f*'^^(^!”tl)%(0)d0= psin(2m + l)0.t^d0 
J 0 Sin V J ^ 

J**sin(2m + 1) 0 _ J**8in(2m 

• The other end-point i8'd=i(6-x) or fl=i(x-o), according ae ^{S) represento one or 

other of the two funotions. 
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The modulus of the first integral can be made less than e by taking 

m suflSciently large; this follows from § 9-41 (i) since ^ {6) cosec 6 has an 

integral which converges absolutely in the interval (JS, i-TT). 

Next, from the second mean-value theorem, it follows that there is a 
number f between 0 and S such that 

I" -|» (48) 
_ ! /■'”^*^*sinM , I ,(48>. I 

(«+}) f « 

Since J is convergent, it follows that j J has an upper 

bound* B which is independent of /9, and it is then clear that 

j fO «n(2yl)e ^ 

On treating the third integral in a similar manner, we see that we can 
make 

I sin (2m + 1) l9 . .,. .. ^ . 
J» sing <(45 + 1)6 

by taking m sufficiently large; and so we have proved that 

Ita, (‘■■i..(2»tl)9 ^ 
smtf ^ 

But it-vhas been seen that this is a sufficient condition for the limit of (^) 
to be 4{/(a? + 0)+/(a?-0)}; and we have therefore established the con¬ 
vergence of a Fourier series in the circumstances enunciated in § 9*42. 

Note. The reader should observe that in either proof of the convergence of a Fourier 

sen^ the second mean-value theorem is required; but to prove the summability of the 

seri^ the first mean-value th^rem is adequate. It should also be observed that, while 

restrictions are laid upon/(#) throughout the range (- tr, tt) in establishing the mmiMiUlity 

at any point the only additional restriction necessary to ensure convergence is a re¬ 

striction on the behaviour of the function in the iminwAicUe neighhourhood of the point x. 

The fact that the convergence depends only on the behaviour of the function in the 

immediate neighbourhood of x (provided that the function has an int^ral which is 

absolutely convergent) was noticed by Eiemann and has been emphasised by Lebesgue, 
Smes TngonornMriqvm^ p. 60. 

It is obvious that the condition t that x should be an interior point of an interval 

in which f {t) has limited total fluctuation is merely a mjficierU condition for the con¬ 

vergence of the Fourier series; and it may be replaced by any condition which makes 

lim 
TO-#-* jo sm^ ^ 

* The reader will find it interesting to prove that Bss f — 
Jo w 

t Due to Jordan, Gomptea Rendua^ xcn. (1881), p. 228. 
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Jordan’s condition is, however, a natural modification of the Dirichlet condition that 

the function f{t) should have only a finite number of maxima and minima, and it does 

not increase the difficulty of the proof. 

Anoth^ condition with the same effect is due to Dini, Sopra U Serve di Fowrier 

(Pisa, 1880), namely that, if 

# {$)={fix+%B) ^f{x - 2^) -/(iF+0) -/(a? - 0)}/d, 

then J* * {B)dB should converge absolutely for some positive value of a, 

[If the condition is satisfied, given € we can find h so that 

and then j j'^*^sm(2TO + l)d^T^*(d)<id j 

the proof that 1 «P (2™+t)d ^ I < . for sufficiently large values of m follows 

from the Eiemann-Lebesgue lemma.] 

A more stringent condition than Dini’s is due to Lipschitz, Journal fvir Math. Lxni. 

(1864), p. 296, namely 1 ^ (5) 1 < 0&‘, where G and Ic are positive and independent of 6. 

For other conditions due to Lebesgue and to de la Vallte Poussin, see the latter’s 

Cvwn a Analyte InfiniUnmale, n. (1912), pp. 149-150. It should be noticed that Jordan’s 

condition differs in character from Dini’s condition; the latter is a condition that the 

series may converge at a point, the former that the series may converge throughout an 

interval. 

9-44. The uniformity of the convergence of Fourier series. 

Let f{t) satisfy the conditions enunciated in § 9-42, and further let it be continuo^ 

(in addition to having limited total fluctuation) in an interval (os, h). Then the Fourier 

aertet with f if) converges uniformly to the sunt fix) at all points x for which 

a+«<a-<6-8, where 8 is any positive number. 

Let h {t) be an auxiliary function defined to be equal to / («) when a < < < 6 and equal 

to zero for other values of t in the range (-ir, «•), and let a„, denote the Fourier 

constants of h if). Also let -S® (.r) denote the sum of the first to+1 terms of the Fourier 

series associated with h (t). 

Then, by § 9-4 corollary 2, it follows that “ uniformly 

summable throughout the interval (a+8, 6 - 8); and since 

1 a. cos mx+A. sin ju: I < (ai^+, 

which is independent of ir and which, by § 9-41 (n), is 0(l/«), it follows from § 8-5 

corollary that 

^ao+ 2 {an cos nx+^ sin 7ix) 
»=i 

COB verges uniformly to the sum h{x)^ which is equal to/(^*)* 

Now, as in § 9*42, 

r(2) 

K6-X) 

sin(2TO+l)d 

Sin ^ ^ rr 

i- sin(2TO4-l)fl., 
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As in § 9'4l we choose an arbitrary positive number c and then enclose the points at 

which/(t) is unbounded in a set of intervals Jj, ... ip such that 2 j |/(t) | 
rml J 8r 

If JT be the upper botrnd of l/(t) | outside these intervals, we then have, as in § 9*41, 

I -Sm(^)-(^) I < (^^1+2‘) cosec8, 

where the choice of n depends only on a and b and the form of the function f(t). Hence, 

by a choice of m indepeTideM of x we can make 

arbitrarily small; so that Sp,{x)—S^{x) tends uniformly to zero. Since {x)-^f(.x) 

uniformly, it is then obvious that (^) “^/(^) uniformly; and this is the result to be 

proved. 

Note. It must be observed that no general statement can be made about uniformity 

or absoluteness of convergence of Fourier series. Thus the series of § 9T1 example 1 

converges uniformly except near a?=(2n+l) ir but converges absolutely only when ar 

whereas the series of § 9T1 example 2 converges uniformly and absolutely for all real 

values of x. 

EmmfU 1, If (d) satisfies suitable conditions in the range (0, w), shew that 

sm8 ‘ smd 

Sind ^ 

Example 2. Prove that, if a > 0, 

lim [ e-aa d$ coth ^ir, 
n-^u>Jo sm^ 2 2 

(Math. Trip. 1894.) 
[Shew that 

r Bin(2«+1)(; sinJS^d 
Jo swtf m*<»Jo Sind 

=■ lim [ ^ |e~°*+e~°(*+’^)+...4«~°(*+*»»•)} dS 
m-*mJo Sind 

_ [■* sin(2n+l)d g-<»*<fd 

~~ J 0 sin 3 
and use example l.j 

Example 3. Discuss the uniformity of the convei^nce of Fourier series by means of 

the Dirichlet-Bonnet integrals, without making use of the theory of summability. 

9*6. The Hurwitz-Liapounoff* theorem concerning Fourier constants. 

Let f{x) he hounded in the interval (~ tt, tt) and let f f{x) dx existy so 
J —w 

* Math, Ann, Lvn. (1903), p. 429. Liapounoff discovered the theorem, in 1896 and published 

it in the Proceeding* of the Math, Soc. of the Univ, of Kharkov, See Ctmptea JRendwy cxxvi. 

(1898), p. 1024. 
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tiua the Fourier constants On, 6„ off{x) exist. Then the seines 

n^\ 

1 r*” 
is convergent and its sum is* — J \f (®)}’ dx. 

It will first be shewn that, with the notation of §9-4, 

rw ( 1 «i—1 ]2 
lim I ]/(ir)-2 Sn(x)\ dx = 0. 

m-^oa J ~ir I 'nin-Q ) 

Divide the interval (-*•,»■) into 4r parts, each of length 8 ; let the upper and lower 

bounds of/(.«) in the interval {(ip-l) i-r, (Sip+3)»-ir} be Up, ip, and let the upper 

bound of \f{x) \ in the interval ( - w, ir) be JT. Then, by § 9-4 corollary 1, 

1/(3!)-- S„{x) 1 < Up-Lp+iKI{m,8iv?ii} 
r ' m „.=o 1 

< 2isr [1 + l/{m sin* Jd}], 

when 4? lies betw^n 2jt?d and {2p + 2) d. 

Consequently, by tbe first mean-value theorem, 

/-, + 'mSinaia} * 

Since/(3!) satisfies the Riemann condition of integrability (§ 4-12), it follows that both 

4il\u^-L^) and can be made arbitrarily small by giving r a 

su^iently large value. When r (and therefore also 8) has been given such a value, we 

may choose uii sq large that r/{)nj sin* is arbitrarily small. That is to ^y, we can 

make the expression on the right of the last inequality arbitrarily small by giving m any 

yalue greater than a determinate value Wi. Hence the expression on the left of the 

inequality tends to zero as m-*-co. 

But evidently 

+ 2 J' j f(x) - An (a;)|. (a;)J dx 

I'w ( w—1 2 ijp m—l 

= /(^) - ^ (®) ^ 
J [ »=0 j ^ n=0 

* -This integral exists by § 4-12 example 1. A proof of the theorem has been given by de la 

Vall4e Poussin, in which tbe sole restrictions on f(x) are that tbe (improper) integrals of /(a?) 

and {/(a;)}2 exist in the interval (- t, t). See bis Coura (VAnalyse InfiniUshnale, ii. (1912), 

pp. 165-166. 
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(*)d^ = j ^ An (a:)| Ar (x) dx 

whenr = 0, 1, 2, 

Since the original integral tends to zero and since it has been provert 

equal to the sum of two positive expressions, it follows that each of these 
expressions tends to zero 5 that is to say 

f 1/(^) ““ 2 An {so) ■ dso—^On 
^ -IT t »=o 

Now the expression on the left is equal to 

r fm-l )s 

I 2 An (x)l dx 
-^rln-.o J 

* /., {/(^)}’ I ^' 

’»’) I —> 0. d®-7r||a,» + ’2\a»» + 6, 
r «*i 

so that, as m-^00, 

r {/(^)}“ —ar 

This is the theorem stated 

both satisfy the conditions kid on/(^) 
at the begi^uig of this section, and if A., 5. be the Fourier instants of F(r) Tt foUows 
by subtracting the pair of equations which may be combined in the one form 

(jc)}* <ir = »• (dj ± Ao)>+{(a, + A,)*+(6,+ 

j-J ^ix)dx=n- |K4a+^S^ K^»+Mn)j-. 

9'6. Niemann’s theory of trigonornetrical series. 

wbi^^ of Dinchlet concerning Fourier series is devoted to series 
wbch represent given functions. Important advances in the theory were 

made by Riemann, who considered properties of functions defined by a series 

of the typef j®"+ (®n cos iu; +i„ sin ««), where it is assumed that 

(a„ cos nx+b„ sin nx) = 0. We shall give the propositions leading up to 

Riemann’s theoremf that if two trigonometrical series converge and are equal 

+ ^o^ehont §§ 9;6-9-632 the letters 6. do not nece'ssarily denote Fourier constants 
t The proof given is due to G. Cantor, Journal flir Math, nxzxt. (1870). pp. 1^2 
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at all points of the range (--n-, tt) with the possible exception of a finite 

number of points, corresponding coefiScients in the two series are equal. 

9'61. Riemann’s associated function. 

Let the sum of the series hOq + 2 (a^ Qos nw +bn sin fix) —Ao+ 2 

at any point a? where it converges, be denoted hy f{x\ 

Let F{x) = \A^a?- 2 n-^A„{x). 
^ #=i 

Then, if the series defining fix) converges ai all points of any finite interval, 

the series defining F (x) converges for all real values of x. 

To obtain this result we need the following Lemma due to Cantor: 

Cantor’s lemma*. If ]im A„(,x)^0 for all mines of x such that a^x4b, then 
n-exv 

b„-*0. 

For take two points x,x+b of the interval Then, given e, we can find ti* such thatt, 

when n>nQ 
I cosTix-hbnSmfixlKe, | <2,, cos^ {x+d) + sin n(x-¥b)\<€. 

Therefore 

I cos 718 (a^ cos Tw:+sin + sin sin cos I < «• 
Since 1 cos n8 («» cos tw?+sin 7ix) | < €, 

it follows that 1 sin nd (- sin nx+bn cos tix) ] < 2^, 

and it is obvious that | sin nB cos 7ix~{-bn sin 7i^) | < 2€. 

Therefore, squaring and adding, 

1 siJi 7i8\<^€ 

Now suppose that bn have not the unique limit 0; it will be shewn that this 

hypothesis involves a contradiction. For, by this hypothesis, soTne positive number €0 

exists such that there is an unending increasing sequence Wj, ... of values of 71, for 

which 

{aj'tbj')^ > 4€o- 

Now let the range of values of 8 be called the interval of length on the real axis. 

Take 71^ the smallest of the integers rif. such that > 2ifr; then sin fiy y goes through 

aU its phases in the interval /j; call I2 that sub-interval J of h in which sin nj'y > l/sj2; 

its length is ‘rrl{2n{)=^L2. Next take the smallest of the integers ?v(>%') such that 

nJ X2 > 27r, so that sin fi^y goes through all its phases in the interval ; call that sub- 

interval J of /a in which sin ^2V> 1/^/2; its length is 7r/(27i20 = 4* ^e thus get a 

sequence of decreasing intervals igi ••• contained in aU the previous ones. It is 

obvious from the definition of an irrational number that there is a certain point « which 

is not outside any of these intervals, and sin7ia^l/V2 when ... (wV+i> 

For these values of 71, + sin 7ia> 2,^ But it has been shewn that corresponding 

* Eiemann appears to have regarded this result as obvious. The proof here given is a 
modification of Cantor’s proof, Math. Ann. iv. (1871), pp. 139-143, and Journal fiir Math, lxxii. 

(1870), pp. 130-138. 
t The value of Wq depends on x and on 8. 
X If there is more than one such sub-interval, take that which lies on the left. 
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to given numbers a and € we can find tiq such that when n > no, (aj+bn^ ^ (sin na) < 2c >^2 ; 

since some values of n/ are greater than Wq, the required contradiction has been obtained, 

because we may take c< co; therefore 

Assuming that the series defining f(x) converges at all points of a certain 
interval of the real axis, we have just seen that >0, >0. Then, for all 

real values of x, [ ctn cos nx 4* in sin na; | 4- and so, by § 3‘34, the 
00 

series 2 n'^An(x)^F(x) converges absolutely and uniformly for all 
»==i 

real values of x; therefore, (§ 3*32), F(x) is continuous for all real values of x. 

9*62. Properties of Riemanris associated functimi; Riemanns first lemma. 

It is now possible to prove Riemann’s first lemma that if 

Q ^ 4- 2g) + ~ 2a)- 2J(a?) 

then lim Q{Xj ci)^f(x\ provided thcut 2 Aj^{x) converges for the value of x 
«-*.o »=o ^ 

under consideration. 

Since the series defining F(x)f F{x ± 2a) converge absolutely, we may 
rearrange them; and, observing that 

cos 71 (a; 4- 2a) 4- cos n {x — 2a) ~ 2 cos no; = — 4 sin* na cos nx, 

sin n (x + 2a) 4- sin n (x - 2a) - 2 sin na; = ~ 4 sin* na sin nx, 

it is evident that 

\ na j 

It will now be shewn that this series converges uniformly with regard to 
00 

a for all values of a, provided that 2 An{x) converges. The result required 

is then an immediate consequence of § 3*32: for, if /„ (a) = /sin na\* 
\ na 

a>nd/„(0) = l, then /„(«) is continuous for all values of a, and so 0{a!, a) is a 
continuous function of a, and therefore, by § 3-2, (? (x, 0) = lim G (x, a). 

a -W) 

To prove that the series defining G(x, a) converges uniformly, we employ 
the test given in § 3*35 example 2. The expression corresponding to (x) 

is/n(a), and it is obvious that |/«(a)|^l; it is therefore sufficient to shew 
ac 

that \fK+x (a) —(a) | < K, where K is independent of a. 

In fact* if « be the integer such that 11 a| <(*+1) | a |, when o+O we have 

sin* »a 
2*1 /..I (o)-A(«) 1= s'(/n (a)(a))=®i^^ . 

»=1 »=1 i2^2 S^d 

Since sin x decreases as x increases from 0 to v. 
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Also 

1 t j / \ ^ / \ I « 1 'Ha / I 1 \' 
^ \fn+i{o-)—fn{a)\— 2 N--—(^”/rTT^)r + 

sin® na — sin® (ti +1) o | 

(72+ 1)2 a® 1 

, ^ 1/1 1 \ t lsin®7ia-8in®(7i+l)<i| 

W (n+l)V^nZ,+i {n+ l)®a® 

1 « 1 sin asin (2« + l)e| 

(r+l)®a® n=:s+l (»2+l)*oS 

1 , I sin a 1 » 
9 ‘ •> ^ 

dx 1 , Isinal r 
J. (x + 1)^ 

^—« + 
1 

Therefore 

TT® (« + l)|a|‘ 

" If I'™'! f fr,\i , /Sinaia . sin*(»+l)<i\ , 1 ^1 
l/«*i (a) -/n(a) I « +1^+1)^ 

fT fr^ 

Since this expression is independent of a, the result required has been obtained*. 

00 

Hence, if 2 An(^) converges, the series defining G(iv, a) converges 
«=o 

uniformly with respect to a for all values of a, and, as stated above, 

lim (? (a;, a) = (? (i®, 0) = J.0 + 2 J[n(^)=/(^)- 
a.-**0 n-1 

Example. If B(x, a, ^~j^-P'{^-\-a+0)--F{x+a-^)-F{x-a+^)+F{x-a-fi) 

that B (x, fl, when f{x) converges if a, ^-*-0 in such a way that a/^ and ^/a 
remain finite. (Riemann.) 

9*621. Riemann s second lemma. With the notation of ^ 9*6-9*62, if 

<^n , 6„—>0, then lim _ q iiaZites q/a;. 
a-#i*0 

00 |>»3 ‘Wflf 

For ia-> [¥ {x + 2a) + F{x - 2a) - 2F(a:)} = fl„a + 2^ 4n(^); but 

30 Sin® ?icc 
by § 9*11 example 3, if a > 0, 2 ^ (tt — a); and so, since 

... sin® wo . . .. 
Af^{x)a-y 2 —j^An(oc) 

n=i 

. f X , X . / X V' / X sin®mo' 
•4o(*)«+- ]i('7r-a)- 2 —^ 

n=l V, m=l '•*' 
{-^n+i (^) "" An (^)}, 

it follows from § 3*35 example 2, that this series converges uniformly with 
regard to a for all values of a greater than, or equal to, zerof. 

* This inequality is obviously true when a = 0. 

t If we define by the equations gn{a) = ^{v - a) - 2 ^^, (a + 0), and 5'„(0) = .iir, 
ni==l iih 0. 

then (a) is continuous when a ^0, and g^^i (a) ^gn («)• 
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But lim Ja-i [F{x+ 2a) + F{x- 2a)-2^’(a:)} 

00 

= lim .4„(a:)o + i(7r-a) J:i(«)+ S gn{oi){A^i{x)-A^ix)] , 
a-*.+0 L 

and this limit is the value of the ftmction when a = 0, by § 3*32; and this 
value is zero since lim (ar) = 0, By sjnnmetry we see that lim = lim. 

«-*-0D a-#*+0 aH>-0 

9*63. Riemanns theorem* on trigonometrical series. 

Two trigonometrical series which converge and are equal at all points of 

the range (— tt, w), with the possible exception of a finite number of points^ 

must have corresponding coefiicients equal. 

An immediate deduction from this theorem is that a function of the type considered 

in § 9*42 cannot he represented by any trigonometrical series in the range ( —ir, fr) other 

than the Fourier series. This fact was first noticed by Du Bois Raymond. 

We observe that it is certainly possible to have other expansions of (say) the form 
00 

ao+ 2 (o^cossin\rnx\ 
m=l 

which represent/(j?) between -tt and for write and consider a function <^($), 

which issuchthat <;()(f)=/(2|) when and when 

and when |»r<^<Tr, where ^(|) is any function satisfying the conditions of § 9*43, 

Then if we expand (f) in a Fourier series of the form 
00 

00+ 2 (omCoswf 
m=0 

this expansion represents/*(:*?) when — ir<.x<.Tr; and clearly by choosing the function g (() 

in different ways an unlimited number of such expansions can be obtained. 

The question now at issue is, whether other series proceeding in sines and cosines of 

integrcd multiples of a exist, which differ from Fourier’s expansion and yet represent 

between - rr and n. 

If possible, let there be two trigonometrical series satisfying the given 
conditions, and let their difference be the trigonometrical series 

J.0+ S An{x)=f(x). 

Then f(x) = 0 at all points of the range (~ tt, tt) with a finite number of 
exceptions; let |i, fa be a consecutive pair of these exceptional points, and 
let F(x) be Riemann’s associated function. We proceed to establish a 
lemma concerning the value of F(x) when ^i<x< fg. 

9*631. Schwarts^ lemmaf. In the range F{x) is a linear function of s, 
if f{x)=0 in this range. 

For if 8=^1 or if 8— - 1 

<f>{x) = 6 - F-d,) -{F-d-,) - Fd,)}] - W - fi) (& - x) 

is a continuous function of x in the range ^^2, and 0 {^2)^0, 

* The proof we give is due to G. Cantor, Journal filr Math, lxxii. (1870), pp. 139-142, 

t Quoted by G. Cantor, Journal fur Math. lixxii. (1870). 
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If the first term of <j> (x) is not zero throughout the ranged there will be some point 

^as<j at which it is not zero. Choose the sign of ^ so that the first term is positive at c, 

and then choose h so small that <p (c) is still positive. 

Since (x) is continuous it attains its upper bound (§ 3*62), and this upper bound is 

positive since <j) (c) > 0. Let <p (x) attain its upper bound at Cj, so that ci 4= f i, Cj =# I2. 

Then, by Riemann’s first lemma, 

<t> ici +a)(ci - g) - 2<^ (ci) ^ 

a^M) a® 

But <f>(ci+a) ^<f) (ci), <fj (Ci-a) ^<p (Cj), so this limit must be negative or zero. 

Hence, by supposing that the first term of <f> (x) is not everywhere zero in the range 

(fi, f2)j we have arrived at a contradiction. Therefore it is zero; and consequently F(x) is 

a linear function of .r in the range ^i<x The lemma is therefore proved. 

9*632. Proof of Riemann^s Theorem. 

We see that, in the circumstances under consideration, the curve y^Ffx) 

represents a series of segments of straight lines, the beginning and end of 
each line corresponding to an exceptional point; and as F{x\ being uniformly 
convergent, is a continuous function of a?, these lines must be connected. 

But, by Riemann's second lemma, even if f be an exceptional point, 

F{^^a) + F{^-a)-2F{^) ^ ^ 

a 

Now the fraction involved in this limit is the difference of the slopes of 
the two segments which meet at that point whose abscissa is ^; therefore the 
two segments are continuous in direction, so the equation y^F{x) represents 
a single line. If then we write F{x)^cx-\-c\ it follows that c and c' have 
the same values for all values of x. Thus 

QO 

cx — c^ — 2 rr^An{x), 
n-\ 

the right-hand side of this equation being periodic, with period 27r. 

The left-hand side of this equation must therefore be periodic, with period 

27r. Hence 
= c*=0, 

CO 

and — c — 2 n ^A>f^ 
«=i 

Now the right-hand side of this equation converges uniformly, so we can 

multiply by cos nx or by sin nx and integrate. 

This process gives 

rrrr^— c' | cos nx dx = 0, 

rrrr^hn = — c J sin nxdx = 0. 

If it is zero throughout the range, F (x) is a linear function of x. 
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Therefore all the coeflBcienfs vanish, and therefore the two trigonometrical 

series whose difference is Ao + 2 Af^(x) have corresponding coefficients equal. 

This is the result stated in § 9*63. 

9-7. Fotmers representation of a function hy an integral*. 

It follows from § 9*43 that, if f (x) be continuous except at a finite 

number of discontinuities and if it have limited total fluctuation in the 

range (— oo, oo ), then, if x be any internal point of the range (-- a, /9), 

P sin (27/1 + 1) , 

Izj-,-(i:^)-*=^ l/(^+2^) +/(* - 2^)}. 

Now let X be any real number, and choose the integer m so that 
X = 2m +1 + where 0 $ 17 < 1. 

Then J ^ [sin X(<-a;)-sin(2m + l)(t-a:)}(«-a;)-i/(t)d< 

“ I-a ^ (2m + 1 +17) (t - x)}. [sin 77 (t - a;)} {t - x)-^f{t) cU 

—>0, 

M m-»00 by § 9'41(n). since it-x)-^f(t)amv(t-x) has limited total 
fluctuation. 

Consequently, from the proof of the Riemann-Lebesgue lemma of § 9-41, 

it is obvious that if r j/(t) I dt and f" j/(t) | dt converge, thenf 
" 0 J —ao 

r® sin\(i5 —a?) „ , , J -oc ■ (t-x) {/(a! + 0) +f{x - 0)}, 

and so 

/-« {/o “(<-*) = Itt {/(a; + 0) +f(x - 0)}. 

To obtain Fourier’s result, we must reverse the order of integration in 
this repeated integral. 

For any given value of \ and any arbitrary value of e, there exists a 
number /S such that 

f i/(0l*<i€/X; 
J fi 

* La Theorie AnaXytique de la ChaUur, Ch. ix. For recent work on Fonrier-s integral and 

1^, ‘Fourier transforms,’ see Titchmarsh, Proc. Camb. PhU. Soc. xn. (1923), 

Proc. London Math, Soc, (2) xxm. (1924), pp, 279-289. 

J means the double limit lim [ . If this limit exists, it is equal to lim T 
p-^oo.cr-^oo J-p p^aoj-o 
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writing cos u(t- x) if> {t, u\ we have* 

|J |J <f>(l,u)d'ujdt’-Jj^J ^{t,u)d^du 

= U IJ <f> {ty u) dw| dt + J IJ (i, ti) dt 

— J {/ |J 
— [/ IJ <f>{t, u) di^ di — J jy* u) d^l dti 
< J U I ^ 1 dt-hj j \<f>(t,u)\ dtdu 

<2xf l/(t)ldt<€. 
h 

Since this is true for all values of e, no matter how small, we infer that 
fco rk f^k rct> t—co rk rk r-oo 

Hence J tt {/(x + 0) 4-/(x — 0)} = lim f f cos u(t — x)f{t) dtdu 
k^ao J 0 J -00 

COS u {t — x)f{t) dtdu. 

k^oo J 0 • 
foo r 00 

This result is known as Fourier's integral theorem^. 

Example. Verify Fourier’s integral theorem directfy (i) for the function 

(ii) for the function defined by the equations 

/(•»)=!, (-1<^<1); /(a;)=0, (|ir|>l). (Rayleigh.) 
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Miscelianeocs Examples. 

1. Obtain the expansions 

, . 1-roosij 

(*) §log(l-2rcos«+r*)=-»-cos^-ir»coe2«-|r»coe3*-..., 

/V . ramz . 1 « . 1 
(c) ^tan ;^^---=xrsm«4'gr®aiE S^-fg^^sin 

1_. Srainz . 1 , . 1 
^arctan^^-^«:rsin«4-gr3smaj-f'gr®8in5^+..., 

and shew that, when | r j < 1, they are convergent for all values of in certain strips 
parallel to the real axis in the z-plane. 

2. Expand 4:® and x in Fourier sine series valid when -ir<4?<«r; and hence find 
the value of the sum of the series 

for all values of x. 

sin.r—ism2ir+j3sin 34?—^sin4a?+..., 

(Jesus, 1902.) 

3. Shew that the function of s represented by 2 »-»sin»M!sin*jia, is constant 
«=1 

(0 < 4? < 2a) and zero (2a < a? < w), and draw a graph of the function. 

4 Find the cosine series representing/(x) where 

/(x)=8in X+COS 4? (0 < 4? ^i«-), 

/ (^) = sin 4? - cos 47 (ifl- ^ 47 < n-). 
5. Shew that 

, sin 3r47 sin5w47 sinTwa? 

(Pembroke, 1907.) 

(Peterhouse, 1906.) 

jmsr47-f- + ...=ifr[4r]. 3^5 
wh^ [4?] denotes +1 or -1 according as the integer next inferior to 47 is even or uneven, 

and IS sero if X is an integer. (Trinity, 1896.) 

6. Shew that the expansions 

log 2 cos r 47 

and 

a cos 47-i cos 247 + 1 cos 347 ... 

log 2 sin-4? j= —C0847 —i cos 247 —~ cos 347 ... 

are valid for all real values of 47, except multiples of 

7. Obtain the expansion 

* (- )”* cos ms / 1 \ 1 
M^o (w+1) (?»+2) ** ^+COS 247) log ^2 cos ^ 47j + - 4? (sin 247+sin 47) - cos 47, 

and find the range of values of x for which it is applicable. (Trinity, 1898.) 

8. Prove that, if 0 < a: < Sir, then 

aina; SsinSj 38in3a; irsinha(«--a:) 

a*+l*+ aa+2* ' sinhuir 

(Trinity, 1895.) 
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9. Shew that between the values -?r and +w of x the following expansions hold: 

sm ?7W?=— sin m?r 
/ sin^j? 28in2^ 3sm3ar \ 

2>-to» 3»-ot2 ~—J’ 
2 . /I mcoas mcos2ar mcos3^ \ 

cosOTa:--sm»tjr(^2^+ 

gOMT ^ 
2/1 mcoHX 
TT \2?71 

m cos 22? m cos 3^1? 
22+^2 “ 32 + ^2 

10. Let a? be a real variable between 0 and 1, and let w- be an odd number > 3. 

Shew that 

( —1)««—4-- 2 — tan — cos2mfr:r, 
71 7r,»ssim Tir 

if iP is not a multiple of where s is the greatest integer contained in tw?; but 

.12*1. mir ^ 
0=- + - 2 — tan — cos 2mfrs, 

n 9r«,«i m n 

if a? is an integer multiple of Ijn. 

11. Shew that the sum of the series 

(Berger.) 

i+4ir"^ 2 m“ ^ sin §tn?r cos ^rmx 

is 1 when 0<^< J, and when f <a?<l, and is -1 when ^<x<|. (Trinity, 1901.) 

12. K _ % a" K ipi) 
e“-l ,fo n! ’ 

shew that, when — 1 <^ < 1, 

„ cos47ra? . cosOff^ „ cos47ra? . cosOff^, , w_i ir / \ 
co8 2»-3:+—pj- + -pr- + ... = (-)>‘ » 

ft „ . sm4ir^ . sinOjr^ , 
8in2ir;r+ ^ 2w + l ! + 

(Math. Trip. 1896.) 

13. If m is an integer, shew that, for all real values of x. 

- -1.3.5... (2m-l) fl , 7» 
cos2^iP*»2 —^ ^ ^4-r cos 2a;4*,—r4v7—cos4:r 

2.4.6...2771 12 77^4-1 (7714*1) (771+2) 

, 771 (771 ~1) (771-2) _ . 

(771+1) (-l/i + 2) (77i. + 3) ^ 

, 4 2.4.6... (2771-2) fl 2771-1 . , (2ot-1)(2ot-3) 

(277i + l)(2m+3) 
cos4a?+. 

14 A point moves in a straight line with a velocity which is initially «, and which 

receives constant increments, each equal to u, at equal intervals r. Prove that the velocity 

at any time £ after the beginning of the motion is 

U U( 7^ ® 1 . 277lfr^ 
4. —4.- 2 - sin- , 

2 r 7r,a*i77i r 

and that the distance traversed is 

Ut . ^ . Ur Ur ^ 1 277lir^ 

(Trinity, 1894.) 
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15. If 

“ i, («»-3)2 2^1 (2«-1)X 

4* - loiJUO/-^ 

/ (+0)—/(?r - 0)« - l-ir, 

sin f>x , sin lx sin ll^g 3^/3/. __ .. .. 
5^ 7^ 112 -r. IP 

liltw tMt 

“d /(J*'+0)-/(i,-0)—/(S^+0)-/(s^-0)=j^. 

OI^Tii^ tkMt tte last mnm is 

6 * sin J(2«-1) irsin (2n-l)x 
iJt ~~ ^ (2n^iy > 

draw the graph of/(x). (Math. Trip. 1893.) 

M Bhm ihA% when 0 < j? < ir, 

. Z i,/3 / i !- i k. 1 \ 
/Cj:)=— f co8j:--cos5j:+-cos 7^-j| cos ll;r+... j 

=8in2x+i8in4:r4*“Sin8:ir+gsin 10^:4-... 

/(x)=Jr (0<s<i^), 

/(x)=-|fr (Sw'<a?<n-), 

Fad the sum of each series when x^O, |w, j*r, w, and for all other values of ar. 

17. Prove that the locos represented by ^ 1908.) 

- (_).-! 

wime 

t ■ sin ?u7sm n^szQ 

(Math. Trip. 1895.) 
18. Sl»w that the aquation 

« (—)®^~^8innycos«.a? 
*-2 «s “0 

*mi-a.es are w and Vs, the LVi’no piai2t J 
of the locos. ““«'>«*“« placed in squares of area 2w». Draw a diagram 

lo OI. . (Trinity, 1903.) 

±4 ±y±*-r, the^ *** octahedron bounded by the planes 

2 ^sinwysinne 1 

aa OirrJ*. A- '^"P- 1^0 

<Jifi oirdes can be jmt in the form ^ ^ formed by the outer 

6V3S “ 2+0 ®®® 6^ coe 6fl+cos9d- 

(Pembroke, 1902.) 
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21. Draw the graph represented by 

a w 

where m is an integer. 

* ’J’ fl * (—)’‘cosw«^ 

TO ii'*'.!, l -(>m)2 i ’ 

(Jesus, 1908.) 

22. With each vertex of a regular hexagon of side 2a as centre the arc of a circle of 
radius 2a lying within the hexagon is drawn. Shew that the equation of the figure 
formed by the six arcs is 

J^=6-3V3 + 2 2 cos 6m^, 
4a ^ (6w-l)(6n*fl) ’ 

the prime vector bisecting a petal 

23. Shew that, if c>0, 

/** II 
lim I e“<^*cot^sin(2w+l)^.<i2?=5trtanh-cir. 
n-^mj 0 2 2 

24. Shew that 

lim 
sm (271+1)^ ds 1 , 
-^--—- = - IT coth 1. 

sm;r l+a:^ 2 

26. Shew that, when — 1 < < 1 and a is real, 

’ sin (2714-1) & sin (l+a?)$ $ 

(Trinity, 1906.) 

(Trinity, 1894.) 

(King’s, 1901.) 

lim r 
J 0 sin^ 

1 sinh cut 

sinh a ' 

(Math. Trip. 1905.) 

26. Assuming the possibility of expanding /(^) in a uniformly convej^ent series of 

;he form SA^sinir^?, where I? is a root of the equation i?coaalr+5sina^=0 and the 
k 

ummation is extended to all positive roots of this equation, determine the constants A*. 

(Math. Trip. 1898.) 

27. If 
2 ac 

/(.j:) = -ao+ 2 (a,*cos7ia:+5„sm7iJ7) 
2 fi=i 

i a Fourier series, shew that, if / (x) satisfies certain general conditions, 

4 /** 1 dt 4 /** 1 dt 
P I f{t) cosnt tan 4 ^-7, 1 f{t) sin nt tan x^ -7 • 

IT J Q Jb t J 0 A t 
(Beau.) 

28. If i^,^(^)=2 2 (-)»•“ I prove that the highest maximum of S^^ix) in the 
r=i ^ 

terval (0, w) is at prove that, as 7t-»-Qo, 

idiice that, as ti-^qo, the shape of the curve y^S^{x) in the interval (0, tt) tends to 

proximate to the shape of the curve formed by the line y—x, (0 ^x^ir) together with 

i line x^iTj (0 ^ y < (r), where 

<?*2 
/» sin t 

0 ~ 
dt. 

lefact that C'*3*704... >7r is known as QibJx^ phenomenon \ see Nature, LXIX. (1899), 

506. The phenomenon, is characteristic of a Fourier series in the neighbourhood of a 

nt of ordinary discontinuity of the function which it represents. For a full discussion 

he phenomenon, which was discovered by Wilbraham, Camh. and Dublin Math, Journal, 

(1848), pp. 198-201, see Carslaw, FouriePe Series and Integrals (1921), Ch. ix.] 



CHAPTEK X 

LINEAE DIFFERENTIAL EQUATIONS 

101. Linear DiffermtiaZ Equations *. Ordinary points and singular points. 

In some of the later chapters of this work, we shall he concerned with the 
investigation of extensive and important classes of functions which satisfy 
linear differential equations of the second order. Accordingly, it is desirable 
that we should now establish some general results concerning solutions of 

such differential equations. 

The standard form of the linear differential equation of the second order 

will be taken to be 

= 0 .(A), 

and it will be assumed that there is a domain S in which both p (z), q (z) are 

analytic except at a finite number of poles. 

Any point of S at which p (z), q (z) are both analytic will be called an 
ordinary point of the equation; other points of S will be called singular 

points. 

10*2. Solviion^^ of a differential equation valid in the vicinity of an 

ordinary point. 

Let 6 be an ordinary point of the differential equation, and let 8b be the 
domain formed by a circle of radius whose centre is 6, and its interior, the 
radius of the circle being such that every point of Sb is a point of 8, and is 

an ordinary point of the equation. 

Let z he a variable point of Sb- 

In the equation write w = v exp j— | J P (?) becomes 

cN 
dz^ 

J(z)v = 0 (B), 

where 

* The analysis contained in. this chapter is mainly theoretical; it consists, for the most part, 
of existence theorems. It is assumed that the reader has some knowledge of practical methods 
of solving differential equations; these methods are given in works exclusively devoted to the 
subject, such as Forsyth, A Treatise on Differential Equations (1914). 

t This method is applicable only to equations of the second order. For a method applicable 
to equations of any order, see Forsyth, Theory of Differential Equations^ iv. (1902), Ch. i. 
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It is easily seen (§ 5*22) that an ordinary point of equation (A) is also 

an ordinary point of equation (B). 

Now consider the sequence of functions analytic in 5^, defined by 

the equations 
Vq(z) - ai{z -b), 

vn(z)^ f (^ = 1,2,3, ...) 
J 6 

where Ui are arbitrary constants. 

Let if, /i. be the upper bounds of \J(z)\ and |t;o(i^)| in the domain 
Then at all points of this domain 

I %i {^) 1 < \z--b |«/(n!). 

For this inequality is true when w = 0; if it is true when n = 0,1,.., m — 1, 
we have, by taking the path of integration to be a straight line, 

< I' 1 ? - ^ 1.1 / (01 1 ?- 6. 1 d? I 

mr ' ' 

Therefore, by induction, the inequality holds for all values of n. 

Also, since \'Vn{^) | when ^ is in and % fiM'^n^l{nt) con- 

« 

verges, it follows (§ 3-34) that v{z)— 2 «»(«) is a series of analytic functions 
11=0 

uniformly convergent in Sj,; while, from the definition of t;n(^), 

= (« = 1. 2, 3,...) 

^‘0n{ll) = -J{a) («); 

hence it follows (§ 5*3) that 

dH{z) _dHQ{z) 5 dh}n(z) 
dz^ dz* nxzzi de^ 

= -tf {z)v(z). 

Therefore v(z) is a function of z, analytic in which satisfies the 

differential equation 

^^^J{z)v{z) = 0, 
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and, from the value obtained for ^ evident that 

where Oq, are arbitrary. 

10*21. Uniqueness of the solution. 

If there were two analytic solutions of the equation for v, say Vi (z) and Va (z) 

such that t;i(6) = U2(6)==ao, Vi{b) — V2{b)-ai, then, writing w{z)-Vi(z)-Vziz\ 

we should have 

^>+J'W»W.o. 

Differentiating this equation n — 2 times and putting z = b,we get 

w (6) + J(b) (6) + n^^GiJ'ib) (6) + .,. + (b) w (b) = 0. 

Putting 71=2, 3, 4,... in succession, we see that all the differential coefficients 
of w(z) vanish at b; and so, by Taylor’s theorem, w{z)^0] that is to say the 
two solutions Vi {z\ (z) are identical. 

Writing u(z) = v (g) exp (?) > 

w^e infer without difficulty that u (z) is the only analytic solution of (A) such 

that 1^(6) = Ao, u'(h) = Ai, where 

Ao = Oo, Ai = Oi - ip (6) Uo. 

Now that we know that a solution of (A) exists which is analytic in 
and such that u(h), u' {h) have the arbitraiy values Aq, Ai, the simplest 
method of obtaining the solution in the form of a Taylor’s series is to assume 

00 

u{z)= 2 An (-3^ — bfy substitute this series in the differential equation and 
n=0 

equate coefficients of successive powers of — 6 to zero (§ 3*73) to determine 
in order the values of A2, A3, ... in terms of A©, Ai, 

[Note. In practice, in carrying out this process of substitution, the reader will find 

it much more simple to have the equation ‘cleai’ed of fractions* rather than in the 

canonical form (A) of § 10*1. Thus the equations in examples 1 and 2 below should 

l)e treated in the form in which they stand ; the factors 1 -z\ (2-2) (2 — 3) should Tiot be 

divided out. The same remark api)lias to the examples of §§ 10*3, 10*32.] 

From the general theory of analytic continuation (§ 5*5) it follows that 
the solution obtained is analytic at all points of S except at singularities 
of the differential equation. The solution however is not, in general, 
‘ analytic throughout S ’ (§ 5*2 cor. 2, footnote), except at these points, as it 
may not be one-valued; i.e. it may not return to the same value when z 

describes a circuit surrounding one or more singularities of the equation. 



LINEAR DIFFERENTIAL EQUATIONS 197 10*21, 10*3] 

[The property that the solution of a linear differential equation is analytic 

except at singularities of the coefficients of the equation is common to linear 

equations of all orders.] 

When two particular solutions of an equation of the second order are not 

constant multiples of each other, they are said to form a fundamenMl system. 

Example 1. Shew that the equation 

(1 - w" - 22u'+|m=0 

has the fundamental system of solutions 

% = 2 + -^j23 + iVs^+*-** 

Determine the general coefficient in each series, and shew that the radius of con¬ 

vergence of each series is 1. 

Example 2. Discuss the equation 

{z — 2) (z -• 3) w" — (2-2 — 5) -u' -h =0 

in a manner similar to that of example 1. 

10*3. Points which are regular for a differential equation. 

Suppose that a point c of is such that, although p {z) or q (z) or both 

have poles at c, the poles are of such orders that (^-c)p(z), {z-cfqiz) are 

analytic at c. Such a point is called a regular point"* for the differential 

equation. Any poles of p (z) or of q (z) which are not of this nature are called 

irregular points. The reason for making the distinction will become apparent 

in the course of this section. 

If c be a regular point, the equation may be written 

(^-c)= J + (^-c).P(z-c)^+Q(^-c)« = 0. 

where P (^ — c), Q{z-c) are analytic at c; hence, by Taylor’s theorem, 

P — c) = Po + jPi (-2^ + Pa — c)® + *• •» 

Q(z-c)=^qo+qi {z - c) ^ q^{z - cf ^ 

where po, pi, Jo, Ji, ••• are constants; and these series converge in the 

domain formed by a circle of radius r (centre c) and its interior, where r is 

so small that c is the only singular point of the equation which is in Sc> 

Let us assume as a formal solution of the equation 

U^{z- cY 1 2 an{z — of' 
n=l 

where a, cti, a^i ••• constants to be determined. 

* The name ‘regular point’ is due to Thom4, Journal fur Math. lxxv. (1873), p. 266. 

Fuchs had previously used the phrase ‘ point of determinateness.’ 

t Frobenius calls this the normal form of the equation. 
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Substituting in the differential equation (assuming that the term-by-term 

differentiations and multiplications of series are legitimate) we get 

(z’-cY a(ct —1)+ 2 an(a + rt)(a + ^—1)(^ —c)” 
L 

+ (z-'CYP(^-o). a 4- 2 an(a-^n)(z 
n=l 

-c)»j 

+ (s—c)‘Q(s: — o) l+2a„(ir—c)“ =0. 
L 

Substituting the series for P{z- c), Q{z — c), multiplying out and equating 

to zero the coefficients of successive powers of — c, we obtain the following 

sequence of equations: 
a=4-(po-l)a + ?o = 0, 

di {{d 4-1)® 4- (po — 1) (oc 4-1) 4- O'©} + + ?i ~ 0, 

{(ot 4“ 2)® 4" (|>o “ 1) (fit 4* 2) 4- 5^0} + Ui {(ft *1" 1) 4* Jx} 4 ftp2 4- ^2 ~ 0» 

«n {(a + n)® + (j)o“ 1) (ft 4 n) 4- ?ol 

+ 2 <i„_,„{(a + n-m)2)^+g'„} + ajp» + 5» = 0. 
m=l 

The first of these equations, called the indicial equation*y determines two 

values (which may, however, be equal) for a. The reader will easily convince 

himself that if c had been an irregular point, the indicial equation would have 

been (at most) of the first degree; and he will now appreciate the distinction 

made between regular and irregular singular points. 

Let a*=pi, a = p2 be the rootsf of the indicial equation 

(a) = a® 4“ (po - 1) ft 4- ?o = 0; 

then the succeeding equations (when a has been chosen) determine ai, a2> •••» 

in order, uniquely, provided that .F(a 4-n) does not vanish when n = 1, 2, 3, ; 

that is to say, if a = pi, that is not one of the numbers pi 4 1, pi 4 2, ; 

and, if a = p^y that pi is not one of the numbers ps 41, P2 4 2, .... 

Hence, if the difference of the exponents is not zero, or an integer, it is 

always possible to obtain two distinct series which formally satisfy the 

equation. 

Example, Shew that, if m is not zero or an integer, the equation 

is formally satisfied by two series whose leading terms are 

14, x4 
16(14wi) J’ r'l6(l-m) 

determine the coefficient of the general term in each series, and shew that the series 

converge for all values of z. 

* The name is due to Cayley, Quarterly Joumaly xxi, (1886), p. 326. 
4 The roots px* P2 of the indicial equation are called the exponenU of the differential 

equation at the point c. 
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10-31. Convergence of the expansion o/§ 10-3. 

If the exponents pi, ps nre not equal, let pi be that one whose real part is 

not inferior to the real part of the other, and let pi - Pa = s; then 

(pi + ») = n (s + n). 

Now, by § 6-23, we can find a positive number M such that 

|p„|<Jfr-», I g-n I < | pip„ + g„ | < 

where if is independent of n; it is convenient to take if 5s 1. 

Taking a = pi, we see that 

I „ I lAj>i + gi| M M 

'“'|-iF(pi + l)rrla+ll r’ 

since | s +11 ^ 1. 

If now we assume i a„ | < if“r-" when n = 1, 2, ... m - 1, we get 

m-l 
S amr-t {(pi + m — Pe + + PiPm + 

F(p,+m) “ 

S |Om-t 1. 1 PlJ0« + ?e I + 1 PlPm + gml + ^ (Wi — <) | a,»_( \ \pt\ 
^ ____ 
"" W I S + I 

fOT-l ) 

^ 11 + 5m"'^ 1 

Since 11 + | ^ 1, because R (s) is not negative, we get 

u„ I < Jlfmr-m < ifsnr-”*, 
' ' 2m 

and so, by induction, | | < M^r " for all values of n. 

If the values of the coefficients corresponding to the exponent be 

Oi', Oa',... we should obtain, by a similar induction, 

where k is the upper bound of | I — 5 |“\ | 1 - 1“\ 11 - ; this 

bound exists when 8 is not a positive integer. 

We have thus obtained two formal series 

w^(z) = (z-cy^\l-^ 1 an(z-c)^ , 

W2 (z^)=“ cy^ [i + i an(z- cy . 
L J 

The first, however, is a uniformly convergent series of analytic functions 

when \z — c\< as is also the second when |^ — c | < provided 
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in each case that arg (z — c) is restricted in such a way that the series an 
one-valued; consequently, the formal substitution of these series into th< 
left-hand side of the differential equation is justified, and each of the series is 
a solution of the equation; provided always that pi — is not a positive 
integer or zero^. 

With this exception, we have therefore obtained a fundamental system o 
solutions valid in the vicinity of a regular singular point. And by the theoiy 
of analytic continuation, we see that if all the singularities in S of the equatior 
are regular points, each member of a pair of fundamental solutions is analytic 
at all points of S except at the singularities of the equation, which are branch¬ 
points of the solution. 

10*32. Derivation of a second solution in the case when the differena 
of the exponents is an integer or zero. 

In the case when ^ is s* positive integer or zero, the solutior 
W2 (z) found in § 10*31 may break downf or coincide with Wi (z). 

If we write u^Wi (z) the equation to determine f is 

+ (^-c) -P (^ - C)| 2=0, ''' 

of which the general solution is 

(^ - C) - lp2(^-cy - ...| dz 

^ A + £ j (z — g (z) dz. 

dz . dz 

where A, B are arbitrary constants and g{z) is analytic throughout the 
interior of any circle whose centre is c, which does not contain any singu¬ 

larities of P (^ — c) or singularities or zeros of (z - c) tVi (z); also g (c) = 1. 

Let g{z) = l'\> 2 9n-{z-c)\ 
»=i 

Then, if s 0, 

+ -1+ gn{z — c)‘^(z-c)~‘~'^dz 

= A + B 
■_1 

5 
{z-c) 

n=i^-*n 
(z-cy-‘ + g,log(z-c) 

+ 2 9n 
«=»+! n — s 

* If Pi “ Pa ig a positive integer, k does not exist; if pi=pa, the two solutions are the same, 

t The coefficient a^' may be indeterminate or it may be infinite; in the former case «?2 (^] 
will be a solution containing two arbitrary constants a©' and a,'; the series of which a/ is s 
factor will be a constant multiple of wi {z). 
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Therefore the general solution of the differential equation, which is 
analytic at all points of C (c excepted), is 

A (z) + B [fftWi (z) log (z-c)+w (z)]. 
f T 00 ) 

1 ^ 1_ O' ck.-ty — / \ / \«f where, by § 2’5S, ta - (jg; — c) i-1- 2 hn , 
I 5 74 = 1 j 

the coefficients hn being constants. 

When 5 = 0, the corresponding form of the solution is 

A'Wi (z) + J? Wi {z) log(^-- c) + (2; — 2 kn{Z’-oY • 
L n=l J 

The statement made at the end of § 10*31 is now seen to hold in the 
exceptional case when s is zero or a positive integer. 

In the special case when the second solution does not involve 

a logarithm. 

The solutions obtained, which are valid in the vicinity of a regular point 

of the equation, are called regular integrals. 

Integrals of an equation valid near a regular point c may be obtained 
practically by first obtaining Wi {z), and then determining the coefficients in 

a function (z) — bn — by substituting (z) log (ir — c) + (z) m 
74 = 0 

the left-hand side of the equation and equating to zero the coefficients of the 
various powers of ^ — c in the resulting expression. An alternative method 
due to Frobenius* is given by Forsyth, Treatise on Differential Equations^ 

pp. 243-258. 

Example 1. Shew that integrals of the equation 

regular near -5=0 are 

dhi \du 

00 

Verify that these series converge for aU values of z. 

Example % Shew that integrals of the equation 

regular near z—0 are 

tri(2:) = l+ 2 
n-l 

1.3 ...271-1 

2.4... 2/1 

J /M . >4 A-3...271-1V A 1_,_1 
d \ 2.4...2/1 j \1 2 ■*■3 — 2jij 

Verify that these series converge when | z | < 1 and obtain integrals regular near 5=1. 

* Journal fUr Math, lxxvi. (1874), pp. 214-224. 
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Example 3. Shew that the hypergeometric equation 

2(l-z) —+{c-((i+6+l)2}^-aia=0 

is satisfied by the hypergeometric series of § 2*38. 

Obtaiii the complete solution of the equation when c*!. 

10*4, Solutions valid for large values of\z\. 

Let then a solution of the differential equation is said to be 
valid for ‘large values of | f if it is valid for sufficiently small values of | z^ [; 
and it is said that ‘the point at infinity is an ordinary (or regular or irregular) 
point of the equation’ when the point Zi = 0 is an ordinary (or regular or 
irregular) point of the equation when it has been transformed so that Zj is 
the independent variable. 

Since 

cPw 1 , xdu ^ . . dho u, 
we see that the conditions that the point z^ co should be (i) an ordinary 
point, (ii) a regular point, are (i) that 2z-z^p{z), z*q(z) should be analytic 
at infinity (§ 5*62) and (ii) that zp (z% z^q (z) should be analytic at infinity. 

JSxample 1. Shew that every point (including infinity) is either an ordinary point or 

a regular point for each of the equations 

2 (1^+{C-(<t+ 6+1) 4 ^0, 

dht du , , . _. 

where OyhyCyn are constants. 

Example 2. Shew that eveiy point except infinity is either an ordinary point or a 
regular point for the equation 

^dhi . du . 

where is a constant. 

Example 3. Shew that the equation 

has the two solutions 
._1 13.41 3:4.5.61 

3’ 23"^2.7 ^ 2.4.7.9^7 

the latter converging when 121 > 1. 

10*6. Irregular singularities and confluence. 

Near a point which is not a regular point, an equation of the second order 
cannot have two regular integrals, for the indicial equation is at most of 
the first degree; there may be one regular integral or there may be none. 
We shall see later (e.g. § 16*3) what is the nature of the solution near 
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such points in some simple cases. A general investigation of such solutions* 

is beyond the scope of this book. 

It frequently happens that a differential equation may be derived from 
another differential equation by making two or more singularities of the 
latter tend to coincidence. Such a limiting process is called confluence) 
and the former equation is called a confluent form of the latter. It will be 
seen in § 10*6 that the singularities of the former equation may be of a more 

complicated nature than those of the latter. 

10*6. The differential equations of mathematical physics. 

The most general differential equation of the second order which has 
every point except Uj, Og, a^, and oo as an ordinary point, these five points 
being regular points with exponents Or, at (r = 1, 2, 3, 4) and exponents 

/Ai, /is at 00, may be verifiedf to be 

dz^ ■r=l -Sr — Ur ) dz (r=l ” ^r) 

A.z^ + ^Sz + (7] 
4 

Il(z-ar) ^ 
r=l 

where A is such thatj fZi and are the roots of 

fA + (a,. + ySr) — 3I + 2 OfrA’ + A = 0, 
(r=l J r=l 

and B, C are constants. 

The remarkable theorem has been proved by Klein§ and Bocher|| that 
all the linear differential equations which occur in certain branches of 
Mathematical Physics are confluent forms of the special equation of this 
type in which the difference of the two exponents at each singularity is ^, 

a brief investigation of these forms will now be given. 

If we put A = ar + i, (r = l, 2, 3, 4) and write ^ in place of the last 

written equation becomes 

d^^u f 4 i ” 2efr) du f 
f-cvjdr I -I {K-a-rY ^ {^-ar) 

= 0, 

* Some elementary investigations are given in Forsyth’s Differential Equations (1914). 

Complete investigations are given in his Theory of Differential Equations^ iv. (1902). 

t The coefficients of and u must be rational or they would have an essential singularity 
' dz 44 

at some point: the denominators of p(z)i q{z) must be 11 (z-a,.), 11 {z-a^)^ respectively; 
■r ,.*1 

putting p{z) and q{z) into partial fractions and remembering that p (z) = 0 (z“i), q{z) = 0{z-^) 

as 1 z I 00, we obtain the required result without difficulty. ^ ^ 

t It will be observed that pi, 1x2 are connected by the relation /11+/42+ + 

§ Ueber lineare Differentialgleichungen der zweiter Ordnung (1894), p. 40; see also Vorlesung 

iiber Lamd^schen Funktionen. 

ff Ueber die Reihenentwickelungen der Potentialtheorie (1894), p. 193. 
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where (on account of the condition iH=k) 

/ 4 \ 2 4 4 
A = ( S Or) - :s «/-! 'Sa. + A. 

V=tl / r=l r=l 

This differential equation is called the generaliHed Lamd equation. 

It is evident, on writing aj = <4 throughout the equation, that the 
confluence of the two singularities aj, yields a singularity at which the 
exponents a, /3 are given by the equations 

a + /9 = 2 (tti 4* ©2), a/5 = «! («! + i) + cts (©2 + i) + i), 

where * D = (Aa,^ + 2Ba, + C)j[{a, - a^) (a, ~ a,)]. 

Therefore the exponent-difference at the confluent singularity is not 

but it nmy have any assigned value by suitable choice of B and C. In like 
manner, by the confluence of three or more singularities, we can obtain 
one irregular singularity. 

By suitable confluences of the five singularities at our disposal, we can 
obtain six types of equations, which may be classified according to (a) the 
number of their singularities with exponent-difference I-, (6) the number of 
their other regular singularities, (c) the number of their irregular singu¬ 
larities, by means of the following scheme, which is easily seen to be 
exhaustive*: 

^^ 

(“) ib) (c) 

(I) 3 1 0 Lame 
(II) 2 0 1 Mathieii 
(III) 1 2 0 Legeridre 
(IV) 0 1 1 Bessel 
(V) 1 0 1 Weber, Hermite 

(VI) 0 0 1 Stokes t 

These equations are usually known by the names of the mathematicians 
in the last column. Speaking generally, the later an equation comes in 
this scheme, the more simple are the properties of its solution. The 
solutions of (II)~(VI) are discussed in Chapters xv-xix of this work, andj 
of (I) in Chapter xxiii. The derivation of the standard forms of the equations 
from the generalised Lamd equation is indicated by the following examples: 

* For instance the arrangement (a) 3, (6) 0, (c) 1 is inadmissible as it would necessitate six 
initial singularities. 

t The equation of this type was considered by Stokes in his researches on Diffraction 
Camb. Phil. Trans, ix. (1856), pp. 168-182; it is, however, easily transformed into a particular 
case of Bessel’s equation (example 6, below). 

t Por properties of equations of type (I), see the works of Klein and Forsyth cited at the 
end of this chapter; also Todhunter, The Functions of Laplace, Lame and Bessel (1875). 
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Examph 1. Obtain Lamp’s equation 

. f 4 \ \ du {n(n4-l)f+A}a „ 

(where h and n are constants) by taking 

01=02 *=03=04=0, 8jS=n (n+l)a4, ^C=ha^, 
and making a^~^co. 

Example 2. Obtain the equation 

, (h , {a-lQq+SiqC)u ^ 
VC 4C(f-l) 

I I i V {a-lQq+Z^C)u ^ 

VC C-l/c^C 4C(C-1) “ ’ 
(where a and q are constants) by taking ai=0, and naaking a3=ai-»-oo. Derive 

Mathieu’s equation (§ 19‘1) 

^^4-(a+16g^cos 2z)u^0 

by the substitution f=co8^^. 

Example 3. Obtain the equation 

dhi , 1 ) rfK , 1 fn(n + 1) otM u 

d? ^ tc^ FiJ i~~c-Fi/ CF^)=®’ 
by taking 

ai = 6t2=l, Ci3 = a4 = 0, 01 = 02 = 03 = 0, = 

Derive Legendre’s equation (§§ 16*13, 15*5) 

by the substitution 

Example 4. By taking ctj==0, oi=02=03=04=0, and making a^=a4-*-oo, obtain 

the equation 

Derive Bessel’s equation (§17*11) 

by the substitution f=2*. 

Example 5. By taking ai=0, 01 = 03=03=04 = 0, and making a2=03 = a4-*-oo, obtain 

the equation 
„ dhi , du , , , , 
f ^+i {n+i-iO w=0. 

Derive Weber’s equation (§ 16*5) 

by the substitution (^z^. 

Example 6. By taking a,.=0, and making o,.-^ oo (r=l, 2, 3, 4), obtain the equation 

By taking 

g^+(AC+c?i)K=o. 

^=(R.C+<7i)^®, RiC+Ci=(f5H-)^ 

o dh) dv ,0 V 
shew that 
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Example 7. Shew that the general form of the generalised Lam4 equation is un¬ 

altered (i) by any homographic change of independent variable such that oo is a singular 

point of the transformed equation, (ii) by any change of dependent variable of the type 

V, 

Example 8. D^uce from example 7 that the various confluent forms of the 

generalised Lam4 equation may always be reduced to the forms given in examples 1-6. 

[Note that a suitable homographic change of variable will transform any three distinct 
points into the points 0, 1, oo.] 

10*7. Linear differential equations with three singularities. 

Let d^u . .du . , 

have three, and only three singularities*, a,h,c', let these points be regular 

points, the exponents thereat being a, a'; 

Then p (^r) is a rational function -with simple poles at a, b, c, its residues at 

these poles being 1 - a - a', 1 - /3 - /3', 1 - 7 - y; and as ^ , p M - 2r-i 
is Therefore 

andf 
z-a, ^ z-b ^ z-c 

In a similar manner 

a + o'+/9+;8' + 7 + 7'=l. 

q {£) = Q> — c)Q> — a) yy'(c — a) (c — b) 
i z z — 0 

1 

and hence the dififerential equation is 

X 
{z-a){z^h){z-c)' 

l-^-y I 1-7-71 du 

-3^ - c ) dz 
^ -b)(a-c), e0(b-c)(b- a) . W(c-a)(c-b)) 

\ z-a ^ } 

= 0. 
fPi,- 4.- 4, . (^-a)(z-b){z-c)' 
Inis equation was first given by PapperitzJ. 

To express the fact that u satisfies an equation of this type (which will be 

called Eiemann’s P-equation), Riemanng wrote 

(a b c 
u = pJo jS y 

(«' /3' y' 
* The point at infinity is to be an ordinary point 
t This relation must be satisfied by the exponents. 
t Hath. Ann. ixv. (1885), p. 213. 

althli?iuwnn"id 0^"' “ “*“0“ 
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The singular points of the equation are placed in the first row with the 
corresponding exponents directly beneath them, and the independent variable 
is placed in the fourth column. 

Example, Shew that the hypergeometric equation 

z{l-z)'^+{c-{a+h + l)z}^-alu=(i 

is defined by the scheme 

f 0 00 1 1 

J 0 a 0 z\, 

ll-c h c-a-h j 

10*71. Transformations of Riemann's F-equation. 

The two transformations which are typified by the equations 

w f, ’ r,‘ 4' 0' 7 fa b c \ 

a /3 7 4 
«' yS' 7 J 

a' + k 0'-k-l y’+l 

(where cq, 6i, Ci are derived from z, a, 6, c by the same homographic 
transformation) are of great importance. They may be derived by direct 
transformation of the diflFerential equation of Papperitz and Eiemann by 
suitable changes in the dependent and independent variables respectively; 
but the truth of the results of the transformations may be seen intuitively 
when we consider that Riemann’s P-equation is determined uniquely by a 
knowledge of the three singularities and their exponents, and (I) that if 

(a b 

w = P |a 

U' 

7 

7 J 
then Ui = satisfies a differential equation of the second 

order with the same three singular points and exponents a + k, a-^k; 
— y+ I, y •¥ 1; and that the sum of the exponents is 1. 

Also (II) if we write z = ^, the equation in is a linear equation 
wZj X/ 

of the second order with singularities at the points derived from a, 6, c by this 
homographic transformation, and exponents a, a ; ft /S'; y, y thereat. 
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10’72. The connexion of Riemann’s R-equation with the hypergeometric 
equation. 

By means of the results of § 10'7l it follows that 

fa6c1 (a h c \ 

pL ff y 0 « + . + , 0 . 
[a ^7 J (a—a^+a + 77'—7 J 

j 4. 
[a-a B' + a + 7 7-7 J 

where ie-a)(c-b) 
{z-b){c-ay 

Hence, by § 10*7 example, the solution of Eiemann’s P-equation can 
always be obtained in terms of the solution of the hypergeometric equation 

whose elements a,b,CyX are a + ^ + 7, a + ^' + 7, 1 + a — a', 
{z — 0) (c — a) 

respectively. 

10*8. Linear differential equations mtk two dngvlarities. 

If, in I 10*7, we make the point c an ordinary point, we must have 

l~7--7=0, 77=0 and —-h^ be 
za z 0 

divisible by 5 — c, in order that p (z) and q (z) may be analytic at c. 

Hence a + a' + j3-hj8' *= 0, aa' = j3j3', and the equation is 

d^u Q—g — 1 -f a-f aO du aa (a — bfu _ 
dz^ I z— a Z’-b ] dz ^ ay {z ' 

of which the solution is 

that is to say, the solution involves elementary functions only. 

When g = g', the solution is 
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Miscellaneous Examples. 

1. Shew that two solutions of the equation 

dhi 

are 3\r2^+..., 1 — and investigate the region of convergence of these series. 

2. Obtain integrals of the equation 

regular near 2=0, in the form 

%=Wl log2-j^ + .... 

3. Shew that the equation 

has the solutions 
dz^ ■ 

2n+l , 4«»-f4n+3 

4 ^ 96 

, 2«-H , 4?t»+4n+7 
12 ^ 480 

and that these series converge for all values of z, 

4. Shew that the equation 

where 
dz^ 

j I f 2 -5!:^ + I _:^U.0, 
lr=l e-CLr J dz \r=i{z-a,)^ 

2 (a,+i3r)=7i-2, 2 2)^=0, 2 (OrDr^OrM^^O, 2 (a,.2i)^4-2a^ari3r)=0, 
r=l r*sl r=X r=l 

is the most general equation for which all points (including ao), except %, 02, ... a,*, are 

ordinary points, and the points Ur are regular points with exponents Or, ^r respectively. 

(Klein.) 
5. Shew that, if ^+y+jS'+y'=i, then 

rO 00 1 'X r-1 00 1 1 

pio /9 y z^>—P< y 2^ y (Riemann.) 

ii ^ y J [y 2/3' y J 
[The differential equation in each case is 

d»u 2^(1-y-y') du f yy'\ _q-, 

6. Shew that, if y+y'*= J and if «, co® are the complex cube roots of unity, then 

rO 00 1 'j p o) 0)2 'I 

P-jo 0 y 23l = P-jy y y 

U 4 y i iy y y i 

[The differential equation in each case is 

d^U 22^ du 9yy'zu , 

(Riemann.) 
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7, Shew that the equation 

is defined by the scheme 

(1 -^2) + +ti(7i+2a) w=0 

X -1 ^ 

P I 0 —w 0 z\ 

7i + 2a -^-a J 
and that the equation 

may be obtained from it by taking a-1 and changing the independent variable. 

d^u 
+ +n{n^2)u=^0 

8. Discuss the solutions of the equation 

dhi , , ^dn f 1 \ 
^ f 21+1 +^mj 21=0 

valid near 2=0 and those valid near 2=oo. 

9. Discuss the solutions of the equation 

dhi , 2u (izi . ^ , 

valid near 2=0 and those valid near 2= ao. 

Consider the following special cases : 

(i) /i=-f, (ii) (iii) ^4.^=3^ 

10. Pi*ove that the equation 

+ |(l-22)^ + (a2+6)«=0 

(Halm.) 

(Cunningham.) 

(Curzon.) 

has two particular integrals the product of which is a single-valued transcendental 

function. Dnder what circunistances are these two particular integrals coincident % 
If their product be F{z\ prove that the particular integrals are 

where C is a determinate constant. (Lindemann; see § 19*5.) 

11. Prove that the general linear differential equation of the third order, whose 

singularities are 0, 1, oo, which has all its integrals regular near each singularity (the 
exponents at each singularity being 1, 1, — 1), is 

p 21 dh.!. g 3 1 ) 
Xz"^z-l] dz^ V 

j fl 3cos*a .3sin2a 1 ] 

du 

dz 

where a may have any constant value. (Math. Trip. 1912.) 



CHAPTER XI 

INTEGRAL EQUATIONS 

11*1. Befinitim of an integral equaMon. 

An integral equation is one which involves an unknown function under 
the sign of integration; and the process of determining the unknown function 
is called solving the equation*. 

The introduction of integral equations into analysis is due to Laplace 
(1782) who considered the equations 

f{x) dt, g Qc) = ^ (<) dt 

(where in each case <f> represents the unknown function), in connexion with 
the solution of differential equations. The first integral equation of which 
a solution was obtained, was Fourier^s equation 

cos (xt) <fi (t) dt, 

of which, in certain circumstances, a solution isf 

2 
ip(a;)=—J cos(v^)f{u)du, 

f {x) being an even function of x, since cos {oct) is an even function. 

Later, AbelJ was led to an integral equation in connexion with a mechanical 
problem and obtained two solutions of it; after this, Liouville investigated an 
integral equation which arose in the course of his researches on differential 
equations and discovered an important method for solving integral equations §, 
which will be discussed in § 11*4. 

In recent years, the subject of integral equations has become of some 
importance in various branches of Mathematics; such equations (in physical 
problems) frequently involve repeated integrals and the investigation of them 
naturally presents greater difficulties than do those elementary equations 
which will be treated in this chapter. 

To render the analysis as easy as possible, we shall suppose throughout 
that the constants a, h and the variables x, y, ^ are real and further that 

* Except in the case of Fourier’s integral (§ 9*7) we practically always need contimious 

solutions of integral equations. 

t If this value of be substituted in the equation we obtain a result which is, effectively, that 
of §9-7. 

t Solution de quelques problemes a Vaide dHntigrales difinies (1823). See Oeuvres, i. pp. 11, 97. 

§ The numerical computation of solutions of integral equations has been investigated by 
Whittaker, Proc. Roy. Soc. xciv. (A), (1918), pp. 367-383. 



212 THE PBOCE8SES OF ANALYSIS [chap. XI 

f ^6; also that the given function* K{x, y), which occurs under the 
integral sign in the majority of equations considered, is a real function of 
X and y and either (i) it is a continuous function of both variables in the 
range {a^x^hy a^y ^h), or (ii) it is a continuous function of both variables 
in the range a^y^x^h and K{xyy)^^ when y>x\ in the latter case 
K {xy y) has its discontinuities regularly distributed, and in either case it is 

th 
easily proved that, iff{y) is continuous when a^y%h, I f{y) K(Xy y) dy is a 

continuous function of x when a ^x^b, 

11*11. An algebraical lemma. 

The algebraical result which will now be obtained is of great importance in Fredholm’s 
theory of integral equations. 

het (^Fi, yi, zi)y (X2y y2, h\ (^3» ^3, Zz) he three points at unit distance from the origin. 

The greatest (numerical) value of the volume of the parallelepiped, of which the lines 

joining the origin to these points are conterminous edges, is +1, the edges then being 

perpendicular. Therefore, if ^^2+y/+2/=l (r=l, 2, 3), the upper and lower bounds of 
the determinant 

are ±1. 

yi % 
^ ya 2^ 

^z 2/z H 

A lemma due to Hadamardf 

Let 

generalises this result. 

<^12j ^In 
«22, ... a^ 

••• ®na 

where is real and^^a^,,^—1 (m —1, 2, ... t*,) ; let A^r be the cofactor of a^r in I) and 

let A be the determinant whose elements are so that, by a well-known theoremj, 

Since 2) is a continuous function of its elements, and is obviously bounded, the 

ordinary theory of maxima and minima is applicable, and if we consider variations 'in 

^ ••• ”) -0 is stationary for such variations if 2 5a 
r=l oa^y. ’ 

are variations subject to the sole condition 2 ai,.3ai,.=0; therefore § 

but 2 air-^ii-=i>, andsoA2a2„.= f> ; therefore Air=Dai^. 

* Bacher in Ms important work on integral equations (Comb. Math. Tracts No 10) always 
consider the more general case in which K(x, y) has discontinuities regtOarly dUMbuUd 

i.e. the discontinuities are of the nature described in Chapter iv, example 11. The reader will 

see from that example that the results of this chapter can almost aU be generalised in this 
way. To make this chapter more simple we shaU not consider such generaUsations. 

t Bulletin des Set Math. (2), xvn. (1893), p. 240. 
J Burnside and Panton, Theory of Equationsy u. p. 40. 

§ By the ordinary theory of undetermined multipliers. 
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Consideriog variations in the other elements of i), we see that D is stationary for 

variations in all elements when 2,... 71; r=l, 2,... n). Consequently 

A=i>. Z), and so = Hence the maximum and minimum values of D are +1. 

Corollary. If be real and subject only to the condition | ] < if, since 

r=l 
we easily see that the maximum value of | i) j is (7i^if)’‘=7i^”if’». 

11*2* Fredholms* equation and its tentative solution. 

An important integral equation of a general type is 

J a 

where f(x) is a given continuous function, X is a parameter (in general 
complex) and K (x, f) is subject to the conditionsf laid down in § 11*1. 
K (x, is called the nucleusl of the equation. 

This integral equation is known as Fredholms equation or the integral 
equation of the second kind (see § 11*3). It was observed by Volterra that an 
equation of this type could be regarded as a limiting form of a system 
of linear equations. Fredholm’s investigation involved the tentative carrying 
out of a similar limiting process, and justifying it by the reasoning given 
below in § 11*21. Hilbert {Gottinger Nach. 1904, pp. 49-*91) justified the 
limiting process directly. 

We now proceed to write down the system of linear equations in question, 
and shall then investigate Fredholm’s method of justifying the passage to 
the limit. 

The integral equation is the limiting form (when 5-^0) of the equation 

<#> (^) =/(^) + X 2 K {x, Xq) <#) (Xy) 5, 

where Xg-x^^i^^B, XQ=^a, Xn=h. 

Since this equation is to be true when a ^x^b, it is true when x takes the values 

X2, ... Xj^; and so 

-XS 2 K{.Vp, Xg)(t){Xg)+(t>{Xf,)=f(iXp) (jD = l, 2, ... n). 

* Fredholm’s first paper on the subject appeared in the Ofversigt af K. Vetenskaps-Akad. 

Fdrhandlingar (Stockholm), lvii. (1900), pp. 39-46. His researches are also given in Acta iinu/t. 
xxvii. (1903), pp. 365-390. 

t The reader will observe that if K (x, ^) = 0 (|>x), the equation may be written 

4, (x) =/ (X)+X jr (x, I) 0 (f) di. 

This is called an equation with variable upper limit. 

J Another tei-m is kernel; French noyau, German Kern. 
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This system of equations for (^p), (io = l, 2, ... n) has a unique solution if the 
determinant formed by the coefficients of {Xp) does not vanish. This determinant is 

At(X) = |l l--\bK{xux{) ~UKixi,x^).„ --XbK(xi,x^) 

~xa JT(X2, x^ 1 - XhK{X2, X2) ... -XdA'(^2, Xn) 

~—XbK{x^^ Xf) —XSA (Xj^j X2) ... 1 XdA^(<37^, Xf^) 

=i-\ i as:(x^,x„)+^ 2 
jj—I 2 j K (Xq, Xp) K (Xqy Xq) 

X3 
-h 2 

•*'p,q.r=\ 

K{Xpy Xp) K {Xpy X^ K {Xpy X^ 

A (x^f Xj^ K {Xgy Xq) Si {Xqy X^ 

S {Xy,y Xji) A {Xyy Xg) S {X^y X^ 

+ ... 

on expanding* in powers of X. 

Making d-i-O, ^i-^oo, and writing the summations as integrations, we are thus led to 
ainsider the series 

2)(x)=i-xTiccf, r n I 

Further, if x^) is the cofactor of the term in i?„(X) which involves K{xy,y jc^), 
the solution of the system of linear equations is 

_/ (•^‘1) {^fjL 1 ^l)^f (■3^2) (Xp , a*2) + ... 4-/(Xn) {Xu,, 
Dn(X) 

ISow it is easily seen that the appropriate limiting form to be considered in association 
with /)«. (Xp,y Xp) is i)(X) ; also that, if 

Dn t '^V) — Xd S(Xpy Xy)-Xb 2 
p^l 

S (Xp , Xy) S {Xp , x^ 

S (Xp y Xy) S {Xpy Xp) 

+ ~X2S2 2 
-6 . g=l 

' ^ ^ ^p) K (Xpy Xq) 

K {Xp , Xy) K {Xp y Xp) K iXp y Xq) 

K {Xq y Xy) K {Xq y Xp) K (Xq y Xq) 

So that the limiting form for b-^D (Xpy Xy) to be considered f is 

|.<J. 

+1 X3 r r xff i:) K{x^, &) _ 

2! iaia ir(|i,x,) £-(1,,^.) •■•• 

K (^2 > >2:^,) A’ (^2 j 1^1) A" (1^2 ) &) 

Consequently we are led to consider the possibility of the equation 

W =/(x)+^ i) (^, f; X)/(|) d( 

giving the solution of the integral equation. 

• The factorials appear because each determinant of » rows and columns occurs s ! times as 
p, q, ... take all the values 1, 2, ... n, whereas it appears only once in the original determinant 
for /)„ (X). 

t The law of formation of successive terms is obvious from those written down. 
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Example 1. Shew that, in the case of the equation 

^{x)=x+\ [ xi/<j>{y)dy, 
J 0 

D (X) = l - JX, D{x,y; X}^\xy 

Sx 

215 

we have 

and a solution is 

<#>(x) = 
3~X‘ 

we have 

Example 2. Shew that, in the case of the equation 

<^(x)=^+X f (xy+y^)<l)(y)dy, 
J 0 

i)(X) = l-|X-7i^X2, 

^ y; X)=X (5^ +y2) ^ X2 (1^/ -Ixy- \y- + ly\ 

and obtain a solution of the equation. 

11*21. Investigation of Fredholms solution. 

So far the construction of the solution has been purely tentative; we now 
start oh initio and verify that we actually do get a solution of the equation; 
to do this we consider the two functions D (X), I) {x, y\ X) arrived at in § 11*2. 

We write the series, by which i)(X) was defined in § 11*2, in the form 

3 anV^ ., . 
1 4. 2 —r- so that 

n=l 

^ ^ ’ L)a'"Ja d^id^2... d^n; 

since K(a?, y) is continuous and therefore bounded, we have \ K{x, y)\< M, 

where M is independent of x and y; since K {x, y) is real, we may employ 
Hadamard’s lemma (§ 11*11) and we see at once that 

\an\<n'^^M^,{h-^a)\ 

Write {b — af ==^n\bn] then 

(b-a)M 
lim (bn+ilbn) = lim 

since ^ 1 

oc 
The series 2 6„X” is therefore absolutely convergent for all values of X; 

(n + l)i 

a^X" 
and so (§ 2*34) the series 1+2 converges for all values of X and there¬ 

fore (§ 5*64) represents an integral function of X. 

* Vfi (^Xj y) 
Now write the series for I)(Xj y; X) in the form 2 ——-. 

»=o 
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Then, by Hadamard’s lemma (§ 1111), 

i w„_i (x, y) I < - a)"~ 

and hence < Cn, where c„ is independent of x and y and 2 c„X”+* is 
w-0 

absolutely convergent. 

Therefore JD (x, y; \) is an integral function of X and the series for 

^ (^. y; >•) - (x, y) is a uniformly convergent (§ 3-34) series of continuous* 

functions ofx and y when a^x^b, a^y^b. 

Now pick out the coefficient of K (x, y) in D{x,y;X)-, and we get 

D{x,y;X) = XD (X) K{x, y)+^ (-)»X"+> , 
n I 

Ja Ja E($„y), f„) 

■^(?»> y)j ^i), K(f„, ^i), ^n) 

Expanding in minors of the first column, we get Qn(x, y) equal to the 

integral of the sum of n determinants; writing fi, fa,... ... 

in place of fi, ... in the with of them, we see that the integrals of all 
the determinants f are equal and so 

Qn (^, y) = - n £...£ iT (?, y) r/f,... 

where 
P„ = K{X, t), K{x, f.), ... K{x, 

^l)> ^n-i) 

K f;, iT... 

It follows at once that 

D (x, y;X) = xD (X) K (x, y)+x D(x, ^;X) K{^, y) 

Now take the equation 

^(f) =/(^) +xf K(^,y)<f>(y)dy, 
J CL 

multiply by D {x, ^; X) and integrate, and we get 

J a 

= 4> (^) D(x,S;X)d^-X I){x,^ -X)K (I y) 4, (y) 

the integiations in the repeated integral being in either order. 

* It is easy to verify that every term (except possibly the arst) of the series for D lx y \) 

is a continuous function under either hypothesis (i) or hypothesis (ii) of § 11*1. 
t The order of integration is immaterial (§ 4*3). 

dfi ... d^n 

where 

Qn (^, y)=f 
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That is to say 

J a 

“ f ^(1) f — [ {D(x, y --XD (X) K (x, y)] 4>{y)dy 

= 7J)(X) [ K (x, y) <f> (y) dy 
J a 

= D{X){<i>{x)-f{x)], 

in virtue of the given equation. 

Therefore if D (X) 4= 0 and if Fredholm’s equation has a solution it can be 
none other than 

^ (x) =f{x) + Jy (f) ; 

and, by actual substitution of this value of ip{x) in the integral equation, 
we see that it actually is a solution. 

This is, therefore, the unique continuous solution of the equation if 
i)(X)4=0. 

Corollary. If we put/(^)=0, the ‘homogeneous’ equation 

has no continuous solution except <f) (x)=0 unless i)(X)=0. 

Example 1. By expanding the determinant involved in {x, y) in minors of its first 
row, shew that 

\)^\D{K)K{x,y) + \ f A'(x,i)D(i,y; \)d^, 
J a 

Example 2. By using the formulae 

Z)(A)=1+ 1 D{x,y, \)=\D{\)K{x,y)^- i (-y), 
31=1 « • H=1 71 I 

shew that -0 (5, 5: X) - X . 

Example Z. If K{x,y) = l (y^x), K{x,y)=(i {y > x), 

shew that D (X) = exp {- (/> - a) Xj. 

Example 4. Shew that, if K {x, y) =/i (x) ./^ (y), and if 

then “ 
i>(X) = l-^X, D(x,y; X) = X/i(a7)/2(y), 

and the solution of the corresponding integral equation is 

,i>(x)=fix)+^M £/($)/, 
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Example 5. Shew that, if 

A” (i’. y) =/i W 9\ (y) +/2 92 (y), 

then i) (X) and B{x,y, X) are quadratic in X; and, more generally, if 

K{x,y)= Sf„{x)g„(p), 
m-l 

then JD (X) and I) (4?, y, X) are polynomials of degree n in X. 

11*22. Volterra*s reciprocal functions. 

Two fiinctions K (x, y\ k (x, y; X) are said to be reciprocal if they are 
bounded in the ranges a<:Xy y ^h/it any discontinuities they may have are 
regularly distributed (§ 11*1, footnote), and if 

K{x, y)+k{x,y)X)^\ f k{x, f ;X) Jr(|, y)d^. 
J a 

We observe that, since the right-hand side is continuous*, the sum of two reciprocal 
functions is continuous. 

Also, a function K (^, y) can only have one reciprocal if D (X) 4:0; for if there were two, 
their difference hi {Xy y) would be a continuous solution of the homogeneous equation 

(^, y: X)=X ki {x, ^;\)K ((, y) d$, 

(where .1? is to be regarded as a parameter), and by § 11*21 corollary, the only continuous 
solution of this equation is zero. 

By the use of reciprocal functions,'^ Volterra has obtained an elegant 
reciprocal relation between pairs of equations of Fredholm’s type. 

We first observe, from the relation 

J) (^, y; X) = XD (X) JT (^, y) + X f ' D (^, f; X) A" (^ y) dl 
J a 

proved in § 11-21, that the value of k(x, y;\)ia 

-D(x,y,X)l{\D{X)}, 

and from § 11-21 example 1, the equation 

y'>^) + -K'(x, y) = X [ K(x, y,X)d^ 
J a 

is evidently true. 

Then, if we take the integral equation 

<#> (*) =/(«?) + X f* jr {x. f) 4> (f) d^, 
a 

when a^x-^by we have, on multiplying the equation 

J a 

* By example 11 at the end of Chapter iv. 
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by X) and integrating, 

f" h{x,^-x) 4, (^)d^ 
J a 

= rk(x,^; \)/(S) di+xTl'k (x, f; X) K(^, f) <f> (^^) df.df. 
J a J a J a 

Reversing the order of integration* in the repeated integral and making 

use of the relation defining reciprocal functions, we get 

J a 

= £ *(*,!; X)/(J) d^ + £‘ {K (x, fO + k (x, f; X)} ^ (|0 

and so xf k{x, ^■,X)f{^)d^ = — x\ ^ fi) (^i) tZfi 
j a Jo 

= -4>(x)+f{x). 

Hence f(x) = if>(x) + \ f k(x, ^;X)/(f) df; 
J O 

similarly, from this equation we can derive the equation 

(^) =/(‘^)+'^[ ^ (®> I) <#» (?) 
J rt 

so that either of these equations with reciprocal nuclei may be regarded as 

the solution of the other. 

11*23. Homogeneous integral equations. 

The equation (^r) = X f K (w, f) <f> (f) is called a homogeneous integral 
J a 

equation. We have seen (§ 11‘21 corollary) that the only continuous solution 

of the homogeneous equation, when D (X) + 0, is (x) = 0. 

The roots of the equation 1) (X) = 0 are therefore of considerable 

importance in the theory of the integral equation. They are called the 

characteristic numbers f of the nucleus. 

It will now be shewn that, when D (X) = 0, a solution which is not 

identically zero can be obtained. 

LetJ X = Xo be a root m times repeated of the equation B (X) = 0. 

Since D (X) is an integral function, we may expand it into the convergent 

series 

D (h) \)^ + (X - Xo)^+i + ... (m > 0, c,;i + 0). 

* The reader will have no difficulty in extending the result of § 4*3 to the integral under 
consideration. 

t French valeurs caracterutiques^ German Eigenwerthe. 

+ It will be proved in § 11*51 that, if K(j, y)siC(y, x), the equation D (X) =0 has at least one 
root. 
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Similarly, since D(x, y\ X) is an integral function of X, there exists 
a Taylor series of the form 

D(ai,y;X) = 
y) 

11 (^-\y+ 
9i+^ (^, y) (x-x,y*^+ 

by § 3'34 it is easily verified that the series defining («, y), (n = Z +1,...) 
converges absolutely and uniformly when a^x^b, a ^y ^b, and thence that 
the series for D(x,y; X) converges absolutel}' and uniformly in the same 
domain of values of x and y. 

But, by § 11‘21 example 2, 

rD(i,i;X)d^ 
J a 

dD(X) 
dX ’ 

now the right-hand side has a zero of order m —1 at Xq^ while the left-hand 

side has a zero of order at least I, and so we have m — 1 ^ Z. 

Substituting the series just given for D (X) and D (x, y \ X) in the result of 

§11*21 example 1, viz. 

I>(x,y,X) = XD(X) K{x, y) + xj K(x, D{^,y;X)d^, 

dividing by (X — Xo)^ and making X Xo, we get 

9i(«. y)=\f K{x, f)gi(?, y) df 
J a 

Hence if y have any constant value, gi (x, y) satisfies the homogeneous 

integral equation, and any linear combination of such solutions, obtained by 

giving y various values, is a solution. 

Corollary. The equation 

g, + Xo j* X(x, I)<t> (i) di 

has no solution or an infinite number. For, if {x) is a solution, so is (x) (a', y), 
V 

where may be any function of y. 

Example 1. Shew that solutions of 

<f)(x)=xj ^cos»(v-|)<^>(|)rf| 

are <^> (i-)=cos(?i-2r) a:, and ^ (x)=sm(n-2r).v; where r assumes all positive integral 

values (zero included) not exceeding 

Example 2. Shew that 

J cos»*{.r4'i)^(^)c?| 

has the same solutions as those given in example 1, and shew that the corresponding 

values of X give all the roots of D (X) =0. 
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11*3. Integral equations of the first and second kinds. 

Fredholm s equation is sometimes called an integral equation of the second 
cind; while the equation 

J a 

s called the integral equation of the first kind. 

In the case when |^) = 0 if ^ > x, we may write the equations of the 
irst and second kinds in the respective forms 

J a 

(f) {x) =f(x) + X [ IC(x, ^)<f) (^) d^. 
J a 

These are described as equations with variable upper limits. 

11*31. Volterrds equation. 

The equation of the first kind with variable upper limit is frequently 
mown as Volterra’s equation. The problem of solving it has been reduced 
yj that writer to the solution of Fredholm’s equation. 

Assuming that K (x, |) is a continuous fxmction of both variables when 
;^Xy^sre have 

f(^)^xrjl(xy^)<fy(i)di. 
J a 

The right-hand side has a differential coefficient (§ 4*2 example 1) if 

r— exists and is continuous, and so 
ox 

Cx 7) TZ 

f'{x) = \K(x,x)^(x)^X^ 

This is an ecjuation of Fredholm s type. If we denote its solution by 

f) {x), we get on integrating fi'om a to x, 

f(x) -f(a) = X f* K(x, f) <!> (^) d^, 
J a 

tnd so the solution of the Fredholm equation gives a solution of Volterra s 
jquation iff(a) = 0. 

The solution of the equation of the first kind with constant upper limit 
;an frequently be obtained in the form of a series*. 

11*4. The Liouville-Neumann method of successive substitutions^. 

A method of solving the equation 

<t> (^) =/W + X f iT (^, I) ^ (f) dl 
J a 

vhich is of historical importance, is due to Liouville. 

* See example 7, p. 231; a solution valid under fewer restrictions is given by Bdcher. 

t Journal de Math. ii. (1837), m. (1838). K. Neumann’s investigations were later (1870) ; 
ee bis Untersuchungen iiber das logarithmische und Newton^sche Potential. 
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It consists in continually substituting the value of given by the 

right-hand side in the expression ^ (f) which occurs on the right-hand side. 

This procedure gives the series 

Six)=^f(x) + \ f K(x. l)/(^)d^+ i X» ?.) 
Ja Ja Ja 

... f Z ln)f{h) din - dl. 
J a 

Since ] K {x, y) | and \f{x) 1 are bounded, let tbeir upper bounds be if, M\ 

Then the modulus of the general term of the series does not exceed 

IX (6 — a)*”. 

The series for 8 {x) therefore converges uniformly when 

|X|< -¥“”^{6 — 

and, by actual substitution, it satisfies the integral equation* 

If y)^Q when y>^, we find by induction that the modulus of the general 

term in the series for S {x) does not exceed 

\\\^*¥’«M'(.r-ay^j(m!) ^| X |’«M' (h-a^/m!, 

and so the series converges uniformly for all values of X ; and we infer that in this case 

Fredholm’s solution is an integral function of X. 

It is obvious firom the form of the solution that when [ X | < (6 — ay\ 

the reciprocal function k{x, X) may be written in the form 

k{x, f ;X) = -Z(a;, ?)- I X”-' f K(x, 1) f K(l, 1) 
m=s2 J a J a 

... f K id^m-2 
J a 

for with this definition of k{x, X), we see that 

S{x) =f{x) -\rk(x,^; X)/(^) dl 
J a 

so that k(x, f ;X) is a reciprocal function, and by § 11*22 there is 07ily one 
reciprocal function if D (X) + 0. 

Write 

K ix. f) = K, (X. e, £ K(a:, f) (f. f) d^ = (x, ^ 

and then we have 

w=0 

while [‘ K„ (X, 1) ir„ (r, ^ dr=(^. r, 
J a 

as may he seen at once on writing each side as an (m + n — l)-tuple integral. 

The functions (x, f) are called iterated functions. 
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11*5. Symmetric nuclei. 

Let Ki {x, y) = Ki (y, x); then the nucleus K (x, y) is said to be symmetric. 

The iterated functions of such a nucleus are also symmetric, i.e. 

Kn (x, y)^Kn, (y, x) for all values of n; for, if Kn (x^ y) is symmetric, then 

y)=r ^ y) r J a -z® 

= r Kn (y, f(f, =Kn+, (y, ®), 
•/ a 

and the required result follows by induction. 

Also, none of the iterated functions are identically zero; for, if possible, let 
jETp (x, y) = 0i let be chosen so that 2^-^^ < _p ^ 2^ and, since Kp (x, y) = 0, it 

follows that K^n (x, y) = 0, from the recurrence formula. 

But then 0 = K^n {x, x)=^ f {x, (|, x) 
J a 

^ r {K,n.,(:a, 
J a 

and so K^n--i(x, = continuing this argument, we find ultimately that 

^1 (Xr y) s 0, and the integral equation is trivial 

11*61. Schmidts* theorem that if ihe nucleus is symmetric, the equation 

D(X) — 0 has cU least one root. 

To prove this theorem, let 
fb 
I (x> X^ dx, 

so that, when | X | < (h - a)-\ we have, by § 11-21 example 2 and § 11-4, 

_1_ dD{X) 5 „ , 
Z)(X) dX »=i " ■ 

Now since f f {/iK„+i («, $) + K„_i (x, d^da; > 0 
J a-' a 

for all real values of fi, we have 

i^2n+2 + 2/i JJ-2an,'¥ U^i—z ^ 0, 

and so TI^2n—a ^ ^^an—2 ^ fi* 

Therefore U^, JJ4,, ... are all positive, and if UJlT^=^v, it follows, by in¬ 

duction from the inequality 
00 

Therefore when IXM^VS the terms of 2 Er„X»-* do not tend to zero; 
n-1 

and so, by § 5-4, the function has a singularity inside or on the 

* The proof given is due to Kneser, Palermo Rendiconti, xxii. (1906), p. 236. 
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[ <f>m («) <pn («) da; 
J a 

circle but since D(X) is an integral function, the only possible 
, ,1 dD(X) 

suigulanties of are at zeros of Z)(X); therefore D (X) has a zero 

inside or on the circle |X [ = j/”i. 

[N(^. By §. 11-21,1) (X) is either an integral function or else a mere polynomial • in 

the latter case, at has a zero by § 6-31 example 1; the point of the theorem Is that in 

the former case D (X) cannot be such a function as which has no zeros.] 

11*6. Orthogonal functions. 

The real continuous functions ... are said to be orthogonal 
and normal* for the range (a, b) if 

= 0 (m + n\ 

= 1 (m ~ n). 

If we are given n real continuous linearly independent functions 
«i(*)>«sW, ...Un{x), we can form n linear combinations of them which 
are orthogonal. 

For suppose we can construct m -1 orthogonal functions <^„ ... such 
that if>j, is a hnear combination of ... (where p = 1, 2, ... m- 1)- 
we shall now shew how to construct the function <f>„ such that <b„ ... <j)’ 
are all normal and orthogonal. 

Let I<f>m («) = ^ (x) + (a:) +... + (x) + u„ (x), 

SO that i<f)^ is a fhnction of «i, ... 

Then, multiplying by <f>p and integrating, 

i<f>m (^) if) Um (x) (l)p (x) dx (p < m). 

f l4>m(^)<l>p(oc)dx = 0 
J a 

= — f 'lhn(^)<f>p(x)dxi 
J a 

a function orthogonal to <f>,(x), 4>,(x),... <j>^^,(x), is therefore con- 
structed. 

Now choose o so that T (a,)}» <& = 1; 
J a 

</>»(*) = (a;). 

/ <l>m (a:) 4>p (a;) da; ^ 
J a (= 1 (p = m). 

We can thus obtain the functions in order. 

* “id to be orthogonal if the first equation only is satisfied; the svstematio study 

M. llt-S 3““394. i’i’- 

Hence 

if 
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The members of a finite set of orthogonal functions are linearly inde¬ 
pendent. For, if 

ai<f>i(x) + a24>2(£c)+ + 

we should get, on multiplying by <f)p{x) and integrating, % = 0; therefore all 
the coefficients Op vanish and the relation is nugatory. 

It is obvious that cos mx^ ir ” ^ sin mx form a set of normal orthogonal functions 
for the range (- ir, w). 

Example 1. From the functions \ x^s^^ ... construct the following set of functions 

which are orthc^onal (but not normal) for the range (-1, 1): 

1. .... 

Example 2. From the functions 1, x, afl,... construct a set of functions 

/o(^).— 
which are orthogonal (but not normal) for the range (a, b); where 

/<* (*)=^ K* - a)" - W- 

[A similar investigation is given in § 15*14] 

11*61. The connexion of orthogonal functions with homogeneous integral 

equations. 

Consider the homogeneous equation 

^ {pc) =s (f ) K {x, f ) df , 
• a 

where Xo is a real’* characteristic number for K (x, f; we have already seen how 
solutions of it may be constructed; let ?? linearly independent solutions be taken 
and construct from them n orthogonal and normal functions 

Then, since the functions are orthogonal and normal, 

f r I f K (X, f) d^Ydg » i f rf K (^, f) 
Jo Lwt=l Ja J w—iJoL J 

and it is easily seen that the expression on the right may be written in the 
form 

on performing the integration with regard to y; and this is the same as 

S f K{x,y)^(y)dy\ K (x, <f>„ (^) d^. 
m^lJa Ja 

Therefore, if we write K for K (x, y) and A for 

2 4>^{y)C K(x,^)<i>^{^)dl 
m^l J a 

* It will be seen immediatelj that the characteristic numbers of a symmetric nucleus are all 

real. 
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fb rb 
we have 1 A»dy= / KAdy, 

J a J a 

rb tb fb 
and so 1 A}dy « 1 K^dy — 1 (iT — Af dy, 

J a J a J a 

Therefore 

I" I I «f (Z(^. y)}>dy, 
J a (m=:l ^ ) J a 

and so 

Integrating, we get 

rb 

I {£:(x,y)Ydy. 
m^l J a 

« « V f f {K (as, y)Ydyda>. 
J aJ a 

This formula gives an upper limit to the number, n, of orthogonal functions 
corresponding to any characteristic number 

These n orthogonal functions are called characteinstic functions (or auto¬ 

functions) corresponding to Xo- 

Now let {x), (x) be characteristic functions corresponding to 
different characteristic numbers Xo, Xi. 

Then {x) (^) =. Xj C E(x, f) (x) (f) rff, 
J a 

and so 

[ da; = f K(a:, ^)4>f>^(x)^i»{^d^dx ...(1), 
J a J a •/ ® 

and similarly 

r 4>»> (a;) (*) (fe=x, r r k («, ^ </►«» (®) d^dx 
J a J a J a 

f K (f, X) (*) ^0) .. .(2), 
J a J a 

on interchanging x and 

We infer from (1) and (2) that if Xj ^ X^ and if K{x, f) = jET (f, ii?), 

f (a?) (iu) dx^Oy - 
•/ a 

and so the functions (ii?), <f)^^ (x) axe mutually orthogonal 

If therefore the nucleus he symmetric and if, corresponding to each 
characteristic number, we construct the complete system of orthogonal 
functions, all the functions so obtained will be orthogonal 

Further, if the nucleus be symmetric all the characteristic numbers are 

real; for if Xo, Xi be conjugate complex roots and if^ (a?) = v (x) 4-iw(x) be 

* V (x) and w (x) being real. 
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a solution for the characteristic number X©, then %i{w)^v{x)--iw{x) is 

a solution for the characteristic number Xi; replacing {x\ (x) in the 

equation 

j (x) {x)dx = Q 

by V (x) + iw {x% v (x) - iw {x\ (which is obviously permissible), we get 

f [{v + [w (x)Y] dx = 0, 
J a 

which implies v(x) = w (x) s 0, so that the integral equation has no solution 

except zero corresponding to the characteristic numbers X©, Xij this is 

contrary to § 11*23; hence, if the nucleus be symmetric, the characteristic 

numbers are real. 

11*7. The development* of a symmetric nucleus. 

Let ^i{x\ ... be a complete set of orthogonal functions 

satisfying the homogeneous integral equation with symmetric nucleus 

<f>(x)^\j K(x, ^)4>(^)d^y 

the corresponding characteristic numbers beingf Xj, X^, X^, .... 

Now supjmet that the series 2 is uniformly convergent 

when a^x^b, u^y %b. Then it will he shewn that 

K{x,y)= I 
»=1 ^ 

For consider the symmetric nucleus 

rr/ X rr/ v 5 4>n {^c) 4>niy) H {x, y) = K{x, y) - 2 ^-r-. 
n—\ ^ 

If this nucleus is not identically zero, it will possess (§ 11*51) at least one 

characteristic number jjl. 

Let ^{x) be any solution of the equation 

^|r(x)^p^ E(x, |)*»|^(|)dE 
J a 

which does not vanish identically. 

Multiply by <f>n (x) and integrate and we get 

[ ylt{x)<f>n{^)dx = fjLl I I)— 2 ^ (g) <l)n {x) dxd^] 
Ja Ja Ja K ih=\ ) 

* This investigation is due to Schmidt, the result to Hilbert. 
t These numbers are not all different iC there is more than one orthogonal function to each 

characteristic number. 
X The supposition is, of course, a matter for verification with any particular equation. 
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since the series wnverges uniformly, we may integrate term by term and get 

£ ir (a;) (x) ‘fo = ^/V (0 (?) - ^/‘ <f>n (?) f (f) 

= 0. 

Therefore -^(x) is orthogonal to 0i(x), ^(x), and so taking the 
^nation 

^(x) = ;t f |Z(X, f)- S 

we have ^(x)=Mr^(^.?)v^(?)d?. 
J a 

Therefore /* is a characteristic number of E (x, y), and so ^jr (x) must be 
a lin^ combination of the (finite number of) functions <f>„ (x) corresponding 
to this number; let 

f'(x) = 2a„^„(x). 
m 

Multiply by ^„(x) and integrate; then since ^jr{x) is orthogonal to all the 
functions (x), we see that = 0, so, contrary to hypothesis, (x) = 0. 

The contradiction implies that the nucleus H(x, y) must be identically 
zero: that is to say, Jf (x, y) can be expanded in the given series, if it is 
uniformly convergent. 

Excmpk. Shaw that, if Xo be a characteristic number, the equation 

^(x)=/(x)+Xo £x(x,f)f 

Mrtainly 1:^ no solution when the nucleus is symmetric, unless /(x) is orthogonal to all 
the charactenstic functions corresponding to Xq. 

11-71. The solution of Fredholm’s equation by a aeries. 

Retaining the notation of § 11-7, consider the integral equation 

^ («) =/(*) + X. J K(x,^)^ (f ) df, 
where K {x, f) is symmetric. ^ 

If we assume that <I>(f) can be expanded into a uniformly convergent 
series 2 (f), we have 

»=i 

2 a„^ (x) =/(x) + 2 ^ (x), 

so that / (x) can be expanded in the series 

Uu rmg, (a, of Froihotm’a oquaUoo. 



1171-1V81] INTEOEAL EQUATIONS 229 

To determine the coefficients we observe that 2 byi<f»n (^) converges uni- 

formly by § SSS*; then, multiplying by ^„(a;) and integrating, we get 

l>n= f <f>n («)/ (®) dm. 
J a 

11*8. Solution of AMs integrcd equcUion, 

This equation is of the form 

where/'(j?) is continuous aiid /(a)=0; we proceed to find a continuous solution u (x). 

Let <l>(x)=^j u (^) and take the formula t 

_ dx_ 

sm pLw 

multiply by u (f) and integrate, and we get, on using Dirichlet’s formula (§ 4*51 corollary), 

—{<b(z)-<i)(a)}’= (‘d$ [’-- 

_ rdxr—^^si}di_ 
sm^an- 

■/, 
' f(x)dx 

Since the original expression has a continuous derivate, so has the final one; therefoie the 

continuous solution, if it existy can be none other than 

,. sin uir d f{x)dx 

and it can be verified by substitution! that this function actually is a solution. 

11*81. ScfdomUcJis^ integral equation. 

Let f{x) have a continuous differential coefficient when Then the equation 

y(j7) = ~ P <h{xsmB)dB 
^ J 0 

has one solution mth a continuous differentiol coefficient when — «• 4 ir, namely 

<#)(j:)=/(0)+3: j^/'{xam6)de. 

From § 4-2 it follows that 

f' (jp) = ~ I sin B(j)' (x sin B) dB 
ir J 0 

(so that we have <)> (0)=/(0), (0)). 

* Since the numbers are all real we may arrange them in two sets, one negative the 
other positive, the members in each set being in order of magnitude; then, when { X» | > X, it is 
evident that ~ X) is a monotonio sequence in the case of either set, 

t This follows from § 6*24 example 1, by writing (z - a:)/(x - in place of x. 
X For the details we refer to Bdcher’s tract. 

§ Zeitschrifi fUr Math, und Phys. ii. (1857). The reader will easily see that this is reducible 
to a case of Yolterra’s equation with a discontinuous nucleus. 
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Write xedn for x, and we have on mnltiplying by x and int^rating 

*/* f cff^ ^ 

Change ttie order of int^tion in the repeated integral (§ 4 3) and take a new variable x 
in place of defined by the equation sin ^ sin 

Then f *'/' sin <fV'=— fI f * ^ 
Jo W Jo U Q cos^ J 

Changing the order of integration again (§ 4*51), 

* P/(x8inV^)d^=?f {f*' 
./« J 0 U K S-Bin* x) f ^ 

But f*’' sindflM r . /coe^Ml-r , 

Jx \^(cos«x-oo8*d) L (oos;^)J;f 

so *l^/'(xsmit)d<lr’=x J^</,'(xda x)cosxd’x 

Since ^ (0)»«/(0), we must have 

and it can be verified by substitution that this function actually is a solution. 
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Miscellaneous Examples. 

1. Shew that if the time of descent of a particle down a smooth curve to its lowest 

point IS independent of the startmg-i>oint (the particle starting from rest) the curve is a 

(Abel.) 

* The reader will find a more complete bibliography in this Report than it is possible to give 
here. 
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% Shew that, if /(^) is continuous, the solution of 

<^(x)»s/(ar)-hX ( cm {2xs) (s) (h 
J 0 

/(^)+x£/(s) cos (2ss) ds 

isuming the legitimacy of a certain change of order of integration. 

3. Shew that the Weber-Hermite functions 

diisfy 

>r the characteristic values of X. 

<f).(s)=X J (f} (s) ds 

(A. Milne.) 

4. Shew that even periodic solutions (with peiiod 2n) of the differential equation 

^ V W , 
da^ 

- + +^2 cos^ a;) (f>(x) = 0 

itisfy the integral equation 

4,(x)=\J” ^cotxcoaa ^ (Whittaker; see § 19-21.) 

5. Shew that'the characteristic functions of the equation 

<#> W “X j"jr -»(a? - y)* -11- y l| </> (y) 

re (p(x)=: cos »W7, sin 

rhere and m is any integer. 

6. Shew that <^(a?)=J 

as the discontinuous solution (;r)=^.r*"h (Bocher.) 

7. Shew that a solution of the integral equation with a symmetric nucleus 

00 

J (<>(«)= 2 
n=sl 

irovided that this series converges uniformly, where X*, are the characteristic 

Lumbers and functions of AT {x, () and 2 (x) is the expansion of f{x), 
n=l 

8. Shew that, if 1 A | < 1, the characteristic functions of the equation 

/_, l-2Acoa(f-«)+A2 ^ 

re 1, cosmx^ sinf}ta7, the corresponding charactei-istic numbers being 1, 1/A’^ 1/A’», where 

% takes all positive integral values. 
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CHAPTER XII 

THE GAMMA FUNCTION 

12*1. Dejinitiofis of the GantTuafuriction. The Weierstrdssia/ii product. 

Historically, the Gamma-fimction* V(z) was first defined by Euler as the 

limit of a producfc (§ 12*11) from which can be derived the infinite integral 

but in developing the theory of the function, it is more con¬ 

venient to define it by means of an infinite product of Weierstrs^’ canonical 
form. 

Consider the product ze^^ 11 1 j , 

where 7 = lim +1 + ... 4 1 _ W ml = 0-5772157.... 

[The constant y is known as Euler’s or MascheronPs constant; to pi*ove that it 
exists we observe that, if 

t , 1 , ji+1 

Jo /I ao 

p = ^; therefore 2 converges, and 

{T + 5+-"-l-^-logml=: Jim i 2 «,4log^^l= I n^. 
(.t ^ ^ J m-^eo ln=l J ji—i 

The value of y has been calculated by J. C. Adams to 260 places of decimals.] 

The product under consideration represents an analytic function of z, for 

all values of z; for, if AT be an integer such that \z\^ \Ny we have f, if n > .F, 

-If! 1 ^ 
2 n='''3 «»' 

1 A’ 

Since the series S [N^I{2vF)] converges, it follows that, when | | ^ J AT, 
n=W-+l 

* The notation F {z) was introduced by Legendre in 1814. 

t Taking the principal value of log (1 + zfn). 
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log -f is aE absolutely and uniformly convergent series 

of analytic functions, and so it is an analytic function (§ 5*3); con¬ 

sequently its exponential n is an analytic function, and 

so z€*^ n 1 4-0 is an analytic function when \z\^ where N is 

any integer; that is to say, the product is analytic for all finite values of z. 

The Gamma-function was defined by Weierstrass* by the equation 

from this equation it is apparent that T (z) is analytic except at the poifits 
0, — 1, — 2, where it has simple poles. 

Proofs have been published by Holder f, Moore {, and Barnes § of a theorem known to 

Weierstrass that the Gamma-function does not satisfy any differential equation with 

rational coefficients. 

Example 1. Prove that 

where y is Euler’s constant. 

[Justify differentiating logarithmically the equation 

r(i)=i, r(i)=-y, 

T(z)' 

by § 4*7, and put after the differentiations have been performed.] 

ExampiU 2. Shew that 

and hence that Euler’s constant y is given by(| 

Example 3. Shew that 

n 
Asl IV I r(*-x+i)' 

* Journal filT Math, li. (1806). This formula for P (*) had been obtained from Euler^s formula 
(§ 12-11) in 1848 by F. W. Newman, Cambridge and Ihiblin Math, Journal, in. (1848), p. 60. 

t Math. Ann. xxvin. (1887), pp. 1-13. 
t Math. Ann. xlviii. (1897), pp. 70-74. 
§ Meseenger of Math. xxix. (1900), pp. 122-128. 

it The reader will see later (§ 12*2 example 4) that this limit may be written 

dt r* e-^dt 1 
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12*11. Evhr's formula for the Qamma-funotion, 

By the definition of an infinite product we have 

(l + 5+-' +~--logm) 
lim a\ " ! 

237 

^ = iog»»jn r m n]1 

(^} J Lm^^OO «=sl (V W J J 

m^oo L »=! IV V j „ 

= ir lim Tm"* n (l4*~)l 
m-^oo L V J 

=^iim [’"n (i + -y*n (1+-)] 
m-^ao Ln—1 V »=1 V J 

Hence rw-ifi ((i + lffi+f)”'-. 
nj 

This formula is due to Euler*; it is valid except when ir = 0, — 1, — 2, .... 

Example. Prove that 
1 O /*» _ 1 \ 

(Euler.) r(2:)=: lim ;.. . ■ ,, 71* 

12*12. difference equation satisfied hy the Oammaffunction. 

We shall now shew that the function V(z) satisfies the difiference equation 

r(^+i).*.^r(4 

For, by Euler s formula, if z is not a negative integer, 

r(^+i)/r(^) = 
z + l 

“ /. i\*' 
lim n 

n—1 
1 lim n - 
^ n»'*'3o »ssl 24-^ 

_ n 

lim n 
■2^+1 7»-**>oo n^l 

(l + ^)(^+n)l 

^ 4- n 4* 1 

w 4" 1 
= ir hm -r = z. 

m-*-ao ^ 4- 4- 1 

This is one of the most important properties of the Gamma-function. 

Since T (1) = 1, it follows that, if -2^ is a positive integer, T (z) = (^ — 1)!. 

* It was given in 1729 in a letter to Goldbach, printed in Fuss’ Corresp. Math. 
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Example. Prove that 

^.1,1. JLj.l_i _ I 
r(*+i)^r(«+2)'^r(z+3)'^‘" r(«)V i!z+i'^2!z+2 

[Coiwider the expression 

It can be expressed in partial fractions in the form S , where 

^ n! I ^ i -il. 
(w-b)!/ nl 1 r^m-n+irlf 

m (^\n I f 00 11 

’ ** Zl^/zz-nTT» prove that 2 —r--{ s ~l^O 
r=m-n+i f - (w —7^4•l) I n 1 Z-j-ft |rs=m-n+l ^ Ij 

Koting that 2 ■i< 

m-*^ao when z is not a n^ative integer,] 

12*13. The evaluation of a general class of infinite products. 

By means of the Gamma-function, it is possible to evaluate the general 
class of infinite products of the form 

Om ‘'nj 

where «„ is any rational function of the index n. 

For, resolving into its factors, we can write the product in the form 

jj f-d (w — (Zi) (n — gji) ••• (w — Ot) 
»=i 1 (n — 6j) — 6j) J ’ 

and it is supposed that no factor in the denominator vanishes. 

In order that this product may converge, the number of factors in the 
numerator must clearly be the same as the number of factors in the 
denommator, and also 4 = 1; for, otherwise, the general factor of the product 
would not tend to the value unity as n tends to infinity. 

We have therefore k = l, and. denoting the product by P, we may write 
00 

p= n f(n - a,). .(w-a*)' 

The general term in this product can be written 

— 2 ^1 ~4~».« 4- — bi — ... — h]t 

where A„ is 0 (n~^) when n is large. 

infinite prodi 
ther (§ 2-7) th 

+ ... +«i — 6i —... —6i=0, 

theifoir^^”" ^ absolutely convergent, it is 
therefore necessary further (§ 2-7) that ^ ® 
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Ve can therefore introduce the factor 

exp {j4-» (ui + ... + a* - - ... - &*)} 

nto the general factor of the product, without altering its value; and thus 
re have 

' 6A.« /, h\ ^ 

But it is obvious from the Weierstrassian definition of the Gamma- 
unction that 

Z 

1 
‘zF 

,nd so r(~6i)6ar(-62) ... hicT{-^hjc) * r(i~6^)^ 

a,r(-a,)...a,r(-a;fe) iiiTa-aJ’ 

r formula which expresises the general infinite product P in terms of the 
Jamma-function. 

Example 1. Prove that 

« «(a+5-H) ^r(a+l)r(6-H) 
,=i(a-t-a)(5-(-a)“ r(a+6+l) * 

Example 2. Shew that, if a—cos (2)r/»i)+i sin (2ir/»), then 

12*14 Gonneadon between the Gammor-function and the (drcular functions. 

We now proceed to establish another most important property of the 
ramma-function, expressed by the equation 

T{z)V{l^z)^ 
TT 

smirz 

We have, by the definition of Weierstrass (§ 121), 

T{z)T{-z)^^^^Jl 

^ — TT 

z sin TTZ' 

Y § 7*5 example 1. Since, by § 1212, 

T(l^z)^-zr(--z) 

e have the result stated. 
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Corollary 1. If we assign to z the value i, this formula gives {r(i)}>=*-; since, by 
the formula of Weierstrass, r (J) is positive, we have 

r 

Corollary 2. If ^ {z)=r' {z)iV {z\ then (1 - ii) - (jt) «ir cot nz. 

1216. Th4 mukiplkatim-iheorem of Gaum* and Legendre, 

We shall next obtain the result 

r {z) r ^{^ + 1) - r +^)= 

r(^) r +1)... r f« 
For let A(z) = ___ .V ■ V, yv , «r(n^ ——. 

Then we have, by Euler’s formula (§ 12T1 example), 

n’“”n lim 1.2... (m— 1) 
AJ JXiXX   i--——---^ = in rt —  

+1)...(^+r+^-i) 

" Mm 
jw^oo {nz + 1)... {nz + nm — 1) 

trv -I Urn ~ 
{nm - 1) 1 (nm)"* 

m-*>ao (tith —1^1 

It is evident from this last equation that (f> (z) is independent of a 

Thus <f> (z) is equal to the value which it has when ^ ; and so 

Therefore {0 {z)Y = ”n | F ^ (^1 - -j| 

, ___ 
• TT . 27r . {tI—l^TT 

Sin - sin — ... sm^=-— 
n n n 

(27r) 1 

n 

Thus, since 0 (n“^) is positive, 

i.e. r (^) r (. + i) ... r (^ + ^) = ni-’“(2w)i(“-^)r(n4 

CoroUary. Taking n=2, we have 

2^-^r{z)r(z+i)^jr^T{2z), 

This is called the <iujpl{catw7i yorintUa. 

* Werke, m. p. 149. The case in which «= 2 was given hj Legendre. 
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ExampU. If B{p,q)=, 

shew that 

S(P, ?) - ?) 
B(.p, ^).n '■ 

12*16. Expaifisions for the logarithmic derivates of the Gamma-fuTWtio^i, 

We have {r(^+i)}->=eT*5j(i+^)r»}. 

DijBferentiating logarithmically (§ 4*7), this gives 

dlogV {z^tl) __ 
dz ““ 

z ^ z ^ z 
I "h o "h i 

1(^+1) 2(z+2)^3(:J+3) 

Therefore, since log r (,?+1)=log 2+log F (2), we have 

^logr(^). -y-^2 2 -- 
2 «=i^l(2 + ^) 

Differentiating again, ^ log ^ |l 
(2+1)^ 2 (2 + 2) 

1 .+-L-+ 

....} 

(2+1)2 ' (2 + 2)2" 

These espansions are occasionally used in applications of the theory. 

12*2. Eulers expression of T(z) as an infinite integral. 

The infinite integral J e~^t^~“^dt represents an analytic function of z when* 

the real part of z is positive (§ 5*32); it is called the Eulerian Integral of the 
Second Kind\. It will now be shewn that, when R(z)>0, the integral is 
equal to T (z). Denoting the real part of z by x, we have x>0. Now, if % 

we have n {z, n) — n^( (1 — T)"T*”^dT, 
Jo 

if we write t— nr; it is easily shewn by repeated integrations by parts that, 
when x>0 and n is a positive integer, 

f (1 —T)'^T2-ldT= r~T^(l — t)"1 +-[ (1 — T)”'"^T*dT 
Jo if JO ^ Jo 

n {z, n) = 

n (n — 1) ... 1 
z(z+ 1)... (z +n- 

1.2 ... n 
n\ and so a* tvj-. -. n . ^ - 

z(z-^l) ... (^ + ») 

Hence, by the example of § 12*11,11 (z, n) (z) as n 00. 

* If the real part of 2 is not positive the integral does not converge on account of the singu¬ 
larity of the integrand at t=0. 

t The name was given by Legendre; see § 12*4 for the Eulerian Integral of the First Kind. 

X The many-valued function is made precise by the equation •«**, logt being 
purely real. 
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Consequently T (z) = lim f 1 — 

And so, if Fi (z) — f 
Jo 

r.(.)-r«. lim (i .-<"■!<]. 

Now lim f 
n-^toJ n 

since f converges. 
Jo 

To shew that zero is the limit of the first of the two integrals in the 
formula for Fi {z) - F {z) we observe that 

0 < e-* - (^1 - « rr^^e-K 

[To establish these inequalities, we proceed as follows: when 0 < 1, 

hrom the series for and (1 Writing tjn for y, we have 

and so 0:^e“"*— 

Now, if O^a^l, (l-a)’‘>l-7ia by induction when na<l and obviously when 

fia > 1; and, writing for a, we get 

\ n^J n 

and so* 0 ^e-H^jn^ 

which is the required result.] 

From the inequalities, it follows at once that 

< 'kT^ f €^^t^'*‘^dt 0, 
Jo 

as 71 00, since the last integral converges. 

* This analysis is a modihcation of that given by Schlomileh, Compendium der hdheren 
Analysiiy n. p. 243. A simple method of obtaining a less precise inequality (which is sufficient 
for the object required) is given by Bromwich, Infinite Series^ p. 469. 
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Consequently Fj {z) = F {z) when the integral, by which Fj {z) is defined, 
converges; that is to say that, when the real part of z\b positive, 

r(z)-=^[ 
J 0 

And so, when the real part of z is positive, F (z) may be defined either by 
this integral or by the Weierstrassian product. 

Esampk 1. Prove that, when R (z) is positive 

(log 

Example 2. 

Example 3. 

Example 4. 

deduce that 

Prove that, if R(z)>0 and R (s) > 0, 

Jo 2* 

Prove that, if R(z)>0 and R («) > 1, 

1 1 11 re-^x*-^dx 

From § 12*1 example 2, by using the inequality 

h: ri 

12‘21. Extendon of the infinite integral to the case in which the argument of the 

Gamma-function is negative. 

The formula of the last article is no longer applicable when the real part of is 

native. Cauchy* and Saalschutzt have shewn, however, that, for negative arguments, 

an analogous theorem exists. This can be obtained in the following way. 

Consider the function 

r2«=f p;) dt, 
where h is the integer so chosen that x being the real part of 2. 

By partial integration we have, when 2 < — 1, 

The int^rated part tends to zero at each limit, since x+Jt is negative and jj+^+I is 

positive: so we have 

r2(*)=ir,(2+i). 

The same proof applies when x lies between 0 and —1, and leads to the result 

r(z-hi)=zr2(z) (0>x>-i). 

The last equation shews that, between the values 0 and — 1 of 

r2(2)=:r(2). 

* Exercices de Math, n. (1827), pp. 91-92. 
t ZeitschHft fur Math, und Phys. xxxii. (1887), xxxiii. (1888). 
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The preceding equation then shews that T^iz) is the same as r(z) for all negative 

values of E (z) less than — 1. Thus, for all negative values of R (0), we have the result of 
Cauchy and Saalschiitz 

r (.) (e-.-1+, _ ...+(_ 

where k is the integer next less than - R (z). 

Example. If a function P (ft) be such that for positive values of ft we have 

P (ft)== 

and if for negative values of ft we define Pi (ft) by the equation 

where Je is the integer next less than -ft, shew that 

^0*)-^^-^++ -fr^y (Saalschutz.) 

12*22. HankeVs expression of F (<2r) as a contour integral. 

The integrals obtained for T (z) in |§ 12*2, 12*21 are members of a large 
class of defimte integrals by which the Gamma-function can be defined. 
The most general integral of the class in question is due to Hankel*; this 
integral %vill now be investigated. 

Let D be a contour which starts from a point p on the real axis, encircles 
the origin once counter-clockwise and returns to />. 

Consider ty-'^e^^dtj when the real part of z is positive and z is not 

an integer. 

The many-valued function (— tf~^^ is to be made definite by the convention 
that (— ty^^ = and log (— t) is purely real when t is on the negative 
part of the real axis, so that, on 1), — tt ^ arg (— t) ^ tt. 

The integrand is not analytic inside D, but, by § 5*2 corollary 1, the path 
of integration may be deformed (without affecting the value of the integral) 
into the path of integration which starts fix>m p, proceeds along the real axis 
to 8, describes a circle of radius S counter-clockwise round the origin and 
returns to p along the real axis. 

On the real axis in the first part of this new path we have arg (— f) = “ “tt, 
so that (—^ (2-1) (where log^ is purely real); and on the last 
part of the new path (— ty~~^ = e^^ 

On the circle we write — ^ ; then we get 

f (- ty-^e-^dt = 
n j p j _,r 

= — 2i sin (ttz) iB^ j"' e«*»+«(cos»+««in«)j^^_ 

* ZeitschHft fUr Math, und Phy». ix. (1864), p. 7. 
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This is trae for all positive values of 8 ^ p; now make 8-^0; then 0 

and I f e^^dd since the integrand tends to its limit 
J —IT J — IT 

uniformly. 

We consequently infer that 

J ( — tf’^^ e~~^ dt^ — 2t sin (tts) j t^'^^ e'~^ dt 

This is true for all positive values of p; make p'^oo, and let G he the 
limit of the contour D, 

Then 

Therefore 

Now, since the contour G does not pass through the point t = 0, there 
is no need longer to stipulate that the real part of z is positive; and 

I (—tf~'^e~^dt is a one-valued analytic function of z for all values of 
Jc 
Hence, hy § 5*5, the equation, just proved when the real part of z is positive, 

persists for all values of z with the exception of the values 0, ±1, +2, .... 

Consequently, for all except integer values of z, 

1 
2i sin TTZ, 

This is Hankers formula; if we write 1 — 5 for ^ and make use of § 12T4, 
we get the further result that 

1 

r(z) z,7rjc 
r(0+) r 

We shall write I for I , meaning thereby that the path of inte- 
ao « C 

gration starts at ‘infinity’ on the real axis, encircles the origin in the positive 
direction find returns to the starting point. 

Example 1. Shew that, if the real part of z be positive and if a be any positive 

corntmt, tends to zero as p-*-oo, when the path of integration is either of 

the quadrants of circles of radius p+a with centres at -a, the end points of one quadrant 

being p and — a+2(p+a), and of the other p and -~a-i{p+a). 
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Deduce that lim f ^{ — t)~’e~*dt= lim / {—t)~*e~*dt, 
p-^30 J '-a+ip p^so J C 

and hence, by writing t=^—a-iu, shew that 

(a+iu)'‘^du. 

[This formula was given by Laplace, Th^orie Analytique des Prohahilite$ (1812), p. 134, 
and it is substantially equivalent to HankePs formula involving a contour integral.] 

Example 2. By taking a=1, and putting — 1 + i tan B in example 1, shew that 

-L. = l cos (tan B — zB) cos*“ * BdB. 

Example 3. By taking as contour of integration a parabola whose focus is the origin, 
shew that, if a > 0, then 

2a* fi® /* 
p (2)=-^-— I (1 + cos {2at-i-(2z -1) arc tan t} dt. 

Sin IT-? / 0 

(Bourguet, Acta Math, i.) 

Example 4. Investigate the values of x for which the integral 

2 r* 
- j tf^'^sintdt 
*»■ Jo 

convei^es; for such values of x express it in terms of Gamma-functions, and thence shew 
that it is equal to 

‘■'i. {(' - 5) •*■’}/i. ((■+i^r) • 
(St John’s, 1902.) 

Example 5, Prove that J (log t)"* ^ ^ dt converges when mz>0y and, by means 

of example 4, evaluate it when m«l and when m«2. (St John’s, 1902.) 

12*3. Gduss expyressionfoT the logarithmic demvate of the Oamma-functiott 
as an infinite integral*• 

We shall now express the function ^ log T (z) = as an infinite 
as 1 yZ) 

integral when the real part of z is positive i the function in question is 
frequently written ^ (z). We first need a new formula for 7. 

Take the formula (§ 12*2 example 4) 

- r -r *- “S f - -1” {/I f - /; T ■ 

where since f* ^=log——^^0 as a-*-0. 
J A t ° 

Writing #=!-«“« in the first of these int^rals and then replacing w by ^ we have 

a {/.' rS.*-/,' T*} -/.■ {li:-. -1) 
This is the formula for y which was required. 

-0 as 3-*-0. 

Werke, ra, p. 159. 
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To get Gauss’ formula, take the equation (§ 12‘16) 

I \Z) Z ti-** eo ja=l V'^ ZTfhJ 

and write —^ 
z-j-m Jo 

this is permissible when 7?^ = 0, 1, 2, ... if the real part of z is positive. 

It follows that 

E^=-7-[ e-^dt+ lim f i (e-™*-e-(>»+0«)£fo 

i (■^) J 0 J 0 m-1 
p g-« _ g-j* _ g-(n+i)t ^ g-(z+»+i)t 

= — 7 + lim I -=-—f- 

=j- ,i„ /• 

I ]_ -> I 
Now, when 0 < ^ ^ 1,  -is a bounded function of t whose limit as <-#-0 is finite; 

and when | | . 

Therefore we can find a number K independent of t such that, on the path of integration, 

andso f” dimX (n+iy^-^^O as n-^<x>. 
Jo l-e Jo 

We have thus proved the formula 

which is Gauss' expression of ^ft(z) as an infinite integral. It may be 
remarked that this is the first integral which we have encountered connected 
with the Gamma-function in which the integrand is a single-valued function. 

Writing f«log(l+.2:) in Gauss’ result, we get, if A=6*-1, 

rW fiH^oI ^ i-c 

“jTo{/rTWa^(TTF^)’ 

since 0 <j^ "—dt< y =log ^-y- —0 as S-^0. 

.. r'W V /■" f . 1 1 
Hence WrlZl^ T (TTi?} - ’ 

r* r 1 1 <ir 
so that r'(.)=r(.)j^ 

an equation due to Dirichlet*. 

so that 

Werke, i. p. 275. 
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JEJjjample 1. Prove that, if the real part of z is positive, 

“/o ~ hr} (^<^'^■'1 

Example 2. Shew that {(l+t)-^-e-‘}t-^di. (Dirichlet.) 

12 31. Binet s first esspression for log F {z) in terms of an infinite integral. 

Binet* has given two expressions for logr(z) which are of great 

importance as shewing the way in which log F {z) behaves as | z | -^ oo. To 

o tain the first of these expressions, we observe that, when the real part of 
z IS positive, 

r(^ + l) Jo it 
writing ^ +1 for in § 12-3. 

Now, by § 6'222 example 6, we have 

and so, since 

we have 

d 

logs^f 
Jo 

llogr(z+J)==^^ + logz-l^ ^^--l+^^e-dt. 

^ The integrand in the last integral is continuous as and since 

2 ” ? bounded as t cso, it follows without difficulty that the 

integral converges uniformly when the real part of ^ is positive; we may 

consequently integrate from 1 to ^ under the sign of integration (§ 4-44) and 
we ^cty 

i»gr(,+1). (, +1) log,1 ^!’ y 1 — e i-t 
-dt 

Since {J - 1 \ is continuous as t-0 by § 7-2, and since 

we have 
log F (^ + 1) = log ^ + log F {z), 

logrw-(,-‘),„g.-, + i+/"|i.i+ dt 

* Journal de VEcole Poly technique ^ xvi. (1839), pp. 123-143. 

+ Logr(z + l) means the sum of the principal values of the 
the Weierstrassian product. 

logarithms in the factors of 
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To evaluate the second of these integrals, let* nl 1 .1 \ ^ r* /I 1 1 \ e-ht , , 

10 that, taking z=^ in the last expression for log r (2), we get 

^ log7r=^+t/-/. 

Also, since /=J” g - f + dt, we have 

j , /■*/! e^*\e-^*dt 
~T- 

jo \ t e‘-lj t ■ 

— (e~‘_ e~*' 

249 

Lnd so 

■jo r*v~r-j-^—j-it}* 

dt 

**i+ilogi- 
Jonsequently- /= 1 - J log (2 ir). 

We therefore have Binet s result that, when the real part of z is positive, 

1 \ 
* dt. 

for real 

logr(^) = g-|)log.-^ + llog(27r) + /^ (1-1 + ^ 

If — a; + ty, we see that, if the upper bound \ 

allies of t is JT, then 

\ogV{z)-(^z-^\ogz + z-^\og{2Tr) < ^ 

^Kx-\ 

0 that, when x is large, the terms log-^-^ + |log(27r) furnish an 

j)proximate expression for log F {z). 

Example 1. Prove that, when It (2) >0, 

logr(.)=/”{i^;‘+(.-i)«-j 

Example 2. Prove that, when R (2) > 0, 

dt 

T' (Malmsten.) 

logr(s)^ ^ (i4-0~^-(i-f0-n dt 

log (1+0 
(Fdaux.) 

This artifice is due to Pringsheiin, Math. Ann. xxxi. (1888), p. 473. 
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Example 3. From the formula of § 12*14, shew that, if 0 <;r < 1, 

21ogr(:r)~log7r+logsin7r^=J^ 

(Kummer.) 

Example 4. By expanding sinh(J--x)^ and l-2r in Fourier sine series, shew from 
example 3 that, if 0 < a* < 1, 

00 

logr(:r)=ilogff-|logsin7rjr+2 2 a,^sin 27iff;r, 
n=l 

2nir dt 

“ 2m^/T • 
Deduce from example 2 of § 12*3 that 

(y-f log + log n). 

(Kummer, Journal fiir Math. xxxv. (1847), p. 1.) 

12*32. Binet's second eocpression for log F (z) in terms of an infinik 
integral. 

Consider the application of example 7 of Chapter vii (p. 145) to the 

equation (§ 12‘16) 

^ y r. / X V 1 jpiogrw-j 

The conditions there stated as sufficient for the transformation of a 

series into integrals are obviously satisfied by the function 

if the real part of z be positive; and we have 

■?iogr(.)=^+r^^-2r^^dt+2 lim 

where 2iq (t) =, . 
(z+tty {z-ity 

Since \q{t, z~\-n)\ is easily seen to be less than Kitjny where Ki is inde¬ 
pendent of t and Uy it follows that the limit of the last integral is zero. 

r. / X 1 1 r ^tz dt 
dz^ °g ■'■/j e^-1' 

2z 

Hence 

Since 1^2^ ^2 j exceed K (where K depends only on B) when th€ 

real part of z exceeds B, the integral converges uniformly and we may 
integrate under the integral sign (§ 4*44) from 1 to z. 

We get 

^logr(^) = ~^+log^+(7-2 [-—_ 

where C is a constant. Integrating again, 

log r(z) = (^ -1) log^ + (C -1)^+ C' + 2 

where C' is a constant. 
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Now, if z is real, 0 ^ arc tan tlz ^ tjz, 

and so 

log r {z) -{^z-^\ogz-{C-l)z-C''^<‘^ 

But it has been shewn in § 12‘31 that 

dt 

log r (a) - log ^ ^ -1 log (2^) -0, 

as ^ CO through real values. Comparing these results we see that G = 0, 

C"=|log(2,r). 

Hence for all values of z whose real part is positive, 

logr(^) = (« - J) logz-z + ^ log(2w) + 2|^ 

where arc tan u is defined by the equation 

/■“ dt 
arc tan u = I -. Jo l + 

in which the path of integration is a straight line. 

This is Binet^s second expression for log T (z). 

Example. Justify differentiating with regard to z under the sign of integration, so as 

to get the equation 

T{z) 
=logz- /: tdt 

12*33. The asymptotic expansion of the logarithm of the Gamma- 

function (Stirling’s series). 

We can now obtain an expansion which represents the function log T (z) 
asymptotically (§ 8*2) for large values of \z\, and which is used in the 
calculation of the Gamma-function. 

Let us assume that, if z=^x + iy, then ^ S > 0; and we have, by Binet’s 
second formula, 

log r («)-(»- j) log » - » + J log (2ir) + ^ (»), 

Now 

^ , t li^ If 
arctan(i/z) = --g- + --- 

(_)n-l fin-i (_)n rt 

2w-l jo w* + «* ■ 

Substituting and remembering (§ 7-2) that 

r B.. 
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where Bi, ... are Bernoullis numbers, we have 

+ 
2(^)- _)n r -If ^ 

^Jo IJo w’ 

Let the upper bound* of 

Then 

du) dt 

yt -I- ^2 
for positive values of be JST^. 

i/:{0 + z ij g2ire _ 1 

Hence 

-fi'z -Sfl+l 
'^4(re + l)(2n+ l)|^r 

2 (-)”/■“ (■ [‘u^du 

£?/:{/: m’ + 
dt 

e^‘-l 
.gJOn-hl 

■2(n + l) (2n4-l)l^P”^'’ 

and it is obvious that this tends to zero uniformly as | | oo if | arg | ^ ^ tt - A, 
where > A > 0, so that < cosec 2A. 

Also it is clear that if | arg ^ Jtt (so that JST^ = 1) the error in taking the 
first n terms of the series 

i 1 
2r (2r - 1) 

as an approximation to ip (z) is numerically less than the {ti + l)th term. 

Since, if [ arg ^ | < |-7r — A, 

i2r(2r-l) 

as z 00, it is clear that 

2 (n 4-1) {2n +1) 

-0, 

& 
1.2.ir ■■■ 

is the asymptotic expansion! (§ 8-2) of <f) (z). 

We see therefore that the series 

is the asymptotic expansion of log F (z) when | argj ^ ^tt — A. 

* is the lower bound of ^+y2)2~^ consequently equal to 

4a:%/2 
(^2/2)2 ^ as a:2<y2 or 

t The development is asymptotic; for if it converged when 12; | ^by § 2*6 we could find iT, 

such that F,j<(2/t-l)2nA>2»; and then the aeries i ^ ~ would define an integral 

function; this is contrary to § 7*2. n»i I j • 
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This is generally known as Stirling's series. In § 13*6 it will be estab¬ 
lished over the extended range | sxgz\ ^ tt — A. 

In particular when z is positive (= x\ we have 

du) di 
1/2 r 

A *n±i 

Hence, when x>0, the value of <j>(x) always lies between the sum of 

n terms and the sum of n-\-l terms of the series for all values of n. 

£ 0 
In particular 0<<f>{x)< ^., so that (f> (x) = where 0 < 0 < 1. 

Hence F (a:) = ^ e " “ (27r)i 

Also, taking the exponential of Stirling s series, we get 

r(x) = e ^x^'^(27r)^ 
1 

288^ 
139 

51840a;® 

571 
2488320a;* 

+ 0 

This is an asymptotic formula for the Gamma function. In conjunction 
with the formula r(a?+ l) = a?r(a?), it is very useful for the purpose of com¬ 
puting the numerical value of the function for real values of x. 

Tables of the function logjoT (x), correct to 12 decimal places, for values of a* between 

1 and 2, were constructed in this way by Legendre, and published in his Exercices de 

Calml Integral, n. p. 86, in 1817, and his Traite des fonctions elUptiques (1826), p. 489. 

It may be observed that r (x) has one minimum for positive values of x, when 

1*4616321..., the value of logio r (x) then being 1*9472391.... 

Example. Obtain the expansion, convergent when R (z) > 0, 

log, r {z) = (^ - i) log, 2 - loge (27r) + (2), 
where 

+ 2 (i+l)%+2) +3 (z+1) (2 + 2) (2+3; 
in which 

Ci*=J-, C2 = Ji C4 = ^, 

and generally 

^ (a;+l}(ar+2)... (a*+w — 1) xdx. (Binet.) 

12*4. The Eulerian Integral of the First Kind. 

The name Eulerian Integral of the First Kind was given by Legendr.e to 
the integral 

B (p, q) — [ x^~^ (1 — a;)«~^ dx, 
Jo 

which was first studied by Euler and Legendre*. In this integral, the real 
parts of p and q are supposed to be positive; and a;^""S — are to be 
understood to mean those values of and which correspond 
to the real determinations of the logarithms. 

Euler, Nov. Comm. Petrop. xvi. (1772); Legendre, Exei'ciees, i. p. 221. 
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With these stipulations, it is easily seen that B {p, q) exists, as a (possib 
improper) integral (§ 4*5 example 2), 

We have, on writing (1 — x) for x, 

B(p, q)^B{q,p), 

Also, integrating by parts, 

J x^^ (1 - xyi dx =g 

so that 

Example 1. Shew that 

q)=B(p+l, q)-\-B{p, j+1). 

Example 2. Deduce from example 1 that 

B{p,q+l)=^^B(jp,q). 

Example 3. Prove that if w is a positive int^r, 

1.2...71 B{j), n+1). 

Example A Prove that 

Example 6. Prove that 

p(p + l) ...(j?-f 7l)' 

T{z)= lim n^B{z, n). 

12*41. Expression of the Eulerian Integral of the First Kind in term q 
the Gamma-function. 

We shall now establish the important theorem that 

rMia, 
^ ^ r{m + n) 

First let the real parts of m and n exceed J; then 

r (m) r (n) at f x^"^ dx x f dy. 
J c Jo 

On writing for ai, and y* for y, this gives 

r(m)r(n) = 4 lim f e-** d® x f^e-v’«“-! 
n-fcooJo Jo ^ ^ 

rn fit 
— 4J[im J j 

Now, for the values of m and n under consideration, the integrand is 
continuous over the range of integration, and so the integral may be con¬ 
sidered as a double integral taken over a square Sp. Calling the integrand 
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f{x, y\ and calling Q® the quadrant with centre at the origin and radius iJ, 
we have, if Te be the part of outside 

i/L Or 

<ff l/(®> |/(«,y)<ia!(iy| 
J J Sr J J S^r 

■-*-0 as iJ-^00, 

since |/(a?, y) | dxdy converges to a limit, namely 

2f [ e-^\y^-^\dy. 
Jo Jo 

Therefore 

lim 11 f(x,y)dxdy== lim || f{x,y)dxdy. 
J J Sr R-^odJJQr 

Changing to polar* coordinates (ir=r cos y = r sin ^), we have 

riz 
JJ f(x, y) dxdy = J J (r cos (r sin 6)^'“^ rdrdd. 

Hence 
roo 

V (m) r (w) = 4 I dr \ cos*^~^ ^ sin*^”^ Odd 
Jo Jo 

= 2r (m + n) COS’^-^ ^ sin^-^ 
Jo 

Writing cos* ^ we at once get 

r (m) r (ti) = r (m + n). B (m, n). 

This has only been proved when the real parts of m and n exceed J; but 
it can obviously be deduced when these are less than ^ by § 12*4 example 2. 

This result, discovered by Euler, connects the Eulerian Integral of the 
First Kind with the Gamma-function. 

Exam fie 1. Shew that 

* It is easily proved by the methods of § 4*11 that the areas ^ of § 4*3 need not be rect¬ 
angles provided only that their greatest diameters can be made arbitrarily small by taking the 
number of areas sufficiently large; so the areas may be taken to be the regions bounded 

by radii vectores and circular arcs. 
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Example 2. Shew that, if 

then 
X ^ x+\^ 2! x+2 3! a!+3^'"’ 

/(•».y)=/(y+i, ^-1), 
where x and y have such values that the series are convergent. (Jesus, 1901.) 

Example 3. Prove that 

(Math. Trip. 1894.) 

12*42. Evaluation of trigonometrical integrals in terms of the Gamma 
function. 

We can now evaluate the integral i cos”^^^sin”*“^a?(i2;, where vi and ' 

are not restricted to be integers, but have their real parts positive. 

For, writing cos^a: = t, we have, as in § 12-41, 

0 2 P Q^m + ^w.) 

The well-known elementary formulae for the cases in which m and n ar 
integers can he at once derived from this result. 

Example. Prove that, when | i | < 1, 

p-r cos’"^sin”_ r (+^) r fh coB’^*«3d0 
Jo (l-i8in*tf)4 j, (1 -isin*' 

(Trinity, 1898.) 

^243. J^ochhammer s* extension of the Eiderian Integral of the Firs 
Kind. 

We have seen in § 12-22 that it is possible to replace the second Euleriar 
integral for T {z) by a contour integral which converges for all values of z 

A similar process has been carried out by Pochhammer for Eulerian inteeral! 
of the first kind. 

Let P be any point on the real axis between 0 and 1; consider th« 
integral 

The notation employed is that introduced at the end of § 12-22 and 
means that the path of integration starts from P, encircles the point 1 in the 
positive (counter-clockwise) direction and returns to P, then encircles the 
ongin in the positive direction and returns to P, and so on. 

seems to be due to Jordan, Couth d*Analyse^ m. (1887), 
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At the starting-point the arguments of t and 1 are both zero; after 
the circuit (1 +) they are 0 and 27r; after the circuit (0 +) they are 27r and 
2ir; after the circuit (1 —) they are 27r and 0 and after the circuit (0 -) they 
are both zero, so that the final value of the integrand is the same as the 
initial value. 

It is easily seen that, since the path of integration may be deformed in 
any way so long as it does not pass over the branch points 0, 1 of the 
integrand, the path may be taken to be that shewn in the figure, wherein 
the four parallel lines are supposed to coincide with the real axis. 

If the real parts of a and j3 are positive the integrals round the circles 
tend to zero as the radii of the circles tend to zero*; the integrands on the 
paths marked a, 6, c, d are 

(1 - t'f-\ (1 - 
^2iri («-l) (I _ 

respectively, the arguments of t and 1 — ^ now being zero in each case. 

Hence we may write e (a, yS) as the sum of four (possibly improper) 
integrals, thus: 

€ (a, ;3) (1 - ty-^dt + j (1 - tf~^e^^ dt 

Hence 

+ (1 - dt + J^t‘-' (1 - dij . 

: (a. yS) = (1 - e^) (1 - ^^ (1 - <)«-> dt 
Jo 

= - 4 sin (a-TT) sin (ffir) 

_ — 47r^ 
“r(i-a)r(i-yS)r(fl + )9)- 

Now € (a, 0) and this last expression are analytic functions of a and of 0 
for all values of a and 0. So, by the theory of analytic continuation, this 
equality, proved when the real parts of a and 0 are positive, holds for all 
values of a and 0, Hence for all values of a and 0 we have proved that 

e (a. iS) = 
— 47r® 

r(l-«)r(l-y9)r{a + y8)- 

The reader ought to have uo difficulty in proving this. 
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12*6. Dirichlefs integral"^. 

We shall now shew how the repeated integral 

^ ~ \\ * * J ^3 ^ ^ ,.. dtfi 

may be reduced to a simple integral, where/is continuous, > 0 (r =* 1, 2,... n) 
and the integration is extended over all positive values of the variables such 
trhat 

To simplify / ^ ^ + T + X) dtdT 
Jo Jo 

(where we have written t, T, a, ^ for and X for 4 + ^4 +... +^n)j 
put ^ = r(l — v)lv; the integral becomes {if X ^ 0) 

C "" r /(^ + (1 - 
Jo J T/(l-^\) 

Changing the order of integration (§ 4*51), the integral becomes 

/(X + T/v) (1 - T^^+^-^dTdv, 
} 

Putting T=VTa, the integral becomes 

/ / dxa dt; 

Hence 

r(«or(aa) 
r^ + SV/ dtn. 

the integration being extended over all positive values of the variables such 

that Tg + ^8 + . . . + i^n ^ 1* 

Continually reducing in this way we get 

j r(gi) r(qa)... r(g^) f^ 

r(a, + aa+...+a«) 

which is Dirichlet’s result. 

Example 1. Eeduce 

//{© ■*■ S/'*' ©1 
to a simple integral; the range of integration being extended over all positive values 
of the variables such that 

©'HD'-©'-'' 
it being assumed that a, 6, c, a, y, p, g, r are positive, (Dirichlet.) 

IFer&e, i. pp, 375, 391. 
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Example 2. Evaluate j ^ x^y^dxdy^ 

m and n being positive and 

x>0, y^O, ^+3r^L (Pembroke, 1907.) 

Example 3, Shew that the moment of inertia of a homogeneous ellipsoid of unit 
density, taken about the axis of z, is 

^ (a* + h^) trahCy 

where a, 6, c are the semi-axes. 

Example 4. Shew that the area of the hypocycloid -j- yt = is l^r^. 

REFERENCES. 

N. Nielsen, Eandhuch der Theorie der Gamma-funktion^, (Leipzig, 1906.) 

O. ScHLOMiLOH, Compendium der hoheren AnalysU^ ii, (Brunswick, 1874.) 

E. L. Lindelof, Le CaXcid dee Rhidue^ Ch. iv. (Paris, 1905.) 

A Pbingsheim, Math. Ami. xxxr. (1888), pp. 455-481. 

Hj. Mellin, Math. Ann. lxvui. (1910), pp. 305-337. 

Miscellaneous Examples. 

1. Shew that 

<'->(' + S)(‘-0(‘+3)-- r(i+i«)r(i~iz)- 

2. Shew that 

3. Prove that 

4. Shew that 

(Trinity, 1897.) 

ih rfe (Trinity, 1886.) 

(Jesus, 1903.) 

{r(i)Y_ 3^ 52-1 72 92-1 112 
167r2 32 -1 ‘ 52 ‘ 72 -1 * 92 ' TPITi *••• (Trmity, 1891.) 

5. Shew that 

(Trinity, 1905.) 

6. Shew that (Peterhouse, 1906.) 

7. Shew that, if z=i( where (is real, then 

8. When x is positive, shew thatf 

ElflEii), 2n ! 
r(x + i) n==o 22". n ! ?i! zr+w' 

(Trinity, 1904.) 

(Math. Trip. 1897.) 

* This work contains a complete bibliography. 

t This and some other examples are most easily proved by the result of § 14*11. 
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9. If a is positive, shew that 

[chap, xn 

r(s)r(g+l) » (-)»a(a-l)(a-2)...(a-») 1 
r(s+a) n\ z+n' 

IQ. If;r>0and 

shew that 

and 

J 0 

p/„\_^ 1 11 1 1 1 

(Euler.) 

1! ^+1 21^+2 3! x+Z 

P(:c+l)=^i>(^)-e-i. 

1L Shew that if X > 0, .r > 0, <a < Jir, then 

/o e-^ cm a sin (x# sin a) c?^ xsX’"* r (x) sin ax. 

12. Prove that, if 6 > 0, then, when 0 < 2 < 2, 

/‘*sin&r , , _ , 

and, when 0 < 3 < 1, 
/‘®cos6^?, _ _ , 

Jo ^r~<^'=i«‘^’^8ec(j^3)/r(3). 

13. If 0 < 71 < 1, prove that 

f (l+x)*-^cosx(ix=^T(n) loos -l)---1 ^ I 
I V2 ; r(71+1)+ r(71+3) *'*r 

(Peterhouse, 1895.) 

14. Bj taking as contour of integration a parabola with its vertex at the origin, derive 
from the formula 

(Euler.) 

the result 

^^“^“asinojr/o *~*‘^”'(l+^)*‘‘[3sin{a:+aarccot(-x)} 

the arc cot denoting an obtuse angle. +8in {^+ (a ~ 2) arc cot (- a?)}] ctr, 

(Bourguet, Acta Math. i. p. 367.) 

15. Shew that, if the real part of a, is positive and i l/a»s is convergent, then 

5[f^ n=lL^(2+a^) 
exp 

d* IS convergent when m > 2, where fi‘) W=^ log r (z). (Math. Trip. 1907.) 
16. Prove that 

rflogr(z) 
dz 

_ /** 
Jo 1- 

-e-«a 
—— aa — y a / 

=/“{(! + «)-■-(1+a)-}^-, 

Jo X-1 
dx-^ (Legendre.) 
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17. Prove that, when R (z) > 0, 

18. Prove that, for all values of z except negative real values, 

log r (z)=(r - i) log z - 2+J log (2n-) 

,fl" 1 .2“ 1 .3“ 1, 

* 12.3 rZi (z+r)^ 3.4 I (2+r)=* + 4.5 r=i (z+f)*'^- 

19. Prove tliat, when B {z) >0, 

|l0grt2)-l0g2-j‘^‘^-^^^^{l-X+l0gx}. 

20. Prove that, when R (z) > 0, 

^^logr(2)-j^ 

21. If J log r (i) <f<=M, 

(Binet.) 

21. If 

shew that 
du , 
^ = l0g2. 

and deduce from § 12*33 that, for all values of z except negative real values, 

M = 2 log 2 ~ ^+J log (2?r). 

(Raabe, Journal fur Math, xxv.) 

22. Prove that, for aU values of z except negative real values, 

l0gr(2)-.(2-i)l0g2-2 + Jl0g(2.)4- I 
n=iJo x^z nir 

(Bourguet*) 
23. Prove that 

B(P, P) B (p+^, (Binet.) 

24 Prove that, when -t<r<t^ 

25. Prove that, when ^ > 1, 

B{p, 9) + S(p + l, ?) + B(p + 2, q) + ...=B{p, q-\). 

26. Prove that, when p - a > 0, 

B(.p-a, q) , . aq , o(a + l)3(j + l) 
H f ^ _ "t* , , _ , -vT.... 

27. Prove that 

28. Shew that 

P + 1 • 2-(p+^) (p+?+l)'*’'“’ 
t 

^ (Pj <l) B (P+?» r)B{q-k-r, p). 

^_— r* (a) r (b) _^_ 
Jo (.r+p)®'*'* r(a + ^) (l+p)«®*’ 

(Euler.) 

Jo (.r+p)®'*'* r(a + ^) (l+jo)«jD*’ 

if a > 0, 6 > 0, p > 0. (Trinity, 1908.) 

This result is attributed to Bourguet by Stieltjes, Journal de Math. (4), v. p. 432. 
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29. Shew that, if m > 0,0, then 

ri (1 (i r (^) r (n). 

J^i T{m+n) ’ 

2 sin (it cos® a)' 

(St JohnH 1904.) 

(Ktimmer.) 

and deduce that, when a is real and not an integer multiple of iw, 

/cos^ + sin Tf 

J -hr ^ ~ 2 sin (ir cos® a)' 
(St John^s, 1904.) 

30. Shew that, if a > 0, ^3 > 0, 

/o iTti")~if (h)r 
and 

r ^+ia)r(|ff) (Kummer.) 
Jo(l+i)logi ° r (ja) r Q+ii3) ^ ' 

31. Shew that, if o> 0, a + 6>0, 

fr^(^)..r(3) _r(g+S)r(8)i ^ _ 

v/o 1-A’ J^|.r(a + S) r(a + J + 5) j 

Deduce that, if in addition a+c>0, a+6+c> 0, 

(I-jt) (!-:;<) ,_,_r(a)r(a + 6+c) 
Jo (l-x)(-logar) ®®r(a + i)r(a+c) ■ 

32. Shew that, if a, 6, c be such that the integral converges, 

n(l-x»)(l-at)(l-^) ^ r(6+c+l)r(c+a+l)r(a+6 + l) 

Jo (1-a;) (-log a?) ®r(a+])r(6+l)r(c+l)r(a + 6+c+l)‘ 

33. Bj the substitution cos =1 - 2 tan shew that 

f. (St John’s, 1896.) 
JO (3-cosfl)4 '' ’ J 

34. Evaluate in terms of Gamma-functions the integral j“ when p is 

fraction greater than unity whose numerator and denominator are both odd integers. 

[Shew that the integral is A / sin”a? 2 (-y( i— -4. ^ M dx^ 
Jo I'Z’ 1=1 ' Kx + nir x-nrrjf J 

35. Shew that (Clare, 1898.) 

(St John’s, 1896.) 

36. Prove that 

l^’(l-iAnOxr-idx=-^tL. I _2^ 
2»+2tr^ r=:0 2r ! (71-r) 1 V \ 4 /J * 

that 

37. Provcthat, ifj9>0,,>-(-o>0, then 

(Euler.) 

B(p, p+,)^i^£iPl |i +±(£zll + ^(^-I)(»-2)(^-3) 1 
2‘ t 2(2p-).l)^2.4.(2p+l)(2p-)-3)'^‘"|‘ 

.m The curve r"*=2”-> o’” cos md is composed of »i equal closed loops. Shew that 
the length of the arc of half of one of the loops is 

/hr 
^ (icosx)™' cir, 

and hence that the total perimeter of the curve is 
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39. Draw the stmight line joining the points +1, and the semicircle of 121=1 which 

lies on the right of this line. Let C be the contour formed by indenting this figure at 

-0, i. By considering zP-r-i (j+2-‘)p+2-2 dz, shew that^ if />+? > 1, S < 1, 

fin 
/ coef * 6 cos ip-g) 6 de==,---- 

Prove that the i-esult is true for all values o( p and q such that p+j > 1. 

(Cauchy.) 

40. If 2 is positive (not necessarily integral), and - in- ^ j: $ shew that 

cos*2.=^ <=0^^+-} . 

and draw graphs of the series and of the function cos* x, 

41. Obtain the expansion 

2* I^^*+l)[r(^2+^a+l)r(i2-ia+l)'^r(i2+3a+l)r(^*-fa+l)'‘‘‘"J’ 

and find the values of x for which it is applicable. (Cauchy.) 

42. Prove that, if jt? > 4, 

rW-^<rw[^{: 
1 U.32 

2 (2^+3) 2.4. (2y)+3)'(2/) + 6) 

43. Shew that, if < 0, a;+2 > 0, then 

(Binet.) 

r(-2;) [-2; (-2r)(l-ar). , (,-x)(l-x) (2-0!) , \ 
rW 12 " z{i+z) 2(i+z)(2+s) 

=r^ 

and deduce that, when a:+2> 0, 

^ , 2;(.g-l) x{x-l){x-2) 
dz^ V{Z) 2 ® 2(2+1) 2(2+.1)(2 + 2) 

44. Using the result of example 43, prove that 

logr (2+a)=logr(2)+alog«-^^-^ luZ 

„ a rt{l-t)(2-t) ...{n-t)dt-f''t{\-t){^-t)...{n-t)dt 
_ 2 j 0 .. . J 0_ 

n=i (^ + 1) i2(«+l) (^+2) ... (2 + %) ’ 

investigating the region of convergence of the series. 

(Binet, Journal de VJScide polyteckniqtie, xvi. (1839), p. 256.) 

45. Prove that, if jt? > 0, 5^ > 0, then 

B{pf q)=^—-— 
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5)=2p f “ arc tan , 
^ja \pqip+a)l 

&nd p^—^+q^+pq. 

46. If r-2i'/r(l-^.r), F=2*'/r(L-iar), 

and if the function F(x) be defined by the equation 

I cfo dx)' 

shew (1) that F{a:) satisfies the equation 

(2) that, for all positive integral values of x, 

F(x)=^r(,x), 

(3) that F(.v) is analytic for all finite values of x, 

(4) that ■(¥) 

47. Expand 
{r(a)}-i 

as a series of ascending powers of a. 

(Various evaluations of the coefficients in this expansion have been given by Bourguet, 

Buil de9 Sei. Math. v. (1881), p. 43; Bourguet, Acta Math, n. (1883), p. 261 ; Schlomilch, 

ZdUchriftfwr Math, wnd Fkys. xxv. (1880), pp. 35, 351.) 

48. Prove that the (^-function, defined by the equation 

+ n 1(1+^)*, 

is an int^ral function which satisfies the relations 

(?(^+i)=r(z)(?(4 (7(i)-i, 

(n l)’^/G^ (71 +1) = 11.2®. 3®... n". (Alexeiewsky.) 

(The most important properties of the (?-fun0tion are discussed in Barnes’ memoir, 
Quarterly Journal^ xxxi.) 

49. Shew that 

and deduce that 

=i log (2«-)+4 - 2+2 ' 

.(?a-2)__/-*___ 

50. Shew that 

G(l^z) f* 
log g / -irz cot wz dz - z log (27r). 

lew that 

logr (^ +1) dt^\z\o%{%n) - \z (« +1) + ^log r(«+1) -log G (z + l). 



CHAPTEE XIII 

THE ZETA FUNCTION OF RIEMANN 

13*1. Definition of the Zeta-function. 

Let a^it where a and t are real*; then, if 8 > 0, the series 

is a uniformly convergent series of analytic functions 2*33, 3*34) in any 
domain in which <r ^ 1 + 8; and consequently the series is an analytic function 
of 8 in such a domain. The function is called the Zeki-function; although 
it was knoTO to Eulerf, its most remarkable properties were not discovered 
before Riemann]: who discussed it in his memoir on prime numbers; it has 

since proved to be of fundamental importance, not only in the Theory of 
Prime Numbers, but also in the higher theory of the Gamma-function and 
allied functions. 

13*11. The generalised Zeta-function^, 

Many of the properties possessed by the Zeta-function are particular cases 
of properties possessed by a more general function defined, when <r ^ 1 + 8, 

by the equation 

"’«=o (a + ny 

where a is a constant. For simplicity, we shall suppose|| that 0 < 1, and 
then we take arg (a -h n) = 0. It is evident that f (5, 1) = f (s). 

13*12. The expression of ^{s, a) as an infinite integral. 

Since (a + 7i)~* F («) = f when arga; = 0 and <r > 0 (and 
Jo 

a fortiori when <r ^ 1 + 8), we have, when o- ^ 1 + 8, 
y roo 

r (s) t(s, a) = lim S dx 
y-m-ao n-0 Jo 

== lira 
1 - 

dx — 
i^e^ 

g-iy+i-ha}xda: 

♦ The letters <r, t will be used in this sense throughout the chapter. 
t Commentationea Acad. ScL Imp. PetropoHtanae^ ix. (1737), pp. 160-188. 
X Berliner MonaUherichte^ 1859, pp. 671-680. Ges. Werke (1876), pp. 136-144. 
§ The definition of this function appears to be due to Hurwitz, ZeiUchrift fiir Math, und 

Phys. xxvn. (1882), pp, 86-101. 
ft When a has this range of values, the properties of the function are, in general, much 

simpler than the corresponding properties for other values of a. The results of § 13*14 are true 

for all values of a (negative integer values excepted); and the results of §| 13*12, 13*13, 13*2 are 

true when R(a)>0. 
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,-nt + ^, and so the modulus of the second of these 
integrais does not exceed 

J“ = (N+ a)'-r (<r -1), 

which (when <r > 1 + S) tends to 0 as iV oo. 

Hence, when <r ^ 1 4* <S and arg a? 5= 0, 

fonctto?”’^ in some respects to Euler’s integral for the Gamma- 

13-13. The compression* of ?(s, a) as a contoar integral 

When cr^l + S, consid’er 

r(o+) /: 1 -dz, 

the point, ± 2..,.(„«l, 2, 3, ...) »hi=h m pole, of the integmnd: it b 

™pposed(M,„§12'22)th.t|Mx(-OI<ir. g na. it n 

^ modify the contour, precisely as in ^ 12-22, irhent 
cr > 1 + 5; and we get .1 > i 

j(o+) J* 

Therefore 

dir. 

?(«. a):_r- ^) f (- 
27n / l_e-2 dz. 27n J ^ 1 _ e-^ 

Now this tet integral is a one-valued analytic function of s for all values 

Of r n-T singularities of ?(a, a) are at the singularities 

pointe the inf' ^*1 ^ exception of these 
Sine Th ^ representation of f(s, a) valid over the whole 

Snction^^ Akf corresponds to Hankel’s integral for the Gamma- 
tanction. Also, we have seen that ^(s, a) is analytic when a ^1-1-S and 

integrate gir ^‘^ 1 

_1_ [(«+> e-^ 

2m i - e-» 

which is the residue at s-0 of the intspand, and this residue is 1. 

Hence ? (^> ct) _ 
^-*.1 r (1—is) 

* Given by Biemann for the ordinary Zeta-fnnetion. 

t If . < 1, the integral taken along any straight line up to the origin does not oonverge. 



3*13, 13'14] THE ZETA FUNCTION OF EIEMANN 267 

Since F (1 - s) has a single pole at s = 1 with residue - 1, it follows that 
lie only singularity of f (s, a) is a simple pole with residue + 1 at a = 1. 

Example 1. Sliew that, when R (s) > 0, 

2* "^3* 

I r 
rwjo e*+l 

Example 2. Shew that, when R (e) > 1, 

Example 3. Shew that 

2* 
r(s)Jo 

2i-«r(i-g) /■{o+)(-2)»-i 

2iri(2^'“»— 1) J ^ 

lere the contour does not include any of the points ±7n, ±37ri, ± bwiy.... 

1314. Values of ^{s, a) for special values of s. 

In the special case when s is an integer (positive or negative), ^ 

a one-valued function of z. We may consequently apply Cauchy’s theorem, 
1 r(o+) (— 

that I ^dz is the residue of the integrand at ^ = 0, that 

to say, it is the coefficient of in 
1 — 

To obtain this coefficient we differentiate the expansion (§ 7*2) 

6^—1 n! 

‘m-by-term with regard to a, where (f>n{a) denotes the Bemoullian polv- 
mial. 

(This is obviously legitimate, by § 4*7, when | ^ ] < 2^, since can be expanded 

> a power series in s uniformly convergent with respect to a,) 

Then 
z^e" 

1 
" (a) X” 

n=l n ! 

Therefore ifsis zero or a negative integer (= — 7?i), we have 

£■(- m, a) = - ^'m+2 («)/{(»! + 1) (»i + 2)}. 

In the special case when a = l, if s = —m, then ^(s) is the coefiBcient 

in the expansion of - . 



268 THE TEANSCEN-0ENTAL FUNCTIONS [CHAP. XIII 

Hence, by § 7*2, 

r(- 2m) = 0, ^(1 - 2m) = (-)’"5™/(2m) (m = 1, 2, 3, ...), 

?(0)-1 
These equations give the value of ^ (s) when s is a negative integer or zero. 

13-16. The formula* of Hurwitz for f (s, a) when <r< 0. 

Consider - —j^^^—-——dz taken round a contour C consisting of 

a (large) circle of radius (2N +1) w, (N an integer), starting at the point 
(2i\r+ l)7r and encircling the origin in the positive direction, arg (— z) being 
zero at z = - {2N +1) tt. 

In the region between C and the contour (2iW +Tr; 0 +), of which the 
contour of § 13-13 is the limiting form, (- 0-)*-ie-<«(l _ e-*)-i ig analytic and 
one-valued except at the simple poles ± 2irf, ± Ami.+ 2Nm. 

Hence 

2iriJc 1 - e-* ^ 271-1J (gAT+i) „ 1-C-* 

where Sn, Jtn are the residues of the integrand at 2n'7rtf — 2n7n respectively. 

At the point at which z ss 2n7re “ the residue is 

(2n7ry 1 ^ 

and hence JSn 4* ii/ = (2n7ry-^ 2 sin Q stt + 27ran) . 

Hence 

^ /•«>+) («. 

2Trij (I ' (2i^+l) V 
dz 

_2sinJ^ ^ cos (2iran) 2 cos^ 8inr27ran^ 
~ + "7oZaT=t- 2 — 

2Trijc l—e~^ 

(2^y n=l 

Now, since 0 < a ^ 1, it is easy to see that we can find a number K 
independent of N such that | e-^(l - | < K when z is on (7. 

Hence 

J /* ^rw 
^Jc <^-K’j_^|{(2i\"+l)7r}»e*" 

< IC {(2iV 4.1) Trl'e'l*! 

-►0 as N00 if <r<0. 

* Zeiuchrift fiir Math, und Phyn. xzvii. (1882), p. 95. 

de 
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Making If -^oo, we obtain the result of Hurwitz that, if <r < 0, 

? (s, a) = 
2r(l-«) [ cos(27ra7!.) 

' ——^ + cos 

iach of these series being convergent. 

^ sin(27raf?)] 
1=1 ’ 

13161. Riemanris relation between ^(s) and ^(l — s). 

If we write a = 1 in the formula of Hurwitz given in § 13-15, and employ 
\ 12-14, we get the remarkable result, due to Riemann, that 

2>-» r (s) f («) cos swj a ^-(1 _ gy 

Since both sides of this equation are analytic functions of s, save for isolated 
/allies of s at which they have poles, this equation, proved when a <0, 
persists (by § 5-5) for all values of s save those isolated values. 

Example 1. If m be a positive integer, shew that 

f (2ra)=2*»-1 BJ{%m)!. 

ExampU 2. Shew that r(i*)ir"*V(») is unaltered by replacing g by 1-a 

(Riemann.) 

Example 3. Deduce from Riemann's relation that the zeros of f («) at - 2, - 4 - 6 
^re zeros of the first order. ’ ’ ’ 

13*2. Hermite 8* formula for a). 

Let us apply Plana’s theorem (example 7, p. 145) to the function 
[> (z) = (a + z)-*, where arg (a + z) has its principal value. 

Define the function q (x, y) by the equation 

i y) = {(“ + ® + W)~* - (a + ic - iy)-’} 

Since f 

ave 

= — {(a -h xY + y*j sin [a arc tan —^ I. 
( a? + aj 

arc tan 
a? + a does not exceed the smaller of Att and -1-^ * we 

a' 

13(«. y) k {(a -1- a:)» + | jr‘ | sinh |i w | a ||, 

l9k. y)k{(a + a;)’‘ + 2C)"4'"| jsinh-^ 
( x + a 

Using the first result when |y|>a and the second when |y|<a it is 

* Annali di Matematica, (8), v. (1901), pp. 57-72. 

t If {>0, arc tan 1=^^ j‘ i%l «ndarotani< j^dt. 
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evident that, if <r > 0. / q {x, y) — 1)“’ dy is convergent when ic > 0 an 
Jo 

tends to 0 as a? 00; also (a + xY'^dw converges if <r > 1. 
J© 

Hence, if <7 > 1, it is legitimate to make 00 in the result contained h 
the example cited; and we have 

f (5, a) I a""* + (a + dx-h2 (a® + y®)" |sin {s arc tan ~ ^ 

So 

?(s, a) = ia-‘ + ^^ +2|^ (a’ + y*)"*' |sin(sarc tan 

This is Hermite’s formula^; using the results that, if 

arctan^^/a^^r/a (y<|a7rj, arc tan y/a < i-tt > | , 

we see that the integral involved in the formula converges for all values of 5 
Further, the integral defines an analytic function of s for all values of s. 

To prove this, it is sufficient (§ 5*31) to shew that the integral obtained by differentiating 
under the sign of int^ration converges uniformly; that is to say we have to prove that 

jo L ” ^ (a®+y®)'’^8m arc tan J — 

^ jo ^ tan J — 

converges uniformly with respect to a in any domain of values of a. Now when |a| 
where A is any positive number, we have 

I (a®arc tan | cos ^a arc tan | < (a^+y^)^^ K cosh (Jn-A); 

converges, the second integral converges uniformly by § 4-431 (I). 

By dividing the path of integration of the first integral into two parts (0, Jtra), 
(|?ra, 00) and using the results ’ 

j sin ^a arc tan j < sinh ^, j sin ^a arc tan < sinh 

in the respective parts, we can similarly shew that the first integral converges uniformly 

Consequently Hermite’s formula is valid (§ 5-5) for all values of s. and 
It IS le^timate to diflferentiate under the sign of integration, and the 
differentiated integral is a continuous function of s. 

The corresponding formula when a = l had been previously given by Jensen. 
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13*21. Deductions from Hermite's formula. 

Writing ^ = 0 in Hennite's formula, we see that 

?(0, a) = i-a. 

Making s 1, from the uniformity of convergence of the integral involved 
in Hermite’s formula we see that 

ydy lim|f(», a)-^l = lim^^-:r^ + J^ + 2 f ,-s-_ 
.-oil 2a jo (a‘ + f)(e^-l)' 

Hence, by the example of § 12‘32, we have 

Further, differentiating* the formula for f (s, a) and then making s -► 0, 
we get 

Tfl—« 

ir 

+ 2 I — |log(a* + i/*). (a* + y’)~i* sin ^sarc tan^j 

+ (a*+w*)“i'arc tan^cos faarctan .1 
a \ aj} e^-lj 

.(a_^)loga-a + 2/;^i^^dy. 

Hence, by § 12*32, 

'A 
ds 

? (s, a)| = log r (a) - i log (2w). 
) #s=0 

These results had previously been obtained in a different manner by 
Lerchf. 

Corollary. Urn ■ ? («) - = 7, ?' (0) = -1 log (2w). 

13*3. Eulers product for f («). 

Let <r^l + S; and let 2, 3, 5, ...p,... be the prime numbers in order. 
Then, subtracting the series for 2~* f {s) from the series for ^{s\ we get 

f(s).(l-2-*) = p + ^+^+ Y,+ --, 

* This was justified in § 13*2. 
f The formula for a) from which Lerch derived these results is given in a memoir 

published by the Academy of Sciences of Prague. A summary of his memoir is contained in 
the Jahrhuch uber die ForUchritte der Math, 1893-1894, p. 484. 
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ali the terms of Xn-> for which ra is a multiple of 2 being omitted; then in 
like manner 

?(s).(l-2-«)(l-3-*) = i + i + i + .... 

all the terms for which m is a multiple of 2 or 3 being omitted; and so on; 
so that 

?(«).(! - 2'*)(1 -3-») ... (1 1 + 

the ' denoting that only those values of n (greater than p) which are prime 
to 2, 3, ... occur in the summation. 

Now* I Sn-*I ^^ i 0 as p oc. 

Therefore t/ <r > 1 -f the product f (5) O (1 — converges to 1, where 
p 

the number p assumes the prime values 2, 3, 5, ... only. 

But the product 11 (1 -p"*) converges when cr > 1 + 5, for it consists of 
p 

some of the factors of the absolutely convergent product 5 (1 — w~*). 
»=2 

Consequently we infer that f (s) has no zeros at which <r> 1 -i- 3; for if 
It had any such zeros, 11 (1 -p-‘) would not converge at them. 

Therefore, if cr > 1 + S, 

This is Euler’s result. 

n f 1 -1) = -i- 
p‘) r(s)- 

13*31. Riemanri 8 hypothesis concerning the zeros of ^(s). 

It has just been proved that ^(s) has no zeros at which <r > 1. 

From the formula (§ 13*161) 

t(s) = 2*-i W* {r («)}-! sec (isw) ?(!-«) 

It IS now apparent that the only zeros of f (s) for which o- < 0 are the zeros 

of ir(«)}-' sec sirj, i.e. the points s = - 2, - 4, .... 

Ifence all the zeros of f(«) except those at-2, -4:, ... lie in that strip of 
the domain of the complex variable s which is defined by O^a^l. 

It was conjectured by Riemann, but it has not yet been proved, that all 

the zeros of f (s) in this strip lie on the line <r |; while it has quite recently 

been proved by Hardy f that an infinity of zeros of f (a) actually lie on cr = J. 

It is highly probable that Riemann’s conjecture is correct, and the proof of 
it would have far-reaching consequences in the theory of Prime Numbers. 

* The first term of 2' stuts with the prime next greater than p. 
t Comptes Rendus, clviii. (1914), p. 1012; see p. 280. 
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13-4. Riemanns integral for f (s). 

It is eaiy to see that, if <r > 0, 

7i-*r TT-l* = 

Hence, when <t > 0, 

twr toj' 2 da. 

Now, if i!r(a;)=^2 e"”*'®, since, by example 17 of Chapter vi (p. 124), 

1 + 2*3-(«) = a:"4 {1 + 2ar (!/«)}, we have lim «■ (a:) = 1 ; and hence 

f" _ 
I ^(a) da converges ivhen a- > I, 

Consequently^ if cr>% 

?(s)r (|s)'7r-i'=lim f w (x) dx- f I . 
\ / jv-**qoL^o Jo »=jv+i J 

Now, as in § 13*12, the modulus of the last integral does not exceed 

Jo U=w+i j Jo i_e-(N+i)Tx 

< {7r(J7+l)}-i 
Jo 

= {7r(i7+l)}-' {(J7>+ 2J7) w} 1 -4-^ r <r - ij 

0 as i\r 00, since <r > 2. 
Hence, when <r > 2, 

?(s)r (|sj7r-4*= 

= ■1-«“4 •Br(l/a;)| a:4*~i dx+ w(x)xi‘~^ dx 

^~s f w(x)a^‘-^dx. 

Consequently 

Now the integral on the right represents an analytic fiinction of s for all 

lvalues of s, by § 5-32, since on the path of integration 

n=0 

Consequently, by § 5*5, the above equation, proved when <r > 2, persists for 
dl values of s. 
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If now we put 

we have 

f (^) == I — ^^2 4.J x-l'm{m) cos ^dx. 

Since J* i!?“it!r(57) ||logir| cos log£r? + |^7r^{fe 

satisfies the test of § 4*44 corollary, we may differentiate any number of times 
under the sign of integration, and then put ^ = 0. Hence, by Taylor’s 
theorem, we have for all values^ of t 

1(0= i (hn^l 
n=0 

by considering the last integral is obviously real 

This result is fundamental in Riemann’s researches. 

13*5. Imqttalitus satujied hy f («, a) whm <r> 0. 

We shall now investigate the behaviour of f (s, a) as ± 00, for given values of <r. 

When <r> 1, it is easy to see that, if xV be any integer, 

where 

^ {(w+l+®)®“i (Tt+l+a)* 

fn+i u — n j 

“*/„ («+«)•+» “■ 

Now, when tr>0, |/,(*) | <|«| ' 

fn+1 du 

= |*|(m+a)“'-\ 
00 

Therefore the series 2 is a uniformly convergent series of analytic functions 
»—jV 

00 

when so that 2 f%{i) is an analytic function when or >0 j and consequently, by 
flssiV 

§ 5‘5, the function f (s, a) may be defined when tr > o by the series 

C(s, a)= 2 (a+Ti.)*"*- 
(l^s)(Ar+ay 

Now let [t] be the greatest integer in | ^ 1; and take W=[0. Then 
W «0 

’*=0 »=W 
W 00 

»«o nHt] 

* In this particular piece of analysis it is convenient to regard t as a complex variable, 
defined by the equation 8=^+it; and then | (t) is an integral function of t. 
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Using the Maclaurin-Cauchy sum formula (§ 4-43), we get 

fW r« 
lf(*, «)l<o~'+/ (<i+a:r'<ir+|<|-i([«]+a)*~®’+|*| / dx. 

JO 

Now when d < <r < 1 - d where ^ > 0, we have 

|f(#, a) I <a-^+(l-ir)-U(a+Wr‘^--a^-^ + UrMW+ar'"+ 

Hence f (a, a) * 0 (|«conetant implied in the s^hol 0 being independent of s. 

Bid, when 1 + toe have 

i f (s, a) I = 0 (I i |>-^ + {a+x)-^dx 

<0(|<p + (a+x)~^dx. 

since (a+< d 

<r ^ 1, and so 

When <r ^ 14*^) 

(a+ir)-i when <r>l, and (a+:r)-°'<(a+[«])*-'(a+a;)-i when 

f(^,a)=0{Ur='log|<|}. 

1 ((<r, a) I <a-°’+ 2 (o+nr*‘^=0(l). 
n=l 

13’51. Inequalities satisfied by ({$, a) 'when <r ^0. 

We next obtain inequalities of a similar nature when In the case of the 
function ((s) we use Riemann’s relation 

(1f (1-«)sin(|«ir). 

Now, when e<l-~b, we have, by § 12-33, 

r (1 - «) = 0 
and so 

CW — 0 [exp {Jff I «I -4- (J - or- log 11 - a I + t arc tan ^/(l - «r)}] ^(1 - s). 

Since arc tan according as t is positive or negative, we see, from 
the results already obtained for ((s, a), that 

In the case of the function f (a, a), we have to use the formula of Hurwitz (§ 13*15) 
to obtain the generalisation of this result; we have, when <r < 0, 

{(s, a)= -i(2w)*-‘ r(l-*) [«**'*(!-,)], 

00 ^2nina 
where 

Hence (l-e®"^'®) fa (!-«)=:2 

+ («-!) 2 ^nwiaf^ u»-^du; 
n^N-hl Jn-l 

since the series on the right is a uniformly convergent series of analytic functions 
whenever <r<l“-3, this equation gives the continuation of fa(l~«) over the range 
0^<r<l-d; so that, whenever o- ^ 1 -d, we have 

sinirafa(l-«) I ^1+ 2 {?i‘^”^ + (n-l)‘'“^} + |«“-l I 2 1”^ u'^^du 
^^=2 »“JV+l7n-.l 
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Taking -we obtain, as in § 13-6, 

fo(l-a)=0((<i“) 

Andobvionsly =0(MriogM|) (-a^.<a). 

Consequently, whether a is unity or not, we have the results 

=<?(|<|*iog|<|) (-a^o-^d). 

We may combine these results and those of § 13-6, into the singlA formula 

where. f a)-0(U|-> log|r|), 

i-(<r)=J-<r, {<r^0); T(<r)=J, T(o-)=l-(r, (i%(r^l); r(<r)«=0, (<r>l); 

and the log | i [ may be suppressed except when -dC<r$3orwhenl-d$<r<l+a. 

13‘6. The asymptotic expansion of log T (z+ a). 

From § 12-1 example 3, it follows that 

v «=ri (v a + nJ j T{z-\~a) 

Now, the principal values of the logarithms being taken, 

= I ^ 1, ? 
»=iLV«(a + nV m (a + n)”*] „ti m a“ ’ 

If I«i < a, the double series is absolutely convergent since 

i T-^^.-iogfi—ifiU-LiLl 
H=iL^(a+w) a+«/ a-fnj 

converges. 

Consequently 

■I 6“*^* r (cl) Z ^ dz ® 1 

^ 11^=a - i, ;r(^+J,?K “)• 

mm. r TTZ^ 

Now consider ? («. «) *Ls, the contour of integration being 

similar to that of § 12-22 enclosing the points 5 = 2. 3, 4, ... but not the 

~I> ~2, ...; the residue of the integrand at s = m(m^2) is 

— z” t(m, a); and since, as <r - oo (where s=<t + it), f («, a) = 0 (1), the 

integral converges if 121 < 1. 

zahll^^st ^to l-e 4(1 - -r) when 0« 1. See Landau, Prim- 
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Consequently 

THE ZETA FCTifCTION- OF KIEMANN 

e-^r(a)^£_ I 0^ 1 f 

^r(e+a) a „^in(a + n) 27rij< c s sin TTs 
f («, a) ds. 

Hence 

log — r ^ f 9^/ \ 
^^r(z + a) ^ ^(a)~2^ics■SK^f(*’“>‘^• 

Now let i) be a semicircle of (large) radius N with centre at a = |, the 
semicircle lying on the right of the line <r = f. On this semicircle 
f(s, a) = 0(1), Ia*| = jaand so the integrand is* 0 

Hence if | a | < 1 and — w + 3 ^ arg z^ir— B, where S is positive, the inteirrand 
is 0 and hence 

) 8 sin TTS 
?(«, a)ds -^0 

IS iV" - 00. It follows at once that, if | arga | -n- - S and | a | < 1, 

^r(a+(i) r(a)'^27rtjj_^.;^S^^(*-®)‘^- 

But this integral defines an analytic function of z for aU values of | a | if 

|arga| ^tt-B. 

Hence, by § 6-5, the above equation, proved when \z\<l, persists for all 
ralues of I a I when | argz | ^ w — 3. 

Now consider J ssin-n-s ^integer and 

S is going to tend to infinity. By § 13-51, the integrand is 0 

vhere and hence if the upper signs be taken, or if the lower 

igns be taken, the integral tends to zero as iZ oo. 

Therefore, by Cauchy’s theorem, 

, r(a) r'(a) 1 /•-™-4+®« „ 
r(^+a)^ ^ i j^, 

rhere i?m is the residue of the integrand at s = — m. 

Now, on the new path of integration 

^here K is mdependent of z and t, and T(<r) is the function defined in 
13-51. 

* The constants implied in the symbol 0 are independent of s and z throughout. 
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Consequently, since J ^ i^dt converges, we have 

when j 21 is large. 

Now, when m is a positive integer, = ———, and so 
— fji 

by § 1314, Rn = ^^ \m + lf(^+2) ’ <t>m (a) denotes the derivate of 

Bernoulli’s pol3momial. 

Also jBo is the residue at s = 0 of 

j(l+^+ j(l +slog2r+ ...) l^-a + srCO, a) + ...|, 

and so -Bo = log2^+ f' (0, a) 

= (I - a) log ^ + log r (a) - ^ log (2ir), 

by § 13-21. 

And, using § 13-21, i2_i is the residue* at 5= 0 of 

Hence It-i=--z\ogz + z + z. 

Consequently, finally, if | arg ^ | tt - S ajid | £: | is large, 

log r(^ + a) = + a — log^r — ir + i log(2ir) 

+ I _(~)”~‘<^'w+a(o)_ Q, n-i) 

In the special case -when a = l, this reduces to the formula found 
previously in § 12*33 for a more restricted range of values of arg z. 

The asymptotic expansion just obtained is valid when a is not restricted 
by the inequality 0 < a ^ 1; but the investigation of it involves the rather 
more elaborate methods which are necessary for obtaining inequalities satisfied 
by ^ (s, a) when a does not satisfy the inequality 0 < a ^ 1. But if, in the 
formula just obtained, we write a = 1 and then put 4- a for z, it is easily 
seen that, when | arg (^ + a) | ^ tt - S, we have 

logr(^ + o +1) = + a + log 4- a) --s: - a + ^ log (27r) 4- o (1); 

* Writing 
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subtracting log{z + a) from each side, we easily see that when both 

|arg(^ + a)|^7r-S and |argz|§9r-S, 

we have the asymptotic formula 

\ogT{zJra)^{z + a-^\ogz-z + \ log(27r) + o (1), 

where the expression which is o (1) tends to zero as | |-^oo. 
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Miscellaneous Examples. 

1. Shew that 

(2«-l)f(«) = ^—=^ + 2 ( (|■-h3^2)-^giJJ(^arctan2y)-^-^^. 
Jq 

2. Shew that 
(Jensen, DIntermediaire des Math, (1895), p. 346.) 

f («)«^-Y-2« f (1 -h/)-i^sin(«arctany) . 
^“1 Jo ^ e^+l 

(Jensen.) 

3. Discuss the asymptotic expansion of log (7 (^-f-^x), (Chapter xii example 48) by 
aid of the generalised Zeta-fimction. (Barnes.) 

4. Shew that, if o- > 1, 

logf(«)=2 
p m=l 

the summation extending over the prime numbers jp = 2, 3, 5, .... 

(Dirichlet, Journal de Math, iv. (1839), p. 407.) 
5. Shew that, if <r> J, 

^ 
f(«) » 

where A (7i)=0 when n is not a power of a prime, and A (72) = logjD when n is a power of a 
prime p. 

6, Prove that 

. (-sr 

^ /* ® 
= J,-*"'(iv. 

(Lerch, KraJcOw Rozprawg*,, li.) 

* See the Jahrbuch iiber die Fortschritte der Math, 1893-1894, p. 482. 
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»=i ^ 
where | ^ | < 1, and the real part of s is positive, shew that 

and, if»<l, 

lim (l-x)i-*^(jr,a;)=r(I-»). 
ar-*-l 

(Appell, Comptei Rendus, Lxxxvn.) 

8. Ifx, a, and s be real, and 0<a<l, and i> 1, and if 

shew that 

a,t)== S 7-— 
n*0 

r(»)/o 
and 

-1 

(Lerch, Jlcto JtoA. xi.) 

9. By evaluating the residues at the poles on the left of the straight Hne taken aa 
contour, shew that, if i; > 0, and | arg y | < !«•, 

_ 1 fk+mi 

and deduce that, if ir > 
1 fk’haoi 

It. .P W*(»rar)^“f(2w)<f2i«?ar(:r), 
J fC — ODZ 

and thence that, if a is an acute angle, 

/o ^==«'COS 

(Hardy.) 

10. By differentiating 2n times under the integral sign in the last result of example 9, 
and then making a |ir, deduce from example 17 on p. 124 that 

rcoshjtr/ ^ 

By taking n large, deduce that there is no number tg such that ^ (Q is of fixed sign 
when ^ > ^0, and thence that C (s) has an infinity of zeros on the line 0-=^. 

(Hardy.) 

[Hardy and Little wood, Proc. London Math. Soc. xix, (1920), have shewn that the 

numl>cr of zeros on the line o-=i for which 0 < i < T is at least 0 (P) as oo j if the 

Riemaim hypothesis is true, the number is ^ T log T- q qis. ^ 
T , „ \ o / > 
Landau, Primzahlen, i. p. 370.] 



CHAPTEE XIV 

THE HYPEEGEOMETRIC FUNCTION 

14‘1. The hypergeoTnetrio series. 

We have already (§ 2'38) considered the hypergeometric series* 

1^^.. a(a + l)6(6 + l)., , a(a + l)(a+2)b(b^l)(b + 2) , . 
l.c 1.2.c(c+l) ^ 1.2.3.c(c + l)(c + 2) 

Tom the point of view of its convergence. It follows from § 2*38 and § 5*3 
;hat the series defines a function which is analytic when \z \ <1. 

It will appear later (| 14*53) that this function has a branch point at ^ = 1 
md that if a cut*f (i.e. an impassable barrier) is made from 4-1 to + oo along 
she real axis, the function is analytic and one-valued throughout the cut 
plane. The function will be denoted hj F(a, b; c; z). 

Many important functions employed in Analysis can be expressed by 
neans of hypergeometric functions, ThusJ 

(1 = --sr), 

log(l + ^)-^F(l, 1;2;-^), 

Example. Shew that 

'^F(a, b; c; z)ss=-~- E(a+1, 5-f-l; c + 1; z). 

14*11. The valued of F(a, 6; c; 1) iuJi€7i R(c — a — b)>0. 

The reader will easily verify, by considering the coeflScients of in the 

* The name was given by Wallis in 1655 to the series whose nth term is 

a + [a+ 25} ... {a + {ti-l)b}. 

Suler used the term hypergeometric in this sense, the modern use of the term being apparently 
lue to Kummer, Journal filr Math. xv. (1836). 

t The plane of the variable z is said to be cut along a curve when it is convenient to consider 
mlysuch variations in z which do not involve a passage across the curve in question ; so that 
he cut may be regarded as an impassable barrier. 

X It will be a good exercise for the reader to construct a rigorous proof of the third of these 
esults. 

§ This analysis is due to Gauss. A inetliod more easy to remember but more difficult 
0 justify is given in § 14*6 example 2. 
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various series, that if 0 $ a; < 1, then 

c{c-l-(2c-o- 6 - !)«} b; c; a;) + (c — a)(c - b) a;F(a, b;c+l;a!) 

= c(c-l)(l~a;)F(a,b;c-l;a!) 

— c(c —l)|l+ — 

where u„ is the coefficient of a?* in 6; c — 1; «). 

Now make x~*l. By § 3-71, the right-hand side tends to zero i 

converges to zero, i.e. if u„-^0, which is the case whei 

JJ (c — a — 6) > 0. 

Also, by § 2*38 and § 3*71, the left-hand side tends to 

c(a+6-c)i?’(a,6;c;l)+(c-a)(c-J)/’(a, h;c+l; 1) 

under the same condition j and therefore 

F(a,b;c;l)- <^^-^^^)F(a, b;c+l;l). 

Eepeating this process, we see that 

"li™ .7,(c + »)V-«-6 + o)j ^*•« + “! 1). 
if these two limits exist. 

B.. (§ 1213) 4, fo™» limit it if « “ 

integer; and, if u„(a, b, c) be the coefficient of »» in F(a, b: c: x) and 
«i>|cl, we have > > /> 

I ^ (a. h; c -t- »i; 1) — 11 ^ 2 \ un{a,h, c + m)\ 

% 2 itn(la|, |6|, m—\c\) 

„|o I ® I + I ^ I + 1 > ^ + 1 - IC1). 

Now the last series converges, when m>\c\ + |a| +16|-1, and is a positive 
decreasing function ofm; therefore, since {m —|c|}“*-»0, we have 

lim F{a,b-, c + m; 1)=1; 

and therefore, finally, 

F{a,b\c-, 1)- 
r(c-a)r(c-h)- 
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14*2. The differential equation satisfied by F(a, b; c; z). 

The reader will verify without difficulty, by the methods of § 10*3, that 
the hypergeometric series is an integral valid near z^O of the hypergeometric 
equMimi* 

zil-z)^ + {c-(a + b + l)2}^-abu = 0; 

from § 10*3, it is apparent that every point is an ‘ordinary point’ of this 
equation, with the exception of 0, 1, oo, and that these are ‘ regular points/ 

Example. Shew that an integral of the equation 

(4+^) (4-“) (4-^) 
is 

2®jP(a4’a, 5-fa; a—jS-fl; ^). 

14*3. Solutions of Riemann's P-equation by hypergeometHc functions. 

In § 10*72 it was observed that Riemann’s differential equation f 

fu ^ f] ^ 1 ~ /3 ~ ^ ^ 
dz^ \ z—a b z — c ) dz 

fgg' {a -b)(a- c) 00'(b-c) (b-a) ^ 77^(0-a) (c-b)] 
\ z—a z — b z^c I 

__ u ^ . 
^ (if — a) — b) (z — c) 

by a suitable change of variables, could be reduced to a hypergeometric 
equation; and, carrying out the change, we see that a solution of Riemann’s 
equation is 

l+a- 
(z-a)(c-b) 

^ (z—b)(c— a) 

provided that a — g’ is not a negative integer; for simplicity, we shall, 
throughout this section, suppose that no one of the exponent differences 
a —g', 0 — 0", 7-7' is zero or an integer, as (§ 10*32) in this exceptional 
case the general solution of the differential equation may involve logarithmic 
terms; the formulae in the exceptional case will be found in a memoir^ by 
Lindeldf, to which the reader is referred. 

Now if g be interchanged with or 7 with 7', in this expression, it must 
still satisf}^ Riemann's equation, since the latter is unaffected by this change. 

* This equation was given by Gauss. 
t The constants are subject to the condition a + a'+^-f/S'-t-y + Y'ssl, 
X Acta Soc. Scient. Fennicae, xix. (1893). See also Klein’s lithographed Lectures, Ueher die 

hypergeometrische Fanhtion (Leipzig, 1894). 



the transcendental functions 

We thus obtain altogether four expressions, namely, 

(j:r|) ■^|« + /9 + 7. a + /9'+7; 1+a-a'; 

[chap. X] 

(c — 5) — g) 
(c — a) (^ — 6) 

(j3i) ^|a' + /9 + 7. a+/9' + v; l + a^-a; f 
^ (c —a)(^ —6^ 

(jr|) ^{a + ^ + 7', a + y&' + 7'; 1 + g-a'; 

“-(—in—i^{«' + y9 + 7', a' + ^ + 7 ; l+a'-a; 
^ {c-a){z-h)\ 

wmcli are all solutions of the differential equation. 

(a equation is unaltered if the triads (a, o', a] 

» if ’ W’ f""® interchanged in any manner. If therefore we main 
uch changes m the above solutions, they will still be solutions of th. 

ainerential equation. 

There are five such changes possible, for we may write 

{6, c, a}, {c, a, 6}, {a, c, b}, {c, b, a], {6, a, c] 

m turn in place of {a, b, c}, with corresponding changes of o, o', 0, 0', y, y'. 

4 X 5 = 20 new expressions, which with the original four 
tprm twentj-four particular solutions of Riemann's equation, in 
terms of hypergeometric series. 

The twenty new solutions may be written down as follows; 

'^{^ + 7 + «,;9 + 7'+«; 1^0-^- 

“• “fcr (j^y ^y+'^ + a. 0'+y'+a-, 1+^-0; 

(^y ^|^ + 7+«',/9+7'+a'; 1+0-ff-, 

+7+0', yy+y+a'; l+yy-yQ; (^-c)(z-b)\ 
, ^ {a-b){z-c)]’ 
„ fz - c\y (z - 6\<5 r , 
^ U-J U~3^) ^j7 + a + A 7 + a' + /9; I + 7-7'; 

1 (6-c)(ir-a)J ’ 
fz-c\y /z-‘b\^ ( 

J^T+o+ye, 7'+a^+ff; 1+7-7; 
(6-c)(^:-a)J ’ 

„ _(!!- c\r (z - b\» { 
’ \z~a) [f^J ^\y + ‘‘ + ^,y+a' + 0'; 1 + y-y'- 

I , . '' {b-c){z-a)\’ 

\z-a) [iZ^J ^ jV+ «+^, y'+a.'+ 0’i 1 + 7'- y; - a) (^ - c)) 
^ (6-c)(^-a)J’ 
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-ff'+v+A .-+7'+* 1+.--.; 

““-(H)"(H)' «'+7'+A; 

“"-(S)’(H)‘ -ff+A+.^ 7h-,9'+., 1+7-yi 

^■f'^--3^-..7'+A+.; 1+7--7; %Z%%zi. 

(a — c) (>e — i) 

'“-(H)'(H)' •^|^ + '<+t.A+«'+7; 1+A-A; |r|H)}’ 

6\^' fz - c\y 
V^_a/ V^-a7 - - w. - ■ - w, ^ (cl6)(^_a)|> 

-(^f)' (S)' HH)}- 

-(H)*'CH’'^{a+ « +7', A+ .V7.1 + A-A , 

^'{/9'+a + y,y9'+a'+7; 1 + /3-/9; 

I U-ay (' ■ (c-6)(^-a)J' 

By writing 0, 1 - (7, B, 0, <7-^-JS, a; for a, a', /9, .y .y' 

^——^ respectively, we obtain 24 solutions of the hypergeometric 

pation satisfied by F(A, B ; G; x). 

The existence of these 24 solutions was first shewn by Kummer*. 

14*4. Relations between particular solutions of the hypergeomettic equation. 

It has just been shewn that 24 expressions involving hypergeometric 
des are solutions of the hypergeometric equation; and, from the general 
leory of linear differential equations of the second order, it follows that, if 
ly three have a common domain of existence, there must be a linear relation 
ith constant coefficients connecting those three solutions. 

If we simplify Ui, u.2, u^, u^; t%, in the manner indicated at 

* Journal fiir Math. xv. (1836), pp. 39-83, 127-172. They are obtained in a different manner 
Forsyth’s Treatise on Differential Equations^ Chap. vi. 
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the end of § 14‘3, we obtain the following solutions of the hj^ergeometrii 
equation with elements A, B, C, x: 

y,^F{A,B-C-,x), 

y, ={-xy-<^F{A-G+\,B-G + l-,2-G-,x), 

y, ^{l-xy-^-^F{G~B, G-A-,G-x), 

y, = (- - xf-^-^F{l-B,1-Ai2-G-,x), 

y-B ^ F (^Aj BI A -j- B — O-i-ljl — x\ 

y^^(l-xy-^-^F(G-B,G-A; G-A-B + l; 1-x), 

y.2i = (— x)~^F(A, A — C + I', A — 5 + 1; x~^), 

y^ = (-*)-'* F{B, B-G+l;B-A + l-,x-^). 

If I arg(l — «) I < w, it is easy to see from § 2-53 that, when | *■ | < 1, thf 
relations connecting y^, y^, y„ yt must be y, —yz, yz = yi, by considering th« 
form of the expansions near a: = 0 of the series involved. 

In this manner we can group the functions Mj, ... itja into six sets of four* 

viz. %ij 1%, W23, ^16 > ^2j ^4> ^6 j ^211 ^23} ^6) '^ } ^22? ^124 3 ^^11> ^^17? ^9 

^83 ^3 members of the same set are constant multiples oi 
one another throughout a suitably chosen domain. 

In particular, we observe that Ui, -Uig are constant multiples of a 
function which (by ^ 5*4, 2*o3) can be expanded in the form 

{z - a)- 1 + en (z - a)4 

when I-?-aI is suflSciently small; when arg(^-a) is so restricted that 
(z — a)® is one-valued, this solution of Riemann^s equation is usually written 
pw. And P^®^; P^’, P^^; P^y) are defined in a similar manner when 
\z^a\,\z--h\,\z- c\ respectively are sufficiently small 

To obtain the relations which connect three members of separate sets 
of solutions is much more difficult. The relations have been obtained by 
elaborate transformations of the double circuit integrals which will be obtained 
later in § 14*61; but a more simple and singularly elegant method has recently 
been discovered by Barnes; of his investigation we shall give a brief account. 

14*5. Barnes' contour integrals for the hyper geometric function^, 

CoMider yr rfaH..)r(n..)r<-.) 
2"J—, r(e + s) ' 

where larg(—2^) | <-7r, and the path of integration is curved (if necessary) to 
ensure that the poles of r(a+5)r(6-j-5), viz. 5 = — a — n, ~ 6 — n (n = 0,1, 2,...), 

* Tbe sp^ial formula 

1; C; 

which IS derimble from the relation connecting ui with mjs, was discovered in 1730 by Stirling 
Methodus Differentialis^ prop. vn. 

t ^oc.London Math. Soc. (2), ti. (1908), pp. 141-177. Befereuces to previous vork on .imO., 
topics hy Pincherle, Mellin and Barnes are there given. 
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lie on the left of the path and the poles of r(—s), viz. s = 0, 1, 2, lie on 
the right of the path*. 

From § 13‘6 it follows that the integrand is 

0[| s |a+^i exp {- arg {-z). I (s) - w \I{8)\\] 

as s->oo on the contour, and hence it is easily seen (§ 5-32) that the integrand 
is an analytic function of throughout the domain defined by the inequality 
I arg.3r I — where B is any positive number. 

Now, taking note of the relation F (- s) F (1 + s) = - w cosec sw, consider 

f r(a+s)r(b+s) ir(-zy ^ 
27riJc F(c + s) F(1+s) sinsw 

where 0 is the semicircle of radius iV + i on the right of the imaginary a via 

with centre at the origin, and N is an integer. 

Now, by § 13'6, we have 

F (g + s) F (6 + s) TT (- ;g)« _ i-zy 
F(c + s)F(l+s) sinsw sin sir 

as N-k», the constant implied in the symbol 0 being independent of args 

when s is on the semicircle; and, if « = 4- e" and | z | < 1, we have 

(-zy cosec STT = 0 j^exp ■ (n + cos ^ log |«| - sin 0 arg (- z) 

+ §)■!"■ I sin 01 

= 0 exp cos ^ log II - SI sin 01| j 

0 j^exp|2-i^iV'+^^log|ir||j 

0 l^expj-2-43(n+ 1^1 j 

Hence log|-s| is negative (i.e. \z\< 1), the integrand tends to zero 
sufiBcientlj rapidly (for all values of 6 under consideration) to ensure that 

j “❖O as JV'-^oo. 

r -{r‘”’vf +r i, 
(J-ooi Jc J {NH)i) 

Now 

by Cauchy’s theorem, is equal to minus ^iri times the sum of the residues 
of the integrand at the points 5 = 0, 1, 2, ... JT. Make iV-^oo, and the last 

* It is assumed that a and b are such that the contour can be drawn, i.e. that a and b 
are not negative integers (in which case the hypergeometric series is merely a polynomial). 
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three integrals tend to zero when | arg (- z) | ^ ^ - g, and | ^ | < 1, and so, ii 
these circumstances, 

27rt 

T(a + s)r(b + s)r(^s) root 

ij-wi r(c+s) 

the general term in this summation being the residue of the integrand a1 

{-zyds= lim I 
JV-r^OO »5a0 r (C + . 71 ! * 

Thm, an analytic function {namely the integral under consideration) eodsU 
throughout the domain defined by the inequality | arg^| < tt, andy when \z\<l 
this analytic function may be represented by the series 

2 r* r (6 + 72) ^ 
»=0 r (c + ?i) . 72 ! ^ ' 

The symbol F(ay b, c^ z) will, in future, be used to denote this function 
divided by r (a) r(6)/r(c). 

14;'61. The continuation of the hyper geometric series. 

To obtain a representation of the function F(a^ b; c] z) in the form of 
series convergent when i2rl>l, we shall employ the integral obtained in 
§14 5. If i) be the semicircle of radius p on the left of the imaginary axis 
with centre at the origin, it may be shewn* by the methods of § 14*5 that 

J__ 
2-77^ 

f 

J J> 

r(a + s)T(b + s)ri-s) 
r (c+s) (— zyds->Q 

as p-^00, provided that 1 arg (- ^r) ( < w-, | z | > 1 and p-^co in such a way 

that the lower bound of the distance of JD from poles of the integrand is 
a positive number (not zero). 

Hence it can be proved (as in the corresponding work of § 14*5) that, when 
! arg (— ^) I < TT and | ^ j >1, 

rr(a-fg)r(5+^)r(~^) 
27rij r(c-f») {•^zfds 

= i r(a4-72)r(l—c-fg-fTi) sin(C"-a“"72)7r 
1**0 (1 + ^i) r (1 ~ 6 -f a -j- Ti) cos niT sin (6 — a — ti) tt ^ 

+ 2 r(^+«)r(\ — c + b + n) sin(c- 6 — n)TT \-b-n 

»=o 1^(1 + w)r(l — a +J + n) cosn7rsin(a —6 —w)IT^ ^ ’ 

the expressions in these summations being the residues of the integrand at 
the points s = — a —n, s = — b — n respectively. 

It then follows at once on simplifying these series that the analytic 

* In considering the asymptotic expansion of the integrand when |»| is large on the oontonr 
or on D, it is simplest to transform P (a+sj, T (h+s), r(e+«) by the relation of § 12-14. 
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continuation of the series, by which the hypergeometric function was originally 
defined, is given by the equation 

r(a)r(6)„, , , r(a)r(a-6>, . 
p/A F{a,h-, c;g) = -Y,^ ^ ■l{-z)-<^F{a,l-c + a-,l-h + a-,zr^) r(c) 

where | arg {-z)\< tt. 

r(a-c) 

It is readily seen that each of the three terms in this equation is a solution 
of the hypergeometric equation (see § 14*4). 

This result has to be modified when a - 5 is an integer or zero, as some of the poles of 

r (Gt+«)r are double poles, and the right-hand side then may involve logarithmic 
terms, in accordance with § 14’3. 

Corollary, Putting 6=c, we see that, if | ai^ (- z) | < tt, 

r (a) (1 - ^ r (a+») r (-*)(- i)* flfe, 

where (1 -z)■"»-*-1 as z-*.0, and so the value of | arg (1 -z) 1 which is less than w always 

has to be taken in this equation, in virtue of the cut (see § 14T) from 0 to +oo caused 
by the inequality | arg( ~z) | < ir. 

14*52. Barnet lemma thaty if the path of integration is curved so that the poles of 

r (7-«)r(a-a) Ue on the right of the path and the poles ofT {a-k-$)V (^+s) lie on the left* 
then 

_L 
2?rt J _oo 

r 
i 

(a +*)rO+»)r(y-<.)r(8- jW,_r(°+y)r(a+8)r(g+Y)r03+8) 
^ r(a + /S + y+«) 

Write / for the expression on the left. 

If <7 be defined to be the semicircle of radius p on the right of the imaginarj^ axis with 

centre at the origin, and if p-»~ao in such a way that the lower bound of the distance of 

C from the poles of r (y—») r (d - ») is potitive (not zero), it is readily seen that 

r (a-n) r (g+a) r (y - <) r (8 - «) = ^ ^ ^ ^ fir“ cosec (y-»)ir cosec (8-«)«■ 

= 0[,*+'>+>+»-2exp{-2^|/(,)|}j, 

as j«j-►oo on the imaginaiy ads or on O, 

Hence the original integral converges; andy*^-*-Oasp-r»-oo, whenfE(a-}-^+yf d-1)<0. 

Thiis, as in § 14*5, the int^al involved in i is - Sjti times the sum of the residues of the 

integrand at the poles of r(y-«) r (5-z); evaluating these residues we gett 

I r(a4-y+n)r(i3+yf^) w « P (g-f 3-f 7t) r fr 
»=or(^-t“l)r(l-f-y-^ + w) sin(5--y)7r ,1=0 P (^i + 1) P (1+5 — y+?l) 8m(y--d) TT* 

* It is supposed that o, y9, y, 5 are such that no pole of the first set coincides with any pole 
of the second set. 

t These two series converge {§ 2*38). 
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And so, using the result of § 12*14 freely, by § 14*11 : 

y(a+a)r03+a) 
■f'ia + Sjff + d; l—y + J. 8in(y-a)ff\ r(i-y+a) 

i-»+y; i)} 

^«-r(l-a-ff-^)| r(a + a)r(<3 + a) r(a + y)r09 + y) ) 

- tr(i-a-y)r(i-V-V) ~r(i-a-a)r(i-<9-a)} 

= ■■■ • ^^°ty)rO+y)r(a+a)r(g+a) . 
r(a+/»+y+a)8in (a+j3+y+a) w 8Tn (y -a)»r "■ (^+y) ”■ 

— sin (a+^)7rsin ()3+5)?r}. 
But 2 sin (a+y) TT sin (^+y) ^ « 2 sin (a+d) sin (/2+5) tt 

=cos (a - 3) n-- cos (a+^ + 2y) n—cos (o—j3) IT+cos (a+/3+28) ir 

=2 sin (y - a) JT sin (a+;3+y+a) »•. 

Therefore (°+y) r QS+y) r (a+d) r O+a) 
r(a+^+y + a) ^ > 

which IS the required result; it has, however, only been proved when 

^(fl+j8+y+a-l)<0; 

analytic continuation, it is true throughout the domain through 
wluch both sides of the equation are analytic functions of, say, a; and hence it is true for 
all values of a, /3, y 8 for which none of the poles of r (a+») r (/9+»), gva function of », 
coincide with any of the poles of r (y - a) r (5 - s), 

CoroU^y. Writing ,+i, a-i, y+k, 8^k in place of a, ft y, 8, we see that 
the result is still true when the limits of integration are -i+oo t, where k is any real 
constant. 

14-53. The connexion between hypergeometric funetione of z and of\~z. 

We have seen that, if | arg (-^) | <ff, 

_ 1 /■“* fl /•-*+»< , 
“ 2wi j j . r (‘‘+«) r (b+t) r («-<) r (c-a-b-t)dtj 

by Banies’ lemma. r (c - a) r (c - 6) ’ 

If i be so ch^n that the lower bound of the distance between the s contour and the 

C«i,i»g out Ik. Interchrag., w. », Ih.i If ;„g (1 gm„ iu prmoii«.l value, 

r(c-a)r(c-6)r(a)r(6)if’(a, b; c; z)lr{c) 

1 ,1 r , 
^(“ + ‘)r(6-l-f)r(c-a.-6-«)|_ j_^J(e-t)r(-e)(~zydel 2jti 

27ft 

dt 
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11-*| <l,thislast integral may be evaluated by the 
methods of Barnes’ lemma (§ 14-52); and so we deduce that 

r(c-a)r(c-i)r(o)r(h)Jf(a, 6; z) 

—T{e)T{a)T{b)T(fi — a—b)F(a,b; a+6—c+l; 1 — z) 

+r(c)r{o-a)r(e-b)T(a+b-c)(l-zy~<‘-i>F(c-a,c-b; e-a-b + 1; 1-z), 

a result which shews the nature of the singularity otF(a,b; e; z)atz=l. 

This result has to be modified if e-a-b is an Latter or zero, as then 

r(a+<)r(6+t)r(c-o-6-t)r(-!;) 

has dcjle poles and logarithmic terms may appear. With this exception, the result is 
vahdwhen|arg(-z)| <^, I arg(l-a)|<,r. 

TaMng |z|<l, we may make z tend to a real value, and we see that the result still 
holds for real values of z such that 0 < ^ < 1. 

14-6. Solution of Riemann’s equation by a contour integral. 

We next proceed to establish a result relating to the expression of the 
hypergeometnc function by means of contour integrals. 

Let the dependent variable « in Eiemann’s equation (§ 10-7) be replaced 
by a new dependent variable /, defined by the relation 

u^{z- a)« {z-hf {z - c)y I. 

The differential equation satisfied by I is easily found to be 

, LLi®Zl£, 1+7-7') dl 
da* \ z — a z — b z — c \ dz 

_^,(o^_ + fi + y){(a + S + y + l)z+Xa(a+0' + y'-l)} 
(z - a){z — b){z — c) I = ^, 

which can be written in the form 

<2 (^) ^ - {(^ - 2) Q\z) + R (z)] ^ 

+ {i (X - 2) (X - 1) q- {z) + (X - 1) R' (z)] 1 = 0, 

( ^=l-a-R-y=a' + S'+y', 

Q(z) = (z — a) {z — b){z — c), 

■R(z) = 'Z(a^ +S + y) {z —b)(z — c). 

a observ^ that the function 7 is not analytic at x, and consequently the 
above differential equation in 7 is not a case of the generalised hypergeometriclquatin. 

We shall now shew that this differential equation can be satisfied by an 
tntegral of the form ^ 

a)«'+^+r-i (t_ 6)a+s'+y-i _ c)a+3+/-i 

provided that G, the contour of integration, is suitably chosen. 

■ydt, 
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For, if we substitute this value of I in the differential equation, the con 
dition* that the equation should be satisfied becomes 

- a)*+/»+y-> {t - ^ 0, 

where 

K-(X- 2) |q {z) Q'(z) + i (i - zy Q"(z) 

+ (t-z){R(z) + (t-s)jt'(gy 

=0^-2) {g (0 -(t- zy} +(t-z) [R (t) -(t- zy 2 («'+/s + y)} 

= -il + a + fi + y)(t-a)(t-b)(t-c) 

+ ^(a' + R+y)(t-b)(t-c)(t-z). 

It follows that the condition to be satisfied reduces to [ where 
J c 

v = (t- ay+^+y (t - by+^'+y (t _ cy+^+r 

^ is therefore a solution of the differential equation, when 
C IS such that F resumes its initial value after t has described C. 

Now 

F = («- a)*-+A+r-: 

^=(t-a)(t-h)(t-c)(z~ t)-K 

nm^Z if C be a closed contour, it 

r ^ ““ “■ 

Hence finally any integral of the type 

‘-J*” “<* <“ "■« 

uZTifZ T ‘ *" »™ <»* 

PI, 495-526, and Hobs^ i"^ Pochhammar, Jfort. Anti. ixiv. (1890), 

methods by which inte al f ^ PP- ■143-531, for ail account of the 

of §§ 14-51 and 14-M.^ ' so ‘‘S to give rise to the relations 

representethehype^^eWo^se!^! circumstances, 

not depend^onT^Tdo^ not^ Whrough^he “ T ^ does 

C passes through the points a, 5, c or r. further^nditionJ’^’e nisL^;.“ ” '' 
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The hypergrometnc series F{a, 6; c; ^) is, as already shewn, a solution of the differential 
equation defined by the scheme 

f 0 00 1 

PI 0 a 0 2 -, 

T*. t . s [l-c 5 e-a-~b 
If m the integral 

which is a constant multiple of that just obtained, we make J-*.co (without pavine 
attention to the validity of this process), we are led to consider 

Now the limiting form of V in question is 

and this tends to zero at <= 1 and t= oo, provided R{c)>R (6) > 0. 

We accordingly consider ,,here a is not* positive and 

greater than 1. 

In this integral, write <=u-i; the integral becomes 

We are therefore led to expect that thi» integral may be a solution of the differential equation 
for the hypergeoTnetric series. 

The reader will easily see that if R{c)>R (b) > 0, and if 
oranch of 1-m is specified by the fact that 
'ound is 

arg w=arg (1 - u) =0, while the 

•-1 as the integral just 

r(b)r(c-b) 
r(i) F{a, b; c 

Dhis can be proved by expandingf (1 -«*)-. in ascending powers of ^ when I c I < 1 and 
ising ^ 12*41. 

Fxample % Deduce the resiUt of § U'll from the preceding example. 

14'61. Determination of an integrcd which represents 

We shall now shew how an integral which represents the particular solution 
§ U-3) of the hypergeometric differential equation can be found. 

We have seen (§ 14-6) that the integral 

I={z-af(z-bf (t-cy j^{t-a'/+y+<^'-'^{t-.b)y+'^+f'-t (1-0)“+fi+-/-^(t-z)-‘^-P-ydt 

atisfias the differential equation of the hypergeometric function, provided <7 is a closed 

ontour such that the integrand resumes its initial valtre after t has described U. Now the 

ingulanties of thrs rntegrand in the t-plarre are the points a, b,c,z; and after describing 

he doirble circuit contour (§ 12-43) symbolised by (6+, c+. 6 c-) the integrarrd retun.s 
T its original value. 

This ensures that the point 1 = 1/2 is not on the path of integration, 
t The justification of this process by § 4*7 is left to the reader. 
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Now, if z lie in a circle whose centre is a, the circle not containing either of the points 

if and c, we can choose the path of integration so that t is outside this circle, and so 
I z-a I < i ^ - a I for all points t on the path. 

Now choose arg(z-a) to he numericallj less than w and arg(2-5), arg(z-c) so that 

they reduce to* arg(a-5), arg(a-c) when fix arg(jj-a), arg(^-5), arg(if-c) at 

the point N at which the path of integration starts and ends; also choose arg(^-z) to 
reduce to arg {t - a) when 

Then = 

{i+r(S)+-}. 
and since we can expatid into an absolutely and unifomly convergent series 

we may expand the integral into a series which converges absolutely. 

Multiplying up the absolutely convergent series, we get a series of integer powers of 
z—a multiplied by (z-(/)«. Consequently we must have 

I={a-hf {a-cf ’* \t-a)^+y+*'-l(i-6)''+a+3'-l(<_c)a+^+y'-l^j_ 

We can define P^°'\ P^\ P^^ pM^ jp(y^ by double circuit int^rals in a similar 
manner. 

147. Relations between contiguous hypergeometric fuwti&ns. 

Let P{z) be a solution of Riemann’s equation with argument z, singularities 
a, b, c, and exponents a, o', R, 'f, y'. Further let P(^) be a constant 
multiple of one of the six functions P<‘i, pi*'', p(P')^ p(/j_ 

denote the function which is obtained by replacing two of the 
exponents, I and m, in P («) by i + 1 and m — 1 respectively. Such functions 
Pi+i,m-i (^) are said to be contiguous to P (z). There are 6 x 5 = 30 contiguous 
functions, since I and m may be any two of the six exponents. 

It was first shewn by Riemannf that tiie function P(z) and any two of 
Its ^Uiguous functions are connected by a linear relation, the coefficients in 
which are polynomials in z. 

There will clearly be g x 30 x 29 = 435 of these relations To shew how 

to obtain them, we shall take P {z) in the form 

P iz) = {z- ct)* iz - bY (z - c)y j ^ (t - tty+y+“'-> (f - 6)r+«+^'-i 

(< - c)*+^+y'-i (t - zf-B-y dt, 

where C is a double circuit contour of the type considered in § 14-61. 

* The values of arg (a - b), arg (a - c) being fixed. 

t Abh. der k. Ges, der Wiss, zu Gottingen^ 1857; 
between contigooas hypergeometric functions. 

Gauss had previously obtained 15 relations 
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First, Since the integral round (7 of the differential of any function which 
resumes its initial value after t has described C is zero, we have 

f dt 

I ~ ' (t - c)«+^+/-‘« - dt. 

On performing the differentiation by differentiating each factor in turn 
v'e get ' 

(a' + y3 + 7) P + (a + + 7 - 1) P..+,,j,_. + (« + /g + 7' - 1) P.-+i,y_, 

^ (g + /3 + 7) 
Z-b 0+1.Y--1- 

Considerations of symmetry shew that the right-hand side of this 
quation can be replaced by 

(a + ^ + y) 
Z-c 

These, together with the analogous formulae obtained by cyclical inter- 
hange* of (a, a a) with (6, and (c, 7, 7'). are six linear relations 
onnecting the hypergeometric function P with the twelve contiguous 
inctions ® 

P/3+i,y_: Py^l, a'-i, P . 

Pfi'+l,Y^ly -P/S'+l, a'-i 

3 -Pp+l,®'-!, P7-1-1, ^'-1, 

Next, writing t~a-{t-b) + (b-a), and using f P„._, to denote the result 
t writing a - 1 for a' in P, we have 

^ ~ + (5 — a) Pa'_i. 
Similarly P = -h (c - a) P.._.. 

Eliminating P.'-i from these equations, we have 

{c-h)P + {a-c) + (6 - a) P.-_,.y+. = 0. 

This and the analogous formulae are three more linear relations con- 
jcting P with the last six of the twelve contiguous functions written above. 

Next, writing {t-z)^{t-a)-{z-a), we readily find the relation 

1 
z — b 

-{z- {z -by {z- cy> 

X (t - 6)r+«+P'-i (t - c)a+^+r'-i (< _ dt, 

lich gives the equations 

{z-ar {P-{z-i)-'P^+..y_J ={z-b)-^ \P-{z-c)->P,+, 

= (z-c)->(P-(^-a)-‘P.^,,._,}. 

* The interchange is to be made only in the integrands; the contour C is to remain 
altered. 

t Pa'-I is not a function of Riemann’s type since the sum of its exponents at o, b, c is not 
ty. 
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These are two niore linear eejuations between P and the above twelve 
contiguous functions. 

We have therefore now altogether found eleven linear relations between 
P and these twelve functions, the coefficients in these relations being rational 
functions of z. Hence each of these functions can be expressed linearly in 
terms of P and some selected one of them, that is, hetwQBn P and any two of 

the above functions thei'e exists a linear relation* The coefficients in this 
relation will be rational functions of z, and therefore will become polynomials 
in z when the relation is multiplied throughout by the least common multiple 
of their denominators. 

The theorem is therefore proved, so &r as the above twelve contiguous 
functions are concerned. It can, without difficulty, be extended so as to be 
established for the rest of the thirty contiguous functions. 

Corollary. If functions be derived from P by replacing the exponents a, a', ft y, y 

by a+p, a'+^, ^where p, q, r, t, u are integers satisfying the 
relation 

then tetween P and any two such functions there exists a linear relation, the coefficients 
in which are polynomials in z. 

This result can be obtained by connecting P with the two functions by a of 

intermediate contiguous functions, writing down the linear relations which connect them 

with P and the two functions, and from these relations eliminating the intermediate 
contiguous functions. 

Many theorems wlhch will be established subsequently, e.g. the recurrence-formulae 

for the Legendre functions (§ 15-21), are really cases of the theorem of this article. 
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Miscellaneous Examples. 

L Shew that 

Fifl, 6+1; c; z)-F{a, 5; c; !)=:jP(a + l, 6+1; c + 1; z). 

2 Shew that if a is a n^ative int^r while /9 and , are not integers, then the mtio 

J' (a, a+^+1 -y, 1 -x)-~F(a, y; x) is independent of a;, and find its value. 
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3. If P (z) be a hypergeometric function, express its derivates ™ - and ^ linearly in 
(XiZ {jbZ'" 

terms of P and contiguous functions, and hence find the linear relation between P ~ 

... * ' 
^ satisfies the hypergeometric differential equation. 

4. Shew that 1; 42(1 2)} satisfies the hypergeometric equation satisfied by 
I; 1; ^)* Shew that, in the left-hand half of the lemniscate j 2 (1 - 2) [=these two 

functions are equal; and in the right-hand half of the lemniscate, the former function is 
equal to F{i, 1; 1-2). 

5. If *=i^{a4*3, b; c; a*),— b; c; a*),determine the 15 linear relations 
with polynomial coefficients which connect F{a, b; c; x) with pairs of the six functions 
^a + )-^a-j-^6 + 5 -^6-? + j (GaUSS.) 

6. Shew that the hypergeometric equation 

is satisfied by the two integiuls (supposed convergent) 

and 
J 0 

7. Shew that, for values of x between 0 and 1, the solution of the equation 

is AFi^a, i; (l-2a:)*}+5(l-2x) ^{i (a + 1), i(/3+l); a-2x)2}, 

where Bare arbitrary constants and F{aj ^;y; x) represents the hypergeometric series. 
(Math. Trip. 1896.) 

8. Shew that 

lim r/’(a,/3;y;ar)- S (-),.r(a+ff-y-n)r(y-a+7i)r(y-g+«)r(y) -[ 
'' „=o^ ^ «! r(y-a)r(y-/3)r(a)r03) ^ J 

r(y-a-|3)r(y) 
r(-y-a)r(y-^) 

where h is the integer such that h^R(a+^^y) 

(This specifies the manner in which the hypergeometric function becomes infinite when 
j;-*>l — 0 provided that — y is not an integer.) (Hardy.) 

9. Shew that, when (y - a - 3) < 0, then 

riy)n^-^^-y 
(a+i3-7)r(a)rO) 

as ; where >S'„ denotes the sum of the first n terms of the series for F{ay ; y; 1). 

(M. J. M. Hill, Proc, London Math, 80c. (2), v.) 
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10. Shew that, if yi, yj be independent solutions of 

then the general solution of 

is where .4, i?, C are constants. 

(Appell, Oomptes Bendm^ xci.) 

11. Deduce from example 10 that, if a+^+J«c, 

{F(a,b-, c; a;)}S=_r(c)r(2<;-l) » r(2a + ?i)r(g+6+ra)r(26+w) . 

r(2a)r(26) r (a-f-6)»=o n'- r(c+n)r(2c-l+n) 

(Clausen, Journal fiir Math, iii.) 

12. Shew that, if | ^ | < J and | (1 | 

F{2a^ 2B; 57} = i^{a, a+j3+|; 4.r(l~^)}. (Kummer.) 

13. Deduce from example 12 that 

14. Shew that, if © = and (a) < 1, 

^’(a,3a-l; 2a; -«:^)=3«“ * ^xp {JW(3a-1)} . 

^’(a,3a-l; 2a; -») = 33“"^xp (1 -3a)} . 

(Watson, Quarterly Journal^ XLi.) 

15. Shew that 

(Heymann, ZdUchrift fur Math, und Phys. xliv.) 

16. If (l-a')“'*'^“'^.F’(2a, 2/9; 2y; :r)=H-Rx + fIr2+2)a,-3+..., 

shew that 

y+J; :r)i^(y-a, y+J; x) 

= 1-1.^ _y y+^ /7,.2+ y(y+i) (y+2) „ , 
y+i ^(y+i) (y+f) ^(y+i) (y+f)(y+|)^^'*’-- 

(Cayley, PhU. Magr. (4), xvr. (1858), pp. 366-357. See also Orr, Catnb. Phil. 
Trans, xvn. (1899), pp. 1-16.) 

17. If the function F(a, A /S', y; ;i-, y) be defined by the equation 

F(a, A A, y: y)=^,^-^M_(j -^■)-<’(i-^y)-/>'rf„, 

then shew that between F and any three of its eight contiguous functions 

-P'(a±l), Jf'(A±l), ^’(A±l), J'(y±l), 

there exists a homogeneous linear equation, whose coefficients are polynomials in x and y. 

(Le Vavasseur.) 
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18. If 7-a-i9<0, shew that, as - 0, 

and that, if y-a-^=0, the corresponding approximate formula is 

(Math. Trip. 1893.) 

19. Shew that, when | a: | < 1, 

r(x+,o+,*-,o—} 

= — 4e'^* sin air sin (y— a) w, 
V(y-a)r{a) 

y'y ^)> 

where c denotes a point on the straight line joining the points 0, x, the initial arguments 

of y—X and of v are the same as that of x, and arg (1 — v) -*-0 as 

(Pochhammer.) 

20. If, when | arg (1 — x) | < 25r, 

and, when | aig x | < Sw, 

by changing the variable s in the integral or otherwise, obtain the following relations: 

K{x)^K’{l-x\ if |arg(l—x) |<ir. 

K{\-x)-=K'{x), if|argx|<Tr. 

K{x) = {\-x)-^-k{J^, ifiarg(l-x)l<w. 

K{1 —x)=“x“ i K 

K‘{x)^x-^K' (1/x), 

if I arg .r I < TT. 

if I argx |< TT. 

■'(l-j!) = (l-a-)-4 A" if I arg (1-^)1 <jr. (Barnes.) 

21. With the notation of the preceding example, obtain the following results : 

2wir'(^)= - {log^-4log 2 + 4 g - J + ...-1)} , 

when IXI < 1,1 arg x | < tt ; and 

K{x)=+ii-x)-^ K {\lx)+{-x)-hK’{\lx), 

when I arg (- x) | < tt, the ambiguous sign being the same as the sign of 1 (x). 
(Barnes.) 
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22. Hypergeometric series in two variables are defined by the equations 

(«; A y; y)= 2 — 

Fzia; ft y, y'; x, 3/)= 2 
m,nVnlnly„iy^ 

Fs (a, a\ ft ft; y; x, y)= 2 
"~T I l>t 1 »/ f 

y,y'-, X, y)= S 
m, TO m I 71 I -y„ 

t, TO ^ ’ ym + TO 

^m-t-TO 

ymyn m, TO 

where a^=a(a+l)...(a + m-1), and 2 means 2 2 . 
m, n m—0 to=0 

Obtain the difierential equations 

^ ^ ^ S+•3'(1 £5 + (v - (“ + +1) ^ =0, 

^(1 -X)g+y g|i+{y_ („+^ +1) 

and four similar equations, derived from these by interchanging x with ^ and a, ft, y with 
a, ft, y when a, ft, y occur in the corresponding series. 

(Appell, Ooniptes Eendm^ 2C.) 
23. If a is negative, and if 

u ■* — V 4* ct, 

where v is an integer and a is positive, shew that 

rwr(a) % ( Rn f 
r(^:+fl) ,=1 V+n+^’‘W}’ 

where 

ri f \ (x) — G( — n) 
-• (Hermite, Journal fur Math xcir.) 

24. When a < 1, shew that 

V{x)V{a^x)_^ I I _ 

f* (®) n-xx-k-n ,1-1 a?—a—71 ’ 

where __(---)"a(a + l)... (a+n-l) 

25. When a>l, and v and a are respectively the integral and fractional parts of 
a, shew that 

r(^)r(a-^)_ - <?(x)p„ « G(x)p,^, 
I’(^) n=i ‘U+n x~a~~n 

-G{x)[-F2- + ^—_P.-i ~| 
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where 

and 

26. If 

—^ ) 
a-fs' —1/ 

„ (a + 1) ... (a+w-1) 
Pn 

(Hermite, Journal fur Math, xcii.) 

y(y+l) (a’+y + l) ***’ 

where n is a positive int^er and »Ci, „(?j,... are binomial coefBcienta, shew that 

f {x V r Cy - ^+«) r (x+i>) r (i>+?0 
r(y-^)r(y+n)r(®)r(x+®+ji)‘ 

(Saalsohutz, ZeiUchrift fiir Math, xxxv; a number of similar results are given 
by Dougall, Proc. Pdinbwgh Math. Soe. xxv.) 

!7. H 

shew that, when iJ (6+^- fa — I) > 0, then 

a-6+1, a-« + l; d, 1) = 2“« 

Kd+i)€(<+i): 

r(^) r (d) r (c) r(a+€-~ga-. p 
^ ^ i't*) r (■^Hhl^a) r(i54*f — a — 1) * 

(A. C. Dixon, Proc. London Math. Soc. xxxv.) 
28. Shew that, if R (a) < §, then 

fa (a+1) ... (a4-7l- 

..... 
(Morley, Proc. London Math. Soc. xxxiv.) 

29. If ^ 

1+ i {° ^y=COsQ.a) ^ -t°). 

shew, by integrating with respect to x, and also with respect to y, that B (i, y, i, I, m) is a 
symmetric function of k+l^ I m + i. 

Deduce that 

F{a,^,y; e ; l)-^^ (6) T ^ T (d + €-a 

is asymmetric function of 6, €, a+e-a-ft a+€~^-y, 

(A. C. Dixon, Proc. London Math. Soc. (2), ii. (1906), pp. 8-16. For a proof of 

a special case by Barnes’ methods, see Barnes, Quarterly Journal.^ XLI. 

(1910), pp. 136-140.) 

30. If 

L\=F{-n, a+n; y; ^) = - 
7(74-1)... (74-91-1) djf" 

shew that, when 71 is a large positive integer, and 0 < .r < 1, 

(sill (cos <i>)y- 
n^ ^ Jw 

) {(2/l+a) ^ - JjT (2y -1)}4.0 ^^^), 

where a:^sin^<f>. 

(This result is contained in the great memoir by Darboux, “Sur I’approxi- 

mation des fonctions de tr^s grands nombres,” Journal de Math. (3), iv. 

(1878), pp. 5-56, 377-416. For a systematic development of hyper¬ 

geometric functions in which one (or more) of the constants is large, see 

Camh. Phil. Trans, xxii. (1918), pp. 277-308.) 



CHAPTER XV 

LEGENDEE FUNCTIONS 

161. Definition of Legendre polynmdcds. 

Consider the expression (1 when | 2zh--h? \<l, it can be 
expanded in a series of ascending powers of 2zh - h\ If, in addition, 
12zh I +1A I® < 1, these powers can be multiplied out and the resulting series 

rearranged in any manner (| 2*52) since the expansion of [1 - {| 2-3rA | + j A j®}] “■ ^ 
in powers of 12zh | +1A | ® then converges absolutely. In particular, if we 
rearrange in powers of A, we get 

{l — 2zh + ¥)~^^P^{z)’\‘ hP I (z) + A^Pg (z) + h^P^ (^r) + ..,, 
where 

P.(^) = l, = P,(^) = i(3z=-l), P.(^) = i(5P-3z), 

■P4(^)=§(35«*-30^» + 3), P.(«) = |(63«*-70P+ ]5«). 

and generally 

{2n) I 
W7(nff z^ 

n (n — 1) 
2 (27^-1) 

M(«-l)(«-2)0t-3) 
2.4.(2n-l)(2n-3) 

= I (-y ■■ (2”-20! 
r=o^ ^ 2».rl(n-r)!(n-2r)! ’ 

where m = ^ n or ^ (to — 1), whichever is an integer. 

If a, 6 and 8 be positive constants, b being so small that 2a6+6»^ 1 - 8, the pypanamn 

of (1 -ZsA+A’) “ i converges uniformly with respect to z and A when | z | | A | ^5. 

The expressions Po (z), Pj (^r), ..., which are clearly all polynomials in z, 
are known as Legendre polynomials*, P„(z) being called the Legendre 
polynomial of degree n. 

It appear later (§ 15*2) that these i)olynoniiaLs are particular case.s of a more 
extensive class of functions known as Legendre functions. 

ExampU 1. By giving 2 special values in the expression (1 - 22A+A») “ \ shew that 

Other names are Legendre coefficients and Zonal Harmonics. They were introduced into 
analysis in 1784 by Legendre, Mimoiresfar divers savans, x. (1785). 
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Example 2. From the expansion 

(l-2Acostf + ^'‘)-i = (^l+l/ie'»+^A2e2'«+...j 

shew that 

““ ”^+2l£ri) 2 cos {n - 2) 

, 1.3.(2«)(2n-2) „ , ] 

Deduce that, if ^ be a real angle, 

t P 1 ^ ^ /o I I-S.(2?i){2n-2) ] 
' 2.4...2« f-^2-:(^- "+2.4;(2h- 1)(2^.-3)'" + -} 
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= /’«(!), 
SO that I Fn (cos I ^ 1. 

Example 3. Shew that, when 2= - J, 

^» = ^0 ^2n “ A ^2n -1 + P2 ^2»» - 2 — • • • + P2n-^0 * 

(Legendre.) 

(Clare, 1905.) 

1611. Rodrigues’* formula for the Legendre polynomials. 

It is evident that, when n is an integer, 

df_ 
dz” 

-i (-y- 
r=o ^ r I (n — r) 1 (in — 2r) 1 ' 

where wi = 2 ^ or ^ (n — 1), the coefficients of negative powers of z vanishing. 

From the general formula for (z) it follows at once that 

this result is known as Rodrigues’ formula. 

Example. Shew that P„ (2:)=0 has n real roots, all lying between ± 1. 

1612. ScMafli’sf integral for Pn(z). 

From the result of § 1511 combined with § 5-22, it follows at once that 

where (7 is a contour which encircles the point z once counter-clockwise; this 
result is called Schldjfli's integral formula for the Legendre polynomials. 

♦ Corresp. mr VEcole poly technique, iii. (1814-1816), pp. 361-385. 

t Sohlafli, JJcher die zwei Heine^schen Kuyelfunctio7un (Bern, 1881). 
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1513. Legendres differential equation. 

We shall now prove that the function u^P^iz) is a solution of thi 
difierential equation 

d^u ^ du . 

which is called Legendres differential equation for functions of degree n. 

For, substituting Schlafli’s integral in the left-hand side, we have 

by § 5-22, 

~ + n (n + 1) P„ {z) 

(n + l)r , 

27ri J c 2" (i - ^)"+» ^ 

(n + 1) f d ((f-ir+ 

■ (n + 2) — 1) + 2 (w +1) < {t—z)] 

2iri.2^]cdt\{t-zY^] ’ 

and this integral is zero, since (t“ — I)’*"*"' (t — z}~”~^ resumes its original valui 
after describing C when n is an integer. The Legendre pol3momial therefon 
satisfies the differential equation. 

The result just obtained can be written in the form 

(l-^=) 
dFn(z) 

+ n(n+ 1) P„ (z) = 0. 

It will be observed that Legendre’s equation is a particular case of Riemann’s equation 

defined by the scheme 

f-' ” ‘ I 
pi 0 71+1 0 z\. 

i 0 -7i 0 J 
d^P (z) 

Exa7npl€ 1. Shew that the equation satisfied by —is defined by the scheme 

pj-r 7i+7'+l -r 

i 0 ~?i+r 0 j 

Example 2. If 2^=7;, shew that Legendre’s difierential equation takes the form 

. n t Wy , ”(«+i)y.. n 
drY (Si; 1-7jJ rfl/"*" 417(1-ij) 

Shew that this is a hypergeometric equation. 

Example 3. Deduce Schlafli’s integral for the Legendre functions, as a limiting case oi 

the general hypergeometric integral of § 14*6. 

[Since Legendre’^s equation is given by the scheme 

^-1 00 1 

P < 0 7i+l 0 z 

i 0 ^71 0 . 
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int^ral suggested is 

in round a contour C such that the int^rand resumes its initial value after describing 
and this gives Schlafli’s integral.] 

15‘14. The integTal 'properties of the Legendre polynomials. 
We shall now shew that* 

j ^ Pm(.z)Pn{z)dz\ 
= 0 

2 

d'-u 
[ 2w+1 

Let {u}r denote ^; then, if r < jj, {(i® —1)»], 

{m + n), 

Jm = n). 

is divisible by — l)*-r ■ 

' so, if r< B, [(z^- 1)”},. vanishes when z=l and when z = -l. 

Now, of the two numbers m, n, let m he that one which is equal to or 
ater than the other. 

Then, integrating by parts continually, 

= - ir}^, {(^ -1)«}„]^^ - i(z^-ir}^, {(^-dz 

=(-)7!, -1)” {(^ -!)”}»+» 

:e 1)”‘},»_1, {(•2’— 1)’"}«»_S, ... vanish at both Hmita 

Now, when m>n, {(«*-l)*}„H-n=0, since diflFerential coefficients of(z‘ -1)» 
uder higher than 2n vanish; and so, when m is greater than n, it follows 
a Eodrigues’ formula that 

j" ^Pm{^)Pn(f)dz = 0. 

When m = n, we have, by the transformation just obtained, 

{(z^ - !)»}„ {(z> - !)«}„ dz = lY~{z* - Ifdz 

=^(2n)lJ\l-.^y‘dz 

= 2.(2n)! f\l-z‘)’‘dz 
Jo 

f*' 
= 2.(2n)!j aia^-^^ddd 

= 2.(2n)i 
^•3.5...(2n + l)’ 

* These two results were given by Legendre in 1784 and 1789. 
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where cos5 has been written for z in the integral; hence, by Rodrigues' 
formula, 

/ 
^ fp 2-(2n)! (2».7i!)»_ 
.1 * ■” ^ (2«. n !)* (2» +1)! 2n + 1 

We have therefore obtained both the required results. 

It follows that, in the language of Chapter si, the functions (n-hi)^ are normal 

orthogonal functions for the interval (-1, 1). 

Example 1. Shew that, if 0, 

^ (Gmh^x—z) ^ 

Example 2. If /= f (z) (z) dz^ then 
J 0 

(i) /=l/(2n + I) 

(Clare, 1908.) 

(i!) /-O {m—n even), 

(iii) /= 
(— y* + *' n I ml 

+ (v !)*(/x!)2 
(7i=2v + l, m=2fi). 

(Clare, 1902.) 

16’2. Legendre Junctions, 

Hitherto we have supposed that the degree n of Pn(^) is a positive 
integer; in fact, Pni^) has not been defined except when n is a positive 
integer. We shall now see how P,^ (z) can be defined for values of n which 
are not necessarily integers. 

An analogy can be drawn from the theory of the Gamma-function. The expression 

z\ as ordinarily defined (viz. as ^(z-l) («-2) ...2.1) has a meaning only for positive 

integral values of z; but when the Gamma-function has been introduced, z ! can be defined 

to be r (^r + l), and so a function z I will exist for values of z which are not int^ers. 

Referring to § 15*13, we see that the differential equation 

^xd^u cx du . 

is satisfied by the expression 

1 { 0’-l)» 

even when n is not a positive integer, provided that G is a contour such that 
(P — resumes its original value after describing 0. 

Suppose then that n is no longer taken to be a positive integer. 

The function {P — {t — has three singularities, namely the 
points i = l, ^== — 1, t — z] and it is clear that after describing a circuit round 
the point ^ = 1 counter-clockwise, the function resumes its original value 
multiplied by ; while after describing a circuit round the point t^ z 
counter-clockwise, the function resumes its original value multiplied by 
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If therefore <7 be a contour enclosing the points t=l and t = z, but 

not enclosing the point t = -1, then the function (? — l)"+i (t — z)~”^ will 

resume its original value after t has described the contour G. Hence, 

Legendre’s differential eqtiaiion for functions of degree n, 

is satisfied by the expression 

1 (f-iy 

for all values of n; the many-valued functions will be specified precisely 
by taking A on the real axis on the right of the point t=l (and on the 
right of if be real), and by taking arg(^—l)=:arg(i-|-l) = 0 and 
|arg(^ —^)|<7r at A. 

This expression will be denoted by Pn{z), and will be termed the Legendre 
function of degree n of the first kind. 

We have thus defined a function {z), the definition being valid whether 
is an integer or not. 

The function (z) thus defined is not a one-valued function of 2 ; for we might take 

two contours as shewn in the figure, and the integrals along them would not be the same; 

to make the contour integral unique, make a cut in the t plane from - 1 to - 00 along the 

real axis; this involves making a similar cut in the z plane, for if the cut were not made, 

then, as z varied continuously across the negative part of the real axis, the contour would 

not vary continuously. 

It follows, by § 5*31, that P^ (2) is analytic throughout the cut plane. 

16’21. The Recurrence Formulae. 

We proceed to establish a group of formulae (which are really particular 
cases of the relations between contiguous Riemann P-functions which were 
shewn to exist in § 14*7) connecting Legendre functions of different degrees. 

If G be the contour of § 15*2, we have^ 

P.{Z)^ 
1 r -1)” 

2“+'7ri jc(t- 
dt, Pn(z) = 

n + 1 r 

* We write P„' (z) for ^ P„(j), 
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„ dit^-1)»+‘ 2(n + l)t (<» -1)» (n +1) (t* -1)"+* 
dt{t-zY+^ («-ir)»+i {t-zY^ dt {t-zY+^ 

and 80, integrating, 

0 

Therefore 

-of 
hit- ^)n+J 

1 [ 1 f . Z f (P-1)" , 

Jc(t- “ 2»+»iri j c (t - 2"+'7n Jo(t- 

Consequently 

Pn+i («) - (z) = 2H+r^ \t-zY . 

.(D- 

Differentiating*, we get 

P n+i (■?) - - Pn C-^) = «P« (4 

and SO P'„+i(^)-^P*(^) = («+l)P»(.8^) 

This is the first of the required formulae. 

Next, expanding the equation 

we find that 

f ^dt + 2n 
Jc (t-zY 

^dt = 0. 
ic (<-■2^)” ic 

Writing (P -1) +1 for P and (< — «) + * for t in this equation, we get 

(n +1) J 
(P-1)" dt + 2m 

(P -1)"-' 

c{t-zY ' “"Jc (t-.®)” 
dt — nz 

f ^ 

Jc(«- 'c(*-«>- - 

Using (A), we have at once 

(W + 1) {P„+1 (z) - zPn (^j)} + nPn-i (^) - W«P„ (z) = 0. 

That is to say 

:0. 

(n + 1) Pn+I (-3^) - (2n + 1) zPn (z) 4* wPn-i (^) = 0.(II), 

a relation f connecting three Legendre functions of consecutive degrees. This 
is the second of the required formulae. 

We can deduce the remaining formulae from (T) and (II) thus: 

Differentiating (II), we have 

(n + 1) {P',+, (z) ^ zP\ {z)] -- w [zP'^ {z) ~ P',^, {z)\ - {2n + 1) P, {z) = 0. 

Using (I) to eliminate P'n+i {z\ and then dividing hyX n, we get 

zP'n{z)-P n~i (ir) = nP„(z).(III). 

* Tbe process of differentiating under the sign of integration is readily justified by § 4*2. 
t This relation was given in substance by Lagrange in a memoir on Probability, Mise. 

Taurinemia^ v. (1770-1773), pp. 167-232. 

t If n=0, we have Pq W = lf W = l» result (III) is true but trivial. 
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Adding (I) and (III) we get 

P'«+i (^) - -P «-i (^) = (2n +1) P„ (z) .(IV). 

L^tly, writing n -1 for n in (I) and eliminating (z) between the 

equation so obtained and (III), we have 

(z^-1) P'n (z) = nzP^ (z) - nPn^, (z).(V). 

The formulae (I)—(V) are called the recurrence formulae. 

The above proof holds whether n is an integer or not, i.e. it is applicable to the general 

Legendre functions. Another proof which, however, only applies to the case when n is 

a positive integer (i.e. is only applicable to the Legendre polynomiaLs) is as follows : 

Write F=(l - 2hz^h^)' i 

Then, equating coefficients* of powers of h in the expansions on each side of the 
equation 

(l-2A2+A2)|r=(2_A) jr 

we have l)2P,_i(2) + (w-1)i>,_2(2)=0, 

which is the formula (II). 

Sinadlarly, equating coefficients* of powers of h in the expansions 
equation 

= {z-k) 
dz ’ 

on each side of the 

we have 
dPA^) 

^~dr' 
dP 

dz 

which is the formula (III). The others can be deduced from these. 

Exarwple 1. Shew that, for all values of w, 

(Hargreaves.) 

shew that 

A»a/?i^e2. If Jfn(^)=[^(^)*(2e“oosech^)J , 

dM^{x) /"i 
^ =mJf,-i(:g) and / (Trinity, 1900.) 

Example 3. Prove that if m and n are integers such that both being even 
or both odd, 

dP^(z) dPn(z) , 

J.i~^-^dz=m(mi-l). (Clare, 1898.) 

Example 4. Prove that, if m, n are integers and m'^n, 

P cPi>„(a) (z) (n-l)ra(jn-l)(ra-f2), 
-- 48 -^{3m(m + l)-n(» + l)+6} 

xfi+c-)’*-'”*;- 
(Math. Trip. 1897.) 

The reader is recommended to justify these processes. 
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16*211. The expression of any polynomial as a series of Legendre 

polynomials. 

Let/» {z) be a polynomial of degree n in z. 

Then it is always possible to choose a®, ... so that 

{z) = aoPo {z) + G&iPi (^) 4- ... + anPn {z\ 

for, on equating coefficients of ... on each side, we obtain equations 

which determine a»_i, ... uniquely in turn, in terms of the coefficients of 

powers of z in /„ (z). 

To determine Oq, Oj, ... in the most simple manner, multiply the 

identity by Pr{z)j and integrate. Then, by § 15*14, 

when r = 0, 1, 2, ... n; when r >n, the integral on the left vanishes. 

Example 1. Given (z) + aiPi{z) + + P^ (z), to determine oq> ®ii . 
(Legendre, Exercicee de Calc. Int. ii. p. 352.) 

[Equate coefficients of 2» on both sides ; this gives 

__2~. {n !)2 
(2j!)! • 

In,m=j ^Pm W <ih SO that, by the result just given, 

2<>*+i(ot!)* 

(2bi + 1) ! ‘ 

Now when ti-w is odd, is the integral of an odd function with limits ±1, and so 
vanishes; and also vanishes when ti- m is negative and even. 

To evaluate when w-m is a positive even integer, we have from Legendre’s 
equation 

Ml (ot+ 1) (z) dz= - j J ^ {(1 - 2*) Pm W) dz 

= -[r" (1 -z») P„' (z)J_+np ^ 2»-i (1 -^)PJ (z) dz 

= ^-nj ^{(n-l)z^-^-(n + l)z^}P„,(z)dz, 

on integrating by parts twice; and so 

^ fn,(tI + 1) -fn, jhi) fw —2,m* 
Therefore 

__n(n-l) ... (yn + 1) _ 
“(n-m)(n-2-m) ... 2. + 1)... (2m + 3) 

by carrying on the process of reduction. 
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Consequently / — ! 

and so a„,=0, when n—m is odd or n^ative, 

^ _(2»i + l)2“«!(in+iTO)! , 
(|»i-jTO)!(»+»t+l)! ■ positive] 

ExampU 2. Express cos as a series of L^endre polynomials of cos 0 when n is an 
iot^er. 

Example 3. Evaluate the integrals 

jy zP„ (*) (*) dz, J^Pn (*) P..1 (X) dz. 

Example 4. Shew that 
(St John’s, 1899.) 

(Trinity, 1894.) 

ExampU 5. Shew that 

nP,(oo8d)= i^QOsr0P^_,.(co80). (St John’s, 1898.) 

Example 6. It Pgm {z) dz^ where m < shew that 

(» - »i) (2»+2m+1) 2nX-1 - (Trinity, 1896.) 

16 22. Murphy s expression* of os a hypergeoinetric furiction. 

Since (§ 16-13) Legendre’s equation is a particular case of Riemann’s 
equation, it is to be expected that a formula can be obtained giving P„ (g) in 

terms of hypergeometric functions. To determine this formula, take the 
integral of § 15-2 for the Legendre function and suppose that 11 — z | < 2; to 
fix the contour C, let B be any constant such that 0 < 3 < 1, and suppose that 
z is such that 11 - J« 2 (1 - S); and then take G to be the circlef 

(l-f| = 2-S. 

Since 
1-z .2-23 4ft - 4ftO _ 

^ "2.~ B ^ expand into the uniformly 

convergent series J 

(t - = (< - !)-«-> |l + (« + 1)^ + (« + l)(n + 2) 

Substituting this result in Schlafli’s integral, and integrating term-by- 
term (§ 4*7), we get 

" ly (y?-f-l)(w + 2)...(yi-Fr) (^2 _ 
r! (< - l)«+i+>- 

dt 

^ I (^-l)^(u + 
= 2 

r=0 

l)(w + 2)...(«+r) r_^ 1 

Electricity (1833). Morphy’s result was obtained only for the Legendre polynomials, 
t This circle contains the points t=l, t=z. 

X The series terminates if n be a negative integer. 
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by § 5'22. Since arg (i + 1) = 0 when i = 1, we get 

+ =2»-’-n(n-l)...(n-r + l). 

and so, when 11 - | < 2 (1 - 3) < 2, we have 

P„ (z) = i w)(1 - w)... (r-1 - ?t) h 1 
r=0 {r\y ^ ' \2~2^ 

‘F(n + l,-n; 1; l-U). 

This is the required expression; it supplies a reason (§ 14-53) why the cut 
from — 1 to — 00 could not be avoided in § 15'2. 

Corollary. From this result, it is obvious that, for all values of n, 

■P% (z)=P-n-l (z). 

hoTE. When n is a positive integer, the result gives the Legendre polynomial as 
a polynomial in 1 — r with simple coefficients. 

Exanuplo 1. Shew that, if m be a positive integer, 

\ cfem+l 2m+ 
r (2m+»+2) 

■^i(>n+l)!r(n)' 
(Trinity, 1907.) 

Exa'mjfZe 2. Shew that the Legendre polynomial (cos &) is equal to 

(-)’*P(n+l, -n; 1; cos»^^), 

cos* Jd P (- n, - n; 1; tan> ^d). (Murphy.) 

16-23. Laplace’s integrals* for JP„ (^z). 

We shall next shew that, for all values of n and for certain values of z, 
the Legendre function P„(z) can be represented by the integral (called 
Laplace’s first integral) 

w /o ~ 
(A) Proof applicable only to the Legendre polynomials. 

When n is a positive integer, we have, by § 15-] 2, 

” W 2»-^'7rt J c (t-z)’‘+^ 

where G is any contour which encircles the point z counter-clockwise. 

Take C to be the circle with centre z and radius |z®-l |i, so that, on C, 

t — ^ ~ L)^ where <}> may be taken to increase from —tt to tt. 

Mecanique Celeste, Livre xi. Ch. 2. For the contour employed in this section, and for 
some others introduced later in the chapter, we are indebted to Mr J. Hodgkinson. 
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Making the substitution, we have, for all values of z, 

2"+'7rty_,V J ^ 

{^ + (3®-l)*co8^}’‘d<^ 

= — [ (z + (s’‘ — l)i cos <A}“ dd>, 
TT J Q 

siDce the integrand is an even fiinction of <f). The choice of the branch of 

the two-valued function (z'^ ~ 1)^ is obviously a matter of indifference. 

(B) Proof applicMe to the Legendre ftmcUons, where n is unrestricted. 

Make the same substitution as in (A) in SchlMi s integral defining 
Pn {P); it is, however, necessary in addition to verify that ^ = 1 is inside the 
contour and ^ = — 1 outside it, and it is also necessary that we should specify 

the branch of [z + {z^ — l)i cos which is now a many-valued function of 

The conditions that t = l, ^ = — 1 should be inside and outside G re¬ 
spectively are that the distances of z from these points should be less and 

greater than | — 1 (^. These conditions are both satisfied if|^—l|<j-2r+l|, 

which gives R (z) > 0, and so (giving arg z its principal value) we must have 

|arg2r|<|7r. 

Therefore J ~ 1)^ 

where the value of arg [z + {z^ — l)i cos <^} is specified by the fact that it 
[being equal to arg(t® — 1) — arg(i — ^)] is numerically less than tt when t is 
on the real axis and on the right of z (see § 15*2). 

Now as (t> increases from — ir to «*, —1)^ co8(f> describes a straight line in the 

Argand diagram going from to z + (z^-l)^ and back again; and since this line 

does not pass through the origin* arg {z-\-{z^-l)^ cos<^} does not change by so much as 

w on the range of integration. 

Now suppose that the branch of {z’^{z^-1)^ cos which has to be taken is such that 

it reduces to (where k is an integer) when 

^inkrri 

Then {z+(z^cos 4>}^ d<f), 

where now that branch of the manj-valued function is taken which is equal to when 

Now make by a path which avoids the zeros of Pf^{z); since Pn{z) and the 

int^ral are analytic functions of z when' | arge | < ^, X* does not change as z describes the 

path. And so we get 

It only does so if z is a pure imaginar}'; and such values of z have been excluded. 



314 THE TRANSCENDENTAL EDNCTI0N8 [chap. XV 

Therefore, when | arg «| < i tt and n is unrestricted, 

-P« (^) = ^ /_ {« + («*-1)* cos dj), 

where arg {z + (z* - l)i cos is to be taken equal to argz when ^ | w. 

This expression for P„ (z), which may, again, obviously be written 

- r [z + (i^-1)^ cos <}>Y'd<f>, 
^ Jo 

is known as Laplace’s first integral for (^)* 

Uorollaiy. From § 15*22 cjorollary, it is evident that, when | arg;? | <i«r, 

/•—^—, 
^ J a cos 

a result, due to Jacobi, Journal filr MatL xxvi. (1843), pp. 81-87, known as Laflacii 

second integral for {z). 

Example 1. Obtain Laplace’s first integral by considering 

i A* / ' {2+- l)i cos d)}« <16, 
tt=0 J 0 

and using ^ 6*21 example 1. 

Example 2. Shew, by direct dififerentiation, that Laplace’s integral is a solution of 
L^ndre’s equation. 

Example 3. If « < 1, | A | < 1 and 

(1 —2Acos^+A2)“»b» 2 h^cosnB^ 

shew that 
, 2sin«jr 

*•—j.d-. 
(Binet.) 

Example 4. When z>l, deduce Laplace’s second integral from his first int^ral by 
the substitution 

{2-(2» - l)i COS «} {2 + (2« - l)i COS ^} = 1. 

Example 5. By expanding in powers of cos^, shew that for a certain range of 
values of 2, 

jJ*{«+(2*-l)icos^}«d<^=2»J’(-in, 1; l-2-»). 

Example 6. Shew that Legendre’s equation is defined by the scheme 

{0 00 1 ^ 

J+Jw — 0 J 
where 

15 *231. The Mehler-JHrichlet iniegral* far P„ (2). 

Another expression for the L^endre function as a definite integral may be obtained in 
the following way: 

* DiricWet, Journal fOr Math. xvn. (1837), p. 35; Mehler, Medh, Ann v. (1872), p. 141. 
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For all values of n, we have, by the precedii^ theorem, 

315 

W J Q 

In tMs intern!, replace tlie variable <t>hj & new variable h, defined by the equation 

1)^ cos if>, 

andweget P^{z)^- f^+(^ A^(l--2Jk+A^'’idA; 

the path of integration is a straight line, arg A is determined by the fact that A*:^ when 

<f»=hvy and (1 — 2Az+A^)- l)i sin 

Now let 5:=cos B; then 
• /• iB 

Fn{cos6) = - r A»(l-2A2+A*)-i<tt. 

Now {B being restricted so that -Jir<^<|5r when n is not a pc^itive integer) the 

path of integration may be deformed into that arc of the circle | A|=l which passes 

through A=1, and joins the points A = A=e*®, since the int^and is analytic throughout 
the r^on between this arc and its chord t. 

Writing we get 

and so 

P„(cosd)=^J* 

P„(c08tf) = ^ \ 
V J ( 

® (2 COS <f>-2oosB)^ 
dff}y 

cos(n-^^)4> 

® {2 (cos cos 
d<t>; 

it is easy to see that the positive value of the square root is to be taken. 

This is known as MeKLePi simplifiedfiorm of DiricIdeBs vniegrah The result is valid for 
all values of n. 

Example 1. Prove that, when w is a positive integer, 

P,(0O8fl) = ^ I” . 
{2(costf-cos^)}4 

(Write for B and w — for in the insult just obtained.) 

Example 2. Prove that 

A (cos tf) = i f---T dk, 
2?rt; (^2_2Acos<9 + 1)^ 

the int^ral being taken along a closed path which encircles the two points Asse^^, and 

a suitable meaning being assigned to the radical. 

* It 0 be complex and H (cos 0)>O the deformation of the contour presents slightly greater 
difficulties. The reader will easily modify the analysis given to cover this case. 

t The integrand is not analytic at the ends of the arc but behaves like near 

them; but if the region be indented (§ 6*23) at and the radii of the indentations be made to 
tend to zero, we see that the deformation is legitimate. 
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Hence (or otherwise) prove tlmt, if B lie between Jir and 

P,(cosO)=i 
2.4... 9m, 

3.5... (271+1) 

'cos (nB+ip) ^ cos (nB-^Z<py 

(2sin(?)i 2(2n+3) (2 8intf)i 
K 12.3^ cos(nB+6<P) - 

2.4.(271+3) (2n+5) (2sin^)^ 

j 

v+.; 
where <p denotes 

Shew also that the first few terms of the series give an approximate value of (cos B 

for all values of B between 0 and ar which are not nearly equal to either 0 or tr. And explaii 

how this theoi*em may be used to approximate to the roots of the equation P^ (cos ^)t»0. 

(See Heine, Kugdfunhtiormi^ i. p. 178 ; Darboux, Comptes Rendu$^ lxxxil (1876), 
pp. 365, 404.) 

15*3. Legendre functions of the second kind. 

We have hitherto considered only one solution of Legendre's equation, 
namely Fn{z). We proceed to find a second solution. 

We have seen (§ 15*2) that Legendre's equation is satisfied by 

taken round any contour such that the integrand returns to its initial value 
after describing it. Let D be a figure-of-eight contour formed in the following 

way; let be not a real number between ± 1; draw an ellipse in the f-plane 
with the points ± 1 as foci, the ellipse being so small that the point t = z ia 
outside. Let A be the end of the major axis of the ellipse on the right 
of ^ = 1. 

Let the contour I) start from A and describe the circuits (1 — 1 +), 
returning to A (cf. § 12*43), and lying wholly inside the ellipse. 

Let I arg ^ | < tt and let | arg (^ — ^) | -^ arg ^ as ^ > 0 on the contour. Let 
arg(e + l) = arg(^ — 1) = 0 at 

Then a solution of Legendre s equation valid in the plane (cut along the 
real axis from 1 to — oo ) is 

sin WTT /jT) 2" {z - tf-^^ 
if n is not an integer. 

When (71 +1) > 0, we may deform the path of integration as in § 12*43, 
and get 

Qn (Z) = (1 - (Z - «)-”-' dt 

(where arg(l -«) = arg(l + <) = 0); this will be taken as the definition of 
Qn(z) when n is a positive integer or zero. When n is a negative integer 
(= — m — 1) Legendre s differential equation for functions of degree n is 
identical with that for functions of degree m, and accordingly we shall take 
the two fundamental solutions to be P^iz), Qm (z). 

Qn(z) u called the Legendre function of degree n of the second kind. 
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16*31. Eocpansion of Qn (z) as a power-series. 

We now proceed to express the Legendre function of the second kind as 
a power-series in sr'^. 

We have, when the real part of w -|-1 is positive, 

(^) = ^1 / ~ 0“”“* dt. 

Suppose that | | > 1. Then the integrand can be expanded in a series 
uniformly convergent with regard to t, so that 

e.W-2S+r;iT: 

- /'.o - <■)■ {i+J. G)' * 

where r = 2s, the integrals arising from odd values of r vanishing. 

Writing t’‘ = u, we get without difficulty, from § 12-41, 

n / \ ’r*r(w+l) 1 „/i 11 a \ 
-2^+1 r(n + ^)(2” + a' in+1; « + |; 

The proof given above applies only when the real part of (w +1) is positive 
see § 4-5); but a similar process can be applied to the integral 

Qn (^) = T- - f 1)" — <)“”“* dt, 4i sin mr J j) 2”^ ' ^ ’ ’ 

;he coefficients being evaluated by writing [ (t*— l)’>t'dt in the form 
J D 

(1 - r dt + j (1 - t^)n tr dt; 

ind then, writing u and using §12*43, the same result is reached, so 
hat the formula 

0 (.\.- r(7i + i) 1 E,/! 1 , , 8 i\ 

8 true for unrestricted values of n (negative integer values excepted) and for 
.11 values* of z, such that |ir| > i, |argz\< -tt. 

Example 1. Shew that, when is a positive integer, 

When n is a positive integer it is unnecessary to restrict the value of 
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[It is easily verified that L^ndre’s equation can be derived from tbe equation 

(1 —^®) ^^+2 (»-1) ^+2mw=0, 

by differentiating n times and writing . 

Two independent solutions of tbis equation are found to be 

(**-!)* and («*-!)• 

It follows that ^ 

is a solution of Ij^^ndre^s equation. As tbis expression, wben expanded in ascending 
powers of commences with a term in it must be a constant multiple^ of Q^{z) ; 
and on comparing tbe coefficient of in tbis expression with the coefficient of in 
the expansion of {z\ as found above, we obtain tbe required result.] 

Ksewriij^ 2. Shew that, wben is a positive integer, tbe Iiegendre function of tbe 
second kind can be expressed by tbe formula 

/.7.7: ...j (®*-i)-—i(d»)»+i. 

Msamjple 3. Shew that, wben n is a pc^itive integer, 

[Tbis result can be obtained by applying tbe general integration-theorem 

rjT. 
to tbe preceding result.] 

15*32. The rectm^mce-formulae for «• 

The functions P(z) and §„ (z) have been defined by means of int^jrals of precisely the 
same form, namely 

taken round different contours. 

It follows that tbe general proof of the recurrence-formulae for P* («), given in § 15*21, 
is equally appUcable to tbe function (z); and hence that the Legendre function of the 
second hind eaiisfiee the retmrrenceformuUze 

{n+1) Qn +1 («) ■” (2n +1) zQ^ (z)+nQ^i (z)=0, 

W - C'w-i (z% 

Q^n + 1 (^) ^«-i (^)*=(2»4*1) Qn (z), 

- 1) W W ~ W- 

Example 1. Shew that 

§0 W—i log , Qi {z)»lzlog -1, 

and deduce that 

and that 

P»(^) contains positive powers of z wben n is an integer. 

1 

_P 32 (n-iy 
En{z) * ^^-1 r ~a2:-6-8r-7^-...-(2n-l)2* 
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Rvamjple 2. Shew by the recurrence-formulae that, when » is a positive integer* 

\P^ {z) log ^ (z) =/_i (*), 

where (*) consists of the positive (and zero) powers of z in the ezpansimi of 
z+1 ^ 

\P^ (j?) log in descending powers of z, 

[This example shews the nature of the singularities of (z) at ± 1, when n is an int^r, 
which make the cut from -1 to -f-1 necessary. For the connexion of the result with 
the theory of continued fractions, see Gauas, Werke, nr. pp. 165-206, and Frobmuus, 
JounudfOir Math. Lxxni. (1871), p. 16; the formulae of example 1 are due to them.] 

16-33. The Laplacian integral f for Legendre functions of the second kind. 

It will now be proved that, when iZ (w -h 1) > 0, 

Qn {z) = J* {z + )i cosh de, 

where arg {z -I- (f - l)i cosh 0} has its principal value when = 0, if n be not 
an integer. 

First suppose that z > 1. In the integral of § 16*3, viz. 

(^) = ^ /_j(l - {z -dt, 

write 
e*(z-)-l)4-p(z-l)i’ 

SO that the range (— 1,1) of real values of t corresponds to the range (—00, 00 ) 
of real values of 6. It then follows (as in § 15*23 A) by straightforward 
substitution that 

1 r** 
(^) = 2 / {^ + -1)^ cosh d0 

J —00 

={z + (z* — 1)4 cosh dd, 

since the integrand is an even function of 0. 

To prove the result for values of z not comprised in the range of real values greater 

bhan 1, we observe that the branch points of the int^^rand, qua function of z, are at the 

points +1 and at points where z+(^ — 1)^ cosh B vanishes; the latter are the points at 
Rrhich z==± coth^. 

Hence (z) and j^ {«+ (z^— 1)^ cosh ^ dB are both analytic J at all joints of the 

plane when cut along the line joining the points z^±l. 

* If ~ 1 <«< 1, it is apparent from these formulae that (z+Oi) Ot) = -x/P„{z). 

It is convenient to define Q„(«) for such values of z to be iQn(5!+0i)+iQ^{z-0i). The 
eader will observe that this function satisfies Legendre’s equation for real values of z. 

t This formula was first given by Heine; see his KugelfunkUonen, p. 147. 

$ It is easy to shew that the integral has a unique derivate in the out plane. 
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By the theoiy of analytic oontiniiation the equation proved for positive value#? of z -1 

persists for all values of z in the cut plane, provided that arg l)^co8h^} is given 

a suitable value, namely that one which reduces to zero when z -1 is positive. 

The int^rand is one-valued in the cut plane [and so is {z)J when is a positive 

integer; but arg{z+(;f®- I)^cosh^} increases by 2w as argz does so, and therefoi*e if n be 

not a positive integer, a further cut has to be made from — 1 to — oo. 

These cute give the necessary limitations on the value of z; and the cut when n is not 

an integer ensures that arg {2+— 1)^}—2 arg {(2+1)^ 4- (^ - 1)^} has its principal value. 

Example 1. Obtain this result for complex values of z by taking the path of 

int^ration to be a certain circular arc before making the substitution 

f. 

/(2+l)i+(a-l)4’ 
where 6 is real. 

Example 2. Shew that, if 2 > 1 and coth 0=2, 

Q% (^) *» {2 - (2* - l)i cosh u}^ du^ 

where arg {2 - l)i cosh u)-0. (Trinity, 1893.) 

15*34. Neumann’s* formttla for (2), when n u an integer. 

When 71 is a positive int^er, and 2 is not a real number between 1 and —1, the 

function (2) is expressed in terms of the Legendre function of the first kind by the 

relation 

which we shall now establish. 

When 121 > 1 we can expand the integrand in the uniformly convergent series 

P /y) I Jl. . 

Consequently 

=i i. 
The int^als for which m—ti is odd or negative vanish (§ 16*211); and so 

^ i jo 
1 (n4-2m)! (n+m) \ 

— ~ 2 2 
*«iss0 m 1 (271-h 2771-1-1)! 

2*^71 

by § 15*31. The theorem is thus established for the case in which 121 > 1. Since each 
side of the equation 

represents an analytic function, even when [ 21 is not greater than unity, provided that 2 is 

not a real number between — 1 and +1, it follows that, with this exception, the result is 
true (§ 5*6) for all values of 2. 

* P. Neumann, Journal fUr Math, xxxvn. (1848), p. 34. 
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The reader should notice that Neumann’s formula apparently expresses Q^(z) as a 
one-valued function of z, whereas it is known to be many-valued (§ 15-32 example 2). 
The reason for the apparent discrepancy is that Neumann’s formula has been established 
when the z plane is cut from -1 to -1-1, and (z) is ont-valutd in the cut plane. 

Ea^mpU 1. Shew that, when -1 | | |/(x) |-i; and that for other 
values of ^, | («) | does not exceed the larger of |«-1 |-i, [ 2+1 |-i. 

Example 2. Shew that, when n is a ijositive integer, §,.(2) is the coefficient of A“ in 

the expansion of (1 — 2Aa-|-A») "i arc cosh | —I _ 

[For, when | A | is sufficiently small, 

i A-n r {i-2hp+A»)-id}f 
.=0 ntoZj., z-y -Zj., (^) 

=(1 —2A2-pA*) 1 arc cosh-f—^—. 

This result has been investigated by Heine, Kugdfunlctwnen, i. p. 134, and Laurent 
Journal de Math, (3), i. p. 373.] 

16*4. Heine’s* development of (t - 2)-' as a series of Legendre poly- 
imnials in z. 

We shall now obtain an expansion which will serve as the basis of 

a general class of expansions involving Legendre polynomials. 

The reader will readily prove by induction from the recurrence-formulae 

(2m -h 1) (0 - (m + 1) (t) - mQ^_, (t) = 0, 

(2m -f 1) zP^ {z)-{m + l) (z) - mP^^ (2) = 0, 
that 

^ “ Jo (<)}• 

Using Laplace's integrals, we have 

(^)Qn{t)-Pn(z)Q n+1 (t) 

_ji- r*’ f ” -I- (2* — 1)^ cos 4>}* 

frJoJo {t-t-(f«-l)icoshw}»-^> 

X [2 -f (2“ - l)i cos - {f (f* - l)i cosh «}->] d^du. 

l)i coa<p 

I —l)i co8h u i 

Let cosh a, cosho be the semi-major axes of the ellipses with foci ±l which pass 

through z and t respectively. Let 0 be the eccentric angle of z; then 

«a=cosh (a+t0), 

12 ± (2* - 1 cos 1 = I cosh (a+i6) ± sinh (a+10) cos 4> | 

= {cosh^ a — sin* 0 -f- (cosh* a -• cos* 0) cos* sinh a cosh a cos (f>)^. 

This is a maximum for real values of ^ when cos +1; and hence 

1,3+(2*—1)^ cos ^ I * ^ 2 cosh* a -1H- 2 cosh a (cosh* a - l)^=exp (2a). 

Similarly \t+{t^-1)^ cosh u | ^ exp a. 

* Journal filr Math, xlu. (1851), p. 72. 

Now consider 
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Therefore 

JI+1 W Qn (0 - Pn (^) Q«+1 (t) 1«exp {n (a - o)} j Vd^tdu, 

where rh 
g 4- (g* — 1)^ cos ^ 

< + (<* — 1)^ cosh « 
4-|{< + («‘-l)icoshu}|-^. 

Therefore \ Pn+i(*) Qn(t) — Pn{z) Qn+i(i)|—>0, as «-♦ oo, provided o<a. 

And further, if t varies, a remaining constant, it is easy to see that 

the upper bound of f f Vd^du is independent of t, and so 
J 0 J 0 

Pn+1 (^) Qn {t) — Pn Qn+i (f) 

tends to zero uniformly with regard to t 

Hence if tiis point z is in the inteHor of the ellipse which passes through 

the point t and has the points + 1 for its fod^ then the expansion 

2 (2n + l)P„(^)Q„(#) 

is valid j and if t he a variable point on an ellipse with foci + 1 svxih that z is 

a fixed point inside it, the expansion converges uniformly with regard to t 

15*41. Newniami^s* expansion of an arbitrary function in a series of 
Legendre polynomials. 

We proceed now to discuss the expansion of a function in a series of 
Legendre polynomials. The expansion is of special interest, as it stands next 
in simplicity to Taylor s series, among expansions in series of polynomials. 

Let/(z) be any function which is analytic inside and on an ellipse G, 

whose foci are the points z=^±l. We shall shew that 

f{z) = a^P©(z) + UjPi(^) -f + o^Pj(-gr) +..., 

where a©, ai, a^,... are independent of z, this expansion being valid for all 
points z in the interior of the ellipse (7. 

Let t be any point on the circumference of the ellipse. 
00 

Then, since 2^ (2n+ l)Pn{z) Qn{t) converges uniformly with regard to % 

- SS- - Si-(*)/«) dt 

where 

= 2 OnPniz), 
»=0 

2n + l 

* c' 2m~ 

• X Keumann, Veber die Entaichelung einer FunkHon nach den Kugelfunktitmm (Halle, 
1862). See also Thomi, Journal fVr Math. urn. (1866), pp. 887-343. Neumann also gives an ei- 
pansion, in Legendre functions of both kinds, valid in the annulus bounded by two ellipses 
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00 

This is the required expansion; since 2 (2w +1) P„ {z) Q„ (t) may be~proved * * * § 
«=o ■' 

to converge uniformly with regard to z when z lies in any domain C" lying 

wholly inside C, the expansion converges uniformly throughout G'. 

Another form for ci» can therefore be obtained by integrating, as in 
§ 15-211, so that 

a„ = (n + i) f(x) (a:) dx. 

A form of this equation which is frequently useful is 

which is obtained by substituting for (x) from Rodrigues* formula and 
integrating by parts. 

The theorem which bears the same relation to Neumann’s expansion as Fourier’s 
theorem bears to the expansion of § 9*11 is as follows : 

Let f{t) he defined when -1 1, and let the integral of earist and he 
aheolutely convergent; edeo let 

Thm y,a^P^{x) is convergent and has the sum i{fis-h0)+f(x-0)} at any poin^ x, for 

which - 1 <,r< 1, if any condition of the type stated at the end of § 9*43 is satisfied. 

For a proof, the reader is referred to memoirs by Hobson t and BurkhardtJ. 

Example 1. Shew that, if p 1) be the radius of convergence of the series then 

'2CnPn(f) converges inside an ellipse whose semi-axes are h h (p-p'i). 

<"> «■ 

[Substitute Laplace’s integrals on the right and integrate with regard to ^.] 

Example 3. Shew that 

(Frobenius, Journal fur Math. Lxxiii. (1871), p. 1.) 

15*5. Fei'7'ers' associated Legendre functions P^ (t) and Qn^ (z). 

We shall now introduce a more extended class of Legendre functions. 

If m be a positive integer and 1 < z < ly n being unrestricted§, the 
functions 

d’"Qn(0 
dz>"‘ 

* The proof is similar to the proof in § 15-4 that that convergence is uniform with regard to t. 
t Proc. London Math. Soc. (2), vi. (1908), pp. 388-395; (2), vii. (1909), pp. 24-39. 
X Miinchener Sitzimgsbenchtey xxxix. (1909), No. 10. 
§ See p. 317, footnote. Ferrers writes (z) for (r). 
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will be called Ferrers’ associated Legendre functions of degree n and order m 
of the first and second kinds respectively. 

It may be shewn that these functions satisfy a differential equation 
analogous to Legendre’s equation. 

For, differentiate Legendre’s equation 

lu times and write v for . We obtain the equation 

(1 — «*) ^ — 2ir (m + 1) ^ + (re — m) (n + m + 1) v = 0. 

Write «; = (1 — v, and we get 

/I a dw f . to’ ) 

I? “ ^ + f 1=0- 

This is the differential equation satisfied by P^{z) and 

From the definitions given above, several expressions for the associated Legendre 
functions may be obtained. 

Thus, from Schlafli’s formula we have 

^ (1 j ^ l)n(^ 

where the contour does not enclose the point -1. 

Further, when »is a positive ints^r, we have, by Eodrigues' formula, 

* ^ ^ 2*n! 

ExampU. Shew that Legendre’s associated equation is defined by the scheme 

( 0 00 1 \ 

\m n+1 

-|m -|m j 

16-61. The vntegral properties of Ike associated Legendre functions. 

The generalisation of the theorem of § 15-14 is the following: 

When re. r, to are positive integers and re > to, r > to, then 

(Olbricht.) 

f_ Pn'^{z)P”^{z)dzi 
= 0 

2 (re+TO)! 

ir + n\ 

{r = n). 2re+1 (re — to)! 

To obtmn the first result, multiply the differential equations for P «(z) 
Pr (s) by Pr”'(z), P„”‘(z) respectively and subtract; this gives 

+ (re - r) (re + r +1) P,«» (s) P„«» (g) = Q. 

dz (1-s^) 
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On integrating between the limits — 1, +1, the result follows when n 

and r are unequal, since the expression in square brackets vanishes at each 
limit. 

To obtain the second result, we observe that 

(z) = (1 - + mzO.- z^) - i . 

squaring and integrating, we get 

1'^ (P, (z)Y^ 1^(1 _ + 27n^P„«* (z) 

+ ^APn-(^)l^'Jdz 

- - i {(1 “ f‘, w)- 

on integrating the first two terms in the first line on the right by parts. 

If now we use the differential equation for P„’"(z) to simplify the first 
integral in the second line, we at once get 

{P„»»+»fy)}7dz = (n-m)(n-hm + l)l' {F„’»fy)}»dz. 

By repeated applications of this result we get 

J J-Pn^(^)}’‘dz = (n — m + l)(n — m + 2)...n 

x(n + m)(n + m-l)...(n + l)p {P„fy)}* dz, 

and so P (p,m 12 ^ 
J -1 2n + 1 (n — m)! 

16 6. Hobsons definition of the associated Legendre functions. 

So far it has been taken for granted that the function which 

occurs in Ferrers definition of the associated functions is purely real; and 

since, in the more elementary physical applications of Legendre functions, it 

usually happens that no complications arise. But as we wish 
to consider the associated functions as functions of a complex variable, it is 
undesirable to introduce an additional cut in the ir-plane by giving arg'^l — z) 
its principal value. 

Accordinglyy in future, when z is not a real number such that — 1 < .^ < 1, 

we shall follow Hobson in defining the associated functions by the equations 

where w is a positive integer, n is unrestricted and arg^r, arg {z +1), arg (z~l) 
have their principal values. 
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"When m is unrestricted, (2) is defined by Hobson to be 

1 

r(i-»») “+1; 

and Barnes has given a definition of (2) from which the formula 

(”+”»)”• r(»+ro+i) r(|) (2»-i)*” 
sin»»r 2»+ir(n+|) jn+m+i 

x/’Cln+im+l, i»+i»n+J;n+f 5 2-2) may be obtained. , z 

Throughout this work we shall take m to be a positive integer. 

16-61. Expression of P„>» (2) as an integral of Laplace’s type. 

If we make the necessary modification in the Schlafii integral of § 15-5, 
in accordance with the definition of § 16-6, we have 

p (^+l)(w+2) ... (w + m) T\im/ 
W=-~ <<—!)»(#-2)— 

Write < = 2 + (s* -1)1 as in § 15-23; then 

P«**(^) = 
(n-i-l)(« + 2)...(7t + m) (2«-l)i” {^ + (2^-1)* cos <^1»^ 

■'» {(2*-l)iei^)”‘ * 

where a is the value of ^ when f is at j1, so that 

(atg(2*-l)i + a|<7r. 

Now, as in § 16-23, the integrand is a one-valued periodic function of the 
real variable ^ with period 2'7r, and so 

P«/.\ (”-b !)('«-(-2)... (n-b m) /■' r , 
Pn (zi) — --2^- J (2* — l)j COS ^}" 

Since {2 + (2* -1)1 cos ^}» is an even function of <f>, we get, on dividing 
the range of integration into the parts (- w, 0) and (0, tt), 

~ " ^ l^ + (z‘-l)^ cos cos m^d^. 

The ranges of validity of this formula, which is due to Heine (according as 
n is or IS not an integer), are precisely those of the formula of § 15-23. 

Example. Shew that, if | arg 21 < 

P*** W”(— ••• f»■ cosnuf)cl<f> 

^ {2+(2®-l)ioos<^}» + *’ 
where the many-valued functions are specified as in § 15'23. 

15*7. <zd(ktion theorem f<n-the I^endre polyTumiali*. 

Let 2-2a/-(2* - i)i i)4cos<0, where r, r-, » are unrestricted complex numbers. 

• Calc. Int. n. pp. 26!t-269. An investigation of the theorem based on physical 
reasoBiDg will be given subsequently (§18*4). ^ ^ 
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Then we shall shew that 

P, (z)=i>, (a:) {af) + 2^2 ( - )»• P*” {x) P,"* (x') cm mm. 

First let i2 (4/) > 0, so liliat is a bounded function of <f» in tbe 
5?+ (^ “ l)i cos (© — <l>) 

range 0<^ <2«r. If if be its upper bound and if | A | < if-1, then 

i A» 
»=« +(Jr'S-l)i cos ^}"+i 

converges uniformly with r^ard to and so (§ 4*7) 

2 A- f' /■' - A-{^+(:zi-i)iooa(^-,j,)}» 

«=o J-«- {ar' + (ir-s_l)ioo8^}* + » j--n=o {a;'+(y*_i)4cos<^}»+i 

= r <i4>__ 

^+(«'* — 1)^ 008^—A{a;+(^;*—1)4 cos («—^)} 

Now, by a slight modification of example 1 of § 6-21, it follows that 

T' d4>_^ 2w 
j ~ir 008^4* sin 

where that value of the radical is taken which makes 

Therefore 

/:. d<l3 

4/C08<^-A{j?4.(:r8-l)icos 

=s 
[{a/ - hxf - {(y2 -1 )4 - A (a:* -1)4 cos «}*- {A {a? -1)4 sin o)}>]4 

2>r 

(1-2Az+A2)4’ 

n has h 

we get 

2n- j 

and when A—0, this expression has to tend to 2ir Po {af) by § 16-23. Expanding in powers 
af h and equating coefl&cients, we get 

1 -L\W 
d<fi. 

Now P,(z) is a polynomial of degree in cosu, and can consequently be expressed in 

the form 4„cosm«, where the coefficients A^, ... are independent of <» ; 

X) determine them, we use Fourier’s rule (§ 9T2), and we get 

1 
- I {z) cos mm dm 
ir J 

_L. r —1)^cos(o)-</>)}»cosmo) , 

■2"-*-/-'Li-. {y+(a/*-l)4oosd.)-- {y + (^2- 1)2 cos <l>y 

f * — 1)^ cos (<0 — <^)}’‘ cos mm 

{y 4- (^'2 - 1)^ cos + 1 J 

_J r {a;4-(.r2 —l)^cos>/r}»cosm(«^+t|f) 

_ 1 r f” —i;-cos (^«D-<pj^'‘cos mci) -j 

2^*i-ir U -ir —1 

{a’' 4- (^'2 —1)4 cos ^ 

n changing the order of integration, writing m=<p + ylr and changing the limits for ^ 
rom ±7r~^ to ±w. 
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Now j 1)^008sinsince the integrand is an odd function; 

and so, by § 15 -61, 

A ”• f’ 
COS 7n<f>. (x) 

{a/+— 1)^ cos (l>}^ 
d(f> 

Therefore, when | &Tg /1 

P, (z) = P. (X) P, {of) + 2^1^ (-)- P,™ (X) P.” (y) cos »i«. 

But this is a mere algebraical identity in x, x' and cos w (since n is a positive int^er) 

and so is true independently of the sign of M (x'). 

The result stated has therefore been proved. 

The corresponding theorem with Ferrers’ definition is 

P,{^:y+ (1 -^)i (1 _y»)i cos a,}=P„ (x) (^) + 2 Pn'^ix) P„»(^f) COS 

16*71. The addition theorem for the Legerdre functions. 

Let 5?, x' be two constants, real or complex, whose arguments are numerically less than 

^; and let {x±V^+ 1)^ be given their principal values; let « be real and let 

z^xd — 1)^ l)i cos 0). 

7%e7i we $hall ihew that, if | argz\<^w for all vcdttes of the real variahle «», and n he 

not a positive integer^ 

P, w=P.(ir) P,(^)+2 (- )»• w -P.” 

Let cosh a, cosh d be the semi-major axes of the ellipses with foci ± 1 passing through 

X, af respectively. Let ff be the eccentric angles of x^ d on these ellipses so that 

Let a-|-ij3a=f, a+t/9' = |', so that :£?=cosh|, iif=cosh^'. 

Now as Q> passes through all real values, R (z) oscillates between 

R (xx') ± A («* -1 )4 (a:'* -1 )4=cosh (a ± o') cos (/3+/S'), 

so that it is necessary that be acute angles positive or negative. 

Now take Schlafli’s integral 

and write 

P uy_L_ /■“+'*+’ HrlLdt 

{c~*** sinh | cosh — cosh $ sinh + eosh ^cosh —e*" sinh g sinh 

cosh Jl' +«** sinh 

The path of as increases from — -tt to tr, may be shewn to be a circle; and the 
reader will verify that 

^-1 = 
cosh II4- sinh ^|} {sinh cosh - e*'^ cosh sinh 

cosh If' -j- sinh |f' ’ 

— ^ fcosh cosh II" ~ sinh sinh |f'} 

cosh If -h sinh |f 

If} {^^*** i ii' 4- e sinh f cosh^ |f - cosh f sinh f} 

cosh if 4-6*^ sinh If 
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Since* I I > I Sint Jf I, the argument of the denominators does not change when 
^ moreasM 2ir; for similar reasons, the arguments of the first and third numerators 
mc^ by 2,r, and the argument of the second does not change; therefore the circle 
contains the points t-1, t=z, and not t= -1, so it is a possible contour. 

Making these substitutions it is readily found that 

2^ J -w ^— I)^ cos (fi}”' ■** 1 

^d the i^t of the work foUows the course of § 16-7 except that the general form of 
Founer^s theorem has to be employed. 

Example. Shew that, if 71 be a positive integer, 

g.{xar'+(a^-l)4(y2_l)4cosa.} = g,(a:)P„(a;') + 2 2 §,”(2!) coent«, 
711=1 

when a> is real, E (V) > 0, and | (a/ -1) (x+1) | < | (a:-1) +1) |. 

(Heine, Kugdfunktionen; K. Neumann, Leipziger Ahh. 1886.) 

15*8, The function^ {z\ 

A fun^on connected with the associated Legendre function P^{z) is the function 
r ,1 ^ integral values of n. is defined to be the coefficient of A» in the expansion 

Of (1 — 2A-s+A2) - in ascending powers of A. 

It is easily seen that (^) satisfies the differential e<juation 

(2y + l)z dy n{n+2p) 
dz^ 22^1 

For aU values of % and v, it may be shewn that we can define a function, sati^ng 
this equation, by a contom-integral of the form 

’ ]o 

wheie C is the contour of § 16-2 ; this corresponds to Schlafli’s integral. 

The reader will easily prove the following results : 

(I) When n is an integer 

ince P„(z)=G»4(r), Rodrigues’ formula is a particular case of this result. 

(II) When r is an integer, 

(r)= 1 p i.. 
n-r^ > (2r-l)(2r-3)...3.1 

'hence (z) =.-(^^-1) -p , , , 

The last equation gives the connexion between the functions (7,'(2) and P/ (2). 

* This foUows from the fact that 00s/S'>0. 

t This function has been studied by Oegenbauer, Wiener Sitzungiberichte, Lxx. (1874), pp. 434- 
18; txxv. (1877), pp. 891-896; xcvn. (1888). pp. 259-316; on. (1893), p. 942. 
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(III) Modifications of the recuirence-formulae for (z) are the following: 

«=o. C'«(-)=^ c-.' (4 

dOJ^ (z) ^+1 

—j (z), (^)-(n-l+2,.){z) ~ 2f (!-«*) 0^”^ 
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Miscellaneous ExAMPLEsf. 

1. PK>ve that when ^ is a positive int^er, 

2. Prove that 

(Math. Trip. 1898.) 

is zero unless m—n= ± 1, and determine its value in these cases. 

(Math. Trip. 1896.) 

3. Shew (by induction or otherwise) that when is a positive integer, 

(2n+l)£ i>,» (*)dz=.l-zP.*-2z{P,^+P^^+ ...+P*,_0+2 (P,P,+P,P, + ... +P,.,P,). 

(Math. Trip. 1899.) 
4. Shew that 

5. 

zP.’ (z)=nP, (z) +(2b-.3) P, 

Shew that 

,2 (*)+(2b-7) P._4(*)+.... 
(Clare, 1906.) 

^P."(z)=n(n~ 1) Pn(^)+J^ (2n-4r+l) {r(2»- 2r+l)-2} P._j, (4 

where or i (n-1). (Math. IVip. 1904.) 

* Before studying the Legendre function P, [z) in this treatise, the reader should consult 
Hobson’s memoir, as some of Heine’s work is incorrect. 

t The functions involved in examples 1-30 are Legendre polynomialz. 
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6. Shew that the Legendre polynomial satisfies the relation 

(^s _ i)J -^=n (ra -1) (» +1) (» + 2) 

7. Shew that 

J'dz l’Pn(.^)dz. 

(Trin. Call Dublin.) 

/o W * (2„_ 1) (2ft+l) (2m+3)' 

(Peterhouse, 1905.) 

8. Shew that the values of J* (1 -PJ" (z) (2) <fc are as follows: 

(i) Bn (n+1) when m — n\^ positive and even, 

(ii) - 27i (n® — 1) (71—2)l{%n +1) when m^n, 

(iii) 0 for other values of m and n. (Peterhouse, 1907.) 

9. Shew that 

sin-6P^(sin6)= S (-cos’-6Pr(cos6). 

(Math. Trip. 1907.) 

10. Shew, by evaluating P„(costf) <W(§ 15'1 example 2), and then int^rating by 

arts, that j P,^(/t) arc sin;*, d/t is zero when n- is even and is equal to n- 
J-i ^ I2.4...(n+])/ 

■hen n IS odd. (Clare, 1903.) 

11. If in and n be positive integers, and m^n, shew by induction that 

P P /•\  ™ r-^r-d»_r —4r + l\ ^ ^ ^ 

here a 
m I 

(Adams, Proc. Royal Soc. xxvn.) 

12. By expanding in ascending powers of u shew that 

here is to be replaced by (1 - 2?®) after the differentiation has been performed. 

13. Shew that P^ (z) can be expressed as a constant multiple of a determinant in 

hich all elements parallel to the auxiliary diagonal are e(]^ual (i.e. all elements are e(^ual 

r which the sum of the row-index and column-index is the same); the determinant 
ntaining n rows, and its elements being 

11 11 1 

3’ 3^ 6’ 6^—2n-l^ 

(Heun, (xott, Nach. 1881.) 

14w Shew that, if the path of integration passes above ^=*1, 

o , 2 /*" {2 (1 - ^2) - 2^ (1 -«2)i> ^ 

jo-(i-r»)»-^i-*• 

15.' By writing cot d'—cot ^ — A cosec B and expanding sin ^ in powers of h by TayloPs 
eorem, shew that 

A(cos5)=i^“c08ec»^M (Math. Trip. 1893.) 
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16. By considering 2 (z), shew that 

(Glaisher, Proc. London Math, 8oc. vi.) 

17. The equation of a nearly spherical surface of revolution is 

r»= 1 +a {i\ (cos &)’hPt (cm +... -i-P2n-i (cos 0)}, 

where a is small; shew that if a® be neglected the radius of curvature of the meridian is 

14-a 2 {»(4m4'3)~(TO + l)(8w+3)}Pj^+i(cos^). 
■m=0 

(Math. Trip. 1894.) 

18. Hie equation of a nearly spherical surface of revolution is 

. „ r=a {l+tP, (cos d)}, 
where c is small. 

(Trinity, 1894) 

Shew that if be neglected, its area is 

4wa* |l + . (Trinity, 1894.) 

19. Shew that, if ^ is an integer and 

(l-2Aa+A»)-*‘= i a^p^(t), 
then 

1.3.6:.. (A-2) + ^) ^ > 

where x and y are to be replaced by unity after the differentiations have been performed. 

(Routh, Proc. London Math, 8oc, xxvi.) 
20. Shew that 

/_! 2^ > 

,!i 2^ S (Catalan.) 

21. Let zmsfiTy the numbers involved being real, so that --l<fi<l. 
Shew that 

P u)J.:±^ ^ A") 

where r is to be treated as a function of the independent variables y, 2; in performing 
the differentiations. 

22. With the notation of the preceding example (cf p. 319, footnote *), shew that 

i ^ ^ 
n-l 271 + 1 dz 

Qn(f^)^ 
(-)«^+l 0« jl 

n I 02*» 

(n+l)P^(f,)+f,P^'(f,). 
(^)n^ + S /J 

n! 0^3* Vr®/ * 

23. Shew that, if | A | and j z | are sufficiently small, 

1-^2 
-2 (2n-hl)h^P^(z), 
(1-2A*+A*)* «=« 
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24. Prove that 

i*-.!« e*-i« -p._, (z) §„. (z)^J^. 
n 1 j 

(Math. Trip. 1894.) 

25. If the arbitrary fiinction f(x) can be expanded in the series 

/(«)= 2 OnPnix), 
»s=0 

onveiging uniformly in a domain which includes the point shew that the expansion 
i the int^ral of this function is 

/>>*- -fiS) (W.) 

26. Determine the coefficients in Neumann’s expansion of «" in a series of L^endre 
Kjlynomials. Journal far Math, LVi.) 

27. Deduce from example 25 that 

arc sm z 
« jl.3.6...(2^1-1)12 

2oi 2,4.e,.,2n J «}. 

28. Shew that 
(Catalan.) 

Q, (x)=i log (^). P,(2) _ (^) p, (,)+1 

29. Shew that 

+ i P,_s (*) Pj («)+...+1 p, (2) P,_j J . 

(Schlafli; Hermite, Teixeira »/. cfe Math, vi. (1884), pp. 81-84.) 

C*(^) 

Prove also that §,(.)=ip,(.)log|^^_/_,(4 

here* A~i W-“ 
271-1 

1. 1« + 
271—5 

3(71-1) -^n-a WH- 
271-9 

5(71-2) Pr-6(^) + ... 

^»+(itn-l) 

i •’(‘• 

Ci-') (‘.- ■ 4) 
_1 »(«-l)(«-2)(a+l)(»+2)(n+.3) /^-l\z 

‘ 2 3/ 1*283* \"2“J‘*’-^ 

here £,= 1+5 + 1+...+!. 
25 .5 71 (Math. Trip. 1898.) 

30. Shew that the complete solution of Legendre’s differential equation is 

le path of integration being the straight line which when produced backwards passes 
irough the point ^=0. 

* The first of these expressions for (z) was given by Cliristoffel, Journal fur Math. lv. 

858), p. 68, and he also gives {Ibid. p. 72) a generalisation of example 28; the second was given 
r Stieltjes, Corresp. d^Herruite et de Stieltjes^ ii. p. 59. 
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31. Shew that {*+(**-l)¥=2 . 

where 

32, Shew that, when E(7i+l)>0j 

B - ■ r (m-|) r (m-g—|) 
*** Stt m!r(77i —a + 1) 

[chap. XV 

(SchlaflL) 

and 
4» 

33. Shew that 

Qn(^)=^r 
J z+ii^-l) 

Qn {^) = f -- 
(l-2Az+A2)i 

dk. 

_1)_ __ 

r(n-m + i)Ja {?+(zi!-1)4cosh «}" + > 

where the real part of (ji+1) is greater than m. (Hobson.) 

^ 34. Obtain the expansion of (z) when | arg a | < «■ as a series of powers of 1/r, when 
n IS not an int^er, namely 

P^{z)=^ _ 

_ ^T{n+i) n , 1\ 

r(-n)r(i) ?j- 

[This is most easily obtained by the method of § 14-51.] 

35. Shew that the differential equation for the associated Legendre function P '^(z) 
is defined by the schemes^ »» v / 

cosh mu 
d% 

/ 0 00 1 
QO 1 'j 

-hn 
P- -in \m A 1 

r-(r’‘-l)4j ® 1-22- 

-m J - i 
(Olbricht.) 

36. Shew that the differential equation for 0/ (r) is defined by the scheme 

f-1 cc 1 I 

w + 2v J —K zV, 
I 0 0 J 

37. Prove that, if 

y* 
^ (2n-hl)(2?t-f-3)...(2?i+2.y-~l) ,d»P^ 
~n(M*-1)(n»-4)..."{n»l(a-1)2} (»+,) 1)*. 

then yj=P p . 2m+3 _ 

Vi=P,,,_i^!i±i)p , |.3(2» + 5) (2m4-31f2n + 51 „ 

(Math. Trip. 1896.) 
and find the general formula. 

See also § 15*5 example. 
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38. Shev that 

/>„■■» (nna/l) = A + + ^ l^-4w» e08{(« + f)<?-j«-4-|OTff} 

Vir r(»+f) L (2sintf)4 2(2n+3) (Sain (9)* 

, (l»-4m»)(3»-4OT^) coe{(w+4)^-4ir+jtmir^ 1 
2- 4. (2» +3) (2n+5) ’ ‘ (gsinfl)* ' 

obtaining the ranges of values of m, » and 6 for which it is valid. 
(Math. Trip. 1901.) 

39. Shew that the values of ji, for which i',-’'* (cos d) vanishes, decrease as d increases 
from 0 to w when m is positive; and that the number of real zeros of P,-'»(co8 d) for 
values of B between ~ir and w is the greatest integer less than n—m+1. 

(Macdonald, Proc. London Math. Soc. xxxi, xxxrv.) 
40. Obtain the formula 

1 Tir ^ 

2 A»P,(C08 4,)P-(C0S<i). 
■' »=s0 ' 

(Legendre.) 

41- lf/(x)=z»(^r>0) and/(i;)=-a^(x<0), shew that, if f(x) can be expanded 
into a uniformly convergent series of L^ndre polynomials in the range (-1, 1) the 
expansion is ’ ’ 

(Trinity, 1893.) 

shew that 

O.” {xxi - (x^ - l)i (V -1)4 cos 

-^(2v-l) » ^ a^^*'(’‘-^+l){r(v-|-X)}»(2v-(-2X-l) 
{r(v)}* - “ r(»-f-2v+X) 

X (^- i)i^ (xj*-1)*^ (x) u;+;; (xo (cos .^) 

(G^enbauer, Wiener Sitmngsberichte, OIL (1893), p. 942.) 

43- If a-n (z)=j‘‘ (fi-3tz+l) - i 

vhere Ci is the least root of t>-3<z-H=0, shew that 

(271-1-1) <r,+j-3(27!.- 1) z<r„_i-h2 (« —1) <r„_2=0, 

4 (4r3 _ 1) <r,"' -f 144r»<r," - J (12»» - 24n - 291) <r.' - (» - 3) (271 - 7) (271 -I- 5) <r.=0, 

vheie _(^) 

44. If 

hew that 

(Pincherle, Ee^idiconti Lincei (4), vii. (1891), p, 74.) 

(A»-3Az-H)-i= i Jt^(z)h\ 
»=0 

2(^+1) -3(2n + l)^:i2n+(2»i- 1) ^^.2=0, 

nR^+.fl'„_2 - zRn*=0, 

4 (42i3- 1) ^"'+9622^/'-^ (127i2-|-24n-91) Rn-n{2n+2) (2n+9) 

n n,_d^Rn . 

(Pincherle, Mem. I$t. Bologna (6), i. (1889), p. 337.) 

vhere 
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48. If 

obtain the neciirrence-formula 

(n+I) (2»-1) A, (^)-{(4«*-1) x+1} A._, (x) + («-1) (2«+l) 

(Scbendel, Journal fUr Math, lxxx.) 

46. If is not native and m is a positive integer, shew that the equation 

^+{2n4*2):r ^«=m (7?i4.2/i +I)y 

has the two solutions 

when ^ is not a real number such that — 1 ^ 47 ^ 1. 

47. Prove that 

(l-Ai;-(l-2Ar+A2)^}«=m(x»-l)»> i 1 /^V 
n=m (n+m) 1 n V 2 / 

m I ’ 
4a If 

shew that F.,, (a-) = 

where P, (x, a) is a polynomial of d^ree ji in ar; and deduce that 

-P»+i (•»?, «)='(^+a)P,(ar, a)+x^P^(x, a). 

49. If Fft (x) be the coefficient of s* in the expansion of 

2hz 

(Clare, 1901.) 

(Trinity, 1906.) 

in ascending powers of z, so that 

i"o(^) = l, F,(x)^x, F,(x)=?^,etc., 
shew that 

(1) (x) is a homogeneous polynomial of degree ninx and A, 

-as- 

(3) P_F.(x)dx^0 

(4) If ^^)+a,F^ix)+a,F,(x) + ..., where a., a„ o*.... are real constants, 

then the mean value of ^ in the interval from x--k to +A is a,. (L&,„t&) 

50. If P. (^) be defined as in the preceding example, shew that, when -A<x<h, 

(AppeE) 



CHAPTEK XVI 

THE CONFLUENT HYPERGEOMETKIC FUNCTION 

16*1. The confluence of two singularities of RiemamCs equation. 

We have seen (§ 10*8) that the linear differential equation with two 
•egnlar singularities only can be integrated in terms of elementaiy functions; 
vhile the solution of the linear differential equation with three regular 
ingularities is substantially the topic of Chapter xiv. As the next type 
n order of complexity, we shall consider a modified form of the differential 
quation which is obtained from Riemann’s equation by the confluence of 

wo of the singularities. This confluence gives an equation with an irregular 
ingularity (corresponding to the confluent singularities of Riemann s equation) 
nd a regular singularity corresponding to the third singularity of Riemann’s 
quation. 

The confluent equation is obtained by making c oo in the equation 
iefined by the scheme 

0 00 c \ 

pjg + m -c 

i-m 0 

CIc z 

k 

The equation in question is readily found to be 

d^u da 

dz^ dz (A). 

We modify this equation by writing u = and obtain as the 
juation* for 

dz^ 

1 k 
4 + 7 + F=0 (B). 

The reader will verify that the singularities of this equation are at 
and 00, the former being regular and the latter irregular; and when 2m 
rwt an integer, two integrals of equation (B) which are regular near 0 and 

did for all finite values of z are given by the series 

1 + ^ + m — k (J + m — A) (-1 + m — A;) 
l!(2m + l)^''‘ 2!(2m + l)(2m + 2) 

This squation was given by Whittaker, Bulletin American Math. Soc. x. (1904), pp. 125-134. 
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\ — m—k ^ (^ — m — ^)(j — m — A?) , 
:Z+ ' Z^ + ■I 

Jfi. _««(2^ = J1 J___ 

' r +1! (1 - 2m) “ ■ 2 ! (1 - 2»ft) (2 - 2m) 

These series obviously form a fundamental system of solutions. 

[Notk Series of the type iu { } have been oonsidei^ by Kummer^and more recently 

by Jacobsthalt and Barnes |; the special series in which ir=0 had been investigated by 

L^p^nge in 1762-1765 (Oeupres, i. p. 480). In the notation of Kumnier, modified by 

Barnes, they would be written ±2m-|-l; z}; the reason for discussing 

solutions of equation (B) rather than th<»e of the equation ^-ay=:0, of 

which 1^*1 (a; p; z) is a solution, is the greater appearance of symmetry in the formulae, 
t<^her with a simplicity in the equations giving various functions of Applied Mathe¬ 
matics (see § 16*2) in terms of solutions of equation (B).] 

16*11. Kummer’s formulae, 

(I) We shall now shew that, if 2m is not a negative integer, then 

^ ” 3ft.«. (^) = (-^) - i - A 
that is to say, 

f-Ji-L i + -1 + + >»-^) . 
1 l!(2m + l) ^ 2!(2m + l)(2m + 2) 

- ^ i + + ^ (i + w + *) (I + m + i) , 
l!(2m + l) 2!(2m+l)(2m + 2) 

For, replacing e'* by its expansion in powers of z, the coefficient of in 
the product of absolutely convergent series on the left is 

^3-(l + m-*, -n; 2m+l; l) 9. i ^ + «) 
/ n! 1’ (m + k)r (2m +1 + n) ’ 

by § 14-11, and this is the coefficient of ir“ on the right§; we have thus 
obtained the required result. 

This will be called Kummer^s first formula, 

(II) The equation 

1+ 2 
l)(m-f 2)...{m+jp)J ’ 

valid when 2m is not a negative integer, will be called Kummer^s eeomd 
formula. 

To prove it we observe that the coefficient of in the product 

2m+l; z\ 

* Journal fUr Math, xv, (1836), p. 133. 
t Math, Ann, im, (1903), pp. 129-154. 

X Tram. Camh. Phil. Soc. xx. (1908), pp. 253-279. 

§ The result is still true when m+^ + k h & negative integer, by a slight modification of the 
analysis of § 14*11. 
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of which the second and third factors possess absolutely convergent eTpanainn.^ is (§ 3*73) 

(^+m)(f+ot)... (n-m+i) 
n!(2»t+l)(2m+2)... -2»i-ji; i) 

»!(2)n.+ l)(2j?H-2)... (2wi+?i)'^^ -n+i-m; 1), 

1)^ Kummer^s relation ^ 

F(2a, 2^j a+/S+J; x)=^F{a, /S; a+iS+J ; 4a;(l-*)}, 

valid when 0<ir< J; and so the coefficient of a»+>»+i (by g 14-n) is 

(i+”>) — in-m.+^) r(-n+^-m)r(^) 
»! (2»>+l)(2m+2)...(2m+n) Tr(i-in) 

n ! (2»t+l) (2«i+2)... (2m+re) r(i-m-|ra) 

and when n is odd this vanishes; for even values of ji (=^) it is 

■ r(i-m)(-^)(-|)...(^-p)_ 

tp ! 2® (»t+i) (»+!) ... (TO+yj-i) (m+l)(OT+2) ...\m+p) T(^^'-m-p) 

_l-3...(2p-l)_ 1 
2y>! 2SP(»t + l)(m+2)...(m+J>) ^.p[ (m+1) (m+ 2)... (m+js)' 

16‘12. Definitim^ oftiie function (z). 

The solutions of equation (B) of § 16T are not, however, the 
most convenient to take as the standard solutions, on account of the 
disappearance of one of them when 2m is an integer. 

The integral obtained by confluence from that of § 14*6, when multiplied 

by a constant multiple of isj 

It is supposed that argz has its principal value and that the contour is so 
chosen that the point t = — is outside it. The integrand is rendered one¬ 
valued by taking | arg (-1) | ^ tt and taking that value of arg (1 + t/z) which 
tends to zero as t 0 by a path lying inside the contour. 

Under these circumstances it follows from § 5-32 that the integral is an 
uialytic function of z. To shew that it satisfies equation (B), write 

f(0+} 

J ao 

* S€€ Chapter xiy, examples 12 and 13, p. 298. 

t The function W]^,^{z) was defined by means of an integral in this manner by Whittaker 
oe. cit. p. 125. ’ 

t A suitable contour has been chosen and the variable t of § 14*6 replaced by -1. 
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and we have without difficulty* 

d^v f2k ^\dv + 1) 

= 0, 
since the expression in {| tends to zero as t-^+ ao; and this is the condition 
that should satisfy (B). 

Accordingly the function defined by the integral 

is a solution of the differential equation (B). 

The formula for (z) becomes nugatory when A - g - m is a negative 

integer. To overcome this diflSculty, we observe that whenever 

iS — § — to) ^ 0 

and k — ^—m is not an integer, we may transform the contour integral into 

an infinite integral, after the manner of § 12*22 j and so, when 

W, 
R(k -i- to)^0, 

This formula suffices to define TF*,ot(z) in the critical cases when 

TO+ 2-A is a positive integer, and so Ft,„(z) is defined for all values of 

k and m and all values of z except negative real values f. 

Example. Solve the equation 

dhi ( h c\ 

in terms of functions of the type JT*.(r), where a, 6, c are any constants. 

16*2. Expression of various functions hy functions of the type Ft,* fy). 

It has been shevmj that various functions employed in Applied Mathe¬ 
matics are expressible by means of the function fy); the following are a 
few examples: 

The differentiations under the sign of integration are legitimate by § 4-44 corollary. 

W iT ri * V J®** negative, may be defined to be either ir,„(z+0i) or 
whichever is more convenient. 

thaniTS^Srf'*^*'” » ^oie complete account 
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(I) The Error function* which occurs in connexion with the theories of 
Probability, Errors of Observation, Befraction and Conduction of Heat is 
defined by the equation 

Erfc(a:)=J 

where x is real. 

Writing < = and then w^sjx in the integral for 
we get 

F_ {x*) = x~K- (l +1)"^ e-^dt 

=s j 
and so the error function is given by the formuia 

Erfc (w) = I j (^). 

Other integrals which occur in connexion with the theory of Conduction 
fd 

of Heat, e.g. e ^ dt, can be expressed in terms of error functions, and 
•f a 

so in terms of functions. 

Example* Shew that the formula for the error function is true for complex values of x. 

(II) TAe Incomplete Gamma function, studied by Legendre and others f, 
is defined by the equation 

^{n, £c) = r 
Jo 

By writing t^s^x in the integral for i^(ir), the reader will 
verify that 

7(«. a>)=r(«) 

(III) The Logarithmic-integral function, which has been discussed by 
Euler and others^, is defined, when | arg {— log ^} | < w, by the equation 

* This name is also applied to the function 

Erf(x)=J’ dt=^ _ Erfc (x). 

f Legendre, Bxercices, i. p. 339; HoSevar, ZeiUchrift fiir Math, und Phyi. xii. (1876), p. 449- 
Schlomilch, ZeiUchnftjiiT Math, md Phy,. xvi. (1871), p.261; Prym, Journal /fir Math. Lxrxii.’ 
(1877), p. 165. 

t Euler, Inst. Calc. Int. i.; Soldner, Monatliche Correspondetiz, von Zach (1811) p 182* 

Briefwechsel zwisehen Ganss und Bessel (1880), pp. 114-120; Bessel, Konigsberger Archival. (1812)’, 
pp. 369-405; Laguerre, Bulletin de la Soc.Math.de France, vii. (1879), p. 72; Stieltjes, Ann. de 

[ Fcolenorm. sup. (3), m. (1886). The logarithmic-integral function is of considerable importance 
in the higher parts of the Theory of Prime Numbers. See Landau, Primzahlen, p. 11. 
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On writing $ — log z = m and then m = — log t in the integral for 

it may be verified that 

li (z) = -i-]ogz)-iziW_^Q (- log z). 

It will appear later that Weber’s Parabolic Cylinder functions (§ 16‘5) and 
Bessel’s Circular Cylinder functions (Chapter xvn) are particular cases of the 

function. Other functions of like nature are given in the Miscellaneous 
Examples at the end of this chapter. 

[Note. The error function has been tabulated by Encke, Berliner att. Jahrhuch 1834 

pp. 248-304, and Burgess, Trane. Boy. Soc. Edin. xxxix. (1900), p. 257. The logarithmic- 

integral function has been tabulated by Bessel and by Soldner. Jahnke und Emde 

Fnnktionentafeln (Leipzig, 1909), and Glaisher, Factor TaUee (London, 1883), should als^ 
be consulted.] ^ 

16-3. The asymptotic expansion of {z), when \z\is large. 

From the contour integral by which Wt,„(z) was defined, it is possible 
to obtain an asymptotic expansion for valid when |argz| < tt. 

For this purpose, we employ the result given in Chap, v, example 6, that 

where 

a, ft^ ^ 

Substituting this in the formula of § 16-12, and integrating term-by-term 
It follows from the result of § 12-22 that 

(z) = |l 4. H-(k- (m* -(k-m ^ 
I 1!^ 2!^> +--- 

{m? - (I; - f)»{ ... (m« - (;fc - w -P j(V} 
n I 

provided that n be taken so large that i > 0. 

Now, if 1 arg z I $ TT - a and | z | > 1, then 

-f 

■f 

and so* 

I -Bn {t, z) I ^ 

l=§|(l-l-f/z)|=$H-< i2(z)>0| 

I (1 + tjz) I > sin a R (z) < OJ ’ 

(1-1- f) IM (cosec a) I * I ' u» (1 -f-«) i M 

• It is supposed that X is real; the inequality has to be slightly modified for complex values of X, 
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Therefore 

-Kn {t, z) I 

--rTF^-- (1(coseca)l*>l(i/^)|'*+i (1+i)l»'l(n + l)-'. 

1 + « < 1 + L 

Therefore, when |^| >1, 

= 0||^ r* + 4 + m+«(l4.i)2|\l|^|-n-lg-t^ 

I r (— i + ^ + m) 

* 0 (zr”-^), 

since the integral converges. The constant implied in the symbol 0 is 
independent of arg z, but depends on a, and tends to infinity as a-^0. 

That is to say, the asymptotic expansion of Wt^,n(z) is given hy the formula 

Wk „ {z) - e-i‘ ll + i - (h - - (fc - D^i ... fm° - (^ - r> + ^)^}) 
’ ( n=i n\z^^ ) 

for large values of\z \ when |argz\^it — a<ir. 

16‘31. The second solution of the equation for 

The dififerential equation (B) of § 16T satisfied by W]t,m(^) is unaltered if 
ihe signs of z and k are changed throughout. 

Hence, if | arg (— ^) | < tt, is a solution of the equation. 

Since, when |arg z\<7r, 

Wt,„,(z)Le-i‘z’‘{l + 0(z-% 

pfhereas, when | arg (- ^) | < tt, 

W.k, „,(-z) = eiU-z)-’‘{l + 0(z-% 

;he ratio Wic^m{z)/W^}c^m(--z) cannot be a constant, and so Wk^^j^{z) and 
(~ form a fundamental system of solutions of the differential 

squation. 

16*4. Contour integi'als of the Mellin-Barnes type for Wk,m (-2^)- 

Consider now 

^e-^‘z^ (•“*■ r(s)r(-s-l:-m+^)r(-s-^ + m + ^) , „ 
( 27r» J_.i r(-k-m+l)r(-k + m + i) 

where | arg z\<^ir, and neither of the numbers 1; ± 1 is a positive integer 
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or zero*; the contour has loops if necessary so that the poles of r(s) and 

those of r s — A — wi + r s — i + m + are on opposite sides of it. 

It is easily verihed, by § 13-6, that, as s-^oo on the contour, 

r(s)r^-s-^;-w + r ^-s-A: + TO + ij = 0(e-*'l*l|s|-2*-l^), 

and so the integral represents a function of z which is analytic at all pointsf 

in the domain | arg z\^\’tr- 

Now choose N so that the poles of + T ^-s-^-+7n + ij 

are on the right of the line i2(s)=-N-i; and consider the integral taken 

round the rectangle whose comers are ± fi, - iV-1 where ^ is positive^ 

and large. 

The reader will verify that, when |argz|<?7r-a, the integrals 

pN-l+fi 

-fi ’ •'fi 

tend to zero as f —» oo ; and so, by Cauchy s theorem, 

r(s)r(-«-A--m + i)r(-«-/t + m+4) 
27rf J_„; + 

= e-i‘z’‘\ 1 i?„ 
U=o 

_i._L r(g)r(-s-fc-m+|)r(-s-/!,•+OT+^) i 
r(-A:-»n-^)r(-yb + «i + ^) 

where Rn is the residue of the integrand at « = — n. 

Write 5 = — iV — ^ + tY, and the modulus of the last integrand is 

where the constant implied in the symbol 0 is independent of z, 

r±ao 

Since j | i converges, we find that 

/=e-4V| f E„+0(|z|-f^-4)|. 

t Id these cases the serias of § 16‘3 terminates and is a combination of elementary 
functions. 

f The integral is rendered one-valued when li {z)c 0 by specifying arg 2. 

t The line joining may have loops to avoid poles of the integrand as explained above. 
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Blit, on calculating the residue we get 

r(w + + (_)» ^-n 
n ! r(- Ar -m + ^) r(- A: + TO + 

- K--1)^1 + m 
n I 

and so I has the same asymptotic expansion as 

Further I satisfies the differential equation for on 

substituting j'_^_r(s) F (-5-Ar-to + T ^-s-A-4-m +2»ds for v in 

the expression (given in § 16*12) 

we get 

”/ F(5 +1) r 5 ^ r — A + m +2^'^^ds 

= ( / — ^ r (a) r ^ - it — m +r a — + w +1 j z^ds. 

Since there are no poles of the last integrand between the contours, and 

since the integrand tends to zero as | s | —» 00, 5 being between the contours, 

the expression under consideration vanishes, by Cauchy’s theorem; and so 

I satisfies the equation for Wk^^n (^)- 

Therefore 

where A and B are constants. Making 12' | —» 00 when R{z)>(^ we see, from 

the asymptotic expansions obtained for I and W±k,m{±!^\ l^hat 

A = l, JS = 0, 

Accordingly, by the theory of analytic continuation, the equality 

I=Wk^,n{z) 

persists for all values of z such that |arg^|<7r; and, for values* of arg^ 

such that TT ^ I arg -2^ | < | tt, TTjfc, {z) may be defined to be the expression I. 

Example 1. Shew that 

^ft..n(2) = f”' 
2trl / r (— ^ — wi+i) r (— ^‘+7^~ * 

taken along a suitable contour. 

* It would have been possible, by modifying the path of integration in § 16*3, to have shewn 
that that integral could be made to define an analytic function when j arg r < fir. But the 
reader will see that it is unnecessary to do so, as Barnes’ integral affords a simpler definition 
of the function. 
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Example 2. Obtain Barnes’ int^pral for by writing 

2^rii.., r(-k-mW 

for (1 l+» int^ral of § 16*12 and changing the order of integration. 

16*41. Relations between (^)- 

If we take the expression 

F(8) = Tis)r(-s-k-m + l)r(-s-k + m + l) 

which occurs in Barnes' integral for and write it in the form 

__^^rjs)_ 
r(5 + A + m4*J)r(^ + A — m + |) cos (s + i:-hm)7r cos ^ — m) tt ’ 

we see, by § 18*6, that, when R (s) > 0, we have, as 151 —» oo , 

F{s)- 0 j^exp 1^- 5 log5 + sec(5 + A + m) 7rsec(5 + 

Hence, if larg2'|<|7r, ^F(s)2^d8y taken round a semicircle on the 

right of the imaginary axis, tends to zero as the radius of the semicirck 
tends to infinity, provided the lower bound of the distance of the semi¬ 
circle from the poles of the integrand is positive (not zero). 

Therefore FtpT" T ^r??-Tx- x,m\ j r(-*-m+i)r(-j5;+m + i)’ 

where XR denotes the sum of the residues of F{s) at its poles on the 
right of the contour (cf. § 14'5) which occurs in equation (C) of § 16-4. 

Evaluating these residues-we find without difficulty that, when 

|argir|<57r, 

and 2m is not an integer* 

Ft,m{z) - j,^ (x) + Mt, (4 

Example 1. Shew that, when | arg (— 2) | < !"• and 2nt is not an integer, 

r(-s 
r (i - m+k) “ ^ -r (i+m+^) ■ 

(Barnes t.) 

Example 2. When — Jtr < arg z<^w and - f«• < arg (— 2) < Jir, shew that 

If. U)—Miw ( , r(2m-fl) n+m+k)iri^Y {~\ 

* When 2m is an integer some of the poles are generally double poles, and their residues 
involve logarithms of z. The result has not been proved when A* - ^±m is a positive integeroi 
zero, but may be obtained for such values of k and m by comparing the terminating series foi 

with the series for 3ijfc,^,„(z). 

t Barnes* results are given in the notation explained in § 16*1. 
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Example 3. Obtain Emnmer’s first formula (§ 16-11) from the result 

(Barnes.) 

16*6. The parabolic cylinder functions. Webers equcdion. 

Consider the differential equation satisfied by 

this reduces to 

d {diwz^)\ f 1 I) , „ 

Therefore the function 

satisfies the differential equation 

-f (n ir>) i)„(^) = 0. 

Accordingly Dn{z) is one of the functions associated with the parabolic 
cylinder in Wmonic analysis*; the equation satisfiied by it will be called 
Weber s equation. 

From § 16*41, it follows that 

when |arg^|< 

and these are one-valued analytic functions of z throughout the ir-plane. 
Accordingly Z)„ {z) is a one-valued function of z throughout the ^-plane; and, 

by § 16‘4. its asymptotic expansion when | arg ^ | < ? ■»■ is 

f-i n(n-l) »(n-l)(n-2)(n-3) ) 
® M -"T 

r(-in) 

16*51. The second solution of Weber's equation. 

Since Weber’s equation is unaltered if we sinaultaneously replace n 
and z by — n — 1 and ± iz respectively, it follows that (i-^) and 
-D-n-i (“ are solutions of Weber s equation, as is also D« (— z). 

* Weber, Math. Ann. i. (1869), pp. 1-86; Whittaker, Proe, London Math, Soc. xxxv. (1908), 
pp. 417-427. 
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It is obvious from the asymptotic expansions of i)n(^) and 

valid in the range — ? it < arg | that the ratio of these two solutions is 

not a constant. 

16*511. The relation hetweeii the functions Dn{z), I)^n^j (±{z). 

From the theoiy of linear differential equations, a relation of the form 

JDn (z) = a D«n~i (i^) + (— iz) 

must hold when the ratio of the functions on the right is not a constant. 

To obtain this relation, we observe that if the functions involved be 
expanded in ascending powers of z, the expansions are 

ra-in)+ r(-i«) ^4- ... 

and 
""I r(l+j7i) T{h + \n) 

+h _r(-i)2-^”-^. 

-+ 

iz + 4. r(l+in) r(i + ^n) 
Comparing the first two terms we get 

a = (27r) - ^ r (w +1) h = (27r) " T (n +1) e " 
and so 

= ~V(2tP [®‘"" ~ -O-n-i (- t^)] . 

16*52. The general asymptotic expansion of {z). 

So far the asymptotic expansion of D^(z) for large values of z has only 

been given (§ 16*5) in the sector | arg ^ | < | it. To obtain its form for values 

of arg z not comprised in this range we write ~ iz for z and — n — 1 for n in 
the formula of the preceding section, and get 

' Now, if I IT > arg ^ > J TT, we can assign to -z and — iz arguments between 

+ jw; and arg(— z) = argz —tt, arg(— iz) = argz-^-tr] and then, appljdng 

the asymptotic expansion of § 16'5 to Dn{—z) and D^^^{—iz), we see that, 

if j7r>argir>^7r. 

n «(n-l)(TO-2)(«-3) I 
{ 2^» ^ 2.4^ “•••J 

v'(2'»r) , (w + l)(n+2) 
r(-n) .2^« 

(n +1) (n + 2) (w + 3) (n + 4) 
TA? ^ 
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This fonuula is not inconsistent with that of § 16’5 since in their common range of 

validity, viz. ^ir <argz <I*-, z-^-i is o (z-”>) for all positive values of m. 

To obtain a formula valid in the range - ^T>argz> —Itt, we use the 

formula 

D„(^) = (-Z) + (iz), 

and we get an asymptotic expansion which differs from that which has just 

been obtained only in containing in place ot 

Since Dn(z) is one-valued and one or other of the expansions obtained 
is valid for all values of arg z in the range — 'jt ^ arg z the complete 
asymptotic expansion of Dn(^) has been obtained 

16*6. A contour integral for {£), 

Consider ^ where | arg (~ ^) | ^ ; it represents a one-valued 

analytic function of z throughout the «-plane (§ 5-32) and further 

the differentiations under the sign of integration being easily justified; accordingly the 

integral satisfies the diflereutial equation satisfied by D, (z): and therefore 

* ” /r* ~ ^ 
where a and b are constants. 

Now, if the expression on the right be called {z\ we have 

To evaluate these integrals, which are analytic functions of n, we suppose first that 
R(n)<6; then, deforming the paths of integration, we get 

^„(0)«-2tsm(n-|-l)»r j 
=2”i sin WTT j t 

=2 “ i sin (nir) r (—^yi)* 

Similarly (0) = - 2i “ i sin (ntr) r (i - in). 

Both sides of these equations being analytic functions of ji, the equations are true for 
all values of w; and therefore 

5=0, isin (n^r) r(-in) 

=2ir(—n) sin 7irr. 

Therefore (z) = - Je - - 4‘' (- i)-- > dt. 

^ du 
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16^1. Recurrence formulae for 

From the equation 

/•(«+) ( 1 
=j ^ + (” +1) (- 

after using § 16-6, we see that 

Dn+i (^) — zDn (z) + nDn-1 {z) =* 0. 

Further, by differentiating the integral of §16-6, it follows that 

R>n (z) + g zl)„ (z) - nDn-x (z) = 0. 

Example. Obtain these results from the ascending power series of § 16-6. 

167. Froperties of D„ (z) when n is an wtegev. 

When n is an integer, we may write the integral of § 16-6 in the form 

n /•(»+) 
2^i 

If now we write — we get 

n ! f 

27ri 
dv 

a result due to Hermite*. 

Also, if m and n be unequal integers, we see from the differential 
equations that 

D« (z) D^" (z) — (z) Bn' (z) + (m — 7i) B^ (z) Bn (z) = 0, 
and so 

(m -n)j_^ D„ (z) I)„ (z) dz = [^i)„ (z) DJ {z) - D„ (z) Df («)J * 

= 0, 
by the expansion of § 16-5 in descending powers of z (which terminates 
and is valid for all values of arg z when n is a positive integer). 

Therefore if m and n are unequal positive integers 

f Fm (z) D„ (z) dz=0. 
J —00 

* Comptes Rendm^ Lvni. (1864), pp. 266-27S. 
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On the other hand, when have 

(n + l)fjD„(z)}>dz 

— j -Dn (■«) |iyn+i (^) + g 2'-Dn+i (.2)1 dz 

- |^-D»{^)-Dn+i(2^)j^^ ~-Dn+i (i^) -D/wj 

= f" {i)„+i(ir)}*d^, 
^ —00 

on using the recurrence formula, integrating by parts and then namg the 
recurrence formula again. 

It follows by induction that 

r {D„ {z)Y dz^nlT {A (ji)Y dz 
J -00 J -00 

=7i! f 
J —00 

= (27r)^n!, 
by § 12*14 corollary 1 and § 12*2. 

It follows at once that if, for a function /(z)^ an expansion of the form 

/(^)*a«A(^) + aiAW+ .,. + ani)„(-?)+ 

exists, and if it is legitimate to integrate term-by-term between the limits 
— 00 and 00, then 

(2'7r)in! j_, 

REFERENCES. 
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Miscellaneous Examples. 

1. Shew that, if the integral is convergent, then 

r (J+»n + ^) r (i+m - ^) 
2. Shew that lim F{\+m-k, J+wi—i+p; Sm+l; zip). 

pH^ QO 

3. Obtain the recurrence formulae 

^k, ^i-4, + + ^k-1, mW. 

4/ Prove that (z) is the integral of an elementary function when either of the 

numbers J±m is a negative integer. 

5. Shew that, by a suitable change of variables, the equation 

(02+^ + (cq+.r) ^ + (oo 4-5o^) y=0 

can be brought to the form 

derive this equation from the equation for F{cl, b; c; x) by writing and making 
6-*“ 00. 

6. Shew that the cosine int^al of Schlomilch and Besso {Oiomale di McUemadcke^ 

vi), defined by the equation 

Oi (z)^J‘^dt, 

is equal to o(“)- 

Shew also that Schlomilch’s function, defined {ZeiUckrift fur Math, und JPhytik, iv. 
(1859), p. 390) by the equations 

S{r,z)= f*(l+t)—r ^—du, 
Jo y» 

is equal to zi”-^ si* jr_ ^ (*). 

7. Express in terms of functions the two fimctions 

SHz)^jl^dt, Ei(.)=/;ff‘cft. 

8. Shew that Sonine's polynomial, defined {J^atL Ann, xvi. p. 41) by the equation 

^_^ 
7I-! («i+n)l 0! (n~l)I (m+Ti-l)! l!*^(n-2)l (wi4-n-2)l 2! 

is equal to i ^W , t ^ (z^ 
^ nl{m+n)i + 
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9. Shew that the function defined by Lagrange in 1762-1765 (Oeuvret, i. 

p. 620) and by Abel (Oetivret, 1881, p. 284) aa the coefficient of /("* in the expansion of 
(l-A)"!*-**'!!-*) is equal to 

10*. Shew that the Pearson-Cunningham function (P>-oc. Royal Soe. lxxsi. p. 310), 
®«,|» defined as 

ft (n+im)(n-i7n) , (w4-»w) (n+^w-ll -L».-n ) 
r(»-im + ]) t 2 ---- 

is equal to —)—L-Tir , />\ 

11. Shew that, if |args |<i*r, and |arg(1 + <) |«», 

(Whittaker.) 

12. Shew that, if « be not a positive integer and if | arg i | < jn-, then 

and that this result holds for aU values of ai^* if the integral be the contours 

enclosing the ijoles of r (-1) but not those of r (^t -jn). 

13. Shew that, if (arg a | < 

(”‘-4) 

■r"(-m)r(4m-i«+l)a4(»‘+l)^^~^”’^’”'"^' 

14. Deduce from example 13 that, if the integral is convergent, then 

e ■ *”* D,.+i (*) <fe - (V2)-> - >» r (»l +1) sill (i - i»i) ,r. 

15. Shew that, if n be a positive integer, and if 

(Watson.) 

•ten JP. (x)= ± ie=F»«V(2«-) r (jH- 1) e ' (+ i.r), 

;he upper or lower signs being taken according as the imaginary pai-t of x: is positive 

ir negative. (Watson.) 

16. Shew that, if n be a positive integer, 

i).(^)-(-)^ 2»+2 (2w) - i J‘ «» s - 2«= (^.m) du, 

irhere'/i is \n or 1), whichev^er is an integer, and the cosine or sine i.s taken as is 

or odd. (Adamoff.) 

* The results of examples 8, 9, 10 were communicated to us by Mr Bateman. 
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17. Shew that, if n be a positive integer, 

A («)-=(- y* (W) ~ i .1**« - i« (^1+^j - J,), 

where 

and IT (i?)=^ -1)* (Adamoff.) 

18. With the notation of the preceding examples, shew that, when x is real, 

{XjJn); 
sin ^ ^ ’ 

while satisfies both the inequalities 

j/3l<2e~^-f{|^| Vn}, \J2\< (f.) i 

Shew also that as v increases from 0 to 1, (r(v) decreases from 0 to a minimum at 
r=l-*i and then increases to 0 at ®»1; and as » increases from 1 toco, a (v) increases 
to a maiiniiini at 1+Aj and then decreases, its limit being zero; where 

and |ir(l-Ai)|<A^ "t, <r (1+4) < Ati*"!, where A«0*0742.... (AdamofT.) 

19. By employing the second mean value theorem when necessary, shew that 

(V»)“ «'i"|^cos(a»i-i«fr)+5^!!^^J, 

where (x) satisfies both the inequalities 

when ^ is real and w is aa integer greater than 2. (Adamoff.) 

20. Shew that, if n be positive but otherwise unrestricted, and if m be a positC'&e 
inieffer (or zero), then the equation in z 

Dn(z)^0 

hasmpositive roots when 2w-l<»<2m+l, 
(Milna) 



CHAPTEE XVII 

BESSEL FUNCTIONS 

17‘1* The Bessel coefficim^. 

In this chapter we shall consider a class of functions known as Bessel 
functiom or cylimdrical functions which have many analogies with the Legendre 

functions of Chapter xv. Just as the Legendre functions proved to be parti¬ 
cular forms of the hypergeometric function with three regular singularities, so 
the Bessel functions are particular forms of the confluent hypergeometric 
function with one regular and one irregular singularity. As in the case of 
the Legendre functions, we first introduce^ a certain set of the Bessel functions 
as coeflScients in an expansion. 

For all values of z and ^ *0 excepted), the function 

\z 
e 

can be expanded by Laurent’s theorem in a series of positive and negative 
powers of t. If the coefficient of where n is any integer positive or 
negative, be denoted by (z% it follows, from § 5*6, that 

j.w-Ar.— 27n} 

To express as a power series in z, write u = 2tfz; then 

since the contour is any one which encircles the origin once counter-clockwise, 
we may take it to be the circle | ^ | 1; as the integrand can be expanded 
in a series of powers of z uniformly convergent on this contour, it follows 
from § 4*7 that 

1 00 / y /, \»+2r /•(0+) 

Now the residue of the integrand at ^ = 0 is {(n + r)!}“i by § 61, when 
71 + r is a positive integer or zero; when ti + 7* is a negative integer the 
residue is zero. 

Therefore, if n is a positive integer or zero, 

r=o rl(n + r)l 

2^n! 
1 - 

2M (w +1) ^ 2M . 2 (n + 1) (7t + 2) 

* This procedure is due to Schlomilch, ZeiUchrift f Ur Math, und Fhys, 11. (1857), pp. 137-165. 
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whereas, when »is a negative integer equal to — m, 

r^m r!(r —m)l (»»+«)!«! ’ 
and so (z) - (z). 

The function J^(z), which has now been defined for all integral values 
of n, ^sitive and negative, is called the Bmel coefficient of order n; the 
senes defining it converges for all values of z. 

of ^ ” ‘ ‘f E»l«, OO tt. olb..ll<.„ 
« areular membrane, ^ovi Comm. Acad. Petrop. x. (1764) rPublished 17661 

1771^^893 *** motion, HtH. de VAcad. R. detSci.de Berlin, xiv. (1769) [Published 

The wliest sj^tematic study of the functions was made in 1824 by Bessel in his 
der ffianetaritchen StSrungen iedcher ant der Bewegung der So^e 

erutieht (Berliner Abh. 1824); special cases of Bessel coefficients had, however anneared in 

theearliest of these isin a let^^ToTs^S^tL 
fiZ? f I^itmis* in which occurs a series wffich is now described as a Bessel 

memoir on the^alai*** zero occurs in 1732 in Daniel Bernoulli’s 

[Published 1738], pp^’lS^m (1732-1733) 

noUtioTS^ cC^^ * K* ‘I*® it ehould be remembered that the 
notation has changed, what was formerly wiitten J, (t) being now written J„ (2z). 

Example 1. Prove that if 

_ 2ft(H-d») ^ ^ 
(1 — 2ad-—) 

*" ““ ^1^1 (*) + A^J^ (t)+A,J, (r) +.... 

(Math. Trip. 1896.) 

^ the contour D in the w-plaue be a circle with centre u^O and radius We 
enough to include the zei*oa of the denominator, we have 

eH-i)_. 2 . 1 

\ ~ K “ ttV ^ 

\ u U^J ^ ui ' 

^A^Jl +-421^2 (f2) + -43*73(^)+.... 

* PubUdied in LeiT>nizen. Get. Werke, Dritte Folge, m. (Halle, 1865), p. 76. 
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In the integral on the left write so that as u describes a circle of 
radius efi, t describes an ellipse with semiaxes cosh ^ and sinh^ with foci at - a+i; then 
we have 

i AM) 
1 fe^^^^)hdt 

J ’ 

the contour being the ellipse just specihed, which contains the zeros of ^+bK Evaluating 
the integral by § 6*1, we have the required result.] 

Examjole 2. Shew that, when is an integer, 

mss-* 
(K. Neumann and SchlafiL) 

[Consider the expansion of each side of the equation 

“P {i (y+*) j-=exp (t-1)1. exp (t -1)}.] 

Example 3. Shew that 

cos ^ (2) + 2i cos <t> (?) 4* 21*2 COS 2^ Ja W +.... 

Example^. Shew that if 

Jo {r)=Jo (x) Jo{y)-%Ti (x) Jt (y) +%Ji(_x) J^(y)~.... 

(K. Neumann and LommeL) 

17*11. BesseVs differential equation. 

We have seen that, when n is an integer, the Bessel coefficient of order n 
is given by the formula 

w - IS (5 (* - 5) *■ 

From this formula we shall now shew that Jn{z) is a solution of the 
linear differential equation 

which is called BesseFs equation for functions of order n. 

For we find on performing the differentiations (§ 4*2) that 

dz 

-2S (I')"/”'-"" {1 - (‘-S'" 
(0+) d 

dt (<-£)} dt 

= 0, 
since * exp (t — z*/4<) is one-valued. Thus we have proved that 

The reader will observe that = 0 is a regular point and 00 an 
irregular point, all other points being ordinary points of this equation. 
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Example 1. By differentiating the expansion 

ns-. 00 

with regard to z and with regard to shew that the Bessel coefficients satisfy Bessel’s 

equation. (St John’s, 1899.) 

Example 2. The function (^"’^2) equation defined by the scheme (4?i* a 0 

\m 71 + 1 

— —71 —^771 

shew that (z) satisfies the confluent form of this equation obtained by making 71-*- oo . 

17*2. The solution of BesseVs equation when n is not necessarily an 
integer. 

We now proceed, after the manner of § 15*2, to extend the definition of 
Jn{si) to the case when n is any number, real or complex. It appears by 
methods similar to those of § 17*11 that, for all values ofn, the equation 

dly Idy 
z dz^ 

y=o 

is satisfied by an integral of the form 

y=z»lr’>-^exp(t-^dt 

provided that i5"^^exp(^ — resumes its initial value after describing C 
and that differentiations under the sign of integration are justified. 

Accordingly, we define Jn(^) by the equation 

_ , . 2^^ f(0+) / «2\ 

the expression being rendered precise by giving arg^ its principal value and 
taking | arg t j ^ on the contour. 

To express this integral as a power series, we observe that it is an 
analytic function of z\ and we may obtain the coefficients in the Taylor’s 
series in powers of « by differentiating under the sign of integration (§§ 6-32 
and 4-44). Hence we deduce that 

Jniz)- 
I /•<«+) 

(-.)r^n+2r 

r(o+; 

J —00 

r=0 2«+>'r!r(» + r + l)’ 

§ 12'22. This is the expansion in question. 
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Accordingly, for general valves of n, we define the Bessel function Jn{z) 
hy the eqtcoHons 

Jn{z) = 
2iTi 

'I \n /•(()+) 

r) L. 

rr«2»+»-r!r(» + r + l)‘ 

This function reduces to a Bessel coefficient when n is an integer; it is 
sometimes called a Bessel ftmction of the first hind. 

The reader will observe that since BesseFs equation is unaltered by 
writing -?i for w, fundamental* solutions are Jn{z\ J^n{z), except when 
n is an integer, in which case the solutions are not independent. With this 
exception the general solution of BesseFs equation is 

aJn if) "¥ (f)i 
where a and ^ are arbitrary constants, 

A second solution of BesseFs equation when n is an integer will be given 
later (§ 17*6). 

17*21. The recurrence formulae for the Bessel functions. 

As the Bessel function satisfies a confluent form of the hypergeometric 
equation, it is to be expected that recurrence formulae will exist, corresponding 
bo the relations between contiguous hypergeometric functions indicated in 
§ 14*7. 

To establish these relations for general values of ti, real or complex, we 
have recourse to the result of § 17*2. On writing the equation 

"■/!? a {‘"“p ('-©}* 

0 = {t-^ +1 - nr»-i) exp [t -1^) dt 

= 27n |(2i-0»-* +(20"^^ («) - «(^)|, 

at length, we have 

^(0-4-) / 

and so .(A). 

Next we have, by § 4*44, 

d_ 
dz ‘-''J- wi - £ /"*’ ‘'■p (' -1) * 

2»+’7ri. 

~ (f), 
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and consequently, if primes denote differentiations with regard to 2, 

Jn = {z) - /„+! {z). 

From (A) and (B) it is easy to derive the other recurrence formulae 

Jn {z) = ^[Jn-i {z) - J(a)} .(( 

Jn (z) — J„_j (2:)- 

z 

Example 1. Obtain the^ results from the power series for (z). 

Example 2. Shew that ^ {znj^ (z). 

Example 3. Shew that (z) = _(j). 

Example 4. Shew that 

iw (Z) =.I,_4 (z) - 4/„_j(«)+&4 (z) (z). 

Example 5. Shew that 

{z). 
Example 6. Shew that 

17-211. Relation between two Bessel functions whose orders differ by 
an integer. ^ ^ 

From the last article can be deduced an equation connecting any two 
Bessel functions whose orders differ by an integer, namely 

where a is unrestricted and r is any positive integer. This result follows at 
once by induction from formula (B), when it is written in the form 

^ [2~^Jn (z)]. 

17-212. The connexion between (2) and functions. 

The reader will verify without difficulty that, if in Bessel’s equation we 
write y — z~zy and then write z = xl2i, we get 

(“4+ —)’' = <>■ 

which IS the equation satisfied by iro,„(ar); it follows that 

Jn {z) = Az~hM„^n {2iz) ■^Bz~ {2iz). 

Comparing the coefficients of 2±» on each side we see that 

r(« + l) 
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except m the critical cases when 2n is a negative integer; when n is half of 
a negative odd integer, the result follows from Knmmer’s second formula 
(§ 16-11). 

1722. The zeros of Bessel functions whose order n is real. 

The relations of § 17-21 enable us to deduce the interesting theorem that 
between any two consecutive real zeros of z~”Jn(z), there lies one and only one 
zero* ofz~^J^+^ (z). 

For, from relation (B) when written in the form 

it follows from Rolles theorem "I- that between each consecutive pair of zeros 
of z~*J„(z) there is at least one zero of (^). 

Similarly, from relation (D) when written in the form 

Z”+^J„ (z) = ^ {z’^+^J(i:)}, 

ifc follows that between each consecutive pair of zeros of (z) there is 
at least one zero of (z). 

Further zr^Jn(z) and have no common zeros; for the 

former function satisfies the equation 

z2 + (2n + l)^ + zy=0. 

and it is easily verified by induction on differentiating this equation that if 
du 

both y and ^ vanish for any value of z, all diflFerential coefficients of y vanish, 

and y is zero by § 5*4. 

The theorem required is now obvious except for the numerically smallest 
zeros ± ^ of z-^J^, {z\ since (except for = 0), sr^Jn {z) and {z) have the 
same zeros. But ^ = 0 is a zero of if there were any other 
positive zero of (^), say |^i, which was less than f, then z'^'^^J^iz) 
would have a zero between 0 and fi, which contradicts the hypothesis that 
there were no zeros of between 0 and 

The theorem is therefore proved. 

[See also § 17*3 examples 3 and 4, and example 19 at the end of the chapter.] 

* Proofs of this theorem have been given by Bdoher, BulL American Math, Soc. iv. (1897), 
p. 206; Gegenbauer, MonaUhefte fUr Math, vin. (1897), p. 383; and Porter, BulL American 
Math. Soc. IV. (1898), p. 274. 

t This is proved in Burnside and Panton’s Theory of Equations (i. p. 157) for polynomials, 
[t may be deduced for any functions with continuous differential coefficients by using the First 
!dean Value Theorem (§ 4-14). 
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17'23. BesseVs integral for Ike Bessel coefficients. 

We shall next obtain an integral first given by Bessel in the particular 
case of the Bessel functions for which a is a positive integer; in some respects 
the result resembles Laplace’s integrals given in § 15-23 and § 15-33 for the 
Legendre functions. 

In the integral of § 17*1, viz. 

, , 1 r<f>+) — J e V “/ du, 

take the contour to be the circle | m j = 1 and write u = e" so that 

Bisect the range of integration and in the former part write -0 for 6; 
get 

1 
and so Jn(z)= - cos (nff — z sin ff) d0, 

TT Jo 

which is the formula in question. 

Kvample 1. Shew that, when z is real and n is an integer, 

Examj^e 2. Shew that, for all valu^ of n (real or complex), the integral 

1 r* 
y=- I cos (nd - z sin d) d6 

^ J Q 
satisfies 

d^y 1 dy 

d^^z dz’^ 
A n^\ sin nw /I n\ 

which reduce to BessePs equation when n is an integer. 

[Jt is easy to shew, by differentiating under the integral sign, that the expression 
on the left is equal to 

17 231. The modification of BesseVs integral when n is not an integer. 

We shall now shew that*, for general values of jj, 

«7n (•«) = 1COS (n0 — z sin 0) d0 — J e~"*-^‘‘^^d0 .. .(A), 

when B(e) > 0. This obviously reduces to the result of § 17-23 when n is 
an integer. 

Taking the integral of § 17-2, viz. 

/■(0+) / J. 

= t-«-‘exp(^t-^)dt, 

* This result is due to Schlafli, Math, Ann, in. (1871), p. 148. 
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and supposing that z is positive, we have, on writing t = luz, 

w - ssl!!’"—' “■> I' (“- S} 
But, if the contour be taken to be that of the figure consisting of the real 

axis firom -1 to - oo taken twice and the circle [ te i = 1, this integral re¬ 
presents an analytic function of z when R (zu) is negative as [ | oo on the 

path, ie. when | arg4?| < and so, by the theory of analytic continuation, 

the formula (which has been proved by a direct transformation for positive 
values of z) is true whenever R (z) > 0. 

Hence 

{L^'^Ic+/-1} 
where 0 denotes the circle |t^|=sl, and arg-wss —tt on the first path of 
integration while arg ^ on the third path. 

Writing in the first and third integrals respectively (so that in 
each case arg t = 0), and u = in the second, we have 

'■■w-si:. g-ju«+<*»ln» ^ ^ 
'^(n+l) iri (n+i)irt' 

2in 2m 

Modifying the former of these integrals as in § 17*23 and writing for t 
in the latter, we have at once 

= ” f cos {nd — zsin 6) d6 4- —^ ^ 
TTJo W Jq 

which is the required result, when |argz\ 

When I arg z | lies between Jir and ir, since Jn ( - ^)> we have 

(x>a{nB-^zBme)dB--smnir j .(B), 

the upper or lower sign being taken as arg «> or < - Jw. 

When n is an integer (A) reduces at once to BessePs integral, and (B) does so when we 
make use of the equation («)=(—)**/„„ (z), which is true for int^er values of n. 
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Eqiiation (A), as already stated, is due to SehlSfli, Hath. Ann. ni. (1871), p. 148, and 
equation (B) was given by Sonine, MatL Ann. xvi..(1880), p, 14. 

These trigonometric integrals for the Bessel functions may be regarded as corresponding 

to Laplace’s int^ls for the Legendre functions. For (§ 17-11 example 2) J^{t) satisfies 

the confluent form (obtained by making »-^ao) of the equation for (I —z^j^n*). 

But Laplace’s integral for this function is a multiple of 

~ Jg |l+^coB^+0(»->)| ooB n<f> eUf). 

The limit of the int^and as a—® is cos and this exhibits the similarity 
of Laplace’s integral for (z) to the Bessel-Schlafli int^ral for J„ (z). 

Example 1. From the formula ^o(^)=^ by a change of order of 

integration, shew that, when n is a positive integer and cos 6>0, 

P„ (cos 6)=^ ^ ^ 

(Callandreau, BM. det Set. MaiL (2), iv. (1891), p. 121.) 

Example 2. Shew that, with Ferrers’ definition of P^ (cos fl), 

P»”*(costf)-jj^—«“®“»*,4(x8ind)a-«<te 

when n and m are positive integers and cos d > 0. 

(Hobson, JPrac. Lmdon Math. Soc. xxv. (1894), p. 49.) 

17*24. Bessel functions whose order is half an odd inleger. 

We have seen (§ 17*2) that when the order n of a Bessel function (z) 
is half an odd integer, the difference of the roots of the indicial equation at 

= 0 is 2n, which is an integer. We now shew that, in such cases, is 
exp-essible in terms of elementary functions. 

For 2^1 z' zA 

*■4 t 2.3'^2.3.4.5 

and therefore (§ 17'211) if A: is a positive integer 

j. ■(,),,(-)^2x)*-^4_j^/gin.N 

* -Tri « /■ 

On differentiating out the expression on the right, we obtain the result that 

= Pje sin z + Qjfecos z. 

where P*, Qj^ are polynomials in z~K 

Example 1. Shew that J_ ^ {z) *= ^ * cos z. 
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EasamjpU 2. Prove by induction that if I: be an int^r and n=ife+|, then 

the sumnmtioiis being continued as far as the terms with the vanishing fectors in 
the numerators. 

Examjple 3. Shew that ^ solution of BessePs equation for 

4+jW* 

Emm^ 4. Shew that the solution of +y**0 is 

where Co, Cj, ••• C2m are arbitrary and oo, oi,... agm are the roots of 

(LonuneL) 

17'3. Hankd’s contour integral* for t7„(z). 

Consider the integral 
rCL+.-i-y 

y = (f* -1)” - i cos (zt) dt, 

where is a point on the right of the point t = 1, and 

arg(t-l) = arg(t + 1) = 0 

it A; the contour may conveniently be regarded as being in the shape of 
% figure of eight. 

We shall shew that this integral is a constant multiple of It is 
sasily seen that the integrand returns to its initial value after t has described 

the path of integration; for (t - 1)"“ i is multiplied by the factor after 

the circuit (1+) has been described, and (f + l)"“i is multiplied by the 
Factor «-<»*-*)»< after the circuit (— 1 —) has been described. 

Since 2 
r=0 

(-/(dr 
(2r)! 

jonverges uniformly on the contour, we have (§ 4*7) 

y= 2 
7*—0 

(-.)r^n+2r ^(i+,-i-) .+sr r 

r I 
To evaluate these integrals, we observe firstly that they are analytic 

Functions of n for all values of n, and secondly that, when jfJ 4- > 0, we 

oaaydeform the contour into the circles |f-l| = S, + and the real 
ixis joining the points t = + (1 — S) taken twice, and then we may make 
S -4 0; the integrals round the circles tend to zero and, assigning to ^ — 1 

* Math. Ann. i. (1869), pp. 467-501. 
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and <+l their appropriate arguments on the modified path of integration 
we get, if arg (1 - «*) = 0 and =w. 

/. 

a+,-1-) 

j. 

= «(» - i) «• J~ V (1 - - i + e - (» -1) J V (1 _ f,)« - j 

= -4tsin^«-g^ ttJ *“■(1 

--2isin u^~i(l - uf-idu 

= 2tsin(n + i) ’tF (r + |) r(n + iyr(« + r + l). 

Since the initial and final expressions are analytic functions of n for all 
values of n, it follows from § 5'5 that this equation, proved when 

(”+§)>0- 
is true for all values of n. 

Accordingly 

w= i (-);2isin(« + ^)ttF+ jr)rfn + i) 
r=0 (2r)!F(n+r + l) 

= 1 sin (« +1) (a + i) F g) (x), 

on reduction. 

Accordingly, when |f - n)|~V 0, we have 

F(^-n)(ix)» 
2w»T(i) /: (<* — l)^“i cos (zt) dt 

^(^+i)>0, we may deform the path of integration, and obtain 

(»j+i)r(i) /_ j (1 -‘T'* cos {a) dt 

r(n+i)r(i) Jd <i>ooa(t cob ^)d<f,. 

Example 1. Shew that, when ^ (w+1) > 0, 

Mx<mvpie 2. Obtain the r^ult 

7 (Ir^^ /**’ 

r(n-i-j)r(|) jo 

when R («) > 0, by expanding in powers of x and integrating (§ 4-7) term-by-texm 
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Example 3. Shew that when - J < n < (^) has an infinite number of real zeros. 

[Let r=(m+i) ir where m is zero or a positive int^er; then bj the corollary above 

2r-4~l 

where M,-j (l-«a)“-ioo3 {(m+J),rt} dt I 

Si+T 
ri/(j»+i) f / 2r-1 \2l 

“io V + ) ) ““ 

SO, siiiGe W- —^<0, and lionce the sign of (— )^. 
Tins method of proof for 71=0 is due to Bessel.] 

Exarn^U 4. Shew that if 71 be real, Jn (z) has an infinite number of real zerc®; and 
find an upper limit to the numerically smallest of them. 

[Use example 3 combined with § 17*22.] 

17*4. Connexion between Bessel coefficients and Legendre junctions. 

We shall now establish a result due to Heine* which renders precise the statement of 

§ 17T1 example 2, concerning the expression of Bessel coefficients as limiting forms of 
hypergeometric functions. 

V 2ny i 

When | arg(l±^)|<flr, n is unrestricted and m is a positive integer, it follows by 
differentiating the formula of § 15*22 that, with Ferrers’ definition of P»®* (z), 

(!-#’” (l+*)^i^(-ra+OT, n+l+m; »i+l; \-^z), 

andso,if|argz|<i^,|arg(l-Jzi!/«S)|<^, we have 

r(7i-m+l} V^“4u2j w+l+m; m+1; 

Now make n-^+QO {n being positive, but not necessarily int^ral), so that, if 
3-^0 continuously through positive values. 

Further, the (r+l)th term of the hypergeometric series is 

(■>X(1 -r/id)(l4->nd+rd){l + {I+ 

(m -h 1) (m -f 2)... (m+?•) . r! 

this is a continuous function of S and the series of which this is the (r+l)th term is 

easily seen to converge uniformly in a range of values of d including the point 3=0: so 
by § 3*32, we have ’ 

^ * (-rci^r 

which is the relation required. 

Example 1. Shew thatf 

2^. m ! ,.Zo (m+1) (m+2) (m+r) r I 

to ^cos 4. (*). 

* The apparently different result given in Heine’s Kugeljtnktionen is due to the difference 
between Heine’s associated Legendre function and Ferrers’ function. 

t The special case of this when m=0 was given by Mehler, Journal fUr Math, lxtiu. (1868), 
p. 140; see also Math. Ann, v. (1872), pp. 141-144. 
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ExampU 2. Shew that Bessel’s equation is the confluent form of the equations 
defined by the schemes 

rOcoc^ fO CD c \ c 0 « 
P\n io i + tcz , e<*Pj a i 0 .4, pi in i(,c-n) 0 zA, 

[-H -ic i l-» f-2i<! 2ic-l j i-4>i -i(c+») a+l j 

tbe consilience being obtained by making c-*-ao. 

17*6. Asyim>ptotic series for (z) when \z \ is large. 

We have seen (§ 17*212) that 

~ 2=*»+i gi ” r (« +1) 

where it is supposed that [arg^^| < w, -^ w <arg('2iz) <\tr. 

But for this range of values of z 

V,,(- 2«) 

by § 16-41 example 2, if - | tt < arg (- 2iz) < ^ tt; and so, when (arg ^ | < •»■. 

But, for the values of z under consideration, the asymptotic expansion of 
TF.,„(±2w)is 

oT i 1 4- ^ -1’) (4n= - 3*) . 
t ^ Siz ^ 2!(8w)» -••• 

^ (±l)’-{4n’‘-l=}{4ii»-3»} ... {4>i’‘-(2r-l)»l 
r!(8tz/ 

and therefore, combining the series, the asymptotic expansion of when 
j^l is large and largz| <-ir, is 

X jl + i (-X{4n»-P} [4>t^-3-{... {4w»-(4?--Iffl 
I r=i (2r)!2‘'a»' j 

+ sinf^-in,r-]w') I (-X{*n?- P} j4«»-3»}... f4n»-(4r-3yn 
^ / rsl (2r — 1) ! 2®^“®,3r***’*i J 

~ ~ 2 ~ i • iT'tt (z) - sin — I WTT — J . F„ («) J , 

where Unix), — V„(z) have been witten in place of the series. 

The reader will observe that if n is half an odd integer these series 
terminate and give the result of § 17-24 example 2. 
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Even when * is not vei7 large, the value of J.(z) can be computed with great accuracy 
frcrn this formula. Thus, for all positive values of ^ greater than 8, the first three terms 
>f the asymptotic expansion give the value of (z) and J, (z) to six places of decimals. 

This a^ptotio expansion was given by Poisson* (for «=0) and by Jacobi + ffor 
inte^ valu^ of n) for real values of *. Complex values of . were considered by 

Sankelt and several subsequent writers. The method of obtaining the expansion here 
fiven IS due to Bames§. 

Asymptotic expansions for J. (z) when the order n is laige have been given by Debye 

!licholsfn7pSap. SitzunffzbzricAu, XL. (1910), no. 6) and 

An approximate formula for (ns) when » is laige and 0 cr < 1, namely 

^exp 

(2w»)4(i-^)i{l+,y(l_^}.’ 

vas obtained by Carlini in 1817 in a memoir reprinted in Jacobi’s Oes Werie vn 
ip. 189-245. The formula was also investigated by Laplace in 1827 in his M^iguz 

Mezte V. supplement [Oenm-zz, v. (1882)] on the hypothesis that ^7 is purely imaginary 

A more extended account of researches on Bessel functions of laige order is given in 
^roc, LoTidon Math Soc, (2), xvi. (1917), pp. 160-174. ® 

Examj^ 1. By suitably modifying Hankel’s contour integral (§ 17-3), shew that, when 
arg z I and R (m+i) > 0, ^ 

nd deduce the asymptotic expansion of J. (z) when | s | is large and | arg z | < 

[T^e the contour to be the rectangle whose comers are ± 1, +1 +tW the rectangle 
emg indented at +1, and make -►qo ; the integrand being (1 — j 

Example 2. Shew that, when | arg« | and .R («+^) >0, 

•4(^)= 
2n + lgH 

r(n + i)ir* 
** cot 4 <508*-* <t> cosec** sin {s - (» - J) <(,} d<f,. 

[Write u—2z cot ^ in the preceding example.] 

Example 3. Shew that, if | arg r | < ^ and .R (»+^) > 0, then 

Ae^^ t”*-i (1 +*)»-*dv+Be-^z^ (i _*)»-*de 

a solution of BessePs equation. 

Further, determine 4 and B so that this may represent (z). 

(Schafheitliu, Jcnimal fiir Math, cnv.) 

17-6. ThA second solution of Bessel’s equation when the order is an integer. 

We have seen in § 17-2 that, when the order n of Bessel’s differential 
juation is not an integer, the general solution of the equation is 

(■*■) + BJ_» (z), 

here a and /9 are arbitrary constants, 

* Journal de Vieole Polyteehnique (1), cah. 19 (1823), p. 350. 
t Astr, Nach. xxvm. p. 94. 
X Math, Ann. i. (1869), pp. 467-601- 
§ Tram, Camb. Phil, Soc, xx. (1908), p. 274. 
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When, however, n is an integer, we have seen that 

(^) “ -» 

and consequently the two solutions Jn (z) and (?) are not really distinct. 
We therefore require in this case to find another particular solution of the 
diflFerential equation, distinct from /«(?), in order to have the general 
solution. 

We shall now consider the function 

Y„ (?) = 
sm 2fi7r ' 

which is a solution of Bessels equation when 2n is not an integer. The 
introduction of this function Y^(^) is due to Hankel*. 

When n is an integer, Y„ (?) is defined by the limiting form of this 
equation, namely 

Y„ (?) = lim 27re<»+''«■^«+^..(^)co8 (w + ew) - J_^ (?) 
e-*-0 sm2(7l + €)7r 

To erpress Y„ (?) in terms of functions, we have recourse to the 
result off 17‘5, which gives 

Y„(?)=l^^ [{e^<”-^*+«”W..,+.(2i?) + e-i(»+*+i)«Tf,,^.(_2i^)} 

- (-)“ {«*(-“-*+«"■ (2i?) + ? - i (- 2i?)}l, 

remembering that F*,m= 

Hence, sincef lim F,.„+. (2i?) = F,.„(2t?), we have 
*-••0 

This function (n being an integer) is obviously a solution of Bessel’s 
equation; it is called a Bessel function of the secmd kind. 

Another function (also called a function of the second kind) was first used 
by Weber, JfutA. Ann. vi. (1873), p. 148 and by Schlafli, Ann. di Mat. (2), vi. 
(1875), p. 17; it is defined by the equation 

(^z) = (^) J-n (^) ^ Yn (z)QOSnir 
sin rm * 

* Math. Ann. i. (1869), p. 472. 

t This is most easily seen from the uniformity of the 
Barnes’ contour integral (§ 16*4) for 

convergence with regard to € of 
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or by the limits of these expressions when n is an integer. This function 
which exists for all values of n is taken as the canonical function of the 
second kind by Nielsen, Handhuch d«r Cylinderfwnktimten (Leipzig, 1904), 
and formulae involving it are generally (but not always) simpler than the 
corresponding formulae involving Hankel’s function. 

The asymptotic expansion for (z), corresponding to that of § 17-5 for 
is that, when | arg^j < ir and n is an integer, 

- j a-). tr„(^) +C0S _i nw-j w). F„ (r)J, 

where I7„(x) and V„ (z) are the asymptotic expansions defined in § 17-5, their 
leading terms being 1 and (4n’ —1)/8^ respectively. 

Example 1. Prove that 

where n is made an int^r after differentiation. (Hankel) 

Example 2. Shew that if T, (z) be defined by the equation of example 1, it is a 
solution of Bessel’s equation when « is an integer. 

17-61. The ascending series for {z). 

The series of § 17-6 is convenient for calculating Y„(.z) when [xj is large. 
To obtain a convenient series for small values of |ar|, we observe that, since 
the ascending series for «/±(»+,) (^) are uniformly convergent series of analytic 
functions* of e, each term may be expanded in powers of e and this double 
series may then be arranged in powers of e (§§ 5-3, 5-4). 

Accordingly, to obtain Y„(z), we have to sum the coefficients of the first 
power of « in the terms of the series 

r=o r!r(«. + € + r + l) ,=or!r(— n — e + r+l)‘ 

Now, if s be a positive integer or zero and t a negative integer, the 
following expansions in powers of e are valid: 

r(s+6+i) r(« + i)f ' r(s + i) 

_ sin -f €) TT 
r +e+1) r(-t-€)=(-)‘+‘«r(-t) + ..., 

where 7 is Euler’s constant (§ 121). 

The proof of this is left to the reader. 
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Accordingly, picking out the coefficient of e, we see that 

v.«-iog(!,) r i _ (-ra»)-* i 
V ) Lr-or!r(n + r+l)^'‘ ■' ^f',r!r(-n + r + l)J 

I (c-yik^r^ ( »+- A 
r=«r!r(n+r+l) ('5' j 

+ (-)n ? f r-n x 

and so 

“ J. { 2 log (I ^)+a, - JV. - i 
_ (n-r-1)1 

r-0 r! 

When n is an integer, fundamental solutions* of Bessel’s equations, regular 
near ir * 0, are (z) and F* (z) or Y„ (z). 

Karl Neumann! toot as the second solution the function F'"* (z) defined 
by the equation 

(z) = § Y„ (z) + J, (z). aog 2 - y); 

but F„(r) and Y*(i) are more useful for physical applications. 

Example 1. Shew that the function F, {£) satisfies the recurrence formulae 

a (*) = {r*+1 («) + F„_i (*)}, 

Shew also that Hankel’s function y,(s) and Neumann’s function FW U) satisfy the 
same recurrence formulae. 

[These are the same as the recurrence formulae satisfied by (z),} 

£sample 2. Shew that, when | arg « [ < ^»r, 

W f’. W=I' sin (* sin d - Bd) cM - J “ rinh» ^ ^ ^ 

ExampU 3. Shew that ™-> 

J’«» (!:)=J'o (z) logi+2 {^2 fy)- K4 (*) + Ke (i) -...}. 

17‘7. Bess^ functions with purely imaginary argument. 

The function| 

In W = t-* J-, iiz) = i 
r=or!(»n-r)! 

* Euler gave a second solution {involving a logarithm) of the equation in the special 
n-O, n-1, Imt. Cole, InL n. (Petersburg, 1769), pp. 187, 233. 

t Theorie der BezuVsehen Funhti<men (Leipzig, 1867), p. 41. 

.» ‘J*” by Basset. Bydrcdynamice u. (1888), p. 17 j in 1886 he had 
defined 4(z) as see JVoc. Camb. Phil. Soc. vi. (1889), p. 11. 
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is of frequent occurrence in various branches of applied mathematics; in 
these applications z is usually positive. 

The reader should have no difficulty in obtaining the following formulae: 
9n 

(i) («)-/„« 
z 

(ii) 

(iii) 

(iv) 

dz ~ ■2~’*7n+J (■®)- 

, 1 din (^) /, 71^ J . . 
dz- ^z~dz— 0. 

(v) When E (n + l) >0, 

rw 
In\^)= 2"r(^) r (n + J04>d^. 

(vi) When — 5 v < arg ^ < g tt, the asymptotic expansion of (.2:) is 

^g-(n+t)xig-^ r « {4m--1’} {4n“ - 3»} ... {4»1*-(2r-1)’}] 

(2ir«)* L r=i ^ r!2»-^»- J’ 

the second series being negligible when |arga|<|Tr. The result is easily 

seen to be valid over the extended range — | w < arg« < | tt if we write 

g±(n+i)« for g-(n+i)in^ upper or lower sign being taken according as 
arg z is positive or negative. 

17*71. Modified Bessel f unctions of the second kind. 

When a is a positive integer or zero, I_,,{z)=I,^{z)-, to obtain a second 
solution of the modified Bessel equation (iv) of § 17-7, we define* the function 

(z) for all values of n by the equation 

-Kn (^) = cos IITT W„. „ (2z), 

Hn (^) = § w {/_„ (a) — /„ (z)] cot HTT. 

* The notation K^ (z) was used by Basset in 1886, Proc. Cavib. Phil. Soc. vi. (1889), p. 11, to 
denote a function which differed from the function now defined by the omission of the factor 
cosnT, and Basset’s notation has since been used by various writers, notably Macdonald. The 
object of the insertion of the factor is to make I,,{z) and K,,{z) satisfy the same recurrence 

formulae. Subsequently Basset, Hydrodynamics ii. (1888), p. 19, used the notation K^{z) to 
denote a slightly different function, but the latter usage has not been followed by other writers. 
The definition of {z) for integral values of n which is given here is due to Gray and Mathews, 

Bessel Functions, p. 68, and is now common (see example 40, p. 384), but the corresponding defi* 

nition for non-intepal values has the serious disadvantage that the function vanishes identically 
when %n is an odd integer. The function was considered by Riemann, Ann, der Phys, xcv. (1855), 
pp. 130-139 and Hankel, Math. Ann. i. (1869), p. 498. 
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Whether nhean integer or not, this function is a solution of the modified 

Bessel equation,and when |argz\<i^Tr it possesses the asymptotic expansion 

L r=i 
for large values of j ^ 

When w is an integer, (z) is defined by the equation 

(■^) “ lifn 2 w (z) -fn+« (^)} cot we, 

which gives (cf. § 17*61) 

X, («) — H('Vr)! |lof F+7 - i ^ - 3 j. 

r=® \^ / rl 
as an ascending series. 

Example. Shew that A"”,, {z) satisfies the same recurrence formulae as (2). 

17-8. Ifeumann’s expansion* of an analytic function in a aeries of Bessel 
coefficients. 

We shall now consider the expansion of an arbitrary function f{z), 
analytic in a domain including the origin, in a series of Bessel coefficients, in 
the form 

f{z) = ) (^z) + fiiJi {z) + ctfi Jq {z) + ..., 

where oto, as, ... are independent of z. 

Assuming the possibility of expansions of this type, let us first consider the expansion 
otll(t-z); let it be 

Oo (t) Jo (z) + 2O1 (t) (z)+2O2(t) + 

where the functions 0^ (t) are independent of z. 

We shall now determine conditions which On (t) must satisfy if the series on the right 
18 to be a uniformly convergent series of analytic functions; by these conditions On(t) 

will be determined, and it will then be shewn that, if On(t) is so determined, then the 
senes on the right actually converges to the sum ll{t-z) when | ^ | <| ^ |. 

Since + 0 

we have 

6>o' (t) (2)+2^2^ 0„' (t) Oa (t) J^' (z)+2 S 0. (t) J.' (i) s 0, 

so that, on replacing 2J„' (2) by 1 (2) (2), we find 

W (#) + Oi («)}y,W + 2 {20»' (t) + (<)- U,_, (<)} J„(2)b0. 

* E. Neumann, Journal fUr Math. Lxvn. (1867), p. 810; see also Kapteyn, Ann. de VicoU 
norm. tup. (3), x. (1893), p. 106. 
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Accordingly the eiiccessive fiinctions 0| {t\ 0^ {t\ O3 {t\ are determined hy the recurrew^ 
fonnvlae 

0l (^)« — Oq (t)y Ofi + I (if)*® (t) “ 20^^ (t)j 

and, putting z=0 in the original expansion, we see that Oo (t) is to he defined hy the 
eqmtion 

These formulae shew without difficulty that On {i) is a polynomial of degree n in Ijt 

We shall next prove by induction that 0»(0, so defined, is equal to 

when R(t)>0. For the expression is obviously equal to Of, (i) or 0, (t) when n is equal to 
0 or 1 rrapectively; and 

i /„ e~‘“{ii±y/(u‘+l)}’‘dii 

=i {l+2u2 + 2iiV(a®+l)}<ftt 

=i e-‘“ {u± v'(w*+du, 

whence the induction is obvious. 

Writing w»®sinh we see that, according as ?i is even or odd^, 

i [{“ + +1)}” + {» V(tt* +1)}«]=ng 

{“b-^ 
and hence, when H (t) > 0, we have on integration, 

2 (271 ~ 2) 2.4 (271 - 2) (2n - 4)' 

the series terminating with the term in or t^-^; now, whether Jt(t) be positive or not, 
On(t) is defined as a polynomial in 1/t; and so the expansion obtained for On(t) is the 
value of On (t) for all values of t. 

Example. Shew that, for all values of 

(0 = 2^1.«-* [{2;+s/{^ +1!®)}" +{x- dv, 

and verify that the expression on the right satisfies the recurrence formulae for On (t). 

17'81. Proof of Neumanns expansion. 

The method of § 17 8 merely determined the coefficients in Neumann’s 
expansion of l/(^ —on the hypothesis that the expansion existed and that 
the rearrangements were legitimate. 

To obtain a proof of the validity of the expansion, we observe that 

n! 

Cf. Hobson, Plane Trigonometry (1918), §§ 79, 264. 
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where 6n-*0, <f>n-*0 as n-* co , when z and t are fixed. Hence the series 

Oo (t) Jo iz) +2 I 0„ (t) Jn {z) = F {z, t) 

is comparable with the geometrical progression whose general term is z^ff^\ 
and this progression is absolutely convergent when \z\<\t\, and so the 
expansion for F{z, t) is absolutely convergent (§ 2*34) in the same circum¬ 
stances. 

Again if | ? j ^ r, 111 ^ B, where r<R, the series is comparable with the 
geometrical progression whose general term is and so the expansion 
for F{z, t) converges uniformly throughout the domains |z| and |<|^B 
by § 3*34. Hence, by § 5*3, term-by-term difierentiations are permissible, 
and so 

(al+S ^ 
-t- 0, (0 Jo' (^) -t- 2 2 0„ it) Jn' (Z) 

= {0,'(#) + 0, (t)} J-„ (z) -H {20n'(t) + 0„+i(t) - 0^^ (0} J»(«) 

=0, 
by the recurrence formulae. 

0, 

it follows that F(z, t) is expressible as a function of t - and since 

J’(0,f) = O„(t) = l/t, 

it is clear that F (z, t) = l/(t — z). 

It is therefore proved that 

7^ = 0, (t) J-„ {z)+2 I On («) Jn (A 

provided that |«| < 111. 

Hence, if/(z) be analytic when || ^r, we have, when \z\<r, 

■ //(t) {O. (t) J. (Z) 2 2^ On (t) Jn (4 dt 

= Jo (z)/(0) + ^fOn it) fit) dt, 

by § 4*7, the jjaths of integi-ation being the circle 111 = ?•; and this establishes 
the validity of Neumann’s expansion when \z\<r and fiz) is analytic when 
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Examine 1. Shew that 
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cos Z — (if) — Sa/j (if) + {£) — ... 5 

sili z=2Ji (-g) — {£)+%J^ («) -  (K. Neumann.) 

Example 2. Shew that 

Neumann.) 

Example 3. Shew that, when | 21 < | i |, 

Oo(<)-^o(2)+2 X 0^{t)J„{z)= 2 ^„(^) /'“r*-i«-*{a!+V(a~!+<2)}"<i» 
»s*l »=-.» J 0 

“ f ^ ^ j;(2){x+V(a^+<»)}»cfa; 
y 0 r 7i=-«j 

~Uo «p(f-^)<=^ 
-T^. (Kapteyn.) 

17‘82, SchlSmtlch’e expaneion of an arbitrary function in a teriet of Beteel coeficiente 
)/ order zero. 

SchlSmilch* has given an expansion of quite a different character from that of 
N'eumann. His result may be stated thus : 

Any functwn f{x\ which has a continnous differential coefficient with limited toted 

tuctuation for all vqIvm of x in the cloaed range (0, tr), may be expanded in the series 

f {x)»aQ + aiJ(i (:r)+a2«^ (2:r)-f (3^) + ..., 

)cilid in this range; where 

a^^f (0) +- ^^ u f (t^sin 6) d& du^ 

2 /■»' fbr 
»«*=-Jo K y (wsind)cfw (7i>0), 

SchlSmilch’s proof is substantially as follows : 

Lot F {x) be the continuous solution of the integral equation 

Then (§ 11*81) 

/(47)—^ F(x&m <t»)d<f>. 

F (x) «■/ (0)+X f (x sin B) dB. 

In order to obtain Schlomilch's expansion, it is merely necessary to apply Fourier’s 
heorem to the function Fix sin <^). We thus have 

di>J^ F(u)du + - 2 I coswt4C0s(^sin<^)i^(i/)<fw|- 

= — 2 / coanuE(u)J^(nx)du, 

he interchange of summation and integration being permissible by §§ 4‘7 and 9‘44. 

* ZeiUchrift far Math, und Phys. n. (1867), pp. 137-165. See Chapman, Quarterly Journal, 
wn. (1912), pp. 34-37. 
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In this equation, replace F{u) by its value in terms of/(«.). Thus we have 

/ {x)= i ^^ |/ (Q) + u /' (tt sin 6) du 

2 /*’»' ( "i 

jo + /'(w sin 

which gives SchlSmilch’s expansion. 

Example. Shew that, if 0 < ^ ^ the expression 

— - 2 (ar) 4-g (3;r)+~/o (5x)+.. 

is equal to x; but that, if ?r a? ^ 2ir, its value is 

a?+27r arc cos (7rar“i) _ 2 - tt-), 

where arc cos is taken between 0 and ~. 
3 

Find the value of the expression when x lies between 27r and 3fr, 

(Math. Trip. 1895.) 

17*9. Tabulation of Bemel function$. 

Hansen used the asymptotic expansion (§ 17*5) to calculate tables of (x) which are 
gi\en in Lommel’s Studi&n iibeT die JBeseeVschen Funktioneu. 

Meissel tabulated Jq{x) and Jj {x) to 12 places of decimals from ;r=:0 to a'=15*5 {Ahk. 

der^ Akad. z% Berlin, 1888), while the British Assoc. Report (1909), p. 33 gives tables by 
which (x) and (x) may be calculated when x> 10. 

Tabl^ of J^(x), J^(x), J^:^ (x), (x) are given by Dinnik, Archil? der Math, und 

Phys. XVIII. (1911), p. 337. 

Tables of the second solution of Bessel’s equation have been given by the following 

writers: B. A. Smith, Messenger, xxvi. (1897), p. 98; Phil Mag. (5), XLV. (1898), p. 106; 

Aldis, Proc. Royal Soc. lxvi. (1900), p. 32; Airey, Phil. Mag. (6), xxii. (1911), p. 668. 

The functions 4 (x) have been tabulated in the Bniish Assoc. Reports, (1889) p. 28, 

(1893) p. 223, (1896) p. 98, (1907) p. 94 ; also by Aldis, Proc. Royal Soc. LXiv. (1899); by 

Isherwood, Proc. Manchester Lit. and Phil. Soc. xlviil (1904); and by E. Anding, Seeks- 

stellige Tafeln der BesseVsehen Funktionen imagindren Argumentes (Leipzig, 1911). 

Tables of J,, {x s/i), a function employed in the theory of alternating currents in wires, 

have been given in the British Assoc. ReporU, 1889,1893, 1896 and 1912; by Kelvin, Moih. 

and Phys. Papers, in, p. 493; by Aldis, Proc. Royal Soc. LXVi. (1900), p. 32; and by 
Savidge, Phil. Mag. (6), xix. (1910), p. 49. 

Foraulae for computing the zeros of (z) were given by Stokes, Oamb. Phil. Tram. ix. 

Md the 40 smallest zeros were tabulated by Willson and Peirce, Bull. American Math. 

Aoc III; (1897), p. 153. The roots of an equation involving Bessel functions were computed 
by Kalahne, Zeitschrift fiir Math, und Phys. liv. (1907), p. 55. 

A number of tables connected with Bessel functions are given in British Assoc. Reports, 

1910-1914, and also by Jahnke und Emde, Funktioneniafeln (Leipzig, 1909). 
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Miscellaneous Examples. 
I. Shew that 

cos (z sin (2)+(«) C08 2(9+(z) 008 4^+..., 

sin(zBinfl)-2Ji (z) sintf+2.l3(z)sin3tf+2.^5 (z)sin 

(K. Neumann.) 

2. By expanding each side of the equations of example 1 in powers of sin B, express ^ 
as a series of Bessel coefficients. 

3. By multiplying the expansions for exp |lz(^_l^| and exp|-iz(t-0| and 

considering the terms independent of-^, shew that 

Ko«}2+2 {Jj (z)f+^ {/2(^)}2+2 {J3(^)}2 + ...«1. 
Deduce that, for the Bessel coefficients, 

- . . 1 *^ (^) 1 ^ Ij I *4i (^) 1 ^ 2 (n ^ 1) 
when z is real. 

JJf(z)=:^ f 2^ cos^ u cos (mu-zaiBu)du 
fr j 0 

(this function reduces to a Bessel coefficient when k is zero and m an integer), shew that 

where is the ‘ Cauchy’s number’ defined by the equation 

j («»«+e**»*)* (e»«- e“<“)p du. 

Shew further that 

and zJ*+\z).2mJ*+^ «-2 (i+1) (z)-^^, (z)}. 

(Bourget, Journal de Math (2), vi.) 
5. If V and jlf are connected by the equations 

e sin F, cos where | e | < 1, 

shew that r=Jf+2(l-e»)i I S IsininJ/, 
m=l (fc=0 ni 

vhere Jnf(z) is defined as in example 4. (Bourget.) 
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6. Prove that, if m and n are int^ers, 

(cos 0) 1} *«, 

where «=5rcosd, and is independent of z, 

(Math. Trip. 1893.) 

7. Shew that the solution of the differential equation 

^ <i fv\^/,i 4k2-i\m'\2) „ 
&* «*+l4U/ + -4“;(i:)p=°’ 

where ^ and ^ are arbitrary functions of z, is 

8. Shew that 

(^) +^3 (s) -f/g (.r) +...(x)+j {Jq (^)} -1J. 

(Trinity, 1908.) 
9. Shew that 

2 . J-)’‘r(M-Hv4-2» + l)(i.r+>-^“_ 
n^au ! r (fi’jrn-jrl) F (v+^i-f-l) r (ft+y+^+l) 

for all values of p, and v, 

(Schlafli, Math. Ann. m. (1871), p. 142; and SchSnholzer, Bern dissertation, 1877.) 

10. Shew that, if »is a positive int^ier and »i+2»+1 is positive, 

(’”“!)/, ^''■-+1 (®)'^n-i (x) da,-=^-^*i (x) (X) - (a;)} + (in +1) J Vp,* (x)dx. 

(Math. Trip. 1899.) 
11. Shew that 

12. Shew that 

13. Shew that 

J, (*) + 3 ^^^+4 ^^^=0. 

jz) ___ jz (}z)^ (jz)^ 

Jn(z) n-j-1 

•/!« (2) (2) 1 (^) *^14 (2;) = (LommeL) 

14. If -7^^^ be denoted by §,4 (2), shew that 

= F 

16. Shew that, if 2rri cos ^ and ri >r>-0, 

J'0(i2)=sJ'o(r)«/o(?*i)+2 2 Jn (r) Jn (n) CO8 71^. 
n=l 

^o(-^)*“*4(^) Fo(ri) + 2 2 t4(r) (rj) cos 
«=i 

16. Shew that, if Ji (n +1) > 0, 

ri"' 
^2» (2^008 d)cld=Jir{J«(z)}2. 

(K. Neumann.) 

(K. Neumann.) 
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17. Shew how to express in the form AJi{z)+BJ^{z), where Bare poly- 
nomials in z; and prove that ^ 

Ji(6i)+3./o(ei)=0„ a4(3oi)+5^,(30i)=O. 

(Math. Trip. 1896.) 

18. Shew that, if a 4= ^ > -1, 

(a»-^ J M^)dx=x |y, ^Max)^ , 

^/o {•^« (aar)}*+|a: 

19. Prove that, if n> -1, and ^,(a)=j; (/3)=0 while a+ft 

j^xJn{ax)J^(fix)dx=Q, and j^^x{J^{ax)fdx=^l{J^^^^a)Y, 

Hence prove that, when »> -1, the roots of Mx)~0, other than zero, are aU real and 
unequal. 

[If a could be complex, take to be the conjugate complex.] 

(Lommel, Studim ilher die BesuVschm Funktionen^ p. 69.) 

20. Let x^f {x) have an absolutely convergent integral in the range 0 1 • let 

be a real constant and let ^ 0. Then, if k^,... denote the positive roots of the actuation 

k-*{kJ^{k)^SJ^{k)}^Q, 

shew that, at any point x for which 0 <:r < 1 and f{x) satisfies one of the conditions of 
§ 9*43, f{x) can be expanded in the form 

f{x)= 2 ArJ„{h^), 
r=l 

where {J^(i^)}idx'j ^ j\/(x)J„(i;^)dx. 

In the special case when ir= -w, ki is to be taken to be zero, the equation deter¬ 

mining ki, ... being (ir)=0, and the first tei-m of the expansion is where 

Ao^{2n + 2) x'^*^f{x)dx. 

Discuss, in particular, the case when .fiT is infinite, so that (k)^0, shewing that 

Ar^2{Jn + i (kr)}-'^ [ xf (x) Jn (k^x) dx. 
J 0 

[This result is due to Hobson, Froe. London Math. Soc. (2), vii. (1909), p. 349; see 

also W. H. Young, Proc. London Math. Soc. (2), xviii. (1920), pp. 163-200. The formal 

expansion was given with E infinite (when 71=0) by Fourier and (for general values of n) 

by Lommel; proofs were given by Hankel and Schlafli. The formula when E^ -» was 

given incorrectly by Dini, Serie di Fourier (Pisa, 1880), the term AqO^^ being printed as Aq, 

and this error was not corrected by Nielsen. See Bridgeman, FhiL Mag. (6), xvi. (1908), 

p. 947 and Chree, Phil. Mag. (6), xvii. (1909), p. 330. The expansion is usually called the 
Fourier-Beeeel expansion.'] 

21. Prove that, if the expansion 

^ ~ AiJq (XiiT) + ^2*^0 (X2‘^’)"b 

exists as a uniformly convergent series when -a where Xi, X2,... are the positive 
roots of t7o(Xa)«=0, then 

Af^—S {dKi^Ji (Xw®)}”^* (Clai*e, 1900.) 
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22. If ij, If,... are the positive roots of J„ (Az)a>0, and if 

i ArJ,(,irX), 
rs=i 

this series conv«?ging uniformly when then 

(Math. Trip. 1^.) 
Sa Shew that 

when » > Bi > -1. (Sonine, JfaiA. Ann. xvi.} 

24. Shew that, if cr > 0, 

(Nicholson, PAtl. Mag. (6), xvin. (1909), p. &) 

26. If Bi be a positive integer and « > 0, deduce from Bessel’s integral formula that 

j;. (ar) d4:==e sech u. 

26. Prove that, when ar>0, (Math. Trip. 1904.) 

•^o('*)=~y^ sin (a-cosh <) (it, F'o(a;)= j cos (ar cosh t) <i(. 

the “nt^ of § 17T to be the imaginary aiis indented at the origin and a 
semiarcle on the left of this line.] 

27. Shew that (Sonine, MatA. Ann. xvl) 

^“‘«ii,(a;t)8in(i;(iB=Jn. 0<t<ll 

*«arc cosec ^ ^>1 J 
and that 

0<t<l] 

28. Shew that 

is the solution of 

t>l J 
(Weber, Journal fUr Math. Lssv.) 

+Blog(r sm» e)}dd 

dhi I du , 
^P+r 

(Vo\B^Jo^de l6ooh PolgUcAniqae, xn. (1823), p. 476; see also Stokes, 
Camib. PAd. Tram. ix. (1856), p. [38].) ^ 

29. Prove that no relation of the form 

k 

+f (^) ** 0 

^e^ for rational values of M., a Ind :r except relations which are satisfied when the 
Bessel functions are replaced bv arbitrarv anliifinr.. . aaiisnea wnen tne 

oy aroitrary solutions of the recurrence formula of § 17-21 (A). 

[Express the left-hand side in terms of J (x) and J (x) a,nA ^ 

tl«t j;.,((r)/y.((r) is irrational whenaandxlirSlii]’^^^^ by example 12 
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30. Prove that, when R (?i) > — 

r /.X _A , /sin z\ 
n ( )*2n-l r (72+^) r (i) W / ’ 

_ Y U\_^_ A , c|2\W--| /qosz\ 

K ^2 (ti - 4) (7i - a) ^4 «ia /*1 

+ + Write L = 

(Hargreave, Phil Trans. 184B ; Macdonald, Frac. London Math. Soc. xxix.) 

31. Shew that, when R {m -|-^) > 0, 

/S^\l fh^ 
W io (Hobson.) 

32. Shew that, if Sti+1 > 7?i > -1, 

/ ^-n+w r TO-i _P 
Jo r(7i-^m+4)* 

^ (Weber, Jbwma^yterJfa^A. Lxix.; Math. Trip. 1898.) 
33. Shew that ^ ^ 

34. In the equation 

(Lommel.) 

^ . 1 , A , «■ J*)y-o, 

is real; shew that a solution is given by 

C08(«log*)- 2 
m=i 2*“ m.! (1 +n*)i (4+«S)i.(m*+»*)i ’ 

lere denotes 2 arc tan (n/r). 
rssi (Math. Trip. 1894.) 

35. Shew that, when n is large and positive, 

./«(»i)=>2 -13 -4- r (i) n- 4+0 (n-i). 

(Cauchy,..(?b«ipf«* Bendut, ixxvm. (1864), p. 993; Nicholson, Phil. Mag. 
(6), xvr. (1908), p. 276.) 

36. Shew that 

r.w./;« 

37. Shew that 
(Mehler, Journal fUr Math. LXVIH.) 

«JkC0.»„2»-ir(7i) 2 («+4)C';(co8(9)\-»/„^»(\). 

(Math, Trip. 1900.) 
38. Shew thati if 

Wmmj^ J_^ jr^ 

I, c being positive, and m is a positive integer or zero, then 

ir*«0 {a’-h)^'> 

TF-0 (a+6)*>c®. (Sonine, Math. Ann. xvi.) 
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39. Shew that, if %>~1, m>-~ J aod 

a, 6, c beiog positive, then 
Wm.0 

W^{9mT^(/i) (a+5)2>c2>(a-i>)2, 

where /4=(a®+6^-c2)/2a&, /4i=:‘>(a+6)2, 

(Macdonald, Proc. London Math. Soc, (2), vii.) 

40. Shew that, if P (m+i) > 0, 

and, if | arg2 |<|ir,- 

Prove also that 

■ff*W=»“*2”2“r(m+i)co8 OTn- 

(Math. Trip. 1898. Cf. Basset, Proc. Camh. Phil. Soc. vi.) 

[The first integral may be obtained by expanding in powers of z and integrating term- 
by-term. To obtain the second, consider 

ni+, -1+) , 
^ \ dt, 

where initially arg (i- l)-arg (^-|-1)=0. Take | jf | > 1 on the contour, expand l)’*‘'^in 
descending powers of i, and int^rate term-by-term. The result is 

p ^2^J 2 “ r (I - m) {z\ 

Also, deforming the contour by flattening it, the integral becomes 

2u?^^mn2m7r dt\ 

and consequently 

41. Shew that 0« (r) satisfies the differential equation 

flP0,(r) 3rf0,(r) f ~‘-l\ ^ „ 

J ~W~ + r- 
ir,=r-i (n even), („ odd). (K. Neumann.) 

42. K/(z) be analytic throughout the ring-shaped region bounded by the circles c, G 

whose centres are at the origin, establish the expansion 

/ W=iao*4 W + Oj Ji (3;)+a2«4 ('2') + *.. 

+i^o 0. (*) + A 0, (s)-I-A Oj (sj-i--•, 

where j f{t)J^{t)dt. (K. Neumann.) 

43. Shew that, if x and y are positive, 

where r- -l-V(«*+y’).ftnd /9- + 1) or tV(l-i*) according as i> 1 or i< 1. 

(MatL Trip. 1906.) 
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44. Shew that, with suitable restrictions on n and on the form of the function f(x) 
/•» f /•« , ^ 

[A. proof with an historical account of this imjwrtant theorem is given by Nielsen 
Cylinderfunktionen, pp. 360-363. It is due to Hankel, but (in view of the result of S sVl 
it is often called the Fowrier-Bettel inUgral.l 

45. If U be any closed contour, and m and » are integera, shew that 

(z) (*) cfe=.y^ 0„ (Z) On (Z) dz^ (Z) On (z) &=0, 

^ess C contains the origin and ; in which case the first two integrals are still zero 
but the tWrd is equal to wt (or 2wf if «=0) if C encircles the origin once counter- 
clockwise. XT 

(K. Neumann.) 
46. Shew that, if 

(-)^ 
p \ q\ 

and if be a positive int^r, then 

Z ^ ^-m,n + m~l02ni~l{z), 

*‘-*"=a,.-l..-lO„(r)-|-2 i an-n,-l,n^n.-lOzn,{z). 
m=l 

= 2 2^} ... {n«-(m- 

(K. Neumann.) 

,2m + 2 

while 

47. If 

shew that 

(y*-^)'‘=Oo(y)W(^)F+2 1 Q«(y){^H(x)}s 
»=1 

when the aeries on the right converges. (K. Neumann, Matk Ann. m.) 

48. Shew that, if c>0, £{n)> - 1 and fi(a+i)2>0, then 

Jn (a) Jn (6)=^. <-i exp {(ta - a*- 6*)/(2<)} . /. (ab/t) dt. 

(Macdonald, Procn London Math Soc. xxxii.) 

49. Deduce from example 48, or otherwise prove, that 

(aS+62-2a6 cos d)“**.fn{(a24-6*-2a* cos d)*} 

=2» r (»)J^ {m+ n) a-» (6) U„» (oosd). 

(G^enbauer, Wimer Sitzung^berichte^ Lxix. lxxiv.) 
50. Shew that 

satisfies the equation 

(0 Jn (tz^) ^-^dt 

4. * ^ ‘^^4. /w 24 
^z{z-1) 

if ktf= J„ (t) Jn (t^) - <* +1JJ (<; (te4) + i:4 +1 (J) (,^4) 

resumes its initial value after describing the contour. 

Deduce that, when 0<a:<l, 

J,-l>(t)Jy.. (.tzi)t^^0-y F(a, y; z). 

(Schafhoitlin, Math. Ann. xxx.; Math. Trip. 1903.) 



CHAPTER XVIII 

THE EQUATIONS OF MATHEMATICAL PHYSICS 

18'1. The differential equations of mathematical physics. 

The functions which have been introduced in the preceding chapters are 
of importance in the applications of mathematics to physical investigations. 
Such applications are outside the province of this book; but most of them 
depend essentially on the fact that, by means of these functions, it is possible 
to coMtruct solutions of certain partial differential equations, of which the 
following are among the most important: 

(I) Laplace’s equation 

'*■ dy* dz^ ~ 

which was originally introduced in a memoir* on Saturn’s rings. 

If (x, y, z) be the ^tangul^ coordinates of any point in space, this equation is 
satisfied by the following functions which occur in various branches of 
physics: 

(i) The gravitational potential in r^ons not occupied by attracting matter. 

(ii) The electrostatic potential in a uniform dielectric, in the theoiy of electro¬ 
statics. 

(iii) The magnetic potential in free aether, in the theory of magT.Atr.itatics 

(iv) The electric potential, in the theory of the steady flow of electric currents in 
solid conductors. 

(v) The temperature, in the theory of thermal equilibrium in solids. 

(vi) The velocity potential at points of a homogeneous liquid moving irrotationally 
in hydrodynamical problems. 

Notwithstanding the physical differences of these theories, the mathematical investi¬ 

gations are much the same for all of them: thus, the problem of thermal equilibrium in a 

sohd when the points of its surface are maintained at given temperatures is mathe¬ 

matically identical with the problem of determining the electric intensity in a rwon 
when the points of its boundary are maintained at given potentials. 

(II) The equation of wave motions 

^ ^ a*F 
da?dy* ^ ds!^ <? de ' 

This equation is of general occurrence in investigations of undulatory disturbances 

propagated with velocity c independent of the wave length; for example, in the theory of 

electric waves and the electro-magnetic theory of light, it is the equation satisfied by each 

wmponent of the electric or magnetic vector; in the theory of elastic vibrations, it 

18 the ^imtion satisfied by each component of the displacement; and in the theory 
of sound. It IS the equation satisfied by the velocity potential in a perfect gas. 

* Mim. de VAcad. dtt Sciences, 1787 (published 1789), p. 252. 
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(III) The equation of conductum of heat 

This is the equation satisfied by the temperature at a point of a homogeneous isotropic 
50dy; the constant k is proportional to the heat conductivity of the body and inversdv 
)roportional to its specific heat and density. ^ 

(IV) A particular case of the preceding equation (H), when the variable 
; IS absent, is 

df c* 0f* ■ 

This is the equation satisfied by the displacement in the theory of transverse vibrations 
f a membrane; the equation also occurs in the theory of wave motion in two dimensions. 

(V) The equation of telegraphy 

^t dt 

^ is the eq^tion Mtisfi^ by the potential in a telegraph cable when the inductance 
the capacity JT, and the resistance R per unit leniTth 
— “ uj tuo porentiai m a telegraph cable when the 

I, the capacity £, and the resistance R per unit length are taken into account 

It would not be possible, within the Umits of this chapter, to attempt 
m exhaustive account of the theories of these and the other differential 
quations of mathematical physics; but, by considering selected typical 
ases, we shall expound some of the principal methods employed, ^th 
pecial reference to the uses of the transcendental functions. 

18*2. Boundary conditions, 

A problem which arises very frequently is the determination, for one of the 
quations of § 18-1, of a solution which is subject to certain boundary con- 
litions \ thus we may desire to find the temperature at any point inside a 
.omogeneous isotropic conducting solid in thermal equilibrium when the 
omts of Its outer surface are maintained at given temperatures. This 
mounts to findmg a solution of Laplace’s equation at points inside a given 
urfece, when the value of the solution at points on the surface is given. 

A more complicated problem of a similar nature occurs in discussing 
mall oscillations of a liquid in a basin, the liquid being exposed to the 

tmosphere ; m this problem we are given, effectively, the velocity potential 
t points of the free surface and the normal derivate of the velocity potential 
'’here the lic^uid is in contact with the basin. 

The nature of the boundary conditions, necessary to determine a solution 
niquely, vanes very much with the form of differential equation considered 
ven m the case of equations which, at first sight, seem very much alike’ 
hus a solution of the equation 

d-V 0*F 
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(which occurs m the problem of thermal equilibrium in a conducting 
cylinder) is uniquely determined at points inside a closed curve in the 
^-plane by a knowledge of the value of F at points on the curve; but 
in the case of the equation 

dai> c® 9t* 

(which effectively only differs from the former in a change of sign), occurring 
in connexion with transverse vibrations of a stretched string, where F 
denotes the displacement at time t at distance a; from the end of the 
string, it is physically evident that a solution is determined uniquely only if 

^ ^ values of a: such that when t = 0 

(where I denotes the length of the string). 

Physical intuitions will usually indicate the nature of the boundary 
conditions which are necessary to determine a solution of a differential 
equation uniquely; but the existence theorems which are necessary from 
the point of view of the pure mathematician are usually very tedious and 
difficult*. 

183. .4 ffcncrdl solution of Ldplcicfis ccfuction'^. 

It IS possible to construct a general solution of Laplace’s equation in the 
form of a definite integral. This solution can be employed to solve various 
problems involving boundary conditions. 

Let F(ir, y, z) be a solution of Laplace’s equation which can be expanded 
into a power senes in three variables valid for points of {x, y, z) sufficiently 
near a given point {x^, z,). Accordingly we write 

— y — y^-vY, z^z^-\-Z\ 

and we assume the expansion 

F= a, + OiZ + 6iF+ 

+ 2<4FF+ 2e,ZZ + 2/,ZF+..., 

It bemg supposed that this series is absolutely convergent whenever 

where a is some positive constant^. If this expansion exists, F is said to 
be analytic at (ajj, y,, z^. It can be proved by the methods of §§ 3-7, 4-7 

t Whittaker, Math, Ann. lvii. (1902), p. 333, 

t The fanctions of applied mathematics satisfy this condition. 
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that the series converges uniformly throughout the domain indicated and 
may be differentiated term-by-term with regard to X, 7 or Z any number of 
times at points inside the domain. 

If we substitute the expansion in Laplace’s equation, which may be 
written 

8»F 0»F_ 

and equate to zero (§ 3*73) the coefficients of the various powers of X, F 

and Z, we get an infinite set of linear relations between the coefficients, 
of which 

may be taken as typical. 
Oj + 62 + C2 = 0 

There are |»(n-l) of these relations* between the |(n + 2)(7i + l) 

coefficients of the terms of degree n in the expansion of V, so that there 

are only g (w + 2)(tc +1) — gn(w —1) = 2w. + 1 independent coefficients in 

the terms of degr^ n in F, Hence the terms of degree n in V must be 

a linear combination of 2n+l linearly independent particular solutions of 
Laplace’s equation, these solutions being each of degree » in X, 7 and X. 

To find a set of such solutions, consider (X + tX cos u + f 7sin m)» ; it is 
i solution of Laplace’s equation which may be expanded in a series of sines 
ind cosines of multiples of u, thus: 

n n 

^ 9m F, Z) COS m\L 4- 2 (X, F, Z) sin 

;he functions g^niX, F, Z) and A^(X, F, Z) being independent of The 
lighest power of Z in (X, F, Z) and (X, F, Z) is and the former 
unction is an even function of F, the latter an odd function, hence 

ihe functions are linearly independent. They therefore form a set of 
k + 1 functions of the type sought. 

Now by Fourier's rulef (§ 9*12) 

Trgm(Xj Yj Z)-^ j (Z+ iX cos u + iYsin uY cos mudu, 

irhjn (X, Yf Z)= f {Z + iX cos u-hiYsin iiY sin 7nuduj 

* If (where r+a + «=n) be the coefficient of in F, and if the terms of degree 
d'^V d^V d^v . ... 

in arranged primarily in powers of X and secondarily in powers of Y, 

le coefficient does not occur in any term after (or X^Y^^Z* if r=0 or 1), and 
ence the relations are all linearly independent, 

t 2t must be written for t in the coefficient of (X, Y, Z). 
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and so any linear combination of the 2» +1 solutions can be written in thi 
form 

J (Z-f tX cos u + lYsin uy^/n (u) da, 

where fn(u) is a rational function of 6'“. 

Now it is readily verified that, if the terms of degree n in the expressioi 
assumed for F be written in this form, the series of terms under the Integra 
sign converges uniformly if (Zp + lFp+IZp be suflSciently small, and 8< 
(§ 4*7) we may write 

t-m 00 

F= I 2 (Z-f fZcosu + lYsinuj^fn(w)du. 

But miy expression of this form may be written 

F=J iX cos u-\~iTsin u, u) du, 

where Z is a function such that differentiations with regard to Z, Y or 2 
under the sign of integration are permissible. And, conversely, if F be anj 
function of this type, F is a solution of Laplace’s equation. 

This result may be written 

^ = J f{z + ix cos u -f iy sin u, u) du, 

on absorbing the terms — -gr© — cos u — iyQ sin u into the second variable: 
and, if differentiations under the sign of integration are permissible, this 
gives a general solution of Laplace’s equation; that is to say, every solution 

of Laplaces equation which is analytic throughout the interior of some 
sphere is expressible by an integral of the form given. 

This result is the three-dimensional analogue of the theorem that 

« the general solution of 
027 c*7 

=0. 
3^2 0^2 

[Note. A distinction has to be drawn between the primitive of an ordinary differential 
equation and general int^rals of a partial differential equation of order higher the 
first*. 

Two apparently distinct primitives are always directly transformable into one another 

by means of suitable relations between the constants; thus in the case of ^+y=0. we 

can obtain the primitive Csin (r+,) from A cos.r+Rsinr by defining C and , by the 

^uations Csm t-A, Ceos On the other hand, every solution of Laplace’s equation 
IS expressible in each of the forms 

jJ_^ff(yco8u+z8inu+ix, u)du-, 
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but if these are known to be the same solution, there appears to be no general analytical 

relation, connecting the functions / and g, which will dii-ectly transform one form of 
the solution into the other.] 

ExampU 1. Shew that the potential of a particle of unit mass at (a, h, c) is 

du 

Sw j {z — {x — a) cos u-\-i(y — b) sin u 

at all points for which z>c. 

Example 2. Shew that a general solution of Laplace’s equation of zero degree in 
•», y, a 18 

I Jog (X coa t+g Bin t+h)g{t)dt, if J' g{t)dt^O. 

Express the solutions ~ and log^ in this form, where r^=x‘+g^+s:^. 

3. Shew that, in the case of the equation 

^whereyi-^, integrals of Charpit's subsidiary equations (see Forsyth, Differential 

Equations^ Chap, ix.) are 

(i) pi-.r=y-3'i=a, 

(ii) p^q^aK 

Deduce that the coiresponding general integrals are derived from 

(i) 

0=(.r+a)*-(y-a)2-f jP'(a) J’ 

(ii) 42-J (a?+3^)3+2a2 
0=4a(:r-y)-4a3(a?_py)“i4.(y' p 

and thence obtain a differential equation determining the function O (a) in terms of the 

function F (a) when the two general integrals are the same. 

18*31. Solutions of Laplace^s equation involving Legendre functions. 

If an expansion for F, of the form assumed in § 18-3, exists when 

^a=yo = -2ro = 0, 

we have seen that we can express F as a series of expressions of the type 

J (z + tic COB u+ ty sin u)” cos mudu, j (tt + ix cob u+ ig sin u)^ sin mudv, 

where n and m are integers such that O^m^n. 

We shall now examine these expressions more closely. 

If we take polar coordinates, defined by the equations 

ijjss r sin 0CO8 y = r sin ^ sin z — rcosdy 
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we have 

4- ix cos u + iy sin nY cos mudu 

= 

law 

J {cos 6 4- isin 0 cos {u— cos mudu 

j ^ {cos 5 4* t sin ^ cos i|r}« cos m (<^ 4- 

j {cos 0 + t sin 0 cos cos m (0 4- d;i|r 

= r” cos m<f> J [cos 0~ht sin 0 cos cos myjrdyfr, 

since the integrand is a periodic function of i|r and 

(cos d + i sin 0 cos sin 

is an odd function of Therefore (§ 15-61), with Ferrers’ definition of the 
associated Legendre function, 

(z + ia;coau + iy sin u)"- cos mudu * r«P„'» (cos d) cos m<f>. 

Similarly 

cos M + iy sin ?<)« sin mu dw = r»P„'» (cos d) sin 

^ Therefore r P„ (cos d) cos and r^P(cos d) sin in<f> are “polynomials 
in X, y, z and are particular solutions of Laplace’s equation. Further, by 
§• 18-3, every solution of Laplace’s equation, which is analytic near the origin, 
can be expressed in the form 

““ f n 
^~^^ij^"|'^n-Pn(cosd) + ^^2^(J.„('») cos+ P„(”*) sin wi^)P„”*(cos d) 

Any expression of the form 

A„P„ (cos d) + ^2^ (A„""> cos m<f> + P«<“» sin m<f)) P„™ (cos d), 

where n is a positive integer, is called a surface harmonic of degree n; 
a surface harmonic of degi-ee n multiplied by r" is called a solid harmonic 
(or a sphemcdl haruiotiic) of degree n. 

The curves on a unit sphere (with centre at the origin) on which P,(cosd) vanishes 

are n parallels of latitude which divide the surface of the sphere into zones, and so (cos 6) 

IS called (see § 15-1) a zmuJ Aannonic; and the curves on which nuf,. P,"* (cos 0) vanishes 

are «-TO parallels of latitude and 2to meridians, which divide the surface of the sphere 

Wtions are called Jw 
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A solid harmonic of degree n is evidently a homogeneous polynomial of degree n in 
Xj y, z and it satisfies Laplace^s equation. 

It is evident that, if a change of rectangular coordinatesis made bj rotating the axes 

about the origin, a soUd harmonic (or a surface harmonic) of degree n transforms into 

a solid harmonic (or a surface harmonic) of degree n in the new coordinates. 

Spherical harmonics were investigated with the aid of Cartesian coordinates % 

W. Thomson in 1862, see Phil. Traiu. (1863), pp. 573-582, and Thomson and Tait, 

pvatise on. Natural Philosophy l. (1879), pp. 171-218; they were also investigated 

independently in the same manner at about the same time by Clebsch, Journal far Math 
LXI. (1863), pp. 195-262. 

Example. If coordinates r, 0, <(, are defined by the equations 

x=reoa0, y=(r‘~l)^a\Q0coa<l>, 2=(r2-l)^sin5sin^, 

shew that Pj^lf) Pj^ (cosd) Goam<f> satisfies Laplace’s equation. 

18'4. The solution of Laplace's equation which satisfies assigned boundary 
conditions at the surface of a sphere. 

W^e have seen (§ 18'31) that any solution of X^aplace’s etjuation which 
is analytic near the origin can be expanded in the form 

V (r, 6, 2 r” (cos 8) 
n=0 I 

+ 2 COS m<f> + Pn'™’ sin m(f>) Pn”* (cos 0)1; 
S»s=l I 

and, from § 3"7, it is evident that if it converges for a given value of r, 
saj ct, for all values of $ and <f) such that ~~ tt^ v, it converges 
absolutely and uniformly when r< a. 

To determine the constants, we must know the boundary conditions 
which V must satisfy. A boundary condition of frequent occurrence is 
that F is a given bounded integrable function of 6 and say f{6, ^), on 
bhe surface of a given sphere, which we take to have radius a, and F is 
analytic at points inside this sphere. 

We then have to determine the coefficients An, from the 
equation 

f(d, = 2 a” iAnPn (cos 6) + 2 (A ^m) QQg ^ ^^(m) p^m ^ J 
»-0 ( m=l J 

Assuming that this series converges uniformly*[“ throughout the domain 

nultiplying by 

P„”'(cos 

02 02 ,02 
* Laplace’s operator ^ + gip invariant for changes of rectangular axes, 

t This is usually the case in physical problems. 
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inte^ting term-by-term (§ 4*7) and using the results of §§ 15*14, 15'51 od 
the integral properties of Legendre functions, we find that 

f r/(ff', ^')-P«”*(cos0')cosmf sin 
•^-’"■'0 2n+l (n-m)l ” ’ 

r f/(^'. <P') (cos ^ sin sin ff'd0'dd>' = Tra" ^ R («) 
•'-'■^0 ^ 2ra + l (w-m)! ” ’ 

T f f(^> <f>') Pn. (cos ^ sin e'dd'd^' = 2ira» - ^ -- 
j-irJo 2n + l 

Therefore, when r< a. 

V(r,0,4,)= 2 
«a=0 
2 2n + l 

4ir 

+ 2^21 Pn” (cos (9) Pn" (cos O') COS m (^ - f) sin 

The series which is here integrated tenn-by-term converges uniformly 
when r <a, since the expression under the integral sign is a bounded 
function of $, &, <j), if,', and so (§ 4-7) 

47r F (r. 6, if,) = |'/(^, if,') (2„ +1) g)" |p„ (cos 0) P„ (cos F) 

^ ^1 (n + m)! ^COB m (if, — ^')| sin d'dO'dif,'. 

^Now suppose that we take the line (6, if,) as & new polar axis and let 
(^1. ^fh) be the new coordinates of the line whose old coordinates were (F, if,')] 
we consequently have to replace P„ (cos 0) by 1 and P^” (cos 0) by zero; and 
so we get 

4wF(r, 0, if,) =1’^ !'/((?', if,')l^ (2„+i) Q’*P„(cos^Osin0^'d0,'dif,' 

“/ L ^ <2rn-1) P,.(cos 0^') sin 0'd0'dif,'. 
J -w*/ 0 \u-/ 

If, in this formula, we make use of the result of example 23 of Chapter xv 
(p. 332), we get 

and so 

47rF (r, dy 
a (a? — r°) sin 0'd0'dif,' 

(r* — 2ar cos + a’)^ ’ 

4Tr F(r, 0, if,) 

^a(a^-r-)r 
J-tJo Fr*-; 

fi0', if,') sin 0'd0'd4,' 

[r» - 2ar {cos ^ cos ^ + sin 0 sin ff cos (if, - ^')} + o»]i' 

In this compact formula the Legendre functions have ceased to appear 
explicitly. 
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The last formula can be obtained by the theory of Otem's fmictima. For properties 

§§ Thomson and Tait, Natural PhUotophy, 

[Note. From the int^ls for V (r, 6, <t>) involving Legendre funcstions of cos 6,’ and 

of cosd, cos F respectively, we can obtain a new proof of the addition theorem for the 
L^ndre polynomial. 

For let 

Xn {S', <i>') =P„ (cos di') - jp,. (cos 6) P. (cos ff) 

S’) cos m (4,-1;,')}, 

and we get, on comparing the two formulae for F(r, <^), 

(£fxr^(S', (j>')sme’d6'd<l>’. 

If we take/(d', <l>') to be a surface harmonic of degree n, the term involving r» is the only 

one which occurs in the int^rated series j and in particular, if we take /{ff, if>) =.;^„ (ff, 4/), 

/l, jl S'dffd4,'=0. 

Since the intend is continuous and is not negative it must be zero; and so 
J ^) s 0; that is to say we have proved the formula 

P„ (cos di') -P, (cos d) P, (cos d')+2 ^ %^m) \ <?)/’»’" (cos d') cos m (<#.- 4,'), 
wherein it is obvious that 

cos = cos ^ cos +sin 0 sin S' cos - <#>'), 

from geometrical considerations. 

We have thus obtained a physical proof of a theorem proved elsewhere* (§ 157) by 
purely analytical reasoning.] 

Example 1. Find the solution of Laplace’s equation analytic inside the sphere r^l 
which has the value sin 3^ cos ^ at the surface of the sphere. 

(cos S) cos ^ — JrPji (cos S) cos (p.] 

Example 2. Let y^(r, ff») be equal to a homogeneous polynomial of degree n 
in Xj z. Shew that 

(a, B, ip) Pn {cos ^ cos ^+sin B sin ^ cos (^ - (p')} 

4fra^ 

2n + l 
/n(a, B\ <p'). 

a® sin BdBcl<p 

[Take the direction {B', <p') as a new polar axis.] 

18‘6. Solutions of Laplace's equation which involve Bessel coefficients. 

A particular case of the result of § 18*3 is that 

/: gi(z+Mrc08„+iy8inw, mudu 

s a solution of Laplace’s equation, k being any constant and m being any 
nteger. 

* The absence of the factor (-)»» which occurs in § 15*7 is due to the fact that the functions 
ow employed are Ferrers’ associated functions. 
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Taking cylindrical-polar coordinates (p, z) defined by the equations 

a? = p cos y = p sin <f>^ 

the above solution becomes 

^ j (u-^} QQgrnudu^i&pcosvm(v + <f>), dv 

== 2^^ I 
Jo 

^ 26*^ cos (m<f>) j g^^pcoa® cos mt^dv, 

and so, using | 17T example 3, we see that cos(m<j>)»Jfn{kp) is a 

solution of Laplace's equation analytic near the origin. 

Similarly, j&nm the expression 

J' giK+wco.«+ty8inu) gin mudu, 

where TO is an integer, we deduce that 2-n-t”‘ e** sin (m4>). J„ (kp) is a solution 
of Laplace's eqimtim, 

18'SI. The periods of mhration of a uniform membrane*. 

The equation satisfied by the displacement V at time t of a point (^, y) of a unifonn 
plane membrane vibrating harmonically is 

d^v 1 

where c is a constant depending on the tension and density of the membrane. The 

equation can be reduced to lAplace^s equation by the change of variable given by z^cti. 
It follows, from § 18*5, that expressions of the form 

T n \ COS , cos , 
dm W) . W,<fi . Ckt 

^ Sin ^ sill 

satisly the equation of motion of the membrane. 

Take as a parUcular case a drum^ that is to say a membrane with a fixed circular 
boundary of radius R. 

Then one possible type of vibration is given by the equation 

(hp) cos m<f> cos ckt, 

provided that VssQ when p^R; so that we have to choose k to satisfy the equation 

J,n(hR)^Q. 

This equation to determine k has an infinite number of real roots (§ 17*3 example 3), 
hu ^2> ^8j ••• say. A possible type of vibration is then given by 

V=^J^(krp) con m<f)Q(mckrt (r=l, 2, 3, ...). 

This 18 a peri<^ic motion with period 2wj{ckr); and so the calculation of the periods 

depends essentially on calculating the zeros of Bessel coefficients (see § 17*9). 

* Euler, Novt Comm, Acad. Petrop. x. (1764) [published 1766], pp. 243-260; Poisson, Mem. 

ue I Acadimie, viii. (1829), pp. 357-570; Bourget, Ann. de VEcole norm. sup. iii. (1866), pp. 55-95. 
For a detailed discussion of vibrations of membranes, see also Rayleigh, Theorv of Sound 
Chapter ix. ^ > 
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Exfxiuple, The e<jnatioii of motion of air in a circular cylinder vibrating per¬ 
pendicularly to the asis OZ of the cylinder is 

d^V 8^7 Id^F 
dy‘-‘~ ^ W ’ 

r denoting the velocity potential. If the cylinder have radius £, the boundarv condition 
dV 

IS that ^ = 0 when p=E. Shew that the determination of the free periods depends on 

finding the zeros of (f)=0. 

18*6. A general solution of the equation of wave motions. 

It may be shewn* by the methods of § 18-3 that a general solution of 
the equation of wave motions 

^ ^ d^v_ 1 d^v 
dai‘ dg‘'^ dz^ ~'^'W 

^ ^~j J y(^ t;+ y sin M sin V + i^cos u + cf, M, v) dudw, 

where/ is a function (of three variables) of the type considered in § 18-3. 

Regarding an integral as a limit of a sum, we see that a physical 
interpretation of this e<|iiation is that the velocity potential V is produced 
by a number of plane waves, the disturbance represented by the element 

f (a: sin u cos V -i- y sin u sin V -h zoos u-t ct, u, v)SuSv 

being propagated in the direction (sin u cos v, sin u sin v, cos u) with velocity c. 
The solution therefore represents an aggregate of plane waves travelling in 
all directimis with velocity c. 

18*61. Solutions of the equation of wave motions which involve Bessel 
functions. 

We shall now obtain a class of particular solutions of the equation of 
wave motions, useful for the solution of certain special problems. 

In physical investigations, it is desirable to have the time occurring by 
means of a factor sin ckt or cos ckt, where k is constant. This suggests that 
we should consider solutions of the type 

Physically this means that we consider motions in which all the elenaentary waves 
have the same period. 

Now let the polar coordinates of (a?, y, z) be (r, 6, <f>) and let (m, be the 
polar coordinates of the direction (w, v) referred to new axes such that 
the polar axis is the direction (^, ^), and th@ plane yjr = 0 passes through 
OZ; so that 

cos <0 — cos 9 cos It + sin ^ sin u cos — v), 

sin u sin (^ — v) = sin &> sin 

* See the paper previously cited, Math. Ann. lvii. (1902), pp. 342-345, or Messenger of Mathe- 
natics^ xxxvi. (1907), pp. 98-106. 
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Also, take the arbitrary fiinction f(u,v) to be (te, i;)sin w, where 
denotes a surface harmonic in a, t; of degree n; so that we may write 

(ii, v) == Sn (^, ^; m, ‘f), 

where (§ 18*31) Sn is a surface harmonic in m, ^ of degree ?l 

We thus get 

F *s ^ikrcmm ^ 

Now we may write (§ 18*31) 

Sn(0>4>l —Ani^, i>)^Pn(C0Sm) 

+ S (0, ff>) cos 4* {0, <f>) sin m^fr] (cos m), 
m-l 

where An{0, <f>\ An^^^ (0, <f>) and (0, <f>) are independent of ^ and gj. 

Performing the integration with respect to we get 

F = 2we^^ A n (ffi <f>) f (cos <») sin gj dcG 
i 0 

= 2ire«^ (6>, P„ (^) 

by Rodrigues’ formula (§ 15"11); on integrating by parts n times and using 
EUnkel’s integral (§ 17'3 corollary), we obtain the equation 

2*jr n 

2^! ^ W” j «“’■'* (1 -/*T dfi 

and so Fis a constant multiple of e^r~i J^_^_^(kr)An(6, ^). 

Now the equation of wave motions is unaffected if we multiply x, y, z 

and t by the same constant factor, i.e. if we multiply r and t by the same 
constant fector leaving 6 and <f> unaltered; so that ($, f) may be taken 
to be independent of the arbitrarj' constant k which multiplies r and t 

Hence Im is a solution of the equation 

of wave motions; and therefore r” J.„ (0, is a solution (independent of t) 

of the equation of wave motions, and is consequently a solution of Laplace’s 
equation; it is, accordingly, permissible to take J.„ (0, <f>) to be any sarfeice 
harmonic of degree n; and so we obtain the result that 

^ (^) Pn^ (cos 0) m<f> ckt 
^ sin ^ sin 

is a particular solution of the equation of wave motions, 
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18*611. Applicaiion of § 18-61 to a physical problem. 

The solution just obtained for the equation of wave motions may be used in the 

following manner to determine the periods of free vibration of air oontAinad in a rigid 
Sphere. 

The velocity potential V satisfies the equation of wave motions and the boundary 

condition is that =0 when where a is the radius of the sphere. Hence 

(^'■) P.”' (ooH 6) m4,°^ckt 
sm ^ sin 

gives a possible motion if h is so chosen that 

This equation determines k; on using § 17-24, we see that it may be written in 
the form 

tan^a=/^(>ta), 

where /„ {ka) is a rational function of ha. 

In particular the radial \-ibrations, in which V is independent of 6 and <f>, are given by 
taking then the equation to determine h becomes simply 

tanira==ira; 

and the pitches of the fundamental radial vibrations correspond to the roots of this 
equation. 
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Miscellaneous Examples. 

1. If F be a solution of Laplace^s equation which is symmetrical with respect to OZ^ 
and if V^f{z} on OZ, shew that if /{f} be a function which is analytic in a domain of 
values (which contains the origin) of the complex variable f, then 

~ /o ^ 4>} 

at any point of a certain three-dimensional region. 

Deduce that the potential of a imiform circular ring of radius c and of mass M lying in 
the plane XOY with its centre at the origin is 
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2. If F be a solution of Laplace’s equation, which is of the form F{p, whei 

(/>, z) are cylindrical coordinates, and if this solution is approximately equal \ 

near the axis of z, where /(f) is of the character described in example ; 

shew that 

(Dougan.) 

3. If If be determined as a function of ^ and z by means of the equation 

Ajp^By+Oz^lj 

where A, C&re functions of u such that 

j2 + ^+(72«0, 

shew that (subject to certain general conditions) any function of is a solution c 

Laplace’s equation. 
(Forsyth, Meumger^ xxvii. (1898), pp. 99-118.) 

4. .4, B are two points outside a sphere whose centre is (7. A layer of attracting 

matter on the surface of the sphere is such that its surface density ctp at P is given b; 

the formula 
apaz{AP,BF)-\ 

Shew that the total quantity of matter is unaffected by varying A and B so long a 

CA. CB and AGB are unaltered; and prove that this result is equivalent to the theoren 

that the surface integral of two haimonics of different degrees taken over the sphen 

is zero. 
(Sylvester, PkU, Mag, (5), n. (1876), pp. 291-307.) 

5. Let F (x, y, z) be the potential function defined analytically as due to particlei 

of masses X-tft at the points {a^ta\ b+ib\ c+ic') and (a—m', b-ib\ c^ic' 

respectively. Shew that F (x, y, z) is infinite at all points of a certain real circle, anc 

if the point (ar, y, z) describes a circuit intertwined once with this circle the initia 

and final values of F(a?, y, z) are numerically equal, but opposite in sign. 

(Appell, Math, Ann, xxx. (1887), pp. 165-166.) 

6. Find the solution of Laplace’s equation analytic in the region for which a<r<A> 

it being given that on the spheres r^a and A the solution reduces to 

X c^P^{cmB\ 2 Cr,Pn{C0HB\ 
»a0 »=0 

respectively. 

7. Let O' have coordinates (0, 0, c), and let 

pbz~e, po~r, pa~j>. 
Shew that 

{cmF) 
/» + ! 

P^icoaB) , ^,^cA+l(cos^) , (n+l)(n+2)c^Pn+i(coaB) 
+ .. 

according as r>c or r<c. 

Obtain a similar expansion for (cos B), (Trinity, 189a) 

8. At a point (r, ^) outside a uniform oblate sphereid whose semi*axes are a, b and 
whose density is p, shew that the potential is 

"I 
3.5 +5.7 ^ “‘J’ 

where and r>m. Obtain the potential at points for which r<m, 

(St John’s, 1899.) 
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9. Shew that 

(2n+1) r-ip^ (cos 6) (r). 

(Bauer, Journal fur Math, lvi.) 

10». Shewthatif:j!+i:y»Aco8h(|±ti,),theequatioiioftwo-dimen8ionalwavemotious 
in the coordinates f and ij is 

a*r 0»F 
^+^ = -^(«»t*|-coeV)-p-. (Lamd.) 

11. Let a;=(o+rcosd)cos^, y™(<!+rcosd)sini^, 2=j’8ind; 

shew that the surfaces for which r, 6, <f) respectively are constant form an orthc^nal 

system; and shew that Laplace's equation in the coordinates r, is 

1(c+r cos «) I?} +1 ^ {(c+r cosd) 

(W. D, Niven, Mesmiger^ x.) 

12. Let P have Cartesian coordinates (j;, y, z) and polar coordinates (r, 6, d>). Let 
the plane POZ meet the circle 2=0 in the points a, y; and let 

aPy^a, log {PajPy)=(r. 

Shew that Laplace's equation in the coordinates a, ®, (j> is 

8 ( sinhcr dV) 8 f sinho- 8FI 1 

\cosh<r—cos® da j ^8® (cosho-—cos® 5® J 

and shew that a solution is 
sinh a (cosh cr — cos w) 8<^* «0; 

F=: (cosh cr—cos ®cos 71® cos (cosh o*). 

13. Shew that 
(Hicks, PhU. Trans. CLXXii. pp. 617 et seq.) 

(^+p»-2flpcos,^+c*)-i= s / dk / «-*y„(ip)s**“*“oo8m»rfw, 
m=o « y 0 y —IT ’ 

and deduce on expression for the potential of a particle in terms of Bessel functions. 

14. Shew that if a, 5, o are constants and X, /x, v are confocal coordinates, defined as 
the roots of the equation in c 

/2 
+ 'T-r-=l, 

then Laplace's equation may be written 

where 

AxO* >’) {ax I +A,. IJ} + A. (X -p) X 

AA=V{(a*+X) (6>+X) (C»+X)}. 

0, 

(Lam^.) 

* Examples 10,11, 12 and 14 are most easily proved by using Lamd's result (Journal de 
VMcoU PolyU XIV. oahier 23 (1834), pp. 191-288) that if (X, r) be orthogonal coordinates for 
which the line-element is given by the formula 
Laplace’s equation in these coordinates is 

8 (H^H^dV\ 8 (H^E^dV 
8X V Ml dXj’^dy. \ E^ Jii 

A simple method (due to W. Thomson, Camb, Math. Journal^ iv. (1845), pp. 33-42) of proving 
this result, by means of arguments of a physical character, is reproduced by Lamb, Eydro- 
dynamics (1916), § 111. Analytical proohi, based on Lamp's proof, are given by Bertrand, 

Traits de CaUvl DiffSrentielU (1864), pp. 181-187. and Goursat, Cours Analyse, i. (1910)', 

pp. 156-159; and a most compact proof is due to Neville, Quarterly Journal, xlix. (1923), pp. 338- 
352. Another proof is given by Heine, Theorie der Kugelfunctionen, i. (1878), pp. 303-306. 
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15. Shew that a general solution of the e<|iiatioii of wave motions is 

J y+tssin^+olcos^, B)dB, 

(Batenmn, Froc, Zmdm Math, Soc, (2) i. (1^4), p. 457.) 

16. If U **/ {x, y, I) be a solution of 

a® dj^ dz^ ’ 

prove that another solution of the ajuation is 

17. Shew that a general solution of the equation of wave motions, when the motion is 
independent of 0, is 

/: ^/(z+tp coaS, ol-fpsin^) cW 

where p, z are cjlmdrical coordinates and a, 5 are arbitrary constants. 

(Bateman, Froc, londm MaiA, Soc, (2) i. (1^), p. 458.) 

18. If V ~-f (x, y, z) is a solution of I^place^s equation, shew that 

Y— ^ f( r®+a® az \ 

(iS?—ty)^ \2(ir-®y)’ %i{x-iyy x-iy) 

is another solution. 

(Bateman, Froc, Zondon Math, Soc, (2) vii. (1909), p. 77.) 

19. If U=^f{x, y, «, t) is a solution of the equation of wave motions, shew that 
another solution is 

u-1- f( ^ y r®+l \ 
z^ct-^ z^cV %{z--cty %c{z^ct))' 

20. If 

^{z-^cty 2c{z-ct)j 

(Bateman, Froc, London Math, Soc, (2) vii, (1909), p. 77.) 

;=x-ty, m^z-htWy 

X=^+ty, i&^z-iwy F=s—1, 

^ ^+m|!4+nF»0, 

shew that any homogeneous solution, of d^ree zero, of 

satisfi^ 

d^u a®ir 
^ 9m;® 

W . 
0m0i4 ~ ’ 

and obtain a solution of this equation in the form 

fa, b, c 'j 

A r, 

A, y j 
fX=:(6-e)(f-a), «ny=(c*a)(f-5), np^{a^h){C’-c), 

(Bateman, iVoc. London Math. Soc, (2) vii. (1909), pp. 7S-S2.) 

where 



403 THE EQUATIONS OF MATHEMATZCAL PHYSKS 

21* If (r, e, <l>) are spheroidal coordinates, defined by the equations 

x=c(r«+l)iaindeos^ y=c(r*+l)ismdsin^, z=ercoa6, 

where x, y, * are rectangular coordinates and c is a constant, shew that, when « and w are 
inters, 

f* D /*«»«+y8in<+M\ooB . fjt-mM _ J p.«(co8fl) 

(BladiiMSj iVoc. jSdtnburgk Math, Soe. xtxmi,) 

S2. WitE the notation of example 21, shew that, if4= 0, 

^ /^cos^+ysin^+Moos , . ™ 
J ^ ) sin «»”(*•) ^ 

(Jeffery, Proc. Edinburgh MaMi, Boc, xxzul) 

where/and -Pare arbitraiy functions. 

(Donkin, Phil. Tram. 1857; Hobson, Proc. Zo^idon Math. Soc. (1) sxii. p. 422.) 

introduced in examples 21 and 22 are known as internal and external 
ipherotdal harmonies respectively. 



CHAPTER XIX 

MATHIEU FUNCTIONS 

19*1. The differential equcUton of Mathieiu 

The preceding five chapters have been occupied with the discussion o 
functions which ^long to what may be generally described as the hyper¬ 
geometric type, and many simple properties of these functions are now wel 
known. 

In the present chapter we enter upon a region of Analysis which lief 
beyond this, and which is, as yet, only very imperfectly explored. 

The functions which occur in Mathematical Physics and which come 
next in order of complication to functions of hypergeometric type are 
called Mathieu functions-, these functions are also known as the funOicm 
associate with ihe ^liptio cylinder. They arise fiom the equation of two- 
dimensional wave motion, namely 

^ ^ 1 yr 
cia? dff “c® ■ 

This partial differential equation occurs in the theory of the propagation of electro¬ 
magnetic waves; if the electric vector in the wave-front is parallel to OZ and if £ denotes 
the electnc force, while (^’x, 0) are the components of magnetic force. Maxwell’s 
fimdamental equations are 

hE 

e denoting the velocity of light; and these equations give at once 

1 ^ ^ 
c* 0<* ar* • 

In the case of the ^ttering of waves, propagated parallel to OX, incident on an 
elhptic cylinder for which OX and OF are axes of a principal section, the boundary 
condition is that E should vanish at the surface of the cylinder. 

The same partial differential equation occurs in connexion with the vibrations of 
a u^oim plane membrane, the dependent variable being the displacement perpendicular 
to the membrane; if the membrane be in the shape of an eUipse with a rigid boundary, 
the boundary condition is tbe same as in the electromagnetic problem just discussed. ' 

The differential equation was discussed by Mathieu* in 1868 in connexion 
with the problem of vibrations of an elliptic membrane in the following 
maimer: ^ 

* Journal de Math. (2), xra. (1868), p. 137. 
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SupfKse that the membrane, which is in the plane ^OY when it is 
in equilibrium, is vibrating with frequency p. Then, if we write 

V=u(x, y) cos{pt + e), 
the equation becomes 

8’It 8®m p- ^ 

Xiet the foci of the elliptic membrane be (+ A, 0, 0), and introduce new 
real variables* |, y defined by the complex equation 

x-¥iy = h cosh +ip), 

so that x^hcosh f cosp, y = hsinh ^sin p. 

The curves, on which ^ or is constant, are evidently ellipses or hj’per- 
bolas confocal with the boundary; if we take ^^0 and -v<p^7r,to each 
point (x, y, 0) of the plane corresponds one and only onef value of (f, p). 

The differential equation for u transforms intoj 

d^u h?p^ 

8^’ 817* c® 
(cosh“ ^—cos* p)u — 0. 

If we assume a solution of this equation of the form 

u = Fit)G{p), 

where the fiictors are functions of f only and of p only respectively, we see 
that 

ti’cr) dp + 
1 

.G(v) dp^ c* ° 

Since the left-hand side contains f but not while the right-han'd side 
contains r) but not F{^) and 0 (17) must be such that each side is a constant^ 
A, say, since f and tj are independent variables. 

We thus arrive at the equations 

Jew 
dif G{y) - 

0, 

0. 
By a slight change of independent variable in the former equation, we see 

that both of these equations are linear differential equations, of the second 
order, of the form 

d?U . n \ 
+ (a + IGg cos 2z) m = 0, 

* The introduction of these variables is due to Lame, who called ^ the thermometric parameter. 
They are more usually known as confocal coordinates. See Lani4, Snr Us fonetions inverses des 
transcendantes, Le<?on. 

t This may be seen most easily by considering the ellipses obtained by giving f various 
positive values. If the ellipse be drawn through a definite point (f, of the plane, n is the 
eccentric angle of that point on the ellipse. 

X A proof of this result, due to Lam4, is given in numerous text-books; see p. 401, footnote. 
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where a and q are constants*. It is obvious that every point (infinity ex¬ 
cepted) is a regular point of this equation. 

This is the equation which is known as Mathieu^s equation and, in certain 
circumstances (§ 19’2), particular solutions of it are called Maihieu functions. 

1911. The form of the solviion of Mathieu^s equation. 

^ In the physical problems which suggested Mathieu s equation, the constant 
a is not given a priori^ and we have to consider how it is to be determined. 

It is obvious from physical considerations in the problem of the membrane 
that u (x, y) is a one-valued function of position, and is consequently unaltered 
by increasing y by 27r; and the condition! S' (y + 27r) = (? (,) is sufficient to 
determine a set of values of a in terms of q. And it will appear later 194, 
19*41) that, when a has not one of these values, the equation 

is no longer true. 
G (j! + 2'?r) = G {ff) 

When a is thus determined, q (and thence p) is determined by the fact 
that = 0 on the boundary; and so the periods of the free vibrations of 
the membrane are obtained. 

mher i^oblems of Mathematical Physics which involve Mathieu functions in their 
Mlution are (i) Tidal waves in a cyHndrical vessel with an eUiptic boundary (ii) Certain 
forms of steady vortex motion in an elliptic cyUnder, (iii) The decay of magnetic force 

^P«»^ Bisid .y,h 

19‘12. Hill's equation,. 

A differential equation, similar to Mathieu’s but of a more general nature 

^ in G. W. Hill’sll method of determining the motion of the Lunar’ 
Fenpe, and in Adams’T determination of the motion of the Lunar Node 
HilFs equation is 

+ 2 2 0^ cos %nzj = 0. 

The theory of Hill’s equation is very similar to that of Mathieu’s (in spite 
of the mcrease m generahty due to the presence of the infinite series), so the 
two equations will, to some extent, be considered together. 

+ An elementary analogue of this result is that a solution of ^ +a«=0 has period 2. if, 
and only if, a is the square of an integer. 

t B. C. Maclaurin, Tratu. Camb. Phil. Sm. xvri. p. 41. 

§ A. W. Yonng, Proc. Pldinburgh Math. Soe. xxxit. p. 81. 

^ Math. vin. (1886). Hill’s memoir was originally published in 1877 at Cambridge. 

IT Monthly Notices M.A.S. xxxviii. p. 4S. 
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In the astronomical applications e„d„ ... are known constants, so the 
problem of choosing them in such a way that the sohition may be periodic 
does not arise. The solution of Hill’s equation in the Lunar Theory is, in 
fact, not periodic. 

1.0^. P&viodic solutions oj^ MlcXfthi&u^s 

We have seen that in physical (as distinguished from astronomical) 
problems the constant a in Mathieu’s equation has to be chosen to be such 
a function of q that the equation possesses a periodic solution. 

Let this solution be G(z); then G (z), in addition to being periodic, is an 
integral function of z. Three possibilities arise as to the nature of G (z): 
(i) G(a) may be an even function of (ii) G (z) may be an odd function of z, 
(iii) G (z) may be neither even nor odd. 

In case (iii), ^ {G (z) + G{- z)] 

is an even periodic solution and 

i{Giz)-G{-z)} 

is an odd periodic solution of Mathieu’s equation, these two solutions forming 
a fundamental system. It is therefore sufScient to confine our attention to 
periodic solutions of Mathieu’s equation which are either even or odd. These 
solutions, and these only, will be called Mathieu functions. 

It will be observed that, since the roots of the indicial equation at 3=0 are 0 and 1, 
two even (or two odd) periodic solutions of Mathieu’s equation cannot form a fundamental 
system. But, so far, there seems to be no reason why Mathieu’s equation, for special 
values of a and q, should not have one even and one odd periodic solution; for com¬ 
paratively small values of | j 1 it can be seen [§ 19-3 example 2, (ii) and (iii)] that Mathieu’s 
equation has two periodic solutions only in the trivial case in which }=0; the result that 
there ai-e never pairs of periodic solutions for larger values of |//| is a si)ecial case of a 
theorem due to Hille, Proc. London Math. Soc. (2) xxiii. (1924), p. 224. See also luce, Proc. 
Camb. Phil. Soc. xxi. (1922), p. 117. 

19*21. A.n integral equation satisfied by even Mathieu functions*. 

It will now be shewn that, if G (fi) is any even Mathieu function, then 

G (rj) satisfies the homogeneous integral equation 

G(v) = xr e*«>»’i“»«(?((9)dd, 
J —W 

where i=y(32q). This result is suggested by the solution of Laplace’s 
equation given in § 18*3. 

* This integral equation and the expansions of § 19-3 were published by Whittaker, Proc. 
InL Congress of Math. 1912. The integral equation was known to him as early as 1904; see 
Trans. Camh. Phil. Soc. xxi. (1912), p. 193. 



408 THE TRANSCENDENTAL FUNCTIONS [CHAP. XD 

For, if a: + ty = A cosh(f+ ii;) and if F(f) and (?(»?) are solutions of the 
differential equations 

-(A+ cosh* f) = 0, 

+ (A + to*A* cos* y) G (v) = 0, 

then, by § 19‘1, F’(f) (? (y) e”*** is a particular solution of Laplace’s equation. 
If this solution is a special case of the general solution 

j f cosh f cos y cos ^ + A sinh ^ sin j? sin ^ + iz, $) d6, 

given in § 18‘3, it is natural to expect that* 

f{v, ^)=F(0)e”«’^(^), 

where <f> (6) is a function of ^ to be determined. Thus 

F(O)^(0)exp {m/tcoshf COS 17 cos 6 

+ mh sinh f sin tj sin 6 + miz] dd. 

Since ^ and y are independent, we may put ^ = 0; and we are thus led to 
consider the possibility of Mathieu’s equation possessing a solution of the 
form 

G(v) = [ ^ 
J —rr 

19'22. Proof that the even Mathxeu functions satisfy the integral equation. 

It is readily verified (§ 5-31) that, if ^ {6) be ana^iiic in the range (- w, tr) 
and if G (y) be defined by the equation 

G(y)=: j e»/*c<»,cos« ^ 
J ~-ir 

then G{v) is an even periodic integral function of y and 

d^G (t)) 
h(A + cos" 7)) G (^) 

= J {wi’Vi* (sin- cos'^ 6 + cos* 17) — mh cos ^ cos ^ -f J.} costjcosb ^ 

= — {mh sin 6 con t] (f> (0) + (^)| cos >7 cos a 
L J 

+f_jr(ff)+(A + ??l*A*C0S* 0) (f) (^)l Qmhcosvoose ^0^ 

on integi*ating by parts. 

* The constant F (0) is inserted to simplify the algebra. 
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But if be a periodic function (ivith period 27r) such that 

4>" (0) +(A + cos’® 0) ^ (0) = 0, 

)oth the integral and the integrated part vanish; that is to say, G (»;), defined 
)y the integral, is a periodic solution of Mathieu’s equation. 

Consequently G(i]) is an even periodic solution of Mathieu’s equation if 
b (d) is a periodic solution of Mathieu’s equation formed with the same con¬ 
tents; and therefore 4>(0) is a constant multiple of <t(^) ; let it be XG(0), 

[Ill the case when the Mathieu e<juation has two periodic solutions, if this case exi.st, 
re have (j) (d)=XO (d) + Oi (d) where 6i (0) is an odd periodic function; but 

/: 
’anishes, so the subsequent work is unaffected.] 

If we take a and q as the parameters of the Mathieu equation instead of 
i and mhy it is obvious that mh = ^(32^) = k. 

We have thus proved that, if be an even periodic solution of 
lathieu's equation, then 

G(v) = ^r e^<^^<^^G(0)d0, 

rhich is the result stated in § 19‘21. 

From § 11*23, it is known that this integral equation has a solution only 
i^hen X has one of the ' characteristic values.’ It will be shewn in § 19*3 that 
3r such values of X, the integral equation affords a simple means of con¬ 
tracting the even Mathieu functions. 

Example 1. Shew that the odd Mathieu functions satisfy the integral equation 

G (17) = X J sin {k sin rj sin d) 0 (3) dB. 

Example 2. Shew that both the even and the odd Mathieu functions satisfy the 
itegral equation 

O 

Example 3. Shew l^hat when the eccentricity of the fundamental ellipse tends to zero, 
le confluent foim of the integral equation for the even Mathieu functions is 

19*3. The construction of Mathieu functions. 

We shall now make use of the integral equation of § 19*21 to construct 
[athieu functions; the canonical form of Mathieu’s equation will be taken as 

^ -h (a -f 16g cos 2z) u = 0. 
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In the special case when q is zero, the periodic solutions are obtained by 
taking a= where n is any integer; the solutions are then 

1, cos^, cos2^, 

sin2^, sin2^, .... 

The Mathieu functions, which reduce to these when q-^Q, will be called 

ce^ (z, q), cei {z, q), ce^ (z, 

sei(z, q\ se^iz, q\ .... 

To make the functions precise, we take the coefficients of cos nz and sin iiz 

in the respective Fourier series for cen {2, q) and sen ?) to be unity. The 
functions cen ?)> sen {z, q) will be called Mathieu functions of order n. 

Let us now construct ce^ (z, q). 

Since ce^ {z, 0) = 1, we see that X {27r)~^ as q 0. Accordingly we 

suppose that, for general values of q, the characteristic value of X which gives 
rise to ce^ (z, q) can be expanded in the form 

(27rX)”^ = l +ai5 4'a22®+ •••> 

and that ce^{z, 5) = 1 + q^i{z) + q^^z, 

where aj, ... are numerical constants and A(^)> ••• are periodic 
functions of z which are independent of q and which contain no constant 
term. 

On substituting in the integral equation, we find that 

(1 ^a^q+a^q^+ ...) {l^q^i{z) + q^^2{z) + 
1 f"* 

4-V(32^).cos-2cos^4-16^cos®^cos®...} 

Equating coefficients of successive powers of q in this result and making 
use of the fact that ^i{z)r ^2{z\ ... contain no constant term, we find in 
succession 

ofi = 4, {z) = 4 cos 2z, 

CKa = 14, ySg ('2') == 2 cos 4^, 
....> 

and we thus obtain the following expansion: 

oe^iz, 5) = 1 + (4q -28f + q‘- ...j cos 2^ + ^25’- ^ ...^cos4^ 

the terms not written down being 0 (j*) as 5 0. 
910 29 

The value of n is -32q^ + 224:q*—g«4.0(^8)j jt ^yill be obsoived 

that the coefficient of cos 2z in the series for cef,(z, q) is —aj(8q). 
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The Mathieii functions of higher order may be obtained in a similar 
manner from the same integral equation and from the integral equation of 
119*22 example 1. The consideration of the convergence of the series thus 
obtained is postponed to § 19*61. 

Example 1. Obtain the following espansions^: 

(i) ee^{z, j)=l+ ^2^ ^^ 

(ii) y)=coa.+^^ 1(7+1)171-(r+DKr+l): 

(iii) sei{z^q)—m\Z’^ 
■l {(■; 

2y 

{r 
2r + V^r+l 

+ >- f)f(r+2)\ ^ ‘="8 (2r +1) 

l(r+l)!r!^ (»•+1)! (r+1)! 

+ (r-l)T(r+2)!~^^^ 

(iv) 6^2 (^j f) = I ■“ ^ +0 (5^)| + cos 2z 

i f 
r=l b 

2r+iqr ^ 2^-Hr(47r^-f222r4-247)g^+^ 
+ 0 cos (2r+2) Zy 

V!(r+2)! 32.(r+2)!(r+3)! 

where, in each case, the constant implied in the symbol 0 depends on r but not on z. 
(Whittaker.) 

Example 2. Shew that the values of a associated with (i) ceofe (h) cei(Zy q), 
(iii) ««! (zy q), (iv) ce^ (2, q) are respectively: 

210.29 
(i) -32^2+224/-" 

8 
(ii) l-^Sq-Sq^ + Bf-^q*^0 (q^), 

(iii) l+8§^-8j2-853-|^+0(gS), 

(iv) 4+yg*—^9*+0(f). (Mathieu.) 

Example 3. Shew that, if n be an integer, 

c«2n+l(^ = “S^)- 

19*31. The integral formulae for the Mathieu functiom. 

Since all the Mathieu functions satisfy a homogeneous integral equation 
with a symmetrical nucleus (§ 19*22 example 3), it follows (§ 11*61) that 

/: 

'ir 

cem (z, q) ce„ (z, q)dz = 0 
-W 

(m ^ n), 

'w 

8eM(z,q)sen(z,q)dz = 0 
—w 

(jji ^ n). 

'w 

cemiz,q)sen(z,q)dz^O. 
—W 

* The leading terms of these series, as given in example 4 at the end of the diapter (p. 427), 

were obtained by Mathieu. 
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Example 1. Obtain expansions of the form: 

(i) /co,*co»«^ 
n=0 

(ii) cos {k sin z sin 6)= t. B„ce^ {z, q) ce„ (6, q), 
M=0 

OS 

(iii) sin (I- sin z sin tf)= 2 (^, j') *«„ {B, q), 

where kmt^(32q). 

Example 2. Obtain the expansion 

/***“*= i J„{z)e^'* 
1*=—00 

as a confluent form of exi>ansions (ii) and (iii) of example 1. 

19 4. The nature of the solution of MathietCs general equation ; Floquet 
theory^ 

We shall now discuss the nature of the solution of Mathieu’s equatioi 
when the parameter a is no longer restricted so as to give rise to peiiodu 
solutions; this is the case which is of importance in astronomical problems, tu 
distinguished from other physical applications of the theory. 

The method is applicable to any linear equation with periodic coefiScients 
which are one-valued functions of the independent variable; the nature ol 
the general solution of particular equations of this type has long been per¬ 
ceived by astronomers, by inference from the circumstances in which the 
equations Mise. These inferences have been confirmed by the following 
analytical investigation which was published in 1883 by Floquet*. 

l^t g {z\ h (z) be a fiindamental system of solutions of Mathieu’s equation 
(or, inde^, of any linear equation in which the coefficients have period 27r)- 
then. If F(z) be any other integi-al of such an equation, we must have 

F(z) = Ag(z)+Bh(z), 

where A and B are definite constants. 

Since g (z+2r-), k (z+ 2w) are obviously solutions of the equationf, they 

^ht^ty^^^ continuations of y (z) and h (z) by equatiora 

9(^ + 2v) = a^g(z) + a,h(z), k {z + 2ir) = Bi9 (z) + (z), 

where Uj, a,, Bi, A are definite constants; and then 

F{z + 27r) = (Aa, + Bff,) g (z) + (Aa, + BBz) h {z). 

JS a aolation of ^ - (l + cot«) u=0. 
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Cmsequently F(z + 27r)=^ kF {z\ where k is a constantly if A and B are 
chosen so that 

-4®! + BBi = kAy Aa^ 4- B^^ ^B* 

These equations will have a solution, other than J. = 5 = 0, if, and 
only if, 

Bi 1=0; 

«2 , iSg - * 

and if k be taken to be either root of this equation, the function F{z) can be 
constructed so as to be a solution of the differential equation such that 

F{z+2n)=^kF{z). 

Defining n by the equation k = and writing <f> (z) for e~^F{z\ we see 
that 

^ (2r + 2'7r) = ^27r)^<f) (z). 

Hence the differential equation has a particular solution of the form 
e^<f>(z)y where <l>(z) is a periodic function with period 

We have seen that in physical problems, the parameters involved in the 
differential equation have to be so chosen that * = 1 is a root of the quadratic, 
and a solution is periodic. In general, however, in astronomical problems, in 
which the parameters are given, * ^ 1 and there is no periodic solution. 

In the particular case of Mathieu’s general equation or HilFs equation, a 
fundamental system of solutions f is then since the 

equation is unaltered by writing for so that the complete solution of 
Mathieu's general equation is then 

u = {z) + (- z)y 

where Ci, Ca are arbitrary constants, and ya is a definite function of a and q. 

Example. Shew that the roots of the equation 

=0 

02 , 
are independent of the particular pair of solutions, g (z) and h (2), chosen. 

19*41. HiWs method of solution. 

Now that the general functional character of the solution of equations 
with periodic coefficients has been found by Floquet's theory, it might be 

expected that the determination of an explicit expression for the solutions of 
Mathieu s and HilFs equations would be a comparatively easy matter; this 
however is not the case. For example, in the particular case of Mathieu's 
general equation, a solution has to be obtained in the form 

The symbol k is used in this particular sense only in this section. It must not be confused 

with the constant of § 19*21, which was associated with the parameter q of Mathieu’s equation. 
t The ratio of these solutions is not even periodic; still less is it a constant. 
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where ^ {z) is periddic and is a function of the parameters a and q. Ti 
crux of the problem is to determine fi; when this is done, the determinatio 
of (z) presents comparatively little difficulty. 

The first successful method of attacking the problem was published b 
Hill in the memoir cited in § 19-12; since the method for Hill’s equation i 

no more difficult than for the special case of Mathieu’s general equation, w 
shall discuss the case of Hill’s equation, viz. 

where J {£) is an even function of z with period w*. Two cases are of interest 
the analysis being the same in each: 

(I) The astronomical case when z is real and, for real values of J (z 
can be expanded in the form 

J(z) = ^0 + 2^1 cos 2z + 202 cos4^ + 20^ cos + ... ; 

the coefficients 6^ are known constants and 2 0^ converges absolutely. 

(II) The case when ^ is a complex variable and J(z) is analytic in a 
strip of the plane (containing the real axis), whose sides are parallel to the 

real axis. The expansion of J(z) in the Fourier series ^o + 2 2 0^008 2nz 

is then valid (§ 9T1) throughout the interior of the strip, and, as before, 

2 0^ converges absolutely. 

Defining to be equal to 8^, we assume 

■« = 

as a solution of HjU’s equation. 

[In case (II) this is the solution analytic in the strip (§§ 10-2, 19-4); in case (I) it will 
have to be shewn ultimately (see the note at the end of § 19-42) that the values of 

which will be determined are such as to make J absolutely convergent, in order to 

justify the processes which we shall now cany out] 

On substitution in the equation, we find 

2 + f 8n^A( 2 = 0. 

Multiplying out the absolutely convergent series and equating coefficients 
of powers of to zero (§§ 9-6-9-632), we obtain the system of equations 

(ji,+ 2niyb„+ 2 8mbn-m — 0 (n = ..., -2,-1, 0,1, 2,...). 
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If we eliminate the coefficients determinantally (after dividing the 
typical equation by ^„-4n’ to secure convergence) we obtain* Hill’s deter- 
minantal equation: 

(lf4 + 4)*- •^0 -6i “^2 -4 -4 
4‘-<9o 4*-d„ 42-4 42-4 42-4 - 
-e. -4 —4 

2*-(?o 22-4 22-4 22-4 - 

-0, -Oi (»»2-4 -4 — ^2 
02-(?o 02-4 02-4 02-4 - 

— ^3 -Oi -4 (3>-2)2- 4 -4 
^-00 2^-00 22-4 22-4 22-4 - 

-6, -<’3 — 0s ■“4 1 1 0^
 

4*-<9o 4*-4 42-4 42-4 4*-4 ■■■ 

We write A {ifi) for the determinant, so the equation determining n is 

A {ip) = 0. 

19*42. The evaluation of HilVa determinant. 

We shall .now obtain an extremely simple expression for Hill’s deter¬ 
minant, namely 

A {ip) = A (0) - sin^ {^vip) cosec* {^v V^o). 

Adopting the notation of § 2*8, we write 

A {ip) — [-4,1^^], 

where A - (^i“ - 2”*)* - where , A 
■e^ 

m^n * 4m?-0, (m n). 

The determinant [j4n,,»] is only conditionaily convergent, since the product 
of the principal diagonal elements does not converge absolutely 2-81,2-7). 
We can, however, obtain an absolutely convergent determinant, by 
dividing the linear equations of § 19-41 by 0o-(ifi-2nf instead of dividing 
by ^i,-4n= We write this determinant Ai(t/i) in the form [5m,«], where 

B, _ 1 T> _ ~ (m ^ n). 

The absolute convergence of 2 0^ secures the convergence of the deter- 
nrsO 

minant [J5m,n]» except when p has such a value that the denominator of one 
of the expressions vanishes. 

♦ Since the coefficients are not all zero, we may obtain the infinite determinant as the 
eliminant of the system of linear equations by multiplying these equations by suitably chosen 
cofactors and adding up. 
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From the definition of an infinite determinant (§ 2-8) it follows that 

A (ifi) ^ Ai (ifM) lim II (00 — (ifi — 2n)* 

and so A (t/i) = - Aj (ifx) Om - V<9o) sin (t/t + s/do) 
sm“(^7rV^o) 

Now, if the determinant Ai(i/i) be written out in full, it is easy to see 
(i) that Ai (f/i) is an even periodic function of fi with period 2t, (ii) that A^ (i/t) 
is an analytic function (c£ g 2-81,3-34, 5-3) of/t (except at its obvious simple 
poles), which tends to unity as the real part of fi tends to ± oo . 

If now we choose the constant K so that the function D (/i), defined by 
the equation 

D (m)= Aj — K {cot + —cot i‘Jr(iix — i/$o)}, 

has no pole at the point fX‘=io/dot then, since Difi) is an even periodic 
function of ft, it follows that D (ji) has no pole at any of the points 

2m'±iV^o. 
where n is any integer. 

The function D(fi) is therefore a periodic function of ft (with period 2i) 
which has no poles, and which is obviously bounded as R(ft)-*-±oo. The 
conditions postulated in liouville’s theorem ^ 5-63) are satisfied, and so I)(fi) 
is a constant; making ft-*• + ao, we see that this constant is unity. 

Therefore 

and so 
Ai (ifi) = 1 + .S’ {cot Jtt (ift + ^/0„) - cot i w (tft - 

A (tu) = - (*M - V^o) sin ^TT (ift + \/g,) 
^ sin«(J-B-V^o) 

To determine £, put ft=0; then 

A (0) =11 + 2ir cot a IT V^o)- 

Hence, on subtraction, 

A(i^) = A(0)-4^^ii2!^ 
, sin*(i,rV^,)> 

wnicE IS the result stated 

4* 2jSr cot (^TT 6^q)o 

The roots of Hill’s determinantal equation are therefore the roots of the 
equation 

sin> (i =A (0). 8in> (^ w Vdo). 

When ft has thus been determined, the coefficients 6, can be determined 
m terms of J, and cofactors of A (t/t); and the solution of Hill’s differential 
equation is complete. 
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[In case (I) of § 19-41, the conreigence of 216. | follows from the rearrangement theorem 

of§S82; for 2«* I i, I is equal to I So 1^2 J O',*, o I-5-[ Co, o|, where (7,^, is the cofactor of 

in and 21 C*,o | is the determinant obtained by replacing the elements of the row 
through the origin by numbers whose moduli are bounded.] 

It was shewn by Hill that, for the purposes of his astronomical problem, a remarkably 
good approximation to the value of p could be obtained by considering only the three 
centitd rows and coliinms of Ms determinant. 

19-6. The Lindemann-StieUjes’ theory of Mathieu’s general equation. 

Up to the present, Mathieu’s equation has been treated as a linear 
diflferential equation with periodic coeflScients. Some extremely interesting 
properties of the equation have been obtained by Lindemann* by the sub¬ 
stitution f=cos’^, which transforms the equation into an equation with 
rational coefficients, namely 

4r(1 - r) ^ + 2 (1 - 2f) -b (a -16? -b 32qO u = 0. 

This equation, though it somewhat resembles the hypergcometric equation, is of higher 

type than the equations dealt with in Chapters xiv and xvi, inasmuch as it has two 

regular singularities at 0 and 1 and an irr^lar singularity at oo; whereas the three 

singularities of the hypeigeometric equation are all regular, while the equation for {z) 

has one irr^ular singularity and only one regular singularity. 

We shall now give a short account of Lindemann’s analysis, with some 
modifications due to Stieltjesf. 

19*61. Lindeniann^s form of Floqmt'8 theorem. 

Since Mathieu’s equation (in Lindemann’s form) has singularities at f = 0 

and ?= 1, the exponents at each being 0, J, there exist solutions of the form 

yoo “ 2 Uji f**, y©! ” 5^, 

= i a„' (1 - f)”. yn = (1 - i hf (1 - r)»; 
n^Q 

the first two series converge when | ?| < 1, the last two when 11 — f | < 1. 

When the f-plane is cut along the real axis from 1 to + oo and fi*om 
0 to — C30, the four functions defined by these series are one-valued in the 
cut plane; and so relations of the form 

yio cyoo fiyoii Vn — 7yoo *1" ^yoi 

will exist throughout the cut plane. 

Now suppose that f describes a closed circuit round the origin, so that the 
circuit crosses the cut from — oo to 0; the analytic continuation of y^, is 

• Math, Ann, xxii, (1883), p. 117. 

t Astr, NaeU, cix. (1884), cols. 145-152, 261-266. The analysis is very similar to that 
employed by Hermite in his lectures at the Eoole Polytechnique in 1872-1873 [Oeuvres, in. 
(Paris, 1912), pp. 118-122] in connexion with Lam4*s equation. See § 23*7. 
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a^oo —^yoi (since y©o is urnffected by the description of the circuit, but y 
changes sign) and the continuation of is - %oi ] so Ay^^ + Byu wil 
he unaffected by the description of the circuit if 

A (ayoo 4* ^yoi)^ + -S (7^00 + %oi)^ = A {ay^ — ^y^^ + B (73/00 %oi)*> 

ijB. if A + Byh = 0. 

Also Ayio® + j5yn* obviously has not a branch-point at and so, i 
Aa0 + ByB == 0, this function has no branch-points at 0 or 1, and, as it has n 
other possible singularities in the finite part of the plane, it must be a 

integral function of ?. 

The two expressions 

+ A^y^i-i^yn 

are consequently two solutions of Mathieu's equation whose product is a 

integral function of f. 

[This amounts to the fact (§ 19*4) that the product of ^ {z) an 
(— z) is a periodic integral function of z,'] 

19*52. The determination of the integral function associated with McUhieu 

general equation. 

The integral function F(z) = Ay^? + Byn^ just introduced, can be detei 
mined without difficulty; for, if 3/10 and yn are any solutions of 

their squares (and consequently any linear combination of their square* 
satisfy the equation* 

+ 3P (?) ^ + [P' (?) + 4(2 (?) + 2 {P (?))»] ^ 

+ 2[(2'(?) + 2P(?)Q(?)]y = 0; 

in the case under consideration, this result reduces to 

- ?) +1(1- 2?) 

+ (a -1 -163 + 323?) + I63P (?) = 0. 

Let the Maclaurin series for (S') be 2 CnS^; on substitution, we easil 

obtain the recurrence formula for the coefficients Cn, namely 

^n+iC»+2 = '^nCn+i 4* Cn, 
where 

Un 
(n 4-1) {{n + 1)® ~ a + 16o} n (n + 1) (2n +1) 

' 16?(2rt+1) ^ 32^(2n~l) ' 

* Appell, Comptes Rendm^ xci. (1880), pp. 211-214 ; cf. example 10, p. 298 mpra. 
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At first sight, it appears from the recurrence formula that c© and c% can 
be chosen arbitrarily, and the remaining coefficients Cg, c®, ... calculated in 
terms of them; but the third order equation has a singularity at f = 1, and 
the series thus obtained would have only unit radius of convergence. It is 
necessary to choose the value of the ratio Ci/c® so that the seri^ may con¬ 

verge for all values of 

The recurrence formula, when written in the form 

(CnICn+i) ** + Y- ^ N S 

suggests the consideration of the infinite continued fraction 

^ = lim + 
“!“••• «i -H^ 00 [ + • • • 4" 

The continued fraction on the right can be written* 

J5r (w, n + m)IK (n + 1, ^ + m). 

where K{%n + m) 1 J ^ > 

^+1 > I > ^71+2/^+1» 

0 , — u^\.% i 1 , 

I ... I I 

The limit of this, as m 00, is a convergent determinant of von Koch’s 

type (by the example of § 2-82); and since 

2 -^0 as n QO , 

it is easily seen that AT (w, 00 ) 1 as n 00 . 

Therefore, if 
Cn ^ tin K{n, 00) 

Cn+I ii (u + 1, 00 ) ’ 

then Cn satisfies the recurrence formula and, since Cn+i/Cn 0 as w 00, the 
resulting series for F (f) is an integral function. From the recurrence formula 
it is obvious that all the coefficients o» are finite, since they are finite when n 
is sufficiently large. The construction of the integral function F (f) has 

therefore been effected. 

19*53. The solution of Mathieus equation in terms of F{^). 

If Wi and W2 be two particular solutions of 

cl^tl ■yx / dtl f 

3p+P(O2f + «(f)»-0, 

thenf w^wi — = C exp | — 

• Sylvester, fUl. Mag. (4), v. (1853), p. 446 [Math. Papers, i. p. 609], 
t Abel, Journal fUr Math. ii. (1827), p. 22. Primes denote differentiations with regard to f. 
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where C is a definite constant. Taking Wi and iCj to be those two solutions ol 
Mathieu s general equation whose product is F(X), we have 

< <_ C 

Wi w* “{:*(!(O’ W, w, i’(0’ 

the latter following at once from the equation = F(^). 

Solving these equations for Wijwx and w^jwi, and then integ^rating, we at 
once get 

where '/j, yj are constants of integration; obviously no real generality is lost 
by taking Co =71-7, = 1. 

From the former result we have, for small values of | f |, 

= 1 + Ofi + J (ci + (7*) f + 0 (fi), 

while, in the notation of § 19’51, we have aija^^— \cb-^ Sg. 

Hence (7* = 16? - a - Cj. 

This equation determines C in terms of a, q and Cj, the value of Ci being 

^■(1, 00 ) 4- {u^K (0, 00 )}. 

ExanijAe 1. If the solutione of Mathieu’s equation be «*'“<*(+*), where i,(i\ ig 
periodic, shew that 

Kmmfle 2. Shew that the zeros of F{C) are aU simple, unless U=0. 

[If F{() could have a repeated zero, tri und w, would then have an essential singularity.] 

19-6. A second method of constructing the Mathieu function. 

So &r, It has been assumed that all the various series of § 19-3 involved 
in the expressions for ce^riz, q) and scjr (x, q) are convergent. It wiU now be 
s/ieim that cey(z, q) and scj^iz, q) are iniegral functions of z and thai the 
coefficienUxn their expansions as Fotcrier series are power series in q which 
converge absolutely when \q\is sujiciently small*. 

To obtain this result for the functions ce^{z, q); we shall shew how to 
determme a particular mtegral of the equation 

dHi 
^ + (a + 16qcos2z)u = ^jr(a, q)cosNz 

in eonvergence of the teriee which ocettr 

f Mathieu-s equation are 
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in the form of a Fourier series converging over the whole z-plane, where 
i|r (a, is a fiinction of the parameters a and g. The equation {a, 3) = 0 
then determines a relation between a and q which gives rise to a Mathien 
fiinction. The reader who is acquainted with the method of Frobenius^ as 
applied to the solution of linear differential equations in power series will 
recognise the resemblance of the following analysis to his work. 

Write a = -f where W is zero or a positive or negative integer. 

Mathieii’s equation becomes 

^ + N^u => — 8 (jp + 25 cos 2z) u. 

If p and q are neglected, a solution of this equation is a = cos Nz = 17^ (z), 
say. 

To obtain a closer approximation, write — 8 (p + 2} cos 2it) Z7, (z) as a sum 
of cosines, i.e. in the form 

- 8 cos (77— 2) z+p cos J7z + q cos (77+ 2) z} = Fj(z), say. 

Then^ instead of solving (j^), suppress the termsf in Fj (z) 

which involve cos iVi; i.e. consider the fiinction {z) whereJ 

Wi (z) « Fj (z) + Sp cos JV>. 

A particular integral of 

is 

“ “ ^ |l (1- if) cos 2) + X (1 +'^) (-3^+2) = I/; (z), say. 

Now express — 8 (p + 2^ cos 2z) Ui (z) as a sum of cosines; calling this 
sum Vs(z), choose cfg to be such a fiinction of p and q that F2(z) + GaCosW.s: 
contains no term in cmllz; and let Fg(^r) + Ogcos JVi = W^{z), 

Solve the equation ^+N^u^W,(z), 

and continue the process. Three sets of functions F^(z), W^i^) 
are thus obtained, such that Um i^) and Wm, (^) contain no term in cos Fz 
when m ^ 0, and 

"Wm (-^) = F^ (.gr) + cos Nz, F^^ (ir) = - 8 (p + 2} COS 2-^) {z), 

^^^ + N'U^(z)^W^(z\ 

where «,»is a function of p and 3 but not of z. 

* Journal filr MatK iixxvi. (1873), pp. 214-224. 

t The reason for this suppression is that the particular integral of ^+2Pu=:eoeNx 

contains non-periodic terms. 

t Unless N=l, in which case }Fi(z)ss:Fi(2} + S (p+g) oosr. 
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It follows that 

i i WM 
\ar j 

« 2 F^(ir)4-( 2 OtfAcQBNz 
m=l Vm=l / 

= -8(jp + 2gcos2^) 2 i7’^i(^)+f2 a^omNz. 
wssO \to»1 / 

QO 
Therefore, if Uiz)^ 2 (^r) be a uniformly convergent series of analytic 

functions throughout a two-dimensional region in the ^-plane, we have 
(§5*3) 

—-f (a -b IQq cos 2z) U(s) — ^(a, q)tmNz, 

where f{a, 3)= 2 an,. 

It is obvious that, if a be so chosen that (a, j) = 0, then U {z) reduces 
to ce^riz). 

A similar process can obviously be carried out for the functions se^f (z, q) 
by making use of sines of multiples of z. 

19*6L The cmmrgmce of the seruB defirdng Matkieu fwnjcZimz. 

We shall now examine the expansion of § 19*6 more closely, with a view to inv^tigating 
the convergence of the series involved. 

When 1, we may obviously write 

U^{z)— 2 *i8,,yCOs(W-2r)2+ 2 a«,rCOs(iV’+2?*);?, 
r=sl r*l 

the astorisk denoting that the first summation ceases at the greatest value of r for which 

Since {g+i(7.} W=fl»+1 cos Wx-8 {p-¥^ cos2z) U^{z)y 

it follows on equating coefficients of cos (W+ 2r) z on each side of the equationt that 

+ (^=1, 2, ...), 

These formulae hold universally with the following conventions +: 

w 2,...); (^>»), 

A is even and 

A is odd and r=J(W-~l). 

t When 3r=0 or 1 these equations must be modified by the suppression of all the coefficients 
Ai,#» 

5 The oonventiona (n) and (iii) dne to the fact that 008*=008(-*), oob2*=oo8(-8*). 
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The reader will easily obtain the following special formulae: 

(I) ai«=8p, (-^#1); ai=8{p+q), (N=l), 

^ n!(ir+n)!’ {n\)^ ^ {N^O). 

(Ill) a^r and are homogeneous polynomials of d^ree n in p and q, 

II 2 an,r^^rf 2 A*,r = ^r, 
«=r nssr 

wehave ylr(a,q)m.8p+8q(Ai^Bi) 

r(r+^r)A^^2{pAr+q (^r-i+^r+i)}..(A), 

r(r^jr) Br^^{pB,^q .(B), 

where Aq^B^^I and B^ is subject to conventions due to (ii) and (iii) above. 

Now write t4;^=: - {r (r + A") - ^ {r (r - iV') - 2jD}"-i. 

The result of eliminating Ji, A^^... A^^u ^r+u ••• the set of equations (A) is 

= ( — )»• W?1-wig...'MJrAr, 

where is the infinite determinant of von Koch’s type (§ 2*82) 

1 , 0 , 0 , ... . 
^r+2? I j '^r+2i ^ j ••• 

0 , ^r+Bi I » ^r+3> ••• 

The determinant converges absolutely (§ 2*82 example) if no denominator vanishes; 
and Ay-^l as r-*-co (cf. § 19*52). If p and q be given such values that Ao^^O, 
2p^r{r-\-JS^\ where r=l, 2, 3, ..., the series 

00 
2 (-)’*«;i«72'-'“^rA*Ao’"^COS (if+2r) 2 

r—1 
represents an integral function of z. 

In like manner BrB(^^{-“y Wi to^'.,.Wr JDr, where Dr is the finite determinant 

1 , 0 , , 

+ I > ^r + 2> ••• 

the last low being 0, 0, ... 0, 1 or 0, 0, ... 0, I + ^i(jv-i) according as 
N is even or odd. 

00 
The series 2 ^7* (z) is therefore 

»-o 
00 

COSiV2:4-Ao“'^ s (-y WiW2...WrArCOe {I^+2r) z 
rssl 

r<hN 
+i>o“"^ 2 { — y Wi Wr Dr COS (iV'- 2?*) Z, 

J'=l 

these series converging uniformly in any bounded domain of values of 2, so that term-by- 
term differentiations are permissible. 

Further, the condition ^ (a, 5')«0 is equivalent to 

i.e. jPAoDa-^q {Wi AjDq4*'i^iDi A^)«*= 0. 

If we multiply by 

r=l 1 r(,r+Jf)j ( >-(r-.V)J’ 
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the expre^on on the left becomes an int^ral function of both p and q, ^ (a, q\ say; the 
tOTM of ^ (a, q\ which are of lowest degree in p and q, are respectively p and ^ 

Now«pand 

in ascending powers of q (cf. § 7-31), the contour being a smaU circle in then-plane, with 

centre at tl^ oripn, and | j | being so amaU that «■ q) has only one zero inside the 

contour. Then it Mows, just as in § 7-31, that, for sufficiently smaU values of lol, 

we may expand I? as a power series in q commencing* with a term in and if I ] 

be sufficiently small and will not vanish, since both are equal to 1 when g=0. 

On sul^ituting for p in terms of q throughout the series for U(i), we see that the 

series involved in osjy (2^ are absolutely convergent when | j' | is sufficiently small. 

The senes involved in »ey q) may obviously bo investigated in a aimiUr manner. 

19*7. 7%^ Methodl of of pwi'ctfinMof'^, 

The meth^ of Hill and of Lindemann-Stieltjee are effective in determining u, but 

only ^r elaborate analysis. Such analysis is inevitable, as ^ is by no means a simple 

Motion of q; this may be seen by giving q an assigned real value and making a vary 

ftom - CO to + 00 ; then p alternates between real and oomplei values, the changes taking 

place when, with the Hill-Mathieu notation, A (0) sin>(iw ^a) passes through t^ valu« 

0 Md 1, the comphcated nature of this condition is due to the fact that A(0) is an 
elaborate expression involving both a and q. 

It is, however, possible to expressand 0 in terms of j and of a new parameter a, and 

the i^ts are very well adapted for purposes of numerical computation when | j | is smallt 

The mtroduction of the parameter o- is suggested by the series for ca, (a, q) and «t, (a, q\ 

gi\w in § 19-3 example 1; a consideration of these series leads us to investigate the 

potentiahti« of a solution of Mathieu’s general equation in theformy-«'“A(a) where 

«#> (a)=sin (a - (t) -h c»3 cos (3a - <r)+6, sin (3a - 0-) -b Og cos (5a - <r) -I- 65 sin (6a - o-)+, 
the parameter <r being rendered definite by the fact that no term in coh (a-<r) is to appear 

in « (a); the special functions asi (a, q), ee^ (a, q) are the cases of this solution in which 
CT IS 0 or Jir. 

OTbstituting this expression in Mathieu’s equation, the reader will have no difficulty 

in obtaining the following approximations, valid for § small values of o and real values 
of cr I 

p =4j’sin2o—123»8in2<r-122<8in4o-K>(}»), 

a "■l+8yoos2o-b(-ie-b8co8 4<r)}>-8j’w)8 2<r-b(»^^-88cos4ir)o*+0(o«), 
a,=3j* sin 2ir-b3j» sin 4<r+( - ajA sin 2o-t-9 sin e<r) 0 (j«), 

6j =j-(-y*eos 2<r-b(-^-).5 cos4<r) j»4 (-^^cos 2o-l-7cos 6<r) o<-K?(o*), 
Oi sin 2«r-b|f sin 4<r+0(y«), 

cos 2<r-K-3^+11 cos 4<r)y*+0(g»), 
“r-^s2‘8in2a-K?(5*), 6T=*jS+^j«cos2<r-bO(o«), 
ag = 0(j»), 

the constants involved in the various functions 0(q‘) depending on <r. 

modified, sinoe there is an additional term j on the right and 
the term does not appear. «•»*«* 

+ Whittaker, Proc. Edinburgh Math. Soe. xxxn. (1914), pp. 76-80. 

(1915)!^^ 436^“ ^ 

a afdTL'S?.” ® "^ed as fundamental in this analysis, instead of 



.9*7, 19*8] MATHIEU FUNCTIONS 425 

The domaios of values of q and <t for whicli these aerim converge have not yet been 

etermined^. 

If the solution thus obtained be called A (z, <r, q)^ thai A (z, cr, q) and A(z, -o-, form 
k fundamental system of solutions of Mathieu^s general equation if /a+O. 

JSmmple 1. Shew that, if C7=t x 0*5 and q=0*01, then 

a-1*124,841,4 0*046,993,5...; 

hew also that, if and ^=0*01, then 

1*321,169,3..., fA=ix0*l45,027,6.... 

jSknmpie 2. Obtain the equations 

^=4^ sin 2o—4qas, 

a—1+cos 2<r—- 8^6s, 

xpressing p, and a in finite terms as functions of cr, as and 

JSmmple 3. Obtain the recurrence formulae 

{-4»(>i+l)+8^ cos 2cr-8^53±8^i (271 + 1) («3~sin 2cr)}22,*^.i+8^(%^_i+z&^4.3)=0, 

rhere denotes or ^sn+i according as the upper or lower sign is 
aken. 

19*8, Tke as^mpMtc mlution of Mathieu^M equation. 

If in Mathieu’s equation 

+ ^a+^^® cos2z^k*s0 

Fe write h sin z=|, we get 

rhere if^sa+^i^. 

This equation has an irregular singularity at infinity. From its resemblance to BessePs 

quation, we are led to write v, and substitute 

V «1 + (ai/f) + (ot/fS) +.., 

I the resulting equation for v; we then find that 

lie general coefficient being given by the recurrence formula 

2i(r+l)ii,.^i={J-ir2+F+r(r+l)}+(2r-l)tPa,..i-(ra-2r+j)l:2a,_2. 

The two series 

e«r*(i+|‘+p+...). 

re formal solutions of Mathieu’s equation, reducing to the well-known asymptotic 
jlutions of Bessel’s equation (§ 17*5) when k^O. The complete formulae which connect 

lem with the solutions have not yet been published, though some steps 
iwards obtaining them have been made by Bougall, Proc. Edinburgh Math. Soc. xxxiv. 
L916), pp. 176-196. 

* It seems highly probable that, if | $ | is sufficiently small, the series converge for all real 
dues of 0*, and also for complex values of <r for which | /(o’) | is sufficiently small. It may be 
otieed that, when g is real, real and purely imaginary values of a correspond respectively 
» real and purely imagiiiary values of fi. 
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Miscellaneous Examples. 

I. Shew that, if jlb*^/(325), 

2ir(jeo (2, 5^)—c«o (0, q) j cm {k sin z sin 6) ce^ (^, g) dS, 

2. Shew that the even Mathieu functions satisfy the int^ral equation 

Q if) -rX ^ /o (<50S 2 + cos ^)} <7 {fi) d6, 

3. Shew that the equation 

(a22+<;)^^+2a«^+(X*c2*+m) 12=0 

(where a, c, X, m are constants) is satisfied by 

u=l^ V {s) ds 

taJeen round an appropriate contour, provided that v («) satisfies 

(<m»+c)-^^+2<m^^+(X>c«i+to) 1/ («)-0, 

which is the same as the equation for u. 

Derive the int^ral equations satisfied by the Mathieu functions as particular cases of 
this result. 

A complete bibliography is given by Humbert, Fonetions de Mathieu et fonctiom de Lavti 
(Paris, 1926). 
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Shew that, if powers of q above the fourth are neglected, then 

<3^1 (^> ?)=^^ cos Zz+<f‘ (J cos hz — cos Sz) 

(A 72? - f cos 52+1 cos 3z) 

+^ ^ (rity cos 92 ^ cos 72+J- cos 52+cos 82), 

^1 (^j j)=sin 2+sin Zz+q^ (J sin 52 + sin Zz) 

+2^ (tV siQ 72+J sin 52+J sin 82) 

+(ritF 92+^ sin 72+J sin 52 - ^ sin 82), 

€€2 9)=cos 22+(I cos 42 - 2) + J ^2 ^os 62 

+(iV cos 82+If cos 42+^) 

+ q^ {-sin cos IO2+1|§ cos 62). 

Shew that 
(Mathieu.) 

ce^(2, $')=cos 82+3^(— cos2+^cos52) 

+g2 (cos 2+^ cos 72)+2^ (-1 cos 2+^ cos 52+cos 92) + 0 (^), 

and that, in the case of this function 

a=9+4^2 - 8^ + 0 
(Mathieu.) 

6. Shew that, if y (2) be a Mathieu function, then a second solution of the corresponding 
differential equation is 

y W 

Shew that a second solution* of the equation for c«o (^t ?) is 

zc€q{z, q)-‘Aq^m2z^Zq^miAz- 

7. If y (2) be a solution of Mathieu’s general equation, shew that 

{y (2+2flr) +y (2 - 2w)} I y (2) 
is constant. 

8. Express the Mathieu fiinctions as series of Bessel functions in which the coefficients 
are multiples of the coefficients in the Fourier series for the Mathieu functions. 

[Substitute the Fourier series under the integral sign in the integral equations of 
§ 19*22.] 

9. Shew that the confluent form of the equations for ce^ (2, q) and (2, q% when the 
eccentricity of the fundamental ellipse tends to zero, is, in each case, the equation satisfied 
by Jn (ikcoaz). 

10. Obtain the parabolic cylinder functions of Chapter xvi as confluent forms of the 
Mathieu functions, by making the eccentricity of the fundamental ellipse tend to unity. 

11. Shew that (2, q) can be expanded in series of the form 

2 J„»cos*»”2 or 2 J?,nC08®^’^^2, 
msssO i«*=0 

according as n is even or odd; and that these series converge when j cos21 < 1. 

* This solution is called in^ (2, q); the second solutions of the equations satisfied by Mathieu 
functions have been investigated by Ince, Proc. Edinburgh Math, Soc, xxxm. (1915), pp. 2-15. 
See also § 19*2. 
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12. With the notation of example 11, shew that, if 

q)d6, 

then X,j is giYcn bj one or other of the series 

provided that these series conver^. 

13. Shew that the differential equation satisfied by the product of any two solution 
of BesseFs equation for functions of order n is 

(3+1) 

where 3 denotes z ^. 

Shew that one solution of this equation is an int^ral function of z\ and thence, by th« 
methods of §§ 19*5-19*53, obtain the Bessel functions, discussing particularly the case ir 
which n is an integer. 

14. Shew that an approximate solution of the equation 

^~+(.d+sinh® «) 14 *0 

is 14 * O' (cosech z)^ sin (k cosh +<), 

where G and c are constants of int^ration; it is to be assumed that h is large, A is not 
very large and z is not small. 



CHAPTER XX 

ELLIPTIC FUNCTIONS. GENERAL THEOREMS AND THE 
WEIEESTRASSIAN FUNCTIONS 

20'1. Botibly-periodic/unctiotis. 

A most important property of the circular functions sin.?, cos^r, tan?,... 
3 that, if f (?) denote any one of them, 

,nd hence /(^+ 2nw)=f(z), for all integer values of n. It is on account 
f this property that the circular functions are frequently described as 
imodic functions with period 27r. To distinguish them from the functions 

^hich will be discussed in this and the tvro following chapters, they are 
ailed singly-periodic functions. 

Let G)i, o>2 be any two numbers (real or complex) whose ratio^ is not purely 
ml. A function which satisfies the equations 

f{z + 2®i) =/(^), f{z+ -fiz\ 

or all values of z for which / {z) exists, is called a douhly-periodic function 

f Zt with periods 2€Oi, 2g)2. A doubly-periodic function which is analytic 
except at poles), and which has no singularities other than poles in the 
inite part of the plane, is called an elliptic function. 

[Note. What is now known as an elliptic integral^ occurs in the researches of Jakob 
iemoulli on the Elastica. Maclaunn, Fagnano, Legendre, and others considered such 
ategrals in connexion with the problem of rectifying an arc of an ellipse; the idea of 
inverting’ an elliptic integral (§ 21*7) to obtain an elliptic function is due to Abel, 
acobi and Gauss.] 

The periods 2mi, 2^2 play much the same part in the theory of elliptic 
unctions as is played by the single period in the case of the circular 
iinctions. 

Before actually constructing any elliptic functions, and, indeed, before 
istablishing the existence of such functions, it is convenient to prove some 
jeneral theorems (§§ 20*11--20’14) concerning properties common to all 

lliptic functions; this procedure, though not strictly logical, is convenient 

* If is real, the parallelograms defined in § 20*11 collapse, and the function reduces to 

singly-periodic function when wj/wj is rational; and when is irrational, it has been shewn 
y Jacobi, Journal fur Math. xni. (1835), pp. 55-56 [Ges. Werke, n. (1882), pp. 25-26] that the 
motion reduces to a constant. 

t A brief discussion of elliptic integrals will be found in §§ 22*7-22*741. 
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because a large number of the properties of particular elliptic functions can 
be obtained at once by an appeal to these theorems. 

Example. The diff^ntial coefficient of an elliptic ftmction is itself an elliptic 
mndaon. ^ 

20*11. Penod-paraUelograTiis. 

The study of elliptic functions is much facilitated by the geometrical 
r6pr6S6iitatioii affordcKi by th.6 Arg^iid diagrain. 

Suppose that in the plane of the variable z we mark the points 0, 2e>i, 
2®,, 2®, + 2ffls, and, generally, all the points whose complex coordinate are 
of the form ^rtKOi + 2na)a, where m and n are integers. 

Join in succession consecutive points of the set 0, 2®„ 2®, + 2®„ 2® 0 
and we ob^n a paraUelogram. If there is no point ® inside or on the’ 
boundary of this parallelogram (the vertices excepted) such that 

for all values ofz, this parallelogram is called &^ndamental period^rallelo- 
gram for an elliptic function with periods 2®i, 2®,. 

It is clear that the z-plane may be covered with a network of parallelo¬ 

grams equal to the fundamental period-parallelogram and similarly situated 
each of the pomts 2jn®, -f 2n®, being a vertex of four parallelograms. 

These parallelof^ms are called period-paralUlograms, or meshes; for aU 
values of the jwmts i:, a:-i- 2®„ ...z + 2mo), -f-2«®2,... manifestly occupy 
^irespondmg positions in the meshes; any pair of such points are said to 
^ wngruent to one another. The congruence of two points / is expressed 
by the notation z = z (mod. 2(»i, 2g)^). ^ 

Froin the fundamental property of elliptic functions, it follows that an 
elliptic function assumes the same value at every one of a set of congruent 

- 
integration it is not convenient to deal with the actual 

meshes if they have smgularities of the integrand on their boundaries; on 
^unt of the periodic properties of elliptic functions nothing is lost by 

king M a contour, not an actual mesh, but a parallelogram obtained 
by t^tmg a mesh (wthont mtalion) in such away that none of the poles 
^he mtepnnds .mnsdered are on the sides of the pa»UelogKn.. Such a 
^lelo^ ta called a cell. Obviously the values assumed by an elliptic 

function in a ceU are a mere repetition of its values in any ineah,^ ^ 

A set of poles (or zeros) of an elliptic function in any given cell is calied 



431 *11,20*12] ELLIPTIC FUNCTIONS 

20*12. Simple properties of elliptic functions. 

(I) The number of poles of an elliptic function in any cell is finite. 

For, if not, the poles would have a limit point, by the two-dimensional 
ilogue of § 2*21. This point is (§ 5*61) an essential singularity of the 
iction; and so, by definition, the function is not an elliptic function. 

(II) The number of zeros of an elliptic function in any cell is finite. 

For, if not, the reciprocal of the function would have an infinite number 
poles in the cell, and would therefore have an essential singularity; and 
s point would be an essential singularity of the original function, which 
uld therefore not be an elliptic function. [This argument presupposes 
it the function is not identically zero.] 

(III) The sum of itie residues of an elliptic function, f{z), ai its poles in 
y cell is zero. 

Let G be the contour formed by the edges of the cell, and let the comers 
the cell be ^ + 2g)i, t + 2o)i + 2%, t + 2g)2. 

[Note. In future, the periods of an elliptic function will not be called 2<»i, 
ifferently; but that one will be called 2aii which makes the ratio have a positive 

igiThary part; and then, if C be described in the sense indicated by the order of the 
aers given above, the description of C is counter-clockwise. 

Throughout the chapter, we shall denote by the symbol G the contour formed by 
edges of a cell.] 

The sum of the residues of f{z) at its poles inside G is 
1 /• If ft+2b)i /•?+2w,+2«2 ft+2ta.2 ft ^ 

f(z)dz^~\ + + + [f(^)dz. 

In the second and third integrals write z + 2a)i, zrespectively for 
md the right-hand side becomes 

2^- + 2®.)} J ^ {/(^) -/(^ + 2®a)} dz, 

i each of these integrals vanishes in virtue of the periodic properties of 

f); and so j f{z) dz = 0, and the theorem is established. 

(IV) Liouvillds theorem*. An elliptic function, f{z), with no poles in a 

I is merely a constant. 

For if f{z) has no poles inside the cell, it is analytic (and consequently 
inded) inside and on the boundary of the cell (§ 3*61 corollary ii); that is 
say, there is a number K such that \f{z) [ < K when z is inside or on the 
indary of the cell. From the periodic properties of f{z) it follows that 

* This modification of the theorem of § 5*63 is the result on which Liouville based his 

ares on elliptic functions. 
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f{z) is analytic and \f(z) j < jK" for all values of z-, and so, by § 5-63, f(z) i 
a constant. 

It will be seen later that a very large number of theorems conceminj 
elliptic functions can be proved by the aid of this result. 

20*13. The order of an elliptic function. 

It will now be shewn that, if f{z) be an elliptic function and c be any 
c<m8tant, ihe number of roots of the eguatiwi 

f(z)^c 

which lie in any cell depends only on f(z), and not on c ; this number is 
called the order of the elliptic function, and is equal to the number of poles 
of f(z) in the cell 

By § 6 31, the difference between the number of zeros and the number 
of poles oif (z) — c which lie in the cell C is 

1 f f’(^) dz. 

Since /' (z + 2®i) =/' + 2®,) by dividing the contour into four 
parts, precisely, as in § 20*12 (III), we find that this integral is zero. 

Therefore the number of zeros of/(z)-c is equal to the number of 
poles oif{z)-c\ but any pole of/(z)-c is obviously a pole of /(z) and 
conversely; hence the iiumber of zeros of/(z)-c is equal to the number 
0 poles of y(z), which is independent of c; the required result is therefore 
established. 

[Note. In determining the order of an eUiptio function by counting the number of 

The order of an elliptic function is never less than 2; for an elliptic 
function of order 1 would have a single irreducible pole; and if this point 
actually were a pole (and not an ordinary point) the residue there wopld 
not be zero, which is contrary to the result of § 2012 (ITT) 

So far M singularities are concerned, the simplest elliptic functions are 
those of order 2. Such functions may be divided into two classes, (i) those 
which have a single irreducible double pole, at which the residue is zero in 

(ii) those which have twosimple poles at which, 
y g 2012 (III), the residues are numerically equal but opposite in sign. 

Functions belonging to these respective classes will be discussed in this 
chapter and in Chapter xxii under the names of Weierstrassian and 
J^obian elliptic functions respectively; and it will be shewn that any 
elliptic function is expressible in terms of functions of either of these 
types. 
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20'14. Relation between the zeros and poles of an elliptic functicm. 

We shall now shew that the sum of the affixes of a sei of irredvuMe 
zeros of an elliptic furuAion is congruent to the sum of ike affixes of a s^ of 
irreducible poles. 

For, with the notation previously employed, it follows, from § 6-3, that 
the difference between the sums in question is 

J_ f 
STiiJc f(^) 

dz^^.\ + 1 
rt+Ui+^H rt+s^ rt 

Jt J J ;-f2<t»jHh2403 J ^+2*03) f {f) 

=—1 
pf+2«i fjgf' 

(^) {z + 2®s)/' {z + 2®g)) 

2m J t l/W f{z + 2®,) j 
az 

1 
27ri 

1 
2ni 

_ J_ ff^f' (^) _ (^ + 
2wfJ< lf(z) f(s+2x0 

- 2®, J^log/(z)J'^*“‘ + 2®i[^log/(«)j‘'^**^|, 

on making use of the substitutions used in 120'12 (UUL) and of the periodic 
properties of f(z) and f'(z). 

Now f(z) has the same values at the points «+2®i, < + 2®, as at t, so 
the values of !og/(^) at these points can only differ from the value of Iog/(^) 

at i by integer multiples of 2wf, say - 2mri, 2mni; then we have 

1 « 

^JcTW ^ 

and so the sum of the afiSxes of the zeros minus the sum of the aflSxes of 
the poles is a period; and this is the result which had to be established. 

20*2, The construction of an elliptic functim. Definition of f (z). 

It was seen in §20*1 that elliptic functions may be expected to have 
some properties analogous to those of the circular functions. It is therefore 
natural to introduce elliptic functions into analysis by some definition 
analogous to one of the definitions which may be made the foundation 
of the theory of circular functions. 

One mode of developing the theory of the circular functions is to start 
00 

from the series^ S (z - ; calling this series (sin z)~*, it is possible 

to deduce all the known properties of sin^r; the method of doing so is briefly 
indicated in § 20*222. 
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The analogous method of founding the theory of elliptic ftinctions- is to 
define the function p (z) by the equation* 

a(z) = -+ 2' [ -- ^ _1 ) 
m, n ((■2^ ~ 2771<Bi — (2mei)i + 2no>3)‘j ’ 

■where ®i, a, satisfy the conditions laid down in §§ 20-1, 20-12 (III); the 
summation extends over alt integer values (positive, negative and zero) of 
m and n, simultaneous zero values of m and n excepted. 

For brevity, we write in place of d* 2n®2) so that 

S3(^) = z-»+ 2' [fy- 
m^n 

When m and n are such that |n„,„| is large, the general term of the 
series defining fj>(z) is 0 (| |->), and so (§3-4) the series converges 
absolutely and uniformly (with regard to z) except near its poles, namely 
the points 

Therefore (§ 5*3), ff {z) is analytic throughout the whole ^-plane except 
at the points where it has double poles. 

The intn^uction of this function p{z) is due to Weierstrassf; we now 
proceed to discuss properties of p(z), and in the course of the investigation 
it will appear that p(z} is an elliptic function with periods 2®i, 2®,. 

For purposes of numerical computation the series for p (z) is useless on account of the 

riowness of its convergence. Ehiptic functions free from this defect will be obtained in 
Cnapter xxi. 

Mcmmple. Piwe that 

M'21. Periodicity and other properties of p{z). 

Since the series for p (z) is a uniformly convergent series of analytic 
functions, term-by-term differentiation is legitimate (§ 5-3), and so 

The function p'(z) is an odd function, of z-, for, finm the definition of 
p' {z\ we at once get 

«>'(-^) = 2 2 (z+a^^)-K 

Throughout the chapter ^^will be written to denote a summation over all integer values 

of » and *, a prime being inserted (Z') when the term for which m=n=0 has to be omitted 

from the summation. It is also customary to write p' (s) for the derivate of p (z). The use of 
the prime in two senses will not cause confusion. ^ 

t Werhe, n. (1895), pp. 245-255. The subject-matter of the greater part of this chapter is 
due to Weierstrass, and is contained in his lectures, of which an account has been published hj 

Sdiwarz, Formeln und Lehniitze turn Gebrauche der elUptischen Funktionen, Nack VorlesuTigm 

Aufzeichnungm des Herm Prof. K. Weierstrass (Berhn, 1893). See also Cayley, Journal de 

Math, X. p^o), pp. 385-420 [Math. Papers, i. pp. 166-182], and Eiaenstein, Journal fUr Math. 
XXIV. (1847), pp. 137-184, 186-274. 
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But the set of points — is the same as the set and so the 
terms of are just the same as those of - but in a different 
order. But, the series for (z) being absolutely convergent (§ 3'4), the 
derangement of the terms does not affect its sum, and therefore 

(-z) = - p'(z). 

In like manner, the terms of the absolutely convergent series 

S {(« + 
m, n 

are the terms of the series 

s {(z — 
m, n 

in a different order, and hence 

ij^(-z) = ip{z); 

that is to say, f{z) is an even function of z. 

Further, (z + 2®,) = - 2 2 (z - ; 
m,n 

but the set of points „ - 2®i is the same as the set „, so the series 

for + is a derangement of the series for f'{z). The series being 
absolutely convergent, we have 

jp'(«+2®0 = p'(^); 

that is to say, ip' {z) has the period 2®i; in like manner it has the period 2ffl2. 

Since p'{z) is analytic except at its poles, it follows from this result that 
^ (z) is an elliptic function. 

If now we integrate the equation p' {z + 2<yi) = f'{z), we get 

p (z 4“ 2(»i) A, 

where A is constant. Putting ^ - ©i and using the fact that ip{z) is an 
even function, we get J. = 0, so that 

in like manner p{z — p {z). 

Since p{z) has no singularities but poles, it follows from these two results 
that p {z) is an elliptic function. 

There are other methods of introducing both the circular and elliptic functions into 
analysis ; for the circular functions the following may be noticed : 

(1) The geometrical definition in which sin is the ratio of the aide opposite the angle 
z to the hypotenuse in a right-angled triangle of which one angle is z. This is the definition 
given in elementary text-books on Trigonometry; from our point of view it has various 
disadvantages, some of which are stated in the Apj^iendix. 

(2) The definition by the power series 

i! + !i_ 
3! ^5! *"• 

81112 = 2 
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(3) The definition by the product 

8inr=r(l-J) .... 

(4) The definition by ‘inversion’ of an mtegral 
/dn# 

The periodicity properties may be obtained easily from (4) by taking suitable paths of 
int^;ration (cf. Forsyth, Theory of Frnictiom, (1918), § 104), but it is extremely difficult to 
prove that sinx defined in this way is an analytic function. 

The reader will see later (§§ 22*82, 22*1, 20*42, 20*22 and § 20*53 example 4) that 
elliptic functions may be defined by definitions analogous to each of these, with corre¬ 
sponding disadvantages in the cases of the first and fourth- 

ExmvpU. Deduce the periodicity of {z) directly from its definition as a double series. 
[It is not difficult to justify the necessary derangement.] 

20*22. The differential equation satisfied hy f {zf 

We shall now obtain an equation satisfied by f {z\ which will prove to 
be of great importance in the theory of the function. 

The function f {£) — which is equal to 2' {(z - -- fl, is 

analytic in a region of which the origin is an internal point, and it is an 
even function of z. Consequently, by Tayloris theorem, we have an expansion 
of the form 

|» (z) + 0 iz») 

valid for sufficiently small values of 12: |. It is easy to see that 

9,^60 X' ^, = 140 S' C-*,. 
*»»» m,» 

Thus fi,(z) = ir‘ + lg^2» + ^ff^z*+0(z>); 

differentiating this result, we have 

- 2r^ +1 J + 0 (^). 

Cubing and squaring these respectively, we get 

(«) = 4r-« -1 _ I + 0 (ar’). 

Hence - 4j»* (^) = - - y, + 0 (^), 
and so p'* {z) - 4p» (ar) + (z) +9^=0 (z»). 

That is to say, the function (z) - 4>p> (z) +g,p(z) +9,, which is 
obviously an elliptic function, is analytic at the origin, and consequently 
it is also analytic at all congruent points. But such points are the only 
possible singularities of the function, and so it is an elliptic function with 
no singulai-ities] it is therefore a constant (§ 20-12, IV). 

On making ar—>0, we see that this constant is zero. 
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Thus, finally, the function f(z) saiisjies the differential equation 

iff* (z) = 4,ff (z) -g,ip (z) - g„ 

where and g^ (called the invariants) are given by the equations 

.% = 6o r a-\, 5r, = i4o S' n-*,. 
m,n M,n 

Conversely, given the equation 

if numhers ©i, can he determined^ such that 

fir, = 60 S' a-%, fir, = 140 S' 

then the general solution of the differential equation is 

y = |?(±^ + a), 

where a is the constant of integration. This may be seen by taking a new 
dependent variable u defined by the equation*!' y = jp (u), when the differential 

equation reduces to = 1* 

Since jp{z) is an even function of z, we have y = p{z ±ol\ and so the 
solution of the equation can be written in the form 

y = p(^ + a) 
without loss of generality. 

Exam^. Deduce ffom the differential equation that, if 

»s=l 

then C2»5r2/22.5, . 7, 3.5®, 

^29z _ g2^ gs^ gjgz 
^ 2^.5.7.11’ 25.3.53.13^2^.72.13’ ^^”"25.3.5®. 7.11 * 

20*221. The integral formula for p (z). 

Consider the equation 

(4if-g^t-g;)'‘^dt, 

determining z in terms of f; the path of integration may be any curve which 
does not pass through a zero of 4i® — — g^. 

On differentiation, we get 

and so f—jp(-^ + a), 

where a is a constant. 

* The difficult problem of establishing the existence of such numbers Wj and when and 
Pa are given is solved in § 21*73. 

t This equation in u always has solutions, by § 20*13. 
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Make ^—^oo; then z—>0, since the integral converges, and so a is a pole 
of the fhnction f>; i.e., a is of the form and so ^=g)(^ + nm,n)-i>(s). 

-00 

The result that the equation is equivalent to 

the equation f f («) is sometimes written in the fonn 

^=f 

20'222. An Uluttraiion from the theory of the ciradar functiom. 

The theorems obtained in §§ 20-2-20-221 may be illustrated by the corresponding 
results in the theory of the circular functions. Thus we may deduce the properties 

of the function cosec»* from the series^i ^ in the following manner: 

Denote the series by/(a); the series converges absolutely and uniformly* (with regard 
to z) except near the points mv at which it obviously has double poles. Except at these 
IJoints, /(z) is analytic. The effect of adding any multiple of ,r to z is to give a series 
whose terms are the same as those occurring in the original series; since the series 
convei^ absolutely, the sum of the series is imaffected, and so /(z) is a periodic fuiudum. 
of z with period it. 

Now ooiisider the behaviour of/(z) in the strip for which From 
the periodicity of /(z), the value of/(z) at any point in the plane is equal to its value at 
the corresponding point of the strip. In the strip/(z) has one singularity, namely z=0 ; 
and/(z) IS bounded as z-^oo in the strip, because the terms of the series for/(z) are 

small compared with the corresponding terms of the comparison series 2' m-\ 
ms=~« 

In a domain including the point f (z)-z-^ is analytic, and is an even function; 
and consequently there is a Maclaurin expansion 

valid when \z\<ir. It is easily seen that 

%i»=27r-2»i-2(2n+l) I 
m=i 

SO a2=69r~4 2 
m—1 

Hence, for small values of (z |, 

/(z)-z-*+J+t15z2+U(z«). 

Differentiating this result twice, and also squaring it, we have 

/''(z) = 6z-« + ^ + 0(z*), 

/2(z)=z-*+|z-* + H + 0(z*). 

It follows that /"(2)-6/2(z) + 4/(z)=0(zi‘). 

That is to say, the function/"(z)-6/* (z)+4/(z) is analytic at the origin and it is 
obvioimly penile. Since its only possible singularities are at the points »i,r, it follows 
trom the periodic property of the function that it is an integral function. 

* By comparison with the series S' m-2. 
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Furtlier, it is bounded as 2-5-oc in the strip ^R(z)^^7r^ since f{z) is bounded 

and so (z). Hence/" (z) - 6/^ (-?)+4/(2) is bounded in the strip, and therefore from 

its periodicity it is bounded everywhere. By Liouville's theorem (§ 5*63) it is therefore 

a constant. By making z-^0, we see that the constant is zero. Hence the function 

cosec® z satisfies the equation 

/'(.) =6/2 (z)-4/(4 

Multiplying by ^f' (z) and integrating, we get 

/'®(z) = 4/®(.) {f(z)^l}+c, 

where c is a constant, which is easily seen to be zero on making use of the power series 

for/' (z) and/(2). 

We thence deduce that 2z= | ^“ 1 (^ — I)-“idt, 
J 

when an appropriate path of integration is chosen. 

Example I. If (2) and primes denote differentiations with regard to shew that 

4^54-^3=1^H(y-«2)~“+(y-e3)”“}-|y(y-ei)-^(y-^)-‘(y-e3)~S 

where €1, e^, eg are the roots of the equation 4^3-^2^—^3 as 0. 

[We have 

= 4(y-ei)(y-«j) (y-ea). 

DifiFerentiating logarithmically and dividing by y, we have 

2 (y-e,)-h 
T—\ 

Differentiating again, we have 

yi yi 

3 

- 2 {p-er)-K 

Adding this equation multiplied by J to the square of the preceding equation, 

multiplied by 3^, we readily obtain the desired result. 

It should be noted that the left-hand side of the equation is half the Schwarzian 

derivative t of z with respect to y; and so 2 is the quotient of two solutions of the 
equation 

dh r 3 ® 33 \ 
^+{16 ‘'-gyn^(y-c,)-ijr=0.] 

Example 2. Obtain the ‘properties of homogeneity’ of the function {z); namely that 

where ^ (z denotes the function formed with periods 2<»i, 2o>3 and p(z-, ff^) 

denotes the function formed with invariants y2j .93 • 

[The former is a direct consequence of the definition of p (z) by a double series; the 

latter may then be derived from the double series defining the g invariants.] 

* The series for f" (z) may be compared with 2' 
m=~® 

t Cayley, Camb. Phil. Tram. xm. (1883), p. 6 [Math. Papers, xi. p. 148]. 
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IM'3. The addition-theorem for the function p{^). 

The function jp(z) possesses what is known as an addition-theorem; tha 
is to say, there exists a formula expressing ip(z+y) as an algebraic functioi 
of |>(x) and Jf>(y) for general values* of z and y. 

Consider the equations 

fp'(z) = Aip(z)-i-B, fp'(y) = Af(y)-i-B, 

which determine A and B in terms of z and y unless j? («) = |> (y), i.e. unless- 
z = ±y (mod. 2<Oi, 20)2). 

Now consider p' (?) - -dp (?) — B, 

qua function of ?. It has a triple pole at f = 0 and consequently it ha 
three, and only three, irreducible zeros, by § 20-13; the sum of these is ! 
period, by § 20-14, and as ?=z, ?=y are two zeros, the third irreducible zen 
must be congruent to -z—y. Hence - z — y is a zero of -Af){^-B 
and so 

fp'{-z- y) =Ap (- z-y) + 5. 

Eliminating A and B from this equation and the equations by which A 
and B were defined, we have 

!»'(«) 1 =0. 

f(y) fp'(y) 1 

|?(2H-y) -fp'{z + y) 1 

Since the derived functions occurring in this result can be expressec 
algebraically in terms of j>(z), p(y), J)(z + y) respectively (§ 20-22), this 
result really expresses jf>(z + y) algebraically in terms of p(z) and ^(y) 
It is therefore an addition-theorem. 

Other methods of obtaining the addition-theorem are indicated in § 20-311 
examples 1 and 2, and § 20-312. 

A symmetrical form of the addition-theorem may be notioed, namelj 
that, if « + u -1-14; = 0, then 

9<y) P'(«) 1 =0. 

p(v) 1 

p(w) p'(w) 1 

20-31. Another form of the addition-theorem. 

Retaining the notation of § 20-3, we see that the values of f, which makf 
p' (?) - A|) (?) — £ vanish, are congruent to one of the points z, y, --z — y. 

* It is, of coarse, unnecessary to consider the special cases when y, or or yis a period 
t The function ^ {«) -f? (y), qua function of r, has double poles at points congruent to 2=0 

and no other singularities; it therefore {§ 20-13) has only two irreducible zeros; and the point* 
congruent to z = =fcy therefore give aU the zeros of jp («) - (P (y). 
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Hence + vanishes when f is congraent to any of the 

points z, y, — And so 

4f® (f) - Ay (0 - (2A£ + flTs) P (?) “ (-B® + ^i) 

vanishes when |? (?) is equal to any one of f {z\ f {y\ fiz^k^ y). 

For general values of z and y, p (z), p (y) and piz + y) are unequal and 

so they are all the roots of the equation 

- (2AB + g^)Z^ {& +g,) = 0. 

Consequently, by the ordinary formula for the sum of the roots of a cubic 

equation, 

ip(^) + ^(y) + fp(^ + y)-=lA.\ 

and so = -P(^)-P(S')> 

on solving the equations by which A and B were defined. 

This result expresses p{z -¥y) explicitly in terms of functions of z and 

of y. 

20'311. The duplication formula for p (z). 

The forms of the addition-theorem which have been obtained are both 
nugatory when y=:z. But the result of § 20*31 is true, in the case of any 
given value of z^ for general values of y. Taking the limiting form of the 
result when y approaches z, we have 

From this equation, we see that, if 2z is not a period, we have 

= T lini \ 
-kp''(z) + 0(h’‘) 
-h^'{z) + 0(h^) 

■2fp(z), 

on applying Taylor’s theorem to ff{z + h), p' {z + h); and so 

P(2^) = i- 
fp' (^) 

2p(4 

unless 2z is a period. This result is called the duplication formula. 

Example 1. Prove that 

qua function of has no singularities at points congruent with ^=0, ±y\ and, by making 
use of Liouville’s theorem, deduce the addition-theorem. 
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Examj^ 2. Apply the proceas indicated in example I to the function 

PW 1 

P(y) r(y) 1 , 

1 -F(^+i/) 1 

and deduce the addition-theorem. 

Example 3. Shew that 

<> (^+y)+p (x-y)={gJ W -g> (y)}-5 [{2p (x) p (y)-Jpj} {g) {z)+p (y)} -y,]. 

[By tlie addition-theorem we have 

2+y)+f (z-y)=j I 1 /£M-£l^)r 
F(^)-F(y) 

'-PW-t>W+j W 

Replacing P(x; and p'> (y) by 4^^ (z) -ff^P (^)- ff, and 4p^Qf)-giP (2/)-gs respec- 
tively, and reducing, we obtain the required result.] 

Example 4. Shew, by Liouville’s theorem, that 

^W(^-a)P{z-h)}=^p{a-b){p'{z-a) + p'{z-h)}-p'{a-b){p{z-a)-p{z-h)}. 

(Trinity, 1905.) 
20*312. AhePs* meihx>d of proving the addition-theorem fm^ p {z). 

The following outline of a method of establishing the addition-theorem for ^{z) is 

instructive, though a completely rigorous proof would be long and tedious. 

Let the invariants of p{z) he g^, g^-, take rectangular axes OX, OF in a plane, and 
considw the intersections of the cubic curve 

with a variable line y^mx-{-n. 

If any point (xj, y{) be taken on the cubic, the equation in z 

has two solutions -fzi, -zj (§ 20T3) and all other solutions are congruent to these two. 

Since p (2)=4p (2) -p, p (2) -pa, we have p (2) =^1*; choose 21 to be the solution for 
which ^(2i) = -hyi, not-yi. 

A number z^ thus chosen will be called the parameter of {x^, y^) on the cubic. 

Now the abscissae x^, a;,, x^ of the intersections of the cubic with the variable line 
are the roots of 

4> —.92 ^—P's—-1-=0, 

4>{x)^4{x-x{){x-x^) (x-X3). 

The variation Sx,. in one of these abscissae due to the variation in position of the line 
consequent on small changes Sm, 8n in the coefficients ot, m is given by the equation 

<#>'(x^) 8xr+^8m+^8n = 0, 

whence 

(f}' (Xr) dx^=2 (mxr+n) (Xrdm + 8n), 

r=i mxr+n (a;^) ’ 

provided that Xj, jTg, .^3 are unequal, so that <p' (Xr)4^0. 

, 0,1 “• (1827), pp. 101-181; in. (18-28), pp. 160-190 [Oeuvres, i. (Christiama, 
1839), pp. 141-252]. 
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Kow, if we put x(xbm + dn)l<f> qua function of into partial fractions, the result is 

where 

2 Arl{X’-Xr\ 
r~l 

Ar^ lim X (xbm+bn) 
aj-^a-r 9 W 

lim {x—Xr)l4}(x) 

==^Xr (XrBm + dn)l<f/ (a?y), 

by Taylor’s theorem. 
3 3 

Putting ^=0, we get 2 dxy/y,.=0, Le. 2 
r=l r=l 

That is to say, the mm of the parameters of the points of intersection is a constant 
iTidependent of the position of the line. 

Vary the line so that all the points of intersection move off to infinity (no two points 
coinciding during this process), and it is evident that 214-2:2+23 is equal to the sum of the 
parameters when the line is the line at infinity; but when the line is at infinity, each 
parameter is a period of p (2) and therefore 21+22+23 is a period of g? (2). 

Hence the sum of the parameters of three colli near points on the cubic is congruent to 
;5ero. This result having been obtained, the determinantal form of the addition-theorem 

follows as in § 20-3. 

2032. The constants ei, 63. 

It will now be shewn that g? (o)i), g? (c^a), g? (where ©3 = — ©i — mg), are 

all unequal; and, if their values be ^g, 63, then ^i, eg, are the roots of the 

equation = 0. 

First consider g/(ci>i). Since f'{z) is an odd periodic function, we have 

g)' (oi) = -. gj' (- mi) == - p" (2mi - mi) = - p' (mi), 

and so p' {g>i) = 0. 

Similarly p' (mg) = p' (ms) = 0. 

Since f'{z) is an elliptic function whose only singularities are triple poles 

at points congruent to the origin, f'{z) has three, and only three (§20T3), 

irreducible zeros. Therefore the only zeros of p' {z) are points congruent to 

mi, mg, m3. 

Next consider p(2:) —61. This vanishes at mi and, since p'(mi)==0, it has 

a double zero at mj. Since ^{z) has only two irreducible poles, it follows 

from §20T3 that the only zeros of p(-2r)-6i are congruent to mj. In like 

maimer, the only zeros of f(z) — ^g, f{z) — e^ are double zeros at points con¬ 

gruent to mg, ms respectively. 

Hence ei + e^ + For if 61 = eg, then p (z) - ex has a zero at mg, which is 

a point nofe congruent to mj. 

Also, since p'^(i?)==4p*(2^)—^2p(z)—^3 and since g/(z) vanishes at mi, mg, 

ms, it follows that dp"* (z) - ^gp (z) - vanishes when p (^) = ^g or e^. 

That is to say, Ci, eg, 63 are the roots of the equation 
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From the well-known formulae connecting roots of equations with thei 
coeflScients, it follows that 

^ =* 0, 

^20$ + e^Si + €162 =* — 1^2; 

R^mmph 1. When and ^^3 are real and the discriminant gi - 27^3* is positive, she^ 
that ei, eg, eg are all real; choosing them so that ej > ea> eg, shew that 

«s= - j (S3+fftt- 4<*) - * cfe, 

SO that mi is real and ag a pure imaginary. 

Example 2. Shew that, in the circumstances of example 1, p (*) is real on the peri 
meter of the rectangle whose comers are 0, m*, «>j+<»3, tei. 

20-3a TAe addition of a half-period to the argument of p (z). 

From the form of the addition-theorem given in § 20*31, we have 

rw-rr^ U 4tp(r)-j»(a,0/’ 

0 {|>(x)-s,}. and so, since 

we have 

ie. 

on using the result 

rv-r«ii If , 

3 
2 er=0; 

*•=*1 

this formula expresses p (*+»j) in terms of pit). 

Example 1. Shew that 

p +{(«j - «,) («j _ 

shefSTt^* ^ ^*'^**^ co«*»Wned with the result of example 1, 

P (i«i-h*j)—ei + {(ei-«j) (ei-Ss)}^. 
(Math. Trip. 1913.) 

3. Shew that the value of F(*+«i)P'(*+»j)i»'(r-l-«3) is equal to 
the discnmmant of the equation 

[Differentiating the result of § 20*33, we have 

jy (r+«,)- -(«,-«,) («,_«,) {!>(*)-«,}-«; 
from this and analogous results, we have 

P (*) P P' (x+wj) p" (r+»s) 

=(ei-«»)*(«j-e3)»(^-«i)» P'*(*)^n {ii>(x) 

-16 

which is the discriminant in question.] 



BLUFTIC FUNCTIONS 445 50-33, 20-4] 

Example 4 Shew that, with appropriate interpretations of the radicals, 

p' (|®i) * — 2 {(«i — eg) («!—es)}!" {(«! — -f (ej—. 

(Math. Trip. 1913.) 

Example 5. Shew that, with appropriate interpretations of the radicals, 

{p (2*) - w (^) - «3}* + {p (2*) - «3}^ {P (2^) - e,}i 

+ {P (2«) - ei}* {P (2z) -ei}i=p {z) - p (2z). 

20*4. Quad-periodic fnmtions. The functim^ 

We shall next introduce the function ^{z) defined by the equation 

coupled with the condition lim —=0. 
ar-*.0 

Since the series for p (z) — z'^^ converges uniformly throughout any 

iomain from which the neighbourhoods of the pointsf are excluded, we 

may integrate term-by-term (§ 4*7) and get 

J 0 
dz 

Mid so 

= - - Cmf.} dz, 
m,nJo 

+ii;+hO ■ 
The reader will easily see that the general term of this series is 

0 (I I *) as I | j 

and hence (cf. § 20*2), f (^) is an analytic function of z over the whole ^r-plane 

Bxcept at simple poles (the residue at each pole being +1) at all the points 

of the set 

It is evident that 

I---L- 4. -„f _,-l 

and, since this series consists of the terms of the series for f (z\ deranged in 

the same way as in the corresponding series of § 20*21, we have, by § 2*52, 

that is to say, ^(z) is an odd function of z. 

* This function should not, of course, be confused with the Zeta-function of Biemann, 
liscuased in Chapter xin. 

t The symbol „ is used to denote all the points ^Ith the exception of the origin 
[cf.§20*2). 
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FoUowing up the anal(^ of § 20-222, we may compare C(z) with the function cot* 

defined by the serieij *-i+ S' +(»»«•)-»}, the equation l-cot*--cosec>* 
f»as - so * dz 

d 
corresponding to ^{(z)=^p (z). 

M'41. The quoM-periodicity of the function ^{z). 

The heading of § 20 4 was an anticipation of the result, which will now be 

proved, that f(ir) is not a doubly-periodic function of z] and the effect on 
?(*r) of increasing « by 2®i or by 2®, will be considered. It is evident from 
§ 20-12 (III) that f («) cannot be an elliptic function, in view of the fact that 
the residue of f (z) at every pole is + 1. 

If now we integrate the equation 

j»(*r + 2®,) = j?(2), 

r(^+2®,)=r(^) + 2,,„ 

where 21)1 is the constant introduced by integration; putting —©j, and 
taking account of the &ct that f (z) is an odd function, we have 

In Hke manner, f (z + 2®.) = ^(z) + 2%, 

Example 1. Prove by Liouville’s theorem that, if ir+y+*=0, then 

{f («)+f(y)+f (*)}>+f' (x)+C' (y)+f'(*)=o. 
(Frobeniue u. Stiekelberger, Journal fUr Math. Liixvin.) 

theorem. It is not a true addition-theorem since 
% Wj C {y}> ( (^) are not algebraic functions of f ((y), ((;^).] 

Example 2. Prove by Liouviile's tbeorem that 

2 1 g>(x) p^(x) ^ 1 p(ar) =C(z+y+z)-{(x)-C(2/)-{(e). 

1 P(y) P(y) 1 p(y) g)'(y) 
1 P(*) 1 g>(z) p'(*) 

Obtain a generalisation of this theorem involving n variables. 

(Math. Trip. 1894.) 
20-411. The relation, between i)i and 173. 

We shall now shew that 

’ll®* — i72®i = i iri. 

To obtain this result consider f(^) taken round the boundary of a 

cell. There is one pole of ?(^) inside the cell, the residue there being -h 1. 

Hence j ^(z)dz=2m. 
J c 
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Modifying the contour integral in the manner of § 20-12, we get 
ri+2mr 

27n:=J^ {^(s)-^(s + 2co,)}dz-J^ [t(^)-^(z+2o,^)}dz 

/^+2«1 ft+2to^ 

dt 4- 2^1 J dty 

and so = - 477j<Bi + ^yto^, 

which is the required result. 

20*42. The function a{z). 

We shall next introduce the function a (z), defined by the equation 

^logo-fy)=ffy) 

coupled with the condition lim {a- {z)lz] = 1. 

On account of the uniformity of convergence of the series for ffy), except 
near the poles of ffy), we may integrate the series term-by-term. Doing so, 
and taking the exponential of each side of the resulting equation, we get 

bhe constant 
stated. 

<t{z)^zW 
in,n (V 

+ 

of integration has been adjusted in accordance with the condition 

By the methods employed in §§ 20*2, 20*21, 20*4, the reader will easily 
3btain the following results: 

(I) The product for a (z) converges absolutely and uniformly in any 
bounded domain of values of z. 

(II) The function a- (^) is an odd integral function of z with simple zeros 
it all the points 

The function or (z) may be compared with the function sin z defined by 
ihe product 

(l ^/(W»r)l 
V mw/ ] 

he relation ^ log sin z = cot z corresponding to ^ log cr (z) = ^(z). 

20*421. The qttasi-periodicity of the function a {z). 

If we integrate the equation 

f -f + 2%, 

re get a {z 2ct)i) = (z), 

rhere c is the constant of integration; to determine c, we put ^ — coj, and 
hen 

cr (a»i). 
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Consequently c = - 

and 0“ 4- 2wi) * — 

In like manner 2m^ « - e^3(z+«t) ^ 

These results exhibit the behaviour of cr{z) when z is increased by s 
period of fiz). 

If, as in § 20*32, we write 0)3 = — % — ©>3, then three other Sigma-ftinctioni 
are defined by the equations 

(Tr (^) = e^'^cr {z + m^la- (or) (r = 1, 2, 3), 

The four Sigma-functions are analogous to the four Theta-functions dis¬ 
cussed in Chapter xxi (see § 21*9). 

Example 1. Shew that, if m and n are any integers, 

and deduce that is an integer multiple of 

Example 2. Shew that, if g=exp so that | ^) < 1, and if 

/’W-exp(g)rin 

then F{z) is an integral function with the same zeros as &(z) and also F(z)/<r(z) is a 
doubly-periodic function of z with periods 2®i, 2<tta. 

Example 3. Deduce fmm example 2, by using Liouville’s theorem, that 

Example 4. Obtain the reault of example 3 by expressing each factor on the right as 
a singly infinite product. 

20-5. Formulae expressing any elliptic function in terms of Weierstrassian 
functions until the same periods. 

There are various formulae analogous to the expression of any rational 
fraction as (I) a quotient of two sets of products of linear factors, (JI) a sum 
of pa^al fractions; of the first type there are two formulae involving Sigma- 
fiinctions and Weierstrassian elliptic functions respectively; of the second 
type there is a fomula involving derivates of Zeta-functions. These formulae 
will now be obtained. 

20-61. The expression of any elliptic function in terms of ^{z) and p'{z). 

Let/(r) be any elliptic function, and let ^(z) be the Weieratrassian 
elliptic function formed with the same periods 2a)„ 2<Bj. 

We first write 

/(^) = I [/W +/(- ^)] +1 [{/(r) -/(- z)} [p'iz)]-^] if iz). 
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The functions 

/(^) +/(- ^), {f{z) -/(- g)} {jp'(z)]-^ 

are both even functions, and they are obviously elliptic functions when f(z) is 
an elliptic function. 

The solution of the problem before us is therefore effected if we can 

empress any even elliptic function (f> {z), say, in terms of p {£). 

Let o be a zero of <f> (z) in any cell; then the point in the cell congruent 
to - a will also be a zero. The irreducible zeros of ^ (z) may therefore be 
arranged in two sets, say ai, a,, ... and certain points congruent to — Oj, 

Ct2, ... Ujj,. 

In like manner, the irreducible poles may be arrang’ed in two sets, say 

5i, bi, ... bn, and certain points congruent to —b,, —b„ ... — 6„. 

Consider now the function* 

_J_ n [P - P (”r)) 
4> (^) r=i (P (.z) - p (MJ ■ 

It is an elliptic function of z, and clearly it has no poles ; for the zeros of 
4>{z) are zeros f of the numerator of the product, and the zeros of the 
denominator of the product are poles f of <f> (z). Consequently by Liouville’s 
theorem it is a constant, A^, say. 

Therefore d> (z) = A, fl "P (“’•)]. 

that is to say, <f> (z) has been expressed as a rational function of |? (z). 

Carrying out this process with each of the functions 

/W +/(~ {/a) -/(- z)} {p' (z)}-\ 

we obtain the theorem that a7iy elliptic function f{z) can be eoepressed in terms 

of the Weierstrassian elliptic functions p (z) and p'(z) ivith the same periods, 

the expression being rational in p(z) and linear m p'{z), 

20 52. The expression of any elliptic function as a linear combination of 

Zetafunctions and their deHvates, 

Let f{z) be any elliptic function with periods 2®!, Let a set of 

irreducible poles oi f{z) be Oi, Og, ... and let the principal part (§5*61) 
of f{z) near the pole aje be 

_Ck,i ^ Cjc^. , 
z — ajc (z-ajef ■** (z-a^yk^ 

If any one of the points or is congruent to the origin, we omit the corresponding 
factor P(z) -p (a,.) or p (z) -p (6^). The zero (or pole) of the product and the zero (or pole) 
of ^ (z) at the origin are then of the same order of multiplicity. In this product, and in that of 
§ 20*53, factors corresponding to multiple zeros and poles have to be repeated the appropriate 
number of times. 

f Of tlie same order of multiplicity. 
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Then we can shew that 

f{z) = Ai jci, 1 f — at) — Ci,tt'{z - at) +... 

(Jj 
rhere is a constant, and {£) denotes 

Denoting the summation on the right by F{z), we see that 

(^ + 2<Wi) — I’(^) = 2 2i7iCjfci^ 

by § 20 41, since all the derivates of the -Zeta-functions are periodic. 
% 

residues of f{z) at all of its poles in a cell, 

and is consequently (§ 20'12) zero. 

Therefore F{z) has period 2o)j, and similarly it has period 2(»2; and so 
f{z) — F{z) is an elliptic function. 

Moreover F{z) has been so constructed that f{z) -F(z) has no poles at 
the points a,, a*, ... a„; and hence it has no poles in a certain cell It is 
consequently a constant, A^, by Liouville’s theorem. 

Thus the function f (z) can be expanded in the form 

,1 (Sf! f - “*)• 
This result is of importance in the problem of integrating an elliptic 

function f (z) when the principal part of its expansion at each of its poles is 
known; for we obviously have 

j /(•«) dz = AiZ+ log or (z - at) 

where (7 is a constant of integration. 

Example. Shew by the method of this article that 

and deduce that 

where 6^ is a constant of int^ratioii. 

20-53. The expression of any elliptic function as a quotient of Sigma- 
functions. 

Let f{z) be any elliptic function, with periods 2tOi and 2a)2, and let a set 

of irreducible zeros of f{z) be a,, a^, ... a„. Then (§ 20-14) we can choose a 
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set of poles 6i, ... in such that all poles of f(z) are congruent to one or 
other of them andf 

+ ..."i“ Uijj in * 

Consider now the function 

“ <t{z-Or) 

r=l cr (z-bry 

This product obviously has the same poles and zeros as f{z); also the 
effect of increasing z by 26)i is to multiply the function by 

n exp{2i7i(z-fl,)} _^ 
,.=1 exp {2i}i {z - i,)} 

The function therefore has period 2a>i (and in like manner it has period 
2«a2), and so the quotient 

/W+ n 
r=ia{z-br) 

is an elliptic function with no zeros or poles. By Liouville’s theorem, it must 

be a constant, As say. 

Thus the function/(^) can be expressed in the form 

r=ia-{Z — br) 

An elliptic function is consequently determinate (save for a multiplicative 
constant) when its periods and a set of irreducible zeros and poles are known. 

Example 1. Shew that 

trw P'W <rS(2)a^(y) * 

Examine 2. Deduce by differentuition, from example 1, that 

1 iv) 

and by further differentiation obtain the addition-theorem for p (2), 

Example 3. If 2 «,.= 2 6,., shew that 
r^l r-1 

2 ^ {(^r-h) <T{ar-h)... ar{ar-bn) 
r=i cr {ar- aj) <r {ap-a^) (ar- a„)~ 

the * denoting that the vanishing factor a (a^ — Op) is to be omitted. 

Example 4. Shew that 

P (^) - (^)/o-2 (z) (r = 1, 2, 3). 

[It is customary to de/ime {p (2) - to mean <r, (z)la- (z), not - o-, (z),'<r'(z).] 

Example 5. Establish, by example 1, the ‘ three-term equation,’ namely, 

tr (^+a) (T (^ - a) o- (6 -f- c) cr (6 - c) -h er (2; -I- 6) o- (2 - 6) 0- (c 4- a) (T (c - a) 

-fcr (z+c) (r (z — c) (r(u + b)<r (a—b)=0. 

t Multiple zeros or poles are, of course, to be reckoned according to their degree of multi¬ 

plicity; to determine i>i, 621 ••• ^n» choose 61, 62* ^n~i» be the set of poles in the cell in 
which ui, a2, ...a,jlie, and then choose congruent to in such a way that the required 
equation is satished. 
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[This result is due to Weierstrass; see p. 47 of the edition of his lectures by Schwarz.] 

The equation is characteristic of the Sigma-function ; it has been proved by Halpben 
Fonetiom Elliptiquet, i. (Paris, 1886), p. 187, that no function essentially different from the 
Sigma-function satisfies an equation of this type. See p. 461, example 38. 

20'54. The connexion between any two elliptic functions with the same 
periods. 

We shall now prove the important result that an algebraic relation exists 
between any two elliptic functions, f {z) and <f> (z), with the same periods. 

For, by § 20-51, we can express f{z) and ^ {z) as rational functions of the 
Weierstrassian functions ^ {z) and p' (z) with the same periods, so that 

f(z) = R, {p (z), p' {z)\, <f>(z) = B^ {p (z), p'(z)}, 

where iii and denote rational functions of two variables. 

Eliminating j? (zr) and p'(z) algebraically from these two equations and 

p'^ (z) = 4#)» (z) - (z) - g„, 

we obtain an algebraic relation connecting f(z) and d>{z)-, and the theorem 
is proved. 

A particular case of the proposition is that every elliptic function is con¬ 
nected with its derivate by an algebraic relation. 

If now we take the orders of the elliptic functions f{z) and 4>(z) to be m 
and n respectively, then, corresponding to any given value of f{z) there is 
(§ 20 lo) a set of m irreducible values of z, and consequently there are m 
values (in general distinct) of {z). So, corresponding to each value of/ there 
are m values of <f> and, similarly, to each value of <f> correspond n values of f. 

The relation between f(z) and <f> (z) is therefore (in general) of degree m 
in <f> and n 'm f. 

The relation may be of lower degree. Thus, \if{z) = p {z), of order 2, and 
^{z) = p‘(z), of order 4, the relation is f^=(j>. 

As an illustration of the general result take f(z) = p(z), of order 2, and 
^(^) =(?' («). of order 3. The relation should be of degree 2 in ^ and of 
degree 3 in /; this is, in feet, the case, for the relation is = ^f^ — gif—g,. 

Example. If «, le are three elUptic functions of their argument of the second order 
^th the same periods, shew that, in general, there exist two distinct relations which are 
Imear m each of tc, v, w, namely 

■iuvw+Bvw+Cipu+Buv+Eu+F v+Gw+ir =0, 
A'uvw+B'vw+C'wu -f Duv+E'u+F'v+0'v>+E'=Q 

where A, B,H' are constants. 

206. On. the integration of [a^x^^a^a? A- ^0^0?+ ^iX + a^~^. 

It will now be shewn that certain problems of integration, which are 
msolubla,by means of elementary functions only, can be solved by the intro¬ 
duction of the function p (z). 
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Let a^a:^ + + 4:030! + = f (x) be any quartic polynomial 
which has no repeated factors; and let its invariants* be 

^4 “ 4cti 03 ”h 3n2*j 

5-8 = cioChe^i + 20^0^03—ai— ajas’— 

Let ^ = f \f rt)} ^dt, where Xq is any root of the equation f(x) = 0; then, 

if the function |p (z) be constructed! with the invariants and g^, it is possible 

to express x as a rational function of p{z\ g^, g^)- 

[Note. The reason for assutning that/(^) has no repeated factors is that, when/(:i?) 
has a repeated factor, the integration can be effected with the aid of circular or logarithmic 
functions only. For the same reason, the case in which aQ=zai^0 need not be considered.] 

By Taylor s theorem, we have 

fit) = 4.18 (t - X3) + 6.18 (i - + 4.4i {t - X3Y + A3it- «„y, 

(since f{x^ == 0), where 

= (Xq, = a^x^ "t" cxj, 

^2= ^0^0^ 4- 2ai^o + CI2, 

= cL^Xf^ 4“ 4“ 3(Z2^o 4“ C&3. 

On writing {t - x^)-^ = t, {x - x^y^ = we have 

z^l {4il3T® 4-6J-aT® 4- 4j.1T4- Jo} 
I 

To remove the second term in the cubic involved, writej 

{<r - ^.la), ^ = .ls~' (s - i.la), 
and we get 

z = j (4<r‘ — (3^.8® — 41A1A3) cr — (2A1A3A3 — Ai’ — A^Ai)] ~ ^ do. 

The reader will verify, without difficulty, that 

3.12=-4J.1.I3 and 2A1A3A3 —Aj^ - A^As^ 

are respectively equal to ^3 and g3, the invariants of the original quartic, 
and so 

Now x==Xo + A3{s — 

and hence w=^Xo + if (*») {j> (a; g^, g,) - 

30 that X has been expressed as a rational function of p («; g.^, g^. 

* Burnside and Panton, Theory of Equations^ n. p. 113. 
t See § 21*73. 

X This substitution is legitimate since ^434=0; for the equation As=0 involves f{x) = 0 
having a;=a;o as a repeated root. 
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This formula for x is to be regarded as the integral equivalent of the 
relation 

JExamf^ 1. With the notation of this article, shew that 

Example 2. Shew that, if 
4{PW-2V/"W 

where a is any constant, not necessarily a zero of /(x), and/(x) is a quartic polynomial 
with no repeated factors, then 

^ M+i/' W (P W--5V/'' Wl+A/W/"' (a) 

the function p (z) being formed with the invariants of the quartic/(:r), 

(Weierstrass.) 

[This result was first published in 1865, in an Inaugural-dissertation at Berlin by 

Biermann, who ascribed it to Weierstrass, An alternative result, due to MordelL Messenger, 
XLiv. (1915), pp. 138-141, is that, if 

ydx —xdy 

J 0,1 •Jfiy:,y) ’ 

where/(z;, y) is a homogeneous quartic whose Hessian is h (x, y), then we may take 

^=ap'(z)„//+iP(z)f,+^A„ 

(.z)Jf~W{z)A~U„ 

where/and h stand for/(a, b) and h (a, b), and suffixes denote partial differentiations.] 

Example 3. Shew that, with the notation of example 2, 

/'(«) ,/"(«) 
2(x~a)Z 

and #>'(*)= - -f/■Cg\)4 f/(“) , /'(a)],^. 
\ix- ay 4.{x- afi ^ '' \(ir (x - ayj ' 

20‘7. The uniformisaMon* of cu^'ves of genus unity. 

The theorem of § 20‘6 may be stated somewhat differently thus : 

If the variables x and y are connected by an equation of the form 

y^ = a^a^ + 4aia)» + &a^a? + 403^ + a*, 

then they can be expressed as one-valued functions of a variable z by the 
equations 

^ + U' (^0) W (^) - A/" (^0)}- \ 

y = -i/'K)|>'(^) {p(^)-*/"(*o)}-=J ’ 
where f (x) = a„x* + 4aiic“ + Sa-jX^ + 4ci3a; + a^, x„ is any zero of f{x), and the 

function ip(z) is formed with the invariants of the quartic; and z is such that 

^=r{fit)}-idt. 
•f 

ti, employs the word uniform in the sense one-valued. To prevent confusion with 
e 1 ea o uni ormity as explained in Chapter iii, throughout the present work we have used the 

phrase one-valued function ’ as being preferable to ‘ uniform function.’ 
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It is obvious that y is a two-vaiuod function of x and ^2? is a four-valued 

function of y; and the fact, that x and y can be expressed as one-vctlued 

functions of the variable z, makes this variable z of considerable importance 

in the theory of algebraic equations of the type considered; ^ is called the 

miiformising variable of the equation 

y^ = 4}aiaf -j- Qa^x^ -j- 4iCi^x -j- , 

The reader who is acquainted with the theory of algebraic plane curv^ will be aware 

that they are classified according to their deficiency or gmus^^ a number whose geometrical 

significance is that it is the diffei-ence between the number of double points possessed 

by the curve and the maximum number of double points which can be possessed by a 
curve of the same degree as the given curve. 

Curves whose deficiency is zero are called unicursal curves. If/(^, = 0 is the equation 

of a unicursal curve, it is well known t that x and y can be expressed as rational functions 

^ parameter, Since rational functions are one-valued, this parameter is a uniformising 
variable for the curve in question. 

Next consider curves of genus unity; let f{x, y)=0 be such a emye; then it h^is 

been shewn by Clebschf that x and y can be expressed as rational functions of ^ and jj 

where rj^ is a polynomial in $ of degree three or four. Hence, by § 20*6, f and j; can be 

expressed as rational functions of p (z) and p' (z), (these functions being formed with 

suitable invariants), and so x and y can be expressed as one-valued (elliptic) functions of 

which is therefore a uniformising variable for the equation under consideration. 

When the genus of the algebraic curve f{x, y)=:0 is greater than unity, the imiformi- 

sation can be effected by means of what are known as automorpkic functions. Two classes 

of such functions of genus greater than unity have been constructed, the first by Weber, 

Gbtting&i* Nach. (1886), pp. 359-370, the other by Whittaker, Fhil. Trans, cxcii. (1898), 

pp. 1-32. The analogue of the period-parallelogram is known as the ‘fundamental polygon.’ 

In the case of Weber’s functions this polygon is ‘ multiply-connected,’ i.e. it consists of a 

region containing islands which have to be regarded as not belonging to it; whereas in 

the case of the second class of functions, the polygon is ‘ simply-connected,’ i.e. it contains 

no such islands. The latter class of functions may therefore be regarded as a more 

immediate generalisation of elliptic functions. Cf. Ford, Introduction to theory of Auto^ 

morphic Functions.^ Edinburgh Math. Traces, No. 6 (1915). 
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I. Shew that 

2. Prove that 

Miscellaneous Examples. 

P (*+y) - P (z-y)= - F (z) F (y) iP (z) - p (y)} 

P(z)-P(z+y+^)=2l 
^ 0^2F(z){j3(y)-j»M’ 

where, on the right-hand side, the subject of differentiation is sjmmetrical in z, y, and w 

3. (M.lb.Trip:i897.)' 

F"(z-y) F'Cy-Jz) F''(«'-z) =^^2 P"'{z-y) p"’li/-w) p'"(w-z) 

F i^-y) F (y-w) p'{w-z) p (z~y) p {y-w) p (_w-z) 
F (^~y) F (y-'w?) p {w—z) i i i 

(Trinity, 1898.) 

4- If y = gJ(z)-ei, y=J; 

shew that y is one of the values of 

(^"5 + -«Z) («l-Z3)}^ 

6. Prove that 
(Math. Trip. 1897.) 

^{P{^)-e}{p{y)-p (w)}* {p (y -pjc) _ e}i {p(y-ip)- «}!=o, 

where the sign of summation refers to the three arguments y, w, and e is any one of the 
roots 62, fig. 

6, Shew that 

7. Prove that 

F(z) I p(z)-pM I • 

(Math. Trip. 1896.) 

(Math. Trip. 1894.) 

P (2z) - p (0,.)={F (Z)}-’ (P (z) - p {p (z) - P (o.2+i»l)}». 

8. Shew that (Math. Trip. 1894.) 

pfn4. ,A p («■ - „)-jPWP W + iffiV+ff, {P (u) + & (V)} 
iP(^)-PM}‘^ ^ • 

(Trinity, 1908.) 

9 If g)(tt) have primitive periods 2o,„ 2o,s and/(u)=^{p (^)-p while p,(u) 
and/i (m) are similarly constructed with periods 2<»,/n and 2ai, prove that 

Pi 00 = P (“) + "i’ {P (u+2m<>,i/n) - p (2ot«i/7i)}, 
Wl=l 

fl-l 
n f(u+2mx»>iln) 

and -. 

n f(2mo:)iln) 
m~i 

(Math. Trip. 1914 ; the first of the formulae is due to Kiepert, 
Journal fur Math, Lxxvi. (1873), p. 39.) 
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10. If x=^{u+a), y=p(u-a), 

where a is constant, shew that the curve on which (x, y) lies is 

where c = g)(2a). 

11. Shew that (Burnside, XXI.) 

2f)"3 („) _ +^jS=27 {P («)+^3P. 

(Trinity, 1909.) 

12. If r=j {a^+Soii^+^)-idx, 

verify that x = , 
^ P{^)+c’ 

the elliptic function being formed with the roots —e,i(c+e) i(c-e). 

Tf Ka t + +1. + (Trinity, 1906.) 13. If m be any constant, prove that 

P(^)-P(y) ■ 
_ V r p>2 (3) dzdy 

2rjj {P(^)-er}{P(y)-er} ’ 
where the summation refers to the values 1, 2, 3 of r; and the integrals are indefinite. 

„ (Math. Trip. 1897.) 
14. Let i2(^)=^.r4+-B^ + ar2+i),r+^, 

and let fas^ (ar) be the function defined by the equation 

where the lower limit of the integral is arbitrary. Shew that 

P’(y)J 

f(a) 
\ . .A /-\ “T j —r"^—-r-;^-:-- . ‘ 

i>{x+y)-<f,{a} 4>(«+y)-<^(«) 4'(a-y)-4>(a) ,f, (a+y) - ^ (x) 

<t>'{a-y)-<t>’(x) 

^(a-y)-<p(x} • 

[Hermite, Proc. Math. .Congrets (Chicago, 1896), p. 105. This formula is an 

addition-formula which is satisfied by every elliptic function of order 2.] 

16. Shew that, when the change of variables 

, . ,, ^'=^/’7. 7'=W 
js applied to the equations 

>?’‘ + '?(l+Pl) + |3=0, 
;hey transform into the similar equations 

.'>+7'(l+Fr) + f»=0. 

Shew that the result of performing this change of variables thi*ee times in succession 

8 a return to the original variables f, 17; and hence prove that, if f and rj be denoted as 

unctions of u by U(u) and F(u) respectively, then 

rhere A is one-third of a period of the functions E{u) and F(u). 

Shew that E(ti) = ^-p(u-, g„ g^), 

^Bere i^2=2p+ip*, ^3= _i_|p3_^pa. 

(De Brun, Ofueraigt af K. Vet, Akad.^ Stockholm^ Liv.) 
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16. Shew that 

&{z\ „2<r(g-ffl>i)or(^+QJ2) 

(2) or (6)1) cr (0)2) <r (<i)i +0)2) ’ 

and 
^__6<r (2+g) (r(2-a)<r(2-hg) <r(2 —c) 

(2) or^ (a) o-^ (c) ’ 

F(c)=-(1^5-2)^. 
(Math. Trip. 1913.) 

(Math. Trip. 1895.) 

F(?)- 

where 

17. Prove that 

P(^-«)g>(^-6) = ^)(a-5){p(2--a) + p(2-6)-g)(a)-g)(6)} 

+F(a-«'){f(^-a)-f(^-i) + f(a)-f(6)} 

+F(«)FW- 
18. Shew that 

1 F'W+F'(«’)) s , w . X , w X w ^ 
2 IFW-FW FW-F(“’)J ~ ^^ ^~f 

(Math. Trip. 1910.) 
19. Shew that 

C i^l) +1 i%) + f («3) - f (^^1 + ^2 + %) 

r (%) {p w - p (t%)}+F (t^2) {p (%) - p (^^i)}+p' (W3) {p (^1) “ p (^)} * 
(Math. Trip. 1912.) 

20. Shew that 

1 PW Fc^) 

1 PCy) F(y) 

1 g?(2) FW 

Obtain the addition-theorem for the function p (2) from this result. 

21. Shew by induction, or otherwise, that 

1 P(^) FW.*.F”-^K^) 

1 P(^i) F(^i)..*P<"-^K^i) I 

<r (ar+y-fg) <r (07-y) or (y - 2) <r (g- ^) ^ 1 
cr^ (J7) <7^ (y) <r3 (2) ~ 2 

1 ! o f j (T (20 +zi + +^n) Ho-{z^-z^) 

^ ^ . 

I 1 PW FW.**F“-^J(^.) I 

where the product is taken for pairs of all integral values of X and fi from 0 to n, such 
that X < fi. 

(Frobenius u. Stickelberger*, Journal fur Math, lxxxiii. (1877), p. 179.) 

22. Express 
1 p{x) pHx) FW 

1 PCy) P2(y) F(y) 
1 Piz) p^z) p'(z) 

1 Pitc) p^u) FW 

as a fraction whose numerator and denominator are products of Sigma-functions. 

* See also Kiepert, Joumai/fir at/i. lxxvi. (1873), pp. 21-33; Hermite, Journal fHr Math 
Lxxxn. (1877), p. 346. 
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Deduce that if a=^^{x\ (u), where ;r+y+^+w=0, then 

(«2 — {(n — ^i) 0 — ^i) (y — ei) {d — ^i)}^ 

+ («3“-«i) {(a~^) 0“^) (y-«2) 

+ («i - «2) {(a - «3) O - ^s) (y “ ^3) - %)}^ = (ejj - <%) (63 - €1) («i - eg). 

(Math. Trip. 1911.) 
23. Shew that 

2f{2«)-4f(,0 = ^\ 

3C(Sn)-9C(?i)- p'H?i) 
F (^) ~ i^2 P (^0 -^'sP M 

24. Shew that 
(Math. Trip. 1905.) 

and prove that <r (7iu)l{<r (2^)}”-“ is a doubly-periodic function of u. 

25. Prove that 
(Math. Trip. 1912.) 

(Math. Trip. 1895.) 
26. Shew that, if Zi+Z2+Z3+Zi^0, then 

{2({Zr)r^Z {2CiZr)} {2p{Zr)H2P'{Zr), 

ihe summations being ta^en for r=l, 2, 3, 4. (Math. Trip. 1897.) 

27. Shew that every elliptic function of order n can be expressed as the quotient of 

iwo expressions of the form 

<hP (2+5)4'<^2P(2!+&) + ..•{z-^b\ 

vhere 5, oi, Ogj are constants. (Painlev4, Bxdletin de la Soc. Math, xxvn.) 

28. Taking «i>e2>e3, P(<o)=ei, P(«»')~«3» 

consider the values assumed by 

Ciu)^uC(a>')/<,' 

ts u passes along the perimeter of the rectangle whose corners are -o), o>, <» + ©', — <»+a>. 

(Math. Trip. 1914) 
29. Obtain an integral of the equation 

n the form 

7’here e is defined by the equation 

(62-3i7j)p(fl)=3 (63+^3). 

dso, obtain another integral in the form 

<7 (3 + <li) cr (2; 4* <3^2) f > / \ 
—^-- exp {- zf (a,) - 2f (oa)}, 

*ere «?(a0 + g?(«2)=6, F (.ai)+F (<hi)=0, 

nd neither 4*^2 nor aj Og is congruent to a period. (Math. Trip. 1912.) 
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a}. ProTe tbat 

^ ^l) O' + %) ^ +^3/ (2 + Z4) 

0* {2^ + i (Zl + ^2 + % + 24)} 

is a doublj-periodic function of 0, such that 

ff (z) {z+ai) (2f+ C.32) {z-f mi +4J2) 

= — 2or {| (% 4-^3 ” % *“ %)} O* {J (% + % — 32 ■"■2^4)} <r {J (3i +% “ % 

(Math. Trip. 1893.) 

31. If f{z) be a doublj-periodic function of the third order, with poles at 0=05, 3=02, 
3=03, and if ^ (3) be a doublj-periodic function of the second order with the same periods 
and poles at 2=0, 2=ft its value in the neighboui’hood of 3=a being 

^ (3)=-—--I-X1 (3-a)+X2 (3-0)24. 
01 

prove that 

{/" (o)-/" (/9)} -X {/' (a)+/' 03)} (ci)+{/(a) -/((3)} jsXXi+l^ (cj) (cs)) =0. 

(Math. Trip. 1894.) 

32. If \ (z) be an elliptic function with two poles aj, ag, and if 3j, ... be 
constants subject onlj to the condition 

3i -f- 32 -f- ... 4- 32,4 ** (% 4- ag), 

shew that the determinant whose rth row is 

Ij X (3i), X2 (2j.), ... X® (3i), Xi (34-), X (3i) X| (3i), X® (34-) Xi (3,-), ... X**-® (34-) Xj (3^) 

[where X| (3^) denotes the result of writing for z in the derivate of X (3)], vanishes 
identicallj. (Math. Trip. 1893.) 

33. Deduce from example 21 bj a limiting process, or otherwise prove, that 

21 ... (n-^l)l}^^{nu)/{a-{u)}^. f(z) f'(z) ...p(--i)(3) 

P"(z) P"'(3) ... gK-)(3) 

p-1) (z) pin) (^) ... p{2j»-3) (^) 

(Kiepert, Journal fWr Math. Lxxvi.) 

34. Shew that, provided certain conditions of inequalitj are satisfied, 

g‘(34“^) 
e "j 

o'(z)a-(g) 

where the summation applies to all positive integer values of m and n, and ^=exp 

(Math. Trip. 1895.) 
35. Assuming the formula 

o „ l-2g'a»cos—+?<» 
,r(8)=« ‘.^sm— n---1-4-, 

prove that 

OS] 2<ui \<»1/ n-l 1 “ <»1 
when 3 sati.shes the inequalities 

(Math. Trip. 1896.) 
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36. Shew that if 2^37 be any expr^lon of the form 2m®i + 2w»2 and if 

(|z3-)+f (fcr), 
then ^ is a root of the sextic 

and obtain all the roots of the sextic. (Triiiity 1898 ) 

37. Shew that 

where 

f{(^-a) (^-6)} -i<&= -llog+ i 
J 2 o-(4r + 2Q) 2 ®cr(24*Uo) 

1 1 

ep^{z)-p^zoy 
a^=a+3 ^ ^^=3^Szry ^3=0, p (.„)=- 1 

6 (a - 6) * 

(Dolbnia, Darhoti^ Bulletin (2), xix.) 

38.. Prove that every analytic function/(«) which satisfies the three-term equation 

a f/(3:-l-a)/(2-a)/(6+c)/(J_c)=0, 

for general values of a, b, e and z, is expressible as a finite combination of elementary 

functions, together with a Sigma-function (including a circular function or an algebraic 
function as degenerate cases). 

(Hermite, Fonctiom elUptiques, i. p. 187.) 

[Put 2;=a=6=c=0, and then/(0)=0; put 6==c, and then/(a-5)-(./(6_o)=o so 
that f is) is an odd function. ’ 

If F{z) is the logarithmic derivate of/(it), the result of differentiating the relation 
With respect to 6, and then putting 5=c, is 

f{jc+a)f(z-a)fm)f' (0) 
/(:2-pA)/(^4)/(a+J)/(a_6)=^(3+*)-^'’(3-6)+^'(o-6)-/’(a+6). 

DiflPerentiate with respect to 6, and put 6=0; then 

/(.+a)/(.-a){/'(0)p 

{/W/WF 

If / (0) were zero, F' {z) would be a constant and, by integration,/(2) would be of the 

form A exp {Bz'^ (7z^), and this is an odd function only in the trivial case when it is zero. 

If/'(0)^0, and we write F’ (0)= it is found that the coefficient of in the 
expansion of 

12/(^+a)/(z-a)/{/(2)}2 

is 6 (z)}2 - r (.), and the coefficient of aMn 12 {/(a)}’- (a) ^ (z)} is a linear function 

of ^(z). Hence (z) is a quadratic function of #(z); and when we multiply this 
function by (z) and integrate we find that 

{0' (z)}2=4 (z)Y+ UA (z)}2+ UB^ (z)+4e, 

where Ay B, C constants. If the cubic on the right has no repeated factors, then, by 
§ 20'6, ^ (z) = ^ iz+a) + Ay where a is* constant, and on integration 

/(z) = <r(« + a) exp{-iA:^-Kz^L)y 

where F and Z are constants ; since/(z) is an odd function a=Z'=0, and 

/(^)«or (z) exp {-^Az^-Z}. 

If the cubic has a repeated factor, the Sigma-function is to be replaced (cf. § 20-222) by 

the sine of a multiple of z, and if the cubic is a perfect cube the Sigma-fimctioii is to be 
replaced by a multiple of z.] 



CHAPTEE XXI 

THE THETA FUNCTIONS 

211. The definiMon of a Theta-function. 

When it is desired to obtain definite numerical results in problem 
involving Elliptic functions, the calculations are most simply performe* 
with the aid of certain auxiliary functions known as Theta-functions. These 
functions are of considerable intrinsic interest, apart fi:om their connexioi 
with Elliptic functions, and we shall now give an account of their funda 
mental properties. 

The Theta-fimetions were first systematically studied by Jacobi*, whe 
obtained their properties by purely algebraical methods; and his analysh 

was so complete that practically all the results contained in this chapter 
(with the exception of the discussion of the problem of inversion in §§ 21‘7 
et seq.) are to be found in his works. In accordance with the general scheme 
of this book, we shall not employ the methods of Jacobi, but the more 
powerful methods based on the use of Cauchy’s theorem. These methods 
were first employed in the theory of Elliptic and allied functions by Liouville 
in his lectures and have since been given in several treatises on Elliptic 
functions, the earliest of these works being that by Briot and Bouquet. 

[Note. The first function of the Theta-function type to appear in Analysis was the 

Partition Aneftwt of Euler, Introduetio in Ancdytm Infinitorum, r. 

(Lausanne, 1748), § 304; by means of the results given in § 21-3, it is easy to express 

Partition functions. Euler also obtained properties of products 

n (l±a;»), 
»=1 n-1 n=l 

The associated series 2 s oriH v u j i , 
n=o 'nto ^ f ^ previously occurred iu the 

posthumous work of Jakob Bernoulli, Ars Conjeetandi (1713), p. 55. 

EiUpticarum (Kdnigsberg, 1829), and Ge,. Werke. 

f The P^ition function and associated functions have been studied by Gauss, Comm Soc 
reg. >ci. Gottingenmi rec. i. (1811), pp. 7-12 IWerke, a. pp. 16-211 and Werk/n, nn i 

.pyoMpg »b.l to.™ „ |.W.b u. J”* '““"J 
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Theta-ftinctions also occur in Fourier’s La Thiorie Analytigue de la ChaZemr (Paris, 
1822), cf. p. 265 of Freeman’s translation (Cambridge, 1878). 

The th^ry of Theta-functions was developed from the theory of elliptic functions 

by Jacobi in his Fundamenta Nova Theoriae Fmictionum Ellipticarum (1829), reprinted 

in his Qet. llerie, i. pp. 49-239; the notation there employed is explained in § 21 •62. 

In his subsequent lectures, he introduced the functions discussed in this chapter; an 

account of these lectures (1838) is given by Borchai-dt in Jacobi’s Get. Werke, i. pp. 497-!538. 

The most important results contained in them seem to have been discovered in 1835 
cf. Kronecker, Sitzungeheriehte dtr Akad. zu Berlin (1891), pp. 653-659.] ’ 

Let T be a (constant) complex number whose imag^ary part is positive; 
and write q = e’*’’, so that | g | < 1. 

Consider the function ^{z, q), defined by the series 

n=—oo 
qva function of the variable z. 

If A be any positive constant, then, when | | ^.4, we have 

I I < I g 

n being a positive integer. 

Now d’Alembert’s ratio (§ 2-36) for the series 2 | gis | q |jn+igi4^ 
»a= —00 

which tends to zero as n oo. The series for (z, q) is therefore a series of 
analytic functions, uniformly convergent (§ 3*34) in any bounded domain of 
values of z, and so it is an integral function 5*3, 5*64). 

It is evident that 

S' (-S', g) = 1 + 2 S cos 2nz, 
»=i 

and that S-(^^ + 7r, q)=i^(z, q); 
CO 

Further ^{z-\- ttt, q)=^ ]£ ^^yiqn^q2n^2niz 
n— -00 

00 

— («.)n+lg(n+i)2g2(n+i)w 
7l=—00 

md so (^ + TTT, q) = — q~‘^ S (^, q). 

In consequence of these results, {z, q) is called a quasi doubly-periodic 

^urction of z. The effect of increasing zhy tt or ttt is the same as the eflFect 
)f multiplying S {z, q) by 1 or - accordingly 1 and - are 

lalled the multipliers or periodicity factors associated with the periods tt and 
rr respectively. 

21*11. The four types of Theta-functions. 

It is customary to write % {z, q) in place of ^ {z, q); the other three 
ypes of Theta-functions are then defined as follows: 
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The function {z, q) is defined by the equation 

(-S'! 2) = ^4+1’T, = 1 + 2 S g-"’ cos 2?!^^. 

Next, \ {z, q) is defined in terms of ^4(^, q) by the equation 

a, {z, g) = - 4- i g) 

= _i I (_)»g(»+4)°e(2"+i)«, 

[chap. XX 

and hence* {z, g) = 2 2 (-)”g(»+4)’sin(2n. +1) 
n=0 

(^, g) is defined by the equation 

2)=^i + 2) = ^ t 2^"'''^*’'cos(2n,+l)ir. 

Writing down the series at length, we have 

q)-2q^miz- 2g^sm 3^ + 2$^^sin 5.3^ — *.., 

%(z^ ?) = 2g^cos^ + 2g^cos3^+ 2q^cos 0-3: + ..., 

% (z, g) = 1 + 2^ cos 2z + 2q^ cos 4iZ + 2q^ cos 6^ +..., 

^4(^, g)=l -2gcos2-3^ + 2g^cos4ir —25^®cos 6^ + .... 

It is obvious that {z, q) is an odd function of z and that the other 

Theta-functions are even functions of z. 

The notation which has now been introduced is a modifiied form of 

that employed in the treatise of Tannery and Molk; the only difference 

between it and Jacobi’s notation is that %(z, q) is written where Jacobi 

would have written ^ (z, q). There are, unfortunately, several notations in 

use; a scheme, giving the connexions between them, will be found in § 21-9. 

For brevity, the parameter q will usually not be specified, so that {z\ ... 

will be written for % (z, y),.... When it is desired to exhibit the dependence 

of a Theta-function on the parameter r, it will be written ^ (z j t). Also 

^2(0), ^3(0), %{0) will be replaced by ^3, ^*3, X respectively; and V will 

denote the result of making ^ equal to zero in the derivate of 

Bmmple L Shew that 

2')*53(2^ q^)-$2(^y q*). 
Example %. Obtain the results 

-^1 (s)» -^2 (^+i*r)-(5^+Jir + ^Trr) = - (2;+J ^rr), 

h{z)= J«3(i+i„r)= ■9l(*+4n-), 

^3W= 54(3+4,-) = JF5,(3+4,rr), 

54(,)_-ii«i(*+4^r)= ti»,(3+4,r+4,rr)= 5, (3+4^), 
where 

exp fuBotion sMe to be interpreted to mean 
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3. Shew that the multipUers of the Theta-functions associated with the 
periods JT, wr are given by the scheme 

Si(z) Sz(z) Sziz) 
' -94 0) 

IT -1 - 1 1 1 

ITT N -N 

where 

Ea^ampU 4. If S («) be any one of the four Theta-functions and S' (z) its derivate with 
respect to z, shew that 

■9'(z+^r) S'(z) S'{z+wt) S'(z) 
S(,z+„) S(z)’ S(z+^r)-~^^+S^)- 

21*12. The zeros of the Theta-functions. 

From the quasi-periodic properties of the Theta-fonctions it is obvious 
that if ^ {z) be any one of them, and if z, be any zero of ^ (z), then 

Zq + mir 4- TITTT 

is also a zero of ^ (z), for all integral values of m and n. 

It will now be shewn that if 0 be a cell with comers t,t + -rr,t + ->r + -n-r, 
t + ITT, then ^ {z) has one and only one zero inside G. 

Since ^ {z) is analytic throughout the finite part of the z-plane, it foUows, 
from § 6*31, that the number of its zeros inside G is 

27m/c 

Treating the contour after the manner of § 20-12, we see that 

0 Sr(^) 
Juf 
2*tnJ ( 

dz 

2mJz |&(^) ^(z-f-7rT)J 27riJt i^(^) “¥(z+^}^ 

by § 21-11, example 4. Therefore 

c^(^) 
= 1, 

that is to say, S (z) has one simple zero only inside G ; this is the theorem 
stated. 
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Since one zero of (z) is obviously z=0, it follows that the ieros of 

^i(z), %(z), &,(2r), %(z) are the points congruent respectively to 0, iw, 

+ iiTT. The reader will observe that these four points form the 

comers of a parallelogram described counter-clockwise. 

21 ■2. The relations between the squares of the Theta-functions. 

It is evident that, if the Theta-functions be regarded as functions of a 
single variable z, this variable can be eliminated from the equations defining 
any pair of Theta-functions, the result being a relation* between the functions 
which might be expected, on general grounds, to be non-algebraic; there 
are, however, extremely simple relations connecting any three of the Theta- 
functions ; these relations will now be obtained. 

Each of the four functions V(4 X^{z) is analytic for aU 
values of and has periodicity factors 1, q-^e-*^ associated with the periods 
rcy TTT, and each has a double zero (and no other zeros) in any cell. 

From these considerations it is obvious that, if a, b, a' and b' are suitably 
chosen constants, each of the functions 

fflV(z) + f>V(z) a'V {z) + b'^,^ {z) 
'ii^Hz) ’ V(^) 

is a doubly-periodio function (with periods w, irr) having at most only a 
simple i»le in each cell. By § 20-13, such a function is merely a constant; 
and obviously we can adjust a, b, a!,b so as to make the constants, in each 
of the cases under consideration, equal to unity. 

There exist, therefore, relations of the form 

V {z) = aV (.z) h V (4 V {z) = a V {z) + 6'V (4 

To determine a, b, a!, V, give z the special values ^ m- and 0; since 

we have V = -aV, V = V = -aV. V = 6'V. 

Consequently, we have obtained the relations 

V (z) = V (js) V - V (z) V, V {z) V = (z) V - V {z) V. 

If we write + for z, we get the additional relations 

V {z) X* = V {z) V - V (,z) X‘, V {z) X‘ = V (z) V - V (z) V. 

By means of these results it is possible to express any Theta-function in 
terms of any other pair of Theta-functions. 

♦ The analogoug relation for the functions ainz and cos z is, of course, (8inz)5*+(coBz)2=rl. 
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Corollary, Writiag in the last relation, we have 

that IS to saj 

1%(1+^1-2+^?2*S4.^s.44.,^ )44.(1 2^9+...+ + 

21*21. The addition-formulae for the Thetafunctions. 

The results just obtained are particular cases of formulae containing two 

variables; these formulae are not addition-theorems in the strict sense, as 

they do not express Theta-functions of ^ + y algebraically in terms of Theta- 

functions of ^ and y, but all involve Theta-functions of as well as of 
z + y, z and y. 

To obtain one of these formulae, consider %(z + y)%(z — y) qua function 

of z. The periodicity factors of this function associated with the periods tt 
and TTT are 1 and , q-i ^-2g-~4iz^ 

But the function a^s (^) + i^) has the same periodicity feotors, and 

we can obviously choose the ratio aib so that the doubly-pemodicfunctioTi 

(^) + (z) 

has no poles at the zeros of ^^(z — y); it then has, at most, a single simple 

pole in any cell, namely the zero of ^3 {z -f- y) in that cell, and consequently 

(| 20*13) it is a constant, i.e. independent of z; and, as only the ratio a: 6 is 

so far fixed, we may choose a and b so that the constant is unity. 

We then have to determine a and h from the identity in z, 

aW {z) 4- iV {z) ^%{z + y) {z- y). 

To do this, put z in turn equal to 0 and ^ -b ^ '^'^3 and we get 

aV = V (y), iv +1 = ^3 (§ r + ^TTr + y^Sha (l-rr + lvT -y 
\2“ '2 

and SO a = V(y)/V, 6 = V(y)A,’. 

We have therefore obtained an addition-formula, namely 

+y) ^3 - y) V = V (y) V (a) + (y) (4 
The set of formulae, of which this is typical, will be found in examples 1 

and 2 at the end of this chapter. 

21*22. JacMa fuTidamental formulae*. 

Tho addition-fonuulae just obts.in6<i are particular cases of a set of identities first given 

by Jacobi, who obtained them by purely algebraical methods; each identity involves as 
many as four independent variables, w, x, y, z. 

Let vf, y, / be defined in terms of x, y, z by the set of equations 

-w+x-^y+z^ 

2x' *= w — x+y-^-z, 

2y = w-^x-^y+z, 

2/ =» w-^x-{-y — z, 

* Gez, Werke, i. p. 505. 
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The reader will easily verify that the eotmexion between w, a, y, z and vf, a-', y, is a 
reciprocal one*. ’ 

For brevity t, write [r] for («,) 5, {x) (y) 5^ (s) and [rj for 5, M) S, (V) (y) S, (*-). 

Consider [3], [1J, [2J, [3J, [4j qua fiinctions of z. The eflfect of increasing s by w or wr 
is to transform the functions in the first row of the following table into those in the second 
or third row respectively. 

' [3] [ir m [3J w 

(w) [3] -m -[ij w [3]' 

(wr) j W[3] -my 
_! 

^[3J my -my 
For brevity, N' has been written in place of 

Hence both -[IJ+pJ+[3J+[4]' and [3] have periodicity factors 1 and N, and so 

fiinction with, at most, a single simple pole in any cell, 
namely the zero of 53(r)in that cell o r r j , 

By § 20T3, this quotient is merely a constant, i.e. independent of s; and considerations 
of symmetry shew that it is also independent of w, x and y. 

We have thus obtained the result 

^[3]=-[ir+[2T+[3j+[4j, 

where A is independent of y, z; to determine A put u,=z;-y=z=0, and we get 

and so, by § 21*2 corollary, we see that -4 «=2. 

Therefore 2 [3]-[lJ+[2J+[3]'+[4]'.(i). 

“ wit to obtain another, increase .r, y, z (and therefore 
also w, a-, y,/) by iff; and we get > i 

2[4]=[1J-[2J+[3J + [4J.(ii). 

Increasing all the variables in (i) and (ii) by ^wr, we obtain the further results 

2[2]=[1]' + [2J+[3J-[4J .(iii), 

2[1]=[1I+[2J-[3]'+[4]' .(iv). 

obS\om r(ieTs3W33^Xi7bv1 (y)^.« which can be 
only those in whlV increasing w, x, y, z by suitable half-periods, but 

L formrj n7 t -P’ * ^ give rise 
to formulae not containmg quarter-periods on the right-hand side.] 

Example 1. Shew that 

W+[2]=[l] +[2J, [2]-hj;3]=[2J-i-[3]', [l]-(-[4]=:[l]'-f.[4]', [3]-t-[4]=[3]'-(-[4]', 

[1]+[3]=[2]' -p[4]', [2] + [4] = [1J+[3]'. 

t The idea of this abridged notation is to be traced in H T ™ 

owever. not to have been used before Kronecker. Journal far Math. on. (1887rpr260 277“’ 
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^+i'. '■+J' 

[3344]+[2211]=[4433J + [1122J, 
where [3344] means (w) 5, (a;) (y) St (z), et& 

Example 3. Shew that 

2 [1234]=[3412]'+[2143y - [1234y+[432iy. 

Example 4. Shew that 

■^1* (^) 4--^3“^ V (2^) («). 

21-3. J<mMs eaipressiom for the Theta-fanctvms as infinite prodiicts*. 

We shall now establish the result 
00 

5*4 {z) = (? n (1 — cos 2^ + 
«=i ^ 

(where G is independent of ^), and three similar formulae. 

Let f{z) = n (1 - 5«-i n (1 - ■ 

each of the two products converges absolutely and uniformly in any bounded 
domam of values of ir, by § 3-341, on account of the absolute convergence of 

ience/(s:) is analytic throughout the finite part of the ^-plane, 

and so it is an integral function. 

The zeros of f{z) are simple zeros at the points where 

-2.-1,0,1,2,...) 
..e. where Itz = (2» + 1) ttiV + 2m7n; so that fiz) and (z) have the same 

seros; consequently the quotient X{z)lf{z) has neither zeros nor poles in 
;he fimte part of the plane. 

Now, obviously f{z + w) =f{z); 
00 ^ 

ind f{z Jr rrr)= 11 n (1-«»•-> 

=/(«) (1 - e-^)/(l - q^) 
= -q-U-^f{z). 

Thai is to say f{z) and S-.(z) have the same periodicity factors (§ 2111 
xample 3). Therefore X{z)lf{z) is a doubly-periodic function with no 
eros or poles, and so (§ 20-12) it is a constant G, say; consequently 

00 

^4 (^) = (r rr (1 ~ cos 2z + 

[It will appear in § 21*42 that (5^ = fi (1 - q^).] 
«=i 

Write ^ + gTT for ^ in this result, and we get 

00 

^8 (ir) sz G n (1 4* cos 2^ 4* 
»=i '1 / 

* Of. Fundamenta Nova^ p. 146. 
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(■*) = ~ e"'&4 + \ ttt 

and so 

. 00 aa 

— --iqte^G IT (1 — 11 (1 — e^) 
n=l «=1 

1. . “ 
= 20q^ sin ^ H (1 — IT (1 - 

nssi jj.~][ 

S-j (^) = 2G‘5'lsin^^ 11 (1 — 2g^ cos 2^: + g^») 

^2 {^) = S-i + i TT^ 

== 2G'5'4 cos it (1 + 2}“ cos 2z + q*’'). 
TO=1 

Example. Shew that^ 

l^n (i-22»-i)|: +169£5 (i+52»)|* = |n 

(Jacobi.) 

21-4. JVte differential equation satisfied hy the Theta-functions. 

We may reg^ ^8(^^|t) as a function of two independent variables z 
and t; and it is permissible to differentiate the series for as(^jT) any 
number of times with regard to z or t, on account of the uniformity of 
convergence of the resulting series (§ 47 corollary); in particular 

--= - 4 ^ 1 ^ n> exp (n^TTZr + 2mx) 

_ 4 d'^z (z I r) 
Tri dr 

Consequently, the function {z | t) satisjies the partial differential equation 

The reader will readily prove that the other three Theta-functions also 
satisfy this equation. 

21'41. A relation between Theta-functions of zero argument. 

The remarkable result that 

V(0) = ^,(0)^,(0)^4(0) 

wiU now be establishedf. It is first necessary to obtain some formulae for 
differential coeflScients of all the Theta-functions. 

important proposition have been given, but none are simple. 

nroof oiven?”* ^ t^iough somewhat more difficult than the 

frtL tev/ “ Z preliminary formula given IE the text, see p. 490, example 21, 
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Since the resulting series converge uniformly, except neajr the zeros of 
the respective Theta-functions, we may differentiate the formulae for the 
logarithms of Theta-functions, obtainable from § 21-3, as many times as we 
please. 

Denoting differentiations with regard to z by primes, we thus get 

' “ ^ ^ ® 2iq^^ e-^ ] 

.*^1 1 4- ^ „ri l + 5*n-ie-^J ’ 

_«= 11 + 5®*'’ e"^ 1 + e-afej 
V(^)=V(^) 

+ ^a(^) 
(2i)=g'»» “ (2t)* e-a»* 

.ft=i (1 + ^ (1 4- q^-i e-^ 

Making we get 

X (0) = 0, X' (0) = -8X(0)i . 
»=1 (1 + 

In like manner, 

V(0)-0, V'(0).89,(0)_i^-J-^, 

■2ie ” 
izy * 

V(0) = o, V(0) = ^s(o) -1-8 2 

and, if we write a-j (z) = sinz.<f> (z), we get 

„=i(l4-3«*)“ 

^'(0) = 0, 4>"(0) = 8<l>(0) i 
»=i (!-?»»)»• 

If, however, we differentiate the equation (z) = sin ^^ (a) three times, 
we get 

V (0) = <f> (0), (0) = 3<f>" (0) - ^ (0). 

Therefore 

tnd 

^i^-24i ^ 1. 
V(0) 

V(0) V(Q) X'jO) 
-^X(P) ^ ^3(0) ^,(0) 

= 8r- i _i _i!n_„+ i 9^^ 1 
L «=1 (1 + n=l (1 + g“‘-T nil (1 - 

^sT-i g” + 2 —g" - i r ] 
L «=i(i + g")* «ri(i-g”)^ nil a-q^'Y}’ 

n combining the first two series and writing the third as the difference of 
(VO series. If we add corresponding terms of the first two series in the last 
ne, we get at once 

, ^V(o)^ v(o), v(o)_„ ^ r . X"(0) 
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Utilising the differential equations of § 21'4, this may be written 

1 d^/(0|T) 
^/(0|t) dr 

1 d^,(0!T) 1 d^,(0|T) 1 da-,(0|T) 
^*(0|t) dr ^.(Ojr) dr St4(0|T) dr ‘ 

Integrating with regard to t, we get 

V (0. q) - C% (0, q) % (0, q) % (0, q), 

where (7 is a constant (independent of q\ To determine G, make g-^0; since 

limq“iV = 2, limg’“iS-2 = 2, lima's=l, lim^4 = l, 
g-*K) q~^0 

we see that (7 = 1; and so 
S-/ = S-2^3^4> 

which is the result stated. 

21*42. The value of the constant G, 

From the result just obtained, we can at once deduce the value of the 
constant G which was introduced in § 21*3. 

For, by the formulae of that section, 

V = <^(0) = n (1 -g“)=, % = 2qiG ft (1 + o“)», 
n=l 71^1 

%==G 5(1 + ^4 = (? S (1 - 
«=i 

and so, by § 21*41, we have 

5 (i^q^^y = n (1 + q^y n (i + n (i - 
n=l »=1 n-1 

Now all the products converge absolutely, since \q\<l, and so the 
following rearrangements are permissible: 

I IT (1 - q^-^) n (1 -- A 5(1 + q^-^) n (1 + q^^ 
n^l ) (n=rl n=l ^ J 

= n (1 - 5^) n (1 + q^) 
n=l «=1 

= n(i-?»»), 
«=1 

the first step following from the consideration that all positive integers are 
comprised under the forms 2n — 1 and 2n, 

Hence the equation determining G is 

n (l-q^y^Q\ 
n=l 

and so (?= ± n (1 — q^), 
«=i 
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To determine the ambiguity in sign, we observe that is an analytic 

nnction of q (and consequently one-valued) throughout the domain | ? | < 1; 
,nd from the product for we see that G-^1 as q-*0. Hence the 
>lus sign must always be taken; and so we have established the result 

G= ii (1-?»•). 

Example!. Shew that 

Exampie 2. Shew that 

n~l 

Example 3. Shew that 

1+2 i n{(l-<?2n)(l4.^2»-l)2}^ 

21'43. Conmxion of the Sigma-fumtion with the Theta-fuTictiom. 

It has been seen (§ 20-421 example 3) that the function (r(z | wj, ®j), formed with 
le periods 2<»i, £0)2, is expressible in the form 

. « = “P (UO © i, {(1 -2?^COS ^ + (1 _ j^)-j , 

here 5’=exp (irt(id2/fi>i). 

If we compare this result with the product of § 21-4 for 5, {z | r), we see at once that 

-w-(g 15)- 
To express j/i in terms of Theta-functions, take logarithms and differentiate twice, 

that 

cosec^ (^\+rm ^ [myi 
<»i \2a>i/ \2a)i/ \2®i/ [_ ^ (*') l<^ (i^) j J * 

here and the function is that defined in § 21*41. 

Expanding in ascending powers of z and equating the terms independent of z in this 
suit, we get 

®i 3 \2®i/ V2®i/ (f> (0) * 

id so 
12(i>i 5,' • 

Consequently o (z | a>i, can be expressed in terms of Theta-functions by the 
miula 

lere v^^irzjoii. 

Example. Prove that 

_ , ’!ti\ 

21'6. The expression of elliptic functions hy means of Theta-functions. 

It has just been seen that Theta-functions are substantially equivalent 
Sigma-functions, and so, corresponding to the formulae of §§ 20-5-20-53, 

ere will exist expressions for elliptic functions in terms of Theta-fiinctions. 
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From the theoretical point of view, the formulae of ^ 20-5-20-53 are th 
more important on account of their symmetry in the periods, but in practia 
the Theta-function formulae have two advantages, (i) that Theta-functioni 
are more readily computed than Sigma-functions, (ii) that the Theta 
functions have a specially simple behaviour with respect to the real period 
which IS generally the significant period in applications of elliptic functioni 
in Applied Mathematics. 

Let /(z) be an elliptic function with periods 2a„ 2<»j,; let a fundamenta 
set of zercMi (oi, Oj,... a*) and poles (^i, ySj,... /S„) be chosen, so that 

2 (flr 
r=l 

as in § 20*53. 

Then, by the methods of § 20*53, the reader will at once verify that 

/(z) = A, K K, ^ 
r=i ( \ 2g}i a}jJ \ 

where J.3 is a constant; and if 
<»L 

iJir 

be the principal part of f{z) at its pole /S,, then, by the methods of § 20-o2, 

f{z) = A,+ i 
r=l 

where Ag is a constant. 
(m=i (m —1)! dz”' 

, fnrz — irB, 

This formula is important in connexion with the integration of elliptic 
functions. An example of an application of the formula to a dynamical 
problem will be found in § 22-741. 

Example. Shew that 

and deduce that 

w ^ 53 V 

/, 
{z) 

h^{z) 
dz 

hiz) 

21 51. Jacobis imaginary tram^formaticm-^ 

If ah elliptic function be constructed with periods 2<Bi, 2o)3, such that 

I (<Bg/o>i) > 0, 

it might be convenient to regard the periods as being 2a>j, — 2®,; for these 
numbers are periods and, if I (®,/® J > 0, then also / (- > 0. In the 

case of the elliptic functions which have been considered up to this point, 
the periods have appeared in a symmetrical manner and nothing is gained 
by this point of view. But in the case of the Theta-fiinctions, which are 
only quasi-peri<^ic, the behaviour of the function with respect to the real 
period w is quite different from its behaviour with respect to the complex 
period wr. Consequently, in view of the result of § 21-43, we may expect to 
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ibtaiii transfomiations of Theta-functions in which the period-ratios of the 
wo Theta-functions involved are respectively t and — 1/t. 

The transformations of the four Theta-functions were first obtained by 
lacobi*, who obtained them from the theory of elliptic functions j but Poisson■}• 
lad previously obtained a formula identical with one of the transformations 
,nd the other three transformations can be obtained from this one by ele- 
uentaiy algebra. .A direct proof of the transformations is due to Landsberg, 
rho used the methods of contour integrationj. The investigation of Jacobi’s 
ormulae, which we shall now give, is based on Liouville’s theorem; the precise 
ormula which we shall establish is 

rhere (— ir) ^ is to be interpreted by the convention | arg(~ ir) j < - 

For brevity, we shall write - 1 /r = r', q = exp {irir). 

The only zeros of % {z | t) and % (rz | t ) are simple zeros at the points 
t which 

z = mir -f nirr + ^tt + “7rT, rz-mfir + n'lrr tt4* ^TTr 

3spectively, where m, n, n take all integer values; taking — 

' = m, we see that the quotient 

an integral function with no zeros. 

Also ^lr (z+ ttt) exp ^ ^ 

hile ‘^(z-7r)-^^lr(z) — exp ^ x gr'-ig-^/r _ 

Consequently (z) is a doubly-periodic function with no zeros or poles; 
id so (§ 2012) i|r (z) must be a constant, A (independent of z). 

Ttus. A% I r) = exp {ir'z^jir) (zr' | t) ; 

id writing zzirr, ~tt +1ttt in turn for z^ we easily get 

(zIt)= exp {irz^jm) % (zr | r'), 

A% (z \r)= exp (irz^lir) % (zr' | r ), 

I t) = — i exp (ir'z^lTr) (zr' | t ). 

* Journal far Math. ni. (1828), pp. 403-404 [Ges. Werke, i. (1881), pp. 264-265]. 

t Mom, de I Acad, des Sci, vi. (1827), p. 692; the special case of the formula in which z=s0 

i been giyen earlier by Poisson, Journal de Vicole polytecimiquet xii. (cahier xix), (1823) 
120. 
t This method is indicated in example 17 of Chapter vi, p. 124. See Landsberg, Journal fur 
ith. CXI. (1893), pp. 234-253. 
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We still have to prove that 4 =(-»>)*; to do so, differentiate the Iasi 
equation and then put a? = 0; we get 

u4^i'(01 t) = - W (01 t). 

But V (01 t) = (01 t) (01 t) (01 t) 

and V(0|T) = ^,(0[T')^,(0jT')^*(0|T'); 
on dividing these results and substituting, we at once get A-^ = -W, and so 

J. = j- (_ 

To determine the ambiguity in sign, we observe that 

4^,(0iT)=&.(0|T'), 

both the Theta-functions being analytic functions of t when 7(t)>0; 
thus A is analytic and one-valued in the upper half r-plane. Since the 
Theta-functions are both positive when t is a pure imaginary, the j^ua sign 
inust then be taken. Hence, by the theory of analytic continuation, we 
always nave 

^ iT)i; 

this gives the transformation stated. 

It has thus been shewn that 

1 2 ffMr-htmiSz. 

Example 1. Shew that 

when rr'— -1. 

Example % Shew that 

Example 3, Shew that 

v(- ") »= 
2 

^t(0|r) 3,(01/) 
■SsfOIr) as(0|r') 

■^8 (01 ’•+1) ^2 (01 r) 
53(0|r+l) 54(0|r)‘ 

and shew that the plus sign should be taken. 

21*62. Lmden's type of tmmformaiion, 

A transformation of elliptic integrals (§ 22-7), which is of historical 
mterest, is due to Landen (§ 22-42); this transformation follows at once 
from a transformation connecting Theta-functions with parameters t and 2t 
namely ' 

(01 t) a-4 (01 t) 
^4(2^r|2T) ^4(0|2t) 

which we shall now prove. 

The ^ros of | t) (^r | t) are simple zeros at the points where 

^*(m + y7r-|-(«+|)^ and where ^ = mw-b (n-|-g wt, where m and a 
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take all integral values; these are the points where 2^ = mtr + (n + ^ tt . 2r 

which are the zeros of (2z \ 2t). Hence the quotient 

I t) ^4 (z I t) 
^4(2^|2t) 

has no zeros or poles. Moreover, associated with the periods w and wt it 
has multipliers 1 and (-= 1; it is therefore 
a doubly-periodic function, and is consequently (§ 20-12) a constant. The 
value of this constant may be obtained by putting z = 0 and we then have 
the result stated. 

If we write z+~vr for z, we get a corresponding result for the other 

Theta-fuuctions, namely 

(^|T)^a;a(Q|T)^,(0|T) 

S^i(2^|2r) ^4(0|2t) 

21*6. The differential equations satisfied hy quotients of Thetafunctions, 

From § 21*11 example 3, it is obvious that the function 

has periodicity fectors — 1, +1 associated with the periods tt, ttt respectively; 
and consequently its derivative 

fV {z) X {z) - V {z) % {z)\ - V {z) 

has the same periodicity factors. 

But it is easy to verify that (z) (z)/V (^) has periodicity factors - 1, 
+1; and consequently, if <f> (z) be defined as the quotient 

(z) ^4 (s) - V (^) (^)j - (z) ^3 (z)}, 

then <f, (z) is doubly-periodic with periods w and wt ; and the only possible 

poles of <f> (z) are simple poles at points congruent to i tt and g ■’r 1 ttt. 

Now consider ^(z + ^ vrj; fi-om the relations of § 21-11, namely 

a, (^z + l'irT'j^iq-ie-'^%(z), ^4 (^ + i-rr) = 

a-, (z -f i wr) = g - ie - “ ^3 (z), S-, (z -I-1 tttj = q - i e - 

we easily see that 

(z i wt) = {- V (^) (^) + S:/ (z) ^4 (z)} - {^3 (z) 5-3 (z)j. 

Hence <f>(z) is doubly-periodic with periods w and and, relative to 

)hese penods, the only possible poles of ^{z) are simple poles at points 

yongment to i tt. 
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Therefore (§2012), is a constant; and making z-^0, we see that 
the value of this constant is {^2^3} = 

We have therefore established the important result that 

writing S = % (z) and making use of the results of § 21-2, we see that 

(fy==w-pv)(v-?»v). 

This differential equation possesses the solution % {z)/% (z\ It is not 
difficult to see that the general solution is ± S-i + a)/^4 (z + a) where a 
is the constant of integration j since this quotient changes sign when a is 
increased by ir, the negative sign may be suppressed without affecting the 
generality of the solution. 

Example 1. Shew that 

Example 2. Shew that 
rfz 154(2;/ ^ »^(z) Bi{zy 

dz 154 (2)/ 
Q 2^_(f) ip) 

* ^4(^) 54(2)- 

21-61. The genesis of the Jacobian Elliptic function* sn u. 

The differential equation 

which was obtained in § 21*6, may be brought to a canonical form by a slight 
change of variable. ^ 

= y, z%^ = u; 

then, if it be written in place of the equation determining y in terms 
of is 

This differential equation has the particular solution 

+1, the right has multipUers - 1, +1 associated with 

’ “ therefore a doubly-periodic function with 
periods 2wV, wrV. In any cell, it has two simple poles at the points 

cong^ent to and wV + iwrV; and, on account of the nature of the 
quasi-^nodicity of y, the residues at these points are equal and opposite in 
sign, the zeros of the function are the points congruent to 0 and wV. 

* Ja.Mbi a^d other earl, writers used the notation ,m am in place of sn 
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It is customary to regard y as depending on k rather than on o; and to 
exhibit y aa a, function of u and k, we write 

y = sn (w, k), 

ir simply y = sn«. 

It 18 now evident that sn(«, i) is an elliptic function of the second 

' ^ ‘=a”ed the modulus-, if k’i = XI%, so that *» + )fc'»=i 

isually written 2Z, 2rX'. so that sn(., k) has 

From I 21-51 we see that 2^'= ^V(0 | r'), so that K' is the same 
unction of r' as K is of r, when tt' = -1. 

Example 1. Shew that 

^ jgW— _ Q 2Mf) h{z) 
dzS^{z) ^ it{z)’ 

Qd deduce that, if y=^ and u=z»^^, then 

Example 2. Shew that 

dz Si{z) ^ h {z) Si{z)’ 

id deduce that, ify=^ and u=z^3\ then 

Eaiamfie 3. Obtain the following results : 

liK\i 
=-®3=i-t-2j+25<+2j«+..., 

f^K\h „ 

K'=K‘it-^ log (l/j). 

[These results are convenient for calculating Ic, h, K, K' when q is given.] 

21-62 JM earli^ notation*. The Theta-function 0(«) and the 
'u-function H (u), ^ ' 

The presence of the fectors V* in the expression for sn(«, k) renders it 
metimes desirable to use the notation which Jacobi employed in the 

\ndamenta Nova, and subsequently discarded. The function which is of 
imary importance with this notation is @(«), defined by the equation 

0 (m) = ^-4 I t), 

that the periods associated with 0 (m) are IK and 2t.K''. 

This 18 the notation employed tbroaghout the Fundamenta Nova. 



480 THE TRANSCENDENTAL FUNCTIONS [cHAP. XX 

Th^ function ©(w + iT) then replaces %(e); and in place of ^i(^) 
have the function H (u) defined by the equation 

H («) = -(« + iK') = -1 r), 

and % (z) is replaced by H (w + K), 

The reader will have no difficulty in translating the analysis of this 
chapter into Jacobi’s earlier notation. 

Example 1. If & , shew that the singularities of are simple poles 

at the points congruent to iK' (mod 2A, 2t A'); and the residue at each singularity is 1. 

Examine 2. Shew that 

H' H {K) e (0) e {K). 

21‘7. The pi'oblem of Inversion. 

Up to the present, the Jacobian elliptic function sn(w, >fc) has been 
implicitly regarded as depending on the parameter q rather than on the 
modulus and it has been shewn that it satisfies the differential equation 

fd snttx^ 
i“dirj = (1 - sn'«) (1 - 8n“ u), 

= V (0, q)IX* (0, q). 

But, in those problems of Applied Mathematics in which elliptic functions 
occur, we have to deal with the solution of the differential equation 

in which the modulus k is given, and we have no a priori knowledge of the 
value of q ; amd, to prove the existence of an analytic function sn(M, k) 

which satisfies this equation, we have to shew that a number t exists* such 
that 

A* = V(0|r)/V(0|T). 

When this number t has been shewn to exist, the function sn(M, k) can 
be constructed as a quotient of Theta-functions, satisfying the differential 
equation aud possessing the properties of being doubly-periodic and analytic 
except at simple poles; and also 

lim sn (u, k)lu = 1. 

That is to say, we can invert the integral 

‘-f -'0 

dt 

so as to obtain the equation y = sn (w, k). 

th t* 1 * ^ W > 0, iuvolves the existence of a number q such 
!r 'i'*' alternatave procedure would be to discuss the differential equation directly, 
after the manner of Chapter x. ^ 
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The difficulty, of course, arises in shewing that the equation 

c = V(0|T)/V(0jT), 
(where c has been written for A’“), has a solution. 

When* 0<c<l, it is easy to shew that a solution exists. From the 
identity given in §21-2 corollary, it is evident that it is sufficient to prove 
the existence of a solution of the equation 

1-c = V(0|t)/V(0|t), 

which may be written 1 - c= IT (-— 
n=i VI + ■ 

Now, as q increases from 0 to 1, the product on the right is continuous 
and steadily decreases from 1 to 0; and so (§ 3-63) it passes through the 
value 1-c once and only once. Consequently a solution of the equation 
in T exists and the problem of inversion may be regarded as solved. 

21-7L The problem of inveraion for complex valuee of c. The modular funciiont 
f(j),g(r),h(T). 

The problem of inversion may be regarded as a problem of Integi-al Calculus, and it 

may be proved, by somewhat lengthy algebraical investigations involving a discussion of 

the behaviour of - i dt, when y hes on a ‘Eiemann surface,’ that the 

problem of inversion possesses a solution. For an exhaustive discussion of this aspect of 

the problem, the reader is referred to Hancock, Elliptic Functions, i. (New York, 1910). 

It is, however, more in accordance with the spirit of this work to prove by Cauchy’s 

method (§ 6-31) that the equation c=3j*(0|T)/3s«(0|r) has one root lying in a certain 

iomain of the r-plane and that (subject to certain limitations) this root is an analytic 

function of c, when c is r^arded as variable. It has been seen that the existence of this 

root yields the solution of the inversion problem, so that the existence of the Jacobian 

slMptic function with given modulus i will have been demonstrated. 

The method just indicated has the advantage of exhibiting the potentialities of what 

ire known as modular functions. The general theory of these functions (which are of 

preat importance in wnnexion with the Theories of Transformation of Elliptic Functions) 
las been considered in a treatise by Klein and Fricket. 

Let /(r) = 16ev<r n f r_^»V0fr) 

n g ^4*(0|r) 
■V(0|r)’ 

A(t)- -f(r)lg(r). 

Then, if rr'= -1, the functions just introduced possess the following properties : 

/(r-|-2)-/(r), y(r+2)-y(r), /(r)+y(r)=l, 

/(r+l)=^(r), /(r')=y(r), fl’(r')=/(r), 
y §§ 21 *2 corollary, 21*51 example 1. 

* This is the esse which is of practical importance. 

f F. Klein, Vorlesungen Uber die Theorte der elliptischen Modulfunktione^n (ausgearbeitet ond 
ervoUstandigt von B. Fricke). (Leipzig, 1890.) 
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It 18 ^ to see that as /(r)—+<d , the functions (t) and g (r) tend to 
^ty, umfoi^y with respect to R (r), when -1 < .fi (r) ^ 1; and the derivates of these two 
functions (with r^ard to r) tend uniformly to zero* in the same circumstances. 

21 "Til. Th» ‘prinaipal tolutwn offi^r)—c=0. 

It has been seen in § e-31 that, if/(r) is analytic inside and on any contour, 2>ri times 
the number of roots of the equation/(r)-c=0 inside the contour is equal to 

h dr, jf{T)'~-c dr 

taken round the contour in c^u^tion, 

shewn in the figure, it being supposed 
temporarily f that/(r)—c has no zero actually on the contour. 

The contour is constructed in the following Tnannar; 

FE is drawn parallel to the real axis, at a large distance fiom it. 

.dF is the inverse of with respect to the circle |r|-l. 

HU is the inverse of ED with respect to (r |=1, 2) being chosen so that Dl^AO. 

By elemen^ geometry, it foUows that, since U and i) are inverse points and 1 is its 
OTO inv^ the omsle on Dl as diameter passes through U; and so the arc CD of this 
circle IS the reflexion of the arc AB in the line R (r)=i. 

**** ^ reflexion of the right-hand half in the line 

0bslSThlM;7JZ “ powex eerie, in it being 

t The values of/(T) at point, on the contour are dieoureed in § 2K12. 
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It will now be shewn that, unless* 1 or c<0, the equation/(r)-c-0 has one,and 
only one, root inside the contour, provided that FE is sufficiently distant from the real 
axis. TMs root wiE be called the prindpcd root of tbe equatioD. 

To establish the existence of this root, consider f along 

various portions of tbe contour. 

and so 

Since / (r+2) =/(r), we have 

ifdje'^IJB-iy}/(T)-e 

Also, as r describes BC and EC, r'(=-l/r) describee E'E and ED respectively; 

=0, 
because g (r'+2)-y(r'), and consequently corresponding elements of the int^b cancel. 

Since /(r ± 1)« A (r), we have 

{/»«■ 

but, as / describes B'AB, r describes EE', and so the int^;ral round the complete contour 
reduces to 

\SB' {/(r)-c 
pyw I 1 

dr 
d^(T^) 

dr 

'f SB' {/(r)- 
. dm 

dr 

m) 
1 

dr 1 
o-« ~dr] 

dk{T) dm 
c.A(r)} dr ^g(T)-e dr 

Now as EE' moves off to infinityt, /(r)-c-..-c+0, ^(r)-c—1-c+O, and so the 
limit of tbe integral is 

— lim ^ d 
BE' l~C.A(r) dr {log h (r)} dr 

SB lim /. WE 1- 

J._ 
o.A(r) _ <^loggWj Or. 

But 1- c.>l(r)^l,/,(r)-^l,5r,(r)^l, ^^-0, and so the limit of the 

integral is 

/widr"»2iri. 
WE 

Now, if we choose EE' to be initially so far from tbe real axis that /(r) - c, 1 - c hlr) 
g{r)- e have no zeros when r is above EE', then the contour will pass over no'zeros’ 
of/W-c as EE' moves off to infinity and the radii of the arcs CD, EC, B'AB diminish 
to zero; and then the int^ral will not change as the contour is modified, and so the 
original contour integral will be 2«, and the number of zeros of /(r) - c inside the original 
contour will be precisely one. 

* It is shewn in § 21-712 that, if c>l or c<0, then/(r)-e has a zero on the contour, 
t It has been supposed temporarily that and c=^l. 
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ia-712. The values of the modtdar function f (r) on the contour coTmdered. 

We now have to discuss the point mentioned at the beginning of § 21*711, conceming 
the mtm of f{r)-c on the lines* joining ±1 to ±l + oo i and on the semicirclea of 
0^(71, (-l)U'J'O. 

As r goes from 1 to or from -1 to -l + ooi,/(T) goes from -co toO through 
te&l native values. So, if c is negative, we make an indentation in 3M and a corre-* 
sponding indentation in D'B'; and the integrals along the indentations cancel in virtue of 
the relation /(T+2)+/(r). 

As T describes the semicircle OBGl, r' goes from -1 + oo a to — 1, and/(r)(/)«1 ~/{r), 
and goes from 1 to + oo through real values; it would be possible to make indentations in 
BO and B'O' to avoid this difficulty, but we do not do so for the following reason: the 
effect of changing the sign of the imaginary part of the number c is to change the sign of the 
real part of r. Now, if 0 < jR (c) < 1 and 1(e) be small, this merely makes r cross OF by a 
short path; if ^(c) <0, r goes from BE to BE' (or vice verm) and the value of q alters 
only slightly; but if R (c) > 1, r goes from BG to B' and so ^ is not a one-valued function 
of c so far as circuits round c= +1 are concerned; to make q a one-valued function of c, 
we cut the c-plane from 4-1 to -f® ; and then for values of c in the cut plane, q is 

determined as a one-valued analytic fimction of c, say q (c), by the formula q 
where 

r(c) = f ^ 
2iri J f(r) — c dr 

dr, 
as may be seen from § 6*3, by using the method of § 5*22. 

If c desmbes a circuit not surrounding the point 1, ^ (c) is one-valued, but r (c) is 
one-valued only if, in addition, the circuit does not surround the point c*s0. 

21*^ The periods, regarded as functions of the modulus. 

Since (0, q) we see from § 21*712 that K is a one-valued analytic function of 
c(«F) when a cut from 1 to -f oo is made in the c-plane; but since -frA, we see 
^t JT' is not a one-valued function of c unless an additional cut is made from 0 to - oo; 
it will appear later (§ 22*32) that the cut from 1 to -f oo which was necessary so far as 
K is concerned is not necessary as regards K\ 

21-Ta The inversion-proUem asso<da^ Keierstrcmian dliptic furicticms. 

It wiU now be shewn that^ when invariants and g3 are given, such that ^2®4=27o3» it 
IS possible to construct the Weierstrassian elliptic function with these invariants; that is 
to say, we shaU shew that it upowibU to conttructi periodU 2®i, 2«»j tuck that the fundion 
p (r I fi»i, oaj) has invcuriants g^ and g^. 

The problem is solved if we can obtain a solution of the differential equation 

oftheform 3'=P(s|»x, »*). 

We proceed to effect the solution of the equation with the aid of Theta-functions. 

Let v—Az, where A is a constant to be determined presently. 

♦u * can be so chosen that f(r)-e has no zeros cither on EE' or on 
tne small circular arcs. 
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Bj the methods of § 21*6, it is easily seen that 

h' (v) h (v) - (i^) $2 (p) = - ^3 (y) h W 

and hence, using the results of § 21*2, we have 

J^ow let €if ^3 be the roots of the ec^iiation 4y®—^gy—^3si=s0, chosen in such an order 

that (ei — e2)/(et ~ is not^ a real number greater than unity or negative. 

In these circumstances the equation 

% ""^2 (01 t) 

possesses a solution (§ 21-712) such that l(r)>0; this equation determines the parameter 

r of the Theta-functions, which has, up till now, been at our disposal 

Choosing r in this manner, let A be next chosen so thatt 

eg. 
Then the function 

satisfies the equation 

(IT = 4(y-«i)(y-e2)(y-e3). 

The periods of y, qua function of are ttA, ml A ; calling these 2«ai, 2aj2 we have 

I(<B2/<»i) > 0. 

The function | ©i, tag) may be constructed with these periods, and it is easily 

seen that p(^)-i2|2_H^^^2(o | r) .&42(0| t)-^! is an elliptic function with no pole at 

the origin! J therefore a constant, (7, say. 

If 6^2, 6*3 be the invariants of we have 

4p (z) (z) - 6*3 = P (z) * 4 W - (7 - (2) - C - e,,} {#> (2) - <7 - e^}, 

and so, comparing coefficients of powers of ^ (2), we have 

0-12C, 6*2-y2“-12C2, 6*3=y3-^*2^+4C3. 

Hence (7-0, G,^g,; 

and so the function p(2\o>i, tag) with the required invariants has been constructed. 

21*8. The numerical computation of elliptic functions. 

The series proceeding in ascending powers of q are convenient for 
calculating Theta-functions generally, even when | q | is as large as 0*9. But 
it usually happens in practice that the modulus k is given and the calcuLation 

If > 1. then 0 < < 1; and if < 0, then 1 - ^ > 1, and €i-ek ei-ejg ei-ejg 

^3-^k I ^i-cyj 
The values 0, 1, 00 of (ej -e2)/(«i - e^) are excluded since /72®4=27^3«. 

t The sign attachetl to ^ is a matter of indifference, since we deal exclusively with even 
functions of v and z. 

t The terms in 2:“® cancel, and there is no term in because the function is even. 
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oi K, K' and g is necessary. It will be seen later (g 22-301, 22-32) that 

K, K' are expressible in terms of hypergeometiio functions, by the equations 

!; 1; 4-). ■; l; t.); 

but these series converge slowly except when 11: | and | iif ) respectively are 
qmte small; so that the series are never simultaneously suitable for numerical 
calculations. 

To obtain more convenient series for numerical work, we first calculate o 
as a root of the equation * = V(0, q). and then obtain K from the 

formula q) and K' from the formula 

K'= ir-^Klogt 0-1 q). 

The equation h=V (0, g)/V (0, g) 

is equivalent to* (O, g)/^, (0, g). 

Writing 2e = , (so that 0 < e < i when 0 < i < 1), we get 

^3 (0, q) + ^”4 (0, q) S-g (0, q^) * 

We have seen (§§ 21-71-21-712) that this equation in g^ possesses a 

solution which is an analytic function of e* when |€|<i; and so g will be 

expansible in a Maclaurin series in powers of e in this domainf. 

It remains to determine the coefficients in this expansion from the 
equation 

f- g-l-g‘ + 9“+-- 

u-i- . l + 2g^+2g“+...’ 
which may be written 

q — e + 2g^e — g® + 2g“e — g“ + ...; 

the re^er will easily verify by continually substituting e + 2(^e-o» + 
for g wherever g occurs on the right that the first two terms+ are given by ' 

g = e + 2€»+15€*+ 150e“ + 0 (e*’). 

It has just been seen that this series converges when | e | < -. 

even if I be as 
aige as V(0 8704) =0933..., t=J, 2»*=0-0000609, 15<»=0-0000002.] 

Example. Given I-.F=i//o calculate n A' JV' k_ e 
, uiate A, K by means of the expansion iust 

obtained, and also by observing that so that 

[?=0-0432139, A=A'-1-854076.] 

+ TheTh'w T’' ° ^ - v'*' < 1- 
possible branch petal*™* ° Is I < 1 except at j=0, so this gives the only 

t This expansion was given by Weierstrass, Werke, u. (1895), p. 276. 
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21-9. The notatioru employed for the Theta-functione. 

The folkwing scheme indicates the principal systems of notation which have been 

torfior^ writers; the symbols in any one column all denote the same 

$1 (ttz) $2 (^Z) Js (we) <3 (ir^) Jacobi 

9i(2) Si(s) 93(2) 94(3) Tannery and Molk 

$2 ^3 (<i)2) B {<az) Briot and Bouquet 

94 (r) 9j(2) 93(2) 9o(2) Weierstrass, Halphen, Hancock 

9(2) 9i(2) 93(2) 92(2) 
1 

Jordan, Harkness and Morley 

The notetion employed by Hermite, H. J. S. Smith and some other mathematicians is 
expressed by the equation 

with this notation the results of § 21-11 example 3 take the very concise form 

<9M.v(^+a)=(->* 6^, (.r), q-^ e-S'™/** 

(^yley employs Jacobi’s earlier notation (§ 21-62). The advantage of the Weieistrassian 
notation is that unity (instead of w) is the real period of 6^ {z) and 6q (z). 

Jordan’s notation exhibits the analogy between the Theta-functions and the three 

Sigma-functions defined in §20-421. The reader wiU easily obtain relations, similar 
to that of § 21*43, connoting 3j.(z) with cr,. {^cniz) when r=l, 2, 3. 

KEFERENCES. 

L. Edlee, Opera Omnia, (1), xx. (Leipzig, 1912). 

C. G. J. Jacobi, Fundamenta Nova* (Kiinigsberg, 1829); Oes. Jfath. Werie i 
pp. 497-638. ’ 

C. Hermits, Oeuvres Math&natiques. (Paris, 1905-1917.) 

F. Klein, Vodesungen iiber die Theorie der elliptischm Modidfunktioneti (Ausgear- 

beitet und vervollstandigt von R. Fricke). (Leipzig, 1890.) 

H. AVeber, Ellipttsche Funktionen und algehraisehe Zahlen. (Brunswick, 1891.) 

J. Tannery et J. Mole, Fonctions Elliptiquet. (Paris, 1893-1902.) 

Miscellaneous Examples. 

I. Obtain the addition-formulae 

■»! (y-b*) -Si (y -2) 54*=332 iy) Sj* (z) -9j2 (y) S,* (z) = S,« (y) gf. (3) _ 5^2 (y) (3)^ 

■92 (y -b 2) ^2 (y - z) Si®=(y) (z) —9i* ^) (z)=SjS (y) ^42 (z) - (y) Sjt (z), 

9s (y -b 2) 9, (y - z) 54*=V (y) V (z) - 3,2 (y) 3j2 (z) - 3,2 (y) 34* (2) - 32« (y) 3j2 (z), 

94 (y-bz) 34 (y- 2) 34*=3,2 (y) 332 (z) - 32‘ (y) 3,» (z)=34» (y) 34* (r) - 3i2 (y) 3,* (z). 

(Jacobi.) 

* Beprinted in his Qe$, Math. Werke, i. (1881), pp. 48-239. 
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2. Obi&in ths addition-formulae 

(y+*) ^4 (y-r) V (jr) +s^ (y) (2) (y) V + (y) 3^2 

■S4 (y+*) 5* (y - z) V=V (y) V W+V (y) (z)=S,* (y) 5^2 (2) -<-5,2 (y) 5,2 . 

and, by increasing y by half periods, obtain the corresponding formulae for 

■Sr(y+2)5r(y-2)5j,2 and 5,(y-|-z;5,(y-z)5,2 

(Jacobi.) 
3, Obtain tbe formulae 

■9i (y ± z) Sj (y+2) 5, =Si (y) 5, (y) 5j («) 5^ (2) + 5, (y) 5^ (y) 

51 (y ±a) S3 (yTz) S3S4=Si (y) S, (y)S3 (z) S4 (z) Sj (y) S4 (y) Si (z) S, (z), 

S, (y ± z) S4 (y -H 2) SjS3=S, (y) S4 (y) Sj (z) S3 (z) + Sj (y) S3 (y) Si (z) S4 (z), 
52 (y ±i) S3 (y+z) Sj53 =r 5, (y) 53 (y) yj (3) q; y^ 

S3(y±2) S4 (y-Hz) S3S4=S3 (y) S4 (y) S* (z) S, (z)+Si (y)^, (y)y. (3) y3(3), 

53 (y ±2) S4 (y+z) S3S4=S3 (y) 54 (y) S3 (z) S4 (z) +5, (y) y^ (y) yj (3) y^ ^3)^ 

A Obtain the duplication-formulae 

52 (2y) SJS42 = 5,2 (y) y^t (y) _ y,2 (y) y^Z (y)_ 

53 (2y) S3S4*-S3* (y) S,® (y) _ y,2 (y) y^2 (y)^ 

S4{2y) S42 =S3%)-522(y)-.=y44(y)_yj4(y). 

5. Obtain the duplication-formula 

■»! (2y) SjS,S4=2Si (y) S, (y) S3 (y) S4 (y). 

6. Obtain duplication-formulae from the results indicated in example 2. 

7. Shew that, with the notation of § 21-22, 

[1] -[2]=[4J-[3J, [1]-[3]=[17-[37, [1]-[4]=[2J-[33', 

[2] -[3]=[lJ-[4j, [2]-[4]=[2]'-[4J, [3]-[4]=(2J-[1J. 

8. Shew that 

(Jacobi.) 

(Jacobi.) 

(Jacobi.) 

2[1122]=[1122]'-t.[2211]'-[4433]'-t.[3344j, 
2 f 1133]=[1133]' -J- [331IJ — [4422^ -(- [2244]', 

2[1144]=[1144]'-<.[4411]'-[3322]'-|-[2233J, 
2 [2233]=[2233J -f- [3322J - [4411]' -|-[1144J, 

2 [2244] - [2244]'+[4422J - [3311]' -)- [1133^, 

2 [3344]=[3344]'+[4433^ - [2211J -|- [1122]'. 

,9. Obtain the formulae (Jacobi.) 

2fr {(1-j*»)*(l-jS»-i)-*}j 

{(1-)-?**)*(1 

10. Deduce the following results from example 9 ; 

(1 - yi-i)6.2jipA - 4, (1 + - i 

(!-}»•)» =2,r->y~*APA'», ^n(l-<-yi»)« 
•0 

^n (l-g»)« n (H-j-*)0 =4y-iA4i'-l. 
nsasl ^ 

(Jacobi) 
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n. Byconsideringtaken along the contour formed by the paraUelogram 

whose corners are -|7r, |*r-f 9rr, - Jw + n-r, shew that, when w is a positive integer, 

and deduce that, when j I(z) | <^/(?rr), 

. ® g^sin 2nz 
^4(^) n^l 

12. Obtain the following expansions : 

^>=cotr+4 1 
n=l 1-J** ’ 

^^=-tanr+4 S (.7)* sin 2>u 

^^^■=4 s (~)”g”sin 2n£; 
»=i 1 — ’ 

s^h ex^nsion being valid in the strip of the 2:-plane in which the series involved is 
ibsolutelj convergent. 

13. Shewthat,i£|/(y)|<i(„)and|/(i)|</(„),then (Jaoobi.) 

*^1 (y “h^) S/ flo « 
y2^»8in (2my-f-2nz). 

_ , (Math. Trip. 1908.) 
14. Shew that, if | J(^) | < ^/ (n-r), then 

iTiri ^4 , ® 
g^=K+^2^«nCos2w^, 

I'here a^=2 S ( —)»»»rt(’»+l)(2n+»»+i)^ 
m=0 

(Math. Trip. 1903.) 

[Obtain a reduction formula for a, by considering / {34(2)}->«*»<•<& taken round the 
ontour of example 11.] 

16. Shew that 

I C0t2 + 4 2 .. _1 
L »=i 1 — cos 22!+ 

^-fc 
5i« L 

I a doubly-periodic function of 2 with no singularities, and deduce that it is zero. 

Prove similarly that 

16, 

^2(^) 
-tan2:-4 S 

n-l 

sin 2z 
1 + 2 j*" cos 2z+gr4Tt» 

^3'(^)_^ * g,2it-iain22 
na=i 14*2g'®**—^ cos 2^+!?^”^’ 

^4 W__ 4 2 _sin 2z 
^4 (^) »*l 1 — 2g'^~l cos 22 + 5'^“2 ‘ 

Obtain the valu^ oi if^ JT, K' correct to six places of decimals when 

[^=0-896769, P=0-444618, 

jr-2*262700, JT'* 1*668414.] 
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17. Shew that, if v+x+y-i-z=>0, then, with the notation of § 21-22, 

P]+C1J=[2]+[4J 

[1234]+[3412]+[2143]+[4321]-=0. 
18. Shew tiiat 

^4 (y), ■94 W 

^t(i/+z) ^ *^4(y)-94W84(y+2)‘ 

results tc=ar in Jacobi’s fundamental formulae, obtain the following 

V (x) $i (3x) (x) (ar) = V (2x) 84, 

V (a?) 8, (ar) -V (a:) ^4 (ar)=$j3 (2a!) Jj, 

8j» (a:) 5, (ar) +^43 (ar) ^4 (ae) = V (2x) 8,. 

20. Deduce fi»m example 19 that 

{8i» (x) Si (ar) S4«+S43 (x) S4 (ar) 54*} * + W (a?) $3 (ar) 5^-543 (x) S4 (ar) Sj*} * 

-{V («) 8s(ar) S33+S43 (a!)S4 (ar)^*^}*- 

(Trinitj, 1882.) 

21, Deduce from Liouville’s theorem that 

2^i(3)^i(3)S,(r)S4(r) 
Si (2r)Sj(0) 83(0)54(0) 

is constant, and, by making r.»0, that it is equal to 1. 

Hence, by comparing coefficients of r» in the expansions of 

by Maclaurin’s theorem, deduce that 

y'(o) _Si"(0) S3"(0), S4"(o) 
^i'(O) S,(0) 8,(0) 84(0) • 

Hence, after the manner of § 21-41, deduce that 

5i'(0)=8, (0)83 (0)84(0). 



CHAPTEE YYTT 

THE JACOBIAN ELLIPTIC FUNCTIONS 

22*1. Elliptic functions with two simple poles, 

^ the course of proving general theorems concerning elliptic functions 
at the beginning of Chapter xx, it was shewn that two classes of elliptic 
functions were simpler than any others so far as their singularities were 
^n^med, namely the elliptic functions of order 2. The first class consists 
of those with a single double pole (with zero residue) in each cell, the second 
joi^sts of those with two simple poles in each cell, the sum of the residues 
it tnese poles being zero. 

^ An example of the first class, namely p(z), was discussed at length in 
^hapter xx ; in the present chapter we shall discuss various exam^es of 
ihe second class, known as Jacobian elliptic functions*. 

It will seen (§ 22-122, note) that, in certain circumstances, the Jacobian 
unctions degenerate into the ordinary circular functions; accordinfflv a 
lotation (invented by Jacobi and modified by Gudermann and Glaisher) will 
»e employed which emphasizes an analogy between the Jacobian functions 
nci the circular functions. 

From the theoretical aspect, it is most simple to regard the Jacobian 
inctions as quotients of Theta-functions (§ 21-61). But as many of their 
mdamental properties can be obtained by quite elementary methods 
ithout appealing to the theory of Theta-functions, we shall discuss the 
motions without makmg use of Chapter xxi except when it is desirable to 
0 so for the sake of brevity or simplicity. 

22-11. The Jacobian elliptic functions, sn u, cn u, dn u. 

It was shewn in § 21-61 that if 

_ ^3 

le Theta-functions being formed with parameter t, then 

lere = ^3 (01 t)/^, (01 t). Conversely, if the constant (called the 
■dulus\) be given, then, unless or a value of t can be found 

* These functions were introduced by Jacobi, but many of their properties were obtained 
lependently by Abel, who used a different notation. See the note on p. 512. 

+ If 0<*;<1, and 8 is the acute angle such that sin d=4, 8 is caUed the angle. 
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(§§ 21-7-21-712) for which V (01 (0 ] t) = *», so that the solutioi 
of the differential equation 

subject to the condition = 1 is 
\diuj 

the Theta-functions being formed with the parameter r which has been 
determined. 

The differential equation may be written 

and, by the methods of § 21-73, it may be shewn that, if y and m are con¬ 
nect^ by this integral formula, y may be expressed in terms of m as the 
quotient of two Theta-fhnctions, in the form already given. 

Thus, if 

J 0 

y may be regarded as the function of « defined by the quotient of the Theta- 
functions, so that y is an analytic function of u except at its singularities 
which are all simple poles; to denote this functional dependence, we write 

y = 8n(w, k), 

or simply y = sn m, when it is unnecessary to emphasize the modulus*. 

The function sn m is known as a Jacobian elliptic function of u, and 

.(^)- 

f the Theta-functions is assumed, it is exceedingly difficult to shew 

-t. Cf ? T'vt r ^ ^ simple poles. Cf. Hancock, Elliptic Functiom^ j. (New York, 1910).] 

Now write 

Then, from the relation of § 21*6, we have 

“<”■‘>-1:11^.(B). 

.(0^ 

^snii = cntidnu. ■ax 
The modnlus will always be inserted when it is not k. 
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ind from the relations of § 21-2, we have 

sn’ u + cn* i/ = l . 

^ sn^w-I-dn* w = 1... (Ill) 

nd, obviously, cn 0 = dn 0 = 1 . 

We sh^l now discuss the properties of the functions sn rr, cn ir, dn « as defined by the 
luati^ (A), (B), (C) hy using the four relations (I), (II), (HI), (IV)these four relations 
lo suflicient to make sntt, cna, dnzt determinate functions of a. It will be assumed, 
hen neces^ry, that sn ir, cn «, dn it are one-valued functions of u, analytic except at their 
ales; it will also be assumed that they are one-valued analytic functions of i? when cuts 
•e made in the plane of the complex variable from 1 to -t-oo and from 0 to - oo. 

22*12. Simple properties of sn u, cn u, dn u. 

From the integral a = J" (1 - f^) - 4 (i _ - i ^t, it is evident, on writing 

t for t, that, if the sign of y he changed, the sign of w is also changed. 

Heme an u is an odd fumtion of u. 

Since sn (- «) = - sn it, it follows from (II) that cn (- u) = + cn u • on 
iTOunt of the one-valuedness of cn u, by the theory of analytic continuation 
follows that either the upper sign, or else the lower sign, must always be 

ken. In the special case ii= 0, the upper sign has to be taken, and so it 
a to be taken always; hence cn(-u) = cn «, and cn« is an even function 
u. In like manner, dn u is an even function of u. 

These results are also obvious from the definitions (A), (B) and (C) of 

Next, let us differentiate the equation sn»w-l-cn“it=: 1; on using equation 
I, we get 

dcnu 
——— = — sn 14 dn w; 

like manner, from equations (III) and (I) we have 

d^nu 

du = — sn 14 cn 14. 

22*121. The complementary modulus. 

If A® 4* A'® == 1 and A' + 1 as A 0, A' is known as the complementary 
dalus. On account of the cut in the A"-plane from 1 to + oo, A' is a one- 
ued function of A. 

With the aid of the Theta-functions, we can make one-valued, by defining it to be 

„ . Q. .W ^4(0|r)/53(0|r).] 
Example. Shew that, if 

■/; 
y = cn(w, k). i 
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Ako, shew thai^ if 

then yssdn (w, Jt), 

[These results are sometimes written in the form 

J mu J 4nu 

22*122. Qlauher*s notation^ for quotients, 

A short and convenient notation has been invented by Glaisher to express 

reciprocals and quotients of the Jacobian elliptic functions; the reciprocals 

are denoted by reversing the order of the letters which express the function, 
thus 

nst4 = l/snt£, ncw=l/cnti, ndw = I/dnt^; 

while quotients are denoted by writing in order the first letters of the 

numerator and denominator functions, thus 

scu-snulmu, 8du=^muldii% cdu^cnuldixu, 

cs u = mu/an % ds = dn u/sn u, dc m = dn u/m u, 

[Note, Jacobfs notation for the functions sn u, cii it, dn u was sinam cosam 

A&mn, the abbreviations now in use being due to Gudermannt, who also wrote tnu, 
as an abbreviation for tanamw, in place of what is now written sc u. 

The reason for Jacobi’s notation was that he regarded the inverse of the int^^ral 

as fundamental, and wrote! '^=am»; he also wrote A<^-(l-i» 8m»</»)4 for ^.] 

Example, Obtain the following results: 

J asu 

^ J dS4t 

®a« J dcu 

22 2. The addition-iheoreTn for the function sn u. 

We shall now shew how to express sn (m + w) in terms of the Jacobian 
elliptic function of m and «; the result will be the addition-theorem for the 
toction snu; it will be an addition-theorem in the strict sense, as it can 
be written in the form of an algebraic relation connecting sn u, sn v, sn (u -t- v). 

* Meaenger of Mathematice^ xi. (1882), p. 86. 
t Journal fiir Math, xviii. (1838), pp. 12, 20. 

t Fundavienta Nova, p. 30. As ;fc-^0, &mu^u. 
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[There are numerous methods of establishing the result; the one given is essentially 

to Euler*, who was the first to obtain (in 1766, 1757) the integral of 

dx dy 
=0 

he form of an algebraic relation between a; and y, when X denotes a quartic function 
7 and Y is the same quartic function of y, 

rhreet other methods are given as examples, at the end of this sectioa] 

Suppose that u and v vary while u + v remains constant and equal to a 
, SO that 

Now introduce, as new variables, and Sj defined by the equations 

fil = an w, = sn v, 

hat+ = 

V=(1 — si) (1 — 1<?si), since ti’ = 1. 

Difierentiating with regard to u and dividing by 2^ and 2^ respectively, 
ind that, for general values§ of u and v, 

s, = - (1 + P) _ (1 + y54) 

Jence, by some easy algebra, 

_ 2A?'s,Sj (si - si) 

iisi - Sisi (si - si) (1 - J^sisi) ’ 
so 

(ilSt- ^ = (1 - k^sisi)-^ ^ (1 - ^sisi); 

itegrating this equation we have 

e (7 is the constant of integration. 

leplacing the expressions on the left by their values in terms of u and v 
et 

cnwdnwsnv-f cnvdnvsnu ^ 
1 — A*^8n® u sn® t; ~ 

ieta Petropolitana^ yi, (1761), pp. 35-67. Euler had obtained some special oases of this 
a few years earlier. 

Lnother method is given by Legendre, Fonctions ElUptiques, r. (Paris, 1826), p. 20, and an 
ting geometrical proof was given by Jacobi, Journal fUr Math, m. (1828), p. 876. 
^or brevity, we shall denote differential coefficients with regard to u by dots, thus 

. dv .. d^v 

e. those values for which cn u dn u and cn v dn v do not vanish. 
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That is to say, we have two integrals of the equation du-k- 0, namelj 
(i) +1? = a and (ii) 

SE cn t; dn t; + sn t? cn w dn u _ ^ 
1 —A*sn®wsn®t? ’ 

each integral involving an arbitrary constant. By the general theory of 
differential equations of the first order, these integrals cannot be functionally 
independent, and so 

sn u cn t? dn t; -I- sn t? cn dn a 
1 — fc^sn^a sn^t? 

is expressible as a function of a +1;; call this function/(a +1;). 

On putting t? = 0, we see that /(a) = sn a; and so the function f is the 
sn function. 

We have thus demonstrated the result that 

, . sn a cn t? dn t? + sn cn a dn a 
-l-fm-.sn-;-' 

which is the addition-theorem. 

Using an obvious notation*, we may write 

/ 1 \ SiC^d^ + sn (a 4-1; I = ,—f_L_^ ^ 

Example 1. Obtain the adcfition-theorem for sin u by using the results 

fdsmuY , . o /dsint;\® . . « 
(r^j 

Example 2. Prove from, first priociples that 

fl - l.\ o 
vat? duj ’ 

and deduce the addition-theorem for sna. 

(Abel, Journal fur Math. n. (1827), p. 105.) 

Exam^e 3. Shew that 

«y^(a4-t?)= ^^1^24-^2^ 
^ ^i^4*Sidj«2^>^ c?ic44'^«i«2CiC2* 

(Cayley, Elliptic FuncUom (1876), p. 63.) 

Example 4 Obtain the addition-theorem for sn u from the lesxilts 

^ (y 4*^) ^4 (3^ «) (p) (y) ^ (z) («)+^2 (j) h (y) («) ^4 (4 

^4(y4-z)S,(p-^Z) (y)^,2(y) 5^2 

given in Chapter xxi, Miscellaneous Examples 1 and 3 (pp. 487, 488). (Jacobi.) 

Example 5. Assuming that the coordinates of any point on the curve 

can be expressed in the form (sn u, cn a dn a), obtain the addition-theorem for sn u by 

AbePs method (§ 20*312). 

This notation is due to Glaisher, Meuenger^ x. (1881), pp. 92,124. 
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[Consider the intersections of the given curve with the variable curve y=l . 

one IS (0 1); let the others have parameters ^3, of which may be chosen 

arbitrarily by suitable choice of « and n. Shew that u,+u,+u, iB consult, bv^e 
method of § 20-312, and deduce that this constant is zero by taking 

m=0, 

Observe also that, by reason of the relations 

we have (^-(^-«*) (r,+x,+r3)=2i»n, 

^3 (1 -i ajj X2 )=a:3- ^1 + 2»iarja?3=a!3 - 2»narir2-»iria:2 (ari+a;2+a?s) 

=(a?i-i-ar2 - (^71+^2) - Sma-iai* - nj:,7r2 

=-riyj-372^1.] 

22 21. TJib (tdditiovrthcov&ms ^ov cn u Orudi dn ti. 

We sha,Il now establish the results 

cn (u + d) = -■ sn M sn » dn tt dn ti 
1—A*sn*Msn®» 

dn (m + d) = dp t> sn « sn i> cn m cn 1; 
1 — A* sn* u sn* V ’ 

the most simple method of obtaining them is from the formula for sn (« + ■»). 

Using the notation introduced at the end of § 22-2, we have 

(1 - cn* (m + ?;) = (1 _ [1 - sn* (u + v)} 

= (1 - **S2*V)* - (8,02(4 + «2C.(4)* 

= 1 - 2^7*8,*8,* + ^8,*82* - 81* (1 - 82*) (1 - i^si‘) 

~ (1 — 8,*) (1 — A;»8i*) — 28,82CiC2d,(4 

= (1 - V) (1 - 52=) + 82*82* (1 - /fc*S,*) (1 - ifc*S2*) 

= (ciCi - SiStdid^y 

and SO cn (u 4- iil = + ^i^» — 5i52<^da 
^ ^ - 1-**S,*82* ■ 

Bud both Of these expressions are one-valued functions of «, analytic 
except at isolated poles and zeros, and it is inconsistent with the tiieoiy 
of analytic continuation that their ratio should be 1 for some values of u. 
and - 1 for other values, so the ambiguous sign is really definite; putting 
a = 0, we see that the plus sign has to be taken. The first formula is 
consequently proved. 

The formula for dn (u + v) follows in like manner from the identity 

(1 -/5;*Si*8j*)* - (SiCjdi -(- StCjdjy 

= (1 - **8,*) (1 - ^*82*) -b **8,*8.* (1 - 8,*) (1 - 8.*) - 

ihe proof of which is left to the reader. 
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1. Shew that 

dn (« + *) dn 

(Jacobi) 
[A set of 33 formulae of this nature connecting functions of u^v and of it-?? is mven 

In the FnndwmfOa Nma^ pp. 32-34.] ® 

Earnm^ 2. Shew that 

3 cnn+cng 3 cn«+cn» 
3» snt<dDv+siii> dn u dv snu dn v+an vdn it ’ 

so that a+on „)/(^« dn^+sn r dn ») is a fimctkn of only; and deduce that it is 
equal to {l+cn(a+ti)}/sn(«+ir). ^ «= tuam, ,b 

Obtain a corresponding result for the ftmction (*i<^+sjc,)/(<^+i4). 

&camph 3. Shew that Meu«,ffer, xir. (1885), pp. 56-61.) 

1 -i»8n» («+®) sn* (u -«)=(! -i»an« «) (1 - sn‘ v) (1 - i»sn* a sn^ r) 

P>+i>on»(a+»)on»(»-®)=(pj+iaen«») (P»+^cn‘r) (l-^8n»«sn*a)-». 

(Jacobi and Glaisher.) 

§ S!2?t^plt addition-theorems for cn («-h.), dn («-Hr) by the method of 

ExampU 6. Using GlaisheFs abridged notation (Me«enffer, x. (1881), p. 105), namely 

provethat "na, and N, U, 2,=sn2«. cnSa, dn2a, 

1-^ri’ l-ii^s* » 1-^,4—. 

^_(l+#-(l-.S)^ 

(l-^i/S)*+(l-,fc5)^' 

Ssample 6. With the notation of example 6, shew that 

_i--P B-a 
1+2) P'(l+<7) 2*(2)-C5 "pJ+ii-ise’ 

P«a-2)1 y*(i + o 
1+2) i!»(l+0 2:»(2)-C)“P»-Hi)_,t»f7» 

J-K7 p»(i_(7) pJ(l+i)) 
1+2) i + U il-u ~ifi^B-i!‘C 

(Glaisher.) 22*3. The constant K, 

We have seen that, if 

“=j/l-<’)-* 

y * sn (w, i). 

. “ ■“ »' “'«gn“io« brag 
1 “ '“‘“'"“y to dmoto the Telue of the iotegral by the 

symbol K, so that sn {K, k) = 1. ^ ^ 

j. V iT? twtr “ s ^ -iui™!™. to lb. <h«h„ „ 
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It is obvious that cn = 0 aad dn i:= ± A/; to fix the ambiguity in sign, 
suppose 0 < 1, and trace the change in (1 as t increases from 0 to 1 ■ 
smce this expression is initially unity aud as neither of its branch points fat 
t- ±kr^) is encountered, the final value of the expression is positive, and so 
It IS 4- * , and therefore, smce dn X is a continuous function of k, its value is 
always + k. 

The elliptic functions of K are thus given by the formulae 

snir=l, cnZ’=0, dn^ = *'. 

22*301. The expression of K in terms of k. 

In the integral defining K, write t = sin <f>, and we have at once 

(l-i*sin“^)-id^. 

When I i I < 1, the integrand may be expanded in a series of powers of k 

the senes converging uniformly with regard to (by § 3*34, since sin»<i < 1V 
mtegratmg term-by-term (§ 4*7), we at once get 

where By the theory of analytic continuation, this result holds for 
dl values of c when a cut is made from 1 to + oo in the c-plane, since 
both the integrand and the hypergeometric function are one-valued and 
analytic in the cut plane. 

Example, Shew that 

(Legendre, Fonctions EUiptiquee, i. (1825), p. 62.) 

22*302. The equivalence of the definitions of 

Taking in § 21-61, we see at once that sn (|»rVj=l and so cn(iwW)=0 

Consequently, 1-sn « has a double zero at Therefore, since the number of poles 

§ 2013 that the only zeros of l-sn« are at the points M=Jw(4m+1.1.2nT) V, where 
m and » are integers. Therefore, with the definition of § 22-3, ;3,wnere 

Jtr (4m 4-1 + 2nr) 

Now t^e r to be a pure imaginary, so that 0<k< 1, and A' is real; and we have 
ff, _ Oj so that 

Jjr(4m-|-1) V=jfl 

where ot is a positive integer or zero; it is obviously not a negative integer. 

If wiisa positive integer, since/“(I -fc*sin^.^)-id^is a continuous function of,, and 

o (^ through all values between 0 and A as a increases from 0 to we can find 
. value of a less than such that ^ 

A7(4»t+l)=^.r.332=J^(l-k^ain=‘,/>)-id<p ; 

sn (l-OT-^a*) *= sin a < 1, 
sn (^w-Jj^) _ 1^ 

,nd so 

rhich is untrue, since 
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Therefore m Timst he zero^ that is to say we have 

But both K and ^^3^ are analytic functions of h when the c-plane is cut from 1 to 
+ 00, and so, by the theory of analytic continuation, this result, proved when 
persists throughout the cut plane. 

The equivalence of the definitions of K has therefore been established. 

Example 1. By considering the int<^ral 

shew that sn 2E=^0, 

Example 2. Prove that 

[Notice that when cn2as;0. The simplest way of determining the signs to 
be attached to the various radicals is to make and then sum, cn«, dnt^ 
degenerate into sin cos w, 1.] 

ExoMp^e 3. Prove, by means of the theory of Theta-functions, that 

csi^-dn 

22‘31. The periodic properties (associated viith K) of the Jacobian 
elliptic fmjciiom. 

The intimate connexion of K with periodic properties of the functions 
mu, cni^, dnw, which may be anticipated 'from the periodic properties of 

Theta-functions associated with ~ w, will now be demonstrated directly from 

the addition-theorem. 

By § 22*2, we have 

. , snucnKdnK-tBiiKciiudnu , 

In like manner, from § 22’21, 

cn (u + K) = — sd 1^, dn (w -f K) = A' nd u. 

u / . n rr\ (w + K) y ad U He™ + 

and, similarly, cn (m + 2Z) = — cn m, dn (« + 2K) = dn u. 

Finally, sn(w + 4ir) = - sn(M+2jr) = snw, cn (« + 4Z) = cn u. 

Thus 4tK is a period of each of the functions sn m, cn u, while dn u has 
the smaller period 2K. 

Example 1. Obtain the results 

sn(w4-i^=cdM, cn(a4-ir)=-i^sd w, dn (w+jSQ—iPnda, 

directly from the definitions of sn w, cn «, dn u as quotients of Theta-functions. 

Example 2. Shew that cs a cs (JE^ - tt)«iP. 
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22*32. The constant K\ 

We shall denote the integral 

by the symbol K', so that K' is the same function of k'^ (= c') as Z" is of 
^(=c); and so ' 

1; i’), 

when the c'-plane is cut from 1 to +oo, i.e. when the c-plane is cut from 
0 to — 00 . 

To shew t^t this definition of E’ is equivalent to the definition of § 21-61, we observe 

that if rr = -1, Z18 the one-valued function of in the cut plane, defined by the equations 

(0 I r), i:S=Sj4 (0 | r)-^534 (01 r), 

while, with the definition of § 21*51, 

(0 I r'), (0 I r')-r5j* (0 | r'), 

SCl ^ ^ and this is consistent with the 

It will now be shewn that, if the c-plane be cut from 0 to - oo and from 
1 to -f 00, then, m the cut plane, K' may be defined by the equation 

nik 

First suppose that 0<i<l, so that 0<F<1, and then the integrals 
concerned are real. In the integral 

/o ^ 

make the substitution 

. s = (l-F><«)-4 
which gives 

(s» - 1)4 = k't (1 - k'H^) - 4 (1 _ (1 _ (1 _ - 4 

_ k'H 
dt ~ {l-k'H^)^ ’ 

t being understood that the positive value of each radical is to be taken. 
!)n substitution, we at once get the result stated, namely that 

rltk 

^'=ji 

Tomded that 0 < A: < 1; the result has next to be extended to complex values 
f k, ^ 
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CoDsider (1 — f*) ~ ^ (1 — ~ ^ dt, 

the path of integration passing above the point 1, and not crossing the imaginaiT' asis*. 

The path maj be taken to be the straight lines joining 0 to 1 - d and 1to together 

wilhi a semicircle of (small) radius ^ above the real axis. If (1—and 

reduce to +1 at ^=0 the value of the former at 1+d is (2 -f d)^ = - i {t^ -1)^, where 

each radical is positive; while the value of the latter at ^=1 is when k is real, and 

hence bj the theory of analytic continuation it is always -k-kf. 

Make §-*-0, and the integral round the semicircle tends to zero like ; and so 

-1)"(1 -& 

Nt>w du, 

which t is analytic throughout the cut plane, while JT is analytic throughout the cut plane. 

Hence 

is analytic throughout the cut plane, and as it is equal to the analytic function X' when 

0<^< 1, the equality persists throughout the cut plane; that is to say 

ir'= 

when the c-plane is cut from 0 to — cso and from 1 to + oo. 

rifk 
Since jr + tZ'= (1 - 

Jo 

we have sn {K + iK') = 1/*, dn {K + iK') = 0; 

while the value of cn (JT 4* iK') is the value of (1 — when t has followed 
the prescribed path to the point 1/i, and so its value is — ik'jk, not + ikfjk. 

Example 1. Shew that 

d<=l {t(tdt=K'. 

Example 2. Shew that K satisfies the same linear differential equation as iT (§ 22*301 
example). 

22’33. The periodic propertiesl (associated with K + iK') of the Jacobian 
elliptic functions. 

If we make use of the three equations 

sn(K + iK')::^k-\ cn(E + iK')^-^ik'lk, dn (K + iK') ^ 0, 

* i? (lt)>0 because |argc|<x. 

+ The path of integration passes above the point u—k. 

t The doable periodicity of gn« may be inferred from dynamical considerations. See 
Whittaker, Analytical l>ynamict (1917), § 44. 
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we get at once, from the addition-theorems for sn u. cn u, dn u, the followin? 
results: ° 

sn(u + K + iK') = CP + iK’) dn {K + iK') + sn {K + iK') cn w dn m 
1 — A* sn® u sn^ (JT + ” 

= dc % 

and similarly cn (« -i- ^ 

dn (m + JT + iK') = ii' sc u. 

By repeated applications of these formulae we have 

' sn (m + 2ir -I- '2.iK') = - sn w, pn (m -i- 4^ + UK') = sn u, 

. cn(M+2^r4-2tZ')= cnw. ■ cn(m-f-4Z + 4fZ'') = cnw, 

idn (m + 2ir + 2iK') = - dn w, [dn (m + 4if -f 4fir0 = dn u. 

Hence the functions sn u and dn u have period 4Z -t- UK', while cn w has 
the smaller period 2K + 2iK\ 

22-34 The periodic properties (associated with iK’) of the Jacobian 
elliptic functions. 

By tlie cuiditioii-theor6ni W6 hav© 

sn {u 4- iK') - sn - iT 4. ^ + ie:') 

= dc(ti-JST) 

= ns u. 

Similarly we find the equations 

cn (u 4“ iK') = — ik^^ ds w, 

dn (u 4- iK') = ^ i cs u. 

By repeated applications of these formulae we have 

{sn (u 4* ^iK^) = sn u^ 

cn(t/4-2fir') = -cn?i, 

dn {u 4- 2iK') = ~ dn 

Herwe the functions cn u and dnw have period UK', while sn« has the 
smaller period 2iK', 

JEtxainple, Obtain the formulae 

sn fw 4 4 2nili^)=(— )”^ sn w, 

cn (u 4 2ifnK. 4 2niK') = ( — )»”+» cn 

dn ifi 4 27nK4 2niK') ==(—)» (Jri u. 

22341. The behaviour of the Jacobian elliptic functions near the origin 
nd near iK'. 

We have 

i .id?., 
- sn a — cnM dn u, ^^snu = 4A® sn*u cn dn m - cn m dn u(dn*«. -t- ifc*cn* u). 

I sn (m + UK') = sn u, 

|cn(M-t4tir')=cnw, 

(dn (u + UK'') = dn u. 
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Hence, by Maclaurin’s theorem, we have, for small values ofluj, 

~ ~ g (1 + ^) m’ + 0 

on using the fact that snw is an odd function. 

In like manner 

cau = l-^u^+0(u*), 

dnu = l-l^u‘+0M. 
It follows that 

sn (u 4- liT') = ns u 

and similarly 

dn (u + iK')=—i + 2 ~ ^ 
u « 6^ *m+0(m»). 

■poles with residues k-\ -ik-\~^^re^&^el^^ 

0b«n ... o,..Z a...., 

aimmari®d fn the ** end dn. nmy te 

(mod.4jr. 2.7ir-); thijobte Z^Zu°^°a’°'^'°' *“ 
l>eing Ir- and the residues at the ^ .i ^ residues at the first set all ^„„.. ro“&- Sir 

H doublj,-pcricKiic function; hence (§ 20-1J it would and would be 

real values of « anhl^'pure“’nagfo^,Tfw^^^ ^ “ real for 
fill The f 4- “«aginaiy when « is a pure imaginarv 

zj /z sr“i.ri;rerr^“ 
2-Sr + iK' (mod. 2K + ‘>iK^l these""^^ T congruent to iK' or to 

+ , these points are simple poles, the residues 
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at the first set ^ing - ik-\ and the residues at the second set being ik-^; 
and the function has a simple zero at all points congruent to K (mod. 2 AT 2iK') 

^ ‘^““Wy-Periodic function of -a with periods 

congruent to iK' or to ZiK' 
(mod. 2K, UK ) these points are simple poles, the residues at the first set 
being %, and the residues at the second set being i; and the function has 
a simple zero at all points congruent to A’+tJf'(niod. 2K, 2iK'). 

[To see that the functions have no zeros or poles other than those iust snecified 
recourse must be had to their definitions in terms of Theta-functions.] ^ 

22-351. The connexion betwem Weieretraeeian and Jacobian eUiptic fu.'.ictione. 

If «!, ej, «3 be any thi-ee distinct numbers whose sum is zero, and if we write 

(^)’=4(e.-e3)2x*nsUaos»Xud8*Xa 

=4 («1 -€3)2 iis^Xu (ns® Xtt-1) (ns® Xm -^) 

Hence, if X -e, -«3 and l^=(e.,-e^y(et-ei), then y satisfies the equation* 

/dyy 
\di) 

Where o is a constant. Making n ^ 0, we see that « is a period, and so 

P (“; S'2) ya) = ^ -I- («i - *3) ns* {a («! - ej)^}, 

she Jacobian elliptic function having its modulus given by the equation 

2.2^ ^2’”^3 

22 4. Jdcohi s vwidQiTiciTy tv(Lti^J^oTni(itio7i'\, 

The result of §21-51, which gave a transformation from Theta-functions 
vith parameter t to Theta-functions with parameter t= —1/t, naturally 
jroduces a transformation of Jacobian elliptic functions; this transformation 
s expressed by the equations 

8n(iM,-A:) = z8c(M, A:'), cn (iw, i) = nc (m, i'), dn (iit, jfc) = dc (w, i'). 

Suppose, for simplicity, that 0 < c < 1 and y >0; let 

[iy , 
{l-Py^{l-kHT^dt=^in, 

J 0 

0 that = sn k); 

ake the path of integration to be a straight line, and we have 

cn (iu, k) = (1 + dii (m, A;) = (1 + 

♦ The values of ^2 and are, as usual, and 

+ FvTidameiita Nova, pp. 34, 35. Abel (Journal fllr Math, ii, (1827), p, 104) derives the 
>uble periodicity of elliptic functions from this result. Cf. a letter of Jaii. 12, 1828, from Jacobi 
Legendre [Jacobi, Ges. Werke, i. (1881), p. 402]. 
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so that 

Mid therefore 
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Now put y = ,/(! where 0< y < 1, so that the range of values 

w ol'',:'’’’*' ■' ‘ *>■' of 

Then dt = i{l 

iu=j\l -1.>)-i(1 _ 

v = sa(u, ¥) 

y = sc {u, k'). 

We have thus-obtained the result that 

sn (iu, k) = iBC (u, k'). 

Also cn (iu, A) = (1 + f)i = (1 J = ne (u, k'), 

and dn (iu, A) = (1 _ ^ _ ^a^a)i (j _ -i^ 

cut^nW-^^* T*! ^ one-valued functions of u-and A (in the 

th --lytic continuation 
the ^ulte proved for real values of . and A hold for general complex values 

fnnclfs'. trans/Mion by the aid of Theta- 

sn 

where 

and so, by §21-51, 

(iu, A) = I T) 0'-^ i ‘>') 
^»(0|T)^,(v|r)’ 

^ = «/V(0|t),, 

sn (iu, A) = - fa-1 (izT IT ) 
(0 i T ) (izr' I t) 

= — iac(v. A'), 

where „ = (o | r') = izr'. (- ir) V (0 | t) = - «, 
so that, finally, sn ^ 

fuuSZ^^ ^)=do(a. P) by the aid of Theta- 

Example % Shew that 

su{\iK', A)=:fse(^A-', P)=a-i 

cn {\iK', i)=(i+i)i irh^ dn {\iK’, >fc)=(i +,fc)l 
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Example 3. Shew that 

V(2>fc) 

dn ^ (gH- tA"')=~ - •^)i}, 
V2 

Example 4. If 0 < ir < 1 and if ^ be the modular angle, shew that 

dn^(K+iK') 

(Glaisher.) 
22'42. Landen's transfomiation^, 

We shall now obtain the formula 

(1 - sin* (?,) -idffj = (l + k') j\l - if sin* $) " id0, 

where sin = (1 + k') sin ^ cos <#> (1 - i* sin* 

ind ii = (1 - k')/(l + k'}. 

This formula, of which Landen was the discoverer, may be expressed by 
neans of Jacobian elliptic functions in the form 

sn {(1 + k') w, IjjI = (1 4- k') sn (u, k) cd(u, k), 

m writing <f> = am «, = am «i. 

To obtain this result, we make use of the equations of § 21*52, namely 

^»(^l**)^4(^|'r)_5-2(g|T)^i(g|T) ^,(0iT)^,(0| r) 
St4(2i'|2T) a-,(2a|2r) “ ^4(0|2t) 

Write*f* Ti = 2t, and let i,. A, Af be the modulus and quarter-periods 
ormed with parameter Ti ; then the equation 

^1 I t) a-a (ZI t) ^ (22 I Ti) 

I t) a-4 (z I t) a-j (2z I Ti) 

lay obviously be written 

k sn {2KzIit, k) cd (2Zi/7r, k) = k^i sn {iAz/v, *,) .(A). 

To determine k^ in terms of k, put z = ^7r, and we immediately get 

hich gives, on squaring, *, = (1 - *')/(! + *'), aa stated above. 

To determine A, divide equation (A) by z, and then make z->0; and 
eget 

2if* = 4ii*A, 

•that A=|(l 

* Fhil, Tram, of the Royal Soc. lxv. (1775), p. 285. 

t It will be supposed that , J2 (r) |< to avoid difficulties of sign which arise if R {tj} does 
t lie between ±1. This condition is satisfied when 0< A<1, for t is then a pure imaginary. 
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Hence, writing « in place of 2Kzl-rr, we at once get fiom (A) 

(1 + *') sn {u, k) cd (u, k) = sn {(1 + k') «, k^}, 

4As/7r = 2Au/JC ={l+k')u; 

so that Landen’s result has been completely proved. 

Example 1. Shew that \'IX~S.K'jK, and thence that A'=a +k) S' ExampUZ. Shew that 

cn{(l+F)K, £,}={!-(i+F)8nS(«, i)}nd(«, A), 

dn {(1+F) u, ki}={F+(1 —F) on» {u, k)} nd («, k) 
Example 3. Shew that 

dn («, i)=(i _ p) cn {(1 u, i,}+(1 ^kT) dn {(1+F)«, I,}, 

22-421. Traneformatione of elliptic functume. 
«' -k** » u . 

parameter r in terms of ^th " f ® expression of elliptic functions with 

We have had another tiansformatirL“which“ai^-^tl^^ 1 

Vorlesungen ilher die Theorie der ellwHschen M / // Fundamenta Nova, to Klein, 
BUptlc r^tan. lLoudon. !£^ (rfltrf bj Friok.), ..d to 

..-.±1, .bow. bj tb. „tb.d of 

m. I’‘fi’ArroiKt,f„th,jM^ia,^aliptieJkvdtwnd\ 

The products for the Theta-fiinctionSy obtained in 8 21’S at nn/» * ^A 

products for the Jacobian elliptic functions - writing , -1^ f’ 
have, from § 22-11, formulae (A), (B) and (C), ^ 

sna = 2(^yfc-4sinj! T7 1 1 “ 2?“ cos 2® + </<» ] 
»=i ll-2?*»->cos2a; V^»-»} ’ 

cn« = 2giifc'4*-4co8a; H J j + 2g°"cos 2d; + ] 
»=i [1 — 2g'’”~* cos 2a? + ’ 

dn li = *'4 n fl + 29^-* cos 2a; + 
*=i (1 — 22“"* cos 2a! + ’ 

be w^L*^wm““**^ *he products for the nine reciprocals and quotients can 

^ayl^ obtained in the foUowing manner- 

Prom the duphcation-formuIae(§ 22-21 example 6) we have 1 — fin 1/ 1 V , . V “CD 14 1 I 

-^=sn-«do-«, l-hdnu , 1 1 
-d8-»no-«, dnu-hcnu l 1 

ftn.r ^ == Cn - W ds - 11. 

Fundamenta Nova, pp. 84-115. 

snu 
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Take the first of and use tlie products for sn cu we get 

l-cnu 1-COS.17 « fl-2{^q)ncmx+q^) 

71=1 (1- ‘ ^ ' sn u sin x 

on combining the various products. 

Write M 4--^ for If, for x, and we have 

dnif+Fsnif 

1 + 2 ( —g')’*CCM3fP+^2» :}• 

cn u 
_1 + Bmx » /l + 2(>-^)*>sin.v+^g^] 

««i (I“2(--^)»sinx+^2»j • 

Writing tf+iiS*' for u in these formulae we have 

^sn tf+f dntf==t n P ~ sin x ~ 
»~i (1 — 2f ( —)»^-i8infF-^2«-iJ > 

ind theexpression for icd«+i^nd,. is obtained by writing cos.r for sin^ in this product. 

IVom the identities (l-cnM)(l+cnjt)san»«, (i8nM+fdna)(£8n«-tdn«) = l etc. 
^e at once get four other formulae, noaking eight in all; the other sixteen foUow the 
>ame way from the expressions for dsi^nci,. and cni«dsi«. The reader may ohZ 
ihese as an example, noting specially the following: ^ 

snif+icn n j(^ ^(1""e~~^) 
»=i ((1 — 

Example 1. Shew that 

dni(^+iJE-';=-t'i n (1717^”+) 
n=l 1(1-15'^'*-^) (I4.l^2n~|jj’ 

n»0 U+(-)»ij»+i/* 

"" ‘ ti-t, if. b. 

e-i«= n 
*=0 

ad thence, by taking logarithms, obtain Jacobi’s result 
GO 

i^= ?“'*'*=aro tan Vy-arc tan V?*+arc tan ..., 

luae inter formulas elegantissimas censeri debet.’. (Fimd. Nova, p. 108.) 

Example 3. By expanding each {erm in the equation 

log8n«=log(2g'l)-ilog*+logsina:H- 2 {log(1-g»*e»=) 
11=1 ^ 

+ log (1 - e-«*) - log (1 - j2i>-l e2i*) - log (1 - j2n-l g 

powers of 6=^*“, and rearranging the resulting double series, shew that 

log8ntt=log(2jl)-.ilogi:+.logsinxr+ 2 ^g^cosgiiu; 

len I /(*) I < iw/(r). ”*“* “ ’ 

Obtain similar series for log cn u, log dn u. 

Example 4. Deduce fix)m example 3 that 
(Jacobi, Fundamenta Nova^ p. 99.) 

logSD-udu^ -^-kK’-\Klogk. 

(Glaisher, Proc, Royal JSoc, xxix.) 
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22'6. Fourier mrm for the Jacobian elliptic functions^. 

If u = %Kxlrr, sn w is aB odd periodic function of x (with period 2*^), whic 
obviously satisfies Dirichlet's conditions (§ 9*2) for real values of x; an 
therefore (§9*22) we may expand mu m a Fourier sine-series in sines c 
multiple of X, thus 

00 

snti= 2 bfgsmnx, 
%ssl 

the expansion being valid for all real values of x. It is easily seen that th( 
coefficients are given by the formula 

rribn = I sn . exp (nix) dx. 

To evaluate this integral, consider Jsni* .exp(iiM?)dfl? taken round the 

parallelogram whose comers are — w, v, wr, — 2*7r + irr. 

From the periodic properties of sn u and exp (nix\ we see that j cancels /—jr *11 

; and so, since — tt + ^ ttt and ^ ttt are the only poles of the integrand 

(qua function of x) inside the contour, with residues f 

— fcr^ exp niw +1 niriT^ 

and rrj^ exp nmir^ 

respectively, we have 

• ■/!+J “ “ • =^3*" {1 - (-)*}. 

Writing a? — w + for a; in the second integral, we get 

{1 + (-)"2»} j_^Bnu. exp (niar) cfe = ^ {1 _ (_)»}. 

Hence, when n. is even, =* 0; but when n is odd 

6 -2^ g*” 

Consequently 

^ sin 5x ) 
sn U — i Z T —r-r—*4»—r-r— 

1-^ j 

when X is real; but the right-hand side of this equation is analytic when 

exp(mx) and exp(--7iix) both tend to zero as n-->oo, and the left- 
hand side is analytic except at the poles of sn lu 

These results are substantially due to Jacobi, Fundamenta Nova^ p. 101. 
t The factor Jw/JC has to be inserted because we are dealing with sn {^KxJt). 
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Hence both sides are analytic in the strip (in the plane of the complex 

yariable x) which is defined by the inequality \I{x)\<\vI (t). 

And so, by the theory of analytic continuation, we have the result 

snw — ^ ?"'^^sin(2n+1)« 

(where u = 2Kxl-n-), valid throughout the strip \I{x)\cl-,rI(t). 

Example 1. Shew that, then 

cos(2»+l)« 
^ Kk ,!o-■■ ’ “= K.■» 

&mu^f dn i 
Jo n{l+q2n^ ’ 

these results being valid when \ I{x)\<^vI(r). 

ExamfU 2. By writing a:+K for a: in results already obtained, shew that, if 

«=2Aa!/n- and |/(a;)|<iir/(rX 

nd«--lL- + ^ I 
n=:0 

( -, )n yw 2fnx 

1 

22*61. Fourier series for reciprocals ofJacoUan elliptic functions. 

In the result of § 22-6, write u + iK' for u and consequently « + i ,rr for 

then we see that, if 0 > J (^) > - tt/ (7-), 

8n(u + iA") = |l ^ g”'^*8in(2n. + l)(a; + ^7rT) 

and so (§ 22*34) 
CD 

nau = (-iirlK) _S^g”+3{gi"-'*ie(»+i)« _ q 

00 

= (— iir/K) ^2^ {2tg“’*+i sin (2re +1) a; + (1 - e-(«+« *»} /(l _ g«+i) 

I r+*8m(2n + l)a>_tV | 
l-5r+» AT. ® n»=0 

That is to say 

nsu = 4cosec^ + 5 2 -H)^ 
2^ Jf«=o 1-3“+^ 

But, apart fix>m isolated poles at the points x = n-n-, each side of this 
equation is an analytic function of ar in the strip in which 

irl (t) > I (x) > — tri (t) : 

—& strip doable the width of that in which the equation has been proved to 
>e true; and so, by the theory of analytic continuation, this expansion for 
IS u is valid throughout the wider strip, except at the points x = »7r. 
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£mm^, OMaio tli« MlowiBg expanfflons, valid throughout the strip \ I {x)\< rrl{r) 

tx«|il El ll» |>c»I« of the fi»fc term oe the right-hand sides of the respective expansions: 

mmecX‘ zK 

cotjr 

2jr * ^ sin {%i 1) ^ 

2^r " ^ sin 271X 

"K ^ 

22*7. Elli^ic inteffrals. 

An infcegml of the form j J? («?, ^r) dx, where R denotes a rational function 

.if w and a:, and ttf ig a Qt7ARTlc, or CUBIC function of x (without repeated 
factors|, is »lied an elli^w integral*, 

pOT*. EBiptic int^rab are of coiiaiderable historical importance, owing to the fact 

that a wy large number of important properties of such integrals were discovered hr 

Eaier and I^ndre before it was realised that the inverui of certain standard types of 

themselves, should he regarded as fundamental 

was^&u^ was C^M (I ^ 8), Imt the first results pubhshed were by Abelt and Jacobi t. 

^ !T^ a Ob^ned by Abel were brought to the notice of Legendre by Jacobi 

feSowiB? teroa • “ 1 TtAt»% )»?•)> t'egendre comments on their discoveries in the “niSL. is^“" “r**. ™ 1* w ‘ pi.. ™ to 
o.,« rf^rT^r J’appns, avec autant d’etonnement que de satisfaction. 

*. Ptoto ‘‘ “I-™ 

Gauss to l»ve made in 1809 many of the disoovtriL publ^l 
validity ©f tMg claim wiw estehlifth#^ k q k • / Jacobi and Abel. The 

.llipfe fte“a 
* at™*!, V . . ^ ^ “ Theta-functions, combined 

of tlM element^ be integrated by 
mtfgrais iatrodDoed in § 2272. ^ ^ nvolves one of the three kinds of elliptic 

t Jonr^lySr JlfeiA n. (1827>. pp. lOl-lgg 
JEcobi tanonneed his iii«»ver¥ in 

^ama^, who published extracts from thei^ « 
the month m which Abel's memoir appeared. “ September 1827- 
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with the elementary functions of analysis; it has already been seen (§20-6) 

that this process can be carried out in the special case of Jw-^dx, since 

the Weierstrassian elliptic functions can easily be expressed in terms of 
Ineta-raiictions and their derivates (§ 21*73). 

whiSTir ^ is a real function of :r and tr, 
which are themMlyes real on the path of integration; it will be shewn how in such 
circumstances, the int^ral may be expressed in a real form.] ' 

Since M (w, x) is a rational function of w and x we may write 

R (w, x) = P (w, x)IQ (w, x), 

where P and Q denote polynomials in w and a;; then we have 

R (p, x) = Q (- w, x) 
wQ{iv,x)Q(-w,x) ■ 

Now Q(w, x)Q(—w, x) is a. rational function of vf and x, since it is 
unaffect^ by changing the sign of it is therefore expressible as a 
rational fimction of x. 

If now we multiply out wP (w, x) Q (- w, x) and substitute for in terms 
if a; wherever it occurs in the expression, we ultimately reduce it to a poly- 
lomial m ® and w, the polynomial being linear in w. We thus havVan 
dentity of the form 

R (w, a;) = {iJj (x) + wRi {x)}fw, 

>y reason of the expression for «;» as a quartic in a;; where R, and R, denote 
ational functions of x. 

Now Jr^ (x) dx can be evaluated by means of elementary functions only*; 

0 the problem is reduced to that of evaluating jvr^R, (x) dx. To carry out 

his process it is necessary to obtain a canonical expression for which we 
ow proceed to do. 

22-71. The expression of a qvartic as the product of sums of squares. 

It ^11 now be shewn that any quartie (or cubic\) in x (with no repeated 
ictors) can be expressed in the form 

{Aj, (x - ay + (a; - /9)»} {A^ (x - «)»+ Ra(x~ |8)ij, 

here, if the coefficients in the quartic are real, A^, A„ R^, a, /3 are all 

lllut* ^*"**W« «» text-books ou Integral 

vtntshoa ‘ of 
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Si = a,ai> + 2b,w + Ct, S, = + 2l^x + c,. 

Now, X being a constant. S,-XS, will be a perfect square in * if 

(Oi - Xo,) (c, - X<^) _ (Jj _ _ Q 

...JTJLTlt “ ‘j' 

S.-\S,^(a,-X,a,)(x-«y, 8,-x,S, = (a,-X,a,)^a>-^y-, 

on solving these as equations in we obviously get results of the form 

S, = A, (x-ay + B, {x -By, S,= A, (x- a)» + B,(x- J3y, 

and the required reduction of the quartic has been effected. 

plex factors; then J and 

(oi -Xo,) (ci _ Xcj)-. (5j -xSg)! 

is positive when X=0 and negativet when X^aja,. 

When Si and S2 have real fectors, sav (x-t ^ 1'^ e n / > ^, 
that Xi and X, should be real is easil/found to be^‘ condition 

(&'-&) 

this 
timt their zeros do not interlace.] ^ ^ quartic in such a way 

m2. The three kinds of elliptic irOegrala. 

let n be determmed by tb, rule j„.t obtuiued iu § 22-71, md, iu tbe 

mtt«»l jur-s. (.) i., ^te . ue. vuriuble 1 defiued by tte equation} 

f^(‘B-a)j(x-B); 

(a-/3)-^dt we then have ^ + 

coeffieienta in S, and Sj are^rl^'ln^he*^’ ^ fectoriaation can be carried out so that the 

factors, these factors should be associated in^paL ito'rire c‘I' 
roots of one pair do not interlace the roots of toe mI ^ m such a way that the 
the note at the end of the section. ^ pau-; the reason for this wiU be seen in 

t Unless ui : 03=61 ■ in which case 

-I-Tt • ^x*“i(®-o)2+Bi, Sa*as(x-o)a+B,. 

“bstituriLT inZZnZt ?c'15Cid?c„“^T''“b‘«* ^^‘’“o^^sphic 
•ppwuu. Luud. “■ 
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If we write A (*) in the form ± (a - ^) i?. (t), where B, is rational, we get 

riti(x)da!^r 

Now + Mt)~M-t)^2tR,(p), 

where JB4 and Jf, are rational functions of and so 

But + B,) +J5,)} - itR, (f) dt 

can ^ evaluat^ in terms of elementary functions by taking as a new 
variable*; so that, if we put R,(i>) into partial fractions, the problem of 

integrating Jr (w. x) dx has been reduced to the integration of integrals of 

the following types: 

+B,) + B,)} - idt, 

1(1+ {(A.f^ + B,) (A,^ + B,)} - idt; 

m^th^ former of these m is an integer, in the latter m is a positive integer 

By differentiating expressions of the form 

fim-i ^ ^ ^ {(A^p + B,) (A^P + &)ji 

it is e^y to obtain r^uction formulae by means of which the'above 
integrals can be expressed in terms of one of the three canonical forms: 

(i) f{(^J‘ + B,)(A,P + B,)}-idt, 

(ii) ft‘((A,P + B,)(A,P + B,)}-idt. 

(iii) J(l +i7?)-+ B,)}-idt. 

y Legendref elliptic integrals of the first, 
second and third lands, respectively. 

The elUptic iotegml of the 6m kind preseme no diffienity. as it can be 

a subatitation baaed on the integral fomml«, of 
^ 22 121, 22 122, thus, if A^, JSj, Ag,, J?, are all positive and A.B, >A B 
v-e write ® 

=B,ics (u, k). [Id*= 

* See, e.g., Hardy Integration of Function, of a ,ingle VariabU (Camb. Math. Tracts No 
t Exercices de Calcul Integral, i. (Paris, 1811), p. 19. * ‘ 
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£mm^de 1. Vmify tlmt, in the esse of reed int^rals, the following sclieme gives 

ail pewiHe fmmtMij different arrangements of sign, and determine the appropriate 

substitutions neoMsary to evaluate the corresponding integrals. 

+ + ^ + - 

A + - + - - + 

-if + + + 4* - 

i?. + + + - 4* 4- 

SmmjiU 2. Shew that 

Jsn udu^^log , Jen u arc tan {h sd u\ 

fdnudu=&muj f sc u 
J J 24r ®dnt^-i^’ 

jdsudu^^l jdc.du^l log[±^^, 
and obtain six similar formulae by writing u+K for w. 

(Qlaisher.) 

Exampk 3. Prove, by differentiation, the equivalence of the following twelve 
expre^ions: ® 

J dn® u d%y 

P* tt+dn sc jne^ 

dn V sc « — J sc® (fw, 

M + acdt£-ifc2 jc(Pudu, 

dn uGau-jde^udu, 

Emmpls 4. Shew that 

d^ sn® u 

u+jen^ udu, 

M—dn MC8w-Jns®t/cfM, 

F Sn 24 Cd W +P2 J3j^J2 

^2 24+ F sn 24 cdu + Jt^k^ Jsd® 24<f24, 

— dn 24 CS 24 — jes® 24 fl?24, 

24 + dn 24 SC 24 — J dc® 24 du. 

au" u 

' du^ (1sn»M+ra («+1) *2 an-+s!(, 

obtai^deven dmilar formulae for the «ecohd differential coefficients of cn-«, 

r Wru.Z “ ""“T" “d the reduction formula for Jp{(d.«»+iSi) (4s<«+^,)}-i* j 

(dacobi; and Olaisber, Jfessenaer, ii.) 
Sample 5. By means of § 20-6 shew that, if a and /3 are positive, 

where ej is the real root of the cubic and 

5'3=-(a*-^s){(aa-/3!)S+3e„Sj3ij/2ie: 
^.d prov. .hi, .h„ . „h ,9 „ 

- 3 (2^3)ij a2-j-^2^2 ^3 . | 2^3 
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Esampk 6. Deduce from example 5, combined with the integrai formula for cnt^, 
that, if ^8 is positive, 

/.. (4«3+5r3)-i*=2 (a*+/3«)-i K', 

where f) (2^3)^, ^=(V3+f) (2^3)^, and the modulus is 

22‘73. The elliptic integral of the second hind. The function^ E{u). 

To reduce an integral of the type 

((A,t> + B,) + B,)} - idt, 

we employ the same elliptic function substitution as in the case of that 
elliptic integral of the first kind which has the same expression under the 
radical. We are thus led to one of the twelve integrals 

j&u^udUf Jcn^wdw, ... jnd^udti. 

By § 22*72 example 3, these are all expressible in terms of Uy elliptic 
functions of u and /dn^ udu 5 it is convenient to regard 

dn^udu 

as the fundamental elliptic integral of the second kind, in terms of which all 
others can be expressed; when the modulus has to be emphasized, we write 
E(u, k) in place of 

We observe that 
dE {ti) 

du 
dn^Uy E(0)^0. 

Further, since dn’u is an even function with double poles at the points 
2mK-i- (2n + the residue at each pole being zero, it is easy to see that 
E(u) is an odd one-valuedf function of « with simple poles at the poles 
of dn u. 

It will now be shewn that E{u) may be expressed in terms of Theta- 
functions ; the most convenient type to employ is the function 0 (u). 

Consider A ; 
du (©(ii)] 

it is a doubly-periodic function of u with double poles at the zeros of 0 (u), 
ie. at the poles of dnt4, and so, if J. be a suitably chosen constant 

* This notation was introduced by Jacobi, Journal far Math. iv. (1829), p. 373 [Ucs. WerkCy 
1. (1881), p. 299]. In the Fundamenta Novay he wrote £ (am u) where we write £ (u). 

t Since the residues of dn*w are zero, the integral defining E (u) is independent of the path 
chosen (§ 6-1). 
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is a doubly-periodic function of u, with neriods 9K' -*1,1 

d« Ie(a)] “ ~{u-iKy^. Hence -d = 1, so 

dn>«=^i®>)l + :^ 
du\%{u)]^K’ 

Integrating and obaerving that 6'(0) = 0, we get 

E (u) = S'(u)/e (u) + uE/E. 

Since 0' (E) = 0, we have E (E) = E; hence 

.b« <™»i„ 5. ^ 
E=i {2-i*-5,"7W-»i')} e: 

22-731. The Zetorfunction Z (u). 

Motion E(u) is not periodic in either 2E or in 2iE’ bnt «..» • ^ j 

ooavkMent to W ILT “l i* » 
stagly-periodic, and .uch a Wioa i, *°°"“ “ 

Z(w)=0' (m)/0(«); 

from this definition, we have* 

e(a) = S(O)eap{/;Z(0*l. 

22732 ^'^*tion-/ormulae/or £;(u) andZ^tt). 

Consider the expression 

+ _ ®>) _ S'(v) . 
S(u + v) 0(m) 0^+^8nw8n7;sn(M + ») 

.b«.. 1. tt, .„k„ ot ’T, MW i..« 
valued, as it should be, siuL 6(13) U one-Valued. w therefore one- 
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qua fiipctioD of « It is doubly-periodic* (periods 2K and 2iK') with simple 

t-Sr 18 1, and the residue of sn m sn » sn (w + «) is /fc-i sn d sn (tX' + ti) = i5r-» 

Hence the fonction is doubly-periodic and has no poles at points 
wngruent to tX or (similarly) at points congruent to^tX'-t,^By 
Liouylles theorem, it is therefore a constant, and, putting « = 0 we see 
that the constant is zero. ® w, we see 

Hence we have the addition-formulae 

Z (v) - Z (u + v) = i^snusnv an(u + v), 
^(u) + £;(v)-^(u + v) = A*SUM sn® sn(m + 4 

[Note.- Since Z(u) and £(u) are not doublv-neriodin it io ^ -i-i x 
algebraic relation can exist connecting them wi&^n«, cn« 
addUion-tkeoremc in the strict senset.] cn « and dn li, so these are not 

22*733. JacoMs imaginary transfarm/caionX of Z (u). 

racob., type for the taeboe Z («). Te obtain it, we trenriate the fomT 

a’j (ta: I t) = (- tT)i exp (- irV/w). {ixr' i r') 

nto Jacobi’s earlier notation, when it becomes 

H (ta + X, A) = (- ir)i exp ^ 

nd hence ^ 

cn (m, h) = (- tr)4 exn (@ («. 
_ ,. Uxxv (01 t) ^{iu,k)' 

the logMithmie differential of each aide, we get, on making nae of 

Z (iu, >k) = t dn {u, k') sc (m, M) - iZ {u, A') - viuj^^KK'). 

22*734. JacoMs imaginary tramformaticm. of E{u). 

It IS convenient to obtain the transformation of E (u) directly from the 
itegral definition; we have j ai 

fiu 

E(lu, k)=J^ dn»(t, k)dt = dn»(if, yfc)idt' 

= i|“dc»(f, k')dif, 

L writing t = if and making use of § 22*4. 

* 2j,E' is a period since the additive constants for the first two terms cancel 

t A theorem due to Weierstrass states that an analytic fnnction./(r), posse»inz an addition 
>orem in the strict sense must be either ^ ^ ^ ©ssmg an addition- 

(i) an algebraic function of z, 
(n) an algebraic function of exp 

(iii) an algebraic function of ^ (z | wj, wg); 
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Hence, from § 22‘72 example 3, we have 

E(iu, k) = 1 |m + dn (w, k) sc {u, k') — j dn’ (<', ¥)dl!^, 

and so E{iu,k) = iu + id3\ (u, k') sc (u, k') — iE (w, V). 

This is the transformation stated. 

It is convenient to write E' to denote the same function oik' bbE is of k, 
i.e. E' = E {K', E), so that 

E(2iK',k) = 2%(K' -E'). 

22'736. Legendre’s rdoMon*. 

From the transformations of E(u) and Z(w) just obtained, it is possible 
to derive a remarkable relation connecting the two kinds of complete elliptic 
integrals, namely 

EK' + E'K-KK‘=\'!r. 

For we have, by the transformations of §§ 22-733, 22-734, 

E (iu, k)-Z (iu, k) = iu - i {E (u, k')-Z (u, A')} + rnul{2KK‘), 

and on making use of the connexion between the functions E {u, k) and 
Z {u, i), this gives 

iuEIK ^iu^i {uE^IK'} + 7nul{2KK'). 

Since we may take u^O, the result stated follows at once from this 

equation; it is the analogue of the relation xs i Tj-i which arose in 
Ji 

the Weierstrassian theory (§ 20*411), 

Example 1. Shew that 

E(U’{-K)~E(u)^E~k^m u cdu. 

Emmple 2. Shew that 

E(%u+2iK')^E(%u) + 2i {E' - E'). 

Example 3. Deduce from example 2 that 

E{u^iE)^:^E{2u+2iK')+^i^sti^ {u^iK') sn {2u+2ir) 

^E{u)-k‘mud&U’k‘i{K'- E'), 

Example 4. Shew that 

E{u+K-\-iE)—E{u)-m.udou + i (£' — E'). 

Example 6. Obtain the expansions, valid when | /(it) (r), 

{kKfe,nH=K^-KE-i,r^ 2 Kz(u)=^S^ 2 
n=l 1-2^^ 1-2^ 

(Jacobi.) 

* Extrcica ^ Calctd luUgral, i. (1811), p. 61. For a geometrical proof see Glaisher, 
Meaenger, ly. (1874), pp. 95-96. ’ 
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22-736. Properties of the complete elliptic integrals, regarded, as functions 
of the modulus. 

If. in the fonnulae we differentiate under the 

sign of integration (§ 4-2), we have 

dE , w IT 

dk^~jo 

Treating the formula for K in the same manner, we have 

dK f rJST 
dF^Jo = sd=wd« 

by § 22*72 example 3; so that 

dK _ E K 
dk kkf^ k 

If we write = c, k'^ = these results assume the forms 

^dE_E^K ^dK E-^Kc' 
do c ^ dc cc' 

Example 1. Shew that 

^dE _K'-E dK ^cK'-E^ 

dc d ^ dc cd ' 

Example 2. Shew, by differentiation with r^ard to c, that EK'+EE-KK' is 
constant. 

Example 3. Shew that K and K' are solutions of 

and that E and E' - E are solutions of 

(L^ndre.) 

22*737. The values of the complete elliptic integrals for mnall values ofk. 

From the integral definitions of E and K it is easy to see, by expanding 
in powers of k, that 

lim Z« lim = iTT, lim (K-E)lk^ = i-Tr. 
ifc-»-0 ^ k-^O '^^4 

In like manner, lim E' = cos <f»d<f> = 1 
*-»0 Jo r -r ■ 

It is not possible to determine limJf^ in the same wav because 
4-*0 

(l-A'»sin»<^)-i is discontinuous at <j) = 0, A = 0; but it follows from 
example 21 of Chapter xiv (p. 299) that, when |argA;| <7r. 

lim {K' - log (4/A:)} = 0. 
*-*•0 
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Tto result is also deducible from the formulae 2tA''=«-rV 3/9.S hi 

or it may be proved for roal values of. by the 

By § 22 32, now, when.<«<^4 lies between 

and, when V^<.<1, He, between 1 and 1-.. Thereforo A'lies 

aod therefore ^ 

£'^(l _ 6k) - ijlog + _ 1 ylk I 

whero < 1. ~ P !<« + V(1 -i)}-log.j, wheroO^Stf^l. n2iog{l+V(l-.)}-log.j, 

Now li^j-2 (l-tf.)-i log {1+^(1 -.)}_log4]=0, 

im {1 - (1 - ek)"" i} log ^^s=o, 

and therefore lim{jr'-log(4/.)}=0, 

which is the required result *"** 

EirampU. Deduce Legendre’s relation from § 22-736 example 2, by .^q. 

22-74 The elliptic integral ofihe third hind*. 

To evaluate an integral of the t3?pe 

J[1+JViS»)-> + B,) (A^P+ £,)} - i dt 

m t^ of knotm functions, we make the substitution made in the corre- 
spon g integrals of the first and second kinds (§§ 22-72 22-731 Thf» 
mtegial is thereby reduced to 

[€l + y r gj,s^ 
irFiisn; **" “+(^- 

where a. „ are constants; if v = 0, -1. oo or -*» the integral can be 

“I? f» «*1>« value, 
p ive determine the parameter a by the equation v =- - *» sn» o and then it 

18 evidently permissible to take as the fundamental integral of the third kind 

n («, o) = r’fc*-^aonadnasn»a 
yo 1 —^sn^asii*^ 

To exp,^ this in terms of Theta-functions, we observe that the inte¬ 
grand may be written in the form 

ii‘sn«8na{8n(« + a) + 8n(«-a)} = ^{Z(t*-a)-Z(«-ba) + 2Z(o)}. 

' 137-172, weemploy Ja^bi4 uoLt 
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by the addition-theorem for the Zeta-fonction; making use of the formula 
Z {u) = {u)j% {u), we at once get 

a result which shews that II (w, a) is a many-valued function of u with 
logarithmic singularities at the zeros Qt%{u± a). 

Eswmfle 1, Obtain the addition-fomiiila^ 

m a)+n(t;, a) -n (w+t;, W ® B e(t;-a) 
® © (t«+a) © (® 4>a) 

iQg l-i^sn.a%nuHnv&n{u+'&--‘a) 

l+ir^sn asn at sn t? sn (u+v+a)' 

(Legendre,) 
(Take ^*:^:2:w=u:v:±a:u+v±ain Jacobi’s fundamental formula 

£Mimple2. Shew that W+[1]=[4T+[1]'.) 

n (it, a) - n (a. It) =itZ (a) - aZ (u). 

(Legendre and Jacobi) 
[This is known as the formula for interchange of argument and parameter.] 

Example 3. Shew that 

n(it, a)+n(M, 6)-n(if, 
® 1+i^snasn 68nat8n(a+6+tt) 

+an a so 6 sn (o+5). 

[This is known as the formula for addition of parameters.] (JacobL) 

Example 4. Shew that 

n(iit, ia+K, k)=n(u, a+K’, P). (Jacobi.) 

Example 5. Shew that 

n(it+®, a+6)-t-n(«-», a-b)-m(u,a)-2n(v, b) 

=a sab. {(u+v) an (a+b)-(u-v) sn (a-b)) -pi lotr ^-fsaHti-a)sn^(v-b) 
1 -4“ X?*sn* (u+a) sn^ (v +* b) 

nd obtain special forms of this result by putting t? or 5 equal to zero. (Jacobi.) 

22*741. A dynamical application of the elliptic integral of the third hind. 

It is evident from the expression for n {u, a) in terms of Theta-functions that iiu,a,h 

re real, the average rate of increase of n {u, a) s^u increases is Z (a), since © (t^ + a) is 
ariodic with respect to the real period ^K. 

This result determines the mean precession about the invariable line in the motion of 
rigid body relative to its centre of gravity under forces whose resultant passes through 
3 centre of gravity. It is evident that, for purposes of computation, a result of this nature 
preferable to the corresponding result in terms of Sigma-functions and Weierstrassian 
&ta-functions, for the reasons that the Theta-functions have a speciall}^ simple behaviour 
ith respect to their real ^riod—the period which is of importance in Applied Mathe- 
atics—-and that the g^-series are much better adapted for computation than the product 
r which the Sigma-fiinction is most simply defined. 

* No fewer than 96 forms have been obtained for the expression on the right. See Glaisher 
menger, x. (1881), p. 124. ' 
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22-8. The lemniscate functions. 

Th. totegnjj; in tie p»blem of reeling the 

rehtion between V and ^ by 

In like naanner, if 

we write ® 

Md we have the reUtioe — »• 1<«»> A. 

sin lemn <f> = coB lenm 0 to- — ^ j . 

with modulus 1/J? for expre^ m terms of elliptic function 
oauius 1/V-, for, from the formula (§ 22-122 example) 

It IS easy to see (on writing y = tf2) that 

s“le“n^ = 2-isd(,^V2, 1/V2),- 
Similarly. cos lemn ^ = on f2, 1/^2). 

Further, is the smallest positive value of ^ for which 

cn(^V2, 1/V2) = 0, 
so that 

thus renders it possible to express Z, in terms of Gamma-functions, 

ir.- 24/V --idf = 2-*/\-i(i _„)-i 

"2-5r(i)r(i)/r(f)=iJ.-i{r(i)u 
a result first obtained by Legendreg. 

.®“““ * ■ *' ‘ ‘ “ Mo™ ‘I»t jr.. if.', „d» 

i Bxercica de Calcul Inttaral, i. (P,rig, ign) „ om , 
where w*2*62205756.... ' **’^^'* -Kb w 1*85407468..., 
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Example 2. By writing <=(1 - vP)i in the formula 

hew that (1 

nd deduce that 2Ji- ir„=2wl {r (i)}-» 

Example 3. Deduce Legendre’s relation C8 22•7^s^ « 
22-736 example 2. ^ ^ example 2 combined witb 

Example 4 Shew that 

sin lemn®^ = ^ -"COs lemn^^ 
1+COS lemn^^ * 

22*81. Thevalve,of K and K'far special valuee of k. 
It has been seen that, when ^=: l / /9 ir i .l , . 

,d ir=ir’; this is a special case of a ^neml thelt'SlrwW^ Gamma-functions, 

~ __ ^‘\‘hkjn 

Si.'SJ’ "■'’■*“• J i. . »ot of „ Jg.b„io «h ioleg.^ 

z^tTsjf ™ ;z'n*‘‘r “<*» - . , . , , wwK,, out tnere are three distinct cases in whirh I- r ir^ „n 
,ve fairly simple values, namely “ ^ 

(I) ^=^2-1, K'^K^% 
(II) i=8in^ff, K'=K^3, 

(III) i=tan2jjr, K'=^K. 
Of these we shall give a brief investigation t. 

(I) The quarUr-periods mth the madvlus ^2 -1. 

Landen’s transformation gives a relation between ellintic funcHAT,.. „.;fi , 
1 those with modulus -ti=(l-h)j{\-\-E')■ and the oiii^^r • a “modulus h 
s modulus satisfy the relation A-'I^^UK'IK. assoeiatea with 

If we choose k so that then A.=K' and k/-k an that jr a j.,. 
A=2i:7irgives A'»=2Al ‘ “ 

Therefore the quarter-periods .a, a' associated with the modulus I. given by the 
lation Ii-(l-Ii,)/(H-ii) are such that A'=±aV2; i.e. if then A'-^ \ /2 
tee A, A' obviously are both positive). ^ t eii A -aV2 

(II) The quarter-periods associated with the modulus sin 

K’^K^Z. 

* Abel, Journal fiir Math. in. p. 184 [Oeuvres, i. (1881), p 377] 

For some similar formulae of a less simple nature, see Kronecker. lUrhner SiUuvgsberichte, 

: E^mces de Calcul Intiffral, i. (1811), pp. 59, 210; Fonctious FUiptiques, i. (1825), 
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This resvdt foUows from the relation between definite integrals 

To obtain this relation, consider J(1 taken round the contour formed by tl 

^of the real axisjodented at an are of radius 5-) joining the points 0 ar. 

A the hue jormng fJsW to 0 and the are of radius N joining the pointe 5 and Hei^ Z 
£-*co, the int^ round the arc tends to zero as does th« ^ j fi. • , ’ 
aiMi so, by Cauchy’s theorem, ’ “ integral round the mdentation 

/.' (^- iridr+ei'^J” (i 
on writing a; and respectively for z on the two straight lines. 

Writing 

SO, equating real and imaginarj parts, 

and therefore /r+/s-/sV3-47,+/3-1/3=0, 

which is the relation stated*. 

Now, by § 22-72 example 6, 

/3=4(a»+/3»)-4A; /i+/3=4(ai+l3»)-4A-', 

where the modulus is 

a®sss2^3~3, ^**a2;^3+3, 

^ (2 - 

We therefore have 

3 2A-=3-2.2ir'=/,=34/j 

when the modulus i’ is sin 

(Ill) The quarter-periodt wUh the modviut tan*\n. 

m Landen’s transformation (8 22-42), we take 1 / /o 1. 
now thrs value of j& gives ‘ *-l/V2, we have a'/a=2Z7A=2; 

s^ti ‘“• A., 

a=.d. ' ■' fo, , i, Ui, toit^au I, I„ 4. ii „ 
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Mxampie 2. Shew that 

2ie-A>r=^n + 3*6" W3= J ^j_^-2„,/V3, 
»=1 

(Glaisher, Me^zenger^ v.) 
&campU 3. Express the coordinates of any point on the curve i « the form 

l+cna4 (1 + cn w)2 

rheie the modulus of the elliptic functions is sin^^, and shew that !=^=3-l« 
du /au ^ 

00 f‘>K 

Example 4. Shew that, when -1, 

/i ^ +|y^ {=^-^y~'—x-^y-V)dx-, 

ad thence, by using example 3 and expressing the last integral in terms of Gamma- 

inctions by the substitution x=t-4, obtain the formula of Leeendre fC^W t i 

60) connecting the tot and second complete elliptic integrals 4h modStlSr 

>e 6. By expressing the coordinates of any point on the curve 1 - in 

r-i _3*(I-cp^>) ^_2.3Ssn®dn«? 

l+cni> ’ “ (i + on®)3 ’ 

which the modulus of the elliptic functions is sin ^a-, and evaluating 

terms of Gamma-functions, obtain Legendre’s result that* when jfc=sin 

22-82. A geometrical illuetration of the functiemx sn «, cn u, dn a. 

A geometri^l repre^ntation of Jacobian elliptic functions with ;t=l/V2 is afforded by 

e aro of t^ lemni.,cate, as has been seen in § 22-8; to represent the Jalbian toSoS 

“k' ‘ b..« 

TJ» . .ph«. rf „„i,, .itt .t th. origin, „d 1« the ojladririd 
)rdinates of any point on it be fo, 6 z) so x i poiar 
jiven by the formulaj ^ ^ 

(0&)2=p2(rf^)* + (l _p2)-l 

differentiation that 
. +E K — KK IS constant, he used the results of examples 4 and 5 to x x 
ore using the methods of § 22*8 example 3 and of § 22*737 ’ 
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Seiffert’s spiral is defined by the ^nation 

where s is the arc measured from the pole of the sphere (i.e. the point where the axis of $ 

meets the sphere)^d ir is a positive constant, less than unity*. 

For this curve we have 

and so, since s and p vanish together, 

p-sn (», i). 
The cylindrical polar coordinates of any point on the curve expressed in terms of tls 

arc measured from the pole are therefore 

(p, ^)«(sn s, hi, cns) ; 

and dn s is easily seen to be the cosine of the angle at which the curve cuts the meridian. 
Hence it may be seen that, if iT be the arc of the curve from the pole to the equator, then 
sn s and cn j have period 4ir, while dn s has period 2K. 
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Miscellaneous Examples. 

1.. Shew that one of the valu^ of 

f/<hm+cntg\^ , /dnu-cnu\^) J/ l-snw , / l+snt4 \i] 

tv 1+cnt^ / "^V l-cnu / j \\dnu--FBnu) V^in^^+i^'snV J 
is 2 (1 +i?'). (Math. Trip. 1904.) 

2. If x+^^sn*(tt +fr) and jp—ty=sn® (u~~iv% shew that 

{(4?- l)*+y®}^»»(ja!^+y*)^ dn 2it4-cn 2w. 
(Math. Trip. 1911.) 

3. Shew that 

4. Shew that 

* If If >1, the curve is imaginary. 

(Jacobi.) 
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_ ^ l~hcn (u+v) cn (u ^v) 
®- Express ^(u-v) “ ^ sii*«+8n»i>. 

6. Shew that ^®***‘*- '^"P- *809.) 

sn (it-v) dn (it+v)_™ <*dn«cP»’-sni>dni!cnit 
sn^ u sn^ V * 

7. Shew that 

{1 - (I + ir”) sn It sn (it+^} {1 - (1 - i/) sn It sn (it + «■)}={sn (it+iS") - sn It}*. 

8. Shew that "^P- 

sn («+*£■)=(1 +i!') - i ^wm+cnitdnit 
1 — (1 — ir') an® 14 ’ 

sn (11+^1^')='^“ i (l+^)8P«+icnitdnit 
l-hkan^u "* 

sin {am (it+11)+am (it -»)}» ^ ™ ^ 
1 — 

CAS {am (u^v)-am (w- v)\« 
1 —l^sn^ttsn^t? 

9. Shew that 

10, Shew that 

bod hence express 

(Jacobi) 

dn (u+*) dn (it-i>)-^^^^?4^t^ 
' n8*uns*ii—/I* ’ 

rff>(u+v)-et fp{u-v)-eif 
lfP{^+v)-ei' fp(v-v)-e^J 

IS a rational function of p (it) and f (®). (Trinity, 1903.) 

11. From the formulae for on (2£--ii) and dn (aiT-it) combined with the formiUae 
or l + cn2t4 and l+dn2w, shew that 

(l-cn|jr)(l+dnJZ)-.l. (Trinity, 1906.) 

12. With notation similar to that of § 22'2, shew that 

cidj-cjcft cn(iti+itj)-dn(iti+ita) 
»i-*a 8n(it,+«g) ’ 

nd deduce that, if iii+«2+«s+ii«->2jK; then 

M-Cidi) (fydt-eid3)^lf* (*,-<,) (a,-*,). 

13. Shew that, if « + »+«,=o, then (Tnnity, 1906.) 

1 - dn^ It - dn^ 1? - dn^ IT+2dn M dn V dn wmmk^m^ u sn* v sn* w. 

(Math. Trip. 1907.) 
14. By Liourille^s theorem or otherwise, shew that 

dnu dn (tt*f tc)—dn v dn (i?+tr)«i:* {sn v cn it sn (v+w) cn (w-j-tc) 

—sn It cn sn {u^w) cn (v+w)}. 

It Sh»U,.. (>u»THp.mo.) 

2 cn «, cn «, sn («2 - It,) dn Iti+sn (u, - it,) sn (it, - uj) sn (itj - «,) dn «, dn it, dn u,- 0, 

ie summation applying to the suffices 1, 2, 3. (Math. Trip. 1894.) 
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16. OMain tlie formulae 

an 3i^ * .4 /D, cn Zu=BjD, dn Zu=(7/i), 

wkro .4=3#- 4 (1+B} aS+0^2^ 

B^c {1-4^+6Pir4 - 4k^8^+ 

i)= I+ 4F (1+^)- 3^38, 

aiMi ^*»si2w, c=cnt^ d=^dnu. 

17. Shew tlmt 

1 -dn 3u ^ /i - dn u\ /l+aidnw+a2dn^M + <23dn3?«+a4<iii4^4\2 

l+dii3« \l+<inii/ \i ~Oj dn ti+ctj dn^u — dn^u-f<24 dn*^u) ’ 

wh«e Oij Og, %, 04 are constants to be determined. (Trinity, 1912.) 

^ ^ Vl+dn«y ’ 
la If 

shew that 

,l+dn( 

P('u)+P{u+ii£') _ sn 2ii cn M 
l‘{ft)-P(u+2iK’)'~ cn 2u an u‘ 

Demine the poles and zeros of P(u) and the first term in the expansion of the 
fonction about each pole and zero. 

1». Sh..U.rt (M.lh.Trtp.I90e.) 

sn(ih+«3+«3)=A/Z), en(4£i+as+«,)=5/i), dn{ui+ua+Ui)-=CIJ), 
wlme 

+2 {siCiCsdida (1 +ZP»iV-}i^2i2^>3% 

B~eietC3 {1 -F2*s»(s*+aHs,*asW} 

+ 2{c,»2a3<ii<4 (- 1 +2/ti>«22332+2Psi2_F2»o2i3S)>„ 
C=didtdi {1 - i52sj*»3S+2Pai*V<i*} 

+^2 {<^S2^C2C3 (— 1 + 2^23^2^2,j.2^j3_^2^2 3\) 

i)=l - 2i:»2i,22s’+4 

and the summations refer to the suffices 1, 2, 3. (Glaisher, Me^er, tl) 
20, Shew that 

sn(«i+«3+«3)=A72)', cn(«i+!tj+«3)=5'/iy, dn(«i+uj+M3)=C"/i)', 
where ^'“2»iCje3<4<4-*ii^*3(l+i2_£2S*j!^.^3j2^23j2)^ 

■B'=CiC2C3(1 -i‘Si>«2W)-<il<f2<f32a3*3CiC?i, 

C =<^<f2<4(l~^*lW»3*)—i®Cie2C32*2a3Ci<fi, 
i)'=l -i»2»,».3» + (^+£*) »,**2V--t*SlS2%2SjC3<!3^4<4. 

(Cayley, Journal fiir Math, tt.t ) 

intersections of the twisted curve 
*»+y»=l, with the variable plane Ix+my+m-^i, shew that, if 

%+1/2+% + W4 = 0, 
then 

=0. h Cl di I 

«2 C2 1 

^3 C3 £4 1 
*4 C^ C4 1 

Obtain this r^ult also the equation 

, . , , ^^“^i)(^3<4'“<f4<4) + (^4-«3)(<Jlif2*C2<4)==0, 
Which may be proved by the method of example 12. 

(Cayley, Memnger^ xiv.) 
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22. Shew that 

by expressing each side in terms of ,,, ,,; and deduce from example 21 that, if 

Hc^di+«3<?ic4+^C4c4 +«i c^d^^O. 

(Forsyth, Mm%mger^ xit.) 

23. Deduce from Jacobfs fundamental Theta-function formulae that, if 

^+t^2 + «3 + t^4 = 0, 

~ did^d^d^^O, 

(Gudermaim, Journal fiir Math, xvin.) 

24. Deduce feom JacobFa fundamental Theta-function formulae that, if 

W| + % «f 1% 4-1^4= 0, 

^ - <^1 <?2«3«4) “ + <4c?4 = 0, 

^2 (jri«2~%a4)+<4<4cs^4--<?lC2<4fi4==0, 

SlHd^di - C?i<4«3«4 + <J3C4 - Cl Cg ==0. 

(H. J. s. Smith, iVoc. London Math, Soc, (I), x) 

25. If «ii4-%+%-fW4=0, shew that the cross-ratio of sn u. sn u • 
to the cross-ratio of sn {u^+K), sn an (u^-^K), sn *’ “* “ ^ 

26. Shew that (Math. Tnp. 1905.) 

sn*(tt-p®) sn (w-Hd) sn(M-®) sn*(t<-®) 

on»(«+») cn(M-H®) ca(M-i;) on^{u-v) 

I dn2 («-1- v) dn'(M+v) dn (« - v) dn^ (a - ®) 

(Math. Trip. 1913.) 

are Sal “ «‘nd . 
■ (Math. Trip. 1901.) 

28. If i'=l (a-i_a)2 where 0<a < 1, shew that 

auHK= . ■ 
* (!+«») (1 +2a-a*)* 

and that sn»is obtained by writing -a-i for a in this expression. 

(Math. Trip. 1902.) 

29. If the values of cn which are such that on 3*=a, are c„ ... shew that 

3^ n Cr + ^* 2 c,.=0. 
r^l r=l 

(Math. Trip. 1899.) 

30. If q+8n(^-fy)^6-fcn(^-H;) c+dn (u+v) 

a+an (w - r) 6 -j- cn (w -1?) c+dn (u - v) ’ 

and if none of snv, cna, dn«, l-l:»sn=>^sn“® vanishes, shew that u is given by the 
eQ^uation 

(Ir'2a2 + 62 - c2) sn^ M=/•'S 62 _ c2. 

“(l-i3,jV)’ ■ 

(King’s, 1900.) 
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3L Shew tliat 

l~8Ji(2^x/flr)—(1—sin4?) n ~sin ^^ 
»=*i i (l -* 000^ * 

32. Shew that (Math. Trip. 1912.) 

=-l-?(2-gr/,) - iI-%*"-^8iDar+g«»-iil 
{dn(2A*/w)—pan(2iEi?/ir)}^"'«=i • 

(Math. Trip. 1904.) 

33. Shew that if i be 80 smaU that P may be n^lected, then 

for small values of K. 
(Trinity, 1904.) 

34. Shew that, if l/(®) | <irI(T), then 

logon(2A»/w)=logcosX- S 
l,_l»{l+(-j)i«}- 

[Int^rate the Fourier series for sn {iKxlir)de (2irx/w).] 

35. Shew that 

jo 5n*»dn>M‘^“={(1 +*')*-1}/^. 

(Math. Trip. 1907.) 

(Math. Trip. 1906.) [Eipress the integrand in terms of functions of 2u.] 

36. Shew that 

where 2Ax=x»,2iry=,r. ^i(y+i’rr) 

37. Shew tibat 

(1+P)P» p 8n»utf« 
Jo (1+CU u) dn*u 

(Math. Trip. 1912.) 

«L 

38. Shew tiiat 

“l-AsnasnjS’ 

(Math. Trip. 1903.) 

(St John’s, 1914.) wujLiu s, 
39. By integratiDg f^dnuca udz round a «v>+nV. i 

i i. *..■ (.b., 

®o8(xu/X)log8nitd«=jA-tanh(Jfl.tV). 

40. Shew that Xand a' satisfy the equation (Math. Trip. 1902.) 

wh«?e c-pi; and deduce that they satisfv . 
-i with argument l-afs. ^ L^endres equation for fimctions of d^-ee 
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41. Express the coordinates of any point on the curve t^e form 

„„2VcosVj„-(l-cna){l+tanA,rcn«) 

2.3*sn«dn«+a-cnu)*’ ^ 2.3*sn udna+(l-cn«)*^ ’ 

the modulus of the elliptic functions being sin ; and shew that 

(1 - (1 -y.) - - J. 3* «. 

perS^'^ further that the sum of the parameters of three coUinear points on the cubic is a 

y*=(l-x»)(i-i>:c*).] 

4S. i„ ^ 

first kind with a real modulus. ,,, , 
(Math. Trip. 1911.) 

43- If «=j^ {(<+l)(i*+t+l)}-i*, 

express x in terms of Jacobian eUiptic functions of « with a real modulus. 

(Math. Trip. 1899.) 

44. If. «=J*(l+<>-2<*)-id^ 

express ^ in terms of « by means of either Jacobian or Weierstmssian eUiptic functions 

45. Shew that (Math. Trip. 1914.) 

s-'+S-9ir^.^-25r _(2^-I)r(i) 

■■■ 2^.* • 

46. When a>ar>S>y, reduce the integrals (Trinity, 1881.) 

j J(a-t)(t-ff)(t-y)}-idt, f*{(v-e)(t-/3)(e-y))-idt 

by tbe substitutions 

^-y=(o-y)dn2M, a;-7=08-y)nd2i> 

respectivelyi where /t*«=(a—/9)/(a-y). 

Deduce that, if u+v^JT, then 

1 - sn2 jt - an* i>+I-2 an* u sn* ®-0. 

By the substitutiony=(„-0 (r-^)/(i-y) applied to the above integral taken between 
.he limits ^ and a, obtain the Gaussian form of Landen’s transformation, 

in- 
^ (ai*oos*d+6i»sin«d)~4dd=J^ (a2cos*d+6®sin*(J)-idd, 

vhere Oi, hi are the arithmetic and geometric means between a and h. 

(Gauss, Werke, iii. p. 352; Math. Trip. 1895.) 
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47. Sliew th&t 

where the Zeta-functions are formed with periods 2»j, 2c»2=2A', UK'. 

48. Shew that £-i^K satisfies the equation 

A 

where c=F, and obtain the primitive of this equation. 

49. Shew that n (^-1) E'dky 

(n+2) j^k^E'dk=^(n+l)pk^K'dk 

" “=|fjt(l-t)(1 -ct)]-idt, 

shew that c (c _ 1) ^+(2c -1) ^ 1 
^*^4“ 4l(l-csc/; 

«(0 -1) S+(2c -1) ^ 1 „= 1 MLlf)] 
^*^4“ 4la-cj:)3 

51. Shew that the primitive of 

(Math. Trip. 1911.) 

(Trinity, 1906.) 

(Trinity, 1896.) 

Jh 
d>t+T+r:rj=o 

„_A(E-K)+A’E' 

(Math. Trip.,1910.) 

where J, A'are constants. AE+A (E' A')’ 
Ko r\ j i. (Math. Trip. 1906.) 
52. Deduce from the addition-formula for E(u) that, if 

“l+^^2 + % + % = 0, 

. - 80^380^^4) an (?£j-h Wo) 

^ (3w) - ZE (u) == - 
1 - 6i:2 ^+4 (F 4. ^4) ^0 _ 3^^ ^ • 

54. Shew that (Math. Trip. 1913.) 
f2K 

^iAi uod*udti=^K{{Z+k^)K-^{l^i^)E). 
[Write «=A+r.] ^ ^ / 
Kr -D^ .j - , (Math. Trip. 1904.) 

«i+«2+Ji3+?<4=0,*tTen * * y=l+mx+7UT^, shew that, if 

^(«.)+ Eiu,) + Ei.u,HEiu,)^k {-2.4a„3»4-2}^ 

Mowing ^seven expressTn! for 

kOZT-k^h^'!^r, 

Vn rill--^—•=  —'A.—±  ^ y7 4 

ksi S2 Ss 34 4- Cl C2 C3 ^4 

-• CiC2C^c^di d^d^dt 

^^glC2g3C4 i , , 
‘^CiCiC^C^ - >&'2 ^rdrlCr, 

d2d^d^-\-}c^cic>j,c^c^ y? 
4 

2 drl{Sj.€j.}^ 

2 Srl(c^dj,), 

£?1 C2(^C4 + ir'2^j52^3^4 ^rliSrCr), 

-'^•'{(^l*2*3*4)-' + (C4C,C3C4)-l + ^l(rf.<i,o;3d4)->}-I 2 l/(,,c.dA 

rs=i 

(Forsyth, Messenger, xv.) 
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57. Shew that 

na^ ^KjK- B) „ - ^cos2«x 

^ l-f*. ■’ 

when I /(x) I < B-/(r); and, by differentiation, deduce that 

® (■^) “®'(^)=®‘=‘^‘^-+4[(l+^}(^y-lJco8ec*a- 

+64 (1 +<^) E) _ 

Shew also that, when | /(,r) 1 < iw!(T), 

8n8('?i^^= i |l±^_(?!i±lZ/'_^Yl2”-?’’'^^si“(2«+l)j! 
V ; ,=ol2i:3 2i8 vsff'yj ’"iP(i-y2»+i)—=■ 

(Jacobi.) 

the'^rir^ei: ^hfel^eS^ 

I6+4')^+^H WV IV Vay r(f)+r®;- 
(Bamanujan, Quarterly/ Jcnimal, xlv.) 

59. Deduce from example 19 of Chapter xxi that 

i8cn8 2a=^^!!+^5i5^ i^+i*cn^«cn3^« 
1 +^=^808 uen 3a > l+^sn8asn 3a - 

(Trinity, 1882.) 
60. From the formula sd (fa, i) - f sd (a, F) deduce that 

i 2 ^-^f.^sinh = i- ? (-)"gi"'"* • /(M+^lTraN 
i+j8,.i V ^ ; A"„:„ i+j,2.+i v~^j’ 

S=exp(-,ir7A'), 9i=exp(-+ir/Ar'), 

ind a lies inside the parallelogram whose vertices are 

±iS±£:'. 

By integrating from a to K\ from 0 to a and again from a to A", prove that 

= A''8 2 (-)”gi 
n+i 

„=o(2»+l)=(l+Jl8» + l) 

[A formula which may be derived from this by writing a=^+i7;, where $ and n are 

eal, and equating imaginary ptirts on either side of the equation was obtained by Thomson 

,nd Tait, iFatoraf Philosophy, ii. (1883), p. 249, but they failed to observe that their formula 

vas nothing but a consequence of Jacobi’s imaginary transformation. The formula was 

uggested to Thomson and fait by the solution of a problem in the theory of Elasticity.] 



CHAPTER XXIII 

ELLIPSOIDAL HARMONICS AND LAME’S EQUATION 

23'1. The definition of ellipsoidal harmonics. 

It has seen earlier in this work (§ 18-4) that solutions of Laplaoe’s 
^uation. Which are analj^ic near the origin and which are appropriate for 
the di^ussion of physical problems connected with a sphere, may be cou- 
vemently expressed as linear combinations of functions of the type 

r«P,(costf). r-Pn”* (cos ^ sm 
where n and m are positive integers (zero included). 

“ resolved into a product of fectors which axe linear in 

«/n theu the toniU lumnonie e-i>. (co, 0) is eipressible as a product of fectoB 

hit harmomcs are similarly resoluble into factonr which are 
Im^ m < y. mui S. „„HipBsd by one of the eight products 1, w. y, r, yr, ra, 

The surfeij. on which any given zonal or tesseral harmonic vanishes are 
anrih^ on which either « or ^ has some constant vjue, so that toey^ 

o; Ptaea the cooidinate plane, being includ;! in certatotT 

When we deal with physical problems connected with ellipsoids the 

structure of spheres, cones and planes associated with polar coo^^nates is 
replaced by a strocture of confocal quadrics. The property of spherical 

of harmonics which shall vanish on certain members of the confocal system 

buch harmomcs are known as ellipsoidal harmonics; they were studied bv 
Lame* m the early part of the nineteenth century Ly meaTofUS 

coorfinatea The expressions for ellipsoidal harmonics iJ terms of Cartesian 

coordinates were obtained many ye^^m later by W B N™L+ a^T 
fcilcwing acccmit of their conetruction i, turned 1 hi. rLrST 

The fundamental ellipsoid is taken to be 

and any confocal quadric is 

at* f 

• Journal de Mat!,, nr. (1839), pp. 100-125, 126-163 
t Phil. Trans. 182 a (1892), pp. 231-278. 
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23-1, 23-2] 

where (9 is a constant. It will be necessary to consider sets of such quadrics, 
and it conduces to brevity to write 

a? & + dp ^ ~ a' + dp 

The equation of any member of the set is then 

3^ 
y^-^rdp 

@p = 0. 

The analysis is made more definite by taking the ^-axis as the longest axis 
Df the fundamental ellipsoid and the ^-axis as the shortest, so that a>h>c. 

23’2. The four species of ellipsoidal harmonics. 

A consideration of the expressions for spherical harmonics in factors 
ndicates that there are four possible species of ellipsoidal harmonics to be 
nvestigated. These are included in the scheme 

1, y, zx, xyz 0102... @m, 

rhere one or other of the expressions in {} is to multiply the product 
^102 .*• 0m. 

If we write for brevity 

0,@,...0^ = n(0), 
ly harmonic of the form H (©) will be called an ellipsoidal harmonic of the 
rat speaiea. A harmonic of any of the three forms* xTl (0), yH (0), zJi (0) 

ill be called an ellipsoidal harmonic of the second species. A harmonic of 
ly of the three forms* yzH (0), zxU (0), xyH (0) will be called an ellipsoidal 
trmonic of the third species. And a harmonic of the form xyzTL (0) will be 
,lled an ellipsoidal harmonic of the fourth species. 

The terms of highest degree in these species of harmonics are of degrees 
n, 2m + l,2m + 2, 2m + 3 respectively. It will appear subsequently (§ 23‘26) 

at 2n + l linearly independent harmonics of degree n can be constructed 
d hence that the terms of degree n in these harmonics form a fundamental 
stem (§ 18-3) of harmonics of degree n. 

We now proceed to explain in detail how to construct harmonics of the 
St species and to give a general account of the construction of harmonics of 

j other three species. The reader should have no difficulty in filling up 
} lacunae in this account with the aid of the corresponding analysis given 
the case of functions of the first species. 

. The three forms will be distinguished by being described as dillerout type, of the species. 
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23-21. The construction of ellipsoidal harmonics of the first species. 

As a simple case let us first consider the harmonics of the first specie 

form 0^^ second degree. Such a harmonic must be simply of th( 

Now the effect of applying Laplace’s operator, namely 

— 4..?1 

IS 
-+■ ■ + 

2 

+ 
c® + $1 

a® 4* 6® + c® 4- ’ 

and so 0, is a harmonic if 6, is a root of the quadratic equation 

{(9 + 6») (tf + o’) + (0 + c») (tf + a») + ((9 + a“) (^ + 6») = 0. 

_ has one root between - and - and another between 
and a. Its roots are therefore unequal, and, bv giving 6, the value of 

TtheroLdr^er 

bv n f ; this pniduct will be denoted 
u""'- ‘hat it has no repeated factors-a supposi¬ 

tion which will be justified later (§ 2.S-43). 

re^id 01. 0„ ... 0„ as a set of auxiliary variables, the 
ordinary formula ofpartial differentiation gives 

“ dU (0) 90^ m gn (0) 2a; 
dir ^ * n f)=i 30J) 

and, if we differentiate again, 

9"n(0)_ I 011(0) 2 

da; 30^ 'a‘ + 6f 

dai^ A 9e„ --I-1 
a*n(@) 8a!* 

“’ + ^jp ^ jA d%d% ■ (a* -f- dp) (a* -t- d,) ’ 

7*2*^ tI* all unequal paiie of the integers 
exDrea<!inri« A ^ a ''^hich p — q may be omitted because none of the 

P 1, 02,... 0* enters into n (0) to a degree higher than the first. 

It follows that the-result of applying Laplace’s operator to n(0) is 

2 2 1 
p=i a0p V'+dp'^d‘+dp’^c* + dpi 

-f xSSiSJ. 
p 

Sa^ 
pcpq^pdSrj {(a: 

Now 2 _____ 

‘V 
^p) («* + «'.) & + dp)'(d* d,) + (C* + dp) (C» -f K) 

a? 

toiiethlr ^ ellipsoidal liarmonics of the second degree is composed of these two 
together with the three harmonics 1,2, 2^. „j, which are of the third species. 
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"(0) with the fector e, omitted, 
while 3*n(0)/aeya0, consists of the product n(@) with the factors 0„ and 
0, omitted. That is to say 

ft g!n(0) _8n(0) ^ a’n(@) an(0) 
^90y90^ -. 90, « 90,90, 9@„ 

If we make these substitutions, we see that 

n(@) 

may be writteu in the form 

g 9n (0) f 2 2 2 8 1 
p=i 90, V + + + 

the prime indicating that the term for which j=_p has to be omitted from 
the summation. 

If n (0) is to be a hannonic it is annihilated by Laplace’s operator; and 
It will certainly be so annihilated if it is possible to choose 0-, 0. ...0 so 
that each of the equations ^ ^ 

All ^ 

:s satisfied, where p takes the values 1, 2, ... m. 

Now let d be a variable and let Aj (0) denote the polynomial of degree 
n in 0 •'6 

Tl(0-0,). 
9=1 

^ If Ai (0) denotes dAi (0)ld6i then, by direct differentiation, it is seen that 

W(0) is equal to the sum of all products of 0 - 0^, 0 - e^, ... 0—0^,m-l a.t 
I time, and Aj"(0) is twice the sum of all products of the same expressions 
a — 2 at a time. ’ 

Hence, if 0 be ^ven the special value d„ the quotient A,"(0p)/A,'(6',) 
•ecomes equal to twice the sum of the reciprocals of 0p—0^,0p — 0^^ .,,0 — 0 
the expression dp - 0p being omitted). ’ ’ p m, 

Consequently the set of equations derived from the hypothesis that 

[I (0,) is a harmonic shews that the expression 

a* + d 6=+<? c>‘ + d^ A/(^) 

anishes whenever 0 has any of the special values 0^,0^, ... d,„. 

Hence the expression 

(a= + d)(6» + ^)(c» + <>)Ai"(^) + | j £ (6' + ^)(c-“+^)1a/(5) 
l«, b,c ] 
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18 a polynomial in 6 which vanishes when 6 has any of the values 6. 6 

2tZ Z Now this polynom’id L: 
degree m + 1 m 0 and the coefficient of ^+' is m(m + J). Since m of th 
factors are known, the remaining factor must be of the form 

m(m+^)0+ IC, 

where (7 is a constant which will be determined subsequently. 

We have therefore shewn that 

(a‘ + 0) (b‘- + 0) (c* + 0) A" (^) +1 [ I ^ (b^ + 0)(^ + 0)^ A/ (0) 

. ={^(m + i)e + iC]A,(0). 

^ effipsoidal harmonic of the first species of (even! 
degree n is expressible in the form 

n f y* ^ ) 
p^iW+0j,'^ b‘+0j,'^^+0^ ~ 

where 0„ 0„ are the zeros of a polynomial A,(^) of degree ; and 

this polynomial must be a solution of a differential equation of the type 

4 V{(a> + ^) (6.+^ (c*+^)} (j, ^ ^ 
L (10 

= {n{n + l)0 + O}A^(0). 

-A ^^7“ “ differential equation. It will be in- 

SSA t u “ * »*-23-Sl, and in th, of th, 

m ^ f ^ 1 ^ which the equation has a solution which is a polynomial 
O egree |n, and (II) these polynomials have no repeated factorT^ 

th. TT ?“ >>? »‘'P •« 
xistence of +1 elhpsoidal harmonics of the first snecies of fpv^nV 

"in 

The corresponding results for hamonics of the second third and fourth 

SnXt already introduced b^g 

23-22. Ellipsoidal harmonics of the second species. 

We take (0,) as a typical harmonic of the second species of degree 

2i» ^ 1. The result of applying Laplace’s operator to it is 

a f S IIL(^ 1—1— 4. 2 j. 2 ) 
L,=i 50, k + + 

as* ^gn^)_f sa^ 8y^ 
m 90,30, l(a‘+0p)(a> + 0^) + (di+ 0p)(i=‘ + g ) 

8^* 

'(c‘ + dp)(c‘+0 
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and this has to vanish. Consequently, if 

m 
A,(d)= n 

we find, by the reasoning of § 23-21, that A,(^) is a solution of the differential 
equation 

(a“ + d)(l/‘ + d) {(? + 6) A*" (0) 

+ J {3(6* + d)(c» + tf) + (c» + ^)(as+ ^) + (a*+^)(5» + 5)} A^(j9) 

= {m(OT + f)^ + iC'4 As(tf), 
where <7j is a constant to be determined. 

If now we write A, (0) = A (d)Ma» + ^), we find that A {6) is a solution 
of the diflFerential equation 

4 + 6) (6> + ^) (c» + 6)} ^ FV((a> + e)(b‘ + 0) (c> + d)} - ^ 
L dLB 

= {(2m + 1) (2m + 2) 0 + 0} A {6), 

where (7 = 0, + 5»+c*. 

It will be observed that the last differential equation is of the same type 
as the equation derived in §23-21, the constant n being still equal to the 
degree of the harmonic, which, in the case now under consideration, is 2m + 1. 

Hence the discussion of harmonics of the second species is reduced to 
the discussion of solutions of Lamp’s differential equation. In the case of 
harmonics of the first type the solutions are required to be polynomials in 

6 multiplied by + the corresponding factors for harmonics of the 
second and third types are V(5’ + 0) and V(c’ + 0) respectively It wiU be 
she™ subsequently that precisely m + 1 values of C can be associated with 
each of the three types, so that, in all, -Sm + 3 harmonics of the second species 
of degree 2m +1 are obtained. 

23*23. Ellipsoiddl hdTrnouics of the thivd species. 
m 

We take as a typical harmonic of the third species of degree 

2m + 2. The result of applying Laplace’s operator to it is 

f« an (0) f 2 , 6 6 ) 

q. |___?^_I_^)' 
p*9 l(a‘ + ffp) (a.» + d,) ^ (5= + dp) (6> + 0^) (c» + 0^,) (c= + j J ’ 

and this has to vanish. Consequently, if 

g=l 
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we find, by the reasoning of § 23’21, that A, {6} is a solution of the differential 
equation 

(a^-he)(b‘ + e)(,d‘+e)A"iO) 

+ i{(b‘ + e)(d‘ + e) + B{c^ + d)(a^ + e) + 3(a* + e){b‘ + d)} A,'(6) 

= {m (m +1) ^ i C,} A, (6), 

where (7, is a constant to be determined. 

If now we write A* (^ = A (^)/V{(6* + 6) (<^ + 6)], 

we find that A (6) is a solution of the differential equation 

4 Vl(a‘ + 6) (6= + 5) (c* + 0)] ^ |^V{(a‘ + (6* + 0) (c> + «)} 

=» {(2m + 2) (2m -f 3) ^ + (7} A {6}, 

where C7 — C3 4* 4a® 4- 4- c®. 

It will be observed that the last equation is of the same type as .the 
equation derived in § 23*21, the constant n being still equal to the degree 

of the harmonic, which, in the case now under consideration, is 2m 4 2. 

Hence the discussion of harmonics of the third species is reduced to 
the discussion of solutions of Lame*s differential equation. In the case of 
harmonics of the first type, the solutions are required to be polynomials in 6 

multiplied by + 4^)}; the corresponding factors for harmonics of 
the second and third t37pes are 4 0) (a® 4 0)] and V{(<^® + 0) (6® 4 0)] 
respectively. It will be shewn subsequently that precisely m 41 values of G 
can be associated with each of the three types, so that, in all, 3m 4 3 harmonics 
of the third species of degree 2m 4 2 are obtained. 

23*24. Ellipsoidal harmonics of the fourth species. 

The harmonic of the fourth species of degree 2m 4 3 is expressible in the 
»» 

form (jcyz H (@p). The result of applying Laplace*8 operator to it is 
i)=i 

6 
flt® + 0, 0p 0p 

3®n(e) [ 8a!® 
90^30, 1 

8y® 82* 
(6® + 0p) + 0,) ^ (c® + 0p) (c® + 0g) }]• 

and this has to vanish. Consequently, if 

A,(0)^U(0^0,), 

we find by the reasoning of § 23*21 that A4 (0) is a solution of the equation 

(a» + ^)(6*+(?)(c® + <9)A;'(0) + | j 2 (6* + (9)(c® + ^)l A.'(tf) 
^ U# C* J 

= {m(m + 5)tf + i(74A,(^), 
where C!, is a constant to be determined. 
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If now we write 

At (ff) = A (^)/V{(a‘ + ff)(i<‘ + ff)(c3 + 

we find that A (^) is a solution of the differential equation’ 

4 V{(a» + (9) (5« + ff)(^ + &)} r^ ^ ^ ^ej 

^ do 

= {(2»n + 3)(2m+4)^+C'|A(^), 
C'=C', + 4(a^ + 5» + ,.). 

It will be observed that the last eouarinn ,'o 

equation derived in |23-21, the constart a being stilfL^to'lC T **“' 
of the harmonie which, in the caae now under c.uSd«i„nt 2^ + 3. 

Hence the discussion of harmonics of fKa 

diacutd™, of «,i.tio„ 0, w:;ritL 
j^utod to be polyucmiale in d multiolied by v((a- + «K6’^d)w“+r* T 
Will be shewn subsequently that preciky m +1 values lu^b! 

./W 

I^^»(*>y>^)denotesanyof the harmonics of degree Mwhiobb.v • * 
W totettvely constructed, then (J. (», y, a) ccu.i.tfcf a finite n™ter“f 
terms of degrees n, »-2, w-4 .. in 7f «• rr ir / t ot 

aggregate of terns of degree n, it follows iten'the hSotmeity otuS'ac‘'‘‘ 

operatorthat.ff„(a,y.a)i8itaelfaaolutionofLapIace’s.Muation and V 
obviously be obtained fion e.(w, y. v) by reph^LTrtSSt wS 
occur m the erpress.on of ff. (r, y, a) as a prvxiuct, by the factors 

It h» been shewn by Niven ((on A, pp 243-245) tbat Q. (», y, a) nav 

1_^ q. J)i 

2(2—1) 2.4.(2.-l)(2„-3)--2;4.6(2,-l)75rZ3)(Er5) + -. 
pvliere D® stands for 

We shall now give a proof of this result for any harmonic of the first species*. 

* The proofs tot harmonics of the other three species are left tn fV,o w j 

. proof applicable to fanctione of all four species has been • - v. rr , 

rath. Soe. xxir. (1893), pp. 60-64. In oonstreting the proof Jytn in the°te““’silr‘l st" 
Uions have been made in Niven’s proof. 
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For such harmonics the degree is even and we write 

On(a^, 3^, ^) == n = n (jTj, -1) 
p^l p^l 

“I" • • • j 

where ^n-4> • • • ar© homogeneous functions of degrees n, yi — 2, n -4,..., 
respectively, and 

S^^Hn(x,y.z)=^^K^. 
p=»l 

The function Sn-ar is evidently the sum of the products of Ki, JTa, ... 
taken — r at a time. 

If jSTi, j^a,... he regarded as an auxiliary system of variables, then, by 

the orrlinary formula of partial differentiation 

dSjf^.^ -a; T 
dx dKp dw 

^ ^ dSn^ 2x 

pti dKp *a^^0p' 

and, if we differentiate again, 

3ic® p^i dKp a® + pj^ BKpdKq (a® + dj,) (a® 4- 0q) 

The terms in dFSn-^jdKp^ can be omitted because each of the functions 
Kp does not occur in 8n^ to a degree higher than the first. 

It follows that 

2a® ^ 2fc* 
_x dKp (a® -¥ 6p 6® + 

• 2c> I 
Bp <?-¥6^' 

Saw 86y 
■+; ((a® 4- tfp) (a® -f ^5) (6® + ^p) (6® 4- ^5) (c® 4- 6^ (c® 4- 

It will now be shewn that the expression on the right is a constant multiple 

of/S, 

We first observe that 

dpKp-dqKq 

and that, by the differential equation of § 2S*21, 

2 “ 
a, 6, c “b Bp 

^S-B„ 2 

= 3 + d, 

a, 4, fl Bp 

if, 4 
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so that 
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t" a-S: 
P=1 

+ 8 2 
p*t 

+82 6. 
dK ''p-Z 

bK^ 

dKr.dK„ 

p=i 

6pK^-e,K, 

■ ^P-e, • 

I,?.-* e^-e. 

Now S8f„_^/air, IS the sum of the products of the expressions A". A, 
■ ■ (-^p oeing omitted) taken - r -1 at a time; and 

consists of those terms of this sum which contain A, as a factor, 

Hence bS^ 

bK„ 
--A, 

a»s„ 

^dK^dK, 

is equal to the sum of the products of the expressions A„ A„ ... A,„. (A, and 
A, both bemg omitted) taken ^n-r- 1 at a time; and therefore, by sym¬ 
metry, we have •' 

ds, 'n—jw 
aA 

A 
a»-s„ 

so that 

p 

a’A 
aAp8Aj 

®aAj,0A/ 

_ jbSf^ 

d& *n—2r 

bK 
-A 

a« 

aA, aAj 

■^dKj,dK,’ 

V,-A„). 
aSn- 

On substituting by this formula for the second differential coefficients, it 
IS found that ’ 

t bS. 'n—str 
6 + 8d„ 2' 

9=1 ^P ■ 

& 
'’9 ^ 9=1 (<?p-^,)(A, 

OpK^-e^K, 

j,=i oAj, [_ j=iAy —AjJ 

-^9)J 

= (4n - 2) ^2 - 8 2 - A l(jr jr \ 
%=1 aA, aA, aA, |/(-^p-^9)< 

Jfow we may write S,^ in the form 

^n-*r + KpSn-uir-^ + A,5„_5,._j + KpKqSn^r-i, 

ivhere denotes the sum of the products of the expressions Aj, A,, ... A,„ 

A^ and A, both being omitted) taken m at a time; and we then see that 

A 
aA dS, 
bK„ 

_A,i|p = (A,-A,)A_^_,. 

Hence 
-D*A-,r = (4n-2) § 

oKp 
•8 2 S •ti—2r“-2* 

Now It IS clear that the expression on the right is a homogeneous sym- 
netric function of A, A, ...K^ of degree ^n-r-l, and it contains no 

»ower of any of the expressions A, Aj, ... Aj„ to a degree higher than the 

irst. It is therefore a multiple of 8,^^. To determine the multiple we 
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observe that when Sn-sr-* is written out at length it contains terms 

while the number of terms in 

(4«-2) 2^^-8 2 

(4n - 2). -8.^0,. . 

The multiple is consequently 

—2),. 

and this is equal to {2r + 2) (2a — 2r — 1). 

It has consequently been proved that 

= (2r + 2) (2a - 2r -1) 

It follows at once by induction that 

a ^_ 
2.4... 2r. (2a -1)(2a- 3)... (2a - 2r +1)’ 

and the formula 

G„<ai, y,z)‘ : I 
^r=sO 

(-YD- 
o2.4...2r.(2a-l)(2a-:3)...(2a-2r+l)J 

Hn{x,y,z) 

is now obvious when Gni^, y, z) is an ellipsoidal harmonic of the first species. 

Example 1. Prove Niven^s formula when y, «).is an ellipsoidal harmonic of the 
second, third or fourth species. 

Example 2, Obtain the symbolic formula 

y, ^)=r(i-a). (ii))”+i/_„_j(Z)). 5; y» ^)- 

23*26. Ellipsoidal harmonics of degree n. 

The results obtained and stated in % 23*21-23*24 shew that when n is 
even, there are +1 harmonics of the first species and f n harmonics of the 
third species; when n is odd there are f(7i + l) harmonics of the second 
species and | (n -1) harmonics of the fourth species, so that, in either case, 
there are 2^1 + 1 harmonics in all. It follows from § 18*3 that, if the terms of 
degree n in these harmonics are linearly independent, they form a funda¬ 
mental system of harmonics of degree n; and any homogeneous harmonic of 
degree n is expressible as a linear combination of the homogeneous harmonics 
which are obuined by selecting the terms of degree n from the 2n +1 ellip¬ 
soidal harmonics. 

In order to prove the results concerning the number of harmonics of 
degree n and to establish their linear independence, it is necessary to make 
an intensive study of Lamd^s equation; but before we pursue this investigation 
we shall study the construction of ellipsoidal harmonics in terms of confocai 
coordinates. 
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These expressions for eUiiisoidal harmonics are of historical importance in view of 

Lame’s investigations, but the expressions which have just been obtained bv Niven’s 
method are, in some respects, more suitable for physical applications. 

For applications of ellipsoidal harmonics to the investigation of the Figure of the Eaith 

and for the reduction of the harmonics to forms adapted for numerical computation, the 

reader is referred to the memoir by G. H. Darwin, Phil. Tram. 197 a (1901), pp. 461-637. 

23‘3. Gonfoccd coordinates. 

If (X, F, Z) denote current coordinates in three-dimensional space, and if 
a, h, c are positive (a>b>c), the equation 

z* Z^ 

a* 6‘ c* ~ ^ 

represents an ellipsoid; the equation of any confocal quadric is 

X» Z’‘ 

a^ + d'^ b^ + d'^ + 

and 0 is called the parameter of this quadric. 

The quadric passes through a particular point {x, y, .«) if ^ b chosen 
80 that 

I y" , ^ , 
a^-k-e ¥<?Jre~ 

Whether 6 satisfies this equation or not, it is convenient to write 

-g* /((?) 
- + + B c> + ^ ~ (a» + 8) (6» + 0) (c» -b 6) ’ 

and, since/(^) is a cubic function of 8, it is clear that, in general, three 
quadrics of the confocal system pass through any particular point (x, y, z). 

To determine the species of these three quadrics, we construct the following 
Table: ® 

6 fi.6) 

— 00 

-62 
— c® 
4*00 

— 00 

y(a2_62) (6s_c2) 

(62-6-2) 
-Pco 

It is evident from this Table that the equation fi6) = 0 has three real 

roots X, /i, V, and if they are arranged so that \>fj.>v, then 

X> — c®>/Li.> — 62>i/> — a®; 

and Also f(8) = (8-X}(8-fi)(0- r). 

From the values of X, y., v it is clear that the surfeces, on which 8 has 
the respective values X, fi, v, are an ellipsoid, an hyphrboloid of one sheet and 
m hyperboloid of two sheets. 



548 THE TBANSCENDENTAL FXTNC3TI0NS [CHAP. YYTTT 

Now take the identity in 6, 

1_^_t_(e-x)(e-fi)(d-v) 
a^+e hl‘+e d‘+e (a^ + 0)(l^ + e)(d‘ + 0)’ 

and multiply it, in turn, hj a’‘+ 0, + 0, d> + 0; and after so doing, replace 
0 hy — a\ — ¥, - <? reflectively. It is thus found that 

(o° + \) (a* + m) (q* + p) 

. _ _ (6’ + X) (5* + fi) (¥ + v) 
^ (a»-6«)(h»-c») ■’ 

_ (c* + X) (c* + fl) (c‘ + v) 
(a‘-c*)(6’-c“) 

From these equations it is clear that, if (x, y, z) be any point of space and 
X, V denote the parameters of the quadrics confocal with 

F« Z^_ 
a» ^ 

which pass through the point, then {af^, y* z*) are uniquely determinate in 
terms of (X, v) and vice versa. 

The parameters (X, /i, v) are called the confocal coordinaies of the point 
{x, z) relative to the fundamental ellipsoid 

F* 
—- -|- _j— — 3^ 

c^ 

It is easy to shew that confocal coordinates form an orthogonal system; 
for consider the direction cosines of the tangent to the curve of intersection 
of the sur&ces (y,) and (p); these direction cosines are proportional to 

By dz 

and since 

By Bz \ 

Vax’ ax/' 

ax Bii BXByb'^BX Bp *aXc(a*- h^) (a^-c^)” 

it is evident that the directions 

lax' ax' axr 
are perpendicular; and, similarly, each of these directions is perpendicular to 

By Bz\ 

\Bv ’ Bp * Bp) ' 

It has therefore been shewn that the three systems of surfaces, on which 
X, ft, V respectively are constant, form a triply orthogonal system. 

Hence the square of the line-element, namely 

IS expressible in the form 

(H,SKy + {K,8^,y + (H,8v)^ 



23-31] ELLIPSOIDAL HARMONICS 549 

■where 

•with similar expressions in p, and v for Hi and H3K 

To evaluate in terms of (\, v), observe that 

^ \d\J [d\) 4«* 

_ 1 2_(g^ -f /a) (g* + v) 

a. b, c + A.) (g® — 6®) (a® — c®) * 

But, if we express 
(X, — ^) (X ~ I/) 

(g® + X) (6® + X) (c® + X)’ 

^i^g function of X, as a sum of partial fractions, we see that it is precisely 
equal to 

^ (g® 4* }i) (g® + v) 

a,I c {aJ^ + X) (g® - 6®) (a® - c®) ’ 

and consequently (X v)_^ 
4(a® + X)(6® + X)(c® + X)* 

The values of and are obtained jfrom this expression by cyclical 
interchanges of (X, /a, v). 

Formulae equivalent to those of this section were obtained by Lama Journal de Math 
11, (1837), pp. 147-183. 

Example 1. With the notation of this section, shew that 

+y ®=a 2 + ^ 4-c®+X+ft+V. 

Example 2. Shew that 

\w}- 1 t _ 

^ (a®+X)® (6®+X)2 ^ (c®+X)® * 

23*31. Uniformising variables associated with confocal coordinates. 

It has been seen in § 23*3 that when the Cartesian coordinates (x, y, z) 
are expressed in terms of the confocal coordinates (X, ft, v), the expressions so 

obtained are not one-valued functions of (X, ft, v). To avoid the inconvenience 
thereby produced, we express (X, /i, v) in terms of three new variables (tt, t;, w) 
respectively by writing 

|,(tt)=x + Ha^ + t® + c®), 

t>(v) =ft+i(g® + 6® + c®), 

p (^) = y + ^ (a® + 6® + c®), 

the invariants ^2 ^.nd g^ of the Weierstrassian elliptic functions being defined 
by the identity 

4 (a® + X) (6® + X) (c® -f X) = 4 jp» (u)-g^f (u)-g^. 
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'“P* “•>»» (of. §20-33, 

16 (a’ - by (6» - c»)» {(? - a% 

and so it is positive; and, therefore*, of the periods’2®. 2a, and 2,. 9 ' 

^0 T" -1 ^rt ::gar 
since a, +a„ + a„ = 0; the imaginary part of a,, is positive since /> o’ 

In these circumstances >e,> and so we have 

3e, = a» + i>-2c», 3e, = c»+a*-26=, .Se3» + c» - 2a« 

Next we express (*, y, z) in terms of (■„, t,, «,); ^e have 

= Ip (^)- (p (»') - e,} Ito (W) - eJ 

bv89n-Q , V,^(a,0.r3*(a,,)’ 
y s 20 o3, example 4. Therefore, by § 20-421, we have 

X=± (oO °» (“) p's (y) P’s (w) 

o-{u) a {v) a-(w) ’ 

and similarly j, = + g^a (w) a-, (v) <r^ (w) 

’ o-(u) er(v)<r(w) 

S=± e-X,-.0-3gl (M)gi(p)ori(M>) 

Th^ofl- f ■ <^(u)cr(v)<r(w)- 

of*he 

and similar statemsnts hold for iijcS2rbr2*’' ^d's * "T“ i 

'^‘eZ7T°°’ “ 7" 

oonoapond^co iZn\"f::,a‘:ft?:i”owr;'’rt’ 

‘rr '• ”> rjf; 
The nniformisation is consequently eflfected by taking 

. ga (a) <r3 (t,) 0-3 (yj) 
g (m) o- {v) a- (w) ’ 

< y = (m) ga (p) gj (ttp 
g(M)g(v)<r(w) ’ 

X = a-x,«. 0-3 g] (w) 0-1 (i,) o-j fa) 

•p T . . '■ ^ «■(■“) g (v) g (w) ■ 

1 ood™ “^“4 h',^“ ””‘7 ty *'■0 interohango of the suffices 
s oj ualphon, Fmctum, EUvptiqu^. „. (1888), p. 459. 

Cf. § 20*32, example 1. 
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23*32. Laplace's equation referred to cmifocal coordinates. 

It has been shewn by Lame and by W. Thomson^ that Laplace s equation 

when referred to any system of orthogonal coordinates (X, p, v) assumes the 

form 

1. 
3X 

dV 3 + A 
ax ] ^ a/i. 

{H,H, dV\ . a {H,H, dV] 

1 E, ’dp)~^dvl E, ‘dpj ' 

where (Ej, ITg, E^) are to be determined from the consideration that 

{EMy + (E,Bpy^(E,Spy 

is to be the square of the line-element. Although W. Thomson’s proof of this 

result; based on arguments of a physical character, is extremely simple, all 

the analytical proofs are either very long or else severely compressed. 

It has, however, been shewn by Lara^t that, in the special case in which 

(X, fjL, v) represent, confocal coordinates, Laplace’s equation assumes a simple 

form obtainable without elaborate analysis; when the uniformising variables 

(u, V, w), of § 23*31 are adopted as coordinates, the form of Laplace’s equation 

becomes still simpler. 

By straightfor^vard differentiation it may be proved that, when any three 

independent functions (X, p, v) of (x, y, z) are taken as independent variables, 

then 

transforms into 

dfV ^ ^ 
dy^ dz^ 

, - , . /dxyid^r 

+ 2 2 
M. y 

du dp dp dp dp a^l a® V 

dx‘ dx dy dy dz d'zj dpdv 

t 
K M. V 

^ d_V 

da^'^ dy^ dz^J ax ‘ 

In order to reduce this expression, we observe 'that X satisfies the equation 

r 
■ = 1, 

4* X a® 4“ X 4” X 

and so, by differentiation with x.y^ z q& independent variables, 

2x 

2 
4~ X 

a® 4” X 

4^‘ 

{a? + Xf (6’ + xy {& + xy-} dx 

dx 
(tt“ + dx 

+ 2 
x‘ 

(a“ + xy 

f 

+ r 
{b^ + xy 

+ -U 
dX\ 

-r» + 
r 

(c= + \)’J \dxj 

1?!^. 
(a» + xy (6= + X.)’ (c* + \)’J dx‘ 

* Cf. the footnote on p. 401. 
t Journal de Math. iv. (1839), pp. 133-136. 
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Hence 

2a^ 

a» + \ Sx ’ 

a? 
••+x i.O+XfH,.*2S,<(i+V, ? 

with similar equations in v and y, z. " 

= 4Ei 
a*’’ 

From equotioim of .ho first .yp, i. „ „e„ that tho cooffloion. of — .. 
3X2 
d^r. 

1 , ,, ^ , gair OA.-^ 

jji n e CO cient of is zero; and if we add up equations of the 

second type obtained by interchanging y, z cyclically, it is found that 

with similar equations in /t and v. 

If, for brevity, we write 

V{(a* + X) (6^ + X) (c® + X)} = Aa , 

with similar meanings for and A,, we see that 

s*x^a»x , 3*x 
Sa:* ay* a^> (\-y)(X_„) 

4Aa 

and so Laplace’s equation assumes the form 

v 4 

[ 2 2 2 
la^.+x’^'is + x+^n;:^ 

dAi, 

that is to say 

^ =—-— 
A, V (X — ii) (X 

^ c?Aa 3 
ig=o, 

0F- 

The equivalent equ^ion with («. v. «,) as independent variables is simply 

[p(i;)-^ 

or, more briefly. 

lFW-FWlg'+ (FW-y 

23-33. EllipKM hammic, „/W to coo/ooal «^iiooUt 

When Niven’s function 0^, defined as 
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is expressed in terms of the confocal coordinates (X, /x, v) of the point (x, y, z), 

it assumes the form 
(X - Bp) {y. - 6p) (v - dp) 

i,a‘+ep){b^ + dj,){(f + ep)’ 
and consequently, when constant factors of the form 

- (a> + dp) (6» + (9p) (c‘ + 0,) 
are omitted, ellipsoidal harmonics assume the form 

X, yz 

^ fi {X-Bp) il {iM-dp) n (y-0p). 
Jjssl Jjsasl P = 1 

1, y, zx, xyz 

z, xy 

If now we replace x, y, z by their values in terms of X, /*, we see that 

any ellipsoidal harmcmic is expressible in the form of a constant multiple of 

AMN, where A is a function of X only, and M and N are the same functions 

of p and V respectively as A is of X. Further A is a polynomial of degree m 

in X multiplied, in the case of harmonics of the second, third or fourth 

species, by one, two or three of the expressions ^J{a^ + X), +■ X), + X). 
m 

Since the polynomial involved in A is II (X — dp\ it follows from a con- 
J5==l 

sideration of ^ 23*21-23*24 that A is a solution of Lamp’s differential equation 

4 *J{{a^ 4” X) (6- 4* X) (c* + X)} ^ j^V((a® 4- X) (6® 4- X) {<f 4* X)} 

= (li 4* 1} X 4" 0^ A, 

where n is the degree of the harmonic in (x, y, z). 

This result may also be attained from a consideration of solutions of 

Laplace’s equation which are of the type* 

'F= AMN, 

where A, M, N are functions only of X, p, v respectively. 

For if we substitute this expression in Laplace’s equation, as transformed 

in § 23*32, on division by F, we find that 

p{v)-'ig>{vj) §{w)-p{u) d^M ip(u) — p(v) 

A did M d^ N du^ ^ 

The last two terms, qua functions of u, are linear functions of p (u), and 

so ^ must be a linear function of p(u); since it is independent of the 
A du^ 

coordinates v and w, we have 

where K and J? are constants. 

* A harmonic which is the product of three functions, each of which depends on one coordi¬ 

nate only, is sometimes called a normal solution of Laplace’s equation. Thus normal solutions 

with T>olar coordinates are (§ 18*31) 
cos 

r" (cos 0} . * stin 
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If we make this substitution in the differential equation, we get a linear 
function of y (jt) equated (identically) to zero, and so the coefficients in this 
linear function must vanish; that is to say 

dtv‘ 

dtif 

= 0, 

■0, 

and on sohung these with the observation that p(v)-fp(w) is not identically 
zero, we obtain the three equations 

»--»(•)+^1 A, 

-^ = {Z’jp(w) + 5}N. 

When X is taken as independent variable, the first equation becomes 

dX,{^^ d\} “ + -B + ^^r(a= + 5= + c’)} A, 

and this is the equation already obtained for A, the degree n of the harmonic 
being given by the formula 

n(n + l) = K. 

We have now progressed so far with the study of ellipsoidal harmonics as 
IS convenient without making use of properties of Lamp’s equation. 

We now proceed to the detailed consideration of this equation. 

Various forms of Lame’s differential equation. 

We have already encountered two forms of Lamp’s equation, namely 

and this may also be written 

^^4-|_L_ . _L_ + i __{w(» + l)X. + C'} A 
dA’ (a* + A 6* + A c» + Aj dA 4 (a- + A) (1»* + A) (c* + A) ’ 

which may be termed the algebraic form; and 

^ = {«{?H-l)jtf(«) + 5}A. 

which, since it contains the Weierstrassian elliptic function ^(u), may be 

termed the Weierstrassian form; the constants B and G are connected by the 
relation 

£ + |n(?i + 1) (a* + + c“) = 0. 
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If we take f(u) as a new variable, which will be called we obtain the 

slightly modified algebraic form (cf. § 10-6) 

d°A , f ^ i ^ •) dA_ {«(ft+l)g + ^|A 

^-ejd^ 4(| —eiXf-CaK^-ej)' 

This differential equation has singularities at ej, e^, e, at which the 

exponents are 0, ^ in each case; and a singularity at infinity, at which the 

exponents are — ^n, J (n + 1). 

The Weierstrassian form of the equation has been studied by Halphen, Fonctions 

EUiptiques^ li. (Paris, 1888), pp. 457-531. 

The algebraic forms have been studied by Stieltjes, Acta Math. vf. (1885), pp. 321-326, 

Klein, Y<ydmmgm Uher lineare Difermtielgldchungm (lithographed, Gdttingen, 1894), and 

Bdcher, Uher die Reikenentwickelungm der Potmtialtkmrie (Leipzig, 1894). 

The more general differential equation with four arbitrary singularities at which the 

exponents are arbitrary (save that the sum of all the exponents at aJI the singularities is 2) 

has been discussed by Heun, Math. Ann. xxxiii. (1889), pp. 161-179; the gain in generality 

by taking the singularities arbitrary is only apparent, because by a homograpHc change 

of the independent variable one of them can be transferred to the point at infinity, and 

then a change of origin is sufficient to make the sum of the complex coordinates of the 

three finite singularities equal to zero. 

Another important form of Lamp's equation is obtained by using the 

notation of Jacobian elliptic functions; if we write 

= \/(ei - «s). 

tbe Weierstrassian form becomes 

d‘A 
= n (n +1) ———I- ns* «il H— 

J3 
A. 

and putting z^^a—iK’, where 2iK' is the imaginary period of snz„ we 

obtain the simple form 

d*A 

do* 
= {7i.(n 4-])^sn®o +A] A, 

where A is a constant connected with B by the relation 

B + e3n(n + l) = A (cj — Cj)- 

The Jacobian form has been studied by Hermite, Sw qtielqves applications des fonctiom 

elliptiques, Compte* Rendut, iixxv. (1877), published separately, Pans, 1885. 

In studying the properties of Lamp’s equation, it is best not to use one 

foi-m only, but to take the form best fitted for the purpose in hand. For 

practical applications the Jacobian form, leading to the Theta functions, is 

the most suitable. For obtaining the properties of the solutions of the 

equation, the best form to use is, in general, the second algebraic form, 

though in some problems analysis is simpler with the Weierstrassian form. 
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23'41. Solutions in series of Lame’s equation. 

Let us now assume a solution of Lame’s equation, which may be written 

^ (? - e,) (f - a,) ^ + (6^"- - ^ (n + 1) |: + £} A = 0, 

in the form 

A= i hr{t-e,)i”-^. 
r-Q 

The series on the right, if it is a solution, will converge (§ lO’Sl) for 

sufficiently small values of j f - ^2!; but our object will be not the discussion 

of the convergence but the choice of B in such a way that the series may 

terminate, so that considerations of convergence will be superfluous. 

The result of substituting this series for A on the left-hand side of the 

differential equation and arranging the result in powers of f — ^2 is minus the 
series 

4 i (? - (« - r + i) 6r - {3es(in -r +1)»- in (n +1) e,- 

+ {ej - (es - - r + 2) (|7i - r + f) br^;\, 

in which the coefficients hf with negative suffixes are to be taken to be zero. 

Hence, if the series is to be a solution, the relation connecting successive 

coefficients is 

r{n-r + ^)hr = {Ze^i\n-r + \y-\n{n+l)e^-{B}hr-x 

— {ex — Sj) (cj — Cs) (in — r + 2) (in — r + §) hr-^, 

and («-i)5i = {fn*e2-in(n + l)eg-i£}5.. 

If we take 6,, = 1, as we may do without loss of generality, the coefficients 

hf. are seen to be functions of B with the following properties: 

(i) 6, is a polynomial in B of degree r. 

(ii) The sign of the coefficient of 5^ in J, is that of (-)’■, provided that 

r $ n; the actual coefficient of JS' is 

__(zZ_ 
2.4...2r(2n-l)(2n-3)...(2n-2r + l)- 

(iii) If ex, e„ e, and B are real and ei > e, > e„ then, if b,^x = 0, the values 

of hr and 6^ are opposite in sign, provided that r < i (n + 3) and r<n. 

Now suppose that n is even and that we choose B in such a way that 

If this choice is made, the recurrence formula shews that 

^in+2 = 0, 
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by putting r = |-n + 2 in the formula in qu^tion; and if both 

^in+2 subsequent recurrence formulae are satisfied by tahing 

Hence the condition that Lam4 s equation should have a solution which 

is a polynomial in f is that B should be a root of a certain algebraic equation 

of degree Jn +1, when n is even. 

When n is odd, we take b^ (n+l) vanish and then 61(754.3) also vanish^, 

and so do the subsequent coefficients; so that the condition, when n is odd, is 

that B should be a root of a certain algebraic equation of degree \{n +1). 

It is easy to shew that, when ei>e^>eiy these algebraic equations have 

all their roots real. For the properties (ii) and (iii) shew that, functions 

of B, the expressions 6o> K, 63, ... hr form a set of Sturm's functions* when 

r < I* (71 + 3), and so the equation 

has all its roots realf and unequal 

Hence, when the constants Ci, e^, are real (which is the case of practical 

importance, as was seen in § 23*31), there are +1 real and distinct values 

of B for which Lamp's equation has a solution of the type 

r=0 

when n is even; and there are ^{n+1) real and distinct values of B for 

which Lamp's equation has a solution of the type 

r-0 
when n is odd. 

When the constants Ci, H ^ ^ possible for the equation satisfied 

by jB to have equal roots; the solutions of Lamp’s equation in such cas^ have been 

discussed by Cohn in a Konigsberg dissertation (1888). 

Example 1. Discuss solutions of Lamp’s equation of the types 

(i) (|-e,)4 2 
r=0 

(ii) 2 
r=0 

(iii) (|-«i)*(f-«3)^ 2 V"(f-«.,)4"-’-\ 
r=0 

* M&m, pr4senti8 par les Savam itrangers^ vi. (1835), pp. 271-318. 
t This procedure is due to Liouville, Journal de Math, xi. (1846), p. 221. 
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obtaining the recurrence relations 

(i) r (j. -r+J) V = {3ej(^ne^) {^n-r+|)1)e,- b'^.x 

- («i -«2) fe-cs) (i?i-r+|) (J«_r+l)6V-2, 
(u) T{n-r+^) V' = {3ej(J»-r+J)S- (gj-Cj) (Jn-j-+J) -(ra +1)gj_Jjgtb"^_^ 

-(«!-«2) (ej-Ca) -r+f) (Ja-r +1) 6'V_j, 
(m) »• (« —r+J) V"={3ej (in - r+i)s - J ej (b*+a+1) _ ^ £} b"’^_^ 

-(ei-fi2)(ej-e3)(^a-r+l)(Ja-r+J)6"'^_j. 

2. With the notation of example 1 shew that the numbers of real distinct 

values of B for which Lamp’s equation is satisfied by terminating series of the several 
species are 

(i) i(a-l) or i(a-2); (ii) i(a-1) or i(a-2); (iii) i(a-2) or J(a-3). 

23 42. £he defiivUion, of Lanie functioTis. 

When we collect the results which have been obtained in § 23-41, it is 
clear that, given the equation 

d’A , 
^ = [«(a + l)j?(«)+J]A, 

a being a pisitive integer, there are £» + 1 values of B for which the equation 

has a solution of one or other of the four species described in §§ 23-21-23-24. 

If, when such a solution is expanded in descending powers of f, the 

coefficient of the leading term is taken to be unity, as was done in § 23-41, 

the function so obtained is ^lled a Lame fumction of degree n, of the first 
Aiad, of the first (second, third or fourth) species. The 2m + 1 functions so 
obtained are denoted by the symbol 

. = 2, ...271 + 1). 

and, when we have to deal with only one such function, it may be denoted by 
the symbol •’ 

Tabl^ of the expressions representing Lamd functions for b=1, 2, ...10 have been 
compiled by Guemtore, GtoniaU di Mat. (2) ivi. (1909), pp. 164-172. 

Example 1. Obtain the five Lam^ functions of degree 2, namely 

v'(X + 62),y(X + c2), V(X+c2)V(X + aS), v((X+a*),/(X+6«). 

Example 2. Obtain the seven Lame functions of degi-ee 3, namely 

“J {(X -(- <i*) (X+i®) (X+c^)}, 

and six functions obtained by interchanges of a, 6, c in the expressions 

v/(X+a^). [X+^ (o*+262+2o*)±| VJa‘-h4i«i-4c‘- 7W- (^a^-amW 

23-43. The non-repetition of factors in Lame functions. 

It will now be shewn that all the rational linear factors 

nmqmL This result follows most simply from the differential 

satisfies; for, if be any factor of where 

of (f) are 

equation which 

is not one of 
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the numbers Ci, or e,, then is a regular point of the equation (§ 10-3), 

and any solution of the equation which, when expanded in powers of f-fi, 

does not begin with a term in (f - ?i)“ or must be identically zero. 

Again, if were one of the numbers e^, or the indicial equation 

appropriate to would have the roots 0 and and so the expansion of 

in ascending powers of would begin with a term in or 

Hence, in no circumstances has qua function of a repeated 

factor. 

The determination of the numbers di, 6^, .,,6^ introduced in g 23*21- 

23*24 may now be regarded as complete; for it has been seen that solutions 

of Lamp's equation can be constructed with non-repeated factors, and the 

values of which correspond to the roots of = 0 satisfy the 

equations which are requisite to ensure that Niven’s products are solutions of 

Laplace's equation. 

It still remains to be shewn that the 2n -f 1 ellipsoidal harmonics con¬ 

structed in this way form a fundamental system of solutions of degree n of 

Laplace's equation. 

23*44. The linear independence of Lame functions. 

It will now be shewn that the 2n + 1 Lam6 functions which are 

of degree n are linearly independent, that is to say that no linear relation can 

exist which connects them identically for general values of 

In the first place, if such a linear relation existed in which functions of 

different species were involved, it is obvious that by suitable changes of signs 

of the radicals \/(f — ^i), Vd—we could obtain other relations 

which, on being combined by addition or subtraction with the original relation, 

would give rise to two (or more) linear relations each of which involve 

functions restricted not merely to be of the same species but also of the same 

type. 

Let one of these latter relations, if it exists, be 

En^ (f) = 0 {am. ^ 0) 

and let this relation involve r of the functions. 

Operate on this identity r — 1 times with the operator 

The results of the successive operations are 

= 0 (^ = 1, 2, ... r - 1). 

where Bn'^ is the particular value of B which is associated with E^^ (f). 
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Eliminate •••dr from the r equations now obtained; and it is found 

that 
1 , 1 , 1 , 1 =0. 

Bn^ , , Bn\ ... B.^ 

(Bn^)^\ . (BnO^^ \ 

Now the only factors of the determinant on the left are differences of the 

numbers and these differences cannot vanish, by § 23*41. Hence the 

determinant cannot vanish and so the postulated relation does not exist. 

The linear independence of the 2n+l Lame functions of degree n is 

therefore estoblisked. 

23*46. The linear independence of ellipsoidal harmonics. 

Let On^ {sc, y, z) be the ellipsoidal harmonic of degree n associated with 

En^{^\ and let H^{x, t/, z) be the corresponding homogeneous harmonic. 

It is noiv easy to shew that not only are the 2?i + 1 harmonics of the type 

Gn^ {x, y, z) linearly independent, but also the 2n +1 harmonics of the type 

{x, y, z) are linearly independent. 

In the first place, if a linear relation existed between harmonics of the 

type G^ {x, y, z), then, when we expressed these harmonics in terms of con- 

focal coordinates (X, p, v), we should obtain a linear relation between Lame 

functions of the type (|) where f = X + + c% and it has been 

seen that no such relation exists. 

Again, if a linear relation existed between homogeneous harmonics of the 

type JTn®* (x, y, z\ by operating on the relation with Niven’s operator 

(§ 23*25), 
D* D* 

2(2ji-l)''’2.4(2«-l)(2n-3) 

we should obtain a linear relation connecting functions of the type Gn”^ {x, y, z\ 
and since it has just been seen that no such relation exists, it follows that the 

homogeneous harmonics of degree n are linearly independent. 

23*46. Stieltjes' theorem on the zeros of Lame functions. 

It has been seen that any Lam4 function of degree n is expressible in the 

form 

{e + {6 + {6 + c»)*3. fl (tf - Oj), 
j>=i 

^here /Ci, are equal to 0 or | and the numbers 0^, ... 0^ are real and 

unequal both to each other and to - a\ — h\ - ; and Jn = m + 

When Ki, Ki, are given the number of Lam^ functions of this degree and 
type is m + 1. 
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The remarkable result has been proved by Stieltjes* that these m +1 

functions can be arranged in order in such a way that the rth function of the 

set has r — 1 of its zeros f between — a* and — 6® and the remaining m — r +1 

of its zeros between — 6“ and — c“, and, incidentally, that, for ail the m +1 

functions, d,, dj, ... 6m lie between — and — c*. 

To prove this result, let <f>i, be any real variables such that 

and consider the product 
i ^ ~ c*, 

(yj = l,2, ...r-1) 

(p = r, r+ 1, ... m) 

n= n [l(<^,+aor‘+i.|(^j, + 6’)r^K|(<f>p + c*)r'+i] n\(<f>p-<f>g)\. 
P = 1 P4:g 

This product is zero when all the variables have their least values and 

also when all have their greatest values; when the variables <f>p are unequal 

both to each other and to — a®, — 6®, — c®, then U is positive and it is obviously 

a continuous bounded function of the variables. 

Hence there is a set of values of the variables for which II attains its 

upper bound, which is positive and not zero (cf. § 3*62). 

For this set of values of the variables the conditions for a maximum give 

that is to say 

d log 11 _ 9 log n _ 

fCi 4" 

4 
; + ■ :+S' 

' <f>p-^b^ <f>p 4- ' ^=1 <f»p — (fig 

where p assumes in turn the values 1, 2, ... m. 

= 0, 

Now this system of equations is precisely the system by which 0i, ... dp 
are determined (cf. §§ 23*21-23*24); and so the system of equations determining 

01 i ••• 0m has a solution for which 

— a® < < — fc®, (p = 1, 2, ... r — 1) 

— 6® < < — c®. (p = r, r + 1, ... m) 

Hence, if r has any of the values 1, 2, ... m +1, a Lam6 function exists 

vrith r — 1 of its zeros between — a® and — 6® and the remaining m —r + 1 

zeros between — 6® and — c®. 

Since there are m -f 1 Lamd functions of the specified type, they are all 

obtained when r is given in turn the values 1, 2. ... m + 1; and this is the 

theorem due to Stieltjes. 

* Acta Mathematical yi. (1885), pp. 321-326. 
t The zeros -a®, -6®, - c® are to be omitted from this enumeration, &i, 8^^ ... 8^ only b«ng 

taken into account. 
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+1. iaterpreteti^ of the theorem was given by Stieltjes,'namely 
that If «.+3 particles which attract one another according to the law of the inverse distance 

are placed on a line, and three of these particles, whose masses are icj +i, +1, ,,+1,«« 

fixed at pointe with coorfinates -a», - J*, -c«, the remainder being o/unit m^^lnJ’free 
to move on the hn^ then log n is the gravitational potential of the system; and the 
^taons of ^’iJibnum of the system are those in which the coordinates of the moveable 

“ O' “o '-O0 

of tfn^' polynomials which satisfy an equation 

A=0, 
n (d-a.) 

where (0) is a polynomial of d<^ r-2 in 0 in which the coefficient of is 

-OT{OT+r-l- 2 a,}, 

m being a posWve int^, and the remaining coefficients in (0) are determined from 
the consideration that the equation has a polynomial solution "^tonnined from 

23 47. Larni functions of the second kind. ( J ) 

„f ,2? < '"“'r ““‘o 'S'OOKd. m Imo™ a. W faartion, 
of the ;irs# land. It is easy to verify that an independent solution of Lamd’s 
equation 

cPA 
^ = {n(n + l)| + 5„’»} A 

is the function (^) defined by the equation* 

Fn”^ (?) = (2n +1) (?) r _ 

and J’n® (?) IS termed a Lam4 function of the second kind. 

From this formula it is clear that, near « = 0, 

= (2n +1) M-» {1 + 0 (m)} m"* (1 + 0 (m)} du = M»+* (1 + 0 («)}, 
and we obviously have 

-ff«”‘(?) = M-»{l + 0(w)}. 

satisfed hy two LamifunOicms of the first kind of different species or types. 

onJlr ^ obtain an expression for j;»(?) which is free from 

LtpkS’ TeTli*°- «»(-)> given on p. 333, 
4i k ^ ^ ^ ^ analysis in the case when JSr,^ ) is of the 

at - 
1, which are none of them periods or half periods. 

p. 19^* *° Heine. Jaumal fUr Math. xxix. (1845), 
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Near any one of these points we have an expansion of the form 

(0 = {u — Ur) + ^2(^ ~ (ti — , 

and, by substitution of this series in the differential equation, it is found that 
As is zero. 

Hence the principal part of ll{En^ (f)p near Ur is 

1 

and the residue is zero. 

Hence we can find constants iA.r such that 

I Arfiu-^ Ur) 
r=l 

has no poles at any points congraent to any of the points it is therefore 
a constant A, by Liouville’s theorem, since it is a doubly periodia function 
of u, 

XT du » 
Jo [En”' (f)}» = ~ (« — Mr) + ?(iv)}. 

Now the points can be grouped in pairs whose sum is zero, ainr»o 
En^(?) is an even function of u. 

If we take v^r = — we have 

p du 

U{En^m^^ 
2^ Ar {f (‘^ ‘^r) + + '^r)} 

and therefore 

^Au--2^{u) 2 Ar- 2 

r-l r=l 

■^r P' (U) 

P(u)-p (Ur) ' 

(f) « (2n + 1) {Au- 2r(M) 2 A.} (f) + («) 
r=!l * 

where j is a polynomial in | of degree — 1. 

Example. Obtain formulae analogous to this expression for (^) when (f) is of 
the secoDd, third or fourth species. 

23*5. Lam4’s equation in association with Jacobian elliptic functiom. 

All the results which have so far been obtained in connexion with Lam6 

functions of course have their analogues in the notation of Jacobian elliptic 

functions, and, in the hands of Hermite (cf. § 23*71), the use of Jacobian 

elliptic functions in the discussion of generalisations of Lam4*s equation has 

produced extremely interesting results. 

Unfortunately it is not possible to use Jacobian elliptic functions in which 

all the variables involved are real, without a loss of symmetry. 



564 
the TEANSCENEENTAL FUITCTIONS [cHAP. Jnmr 

The symmetrical formulae may be obtainAH K,r + i • 
«. A 7 defined by the equations ^ ^ variables 

fa = tX' + u ^(ei - ^), 

V(ei —^), 

, ^ l'y = »-S'' + «;V(ci-e,), 
and then the formulae of § 23-31 are equivalent to 

^V(a^-<f).anaan^any, 

^ ~ ~ V(o’—c*). cn a cn j8 cn (y, 

(V*')v'(o*-c‘).dnadn^dny, 
the modulus of the elliptic functions being 

Btat i! “* Of “^“*1 « ,Mch . » cn- 

^ _ F‘ z* 

(«*-i’)8n»a-(a*-i»)cn»a-(a._c.)dn--a=l- 
^is IS an ellipsoid if a lies between iK' and K+iR'- a- u • i. 
^ IS constant is an hvnerbololfl nf i. ^ ^ quadric on which 
K-, and the quadric ^ ^tween E+iR' and 
7 lies between 0 and ^ hyperboloid of two sheets if 

»,.) Ue, i. .be »f C. A 7) a.. loto 

® «“■ »»«!<». W, equation 

d^A 
^ = {n (n +1) ^ sn» a+A} A, 

the .pecie. U„y be defined by a „beme ana^l ^bi° “s 

cn ct dix a, ^ ^ 

■1, cna. dnasna, snacnadna ■ H (sn’o-sn*<q,). 
. dna, an a cna, ^ 

«cond apcciwf. epwitwn autiajied by lamefunaiom of tho first and 

.peI\"i7e.tr,e‘^\il^W “ to«ien of .he fi... 

t Tliis integral equation and the earwo ®<>^3:«sponding functions m. 

liannonics were given hy Wluttaker^^^XonL!^^*^^ ^ 
proofs cf the ,o™ul« L^^ oTtl th^"' PP- 260-268. 
previonslj published. fourth species have not been 
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fector, then En”^ (a) is a solution of the integral equation 

En"^(a) = X r Pn(kmam6) E^{6)d6; 
J ~2X 

where X is one of the ‘characteristic numbers’ (§ 11*23). 

To establish this result we need the lemma that Pn{hmxam6) is 

annihilated by the partial differential operator 

02 02 

0^“^""w(n + l)i® (sn* a — sn® 0), 

To prove the lemma, observe that, when /a is written for brevity in place 

of sn a sn we have 

= 1(? {cn* a dn* a sn* ^ — ca’ ^ dn’ 6 sc? a} P*" (ji) 

+ 24* sn a sn 5 (sn* a — sn® 6) P^' (ji) 

= A? (sn® o - sn® tf) [(m® -1) Pn" <jj.) + 2/tP„' (^)] 

= A® (sn® a — sn* tf) n (n +1) P„ {n), 

■when we use Legendre’s differential equation (§ 15-13). And the lanrima. is 
established. 

The result of applying the operator 

9® 
— n (n +1) A® sn® a - 

I Pn Qc sn a sn 6) E^ (6) d6 
J -2js: 

to the integral 

is now seen to be 

J — 71 (n 4-1) sn^ a — Pn (k sn a sn 0) E^ (0) d0 

= J 2r + En^(0)d0, 

and when we integrate twice by parts this becomes 

+ j Pn{kBiiam0)-^ — n{n-¥l)¥m'0-‘A^yEn^{0).d0=^Q, 

Hence it follows that the integral 

r2ir 
I Pn (k sn a sn 0) E^!^ (0) d0 

J -2j: 

is annihilated by the operator 

da^ 
— 71 (n + 1) A;® sn® a — An^, 
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it is evidently a polynomial of degree a in sn^ a. Since Ws eouation 

of'K" w if “ ‘ (V It It is not zero; and the result is established, 

t appears that every characteristic number associated with the equation 

/SJT 
/(a) = X ja Bn B)f(S) 

of the first species (n bein^ even) or of ^tJation satisfied by Lamd functions 

factor, may Stken toT ^ ^ with cn a a 

Pn cn a cn . 

&*>r. b^k„ fc, (” “<<1) •ifk *>" ~ . 

Pn dn <z dn , 

o/M, 

?H“s33Ss£5=?? satisfies the integral equation ^ ^ ^ cn a dn a as a factor^ 

En (a) - X-cn a dn a cn d dn (k sn a sn 6) (6) dO. 

The preliminary lemma is that the nucleus 

™«dnacn^dn^P„"(^sn«sn^), 
like the nucleus of § 23-6, is annihilated by the operator 

^0i l)i“(sn*a —sn=^). 

a* 

00^ 0^ 

To verify the lemma observe that 

{cn a dn aP„" {k sn a sn ^)} 

-i“cn adn ®8“’^-f’«‘''(M)-3Asnacnadnasn^(dn*a+jfc“cn“a)P "'fa) 
-cnadna(dn»a + /^'cn»a-4i»sn*a)P "fu) ^ 

and so ' " 

- ^} • {cn a dn a cn 0 dn 0P„" {k sn a sn 6)] 
■MM. 7<1l M- .H^ _ . _ 1 ■> 

- i- cn . da a on « d„ «S) ) p__, 

= (n +1) cn a dn a cn ^ dn 0 (sn» a - sn* 6) P„" 

« deBcendiug powL of sn„ begins with a term in 
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and the lemma is established. The proof that E-^ (oc) satisfies the integral 

equation now follows precisely as in the case of the integral equation of § 23*6, 

Example 1. Shew that the nucleus, of an integral equation which is sjitisfied by Lam4 

functions of the fourth species {n being odd) or of the third sp^ies {n being even) with 

sn a dn a as a factor, may be taken to be 

file 
sn a dn a sn ^ dn ^ P^' i-p cnacnB 

')• 
Example 2. Shew that the nucleus of an integral equation which is satisfied by Lamd 

functions of the fourth species (n being odd) or of the third species {n being' even) with 

sn a cn a as a factor, may be taken to be 

sn a cn a sn ^ cn SF^' dn a dn . 

Example 3. Obtain the following three integral equations satisfied by Lame functions 

of the fourth species being odd) and of the third species {n being even): 

(i) i28n^a^.-"(a)=Xcnadna|'^^P„(Asna8nd)^ 

(ii) -i2cuS<.P-(a)=XP=*8aad««J"-^^P„gcuacn0) ^ 

(in) i‘^dnW(a)^^^snacnaf_^^P„ ('dnadnd) ^ 

in the case of functions of even order, the functions of the different types each satisfy one 

of these equations only. 

23'62. Integral formulae for ellipsoidal harmonics. 

The integral equations just considered make it possible to obtain elegant 

representations of the ellipsoidal harmonic (x, y, z) and of the corre¬ 

sponding homogeneous harmonic (x, y, z) in terms of definite integrals. 

From the general equation formula of § 18*3, it is evident that {x, y, z) 

is expressible in the form 

Sn^y^ cos t + 2/ sint + izffif)dt, 

where f(t) is a periodic function to be determined. 

Now the result of applying Niven's operator*D* to (x cos t+y sin t + izf is 

n (n — 1) (a* cos- sin® t — c®) (x cos t-h y sin t + izf~'% 

and so, by Niven's formula (§ 23*25) we find that Gn*”’ ix, y, z) is expressible 

in the form 

{X, y, z) = |3l« - 21’*-33^ 

n (n - 1) (w - 2) Qi, - 3) 

2.4(2n-l)(2ji-3) 
33* dt, 
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^ = tccoat + yamt + iz, 

SO that ^ = 4(«’-c»)cos>i+(6>-c«)sin.^}^ 

(X, y, z) = r S5"P„ A, , ^cos^ + ysin^ + i^ ^ ^ 
(2n.)! j W Ra* - c>) cos» t + (6« - c») sin* 

being, ae 

a‘-h‘ 
o“-c*‘ 

bv - ‘““S'**™ »'«i K but they muy be replaced 
by - 2ir and Sir on aocuunt of the periodicity of the integiud. 

It is thus found that 

Gn”'(pe, y, z) = p. ^ sp ^ + y cn ^ + fir dn d\ 
-iur \ ^(5* — c*) / ^ 

where ^ (d) is a periodic function of d indenendfunt i.- v ■ 
to be determined. maependent of a;, y, which is, as yet, 

If we express the ellipsoidal harmonic as the product of ih.. r x 

tactroue, „th the aid of the formulae of § 23-5 „e fiuSiLt 

-B." (.)£.»(« i.. (,). ^ 

where C is a known constant and 

/^^A*8na8n^8nvsnd-(^/i'»)cnacn^cn7cnd 

— (1 /A *) dn a dn/8 dn 7 dn 
If the ellipsoidal harmonic is of the first species or of j 

uud tot type, we now give ,8 and y the epecial values 

r^^K + iK', 

r2X 

J -2JC 

is a solution of Lamp’s equation, and so bv S 23-fi A c/)^ • i • 
equation M can be mother* tAan « 

Hence it follows that 

(®. = P. SP ^ + .y cn d + u: dn _ 
J-ix: \ V(6’-c») 

where X is a constant. 

• If « W inrolved the second solution, the integral would not converge. 

and we see that 

n 
^ j -P" (* sn a sn d) ^ (0) dd 
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If (a?, y, z) be of the second species and of the second or third type 

we put 
^ = 0, 

or ;3 = 0, 7 = -ST 

respectively, and we obtain anew the same formula. 

It thus follows that if Gn^ (x, y, z) be any ellipsoidal harmonic of the first 

or second species, then 

/2K 
Pn (fi) En^ (fi) dd, 

-sjsr 

(2n) t f’*' 
(«, y,z)=^'Kjso-e+ycne + izdnef ((?)dQ, 

where ^ = Qc x sn ^ 4* y cn ^ dn 0)l^/(¥ — cf). 

23*63. Integral formulae for ellipsoidal harmonics of the third and fourth 

species. 

In order to obtain integral expressions for harmonics of the third and 

fourth species, we turn to the equation of § 23*62, namely 

where 

-E^«“ (a) J?n’“ (yS) (y) = C P„ (m) ^ id) dd, 

fji = i*sn a sn ^ sn 7 sn 5 — (k^lk'^) cn a en jS cn 7 cn ^ dnadn/Sdn7dn5; 

this equation is satisfied by harmonics of any species. 

Suppose now that En^{a) is of the fourth species or of the first type of 

the third species so that it has cn a dn a as a factor. 

We next difierentiate the equation with respect to yS and 7, and then put 

yS = ir,7 = Z + ^i^'. 

It is thus found that 

‘(y8) t 
\j dy (7) 

7=j:+iA'* 

i-2js: L ^0^7 Jo=A',y=x:+ii<:') 

_^^_^_ = -(^7*')dnadn^dn5P„'0), 

SO that 

„ 9/307 j(fi^K,y^K+iK') 
= — ^ cn a dn a cn 0 dn dP^'(k sn asn0). 

Hence 
r2K 

cna 
J -2K 

dn a cn ^ dn dPn" (k sn asnS) <f> (0) dO 

is a solution of Lamp’s equation with cn a dn a as a factor; and so, by § 23*61, 

(0) can be none other than a constant multiple of (a). 
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We have thus found that the equation 

/%1C 

"“2jsr 

is satisfied by any elHpsoidal harmonic which has cn a dn a as a factor • the 

correspondmg formula for the homogeneous harmonic is 

JO’m / \_-N (Sti) I 

» I/, Z) = \ 2»(n!)“(6»-<!»)4» J e+y me + i^dn ey de. 

equation of this section is satisfied by the ellipsoidal 

harmonics which have sn « dn a or sn a on « as a factor. “upsoioai 

23-7. GeneraMsatiom of Lame’s equaiim. 

suggest them- 
Jlves In the first, the instant B has not one of the characteStic values 

„ , tor which a solution is expressible as an algebraic function of o (u): and 

m the second, the degree n is no longer supposed to be an integer. The first 

generalisation has been fully dealt with by Hermite* * * § and Halphenf, but the 

on y c^ of the second which has received any attention is that in which n is 

alwfo^ll discussed by Brioschi+, Halphen§ and 

We shall now examine the solution of the equation 

d^A , , 
d^’={n(n + l)p(u) + B}A, 

^ arbitrary and n is a positive integer, by the method of Lindemann- 

btiel|es already explained in connexion with Mathieu’s equation (§§ 19-5- 

The product of any pair of solutions of this equation is a solution of 

d^X . fiY 

by § 19-52. The algebraic form of this equation is 

— 4 {(n* + n —2M(n + l)X= 0. 

If a solution of this in descending powers of ^ - e, be taken to be 

* Compttt Mcndn,, lxxxv. (1877), pp. 689-695, 728-732, 821-826. 
T ^onctiom Elliptiqueit, ii. (Paris, 1888), pp. 494-502. 
t Comptes Rendm, lxxxvi. (1878), pp. 313-315. 
§ Fonctions Elliptique», ii. (Paris, 1888), pp. 471-473. 
II Quarterly Journal, xxvn. (1895), pp. 93-98. 



571 23-7] lame’s equation 

the recurrence formula for the coefficients Cr is 

4r (n — r + i) (2n — r + 1) Cj. 

= (^ — r + 1) {12^2 (n — r) (n — r -h 2) — 4ie2 + ti — 3) — 45} Cr-i 

— 2 (n — r 4-1) — r + 2) (^1 — ^2) ~ ^3) (2?^ — 2r + 3) co¬ 

write r = n -f 1, and it is seen that Cn+i = 0; then write r = n + 2 and Cn+2 = 0; 

and the recurrence formulae with r >n + 2 are all satisfied by taking 

^n-ts “ (^71+4 ~ • • • = 0. 

Hence Lame's generalised equation always has two solutions whose prodiict 
is of the form 

r=0 

This polynomial may be written in the form 

n {fp(u)-ip(cir)}, 
r=l 

where ai, a^, ... are, as yet, undetermined as to their signs; and the two 

solutions of Lamp's equation will be called Ai, Ag. 

Two cases arise, (I) when Aj/Ag is constant, (II) when A1/A2 is not 

constant. 

(I) The first case is easily disposed of; for unless the polynomial 

r=l 

is a perfect square in multiplied possibly by expressions of the type f 

^ — then the algebraic form of Lam6^s equation has an indicial 

equation, one of whose roots is |, at one or more of the points f p (ar); and 

this is not the case (§ 23*43). 

Hence the polynomial must be a square multiplied possibly by one or 

more of f — ^i, f — e^, | — ^s, and then Ai is a Lam6 function, so that B has 

one of the characteristic values and this is the case which has been 

discussed at length in §§ 23*1-23*47. 

(II) In the second case we have (§ 19*53) 

A dA 
Ai 

du 

where S is a constant which is not zero. Then 

(d log Ag d log Ai _ 2(S 
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On integration, we see that we may take 

A,=VXexp|-gJ^|. 

if we differentiate the equation 

„ „ , ^ A^du 2X du X’ 
we find that 

A,du* ]A> 2Xdv? WAl^) -^X^dTi’ 

ol^tain the interesting 

w (n 4-1) jf) («) + 5 = JL — f— d^Y , ®’ 
;rw + ^ 2Zd«* Uz^j+Z*- 

formula (when multiplied by Zn 
that, if« be given the specki value (v, then F «« oy a ;, 

(~Y 46* 

ff>'*(ar)' 

We now fix the signs of a,, a,, ... On by taking 

(dX\ 26 

\d^)t=(r +P'{Or}' 

A^d the., if we p„, 2«/Z, j™ fa.etio„ ef f, into partial ftaetiena, it i, seen 

» p'(ar) » 

^ r=l f - jf> (Or) ”r=l ~ “»•) ~ ?(« + <V) + 2f (o,)}, 

and therefore 

{j? (m) - j» (a,)} j ^ 

X exp [2^2^{log <r (a, + m) _ log ^ (a^ _ „) _ 2^^ (ar)}J , 

whence it follows that (§ 20-53, example I) 

A sa n I ^ + tf) } f n 
r=i i<r (tt) <r (a,)] f (®»-) ■ ’ 

and A.= IT / <f(ar-u)} f * . ) 

>»“ ».!«. of the 
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23*71. The Jacobian form of tJie generalised Lame equation. 

We shall now construct the solution of the equation 

= {n (» + 1) sn’ a + .4} A, 

for general values of A, in a form resembling that of | 23*6. 

The solution which corresponds to that of § 23*6 is seen to be* 

where p, ai, Og, ... % constants to be determined. 

On diflferentiating this equation it is seen that 

1 dA_ ^ m'(a + ar) B'(a)) 
Ada riiiHia^Or) 0(a)K^ 

= X {Z ((X + “b — Z (ot)} *+'/> + ^UTTt/I^j 
r=l 

so that 1 ^ - |i ^1* = {dnna+ a. + tX0 - dn»a}. 

and therefore, since A is a solution of Lamp’s equation, the constants />, a^ 
Og, ... are to be determined from the consideration that the equation 

(ti +1) A;® sn® a + A = 2 {dn® (a + Or + iK') — dn® a} 
r==l 

l{zo 
jr=l 

a + ar + iK') — Z (a)} + p 4* ^mrijK 

is to be an identity; that is to say 

sn® a + n + 4- 2 cs® (a 4- Or) 
r*! 

= 2 [Z (a 4“ Gr + iK*) •— Z (a)} 4- p 4- ^rnnlK 

Now both sides of the proposed identity are doubly periodic functions of 

a with periods 2K, 2iK\ and their singularities are double poles at points 

congruent to -tX', — ai, ... —On; the dominant terms near and 

— Or are respectively 
n® 1 

{a + iK'f^ (a 4“ Or)® 

in the case of each of the expressions under consideration. 

The residues of the expression on the left are all zero and so, if we choose 

p, «!, Oo, ... On so that the residues of the expression on the right are zero, 

* This solution was published in 1872 in Hermite’s lithographed notes of his lectures delivered 

at the ;^cole polytechnique. 
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it will follow from liouville’s theorem that the two expressions differ by a 
constant which can be made to vanish by proper choice of A. 

We thus obtain n+2 equations connecting p, with A, but 
these equations are not all independent. 

It is easy to prove that, near — o,, 

{Z (a+o, + iK') - Z(a)} + p + \mnlK 

1 ^ 
~ a + Or ^ ^ + p 4- J (n - 1) mjK + 0 {a + 

where the prime denotes that the term for which _p == r is omitted; and, near 
-iK\ 

(a + Or + iK') — Z (a)} + p + inmlK 

Hence the residues of 

) ~ 2 (®)} + P + ^nirilK^ 

will all vanish if p, aj, a2, ... a^n are chosen so that the equations 

r n 

jS'Z (0^ ~ +1Z’O + nZ (o^) + p 4-1 (711) ^ 

2 Z (a^) 4- p = 0 
\r-l 

are all satisfied. 

The last equation merely gives the value of p, namely 

- 2 Z(cv), 
r=l 

and, when we substitute this value in the first system, we find that 

rjZ (ev - a. + iK') ^Z{tLr)^Z («p) + \in\K\ = 0, 

where r = 1, 2,... n. By § 22-735, example 2, the sum of the left-hand sides 
of these equations is zero, so they are equivalent to n - 1 equations at most; 
and, when Oj, o^, ... have any values which satisfy them, the difference 

a q- n -f. ^ + i cs’ (o + a,)j 

- {Z (a -H a, + iK') - Z (a) - Z (a,.) + J irilK]^ ‘ 
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is constant. By taking a = 0, it is seen that the constant is zero if 

n-^A+ 2 cs’a,= r 2 {Z(a, + iK') — Z (or) + jTrt’/Jf} 1 , 
r^l Lr~l J {n n 

2 cnardsarf “ ^ iis®ar = -4- 
r=l J r=l 

We now reduce the system of n equations; with the notation of § 22*2, if functions of 

Op, Or be denoted by the suffixes 1 and 2, it is easy to see that' 

Z {cLp-^ Or+iK^) 4-2 {a^ — Z (op) +^wijK 

= Z (dp — a,, -f- iK') + Z (oy) — Z (oj,+fJT^)+Cidijii 

=sn (dp+2^-fir') sn a,, sn (ap+^i^' — a,.)+Ci /si 

~«isn(ap-<v) 

_ ^2 (Sj gg<^2 -f g2Ci di) + Cl C?! (^1^ - s/) 

siis^-si) 

Consequently a solution of Lame’s equation 

= {n (n + 1) ^ sn® a + j4} A 

provided that 01,03, ... On b® chosen to satisfy the n independent equations 

comprised in the system 

'snopcnopdnc^ + snoycnordnor^^ 

sn^Op — sn^Or "" ' 

2 cn Or ds Or 
VLr=i 

ns® Or = A ; 

and if this solution of Lamd’s equation is not doubly periodic, a second 

solution is 
« rH(o-^Or) 

riiL Q(«) 
exp {oZ(Or)l =0. 

The existence of a solution of the system of n +1 equations follows from 

§ 23*7. 
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Miscellaneous Eyampt.ttr 
1. Obtain the formula 

(^, y, = ^(^) y, e). 

2. Shew that 

I. IV.,- ■ ^ ^n(je,y,e) 
V0a; dy dej^(e!»+y>+^ 2».»! • 

(Hobson, Proo. London M<xth^ Soc, xxiv.) 

multipktr ellipsoidal harmonic’ (|) (,) (;) is » constant 

JT (_^ ± ±\f, IP P* \ I 
‘W’ dy’ dz) V'*' 2. (2n+3) ~*^2.4(2w-^3)(2»-^5)V(^+ya+g»)- 

(Niven; and Holton, Ptoc, London MoUh. Soc, xiiv.) 

4. Discuss the confluent form of Lamp’s equation when the invariants a, and q, of the 
W^erstias^ elliptic function are made to tend to sero; express the solution in Lms of 
Bessel functions. 

(Haentzschel, ZeiUchrift JHlr Math, und Phya, xxxl) 

5. If t, denotes exp [{X - Z (^)} 4 where X and p are constants, shew that 

Lam4*8 equation has a solution which is expressible as a linear combination of 

da—^ ’ da’'-e> "3^>—> 

where X* and snV are algebraic functions of the constant A. 

6. Obtain solutions of 

1 dhp 

(Hermite.) 

7. Discuss the solution of the equation (Stenberg, AcTa ifot*. x.) 

in the form of the series 

1+0/3 2 (g) (g/q)* 
nly (y+l),..(y+7i) ’ 

where Gi(j)=j, G,(^)=a^^>-^{(„+J3-3.H)+(y^.a)„} 

<^»+i (?)=[» {(a+^-3+»)+(y-p3-l-n _ 1) o}+0/3}] G, (j) 
-(o+»-1) 0+«_ 1) (y+„_ 1) «oG,_, (}). 

(Heun, Math, Ann, xxxin.) 
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8. Shew tlmt the expoEeiits at the singularities 0, I, a, oo of Heun’s equation are 

(0,1-y), (0,1-3), (0,1-.), 

where y+a+€=s«+j8+L 

(Heim, Math. Ann, xxxiu,) 

9. Obtain the following group of variables for Heun^s equation, corresponding to the 
group 

1 ^ 1 z 1 
-> 

for the hypergeometric equation: 

z, 1-z, 
1 1 ^ 2:-l 

l-3» Z^V ^ ’ 

z a — z a a z z—a 
a ^ z’ a—a 

■a z--\ 1—a a—1 Z' -ct 1 

-a’ a—1* z-a^ jp—1’ Z' -1’ z—a > 

(a — 1) z a (^ —1) «(«-!) z^a (1 —a)z 

a{z--iy ’ (a-1)^’ (l-a)z’ z-a 

(Heun, Math. Ann. xxxm.) 

10. If the series of example 7 be called 

-^(«j flj A yj 4 

obtain 192 solutions of the diferential equation in the form of powers of z-1 and z—a 

multiplied by functions of the type F, 

[Heun gives 48 of these solutions.] 

11. If u=2v, shew that Lamp’s equation 

may be transformed into 

by the substitution 

^-{n(«+l)P(«)+^}A 

A-rcv)}-^. 

12. If f (v), shew that a formal solution of the equation of example 11 is 

i= 2 6r(f-«2)»-’‘, 
r*s0 

provided that (a- 2«) (a—a—O 

and that 

4 (a -r — 2n) (a—r — n+i) [12€a (a — r4* 1) («—r — 27^4-1) + 4€27i (271— 1) —415] 6^-1 
- 4 (ei—(c^- €3) (« - ^‘+2) (a - r - 7i 4-f) =0. 

(Briosohi, Ooniptes Rendus, i*xxivi. (1878), pp. 313-315 and Halphen.) 

13. Shew that, if n is half of an odd positive integer, a solution of the equation of 

example 11 expressible in finite form is 
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proTided ih&t 

4r(»-r-f J) br+[12es(2n^r+l)(r--1) (2^-1)+45]5^-1 

+4(<%-<%) (€s“^s) (2»-r+2) (t^~r+f) 5r-2=0, 

and j5 is so determn^ tliat 

(Brioschi and Halphen.) 

14 Shew that, if n is half of an odd integer, a solution of the equation of example 11 
expreaaiMe in inite form is 

J>=50 
proYided that 

^(n+p+i)bp'-[12ef(n--p+i)(n+p-i)-4esn(2n-l)+4B]b'p^i ^ 

+ 4 (<?! -eg) («2 - «3) (n~i>+f) (i?- 1) 5 

and is the equation which determines B. 

(Crawford.) 
15. With the notation of examples 13 and 14 shew that, if 

V=(-)'K-«s)^ («J- 

the equations which determine Cq, Cj, ...c , are identical with those which determine 

5o, ; and deduce that, if one of the solutions of Lam4^s equation (in which n is 

half of an odd integer) is expressible as an algebraic function of p (v), so also is the other. 

(Crawford.) 

16. Prove that the valu^ of B determined in example 13 are real when ej, and 
are real 

17. Shew that the complete solution of 

1 A a //. / V 

is A=r(J«)r4{Ap(i«)+R}, 

where A and B are arbitrary constants. 

(Halphen, Mim, par divers savants, xxvin. (i), (1880), p. 105.) 

18. Shew that the complete solution of 

i^-Ji>sn*a-ia+i.) 

is A={sn i (U- a) on i (C- a) dn J (C- a)}“i {A + 5 sn* i (U- o)}, 

where A and B are arbitrary constants and 

(Jamet, CompUs Bendtis, cxi.) 



APPENDIX 

THE ELEMENTARY TRANSCENDENTAL FUNCTIONS 

A*l. On certain remdU amimed in Chaptere J-JF. 

It was coBveuient, in the first four chapters of this work, to assume some of the 

properties of the elementary transcendental functions, namely the exponential, logarithmic 

and circular functions ; it was also convenient to make use of a number of results which 

the reader would be prepared to accept intuitively by reason of his familiarity with the 

geometrical representation of complex numbers by means of points in a plane. 

To take two instances, (i) it was assumed (§ 2*7) that lim (expz)=exp(lim2), and 

(ii) the geometrical concept of an angle in the Argand diagram made it appear plausible 

that the argument of a complex number was a many-valued function, possessing the 

property that any two of its values differed by an integer multiple of 2ir. 

The assumption of results of the first type was clearly illogical; it Wiis also illogical to 

base arithmetical results on geometrical reasoning. For, in order to put the foundations 

of geometry on a satisfactory basis, it is not only desirable to employ the axioms of 

arithmetic, but it is also necessary to utilise a further set of axioms of a more definitely 

geometrical character, concerning properties of points, straight lines and planes*. And, 

further, the arithmetical theory of the logarithm of a complex number appears to be 

a necessary preliminary to the development of a logical theory of angles. 

Apart from this, it seems unsatisfactory to the aesthetic taste of the mathematician to 

employ one branch of mathematics as an essential constituent in the structure of another; 

particularly when the former has, to some extent, a material basis whereas the latter is of 

a purely abstract nature f. 

The reasons for pursuing the somewhat illogical and unaesthetic procedure, adopted in 

the earlier part of this work, were, firstly, that the properties of the elementary transcen¬ 

dental functions were required gradually in the course of Chapter n, and it seemed 

undesirable that the course of a general development of the various infinite processes 

should be frequently interrupted in order to prove theorems (with which the reatier was, 

in all probability, already familiar) concerning a single paarticular function ; and, secondly, 

that (in connexion with the assumption of results based on geometrical considerations) 

a purely arithmetical mode of development of Chapters i-iv, deriving no help or illus¬ 

trations from geometrical processes, would have very greatly increased the difficulties of 

the reader unacquainted with the methods and the spirit of the analyst. 

* It is not-our object to give any account of the foundations of geometry in this work. They 
are investigated by various writers, such as Whitehead, Axioms of Projective Geometry (Cambridge 

Math. Tracts, no. 4, 1906) and Mathews, Projective Geometry (London, 1914). A perusal of 
Chapters i, xx, xxii and xxv of the latter work will convince the reader that it is even more 
laborious to develop geometry in a logical manner, from the minimum number of axioms, than 
it is to evolve the theory of the circular functions by purely analytical methods. A complete 
account of the elements both of arithmetic and of geometry has been given by Whitehead and 
Bussell, Principia Mathematica (1910-1913). 

t Cf. Merz, History of European Thought in the Nineteenth Century, n. (London, 1903), pp. 631 
(note 2) and 707 (note 1), where a letter from Weierstrass to Schwarz is quoted. See also 

Sylvester, Phil. Mag. (5), n. (1876), p. 307 [Math. Papers, m. (1909), p. 60]. 
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A*ll. 8umm(mf of ^ Appendix, 

The general oomrse of the Appendix is as folows: 

In §§ A-2-A-22, the exponential function is defined by a power series. From this 

definition, combined with results contained in Chapter ii, are derived the elementary 

properties (apart from the periodic properties) of this function. It is then easy to deduce 

corresponding properties of logarithms of pcwitive numbers A'3-A*33). 

Next, the sine and cosine are defined by power s^es from which follows the connexion 

of these functions with the exponential function. A brief sketch of the manner in which 

the formulae of elementary trigonometry may be derived is then given (§§ A*4-A*42). 

The results thus obtained render it pwsible to discuss the periodicity of the exponential 

and circular functions hj pwrd^ arithmliml methods (§§ A*5, A*51). 

In §§ A*52“A*522, we consider, substantially, the continuity of the inverse circular 

functions. When these functions have been, investigated, the theory of logarithms of 

complex numbers (§ A*6) presents no further difficulty. 

Finally, in § A*7, it is shewn that an angle, defined in a purely analytical manner, 

possesses properties which are consistent with the ordinary concept of an angle, based on 

our experience of the material world. 

It will be obvious to the reader that we do not profess to give a complete account of 

the elementary transcendental functions, but we have confined ourselves to a brief sketch 

of the logical foundations of the theory^. The developments have been given by writers 

of various treatises, such as Hobson, Plane Trigonomeirp; Hardy, A course of Pure 

MathemcLtics; and Bromwich, Theory of Infinite Series, 

AT2. A logical order of deodopment of the elements of Analysis, 

The reader will find it instructive to read Chapters i-iv and the Appendix a second 

time in the following older : 

Chapter i (omittingf all of § T6 except the first two paragraphs). 

Chapter ii to the end of § 2*61 (omitting the examples in §§ 2*31-2*61). 

Chapter m to the end of § 3*34 and §§ 3*5-3*73. 

The Appendix, §§ A*2-A*6 (omitting §§ A*32, A*33). 

Chapter ii, the examples of §§ 2*31-2*61. 

Chapter iii, §§ 3*341-3*4. 

Chapter it, inserting §§ A*32, A‘33, A*7 after § 4*13. 

Chapter ii, §§ 2*7-2*82. 

He should try thus to convince himself that (in that order) it is possible to elaborate 

a purely arithmetical development of the subject, in which the graphic and familiar 

language of geometry! is to be regarded as merely conventional. 

* In writing the Appendix, frequent reference has been made to the article on Algebraic 
Analysis in the Encyhlopadie der Math. Wissenschaften by Pringsheim and Faber, to the same 
article translated and revised by Molk for the EncyclopSdie des Sciences Math., and to Tannery, 
Introduction a la Thedrie des Eonctions dune Variable (Paris, 1904). 

t The properties of the argument (or phase) of a complex number are not required in the 
text before Chapter v. 

! E.g. * a point’ for *an ordered number-pair,’ ‘the circle of unit radius with centre at the 
origin’ for ‘the set of ordered number-pairs (a;, y) which satisfy the condition ‘the 
points of a straight line’ for ‘the set of ordered number-pairs {x, y) which satisfy a relation of 
the type 0=0,’ and so on 
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A*2. The exponential functimi exp z. 

The exponential function, of a complex variable 2, is defined by the series^ 

, z ^ 
exp.= I+^ + ^ + _ + ... = l+^2 

This series converges absolutely for all values of z (real and complex) by B Alena berths 

ratio test (§ 2*36) since lim | (z/n) |=0<1; so the definition is valid for all values of z. 

Further, the series converges uniformly throughout any bounded domain of values of z; 

for, if the domain be such that [ z | ^ i2 when z is in the domain, then 

|(z»/ti!)l^^/nl, 

and the uniformity of the convergence is a consequence of the test of Weierstrass (§ 3*34), 

by reason of the convergence of the series 1+2 (R^/n!), in which the terms are indepen¬ 

dent of z. 

Moreover, since, for any fixed value of n, s^/n \ is a continuous function of z, it follows 

from § 3*32 that the exponential function is continuous for all values of z; and hence 

{cf. § 3*2), if z be a variable which tends to the limit f, we have 

lim exp zssexp (. 

A*21. The cCddition-tkeorem for the exponential function^ and its coneequencee. 

From Cauchy’s theorem on multiplication of absolutely convergent series (§ 2*53), it 

follows thatf 

(exp *,) (exp jj)=(1 + A +1!+...) (1+^ ...) 

I . %* + 2ZiZ2 + Z22 , 

It ■*" 21 "*"••• 

==exp(zi+z2), 

so that exp(zi+Z2) can be expressed in terms of exponential functions of Zj and of zg by 
the formula 

exp (zj +^2) = (e3:p Zj) (exp z^. 

This result is known as the addition-theorem for the exponential function. From it, 

we see by induction that 

(exp zi) (exp za)... (exp z„) = exp (z^+z^ +... +z,0, 

and, in particular, 
{exp z} {exp (- z)} =exp 0 = 1. 

From the last equation, it is appai*ent that there is no value of z for which exp z=0 ; 

for, if there were such a value of z, since exp (—z) would exist for this value of z, we 

should have 0=1. 

It also follows that, when x is real, exp^>0 ; for, from the series definition, exp a* ^ 1 

when x'^0; and, when ar ^0, exp x— 1 /exp (- ar)>0. 

* It was formerly customary to define expz as lim (1 + -| , cf. Cauchy, Cours d'Analyse, 1. 

p, 167. Cauchy {ibid, pp. 168, 309) also derived the properties of the function from the series, 
but his investigation when z is not rational is incomplete. See also Schlomilch, Handbitch der 

4ilg. Analysis (1889), pp. 29, 178, 246. Hardy has pointed out (Math, Gazette^ iii. p. 284) that 
the limit definition has many disadvantages. 

t The reader will at once verify that the general term in the product series is 

(Zi’» +,, CiZi’^-izn + „+... ! = (zj + z.f^\n \. 
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Further, expo: is an inoreating function of the real variable a:; for, if k>0, 

exp (a;+i)-eipa;=exp a. {exp k-1}>0, 
because expx>0 and exp i>l. 

Also, since {e*P*-l}M = l+(A/2!) + (;i»/3!) + ..., 

" ““ "" ■>' s - ■» <■» n 
lim {expA-l}/A=l, 
iIhM) 

and so = Km — 

A-22. Variout properties of the exponential function. 

exp 

Eeturning to the formula (expxi)(exprj)...(expr„) = exp(ai+x,+ ...+^ ) we see that 
when n is a positive integer, we see that, 

(exp2)»=exp {nz\ 

(®*P *)■*=l/(exp 2)»= 1/exp (rex)=exp (- nz). 

In particular, Uking x=l and writing e in place of exp 1 = 2-71828.., we see that 
when OT IS an integer, positive or negative, . we see that, 

«”•=exp m=1+ («i/l!) + (mVS!) +.... 

Also, ifbe any rational number (=p/,, wherey. and y are integers, j being positive) 

(exp fi)^=exp pq=exp p= 

"jTr-r 7 ““ “■ •» 

e*=:l + £. . f!. , 

an equation first given by Newton* 

"Swlod « b«ng . p„,„ of » oobjM lo Ih, orfiL“to 

e^.ef=s*+f «-*=!/«* 

[Note. T^neiy, Legone aAlgebre et dlAnalyse (1906X i. p. 45, practically defines e*, 
hen X IS irrational, as the only number X such that <3®^ < j * 

From the definition we have /ven it is easiirln thit sufh a 
ror expa (_X) satisfies the inequality, and if A' ( +A) also did so, then 

exp ^2 ~ exp «!« e®* - e®»^ 12’''_ I ^ 

1. J’lZ'X zztrL'z s'bS?“” “• : 
published by WaUis in 1685 in his TreatZ on ZeZ p 3« 
was expUcitly stated by Schlamilch. Handhuch der al^^AruAysZ^l^^^^Z 
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A*3. LogaritkrM of positive numbers^. 

It has been seen (§§ A% A*21) that^ when .r is real, expj? is a positive continuous 

increasing function of j?, and obviously exp asx-«-+oo, while 

exp^=I/esp(—^)-^0 as 4;-^-c30. 

If, then, a be any positive number, it follows from § 3*63 that the equation in 

exp:r=a, 

has one real root and only one. This root (which is, of course, a function of a) will be 

written t Log^a or simply Log©; it is called the Logarithm of the positive number a. 

Since a one-one correspondence has been established between x and a, and since a is 

an increasing function of x, x must be an increasing function of a; that is to say, the 

Logarithm is an increasing function. 

Example. Deduce from § A*21 that Log a+Log h=Log ab. 

A*31. The co7itinuitg of the Logarithm. 

It will now be shewn that, when a is positive, Log a is a continuous function of a. 

Let Logaaaj?, Log(a-hA)~^+i:, 

so that l + (A/a)=e*^. 

First suppose that A>0, so that ir>0, and then 

1 -|~(A/a) = 1 + ...> 1 + 

and so 0<ir<A/a, 

that is to say 0<Log (a+A) Log a <hla. 

Hence, A being positive. Log (a+A) —Log® can be made arbitrarily small by taking A 

sufficiently small. 

Next, suppose that A<0, so that ir<0, and then al(a+h)—e~K 

Hence (taking 0< -~h<^ay as is obviously permissible) we get 

a/(a+A) = l-l-(-A)+jA2+...>l-i:, 

and so ~A< —l+®/(®-f A)= — A/(a-f A)< —2A/®. 

Therefore, whether A be positive or negative, if € be an arbitrary positive number and 

if IA1 be taken less than both J® and we have 

lLog(®-hA)-Log®| <€, 

and so the condition for continuity (§ 3*2) is satisfied. 

A*32. Differentiation of the Logarithm. 

Retaining the notation of § A*31, we see, from results there proved, that, if A-^0 

(® being fixed), then also A-^O. Therefore, when ®>0, 

^ c* o* 

Since Log 1 =0, we liave, by § 4T3 example 3, 

Log 

* Many mathematicians define the Logarithm by the integral formula given in § A*32. The 
reader should consult a memoir by Hurwitz (Math. Ann. lxx. (1911), pp. 33-47) on the founda¬ 
tions of the theory of the logarithm. 

t This is in agreement with the notation of most text-books, in which Log denotes tlie 

principal value (see § A*6) of the logarithm of a complex number. 
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A-33, The expatuion o/Log (l+a) in powers of a. 

From § A*32 we have 

Log(l+o)_ J°(l+t)-idi 

Now, if ~ l<a<l, we have 

=|a|»+i{(»+l)(i_|a|)}-i 
-►0 as n^ao. 

ce, when 1 <a<l, Log (1 + a) can be expand^ into the converg^ent series* 

Log(l+a)=:a-|a2^j^3«^^ | 

I ^ I=«-<l + rrf<=(n+l)-i-^o as n^oo, 

so the expansion is valid when a= +1; it is not valid when a- - 1. 

Example. Shew that lim f 1 + 
»^oo \ nj 

[Wehave Mm «logfl+i')= Urn A - 1+J__ ^ 
»♦« \ nJ \ 2»^3n* 

= 1, 
and the result required follows from the result of § A-2 that lim «•=/.] 

A‘4. The definition of the sine and cosine. * ^ 

The functionst sin r and cos * are defined analytioaUy by means of power series, thus 

sin^=.-^ + i!_ _ 
31^5! „fo(2« + I)! ’ 

” •- 

7'““ «'!«, i‘ » wrenl tlat lb, .1,, .„d 
b. ib l„b„ 

2t sin *= exp (iz) - exp (- iz), 2 cos i;=exp (iz)+exp (- iz). 

Wallis, PMl. 

1740 ‘>y [«>*? were given in a letter to Johann BernoulU in 
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It k obvious that sini: and cos^ are odd and even functions of z respectively; that is 

to say 
sm(~^)=-sinr, c«3 (-;?)=cos 

A*41. The fundameMal propertiee of sin z aind cos z. 

It may be proved, just as in the case of the exponential function (§ A*2), that the series 

for sinz and cos 2 convei^e uniformly in any bounded domain of values of z, and con¬ 

sequently that sin z and cos z are continuous functions of z for all values of z. 

Further, it may be proved in a similar manner that the series 

3! ^6! 

defines a continuous function of z for all values of z^ and, in partictdar, thk function 

is continuous at 2=0, and so it follows that 

lim sin 2) = 1. 

A*42. The dddtiton-theorems for sin 2 aiid cos 2. 

By using Euler’s equations (§ A-4), it is easy to prove from properties of the exponential 

function that 
sin (2^+22)=sin Zi cos z^ -1- cos zi sin z% 

and cos (21+- cos Zi cos z^ ~ sin z^ sin z^ ; 

these results are known as tho oddition-tkeoreTM for sin 2 and cos 2. 

It may also be proved, by using Euler's equations, that 

Sin‘^ 2 + 00822=1. 

By means of this result, sin (2^+22) can be expressed as an algebraic function of sin 21 

and sin 22, while 003(21+22) can similarly be expressed as an algebraic function of cos21 

and cos 22; so the addition-formulae may be regarded as addition-theorems in the strict 

sense (cf. §§ 20*3, 22*732 note). 

By differentiating Eulei*'s equations, it is obvious that 

d sin2 
-J   —- cos 2, -J-— 

dz dz 
Example, Shew that 

sin 22=2 sin 2 cos 2, cos22=2co82 2 —1 ; 

these results are known as the duplication-formulae. 

A'5. Thx periodicity of the exponential function. 

If 2i and 22 are such that exp 21=exp 22, then, multiplying both sides of the equation by 

exp (- 22), we get exp (3^1—22) = 1; and writing y for 21—22, we see that, for all values of 2 

and all integral values of n^ 

exp (2+ny)=exp 2. (exp y)*=exp 2. 

The exponential function is then said to have period y, since the eftect of increasing 

2 by y, or by an integral multiple thereof, does not affect the value of the function. 

It will now be shewn that such numbers y (other than zero) actually exist, and that all 

the numbers y, possessing the property just described, are comprised in the expression 

2«-7rf, (?i,= +lj +2, +3,...) 

where ir is a certain positive number* which happens to be greater than 2 V2 and less 

than 4. 

* The fact that 7 k an irrational number, whose value is 3*14159..., is irrelevant to the 
present investigation. For an account of attempts at determining the value of w, concluding 

with a proof of the theorem that v satisfies no algebraic equation with rational coefficients, see 
Hobson's monograph Squaring the Circle (1913). 

dcos2 
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A 51. The solution of the e^wition exp y=l. 

“ and ^ are real; then the problem of solving the equation 
exp y= 1 IS identical with that of solving the equation ^ equation 

exp a. exp ij3= L 

Comparing the real and imaginary parts of each side of this equation, we have 

expa.cos^=l, eipa.8in^=0. 

Squaring and adding these equations, and using the identity cos^/S+sin^^s 1, we get 

exp2a=l. 

. ^ —-- 
It follows that cos^= ], sin=0. 

«>««qu.n« of th, .,a.lio„ 00,9-1, o, 

=sSS£~“~~---=?2 

(I) The function cosir is certainly continuous in the range 0<^<2. 

(II) When 0<ar<,/2, we havet 

A*® 

8l' 
f!! 

' 10! 
>0,..., 

and so, when cosar > 0. 

(III) The value of cos 2 is 

(IV) When 0< ,27 ^2, 

and so, when 0 ^ a; ^ 2, sin ^ 

of § 3-63 that the 
range 0^4?^,^2. ^ ^ <-2? <2, and it has no root in the 

there were ;wo,^rnd"ll (X>aJ^lhro^^ 

sin (xg * Xi) *s sin X2 cos Xi ~ sin Xi cos X2=0 

«d thi. i. i.o.ap.,ibl, ,10. (IV) ,hiob 0..™ Ik., 0. („_„,> J 

actual value happens to be 1*57079.... i""’ > as s ted in the footnote to § A-5, its 

and a>enM\hI°i!<!!iI «»* duplioation-fonuulae that co8 2x= -i 
+ Th..,,-., ’ ’ ““'O‘“*““oI®O8»=0,4iigagoIutionofeos«-l 

and except when :r=Zthe o«enrs. 
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From the addition-formulae, it may be proved at once by induction that 

COS%jr = (-l)» siUTlflrssO, 
where n is any integer. 

In particular, cos2ji7r==l, where n is any integer. 

Moreover, there is no value of other than those values which are of the form 27&jr, 

for which co8^=l; for if there were such a value, it must be real^, and so we can 
choose the integer m so that 

- IT <2mxr--^<»r. 
We then have 

sin I mTT - 1 « ± sin (mw - i^) = ± sin ± 2“* (1 - cos 

and this is inconsistentt with sin | ^ J | mtr- | unless ^=2m?r. 

Consequently the numbers 27i7r, (?2.=0, +1, +2,...), and no others^ have their cosines 
equal to unity. 

It follows that a positive number ir exists such that expe has period 2iri and that 

^iL^zhas no periodfundameTitally distinct from 2vi, 

The formulae of elementary trigonometry concerning the periodicity of the circular 

functions, with which the reader is already acquaint^, can now be proved by analytical 
methods without any difficulty. 

Example 1. Shew that sin ^ is equal to 1, not to —1. 

Example 2. Shew that tan x^x when 0<x<lw, 

[For cos x>0 and 
CO ^4«-l f ] . 

sm X ^ X cos X =z 2  -_J47i_«2-r--V, 
n=i(4n-l)l\ 4«+lJ’ 

and every term in the senes is positive.] 

x^ x^ 25 x^ 
Example 3. Shew that 1 - — + ^ — p— is positive when x^^, and that 1 - «- + ^rr 

2 24 720 ^ 16’ 2 24 

vanisheswhena;=(6-2 v/3)^—l*5924,..; and deduce thatj 

3T26<fl* <3*185. 

A*52. The solution o f a pair of trigonometrical equations. 

Let X, /A be a pair of real numbers such that 1. 

Then, if X + -1, the equations 

cosjFasX, sinx^fi 

have an infinity of solutions of which one and only one lies between § -ir and «■. 

First, let X and ft be not negative; then (§ 3*63) the equation cos :rs=X has at least one 

solution Xi such that 0<d?|<^7r, since cos0««l, cos^7r=0. The equation has not two 

solutions in this range, for if Xi and Xg were distinct solutions we could pmve (cf. § A*51) 

that sin(:i7i-%)=0, and this would contradict § A*51 (IV), since 

Further, sm^i= +V(I + V(1 —X*)—/a, so Xi is a solution of both equations. 

* The equation C08]8=l implies that exp tj8=rl, and we have seen that this equation has no 
complex roots. 

t The inequality is true by (IV) since 0 < | mw - 1 < Jr <2. 

+ See De Morgan, A Budget of Paradoxes (London, 1872), pp. 316 et seq.., for reasons for 
proving that r>3J. 

§ If X= -1, ±r are solutions and there are no others in the mnge (- r, r). 
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on?::’SX7-::,T" 
«..im”» s iS”'" “" ‘"'■^“ ““ •’“«“• ” 

It IS obvioiw that, if ar, is a solution of the equations, so also' is x^+Ztiw, where a is 
7 integer, and therefore the equations have an infinit7 of real solutions. 

A-521. Tkepriticijxa tohaion of the trigmiometrical equaHona. 

The unique wlution of the equations cosx-X, sins:-;x (where X*+m==1) which lies 
^tween - ^ and a is called the pnnciped aoluiwn* and any other solution differs from it 
bj an int^er multiple of 2jr. 

o/ Me of a complex number s(=t=0) can now be defined 
analytically as the pnncipal solution of the equations 

|r|oos^=E(4 f^(sin<^ = /(4 

and then, if ^=|^|.(cosa+i'sinfl), 

^xCc^g^S) ^ argument of z, and is written 

A‘522. The continuity of the aigument of a complex variahle. 

a ^ of tl'o argument d (z), of 

dr.7s7nHn! ^0 any value of its argument; then, to prove that 

and that I T-7tc "L » n«“be>- ^i exists such that <?i=arg^i 
AT,V I 1 ’ ^01 can be made less than an arbitrary positive number e by giving \z,-za\ 
any value less than some positive number ^ ^ ^ ^' 

2o=^o + %o> + 

Also let be chosen to be so smaU that the following inequalities are satisfiedt: 

(I) I ~ ^0 i < JI^01 j provided that +0, 

(II) |yi-yo|<iiyol, provided that3/04=0, 

(III) |^i-Xo|<i€|^o|, |yi~yo|<|€|2o|. 

Prom (I) and (II) it follows that ^0^1 and yoy^ are not negative, and 

^ |yQ2 

^A>.^^i+yoyi^|Uo|2 

Now let that value of Bi be taken which differs from Be, bv less fh^n +1, 

tan (d, - d„)=fW(izM2 
^0^1+yoyi’ 

+ m ~ +v as the principal solution; cf. p. 9 

nJpf,. STlSrloT'" " *■" »“ *'■ J'«*- 
mix““ 
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and so (§ A’51 example 2)^ 

I — ^01 ^ 

^ I ^0 (g^i -yo) -yo (^1 - I 

But i ^01 < I ^ 1 aiid also | yo t ^ I «61; therefore 

l^i-4J<2|2bl“i{|yi-y,y| + |xi~^|}<€. 
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Further, if we take \zi--Zq\ less than ||j?o|) (if^o=t=0) and-||yo|, (ifyo=^0) and J-cjzol, 

the inequalities (I), (II), (III) above are satisfied; so that, if 37 be the smallest of the 

three numbers^ i I !> i lyo I? i« I «o 1, by taking | %I < ’Js hB.Ye | ~ 41 <«; and this 

is the condition that S (z) should be a continuous function of the complex variable z. 

A*S. Logarithms of asmfUs nvmherz. 

The number f is said to be a logarithm of z if z=e^. 

To solve this equation in f, write +^97, where | and 17 are real; and then we have 

zss^ (cos T) + i sin 17). 

Taking the modulus of each side, we see that |2|=e^, so that (§ A*3), ^=Logl«|; and 

then 
-s** 1 z |-(cos 7} + » sin 17), 

so that 17 must be a value of argz. 

The logarithm of a complex number is consequently a many-valued function, and it 

can be expressed in terms of more elementary functions by the equation 

log z *» Log 121 -I-1 arg z. 

The continuity of logz (when z^O) follows from § A*31 and § A*622, since \z\ is a 

continuous function of z. 

The differential coefficient of any particular branch of log^ (§ ^■'7) may be determined 

as in § A*32; and the expansion of § A*33 may be established for log (1+a) when \a\<l. 

Corollary, If a® be defined to mean e^iogo^ is a continuous function of z and of a 

when a 4=0. 

A*7. The analytical definition of an angle. 

Let 2i, ^21 % be three complex numbers represented by the points Pj, P2» A ^be 

Argand diagram. Then the angle between the lines (§ A*12, footnote) P1P2 and P1P3 is 

defined to be any value of arg (% - ^i) - arg (22 - ^1). 

It will now be shewn f that the area (defined as an integral), which is bounded by two 

radii of a given circle and the arc of the circle terminated by the radii, is proportional to 

one of the values of the angle between the mdii, so that an angle (in the analytical sense) 

possesses the property which is given at the beginning of all text-books on Trigonometry 

* If any of these numbers is zero, it is to be omitted, 
t The proof here given applies only to acute angles ; the reader should have no difficulty in 

extending the result to angles greater than and to the case when OX is not one of the 

bounding radii. 
X Euclid’s definition of an angle does not, in itself, afford a measure of an angle; it is shewn 

in treatises on Trigonometry (cf. Hobson, Plane Trigonometry (1918), Ch. i) that an angle is 

measured by twice the area of the sector which the angle cuts off from a unit circle whose centre 
is at the vertex of the angle. 
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^ fi) ^ ifflj ^int (k^li of whose coordiimtes are pcfflitive) of the circle 

i b® the priiict|»l Talue of arg(d?i + fyiX so that 0<:^<Jir. 

Ttoi th« mm hmmiM hj OX and the line joining (0, 0) to (xi, y^) and the arc of the 

ciwift jdaiug yg) I© 0) i» J* fix)ds^ whore* 

f{x}mtsUM6 (0^j?<eecosd), 

(aomB^x^a), 

if m Mtm fee ckia^ a*» a snitahlj chosen int^ral (cf. p. 61). 

It mmmm to he that j f{x) dx is proportional to B. 

Mow I fix)£s» f xUuBdx+f (a^—a^idx 

-|a*^^oo85+J|as(a*-ar») -i ^ j;(a»-a^)ij dx 

J mem$ 

- fa* {f *• - (f w - ^}=fa*^, 

m simmi mad laing the eiample woiied out on p. 64. 

That w to Bay, the ar^ the sector k proportional to the angle of the sector. To 

tto eitet, we hate shewn that the pc^mkr conception of an angle is consistent with 
the analytical definition. 
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[The numbers refer to the pages. References to theorems contained in a few of 
the more important examples are given by numbers in italics^ 

AheVs discovery of elliptic functions, 429, 512; inequality, 16 ; integial equation, 211, 229, 230; 
method of establishing addition theorems, 442, 496, 497, 530, 534; special form, of 
the confluent hypergeometric function, 353 ; test for convergence, 17; theorem on continuity 
of power series, 57; theorem on multiplication of convergent series, 58, 59 

Abridged notaUon for products of Theta-functions, 468, 469; for quotients and reciprocals of 
elliptic functions, 494, 498 

Absolute convergence, 18, 28; Cauchy’s test for, 21; D’Alembert’s ratio test for, 22; De 
Morgan’s test for, 23 

Absolute value, see Modulus 

Absolutely convergent double series, 28; infinite products, 32; series, 18, (fundamental 
property of) 25, (multiplication of) 29 

Addition formula for Bessel functions, 357, 380; for Gegenbauer’s function, 335 ; for Legendre 
polynomials, 326, 395; for Legendre functions, 328; for the Sigma-function, 451; for 
Theta-functions, 467; for the Jacobian Zeta-function and for E (n), 518, 534; for the 
third kind of elliptic integral, 523; for the Weierstrassian Zeta-function, 446 

Addition formulae, distinguished from addition theorems, 519 
Addition theorem for circular functions, 535; for the exponential function, 531; for Jacobian 

elliptic functions, 494, 497, 530; for the Weierstrassian elliptic function, 440, 457; proofs 
of, by Abel’s method, 442, 496, 497, 530, 534 

Affix, 9 
Air in a sphere, vibrations of, 399 
AmpUtude, 9 

Analytic continuation, 96, (not always possible) 98; and Borel’s integral, 141; of the hyper- 
geometric function, 288. See also Asjrmptotic expansions 

Analytic functions, 82-110 (Chapter v); defined, 83 ; derivates of, 89, (inequality satisfied by) 91; 
distinguished from monogenic functions, 99; represented by integrals, 92; Eiemann’s 
equations connected with, 84; values of, at points inside a contour, 88; uniformly convergent 
series of, 91 

Angle, analytical definition of, 689; and popular conception of an angle, 589, 590 
Angle, modular, 492 
Area represented by an integral, 61, 689 
Argand diagram, 9 
Argument, 9, 588; principal value of, 9, 688; continuity of, 588 
Associated function of Borei, 141; of Eiemann, 183; of Legendre{z) and (2)], 323-326 
Asymptotic expansions, 150-159 (Chapter vm); differentiation of, 153 ; integration of, 153; 

multiplication of, 152; of Bessel functions, 368, 369, 371, 373, 374; of confluent hyper¬ 
geometric functions, 342,343; of Gamma-functions, 251, 276; of parabolic cylinder functions, 
347, 348.; uniqueness of, 153, 154 

Asymptotic inequality for parabolic cylinder functions of large order, 354 
Asymptotic solutions of Mathieu’s equation, 425 
Auto-fhnctions, 226 
Automorphic functions, 455 
Axioms of arithmetic and geometry, 579 

Barnes’ contour integrals for the hypergeometric function, 286, 289; for the confluent hyper¬ 
geometric function, 343-345 

Barnes’ G-funotion, 264, 278 
Barnes’ Lemma, 289 
Basic numbers, 462 
Bemounian numbers, 126; polynomials, 126,127 
Bertrand’s test for convergence of infinite integrals, 71 
Bessel coeffl<dentB [J»(2)], 101, 355; addition formulae for, 357; Bessel’s integral for, 362; 

differential equation satisfied by, 357; expansion of, as power series, 355; expansion of 
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(by Schlomilch), 377; expansion of 

Bessel ftmoaons, 355-385 (Chapter xvn), J W defined 35ft-qfin. oSs-« * , . 
asymptotic expansion of 368 369 371 w qlu > addition formulae for, 380; 

371; ^expansion of functions ifsds’of 37! 3^5'\^7%«°^;,n ^8 

S“S 'Si’fsi ?S£ Si S, s 
ti& s'Afi: 'Si T srM s> 
373. 374-, relations bet^^n, m 371 
378-, Schlafii's form of Bessel’s inte^ for^'™'«^\.Geg®n‘>aner-s function and, 
lW(r) (Neumann), 372: nrWWetoSchikflf’370 ’ ^.(a; (Hankel), 370; 
solution of Laplace’s equation ^ Sfif• ^sX«’of oj °l 373; 
tabulation of, 378; whoi order S^ W’368 M3• wh,!^ wave-motion eqimtion by, 397; 

rss=2 bUkSSii' S: 
Binet s integrals for log r {z), 248-251 inaciiions 
Binomial tlieorem, 9o 

^er’s taeorem on linear differential equations with five singularities 203 
Bolzano s tlieoreni on limit points, 12 * 

Bonnet*s form of the second mean value theorem, 66 
Borel s associated function, 1411 intefirral I4.fi* i r.* 

Boundary conditions, 387 ; and Laplace’s equation, 393 

Bounds of continnons ftmctions, 65 
Brunch of a fanction, 106 
Branch-point, 106 

Buxmann’s theorem, 128; extended by Teiieira, 131 

C!aator*s Lemma, 183 

‘^“tS.inder “lor’t '^3 ; formula for the 

inte^l,119; “4ral representing r(r),L3- numS' r7“-WsV^^*“ function, 91; and integrals, 21, 71 o w> ^‘*0, numoers, 37J, tests for convergence of series 

SS ^ <»™ oi, 87, no 
C^’S method of ‘ summing > aeries, 155; generalised, 156 

m, m, ^ 

Chafer’s test for convergence of infinite integrals, 72 
^e, ar^ of sector of, 589; limiting, 98 ; of convergence 30 

o^,585; differentiation 
239 *-uiae, oao, periodicity of, 587; relation with Gamma-functions, 

Chrcular membrane, vibrations of, 356, 396 
Class, left (L), 4 ; right (R), 4 
Closed, 44 

Cluster-point, 13 

“'TS: IS*-"'- “' »>» * TO 174; In 

Coefficients of Bessel, see Beata coefficients 

ComCeTC“CuLT4TS3TriL“^ ^0 
Complete elliptic inteiJrrals fS fc v’ v^i /fi 4- j ^ n * * 

lation between, 520; prop:srtles kf (g«i functionT^fthe^m^’ulS.Z. m, 
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series for, 299; tables of, 518 ; the Gaussian transformation, 533; values for small values 
of \k\, 521; values (as Gamma-functions) for special values of k, 524-527; with comple¬ 
mentary moduli, 479, 501, 520 

Complex integirals, 77 ; upper limit to value of, 78 
Complex integration, fundamental theorem of, 78 
Complexnumhers, 3-10 (Chapter i), defined, 6; amplitude of, 9 ; argument of, 9, 588; dependence 

of one on another, 41; imaginary part of (I), 9 ; logarithm of, 589 ; modulus of, 8 ; real part 
of (R), 9; representative point of, 9 

Complex variable, continuous function of a, 44 
Computation of elliptic functions, 485; of solutions of integral equations, 211 
Conditional convergence of series, 18; of infinite determinants, 415. See also Convergence and 

Absolute convergence 
Condition of integrability (Riemann’s), 63 
Conditions, Dirichlet’s, 161, 163, 164, 176 
Conduction of Heat, equation of, 387 
Confluence, 202, 337 
Confluent form, 203, 337 
Confluent bypesgeometric function (r)], 337-354 (Chapter xv); equation for, 337; general 

asymptotic expansion of, 342, 345; integral defining, 339; integrals of Barnes’ type for, 
343-345 ; Rummer’s formulae for, 338; recurrence formulae for, 352; relations with Bessel 
functions, 360; the functions and (^)» 337-339; the relations between functions 
of these types, 346; various functions expressed in terms of Wjc,m d'5-2, 353^ 360. See 
also Bessel functions and Parabolic cylinder functions 

Confocal coordinates, 405, 547; form a triply orthogonal system, 548; in association with 
ellipsoidal harmonics, 552; Laplace’s equation referred to, 551; uniformising variables 
associated with, 549 

Congruence of points in the Argand diagram, 430 
Constant, Euler’s or Mascheroni’s, [7], 235, 246, 248 
Constants ei, ^2, ^3, 443; E, E\ 518, 520; of Fourier, 164; 171, (relation between iji 

and 712) 446 ; G, 469, 472 ; X, 484, 498, 499; K\ 484, 501, 503 
Construction of elliptic functions, 433, 478, 492; of Mathieu functions, 409, (second method) 

420 
Contiguous hypergeometric functions, 294 
Continna, 43 
Continuants, 36 
Continuation, analyse, 96, (not always possible) 98; and Borel’s integral, 141; of the hyper¬ 

geometric function, 288. See also Asymptotic expansions 
Continuity, 41; of power series, 57, (Abel’s theorem) 57; of the argument of a complex variable, 

588; of the circular functions, 585; of the exponential function, 581; of the logarithmic 
function, 583, 589; uniformity of, 54 

Continuous functions, 41-60 (Chapter iii), defined, 41; bounds of, 55; integrability of, 63 ; of a 
complex variable, 44 ; of two variables, 67 

Contour, 85 ; roots of an equation in the interior of a, 119,123 
Contour integrals, 85; evaluation of definite integrals by, 112-124; the Mellin-Barnes type of, 

286, 343 ; see also under the special functimi represented by the integral 
Convergence, 11-40 (Chapter ii), defined, 13, 15; circle of, 30; conditional, 18; of a double 

series, 27; of an infinite determinant, 36; of an infinite product, 32; of an infinite integral, 
70, (tests for) 71, 72; of a series 15, (Abel’s test for) 17, (Dirichiet’s test for) 17 ; of Fourier 
series, 174-179 ; of the geometric series, 19; of the hypergeometric series, 24; of the series 

19 ; of the series occurring in Mathieu functions, 422; of trigonometrical series, 161; 
principle of, 13 ; radius of, 30 ; theorem on (Hardy’s), 156. See also Absolute convergence, 
Non-uniform convergence and Uniformity of convergence 

Coordinates, confocal, 405, 547 ; orthogonal, 401, 548 
Cosecant, series for, 135 
Cosine, see Circular functions 
Cosine-integral [Ci (jz)], 352; -series (Fourier series), 165 
Cotangents, expansion of a function in series of, 139 
Cubic function, integration problem connected with, 452, 512 
Cunningham’s function (z)], 353 
Curve, simple, 43 ; on a cone, extension of Cauchy’s theorem to, 87 ; on a sphere (Seifiert’s 

spiral), 527 
Cut. 281 
Cylindrical functions, 355. See Bessel functions 
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B’Altmbert’s ratio tm% for confergeace of geries, 22 
Itobmax’ formula, 125 
Becroaslnif soquonce, 12 

BodeMnd’fi theory of Irrational nnmberi, 4 
Befidency of a plane curve, 455 

Boflnit® Integrals, evaluation of. 111-124 (Chapter vi) 
3>figree of Legendre functions, 302, 307, 324 

^ U ValMe Pou«dn'8 tert for uniformity of convergence of an infinite integral, 72 
m iiorgan*s tost for convergence of series, 23 
Bepondonce of one complex number on another, 41 

““^nTpr^iuXS “ determinants. 37; of 

M function, 89 ; Cauchy's inequality for. 91; integrals for. 89 
Dorivatea of elliptic functions, 430 ^ 
Botorminant, Hadamard’s, 212 

BUfferonc® ©quation satisfied by the Gamma-function 237 

“**«“"*" differential equatUm. and Partial differential equattoM 

circular functions, 586, of the exponential function, 582; of the logarithmic function, 583, 

Dlrlchlet’s conditions, 161, 163, 164, 176; fonn of Fourier’s theorem 161 163 176- f..r™„ia 

Biscontinuoua fector, Cauchy’s, 123 

Wtcrlmlnant associated with Weierstaassian elUptic functions, 444 550 
Blvergrence of a series, 15; of infinite products, 33 
Bomain, 44 

BouMe circuit integrals, 256, 293 
Bouhle integrals, 68, 254 

° ^d“*dan eUlptlc Junctions, Theta-ftmcUona and 

^^^bim/^^c fnLtions°*498^for thi°8-*’ Gamma-function, 240; for the 
*88; for the S^;««nction, 459, 460; for the Theto-functions. 

, lor me Weierstrsssian elliptio function, 441; for the Weierstaassian Zeta-funotion, 459 

Hectromagnetic waves, equations for, 404 
Blemeiitary ItmctionB, 82 

“gj srr i"- 
nected with, 567; linear independm<^of if^nations con- 
physical applications of, 547rs^S of is given, 546; 
aiid Lam4 fnnctioiu ^ !*»<’» equation 

Elliptic cylinder functions, see Mathien 

means of Thete,-fuSr473 ■ eLrc^i^ express^ by 
general addition formula, 457 •’ Weiemtrassi^ functions, 448-451; 
432; periodicity of, 429, 479 500 502 *W)a* ^ order of, 
tween zeros and poles of, 433^^^ ^ 
poles (are constant), 431 • with’one 
between), 452; with two simple poles 4^ 49^^’ qff ’ 7'*^ f®'®® Periods (relations 
rh,ta-fancUoitaa.dWelerrtr^fSSA^L •“P“® ftactloa., 

See also Crircolar fonctioxts. 
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Hliptic integrals, 429, 512; first kind of, 515; function E (u) and, 517; function Z (m) and, 
518; inversion of, 429, 452, 464, 4^, 484, 512, 524; second kind of, 517, (addition formulae 
for) 518, 519, 534, (imaginary transformation of) 519; third kind of, 522, 523, (dynamical 
application of) 523, (parameter of) 522; three kinds of, 514. See also Compls^ elliptLc 
integrals 

Elliptic memhrane, vibrations of, 404 
Eqnatinir coefficients, 59, 186 
Equation of degree m has m roots, 120 
Equations, indicia!, 198; number of roots inside a contour, 119,123; of Mathematical Physics, 

203, 386-403; with periodic coefficients, 412. See also Difference equation, Int^rral 
equations. Linear differential equations, and under the names of special equations 

Equivalence of curvilinear integrals, 83 
Error-function [Erf [x) and Erfc (.t)], 341 
Essential singularity, 102 ; at infinity, 104 
Eta-ftaiction [H (u)}, 479, 480 
Eulerlan Integrals, first kind of {B (w, n)], 253; expressed by Gamma-functions, 254; extended 

by Pochhammer, 256 
Enlerian integrals, second kind of, 241; see Qamma-fonction 
Euler’s constant [7], 235, 246, 248; exj^nsion (Maclaurin’s), 127; method of ‘summing’ series, 

155; product for the Gamma-function, 237; product for the Zeta-function of Biemann, 271 
Evaluation of definite integrals and of infinite int^prals, 111-124 (Chapter vi) 
Evaluation of Hill’s infinite determinant, 415 
Even ftinctions, 115, 165; of Mathieu lcej^^{z, q)], 407 
Existence of derivatives of analytic function, 89; -theorems, 388 
Expansions of functions, 125-149 (Chapter vn); by Burmann, 128, 131; by Darboux, 125; by 

Euler and Maclsurin, 127; by Fourier, see Fourier seriea; by Fourier (the Fouri^-Bessel 
expansion), 381; by Lagrange, 132,149; by Laurent, 100; by Maclaurin, 94; by Pincherle, 
149; by Plana, 145; by Taylor, 93; by Wronski, 147; in infinite products, 136; in series of 
Bessel coefficients or Bessel functions, 374, 375, 381, 384; in series of cotangents, 139; in 
series of inverse factorials, l42; in series of Legendre polynomials or Legendre functions, 
310, 322, 330, 331, 335; in series of Neumann functions, 374, 375, 384; in series of parabolic 
cylinder functions, 351; in series of rational functions, 134. See also Asymptotic expansious. 
Series, and under the names of special functions 

Exponential function, 581; addition theorem for, 581; continuity of, 581; differentiation of, 
582; periodicity of, 585 

Exponential-integral [Ei (2)], 352 
Exponents at a regular point of a linear differential equation, 198 
Exterior, 44 
External Harmonics, (ellipsoidal) 576, (spheroidal) 403 

Factor, Cauchy’s discontinuous, 123; periodicity-, 463 
Factorials, expansion in a series of inverse, 142 
Factor-theorem of Weierstrass, 137 
Fej4r’8 theorem on the summability of Fourier series, 169, 178 
Ferrers’ associated Legendre functions [P»^(2) and' 323 
Fii;pt kind, Bessel functions of, 359; elliptic integrals of, 515, (complete) 518, (integration of) 

515; Eulerian integi^ of, 253, (expressed by Gamma-functions) 254; integral equation of, 
221; Legendre functions of, 307 

First mean-value theorem, 65, 96 
First species of ellipsoidal harmonic, 537, (construction of) 538 
Floquet’s solution of differential equations with periodic coefficients, 412 
Fluctuation, 56; total, 57 
Foundations of arithmetic and geometry, 579 
Fourier-Bessel expansion, 381; integral, 385 
Fourier constants, 164 
Fourier series, 160-193 (Chapter ix); coefficients in, 167, 174; convergence of, 17-^179; differ¬ 

entiation of, 168; discontinuities of, 167, 169; distinction between any trigonometrical 
series and, 160, 163; expansions of a function in, 163,165,175,176; expansions of Jacobian 
elliptic functions in, 510, 511; expansion of Mathieu functions in, 409, 411, 414, 420; Fej4r’s 
theorem on, 169; jHurwitz-Liapounoff theorem on, 180; Parseval’s theorem on, 182; series 
of sines and series of cosines, 165; summability of, 169,178; uniformity of convergence of, 
168, 179. See also Trigonometrical series 

Fourier’s theorem, Dirichlet’s statement of, 161, 163, 176 
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Fooilar'i tlieorein on integrals, 188, 211 

Foam species of ellipsoidal harmonic, 537, (construction of) 542 
Fredholm’s integral equation, 213-217, 228 
FuncttonaUty, concept of, 41 

f P^rts of, 102; without 

^^ental formulae of JacoW connecting Theta-functions, 467, 4SS 

Pa^Uelofi^m, 430; polygon (of automorphic functions), 455 

equation, 197, 200, 389, 559. S,e aho 

°^Ss“/2i9”’cSf of. 251, 276; circular 

gri± i 

GegeihauE’F''*“^*^?“ lemniscate 

*^recSttence f^^Xe*'^30^^rdfHon formula, 335-, differential equation for, 329; 

OenulTfpir tit “sciilfi’^s^tS 
Geometric series, 19 

Green's Itoclions, 395 

Had&maxd's lemma, 212 

Half-periods of Weierstrassian elliptic functions, 444 

to!rf(?)f: contour integral to T (*), 244; integral 

^r. convergence theorem, 156; test for uniform convergence, 50 

Sylve^te^^s th:o“re^ = 
Heat, equation of conduction of, 387 ,»«iuai narmonios 

Heine-Borel theorem (modified), 53 

Heto’s eipanslou of (t -r)-> in series of Legendre polynomials, 321 

S™! r f«"o«on. Hermltos formula to the generalised Zeta-funotion f («, a), 269 
Hermite s solution of Lame’s equation, 573-575 
Henn’s equation, 576, 577 

^|s equation. 406, 413A17; Hill’s method of solution, 413 
^s infinite determinant. 36, 40, 415; evaluation of, 415 
HoDsoE’s associated Legendre functions, 325 
HolomorpMc, 83 

Homogeneity of Weieratrassian elliptic functions, 439 

from (Niven’s fomu*a)r5«Ttoerr1nde^rd°encefff56o''^’ liarmonios derived 
Homogeneous integral equations, 217, 219 

f<” f c. “). .M. 
Hypergeometrlo equation, see Hypergeometric functions 
Hypergeometric functions, 281-301 (Chant^^r • .t i ^ 

continuation of, 288; contour intei^s for 291 ’ contiguous, 294; 
functions expressed in terms of -It + ^ equation for, ^04?, 207, 283 ; 

twenty-four expressions involving 284 *285 relations between 



GENERAL INDEX 601 

281, 29B\ values of special forms of hypergeomefcric functions, 301. See also Bessel 
functions, Confluent liypergeonietric functions and Legendre functions 

Hypergeometric series, see Hypergeometric functionfi 
Hypothesis of Biemann on zeros of ^(s), 272, 280 

Identically vanishing power series, 58 
Identity of two functions, 98 
Imaginary argument, Bessel functions with and 372, 373, 384 
Imaginary part (I) of a complex number, 9 
Imaginary transformation (Jacobi’s) of elliptic functions, 505, 506,555; of Theta-functions, 124, 

474; of E {u) and Z (u), 519 
Improper integrals, 75 
Incomplete Gamma-ftmctions [7(n, a;)], 341 
Increasing sequence, 12 
Indlcial equation, 198 
Inequality (Abel’s), 16; (Hadamard’s), 212; satisfied by Bessel coefficients, 379; satisfied by 

Legendre polynomials, 303; satisfied by parabolic cylinder functions, 354; satisfied by 
t{s, a), 274, 275 

Infinite determinants, see Determinants 
Infinite integrals, 69; convergence of, 70, 71, 72; difierentiation of, 74; evaluation of, 111-124; 

functions represented by, see under the names of special Junctions; representing analytic 
functions, 92; theorems concerning, 73; uniform convergence of, 70, 72, 73. See also 
Integrals and Integration 

Infinite products, 32; absolute convergence of, 32; convergence of, 32; divergence to zero, 33; 
expansions of functions as, 136, 137 (see also under the names of special functions); expressed 
by means of Theta-functions, 473, 488; uniform convergence of, 49 

Infinite series, see Series 
Infinity, 11, 103 ; essential singularity at, 104; point at, 103; pole at, 104; zero at, 104 
Integers, positive, 3 ; signless, 3 
Integrability of continuous functions, 63; Biemann’s condition of, 63 
Integral, BoreFs, 140 ; and analytic continuation, 141 
Integral, Cauchy’s, 119 
Integral, Dirlchlet’s, 258 
Integral equations, 211-231 (Chapter xi); Abel’s, 211, 229 , 230; Fredholm’s, 213-217, 228; 

homogeneous, 217, 219; kernel of, 213; Liouville-Neumann method of solution of, 221; 
nucleus of, 213; numbers (characteristic) associated with, 219; numerical solutions of, 211; 
of the first and second kinds, 213, 221; satisfied by Lame functions, 564-567; satisfied by 
Mathieu functions, 407; satisfied by parabolic cylinder functions, 231; Schlomilch’s, 229; 
solutions in series, 228; Volterra’s, 221; with variable upper limit, 213, 221 

Integral formulae for ellipsoidal harmonics, 567; for the Jacobian elliptic functions, 492, 494; 
for the Weierstrassian elliptic function, 437 

Integral functions, 106; and Lamd’s equation, 571; and Mathieu’s equation, 418 
Integral properties of Bessel functions, 380, 381, 385; of Legendre functions, 225, 305, 324; of 

Mathieu functions, 411; of Neumann’s function, 385; of parabolic cylinder functions, 350 
Integrals, 61-81 (Chapter iv); along curves (equivalence of), 87; complex, 77, 78; differentiation 

of, 67; double, 68, 255; double-circuit, 2.56, 293; evaluation of, 111-124; for derivates of an 
analytic function, 89; functions represented by, see under the names of the special functions; 
improper, 75; lower, 61; of harmonics (Sylvester’s theorem), 400; of irrational functions, 
452, 512; of periodic functions, 112; principal values of, 75, 117; regular, 201; repeated, 
68, 75; representing analytic functions, 92; representing areas, 61, 589; round a contour, 
85 ; upper, 61. See also Elliptic integrals, Infinite integrals, ajid Integration 

Integral theorem, Fourier’s, 188, 211; of Fourier-Bessel, 385 
Integration, 61; complex, 77; contour-, 77; general theorem on, 63; general theorem on 

complex, 78; of asymptotic expansions, 153; of integrals, 68, 74, 75; of series, 78; pro¬ 
blem connected with cubics or quartics and elliptic functions, 452, 512. See also Infinite 
integrals and Integrals 

Interior, 44 
Internal spheroidal harmonics, 403 
Invariants of Weierstrassian elliptic functions, 437 
Inverse factorials, expansions in series of, 142 
Inversion of elliptic integrals, 429, 452, 454, 480, 484, 512, 524 
Irrational functions, integration of, 452, 512 
Irrational-real numbers, 5 



602 GENERAL INDEX 

InwltteiMi© net of zeros or poles, 430 

tegular polate (singularities) of differential equations, 197, 202 
Itaratod fimctloiis, 2*22 

Jacobian effiptic ftmctiom [snw, cnw, dnul 432,478, 491-533 (Chapter xxii); addition theorems 
for, 494, 497, 530, 5J5; connexion with Weierstrassian: functions, 505; definitions of amw, 

snii (sin amw), cnM, dnw, 478, 492, 494; differential equations satisfied by, 477, 492 ; 
differentiation of, 493; duplication formulae for, 498; Fourier series for, 510, 511, 535; 
geometrical illustration of, 524, 527; general description of, 504; Glaisher’s notation for 
quotients and recip^als of, 494 ; infinite products for, 508, 532; integral formulae for, 492, 
494; Jacobi’s imaginary transformation of, 505, 506; Lamd functions expressed in terms of, 
564, 573; Landen’s transformation of, 507; modular angle of, 492; modulus of, 479, 492, 
(complementary) 479, 493; parametric representation of points on curves by, 524, 52T, 527, 
533; periodicity of, 479, 5M, 502, 503; poles of, 432, 503, 504; quarter periods, A", iK% of, 
479, 498, 499, 501; relations between, 492; residues of, 504; Seiffert’s spherical spiral and, 
527; triplication formulae, 530, 534, 535; values of, when u is or I (K+iK'), 509, 
506, 507; values of, when the modulus is small, 532. See also ElMptic functions, EBlptic 
integrals, temniscat© flmctlons, Tbeta-ftmctlonB, and Veierstrassian elliptic functions 

Jacobi’s discoveiy of elliptic functions, 429, 512; earlier notation for Theta-functions, 479; 
fundamental Theta-function formulae, 467, 488; imaginary transformations, 124, 474, 505, 
506, 519, 535; Zeta-function, see wider Zeta-functtwi of Jacobi 

Jordan’s lemma, 115 

Kernel, 213 

Klein’s theorem on linear differential equations with five singularities, 203 
Knmmer’s formulae for confluent hypergeometric functions, 338; series for logT (z), 250 

Lacnnaiy function, 98 

Lagrange’s expansion, 132,149; form for the remainder in Taylor’s series, 96 
Lam4 ftinctions, defined, 558; expressed as algebraic functions, 556, 577; expressed by Jacobian 

elliptic functions, 573-575; express^ by Weierstrassian elliptic functions, 570-572 ; inte^ 
equaMqns satisfied by, 564-567; linear independence of, 559; reality and distinctness of 
zeros of, 557, 558, 578; second kind of, 562; values of, 558; zeros of (Stieltjes’ theorem), 
560. See also Lamp’s-equation and EUipsoidal harmonics 

ret’ (Chapter xxm); derived from theory of ellipsoidal harmonics, 
5d8-543, 562-554; different forms of, 554, 573; generalised, 204, 570, 573, 576, 577; 
senes solutions of, 556,577,578; solutions expressed in finite form, 459, 556, 576, 577, 578; 
solutions of a generalised equation in finite form, 570, 573. See also Lam4 functions and 
SHipsoidBl harmonics 

landen’s transformation of Jacobian elliptic functions, 476, 507, 533 
Laplace s ^^nation, 386; its general solution, 388; normal solutions of, 553; solutions involving 

functioM of Legendre and Bessel, 391, 395; solution with given ^undary conditions, 393; 
symmetrical solution of, 399; transformations of, 401, 407, 551, .553 

Laplace’s integrals for Legendre polynomials and functions, 312, 313, 314, 319, 326, 337 
Laurent’s expansion, 100 
Least of limits, 13 
Lebaigiie*s lemma, 172 
Left (L-) class, 4 

L^r^idre’s equation, 204, 304; for associated functions, 324; second solution of, 316. *See also 
L<^;endjre funcUons and Legendre polynomials 

Leg«to 302-^6 (Chapter xv); P {2), Q^(z), Pj^{z), Q^'»(z) defined, 306, 316, 323, 
* ^dition formulae for, 328, 395; Bessel functions and, 364, 367, 401; degree of, 307, 

3M; differential equation lor, 2W, 306, 324; distinguished from Legendre polynomials, 
’ ^pfi^sions m ascending series, 311, 326; expansions in descending series, 302, 317, 

326, 334; expansion of a function as a series of, 334; expressed by Muiphy as hypergeometric 
ranctioES, 311, 312; expression of Q,, (z) in terms of Legendre polynomials, 319, 320, 333; 
Femra functions abated with, 323, 324; firat kind of, 307; Gegenbauer’s function, 

# Jot with, Qegenbauer’i function; Heine’s expansion of (t- z)~i as a series 
’ Hobson s functions associated with, 325; integral connecting Bessel functions with, 

^54; mte^l properties of, 324; Laplace’s integrals for, 312, 313, 319, 326, 334; Mehler- 
pmchlet integral for, 314; order of, 326; recurrence formulae for, 307, 318; Schlafli’s 

316-320, 325, 326; summation of :Sh»P^(z) and 
(z), 302, 321; zeros of, 303, 316, 335. See also Legendre polynomials a7id Legesadre’s 

equation 

Legento polynomials [P^ (2)], 95, 302; addition formula for, 326, 387; degree of, 302; differ¬ 
ential equation for, 204, 304; expansion in ascending series, 311; expansion in descending 
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series, 302, S34; expansion of a function as a series of, 310, 322, 330? 331, 332, 
expressed by Murpby as a bypergeometric function, 311, 312; Heine’s expnsion oi [t -z] 
as a series of, 321; integral connecting Bessel functions with, 364; integral prope^es of, 
225, BOS; Laplace’s equation and, 391; Laplace’s int^rals for, 312, 324; Mehler-pincMet 
integral for, 314; Neumann’s expansion in series of, 3^; numerical inequal%^^tisfied by, 
303; recurrence formulae for, 307,309; Bodrigues’ formula for, 225, 303; Schlani s integral 
for, 303, 304; summation of (z), 302; zeros of, 303, 316. See also Legendre functions 

^^f^dre’s relation between complete elliptic integrals, SM 

ii^imiscate functions [sin lenin and cos lemn ^], 524 
!dapoimo!f*s theorem concerning Fourier constants, 180 
dmit, condition for existence of, 13 
liimit of a function, 42; of a sequence, 11, 12; -point (the Bolzano-Weierstrass theorem), 12 

jimiting drde, 98 
limits, greatest of and least of, 13 
limit to ‘Ktie value of a complex integral, 78 
Lindemann’s theory of Mathieu’s equation, 417; the similar theory of Lame’s equation, 570 

differential equations, 194-210 (Chapter x), 386-403 (Chapter ^xvin); exponents of, 198; 
fundamental system of solutions of, 197, 200; irregular singularities of, 197, 202 ; ordm^ 
point of, 194; regular integral of, 201; regular point of, 197; singuto points of, 194, 197, 
(confluence of) 202; solution of, 194, 197, (uniqueness of) 196; special types of equations: 
—Bessel’s for circular cylinder functions, 204, 342, 357, 358, 373; 
metric functions, 202, 207, 283; Gegenbauer’s, 329; 204, 209, ^42, ^7; HiU 
406, 413; Jacobi’s for Theta-functions, 463; Lamp’s, 204, 54(^o43, 570-5J5, 
Laplace’s, 386, 388, 536, 551; Legendre’s for zonal and surface harmonics, 204, 304, 5IA; 
Mathieu’s for elliptic cylinder functions, 204, 406; Neumann’s, 5^5; Eiem^n s for 
P-functions, 206, 283, 291, 294; Stokes’, 204; Weber’s for parabolic cyhnder functions, 
204, 209, 342, 347; Whittaker’s for confluent bypeigeometric functions, 337; equation for 
conduction of Heat, 387; equation of Telegraphy, 387; equation of wave motions, 697, 
402; equations writh five singularities (the Klein-Bdcher theorem), WB; eqmtions with three 
singularities, 206; equations with two singularities, 208; equations with r singularities, 
209; equation of the third order with regular integrals, 210 

LfOuVille’s method of solving integral equations, 221 
Lioiiville’s theorem, 105, 431 ^ 
Logarithm, 583; continuity of, 583, 589; differentiation of, 586, 589; expansion of, 584, o89; 

of complex numbers, 589 
Logarithmic derivate of the Gamma-function (r)], 240, 241; Binet’s integms for, 248-251, 

circular functions and, 240Dirichlet’s integral for, 247; Gauss’ integral for, 24b 

Logarithmic derivate of the Kiemann Zeta-function, 279 
Logarithmic-integral function [Liz], 341 

Lower integral, 61 
Lunar perigee and node, motions of, 406 

Maclanrin’B (and Euler’s) expansion, 127; test for convergence of infinite integrals, 71; senes, 
94, (failure of) 104, 110 

Many-valued functions, 106 
Mascheroni’s constant [y], 235, 246,248 , 
Mathematical Miyaics, equations of, 203, 38^403 (Chapter xvm). See also under Linear dif¬ 

ferential equations and the names of special equations 
ItetUeu ftmctlona [ce„{z, q), >ejz, q), injz, j)j, 404-428 (Chapter xix); construction of, 4M, 

4M; convergence of sliies’ii. 422; even and odd, 407; ex^.ons as 
411, m-, integral equations satisfied by, 407, 409; integral formulae, 411; order of, 410, 
second kind of, 427 . x 4io 

HatUen’s equation, 204, 404-428 (Chapter xrsi; general foim, 
Lindemann and Stielties, 417, by the method of change of parameter, 4-4, second solution 
of 413 420 427; solutions in asymptotic series, 425; solutions whi<^ are peiiwlic, 
Mathieu fun^ons; the integral function associated with, 418. See also Hill s equation 

Mean-value theorems, 65, 66, 96 
Mehler’s integ^ial for Ijegendre functions, 314 
Mellin’s (and Barnes’) type of contour integral, 286, 343 
Membranes, vibrations of, 356, 396, 404, 405 

Mesh, 430 
Methods of ‘ summing ’ series, 154-156 

Mending’s formnla, 119 
’pMVf'niTnTiTn value of V (x), 253 
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Modified Heifid-Borel tlieorem, 53 
Modular angle, 492 ; function, 481, (equation connected with.) 482; -surface, 41 
Modulus, 430; of a complex number, 8; of Jacobian elliptic functions, 479,*492, (complementaiy) 

479, 493; periods of elliptic functions regarded as functions of the, 484, 498, 499, 501, 521 
Moni^uic, 83; distinguished from analytic, 99 
Monotonic, 57 
Morera’s theorem (converse of Cauchy’s theorem), 87,110 
Motions of lunar perigee and node, 406 
M-teat for uniformity of convergence, 49 
Multiplication formula for r (z), 240; for the Sigma-function, 460 
Multiplication of absolutely convergent series, 29; of asymptotic expansions, 152; of convei^nt 

series (Abel’s theorem), 58, 59 
Multipliers of Theta-functions, 463 
Murphy’s formulae for Legendre functions and polynomials, 311, 312 

Neumann’s definition of Bessel functions of the second hind, 372; expansions in series of 
Legendre and Bessel functions, 322, 374; (F. E. Neumann’s) integral for the Legendre 
function of the second kind, 320; method of solving integral equations, 221 

Neumann’s function [0,^ (z)], 374; differential equation satisfied by, 385; expansion of, 374; 
expansion of functions in series of, 376, 384; integral for, 375; integral properties of, 
385; recurrence formulae for, 375 

Non-uniform convergence, 44; and discontinuity, 47 
Normal functions, 224 
Normal solutions of Laplace’s equation, 553 
Notations, for Bessel functions, 356, 372, 373; for L^ndre functions, 325, 326; for quotients 

and reciprocals of elliptic functions, 494, 498; for Theta-functions, 464, 479, 487 
Nucleus of an integral equation, 213 ; symmetric, 223, 228 
Numbers, 3-10 (Chapter i); basic, 462; Bernoulli’s, 125; Cauchy’s, 379; characteristic, 219, 

(reality of) 226; complex, 6; irrational, 6; irrational-real, 5; pairs of, 6; rational, 3, 4; 
rational-real, 5; real, 5 

Odd ftinctlons, 115, 166; of Mathieu, [«e,j(z, q)], 407 
Open, 44 

Order (0 and o), 11; of Bemouilian polynomials, 126; of Bessel functions, 356; of elliptic 
functions, 432; of Legendre functions, 324; of Mathieu functions, 410; of poles of a 
function, 102; of terms in a series, 25; of the factors of a product, 33; of zeros of a 
function, 94 

Ordinary discontinuity, 42 
Ordinary point of a linear differential equation, 194 
Orthogonal coordinates, 394; functions, 224 
Oscillation, 11 

Parabolic cylinder ftmctions [D„(z)], 347; contour integral for, 349; differential equation for, 
204, 209, 347; expansion in a power series, 347; expansion of a function as a series of, 351; 
general asymptotic expansion of, 348; inequalities satisfied by, 354; integral equation 
satisfied by, 231; integral properties, 350; integrals involving, 353; integrals representing, 
353; properties when n is an integer, 350, 353, 354; recurrence formulae, 350; relations 
between different kinds of [I)„(z) and (i iz)], 348; zeros of, 354. See also Weber’s 
equation 

PaxaUelogram of periods, 430 

Parameter, change of (method of solving Mathieu’s equation), 424; connected with Theta- 
functions, 463, 464; of a point on a curve, 442, 496, 497, 527, 530, 533; of members of 
confocal systems of quadrics, 547; of third kind of elliptic integral, 522; thermometric, 405 

Parseval’s theorem, 182 

Partial differential equations, property of, 390, 391, See also Linear differential equations 
Partition function, 462 
Parts, real and imaginary, 9 
Pearson’s function [w„, (z)], 353 

P-equation, Riemann’s, 206, 337; connexion with the hypergeometric equation, 208, 283 * solu¬ 
tions of, 283, 291, (relations between) 294; transformations of, 207 

Periodic coefficients, equations with (Floquet’s theory of), 412 
Periodic functions, integrals involving, 112, 256. See also Fourier series and Doubly periodic 

functions 
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Periodicity fEwstors, 463 
Periodicity of circular and exponential functions, 585-587; .of elliptic functions, 429, 434, 479, 

600, 602, 503; of Theta-functions, 463 
l^riodic soluMons of Mathieu’s equation, 407 
Period-paxaUelogxam, 430; fundamental, 430 
Periods of elliptic functions, 429 ; qua functions of the modulus, 484, 498, 499, 501, 521 

Phase, 9 
Pinclierle’s functions (modified Legendre functions), 335 
Plana’s expansion, J45 
Pochliainmer*s extension of Eulerian integrals, 256 
Point, at infinity, 103; limit-, 12; representative, 9 ; singular, 194, 202 
Poles of a function, 102; at infinity, 104; irreducible set of, 430; number in a cell, 431; relations 

between zeros of elliptic functions and, 433; residues at, 432, 504; simple, 102 
Polygon, (fundamental) of automorphic functions, 455 
Pal3rnomials, expressed as series of Legendre polynomials, 310; of Abel, 353; of Bernoulli, 126, 

127; of Legendre, see Legendre polsmomials; of Sonine, 352 
Popular conception of an angle, 589 ; of continuity, 41 
FositiTe integers, 3 
Power series, 29; circle of convergence of, 30; continuity of, 57, (AtePs theorem) 57; expan¬ 

sions of functions in, see under the names of special functions; identically vanishing, 58; 
Madaurin’s expansion in, 94; radius of convergence of, 30, 32; series derived from, 31; 
Taylor’s expansion in, 93; uniformity of convergence of, 57 

Principal part of a function, 102; solution of a certain equation, 482; value of an integral, 75, 
117; value of the argument of a complex number, 9, 588 

Principle of convergence, 13 
Pringsheim’s theorem on summation of double series, 28 
Products of Bessel functions, 379, 380, 383, 385, 428; of hypergeometric functions, 298. See 

also Infinite products 

Quarter periods K, iK', 479, 498, 499, 601. Sm also Blliptic integrals 
Qnartic, canonical form of, 513 ; integration problem connected with, 452, 512 

Quasi-periodicity, 446, 447, 463 
Quotients of elliptic functions (Glaisher’s notation), 494, 511; of Theta-functions, 477 

Badius of convergence of power series, 30, 32 
Bational functions, 105; expansions in series of, 134 
Bational numbers, 3, 4; -real numbers, 5 
Beal functions of real variables, 66 
Beality of characteristic numbers, 226 
Beal numbers, rational and irrational, 5 
Beal part (R) of a complex number, 9 
Bearrangement of convergent series, 25; of double series, 28; of infinite determinants, 37; of 

infinite products, 33 
Beciprocal functions, Volterra’s, 218 
Beciprocals of elliptic functions (Giaisher’s notation), 494, 611 
Becurrence formulae, for Bessel functions, 359, 373, 374; for confluent hy^i^^metrie functions, 

352 * for Gegenbauer’s function, 330 ; for Legendre functions, 307, 309, 318; for Neumann s 
function, 375; for parabolic cylinder functions, 350. See also Contiguous hypergeometric 
functions 

Begion, 44 
Begulax, 83 ; distribution of discontinuities, 212; integrals of linear differential ^nations, 201, 

(of the third order) 210; points (singularities) of linear differential equations, 197 
Eolations between Bessel functions, 360, 371; between confluent hypergeometric f^ctioiis 

W t. (±«) and Mjg ±^(^), ^46; between contiguous hypergeometne functions, 294; be- 
twteillliptic functions, 452; between parabolic cylinder functions i>„ (±2} andD j (±iz), 
348; between poles and zeros of elliptic functions, 433; between Biemann Zeta-functions 
^(«)’and f (1 -s), 269. See also Becurrence formul^ 

Eemainder after n terms of a series, 15; in Taylor’s series, 95 

Removable discontinuity, 42 
Repeated integrals, 68, 75 
Representative point, 9 . ^ 
Residues, 111-124 (Chapter vi), defined, 111; of elliptic functions, 425, 497 
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associated fmctioii, 183, 184, 185; condition of integmbility, 63; equations satisfied 
by analytic functions, 84; hypotb^is concerning |‘(«), 272, 280; lemmas, 172, 184, 185; 
P-eqmtion, 206, 283, 291, 294, (transformation of) 207, (and the hypergeometric equation) 
208, me aim HJypergeometric fiosjctlons; theory of trigonometrical series, 182-188, Zeta- 
function, see Zeta-teacticm (of Blemann) 

Eiesi’ method of ‘ summing ’ series, 156 
{R-) dEM, 4 

EodiigUM* Ihrmula for Legendre polynomials, 303 ; modified, for Gegenbauer’s function, 329 
Eoote of an equation, number of, 120, (inside a contour) 119, 123; of Weierstrassian elliptic 

functions {ei, e^, %), 443 

SaalscMti* integral for the Gamma-function, 243 
Sdiliffl’s B^sel function of the second kind, {z)\ 370 
ScMSJfs integral for Bessel functions, 362, 372; for Legendre polynomials and functions, 303, 

304, 306 ; modified, for Gegenbauer’s function, 329 
ScMfimilcli’i expansion in series of Bessel coefficients, 377; function, 352; integral equation, 229 
SdizDldt’s theorem, 223 
Echwan' lemina, 186 
MmsmA Mud, Bessel function of, (HankePs) 870, (Neumann’s) 372, (Weber-Schlafli), 370, 

(modified) 373; elliptic integral of [E (u), Z (a)], 617, (complete) 518; Eulerian integral of, 
241, (extended) 244; integi^ equation of, 213, 221; Lamd functions of, 562; L^endre 
functions of, 316-320, 825, 326 

Second mean-Talne tlieorem, 66 
Second adntlon of BessePs equation, 370, 372, (modified) 373 ; of Legendre’s equation, 316 ; of 

Mathieu’s equation, 413, 427; of the hypergeometric equation, 286, (confluent form) 343 ; of 
Weber’s equation, 347 

Second species of ellipsoidal harmonics, 537, (construction of) 540 

Section, 4 
Seiffert’a spherical spiral, 527 
Sequen*^, 11; decreasing, 12; increasing, 12 
Series (Incite series), 15: absolutely convergent, 18; chaste of order of terms in, 25; con¬ 

ditionally convergent, 18; convergence of, 15; differentiation of, 31, 79, 92 ; divergence of, 
15; geometric, 19; integration of, 32, 78; methods of summing, 154-156; multiplication 
of, 29, 68, 59; of analytic functions, 91; of cosines, 165; of cotangents, 139; of inverse 
factorials, 142; of powers, me Power series; of rational functions, 134; of sines, 166; of 
variable terms, 44 {see also Unifoimity of convergence); order of terms in, 25; remainder of, 
16; representing particular functions, see under the name of the function; solutions of 
differential and integral equations in, 194-202, 228; Taylor’s, 93. See also Asymptotic 
expansions, Convergaice, Expansions, Fourier series, Trigonometrical series and Uniformity 
of convergence 

Set, Irredncible (of zeros or poles), 430 
Sigma-functionB of Weierstrass [<r(z), ei{z), V2(^)» ‘^3(2)]»447, 448; addition formula for, 451, 

458, 460; analogy with circuit functions, 447; duplication formulae, 459, 460; four 
types of, 448; expression of elliptic functions by, 450; quasi-periodic properties, 447; 
singly infinite product for, 448; three-term equation involving, 461; Theta-functions 
connected with, 448, 473, 487; triplication formula, 459 

Signless integers, 3 
Simple curve, 43; pole, 102; zero, 94 
Simply-connected region, 455 
Sine, product for, 137. See also Oircular functions 
Sine-integral [Si (z)], 352 ; -series (Fourier series), 166 
Singly-periodic functions, 429. See also Circular functions 
Slagnlarities, 83, 84, 102, 194, 197, 202; at infinity, 104; confluence of, 203, 337; equations 

with five, 203; equations with three, 206, 210; equations with two, 208 ; equations with r, 
209; essential, 102, 104 ; irregular, 197, 202; regular, 197 

Singular points (singularities) of linear differential equations, 194, 202 
Solid harmonics, 392 
Solution of Eiemann’s F-eqnatian by hypergeometric functions, 283, 288 
SolutionB of differential equations, see Chapters x, xvra, xxm, and under the names of special 

equatio7is 

solutions of integral eqnations, see Chapter xi 
Sonine’s polynomial («)], 352 
Species (various) of ellipsoidal harmonics, 537 
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Seiffert*s, 527 

8|A«rtijSil bafi&aia, 403 
mimxm of Bessel fancliom, STB, 3m, o! Ii|p«rgi';.sicij.ii iuistemM, kV^ i i l4i'i vo.. 

fanctions (relatioag l»lw«a;, 412; zi %h§^4mkUtnA *TtMin^.A W^W'f tj , im 
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mmtjm' aeorem on zeros of Laoii^ m)^ Hi i 

eqmlaoii, 417 
SMrlMff’s for the Gafflama^fancMoB, Ml 

etmttmij »4 
gtcfli^ wmdittoii for mumxgmm of dooUc lerltt, ft 
SIxiagM, Tibrations of® 160 
toc^siTt melbi^ of, *^1 
Sniii-teiaiila of Euler and Maclanrin, IT! 
EiuniimWliby, meaods of, 154-1S6; of Fourier seri#s, lii; aailofm, IM 
Surface luxmciiie, SQ2 
Surmc®, modular, 41 
SiirfSc^, nearly aplwrkal, 3M 
Sylvortw’a tlieorem TOUccming inte^als of lamonicag 'MB 
SjmuAtric nacdema, 223, 228 

TaJsnlittton of B^sel functions, STS ; of miapiele ellifitc Inlepmlit . J i f ir, 
Ti^ylor’s leries, 93 ; remainder in, 95 ; Mlnxe of, im, JM 
Teixoira’i extension of Bfirmaam^s 131 
Telf^rapliy, equation of, 387 
Twaeral Immioniia, 392 ; &ctori«tiois of, 536 
Twte tor €OEverg«ic«, me Inflnito toSaito |a©tB^ .*ai f«l*i 
TlMTinoiiietric imramatof, 405 
Theta-fimcttoas l%i (z), %(«}, % (^| or S (r|, © full, 4i2"-4» 'Cl;aa««i ie. ; ^ 

tion for prcwucte, 4te, M9 ; addition formaiae, 467; coBSMicn witb §k'*, 
473, 487; dnplimtioii formiilae, 4M; exp»s»ioo of tllifte bj, 47^, ypti 
of, 463; fnndamcnlal formnlae (Jac»brs|, 4S7, ^-5; mtcite ^rodizis i:T, 4C#, i?S, <««, 
Jacobi’s first notation, B{m} and H fii|, 479; mnilipliers, liS ■ nsSaluns, Ii4 IT'i. i*^T, 
mrameters $, r, 463; |«tial diflerenlml eqjml-oa fcj, ilu, pr fi 
463; priods, 463; quotients of, 477; quotients yielding teobiaa ©iLpt&c it*; 
relation a-/=^2^32-4, 470; squares of (xdations iis^^een;'. 466; .;f i 
imaginary) 124, 474, (Landea’s) 476; tripllcalioii f'^r wfJi Z/ir^ 

b-3, ^4, S/), 464; zeros of, 465 
TMM Mnd of elliptic integral, H (a, a|, 522 ; a iyEamical sf, 523 
TMrd order, linear differential equations of, MM, M§&t 418, M§ 
Tliird ipeciei of ellijwoidal barmoni®, 637, fcoaitniclion of| Ml 
Tlir®® Muds of elliptic integrals, 514 
Tliree-term ©qmtioii in¥oiving Signm-fimctiiMS, 451, Ml 
Total lliiotimti0n, 57 

famctioiM, m mnder tfcf m.mi9 of ^fcial fmmMmm 
TramsformationB of elliptic fiiiicti«s and Tbela-fnactiem. 5tHr, Jaccbi'a 'nrjg ELarj, IT I, » 

506, 519; Landen’s, 476, 507; of Rienman’s W 
Trigonometrical ©qnaMcmi, SW, 5W 
Trigonometrical Int^raJfl, 112, 26S; and 0KBma.4anct:aiiH, 
Trigonometrical twrlti, 160-193 (Cliapter ix|; coii¥er^ac« of, lil; c.f a, WM , 

Riemann’s theory of, 182-188; which axe not Fourier wne*, 1^, Si ^ WmmMW 
Triplication formulae for Jacobian eliptic fnactlotts aM £ |i|, 5JJ,3li' Lr is, 

459; for Theta-functions, Sm; ter Zeta-fnactioai, 4W 
Twenty-four solmtimis of the hjpergeometric equation. 284; m^zzi 
Two-dimenaional continuum, 43 
Two ¥ariablea, continuous functions of, S7 ; hyp^cmietec faselieos *if mi, MMk 

Types of ellipsoidal harmonics, 537 

Unicnrsal, 455 
Uniformisation, 454 
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Wnlformisiiig YarlaWes, 455; associated with confocal coordinates, 549 
XTnifonnity, concept of, 52 
Wnlfonnity of continuity, 54; of summability; 155 

0nifOT^ty of convwgeiico, 41-60 (Cliapter m), defined, 44; of I'ourier series, 172, 179, 180 • of 
infinite integrals, 70, 72, 73; of infinite products, 49; of power series, 57; of series, *44 
(condition for) 46, (Hardy’s test for) 60, (Weierstrass’ if-test for) 49 ^ ’ 

convrageat Mnite integrals, properties of, 73; series of analytic functions 91 
(differentiation of) 92 * ’ 

Fniqnene^ of an asymptotic expansion, 153; of solutions of linear differential equations 196 
Upper bound, 55; integral, 61 

Upper limit, integral equation with variable, 213, 221; to the value of a complex integral, 78, 91 

Value, absolute, see Modulus; of the argument of a complex number, 9, 588; of the coefficients 
m Fourier series and trigonometrical series, 163, 165, 167, 174; of particular hyperffeometric 
functions, 281, 295, 298^ 301; of Jacobian elliptic functions of ^isT, ^{K+iK') 500 
506, 507; of K, K' for special values of k, 521, 524, 525; of ^-{s) for special values’ of 
267, 269 ’ 

Vanishing of power series, 58 

Variable, uniformising, 455; terms (series of), see Uniformity of convergence; upper limit 
integral equation with, 213, 221 ’ 

Vibrations of air in a sphere, 399; of circular membranes, 396; of elliptic membranes 404 405 * 
of strings, 160 , 

Voltcrra’s integral equation, 221; reciprocal functions, 218 

Wave motions, equation of, 386; general solution, 397, 402; solution involving Bessel functions, 
dy# 

Weber’s Bessel function of the second kind [F,4(2)], 370 
Weber’s equation, 204, 209, 342, 347. See also Parabolic cylinder fractions 
Weierstrass’ factor theorem, 137; iU-test for uniform convergence, 49; product for the Gamma- 

function, 235 ; theorem on limit points, 12 

Weierstrassian elliptic function [g)(«)], 429-461 (Chapter xx), defined and constructed, 432 
433; addition theorem for, 440, (Abel’s method) 442; analogy with circular functions, 
^8; definition of 451; differential equation for, 436; discriminant of, 444; 
duplication formula, 441; expression of elliptic functions by, 448; expression of Piz) - p (y) 
by Sigma-functions, 45J ; half-periods, 444; homogeneity properties, 439; inte^l formula 
for, 437 ; integration of irrational functions by, 452; invariants of, 437; inversion problem 
for, 484; Jacobian elliptic functions and, 505; periodicity, 434; roots e,, e.,, 443 See 
also Sigma-fuuctlons ajid Zeta-function (of Weierstrass) ^ 3^ 

Whittaker’s fimctlon ^ (z), see Couflueut hypergeometrlc fimctio&a 
Wronski’s expansion, 147 

Zero argument, Theta-fuuctlous with, 464; relation between, 470 
Zero of a function, 94; at infinity, 104 ; simple, 94 

Zeros of a function and poles (relation between), 433; connected with zeros of its derivate, 121 
123; irreducible set of, 430; number of, in a cell, 431; order of, 94 

Zeros of functions, (Bessel’s) 361, 367, 378, 381, (Lamp’s) 557, 568, 560, 578. (Legendre’s) 303 
316, 335, (parabolic cylinder) 354, (Kiemann’s Zeta-) 268, 269, 272, 280, (Theta-) 465 

Zeta-function, Z(u), (of Jacobi), 518; addition formula for, 518; connexion with E(u), 518; 
Fourier series for, 520; Jacobi’s imaginary transformation of, 519. See also Jacobian 
elliptic functions 

Zeta-toction, i'(s), i'(s,a), (of Eiemann) 265-280 (Chapter xni), (generalised by Hurwitz) 265; 
Euler’s product for, 271; Hermite’s integral for, 269; Hurwitz’ integral for, 268; in¬ 
equalities satisfied by, 274, 275; logarithmic derivate of,'279; Riemann’s hypothesis 
concerning, 272,280; Riemann’s integrals for, 266, 273; Riemann’s relation connecting t(s) 
and ^{1 - jr), 269; values of, for special values of s, 267, 269; zeros of, 268, 269, 272, 280 

Zeta-toction, ^{z), (of Weierstrass), 445; addition formula, 446; analogy with circular 
functions, 446; constants tjq connected with, 446; duplication formulae for, 459; ex¬ 
pression of elliptic functions by, 449; quasi-periodicity, 445; triplication formulae, 459. 
See also Weierstrassiau elliptic functions 

Zonal harmonics, 302, 392 ; factorisation of, 536 


