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NEW METHODS OF CELESTIAL MECHANICS

VOLUME III

H. POINCARE

ABSTRACT

Integral invariants are introduced using the

steady motion of the fluid as an example. The use-

fulness of invariants in celestial mechanics is demon-

strated. Various forms of the three-body problem are

treated. Poisson stability is defined for the steady

motion of a liquid, the general and restricted three-

body problem. The theory of "consequents" is intro-

duced in the discussion. The existence, stability, and

properties of periodic solutions of the second type are

treated. These are related to the principle of least

action and the Darwin orbits. The concepts of kinetic

focuses and Maupertius focuses are introduced in the

discussion. Periodic solutions of the second type are

treated. Homoclinous and heteroclinous doubly asymptotic

solutions are discussed for the three-body problem.

CHAPTER XXII

INTEGRAL INVARIANTS

Steady Motion of a Fluid

233. In order to clarify the origin and importance of the idea

of integral invariants, it is useful to start with a study of a par-

ticular example from the field of physics.

Let us consider an arbitrary fluid, and let u, v, w be the three

velocity components of the molecule which has the coordinates x, y, z

at time t.

* Numbers given in the margin indicate pagination in the original

foreign text.



Wewill consider u, v, w as functions of t, x, y, z, and we will
assumethat these functions are given.

If u, v, w are independent of t and only depend on x, y, z, the
motion of the fluid is said to be stead!. Wewill assumethat this con-
dition is satisfied.

The trajectory of an arbitrary molecule of the fluid is therefore
a curve which is defined by the differential equation

d__ dr _ d: (1)
U g

If it were possible to integrate these equations, one would obtain /2

z = 71(6 xo, yo, zo),

y --_,(t,,. xo, yo, Zo),

z - ?3(t, Xo,Yo, Zo),

such that x, y and z would be expressed as a function of time t and

their initial values x0, Y0, z0.

If the initial position of a molecule were known, one could deduce
the position of this same molecule at time t.

Let us consider fluid molecules the group of which forms a certain

figure F 0 at the initial instant of time; when these molecules are dis-

placed, their group will form a new figure which will move while being

continuously deformed, and at the time t the group of molecules under

consideration will form a new figure F.

We will assume that the movement of the fluid is continuous, i.e.,

u, v, w are continuous functions of x, y, z; there are therefore certain

relationships between the figures F0 and F which are obvious from the

conditions of continuity.

If the figure F 0 is a curve or a continuous surface, the figure F
will be a curve or a continuous surface.

If the figure F0 is a simply connected volume, the figure F will
be a simply connected volume.

If the figure F 0 is a curve or a closed surface, the same will hold

true for the figure F.

In particular, let us examine the case of liquids where the fluid

is incompressible, i.e., where the volume of a mass of fluid is invari-
able.



Let us assumethat the figure F0 is a volume. At time t the mass
of fluid which fills out this volume will occupy a different volume
which will be nothing else than the figure F.

The volume of the massof fluid did not change; thus, F0 and F
have the samevolume. Therefore, one can write

(2)

The first integral is extended over the volume F and the other over
the volume F0.

Wewill then say that the integral /3

fffax  

is an integral invariant.

It is known that the condition of incompressibility can be expressed

by the equation

du dv d_
dx + _y + -37. =°" (3)

The two equations (2) and (3) are thus equivalent.

Let us again consider the case of a gas, i.e., the case where the
volume of a mass of fluid is variable. Thus, the mass becomes invariable,

such that if one calls p the density of the gas, one has

f f f ax d,.=f f f podXoa.roa,.o. (4)

The first integral is extended over the volume F, the second over the

volume F0. In other words, the integral

fff

is an integral invariant.

In this case, where the motion is steady, the equation of continuity

can be written as

d(pu) d(po) d(pw)
a_ +--dT + d_ =o. (5)



The conditions (4) and (5) remain equivalent.

234. The theory of vortices of Helmholtz provides us with a

second example.

Let us assume that the figure F 0 is a closed curve. The same

will hold true for the figure F.

Let us assume that the fluid, whether it is compressible or not,

is at a constant temperature, and is only subjected to forces which

have a potential. In order that the motion remains steady, it is

necessary that u, v, w satisfy certain conditions. It is not useful

to develop these conditions here.

Let us assume that they are satisfied. /4

Under this assumption, let us consider the integral

(udz+ v dy+ w dz).

As the theorem of Helmholtz shows, it has the same value along the curve

F and along the curve F O.

In other words, this integral is an integral invariant.

Definition of Integral Invariants

235. Due to the nature of the question, the examples which I have

just presented readily lead one to the consideration of integral invari-

ants.

It is clear that these invariants can be used by generalizing their

definition for cases which are much broader, in which it is not possible

to give a simple physical meaning to the invariants.

Let us consider differential equations of the form

dx _ dz-_ = = -f = at, (i)

x, Y, z are given functions of x, y, z.

If they could be integrated, one would obtain x, y, z as a function

of t and their initial values x0, Y0, z0.

4



If we assume that the time is represented by t and x, y, z repre-

sent the coordinates of a moving point M in space, equations (i) de-

fine the laws of motion of this moving point.

If these equations are integrated once, one can find the position

of the point M at time t, if its initial position M 0, given by the

coordinates x 0, Y0, z0' is known.

If one considers moving points which obey the same law and the

group of which forms a figure F_ at the initial instant of time, the
- • different figure F at time t

group of these same points w!ll-form a
which will be a line, a surface, or a volume depending on whether the

figure F0 is a line, a surface or a volume.

Let us consider a simple integral

(A dx + B dy + C dz), (2)

where A, B, C are the known functions of x, y, and z. If F 0 is a line,

it may happen that this integral (2) extended over all of the elements

of the line F is a constant which is independent of time, and is conse-

quently equal to the value of this same integral extended over all of

the elements of the line F 0.

Let us now assume that F and F 0 are surfaces, and let us imagine

the double integral

(3)
dyd=+ B'a + dy),

where A' B' C' are functions of x, y, and z. It may happen that this

integral has the same value which is extended over all the elements of

the surface F, or over all of those of the surface F0.

Let us now assume that F and F0 are volumes, and let us imagine the

triple integral

f f f _l ax & d:; (4)

/5

M is a function of x, y, z. It is possible that it may have the same

value for F and F 0.

In these different cases, we say that the integrals (2), (3) or (4)

are integral invariants.

It occasionally happens that the simple integral (2) will only have



the samevalue for the lines F and F0 if these two curves are closed,
or the double integral (3) will only have the samevalue for the
surfaces F and F0 if these two surfaces are closed.

Wemay thus say that (2) is an integral invarlant with respect

to the closed curves and that (3) is an integral invariant with respect
to the closed surfaces.

236. The geometric representation which we have employed plays

no important role. We can thus lay it aside, and nothing prevents us

from extending the preceding definitions to the case in which the

number of variables is greater than three. Let us consider the

following equations

dxl dx, dx_,

x_ - x, ..... _ =at, (1)

where XI, X2, ..., Xn are the given functions of Xl, x2, ..., xn. If

one could integrate them, one would find x I, x2, ..., xn as functions

of t and of their initial values x_, xp0, ..., x_. In order to retain

the same terminology, we may call point M the system of values x I, x2,

0 x0, ... _...., Xn, and the point M 0 the system of values x I,

Let us consider a group of points M 0 forming a subset F0 and the

group of corresponding points M forming another subset F (I).

We shall assume that F0 and F are continuous subsets having p

dimensions where p _ n.

Let us consider an integral of the order p

where _ is a function of Xl, x2, ..., Xn, and where d_ is the product

of p differentials chosen among the n differentials

dxl, dxl, ..., dxn.

/--6

(i) The word subset is now commonly employed, so that I did not feel

it was necessary to recall the definition. Every continuous group

of points (or system of values) is named this way: In three-

dimensional space, an arbitrary surface is a subset having two di-

mensions, and an arbitrary line is a subset having one dimension.



It is possible to give this integral the same value for the two

subsets F and F 0. We may thus say that it is an integral invariant.

It may also happen that this integral has the same value for the

two subsets F and F0, but only under the condition that these two sub-

sets are closed. It is thus an integral invariant with respect to the

closed subsets.

Other types of integral invariants may be also assumed. For

example, let us assume that p = 1 and that F and F 0 may be reduced to

lines. It is possible that the integral

f (A,dx,+ A,ax, +...+ A,dx,,) = f _A,dx,

has the same value for F and F0, and is an integral invariant. This

may also be the case for the following integral

IxBi dx_ + 2 X C,k dxi dxk,

where B and C are like the A of the functions of Xl, x2, ..., x n. As

I stated, it is possible that this integral may have the same value for

F and F0, and other similar examples may be readily envisaged.

The quantity p will be called the order of the integral invariant.

/___7

Relationships Between the Invariants and the Integrals

237. Let us again consider the system

dr, dr. dw,,
x, - _ ..... _ = at. (1)

If one could integrate it, all of its integral invariants could be formed.

If integration were performed, the result could be presented in

the following form

Yt = C,,

y, = c,, (2)

y,_ ,-= Cr,-t,

"= t -_- Cn,



CI, C2, ...) C are arbitrary constants, and the y's and z's are the givenn

functions of the x's.

Let us change the variables by taking y's and z for the new variables,
instead of x's.

Let us now consider an arbitrary integral invariant. Under the

sign / (which will be repeated p times if the invariant is of the order

p), this invariant must include a certain expression, the function of the /8

x's and of their differentials dx. After a change in the variables, this

expression will become a function of the y's, z, and of their differentials

dy and dz.

Without changing the y's, in order to pass from one point of the figure

F0 to a corresponding point in the figure F, it is necessary to change

z into z + t. Therefore_ when passing from an infinitely small arc of

F0 to the corresponding arc of F, the differentials dy and dz do not

change (the quantity t which is added to z is, in effect, the same for

the two ends of the arc). If one considers an infinitely small figure

F 0 having an arbitrary number of dimensions and the corresponding figure

F, the product of a number (equalling that of the dimensions of F 0 and F)

of differentials dy or dz will not change either when one passes from

one figure to the other.

In short, in order that an expression may be an integral invariant,

it is necessary and sufficient that z is not contained in it; the y's,

the dy's, and dz may be included in an arbitrary manner.

Let us consider an expression having the same form as that which we

discussed in the preceding section

f _.Ad_o, (3)

This expression represents an integral of the order p, A is a function

of xl, x2, ..., Xn, d_ is a product of p differentials chosen from the
n differentials

d.rl) dx2, . .., dxn.

We would like to know whether this is an integral invariant. By

carrying out a change in variables as indicated above, we find that

expression (3) becomes

fEB d_',



B is a function of the y's and of z, dm' is a product of p differen-

tials chosen from the n differentials

dy,, _y,, .", dye-,, dz.

In order that expression (3) be an integral invariant, it is

necessary and sufficient that all of the B's be independent of z and

only depend on the y's.

Just as in the preceding section, let us again consider the ex- /9

pression

f _x B, dxf + _Ci.kdx_dxk, (4)

I s
The Bi's and the Ci. k are functions of the x's.

After the change in the variables, this expression becomes

_/Z B_ dx? -t- "z_ C_.k dxidxk ;

For greater symmetry in the notation, I have set the following

r . t

xt-----yi, (/----- T, 2..... n--I); Xn=Z ,

In order that expression (4) be an integral invariant, it is

necessary and sufficient that all of the B' 'i s and the C'i.k'S be in-

dependent of z, and depend only on y.

Relative Invariants

238. We are now led to attempt to form the integral invariants

relative to the closed subsets. Let us first assume that p = i, and

let us determine the condition by which the simple integral

A,dxj+ At dx2 +...+ Andxn)

is an integral invariant with respect to closed lines.

Let us carry out the change in variables as indicated above,

and our integral will become

BtJ/lq-B,d)',+..._ Bn-tdyn-t+ B4dz) t

(i)



which I can write again, taking the most symmetrical notation from the

end of the preceding section

fx B+d:;. (i')

This simple integral, extended over a closed, one-dimensional subset --

i.e., over a closed line -- may be transformed by the Stokes theorem /i0

into a double integral extended over a non-closed, two-dimensional subset
-- i.e., over a non-closed surface. We then have

f-'B,.d_;.: fX' ¢,uB,._ abe)
J _._ \ dx_ dxl / dxl dx'k. (2)

However, the integral of the second member of (2) must be an abso-

lute integral invariant, and not only with respect to the closed subsets.

We can therefore conclude the following:

In order that (I) be an integral invariant with respect to the
closed lines it is necessary and sufficient that the binomials

dBl dBa
d_-;, d.r;

all be independent of z.

Similarly, and more generally, let

SA d_ (3)

be an integral expression of the order p, having the same form as those

which were discussed in the preceding sections. We would like to know

whether this is an integral invariant with respect to the closed subsets

of the order p.

Let us assume that this integral is extended over an arbitrary

closed subset of the order p. A theorem similar to that of Stokes states

that it may be transformed into an integral of the order p + i, extended

over an arbitrary subset, which may be closed or not closed, of the order

p + 1. The transformed integral may be written

fez k 4- dA--_ dxh. doJ. (_)

One always takes the sign + if p is even, and the signs + and - al-

ternately if p is odd. [For additional details, refer to my report on

i0



the residuals of double integrals (Acta Mathematica, Volume VIII), and

to my.report contained in the Special Centenary Edition of the Journal

de l'Ecole Polytechnique.]

The condition which is necessary and sufficient for (3) to be an

integral invariant of the order p with respect to closed subsets is

that (4) be an absolute integral invariant of the order p + i.

239. Let us again consider expression (i) of the preceding section,

and let us assume that it is a relative invariant, that is, an integral

invariant with respect to closed lines.

Let us change it to the form (i') by our change in variables.

Let M 0 be a point of F 0 and

Yl, Y_, .-., yn-s,

/1_!

be its coordinates (with the new variables).

Let M be the corresponding point of F and

yl, y_, ..., yn-l, z+t

be its coordinates. The Bk'S will be functions of the y's and of z, but

I will make z appear, writing B k in the following form

Bk(z).

If the line F 0 is closed, we will then have

that is, the expression

z [Bk(_ + t) -- B,(_)] dx', (3)

is an exact differential which I set equal to dV.

depend not only on the y's and z, but also on t.

it must be reduced to a constant.

The function V will

In order that t = o,

If we assume that t is infinitely small and if we call B'k(Z) the

derivative of Bk(Z) with respect to z, expression (3) may be reduced to

11



The expression

x Bk.(z) dx_, (4)

is then an exact differential which I set equal to dU. The function U

which is thus defined will depend on the y's and z, but it will

no longer depend on t. I shall again make z appear by writing U(z).
It then happens that

dV f f
-37 =j-B'_(z + t)dx'_=jdU( ..+ t)= U(z 4-t)+f(t),

f(t) is an arbitrary function of t.

However, U(z) may be regarded as the derivative with respect to

z of another function W(z) which is also dependent on the y's, and we
will then have

d
d--iW(. + t) = U(. -+ t).

/12

On the other hand, since V must be reduced to a constant for t = o,
we may finally conclude that

V = W(z + t)--W(_:)+ ?(t),

The quantity +(t) designates an arbitrary function of t only, and may

be assumed to be zero without essentially restricting the conditions of
generality.

One then finds

d
B_.(.)= _ W(z) + Cx..

Ck is independent of z, so that the expression (i') may be reduced to

f dW f+ XCkdx'k,

and the first integral is that of an exact differential, and the second
integral is an absolute integral invariant.

240. In a similar way let us discuss a relative invariant which is

of a higher order than the first. Let us assume that

12



EA d_

is this invariant which, after the change in variables, will become

The integral

fx [B(z + t)-- B(z)] d_'= J
(i)

must be zero, whatever may be the closed subset of order p over which it

is extended.

It must therefore satisfy certain"integrability conditions" which /13

are similar to those stating that a total differential of the first order

is an exact differential.

Let us now consider a subset V of p dimensions, which is not closed

and limited by a subset v of p - i dimensions which will serve as the

boundary for it.

The integral (i), which is extended over the subset V, will not be

zero. However, if itis calculated for other similar subsets V', V", etc.,

having the same boundary v, one will obtain the same value -- i.e., the

value of the integral (i) only depends on the boundary v.

It equals an integral of the order p - i

j (2)

which is extended over the subset v and where dm" designates an arbitrary

product of p - 1 differentials, while C is a function of the y's, z and t.

This integral (2) is clearly a function of t, which depends in addi-

tion on the subset v. Let us consider its derivative with respect to t.

We will have

dt = _/7 do_'= vB'(= + t; &,,'.

As its last expression shows, this derivative does not change when one

changes t into t - h or when, at the same time, one transforms V (or v)

by changing z everywhere into z + h.

13



It can be concluded that J has the following form

J----/Y D(z-4-t)dJ--fED(z)dJ,

D(z) is a function of x, y, z.

The integral

x D(z)d,o" (3)

is of the order p - i, but it may be readily transformed into an inte-

gral of the order p. It is sufficient to apply the transformation

which, in section No. 238, allowed us to change from the integral (3)

to the integral (4), and which is the opposite of that by which, in

the present section, we changed from the integral (i) to the integral
(2).

The integral (3), extended over the subset v, is therefore equal

to the integral of the order p

fEE(z)dt_' (4)

extended over the subset V.

By analogy with the terminology employed for simple integrals, we

may say that the integral (4) is an exact differential integral. And,
in effect:

i. It is zero for every closed subset;

2. It may be reduced to an integral of lesser order.

Under this assumption, we will have

s= f XE(z+t)d_'-- f __E(z)d_,',

and the integrals are extended over the subset V.

However, this equation may also be written as follows

fx[ B(.-+ o- E(z + t)] = E(.>]

and it is valid for an arbitrary subset V.

This means that

/14

14



v

.f_-[B(z)-- E(z)] d_'

is an absolute integral invariant.

We therefore arrive at the following result:

Every relative integral invariant is the sum of an exact differen-

tial integral and an absolute integral invariant.

241. In Section No. 238, we have seen how an absolute invariant

of the order p + 1 may be deduced from a relative invariant p.

The same procedure may also be applied to absolute invariants,

so that one could be tempted to continue to apply it and to construct

invariants of the order p + 2, p + 3, .... successively.

However, this procedure would have to be abandoned very quickly.

There is a case in which the procedure in question is illusory;

this is the case in which the invariant which one wishes to transform

is an exact differential integral. The integral invariant to which

the transformation would lead would then be also zero.

If an invariant of the order p is transformed, one obtains an in-

variant of the order p + I, but this invariant is an exact differential

integral, so that if one wishes to transform it again, one obtains a

result which is also zero.

/15

Relationship Between the Invariants and the

Variational Equation

242. Let us again consider the system

dx, dx_ dxn
-- __.,.--

XI X2 Xn
-- dr. (1)

We may form the corresponding variational equations as they were

defined at the beginning of Chapter IV.

In order to form these equations, in equations (i) we change x i

into x i + _i, and we disregard the squares of the _i's. One thus

obtains the system of linear equations

cl_,k dXk dXk dXk
= "+

(2)

15



There is a close relationship which may be readily perceived

between the integrals of equations (2) and the integral invariants

of equations (i).

Let

F(h, h, ..-, i,,)= ¢onst.,

be an arbitrary integral of equations (2). This will be a homogene-

ous function of the _'s, which depends on the x's in an arbitrary

manner. I can always assume that this function F is homogeneous of

degree 1 with respect to the $'s. Because, if this were not the case,

I would only have to increase F to a suitable power in order to obtain

a homogeneous function of degree i.

Let us now consider the following expression

f F(dxt, d.c2, ..., dx,,), (3)

which is an integral invariant of system (i).

We should first note that the quantity under the sign f /16

F(dx,, dx, .... , dxn)

is an infinitesimal quantity of the first order, since dxl, dx2 .._ dxn are

infinitesimal quantities of the first order, and that F is homogeneous

of the first order with respect to the quantities.

The simple integral (3) is therefore finite.

Under this assumption, let us first assume that the figure F0 may

be reduced to an infinitesimal line, whose extremities have the following

coordinates

The integral (3) may be reduced to a single element, and conse-

quently will equal

Due to the fact that this expression is an integral of equations (2),

it will remain constant and will have the same value for the line F0

and for the line F.

16



If the line F0, and consequently the line F, are finite, we may
divide the line F0 into infinitesimal parts. The integral (3), ex-
tended over one of these infinitesimal parts of F0, will equal the
integral (3) extended over the corresponding infinitesimal part of
F. The integral extended over the entire line F0 will equal the
integral extended over the entire line F.

Therefore, the integral (3) is an integral invariant.
q.e.d.

Conversely, let us assumethat (3) is an integral invariant of
the first order, and

F(_,,_,,.., b,)

will be an integral of the equations (2).

In reality, the integral (3) must be the same for the line FG

and for the line F, whatever these lines may be, and particularly if

F 0 is reduced to an infinitesimal element whose ends have the following

coordinates

x_ and x_+b.

As we have seen, the integral (3) may be reduced to /17

F(_,,$,....,$.). (4)

Since the integral is an invariant, this expression (4) must be constant.

It is therefore an integral of equations (2). q.e.d.

Thus, an integral of equations (2) corresponds to each integral

invariant of the first order of equations (I), and vice versa.

243. Let us now determine to what the invariants of an order

higher than the first correspond.

Let us consider two particular arbitrary solutions of the equa-

tions (2). Let

{h, h...... _,_;, _;..... _, (5)

be these two solutions.

17



The following functions may exist

T!

which depend on the xi's , the eL'S, and the _i s at the same time.

No matter what the two chosen solutions, these functions may be re-

duced to constants which are independent of time.

In other words, the function F will be an integral of the system

d_ dXk dX1,. dXk

dt - d_T _' + _ _'+"" + _ _"'

d_ dX_. _ dX_,. ,,_-i = -_ , _"÷ _; + "" + -d-_ _,,,

which the _i's and the _i's satisfy.

(6)

Let us formulate a more definite hypothesis, and let us assume
that F has the form

and the Aik'S are functions of the x's alone.

It may then be stated that the double integral

J =rE _t_,l.rid_k

is an integral invariant of the equations (I).

Let us assume that the figure F 0 may be reduced to an infinitesi- /18

mal parallelogram whose corners have the following coordinates at
t = O

xl, x_ + _l, xi + _,, xt + ¢t-4- $i.

The figure F will also be similar to an infinitesimal parallelo-

gram whose corners will have the following coordinates at t = t

x_, _ + b, _i + [_, _i + _i+ _.

The integral J will be reduced to a single element which will
have precisely the following value

and -- since, under the hypothesis, this expression is an integral of

the system (6) -- it will have the same value for the two figures F
and FO.

18



Let us now assume that F and F 0 are two finite surfaces. Let

us divide F0 into infinitesimal parallelograms, to each of which an

elementary parallelogram of F will correspond. The value of J is

therefore the same for each element of F 0 and for the corresponding

element of F. It is therefore the same even for the entire surface

F 0 and for the entire surface F.

The integral J is therefore an integral invariant, q.e.d.

The converse of this may be proven in the same way as in the

preceding section.

244. The theorem is obviously general, and may be applied to

invariants of a high order than two. Let us present it for those of

the third order. Let us consider three special solutions of the equa-
l T!

tions (2), _i, _i, _i" These three solutions must satisfy the system

d_,k _ dXk
7i = _ 777_,._"

d_;+ X_ aXe, ,

d_,_ '_ dXk ,
-RF = _'=J_ _"

(7)

If the system (7) includes an integral of the form

ZAi.k.t
I

_k _;, _ ],
1

(8)

where the A's are functions of the x's, the triple integral

XAiktdxid_kdxt

will be an integral invariant of the equations (i), and vice versa.

(9)

Transformation of the Invariants

245. With the invariants thus reduced to the integrals of the

variational equation, one may readily find several procedures which

make it possible to transform these invariants.

If one knew a certain number of integral invariants of the equa-

tions

19



d J-i

dt -- X_, (1)

one could deduce from each of them an integral of the variational equa-

tions

d_,. %,_dX, (2)
d--7=Z., ,-t_ $_"

By combining these different integrals, we will obtain a new

integral of equations (2), from which one may deduce a new invariant of

the equations(l).

Let us commence by studying the case of first-order invariants.

Let

be a certain number of integrals of equations (i). These integrals

will be functions of the xi's alone.

Now let

fFt (dx_.), f F,(dx,) ..... f rq(dx_),

be q integral invariants of the first order of these same equations (i).

The functions under the sign f

Ft (dxi), F, (dxi) ..... Fq(dx_)

will depend on the xi's and their differentials dxi's. They will de-

pend on the xi's in an arbitrary manner. However, with respect to
the differentials

/2O

dxl, dxi t ..., dxn,

they must be homogeneous and of the first order.

Then

will be integrals of the equations (2) and will be homogeneous and

of the first order with respect tO the _i's.
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Now let

O(_,,_,, ...,_p; F;,F,, ...,Fq)= O[_k, Ft],

be a function of the _'s and of the F's, which depends on the @'s in

an arbitrary manner, but which is homogeneous and of the first order

with respect to the F's.

Then

O['>,,FI(_)]

will be a new integral of the equations (2). In addition, this will

be a homogeneous function and of the first order with respect to the

$i's.

It thus results that J

/O[¢k, Fddx_)]

is an integral invariant of the first order of the equations (i).

The same result could be readily achieved when transforming the

invariants by changing the invariables of No. 237.

For example,

and

will be integral invariants.

246. The same calculation may be applied to invarlants of a higher

order.

Let

be the p integrals of the equations (i), and let /21
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...j

be the q integral invariants of the second order. The F's will be

functions of the xi's and the products of the differentials

dxi dx k.

They will be homogeneous and of the first order with respect to these

products.

Then

will be integrals of the system (6).

If

O[%,F_]

is an arbitrary function of the _'s and of the F's, which is homogeneous

of the first order with respect to the F's, the expression

will be an integral of the equations (6). It will be homogeneous in

addition, and of the first order with respect to the determinants

As a result, the double integral

o['P_,Ft(dx_dxk)]

will be an integral invariant of the second order of equations (1).

247. Knowing several invariants of the same order, we thus have
the means of combining them to obtain other invariants of the same order.

When several invariants of the same order are known, the same pro-
cedure makes it possible to obtain new invariants of a different order.

For example, let

fF,(dxi) , f e,(dx,),

be two integral invariants of the first order. I assume, which is
the most general case, that F 1 and F2 are linear and homogeneous func-

tions of the differentials dx i.

/22
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The expressions

will be homogeneous and of the first order with respect to the $i's,

and these will be integrals of equations (2).

In the same way,

F,($_), F,(_')

will be integrals of the equations (6).

As a result,

(i0)

will be an integral of the system (6).

Since F 1 and F 2 are linear with respect to the $i's, we will have

As a result, expression (i0), which changes sign when one exchanges
!

the _i's and the _i 's, does not change when one changes _i into _i + _i'

We may thus conclude that this expression (I0) is a linear and

homogeneous function of the determinants

and the coefficients depend on the x's alone, but not on the $'s and
T

the _ 's.

An integral invariant of the second order of the equations (i) may

be therefore deduced from this expression (i0).

Now let

fFj (dx,.), :F2(dxidxk)

be two integral invariants of equations (I); the first is of the first

order and the second is of the second order. I shall assume that F I

and F 2 are linear and homogeneous functions, the first with respect

to the n differentials dxi, the second with respect to the n(n-l) pro-
z

ducts

23



The functions

dxt dx_.

F,(_,),F,(_-- h_D

will be integrals of the system (6).

The expression

. i t+ F,(_i)F,($i_;__$k_ ) (ii)

will be an integral of the system (7).

On the other hand, it may be readily verified that it will be

linear and homogeneous with respect to the determinants

_ & _

An integral invariant of the third order may thus be deduced from it.

Now let

f F,(dz_dx.), f F,(dx, dz.)

be two invariants of the second order of equations (1).

We can deduce from it two integrals of equations (6) -- that is,

which I can write as follows, for purposes of brevity.

Then the expression

F,(_t)F,(_'_")+ Ft(_'_')F,(_')
+ F,(_U)F,(_"T)+ F,(_"T)F,(_')

-4-F,(,_')F,(_'_')-i-F,(_'_')F,(_"_)
(12)

/23
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will be an integral of the system obtained by adding the following

equations to the equations (7)

In addition, this will be a linear and homogeneous function with

respect to the determinants formed, with,, four,,,of the quantities _i and

the corresponding quantities _i , _i ' _i "

I shall continue to assume that F I and F 2 are homogeneous and

linear with respect to the products dxidx k.

An integral invariant of the fourth order could thus be deduced

from expression (12).

It should be noted that this invariant does not become exactly

equal to zero when we set

F,= F,.

/24

Expression (12), divided by 2, may be then reduced to

_, (_')F, (_'_") ÷ F, (,_') F, (_'_ ') + F, (_')F, (_T).

An invariant of the fourth order may always be deduced from an

invariant of the second order. An invariant of the sixth order would

be obtained by the same procedure. More generally, an invariant of

the order 2p would be obtained from it (2p being an arbitrary even

number) •

248. In general, let

fF,, fF,

be two arbitrary invariants of equations (i); the first is of the order

p, and the second is of the order q.

I shall assume that F I and F 2 are linear and homogeneous functions,

the first with respect to the products of p differentials dx, and the

second with respect to the products of q differentials.

Let

_?', _?' ..... _F+_'

25



be p + q solutions of equations (2). These solutions will satisfy

the system of differential equations

a_,_j ,_dXk$_ (i,k=,,_ .... ,n;S=, _, p+q).dt = _ , "", (13)

Then let F'I be the quantity which F 1 becomes when each product

of p differentials is replaced by the corresponding determinant formed

by means of the p solutions

_", _" .... , _P'.

In the same way, let F'2 represent the quantity which F 2 becomes

when each product of q differentials is replaced by the corresponding

determinant formed by means of the q solutions

_F+,,, _F+,_.... , gpw,.

Then the product

F_F;

will be an integral of system (13).

Under this assumption, let us make the p + q letters

_'_, _" .... , _Y+q'

undergo an arbitrary permutation. The product F'1F' 2 will become

F;F;

and this will still be an integral of system (13).

We shall give this product the sign +, if the permutation under

consideration belongs to the alternate group -- i.e., if it may be re-

duced to an even number of permutations between two letters.

On the other hand, we shall assign the product the - sign, if the

permutation does not belong to the alternate group -- i.e., if it may

be reduced to an odd number of permutations between two letters.

In any case, the expression

+F_FI (14)

/25
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will be an integral of system (13).

Wehave (p + q)! possible permutations; we will therefore obtain
(p + q)! expressions similar to (14). However, we shall only have

which will be different. This is due to the fact that expression (14)
does not changewhen the p letters which are included in F"1 are only
interchanged among them, and, on the other hand, whenthe q letters
which are included in F'2 are only interchanged amongthem.

Let us now take the sumof all the expressions (14). Weshall
have an integral of system (13). However, this integral will be linear
and homogeneouswith respect to determinants of the order p + q, which
can be formed with the letters

An invariant of the order p + q of equations (i) may thus be de-

duced.

If p = q and if F I is identical to F2, the invariant thus obtained

will be equal to zero if p is odd. However, this will no longer be the

case if p is even, as I explained at the end of the preceding section.

/26

Other Relationships Between the Invariants and

the Integrals

249. Based on the knowledge of a certain number of invariants,

let us now trace the manner in which we may deduce one or several inte-

grals.

I shall first assume that we know two invariants of the tn_-horder

and

where M and M' are functions of the x's. It may be stated that the

M'
ratio _-will be an integral of equations (i).
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Let us consider the variational equations (2) and let

_P', _p' ..... _"_

be n arbitrary solutions which are linearly independent of these

equations.

These n solutions will satisfy a system of differential equa-

tions, which is similar to systems (6) and (7), which I shall designate

as system s.

Let A be the determinant formed by means of the n2's letters

_i (k). Then

M_ and _I'_

will be integrals of system S. The same will also hold for the ratio

M'

M

and, since this ratio only depends on the x's, and not on the _'s, it

must be an integral of equations (i).

The same result may be obtained in another manner.

Let us perform the change in variables as was done in No. 237. Our

two integral invariants will become

fMS d3, dy, . . . dy._, dz,
and

fM'J dy, dy_ ... dyn-, dz

J designates the Jacobian or the working determinant of the old vari-

ables xl, x2, ..., xn with respect to the new variables Yl, Y2, ---,

Yn-l, z.

According to No. 237, MJ and M'J must only depend on

yl_ y2, -.., Y,_-I,

M'
and this also holds for the ratio _--. Since every function of the Yi'S

is an integral of equations (I), this ratio is an integral of equations
(i).

q.e.d.

/2__17
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250. This procedure may be varied in several ways.

For example, let

fF,(d.ri), ./F,(d.r,), ..., /Fv(dx,)

be the p linear invariants of the first order. Let us assume that we

also have

FI = 312F_ + 313F_+...+ MpFp,

and the Mi's depend only on the x's, and not on the differentials dx.

It may be stated that the Mi's , if p _n + ].,will be integrals

of equations (i).

Let Aik be the coefficient of dx k in F i. We must then have

ALk = M: A_.k + M_ A3.k-_-...+ MpA p._.

Let us perform the change in variables as was done in No. 237.

invariants then become

7l:',(dx',), :F;(dx',), ..., f F'Adx'O.

If we also set

F_ = E A_k dx_.,

Our

/2S

we must have

A',.k = .M: A'_k + M: A'3k+...+ .M_ A_,_.

We shall then have n linear equations, from which we may obtain

the Mi's, provided that p =< n + i.

! !

According to No. 237, the Aik s depend only on the y's, and not

on z. The same is therefore true for the Mi's, that is, the Mi's are

integrals of" equations (I).

251. Now let

F(x,, x2, ..., xn)

be an integral. It is apparent that

[ elF dF dF )\'_t dx, -+ _ dx, +. . " +--_x_xnaxe,
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will be an integral invariant of the first order.

One may then formulate the following question:

Let us consider an integral invariant of the first order

f(A dxl+A_dx2+. +Amdxn)i D

and let us assume that the term under the f sign is an exact differen-

tial. What will be the relationship between the integral of this exact

differential and the integrals of equations (1)?

In order to determine this, let us make the change in variables of

No. 237; our invariant will become

The B's and the C's must depend on the y's, but not on z.

If this expression dU is an exact differential, the function U

must therefore have the following form

U ----U0 +=Ut;

U 0 and U 1 are integrals of equation (i). We will then have

dU
--_ = U|.

If we return to the old variables xi, we will have

dU dU a_J dU
7i- = _ x,+ _ x,+...+ _, x..

It therefore results that

dU a_J
dU Xt+ Xt÷..+ X,,
d_-q _ " _'_

is an integral of equations (i). If this expression is zero, we have

Ul = o, U = U0,

and U is an integral of equations (1).

252. We could cite numerous examples of this type. I shall only

/29
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present one example.

Let us consider an invariant of the first order having the form

Let & be the discriminant of the quadratic form _.

Let us make the chan_e in variables according to No. 237, and our

invariant will become

Let _' be the discriminant of the quadratic form _'.

Let J be the Jacobian or the working determinant of the x's with

respect to the x' 's. We will have

._' _ _J_,

The quantity A' will obviously be (like the B' 's and the C' 's) an

integral of equations (i).

Now let an invariant of the tn_-h order be

After the change in the variables according to No. 237, it becomes

MJdr_dx;...dz,],

and MJ must be an integral of equations (1).

I may conclude from this that

A'

51_ji'

i.e.,
A

M_

must be an integral of equations (i).

/3O
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Change in Variables

253. When the variables xi are changed in an arbitrary manner,

without affecting the variable t which represents time, it is only

necessary to apply the customary rules for the variable change for

single or multiple definite integrals to the integral invariants.

This is the procedure we have already followed several times.

However, when the variable t is changed, greater difficulty is

encountered. It would even appear a priori that this transformation

cannot lead to any result.

Let us consider the system

d_ l d,r, dX n

dt = _ = x_ ...... x.,"

Let us introduce a new variable t 1 defined by the relationship

(i)

dt
dt I -- Z;

Z is the given function of Xl, x2_ ..., xn.

System (i) must become

dr, dz', dr,,, (2)
dr, = ?._. - zx, ..... 1C"

0 0
Let us assume that the initial values x?,= x2, Xn represent the

i g B _

coordinates of a certain point M 0 in space having n dimensions.

If the motion of this point is defined by equations (i), with t

representing time, at the time t = _ this point will move to M.
/31

On the other hand, if the motion is defined by equations (2), with

ti representing time, at the time t I _ T the point M 0 will move to M'.

Let us now consider a figure F 0 occupied at the time zero by

different points M 0.

If the motion and the deformation of this figure are defined by

equations (i), at the time t = T it will become a new figure F.

If the motion is defined by equations (2), at the time t I = x
the figure F0 will become a new figure _ which is different from F.
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Not only will _ be different from F, but in general it will no

longer coincide with one of the positions occupied by F at a time which

is different from the time t = T.

It thus appears that we have profoundly changed the given quantities

of the problem, and we must not expect that the invariants of (2) may be de-

duced from the invariants of (I). However, this is what occurs for

invariants of order n.

Let us make the change in variables of No. 237. System (i) will

become

at a_, ay, &n-, a_ (1')
0 0 0 I

and system (2)

dt, = dy, dr, d.r._, d_ (2 ' )
0 0 0

We must then assume that Z is expressed as functions of the y's and of

Z.

Let us then set

with integration being performed with respect to z (the y's are

assumed to be constants), and starting with an arbitrary origin which

may depend on the y's.

System (2) becomes

dti &' dy, &__, dz,
0 0 0 I

and will have the same form as (i').

Then let

M_Idzl...i_n,

be an invariant of the order n of equations (i).

changed according to No. 237, it becomes

MJdy, dy,...ayn_,d_;

(2")

When the variables are

/32
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J is the Jacobian of the x's with respect to the y's and z; MJ must

be a function of the y's.

And then

_ls&,&,...dy__,_,

will be an invariant of equations (2");

/MJdYtdy, dy__,dz
T ...

will be an invariant of equations (2'), and finally

will be an invartant of equations (2).

General Remarks

253'. Let us consider a system of differential equations

dxi = X_dt, (1)

and their variational equations

Let us assume that equations (i) include an integral invariant of
the first order

E A dxFi

Expression Y,Ai_ i will be an integral of equations (2).

On the other hand, these equations (2) will have the solution

with E being an arbitrary infinitesimal constant.

Let

z,. = _dt)

/33
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V-

be an arbitrary solution of equations (i). If c is a very small con-

stant

x_= ?_(t + _)= _(t) + _ d-F

will still be a solution of equations (1), and

_i= ?i(t+¢)--?i(t)= dxi_ --dS-= _Xt

will be a solution of equations (2).

It thus results that

2A,,_i = s_ A_.X_

must be a constant.

Therefore, EAiX i is an integral of equations (i).

Let us now assume that equations (i) include an integral invariant

of the second order

f f E Aik dxi dxk.

2 hi,(i,_i-- "_k,ov,
Then

will be an integral of equations (2) and of equations (2'), which may

be deduced by changing the _i's into _'i "

Let us set

_= _Xl,

This is permissible, because _ = eXi is awith _ being a constant.

solution of (2').

Then

"2,',;k( $,,Xk-- X_-$k)

will be an integral of (2). This shows that
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is an integral invariant of the first order of equations (i).

This procedure makes it possible to obtain an invariant of the

order n - i, when one knows an invariant of the order n. The procedure

may sometimes be illusory, because the invarlant which is thus obtained

may be equal to zero.

Let us now envisage an invariant having the following form

Z(Ai+tBl)dzt,

where A i and B i are functions of the x's.

having this form below.

Then

Z(Ai+tBl)_t

will be an integral of equations (2).

E(A_+tBi)Xl

must be a constant.

For purposes of brevity, let us set

'P = ZAiX_.; q', = $BiXI,

and the expression

"b + tap t

must be a constant, which entails the condition

d'P dq't
)-7 + t o-7 + ,l,, = o,

a, tX, a,b
_x_xlXt +q',+ z.. _-x7 Xi = o.

We shall encounter invariants

or

As a result,

/34

The Xi's , the Ai's , and the Bi's are functions of the x's.
same holds true for

(3)

The
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+, 'h, A__X,., _Xt.

The identity (3) can only occur if we also have identically

and

E d, l, I2_i Xl= o

d,l' ._ xi + 'h = o.

The first relationship shows us that _I is an integral of equations (I). /35

253". Let

q_ --= COIISI.

be an integral of equations (2). The function _ must be of a specific

form, a whole and homogeneous polynomial with respect to the _i's, where

the coefficients depend on the xi's in an arbitrary manner.

Let m be the degree of this polynomial. The expression

(where _' is nothing else than _, where the $i's were replaced by the

differentials dx i) will be an integral invariant of equations (i).

Under this assumption, let I be an arbitrary invariant of the

specific form _.

Let us make the change in variables according to No. 237, and the

equations (I) will become

dr; _ d; (i')
TIT -o, _- =,,

and, if one employs ni and _ to designate the variations of Yi and z,

the variational equations of (I') will be reduced to

d_, d_
dt -- _ --=o.
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With these new variables, _ will have the specific form _0, which is whol_

homogeneous, and has the degree m with respect to the ni's and _.

The coefficients may be arbitrary functions of the Yi'S. However,
according to the theory presented in No. 237, since we are dealing

with an integral invariant, these coefficients cannot depend on z.

The xi's are functions of the y's and of z, and the following

relationships between the variations may be deduced

_i _ X clz¢ d_ i (4)

The_'sare therefore linear functions of the n's and of _, and the de-

terminant of these linear equations (4) is nothing else than the Jaco-

bian of the x's with respect to y and to z. I have called the Jacobian

J.

/36

One then passes from the form _ to the form _0 by linear substi-

tution (4), whose determinant is J.

Let I 0 be the invariant of _0, which corresponds to the invariant
I of _. We will have

I = loJP

with p being the degree of the invariant.

However, I0 is a function of the coefficients of _0 and, conse-

quently, a function of the y's, which is independent of z. It is

therefore an integral of equations (i).

Let M be the last multiplier of equations (i), in such a way that
we have

and that

31 dx t dz, ... dxn

is an integral invariant of the order n.

We have seen in No. 252 that MJ will be an integral of equations

(i). Therefore,
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Iu(MJ)p-= I_Ip

will be an integral of equations (i). An integral of these equations

therefore corresponds to each invariant of the form _.

Now let C be a covariant of the form _, having the degree p with

respect to the coefficients of _, and the degree q with respect to the

variables _.

If CO is the corresponding covariant of _0, we will have

C =-- CoJP.

The coefficients of C O are functions of the coefficients of _0,

and they are therefore independent of z. The same holds true for
those of

Therefore, C_[p is an integral of equations (2); therefore,

is an integral invarlant of equations (i), where C' is none other than /37

C, where the _i's have been replaced by dx i.

We therefore have a method of forming a great number of integral

invariants. The particular case in which p is zero (i.e., the case of

the so-called absolute invariants or covariants) merits particular

attention. If C, for example, is an absolute covariant of

will be an integral invariant of equations (i). One may therefore

form a new integral invariant without knowing the last multiplier M.

The same procedure may be applied to integral invariants of higher

order. For example, let

EA,-_dxid_rk

be an integral invariant of the second order. The bilinear form
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which is an integral of equations (2) and (2') is connected with this

integral invariant.

Every invariant or covariant of this form, multiplied by one

appropriate power of M, will be an integral of equations (2), (2')

and will consequently produce a new integral invariant.

In the same way, if one has a system of integral invariants, a

system of forms which are similar to _ may be deduced from it, which

will be integrals of equations (2), (2'). An integral of equations

(i) will correspond to every invariant of this system of forms. An

integral invariant of equations (i) will correspond to every covariant

of this system of forms.

For example, let F and F 1 be two quadratic forms with respect to

the _'s. They become F' and _i when the _i's are replaced by the dif-

ferentials dx i. Let us assume that F and F I are integrals of (2) and
that, consequently,

are integral invariants of (i).

Let us consider the form

F--_F,

where % is an unknown. When stating that the discriminant of

this form is zero, we shall obtain an algebraic equation of degree n

in %, for which the n roots will obviously be absolute invariants of

the system of forms F, F I. These will therefore be integrals of equa-

tions (i).

However, this is not all. Let %1, 12, ''', In be these roots,

and F and F I can be written in the form

F ----l,h_+itA|+...+XnA_,

F,= AT+ A|+...+ At,

with AI, A2, ..., An being the linear forms which may be determined by
purely algebraic operations.

The quantities AI, A2, ..., An may be regarded as the covariants

/38

40



of zero degree of the F, FI system, so that

are the integral invariants of equations (i), if A_ designates what
Ai becomeswhenthe _i's are replaced by the differentials dxi.

However, there would be an exception if the equation for X had
multiple roots. For example, if XI were equal to %2, it could no
longer be stated that

are integral invariants, but only that

is an integral invariant.

Nowlet

f EAikdxidxh, f ZBikdxidxk

be two integral invariants of the second order.

forms

¢,, = z B,k(_A_,-- _*-_')

The two bilinear

will be integrals of (2) and (2').

The most interesting case is that in which n is even; therefore,

let n = 2m.

Let us consider the form

and let us make its determinant equal to 0. We shall have an algebraic

equation for X of degree n = 2m. However, the first term in this

/39
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equation is a perfect square, so that it may be reduced to an equa-

tion of order m. The m roots

will be integrals of equations (i), for the same reason as above.

Now _ and _I can be written in the form

,I, = Z ti(PiQ_-- Q,P;)

+, = 2(P,Q;- QiP_)

and the Pi's and the Qi's are 2m linear polynomials with respect to the

_'s. The P_'s and the Q_'sare the same polynomials, where the _m'S
have been replaced by the _''s .

Then the expressions

I',Q_--QIP_, P2Q_--Q_P_ .... , PmQ_-Q,_P_

wii1 be covariants of the system 0, 01, and consequently integrals of

(2), (2') to which the integral invariants will correspond.

There would be an exception to this if the equation for X had
multiple roots.

If we have, for example,

it = t,

it could no longer be stated that the two expressions

P,Q;- PiQ,, P,Q;- P;Q,

are integrals of (2), (2'), but only that their sum

P, Qi -- Pi Q, + P,Q; - P;Q,

is an integral of (2), (2').

/4O
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CHAPTERXXIII.

FORMATIONOFINVARIANTS

Use of the Last Multiplier

254. There is an integral invariant which may be formed very /41

readily when the last multiplier of the differential equations is known.

Let

dxl dx2 dx_
X, =-XV ..... _-= dt, (1)

be our differential equations.

Let us assume that there is a function M of Xl, X2_ ..., xn, so

that we also have, identically

d(MX,) d(_X,) d(MX.)
dxi dx2 dxn

_0.

This function M is called the last multiplier.

It may then be stated that the integral of the order n

J =f_ld_,dx_...dxn

is an integral invariant. Let us assume that equations (i) have been

integrated; expressing x I, x2, ..., xn as functions of t and of n

integration constants

the integral J will become

J =fM Adatd_... d_,,
.I

The quantity A is the Jacobian or the functional determinant of the x's

with respect to the _'s. We will then have /42

dJ f dM
dt =.] --d[- d_l d_2 "" d_"
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However,

On the other hand,

d._ dMdM t_ = M + ',
d--7-- _5 -_;

dM dM

_ dxt d.v, dx,! .
"-- -_=1' c-_t''"' d=t

I may only write the first line of this determinant; the others may be

deduced from it by changing _i to _2, _3, .-., an.

dA

Therefore, A + dt _ must be the Jacobian of the

xi-+dt_ =x,.+Xidt

with respect to the a's. This will be the product of the Jacobian of

the xi's with respect to the _'s -- i.e., of _ and the Jacobian of the

x i + Xidt's with respect to the xi' % which I shall call D. I may write

dA
A+dt-_=a.D.

However, the Jacobian D may be readily formed. The elements of the

principal diagonal are finite, and that belonging to the _ line and

to the _ column may be written

The other elements are infinitely small; that belonging to the

> k) may be writtenline and to the _ column (i <

dXt
d;ck "

It thus results that, neglecting terms on the order of dt 2, we

will have
/

dXi= r+ dt'_D , 'z.a

from which it follows that /43
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d-_ dX_
_ - _ ,T_,"

One may conclude that

dM

dt
dM dX,. E d(MX_)

from which we finally have

dJ

dt
_0,

q.e.d.

Equations of Dynamics

255. In the case of equations of dynamics, a great number of inte-

gral invariants may be readily formed. From Sections 56 on, we

learned how to form a certain number of integrals of the variational

equations, and in the preceding chapter we learned how to deduce inte-

gral invariants from them.

The first integral (equations 3, Vol. I, p. 167) is as follows

_ _,- _i_, + _ _, - _i _, + .... const.

The integral invariant which may be deduced from it is as follows

J,=fcd_,dz,+ d_+_Z,+...+ d_.r.).

It is of the second order and is of the greatest Importance for the

statements which will follow. A little farther on (still p. 167, Vol. I),

I obtained a second integral which I may write

= CONSt.

The integral invariant which I may deduce from it is of the fourth

order and may be written as follows

j,=fz dxtdyidxkdyk.
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The summation indicated by the sign 7 may be extended over the n(n - i)
2

combinations of the indices i and k.

/44

In the same way, the integral

where the summation is extended over n(n - i) (n - 2) combinations of
6

the three indices i, k and i, will still be an invariant, and so on.

We thus obtain n integral invariants if we have n pairs of conjugate

variables. One of these invariants Jl will be of the second order;

another J2 will be of the fourth order; another J3 will be of the sixth

order, ..., and the last Jn will be of the order 2n.

However, it is not necessary to assume that these invariants are all

different. At the end of No. 247, I stated that from an invariant of

the second order, one can always deduce an invariant of the fourth order,

an invariant of the sixth order, and so on. The invariants Jl, J2, --.,

Jn which I have just defined are none other than those which may be deduced

from the first of them.

These invariants may be considered in another way. At the beginning

of page 169, Volume I, I demonstrated the manner in which one could de-

duce the Poisson theorem from the integral (3) on page 157, or -- which

amounts to the same thing -- from the integral invariant J1-

Following the same procedure with the invariant J2, one would obtain

a theorem similar to that of Poisson.

Let

be four integrals of the equations of dynamics.

Let

be the Jacobian of these four integrals with respect to

'z'i, yl, Xk, yk.

46



The expression

Y'-,_Ik,

where the summation is extended over all combinations of the indices

i,k, will still be an integral.

A similar theorem would be obtained by commencing with any of

the invariants J3, Jq, "'', Jn"

However, according to the statements which I have just made, none

of the theorems is different from that of Poisson in reality.

However, from among all of these invariants, great importance may

be attributed to the last of them

It could be obtained by the procedure given in the preceding section.

It is known that the equations of dynamics have unity as the last

multiplier.

256. I shall now assume that the x's designate the rectangular

coordinates of n points in space, and I shall employ the notation given

on page 169 of Vol. i.

On page 170, we obtained the following integral of the variational

equations

NfyT_ ,_7 dV

The corresponding integral invariant may be written

\', [ v ,It dV dx).

In the same way, the invariant

( &,, + &,, +... + &,,,)

corresponds to the integral

_'r_l i --_ const.

The invariant

_ (xli d)" _.i --.)" li dx2i -- x2i rlyli + y2i dxli)
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_J

corresponds to the integral

z,(x,i_,,i-)q,_i-- _,,i_,. + y._,_,,-) -- const.

However, none of these invariants is of great interest, since they

may be immediately deduced from the integrals of energy, center

of gravity, and area.

This does not hold for the following, which occurs when the

function V is homogeneous with respect to the x's.

In No. 56, we learned that if V is homogeneous of degree -i, the

variational equations have the integral

\ mi dxhi _ki -4- const.,

or, removing the indices, we have

E(2x,,+y_)=3tZ(y__ dV )\ m d,r _ + consl.

It may be stated more generally that if V is homogeneous of order

p, the same procedure leads to the following integral

E #'E(_txvj--py_)=(a--p)t \ m dx _ +c°nst'

from which we obtain the integral invariant

J--/E(2xd) --#Ydx)-+(P--2)t/EO_Y dxdVdx) '

an invariant which has a very special nature since it depends on time.

The second integral may be written

f ._,,),\ :znz

and is t_erefore an integral of an exact differential.
seen that

/4_k

It may be readily
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is none other than the energy constant, which I shall call C.

The invariant J is of the first order; it is therefore an inte-

gral taken along an arc of an arbitrary curve. Let C O and C1 be

the values for the energy constant at the two ends of this arc.

This arc is the figure which we have called F 0 in the preceding

chapter. When this figure is deformed to become F, C O and C 1 do not 4_7

change, as I explained in the preceding chapter.

As a result, we have

J =fE(2x _" --py dx)-}-(p-- _)t(CI-- Co).
,/

The integral

.f:,: _._..e ,:_.... .,y dx)

is therefore not constant when figure F (which is reduced to an arc

of a curve here) is deformed; however, these variations are proportional

to time.

The integral is constant, if the two ends of the arc correspond

to a single value for the energy constant.

In particular, this is also true if the arc of the curve is

closed. This integral is therefore a relative invariant, as I desig-

nated it in the preceding chapter.

However, if one assumes that the arc of the curve is closed, an

arbitrary exact differential may be added under the f sign without

changing the value of the integral. For example, we may add

_(zdy+y _),

with an arbitrary constant coefficient.

Thus, the integrals

f Zy dx, fear dy

are also relative invariants.

49



We saw in No. 238 that an absolute invariant of the second order

may always be deduced from a relative invariant of the first order.
The invariant of the second order which is thus obtained is none other

than

which we studied above.

Jr_=/V dx dy,

This is the case in which the expression

which appears under the f sign, becomes an exact differential. This

is the case in which p = -2, which would occur if the attraction, in-

stead of following Newton's law, follov_ed the inverse of the cube of

the distance. We then have

X(_x_ --2ydx)= E2xy.

The quantity Z2xy is therefore a polynomial of the first degree with

respect to time, and since

dx d
Z2xy= E_mx-_ = _ Emx_,

the expression Zmx 2 is a polynomial of the second degree with respect

to time.

Jacobi reached this result at the beginning of his Vorlesungen.*

However, in general,

X(2xd:--pydx)

is not an exact differential.

In the special case of Newtonian attraction, our invariant takes

the following form

fX(2xdy+y dx)--3t(C,-- Co).

Integral Invariants and Characteristic Exponents

257. It may be asked whether there are other algebraic integral

invariants in addition to those which we have just formed.

* Translator's Note: English title is Lectures.

/48
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Either the method of Bruns, or the method which I employed in

Chapters IV and V, may be employed. As we have seen, the integral

invariants correspond to the integrals of the variational equations,

and the same procedures could be applied to these equations as are

applied to the equations of motion themselves.

However, it may be more advantageous to modify these procedures,

at least with respect to form.

Let us set an arbitrary system of differential equations

d'_ - Xt, (1)
dt

and their variational equations

d._ dXl
dt ----'X _k.

(2)

Let us first try to determine the integral invariants of first

order having the form

(BL dzt + B, dx, +...+ B_ dz.), (3)

in which the expression under the sign f is linear with respect to the

differentials dx, and where the B's are algebraic functions of the x's.

These invariants correspond to the linear integrals of equations

(2).

What are the conditions under which equations (2) have integrals

which are linear with respect to the _'s and algebraic with respect to

the x's?

Let us assume that values are assigned to the x's which correspond

to a periodic solution of period T. The coefficients of equations (2)

will be the known functions of t, which will be periodic and have the

period T. One can then derive the general solution of equations (2) in

the following form

_ = X_Ak_,'+_,_ . (4)

The _i,k'S are periodic functions of t, the _k'S are characteristic ex-

ponents, and the Ak'S are integration constants.

We can then solve the linear equations (4) with respect to the

/49
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unknowns Ake_k t, and we will obtain

Ake _d = El_tBt,k (5)

The 0i,k'S are periodic functions of t.

There will therefore be n relationships of the form (5) between

the _'s, and there will be no others.

If equations (i) and (2) include q different integrals which are

linear with respect to the _'s and algebraic with respect to the x's,

some of these q integrals may cease to be different when the x's are

replaced by the values corresponding to one of the periodic solutions
of equations (i).

What may then be done?

Let

/5O

1Ii= Bli_,-_-.B_i_t-+...+Bni_= eonst. (i=r,2,...,q)

be these q linear integrals, where the B's will be algebraic functions

of the x's, which will correspond to q integral invariants of the form
(3).

They are different -- i.e., there are no identical relationships

between them having the following form

_, IT,+ O,IT,+. + 3_"_ = o, (6)

where the coefficients 8 are constants. Neither does the following form
Occur

+, lit + '_t lit +... + +y llq = o, (6')

with the _'s being integrals of equations (i).

Is it then possible that there may be a relationship between them

having the following form

?t lit-i-?Ill2 +...+ ?yII V_-=_o, (6")

with the @'s being arbitrary functions of the x's alone. According to

No. 250, if the same relationships hold, the ratios of the functions

must be the integrals of equations (I).
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Wewill therefore have

?, '?_. _ ?_
", +2 _+I

with the _'s being integrals, and consequently

,.., If, -I- "+++,_TI2+. •. -i- '5,I IT,,,_ o,

which is contrary to our hypothesis.

An identity relationship of the form (6") cannot therefore exist

between the Hi's.

However, if the values corresponding to one special solution,

whether it is periodic or not, are assigned to the x's, it could happen

that the first term of (6) vanishes identically. It could happen even if

equation (6) which is not identically satisfied whatever may be the /51
)

x's, would hold when the x's are replaced by the appropriately chosen

functions of t, that is, by those functions which correspond to a

special solution.

Every special solution under which this phenomenon is produced, I

shall designate as a singular solution.

Under this assumption, two cases may be presented.

The case in which the periodic solutions of equations (I) are all

singular;

Or, the case in which they are not all singular.

258. Let us consider a singular solution $. Let us set

from which it follows
_,Bk.,+ _,B_., +...+ _qBk.q = B+,

B,_+ B,_, +...+ B,,_,, = _,I;_+ _,H, +...+ _qHq.

Since relationship (6) was not identically verified, we do not have iden-

tically

R,= D, ..... B.=o. (7)

However, since relationship (6) must be verified by the solution S,

these relationships (7) (which are algebraic, according to our hypotheses)

must be satisfied for the values of the x's which correspond to the
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solution S.

Nowlet us set

and thus

dBl dBl dBt

_= x, _ +x, 7_, +'"+ x_ _-_x.'

dB_ aB:.+ dB}
B_=Xt-_t+X2dx _ • • "+ Xn d--_x_ .....

The solution S must obviously satisfy the relationships

and the relationships

B_=o (i=,,= .... ,n),
(7')

and so on.

B_=o (i= ,,_,...,n) (7")

We shall therefore successively form the relationships (7), (7'),

(7"), etc., and we shall stop when we have arrived at a system of re-

lationships which will only be the result of those which will have been /52

previously formed.

Relationships (7), (7'), (7"), etc., will be algebraic according

to our hypotheses, and all of them together will form what I have

called in No. ii a system of invariant relationships.

Therefore, if a system of differential equations permits a singular,

periodic solution, it will permit a system of algebraic invariant rela-

tionships.

It is probable that the three-body problem permits no other alge-

braic invariant relationships except those which are already known. I

am still not able to prove this.

Under this assumption, let us assume that we have several singular

solutions. For each of them, we must have

J3,B,.., + _¢B,'.t +...+ _q B,-.q= o. (8)

Only the constants B will not be the same for two different singular

solutions. It is therefore not apparent that these two singular

solutions must satisfy one and the same system of invariant relation-

ships. However, this is what takes place, as we shall prove.
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In order to formulate our ideas, let us assumethat q = 4; the
line of reasoning would be the samein the case of q > 4. Let us con-
sider the n relationships

° --- (i ,,_, .. n). (17)

Let us form the Table T of the 4 n coefficients B. All of the

determinants formed by means of the four columns in this table must

be zero.

If this is not the case, we shall obtain one or more relationships

which must be satisfied by all the singular solutions, which will in-

clude only the x's and which will not include the indeterminate B !s.

If they are identically equal to zero, let us consider three of

the relationships (17), and we may deduce the following from them

The M's are minors of the first order of Table T.

We will therefore have

M,III+ M211t÷ M3H_+ M_H_= o. (18)

This relationship (18) must be identical, because the coefficient of Sk

is one of the determinants of Table T, which I assume to be identically

zero.

We shall therefore have a relationship of the form (6"), which is

opposed to our hypothesis, unless one only assumes that all of the M's

are identically zero.

If all of the minors of the first order of Table T are identically

zero, let us form the minors of the second one.

Let M' I, M'2 , _f3 be three of these minors obtained by taking

three arbitrary columns in the table and by cancelling the lines 1 and

4 for M' I , 2 and 4 for _f2 , 3 and 4 for 143.

It will become

51'_I11-I-_I_Hz-I-_I_Hs = o. (19)

This relationship must be identical, because the coefficient of Sk in
the first member is one of the minors of the first order of T which I

have assumed to be identically zero.
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This would still be a relationship of the form (6"), unless one
only assumesthat all of the minors of the second order _ are identi-
cally zero.

If this is the case, it will becomeidentically

Bi, IIt-- BaHt=o,

which is still a relationship of the form (6").

It may therefore only be the case that all of the determinants of

Table T vanish identically. We shall therefore have at least

one relationship (and, consequently, a system of invariant relationships)

which must be satisfied by all the singular solutions of equations (i).

It may be immediately concluded that all of the solutions of equa-

tions (i) cannot be singular.

But this is not all; we may expand our definition of singular

solutions.

We have Just defined the singular solutions with respect to q

integrals H i of equations (2) which are linear with respect to the _'s
and which correspond to q invariants (linear and of the first order)

of equations (I).

/54

In the same way, we may provide a definite definition of the singu-

lar solutions with respect to q arbitrary integrals

I[I, I"12, ..., Iiq

of equations (2) and of equations (2') obtained by replacing the _'s

by the _''s.

These integrals must be homogeneous and of the same order, both

with respect to the _'s and with respect to the _"s. They will be

whole polynomials with respect to these variables, but they will not be

necessarily linear with respect to the _'s. They may therefore corres-

pond to integral invariants of a higher order, or to integral invariants

of the first order, but which are not linear.

In addition, these integrals must be different -- i.e., they must

not satisfy identically a relationship of the form (6), (6') or (6").

I may then state that a special solution S is singular if a rela-

tionship (6) is satisfied for the values of x which correspond to this

solution.
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We shall then have

lli: Z B_,/A_.,

The quantity A k is a monomial formed by the product of a certain number

of factors _, _2, ..., _n' E_' $_' "''' _n raised to a suitable power,
and the Bk. i s are algebraic functions of the x's.

We shall first set, as was done above,

Bi: _iBi.1+ _Bi.2+...+ _qBiq,

and no changes need be made in the line of reasoning pursued above. We

shall arrive at the same conclusion.

Every singular solution with respect to the q integrals H i satis-

fies one and the same system of algebraic invariant relationships.

These results are still valid if one envisages the integrals in

the following form

Iii= Bt.i_l@ B2.t_l_...+Bn.i_a+ Bn+|.il_l+ B_+,.it$_+...+B2,,.it_n.

The definition of the singular solutions, with respect to these

integrals, will still be the same, and these singular solutions will

satisfy one and the same system of algebraic invariant relationships.
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The proof presented above need only be repeated, without any

changes. The coefficients of the quantities Bk. i -- which will play

the same role in this proof as the _i's -- may be either the $i's,

the products of _i and of _, or the products of the form t$ i.

259. I do not wish to delve into the reasons for my belief that

all periodic solutions cannot be singular solutions in the case of the

three-body problem.

This would take me too far afield from my subject; I shall return

to this later. In the meantime, I shall provisionally assume that this

proposition is correct, only observing that it is very unlikely that all

of the periodic solutions of the three-body problem satisfy a system of

invariant relationships, which would be necessary -- according to the

preceding section -- in order that they may be singular. We shall

again employ the notation and the numbering of equations in No. 257.

If equations (i) and (2) include q different integrals which are

linear with respect to the _'s and algebraic with respect to the x's,

these q integrals will still be different when the x's are replaced by

the values corresponding to a non-singular periodic solution.
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By stating that these q integrals are constants, and by replacing

the x's by the values corresponding to a periodic solution in the

equations thus obtained, one will obtain q equations of form (5), but

where the exponent _k will be zero. These q equations must therefore

be included among equations (5). Therefore, in order that equations

(i) include q different integral invariants which are linear with

respect to the x's_ it is necessary that q of the characteristic ex-

ponents _k be zero for every non-singular periodic solution.

Let us now try to determine the integral invariants of the form

7_ZAidx,+ 2B,_dz,_lz,= f (_. (7)

These invariants will correspond to the integrals of equations (i) and

(2) which are quadratic with respect to the _'s. The integral

F($i)= const.

will correspond to the invariant (7); this integral must be quadratic

with respect to the _'s and algebraic with respect to the x's. In this

equation, let us replace the x's by the values corresponding to a non-

singular periodic solution. We shall have

V*(_,)-_ ¢o._t., (8)

where F* is a quadratic polynomial which is homogeneous with respect

to the _'s, whose coefficients are periodic functions of t.

It must be possible to deduce all equations of the form (8) from

equations (5) in the following manner.

When dealing with a problem of dynamics -- in particular, in the

case of the three-body problem -- we have seen that the characteristic

exponents are pairwise equal and have the opposite sign. We can there-

fore group equations (5) by pairs. Let us set

When multiplying equations (5') and (5") by each other, we will obtain

an equation of the form (8), and all equations of the form (8) must be

linear combinations of the equations thus obtained.

If we therefore assume that equations (i) have the canonical form

of the equations of dynamics, and that they contain p pairs of conju-

gate variables, we shall have p pairs of equations similar to (5')

and (5"). Consequently, for each periodic solution, we shall have p
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equations of the form (8) which are linearly independent.

Let us choose one equation from these p equations and their linear

combinations for instance, F*($i). Let us follow the same procedure for

all of the other periodic solutions. We shall then have a certain poly-

nomial F*($ i) which is homogeneous and of the second degree with respect
to the _'s, whose coefficients will be functions of the x's which are /57

only defined for values of x which correspond to a periodic solution.

We must now determine whether the selection may be made in such

a way that the coefficients of F* are algebraic functions of the x's,
or even of the known functions of the x's. I shall simply pose this

problem, without attempting to solve it at the present time.

Let us now try to determine the invariants of the second order --

i.e., those having the form of a double integral

where F is a linear function of the products dxidx k (the coefficients

of this linear function are naturally functions of the x's). These

invariants of the second order will have the following significance.

Let us select equations (i) and (2) once again (we shall always

retain the numbering given in No. 257), and let us form in addition the

equations

d?,. _,_ dXi (2a)_i.

They will lead us to equations which are similar to (5), and which I

may write as follows

Ai.e_ t = z _)Oi_. (5a)

They only differ from equations (5) because the letters are accented.

According to the preceding chapter, the invariants of the second

order will then correspond to those of the integrals of (i), (2) and

(2a), which are linear with respect to the determinants

and algebraic with respect to the x's.

Let F($_$_-- $k$_)
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be one of these integrals. If the x's are replaced by the values

corresponding to a periodic solution, we will obtain an equation

having the form

F'(_iLI.-- 6_6',)= const., (9)
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where F* will be a linear function with respect to the determinants

and whose coefficients will be periodic functions of t.

We have now determined the manner in which all relationships of

the form (9), relative to a given periodic solution, may be formed.

In the case of equations of dynamics, equations (5a) may be

divided into pairs like equations (5). Let

A;,.._,,' = z_,;0.,, (5a')

B;,.e--=','= .X_,_0h, (5a")

be one of these pairs. Let us multiply (5a') by (5"), (5a") by (5'), and

let us subtract. We shall obtain an equation having the form (9). Each

pair of equations will give us one, and all other equations of the form

(9) will only be linear combinations of those which thus may be formed.

Let us choose one equation from among all equations of the form

(9) thus obtained. Let us follow the same procedure for all other

periodic solutions. We shall then have a relationship

whose first term will be a linear function of the determinants. The

coefficients of this linear function will be functions of the x's which

are only defined for values of the x's corresponding to a periodic

solution.

We must now determine whether the selection may be made so that

these coefficients are algebraic functions or even the known functions
of the x's.

Let us now return to the linear invariavts of the first order.

According to No. 29, the form of equations (4), and consequently that

of equations (5), is modified when two or more characteristic expo-

nents become equal.

If, for example, nine of these exponents equal zero, we may write
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the corresponding equations (5) in the following form

P_.-= X,'_,O,h-, (i0)

The quantity Pk designates a whole polynomial with respect to t, having
constants for coefficients.

These polynomials are of the degree q - 1 at most. In order to

specify this more precisely, the number of polynomials is q. The

first may be reduced to a constant, the second is of degree one at

most, the third is of degree two at most, and so on, and finally the

last is of degree q - 1 at most.

In the case in which the degree of this last polynomial reaches

its maximum and is equal to q - i, the polynomial before the last is

a derivative of the last, the q - 2nd one the derivative of the q - ist

one, and so on.

In every case, the q polynomials may be divided into several

groups. In each group, the first polynomial may be reduced to a con-

stant, and each of them is the derivative of the following.

In order that there may be p linear integral invariants, it is

not sufficient that p of the characteristic exponents are zero. It is

necessary that p of the polynomials Pk be reduced to constants (or,

which is the same thing, that these polynomials be at least divided

into p groups).

From the point of view of our study, what is then the signifi-

cance of equations (i0) where Pk may not be reduced to a constant?

In No. 216 we defined an integral invariant whose role is very

important. This invariant has the form

t."+ tf[:,.

where F and F I are functions which are algebraic with respect to the

x's, and linear with respect to the differentials dx.

A similar invariant corresponds to an integral of equations (2)

having the following form

where F and FI are functions which are algebraic with respect to the

x's, and linear with respect to the _'s.
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In this integral, if I replace the x's by the values which corres-

pond to a periodic solution, we shall have

F'. tF_= const., (ii)

where F* and F_ are functions which are linear with respect to the _'s,

whose coefficients are periodic functions of t.

We have now determined the manner in which we may obtain all rela-

tionships of (ii) starting with equations (i0).

Let us consider two polynomials Pk, the first being reduced to a

constant, and the second being of the first degree; the first is the

derivative of the second. The corresponding equations (I0) may be
written

,_,= z$,ot, (I0')

A,+ A,t= z_iO_, (i0")

We may thus deducewhere the 0i's and the e'i's are periodic in t.

Z$iO_--tZ_,Oi = const.,

which is a relationship of the form (ii).

We should note that equation (i0'), raised to the square, provides

us with a relationship of form (8), and that a relationship of form (9)

may be deduced from equations (i0') and (I0"), that is,

(E6_O.I)(E$}O'_)--(E$}Oi)(E$iO'_') = const.

260. Let us apply this procedure to the three-body problem, and

let us determine what may be the maximum number of integral invariants,

of the several types studied in the preceding section, for this problem.
That is:

The first type: linear invariants with respect to the differen-

tials dx;

The second type: invariants where the function under the sign f

is the square root of a second-degree polynomial with respect to the

differentials of the x's;

The third type: invariants of the second order, which are linear

with respect to products of the differentials dxidXk;
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The fourth type: invariants having the form considered at the
end of the preceding section -- i.e., having the form /6__!

These different types of invariants correspond to different types

of integrals of equations (2) and (2a), that is:

The first type: linear integrals with respect to _'s;

The second type: quadratic integrals with respect to the _'s;

The third type:

_i _ ' _ _k _' •k i '

The fourth type:

linear integrals with respect to the determinants

integrals having the form

F -F-tF,,

where F and F1 are linear with respect to the _'s.

We may assume that it is extremely probable that none of the

periodic solutions of the three-body problem is singular.

In the three-body problem, the number of degrees of freedom is six;

the number of characteristic exponents is twelve. According to the

ideas presented in No. 78, there are six, and six alone, which vanish;

the six others are equal pairwise, and have the opposite sign. There

are therefore six equations of form (I0) and six polynomials P., of

which four are of degree zero and two are of degree one. Or, _ere

are three pairs of equations having the form (5'), (5"), four equa-

tions having the form (i0'), and two equations having the form (i0").

Let us therefore determine how many independent invariants of

each type there will be.

I shall state more precisely what I mean.

variants of the first type as independent

./'lq, .f,:: .... , .fF.,

or n invariants of the second type

f_t,',: f,/t+'_: ..., 7f']_

I do not regard n in-

or n invariants of the third type
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or n invariants of the fourth type

fF,, fF=, ..., (Ft -{:}+tF_),

when there is an identical relationship between FI, F2, ..., Fn having
the form

'PlFI-_ 'P2F2-_"._.- -*- 'PnFn o,

where ¢I, ¢2, "'', _n are integrals of equations (11.

It is apparent that we cannot have more than four invariants of

the first type, i.e., no more than the number of equations (I0')

already known.

We cannot have more than thirteen invarlants of the second type,

of which three will come from the three pairs of equations having the

form (5') and (5"I, and the six others will be obtained by means of

the squares of the four equations (i0') and of their products by pairs.

These last ten exist in actuality. However, they are not independent

of the four invariants of the first type, since they may be deduced by

the procedure given in No. 245. We may therefore have three new In-
variants.

We cannot have more than eleven Invariants of the third type, of

which three will come from the three pairs of equations having the form

(5') (5"I. Six will be obtained by combining the four equations (i0')

by pairs; two will be obtained by combining the two equations (10"I

with the corresponding equation (i0').

Seven of these invariants are known. One is the invariant Jl of

No. 255; the six others are those which may be deduced from the four

equations (10'I, but they may not be regarded as independent of the

four invariants of the first type, since they may be deduced by the

procedure given in No. 247.

We may therefore have four new invariants of the third type.

Finally, we may not have more than two invariants of the fourth

type, i.e., no more than the number of equations (i0").

One of these Invariants is known, that of No. 256; we may still
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have a new invariant.

It is probable that these new invariants, the possibility of which
was not excluded in the preceding discussion, do not exist. However,
in order to prove this, we must resort to other procedures -- for
example, procedures similar to those of the method advancedby Bruns.

/63

Use of Kepler Variables

261. The invarlant of the fourth type in No. 256 may be written

in still another form.

Let us set an arbitrary system of canonical equations

a._, ,Iv 4>',__ _:v. (i)
dt -- dyi' TFF - d._t

Let us consider the following integral taken along an arbitrary

curve arc

J -- f(_, dy, + x_ _, +... + x,, dy,,).

Let us assume that we are writing the equations of the curve arc along

which integration is performed, expressing the x's and the y's as a

function of the parameter _, and that the values of this parameter

which correspond to the ends of the arc are s0 and _i. The integral J

will equal

dx J d_.

Let us assume that we are considering our curve arc llke the figure F

in the preceding chapter, which varies with time and may be reduced to

F 0 for t = 0.

Then the x's, the y's and the functions of the x's and the y's,

dF dF
..., will be functions of _ and of t.

such as F, dx' dy'

We shall have

., f[=.:L_d _7/ dx-4- XX dtdxjd¢_

or
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when integrating by parts

<n /°p,_ ,m a>,1 rr.<,_<m<l,_,1 <m1m,=,s cs:.;_y<z:j<_:+d !_">,_ _j <_"- [_: ";i.7 j

However, i6__A

and therefore

d--7= F -- Z x dx J _=:t."

(2)

If we assume that F is homogeneous and has the degree p with respect

to the x's, it will become

dF
Ex _ =pF.

Let C be the energy constant, so that the equation of energy
may be written

F-----C.

Let C O and C I be the values of this constant which correspond to

a 0 and al; it will become

dJ
at -('-P)(c,- c_). (3)

Therefore, strictly speaking, J is not an invariant. However, its

derivative, with respect to time, is constant and -- to use the expres-

sion defined in the preceding section, it is an invariant of the fourth

type.

262. Let us now assume that F presents another type of homogeneity.

Let us divide the pairs of conjugated variables into two classes,

and let us use xl, Yi to designate the pairs of conjugated variables of

the first class, and let us use x'i, Y'i to designate the pairs of con-

Jugated variables of the second class.

66



I shall assume that F is homogeneous of the order p with respect

to the xi's , to the (x'i) 2 's, and to the (y'i)2's, so that we have

Let us then set

dF I_( d_F, ,dF\

_/[:<: @) + " :C:'@'-/_')]

or

from which it follows that

, ( d,,,,_y, d=,kl+-E x _
_ d_ lJ d_,
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or

<, +,<,:,)]
f[ '( <_'."'__,,<_'='_1-+- E.'_ dd_t -+- _ Z ,v'--da dt d_ dt ] J da

f[ , _ , (.. _v , _F)]

or, integrating by parts,

dF I Z z, dF, +y,

or dJ = [F _pF _=='
dt

or finally

/2 = (,_p)(c,- co),
dt

which shows that J is still an Invariant of the fourth type.

263. Let us apply the preceding statements to the three-body

problem, and let us determine the change in the ±nvarlant of No. 256
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with the different variables chosen.

In No. ii, we used the following as variables

,qL, _G, _0, _'L', _'G', _'0',

l, g, O, I', g', 0'.

F is homogeneous of degree -2 with respect to the variables of the

first series. Therefore,

f [_(Ldl + Gdg + OdO)+ _'(L'd/'+ G'dg' + 0',!0')] ,- 3t(C,-- Co)

will be an invarlant.

The same homogeneity remains if the following variables are chosen, /66

as in No. 12,

A, II, Z, A', H', Z',

X, h, _, X', h', _'.

Therefore,

f(Ad_+ + Z d_+A'd'A'+ lt'dh'+ Z'.:_')+ 3t(Ct-- Co)H dh

will be an invarlant.

If the following are chosen as variables (see No. 12)

A. A', _, _', p, p',

X, _', _, _', q, q',

the function F wlll be homogeneous of degree -2 with respect to the A's,

to the _'s, to the n's, to the p's, and to the q's.

As a result,

fX(aAdt+_d_--_ _ +p dq-- q dp)+ St(Or-- Co)

is an invarlant.

The sign E indicates that the term whlch is deduced when the letters

are accented must be added to each term. Thus, we have

X_d_ =_d_ + ['dn'.
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If finally we select the variables of Nos. 131 and 137

A, A'; vi,

)_, )"; =i,

we shall see that

['_,-\ H _ E(':,'_l'ri -- eid'¢i)] -_- 6g((]t- Co)

will be an invariant of the fourth type.

Remarks on the Invariant Given in No. 256

264. In No. 256, we considered the case in which the x's designate

the coordinates of n points in space, and in which the equations of dy-

namics take the following form /67

d_ :v dV

"_ _ = d.-_'

where V is homogeneous of degree p with respect to the x's.

We have seen that in this case

J =f_(2:v ,¢y +py d,v) + (p -- _.)t(C_-- Co)

is an invariant of the fourth type.

Two special cases merit particular attention. Let us assume that

and we then have
J = _,/'s (x ely --y d_v)

,J

and J is an invariant of the first type.

In particular, this is what occurs when one assumes several material

points which attract each other in direct ratio to distance. This may be

readily verified.

In this case, we have

x=:Acos_t+Bsint

and
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9' = --m),A sin), t-4- m), B cos), t,

where % is an absolute constant, while A and h are integration con-

stants which are different for different pairs of conjugated variables.

It then becomes

#_c= cos). t dA -4-sin), t dB,

_'," :: -- m_. sln).t dA + m), cos), t dB,

from whlch it follows that

.7:dy --y dx --=m),(A dB- - B dA),

which shows that

J =_XJEm(AdB--BdA)

is an invariant, since time has disappeared, and that only the integration

constants and their differentials enter.

Now let us set p = -2. Thls is the case which holds when several /68

material points attract each other in inverse ratio to the cube of
their distance.

The invariant J then becomes

J -= 2fz(x dy +y dx) -- 4 t(C,-.- Co).

Here, the quantity under the slgn f is the exact differential of the

expression

S = _xy,

so that if the values of S corresponding to the two ends of the inte-

gration arc are designated by SO and S I, it becomes

J = (2 S, -- 4 C, t) + (= So -- 4 Cot).

In particular, if we assume that one of the ends of the integration

arc corresponds to a special situation of the system, where the n materi-

al points are at rest and are located at a very great distance from each

other, the mutual forces will be very small, so that the velocities of

these material points wlll remain very small for a very long period of

time, and the distances will remain very large. As a result, CO will be

zero, as well as SO, both for all values of t and for t = 0, and we wlll
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still have

J = aSi-- 4Ctt.

We will therefore have

S = _Ct + B,

where B is a new constant, and C is the energy constant, or else

or

Xxy= xCt+B,

dx

or, performing integration,

E nl X _ =Ct_+Bt+A,
2

where A is a third constant.

This is the result which Jacobi obtained at the beginning of his

Vorlestmgen Uber Dynamik (Lectures on Dynamics).

Case of the Reduced Problem /69

265. We may reconsider the question which we discussed in No. 260,

considering the problems pertaining to the three-body problem, which are,

however, somewhat simplified.

I shall first consider what I have designated as the restricted

problem, i.e., the problem discussed in No. 9 where two masses describe

concentric circumferences, while the third, infinitesimal mass moves in

the plane of these two circumferences.

There are then two degrees of freedom. There is one pair having

the form (5'), (5"), one equation (i0') and one equation (i0") (see

No. 259).

Therefore, we can have at best an invariant of the first type,

which is already known, two invariants of the second type, of which one

is known, two invariants of the third type, of which one is known, and

one invariant of the fourth type, which is already known.
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We can also consider the plane _roblem -- i.e., the problem of

three bodies moving in one plane.

Finally, we may assume that the number of degrees of freedom

has been reduced by the procedure given in No. 16. Let us make this

assumption in the case of the general problem. We shall then arrive

at what I have designated as the general reduced problem. Let us

assume that this is true in the case of the plane problem; we will

then arrive at what I have designated as the plane reduced problem.

A resum_ of the discussion which would be followed in these

different cases is given in the following table. /70

Number of degrees of

freedom ...............

Number of pairs (5'),

(5_') ..................

Number of equations (i0')

Number of equations (i0")

Maximum number of possibl,

invariants:

First type ..........

Second type .........

Third type ..........

Fourth type .........

Maximum number of possibl_
new invariants: I

First type ..........

Second type .........

Third type ..........

Fourth type .........

Re-

stricted

Problems

Plane

4

2

2

2

General

6

3

4

2

4

13

ii

2

0

3

4

i

Reduced

Plane

0

2

2

0

Reduced

General

4

3

1

1

1

4

4

i

0

3

3

0
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V

GHAPTER XXIV

USE OF INTEGRAL INVARIANTS

Test Procedures

266. In Volume II we discussed different procedures for finding

series which formally satisfy the equations of the three-body problem.

Since these series may be of great practical importance and since they

are only attained at the price of long and difficult computations,

every method which one may find to verify these computations may be

very valuable. The consideration of integral invarlants provides us

with one method which is of interest.

/71

Let us call x i (i = i, 2, 3, 4, 5, 6) the coordinates of two

planets (as we stated in Section No. ii and as we have always done since,

the first must be related to the Sun, the second to the center of gravity

of the first and of the Sun). On the other hand, let us call Yi the com-

ponents of their momentum. These quantities x i and Yi may be developed

in series in the following manner.

Let us recall the results of Chapters XIV and XV, in particular,

those obtained in No. 155. In these chapters, instead of the twelve

variables x i and Yl which I have just defined, in order to define the

positions of two planets we employed twelve other variables

In addition, we introduced six arguments

while setting
r t

and six other integration constants

Ao, _%, _,o ,_,'_, _;o, x',o,

and we found that the equations of motion could be satisfied in the

following way.

The quantities
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k.2

may be developed in powers of _ and of the x'iO's . Each term is

periodic with respect to the w's and the _ '% and depends in addition

on the two integration constants A0 and Ah.

The constants ni and {i may be developed in powers of _ and of
0 v

the x'i s, and depend on A0 and N0 in addition.

The _-i's and the _'i's are six integration constants.

Finally,

is an exact differential when the twelve variables A, l, o and T are

replaced by their expansions, and when the w's and the _ s are regarded

as six independent variables and the quantities AO, A_, _i 0 are regarded

as constants in these expansions.

Our quantities x i and yi which I have Just defined may be ex-

pressed readily by means of the twelve variables A, l, o and _.

It may be concluded that xi and Yi may be developed in series in

powers of _ and of the _iO's, as well as according to the cosines and

the sines of multiples of the w's and the _ 's . In addition, each co-

efficient depends on A and N O .

The expression

will be an exact differential, if the w's and the _ 's are regarded as

six independent variables and A 0, NO , x_ 0 are regarded as constants.

We need barely point out that the series thus obtained are not

convergent. They are only of value with respect to formal calculations,

which gives them, however, a certain practical utility as I explained

in Chapter VIII.

Nevertheless, if we substitute these expansions for the xi's and

the Yi'S in the expression of an integral invariant, the result of this

substitution must, from the formal point of view, satisfy the conditions

which must be satisfied by an integral invariant. This provides me with

the verification procedure to which I wish to draw attention.
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267. We saw above that

f E('zx dz)-- 3t(ci-- Co)dy (i)
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is an integral invariant.

In order that we may make use of this invariant, we are going to

perform a change of variables which is similar to that given in No. 237.

In order to have greater symmetry in the notation, let us set

Ao= _,, ^_ = _, ; _i° = _i+,.

We have seen that we may develop the x's and the y's in series

depending on the w's, the w' s , the A0, A'0, and the x_0's -- i.e., with

our new notation, the wi's and the Ei's (i 3 i, 2, 3, 4, 5, 6).

For new variables we may then take the Ei's and the wi's, and then

the differential equations of motion will take the form

(2)
d_i _. d'_'t = dt

0 lzi

[just as in No. 237, equations (1) become, after the change in variables,

dy i _ dz - dt
0 i

as we have seen].

The ni's are functions of the $i's alone.

However, it is more advantageous to select other variables. Due

to the fact that the six ni's are only functions of the six _i's, nothing

prevents us from taking the ni's and the wi's as variables, instead of

the _i's and the wi's, so that the differential equations become

dn_ dwi
= dr. (3)

0 /7-I

An integral invariant of the first order will take the form

a =f(zA_dn_+ EBldwi),

where A and B are functions of the ni's and the wi's.

75



x.J

I may assumethat figure F is a curve arc for which the equations, /74

which are variable with time, have the following form

nt=fd_, t): ,,,, =.f;(_,, t),

where the variables n i and w i are expressed as functions of time t

and of a parameter a which varies from a 0 to a I when the arc F is en-

tirely traversed. The equation of the arc F 0 will then be

hi=f,(,,, o); ,,'i =f;(_, o).

With these stipulations, I may then write

J = z ,% -_- + ,.:B, -3:,/d_,,

from which it follows that

(dA,f d_ y dni dBi dwl d*- n t d2 cvi \l

+ A_ -dTd_ + n,. -3/-il_ 7"

However, we have

dA _. dA i
dt -- y nk d-_ '

dBi dBt
d-7" = xnk _t_'

d_ nl el"- w i dni

dt d_ -- o ; "dt-_ -----_ '

from which it finally follows that

"f[( '" ) '",1dt -- Vt dni E_tnk d_v k q- Bi + dwiZk,',;; _?i_kj.

If J is an absolute integral invariant, we must therefore have

dDt (4)
]_k nk _ ---_ O_

dA_

x_,,k _G = - D,. (5)

Let us now determine what occurs in the case when the A's and the

B's are periodic functions of the w's and may be, consequently, devel-

oped in trigonometric series.

Let us first consider equation (4), and let us set
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Bi _= E[7) cos(re,w,+...+ m6w_)-+- b'sin(m I_v,_l....+ m6 ws)] '

where the b's and the b"s depend on the ni's.

Equation (4) becomes

E(m, nt+...+ m_n6)[--bsin(mtwl+...+ m6wt)

-I- b'cos( rnt _vz -4-..-.-4- m_ we)] = o,

which may only hold if

I._[ll_ I -_-. , .._- D_[6 /'J.6 _ 0 t
(6)

or if

However, the m's are integer constants, and the n's are our inde-

pendent variables between which no linear relationship may hold. Equa-

tion (6) therefore entails the following

lnl ---- D_3 _ • . , _ DI 6 _ O.

This means that the trigonometric expansion of B i may be reduced to

its known term -- i.e., B i is a function of the ni's alone, and is

independent of the w's.

Let us now pass to equation (5). Let us set

Ai= Z(acost0+a'sin_),

writing _, for purposes of brevity, instead of

Equation (5) may then be written

V(mt n. +...-+- m6ns)(-- a sin_o -+- ct' cos o_) -_ -- Bi.

Let us first consider a term whlch is dependent on the w's, l,e.,

such that ml, m2, ..., m 0 are not zero at the same time. We shall

then have

D_ I l/_t -_- , . .--_ ,rn6n6 <>0.
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In the second term, B i does not depend on the w's. This second

term contains neither a term for cosw, nor a term for slnm. As a
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result, we have

Therefore, Ai does not depend on the w's, and may be reduced to

the known term of its trigonometric expansion, a term which depends

only on the ni's.

However, equation (5) may then be reduced to /76

In general, every linear absolute, integral invariant of the

first order, where the term under the sign f is algebraic with respect

to the x's and the y's and, consequently, periodic with respect to the

w's, must have the following form

EAidnt,

where the Ai's depend only on the ni's. In reality, this is what occurs

for the absolute invariants which we know and which are obtained by

differentiating the integrals of area, energy or motion of the center

of gravity.

However, the relative invariant

J =-fr.(_x dy ._-yd.r)

deserves more attention. We have seen that

J --St(C,--Co)

(where C O and CI are the values of the energy constant at the two

ends of the arc F 0) is an integral invariant. We shall therefore have

dt--dJ= 3(Ct - Co) = 3fdC.
(7)

If we set

J =fx(A_ dni + Bidw_),

equation (7) becomes

dAi i_i)+ dlviEknk dBt ] dC• -_,
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V

because the energy constant C is only a function of the ni's.

Equations (4) and (5) must therefore be replaced by the following

equations

dBt
xkn,_ =o, (4')

dAt dC
x,n_ _ = 3 _ --B_. (5')

The A's and the B's must be periodic functions of the w's.

If we treat equations (4') and (5') Just the same as we treated

equations (4) and (5), we find the following:

i. The Bi's are independent of the w's;

2. The Ai's are independent of the w's;

3. And that

We finally obtain

3"_ dc
X('_x dy + y dx) = XAidn_'+ _a'_n_ d*vi,

where the Ai's depend only on the ni's.

In other words, expressions

or

(8)

do not depend on the w's and are only functions of either the _'s or

the n's, depending on whether everything is expressed as a function of the

E's and the w's, or as a function of the n's and the w's.

In the same way, we shall have
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dz, _l:_,_ ,lc (9)Ei _Xi_t,v_---k+)'i(l_vk/ = 3_,5 _"

AS I have already stated, the xi's , the y_'s, and C are developed
in powers of _ and of the _i 0 's. Expressions _8) and the two terms in

equations (9) may therefore also be developed in powers of these quanti-

ties.

All of the expansion terms of expressions (8), which are expanded

in powers of _ and of the x'i0 's, must therefore be independent of the

WVS.

On the other hand, each expansion term of the first member of (9)

must equal the corresponding term of the second member.

We thus have numerous procedures for verifying our computations.

268. I have stated that

x i d_i

is an exact differential, if the _i's are regraded as constants, and

the w's are regarded as independent variables.

We then obtain

E(_x dZ +y dz) = 37"z de

dC 's
or, since the d-_i depend only on the _'s, they must be consequently

regarded as constants

f E(2xdy +ydx)=3E dC

from which it follows that

from which we finally have

f_x<ty = 3X "<mN dn i tui -- Z xf.

Let us briefly return to the notation given in No. 162.

(lO)

In this
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section, Just as in No. 152, we chose the follo_rlng as variables

t A, A ', _i,),,, _'j, ,_,-,
(ii)

and we set

On the other hand, the variables (ii), Just as the variables xi,

Yi, are conjugate variables. As a result, Just as I have explained

several times, the expression

•vi dye- - A d)., -- ._,'ag,', -- _ _id';i = dU

is an exact differential. I should add that the function U may be

readily formed, which may be consequently regarded as a known function

of the xi's and the Yi'S.

We then have

E dC , , (12)

Just as when the procedure outlined in Chapter XV is applied, one

is led to formulate the function S, and equation (12) furnishes us with

the desired verification in a new form.

/79

Relationship to a Jacobi Theorem

269. It is known that at the beginning of his Vorlesun_en fiber

Dynamik, Jacobi demonstrated the fact that, in the case of Newtonian
attraction, the mean value of the kinetic energy equals, with the

exception of a constant factor, the mean value of the potential energy,

assuming that the coordinates may be expressed by the trigonometric

series having the same form as those which we are presently studying.

This Jacobi theorem is directly related to the preceding state-

ments. The equations of motion may be written

dx l

ml--a_=_ir

from which it follows that
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v

Then -V represents the potential energy, C the total energy, and

the kinetic energy.

On the other hand, due to the fact that V is homogeneous of

degree -i, we shall have

E dV dyt--V= _ xl= zxl -3y,

E y_ l dxLm'---;= ; _..r_ -2-i"

The energy equation may therefore be written

, d rt dyl
xy_ _?i + _:xt_IY = C.

Let us take equations (9) from No. 217 and let us add them, after

having multiplied them respectively by n k. We shall have

dr, .__._!'_ dC

If we note that

dx dx

E n_ dwk -- dt

(since dwk = n k) , we may conclude that
dt

E _X_di- +yi tlt ]=

When making a comparison with the energy equation, we find that

/80

dC 2

x _k _ = _ c,

2
which shows that C must be homogeneous of degree _ with respect to the

nk's , which could be seen directly. The mean value of a function U,
which I shall designate by the notation [U], will be zero if U is the

derivative of a periodic function. We shall therefore have
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[ Jx, _If'_Tf + xi dt J = °

and, connecting this with the energy equation, we obtain

from which we have
[ _I=Vxl dt J _C,

[--vj 2

This is the Jacobi theorem.

dx

If the partial derivatives d-_k are considered instead of the total _
dx

derivatives_, similar results would be obtained. We would obtain

and consequently

"zi (-"i &' d:_/_

[ gy'l ,_c

[ _"- 1= dcEiYi d_vx.] --3 7[n--k"

Application to the Two-Body Problem

270. In particular, the preceding considerations may be applied

to the two-body problem. Let us consider a planet and the Sun, and

let us refer the planet to axes having fixed directions and passing

through the Sun. Consequently, let us consider the relative motion of

the planet with respect to the Sun.

Let x I, x2, x3 be the three coordinates of the planet; let Yl,

Y2, Y3 be the three components of angular momentum.

Let _, n, _ be the three coordinates of the planet with respect

to particular axes, i.e.: The major axis of the orbit, a parallel

line to the minor axis, and a perpendicular line to the orbital plane.

We shall have
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•rt -, hi _ t- I_'l rt + h"__,

x_ : h;,_-_ h'_q-,-h'_.

where the h's are constants which are connected by the well-known rela-

tionships which Indicate that the transformation of coordinates is

orthogonal.

In the same way, we shall have

d_ _ h_ dn d_Yi = t_hi 3"e ' _ + _hl 2-t'

where _ Is the mass of the planet.

It is now evident that _ is zero, and that g and q are functions

of one single argument w, which is the mean anomaly, and of two constants,

which are the major axis a and the eccentricity e.

In addition, the h's are the functions of the three Euler angles,

or more generally, of three arbitrary functions ml, _2, _3 of these

three angles.

Thus, the x's and the y's are functions of w, a, e, and of the

_IS.

If we designate C as the energy constant and n as the mean

motion, we shall then have

#

+ yt dw ] = 3 d'--n

and, in addition, the expressions

E(ar. dy, dx,_

!:( +'2"ri "-(_-_ "q- Yi de ]

• dxi "_

must be independent of w.

Some of the statements were apparent beforehand, and provide us

with no new verification.
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In actuality, the dXi's are linear functions of the xi's whose
dmk

coefficients depend on the m's and are such that

As a result, we maywrite the following identity

ot I _ ott

dx, dx_ dx_

k,
where the a's are arbitrary constants and the Oi s are the given func-

tions of the _'s. In the same way, we shall have

ay, _ dZ,=,_ + =2 +=3 _ = Y, y, y3

As a result, we have

( ::r,. .:_::q'_

"_1 3"2 X3 [

r, 3"2 )'sI"?f _i ",,_

This expression must be reducible to a constant which is independent of /83

w, and -- since we have three similar relationships which one obtains

by setting k = I, 2, 3 -- we may write

¢V3 _%'1-- .Y2 '25"3-=-= COIISt,

ylx3--.)'3X I = const.

,Y2 :_'1 ---YI X2 =_ COflSt.

However, this is not a new result; these are the area equations.

Let us now investigate the expression

-35 + y_ da / "\

Let us determine the manner in which the x's and the y's depend on a.

The x's include a as a factor, and the y's include_-_, because we have

dxi {Ixl
yi = _ -dF = 11n _j.
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_J

We therefore have

d:vt _ ,Tt. dy__2 = r_ + y l dn
da a ' da a n da

Our expression therefore becomes

Ext'y_ A....n da]

It may be readily verified that it is zero.

law of Kepler, we have

According to the third

from which it follows that

l_q-a S _ COIISL_

2 dn 3 da
.... -t ..... =:0.

IL (_

We have still not obtained a new procedure for the proof.

We must now examine the two expressions

"ZXi _l¥ "L-yi dw ]

Z( dy, dri'_,),,re_l_- -_-Y_ 'ilJ } = t';.

e and w remain to be varied. We can therefore only vary the _'3,

i,e., the direction of the major axis of the orbit. We may

therefore choose particular axes and may set

x,=_ --=a _ e+EJp-,(Pe) C

x,=_-_ (I--2Z--_[EJP-'(P e)_inp'v]"a . -p--j

The functions J are Bessel functions. The index p under the sign Z

includes all the integer values from -_ to +% with the exception of O.

We may therefore deduce the following

yt= -- _anEJp_l(pe)sinp_v

y_= _an l_e--_ZJ_)-,(pe)cosp w.

Expression W becomes the following, if the common factor _a2n is re-

moved,

/84
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3eVJl,_.tpcospw--9,,xJi, t cosp,v Xjj,_t Pc°sp_v+[xJp .Isinpw]i
P

sinpw
--'_(I - e_)XJp-I P X Jp_,p sinpw -4-(| -- e2)[Z tp_. t cospw]_ =: lV'.

For purposes of brevity, I have written Jp-I everywhere, instead of

Jp_l (pe) •

We must then have

dC
W--- 3--.

dn

However, C ,,t;,....... :, l_.| (g 3 _ t,q:p

where m designates the mass of the Sun plus that of the planet.

therefore have

C -=4 -- _ I)_.$F?_

2

and

We

However, since

dC __ _!

:3_l,i ..... l'man a= __ t,a,_t.

we find

When identifying the similar terms, we have a series of relation- /85

ships between the Bessel functions J.

A study of expression E leads us to a series of relationships

which are similar, in which the Bessel functions J and their first

derivatives will be included this time.

271. Numerous examples of these particular applications could be

provided. For example, after having treated the case of Keplerian

motion as we have just done in the preceding section -- i.e., after

having taken into account terms of the degree zero with respect to the

disturbed masses -- one could apply the same principles to the entire
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group of terms of degree i. There is no doubt that this would lead

to interesting results.

Using the same procedure, we could also study the secular varia-

tional equations which we discussed in Chapter X. In place of the

integral invariant

we would have the advantage of employing similar invariants which we

defined in Nos. 261, 262, 263.

We shall put these questions aside.

Application to Asymptotic Solutions

272. Let us apply these principles to asymptotic solutions.

us take the coordinates x i and the

dxi
yi = ml_-_

as the variables. Let us consider the invariant

J =fz(_zc_+ydx).

We know that if C is the energy constant, and CI and C O are the
values of this constant at the two ends of the integration line,

we shall have

J--3t(C,-- Co)= eonst.

Let

(i)

If we consider a system of asymptotic solutions, it will have the

following form: The xi's and the yi's will be developed in powers of

Alea_ t, A,e=,t_ . . ,_ _k¢=Lt_

where the coefficients are periodic in t + h, where

Ai, A_, ..., Ak, h

are k + i arbitrary constants.

If these values of the xi's and the Yi'S are substituted in the

energy equation, the first member is always developed in powers of

A le_tl Al°qt ..._ Ake_t
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where the coefficients are periodic in t + h. Since it must be inde-

pendent of t, it will also be independent of A I, A2, ..., Ak and h.

If the values of the xi's and Yi'S are substituted in equation

(i), we shall have

and, consequently,

J = const.

In J, the expression under the sign f, is developed in powers of

Ale_t, t, Aae_t,t, ., .+ Ake"+-tLt'l

The coefficients are periodic in t + h; it depends linearly on the

k + 1 differentials

dAt, dA_, ..., dAk, dh.

We must therefore have

E 2x at+ +9" dh = eonst.

(2)

The first terms of equations (2) are developed in powers of the

Aie_it's. All terms of this development must be zero, except for the

known term. One thus obtains a multitude of relationships between /87

the coefficients of the development of the xi's in powers of the Aie_it's.

By way of an example, I shall confine myself to considering the

first term, and I shall write

X i :: X i q- Z i ,% e _t

where Xi and Zi are periodic in t + h.

We may deduce

y,. _ +m[X_.-+-Ae_'(Z}-!+ +_Z+)]

where X_ and Z'i designate the derivatives of X i and Zi.

Neglecting all terms in e 2_t, etc. , we then have
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((r (]_"l-: z,,,_'.[,,_x(z'+ _z) _ x'z].,,.x 7/;( _-y ,lA /

We therefore have

Zm(_XZ' +'2¢_XZ-'_ X'Z)--o,

which provides us with the first relationship between the coefficients

X and Z i .

The relationship

dy d:v )E '2x </_ -l-y [l_ =: const.

furnishes us with another one which, in reality, would not differ from

the first, since -- when it is combined with the first relationship --

an equation is obtained which is an immediate consequence of the energy

principle.
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CHAPTER XXV

INTEGRAL INVARIANTS AND ASYMPTOTIC SOLUTIONS

Return to the Method of Bohlin

273. Before proceeding any further, I must supplement some of

the results given in Chapters VII, XIX and XX. I would first like

to sum up the results which I wish to compare and which will serve as

my point of departure.

We saw in Chapter Vll that if a system

djz:._Xi (i _=,,_,...,n)
dt

has a periodic solution

(i)

- (2)

and if we set

X i _ Xl

the _i's may be developed in increasing powers of

Al£7_tj ._.zc%tj . .., Ane_t,t t

(3)

where the coefficients are periodic functions of t. The Ai's are inte-

gration constants; the _i's are the characteristic exponents of the

periodic solution (2).

The series always satisfy equations (i) formally. They are con-

vergent under certain conditions, which we have discussed in No. 105.

There is an exception in the case where we have a relationship

having the following form between the exponents _ ,

_-q _- X_ -- zz = o (4)

where the coefficients B are whole, positive, or zero, and the coeffi-

cient y is whole, positive, or negative. (See Volume I, page 338,

line 5. When writing this relationship, I assumed that the unit of

/89
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time was chosen so that the period of the solution (2) equalled 2_).

If there is a relationship having the form (4), the _'s cannot

be developed in powers of the quantities (3), but in powers of these

quantities (3) and of t.

This is precisely what occurs if the equations (i) have the

canonical form of the equations of dynamics. In actuality, in this

case two of the exponents are zero, and the others are equal in pairs

and have the opposite sign.

In the case of equations of dynamics [or, more generally, when

there is a relationship having the form (4)], we were still able to

obtain a result. It is sufficient to give special values to the inte-

gration constants A, so as to cancel the values of these constants

corresponding to a zero exponent, and one of the two corresponding to

each pair of equal exponents having opposite signs. [More generally,

the constant A corresponding to one of the exponents included in the

relationship having the form (4) would be cancelled, so that there

would no longer be a relationship having this form between the ex-

ponents corresponding to the constants A which are not zero.]

For example, if

we would make

=z-- - =_, =i_ --_s.... , =*,-'-----=,, (n even) ,

AI----A2----o_ A3 ----o, A_=o, ..., An-I _ o.

The _'s may then be developed in powers of those quantities (3)

which are not zero. However, we shall no longer have the general solu-

tion of equations (i), but a special solution depending on the number

of arbitrary constants which is less than n (i.e., n - 1 in the general
2

case of the equations of dynamics).

We have thus arrived at the asymptotic solutions: We have done

this by cancelling a certain number of constants A, not only those

which we have set equal to zero for the reason which I have just given,

but also those which we had to cancel in order to satisfy the conver-
gence conditions given in No. 105.

For the time being, I shall not deal with the development of the

_'s in powers of _ or of ¢_.
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In Chapter XIX I studied the method derived by M. Bohlin_ which is

basically only an application of the Jacobi method, since the problem

is reduced to obtaining a function S which satisfies an equation with

partial derivatives. Only this function S has a form which is particu-

larly suitable for the case in which there is approximately a linear

relationship having whole coefficients between the mean motions. The

cases which are of greatest interest to us are those which are similar

to that which I have designated as the limiting case (No. 207). In

this section, we saw that the function S may be developed in powers of

¢_, in the following form

and that
S::So _- v'TS, -_- aS,-_-...

dSp

da',

is periodic with the period 2_ with respect to

y_, ya, ..., y,

(employing the notation in the section indicated above).

However, the results may be simplified by performing the change in

variables which was discussed in No. 209 and 210.

In section No. 206, I defined n + i functions

which are periodic with respect to the variables

Y_, Ya, ..., y.,

and which I regarded as generalizations of periodic solutions.

In No. 210, we set the following

xl_x_+_, Y_=:Yl-- _, Y}=3"l (/>i)

d_ dg

I.The equations retain the canonical form with the new variables xJ, Yt

Only the new equations have the following tnvariant relationships

_ = _ = y, = o,

/91
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which, with respect to the new canonical equations, may be regarded

as generalizations of periodic solutions, just as is the case for

with respect to the old ones.

Without limitin_ the conditions of _enerality, we may assume that

our canonical equations imply the following invariant relationships

If this is the case, we saw in No. 210 that Yl = 0 is a simple

zero for the derivatives dS_, and a double zero for the derivatives

dyl

dSp (i > i).

dyi

Thus S, or rather S - S O, may be developed in powers of Y, and

the expansion will begin with a term of the second degree. We shall

have

• %" 3 _ $
S=:$0+)_2y_ _--_3y,+-_Y,+"" (5)

where the E's are series depending on Y2, YS, ''', Yn and are developed

in powers of /_. In addition, it may be seen that the E's are periodic

functions of Y2, YS, "'', Yn"

Unfortunately, this is not sufficient for our purposes.

The function S, which is defined by equation (5), depends only

on n - i arbitrary constants

whereas n would be required for the complete solution of the problem.

In order to pursue the study in greater detail, we shall resort

to the change in variables, given in No. 206. If we employ the nota-

tion given in this section -- i.e., if we set

I I =i_y i .... ;, , ,.,

and if we define, Just as in the indicated section, the variables x_,

94



Ul, Vl, and the functions T and V, the derivatives of V with respect /92

to v I and to the zi's will be periodic functions of the zi's (see

Volume II, p. 361).

Let us examine in greater detail the equations which appear at

the beginning of page 363 (Vol. II) and which are written

y, --O(_,,y_,y3,...,y,),

x_ ---_._(v,,Y2,y_....,y,,)

Regarding Y2, Y3, "''' Yn as constants, let us consider the following

equations (always Just as in the indicated section)

y, = o(v,), x, = C,(_,)

When we vary v I, the point (xI, Yl) will describe a curve which I

wish to study. Let us assume that we vary x'I, instead of varying the

constants x'2, x'3, ..., X'n, and we shall obtain an infinity of curves

corresponding to different values of X'l.

We assumed above that the following invariant relationships hold

X! _ X 1 -=Yl _0

which are like a generalization of periodic solutions.

The following point will correspond to these relationships

_I :--Yl _ O

i.e., the origin of the coordinates. I would like to study our curves

in the vicinity of this point.

Let us assign to x_ the value corresponding to the special function

S defined by equation (5), and we shall have

x,= _V_y,. 3E3y_+ ....

The corresponding curve passes through the origin. By changing

¢_ into -_, we would obtain a second curve passing through the origin.

We therefore have two curves crossing at the origin. The center

curves may pass near the origin, without reaching it and without inter-

secting each other, so that all of our curves together will look like

(in terms of their general form in the immediate vicinity of the origin)

the figure formed by a series of hyperbolas having the same asymptotes /93
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and formed by their asymptotes.

274. In order to study these curves and their corresponding
functions S in greater detail, let us limit ourselves to the case in
which there are only two degrees of freedom.

Let us assumethat the change in variables of No. 208 was performed
in such a way that

is a periodic solution, which amounts to stating that for

we have

dF dF dF

Let us develop F in increasing powers of xl, x 2, and Yl. The term

of degree 0 would only depend on Y2, and since we must have

dF
--0

d ,¢l

it will be reduced to a constant. Since F Is only defined up to

a constant, we may assume that this term of degree zero is zero.

Let us try to find the terms of the first degree. Since

dF dF
d:v_l

= =- __o
ayl

there wlll be no other terms of the first degree except for a term for

x 2 •

Let us now set

a., _z_, y,= Eyl, x_=_x_, y_=_;.

It can be seen that F may be divided by ¢2 and that, if one sets

F = _,F',

the equations retain the canonical form and become

dx_. dF' dy_ dF'
a-7 = 2-// _r .... d_' (l)
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In addition, F' will be developed in powers of e in the form /94

F'= _;-_ _F', ,- _F; +... ;

F' can be developed, on the other hand, in powers of x' 1, x_, _1. The

coefficients are periodic functions of Y'2- We shall have finally

F_ = Ilx_ + A.x'_2 + _Bx',y'l _ Cy', l

where H, A, B and C are periodic functions of yV2.

We shall apply a method which is similar to that of Bolin to our

equations. In this method, the parameter e will play the same role

that the parameter _ played in Chapter XIX.

Let us remove our accents which have become useless, and let us

' F' F'.
write xi, Yi' F, F.I instead of x'i, Yi' ' i"

I would first like to state that I may always assume

II=i.

If this were not the case, I would choose the following for new variables

_fdz,
x_ = llx_, Y_-- J II '

The canonical form of the equations would not be changed, since

x_ dy_ --x_dy_ = o

is an exact differential.

* increases by a constant when Y2 increases byIn addition, Y2

2_. I may always select the unit of time in such a way that this con-

stant equals 2_. Then every periodic function of Y2 having the period
f * wlth erlod 2_ The form2_ will be a periodic function o Y 2 " p " . of the

function F will not be changed; only the first term Hx 2 will be reduced

to x*2 .

Let us therefore assume that H -- i.

I may now state that we may assume

A=C=o, B= const.

Let us form our canonical equations (I) assuming that e = 0, and we /95

have
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dy, dx, dr,

d-T =--I; dt -- dyi--2(Bx' t-Cy,)

<Ix, dx,
dt -- 71r-7= -- 2( ,t x, -_ n'YO

dx 2

and an equation for d-_-which I may replace by the equation of energy

x2 + hx_-_ 2I}zlyl -:-Oyli ---_const.

The equations

d, rl d j# I

dy i -- -- 2(B.z'l + Cy,), _.)3; =: .2(.\xi .._Byi)

are linear equations having periodic coefficients.

they will have the following for a general solution

In virtue of No. 29,

Xi:: W?+iVlt_ ,yi-_-iP?l+w,_l,

where _, ¢, ¢1, ¢I are periodic functions of Y2; _ and 6 are integration

constants, and a and b are constants.

It may be readily seen that b = -a and that _I -- ¢_i is a constant,

which I may set equal to i.

Under this assumption, let us make a new change in variables,

setting

=, = =', ? +Y,'k; y, = xl _,-,'-.x;,I,,,

# , ,' t t
xl=xi_lIz',_+aI(x,yl+Ly',i; y,=y.j,

where H, K, L are functions of Y2, chosen in such a way that the canonical

form of the equations is not changed. For this purpose, it is sufficient
that

.'_',dy, - _', dr; _-x, dr, -- _, d.r;

be an exact differential.

It may be seen that Xldy I -- x_dy% equals an exact differential in-

creased by the amount

dr, [x?(_,?' ??D +y'?('h'b'-'_'_) -_ _'_'+o-_'.-. ,:,,.,_--9'7_)];

The quantities @', 41, ... designate the derivatives of _, @i, -.. with
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v

respect to Y2.

In order that the canonical form of the equations is not changed,

it is sufficient to set

It may be seen that H, K, L are periodic functions of Y2, from

which it follows that the form of the function F will not be changed

either.

However, if we set e = 0, our equations must have the solution

from which it follows that

r
x t =- _e+ay_;

a

"2

/96

Without limiting the conditions of generality, we may assume that

I1 =l, A = C _o, B= const.

from which it follows _ince we have removed the accents)

Fo= xa+_Bxtyt.

We shall follow this procedure from this point on.

Let us perform a change in variables, setting

Since

Yl
:r,yj = u, log--- = _v.

Xt

X t dyt -- U dv ,_- --

d(x, .r, )

is an exact differential, the canonical form will not be changed.

We then thave

_,= e_; y,= e-_¢_.

The function F may then be developed in powers of
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We have

F0_xz+ _Btt.

Let us write F in the following form

F(,r_, u; y_, ,,,)

and let us define a function S by the Jacobi equation

)\ dy,' 7/_ ; y2, v =: C,

where C is a constant. Let us develop S and C in powers of c

S ":So I'-:S,+s_S_ _-"-,

C-: Co+_C,-_'s_C_-4 -....

In order to determine S0, $I, 82, ..., by a recurrence method, we

shall have the following equations

alSo dS_
2j_ + _ l_ dJ :Co,

</S, dS,. ,I> Ct, (2)

dS2 dS_ 't, -t- C_.

As I have already done previously, I shall designate every known

function by _. In the second equation (2), I assume that SO is known.

In the third equation, I assume that S O and S I are known, and so on.

Let us set

Sv :_oY_+,%v

with the condition

=_+aB_o= Co.

Since Co is arbitrary, the two constants a o and _o may be chosen
arbitrarily. Nevertheless, it is important that we do not set 80 = O.

Following is the reason for this.

Let us assume that it has been shown that

dS0 dSt dSi,

may be developed in powers of

/97
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f.j C " v 1 e _ i)-, •

We may conclude (if 80 is not zero) that the same holds true for

_V + _-JV +'"+ _p J_-

since the quantity under the radical may be reduced to 80 for e = 0.

This conclusion could not be reached if B0 were zero. It is important

that this conclusion may be reached, due to the presence of the radical

¢_uln F.

Let us now consider the second equations (2). The function

which it includes depends on v and on Y2, and has the following form

_' _ _ A m.n _nav+'ln.y, .4- Aoo.

The coefficients A are constants which may depend on a0 and on 80.

The indices m and n may take all whole, positive, negative, or zero

values. When removing it from the sign E, I have shown the term in which

these two indices are zero.

The second equation (2) then gives us the following

A mn emv + tn.r,
St= _'0'_+ 13,_'+ z.., -_ +--q--ff-_-

/98

with the condition

_t+ 2B_,= A,0+ C,.

Except for this condition, the constants al, 81 and C I are arbitrary.

I shall therefore assume that

_| _ _1 _ O.

I shall determine S2 by the third equation (2). Due to the fact

that this equation has exactly the same form as the second, it will be

treated in the same manner, and so on.

dS dS

To sum up, the derivatives d-_2 and _v may be developed in powers

of

If one compares this analysis with that given in No. 125, it may

i01



be seen that there is an exact analogy between them. However, instead
of having only imaginary exponentials

e±iY,, e±_,, .... e_lYn;

we here have real exponentials

e _g"

275. Once the function S has been determined, by applying the

Jacobi method, we may arrive at series which are similar to those

given in No. 127.

80.

The function S depends on v, on Y2, and the two constants s0 and

The energy constant

C--- Co+ zC_-q-...

/99

is a function of s0 and 80.

As a solution of our canonical differential equations, we then have

the following equations

dS dS (IS dS
--" II I l "4- 17J I _ " 1£2l -4- 1_ t = --"x, = 4r.,' "= _ ; ;TEo' a_o'

dC dC

"' = - TiE; '_"= - a;_-%'

where ml and m2 are two new integration constants.

It may be first seen that n I and n2, which depend on s0 and B0,

may be developed in powers of E.

In addition, S may be developed in powers of E and, if I set

E = 0, I have the following as the first approximation

dSo dSo
x, = _ = _o; u = _ = _o;

dSo dSo
n_t--r-m_= d_o =y2; n2t÷w2-- d_o --_'"

We have four equations from which we may obtain x2, u, Y2 and v

developed in powers of E, depending on s0, 80, nl t + ml, n2 t + w 2.

By pursuing

we may see that

a line of reasoning exactly like that given in No. 127,

x_, u, y2--(n,t+w,), v--(n_t+w=)
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may be developed in powers of

E 1 C ±i{a_/+lT;_) j C±Injt-_).

The same will hold true for ¢_u, x I, and Yl.

I would like to add that all of these quantities may be developed

in powers of

,

and S -- S O may be developed in powers of

If we set for the time being

y_ --(nit ÷ m.,) = z_,

the two equations

will take the form

v --(n21 q-m2) = z3,

dS dS

z: = _+2, z3 = _q_, (3)

where _2 and _3 may be developed in powers of

E, _0_ e_i(n't+r_'), Vl_oe("_t+_J_ _oe -_n,t-t_,_, z2, z3

[and, for example, we have

( z_ _ _!I )_l_c" = 4_c".'+=, ,+ -7 + -- + +' 1.2 _ ""

and similar formulas for e±iy 2, and B_oe-V].

In order to prove the postulate presented above, it is suffi-

cient to apply the theorem given in No. 30 to equations (3).

Let us now compare the results obtained with that given in Chapter

VII, which I reiterated at the beginning of this chapter.

We saw in Chapter VII that, in the vicinity of the periodic solu-

tion
xl =yt = x_ = o,

/loo
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the variables Xl, Yl, x2, Y2 may be developed in powers of

e_i_'qt+_, _, A e'_] t , A 'e-n] t , et t ;

where A, A' are integration constants, n_ and n'2 are absolute con-

stants, depending only on the period of the periodic solution and the

characteristic exponents.

We have just seen that these same variables must be developed in

powers of

The two results clearly are in agreement. We may first set

A = 4 0e½, o .

In addition, n I and n 2 are constants, but constants which may be /i01

developed in powers of e, s0 and B0, and which may be reduced to n_ and

n_ for _ _ s 0 = B0 = 0.

We may then write, for example,

_t_t = C_J_t. cInJ--n_It,

and may then develop the second factor in powers of e, s0, B0. In

addition, the second factor will then be developed in powers of t.

It is for this reason that we saw in Chapter VII the time t and its

powers emerge from the exponential and trigonometric signs, which could

have led to a certain amount of difficulty in certain cases. The pre-

ceding analysis shows that this difficulty was entirely artificial.

If I now wish to compare out result with those given in Chapter XIX,

I shall consider the curves

y, = 0(,,,), z, = ;,(¢_)

whose definition I presented at the end of No. 273. In order to obtain

the equations for these curves, I need only take the expressions of

x I and Yl and assign a constant value to a0, B0, nl t + _i. Then Yl

and x I may be developed in powers of

e±Itt,t +_3_ I .

When n2t + _2 is varied, it may be seen that the curves have the

form which I described at the end of No. 273.

In conclusion, I should point out that all of these results are

only valid from the formal point of view. The series only converge in
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the case of asymptotic solutions, for which one obtains the equations
by setting

I mean by this, setting

CYst='-- CF e

or even setting

I mean by this, setting

_0_0, ID'2 _- -- _¢ _

d77< ,= o, = .,,,

where A and A' designate the finite constants.

276. Let us proceed to the case in which there are more than two

degrees of freedom. The preceding results may be generalized in two

different manners.

In order to explain this, it is sufficient to assume three degrees

of freedom. It may happen that we may wish to study our equations in

the vicinity of a system of invariant relationships

which play the role of a generalization of the periodic solutions, in

the sense of that given in No. 209.

It may also happen that we wish to study them in the vicinity of

a true periodic solution

In the first case, there are four invariant relationships and one

linear relationship between the mean motions, a relationship which we

have represented in the following form, employing the change in variables

of No. 202 if necessary

_l=O.

In the second case, there are five invarlant relationships and

two linear relationships between the mean motions, which we have repre-

sented in the following form

#11_0 l _=0.
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Weshall begin with the first case, and we shall set

F= _'F'; x,=.x_, y,= _, x,= _'x;, xa=_'z;

The equations remain canonical equations, and F' may be developed in

powers of c, in the following form

F'= F_+¢F_+ ....

We then have

F% = h,z%+ A,='_+ A =',,+ 2S z;y; + C/,',

or, removing the accents which have become useless, we have /10__!

Fo_h_x_+h3_3 _-An_+_l]_2yiq_Cy_.

The functions h2, h3, A, B, C depend only on Y2 and Y3, and are periodic

with the period 2_ with respect to these two variables.

I am going to perform the change in variables of No. 274 again.

Everything which I have stated remains valid, but only from the formal

point of view.

In order that I may apply the principles of formal calculation, it

is necessary that there be a parameter with respect to the powers of

which the expansions may be performed. This will be the parameter _.

F and, consequently, h2, h3, A, B, C may be developed in whole

powers of _. I should add that, for _ = 0, B and C may be reduced to

0 and that h2, h3, A may be reduced to constants which I designate as

h_, h_ and A O.

Let us try to integrate the following equations

WF = --h_, -_?F = - h3. (i)

I shall try to perform integration in such a manner that

Y_---Y'_, Y3--Y'3

are periodic functions having the period 27 of the two new variables

yh and y_ which must themselves have the following form

The quantities n 2 and n 3 are constants which may be developed in powers

of p; _2 and _3 are integration constants.
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Equations (I) then take the form

</y, <6")- dy3 <iy, k3. (2)

We shall set

hi :: D,° -_ ,_hCl)+ ,:h_2_-) -,l i .-1

1 fl..Yi __:yo _, ..Yi t- lJ-_,v_ :_)d-" ....

ni -"no +- lJ../,.i)+ _:n_, "2' t-...

-(k)'s are (k)'s areand we shall assume that the n constants, that the h i

periodic functions of Y2 and o_ Y3 (the h0's may be reduced to con-
i

stants, as we have seen), and finally that the y_k)'s are periodic
0,

functions of y_ and y_, except for the Yi s, which may be reduced to

y_.

In equations (2), we shall equate the equations having similar

powers of p, and we shall have a series of equations which will enable

us to determine the y_k)'s and n_k)'s by a recurrence method.

These equations may be written

.l,,I l ) ci,<¢ i) d ,,_o) d_O
0 " ; " 0 Ji • -I Jl -- /_.1 Ji

ll_. ! ",-- -l- ll;I "- -7 -i- /_ 1 -- }-- + 3 --_ = _ )

I ,:,>:, <6:, <:::, <:y, (3)

.'.4!) ,r.._,l dvO d_.,o
..,l r!Y2 -- .o _.Y_ , .it2) --" _. _ ))f2) _J_ ,rb
#(._ "--7 ,-- #_ 3 _ -r , 2 ---t- "-)- "'3 --_7" _ --)-<iv, " <:.r, <(r, <(r,

I shall designate every known function by I. In the second equation,

the y._0)'s and the n_(0) 's are known; in the third equa-l assumed that
.h .L

o,tlon the Yi s, the y , the n , and the n 1)'s, and so on.

We then have

,.)',_ "' --v'"

so that equations (3) may be reduced to

'6"2' ) ,,_ <l'>'_") (3 ' ).0>_<_,y]-+ _- -,- ,,?, = <i>,

:lYe')'d ,4y?' ,,_,) _
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to which we must add the following equations

' dy; 3 ,Iy_ :'- ' (3")

which may be deduced from the second equation (2), Just as equations

(3') are from the first equation (2).

All of these equations may be integrated in the same manner. Let

us take, for example, the first equation (3'). The function _ which

it contains (like.,all the other functions _) is periodic in Y'2 and Y'3'

We shall set n_lJ equal to the mean value of this function, and by era- /_05

ploying the procedure which we have already applied several times we

shall be able to satisfy our equation by a function y_l) which is

periodic in Y'2 and Y'3"

set

Having thus determined Y2 and Y3 as functions of Y'2 and Y'3, I may

x; = _, dy, dy_

dy, dy_

It is apparent that

_;dy;+ _;dy;- =, dy,--x,dy,,

which is zero, is an exact differential and, consequently, that the

canonical form of the equations is not changed when one takes

x_, x_, 'Y2, Y_ for new variables, instead of x2, x3, Y2, Y3.

The form of the function F is not changed either, but it may be

seen that we have the identity

--n,x_-- n3x_= h, x2+ h_x_,

which shows that the coefficients of x_ and of x_ may be reduced to
constants.

I may therefore assume that h 2 and h 3 are constants.

i shall make this assumption from this point on.

Let us now integrate the equations

108



dx!

dt =2(BzI+CY*)' dy_ -- a(Az,÷ Byl),--_-=

or, which is the same thing

dx, dxl

h, + h, = -- Cy,),
,@, dr,

h,_+h,_= 2(h.,+By,).

(4)

Let us try to satisfy these equations by setting

Xt _ eat _'_ Yl _ eat $_

where a is a constant, z and s are periodic functions of Y2 and Y3.

The equations become

d; dr -- 'z(Bz + Cs),

ds ds
(4')

Let us develop A, B, C in powers of _ in the following form

A _ .\o_-t_A_ _ ....

B =: Bo-t-I_B,+...,

C == Co _- IxCl t-....

We should point out that A 0 is a constant and that B 0 = C 0 = 0.

In the same way, let us develop h 2 and h 3

hi= h_ L'l_h_+....

The coefficients of these expansions are known quantities. On the

other hand, let us develop the unknowns z, s and a in increasing powers

of _in the following form

a-: _,,_ _a_tl+ a_l_+ ....

S _ .%-i-Sl_-_S_It !-....

In order to present the equations in a more symmetrical form, I

shall write the expansion of A in the form

We need only recall that AI, A 3, A 5, ... are zero.

true for the expansions of B and C.

The same holds

Under this assumption, in equations (4'), I shall equate the

/i06
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coefficients having similar powers of _. I shall employ (4' p) to
designate the two equations obtained by equating, on the one hand,

the coefficients of __7_ in the first equation (4') and, on the other

hand, the coefficients of _ in the second equation (4').

The equations (4' 0) and (4' i) will determine al, sOand Zl;

The equations (4' i) and (4' 2) will determine a2, sI and z2;

The equations (4' 2) and (4' 3) will determine a3, s2 and z3;

and so on.

I meanby this that equations (4' p) will determine s and Zp+1P
up to a constant, that they will determine a , and will completeP
the determination of Sp_1 and zo_, which are determined by equations

(4' p-l), up to a constant.

If we recall that

B0_lh=C0--C,=o,

it may be seen that equations (4' 0) may be written

d: z dz,
h_ _ +/'_ 77_ =o,

h_ ds0 _ h3o clso
_ ,-F;_=°;

(4' O)

and equations (4' i) may be written

t ,lzi clz_h_ _ + h_ _ --a_zl=-- 2Ciso,

dst dsl
-- (Zi $0

(4' i)

and equations (4' 2) may be written

(/za • o dg3

i dsl • o ds_h_-_y +n3-_).3--a_so--atsi= _zAozl+9. Atzt+aBaso +q_

(4 ' 2)

[the letters _ designate the known periodic functions in Y2 and

Y3' which are zero in equations (4' 2), but which I have written

/107
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nevertheless because they will appear in the following equations].

Equations (4' 0) indicate that z I and s O are constants. Let us

now proceed to equations (4' i), and let us equate the mean values of

the two terms. We have

--a,._= --_s0[C,],

-- a15 0 = 2Ao_1,

which determines al, s O and z I. For al, we obtain two equal values

having the opposite sign. Equations (4' i) then determine, up to

constant terms, z2 and Sl, which are periodic functions of Y2 and Y3"

We can therefore assume that the following are known

=2--[=_land s,--[sL].

Let us turn to equations (4' 2) and let us equate the mean values

of the two terms. We shall obtain two equations, from which we may

obtain a2, [z 2] and [Sl].

If the mean values of the two terms are equal, equations (4' 2)

will provide us with z 3 and s2, up to constant terms, in the form

of periodic functions of Y2 and Y3.

This procedure may then be continued.

Since we have found two values for al, the equations (4') will
have two solutions. Let

be these two solutions.

a :a, _ :: o, s=: 71,

a ---- -- et, z :'= +, s ::: I,w1

The general solution of equations (4) will be

x, -- Ac'_'? -_ Be -.t_,

yl -: A Cae?t -_- Be-att_l.

We may always assume

.o'h- ,_, 'F = ,-

We will then see, as was the case in No. 274, that if we set

x, = x', ? + y; ,,+, y, = x', ?, +/, q,,,

.r+:: .c_ -_- 1[_._.',-"_- 9.k_._,f', -+.1,2y, , y, --=y_,

_:, ":: .r'j-t- ll3:r't 2 -I-- _. 1(3 :_",/, -_ L:_y't _ , Y:_ =)/3,

and if H2, K2, L2, H3, K3, L 3 are the suitably chosen periodic functions

/108
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of Y2 and Y3, the canonical form of the equations will not be changed.

The form of F will not be changed either, but B will be reduced

to a constant, and A and C will be reduced to O.

We may always set

Ii] :: coils{., A : G _ o.

The rest of the computation may be performed as was done in Nos.

274 and 275, and the following conclusion will finally be reached.

The variables x i and Yi may be developed in powers of _,/_, of

three constants s0, J0 and B0, of e ±i(nJ+='), of e_i(<t-=;), and of

-_oeC,,t+_,),_e-_n,t+=,). The constants nl, _i and n 2 may themselves be

developed in powers of _, _, s0, _'0, and B 0.

277. Let us proceed to the second generalization method, and let

us assume that we wish to study the equations in the vicinity of a true

periodic solution having the form

We shall set

XI,= X'I ----- dvl "_--)'l --'--,Y'I ---- O.

s ¢

F = _'F', :r; = ¢x'l, y,=ty';, x,=,x,, ys=ty,,

x_ = _'x',, y_ = y'3,

from.which it follows that

F = F_+ ,F; + ....

The equations remain canonical equations, and we have

Fo-'- h.; + +(_',, y',, G, y;),

where + is a homogeneous quadratic form in _i, _I, Xt2, _2" The co-

efficients of _ and h are periodic functions of Y3 = Y'3"

However, we shall remove the accents which have become useless,

and we shall simply write

F0= hxa + _(x,,y,, x,,y,).

Just as in No. 274 and 276, it may be shown that we may always assume

that h may be reduced to a constant.
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Let us now consider the equations
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They are

will have the

The A' s are

of Y3"

It may

dxl dO dyt dO
dy, = -- h, -- = , = -- 'd--7 at _ -d[ -_,

dz, d'l' dyt -- d4'

d---;=-@q,' --_ ---'a-_,"

linear and have periodic coefficients. Their general solution

form

integration constants, and the _'s are periodic functions /ii____O0

be readily shown that expression

%i?k.,-- W.,?k.t+ ?i.,?x.._--%_?k.,

is zero, except in the two following cases

i=T, k = 2; i=3, k = 4.

In these two cases, this expression may be reduced to a constant, which

I may set equal to i.

Let us now set

It may then be seen that

z_ dy, --y, dz, + z, dy, -- y_ dz,

= _', ay', - y; _',+ _; a+,':--/, a_; + +ay_,,

where _ is a homogeneous quadratic form with respect to dl, Yl, _2, 3/2

whose coefficients are periodic functions of Y3"

If we then set

z, = x_ -- -', y_ = y;,
2

the expression

113



\

\

will be an exact differential, and the canonical form of the equa-

tions is not changed.

to

The form of the function F is not changed, only F 0 may be reduced

where h, A and B are constants.

We shall then set

i

xty'i = ut, ]ogx_ = _vl,

]o_ Y'_

and the calculation may be performed as was done in Nos. 275 and 276. Jill
The following conclusion will be reached.

The xi's and the Yi'S may be developed in powers of E of three

constants s0, _0 and B'0, of e_I_,t+_.J,and of

I/_e '_,t__,, _e-(_,t_ _,_

The exponents nl, n 2 and n_ may themselves be developed in powers of

E, s0, 80 and _0.

This generalization may be directly applied when there are n degrees

of freedom. The first case, which is the case given in the preceding

section, corresponds to that in which there are n + 1 invariant relation-

ships and one single linear relationship between the mean motions. This

is what we discussed in Chapter XIX.

The second case, which is what we are discussing in the present

section, corresponds to that in which there are 2n - I invariant rela-

tionships describing a true periodic solution, and where there are n - 1

linear relationships between the mean motions. This is the case of asymp-

totic solutions which we discussed in Chapter VII.

However, there are intermediate cases in which we have n - q invar-

iant relationships and q linear relationships between the mean motions.

Then the xi's and the Yi'S may be developed in positive or negative

powers of q real exponentials and of n - q imaginary exponentials.
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Relationship with Integral Invariants

278. Let us assume that the canonical equations

dri (IF dxi dF
(i=I,2, ..., n)

_lt = @,' -,If ,Ix_
(I)

have a periodic solution with the following form

xi=?,(t+h), yi_:+,(t+h),

where h is an integration constant. Let T be the period, in such a way

that _i and _i may be developed in series of sines and cosines of the

multiples of __2_ (t + h).

T

Let us consider the solutions which are near this periodic /112

solution. According to the preceding statements_ they may be written in

the following form: x i and Yi will be developed in powers of 2n - 2

quantities which are conjugate by pairs, and which I shall call

Ale_, t, A_e _,t

A2ea,¢, A_e-_, t

...... 1 .......

A,,-t e _,,-,e, A_,-t e-_"--'t

The A's and the _'s are arbitrary integration constants. The ex-

ponents _ may themselves be developed in powers of AIAII, A2AV2, •..,

In addition, the expansion coefficients of x i and of Yi are periodic

functions of t + h, having period T. These coefficients (just like the

exponents a) depend, in addition, on the energy constant C.

We know that there is an integral invariant

x d_ dy, (2)

from which it follows that, if 6 and y are two integration constants,

we must have

_\_0- -,ty- dy d_ / _o..,t.

We could write this equation in another form. Let us assume that B

is increased by 68, and that as a result for xi, Yi, Ai e_it, "'', we

have the following increases:
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_.ri, _i, _Aie _t,t, ....

On the other hand, let us assume that y is increased by 6'y, and that

as a result we have the following increases for xi, Yi' "''

_':ci, _'yi, ....

Our equation may be written

z ( _¢ _'y,-- _y, _tc,) --=o_,st. (3)

The second number is a constant. By this I mean that it is a

function of the integration constants multiplied by 6$6'y.

We obviously have

LXe_t = e=l(3:k + t_=).

On the other hand, we have

d.ri ,_ ctxl _, _ dxi _AKe_t +Z---dci- -- _ ' - c_:cl=-_G- ou +_lh on + / t_l( Akj.j,t) = d( A'_e-=_') ,Ake _, ,

dx • _ dx . ,
7(d .__ td(AKA]I)

It can thus be seen that _xi and 6y i have the following form

where El' 51.i' qi' ql.i are linear with respect to 6C, _h, and to the

6Aeat's and 6A'e-at's. In addition, they may be developed in powers of

the Aeat's and the A'e-at's and the sines and the cosines of the multiples

of _ (t + h). The expressions of _'xi, _'Yi may be readily obtained,

It is sufficient to change _ into _' in those of dxi and _Yi' It may

be then seen that equation (3) may be written in the following form

D -4-Et + Ft-' = const.,

from which it follows that

F = '2(_,.,._',._-- _',._,.;)

are developed in powers of the Ae at, A'e-_t's and the sines and cosines

2n

of the multiples of _- (t + h), and they are bilinear with respect to

the
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_'Ae'_q _'A'e at, ?YC, 8'h.

The first term must be independent of t, and we shall have

E _ [" --o_

which has already provided us with certain verification relationships

which must be satisfied by the expansions of the xi's and the yi's.

Thus, D must be independent of t. It will therefore be linear

with respect to the following determinants

t L't,t. ,3'A). -- _'Ak L'_%,

A'_(SA_8'h--8'A._Sh)
(_.(" _,'h --- 8' 8Oh)

(4)

(or with respect to similar determinants determined from the former

by interchanging Ak with A'k, or Aj with _ j).

The coefficients will be developed in powers of the AkA_'s , and

will depend in addition on C.

The time must disappear. The exponentials must therefore disappear,

which can only happen if each factor Ae at is multiplied by a factor

A'e -_t or 6A'e -at, or 6'A'e -_t.

A new series of verification relationships may thus be deduced from

this.

279. Among the ak exponents, some are imaginary, and others are

real. Among the real exponents, some are positive, and others are nega-

tive. However, since I may arbitrarily choose an exponent which I may

call _k from between two exponents which are equal and have opposite

sign, I shall not limit the conditions of generality by assuming that _k

is positive if it is real.

Let us now cancel the coefficients Ak which correspond to an

imaginary exponent, or to a positive exponent.

We will then have the following, if _k is real

:_._.=o, A_o
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and if _k is imaginary

In addition, I shall set

C - ("0,

where C is the value of the energy constant which corresponds to the
0

periodic solution under consideration.

Our series will then be convergent, and will represent the asymp-

totic solutions which we studied in Chapter VII. They include h and
AVV sthe ._ , which correspond to negative exponents, as arbitrary constants.

We shall therefore have 2n equalities which will express the xi's !115

and the Yi'S as functions of t and of these constants h and _. If we

eliminate t, h and the _'s Between these 2n equalities, we shall have

a certain number of invariant relationships between the Yi'S.

If a group of values of the x.'s and the Yi'S is regarded as repre-i
senting a point in space having 2n dimensions, these invariant relation-

ships will represent a certain subset V of this space. This is what I

shall designate as the asymptotic subset.

Let us reconsider the integral invariant

_dxi(O" i

and let us extend the integration over a portion of this asymptotic

subset V. In other words, let us assume that every system of values of

the xi's and the Yi'S, which form a part of the integration region,

satisfies our invariant relationships.

I may state that the integral invariant will be zero.

It is sufficient for me to demonstrate the fact that

and this is apparent, because we have

A_ o, C = Co,

from which it follows that
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_Ak=o, _C --o,

_'Ak= o, _'C-----o,

which shows that all of the expressions (4) are cancelled.

set

c = co,

A_), A_=o (for real _k),

•_h----A_=o (for imaginary ak).

We can also

We shall have obtained a new series of asymptotic solutions and, conse-

quently, a new asymptotic subset to which the same conclusions will

apply.

The procedure which we followed for the invariant (2) could be

followed for an arbitrary bilinear invariant (invariant of the third

type, No. 260), i.e., having the form

ff n,t ,ax,, (5)

where B is a function of the Xi's and of the Yi'S and where one or two

of the differentials dxi, dx k may be replaced by dy i or dy k under the

sign E.

/116

The expression

will still be linear with respect to the quantities (4). This would

still apply to a quadratic Invariant (invariant of the second type,

No. 260) having the form

f B d k, (6)

where B is a function of the xi's and the Yi'S, and where one or two of

the differentials dxi, dx k may be replaced by dYi, dy k under the sign E.

It may be seen that the expression

must be linear with respect to the expressions

t 8Ak _A_,A_.A) _Ak _A_,

i A),.8Ak _C,_C_h

(4')
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and to those which may be deduced from them when interchanging Ak and

A'k, Aj and A'j.

For every asymptotic subset, the invariant (5), like the invariant

(6), must be cancelled.

Another Discussion Method

280. This same study may be pursued farther, while presenting it

in a different form.

For example, we shall assume that we are dealing with a problem of

dynamics, that the xi's are the coordinates of different points of

matter of the system, and that the conjugate variables Yi are the tom- /117

ponents of their momentum. We plan to study the integral invariants

which are algebraic with respect to the xi's and to the Yi'S, and to

determine whether one may exist in addition to the one which is known,

and which is written

f f zdx,dyl

We have seen that, in the vicinity of a periodic solution, the xi's

and the Yi'S may be developed in powers of the Aeat's, .... We are going to

consider these expansions again, but we shall assume that the value of

the energy constant corresponding to the periodic solution is zero,
so that the expansions will not only proceed in powers of the Aeat's,

but even in powers of C. In addition, they will depend on t + h.

By equating the xi's and the yi's to these expansions, we obtain

2n equations, which we shall solve with respect to the Aeat's, C and

t+h.

We have
Az,e_d = _h',

A _. e -_l,t _ f_.,

C = ,I,_

_ot-t-_lo--=-T--(t+h)=O.
(7)

We should point out that a0, like Ok, may be developed in powers

of C and of the AkKk'S. It may be seen that fk, _k, @, cosO, sinO are

uniform functions of the xi's and the Yi'S in the vicinity of the

periodic solution. In addition, the xi's and the Yi'S may be developed
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in powers of the fk's, the f, 's and 0 and according to the sines andk '
cosines of the multiples of @.

On the other hand, the expression

(3)

which corresponds to the invarlant (2), or the similar expressions which

would correspond to another bilinear invarlant of the form (5), must be

developed in powers of the fk, _k, #'s and be billnear with respect to /i18

0.[_, _'% "'08.

In addition, when we replace fk, f'k, _, 0 by £helr values (7),

this expression must be independent of t. The time t may be introduced

in three different ways:

i. In the exponential form;

2. In the form of the cosine or sine of the multiples of (t + h);

3. Outside of the exponential and trigonometric expressions (and,

as we shall see. of the second degree and more).

It must not enter in any of these three ways.

i. In order that it does not enter in the exponential form, it

is necessary and sufficient that the expression be linear with respect to

the following quantities which are similar to (4)

aA_, fk--o A_f',,
AJ;( _A-;'A - _J',_'A.),

(_,t, ;/o -- 8'q, _o),

(8)

where the coefficients may be developed in powers of the fk's, _k'S, and

of ¢.

2. In order that t does not enter in the trigonometric form,

it is necessary and sufficient that our expression does not depend on

@, but only on its variations _O, 6'@.
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outside the exponential and trigonometric expressions.

out that we have

_/h= e_a(_&. __A_t _k),

_J_.-: _ ",'( _Ai.- A'_t _,.,,,.), (9)
,; :' .-: _C, _0 :-_ _% -_- t _o.

We may distinguish five types of terms in our expression, depending

on whether they contain as a factor a quantity (8) included in the first,

second, third, fourth, or fifth line of the table (8).

We must now determine the condition under which t does not enter

We should point

Under this assumption, if we replace _fk' ... by their values (9),

we shall see that the five types of terms include as a factor, respec-/119

tively,

A%A) (_A, _'Aj -- _Aj _'Ak)

+ A%A) t [A_:({=k _' A/- _'a, _As ) -- AI( _aj _'A, -- _' "t _A j,)]
+ AkA_A/A) tt(_eik _'¢_] "- _*tj _'ak),

+ A_t(_A, _'_o--_'A_.-_ao) + A_,.A_tt(_ak o'ao - _'a_ _ao),

(_C _' _o-- _'C _o)+ t(_C _'"o -- _'C _xo).'

It may be seen that the time can enter in the second power.

Let us first make the terms for t2 disappear. They may only begin

with terms of the second type or of the fourth type.

It may be stated that the coefficient of

t,(_=,_'as- _=s_',,,)

must be zero.

in actuality_ due to the fact that the virtual displacements in the

constants are arbitrary, we may assume that all the 6ei's vanish, with

the exception of _k' and in the same way it may be assumed that all the

_'ej's vanish with the exception of _'% .

All the terms in t2 cancel, with the exception of the term in

There would be an exception if there were a relationship between the

n - ] exponents si" We could no longer assume that all the 6_i's
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cancel exceDt one, unless the last one itself cancels too.

There are now four terms of the second type which result in terms

in t'(8_k8'_j--_j 8'=k).

For purposes of brevity, I may write them in the following form

' and of _. I have employedThe 4's are developed in powers of the fi, fi

m I to designate the expression which appears in the second line of the

table (8) :

m 2 may be deduced from m I by interchanging fk and f'k,

603 may be deduced from 601 by interchanging fj and f'j,

60_ may be deduced from 601 by making these two permutations at the

same time.

In order that the terms

cient that

in t2 disappear, it is necessary and suffi-

X,- 4_- 'W+_,=o.
(ll)

/120

If this condition is fulfilled, our four terms

will provide us with the following terms in t

(4_- _ ) t '_k A'k[_ _'("_J _'j)- _'_ _(Aj "_'j)]

Let us now consider terms of the fourth type, which we shall group

together by pairs. Let the following be one group of two terms

41tol + 42_,

where 41 and 42 may be developed in powers of C and of the AkA_'s,where 601

is the expression included on the fourth line of the table (i0), and where

602 is that which is deduced by interchanging Ak and _ and changing _k to

-_k"

In order that the terms in t2 disappear, it is necessary that

+,--4,

and then the terms in t may be reduced to
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and according to the 6's and the 6' 's of s0, _k, C, AkA_. Wemust now
make these terms vanish. I shall state that they are zero whenwe set

C -o, A_A_ ----o,

without assuming that _C, d'C, 6'AkA'k, 6'AkA _ are zero.

In our invariant, let Bk be that which the coefficient of the term

in (6fk6'f_ - 6f_'f k) becomes when we set C = AkA'k =0.

Let Dk be that which the coefficient of the term containing

f'_.(,;fk_'O -- 50 g'/,)

becomes, and DO that which the coefficient of the term containing

(_,z, _'o -- _3o_'¢,).

becomes. We must also have identically

+ X D_-[_(Ah.A_)_'ao--_'(A1, A_.)_] + D_(_C _'%-- _'C o_o) = o.

For purposes of brevity, let us write Yk instead of Ak_k, Y0 instead
of C and

O(u, v)

instead of _u_'v--_v_u;

+_t[;(A_.A>.)g'=o "....--o <AI.A;)_o ]"

Our terms in t now proceed in powers of C, and of the AkA_'s ,

/121

We have

or

EB_O(xz., 7k) + ED,0(_., ao)+ Do0(7o: ao)= o

EE B,_ dek ttxo d_o

Under the sign E or EE, k may take on the values 1, 2, ..., n-1 and

J may takeon the values O, 1, 2, ..., n-1.

When setting the coefficient of 3(_j, Yk) equal to zero, we obtain

d_z _ B_ d_ _ Dk d_0 d_0 (12)-- -- -- +D_ ----o.B_ d,[;. d',(_ d_,j
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By setting the coefficient of 3(¥0, yj) equal to zero, we have

d_ j dcx o d 2 o

B_ _tTo - G.y_y ° +Do _ =o. (12')

These equations indicate that

--D0=0dy0-e x(Bk=_- D;_0)d_A
(13)

is an exact differential.

d_, s
We must set ¥j = 0 in equations (12) and (12'). The dy are there-

fore constants. The _j's are therefore linear functions of the y's.

In actuality, as we have seen, the _'s may be developed in powers of /122

the y's. However, the result which we have just obtained is only valid

if we neglect the squares of the y's, and if we stop the expansions of
the _'s at the terms of the first degree. In addition, the B's and D's

are constants. The expression (13) is therefore the exactdifferentia]

of a polynomial of the second degree.

In order to carry this investigation further, let us express the

_k'S not only as functions of

_o, 7,, -", Y_-l,

but also as functions of

_o, 7t .... , _n-t,

In order to avoid any confusion, let us employ 3 to designate the deriva-

tives chosen with respect to the new variables, and the d's to designate

the derivatives chosen with respect to the old variables.

It may then be seen that

is an exact differential, which entails the following conditions

_'li dTk

If one knew the relationships between the a's and the y's,

these equations would allow us to determine the coefficients B i.

(14)

We can express ZDjyj as a function of the variables

:xo, "(t, "_2, • •., "ID*-t

while writing
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ED/7 i = Eo=o + XE_-/k.

The Ek'S will be given by the equations

d=k

and E 0 may be chosen arbitrarily.

(14')

It is necessary that equations (14) be compatible, which requires

certain conditions in the case of n > 3

d=____.O=i d,i = O=__L,dx__f7d_k.
0_[i &fj e_k dyl,. d"{l d'_i

These conditions (15) will always be fulfilled, since there is

always an integral invariant

f X dxi dyi.

(15)

/123

If there are several integral invariants which do not vanish iden-

tically for the periodic solution under consideration, a system of

values of the coefficients B i and Ei must correspond to each of these
invariants.

If equations (14) have q solutions which are linearly independent,

we may calculate the corresponding values of the Ek'S by means of equations

(14'). Since E 0 remains arbitrary, we shall have q + 1 systems of values,

which are linearly independent, of the coefficients Bi and Ei.

We may therefore have q + 1 different integral invariants (if the

periodic solution under consideration is not singular, with the meaning

attributed to this word in No. 257), but we cannot have any more.

282. I stated above that conditions (15) were definitely fulfilled;

there may still be some doubt on this point. If equations (14) have q

different solutions, we may have q + 1 invariants. If there is only one

invariant, we could assume that q = 0. The presence of a single invariant

X_,dy,

would not enable us to state that equations (14) definitely have a solu-

tion.

This is the doubt which I wish to dispel.

I would first like to note that in the case of the three-body
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problem, there are not one, but two integral invariants.

In Volume I, Chapter IV, we studied the variational equations of

this problem.

On pages 170 and 172 we obtained the following integrals

_, _dV (i)
m --_717 _= cona.

X(2x_ +y$)-- \_...._ m

In the same way, we could obtain

(2)

_y,,, __av _,= (i')m _ const.

X(_x_/+ y_,)_3t(_y< EdV ) (2')\--_ m -- 7_ _' = co,,st

Let us multiply (2') by (1), (1') by (2), and let us subtract. We

then have

dx . (16)

(y_ d,')--E\ m d__' X(2x_+y_)-----const.

The first term is linear with respect to the determinants having the

form

' ' '_ h-.%

We therefore have an integral of the variational equations, and we

may deduce from it a new bilinear integral invariant.

In the case of the three-body problem, we therefore have at least q=l,

and it may be stated that conditions (15) are fulfilled.

283. Is this still true in the general case? Let us assume that it

is not. Then all the coefficients which we have called B i must be zero,

as well as all of the Ek'S, with the exception of E 0.

Therefore, when we attribute the values corresponding to the periodic

solution under consideration to the xi's and the yi's, i.e., when we set

C = MA_ = o,

the coefficients of the terms in 6fk6'f' k- 6f_6fk must vanish, and

only the terms in
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remain.

f_ (_f,_'e -- _e _'/k)

(_8'e - _e_'_).

Our invariant must therefore vanish when we have

_e_- _'e=o.

This is not the case for the invariant

Ed_idy_

to which the following expression corresponds

Let us set
_0 : Zai_xi + Vb i_yi,

o'0 : Zat'_'X i + Zbi_'yi.

/125

We must have an equation of the form

E(_xi_i--_yi_'x_): E(aiSxi+ bi_yi)E(e,_'xi÷ ei_'yi)

--E(ai_'zi+ bi_')'i)Z(¢i_£i+ ei_fi ),

However, this is impossible, since the first term is a bilinear form

with determinant i, and the second is a bilinear form with determinant O.

We must therefore conclude that conditions (15) are always fulfilled.

284. Let us now try to determine whether equations (14) may have

several solutions.

Let

Bz, B2, .... Ba.

w,. w,. .... B;,

be these two solutions and let us assume that we do not have

Bk Bi

and then the two equations
O"zt,. O_i

= 8,

B'k Oxk 02,
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will imply

dTl d_ ----o.

Then the indices

I_ ..._ 51

will be divided into a certain number of groups, as many groups as there
Bi

different values for the ratio _F. Two indices will belong to the same /126
l RJ

if they correspond to the same value of the ratio _-_..group,

In order that _k depends on 7i (or _i on yk ), it is necessary that

the indices i and k belong to the same group.

In order to formulate these ideas clearly, let us assume that there

are only two groups containing the indices, respectively,

Then

will dePend only on

and

p ÷t, p+2, .... n--i.

_o, "i, y-_, .... T_,,

will depend only on

It then appears that the characteristic exponents ak form several indepen-

dent groups, in such a way that the ak'S of one group do not depend on the

products AjA_ corresponding to another group.

The periodic solutions for which this condition will be produced

(or for which there would be one relationship between the _k'S) may be

called particular solutions.

We therefore arrive at the following conclusion:

In order that there be another algebraic invariant_ in addition to
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those which we know, it would be necessary that all the periodic solu-

tions be particular solutions, or thaL they all be singular solutions,

with the meaning given in No. 257.

I shall not try to demonstrate the fact that this condition could

not occur in the three-body problem, but this would seem to be very

unlikely.

Quadratic Invariants /127

285. Let us now study the quadratic invariants from the same point

of view, i.e., the integral invariants having the form

where F is a quadratic form with respect to the differentials dx i, dy i.

Let us set

F = Elidx,.dxk,

where the H's are functions of the x's and the y's, and where the product

dxidx k may be replaced in certain terms by the product dxidY k or dYidY k.

We may then write the following equation which is similar to equation

(3) of No. 278

v I1 3xt _,rk = const. (i)

On the other hand, we find in No. 278 that

We may then write equation (1) in the form

D -_- El q- Ft_ =: contr.,

at' A '_t_ and of the
where D, E, F may be developed in powers of the A e s , e

2_ and where D, E, F are
sines and cosines of the multiples of T" (t + h)_

quadratic with respect to the

Lkc_t, gA'e-_t, _C, gh.

We must therefore have

E -= F = o,

and, in addition, D must be independent of t, which shows that D must be /128
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linear with respect to the following expressions

A_ _Ak _h,

_C _h,

or with respect to the expressions which may be deduced by interchanging

Ak and A_, or Aj and A_.

The coefficients will be developed in powers of the products Ak_ k

and of C (if one assumes that the periodic solution corresponds to the

zero value of the energy constant).

286. Let us return to equations (7) given in No. 280, and let us

pursue the same line of reasoning as given in No. 280. We shall find that

the expression

must satisfy the follow ng conditions when the xi's and Yi'S are replaced

by their expansions as functions of the fk, f_, _ and O's;

i. It must be linear with respect to the following quantities:

"J ¢ J

.r', f; af,. _:[,.

S'_ _/h.;o,
_,I, _0,

(8')

where the coefficients are developed in powers of the fk_k'S and of _.

2. It will not depend on 0, but only on _0.

3. If these conditions are fulfilled, expression

the time, neither in the exponential form nor in the trigonometric form.

We must now determine the condition under which the time is not

included outside either the exponential or trigonometric terms.

Let us consider equations (9) again from Section No. 280. We shall

find that the following terms will correspond to the different terms

given in the Table (8'):

will not include

!129
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+ Ak 3.), A7 A_ t _-_. _=j,

A_.?_Ak _C ;- A_.A_t_ k _C, (i0')

Let us first make the terms in t 2 vanish.

The entire group of these terms is a quadratic form with respect to

_o, _, ..., _n t.

This quadratic form must be zero.

The coefficient of 6_k_ajt2 must therefore be zero. However, there

are four terms which could introduce the product t26_k6aj; these are the

terms in

For purposes of brevity, let us designate these four expressions by

ml, m2, m3, _4. The entire group of our four terms may then be written

where 41, 42, 43 and 44 may be developed in powers of the fkf'_s and of _.

In order that the coefficient of t26ak6aj vanish, we must have identically

+, + % + % + _, = o.

In the same way, the coefficient of t262_ k must vanish.
It arises from terms in

_A.el;, f- <f?, /? V_.

For purposes of brevity, let us designate these three expressions by

_1, m_, m_, and the entire group of the three terms by

where 4_, _2, 4_ may be developed in powers of the fk f''k s and of _.

In order that the coefficient of t2_2a k may vanish, we must have /130

(Zl)
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For the periodic solution, we must have

A=A =A =A ...../. ,=/__,_o.

All the terms including as a factor one of the expressions appearing

on the 2nd, 3rd, or 4th lines of the Table (8') must then vanish,

because each of these expressions includes fk or _k as a factor.

The only terms of expression _ which do not vanish for the

periodic solution are therefore the terms in

8fkSfk, 8,>_0, 8,1,', 80_.

Equation (ii) shows that _I contains fkf_ as a factor. Therefore,

the term _6fkSf _ must also vanish. We then have only the terms in

The first does not include t, the second includes it in the first

power, and the third includes it in the second power.

Due to the fact that this third term is the only one which includes

t2, it must be zero. If it is zero, the second term will also be zero,

due to the fact that it is the only one which includes t.

Finally, all the terms of H vanish for the periodic solution,

except the term in 6_ 2.

In the general problem of dynamics, just as in the case of the three-

body problem which we have designated as the restricted problem, the general

reduced problem, and the planar reduced problem, we have a quadratic in-

variant, but no more than one.

I may write the energy equation in the following form

F _ cons[ .

This invariant is nothing else than

f ¢_l_,

and the term in _2 which does not vanish corresponds to this invariant.

If there is a quadratic invariant, other than that which is known, /131

this invariant must vanish for all points of the periodic solution.

In other words, this periodic solution must be singular in the sense

of the meaning given in No. 257.
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There would be an exception, if the n exponents

were not independent of each other, but if there were one relationship
between them. In this case, the coefficient of t2, which is a quad-

ratic form with respect to the n variables

could vanish without all of its coefficients being zero, since

these n variables will no longer be independent.

To sum up, in order that there may be other Ruadratic invariants_ in

addition to those which we are acquainted with, it is necessary that all

periodic solutions be singular or particular.

It is very unlikely that this will be the case for the three-body

problem.

Case of the Restricted Problem

287. We may conceive of another discussion method which we shall only

apply to the case of the restricted problem. The discussion presented in

No. 257 has presented the possibility of two quadratic invariants, of which

one is known. Let us assume that these two quadratic invariants exist, and

let _ be the quadratic form corresponding to one of these invariants.

According to the preceding statements, _ may include terms in

o0-,A _f_, /_V?, " " _,t,_o, ;+,.

On the other hand, _ is a quadratic form with respect to the

quantities

_.c_, _2, _,, _,

whose coefficients are the algebraic functions of x I, x2, YI' Y2" /132

Following are the variables x i and Yi which we shall select. In this

p_oblem, which I have called the restricted problem, two of the bodies de-

scribe concentric circumferences, and the third (whose mass is zero) moves

in the plane of these circumferences. I shall refer this third body to

moving axes turning uniformly around the center of gravity of the first

two. One of these axes will constantly coincide with the line joining

these two first bodies. I shall use x I and x2 to designate the co-

ordinates of the third body with respect to these moving axes, and

Yl and Y2 to designate the projections of the absolute velocity on the
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moving axes.

Let us then set

,b :-- F + (o G,

where F and G designate the energy function and the area function

in the absolute motion, and where _ designates the angular rotational

velocity of the two first bodies around their common center of gravity.

The equations take the canonical form

d.ri ct,P dj.j = et'b..... o

dt -- J)'i ' dt dxl

The integral _ = eonst, is nothing else than "the Jacobi integral"

(see Volume I, No. 9, page 23).

Under this assumption, our expression _ will be a quadratic form in

Z.r,, Lr,., Z)',, _y:,

for which the coefficients will be algebraic in x i and Yi" If we assume

that the four variables x and y are related by the relationship

'I_ ..-- cons[.,

which entails the following condition

our four variables Sxi, $y i will no longer be independent. One of them

could be eliminated, and _ will become a ternary quadratic form.

Let us consider one point of the periodic solution.

we shall have

f_=f_= o.

For this point,

All the expressions (i) will therefore vanish with the exception of /133

_,_, _o_, _,p_o and _,1,2.

If we set 6_ = 0, they will all vanish with the exception of

_, _ and _O'.

Therefore, for a point of the periodic solution, let us set

The entire group of terms for t 2 will therefore be reduced, for
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this same point, to

(see, supra, Table 10') and, since fl = f'l = O, may be reduced to

Ct:_%'.

The terms in t2 must vanish. The latter is the only one which does

not vanish for the point under consideration; all the others are zero,

even when the condition _ = 0 is not imposed, because _6@ and 6_ 2 do not

provide terms in t2.

However, _a 0 is not also zero. For one point of the periodic solu-

tion, we have
d:% d_o d_o
d/, - _-_ - _ =o,

da0
but we cannot be sure of having - 0. This would assume that there

de
is a continuous infinity of periodic solutions having the same period,
which does not occur.

da0

Nevertheless, it may be noted that _-- includes the small quantity

which I may designate by _ as a factor, i.e., the mass of the second

body, Consequently, it may be noted that 6a 0 vanishes for _ = O,

i.e., in Keplerian motion.

The terms in t 2 can only vanish if we have

from which it follows

However, this latter equation would indicate that H may be reduced

to a binary quadratic form and, consequently, that its discriminant is

zero. Thus, the discriminant A of H must vanish for every point of

every periodic solution.

288. However, an algebraic relationship such as

_==-O

/134

cannot be valid, unless it is reduced to an identity, for every point of

every periodic solution.

If the relationship --O
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is supplementedby two other relationships

F = _, G = y (3)

(where B and y are two arbitrary constants, and F and G are the two

functions which were designated in the preceding section) and a fourth

arbitrary algebraic relationship

II= o, (4)

the number of solutions of these four algebraic equations will be limited

whatever the constants B and y may be.

Let us now consider a periodic solution, and the variables x i and
Yi will be developed in powers of _ in the following form

I 0 l_x_ .
Xl --: Xl "_ -F'.

y, '-:y_ + t_.s'_+ .... (5)

In the s_me way, F will be developed in powers of _, and we shall
have

F _ Fo-t- tsPi -,- ....

and G and H will be independent of _.

The quantity A remains. It may be stated that this function, which

is algebraic in x i and Yi under the terms of the hypothesis, also depends

algebraically on _.

If we state that

is an integral invariant, we will be led to certain relationships which

include the coefficinets of H , their derivatives, and the coefficients

of the differential equations of motion.

We assumed that H is an algebraic function of the xi's and the Yi'S.

We may assume that this algebraic function is included as a special case /135

in a definite type, not containing _ explicitly, but depending algebraically

on a certain number of arbitrary parameters. The quantity f /_-H will not

be an integral invariant no matter what these parameters may be, but only

when these parameters take on certain special values dependinE on _.

When stating that f _/_-is an integral invariant, one is led to

certain algebraic equations between _ and these parameters. These equa-

tions must be compatible, and it is apparent that the parameters will

be obtained as algebraic functions of _.
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The coefficients of the form _ and A will also be algebraic in _.

The equation A = 0 is therefore algebraic in _, and we mayassume
that it has undergone a transformation in such a way that the first term
is a whole polynomial in _.

Wemay therefore write

A = Ao + l_i-_- _ A2 _ ....

In addition, A 0 will not be identically zero, unless A is. If A 0

would vanish, A would contain a factor _ which,could be made to vanish.

The function A must vanish when the xi's and Yi'S are replaced

by the expansions (5). It may then be developed in powers of _ and, due

to the fact that the term which is independent of _ must vanish we shall

have

_0(x_,y_) -_o (2')

We should now point out that we must have

i IL(<°,y_) = _0, (3')

where B0 and Y0 are constants.
sufficient to recall that, for _ = 0, the motion may be reduced to

Keplerian motion.

Now, for example, let us take

In order that this may be the case, it is

1t =x_+x]--,

/136

and let us write the equation

(4')

If we set _ = 0, we may then observe that the third body will describe a

Keplerian ellipse. Let _ and n be the coordinates of this body, not with

respect to the moving axes, but with respect to the axes of symmetry of

this ellipse.

The equations of the Keplerian ellipse will then be written

$ = _,o+hCos',_-4- $:cos27 .... ,_= r,, sin7 + r,_sin2? + ....
(6)

The coefficients _k' Bk will depend on two constants which are the

major axis and the eccentricity of the ellipse and, consequently, on B0
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and ¥0- Weshall have

where the meanmotion nI dependson B0 and where_ is a new integration
constant.

The intersection of the ellipse (6) with the circle

will occur at two points which will be given by the equations

= cosO, _ =-_sinO, ? = ± ?o-
(7)

We will then have

[ .r] = _ cos(tot-+ _.) -f- "t_sln(_ot + _2), (8)

where _2 is a new integration constant.

We shall obtain solutions of the equation (4') by combining equa-

tions (7) and (8), which yields

.r_ = cos 0 -_- _-]

[ ,° ]zo := cos -- _ ._ -- (--?o -F-.,.1__,--_) + rJ2
It I

(k is an arbitrary whole number).

In order that the solution be periodic, it is necessary and suffi-/137

cient that the ratio -_-mbe commensurable. Let us write this ratio in the
nl

form of a fraction reduced to its most simple expression, and let D be

its denominator. It may be seen that equation (4') has 2D different

solutions.

Equations (2'), (3'), and (4') must have only a limited number of

solutions, no matter what the constants B0 and Y0 may be. I may choose

-_-_has the value which I desire, and consequently
B0 in such a way that nl

that D may also be as large as I desire.

This can only occur if A0, and consequently if A, are identically

zero.

Consequently, the discriminant having the form H is identically zero,

and this form must be reduced to a binary form.
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It could be shownin the sameway that, in the sense of No. 257,
it is impossible that every periodic solution be a singular solution.

This has only been proven in a very special case, but it is possi-
ble that this proof maybe extended to the general case.

289. The form _ regarded as a binary form, must be reducible to

for one point of a periodic solution. The binary form will therefore be
definite (i.e., equal to the sumof two squares) if the periodic solution
is stable -- i.e., if the characteristic exponents are imaginary. It
will be indefinite (i.e., equal to the difference of two squares) if the
periodic solution is unstable -- i.e., if the characteristic exponents
are real.

Let us assumethat _ is very small, and let us reconsider equation
(4').

According to the principles outlined in Chapter III (No. 42), for a _138

given value of B0, we shall have at least two periodic solutions, of which
one is stable and one is unstable. Let

be the corresponding values of the constants _I and _2-

Let us set

O+ (?o-- ' '=_',
nl

0 +-- (?o-_i)+_,=_',

and equation (4') will give us, for the first periodic solution,

nl /

and for the second

nl /

Without restricting the conditions of generality, we may assume that

_" > _' and that _' and _" are contained between zero and 2___. Then the

D

form _ will be
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definite for _z:T:_cos(#'+_),

indefinite for x_:cos(_'+i_),

definite for x_=c°s('_'+_D)'

indefinite for _r_=:cos(,_'+JD),

definite for x?= cos(_' i-2,_),

indefinite for ._-__cos(#" + 2_.);

which shows that the discriminant of 9, considered as a binary form,

must vanish at least 2D times. Just as above, it may be concluded

from this that it is identically zero.

The form H may therefore be reduced to a square term.

since it must equal

Therefore,

for every point of a periodic solution, it must vanish for all of

these points.

/139

The same line of reasoning would show that it is identically zero.

To sum up, there is no other quadratic invariant except the one which

is known, at least for the special case of the restricted problem.
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CHAPTER XXVI

POISSON STABILITY

Different Definitions of Stability

290. The word stability has been understood to have several dif- /140

ferent meanings, and the difference between these meanings is clearly

apparent if we recall the history of science.

Lagrange has shown that, if the squares of the masses are neglected,

the major axes of the orbits are invariant. This means that, with this

degree of approximation, the major axes may be developed in series whose

terms have the following form

where A, _ and B are constants.

If these series are uniformly convergent, this results in the fact

that the major axes are contained between certain limits. The system of

stars cannot therefore pass through every situation which is compatible

with the integrals of energy and area, and furthermore it will repass
an infinite number of times as close as desired to the initial situation.

This is complete stability.

Carrying the approximation further, Poisson demonstrated that the

stability continues to exist when one takes into accout the squares of the

masses and when the cubes are neglected.

However, this does not have the same meaning.

He meant that the major axes may be developed in series, containing

not only terms having the form

h sin(_t -+ _),

but also terms having the form

Atsln(=t+_).

The value of the major axis then undergoes continuous oscillations,

but nothing indicates that the amplitude of these oscillations does not

increase indefinitely with time.

We may state that the system will always repass an infinite number
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of times as close as desired to the initial situation. However, we may

not state that it does not recede from it very much.

The word stability does not therefore have the same meaning for

Lagrange as for Poisson.

It is advantageous to point out that the theorems of Lagrange and

Poisson include one important exception: They are no longer valid if

the ratio of the mean motion is commensurable.

The two scientists concluded from it that stability exists, because

the probability that they are commensurable is infinitely small.

It is therefore advantageous to provide an exact definition of sta-

bility.

In order that there be complete stability in the three-body problem,

the three folowing conditions are necessary:

1. None of the three bodies can recede indefinitely;

2. Two of the bodies cannot collide with each other, and the dis-

tance of these two bodies cannot desend below a certain limit;

3. The system repasses an infinite number of times as desired to

the initial situation.

If the third condition alone is fulfilled, without knowing whether

the first two conditions are fulfilled, I would say that there is only

Poisson stability.

A case has been known to exist for a long time for which the first
condition is fulfilled. We shall see that the third condition is ful-

filled also. I can say nothing with respect to the second condition.

This is the case given in the problem of Section No. 9, where I

assumed that the three-bodies move in the same plane, that the mass of

the third is zero, and that the first two describe concentric circumfer-

ences around the common center of gravity. For purposes of brevity, I

shall call this the restricted problem.

Motion of a Liquid /142

291. In order to provide a better explanation of the principle un-

derlying the proof, I am now going to present a simple example.
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Let us consider a liquid which is enclosed in a vessel having an in-

variable form and which is completely filled. Let x, y, z be the coor-

dinates of a liquid molecule, u, v, w the velocity components, in such a

way that the equations of motion may be written

_t,_ _ _ _ _= __ dr. (1)

The components u, v, w are functions, which I assume to be given

functions, of x, y, z and t.

I shall assume that the motion is steady, in such a way that u, v, w

depend only on x, y and z.

Since the liquid is incompressible, we shall have

du dv d_v

In other words, the volume

is an integral invariant.

Let us study the trajectory of an arbitrary molecule. I may state

that this molecule will repass an infinite number of times as close as

desired to its initial position. More precisely, let U be an arbitrary vol-

ume inside of the vessel, which is as small as desired. It may be stated that

there will be molecules crossing this volume an infinite number of times.

Let U 0 be an arbitrary volume inside of the vessel. The liquid
molecules which fill this volume at the time 0 will fill a certain volume

U 1 at the time t, a certain volume U2, ..., at the time 2t, and a certain
volume U at the time nT.

n

The incompressibility of the liquid or, which is the same thing,

the existence of the integral invariant, indicates to us that all the

volumes 1143
Uo, UI, U_, ..., U_

are equal.

Let V be the total volume of the vessel, and if

V<(n-__OUo,

we shall have
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V-( Uo÷ U, i- U:*-...÷ U,,

It is therefore impossible that all the volumes U 0, UI, ..., Un

are all exterior to each other. It is necessary that at least two

of them, U i and Uk, for example, have a part in common.

It may be stated that if Ui and Uk have a part in common, the same

will hold true for U 0 and Uk_ i (assuming, for example, k > i). Let M

be a point in common to U i and Uk. The molecule which is at the

point M at the time i_ is, at the time 0, at a point M 0 belonging to U 0,

since the point M belongs to Ui.

In the same way, the molecule which is at the point M at the time

k_ is, at the time (k-i)T, at the point M0, since the motion is steady.

On the other hand, it is at the time 0 at a point M I belonging to U 0,

since M belongs to Uk, and we must conclude from this that M 0 belongs to

Uk_ i •

Therefore, Uk_ i and U 0 have points in common.
q.e.d.

Therefore, it is possible to choose the number e in such a way that

U 0 and U s have a part in common.

Let U'0 be the part in common, and let us form I_I, U_2, ..., with I_0,

as we formed U I, U 2, ..., with U O. We may obtain a number B in such a

way that I_0 and b_ have a part in common.

!

Let _0 be this part in common.

!

We may obtain a number Y in such a way that Lf0

in common.

and l_# have a part

This procedure may then be continued.

U" of U'0, and U_' of U_, . InAs a result, U_ is part of U 0, ""

(p+l) will be part of U (p) When the number p increases in-general, U0 u

definitely, the volume U_ p) must therefore become smaller and smaller.

According to a well-known theorem, there will be at least one point,

perhaps several, or perhaps an infinity, which belong at the same time /144

to U0, to U_, to U_ , ..., and to U_P), however large p may be.
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This group of points, which I shall call E, will be in a measure

the limit toward which the volume U_P) tends, when P increases indefin-
itely.

v

It may be composed of isolated points; however, it may be somewhat

different. For example, it may happen that E is a region in space
having a finite volume.

A molecule which will be inside of U_, and, consequently, inside

of Us, at the time zero, will be inside of U 0 at the time -aT.

A molecule which will be inside of U_ and, consequently, inside

of U' at the time zero, will be inside of _0 at the time -BT, and,

consequently inside of U 0 at the time -(_ + B)T.

A molecule which will be inside of U_'at the time zero will be in-

' at the time -(B + y)T, and in-side of U_ at the time -yT, inside of U0

side of U0 at the time -(a + fl+ y)T.

Since U_' U_, , U_ are part of U0, this molecule will be inside of

U 0 at four different times (multiples of T).

In the same way, and more generally, a molecule which is inside of

uIP) at the time zero will be inside of U 0 at p different previous times

(which will equal the negative multiples of T).

Since E is part of u_P), however large p may be, as a result a mole-

cule which, at the time zero, is part of E will cross U 0 an infinite

number of different times, which all equal a negative multiple of _.

There are therefore molecules which cross the volume U0 an infinite

number of times, however small this volume may be.

q.e.d.

The equations

become

d= _ dy dz-- = dt
tl P iv

d,_: dy ¢1_---- --=<(t,

when t is changed into -t. They therefore retain the same form.

As a consequence, according to the same reasoning which we have just
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employed to show that there are molecules which cross U0 an infinite
numberof times before the time zero, we should be able tO show that

there are molecules which cross U 0 an infinite number of tines after

the time zero.

The preceding line of reasoning provided us with the times at which

U0 is crossed by a molecule which, at the time zero, is part of E. Due
to the fact that it is inside of E and, consequently, inside of U_ and

of Us, at the time zero, it will be inside of U 0 at the time

Due to the fact that it is inside of E and, consequently, inside

I_B at the time zero, it will be inside of U_ and U s at theof U'_ and of

time

and inside of U 0 at the time

-(= _ _)_

It will therefore be inside of U 0 at two times -B_ and -(_ + B)_.

Since it is part of E and of U_'at the time zero, it will be part

of U" 0 at the time -y_, of U_ at the time -(B + y)_, and part of U 0

at the time -(_ + B + y)T, so that it will cross U0 at three times

At the time -y_ it is part of U_ and, consequently, part of U_ and

of U_. At the time

it will therefore be part of U 0.

To sum up, this molecule must cross U 0 at different times

- ==, --_=, --7=, ;.,

_-(=_-_÷y)_, .........., ........... .. ,

where the coefficient of -T is an arbitrary combination of the numbers

_, B, Y, ....

Among all of these times, there are now times when the molecule

will not only be inside of U 0, but also inside of U_.

It may be readily seen that it is sufficient to select combinations
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which do not include the number_.

The times at which the molecule will be inside of U_will corres-
pond in the same way to the combinations which do not include either

the number e or the number B.

292. Let us again consider the volumes

U0, U,, Us, ..., U#. (1)

For purposes of brevity, I would like to state that each of them

is the conseNuent of that preceding it in the series (I) and the

antecedent of that following it.

Thus, U2, U 3 will be the second and the third consequent of U O"

I may continue the series (i) beyond Un, compiling the successive
consequents of U

n

U_+i, Uz_+2, ....

I may also extend it to the left, and may compile the successive

antecedents of U 0

in such a way that the molecules which are in U 0 at the time zero will

be in U_ 1 at the time -T, and in U_ 2 at the time -2T.

Under this assumption, I shall always use V to designate the total

volume of the vessel and k to designate an arbitrary whole number. If
we have

kV<(n+OUo,

there will be points which are part of k + 1 volumes of the series (i)
at the same time.

The sum of the volumes of the series (i) is equal to (n + l)U 0.
If no point could be part of more than k of these volumes at the same

time, this sum must be smaller than kV.

We may therefore obtain k + 1 volumes in the series (i)

which will have a part in common.

I may conclude from this that the k + i volumes
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Uo, U:q-_., U_:-_o, .... Uai-_.

have a part in common.

For example, let us set k = 2

aV <(n +OUo,

and we may obtain three volumes

Us, U_, U r

which will have a part in common. The indices _, 8, Y will satisfy the

conditions

o_n; o5_5n; o_ySn; _ < _ <_.

It may be deduced from this that the three volumes

Uo, U_-_, Uy-=

have a part in common, and that the same holds true for the three volumes

or the three volumes

293. We saw above that there are molecules which cross U 0 an

infinite number of times before the time zero., and others which cross an

infinite number of times after the time zero. I propose to establish

the fact that there are as many which cross U 0 before the time zero

as after the time zero an infinite number of times.

Let U 0 be an arbitrary volume. According to the preceding section,

we may always obtain two numbers, a and _, the first negative and the

second positive, and such that the three volumes

Ua, Uo, U_x

' be this part in common.have a part in common. Let U 0

T

Every molecule which will be in U 0 at the time zero will be in U 0

at the three times

/14____8

Of these three times, the first is negative and the last is positive.

149



\
%

Our molecule will therefore cross U 0 at least once before the

time zero, and at least once after this time.

Following the same procedure with U_ as with U0, we shall obtain

two numbers b and B, the first negative and the second positive, so
that the three volumes

" be this part in common.have a part in common. Let U 0

I!

Every molecule which will be in U 0 at the time zero will be in U_ at
the three times

-- _'.j O) --- a=)

and, consequently, in U0 at the five times

--(_+_)=: --B:, o, --b=, --T(,_ b)=.

Of these times, the first two are negative, and the last two are posi-
tive.

Every molecule which will be in U_ at the time 0 will cross U 0 at
least two times before the time zero, and at least two times after this
time.

This procedure will then be continued.

IV U_',One could form U_' with U_, U 0 with and it could be seen that

moleculewhich will be in u_P) at the time 0 willevery cross UO at least

p times before the time zero, and at least p times after this time.

However, U6 is part of U0, U_ of U6, and so on. We shall therefore

have a group of points E(containing at least one point) which will be

part of all the volumes U_ p) at the same time, wherever p may be.

Every molecule which, at the time zero, will be inside of E will
also be inside of

l
lJo, U'o, U .... , UIv' ad il_f.

since E is part of all these volumes.

Therefore, it will cross U 0 an infinite number of times before the

time O, and an infinite number of times after this time.

There are therefore molecules which cross U 0 an infinite number of
times both before and after the time zero.

q.e.d.
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294. The group E, which was defined in No. 291 (just like the
groupEconsidered in the preceding section) maybe composedof a
single point (be that as it may, there is always an infinity of mole-
cules crossing U0 an infinity of times).

It maybe composedof a finite number of points, or of an infinite
numberof discrete points.

It could be assumedthat this group E has a finite volume. Let us
see what the consequencesof this hypothesis would be. Let us discuss
the group E defined in No. 291.

I shall consider the series of whole numbers

which were defined in this section, and it maybe stated that we have

_

The quantity U is the first of the consequents of U0 which has a

commonpart with U0.

U' is the first of the consequents of U' which B has a part in
commonwith U'. 0

0
!

However U 0 is part of U 0 and U' is part of U B. Therefore, if U'' ' B B

has a common part with U_, U B is one of the consequents of U 0 which has

a part in common with U 0. This entails the inequality

In the same way we would obtain

The numbers _, B, y, 6, ... are therefore always increasing or, at least,

never decrease.

On the other hand, according to No. 291, we have

V V V
l-t- Ot < Uo, I + _ < U_o., O 0

We clearly have

Uo> u_> u_> ....

and, if E has a finite volume which I may also call E, no matter what p

may be, we have
E < U_ 3

since E is part of U(p).
0
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The numbers _, 8, y, ... are therefore all smaller than

V
E

Therefore, they cannot increase beyond any limit, and we may con-
clude that, starting with a certain order, all the terms are equal in
the series of numbers_, 8, ....

/150

Let us assume that all the terms are equal to %, starting with the

pe order.

Then u_P)and u(P ) will have a art in common which will be U (p+I)X P 0 '

and u_P +I) and UI(P+I) will have a part in common which will be u_P +2) ,

and so on.

Let El be the ie consequent of E.

E is the group of points which are part of U 0, U_, U_, ..., ad inf.

at the same time. E l will be the group of points which are part of
TT

UX, U_, UX, ..., at the same time. It may also be stated that E is the

group of points which are part of

U_"_", U_P*_'.... (i)

at the same time, since each of the regions U0, U_ is only a portion of

the preceding region. In the same way, El is the group of points which

are part of

uip_,u_p_,,..... (2)

at the same time.

- (p+l)
However, U_ p+I) is a part of ux(P), and u(P +2) is a part of uI .

Each term in series (2) is a part of the corresponding term in series (i).

Therefore E is a part of El, or coincides with EX.

However, we assumed that E is a certain region in space having a

finite volume. Due to the fact that the fluid is incompressible, its

xth consequent El must also be a certain region in space having the

sam__.__evolume. E cannot therefore he a part of E X. Therefore, E and E X
coincide.

If we assume that E is a certain region in space having a finite

volume, it must be stated that E coincides with one of its consequents.
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295. Following are some theorems which are all but obvious, and

I shall confine myself to discussing these theorems. Let

U_,. U_,, .... U_:,, ...

be those consequents of U 0 which have a part in common with O 0. The

numbers _ are arranged in order of increasing magnitude. We shall have

Then let

V

Uy,, Uy,, ..., Uy_

be the _ consequents of U0, which have a part in common with each other

and with U 0. I have chosen these numbers y in such a way that y_ is as

small as possible. We shall have
V

, _ %jI+y_L O.

Let us employ the notation given in No. 291 once again, and let us

employ U to designate the first consequent which has a part in common

with U0, U_ to designate this common part, U_ to designate the first con-

sequent of U_ which has a part in common with U_. If 8 is not equal to

_, we shall have

and U8__ will have a part in common with U 0.

Probabilities

296. We saw in No. 291 that there are molecules which cross U 0 an

infinite number of times. On the other hand, there are others which cross

U 0 only a finite number of times. I plan to demonstrate the fact that

these latter molecules must be regarded as unusual or, to state this more

precisely, the probability that one molecule crosses U 0 only a finite number

of times is infinitely small, if it is assumed that this molecule is inside

of U 0 at the initial instant of time. However, I must clarify the meaning

which I am here attributing to the word probability. Let _(x, y, z) be a

positive, arbitrary function of the three coordinates x, y, z. I may state

that the probability that a molecule may be located within a certain volume

at the time t = 0 is proportional to the integral

J=:f_(x,y,z)dxdydz
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extended over this volume. Consequently, it equals the integral J
divided by the sameintegral extended over the entire vessel V.

Wemay arbitrarily choose the function _, and the probability
is thus absolutely definite. Since the trajectory of a molecule de-
pends only on its initial position, the probability that a molecule be-
haves in a certain way is a completely definite quantity, as soon as
the function ¢ has been chosen.

Under this assumption, I shall simply set _ = i, and I shall try
to find the probability p that a molecule does not cross the region U0
more than k times between the time -nT and the time zero.

Therefore, let o0 be a region which is part of U0 and which is
defined by the following property. Every molecule which will be within
o0 at the initial instant of time will not cross U0 more than k times
between the times -n'T and 0.

If we assumethat our molecule is within U0 at the time zero, the
desired probability will be

(1)
qO

P== Uo
Let

be the n first consequents of o 0. It is not Dossible to have a

region common to more than k of the n + 1 regions

O'O) 0"i) ,'_,) ) ...) O'n)

since, without this stipulation, every molecule which was located in

this common region at the time zero would cross o0, and consequently U0,

more than k times between the times -nT and 0.

We therefore have

and, consequently,

(_t-I-,)¢o < kV,

kV
P < (n.t- ,)Uo"

No matter how small U 0 may be, or how large k may be, we may always

take n large enough, so that the second term of this inequality is as /153

small as desired. Therefore, when n tends toward infinity, p tends

toward zero.
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Therefore the probability is infinitely small that a molecule
which is located in the region U0 at the initial instant of time does
not cross this region more than k times between the times --_ and 0.

In the sameway, the probability is infinitely small that this
molecule does not cross this region more than k times between the
times 0 and +=.

Let us now set n = k3 + x. The probability that our molecules does
not cross U0 more than k times between the times -(k 3 + x)_ and 0, will
be smaller than

• _V
(k3+x+I)U0

It tends toward zero when k increases indefinitely.

The probability P that our molecule does not cross U0 an infinite
numberof times between the times --_ and 0 is therefore infinitely small.

In reality, this probability P is the sumof the probabilities
that the molecule crosses U0 only once, that it crosses U0 twice and
only twice, that it crosses U0 three times and only three times, etc.

However, the probability that the molecule crosses U0 k times and
k times only, between the times --_ and O, is obviously smaller than the
probability that _t will cross U0 k times or less than k times between
the times -(k 3 + x)_ and 0 -- it is consequently smaller than

kV

(k_+z+ t)U0

The total probability P is therefore smaller than

V _V kV
P < (x_-.2)Uo + (x + 9)Uo +'"+ (,_3___x +,)U, + ....

The series of the second term is uniformly convergent. Each of the

terms tends to zero when x tends to infinity. Therefore the sum of the /154

series tends to zero, and P is infinitely small.

In the same way, the probability is infinitely small that our mole-

cule does not cross U 0 an infinite number of times between the times 0
and + _.

The same results are obtained when any other choice is made for the

function _, instead of setting _ = i.

Equation (i) must then be replaced by the following
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J(_o)
P -- J((u0)'

where J(o O) and J(U O) designate the integral J extended over the regions

o 0 and U O, respectively.

I shall assume that the function _ is continuous; consequently, it

does not become infinite, and I may assign an upper limit _ to it. We

then have

and since

we may deduce the following

p<

No matter how small J(U 0) is, or how large k is, we may always take

n large enough that the second term of this inequality is also as small

as desired. We again obtain the same results which are therefore indepen-

dent of the choice of the function 4.

To sum up, the molecules which cross U 0 only a finite number of times

are unusual, in the same way as the commensurable numbers which are only

an exception in the series of numbers, while the incommensurable numbers

are the rule.

Therefore, if Polsson could provide an affirmative answer to the sta-

bility question which was posed, although he had excluded the cases in

which the ratio of the mean motion is commensurable, we have the right to

state that the stability which we have defined has been proven, although

we are forced to exclude the unusual molecules which we have Just dis-

cussed.

I would llke to add that the existence of asymptotic solutions pro- /155

vides sufficient proof for the fact that these unusual molecules exist

in reality.

Extension of the Preceding Results

297. Up to the present time, we have limited ourselves to a very

special case -- that in which an incompressible liquid is enclosed in a

vessel, i.e.i -- to employ analytical language -- the case of the
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following equations

,Ix @ dz
X- = -y- = -_£,

where X, Y, Z are three functions which are interrelated by the following
relationship

dX dY dK

and such that on every point of a closed surface (that of the vessel) we
have

lX + mY + nZ = o,

where i, m, n are the direction cosines of the normal to this closed
surface.

However, all of the preceding results are still valid even in the

more extended cases without changing a thing, including the line of
reasoning leading to these results.

Let the n variables Xl, x2, ..., Xn, satisfy the differential equa-
tions

where XI, X2, ..., Xn
the condition

,!x, dx2 dw,,
_;t --- _X-,-= X7 ...... _-X'7' (i)

are n arbitrary, uniform functions satisfying

dMX, dMXa dMXn
_----7"+ "-g_ ÷...+ _ =o,

in such a way that equations (i) include the integral invariant

fM dxt dmt.., dw,,.

In addition, I shall assume that M is positive.

equations (i) have a positive integral invariant.

(2)

We may then state that

/156

I shall assume that equations (I) are such that, if the point

(xl, x2, ..., xn) is located within a certain region V at the initial

instant of time (which plays the same role that the vessel played just

recently where the liquid is enclosed), it will remain indefinitely within
this region.

Finally, I shall assume that the integral
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i,'.

extended over this region is finite.

Under these conditions, if we consider a region U 0 contained in V,

we may select the initial position of the point (xI, x 2, ..., xn) in an

infinite number of ways, so that this point crosses this region U 0 an

infinite number of times. If the choice of the initial position is made

at random within U 0, the probability that the point (x I, x 2, ..., Xn) will

not cross the region U 0 an infinite number of times will be infinitely small.

In other words, if the initial conditions are not unusual -- with

respect to the meaning I attributed to this word above -- the point

(xl, x_, ..., x ) will return as close as desired to its initial position
an inflnite number of times.

Nothing needs be changed in the preceding proof. For example, we

may obtain the following inequality again.

V<(n-t ,)U0,

where V and U 0 designate the integral (2) extended over the regions V

and U 0, respectively.

The same results may be deduced from this. Due to the fact that the

integral (2) is basically positive by hypothesis, it will have the same

properties as the volume, namely, when extended over the entire region

it will be larger than when extended over only a part of this region.

298. How may we now determine whether there is a region V such that

the point (xI, x 2, ..., xn) always remains within this region if it occurs

at the initial instant of time?

Let us assume that equations (i) have an integral /157

Let us consider the region V defined by the inequalities

h_ F < h',

where h and h' are two arbitrary constants which may be as close as de-

sired.

It is apparent that if these inequalities are satisfied at the

initial instant of time, they will be always satisfied. The region V

therefore closely satisfies the proposed conditions.
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Application to the Restricted Problem

299. We shall apply these principles to the restricted problem

given in No. 9. -- a zero mass, the circular motion of two other masses,
and zero inclination. If we refer the zero mass, whose motion we are

studying, to two moving axes turning around the common center of gravity

of the other two masses, with a constant angular velocity n equalling

that of the two other masses, if we employ _, n to designate the co-

ordinates of the zero mass with respect to the two moving axes, and if

we employ V to designate the force potential, we may write the equations

of motion as follows

d_ d,,
=_" d-7 =_"

d_' dV
dt -- 2n_'+ n_+ -_,,-- - d; (i)

dt

It may be immediately seen that they have a positive integral invariant

fd_ d,_ d_'. (2)d_'

On the other hand, they have the Jacobi integral

--V+ -- (_' -.,- ,.,') + Z,, (3)

where h is a constant.

Since _,2 + n,2 is necessarily positive, we must have

nl

V -t- --(_-I- _,_)> -- h.
2

We are therefore led to compile the foIlowing curves

V -t- -- ($_-+"q') = const.

J158

(4)

The first term in relationship (4) is necessarily positive, because

we have

r; F_

where m I and m 2 are the masses of the two principal bodies, and rI and r2

are their distances to the zero mass. The first term of (4) becomes in-

finite for r I = 0, for r2 = 0, as well as at infinity. It must therefore
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have at least a minimum, and two points where its two first derivatives

vanish without there being a maximum or a minimum.

More generally, if there are n relative minima or maxima, there

will be n + 1 points where the two derivatives vanish without there being
a maximum or a minimum.

However, it is apparent that these points, where the two derivatives

vanish, correspond to the special solutions of the three-body problem

which Laplace studied in Chapter VI of Book X of his Mecanique Celeste

(Celestial Mechanics).

Two of these points may be obtained by constructing an equilateral

triangle on mlm2, either above or below the line mlm 2 which we shall use

for the axis of the _'s. The third apex of this triangle represents one

of the solutions in question.

All the other points satisfying the condition are located on the axis

of the _'s. It may be readily seen that the first term of (4) has three

minima, and only three minima, when _ varies between --= and +_. The

first minimum is located between infinity and the mass ml, the second is

located between the two masses m I and m2, and the third is located between

infinity and the mass m 2.

dV

The derivative _+ n25 only vanishes (for n - 0) once in each of

these intervals, since it is the sum of three terms which all increase.

The equations /159

dV dV
d_-+_'_" = _ +_'_ =o

indicating that the first derivatives of the first term of (4) are zero,

have only five solutions, namely, the points B 1 and B 2 which are the

apexes of the equilateral triangles, and the points AI, A 2 and A 3 located

on the axis of the _'s. We shall assume that these points occur in the

following order

We must now determine which of these points correspond to a minimum,
and we know in advance that there are two.

We should point out that if we vary the two masses m I and m 2 continu-

ously, any of the five points A and B will always correspond to a minimum,

or will never correspond to one. One may only proceed from one case to

another if the Hessian of the first term of (4) vanishes, i.e., if two of
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the points A and B coincide, which will never occur.

It is sufficient to examine a special case -- for example, that
in which mI = m2. In this case, the symmetry is sufficient for indi-
cating to us that the two solutions A1 and A3 must have the samenature,
just like the two solutions BI and B2. It is therefore A1 and A3 alone,
or B1 and B2 alone, which correspond to a minimum. Therefore, A2 does
not correspond to a minimum.

It can be seen that A1 does not correspond to a minimum.

The two minima correspond therefore to B1 and B2.

Let us now assumethat mI is a great deal smaller than m2, which is
the case in nature.

For sufficiently large values of -h, the curve

2

will be composed of three closed branches C 1 encircling ml, C 2 encircling

m2, and C 3 encircling C 1 and C2. For smaller values, it will be composed

of two closed branches, C I encircling m I and m2, and C2 encircling C I.

For values which are still smaller, we shall have only one closed

branch leaving ml and m 2 on the outside, and encircling B 1 and B2.

Finally, for even still smaller values, we shall have two closed /160

symmetrical curves, each of which encircles B 1 and B2, respectively.

The statements below will only apply to the two first cases; we

shall therefore put the last two cases aside.

In the first case, the group of points satisfying the inequality (4)

may be divided into three partial groups: The group of points which are

inside of CI, the group of points which are inside of C2, and the group

of points which are outside of C 3.

In the second case, the group of points satisfying (4) may be

divided into two partial groups: The group of points which are inside

of CI, and the group of points which are outside of C2.

The statements below do not apply either in the first case to the

group of points which are outside of C3, nor in the second case to the

group of points which are outside of C2.

On the contrary, in the first case this applies to the group of

161



k _

points which are inside of C1 or to the group of points which are in-

side of C 2 and, in the second case, to the group of points which are

inside of CI.

In order to formulate these ideas more clearly, let us consider

the first case and the group of points which are inside of C2.

As the region V we shall take the region defined by the inequalities

.+h + _> _':+ _/' V_ n__(_ + _,)> + h _ E.
(5)

We shall assume that E is small and that h has a value which we

have employed in the first case. Finally, in order to conclude the

definition of the region V, we shall impose the condition that the point

(_, n) is located within the curve C2.

It is then clear that, if the point (_, n, _', n') is located in the

region V at the initial instant of time, it will always remain there.

In order to illustrate the fact that the results presented in the

preceding paragraphs may be applied to the case which we are discussing,

we must now show that the integral

f _ dn d_'dr/ (2)

extended over the region V is finite.

How may this integral become infinite? Due to the fact that the

curve C2 is closed, $ and n are limited. The integral can therefore

only become infinite if _ and n' are infinite. However, because of

the inequalities (5), _ and n'may only become infinite if

/161

becomes infinite, or -- since _ and _ are limited -- if V becomes infinite.

However, V becomes infinite for rI = 0 and for r2 = 0. Since the

point m] is outside of C2, we need only examine the case of

Let us therefore evaluate the portion of the integral which is in

the vicinity of the point m 2. If r2 is very small, _2 + N2 is equal to

ml
(0 m2) 2 , and the term-- is also constant, so that if we set

rl
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h+ --(_,_ _,,)+ -mA= H,
2 /'!

H will be regarded as a constant.

If we then set

(_--Om2)=rtcos_, _=r, sin_;

inequalities (5) will become

II+_> .... >H--_
,l rt

and the integral (2) will become

f pr_ dp d?.dr_ dto

We shall add the inequality

(_'= p cos?, 7l'= p sin?,

/162

(5')

(2')

to the inequalities (5'), where a is very small, since it is the part

of the integral which is close to m 2 which must be evaluated, and since

the other part is definitely finite.

If we integrate with respect to _ and _, the integral (2') will be-

come

4_' for, a_ dr, (2")

Let us integrate first with respect to p. We must calculate the

integral

fpclp= ?_,

which is chosen between the limits

) V(_. II-_--I-72_- and P-_ 2 li÷_+

which provides us with E.

The integral (2I') may therefore be reduced to
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_7;:=- 1 r2dri:_ 2_I£x i ,

It is therefore finite.

The theorems which were proven above may be applied to the case

which we are discussing. The zero mass will repass its initial position

as close as may be desired an infinite number of times, if one does not

impose certain unusual, initial conditions for which the probability
is infinitely small.

In the restricted problem, if we assume that the initial conditions

are such that the point 6, n must remain within a closed curve C1 or

C2, the first of the stability conditions, which were defined in No. 290,

is fulfilled.

However, the third condition is also fulfilled; therefore, Poisson

stability exists.

300. The result will clearly be the same whatever the law of

attraction may be.

If the motion of a material point _, _ is governed by the equa-
tions

d t _ dV d' _ dV

or, in the case of relative motion, by the equations

d,_ an dV
dt_ -- 2 ri -27 = -d_ '

d t _ d_ arV

dl t + :in _ = --d-_ p

in such a way that the energy integral may be written /163

' ' ,
:_'Lt-di ,I -1-t m l J- v _--_h

and if the function V and the constant h are such that the values of

and of _ remain limited, we shall have Poisson stability.

However, this is not all. The same holds true in the more extended

case.

I%

Let x I, x2, ..., xn be the coordinates of _material points.
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Let V be the force potential depending on these n variables.

Let mI, m2, ..., mn be the corresponding masses, in such a way that
we may employ mI, m2 or m3 at randomto designate the mass of the material
point whose coordinates are Xl, x2 and x3.

The equations maybe written

d'.T_ dV

and the energy integral may be written

In virtue of this equation, if the function V and the constant h

are such that the coordinates xi are limited, there will be Poisson

stability.

What must be demonstrated is the fact that the integral Invariant

f dx',dx'2...dx'_dz, dx,...dz, (x_= dr,'_dt /

is finite when the integration is extended over the region I have called

V, which is defined by the inequalities

V+h--_< --_-\dt/ <V+h+_.

Let us call A the integral

fd_,i dx; ... dx;,,

extended over the region defined by the inequality

.r_l t s-/-x, <,.

The same integral extended over the region /164

will obviously be

AR n.
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When extended over the region defined by the inequalities (i), it will

be

[< o]A V-i-h 1-_)5--(V-_-h--_-) i ,

or, since e is very small,

n

nAE(V+ h)i-'.

Our integral invariant therefore equals

n A _/( V -_-h)_-'d.rj dr:.., ar:r.,
(2)

and the integration must be extended over every point, such that V + h

is positive.

According to my hypothesis, the region V + h > 0 is limited.

It may then be readily verified whether the integral (2) is finite

or infinite.

It will always be finite if n = 2, because the exponent of V + h is

then zero.

Let us now assume that n is > 2, and that V + h becomes infinitely

large of the order p when the distance between the two points Xl, x2, x 3

and x4, x5, x 6 becomes infinitely small of the first order.

Then the quantity under the sign f in the integral (2) is of the

order

The subset

has n 1 3 dimensions.

which the integral is finite may therefore be written

The integral is of the order n; the condition under

from which it follows that

n--(n--3)>p(n _t),

6
P< n--'_

/165
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This is the condition under which there is Poisson stability.

Application to the Three-Body Problem

301. The preceding considerations apply to the case in which the

following equation

(l)

results in the fact that the xi's can only vary between finite limits.

Unfortunately, this is not the case in the three-body problem. I

shall employ the notation presented in No. ii. I shall use Xl, x2, x 3

to designate the coordinates of the second body with respect to the first,

x4, x5, x 6 to designate the coordinates of the third body with respect to

the center of gravity of the first two, a, b, c to designate the dis-

tances of the three bodies, and MI, M2, M 3 to designate their masses.

Finally, I shall employ

to designate the quantities which I have called B and B' in No. ii.

We shall then have

V = _ ,'-_M'M'_ )13.MI -_'--5I' 51,

Equation (i) entails the inequality

V i-h>o. (2)

The function V is essentially positive.

h is positive, the inequality will always be satisfied. However, the

question is whether we may assign small enough negative values to h so

that the inequality can only be satisfied for limited values of the

coordinates x i. This amounts to inquiring whether the inequality

_J_r, _t, _t, > (3)
C

with those which are imposed at the three sides of a triangle

Therefore, if the constant

/166

a+b>c, b+c>ct, ct+c>b (4)

can only be satisfied for finite values of a, b, c. Let us set a = c,

and assume that it is very large; we shall assume that b is very small.
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The inequalities (4) will be satisfied by them.

With respect to inequality (3) which becomes

_I:M,
5!_M..j-_-3ttM_, + = ---!-h>%

_L b "

no matter what h may be, it may be satisfied by arbitrarily large values

of a.

No matter how small h may be, or how large a may be, we may always

assume that b is small enough that the first _erm may be positive.

The existence of area integrals does not modify this conclusion.

These integrals may be written

I _(z,_"_-- _',) + p'(T_z_--x,_,;) = _,,p(_,_', - _, _'_ )+ _'(,_o_: - _,_; _-- .,, (5)

p(z,x;--x,._', )+ p'(_, _:,-- _',) = _.

In virtue of these equations, we have

- (_? + x'_'+ =_:)+ ¥ (x? + x'_'+ x'£-)> "T .,__;+., (6)

where I is the moment of inertia of a system which is formed of

two material points whose masses are $ and B' and the coordinates

with respect to three fixed axes are Xl, x2, x3; x4, xs, x6.

I repeat, that I is the moment of inertia which this system would have

with respect to the line serving as the instantaneous axis of rotation

for a solid, which would coincide momentarily with this system and

would rotate in such a way that the area constants are the same as

for the system.

Inequality (2) must then be replaced by the following

V + h > _ + a_+_|. (2')

/167

However, this equality, just like inequality (2) itself, may be satisfied

by arbitrarily large values of the xi's , because -- for very large values

of the xi's -- the moment of inertia I is very large, and, due to the fact

that the second term is very close to zero, we return to inequality (2).

We must therefore conclude that the considerations given in the

preceding section are not applicable.

In order to provide a better determination of this, let us calcu-

late the integral invariant
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f dx', dz'_ dz' s dx, dx_ . . . dx_,
@ @ @

extending it over a region defined by the following inequalities

h --¢ <T--V<h +%

a,---z,< K,<a,+_,, (7)

a,-- z, < K, < a, + %,

a_ -- ":a< K_ < as -4- ¢,.

The s's are very small quantities. The Ki's are the first terms

of equalities (5), and T is the reduced energy '-- i.e., the first term

of (6).

' ' and we obtain
Let us first integrate over the x i s,

s

/(3 ES, E_S3 V+h-- a_*-a_-+-a_\_-d:c dx_...dxs__ - .... ._ ______ j

(_'F =, ) v'l,l,i,

where Ii, 12 and 13 represent the three principal moments of inertia

for this system.

In passing, I would like to note that, if the axes of the coordinates

are chosen parallel to the principal axes of inertia, according to the

definition of I, we shall have

_; T, + I-7= l '

It may be seen that the integral, which is extended over every

system of values such that

V-4-h a]-4-a_ 4-a] >o
aI

is infinite, although the denominator _i1213 becomes infinite when one

of the points Xl, x 2, x3 or xq, x 5, x6 recedes indefinitely. The inte- /168

gration field is then triply infinite, and the denominator only becomes

doubly infinite.

302. Even if the considerations presented in the preceding sections

are no longer applicable, we may nevertheless draw certain interesting

conclusions from the existence of the integral invariant.

Let us assume that the distance b of two of the bodies becomes small,

and that the third body recedes indefinitely. Due to its great distance,

the third body will no longer disturb the motion of the first two, which

will become essentially elliptic.
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This third body will essentially describe a hyperbola around the

center of gravity of the first two.

In order to elucidate this point, I shall present a simple example.

I shall assume that we have a body describing a hyperbola around a

fixed point. The hyperbola is composed of two branches. One of these

branches is the analytical extension of the other, although the tra-

jectory is only composed of one single branch for the engineer.

We may then inquire whether the trajectory has an analyti-

cal extension in the case of the three-body problem, and how it may be
defined.

The coordinates of the second body with respect to the first are

xl, x2, x3; the coordinates of the third body with respect to the center

of gravity of the first two are x4, x5, x6, so that we must envisage the

motion of two imaginary points whose coordinates, with respect to three

fixed axes, are Xl, X2, X 3 for the first and x4, x5, x 6 for the second.

The first of these points will essentially describe an ellipse, the

second essentially a hyperbola, and it will continue receding indefin-

itely on one of the brances of this hyperbola. In order to obtain the

desired analytical extension, let us construct the second branch of this

hyperbola, and let us relate it to the ellipse described by the first

point.

Let us then consider two special trajectories of our system. For the

first, the initial conditions of motion will be such that, if t is positive

and very large, the point x4, Xs, x 6 will be very close to the first branch

of the hyperbola and the point Xl, x2, x 3 will be very close to the /169
ellipse, in such a way that the distances of these two points -- either

to the hyperbola or to the ellipse -- tend to zero when p increases

indefinitely.

Let us take the asymptote of the hyperbola as the a_is of the x4's ,

and let V be the velocity of the point which describes this hyperbola,

for a value of t which is positive and very large. Then

x_--.Vt

will tend toward a finite and determinate limit X when t increases in-

definitely.

In the same way, let n be the mean motion on the ellipse and £ be

the mean anomaly, and the difference

l -- nt
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will tend toward a finite and determinate limit _0.

If we specify the ellipse and the hyperbola and, consequently,V and
n, and in addition if we specify X and _0, the initial conditions of motion
corresponding to the first trajectory will be completely determined.

Let us now consider the second trajectory, and let us assumethat
the initial conditions of motion are such that, for t which is negative
and very large, the point x4, x5, x6 is very close to the second branch
of the hyperbola, and the point Xl, x2, x 3 is very close to the ellipse,
and that these two points cometogether indefinitely from these two
curves when t tends toward --_.

The differences

:r,.-- V t, l--lit

tend toward the finite and determinate limits X' and £b when t tends

toward infinity.

The initial conditions corresponding to the second trajectory are

completely defined when we specify the ellipse, the hyperbola, and X' and

_'0-

If we have

X = X', /o:: l_,

the two traiectories may be regarded as the analytical extension of each

other.

Let us now consider a system of differential equations

d:j_, = x (i :: ,, _, ..., n), (i)
dt

where the functions X i, which depend solely on Xl, x2, ..., Xn, satisfy

the relationship

dXidS.,: = o .

These equations will have the integral invariant

f d.v, d#,,. (2)

Let us assume that we know arbitrarily that the point xl, x 2, ..., Xn

must remain within a certain region V, which is similar to the region V

which was considered in the preceding sections, but extending indefinitely

171



so that the integral (2) extended over this region is infinite. The
conclusions of Nos. 297 and 298 will no longer be applicable.

However, let us replace equations (I) by the following

{9: = x_ = x;, (1')
dt' M

where M is a given arbitrary function of Xl, x2, ..., x n. The point
xl, x2, ..., x n, whose motion is defined by equations (1'), will describe

the same trajectories as that whose motion is defined by equations (1).
The differential equations of these trajectories are in both cases

dw, dx, dx,,
Xt _ X, ..... .-_,_"

However, if I employ P to designate the point whose motion is de-

fined by equations (i) and P' to designate that whose motion is defined

by equations (i'), we may see that these two points describe the same

trajectory, but obey different laws.

If I employ t to designate the time when P passes by a point of its

trajectory, and t' to designate the time when _ passes by this same point,

these two times will be related in the following way

(lt t

dt' 3I

We have

d( ,_IX',)
-_l_e-- = o,

which indicates that the equations

d._, _ x_ (i')
tlt'

have the integral invariant

f M dx, dxt...dx_. (2')

Let us assume that the function M is always positive, and that it

tends toward zero when the point Xl, x2, ..., xn recedes indefinitely,

and recedes rapidly enough that the integral (2' 7 extended over the region
V is finite.

The conclusions presented in Nos. 297 on may be applied to equations

(i'). These equations (i') therefore have Poisson stability. Since they

define the same trajectories as equations (i), it may be stated in a
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certain sense that the trajectories of the point P also have Poisson
stability.

I shall clarify this point.

Wehave

= /"d,'. (3)
t Jo _I

Since M is essentially positive, t increases with t'. However, since M

may vanish, it may happen that the integral of the second term of (3)

is infinite.

For example, let us assume that M vanishes for t' = T ; then t will
be infinite for

t' : T or for t'> T.

Let us consider the trajectory of the point P'. We may divide it

into two parts, the first which P' traverses from the time t'= 0 to the

time t'= T; the second C which P' traverses from the time t'= T to

t T _

The point P will describe the same trajectory as P', but it will only

describe the part C, because it can only reach the part C' after an in-

finite time t.

For the engineer, the trajectory of P would only be composed of C.

For the analyst, it would be composed not only of C, but also of C', /172

which is the analytical continuation.

Let us imagine a point P1 whose position is defined as follows: The

point P1 will occupy at the time t I the same position that the point P'

occupies at the time t'. With respect to tl, it will be defined by the

equality

t, dr'
t,=/ 7_i- (where t'0>T).

d,,

The motion of the point P1 will conform to equations (i), and this

point P1 will describe C', in such a way that the trajectories of the

points P and P1 may be regarded as the analytical continuation of each
other.

Let us now assume that the point P is within a certain region U 0 at

the initial instant of time. If the initial conditions of motion are not

unusual, in the sense attributed to this word in No. 296, the trajectory
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of the point P and its successive analytical continuations will cut

across the region U 0 an infinite number of times, no matter how small

it may be. However, it may happen that the point P never re-enters

this region, because this region is not traversed by the trajectory,

strictly speaking, of the point P, but by its analytical continuations.

303. This may be applied to the three-body problem.

We saw above that we must consider the integral

which we have reduced to the sixfold integral

3_

y(V + h-- a_ 4-al-+_a]) _ dx:dr,...dxsW,r,t, "

However, we have seen that this integral, extended over the region V,

is infinite, and this has prevented us from arriving at Poisson stability.

Let us write the equations of motion in the form

d.ri Xi, d.e_ Yi,
5t-t- = -dr- -

_/173

where the Xi's and the Yi's are functions of the xi's and the x' 'si "

Then let us set

_.x, + _l + x_, +...+_: +,)'

and let us write the new equations

d.vi Xi (l:r; Yi

7lt _ = 7q" (-l-t_ = Tii"

The new equations will all have the following as the integral invariant

f?,l dx, d:rGdx', dx'_m B W •

or

Jk

However, this integral is finite.

Therefore, if the initial situation of the system is such that the

point P in space has 12 dimensions whose coordinates are
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and if this point P is within a certain region U0 at the initial in-
stant of time, the trajectory of this point and its analytical continua-
tions -- such as we have defined at the end of No. 302 -- will cut
across this region U0 an infinite numberof times unless the initial
situation of the system is not unusual, in the meaning attributed to
this word in No. 296.

304. It may first appear that this result is only of interest for
the analyst, and has no physical significance. However, this point of
view is not entirely justified.

It maybe concluded that, if the system does not repass arbitrarily
close to its initial position an infinite numberof times, the integral/174

ft t= " dt
-0

will be finite.

This proposition is valid, if we overlook certain unusual trajec-

tories whose probability is zero, in the meaning attributed to this
word in No. 296.

If this integral is finite, it may be concluded that the time during

which the perimeter of the triangle formed by the three bodies remains

less than a given quantity is always finite.
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CHAPTERXXVII

THEORYOFCONSEQUENTS

305. Wemay obtain other conclusions from the theory of inte-
gral invariants which will be of use to us below, although they will
be presented in a somewhatdifferent form.

Let us commenceby investigating a simple example. Let us assume
a point whose coordinates in space are x, y and z and whosemotion is
defined by the equations

dy d.__I_C=X, _ _ :y, -..... z. (1)
dr dt dt

where X, Y and Z are the given, uniform functions of x, y, z. Let us

assume that X and Y vanish all along the z axis, in such a way that

J175

X -= _ :: O

is a solution of equations (i).

Let us then set

x=pcos_, y= psin_,

and equations (i) will become

dp _ d_ dz
.-_ --R, _ =a, _-/= Z, (2)

where R, fl and Z are the functions of 0, _ and z which are periodic

having the period 2_ with respect to _.

It is advantageous for us to assign only positive values to 0, and

we may do this with no difficulty since x = y = 0 is a solution.

I shall now assume in addition that fl can never vanish and, for

example, always remains positive. Then _ will always increase with t.

Let us assume that equations (2) have been integrated, and that we

have the solution in the following form /176

p =_(,.,, ,, b), _ -_(,,,, _, b).

The letters a and b represent integration constants.

Let usset
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po =_ft(o, a, b),

?, ::ft(_-, a, b),

z0=f_/o, a,b),

:: = f,('_, _, b).

Let M 0 be the point whose coordinates are

X :: _Oo, y.-_ O, _ .: .70,

and M 1 be the point whose coordinates are

.z" =- _l, )." : : o, .3 =: gl.

These two points both belong to the half-plane of the xz's located

on the side of the positive x's.

The point M 1 will be the consequent of M O.

If we consider the bundle of curves which satisfy the differential

equations (i), if we pass a curve through the point MO, and if we extend

it until it encounters the half-plane (y = O, x > O) again, the preceding

definition is justified by the fact that this new encounter will occur at

M 1.

If an arbitrary figure F 0 is drawn in this half-plane, the conse-

quents of the different points of F 0 will form a figure F 1 which will be

called the consequent of FO.

It is evident that Pl and zI are continuous functions of PO and

z0 •

Therefore, the consequent of a continuous curve will be a continuous

curve, the consequent of a closed curve will be a closed curve, and the

consequent of an area which is connected n times will be an area which

is connected n times.

Let us now assume that the three functions X, Y and Z are related as

follows

dMX dMY dMZ
a_ *--dT--y+_= o,

where M is a positive, uniform function of x, y, z.

Equations (i) then have the integral invariant

M.dxdyd_
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and equations (2) have the following invariant

_I?d?dt,_dz.

Let us now consider the equations

dp R r[_ Z d_o

where _ is regarded as the independent variable.

They obviously have the integral invariant

/177

(3)

(4)

3It._od? dt,J d:
(see No. 253).

Since it was assumed above that M, _ and p are essentially positive,

it is a positive integral invariant.

Let F 0 be an arbitrary area located in the half-plane

(y _o, x>o),

and let F1 be its consequent.

Let J0 be the integral

(5)

extended over the planar area F0, and let Jl be the same integral ex-

tended over the planar area F I.

Then let _0 be the volume produced by the area F0 when it is ro-

tated around the z axis by an infinitely small angle g, and the in-

tegral (4) extended over _ will be J c.
0 0

In the same way, let _I be the volume produced by the area F 1 when

it is turned around the z axis by an angle c, and the integral (4) ex-

tended over _i will be Jl e.

The integral invariant (4) must have the same value for _0 as for

_I, and we must have

Jo =: Jl,

Thus, the inteBral (5) has the same value for an arbitrary area and

its consequent.
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This is a new form of the basic property of integral invariants.

306. Let us then assumea closed curve CQ located in the
half-plane (y = 0, x > 0) and encompassingan area F0. Let CI be
the consequent of CO• This will also be a closed curve which will en-
compassan area FI, and this area F1 will be the consequent of F0.

If the integral (5), extended over F0 and over FI, has the value
J0 and J1, we shall have

from which it follows that F0 cannot be a part of FI, and Fl cannot
be a part of F0.

Four hypotheses maybe formulated regarding the relative position
of the two closed curves COand CI.

i. C1 is within CO;

2. COis within CI;

3. The two curves are outside of each other;

4. The two curves intersect.

The equation J0 = Jl excludes the two first hypotheses.

If the third is also excluded, for whatever reason, the two curves
will definitely intersect.

For example, let us assumethat X, Y, Z depend on an arbitrary
parameter _ and that for _ = 0, CO is its own consequent. For very small
values of _, COwill differ very little from CI. Therefore, it could
not happen that the two curves COand C1 are outside of each other, and
they must intersect.

Invariant Curves

307. Any curve which will be its own consequent will be called an

invariant curve.

Invariant curves may be readily formed. Let M 0 be an arbitrary

point of the half-plane, and let M 1 be its consequent. Let us connect

M 0 to M 1 by an arc of an arbitrary curve C O . Let C1 be the consequent

of CO , C2 be the consequent of C I, and so on. The entire group of arcs

of the curve CO, CI, C2, ... will obviously constitute an invariant

curve.
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But we mayalso consider invariant curves whose formation will be
more natural.

Let us assumethat equations (i) have a periodic solution. Let 1179

x = ?,(t), y = ?2(0, z = ?_(t) (6)

be the equations of this periodic solution, in such a way that the func-

tions _i are periodic in t, having the period T.

I shall assume that when t increases by T, m increases by 27.

Equations (6) represent a curve. Let M 0 be the point where this

curve intersects the half-plane; this point M 0 will obviously be its own

consequent.

Let us now assume that there are asymptotic solutions which are very

close to the periodic solution (6). Let

x= 4,(t), y = 42(t), z = %(0 (7)

be the equations of these solutions.

The functions _i may be developed in powers of Ae at, and the co-

efficients are themselves periodic functions of t. In this expression,

is a characteristic exponent, and A is an integration constant.

In equations (7), the three coordinates x, y, z are therefore ex-

pressed as a function of two parameters, A and t. These equations there-

fore represent a surface which may be called the asymptotic surface.

This asymptotic surface will pass through the curve (6), since equations

(7) may be reduced to equations (6) when we set A = O.

The asymptotic surface will intersect the half-plane along a

certain curve which passes through the point M 0 and which is obviously
an invariant curve.

308. Let us consider an invariant curve K. I shall assume that X,

Y, Z depend on the parameter _, as well as the curve K.

I shall assume that for _ = 0, the curve K is closed, but that it

ceases to be closed for small values of _.

Let A 0 be a point of K. The position of this point will depend on

_. For _ = O, the curve K is closed, so that, after having traversed

this curve starting with A0, one returns to the point A 0. If _ is very

small, this will no longer be the case, but one will pass very close to

A 0. Therefore, on the curve K there will be a curve arc which is
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different from that where A0 is located, but which will pass very close
to A0. Let B0 be the point of this curve arc which is closest to A0. /180

I shall join A0B 0.

Let A 1 and B 1 be the consequents of A 0 and B 0. These two points

will be located on K. Let AIB 1 be the consequent curve of the small

line A0B 0.

We must consider the closed curve CO which is composed of the arc

AoMB 0 of curve K, included between A0 and B 0, and of the small line

A0B 0. What will its consequent be?

In order to define our ideas more precisely, let us assume that

the four points AI, A0, B I, B 0 follow each other on K in the order

AIAoBIB0.

The consequent C 1 of C O will be composed of the arc AIMB 1 of the

curve K and of the small arc AIB I, the consequent of the small line A0B 0.

Several hypotheses may then be formulated:

i. The small curvilinear quadrilateral AoBoAI_ is convex, that is,

none of these curvilinear sides have a double point, and the only points

which the two sides have in common are the apexes. In this hypothesis,

the form of the curve would be that indicated in one of the following

figures

A c

A, ....

B,

Figure I Figure 2

This hypothesis must be rejected, because it is apparent that the

integral J is larger in the case of Figure 1 for C 1 than for CO, and

smaller in the case of Figure 2.

181



2. The arc AoAI or B0B1 has a double point. If this were the
case for the invariant curve K, there would have to be a double point on
the arc joining an arbitrary point on the curve to its first consequent; /181

we shall assume that this is not the case. Actually, this condition

would not occur in any of the applications which I have in mind. It does

not apply, in particular, in the case of the invariant curve produced by

an asymptotic surface, as I explained at the end of the preceding section.

It may be readily stated that the asymptotic surface does not have a

double line if we limit ourselves to the portion of this surface corres-

ponding to small values of the quantities which I have designated as
Ae _t above.

On the other hand, the line A0B 0 does not have a double point,

and the same must be true for its consequent AIB I. To sum up, we shall

assume that the four sides of our quadrilateral do not have a double

point.

3. The arc A0A 1 intersects the arc B0B I. (As a special case, this

case includes that in which the curve K would be closed.) Our curves

will then have the form shown in Figure 3.

Figure 3

4. The arc A0B 0 intersects its consequent AIB I. Our curves will

then have the form shown in Figure 4.

There are cases in which this hypothesis must be rejected. For

example, let us assume that X, Y, Z depend on one parameter _, and that

for _ _ 0 the curve K is closed and that each of its points is its own

consequent, so that for _ = 0 the four apexes of the quadrilateral
coincide.

Then the four distances AoB0, AIBI, AIA0, BIB 0 will be infinitely

small quantities if _ is the main infinitely small quantity. Let us

assume that AIA 0 is an infinitely small quantity of the order p,

A0B 0 an infinitely small quantity of the order q, and that q is

/IS2
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A A_

Figure 4

larger than p.

Since AIB I is the consequent of AoB0, the length of the arc AIB 1

must be of the order q. Then let C be one of the intersection points
of A0B 0. In the mixtilinear triangle whose two sides are the lines

AIA 0 and A0C , and whose third side is the arc of the curve AIC which is

part of AIBI, the side AIC is larger than the difference between the two

others. It should therefore be of the order p, and we have seen that it
must be of the order q.

The hypothesis must therefore be rejected.

5. Two adjacent sides of the quadrilateral intersect_ for example,

AIA 0 and AIB I. It is then necessary that AoB0, which is the antecedent

of AIBI, intersect K itself. If A_ is the intersection of A0B 0 with K,

and A_ is the intersection of Al_with the arc AoAI, E l will be the con-

sequent of A_, and we shall obtain the following figure.

Figure 5

It is apparent that A_ and A_ may play the same role as A 0 and AI,
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and that we therefore return to the first case.

This new hypothesis must therefore be rejected. 1183

To sum up, the two arcs A0A 1 and B0B I will intersect every time that

hypotheses 2 and 4 must be rejected, for one reason or another.

We must now examine the case in which the points A1, A0, BI, B0

follow one another in a different order on K. The orders BIBoAIA 0,

BoBIAoAI, AoAIBoB I do not differ essentially from that which we have

just studied.

Orders such as AIBIBoA 0, AIBoBIA0, AIBoAoBI, ... will not appear

in the applications which follow. We shall always assume that, if _ is

very small, the distances A0A I and B0B I are very small with respect to

the length of the arcs AoMB 0 or AIMB I.

The order AIAoBoBI, or the equivalent orders, remain, and we shall

no longer discuss them. It is apparent that if they appear, on the arc

AoMB 0 there will be a point which will be its own consequent.

309. For example, let us assume that equations (i) have a periodic

solution

x = ?,(t), y = ?2(t), z = ._(t) (6)

and asymptotic solutions

x = %(t), y-=- _(t), z = %(t). (7)

Let us assume that equations (i) depend on a very small parameter

_, and that X, Y, Z may be developed in powers of this parameter.

For _ = 0, let us assume that the asymptotic solutions (7) may

be reduced to periodic solutions. This may be done as follows. We

have stated that the _i's may be developed in powers of Ae _t, with the

coefficients themselves being periodic functions of p. However, the

exponent _ depends on _; let us assume that it vanishes for _ = 0.

Then for _ = 0 the functions _i will become periodic functions of t,

and the solutions (7) may be reduced to periodic solutions.

The asymptotic surface intersects the half-plane along a certain

curve CO which passes through the point M 0, which is the intersection of

the half-plane with the left curve (6). /184

The curve CO is obviously invariant, as I stated at the end of

No. 307. Fo_ _ = 0, each of the points of CO is its own consequent.
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In addition, I shall assumethat the curve CO is closed for
= 0.

Let us refer back to Chapter VII, Volume I. Wesaw from Nos. 107
on that, in the case of dynamics, the characteristic exponents may be
developed in powers of _, and are equal pairwise and have the opposite
sign. Weshall assumethat this is the case.

In reality, we then have two asymptotic surfaces corresponding to
the two equal exponents having opposite sign _ and -_. Wetherefore
have two curves COwhich will intersect at the point M0.

Wemay distinguish between four branches of the curve

C_. C" C'"_U_ all C|

all four of which end at the point Mo; C_ and C'_ will correspond to

the exponent a, C_ and C_ to the exponent -_.

Bo

Figure 6

These different branches of the curve are shown in Figure 6. The

" is the branch MoEoE I,branch C_ is the branch MoPoPIAoA I, the branch C O

the branch C_ is the branch MoQIQ 0 and the branch C'_ is the branch

MoRIRoBIB 0.

These four branches of the curve are obviously invariant.

I!

Now, for _ = 0, C_ is identical to C_, C_ is identical to C1, and

(if we assume that the curve C O is closed for g " O, which we shall
0

call CO, ) these four branches of the curve will coincide on the closed
0

curve C0.

It may be deduced from this that, for very small _, these branches

/185
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of the curve will differ very little from each other, that C'0will
deviate very little from C'I, C_will deviate very little from CI," and
that,if C_ is sufficiently extended, it will pass very close to C",
if it is sufficiently extended. 1

I have indicated on the figure different points of these branches
of the curve and their consequents. Thus, AI, BI, El, PI, QI, R1 are,
respectively, the consequents of A0, B0, E0, P0, Q0, R0.

Wewould first like to note that the points AI, A0, BI, B0 do
follow each other (as we assumedat the beginning of No. 308) in the

I

order AIAoBIB 0 when the invariant curve formed of the two branches CO

and Cy is traversed from A 1 to B 0.

This invariant curve is not closed, but it differs very little from

the closed curve C_.

In this connection, let us examine the five hypotheses of No. 308.

As we have seen, the first must be rejected. The second will no longer
occur.

It could only occur if the asymptotic surface (7) had a double
line.

We have stated that the _i's may be developed in powers of Ae _t.
Therefore let us set

'I_g= ,l_t° -;- Aeat,l,_ _-:k-'e_-_tq,_-_-....

If our surface had a double line, this double line would have to

satisfy equations (i). Actually, the asymptotic surface is produced by

an infinite number of lines satisfying these equations in such a way

that, if two layers of this surface happen to intersect, the intersection

could only be one of these lines.

Since _i depends on the time t and the parameter A at the same time,

we may show this by writing

,I,,.= q,Jt, A).

If there were a double line, we would have to have the three

identities

+_(t, A)= 4,_(t', B) (i = ,, a, 3),

where A and B are two constants and where t' is a function of t. These

three identities would have to exist no matter what t may be.

/is6
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Performing differentiation, we shall have

d'Pt dq, i dr'
d--F=-yFWi •

However, in view of equations (i), we shall have

d.t,, = x[+_(,, A), +.(t, A), +,(t, A)]
dt

and in the same way

d4:,t
-- X[+,(C, B), +_(t', B), +_,(t', B)],

dr'

from which it follows that

from which we have

where h is a constant.

We would thus obtain

where

d¢i d'l_i dr'
-_F = -dF' -37 = "

t'=t+h,

the following

,1,,°(t) + A e _t,t,_ (t) + A' e TM q,', (t) = ,;,f(t + h)+ C e _t q,l (t + h) + ....

C= Be _h.

The identity must be valid for t = --®, from which

Ae =t= _e =t= op

and we have

• ?(t)= ¢_(t + h),

it follows that

from which we have h = 0 and

or

+_(t)+AeatOl(t)+-..,= _,_(t)+Ce=t,_l(t)+..

AOl (t)+X'*"+,'(O+...= C*f(t)_-Oe='¢_(t)+..

or, setting t = --_, we have

A = C = B.
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Due to the fact that the two values A and B are equal, there is no

double line.

The third hypothesis may be adopted.

Let us pass on to the fourth hypothesis. In order to determine

whether it must be rejected, we must try to determine the order of

magnitude of the distances AIA 0 and A0B 0. This is what we shall do in

the different applications which follow.

Finally, the fifth hypothesis is always reduced to the first one,

as we have seen.

1187

Extension of the Preceding Results

310. We formulated very special hypotheses above concerning equa-

tions (i), but all of them are not equally necessary.

Let us consider a region D which is simply connected and which is

part of the half-plane (y = O, x > 0). Let us assume that we know arbi-

trarily that, if the point (x, y, z) is located at a point M 0 in this

region at the initial instant of time, m will constantly increase from 0

to 2_ when t increases from 0 to to, in such a way that the curve satis-

fying equations (i) and passing through the point M 0 -- assuming that it

is extended from this point M 0 up to its new intersection with the half-

plane -- is never tangent to a plane passing through the z axis.

Just as in No. 305, we may then define the consequent of the point

M0, and it is apparent that all the preceding statements will still be

applicable to the figures which are located within the region D.

It will not be necessary that the curves satisfying equations (i)

and intersecting the half-plane outside of D be subjected to the condi-

tion of never being tangent to a plane passing through the z axis. It

will no longer be necessary that x = y = 0 be a solution of equations

(i).

Then, if C O is a closed curve inside of O and if CI is its conse-

quent, the two curves will be outside of each other or will intersect.

The results given in No. 308 will be equally applicable to the
invariant curves which do not leave the region D. If even one invariant

curve leaves the region D when it is sufficiently extended, the results

will still be applicable to the portion of this curve which is within /188

this region.

311. Let us now consider a curved surface S which is simply
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connected, instead of a plane region D. Let us pass a curve Y satis-

fying equations (i) through a point M 0 of this curved surface, and let

us extend this curve until it again intersects S. The new point of

intersection M I may still be called the consequent of M 0.

If we consider two points M 0 and M_ which are very close to each

other their consequents will be, in general, very close to each other.

There would be an exception if the point M i were located at the boundary

of S, or if the curve y touched the surface at the point M I or at the

point M 0. Except for these exceptions, the coordinates of M I are analy-

tic functions of the coordinates of M 0.

In order to avoid these exceptions, I shall consider a region D

which is part of S and such that the curve Y, proceeding from a point

M 0 inside of D, intersects S at a point M I which is never located at

the boundary of S -- so that the curve y does not touch S either at M 0

or at M I. Finally, I shall assume that this region D is simply connected.

Let us adopt a special system of coordinates which I shall call

E, n and _, for example, and for which I shall only assume the following:

i. When [_[ and IT][ are smaller than i, the rectangular coordinates

x, y and z will be analytic and uniform functions of $, n and _, which

are periodic with the period 2_ with respect to _.

2. No more than one system of values of $, n, _ can correspond to

a point (x, y, z) in space, such that

I_I<,, l_l<,, o<_<2= (x)

3. When we set _ = 0, or _ = 2_ and when we vary _ and n between

-i and +i, the point x, y, z describes the surface S, or a portion of
this surface containing the region D.

4. It results from conditions (i) and (2) that the functional

determinant A of $, _, _ with respect to x, y, z is never infinite nor

zero when the inequalities (X) are satisfied.

5. Equations (i) may be transformed by writing them in the

following form

d_ = _' dt--It, = Z o.

/189

(i')

I shall assume that Z* remains positive for

l_l<,, I_[<,, _--o.
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The equations (i') will have the integral invariant

f _t d_ dn d_,

and the equations

d_ -m dn H de

,4" = _' dE z=' d_ :

(3')

will have the integral invariant

MZ* d_d_ d r..

Let F 0 be an arbitrary figure which is part of D and let F 1 be its

consequent. Let us assume that the different points of F 0 and of F 1

move in such a way that _ and n remain constant and that _ increases

from 0 to ¢, with ¢ being very small. The figure F 0 will produce a

volume ¢0, and the figure F I will produce a volume 01 • The integral

f MZ*f_1z. d_an a_ = d_d_,
d-X- .I_-

will have the same value for 0 0 and for 01 .

gral

MZ*
-_-- d_an,

Therefore, the double inte-

which is similar to the integral (5) of No. 305, will have the same value

for F 0 and F I. It is therefore essentially positive.

It follows from this that the results given in No. 306 may be

applied to closed curves C O located within D, and that the results given

in No. 308 may be applied to invariant curves K, or at least to the por-

tion of these curves which is inside of D.

Even if an invariant curve leaves the region D when it is suffi-

ciently extended, the results will still be applicable to the portion of

this curve which is within this region.

Application to Equations of Dynamics

312. Let F be a function of the four variables xl, x2, Yl, Y2.

Let us formulate the canonical equations

d_t dF _'t dF

/190
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I shall assume, as I usually do:

i. That F is a periodic function of Yl and Y2;

2. That F depends on a parameter _ and may develop in powers of

this parameter in the following form

F =: Fo-4- _Ft :-- l.t'- F_ +...;

3. That F 0 is a function of only x I and of x 2.

Under this assumption, we shall have the integral

F=C, (2)

where C is a constant.

Under this assumption, let us attribute a value which is determined

once and for all to C, and let M be a moving point whose rectangular co-
ordinates are

['+'i'(x_)cosy,]cosy2, [,+?(xt)cosy,]siay_, ?(z,)siay,.

The function _(xl) is a function of xl, of which I shall make a more
comprehensive determination below.

Let us first assume that F, which will depend arbitrarily on x2,

may be developed in increasing powers of x I cos Yl and x I sin Yl. For

x I = 0, it will result that the function F will no longer depend on Yl

and, in addition, that the function F will not change when x I is changed

into -x I and Yl is changed into Yl + w. We shall then assume that _(Xl)

is an odd function of x I which increases from 0 to i when x I increases

from 0 to + = We may set, for example

?(x,) = '_'

If this hypothesis is adopted, the point M will always be within a torus

of radius i, which is tangent to the z _xis.

An infinite number of systems of values of Xl, Yl and Y2 will /191
correspond to each point M within this torus. However, these systems

will not differ essentially from each other, since one passes from one to

the other by increasing Yl or Y2 by a multiple of 2_, or by changing x 1

into -x I and Yl into Yl + _"

If Xl, Yl and Y2 are given, x 2 may be deduced by means of equation

(2). Let us assume that the variables x and y vary in accordance with
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equations (i), and the corresponding point M will describe a certain
curve which I shall call the trajectory.

One and only one trajectory passes through each point inside the

torus.

The form of these trajectories for _ = 0 may be readily determined.

For _ = O, the differential equations may be reduced to

dx_ dYl dFo
d--F= o, d--f = -- dx---_"

The xi's are therefore constants, which indicates that our trajec-
tories are located on the tori, and the Yi'S are linear functions of time,

because

dF,

dx i = nl

depends only on the xi's and is a constant.

If the ratio nl:n2 is commensurable, the trajectories are closed

curves. Conversely, they are not closed if this ratio is incommensurable.

Let ml, m 2, Pl, P2 be four whole numbers, such that

nltp2 -- nttFt = l;

Let us set

The identity

y] = m,yl + m,y,,

y_ = ply, +PRY,,

x] = p_xl --ptx,,

X_ = -- nll_I + nl| _2,

t ex',y'_ + x, y, = x_y, -- x: y2

indicates that when one passes from the variables x i, Yi to the variables
xi, Yi, the canonical form of the equations is not changed.

We shall assume that n2 does not vanish when Xl remains less than a
dy2

certain limit a. Then d-_- will always retain the same sign, and we /192

shall have, for example d_,,

d--7> o.
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This inequality, which is valid for _ = 0, will still be valid for small
values of _.

The relationships

9"2= o, Ix, ] < a -

will then define a certain plane region D which will have the form of

a circle.

The trajectories starting from a point in this region will never be

tangent to a plane passing through the z axis, at least before having

cut across the half-plane Y2 = 0 again. Our region may therefore play

the role of region D in No. 310.

The equations (i) have the integral invariant

./d_,dx2dy, dy,,

from which we may deduce the following by means of the integral F =

const.

j = __f d.v, dy,d.r,<lFdy.22

dF dy 2
However, =7- equals --- , and is consequently negative.

u_2 dt

J is then a positive invariant.

The invariant

The results given in Nos. 306 and 308 may therefore be applied to

the curves drawn in the region D.

Under this assumption, let b be a value of x I which is smaller than

a - _, and such that the corresponding values of n I and of n 2 satisfy

the following relationship

where m I and m 2 are two prime numbers with respect to each other.

The curve

_Z'|_ b.

which is a circumference will be an invariant curve for _ = 0.

If we always assume that _ = 0, the trajectories emanating from /193

different points on this circumference will have the general equation
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,}'l = 'rtlt'_-const._ _'1:-- n_l ]-COrlSt._

from which we have

Y_ = n_ ,Y2 + const.

In order to have successive consequents of a given point, it will

be sufficient to set the following successively

y2==o, 2"2= 2_, y2=_l= .... , y2:=2h=.

In order to pass from a point to its consequent, it is sufficient

to increase Yl by

7
_2 n_l

from which it follows that all points on the invariant circumference x I =

b will coincide with their ml th consequent.

This point and its m I - 1 first consequents are distributed on this cir-

cumference in a circular order, which may be readily determined when the

two whole numbers m I and m2 are known. I shall call the order _.

Let us no longer assume that _ = 0. The equations (i), according to

Chapter III, will still have periodic solutions which differ very little
from the solutions

Xl=b, ._i _-:/_i [ -r- COflS[., yl----n_tq-const.

They will have at least two, of which one is unstable and the other is

stable. A closed trajectory will correspond to each of these periodic

solutions. I shall consider one of these trajectories which I shall call

T and which will correspond to an unstable solution, so that two asymp-

totic surfaces pass through T.

Let M 0 be the point where this trajectory penetrates the half-plane

Y2 = 0, and let MI, M2, ... be its successive consequents (Figure 7).

The point M 0 will coincide with its mlt--h consequent Mm.

I shall join the point M k to the center of the circumference x I = b.

The radius which is thus drawn will intersect the circumference at a

point M_ which is very close to M k. The different points _k will follow

each other on the circumference in the circular order ft.
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In order to formulate these ideas more precisely, I have drawn

the figure on the assumption that ml = 5, m 2 = 2. The closed trajec-

tory T intersects the half-plane at five points M0, MI, M2, M 3, M_.

Two asymptotic surfaces which intersect pass through this trajectory.

The intersection of these asymptotic surfaces with the half-plane

will be composed of different curves. We shall have two curves inter-

secting at M0, two at MI, two at M2, two at M3, and two at M 4. All

these curves are shown in the figure.

/194

Figure 7

In particular, let us consider the two curves which pass at M 0.

We may distinguish between four branches of the curve, i.e., MoA0,

MoB2, MoP0, M0Q 0. The first two are shown by a solid line, and the

last two are shown by a dashed line. The first and the third, just like

the second and the fourth, are each located in the extension of the

other.

In the same way, four branches of the curve will end at each

of the points M. Two of these branches are shown by solid lines and

two are shown by a dashed line, and each pair is located in the extension

of the other.

Let A 0 be a point of the branch M0B 0. Let us draw a radius through

A 0 going to the center of the circumference x I = b, and let us extend

this radius up to B 0 where it intersects the curve shown by the solid

line M3B 0. Since _ is very small and since all of our curves differ /195

very little from the circumference x I = b, the segment A0B 0 will be

very small.
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Wemay then see that MIAI, M2A2,MBA3,M4A4,M0A5 are the succes-
sive consequents of MoA0, that MqBI, MoB2,MIB3, M2B4,MqB5 are the
successive consequents of M3B0, and finally that AIBI, A2B2, ..., AsB5
are the successive consequents of A0B0.

The arcs AIBI, A2B2, ..., A5Bs are no longer rectilinear in
general, but are very small arcs of a curve.

Figures 1 or 2 shownin No. 308 reproduce the part of the figure
shownby the solid line. The entire group of our curves shownby the
solid lines represents an invariant curve K.

I have drawn the figure based on the first hypothesis, which -- as
we have seen-- must be rejected along with the fifth hypothesis. Accord-
ing to the statements I madein No. 309, this also holds true for the
second hypothesis.

Wemust examine the fourth hypothesis in greater detail. In order
to do this, let us try to determine the equation of our asymptotic sur-
faces. Based on the statements presented in No. 207, this equation may
be obtained in the following way.

A function S is formulated which maybe developed in powers of /_,

in such a way that

p

S = S04-(yS,÷...+ s_Sp + ....

Regarding Sp, it is a periodic funtion of the period 2_ with
respect to y_, and 4_ with respect to y_.

We shall have

dS dS
_" = _,y';' *; = dT,

_s as (4)

Equation (4) is the equation of the asympototic surface.

If the series S were convergent, the periodicity of the S_'s would
entail the condition that our curves must be closed and that t_e two

points A 0 and B 0 must coincide. However, this is not the case (see No.

225, and the following).

What significance does equation (4) have? It may only be valid from

the formal point of view, i.e., if 2p is the sum of the p + 1 first /196
terms of the series S, so that
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the equation

P

xp = So + ,,/_ S, +...+ a_- Sp,

dZp dXp

_' = " 7tfi_+ m, dy_

2
will be valid up to quantities of the order

(4')

However, equation (4') represents a closed surface, and p is ar-

bitrarily large.

We must therefore conclude that the distance A0B 0 is an infinitely

small quantity on the order of infinity (see Nos. 225 on). In addition,

the distance A0A 5 (or BoBs) is on the order of /_, and is consequently

infinitely small of the order of ½.

The distance A0B 0 is therefore infinitely small with respect to

AoAI, which indicates that the fourth hypothesis must be rejected.

The only possible hypothesis is therefore the third.

Therefore the two arcs A0A 5 and B0B 5 intersect.

Application to the Restricted Problem

313. I am going to apply the preceding principles to the problem

presented in No. 9, and I shall employ the notation given in that section.

Consequently, we shall have the canonical equations

dx_ dF' dg_ dF'
a_ = aye,' -d? = - a_--i,'

based on which we may set

and, in addition,

I x'I=L, x_=G,y_ l, 'yz=g--t

F'.= R t G-----F, + _Ft+...,
I

Fo -----_x,,---7 + x;.

(5)

Let us now set
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xl= L-- G, xz=L+G,

,2.y_:= l-- # + t, 2y_ ----l + g -- t

and the equations will retain the canonical form and will become /197

We will have

dx: dF' dyt dF'
dt -- _ ' dt -- dxj "

2 .T l -- X!

Fo-- (x,+ x,)' + ----a

from which it follows that

+ 4 i 4- i ,
---- _ -.

nl- (xt+ x_)3 +-, ni--- )32 (X i _- X, 2

If we assume that the eccentricity is very small, L and G will

differ very little in absolute value. Therefore, one of the two quanti-

ties x I and x 2 is very small.

I would like to note in addition that the equations

L : '/a, G = V_a(--T_ e' )

indicate that G is always smaller than L in absolute value. Therefore,

xl and x2 are essentially positive.

Let us assume that x I is very small. The function F' will be a

function of a and of £ + g - t which may be developed in powers of

e cos g and of e sin g. Therefore, this will also be a function of x 2

and of Y2 which may be developed in powers of

v/_ cosy, and _I_ sin.y,.

It will be periodic with the period 2_ both in Yl and in Y2.

If, on the other hand, it is x 2 which is very small, the function F'

will be a function of x I and of Yl, which may be developed in powers of

_/_ cosy, and V'_ sin.y,.

Let us now assume that our four variables x and y are related by

the equation of energy
F = C .
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This equation maybe approximately reduced to

F0= C.

Let us construct the curve F 0 = C, taking x I and x 2 as the coordi-

nates of a point in a plane.

The equation may be written

(x,.i-r:)2C2C+ xl--x2_ = 4-

This curve has two asymptotes

and it is symmetrical with respect to the first of these two asymptotes.

However, it should be noted that the only portion of the curve

which is of use to us is that which is located in the first quadrant

xj>o, x_>o.

Based on the values of C, the curve may have one of the forms shown
in the two following figures

/198

Figure 8

The axes of the coordinates are represented by the dot-dash line,

the asymptotes and the utilizable portions of the curve are shown by the

solid line, and the portions of the curve which are of no use are shown

by the dotted line.
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D

Figure 9

We shall assume that a value is assigned to C, so that the curve has

the form shown in Figure 9 and so that it contains two utilizable arcs

AB and CD. We shall no longer consider the arc AB.

We should point out that when one traverses this arc AB, x I de-

creases constantly from OA to zero, x 2 increases constantly from zero to
x2

OB and--increases constantly from zero to +
Xl

If we now construct the curve F = C, assuming that Yl and Y2 are

constants and x I and x 2 are the coordinates of a point in a plane, the _199

curve will differ very little from F0 = C and can still be represented

by Figure 9. It will have a utilizable arc AB, and when one traverses
x2

this arc the ratio--will increase constantly from zero to +_.
Xl

We thus arrive at the following method of geometric representation.

The location of the system will be represented by the point whose rec-

tangular coordinates are

These three functions may be developed in powers of_xl cos Yl and

_sin Yl, if x I is very small, and may be developed in powers of
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V_ cos Y2 and _2sin Y2, if x 2 is very small.

Xl
the ratio-- .

x2

They only depend on

Thus, one and only one point in space corresponds to each system

of values of Yl and of Y2 and to each point on the utilizable arc AB.

The functional determinant of the three coordinates with respect

to Yl, Y2, and with respect to xllx] , always retains the same sign.

_x2

We may therefore apply the results obtained in the preceding sec- /200

tion within all of the region D where n 2 does not vanish.

However, n2 vanishes for x I + x 2 = 2.

But, if we have x I + x 2 = 2, x I > 0, x 2 > 0, we shall obviously

have

2 X:--Xl 2 _-4- X 1 3

= (xt+ x_)= -I- =2 4

However, the first term of this equation is F 0 and, when compiling the

curve F 0 = C, we assumed that we were dealing with the case presented

in Figure 9. However, the case shown in Figure 9 assumes that

Since F0 differs very little from F, and consequently from C, we

cannot have at the same time

3 3

c>_, Fo<_

3
(unless C is very close to its limit _, which we have not assumed).

Under the conditions with which we are now dealing, we shall not

have n 2 = 0.

Thus, the results presented in the preceding section are applicable,

and if we construct the asymptotic surfaces and if we consider the inter-

section of these surfaces with the half-plane Y2 = 0, the two arcs which

are similar to those which we designated as AoA 5 and BoB 5 above will

intersect.
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I would like to add one word to this.

The coordinates of the third body, with respect to the major axis
and the minor axis of the ellipse which it describes, are -- according
to the well-known formula

It may thus be seen that, when G changes sign, the second of these
coordinates changes sign.

As a result, the perturbed planet turns in the samedirection as the
perturbing planet if G is positive, and it turns in the opposite direc-
tion if G is negative.
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CHAPTER XXVIII

PERIODIC SOLUTIONS OF THE SECOND TYPE

314. Let us consider a system of equations

dx/ Xi (f:,,2, ... n), (1)
dt

where the Xi's are functions of Xl, x2, ..., Xn, and of t, which are
periodic having the period T with respect to t.

/201

Let

x_ ---:?i(t)
(2)

be a periodic solution of period T of equations (i).

We shall try to determine whether equations (i) have other periodic

solutions which are very close to (2) and whose period is a multiple of

T.

These solutions, if they exist, will be called periodic solutions

of the second type.

Let us consider a solution of equations (i) which is very close

to (2). Let

be the value of xi for t = 0, and let

?,(o)-- _i+ +, = ?i(kT) + _i+ _i

be the value of x i for t = kT (k is a whole number).

The Bi's and the ¢i's, whose definition is the same as that given in

Chapter III, will be very small. Just as in Chapter III, it will be

found that the _'s are functions of the B's which may be developed in

increasing powers of the B's.

In order that the solution may be periodic having the period kT, it L202
is necessary and sufficient that

+1 = '_ ..... q= = o.
(3)
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Due to the fact that the _i(t)'s are periodic functions, the _'s

vanish with the 8's.

We shall assume that the functions X i which appear in equations

(i) depend on a certain parameter _. Then the functions _i(t) will

depend not only on t, but also on _. As regards t, they will be

periodic of period T, with T being a constant which is independent of

Under these conditions, the functions 4, whose definition remains

the same, will depend not only on the _'s, but also on _. If we assume

that

are coordinates of a point in space having n + 1 dimensions, equations

(3) will represent a curve in this space. A periodic solution, of period

kT, will correspond to each point on this curve.

Since the _'s all vanish when the B's all vanish at the same time,

this curve will consist of the straight line

(4)

The solution (2) will correspond to different points on this

straight line. Due to the fact that this solution is a periodic solu-

tion of period T, it is for that reason a periodic solution of period

kT.

But we must try to determine whether there are other periodic solu-

tions which are very similar to the first or -- in other words -- if

curve (3) includes, in addition to the straight line (4), other branches

of the curve which are very close to the straight line(4).

In other words, are there points on the straight line (4) through

which branches of the curve (3) pass, other than this line?

Let

be a point P of the line (4).

In order that several branches of the curve may pass through the

point P, it is necessary that at this point P the functional determinant,

or the Jacobian, of the _'s_ with respect to the B's_ vanishes.
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This condition is not sufficient, as we shall see at a later /203

point, for several real branches of the curve to pass through the point"
P.

Let us formulate the determinant of the _'s with respect to the

B's, let us add -S to all the diagonal terms, and let us set the de-

terminant thus obtained equal to zero. We shall thus obtain the equa-
tion which is known as the equation for S.

The roots of this equation (see No. 80) are

e _T- I_

where _ is one of the characteristic exponents of equation (i).

In order that the functional determinant may be zero, it is necessary
and sufficient that one of the roots he zero. We must therefore have

C_ _T _ I,

which means that k_T is a multiple of 2i_.

Therefore_ in order that several branches of the curve pass through

the point P, it is necessary that one of the characteristic exponents be
2i_

a multiple of k-T-"

315. This condition is not sufficient, and a more extensive dis-

cussion is necessary.

Let us set

and let us try to develop the B's in whole or fractional powers of %.

We shall assume that the Jacobian of the _'s, with respect to the

$'s, is zero. This Jacobian vanishes for % = 0, but will not be identi-

cally zero, in general. In order that this may be the case, it is

necessary that one of the characteristic exponents be constant, indepen-
2i_

dent of _, and equal to a multiple of _--.

We shall therefore assume that the Jacobian vanishes for % = O,

but that its derivative, with respect to %, does not vanish.

In the same way, we shall assume that the minors of the first order

of this Jacobian do not all vanish at the same time.

In this case, based on the theorem in No. 30, from n - 1 of equa-

tions (3) we may derive n - 1 of the quantities B in the form of series
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developed in whole powers of %and of the tn-_hquantity B, for example
of 8n.

Let us substitute the values of

/204

thus derived in the tn!b-hequation (3). The first term of this tn_-h

equation will be developed in powers of % and of 8n. Let us write it

in the following form.

o(L ,%,) -_ o.

I may first point out that @ must be divisible by 8n, because the

line (4) must be part of the curve (3).

On the other hand, the derivative of 0 with respect to 8n must

vanish for _ - O, since the Jacobian vanishes. For _ = O, 0 does not

contain a term of the first degree. Let us assume that it no longer

contains terms of the second degree, ..., p - tl__ degree, but that it

does contain a term of degree p.

Finally, since the derivative of the Jacobian with respect to

does not vanish, we shall have a term containing %B n.

I may therefore write

_p+l _8_, or %2B n as awhere C is the total group of terms containing _n '

factor. A and B are constant coefficients which are not zero.

It may be seen that we may derive 8n from this in terms of a series

whlch progresses according to the powers of ),_',, and the problem is

to determine whether this series is real.

If p is even or if, p being odd, A and B have opposite signs, the

series is real, and periodic solutions of the second type exist.

If p is odd, and if A and B have opposite signs, the series is

imaginary, and there is no periodic solution of the second type.

I shall now assume that not only the Jacobian vanishes for % = 0,

but that the same holds true for all of its minors of the first, the

p - tl_horder. I shall nevertheless assume that the 1205second, etc., and

minors of the _ order are not all zero at the time.
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According to the statements presented in No. 57, under these con-
ditions, there will be not one, but p, characteristic exponents which

will be multiples of k--_--.

Fromn - p of equations (3), we may then derive n - p of the
quantities B in the form of series developed in powers of % and of the
p last quantities _.

For purposes of brevity, I shall employ the _''s to designate the

n - p first quantities B, and the _"'s to designate the p last quanti-

ties B. We shall therefore have the B"s developed in powers of k and
of the B" 's.

Let us substitute these expansions in the place of the B''s in

the p last equations (3), and we shall obtain p equations

o,= a_...... _p=o, (5)

whose first terms will be developed in powers of k and of the B" 's .

Due to the fact that the Jacobian and its minors of the first p - i
orders are zero, these first terms will not include terms of the first

degree in B" which are independent of %. We must now determine whether

the first terms of equations (5) will contain terms of the first degree

with respect to the B"'s, and at the same time of the first degree with
respect to k.

Let 8i be the total group of terms of @i which are of the first

degree with respect to the B"'s. It is apparent that 8i may be developed

in powers of k. Let

Ol= o,°-_ kO_÷ _,0_'J+...

be this expansion. The 8_k)'s will be homogeneous polynomials of the

first degree with respect the the _"'s.

0 will be identically zero,According to the preceding statements, 8i
Y

but we must now determine whether the same holds true for ei.

The Jacobian of the _'s with respect to the _'s equals

IlO-- e_T),

The product indicated by the sign H extends over n factors corresponding

to the n characteristic exponents _.
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Let _I, _2, "'', _n be these n exponents, and let J206

?(=) ---_, -- e_=T) .

The Jacobian will equal the product

?(=0_(=z). ?(=n).

In order that % = 0, the Jacobian vanishes as well as its minors

of p - I first orders. As a result, p of the exponents are multiples

2i_ Therefore, p of the factors _(_) vanish for _ = 0 and are,
of kS"

consequently, divisible by %. The product, i.e., the Jacobian, will

therefore be divisible by %P.

d_
We shall assume that for % = 0 none of the _ vanishes, which is

what we already assumed previously. Under these conditions, none of

the _(_)'s are divisible by %2. Therefore, the product is not divisible

by xp+l.

Thus, the Jacobian is divisible by %P, but not by %p+l.

l!

As a result, the determinant of the 8i s is different from zero,

and consequently none of the e l'i s vanishes identically.

The simplest case is that in which, for % = 0, the terms of the

second degree do not vanish in the expressions for @i, and in which

these terms of the second degree cannot vanish at the same time, unless

all the B" 's vanish at the same time.

Let us assume that ni is the total group of terms of the second

degree of 0i for % = 0.

It will be sufficient to consider the algebraic equations

T,i + ),0_ := o,

whose first terms are homogeneous polynomials of the second degree with

respect to % and the B"'s.

If these equations have real solutions, we shall have periodic

solutions of the second type.

I shall not extend the discussion to the other cases, but shall com-

plete this discussion when treating the equations of dynamics.
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Case in Which Time Does Not Enter Explicitly ]207

316. Let us assume that the functions X i which appear in equations

(i) do not depend on time t.

As we have seen in No. 61, in this case one of the characteristic

exponents is always zero.

In addition, if

z_=?dt)

is a periodic solution of period T, the same also holds for

x_: ?i(t+ h)

whatever the constant h may be.

In the preceding section, we assumed that -- no matter what

might be -- there was a periodic solution

_i=?i(t)

and the period could only be T, since the Xi's were periodic functions

of t, of period T.

The period was therefore independent of _.

The same is not true in this case. We shall always assume that,

no matter what _ might be, equations (i) have a periodic solution

_i= ?dr).

However, the period will depend on U, in general. I shall call

T the period, and T O the value of T for _ = _0, i.e., for X = 0. We

shall then modify the definition of the quantities 8 and @ to a certain

extent.

We shall always designate the value of xi by _i(0) + 8i for t = 0.

However, we shall designate the value of x i by _i(0) + 8i + @i for

t = k (T + z) (and not for t = kT).

Then, the #i's will be functions of the n + 2 variables

_,, _ ..... _, _, _.
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If we continue to assume that the $'s and %'s are the coordinates

of a point in space having n + 1 dimensions, the equations /208

,'._ o (3)

will no longer represent a curve, but will represent a surface, since we

may vary the two parameters • and % independently and continuously.

However, we should point out that curves are drawn on this surface

whose different points correspond to periodic solutions which may not be

regarded as being essentially different.

If

is a periodic solution, the same will hold true for

.ri=_(t ÷-h)

no matter what the constant h may be, and this new solution will not differ

from the first in reality,

The following point corresponds to the first

_i=:_(o) -_i(o),

and the following point corresponds to the second

_--_(h)-?i(o).

When h is varied continuously, the second point describes a curve whose

different points do not correspond to solutions which are actually different.

In particular, let us consider the solution

xi= _(t)

The following point will correspond to this solution

which belongs to the line (4).

The following point

_l= ?l(h)- ?do), (4')

which belongs to a certain surface (4) making up the surface (3), will cor-

respond to the solution

z_=:?i(t_-h),

which is not actually different from the first.
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Wemust now determine whether the surface (3) includes layers other
than (4') approaching very close to (4'), i.e., whether there are points /209

on the surface (4') through which other layers of the surface (3) pass

in addition to the surface (4') itself.

Without limiting the conditions of generality, we may assume that

B1 = 0 (or we may impose another arbitrary relationship between the B's).

In actuality, the solutions

xi_f,(t), xi::fi(t-_-h)

are not different, and it is sufficient to take one of them into consid-

eration.

We may choose the constan_ h p bJtrarily, and we may take it in such

a way that, for example,

/,(h) = _,(o),

from which we have

_1 --_- O.

q.e.d.

If we impose this condition B1 = 0, the two surfaces (3) and (4') may

be reduced to curves, and the surface (4') may be reduced to the line (4),

in particular.

We would like to again determine whether another branch of the curve

(3) passes through a point of the line (4).

For this purpose, let us combine equation _i = 0 with equations (3).

These equations will represent the curve (3), or a curve of which (3) is

only a part. In the region under consideration, in order that this

curve may not be reduced to the line (4), it is necessary that the Jaco-

bian _I, _2, "'', _n, _I with respect to BI, _2, "'', 8n, _, and that of

_I, _2, ..-, _n with respect to _2, _3, -.., Bn, _, be zero for % = 0.

Since nothing distinguishes _I from other $'s, the Jacobians of the

_'s with respect to T and with respect to n - 1 arbitrary B's must all

vanish. That is, all the determinants included in the matrix of Nos. 38

and 63 must vanish at the same time. By pursuing a line of reasoning

similar to that presented in No. 63, we may see that the equation for S

must have two zero roots.

As a result, two of the characteristic exponents must be multiples of

2i_
k-_--" This is already true for the one of them which is zero.

2i_
exponent must be a multiple of-_--.

A second
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If this condition is fulfilled, we shall formulate a system of /210

n + 1 equations including equations (3) and el = 0. We shall derive

and the _'s in the form of a series developed in whole and fractional

powers of %.

If the series are real, we shall have periodic solutions of the

second type; if the series are imaginary, this will not be the case.

I shall not continue this discussion any further.

317. Let us now assume that the equations

dt --Xi,

where time enters explicitly have a uniform integral

(i)

F-- C_

in such a way that we have

dF_/._ x,--= o.

We saw in No. 64 that in this case the gacobian of the _'s with re-

spect to the B's vanishes, and that one of the characteristic exponents

is zero.

The equations
+,--- +, -...-% -- o

(3)

are not then different since we have identically

F[7i(o) + _i-+- +i]-- F[?i(o)-_- _i] = a.

They do not represent a curve, but rather a surface.

However, according to the principles presented in Chapter III, in

this case we have a double infinity of periodic solutions of period T

x,. = ?_(t),

since there is one which corresponds to each value of the parameter

= _0 + _ and to each value of the constant C.

We shall assign a fixed value C O to the constant C, and we shall

no longer have a simple infinity of periodic solutions of period T

zi = _i(/),

with each of them corresponding to a value of X.
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Due to the fact that equations (3) are not different, they maybe /211

replaced by n - i of them -- for example, by

+,_=+,..... +n, - o

Let us then consider the system

._,=_, ..... ___,=o, F[_(o)+ _] = C0. (3')

Equations (3') no longer represent a surface, but rather a curve,

part of which is formed by the line

_, = o. (4)

In order that another branch of the curve may pass through a point on

the line (4), it is necessary that the Jacobian of

+_, %, . , +n ,, F,

with respect to the B's vanish.

This condition may be written in still another form.

Let us assume that we have solved equation

F(x_)= Co

with respect to Xn, and that this solution yields

xn :: O(x,, x: .... , x,,-t).

Let us substitute 8 in place of xn in Xi, and let X_ be the result of
this substitution.

Equations (i) are thus replaced by the following

,_- -= x_ (i=,,_ ..... n-,). (1')

These equations (i') will have the following periodic solution

xi = ?_(t).

The number of characteristic exponents of this periodic solution,

which is assumed to belong to equations (i'), will be n - i. Let

Gl, _2, ..., C_n-I be these n - i exponents. These will be the same as

those for this periodic solution xi = _i(t), which are assumed to belong

to equations (i), suppressing the n exponents which equal zero.

In order that equations (i) have periodic solutions of the second _212

type in the vicinity of a point on the llne (4), it is necessary and

sufficient that equations (i') have them, i.e., that one of the n - i

characteristic exponents _i, _2, "'', _n-I is a multiple of-_- at a
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point on the line (4).

Thus, the condition, which was presented above, that the Jacobian

of 41, 42, ..., _n-l, F is zero may be expressed in a completely differ-

ent manner. In order that it may be fulfilled, it is necessary that

2in This is always true for thetwo of the exponents be multiples of k--T-"

one of them which is zero; this must be true for a second exponent.

Let us assume that this condition is fulfilled. From equations (3')

we shall derive the B's in series which are ordered in whole and frac-

tional powers of %. I shall not extend this discussion, to determine

whether these series are real.

318. Let us now assume that the Xi's do not depend explicitly on

time and that equations (I) have an integral

F=C.

In this case, according to No. 66, two of the characteristic expo-

nents are zero. If the equations have a periodic solution for a system

of values of _ and of C, they will still have it for the adjacent values,

so that we shall have a double infinity of periodic solutions

_t = ?,-(t)

which depend on the two parameters _ and C. The period T will not be

constant; it will be a function of _ and of C.

Let us then assign a fixed value C O to C, and let

be the values of x i for t = 0 and for t = k (T + _).

We shall add equation F = C O, and then an arbitrary relationship be-

tween the B's -- for example, BI = 0 -- to the equations

_, : +, ..... _ ::o (3)

Without limiting the conditions of generality, and for the same /213

reason as was given in No. 316, we may assume that $I = 0.

We shall thus obtain the system

+i= o, F ::Co, _,: o. (3")

These equations represent a curve. The number of equations equals

n + 2, but the n equations (3) are not different, and may be replaced by

n - 1 of them. This is Justified by the same line of reasoning that was

presented in the preceding section. System (3") may thus be reduced to
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n + i equations. The numberof variables is n + 2 -- i.e.,

This curve (3") includes the line

_i_O. (4)

Let 8i = O, _ = _0 be a point on this line. In order that another

branch of the curve may pass through this point, it is necessary that

the Jacobian of the first terms of equations (3") be zero or -- which

amounts to the same thing -- that the Jacobian of n - 1 of the _'s and

of F with respect to 82, 83: ..., 8n and T be zero. Finally, since

nothing distinguishes B1 from the other B's, it is necessary that the Jaco-

bians of F and of n - 1 arbitrary _'s with respect to r and to n - 1 ar-

bitrary B's all be zero.

This condition may be expressed in another way.

Just as in the preceding section, we shall derive the following

from the equation F = C O

::,,:_0(z,,x_.....v,,_,),

and we shall obtain the equations

tl_i ,t

dt =Xi (i:_l,_,...,n--O. (i')

According to No. 316, of the n - i characteristic exponents, it is

necessary that one of them be zero and that the other be a multiple of

2i_ [if it is assumed that the periodic solution belongs to equations
kT

(i')]. In other words -- which amounts to the same thing -- it is neces-

sary that of the n characteristic exponents [if it is assumed that the

periodic solution belongs to equations (i)], two be zero, and a third /214

2i_
be a multiple of k--T-"

Let us assume that this condition is fulfilled. We shall derive the

8's and the T from (3") in series which are ordered according to whole

or fractional powers of _. I shall still forego a discussion of this

point.

Application to the Equations of Dynamics

319. I would like to discuss the equations of dynamics in greater

detail. However, in order to do this I must first present an important

property of these equations.
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Let _i and _i be the values of xi and Yi for t = 0. Let Xi and Yi
be the values of xi and Yi for t = T. Weknow that

f f ,z,+,

is an integral invariant. We shall therefore have

f f x ( -- ==o,dY i d_f

with the double integral extending over an arbitrary area A.

This may be written as follows

E(x, dYi -- Y, dXi-- _idr, i q- _id_i) = o,

where the simple integral is extended along the contour of the area A,

i.e., an arbitrary closed contour.

In other words, the expression

E(XidYi- - Yi,tXi-- _, d-r,i-_- rdd';i )

is an exact differential.

As a result, we find that

dS = _[(Xi--_,),/(Y_-_-_,,.).-(V,.-- _t)d(Xi b-_,.)1

is also an exact differential.

320. If we vary T, it is apparent that S will be a function of T.

Let us calculate the derivative of S with respect to T by means of the _215

equations

dXi dF d¥l dF

a'F = _iYi' _ - ax,

or

We have

ds f [dx dY7t'f=: E d,l_d(Y _)--dl_d(X+_)

dV --(V -- -q)d ,
+(X--_)dyf d'r]

,IS f-._[dV d(y.,__).+_dr d(X __)JIT :J _._ d? 7rE
dF

-(Y -- _)d dF]_--(x --_)d g£ - d_j '

or, integrating by parts, we have
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or finally

[ dF )dS v (X--_)_-/_+(Y--5)_y +:t dX+ dY

dS [ dF +(y___)dF]_ -_F -Z (X--_)_X 3Y + arbitrary function of T.

We shall set the arbitrary function of T equal to a constant -2C,

and we shall have

dF
,lS _(F--C)--x (X--_)3_+(Y--_)_?

For T = 0, we have dS = 0 and consequently

S ==const.

We shall take this constant to be zero so that S will vanish identi-

cally for T = 0. The function S is thus completely determined.

321. Let us determine the maxima and the minima of the function S.

Let us first consider T as a constant. In order that the function S has

a maximum or a minimum, assuming that this function S may be regarded as

a uniform function of the variables X i + _i and Yi + ni in the region under

consideration, it is necessary that its derivatives with respect to these

variables are zero -- i.e._ that we have /216

The corresponding solution is therefore a periodic solution of

period T, and this period T is one of the known quantities of the problem
at hand.

We shall no longer regard T as a known quantity. In order that S

has a maximum or a minimum, it would be necessary that we first have

and in addition

Xt ==_i, Yi = rJt,

dS
--0.

dT

However, if X = $, Y = n, we still have

from which it follows that

dS
dT=2(F--C)'
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The corresponding solution will still be a periodic solution of
period T.

However, the period T will no longer be a given quantity. The
energy constant C, which did not enter the preceding case, will be a
given quantity.

The two methods for determining the maximaof S are related to the
two methods of interpreting the principle of least action, that of Hamil-
ton and that of Maupertuis. This will be clear to the reader after the

following chapter has been read.

322. The definition of the function S may also be modified in the

following way.

In a large number of applications, F is a periodic function of

period 2_ with respect to the Yi'S. In this case, a solution may be

assumed to be periodic when X i = $i' and when Yi - ni is a multiple of

2_.

It is then apparent that if we set

dS _= X[(Xt-- _i) d(Y_--_- r,i) --(Yi - _'-- am_)d(Xi+ _i)],

where ml, m2, ..., m n are arbitrary whole numbers, the expression dS

will still be an exact differential.

We shall thus obtain ]217

dFdS _F v (X _) _t_ +(YdT
_tF]

--_,--:;nr.)dy]+ arbitrary function of r.

We shall set

dF dF ]dS 2(F--C)--z (x--_)_Lf_(Y- _,--2m_)d?_-1_----

For T = 0, we have

dS =: Z _mix d_i.

We shall set
S = 4_.Xmi_r,

which concludes the determination of the function S.

Assuming that T is a given quantity, the maxima and minima of S will

be obtained by setting its derivatives equal to zero, which yields
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X_= _1, Yt = _l + _m, _.

The corresponding solution is still a periodic solution, since

Yi- _i is a multiple of 27. The period T is given.

If T is not given, it is first necessary that

and, in addition,

from which we have

Xi _- _i_ Yi _-= _i-'k- 2mi_

dS

F ='= C.

323. It is now necessary that we learn to distinguish between the

real maxima and the real minima of S. Up to this point, we have only de-

termined the condition for which the first derivatives of S are zero, but

it is known that this condition is not sufficient for providing a maximum.

It is still necessary that the second derivatives satisfy certain inequali-

ties.

Let us first assume that the conditions presented in No. 319 hold,

and let us regard T as given.

Let

x_ = ?dt), )'_ -. ?_(t)

be a periodic solution of period T, so that /218

?i(o)= ?t(T), ?_(o)= ?_(T).

A maximum or a minimum of the function S may correspond to this solu-

tion.

Let
r

x_= ?i(t)+xi,

xi=?i(t)+ xi,

be two solutions which differ very little from this periodic solution.

I shall assume that x'i, Y'i' x"i' Y"i are small enough that we may

neglect the squares and may assume that these quantities satisfy the

variational equations (see Chapter IV).
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' ' for t = 0; _i and Y'i --Let _'i and _ be the values of xi and Yf
the values of x_ and y_ for t = T.

In order to determine whether S has a maximumor a minimum, it is
sufficient to study the total group of second degree terms in the ex-
pansion of S in powers of the _'_'s and the n_'s.

It maybe readily seen that this group of terms maybe reduced to

Let us study the expression
...... (i)
- (x,-yi--yi,rl).

According to No. 56, this expression must be reduced to a constant.

What is the form of the general solution of the variational equations?

If there are n degrees of freedom, we shall have n - 1 particular

solutions having the form

The ak'S are the characteristic exponents, and the O's are periodic func-

tions of period T.

We shall have n - i other solutions having the form

x_ = e-attO_.i(t), y_ .= e-axtO_._(t)

corresponding to the exponents -ak which are equal and have the opposite

sign of the n - i exponents ak.

We shall have the obvious solution /219

x,= -d[' r_= d-_

and finally the 2 tn_-h particular solution will be

d_i d,_;.
x_ = t _[ ÷ +,., y_ ::: t _: + +;..

Therefore, the general solution may be written

d_t (d?t)x_= XA_e_ttOk.,.(t)+ XBke-a_tOO&i(t)+C _-+ D t _.[ + +i ,

,, d?_ ( d?_ )) i = E AA.e'_lt O'&i(t) -4- E Bi, e-a_ t O_i ( t ) + C -_1_ *- D' t _[ + _', ,

where the A, B, C, D's are integration constants.
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In the sameway, we shall have

x_-="A'_-e='tO_i(t)+XB',.e-='tO_i(t)+C 'd?:-. . --_ +D'(t--dt _d?t++,)

1!

with a formula which is similar for Yi"

The A' B' C' D', , , s are new constants.

Let us substitute these values in expression (i). This expression

will become a bilinear form with respect to the two series of constants

A, B, C, D,

A', B', C', D'.

Since this form must vanish identically for

rA,---- A_., B/, = B_., C -- C, D --- D'

this form will be a linear form with respect to the determinants contained
in the matrix

At B,, A2 B2 -.. A,,-t ",Bn-t c'C D'D .,% R, A', B; .... _'._, B.,_,

The coefficients of this linear form must be constants, since expression
(i) must be reduced to a constant.

In general, none of the characteristic exponents will be zero, and

two of these exponents will not be equal to each other.

It follows from this that we cannot have a term containing one of
the determinants

A_.A':-- AjA'k, AkB)-- B_,%., B_.B)-- BiB_ ,

A_C'-- CA),, A_D'--DA_., BkC'-- CB),, BkD'-- DB_,,

/220

because the coefficient of this term must contain one of the exponentials

as a factor, and cannot be reduced to a constant.

The only determinants which may enter in our form are therefore

A_B_.--BkA_, CD'--DC',

so that I may write

n i t
-(xiyi--y,x_) = X M_.(Ak [_ -- Bk.A_-)+- N(CD'-- DC'), (2)
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where the Mk and N's are constants.

I may state that Mk cannot be zero, otherwise expression (i) would
not depend on the constants Ak, A_, Bk, B_. If we then assumethat all
of the constants _ and B', C' and D' are zero, with the exception of
the two constants A_ and B_ to which we may assign given values which
are different from zero, we would have a relationship

which would be linear with respect to the unknownsx_ and 'Yi' and where
" " would be given functions of time which arethe coefficients xi and Yi

different from zero. Such a relationship cannot exist, since the 2n
' and 'variables x i Yi are independent. Therefore, M k cannot be zero.

If we change t into t + T, we shall obtain new solutions of the

variational equations, and these new solutions will be obtained by

changing the constants

into

A,t-, 13s,., C, D

A/.c_<t _, Bke-:_ T, C-_- DT, D.

In order to have

:: (x_-,,_-- v', _',.),

it will be sufficient to set the following in expression (i)

A_ = A_e_ r, B_ = Bke-_i T, C'= C -+DT, D'= D,

from which we have f221

,f_ ,t ,l ,t t-#~(Xir, i - Mk(e-:qr- e'xtr)A,t. Bk -- NTDI. (3)

324. In order to discuss equation (3), we must distinguish between

several cases :

i. The exponents +_k are real. The functions

O_..l, %i, 01.i, _,

are also real.

2. The exponents +e k are purely imaginary, and the square e_ is real

and negative.

Then the functions 0k. i and 8_.i, 8'k.i and k.i are imaginary and

conjugate.
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3. The exponents--+_k are complex. Among the characteristic ex-

ponents, we shall then have the exponents _+_j which will be imaginary

and conjugate of the exponents--+_k, and

o+.,., o;.,, o;,., +'7.,

will be imaginary and conjugate of

Ok.i, %,.i, 01./, O_.i.

' 's are real. In order toLet us now assume that the x'i's and the Yi

calculate the constants A, B, C, D, we shall have 2n equations which we

shall obtain, for example, by setting the following in the equation for

xl
t --- o, t=T, t = a'r, ..., t =(_n--1)T.

These 2n equations are linear with respect to the 2n unknowns A, B, C,

D. The second terms are real, and the coefficients are real or imaginary

and conjugate pairwise.

When we change _-_into _ __Ff-_..

i. Ak and Bk do not change when _k is real;

2. Ak and Bk interchange when _k is purely imaginary;

3. Ak and Bk change into Aj and Bj when _k is complex and imaginary

and conjugate of _j.

Therefore :

i. Ak and Bk are real when ok is real;

2. Ak and Bk are imaginary and conjugate when _k is purely imaginary;

3. Ak and Aj, Bk and Bj are imaginary and conjugate when _k is /222

complex, and imaginary and conjugate of aj.

Finally, C and D are real.

These conditions are sufficient for _i and Y'i to be real.

Let us assign values satisfying these conditions to the constants

Ak, Bk, C, D, as well as to the constants A_, B_, C' , D'. Then the

second term of (2) must be real, and in order that it may be real the

following is necessary:

i. That M k is real if _k is real;
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2. That Mk is purely imaginary if _k is purely imaginary;

3. That Mk and Mj are imaginary and conjugate if _k and oj are
complex, and imaginary and conjugate.

Form (3) contains a term

and does not contain another term depending on Ak or Bk.

If the exponent _k is real, the presence of a term containing AkBk
is sufficient for providing that the quadratic form (3) can be defined.

Therefore, if only one of the exponents ok is real, the function S
cannot have either a maximumor a minimum.

Let us now assumethat two exponents ok and aj are complex, and
imaginary and conjugate.

Let us cancel all the constants except for

Ak, Bk, Aj) B j,

and the form (3) may be reduced to

_I_ (_-=_'r _ c=_T)Ak Bk _i- _lj (e-_, _ - _=/r) Aj B7.

These two terms are imaginary and conjugate, so that form (3) is real.

Let us assume that Ak does not change, and that Bk changes sign.

Aj, which is imaginary and conjugate of Ak, will change no longer, and

Bj, which is imaginary and conjugate of Bk, will change into -Bj.

Therefore, form (3) will change sign; therefore, it cannot be defined.

Therefore, if only one of the exponents _k is complex, the function

S cannot have either a maximum or a minimum.

Let us now assume that ok is purely imaginary. Then Ak and Bk are J223

imaginary and conjugate, and the product AkB k is the sum of two squares.

In order that S have a maximum, it is necessary and sufficient

that all of the quantities

51k slnjkT, --NT
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be negative. In order that S have a minimum, it is necessary and suffi-
cient that all these quantities be positive.

Mk
It should be pointed out that all these quantities are real, because
and _k are real.

325. Howmay these results be modified if it is assumedthat the
energy constant is one of the given quantities of this problem? We then
have identically

\ d_ ._'+ -j-fy: =o,

dF dF

where we assume that in _x and_y , x i and Yi have been replaced by the

periodic functions _i(t) and O[(t).

The constant value of the function F must be the same for the periodic

solution

x_= ?,.(t), yi= _(t)

and for the infinitely close solution

xt==?i(t)÷ x_, y_ ?_(t)+y_.

This relationship is a linear equation between the constants

Ak, Bk, C, D

and the coefficients must be independent of t.

It follows from this that Ak and Bk must not be included in the re-
lationship, since these constants are always multiplied by e±_k t and

since this exponential cannot vanish.

In addition, C is no longer included, since the solution

x_ = ?dr)+ C di" 7_- : ?i(t)-t C .'dr"

where C is a very small constant, may be deduced from the periodic solu- /224

tion by increasing the time by a small amount C. Consequently, this

solution corresponds to the same value of the energy constant as does the

periodic solution.

Our relationship, which cannot be reduced to an identity, may there-

fore be reduced to

D_o.
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However, if D is zero, the term -NTD 2 vanishes in the form C3).

In order that S may have a maximum or a minimum, it is sufficient

that the quantities

_M_ sin ==cT
¢_ ¢,

all have the same sign.

If there are only two degrees of freedom, there is only one of

these quantities.

Therefore, if there are only two degrees of freedom and if a k is

purely imaginary, the function S always has a maximum or a minimum.

326. Let us now assume that the conditions given in No. 322 hold,

so that

dS = Z[(Xl--_i)d(Yi--_i)--(Y_--_i--_mi_)d(Xi+_i)]

and let us assume that T is a constant. In order that S may have a

maximum or a minimum, it is necessary that we have a periodic solution

where

9i(t + T)--=_(.t); ?_(t-i-T):: ?_(t)-r- _mi_.

Let us then consider a close solution

s.

Zi=?i(t)_-xi, Yi='_'i(t) _-Yi; '

and this discussion will proceed in the same way as above,

are the same.

The results

In order that there be a maximum or a minimum, it is necessary

that all the exponents _k are purely imaginary. It is then necessary /225

that all the quantities

Mk . _kT

have the same sign.

If it is assumed that the energy constant is a given quantity of

the problem at hand, D is zero, the term -NTD 2 vanishes, and it is

sufficient that the quantities

Mk . _kT
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all have the samesign.

327. What will now take place if the equations have other uniform
integrals in addition to the energy integral and if, consequently, some
of the characteristic exponents are zero?

A discussion similar to that presented above could still be employed.

For example, let us assumethat our equations have p other uniform
integrals, in addition to the energy integral:

Ft, F:, ..., Fp,

in such a way that the brackets [Fi, Fk] of these integrals taken two

at a time are zero. Based on the statements presented in No. 69, we

then know that 2p + 2 characteristic exponents are zero. We shall

assume that all the other exponents are different from zero.

We shall then have n - p - 1 pairs of constants which are similar

to the constants Ak and Bk, and p + 1 pairs of constants Ck and Dk which

are similar to the constants C and D.

Form (3) will then become

_Nh-TDk,E3l,(e__fr. c_LT)A_B k_v

where ENkTD _ is a sum of terms similar to the term NTD 2.

If we now assume that the values of our p + 1 integrals are given

quantities of the question ounder consideration, the constants Dk will

all be zero, the terms NkTD _ will vanish, and the condition under which

S may have a maximum or a minimum will still stipulate that all the /226

quantities

have the same sign.

I shall not insist upon this point, because -- in the case of the

three-body problem -- either we shall be dealing with the restricted prob-

lem presented in No. 9, or we shall be able to decrease the number of

degrees of freedom by applying the procedures given in Nos. 15 and 16.

In the case of the reduced problems of Nos. 9, 15 and 16, there

is no more than one single uniform integral, that of energy, and there

are only two zero exponents, as we saw in No. 78.
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Solutions of the Second Type for Equations of Dynamics

328. Let us change T successively into 2T, 3T, ..., mT, ...,

The function S defined above depends on T, and let

S,,,==S(/,_T).

Let us try to determine the maxima and minima of Sm, assuming that

T is a constant.

If we consider a periodic solution of period T, this will also be

a periodic solution of period mT. Therefore, the first derivatives of
S are zero.
m

In order that there may be a maximum or a minimum, it is necessary

that all the exponents ak are purely imaginary.

If all the quantities

___ , m_.TMI: s,n-- (1)

are negative, there will be a maximum; if they are all positive, there
will be a minimum.

This is the first point to which I wish to draw attention.

If we assign all the possible whole values to the whole number m,

the n - i quantities (i) will have in general all the possible combina-

tions of signs.

Let us set, for purposes of brevity,

akT

_ [ok,

and let

_k _: //20)4 "- 2"qk_:"

/227

Let us assign all the possible whole values to m and to m k. If we

assume that Zl, z2, ..., Zn_ 1 are the coordinates of a point in space

having n - 1 dimensions, we shall obtain an infinity of points. It may

stated that there will be an infinity of these points in every section

of space having n - i dimensions, no matter how small it may be.

In order to demonstrate this, I need only refer to the line of

reasoning employed to establish the fact that a uniform function of n

real variables cannot have n + i different periods.

The quantities given in the following table:
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Oj 01 . . ._, _

will play the role of periods in this llne of reasoning.

There would be an exception, if these periods were not different --

i.e., if one of the quantities _ were commensurable with 27, or, more

generally, if there were a linear combination of the z's which had only

one single period -- i.e., if there were a relationship having the form

_|c,)l+ b2(o !-_...4- b,_--l_O.--t-_ 2nb._O_

where the b's are whole numbers.

(2)

Let us disregard the case of this exception. The quantities (i)
will equal

We may choose the whole number m in such a way that these quantities repre-

sent a combination having a given sign -- i.e., that there are numbers

zk which satisfy inequalities having the form

a,<zt<a, I*_, a,<z2<a,+= .... , a,_-t<=,,-t<a,,_t+=.

where the ak's equal 0 or n.

(3)

This results directly from the statements which we have just /228
made above.

Let us move on to the case in which we have a relationship of the

form (2). We may always assume that the whole numbers b are primes among

themselves. In this case, the expression

bt zt q- b:z2 q-. • • "Jr- bn-! z..-I (4)

has only the period 27.

In order that there may be no numbers zk satisfying the inequalities
(3), it is necessary and sufficient that the difference between the larg-

est value and the smallest value which expression (4) takes -- when all

values which are compatible with the inequalities (3) are assigned to be

Zk'S -- is smaller than 2n, i.e., smaller than a period of this expression
(4).

This difference is obviously as follows
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_(lb, I-4-lb:l +... 4-lb,,-, !),

and we must therefore have

lb, l + Ib,l +.-.+ Ib,,-,1G_. (5)

The inequality can only hold if all of the b's are zero, except for

one of them which must equal +i.

In this case _k must equal a multiple of 2_. This means that _k

must be zero, since _k is only determined up to a multiple of _¢_T

We have excluded the case in which one of the =k'S is zero.

The equation can only be valid if all the b's are zero, except for

two of them which must equal +i.

Then the stun of the difference between two of the _k'S will be a

multiple of 2_. If we note that the _k'S are only determined up to a

multiple of 2_¢-_t we may express this result in another way.
T

Two of the characteristic exponents will be equal.

This is the only exception which still exists, and it may be readily

excluded.

329. Let us now assume that the equations of dynamics under consid-

eration depend on an arbitrary parameter _, just as is the case for the

three-body problem, as we know.

When we vary _ continuously, the periodic solution

xt = ?_(t), yi = ?i-(t)

will also vary continuously, as we may determine from the discussion

in Chapter III.

The quantities Mk will also vary continuously, but -- as was ex-

plained in No. 323 -- they can never vanish. Therefore_ they will

always retain the same _, and _t is their sign alone in which we are

interested.

The energy constant will be regarded as one of the given quantities

of the problem at hand, but this given quantity may depend on _, and we
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shall choose it in such a way that the period T of the periodic solu-
tion remains constant.

The exponents _kwill also vary continuously when we vary p con-

tinuously. Let us clarify to a certain extent the manner in which this

variation should be handled in the case of the three-body problem. For

= O, all the exponents are zero. However, as soon as _ ceases to be

zero, the exponents cease to be zero also. One of these exponents can

only vanish, or become equal to a multiple of 2=q_-7 or become equal
T '

to another characteristic exponent for certain special values of p.

330. Let us consider a periodic solution of period T, such that

all the exponents ak are purely imaginary. This is what we designated

above by a stable solution. In Chapters III and IV, we proved the

existence of these solutions.

Let us consider one of the exponents, al, for example. When p varies

continuously, _--_, -- which is real -- will become commensurable with
27
-_ an infinity of times. Let us assign a value P0 to p, such that

a! 2k_

V--7= "_'

where k and p are the prime whole numbers among themselves. In add- /230

ition, this value does not correspond to a maximum or a minimum of _"

At a later point_ in No. 334, we shall see why I have placed 2k_
in the numerator t and not k_.

In any interval, no matter how small it may be, there is an infinite
number of similar values.

If m is an arbitrary whole number, for this value P0 the expression

sin_ T

is zero. In addition, since P0 does not correspond to a maximum or a

_, this expression will change sign when p passes fromminimum of __,

P0 -- E to P0 + c.

For example, let us assume that it changes from being negative to
being positive.
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Pursuing the line of reasoning presented in No. 328, we will find

that we may choose the whole number m in such a way that the expressions

M_ ,iapm_T (k=_,3, n --l)
72_ - _--_-_.....

have all possible combinations of signs, and that they are all negative.

Under this assumption, for _ =_0 -- e, our function Sm. p will have

a maximum, since all our expressions will be negative. However, for

B = B0 + e, our periodic solution will no longer correspond to a maximum

of Sm. p, since one of these expressions will have become positive.

Theorems Considering the Maxima

331. In order to pursue this subject further, it is necessary to

illustrate one property of the maxima. Let V be a function of the three

variables Xl, x2 and z, which may be developed in increasing powers of

these three variables. I shall assume the following:

dV dV

i. For Xl = x2 = 0, V vanishes as well as its derivatives dx I, dx 2,

no matter what z may be;

2. For x I = x 2 = 0, V has a maximum for z > 0 and a minimum for /231

z <0.

It may be stated that the equations

dV dV

_l_.= _t_ = o

have other real solutions in addition to the solution

Let us develop V in powers of z, and let

V = Vo+ z\rl + z_V_ + ....

The functions V 0, VI, V2, ... may themselves be developed in powers of x 1

and of x2. However, these expansions will contain neither terms of

degree 0 nor terms of degree i, because -- no matter what z may be -- we

must have

dV dV
V = 71_ - d_ -- o

for x I = x2 = 0.

In addition, V 0 does not contain terms of the second degree either.
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Without the second degree terms, it is impossible to pass from the case

of the maximum to the case of the minimum, when going from z > 0 to

z < 0.

Conversely, V I will contain first degree terms, at least we shall

assume this is the case. Let us then consider the equations

dVo dV, dV_

dVo dVt -_- z_ dV,
o = _7_ + : 7lT, _T, +""

(1)

which must he solved.

Let U 0 and U 1 be the lowest degree terms of V 0 and of V I. According

to the statements which we have discussed, U I is of the second degree,

and U 0 is of the degree p -- with p being larger than 2. Let us set

(p--a)l_=t; xt=ytt, x2=y2t, V=XVtP; a=_lP-'

W may be developed in powers of t. Let us set

_r= _Vo.__t_Vl._.t_V2-1-....

We obviously have

Wo= ±Utt-p+ Uot-p= ± U_+ U_,

/232

U_ = Ult-P and U_ = U0t-P are two homogeneous polynomials in Yl and Y2 --

one of degree 2 and the other of degree p. I shall employ the sign + or

-, depending on how I have set z = +__tP-2. The expression

dV dUt dV dU,

dzt dxt dxt dxt

will also be developed in powers of t when x I and x 2 are replaced by

yl t and y2 t. It will include a certain power of t as a factor. Let us

divide by this factor, and let H be the quotient. This quotient developed

in powers of t may be written

tl : Ito+ tilt + t 2H,+_..;

H 0 will be the first of the expressions

dW, dU_' dWk dU_

ay, ,ly, a.r, art

which will not vanish.

The equations dV dV

2_ =_, =o
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may be replaced by the following equations

dW

ll----o _l_ _o.

I shall prove that we may derive the y's from these equations in the

form of series which are ordered in fractional and whole powers of t,
which vanish with t and which have real coefficients.

In order to do this, according to statements presented in Nos. 32

and 33, it is sufficient to establish the fact that for t = 0, these

equations have a real solution of odd order.

For t = 0, these equations may be reduced to

dW0
II0_o, _ _o,

or

d\V_. dU_ dW,. dU_
dy---,,"'O'---',-- -2yq'dy----1----o (2)

and
dU', + dU;

+-- dr--; ,ty, = o.
(3)

Equation (2) indicates that W k has a maximum or a minimum, if we

assume that Yl and Y2 are related by the relationship U_ = const.

For the present, if we assume that Yl and Y2 are the coordinates of

a point in a plane, the relationship U_ = const will represent an ellipse,

because the quadratic form U I (and, consequently, the form U_) must be

defined in order that V may have a maximum or a minimum. Due to the

fact that an ellipse is a closed curve, the function W 2 must have at

least a maximum and a minimum when the point Yl, Y2 describes this

closed curve.

Therefore, whatever the constant value may be which is assigned to

UI, equation (2) will have at least two roots, and two roots of odd order,

because we have seen in No. 34 that a maximum or a minimum always corres-

ponds to a root of odd order. At this point, where we have no more than

one independent variable, the theorem presented in No. 34 is almost self-

evident. Under this assumption, we may distinguish between two cases:

First case.

identically

' is not a power of UII. In this case, we do not haveU 0

dV¢o dU', d\Vo dU_
_0,

-<ty, ,It, dr, &,
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We shall therefore have W k = W0, and

dU'o dU't dU o dU',

"°- dy, <¢y, _zy, ar, - o.

Equation H 0 = 0 is then homogeneous in Yl and Yl. No matter what the

constant value is which is assigned to U_, it will provide us with the
yl

same values for the ratio --.
Y2

Yl
We may derive-- from equation (2) and, according to the preceding

Y2

statements, we shall obtain at least two solutions of odd order. /234

Let Y_j_l_ _i be one of these solutions. Let us set Yl _I u, Y2
Y2 _2

= _2u and let us substitute in equation (3). We shall have

U'o = A u., U'l := B u'

and equation (3) may be reduced to

AuP-I-_-B--=-o.

If p - 2 is odd, this equation will give us a real value for u.

If p - 2 is even, we may distinguish between two cases.

If A and B have the same sign, we shall take the lower sign

A up- i -- B = o.

If A and B have opposite signs, we shall take the upper sign

A ztp -i-!- B :: Op

and we shall have two real values for u.

In every case, these real solutions are simple.

Thus, equations (2) and (3) will always have solutions of odd order.

Second case. We have

P

u; = h(u; )r.

We shall begin by solving equation (3),which may be written as

follows

p --1

BA(U_), -±,=o.
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This equation provides us with the value of U_. This value is

real and simple, but this is not sufficient because _I is a negative

definite form. In order that the solution may be suitable, it is

' be negative; as a consequence,necessary that the value found for U 1

we shall choose the sign +.

The value of U_ having thus been determined, we may assign this

constant value to U_, and in order to solve equation (3) we need only ]235

determine the maxima and minima of W k. As we have seen, we shall derive

at least two solutions of odd order.

We have therefore established the fact that equations (2) and (3)

always have real solutions of odd order. The theorem presented at the

beginning of this section has thus been proven.

332. Now let V be a function of n + i variables

v,, _, ..., x,, and =

I shall assume the following:

i. V may be developed in powers of x and of z;

2. For

we have the following, no matter what z may be

dV dV dVv ==-=_- ..... =o.
dxl ax,

3. Let us consider the group of terms of V which are second degree

terms with respect to the x's. They represent a quadratic form which may

be equated to the sum of n squares having positive or negative coefficients.

When z changes from positive to negative, I shall assume that two

of these n coefficients change from positive to negative, and that the

n - 2 other coefficients do not vanish.

Under these conditions, it may be stated that the equations

dV dV dV
dx-_= _ ..... d_

(i)

have real solutions which differ from

X| _ X 2 ----- • • . :_-- ,._tt --2 O,
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Let us develop V in powers of z and let us set

Let U0 and U1 be the group of second degree terms of V0 and VI.

The group UI is a quadratic form which maybe decomposedinto a sum
of n - 2 squares, because we know that, for z = 0, two of the coefficients
which were in question above vanish. 1236

Therefore, if we consider the discriminant of U0, i.e., the func-
tional determinant of

with respect to

duo dUo dUo

this determinant vanishes, as well as all of its minors of the first

order. However, all of the second-order minors do not vanish, unless a

third coefficient is zero, which we have not assumed.

We may also assume that a linear change in the variables has been

performed, so that U 0 is restored to the form

Consequently, the functional determinant of

with respect to

dUo dUo duo
_,:x3 ' _ Y " " " _ ¢[,c.

is not zero.

Let us then consider the equations

dV dV dV
d_ = a,_ .... -- _,, -'0 (2)

which are n - 2 of equations (i). We may derive

*T31 l'& 7 . • • _ _L_tt

in the form of series which are ordered according to powers of

For this purpose, in view of the statements presented in No. 30, it is
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sufficient that the functional determinant of equations (2) with re-
spect to

does not vanish whenwe set

Whenwe set z = 0 and whenwe limit ourselves to first-degree terms
with respect to the x's, equations (2) maybe reduced to

/237

duo dUo dUo
_ -- ==0

d-_; "- dx_ ..... dx_

and we have just seen that the corresponding functional determinant is

not zero.

Let us replace x3, x_, ..., xn in V by their values derived from

equations (2). We shall then be dealing with the conditions stipulated

in the preceding section:

i. We have no more than three independent variables z, x I and x 2.

2. The function V may be developed in powers of these variables;

3. Equations (I) may be replaced by

OV OV
O'rl -- Od'l _ O_

where the 3's represent the derivatives taken with respect to the x2,

x4, ..., X_s as functions of x I and of x 2 defined by equations (2).

In effect, we have

OV dV dV d.r3 dV _ dV d_

(3)

and, in view of equations (2), it follows from this that

OV dV
-- a,

d.vI dx L
OV dV

dx_ d,vt

4. For z > O, V -- regarded as a function of x 1 and of x2, --

has a maximum when these two variables are zero.

In order to illustrate this, we must try to find the second-degree

terms with respect to x I and x 2 in V. Let
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W0 _- :,_Vt + z°- \V_ +...

be these terms. In order to obtain

_V 0 -I- ._ _V I

which are the only ones which interest me, I shall take the two /238
terms

U0+ zUt,

and I shall neglect the other terms of V which cannot influence W 0 + zW I.

I may derive the following from equations (2)

X,1, X._ . . ._ 3_

in the form of series ordered in powers of x I and x 2. In these series,

I shall only retain the terms which are of degree i with respect to x 1

and x 2, and of degree 0 with respect to z. The other terms may be neg-

lected, because they do not influence

We + = W,.

Equations (2) may then be reduced to

dUt

2A 3x3 -+ z _/-_'s = o,

dUt

dUt

2A,, z,, + z _, = o.

If we substitute the values thus obtained in _laee of x3, xq, ...,
Xn, in UO, we shall find that U 0 is divisible by zz. With respect to

U I, it may be reduced to

Ut°+zUI -_-z_U b

where U 0 is none other than the quantity which U I becomes when we cancel

x S, x4, ..., Xn, and where U_ and U_ are two other quadratic forms with

respect to the x's. We shall therefore have

and
Uo= z'uo'; U,-:Uo+zUl+z_U[

U0÷ zU, = z UtO+ z-_(U3 + U_)+ :_U'.
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In order to calculate W 0 + zWl, I may neglect the last two terms

which may be divided by z2 and zS, and I shall simply have

W0+zW,= _U_.

I shall demonstrate the fact that V has a maximum for x I = x2 = 0 J239

and for z which is positive and which is very small. It is sufficient

to illustrate this for W 0 + zW I, i.e., for zU_.

Finally, we must prove that U_ is a negative definite form.

For this purpose, we shall write the quadratic form U 1 as follows

U_ is a sum of two squares having coefficients whose sign I shall not
f[

predict. U I depends only on the n - 2 variables

_'3_ _ • • -_ _a.

This is always possible, according to the general properties of quadratic

forms.

Let us consider the form

Uo+_Ut= _U_+(Uo+zU_),

where z is assumed to be positive and very small. The form U 0 + zU_ ,

which depends only on the n - 2 variables x 3, x_, ..., Xn, may be equated

to a sum of n - 2 squares having coefficients whose signs must be the

same as those for A3, A4, ..., An , since -- due to the fact that z is

very small -- this form differs very little from U 0. Therefore, they do

not change sign when z makes a transition from positive to negative.

According to our hypotheses, when z makes the transition from posi-

tive to negative, n - 2 of our coefficients do not vanish, and, on the con-

trary, two coefficients make the transition from negative to positive.

These last two coefficients can only be the coefficients of U I.

Therefore, U_ is the sum of two squares having negative coefficients.

0 it is necessary to set the following in U_In order to have U I,

X$_.,._X a _0.

TT !

Then U I vanishes, and U 1 may be reduced to U I .

Therefore, U_ is a negative definite form.
q.e.d.
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Therefore, V, regarded as a function of x I and x2, is maximum for

z which is positive and is very small, and for x I = x2 = 0.

One will find in the same way -- or rather one will find at the

same time -- that V is minimum for z which is negative and very small,

and for x I = x 2 = 0.

As I have stated, we have thus returned to the conditions stipu-

lated in the preceding section, and it may be assumed that the theorem

presented at the beginning of this section has been substantiated.

/24O

Existence of Solutions of the Second Type

333.

defined the function Smp , which depends on _, of the 2n variables

I X,-+_,.... , X,.+_.,Y1+_t, Y,+'_, ..., Y,+_.

The _i's and the _i's are the values of x i and Yl for t = 0.

Xi's and the Yi's are the values of x i and Yi for t = mpT.

Let us return to the hypotheses given in No. 330. We have

(_

The

We sould like to study the solutions of the equations

JS _ p _IS,. p =o. (i)

According to Nos. 321 and 322, these solutions correspond to periodic

solutions of period mpT. We already know one of them, since a periodic

solution of period T is at the same time periodic having the period mpT.

I propose to show that there are others in addition.

First, however, I would like to illustrate the method which may be

employed to regard Smp as being dependent only on _ and on the 2n - 1
variables

(s)

For this purpose, we shall assume that

Xn -I- _n _-=_ o.

Let us now consider the equations

dS.,p dS,,,p
J(X_+ _) = J(_t+ _,j =°"

(i')

We shall employ the d's to represent the derivatives of S which is

assumed to be a function of the variables (_), and shall employ the a's
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to represent the derivatives of this samefunction S which is assumed /241

to be a function of the variables ([3).

I plan to show that equations (i) and (i') are equal.

Section No. 322 has provided us with the following

dS = Z [( X,. -- _;) d(Yi + T,i) -- ( Yi -- "t,i-- _ rnt_)d( Xi -,- _i)].

Equations (i) may therefore be written

-- (L-- 5i-- _ m,._) -: X,.-- _i = o

(i:: 7, 2, •., n),

and equations (i') may be written as follows

(i=,,_ ..... n--,),

In view of the energy equation, we have also

F(X,., Vi) = F(_i, Hi-4- 2rni_).

According to equations (1'), all of the Xi's equal the _i's, and all

of the Yi's (except one) equal ni + 2mi_. The preceding identity may

therefore be written as follows. For purposes of abbreviation, I shall

write

F(_,, _:, ..., _,,; _1-+-'/mtn, _,-+ ar;"t2'r:..... _n-x-i-2rnn-I .-r,Y,,'_= F(Y,_).

My identity may therefore be written in the following form

F[% _-9.m,,r, + (Y,, -- _ -- 2 ,n,,=.)] -- F(_ !- 2,n,,_)---o,

or, in view of the theorem of finite increases

(Y_--r,i,- 2 m,,=)F'[_,,, ÷ 2 ma ,-. + O(Y.- _.- 2m_. )] = o, (2)

where 0 is included between 0 and i, and where F' is the derivative of

F with respect to Yn"

0 0 be the values of _i and ni which correspond to theLet _i and ni

periodic solution of period T. The region under consideration only in-
0

cludes the immediate vicinity of the point _ = _0, $i = _i' _i = n_.

Therefore, _i and Xi will never deviate greatly from $o, and ni or

Yi - 2mi_ will never deviate greatly from n_. Therefore, the second

factor F' of relationship (2) will never deviate greatly from its value
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0 0
for _i = _i' Hi = _i' and in general this value will not be zero.

Therefore, the first factor of relationship (2) must vanish, and /242
we have

In other words, equations (i') entail equations (i). We may

therefore regard S as a function of the variables (_). When it is
mp

a maximum, considered as a function of the variables (_), it will also

be a maximum as a function of the variables (a).

I have employed $_ and n_ to designate the values of $i and of n i

which correspond to the periodic solution of period T. The corresponding

values of X i + _i and Yi + ni will be 2_ and 2n_ + 2mimP_ (if the periodic

solution of period T changes Yi into Yi + 2mi_, in conformance with the

hypotheses formulated in No. 322). Let SO be the corresponding value of

Smp. Let us set

1_= :_o-;-l*'; V = Stop--S0; X_-_-_i_=._0 + _i,_'

and let us consider V as a function of p', of the g',s, and of the n''s.

The function V will be governed by the same conditions as the function V

of the preceding section.

No matter what _' may be, V and its first derivatives with respect
to the _''s and to the _''s will vanish when

If we consider the group of second degree terms of V with respect

to the _''s and the n' 's, and if we regard it as one quadratic form

which is decomposed into a sum of square terms, it may be seen that two

of these coefficients of these square terms both make a transition from

negative to positive, or both make a transition from positive to negative,

when _ changes sign. The other coefficients do not vanish.

The expression

__M,__sin t>m at T

changes sign, and the other expressions

BT_ sin pmal_T
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kJ

do not vanish. The coefficient which I have designated as D in No. 323

no longer vanishes, and there is not another one because we have only

2n - 1 variables, the variables (_).

The conditions presented in the preceding section therefore hold,

and we may state that the equations

dV dV

have other real solutions in addition to _ = n'i = 0 or, which means

the same thing, equations

dS,_,p dS"r --o (1)

have other real solutions other than those corresponding to the periodic

solution of period T.

The maxima of the function Smp, or more generally the solutions of

equations (i), correspond to periodic solutions of period mpT.

We must therefore conclude that our differential equations have

periodic solutions of period mpT, which differ from the solution of

period T, which is identical to that for _ = _0, and which differ only

slightly for _ close to _0-

If attention is drawn to the preceding line of reasoning, we shall

find that the periodic solution of period T need not correspond to a

maximum of Smp.

We shall therefore set m = I.

It is not necessary that the solution of period T be stable.

sufficient that one of the characteristic exponents al equals

2k_Vv_

pT

It is

for _ = _0"

We therefore obtain the following result.

If the equations of dynamics have a periodic solution of period T,

such that one of the characteristic exponents is close to

they will also have periodic solutions of period pT which differ very /244
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little from the solution of period T, and which are identical to the
latter when the characteristic exponent equals

2k_I.LZ_

pT

These are solutions of the second type.

Remarks

334. This entire line of reasoning assumes that Smp is a uniform

function of X i + $i, Yi + hi" Under this condition alone may it be

stated that all the maxima of Sm correspond to a periodic solution

(see No. 321). This fact cannot be stressed enough. It is an obstacle

which will be encountered frequently when we wish 6o derive the results

of the theorem presented in No. 321.

Let us determine whether Smp is a uniform function of these variables.

We may assume that m = i, which we have just illustrated. In addition,

Sp is clearly a uniform function of the _i's and the ni's. It will also

be a uniform function of the Xi + $i's and the Yi + hi'S, provided that

the functional determinant of the X i + $i's and the Yi + ni's with

respect to the _i's and the ni's does not vanish in the region under con-

sideration. Due to the fact that this region may be reduced to the imme-

diate vicinity of the values

it will be sufficient that the functional determinant is not zero

at this point. This functional determinant may be written as follows

(assuming that n = 2, tO formulate our ideas more clearly)

dX, dXt dXt dX,
-;t_.i -*-' _;,; dr;, d--.c,-,

dYt dYt dYt dVI
7i_--, d._-_,+ ' -d_ d-,,--;

dX, dX, dX, dX_
d_t dT_'_t clot =I-t d_

dg, d_ dY_ dYt
dgt dqt d_, d"]t

It must therefore be verified that the equation in S /245
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d_.X. __ S dXi dXi
d! I d q I d_

dYi dYl S dY,
T[!T d-_, ,&,

dx, dX, (!-_2 - s
d_, t d_ t {&:

dY, dY_ dY,

d;i "d_ d;1

dXt

dry2

dX2

dq2

dY,

_lrj=

_0

does not have a root which is equal to -i.

According to the statements presented in No. 60, the roots of this

equation equal

e_PT_

where the _'s are characteristic exponents. We must therefore verify

the fact that we do not have

:{ ......... _>T-- -"

where k is an integer number. By hypothesis, the exponent al equals

7

pT

where k is an integer number, and the other exponents are not commensur-

able with = #227. , in general.
T

The difficulty with which we are concerned will not therefore

occur.

In order to avoid this, in No. 330= I assumed that

and not

_t " : pT

(k integer number)

(k integer number)

Special Cases

335. Let us say a few words about the simplest cases, and let us

assume only two degrees of freedom.

Let us assume that the form which is similar to that which I have
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designated as U0, in the analysis of No. 331, is homogeneousof the
third degree only in xI and x2.

/246

The equation

duo dUi duo dU,

d_', d::_ dx, dx, =o (1)

always has real r_ots, as we have seen.

The theorem is self-evident here, since this equation is of the
Xl
--e

third degree in x2 It may have one or three real roots. Let us first

assume that it has only one in order to clarify our ideas.

If we then set

w, = a,? cos? -_ bt? sin 9

x_= a_? cos? + b2? sin?,

choosing the coefficients a and b in such a way that U 1 is reduced to
_p2, the ratio

u0
:¢

U_ considered in No. 331

will only have a maximum and a minimum when ¢ varies from 0 to 2_.

This maximum and this minimum, which are equal and which have opposite
sign, will correspond to values of _ which are far removed from _.

We will then have

Uo ! zU, = p_f(?)--zp,.

The function f(¢) has a maximum and a minimum which are equal and

which have opposite sign. The function U 0 + zU 1 then has:

For z > 0, a maximum for 0 = 0 and two minima.

For z < 0, a minimum for p = 0 and two maxima.

Employing the English term, I shall use the word minima to desig-

nate a point for which the first derivatives vanish, and where there
is neither a maximum or a minimum.

The same will hold true for the function V, since -- if z is

very small -- the terms U0 + zU 1 alone will have an influence.

Therefore, no matter what z may be, the differential equations will

have: /247
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A solution of period T, of the first type, which is stable;

A solution of period pT, of the second type, which is stable for

z < 0 and unstable for z > 0.

Let us now assume that equation (i) has three real roots.

The function f(_) will have three maxima and three minima which are

equal pairwise and have opposite signs.

In this case U0 + ZUl, and consequently, V have:

For z > 0, a maximum for p = 0, and six minima;

For z < 0, a minimum for p = 0, six maxima.

No matter what z may be, the differential equations will therefore

have :

A solution of period T, of the first type_ which is stable;

Three solutions of period pT, of the second type. We shall see

below that, from a certain point of view, none of these solutions are

different.

Let us proceed to a case which is a little more complicated, and

let us assume that U 0 is of the fourth degree.

In this case, equation (I) is of the fourth degree, and, since it

always has at least two real roots according to No. 331, it will have

two or four. We then no longer have

but rather

Let us first assume that there are only two real roots.

The function f(_) will then have a maximum and a minimum when

varies from 0 to 7, as well as when _ varies from _ to 27.

A distinction may be drawn between two cases, depending on the signs

of this maximum and this minimum.

First case. The maximum and the minimum are positive.

The functions U0 + ZUl and V have:
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For z > 0, a maximum for p = 0, two minima and two maxima.

For z < 0, a minimum for P = 0.

In addition to the solution of the first type which always exists,

the differential equations have two solutions of the second type for /248

z > 0, and do not have any for z < 0. Of these two solutions, one is

stable and one is unstable.

Second case. The maximum is positive, and the minimum is negative.

The constants U 0 + zU 1 and V have:

For z > 0, a maximum for p = 0, two minima;

For z < 0, a minimuma for p = 0, two minima.

The differential equations always have an unstable solution of the

second type, in addition to the solution of the first type which is

stable.

Third case. The maximum itself is negative.

The differential equations then have:

For z > 0, a solution of the first type which is stable;

For z < 0, a solution of the first type which is stable, and two

solutions of the second type of which one is stable and one is unstable.

We must now examine the case in which equation (i) has four real

roots.

The equations then have:

For z > 0, a solution of the first type which is stable, h solutions

of the second type which are unstable, and k solutions of the second type

which are stable;

For z < 0, a solution of the first type which is stable, 2 - h solu-

tions of the second type which are stable, and 2 - k solutions of the

second type which are unstable.

The integer numbers h and k may take the following values, depending

upon the signs of the maxima and the minima of f(_):

h=k-=_; h=2, A-=I; h=_, k=o; h==,, k=o;

h--k=o; h=k-=l.
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CHAPTER XXIX

DIFFERENT FORMS OF THE PRINCIPLE OF LEAST ACTION

336. Let

y_, Y_, ..-, y,_

be a double series of variables, and let F be an arbitrary function of /249

these variables. Let us consider the integral

, t, ( dr;;,}J : -- F -t- Zyi -dr- / dr.
o

The variation of this integral may be written as follows.

have

( dri d g ri _ dt

In order that this variation may vanish, it is necessary that we

dx'i dF ctyi dF
dt dyi ' dt dxl

(i)

which provides us with the canonical equations, but this condition is

not sufficient. If it is fulfilled, we have

::_[)_O.rt]lzto

and it is still necessary that the second term of this equation be zero.

This is what occurs if we assume that the 6xi's are zero at the two

limits -- i.e., that the initial and final values of the xi's are given.

Under these conditions, the integral J which I have designated as the

action is minimum.

' ' be the new vari-Let us perform the change in variables. Let xi, Yi

ables, and let us assume that they have been chosen in such a way that

Ey_dx_-- Eyidxi= dS (2)

is an exact differential. In this case, we have seen that the change 1250

in variables does not change the canonical form of the equations, and this

result is an immediate consequence of different propositions which will

be presented below. Let

J'= ft"(--F+Zy_)dt.
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Wehave

j, j =fas dt = st- So,

where S O and S 1 are the values of the function S for t - tO and t = t 1.

We therefore have

_J'= _J + [_s]_:. (3)

If the canonical equations (i) are satisfied, we have

t=t I_J= + [Ey_ _xl],=t., (4)

and, consequently, in view of (2) and (3),

_J'= [zy_ '_t, (4')

In the same way that relationship (4) is equivalent to equations (i),

the relationship (4') is equivalent to the equations

a-7 = a-_,' at - a_

However, we have just seen that (4) is equivalent to (4'). Equa-

tions (i) are equivalent to equations (i'), which means -- as we already

knew -- that the change in variables does not change the canonical form

of the equations.

The action J' will be minimum when we assume that the initial and

final values of the variables xi are given. Therefore, a new form of

the principle of least action corresponds to each system of canonical

variables.

The equations (i) entail the energy integral

F = h (5)

where h is a constant.

Up to the present, we have assumed that the two limits tO and tI

are given. What would take place if these limits are regarded as /251

variables? Since F does not depend explicitly on time, we do not limit

the conditions of generality by assuming that t o is constant, and by

only increasing t I by _t I. For example, let us assume that tO = 0 and

that, after the variation, the variables, x i and Yi' have the same
t

values at the time _ 1 (t I + 6t I) that they had at the time t before the

variation.
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However,

Before the variation, we shall have

fy dxlJ : --hh-bZ ididt.

f yi (l:rtT/i <lt =f y, d,ri

does not depend on time; its variation is therefore zero.

simply have

We therefore

The derivative of the action J with respect to the upper integration

limit t I therefore equals the energy constant h whose sign is changed.

If this constant is zero, the action J is still minimum, if we

assume that the initial and final values of the variables xi are given,

and even when we do not assume that the initial and final values of the

time t o and t I are given.

If we change F into F - h, J changes into

,1+ h(t,- t_). (6)

Since equations (i) do not change, this expression (6) is still minimum.

However, if we change F into F - h, the energy constant which was

equal to h becomes zero. Consequently, expression (6) is minimum, even

if we do not assume that tI and t O are given.

No matter what the variables x i and Yi may be, the action J is

minimum. It will therefore be minimum afortiori if we impose a new

condition upon it which is compatible with equations (i).

For example, let us impose the condition that the first series of

equations (i) must be satisfied, i.e., the following must be satisfied /252

from which it follows that

by setting

7( fJ ==- F -_- Z yi dF / (It = }I dt,
• te
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dF

II : -- F -+- Ey,. _y.

The action J, which is thus defined, is minimum.

This is the principle of least action written in its Hamiltonian

form,

Let us now assume that

Therefore, we no longer regard the variables x i and Yi as independents,

but we impose the following condition upon them

F=o.

This restriction, which is compatible with equations (1), will not im-

pede the action J from being minimum.

We then have

f d.rlJ = Eyl _ dt

and, since h is zero, this integral is minimum even when we do not

assume that t I and tO are given.

Let us then impose the following conditions

d.t_. dF

dx"

from which we may derive the Yi'S as a function of the ---1,dt s

d_r, d.r, d.r_'_yi=?, x,,x_ .... ,z_, #f'-dY' "'"_-/

or

d.o d.r_ dr, dx3 dx, d:e,_ d__xj_1y_ -_ ,_, x,, _:,, ..., _,,, -7l?' ?tT, -dr' _ -ZIF.... ' J_; dt /" (7)

In the place of the Yi'S, let us substitute their values (7) in J

and in the equation

dx, dxk,
We shall derive-- as a function of the Xk'S and the-r--- s from thisdt axl

/253
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dxI
Weshall then substitute this value of -_-- in expressionsequation.

(7) and in J. This last integral will take the following form

E yi dxl
¢

dxl-- j '_ d_:l,_t_7
dx k

where _ is a function of the Xk'S and of the derivatives dx I. This

integral, which is thus written in a form independent of time, is still

minimum. This is the principle of least action in its Maupertuis form.

If h were not zero, we would only have to change F into F - h.

337. Let us first examine the most important particular case.

Let us assume that we have

F- T--U,

where T is homogeneous of the second degree with respect to the variables

Yi' while U is independent of these variables.

We then have

dF

Eyt _j_ = _.T, IÁ= T -i- U.

According to the principle of Hamilton, the integral

Ct'(T't. + U) dt

must be minimum.

Let us determine what the principle of Maupertuis becomes.

energy equation may be written

T U ---h.

The Maupertuis action then has the following expression

( T + U -÷-h ) dt.

dxi dF dT
;_ii- = 7i_ = <t.r---7

The

The equations

have their second terms which are linear and homogeneous with respect to
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k_/

the Yi'S. Therefore, T is homogeneousof the second degree with
dxi

respect to the -_7-'s. Let dT 2 represent that which T becomes when

dxi .
d--_-is replaced by dxi; we shall have

71 _ __

ctt _

/254

and d_ 2 will be a form which is linear and homogeneous with respect to

the n differentials dx i. We may deduce the following from this

dt = --- = ..........

The Maupertuis action will then have the following expression

338. For purposes of brevity, in order to be able to study other

particular cases, let us set

and let us derive the Yi'S of the equations

,, dF

' 's for new variables. Let us employso as to take the xi's and the x i

the ordinary d's to designate the derivatives taken with respect to the

xi's and to the Yi'S, and let us employ round 3's to designate the deriva-

tives taken with respect to the xi's and the x_ 's.

We may readily obtain the well-known relationships

Oil OH ,IF
yi=--:, --- =__

O,'ci Oxt _ '

F = _x } 01I
j_ -- II

and we will see that equations (i) are equivalent to the Lagrange equa-
tions

d OIl OII

dt Ox_ = bxi"

Under this assumption, let us examine the case in which H has the
/255
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following form

H -- He+ tit+ lit,

where H0, H I , H2 are homogeneous, of degree 0, i, 2, respectively,

with respect to the variables x'..1

We then have

_-x_ "a-'w = _Ht + III,
ax_

F = lit--lto

and the 0Ht OH,

yl = 7_7z_+ o_

are linear functions, but they are not homogeneous with respect to the

! TS,xi

The Hamiltonian action retains the same form

.flldt.

Let us determine what the Maupertuis action becomes.

Let h be the energy constant. The Maupertuis action will have the

following expression

lt + h)dt

but it must be written in the form which is independent of time.

and

For this purpose, let us set

d_,
Hi----_,

d7
lit ---- d--t"

H 2 is nothing other than energy, and dT 2 is that which this energy be-
!

comes when xi is replaced by dx i. In the same way, do is that which

' is replaced by dx i. It is therefore a form which isH I becomes when x i

linear and homogeneous with respect to the differentials dx i.

If we take the energy equation into account

Ht --- lto+ h,
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from which we have

the Maupertuis action will become

The Maupertuis principle may therefore be applied to the case in

which we are interested, as well as to that of absolute motion. However,

there is one essential difference from the point of view of the following
statements.

In all the problems which will be encountered, the energy T or H 2

is essentially positive; it is a quadratic, positive definite form. In

the case of absolute motion (No. 337), the action

,;_ d_ V/U + h

is essentially positive. It does not change when the limits are inter-

changed. On the contrary, in actuality, the action is composed of two
terms. The first

f ',.d: 1¢'N7o+h

is always positive, and does not change when the limits are interchanged.

The second f do changes sign when the limits are interchanged, and

it may therefore be positive or negative.

If we also note that in certain cases, the first term vanishes with-

out the second term vanishing, we will find that the action is not always

positive. This fact will cause a great deal of difficulty later on.

339. In order to show how the preceding considerations may be
applied to relative motion, let us first consider the absolute motion

of a system. Therefore, let

H=T+U

and let us assume that the position of this system is defined by n + 1
variables

where Xl, x2, ..., Xn are sufficient to find the relative position of

different points of the system, and m is the orientation of the system
in space.
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If the system is isolated, U will dependonly on Xl, x2, ..., xn.
T will be a form which is quadratic and homogeneouswith respect to
x_, x2,' ..., X'n, _' whose coefficients dependonly on x 1, x2, ..., xn-

Wewill then have the equation

dT
d_ =P'

where p is a constant. This is the area integral.

Under this assumption, let J be the Hamiltonian action

_t_

J =Jr It dr;

We shall have the following, if the equations of motion are satisfied

;w .
_l-- _xi_-_5, ,_:,.

The action will be minimum (or rather its first variation will be

zero) if the initial and final values of the xi's and of m are assumed

to be given -- i.e., if 6x i = 6_ = 0 for t = to and for t = t I.

Let us now assume that the initial and final values of these xi's

are given, but not those of _. We shall have

/257

Then let

t=t I _ t_t I_j = [p _ ],:,. = p[ oo_],:,..

H'= H --pt_'

and

and we shall obviously have

J' =/II' dr,

._J' = o.

We may derive m' , which is a linear, nonhomogeneous function of

,, dT
the x i s, from the equation_, = p. It may also be seen that H' is a

V t s

quadrati,c function which is not homogeneous with respect to the x i •

H' therefore has the form H 0 + HI + H2 which was studied in No. 338.
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The integral J' will thus be minimum, even though the initial and

final values of w are not assumed to be given.

We have /258

J'=: J--p(_o,-- _oo),

where m0 and _i are the values of m for t = tO and t = t I.

340. Let us now assume that we have a system referred to moving

axes and subjected to forces which depend only on the relative situa-

tion of the system with respect to the moving axes. In addition, let

us assume that the axes rotate uniformly with a constant angular velocity

This problem may be directly related to the preceding one. We need

only assign a very large moment of inertia to the moving axes, in such

a way that its angular velocity remains constant.

For the absolute motion, we then have

II== T ÷ U : Tt-+T,-+ U.

The function of the forces U depends only on the variables x i which

define the position of the system with respect to the moving axes. TI,

which is the energy of the system, depends on the xi's , and is a quad-

ratic form with respect to the x_'s and to m'. T2, which is the energy

of the moving axes, equals

I

2

and the moment of inertia I is very large.

and

We then have

dT_p=_', "+'I_'

It'= I!--p_'=(T1÷ T,÷U) " tiT, -_-_ _'--I_ 'f

or
dTj O_r lto qtIt'= TI ÷ U -- _-j, -_-

However,
dT I

! _o'=p-- _.
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dT 1

Since I and p are very large with respect to _7 ,, this equation

gives us approximately the following

;

1259

and more exactly

¢#_=p_ I dT,--_o
1 I dto'

In addition, we have

We thus obtain

dT 1

I_'* _ p' P dto'
2 al I

._,_/uT, V
+'21\d_'/ "

pt , (tiT, _'

In the second member, the term before the last is a constant. The

last term is negligible, because I is very large.

Since we may add an arbitrary constant to H' without changing the

Hamiltonian principle, we may set

It"= Tt _ U

and we know that the integral

J"= f Wdt

must be minimum (even though the initial and final values of w are not

given).

In the expression of H", m' must be regarded as a given constant.

H" is then a quadratic function, which is not homogeneous with respect to
!

the xi's , having the form H 0 + HI + H2.

For example, let a material point having the mass 1 move in a

plane_ whose coordinates with respect to the moving axes are _ and n.

We shall have

Tt= (_'-- _'_)'+(_'+ _'_)'

We therefore have

., = _"+ _'_', H, = _'(t_'-- t'.,),
51

_Orl

tlo= -y (_'* _')+ U.
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The integral
tt

J =_t (lit+ fl,+ llo)dt
o

is then minimum, when we assume that the limits to and t I are given,

as well as the initial and the final values of $ and n.

The energy integral may then be written

H_=,,lto + h

and we have seen that the integral

J'=/(lt_ _- II,_- llo+h)dt _- J + h( t t_ to)

is minimum even though we do not assume that tO and t I are given.

We then obtain

by setting

dst = d_ + dr,'.

This is the generalized principle of Maupertuis.

In the problems which we shall discuss, U will always be positive,

and consequently J will always be essentially positive.

This will not always hold true for J'. If h is negative, we must

assume that the point E, n is divided into sections in the region de-

fined by the inequality

Ho+h>o.

The first term of the quantity under the sign S which is ds_

is essentially positive. This will not be true for the second term,

which changes sign when we reverse the direction in which the trajectory
is assumed to be traversed.

If the point _, n is very close to the border of the region in

which it is confined, and if, consequently, H 0 + h is very small, the

first term will be very small, and the second term is the one which

will give the term its sign.

J' is therefore not essentially positive. This can also be seen

by means of the following equation

/26O
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J'=J + h(t_--to).

If h is negative, the first term J is positive and the second is

negative.

Kinetic Focus /261

341. Up to the present, when I have stated that a certain integral

is minimum, I was employing abridged terminology which was incorrect and

could not deceive anyone. I should say the first variation of this inte-

gral is zero; this condition is necessary in order that there be a minimum,

but it is not sufficient.

We shall now try to determine the condition for which the integrals

J and J', which we studied in the preceding sections and whose first

variations are zero, are effectively minimum. This investigation is

related to the difficult question of second variations and the excellent

theory of kinetic focus.

Let us recall the principles of these theories.

' be
Let xl, x 2, ..., xn be the functions of t; let x'I, _2, "'', Xn

their derivatives. Let us consider the integral

tt

J-_o f(xi,zDdt,

whose first variation _J is zero, assuming that the initial and final

values of the xi's are given.

In order that this integral may be minimum, a condition which I

shall call condition (A) is necessary, but not sufficient.

The condition is that

f(xi, z_+ _i)- _ d/
_ ','

regarded as a function of the ei's, is minimum.

Condition (A) is not sufficient, unless the integration limits are

not very close. Except for this case, it is necessary to add another

condition which I shall call condition (B). In order to explain this,

I must first recall the definition of kinetic focus.

In order that

262



k_J

it is necessary and sufficient that the xi's satisfy n differential
equations of the second order, which I shall call equations (C).

/262

Let

x,= ?,.(t)

be a solution of these equations.

Let us set the following for an infinitely close solution

m = ?/t) + _,,

and let us formulate the variational equations, the linear equations of

which satisfy the _iVs and which I shall call (D).

The general solution of these equations (D) will have the following
form

k-----_n

k----t

(i----t, a, ..., n).

The Ak's are 2n integration constants, and the _ik'S are 2n 2 func-

tions of t, which are determined perfectly and which correspond to 2n

particular solutions of the linear equations (D).

Under this assumption, let us state that the $i's all vanish for

two given times t = t' and t t", = . We shall have 2n linear equations

between which we may eliminate the 2n unknowns Ak.

We shall thus obtain the equation

_(t',t')=o,

where A is the determinant

oo, ooo o,o ooo.

¢ I i

ooo o,, ,o. ,.,o

The quantities _ik and Elk represent that which the function $ik becomes

when t is replaced by t' and by t".
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If the times t' and t" satisfy the equation A = O, we may say

that these are two conjugate times and that the two points _ and M"

in space having n dimensions, which have

_(t'), v_(r) ..... ?_(e),

?,(t'), ?,(t'), ..., ?_(t'),

respectively as coordinates, are two conjugate points.

In addition, if t" is the time conjugate to t' after t', which

is the closest to t' we may state that M" is the focus of M'.

We may now state the following condition (B): There is no conju-

gate time of t O between t o and t I.

In order that J be a minimum, it is necessary and sufficient that

the conditions (A) and (B) be fulfilled.

A direct consequence may be inferred from this.

Let to, tl, t 2, t 3 be four times.

Let M0, M I, M 2, M3 be the corresponding points of the curve

x,= ?,(1), z, = ,_,(O, ..., _ = ?_(O-

Let us assume that M I is the focus of M 0 and M 3 that of M 2.

If condition

But we cannot have

or

or

Otherwise, the integral

(A) is fulfilled, we may have

to "< tt <_ t, < t,

to< tt< tt < ta

tt < t_ < to< tt.

must be minimum since condition (B) is fulfilled, and the integral

/263

264



tl--E

will not be minimum since the condition (B) will not be fulfilled for

this term.

This is impossible, since we may vary the functions x i between t2

and tI - E without varying them between tO and t2.

The geometric significance of the preceding statements may be 1264

readily seen.

A curve in space having n dimensions

representing a solution of the equations (c) can he called a trajectory,

which I shall call (T).

The curve

will represent an infinitely close trajectory.

If we draw one of these trajectories (T') which are infinitely close

to (T) through the point M', and if this trajectory again intersects the

trajectory (T) at M" (more precisely, the distance from M" to this tra-

jectory will be an infinitely small quantity of higher order), the points

M' and M" will be conjugate if, in addition, the point which follows

(T') passes through M' and infinitely close to M" at the times t' and t".

342. In the case of the Hamiltonian principle, condition (A) is

always fulfilled. In effect, we have

lI =IIo-_H,-_H,,

and H 2 is a quadratic form which is homogeneous with respect to the x_'s.

In all of these problems of dynamics, this quadratic form is definite

and positive.

T !

If we change x i into xi + ei' HI will change into

dlt,

and H 2 will change into
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and in addition we have

dill.
lll(x_) + H_(tl) + E_-t d-Zt '

Therefore, we have

ll(,r',+ _,') .---Iio + Ill q- II_ -+ v_g

from which we finally have

d(Ilo4- It,-_- It2)

dl!

The first term corresponds to the function

J/
.f(_ + _,-)-- _,. y_.

since the quadratic form H2(ci) is positive definite, and we may see

that the expression is minimum for ei = 0 -- i.e., that condition (A)

is fulfilled.

343. Let us proceed to the case of the Maupertuis principle in

absolute motion. The integral to be examined may then be written

where d_ 2 is a positive definite, quadratic form with respect to the

differentials dx i •

For the time being, let us select x I as the independent variable.

The integral becomes

/dT _2 is a polynomial of the second order P which is not homo-

where _dXl ] dx i__!

geneous (but essentially positive) with respect to the dx I s.

let us set

Therefore,

d,_,
dz'---;- V \d.,., /
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We must determine whether

{J_i d,4_

is minimum for ei = 0. In other words, we must determine whether the

second derivative, with respect to t, of the radical

is positive.

_/jl{,_x, )\_t77-_-_'I

dxi

No matter what the d-_l'S and the ei's may be, we shall have /266

)P\dxt +E_t =at_-+-2bt-+-c,

where a, b, c are independent of t. The second derivative of the radical

then equals

_C -- b t

__°

(at 2 + 2bt + c) 1

Since the polynomial P is essentially positive, this expression is also

always positive, and condition (A) is always fulfilled.

344. Let us proceed to the Maupertuis principle in relative motion.

We must then consider the integral

7[d, + _,(_ d_ - _ d_)],VqT0+ h

or, choosing _ as the independent variable, we have

f_[¢_:,){, + .,,,)+_,(._.,,_.,)].

We must therefore determine whether the second derivative with respect

to _' of

i/( Ilo + h)(, + _")-:- m'($r,'-- D)

is positive. This derivative is

oq_,+h

(l+ ,,',),

Condition (A) is therefore always fulfilled.

Thus, condition (A) is itself fulfilled in every case which we shall
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examine.

Maupertuis Focus

345. The kinetic focuses are not always the same, depending on

whether Hamiltonian action or Maupertuis action is being considered.

In order to clarify this point, let us assume only two degrees of free-

dom, and let x and y be the two variables which define the position of 1267

the system, and which we may regard as the coordinates of a point in

a plane.

Let

=/,(t), y = f, Ct)

be the equations of a trajectory (T) which will be a plane curve.

us set

x :/,(t)+L y =/,(0+ _,,

Let

and, neglecting the squares of _ and of n, let us formulate the varia-

tional equations. Since they are linear and of the fourth order, we

shall have

where the ai's are integration constants, and the _i's and ni's are

functions of t.

The equation given in No. 341

_.(t', t') = o,

may then be written

=o. (i)

It is this equation which defines the Hamiltonian focus.

It indicates that the point x, y, which describes the trajectory

(T), and the point x + _, y + n, which describes the infinitely close

trajectory (T'), occur at two different times, i.e., at the times t' and

t", separated by an infinitely small distance of higher order.
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However, these are not the conditions which the Maupertuis focuses

must fulfill. Two points of the trajectory (T) -- i.e., the two points

M' and M" which correspond to the times t' and t" -- must be separated

by an infinitely small distance of higher order from the trajectory

(T'). However, it is not necessary that the moving point which tra-

verses (T') passes precisely at the time t" -- for example, infinitely

close to M". On the other hand, the energy constant must have the same

value for (T) and for (T'). This last condition is not imposed on
Hamiltonian focuses.

One of the solutions of the variational equations is /26S

We may therefore assume that

_', =/; (*'), ,,'. =/',(t'), _; =/',<t'), _; =/',(,').

The two functions _1 and nl are thus defined.

In addition, the difference between the energy constant relative to

(T) and the energy constant relative to (T') is infinitely small. This

is obviously a linear function of the four infinitely small constants
al, a2, a3, a4.

Without limiting the conditions of generality, we may assume that
this difference is precisely equal to a4.

The condition stipulating that the value of the energy constant be

the same for T and (T') is then a 4 = 0, or

= a, $, + a, ,'-_+ a, G,

For t = t', _ and n must be zero, from which we have equations

al _', + a, _', + a, $', -- o,

a_ ,,'1 + a,, 4 + a, 7,'_= o.

In addition, the value of x + _, y + n for t = t" + e must be the

same (up to quantities which are infinitely small of a higher degree)
as that of x and y for t -- t", which may be written

(_+a,)_;+a,_;+a_;=o,

(_ + a_ ),,; + a,,,; + a_,_; = o,

from which we have, by elimination,
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_0.

By developing the determinant, we obtain

I _'r/_-._'_'_,,. _"'3--_3'"I. . o .

and, setting

equation (2) becomes

_(t') = _(t').

-'0

(2)

/269

(3)

Application to Periodic Solutions

346. If we are dealing with a periodic solution of period 2_, the

functions fl(t) and f2(t) of the preceding section will be periodic of

the period 2_. The same holds true for

L=/,(t), _,=/_(t).

In addition, according to Chapter IV, the variational equations will

have other particular solutions which will have the following form

= e=t?_(t),

== e-a'?_(t),

= ?l(t)+ _tf', (t),

= e_%,.(t):

r, = e-at'b3(t);

= +,(t)+ ?_tf',(t).

In these equations, B is a constant, _ and -_ are the characteristic

exponents, and the _'s and the _'s are the periodic functions.

Let

F x,y, _/_, = const.

be the eaergy equation. We must have

dF dF ,IF d_ dF d_

d_ "_+ _ _' + d--_ a_ + -d--_ d_
d d-t" d -'dr

=A,
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where A is a constant. If we replace _ and q by eatS2 , eatS2 in this

equation, the first term becomes a periodic function of t multiplied

by eat and -- since it must be constant -- it is necessary that it be
zero.

We shall therefore have

A _o .

This indicates that the two infinitely close trajectories which

have the following equations

x=_(t), y=_(t)

and

/270

x=f,(t)+e_tg,(t), y=f_(t)+c_t+2(t )

correspond to the same value of the energy constant.

In the same way, we find that the same holds true for the trajectory
which has the equation

z=f.(t),-e--_t,?3(t), y=_(t)+e-_t+_(t).

Nothing prevents us from setting

_3= e-st?,, r,_--_e-_t+,.

Then _(t) has the following form

_(t)=e_tG(t),

where G(t) is a periodic function.

Case of Stable Solutions

347. We must now distinguish between two cases:

i. The solution is stable and _2 is negative. In this case _2 and

_3, and n2 and q3 are imaginary and conjugate. The modulus of _ and G

is one. We shall formulate three hypotheses which we shall justify at
a later point.

I. Let us first assume that G(t) never becomes either zero or

infinite;

2. The function
I

--IogG(t)=,t-b 2',
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which is essentially real also constantly increases;

3. In addition, let us assumethat log G(t) is a periodic
function.

Equation (3) may then be written as follows, employing T' and _"
to designate two values of • which correspond to t' and to t":

, , kit (k is an integer number)

One single value of • corresponds to each value of t, and one

single value of t corresponds to each value of _. We therefore cannot

have k = 0 without t' = t".

k be positive.

/271

If we desire t" > t' it is necessary that

have

By setting k I i, we shall give the smallest value to t" - t'. We

and the point M" is then the focus of M'.

One factor must be pointed out.

In order that the preceding line of reasoning may be applicable, it

is necessary that log G(t) be a periodic function. However, in general,

all that we know is that G(t) is a periodic function, and as a result

logG(t)

is increased by a multiple of 2i_, for example, of 2ki_, when t increases

by 2_. Then

logG (t)--ikt

is a periodic function.

Let us then set

we have

G'(t) = G( t)e -ikt,

ik
2

_( t) = e_'_tG( t) = ela'tG'( t).

We shall then no longer set

!
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but rather
!

"_= t + -- logG'(t)
9. _r

Since log G(t) will be periodic, the preceding conclusions remain valid,
and equation (3) will be written

n,i_
¢I'

(m is an integer number)

and, in addition, M" will be the focus of M' if /272

348. One of our three hypotheses stating that log G(t) must be

periodic has thus been proven. I may now state that the function T

must be constantly increasing, as we assumed.

Let us assume that this function has a maximum TO for t = tO . We

may then find two times t_ and t_ such that the corresponding values

' and "•h and T[ of the function T are equal, and two other times t2 t2

' = T_ and such that the five times which are very closesuch that T2

to one another satisfy the following inequalities

' " that of t_. We saw above that" will be the focus of tl, t 2Then tI

such inequalities are impossible when condition A is fulfilled.

I may now state that G(t) cannot vanish. We have

The numerator and the denominator of g(t) are imaginary and conju-

gate. If one of them vanishes, the other also vanishes, so that the
function g(t) cannot become either zero or infinite.

Thus, all of our hypotheses have been proven.

Unstable Solutions

349. Let us now assume that the unstable solution and _2 are

positive; in this case _2, n2, _3, n3, _, _, G are real.

For the same reason as given above, the function • will be con-

stantly increasing. However, two hypotheses are possible:
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i. The quantity _(t) cannot vanish nor become infinite, and

increases constantly from 0 to +_ when t increases from -co to +_.

It then happens that no point of our periodic solution has a

Maupertuis focus.

2. The quantity _(t) may vanish for t = t O. It will also vanish _273

for t = t O + 2_, and since it cannot have either a maximum or a minimum
it must become infinite in the interval. In the same way, if _(t) can

become infinite, it must also be able to vanish.

In order to clarify our thoughts, let us assume that _(t) becomes

infinite for

/=tO, tl, t0-1-21_

and for values which differ from these by a multiple of 2_, and vanishes

for
r

t = tu, t_, t_+2_.

I shall assume that

to< t:,< t_< t'_< t++ 2_:.

When t increases from tO to tl, or from t I to t2, or from t2 to

t O + 2_, g(t) increases constantly from -_ to +_o.

The closed trajectory (T) which represents our periodic solution

will therefore be divided into two arcs, whose extremities will corres-

pond to the following values of t

to, It, to "+" 2,'_.

Each of the points of one of the arcs will have its first focus on

the following arc.

I may add that the points corresponding to the values of t

to, t_, t,, t_

coincide with their two focuses.

Let t" be a value of t corresponding to an arbitrary point of (T),

" be the value of t which corresponds to its hn_h focus. Weand let tn

shall have

" t r 2
lira t;_-- = --.
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However, this is not all; we shall have

e:_C,G (t,_)= e_-_,"G(t").

" - t" is veryIf n is very large and if G(t") is not infinite, since tn

large and since we assume that e is positive, G(tn) will be very

small, so that if t" is, for example, included between t O and tl, the

difference

t "_a -- "l ll "_

' when n increases indefinitely.
will strive toward t O

If n strives toward -_, this difference will strive toward t O or

toward tl, depending on whether t" will be included between t O and t'0

or between t_and t I I should add that the difference t" - 2n_ is• 2n

either constantly increasing or constantly decreasing with n.

, ' correspond to the points whereThe values t_ t 1

but _in2 -- _2nl is a periodic function multiplied by e st . However, a

periodic function must vanish an even number of times in one period.

Consequently, the closed trajectory (T) will be divided by the

points to, tl, t O + 2_ into a certain number of arcs, and this number

will always be even.

350. From the point of view in which we are interested, the un-

stable, periodic solutions may be divided into two categroies. However,

it could be asked whether these two categories exist in actuality. It

is therefore advantageous to cite some examples.

Let p and m be the polar coordinates of a moving point in a plane.

The equations of motion may be written

For p = i, let us assume that we have

dU dU d_ U
U_o, --._ =__[,

_?j = o, d? d? 2 .- ?fro) .

Equations (i) will have the solutions

and this solution will correspond to a closed trajectory which will be

a circumference.
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Let us set

and let us formulate the variational equations. They may be written

d__ dv d' v dE

The second may be integrated immediately

dv
dt _ 2_ = const.;

but this constant must be zero if we want the energy constant to have

the same value for the trajectory (T) and for the infinitely close tra-

jectory.

dv
Therefore, if we replace _by -2_, the first variational equation

will become

d,_ _ _[ ?(t)-- 3]. (2)
dt _

Equation (2) which remains to be integrated is a linear equation

having a periodic coefficient.

These equations were discussed in Sections 29 and 189 (see, in

addition, Chapter IV, in various places).

It is known that they have two solutions of the following form:

= e=tG(t), _ = e-=tG,(t)

where G and G 1 are periodic functions.

We are going to present examples for every case mentioned above.

Let us first assume that ¢ may be reduced to a constant A (case of

central forces).

If A < 3, we shall have a stable, periodic solution.

If A > 3, there will not be a Maupertuis focus on (T), and we

shall have an unstable, periodic solution of the first category.

I must now show that we may also have periodic, unstable solutions

of the second category.

The solution will be unstable and of the second category if G

vanishes in such a way that the ratio

J_275
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which corresponds to the function _(t) of the preceding sections can

vanish, and consequently can become infinite.

We may obviously formulate a periodic function G which satisfies

the following conditions :

I. It has two simple zeros and only two;

2. These zeros will also vanish

d_G d(;

dtT _ 2 • d_t- "

As a result, every time that

_ C _! G

vanishes, its second derivative will also vanish in such a way that the
ratio

_, dl _

remains finite.

One could obviously formulate a function G which satisfies these

conditions. The periodic function _ formulated by means of this func-

tion G will correspond to an unstable, periodic solution of the second

category.

As an example of function G satisfying this condition, we may set

G : sh, t-- _(cost--cos3t).

This function vanishes for t = 0 and t = _, and it does not have

another zero if
I

For t = 0 and for t = _, we have

,I_ G dO

di; + 2x _{7 = o,

G
In order that the ratio _ may vanish, it is not sufficient that

I

G vanish; it is still necessary that G 1 does not vanish.

/276
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However, this is what occurs, because if G and G I vanished at

the same time, the two solutions 1277

could only differ by a constant factor (since they satisfy the same

differential equation of the second order), and this is absurd.

351. One point to which I would like to draw attention is the

fact that the unstable solutions of the first category and of the

second category form two separate groups, so that we cannot pass from

one to another continuously without passing through the intermediary

of the stable solutions.

Let us first confine ourselves to the particular case given in

the preceding section, and let us reconsider the equation

d _
-_ = _(? --3) (2)
dt _

Let us vary the function _ continuously, and let us determine whether

we can pass directly from an unstable solution of the first category to an
unstable solution of the second category. For this purpose, it is neces-

sary that the function G, which is real, be first incapable of vanishing,

and then be capable of vanishing. We would thus pass from the case in

which the equation G = 0 has all its imaginary roots to the case in which

it has real roots. At the time of passage, it would have a double root

or, more generally, a multiple root on the order of 2m.

This zero, which would be on the order of 2m for G, would be on the
dG d2G

order of 2m - 1 for _, on the order of 2m - 2 for d-_, so that the ex-

pression

¢t_G dG

G

would be come infinite, which is impossible since it equals ¢ - 3.

On the other hand, we may pass from a stable solution to an unstable

solution of one or the other categories.

For a stable solution, G is imaginary. At the time when the solution

becomes unstable, the imaginary part of G becomes identically zero. If /278

at this time the real part of G has zeros, we shall pass to an unstable

solution of the second type; if this real part never vanishes, we shall

pass to an unstable solution of the first type.

No difficulty is encountered in passing from the case in which the

equation
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real part of G = 0

has all imaginary roots to that in which this equation has real
roots, provided that at the time of passage the imaginary part of G is
not zero.

352. In order to clarify the preceding statements, I shall return
to an examplewhich is already familiar to us.

Let us return to the equation of Glyden, i.e., to equation (i)
given in Number178 (VolumeII). Weshall assign the number (3) to this
equation, and we shall write it as follows

d:.z.
_ 7(- q, + _, co_2t). (3)

dt t

It can be seen that it has the same form as equation (2).

Just like equation (2), we have seen that this equation has two

integrals having the following form

e=tG, e-:'tGt,

which we have written in the notation given in No. 178 as follows

eiht?l(t), e-iht?t(t).

The case of h real then corresponds to the case of stable solutions,

and the case of h imaginary corresponds to that of unstable solutions.

We also considered two unusual integrals. The first is even

[F(o)=,, V'(o) =o] F(t)

and the second is uneven

If(o) =o, /'(o)= i]

and we have obtained the following conditions

F(_)=/'(_)= cosh_.

I shall now return to the figure presented on page 243 (Volume II)

where, assuming that q and ql were the rectangular coordinates of one

point,we separated the regions corresponding to stable solutions and

those corresponding to unstable solutions. These latter regions are
shaded.

/279

These different regions are separated from each other by four

analytic curves, whose equations I have presented on page 241 (Volume II).
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Following are these equations:

F(=)= ,, F'(_)'-o, (_)

F(=)= ,, f(=) =o, (_)

F(=)=--,, F'(=) = o, (¥)

F(=)=--,, f(_) =o. (6)

To what category do the unstable solutions belong which correspond

to our shaded regions? It is apparent that the unstable solutions corres-

ponding to one of these regions are all of the same category. This is

a direct result of the preceding statements.

At a point of one of the curves (8) and (_), the function G may be

reduced to f(t), and this function may vanish, since it is odd. There-

fore, if a region is bounded by an arc of one of the curves, (_) and

(6), the corresponding solutions will belong to the second category.

However, this is not the case in all of our regions. Therefore, all

of our unstable solutions belong to the second category.

Our example may be readily transformed in such a way that we have

solutions of two categories. It is sufficient to replace q2 by q, in

such a way that this coefficient may become negative.

Our equation (3) may then be written

__d'x= x(-- q + q, cos2t). (3')
_It_

Let us always take q and ql as rectangular coordinates, and let us /280

compile a figure similar to that shown on page 241. The portion of the

figure located to the right of the ql axis on the side of the positive

q's will be similar to the figure shown on page 241. But to the left

of the ql axis, at the side of the negative q's, we shall have a shaded

region which is bounded by a kind of parabola tangent to the axis of the

ql's.

The shaded regions on the right will correspond to solutions of the

second category, as we have just seen. However, this will not hold true

for the shaded region on the left.

have

To demonstrate this, it is sufficient to set ql = 0, from which we

x=el¢-$; ==_/--q;, G =,.
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353. I have still only presented a discussion for a particular
case. In order to extend it to the general case, I shall show that we

always arrive at an equation having the same form as equation (2) in
the preceding section.

Let us first consider the case of absolute motion. If U is the

force potential and if x and y are the Cartesian coordinates of a

point in a plane, the equations of motion may be written

dU dU

and the variational equations may be written

(i)

t d' U d'- U

d" U cl_U
(2)

For purposes of greater brevity, I shall employ accents to designate

the derivations with respect to t. Thus, _" represents _{2 here, and no

longer represents the value of _ for t t"= , as was the case in No. 341.

The energy integral may be written

..... _U+h,

and the corresponding integral of (2)

dU dU
x'$'+y'n'=7_+d_ n+_h (6h is a constant).

To apply the Maupertuis principle, we must assume that

so that we shall have

dU dU

x'_'+y'_'= _ + _ _,

or

(3)

Our equations (2) and (3) will then have three independent linear
solutions which we have called in No. 345

I _,=z', _t----y,
(4)
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Let us set

O= _y'--r_z'. (s)

If we then call 01, 02, 0 3 the three values of O corresponding to the

three solutions (4), we shall have OI = 0, and the function which we

called _(t) in No. 345 will be nothing else than

and

We may derive the following from equation (5)

0'--$'y'-7,%'+ _.y'--_,x"

0"= _y"-- _.v" + _'y'-- r/x'-+ 2(_'y"-- "_"r').

(6)

However, x' and y' satisfy the equations (2), so that we have

d _-U d -_U
x - d:_ + _-U._Tj"y''

d_ U d: U y,.

In the expression of 0", let us replace the derivatives x'" and y'" by
the values which have thus been found, and the derivatives _" and n"

by their values (2). We shall have

0"-- 0 _U = 2(,_'y'-- ,,'z').

I shall designate the sum of the two second derivatives --dx2d2U + d_d2U by

AU (or more briefly by A).

/2S2

(7)

The following identity may be easily verified

2(x" + y")<_'y'- _'x')
-- 2(x'x'+y'y')(_y'-- r_x'+ _'y'-- r/x') + :_(x'1 +y':)(_r' _x')

= 2(ytx'--y'x')(_'x'-+ ,}'y'--_x"-- 7,y"),

or, taking into account (5), (6), (7) and (3), we have

(x" +y")(_'-- 0_)- _(x'x'+y'y')O'-+ ).(x "_+ y")O = o. (8)

This is the differential equation which defines the unknown function O.

We shall set

0 = ? tx/_+)',

and our equation becomes
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o" . y .y 3_r'_ + 3v "!2'T t'+ ' "+

'-- = _ -- (9)
x'-' + y'* '

an equation having the same form as equation (2) of the preceding section.
The conclusions of the preceding section therefore remain in force. One

periodic unstable solution is of the second category, or of the first

category, depending on whether the function _ can vanish or not. We can-

not pass directly from an unstable solution of the first category to an

unstable solution of the second category, but can only pass through
stable solutions.

354. Do the same results still remain valid in the case of relative

motion?

The equations of motion then become

dU dU (i')

where _ designates the speed of rotation of moving axes.

The variational equations will be /283

t d2U d I U

I T,'+2_,'-- d'U d'U

(2')

Due to the fact that the energy equation is still valid, the same will
hold true for

Let us set

(3)

and equations (5) and (6) will continue to hold.

have
In addition, since x' and y' must satisfy equations (2'), we shall

,z'--2o_y'= d_U , d'U37/, :r + d-7-d-_y.r',
d' U , d 2U

Taking these equations into account, as well as equations (2'), and also

taking into account equation (3), we may simplify the expression of 8",

and we again obtain the equation
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O"-OaU = 2(_'y"--_'z'). (7)

Since the identity given in the preceding section is always valid,

we shall obtain equations (8) and (9) again. Therefore, nothing needs

to be changed in the conclusions given in the preceding section.

355. However, one new question arises.

The trajectory (T) is a closed curve. Up to the present, we have

tried to determine whether an arc AB of this curve would correspond to

an action which is smaller than any infinitely adjacent arc with the

same end points.

However, we may also question whether this entire closed curve

corresponds to an action which is smaller than every infinitely small

closed curve.

Let us first assume that a point A of the curve (T) has its first

focus B on the curve (T), so that the arc AB is smaller than the entire /284

closed curve.

This is what occurs for unstable solutions of the first category.

We have seen that the curve (T) may be divided into a certain even number

of arcs for these solutions, and that every point on one of these arcs

has its first focus on the following arc, so that -- starting from an

arbitrary point -- its first focus will be encountered before the entire

curve (T) has been traversed.

This also occurs for certain stable solutions. In the case of

stable solutions, we have set (No. 347)

!
t÷ -- IogG(t) =

2:

and we have seen that the r of a point, and that of its first focus,

iT _ i
differ by--. Therefore, if T is larger than _, the focus of a point

will be encountered before (T) is completely traversed.

If this is the case, the action cannot be less for the curve (T)

than it is for any infinitely adjacent curve.

Let ABCDEA be the curve (T), and let us assume that D is the focus

of C. Since E is outs_e the focus of C, we may attach C to E by an arc

CME which is very close to CDE, and which corresponds to a smaller action.

If I represent the action corresponding to the arc CME by (CME),

we shall have
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and, consequently,
(CME) <(CDE)

(ABCMEA) ..<(ABCDEA).

Let us now consider a stable solution, such that

It may be stated that the action will no longer be less for (T) than

it is for any infinitely adjacent closed curve.

In order to clarify these ideas, I have compiled a figure, assuming
a i i

that T ranges between _ and _, in such a way that the focus of a point

is encountered before traversing (T) three times, and after traversing /285
(T) twice.

Let ABCDA be the curve (T). The focus F will be located between

AB, and it will be encountered after traversing (T) twice.

Since B is located beyond this focus, we may attach A to B by an

arc AEHNKHMEB, such that

(AEIINK[IMEB) < (ABCABCAB).

Since the focus of A is not encountered by describing the arc AB without

Figure i0

traversing (T), we shall have in addition

(AE + ES)>(AB),
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from which we have the following by subtraction

or

(EIINKItME) <(ABCABCA)

(EmXIE) + (HNK;I)< _.(ABC:X).

We must therefore have either

or

In every case, there is a closed curve which differs little from

(T) and corresponds to a smaller action.

Therefore_ in order that a closed curve may correspond to an action

which is less than any infinitly adjacent closed curve, it is necessary /286

that this closed curve correspond to an unstable_ periodic solution of

the first cateRory.

356. Is this condition sufficient? In order to determine this,

let us study the asymptotic solutions corresponding to a similar un-

stable, periodic solution.

Let

x = ?0(t , y = +0(t)

be the equations of the periodic solution, and let

x= 9o(t)+Ae=t?t(t)+A2e==t?_(t)+ ....

y = +o(t)+Ae='+,(t)+ A':=t,_,(t)+...

be the equations of the asymptotic solutions. The functions _i(t) and

_i(t) will be periodic functions of t. We may also write the following

setting Ae _t = u,

x=?o(t)+u?l(t)+. ..... I,(t,u),

)'='_o(t)-_-u,_,(t)_ ...... _F(t,u).

If U is sufficiently small, x and y will be uniform functions of t

and u, which are periodic with respect to t of period 2_.

In addition, the functional determinant

will not vanish.

d(x, y_ d_ dW dW d,l,

O(t, u) = "_ du dt du

For u = 0, this determinant may be reduced to
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?;(t),',(t)-- +; (t)?l(t).

However, this expression is none other than the expression

given in No. 345 divided by e _t. Therefore, it will not vanish if the

unstable solution is of the first category.

Due to the fact that the functional determinant does not vanish

for u = O, it will not vanish for sufficiently small u either.

If u is sufficiently small, u, cos t and sin t will be uniform

functions of x and y.

The equations of the asymptotic solutions may be written

,_ = +(t, Ae_Oy _F(t, Ae _l)

and it can be seen that the functional determinant

,)(x,y) _ O(<I,, i_) e _r
o(t, A) o(t, _)

cannot vanish. This means that the curves (1) do not have a double

point, do not intersect each other, and do not intersect the trajectory

(T) [this is the case if it is assumed that u is sufficiently small.

(l)

_/287

t t !
_ ..... _-_

," ,_- ,,.;,

-
i" ]

Figure ii

\

This would not be the case if the curves (i) were extended indefinitely
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in such a way that u becomes very large].

The curves (i) corresponding to the asymptotic solutions will

therefore have the appearance of spirals passing around (T). This form

is sho_n in the figure (2). The closed trajectory (T) is represented

by a solid line,but I must point out that there are two curves sho_m by

a solid llne in the figure. Of these two curves, that which is located

inside of the other represents (T).

The spiral curves (i) are represented by a dashed line

I may note that there are two systems of asymptotic solutions corres-

ponding to two characteristic exponents which are equal and have the

opposite sign.

These asymptotic solutions of the second system will be spiral

curves which are similar to curves (i), except that they turn in a

different direction. They are not shown on the figure.

_288

In the case of an unstable solution of the second category, curves

(I) would have an entirely different form. They would intersect the

closed trajectory (T) an infinite number of times, and the intersection

points would form an infinite group having a finite number (even number)

of boundary points. These boundary points would correspond to the

values to, t I considered in No. 349.

357. Let us return to unstable solutions of the first category

and to asymptotic solutions of the first system which are shown in

figure (2). I shall establish the fact that the action is less for (T)

than it is for an infinitely adjacent closed curve.

I shall consider an arbitrary closed curve which differs from (T)

by an infinitely small amount. This curve, which I shall call (T'), is

shown in figure (2) by a closed curve drawn with a solid line, outside

of (T) and passing through the points C and B 3.

Let us confine ourselves to the case of absolute motion. In this

case, we have the following well-known theorem.

Let AIB I, A2B 2, ..., AnB n be a continuous series of trajectory arcs.

The end points of these arcs are located on two curves

AIA_...A,, BIBI...B_ •

If thesetwo curves intersect the trajectories AIBI, A2B 2, ..., AnB n

orthogonally, we shall have

(AtB,)=(A,B_) ..... (A_Bn),
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where the action corresponding to the arc AIB l is always designated by
(AIBI) •

Let us therefore compile the orthogonal trajectories of the curves

(i). These trajectories, which I shall call curves (2), will have the

following differential equation

\ dr= + dt t ] dt

+ k u, ,_ + _ _4,;)(u,,+ _,,,,,,_+ t_, + ,¢,,,, _,, a,, = o.
(3)

One curve (2), and only one, passes through each point of the

plane, provided that u is small enough. This could only not be true if

the coefficients dt and du were zero at the same time, which could only

occur if the functional determinant of @ and _ with respect to t and u

vanished. We have seen that this was not the case.

The curves (2) are shown on the figure (2) by a dot-dash line

Let AIA2, ..., A5, BIB2, ..., B 5 be two of the infinitely adjacent

curves. They intersect the arc A2B 2 on (T), the arcs AIBI, A3B3, A4B4,

AsB5, on the curves (I) and the arc CB 3 on (T').

For my purpose, it is sufficient for me to establish the fact that

the action of (CB3) is larger than for the corresponding arc A2B 2 of (T).

In effect, we have

( A, B,) = (A3 Bs)

and, in the infinitely small, curvilinear, rectangular triangle A3CB3,
we have

We therefore have

(CB3) > (A3B3).

(CB,) > (A=BI),

and, consequently,

358•

action of (T') > action of (T).

q.e.d.

We must now determine whether the same result is still obtained

for relative _otion.

The irreversibility of the equations constitutes a great difference

289



kJ

from the preceding case. The action for an arbitrary arc AB is no

longer the same as for the same arc traversed in a different direction.

If an arbitrary curve satisfies differential equations, this will not

hold true for the same curve traversed in a different direction.

Finally, the orthogonal trajectories of the curves (i) will no

longer have the basic property which I discussed in the preceding
section. However, there are other curves which I shall define, and

which have this property. This is sufficient for the result of the

preceding section to remain valid.

In No. 340, we obtained the following for the expression of the

action

J

For purposes of simplification, I shall set VH0 + h = F. I shall no

longer designate the coordinates by _ and n, but rather by x and y, in

order to approximate the notation employed in the preceding sections.

And I shall no longer designate the angular velocity by m', but rather

by _, removing the accent which has become useless. I shall then have

J'=:[F v:d-x'--+dr'-+-o_(xd: --y dx)],

from which we have

_J' _--f [_v as + V ax _d.,"ds-_- ,(r _'.r

+ _o(_z dy - _y dx)+ _o(z Zdy - y _d..)]

/290

or, integrating by parts,

, ds +

The definitive expression of 5J' therefore includes two parts: a

definite integral which must be taken between the same limits as the

integral J', and a known part which I have placed between two brackets

(according to common usage) with the indices 0 and i. This notation

indicates that we must calculate the expression between the brackets

for the two integration limits, and must then take the difference.

Let us now assume that the expression included under the sign f in

the second term of (4) is set equal to zero. We shall obtain differen-

tial equations which will be precisely the equations of motion, and

which will be satisfied by all of our trajectories, particularly the

curves (i).

These equations may be obtained in an infinite number of ways,

because 8x and 6y are two entirely arbitrary functions.
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Wemay first assumethat _x = O, from which we have 6F =d_v _y"

Dividing by _y ds, we may then write our equation as follows

dF cl_ dF d.y d t v
(6)

If, on the contrary, we had assumed that _y = 0, we would obtain

dF dy _ dF dz d_x
_ -_- 2to ds ds ds _- F -ds_f

/291

These two equations are equivalent, as could readily be determined

beforehand, If they are added after having multiplied them by

dy and dx
ds d_s' respectively, and ir the following relationships are taken

into account

d_/ -- \,is J l; -ds 5_'s-_+ ds ,ts_

we arrive at an identity.

If we therefore consider the curves (I), they will satisfy equation

(6). If we take this equation into account, relationship (4) becomes

[Fd, r_,,r ]1;_j'= i-d.r_Y +(o(x_),_y_x ) .
¢ls o

Let AIBI, A2B2, ..., AnB n be a continuous series of arcs pertaining to

the curves (i), whose end points AIA2...An, BIB2...B n form two continuous

curves C and C'.

Let AiBi, Ai+iBi+ 1 be two of these arcs which differ from each other

by an infinitely small amount. Let x, y be the coordinates of the point

Ai, x + 6x, and let y + _y be the coordinates of the infinitely adjacent

point Ai+ 1 .

Let J' be the action relative to the arc AiB i and J' + _J' be the

action relative to the arc Ai+iBi+ I.

If a Is the angle which the tangent to the curve AiB I [which is a

curve (I)] makes with the axis of the x's, and if the two curves C and C'

satisfy the differential equation

I" (cos a 3z + sin _t _y) + to (x _av -- y 8x ) =o, (7)

we shall have
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and, consequently,

(A, B,) :_ (A, B,) ..... (A_ B,,).

The curves defined by equation (7) may therefore play the role which

the orthogonal trajectories of the curves (i) played in the preceding

section.

We may therefore consider figure (2) again, and we may assume J292

that the curves shown by the dot-dash line no longer represent these

orthogonal trajectories, but rather the curves defined by equation (7).

There will be nothing to change in the proof.

However, one point is no longer clear. In the infinitely small,

rectangular triangle A3CB 3, I have

(CBa)>(AaBa).

The triangle is no longer rectangular, and in addition I have changed

the definition of the action. Does the inequality still exist?

It may be readily seen that this equality equals conditions (a) of

No. 341, and we have seen in No. 344 that they are fulfilled. The in-

equality therefore holds, and our proof remains valid.

To sum up, in order that a closed curve corresponds to an action

which is less than any infinitely adjacent closed curve, it is necessary

and sufficient that this closed curve corresponds to an unstable, periodic

solution of the first cate_orM.

359. We must make a few remarks regarding the classification of

unstable solutions into two categories.

From another point of view, the unstable, periodic solutions may

be divided into two classes. Those of the first class are those for

which the characteristic exponents e is real, so that eat is real and

positive, where T is the period.

The solutions of the second class are those for which this exponent

in
a has -_ as an imaginary part, so that eaT is real and negative.

In the preceding statements, we only considered unstable solutions

of the first class. Let us see whether those of the second class may

also be divided into two categories. .

We may set = _ =' + 'i"'
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where _' is real. Wemaythen set, just as in No. 346"

_ = e_'e?_, _, = e_'e_2 '

_ ==e-_'e93 , _3 _- e-°ct+3,

where _2, _2, _3 and _3 are functions of t which change sign when t
changes into t + T. These functions will be real.

/293

We then have

_,_ _ _, _ = _,_,G(t_.

The numerator and the denominator of G are functions of t which

change sign when t changes into t + T.

It is therefore certain that these two functions vanish, and conse-
quently that the same holds true for

These last two functions satisfy the same linear differential equa-

tion of the second order, whose coefficients are periodic functions of

t which have not become infinite. The coefficient of the second deriva-

tive may be reduced to a constant. These two functions cannot become

zero at the same time, because if two integrals of the same linear equa-

tion become zero at the same time, they could only differ by a constant
factor. However, _(t) is not a constant.

The numerator and the denominator of _(t) therefore both become

zero, and do not become zero at the same time. Therefore _(t)[and con-

sequently G(t)] may vanish and become infinite,

All of the unstable solutions in question therefore belong to the

second category. Apart from this, there is nothing to be changed in the
preceding statements.
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CHAPTERXXX

FORMULATIONOFSOLUTIONSOFTHESECONDTYPE

360. Weshall now demonstrate the manner in which periodic solu- f294

tions of the second type may be effectively formulated.

Let
d:ri dF dv¢_ dF

-)7 = ;if,' at ,t:_,, (1)

be a system of canonical equations.

periodic solution of the first type

Let us assume that they have a

x,-= ?,.(t), y,- = +,(t).
(2)

We plan to study periodic solutions of the second type which pro-

ceed from the solution of the first type (2).

The analysis may be simplified, at least for purposes of discussion,

if equations (i) are reduced to a suitable form by a series of changes

in the variables.

We shall assume that there are only two degrees of freedom. When t

increases by one period, Yl and Y2 will increase, respectively, by

where k I and k2 are integer numbers.

I may first assume that k I = 0, because, if this were not the case,

I could cause k I to vanish by the change in variables given in No. 202.

I may then assume that the periodic solution (2) may be reduced to

X I = O_ X! _ 0 t _1 _ 01

because, if this were not true, I could perform the change in variables

presented in No. 208.

Under this assumption, we shall see how the determination of periodic

solutions of the second type is related either to the analysis given /295

in No. 274, or to the analysis presented in No. 44.

361. Let us recall the results obtained in Nos. 273 to 277. Let

the canonical equations

d.v_ dF dyt dF (i-,, _, ...;_) (1)
dt -- _i' _ -- dx_
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include a parameter X, and let us assumethat they have one periodic
solution

c/= ?i(t), yi = q_/(t), (2)

of period TO, corresponding to the value C O of the energy constant and

corresponding to X = 0. Equations (i) will be formally satisfied by

series having the following form; these series will develop in powers
of the quantities

._, Ake=_t, h',e-=_t (k -= ,, 2 .... , n-- ,).

The coefficients will be periodic functions of t + h, depending

on the energy constant C. The period T will also depend on C and the

products AkA _. It may be reduced to T O for

C := Co, AkA_- = o, ), =o.

The exponents _k are constants which may be developed in powers

of X and the products AkA_, and in addition they depend on C. They may

be reduced to the characteristic exponents of the solution (2) for

C = Co, Ax.A2 = o, )_ = o.

The Ak'S , the A_'s and h's are integration constants.

When studying asymptotic solutions, we assumed that the ak'S were

real, and we made one of the two constants A vanish.

In order to apply the same results to a study of periodic solutions

of the second type, we shall assume, on the contrary, that the exponents
ak are purely imaginary.

I shall assume only two degrees of freedom, which allows me to /296
remove the index k which has become useless.

In order that we may obtain periodic solutions, it is necessary
27

that the exponent _ be commensurable with-_. If our series were con-

vergent, this condition would be sufficient. However, they are diver-

gent, and only satisfy equations (2) from the formal point of view. A

more detailed discussion is therefore necessary. A method similar to

that employed in Nos. 211 and 218 could be applied. We would thus obtain

series which would have the same relationship with those given in Nos. 273

and 277 as the series of M. Bohlin have with those given in Nos. 125 and

127. By an indirect method, we would thus fall back on the periodic

solutions of the second type. However, I prefer to proceed in a
different manner.
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Effective Formulation of the Solutions

362. By performing the changes in variables presented in Nos. 209,

210, 273, 274, which are always applicable when we have a system of

canonical equations having a periodic solution, we may change our equa-

tions to the form of the equations presented in No. 274. In this section,

we have formulated the following equations (page 95)

dt _z', -dF .... v=,.... dx, (3)

F' = F; + _v; + ,, F; + ....

! !

where F' is a whole polynomial in x I, y_ x2, which will be homogeneousp

of degree p + 2 if it is assumed that x_ and y_ are of the first order,
' is of the second order. The coefficients of this polynomial are

and x 2

periodic functions of y_ whose period is 2_.

Just as in Section No. 274, we shall remove the accents which have

become useless and shall write F, Fp, xi, Yi instead of F' F; ' ', , xi, Yi"

We then assume the following (see pages q7, 98, 99)

Fo=Ilx2+2B_tY,,

where H and B are constants. I could also set H = i, but I shall not do

this.

Just as on page 99, let us then set

The equations will retain the canonical form, and we shall have

Fo= IIxt+ 2Bu;

The other terms FI, F2, ..., will be periodic of period 2_, both with

respect to i and with respect to Y2.
v

Our equations will then have the form which is similar to that

which we have studied several times, and in particular, in Nos. 13, 42,

125, etc., where the parameter e plays the role of the parameter _.

Therefore, we may employ the procedure given in No. 44 for these equa-

tions.

However, there is one obstacle. The Hessian of F 0 with respect to

x 2 and u is zero, which is precisely one of the exceptions given in

No. 44.

This fact compels me to assume that F depends on a certain parameter
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%, and we shall carry out the development at the same time in powers
of X and of e. Wesaw in Chapter XXVlII that when studying periodic
solutions of the second type it is always convenient to introduce a
similar parameter, because the property of being reduced to a solution
of the first type for X = 0, and of differing from it for X _ 0, charac-
terizes solutions of the second type.

To facilitate the discussion, instead of an arbitrary parameter, I
shall introduce two parameters, which I shall call X and _.

Weshall therefore assumethat the different coefficients of F may
be developed in powers of two parameters %and p, and that for _ = %= 0,

H and 2B may be reduced to -i and to -in, where n is a commensurable,
real number.

I shall assume that X and _ may be developed in increasing powers
of c, in the following form

where %1, X2, ..., are constants which I shall provisionally leave unde-

termined, but I reserve the right to determine them in the computations
which follow.

Under this assumption, let us follow the computation presented in /298
No. 44 step by step. We shall set

x, = _o -+c-t,+ _'_,÷ ....

u = Uo -_-"u, + _' u,+ .... (4)

These formulas are similar to the formulas (2) of No. 44.

The _k'S, nk'S , Uk'S , and the Vk'S are therefore periodic functions

of t; $0 and u0 are constants, and we have

where _ is an integration constant which I shall determine more completely
below.

Instead of %, p, x2, Y2, u and _ let us substitute their expansions

in powers of E in F. Then, F may be equally developed in powers of E, and
we shall have

I would like to point out that _k is homogeneous of degree k + 2,

if we assume that _p and Up are of degree p + 2, _p and Vp are of the
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degree p, Xp and _p is of degree p.

It is therefore a whole polynomial with respect to

and with respect to

(p >o),

These last two quantities may be assumed to be on the order of i.

Finally, the coefficients of this polynomial are periodic functions of

q0 whose period is 2_.

In addition, we shall obtain

,l,m= O_--- Sk-- f*tuk-i- ),k Ilo_o+ "2Bog*kuo,

dH dB
where H 0 and B0 are the values of _-_ and _ for X = _ = 0. (We may

dH dB
-- = 0 for X = _ = 0.) In addition, Ok depends

assume that we have d> dX

only on

_p, %, up, %, Z_, ILp (pSk--J).

Our differential equations may then be written

d_.k d'l'l¢ dr,_. _ d,l',, du_ d,l,_ dr j, _ d'l'k
_-l-[= d_-_' dt -d;_7' --0{ = -d('o' dt ---- du-_"

/299

(5)

For k = 0, they may be reduced to

cl_u duo d_jo dvo

dt -- dt =o; _ =t; dt -- in.

They demonstrate the fact that _0 and u0 are constants, and that

"_o -= t, v_ : inl + by,

where _ is a constant which must be determined.

We may advantageously add other equations having a similar form to

equations (4) and (5), which are only transformations of them.

Let us develop xl and Yl in powers of E, and let

i P 2

+q', + +..-, (4')
y, r,o 4-e_' t _- _'-_ .-:= t _ i t ' •

The expansions (4') may be directly concluded from the two last ex-

pansions (4).

We then find that Ck is a whole polynomial with respect to the
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quantities

_p, %, _, _, lp, _p (writing nO separately), (6)

and that this polynomial is homogeneous of degree k + 2, if we assume
that

Sp is of degree p+%
_,_ is of degree p+,,

%, Ip,ep is of degree p.

We then have the following equations

a_. d+, a_4_ d+_ (5')
d[ -- d_' o ' dt a_o '

which are equivalent to the last two equations (5).

We may note that dq,_ d,_k d,I,# d,_
d-_f' d_"-;'-'d--_d_0 are polynomials having the same

form as _k with respect to the quantities (6). Using the same convention

employed above regarding the degrees, we find that they are homogeneous,

the first of the order k + 2, the second of order k, and the last two of /300
the order k + i.

We have

__o= _oe-¢nit +=L

Let us replace _0, _0 by these values, and at the same time let us

replace nO by t, in equations (5) and (5'), in which it must be assumed

that we have set k = i, and let us employ them to determine _i, nl, Ul,

We thus have the six following equations

d'_, _lq_1 dO, d$1 dO,

dui dO, dr, dO1
-di- = -_o' -dr = -- duo 2 _1 80,

d_', dO, du, duo dO, . ,,
dt -- dr/o in dr_--_o+_B°llt dr_'o-- d7l_ tn_t+_Bo _,_o,

d;]' 1 dot _[tZl duo dO_

(7)

Let us first consider the second of these equations. The second term

is a homogeneous, whole polynomial of the third degree with respect to
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01 "_0,

whose coefficients are periodic functions of nO = % of period 2_.

Since n is commensurable, our second term will also he a periodic

function of t on which it depends in two ways: by means of no which

equals t, and by means of £'0 and n_ which are functions of nt + _.

The period will be a multiple of 2_, i.e., it will equal as many

multiples of 2n as there are units in the denominator of n.

Our second term can therefore be developed in Fourier series in

the following form

z ,'__/'J'___',_'+=I', (8)

where p and q are integer numbers. However, q does not exceed 3 in abso-

lute value, since our second term is a polynomial of the third degree.

As a result, in general the mean value of the second term is zero.

This mean value will be obtained by retaining the terms which are inde-

pendent of t in the series (8), i.e.,

p+qn---o.

I have stated that JqJ can not exceed 3. I would like to add that,

due to the fact that our second term is a whole and homogeneous polynomial

of degree 3 in _0, _0 and n_, it is assumed that _0 is of degree 2 or a

second term cannot contain _'0 and @0 except in an uneven power -- i.e.,

q must be odd and can only take one of the values +_i or !3.

Therefore, we can only have

p_qn_o

if the denominator of n equals 1 or 3.

We shall exclude the first hypothesis which would make n a whole

number, but two cases remain for our consideration:

i. The denominator of n does not equal 3. In this case, due to

the fact that the mean value of the second term is zero, the equation

will immediately provide us with _I by simple quadrature. Then $i is

determined up to a constant which I shall call YI, and this constant

remains undetermined up to a new order. It should be pointed out that

the same holds true for_.

2. The denominator of n equals 3. In order that the equation may

be integrated, it is necessary that the value of the second term be zero.
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For this purpose, we shall employ the constant _.

Let [ @I] be the meanvalue of @2. Weshould point out that we
have

_ r__(_l ,z[o,l
nLd.,,o.l= d_ ;

and we shall therefore determine _ by the equation

d[O,l
(9)

and a quadrature will then provide us with _I, up to a constant YI.

Let us now take the first equation (7). The same line of reasoning
dO 1

may be pursued for this equation. However, since _0 is no longer a

polynomial of the third degree, but rather of the first degree, and since

n is not an integer number, we shall be certain that the mean value of /302

d@l is zero.

d_0

It is therefore sufficient for us to take %1 = 0 in order that the

second term may have a mean value of zero, and in order that nl may be

determined to a constant 61 .

Let us now pass on to the last two equations (7). They may be
written as follows

- a-7 _ + =Bq_,_;,
d'_ 'j dO,

The second terms are the known periodic functions of t. In order

that integration may be possible, it is therefore sufficient that the

second term of the firstequation does not include a term containing e int,

and that the second term of the second equation does not include a term

containing e-int .

This double condition could be discussed more readily by considering

these third and fourth equations (7) which are equivalent to the last two,

and which may be written

dut dot, dr, dot
at = -_ " -_ = - _ -- _ _, Bo.

It is necessary that the mean values of the second terms be zero.

With respect to the first of these equations, the condition is
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k.J

fulfilled by itself, and we have

[e0 ] a[0,]
dr,| = d---_"

This latter expression is zero because of equation (9), if the

denominator of n equals 3, and in the opposite case because [01] is

identically zero.

The second condition may be written

e[o,] =
duo --_tBo-

If the denominator of n equals 3, it will provide us with _l"

On the other hand, if the denominator does not equal 3, it will pro-

vide us with _I = 0, because [01] is identically zero.

Thus, we may see that _I, nl, _'I, @I are periodic functions of t

and of _. They may therefore be developed in Fourier series in the

following form

A _iIpt+qnt+q_)

However, we may add a few words more. We must deal with equations

having the following form

/303

d_ _ _r Aei(pt+qnt+q_) 1
dt

and we shall derive the following

A
=E_(p+qn)

E_= _(p+qn+n)

d_
d-_ + ittN = Y = Y,Beapt+q.t+q_!,

t(lat+qnt÷qml q- _s

el(pt +qnt +q_) .Jr_ ._' _-Int

where y and ¥' are integration constants.

Therefore, if X and Y are whole and homogeneous polynomials with

respect to

_/_o, _o eilnt+=_, ¢ ge-t_nt+='

the same will hold true for g and n, unless it is assumed that the con-

stants y and y' are zero. If it is not assumed that these constants are

zero, _ and n will still be whole polynomials, but not homogeneous.

Let us apply these principles to the quantities which we have just

computed. Due to the fact that
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dO1 dOi dOj d_t
a_o' _S,,0' 7if' a_;

are polynomials which, according to the convention which we have em-

ployed regarding degrees, are of the following degrees, respectively

I, 3, a, 2,

the same will hold true for

_,, _,, _',,_',.

When we substitute the values of these quantities which are, re-

spectively, of degrees i, 3, 2, 2, instead of these quantities in 92,

it may be seen that @2 becomes a polynomial of the _urth degree, and
that

/3O4

dO, dO_ dO, dOl

will be polynomials of the following degrees, respectively

2, 5, 3, 3.

We may therefore formulate a generalization of this result.

Equations (5) and (5') enable us to compute the unknowns gk' qk'
g_, q_ from place to place. This would only be prevented if the mean

value of the second term of one of the equations (5) were different from
zero.

Let us assume that this does not occur. It may be stated that

will be polynomials of the following degrees

k+_, k, k+l, k+l

with respect to

_' _ei{nt+_', V/_o¢-i(nt÷_', (10)

where the coefficients of these polynomials are themselves periodic func-
tions of t of period 2_.

Let us assume that this is valid for every value Qf the index which
is less than k.

We know that @k is a whole polynomial of degree k + 2 with respect to

_q, _q, _, _ (q<k) (ii)
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assuming that these quantities are of degree q + 2, q, q + i, q + i,

respectively. If we substitute polynomials whose degree, with respect

to the quantities (i0), is precisely q + 2, q, q + i, q + I, in place

of these quantities (ii), it is apparent that the result of the substi-

tution will be a polynomial of degree k + 2 with respect the the quan-

tities (i0).

Therefore, Ok is a polynomial of degree k + 2 with respect to the

quantities (i0), and for the same reason

dO_ dOk dO_ dO_

will be polynomials of the following degrees

k, k+a, k+l, k+i

with respect to the same quantities.

The same holds true for the second terms of the first, second,

fifth, and sixth equations (7). Consequently, by repeating the previous

line of reasoning, we should readily see that the same holds true for

/305

7,k, _h-, _, _. q.e.d.

The integration of equations (7) has introduced four new integration

constants. They provide us with information concerning _I, nl, _I, n'l,

up to the following terms

_,, _, ,['_e+i_,,t+=_, _',e-i_,,t-,-_J,

containing the four arbitrary constants

_,, _, _",, _.

We shall retain only one of these constants and we shall set

_,= 81= o, _',= --_;.

Under this assumption, let us try to determine

h, _,, _,,' _,,'

by means of equations (5) and (5') and by setting k = 2.

It is necessary that the second term of the first equation (5) has

a mean value of zero. This mean value equals

ao,1.
d_o.I
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and we always employ the brackets to represent the meanvalue of a
function. Wemust therefore have

form

dOll
_,o j = o. (9)

Let us assume that @2 is developed in Fourier series in the following

A ei(pt+qnt+ql_).

Since 02 is a polynomial of the fourth degree, q could not exceed 4 in

absolute value. Consequently, if the denominator of n is larger than

4, [@2] will be identically zero, and the condition (9') will be ful-

filled by itself. The constant U will remain undetermined.

1306

If the denominator of n equals 2 or 4, the condition (9') will de-
termine _.

If the denominator of n equals 3, the constant _ has already been

determined by condition (9), and condition (9') will enable us to deter-

mine the constant y_.

Let us calculate the terms depending on this constant XVl in @2.

We obviously will obtain

(ao, ao,.-,,.,,+.,A
T; \ _lf_ eiU_t+=J- drt' * ,],

i,e,,

The mean value of this will be

The condition (9') may therefore be written { if it is noted that

[ l d'[o,il
n L_7_,T_dC_J = -_-_,-

•fi_ d, fo,] +rl =o,

where H depends on _, but not on _i"

If the denominator of n does not equal 3, [@i] is zero and condition

(9') is independent of Y'I" Therefore, if this denominator equals 2 or 4,
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equation (9') will depend on _ and not on _i and will determine _.

If the denominator equals 3, condition (9') depends on Y'I and will

determine Y'I (it will provide us with y_ = 0).

In any case, having thus determined _2, let us try to calculate _2
by meansof the second equation (5). Weshall employ %2in such a way
that the second term has a meanvalue of zero.

Weshould point out that %2 will not be zero in general, and

d[O,]
d_o

will not be zero in general, because, due to the fact that @ 2 is a poly-2
nomial of degree 4, it will include a term containing _0 which is inde-

1 I ! ! ,pendent of the _k s and nk s The coefficient of this term will be a

periodic function of t of period 2_, and the mean value will not be zero

in general.

Let us proceed to equations (5') or, which is the same thing, to the

last two equations (5). The second terms of these last two equations must

have a mean value of zero.

We must have

_/o_]= _ 2_,Bo,
duo J

which determines _2" However,
dO. d_, dO_

is a polynomial of the fourth order. F2 therefore includes terms containing

2 2 dO2
xlYl, and consequently u2 -- includes a term containing

duo

The coefficient of this term is a periodic function of t, whose mean value

is not zero in general. Therefore, in general ] °u2 ] and, consequently,
[du0J

_2 are not zero. This is the same line of reasoning as is employed for

%2.

We must then have

(12)
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However, it maybe stated that this condition is fulfilled by itself.

Wehave the energy integral F = const., from which we may deduce the
series of equations

_o _ COnSt., qbl _ COnSt., _ _ COnSt. 1 ....

Let us consider the third of these equations

_= 02--_2--inu2+ _2tlo$o+ 2Bo_tUo= const.

This equation may replace the fourth equations (5) and, when _2, _2, $2, /208

n2 and v9 have been determined by means of the first three equations (5),

it will _etermine u2 without any integration. We may therefore be assured

that the determination of u 2 is possible, and, consequently, that the con-
dition (12) is fulfilled.

We will have thus determined $2, _2, _2, _2 up to the following terms

yl, 82, T;elfnt+m), _;e-i(nt÷=)

depending on the four arbitrary constants. We shall retain only one of
these constants, and we shall set

_,= 8,=o, _ = __.

363. The calculation will be continued in the same way. The ability

of equations (5) to be integrated requires the following conditions

1 r<,o,l r<< l rdo l
a_,oJ =°' LdT;J =o; Ld_oJ+_&Ito=,,, L_u_j+2_kB0=o.

The last two conditions will determine %k and _k" The second will be a

consequence of the first, according to what we have learned with respect
to condition (12). We must then study the first.

d@k

Expression d-_0 is a polynomial of order k + 2. If it is developed

in Fourier series

A eifpl+qtat4-qt_ I

the integer numher q cannot exceed k + 2 in absolute value. If k + 2

is smaller than the denominator of n, we could not have

p -¢-- _/n = o

and the mean value of our expression will be zero.

d_, J = O

The condition

(13)
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will therefore be fulfilled by itself.

Wehave introduced the following arhitrary constants:

and @kmay dependon
r t t

_, T,, T,, , Tk-,.

(14)

Let us assume that we areLet us determine the form of this dependence.

considering the expansion

F = _0+ _%+_'_÷--. (15)

and that in this expansion we replace the _'s, the n's, the _ 's, and the

n' 's by their values. The different terms of the expansion will then de-

pend on the constants (14). In this expansion (15), let us cancel all the
constants y', retaining only _. We will thus obtain a new expansion

_+ _ + _,_;+ .... (16)

In the expansion (16), let us now replace the constant _ by the expan-

sion

where _i, _2 are new constants. Each term in the expansion (16) may be

developed in its turn in powers of E. When this expansion is ordered

anew in powers of c, we obtain a new expansion

+_+ _ + _,_;+ .... (17)

This expansion must be identical to the expansion (15), under the condition

that the constants _ are replaced by the suitably chosen functions of the
I

constants Tk"

" depends only onIt may be readily seen that Ck

and that _k depends only on

'_. T_, "'" T_-,"

We may conclude from this that _k depends only on

•f,, -_;, ..., ._

v on
and Yk
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It may be readily seen that

where A is a numerical coefficient and where D_' is a derivative of _'
m m

with respect to _. The order of this derivative equals

and we then have

_" ---- In "+"_t+ 2:_2 q--...q- k_k.

Since m is at least equal to i, and since _0 does not depend on _$ it may

be seen that _k is zero, which we already knew.

Let us consider an arbitrary term where _k' _k-l, ''', _h+l are zero,

but where _h is not zero. We must have

If the denominator of n is larger than k - h + 2, the mean value of D_m
II

will be zero. This means that those terms of _k which depend on _h have

a mean value of zero.

An important result may be concluded from this concerning the mean

value of _, and consequently the mean value of Ok.

If the denominator of n equals k + 2, [O k ] will depend only on _.

If the denominator of n equals k+ I, [@k ] will depend on _ and _I.

If the denominator of n equals k, [@k ] will depend on _, ml and _2"

If the denominator of n equals k - i, [Ok] will depend on _, _I, _2
and _3.

The statements which I have just made concerning [Ok] also apply to

"

Therefore, if the denominator of n equals k + 2, relationship (13),
which will only include _, will determine _.

If the denominator equals k + i, relationship (13) will contain _-

and _i. However, _ will have been previously determined by the relation-
ship

do,_,]=
dr,, j o.

309



Relationship (13) will therefore determine _and, consequently, _I-

If the denominator equals k, relationship (13) will contain m, _i
and _2. However,_ and _I will have been previously determined by rela- 1311
tionships having the sameform as (13). Therefore, (13) will determine
_2 and consequently _2. This process will then be continued.

Discussion

364. The solution which we have obtained still includes the following

arbitrary constants

With respect to the parameters I and _, we have obtained them from

their expansions in increasing powers of E, and we have successively cal-

culated the coefficients of these expansions. These coefficients Ik and _k

depend on the two constants $0 and u0; these coefficients were calculated

by means of the following equations

where Ok,

aok] + _,no= [ao_]

d@k dOk

d$--_and u 0 _ are whole polynomials in

Let us set

_o, _/_o e±_nt+mL

'h, _ h_ __Ox---- E P_oS,% _, -- EQ,

where P is a whole polynomial with respect to

_,, _,, ..., _;, _ ..... _, _ ....

whose coefficients are periodic functions of no.

(18)

We then have

dO, = E h_ Q, u, = E Q.

Let us then replace the quantities (18) hy their expansions, and let us

set

_ n ,'b, 'bs_b s

where B is a periodic function of t of the period 2_. We obtain the

following from this
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dOk dok h t + hi

_° d_ = _h_n, _° 2_ = _ _ n.

We shall obtain

rdo_l raoq

while retaining the terms which are independent of t in the expansions.

The different terms of R contain the following exponentials as factors

e ip! X el!nt+_hb,+li,-bs--h, ].

In order that this term may be independent of t, it is necessary that

p + n(bt÷ h,-- b,-- h2)=o,

which illustrates the fact that b 1 + h 1 - b 2 - h 2 must be divisible by
the denominator of n. Therefore we have

b,+ hj-_b2 _ h2> bl+ hi--bt--h2> denominator of n _ 2,

which indicates that R is divisible by u0, since u0 is included with the
1

exponent _ (b I + h I + b2 + h2).

There would only be an exception to this if we had

bj+ h,= b,+h_

but we would then have either

bl+ht_t,

bj-+'h,+bt+h_ _,

in such a way that R would be divisible by u0, or

from which we have

bl--hl=bl--hl=o,

ht+ht

2

However, the corresponding terms would not then appear in u 0 Fd0kl
LduoJ"

In the same way R will always be divisible by _0, unless h 3 = 0, in

F_d k_l
which case the term would not be included in _0 [_0J"

/312
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Therefore, to sum up we have

[de,.1 i Okl3_u_j' L_J

and, consequently, _k and _k are whole polynomials of _Q and _.

fore X and _ are series which may be developed in powers of

There-

/313

but these three constants do not enter arbitrarily.

Let us recall the method which we employed to introduce the auxil-

iary constant c, which only served to simplify the discussion. For this

purpose, let us again consider the notation given in No. 274, and on page

95. We have set

x,=_xt, y,=_ , x,=_'x;, y,=y;.

Therefore, our equations do not cease to be satisfied when we change

into

t
' y',, x,E_ Xi)

_k-l, x'tk, y;k, x_k2

and when the parameters X and _ retain their initial values.

We then remove the accents which have become useless, and we develop

, ' ' ' which we shall hereafter designate by the letters
xi" YI' X2' Y2'

Xl' YI' x2' Y2' in powers of e. We thus obtained the expansions

_o +_, + _'_, +.:.,no+ _,+_-'_:+.- , (19)

• i 2 r

We shall not cease to satisfy the equations if we change e into _,

and if we multiply the four expansions (19), respectively by

k2, ], k, k,

or, which is the same thing, if we change

into
[pk,-p,_pk-p, ['pk,-p,,$kt-p.
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By means of this change, we must again obtain expansions which are

identical to the expansions (19), but with different values of the con- /314

stants _0 and u . However, it may be seen that _0 and u0 are changed
into k250 and k_u0 by means of this change.

Therefore

change into

when _0 and u0 change into k2_0 and k2u0 .

In other words, if the four expansions (19) are multiplied respec-

tively by E2, i, E, E, the four products thus obtained may be developed

in powers of

The same must be true of % and _, which did not have to change when e,

_0, Uo were changed into _, k250, k2u0 .

Therefore, let us assume that % and _ are expressed as functions of

E2_0 and e_. It is apparent that we shall thus have relationships from

which we may derive _250 and g_0 inversely as functions of % and _.

365. Let k + 2 be the denominator of n. The constant _ will then

be determined by the equation

dOk]

There is only an exception to this in the case of k + 2 = 2, where
determined by

to

d@k
The expression --

dqo

is

[ to, 1
_o.J :o,

is a whole polynomial of degree k + 2 with respect

Therefore, each of these terms contains factors having the form

Only terms which are independent of t will remain in the mean value Fd0k],
[d 70J
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and we have seen that q must be divisible hy the denominator of n, i.e., /315

byk+2.

Therefore, our expression has the following form

ae. im(k + l_ "4"-b -q- ce -i_(k+ z),

I shall now show that the coefficient b is zero.

For this purpose, I shall employ the following method. Let us cal-

culate

t0, _,, .... _-,,

_o, _1, ..., _k-J,

_, _',, .... _,_,,
_;, _;, ...,__,,

by the procedure presented above. However, when computing _k' I shall

retain an arbitrary value for g, instead of assigning a value which can-

cels[ d@k] to _. Then the following equation

Ldn oJ
d_k dOk
dt -- d_o

will allow me to compute _k" However, instead of being a periodic func-

tion of t, _k will be a periodic function of t in addition to a non-periodic

term

l-dO_l
t L2_j"

We have another method of calculating

to, _,.... ', _,

70, _t, ..- • v_k-l,

, t[
and consequently, this term Ld--_03. This method consists of again per-

forming the calculation presented in No. 274.

We shall determine S 0, S1, ..., by means of equations (2) on page 100.

No difficulty will be entailed in calculating SO, S1, ..., Sk_ 1, but

we shall encounter some difficulty when calculating Sk by the equation

dS# dS_.
4r---;,+_B _ = _+C_.

In effect, the second term represents a group of terms having the

following form /316
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A eImlY_+_svt

where mR and m2 are integer numbers. Nothing impedes us from performing
integration, provided that we do not have

irtli -_- 2n_2B _0.

Since 2B equals in, where n is a commensurahle number whose denominator

equals k + 2, the second term of our equation will include terms satisfying

this condition. As a result, Sk will not be a periodic function of Y2 and
v, but may equal

Tk -_- Y2 Uk,

where Tk and Uk are periodic.

Having thus determined the f_nction S and having obtained the approxi-

mation to terms of the order ck+ , we may employ the procedure given in

No. 275 and may thus determine Xl, Yl, x2, Y2"

These two computational methods must lead to the same result. There-
fore, let us set

v S0+¢St+ .-4- skSk.

Let us compile the equations (see page 102)

dE dE dZ dE

7Y;z,' ,,=

dC dC

n, = - _o_o' n, = a_o

and let us derive x 2 from them as a function of t. The value of x2 which
is thus obtained must equal

$0+ El,+...+ ZkSk

up to terms of the order ck+l.

We are interested in calculating Sk, particularly that of the sec_
ular term

[ ok]

This secular term can only come from the secular term of Sk, which equals
Y2Uk •

We thus have the following, up to terms of the order ek+l (equating /317

the secular terms in the equation x 2 = dE )
dy2
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_kt [aokl dU,
I__fGo.i= _*y' u-yT" (20)

In the first approximation-- i.e., up to terms of the order c --we

have (see page 102)

x,==o=_o, u=_o=uo, nit+r_t=yi=_o=t,

hi=i; hi=in; n_t-_gi=v=vo=i(nt+_).

We shall therefore commit an error of the order ¢k+1 if, in the second

term of (20), we replace

by

=0, _0, y,, v

_o, Uo, t, i(nt+w).

pdOkl
We shall therefore obtain kd-_n0J by making the same substitution in

dUk However U k only includes terms containing

dy2

imiyl -4- rn I v,

where lint + "_mlB = o.

We therefore have

dUk _ dU,

dy, -- _ B d--'_"

However, U k is a periodic function of Y2 and iv.

cannot contain a term which is independent of v.

contain a term which is independent of _r.

dU k

Therefore, dv

Therefore [_n0] does not

q.e.d.

In order to clarify the preceding calculation, I would like to make

one more remark• The mean motions n I and n 2 are given by

dC dC

nt=--_-_ 0, n,=--_-_ o"

In general, they depend on e, and they are only reduced to 1 and 6n

for E = O,

However, we are here employing two parameters X and _ which may be

replaced by the arbitrary functions of c, .or, if it is preferred, we may /318
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employ an infinite number of constants %1, %2, --., BI, B2, .... We may

then employ these constants in such a way that n I and n2 remain equal to

1 and to _n, no matter what c may be.

366. In order to determine _, we therefore have an equation of the

following form

ae {k+%)l_ -4- C_ -{k+l)i_" _ o_

where a and c are conjugate and imaginary. In general, a and c are not

zero, otherwise $ could only be determined to the following approximation.

The equation will provide us with the following series of real values
for

• _ 3_
_0, w0+ _--_, _0+ _, _0+ }-+ , ....

It is apparent that we do not have two values which are actually
different when we change _ into _ + 27, but we have more than this. It

may be stated that the two values

2_

do not correspond to two periodic solutions which are actually different.

Since t is not explicitly included in our equations, by changing t

into t + h we may transform an arbitrary periodic solution into another

solution which is not essentially different.

Therefore, let us change t into t + 2h_, where h is an integer number.

Then q0 changes into no + 2h_ and v 0 = i(nt + _) into

i(nt+ _nh_ + w).

Since all of our functions are periodic, of the period 2_, in no and
iv, we shall not change our solution "in any way by subtracting two multiples

vQ

of 27 from no and _-, respectively, for example 2h_ and 2W_ . Then nO will

again become nO and v 0 will change into

i(nt÷ _nh= + _--2h'=),

In other words, we will have changed _ into /319

w ÷ 2=(n/_-- h').

However, we may always choose the integer numbers h and h' in such a
way that
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!
nh -- h'--

k-+-a

We therefore do not obtain a solution which is actually new by
2_

changing _ into -G + k +------2"

q.e.d.

We therefore have only two solutions which are actually different,

corresponding to the two following values of-_

_0_ _0 -_ _ "

We must now determine the constants e2_0 and e2u0 • For this purpose,

we shall employ equations which relate these two constants to I and _. In

the questions which are customarily discussed, there is only one arbitrary

parameter, and we have introduced two in order to facilitate the discussion.
It is therefore convenient to assume that I and U are related by one rela-

tionship -- for example, % = _.

The expansion of % and that of _ in _owers of _250 and e V_ begins in

general with terms containing e _0 and e u 0 (if we disregard the case in
which the denominator of n equals 3).

If we therefore assume that _ = %, we shall derive _2_0 and _V_

from this which may be developed in powers of _ Either the coefficients

of the expansion in powers of Vr_ will be real, or, on the contrary, the

coefficients of the expansion in powers of _/_ will be the ones which are

real.

In the first case, the problem will have two real solutions for % > 0

and will not have any for % < 0. In the second case, the opposite will

hold true.

In order to determine which of these two cases is valid, let us examine

the equation which relates _ to u 0, restricting ourselves to terms con-

taining s2. We shall have

_ IdOl]. _, [dO_'].
t -- _-- 2B0 [auo]' X ----- Hoo[ d_oJ (21)

rd02]
z mayfirstobservethatt I andtd<aj arenotonlyindependent of t

but also of [. There is only one exception for

k + 2 = 2, 3 or 4.
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This is due to the fact that, for k + 2 > 4, terms having the
following form

ei_pt ,qtzt * q_l

which may be included in the second term in one of the equations (21)
can only be independent of t if

since lq[ cannot exceed 4 and since qn must be an integer number.

Thus, the second terms of equations (21) are linear and homogeneous
functions of _0 and u 0. The coefficients of these linear functions are

absolute constants which are independent of _.

However, u0 must be positive; otherwise V_would be imaginary. The

equations (21) added to inequality u 0 > 0 will determine the sign of %.

I need only point out that this sign does not depend on _, since equa-

tions (21) do not depend on it. We have seen that the equation which de-

termines _ has two solutions which are actually different

7_

In conformance with the preceding statements, a periodic solution

which will be real if the sign of % is suitably chosen corresponds to each

of them. The choice of this sign does not depend on _, and these two

solutions will both be real for % > 0 and will both be imaginary for % < 0,
or the opposite will hold true.

It first appears that two periodic solutions correspond to each solu-

tion of the equation for _, since two systems of values for the unknowns /321

_2_ 0 and E V_ are obtained from the relationships between _, _, e2_Q and--

E V_. This is not the case, however. Without restricting the conditions

of generality, we may assume that V_o is positive, because we do not change

our formulas in any way by changing V_ into -_, and _ into _ + 7.

Out of our two systems of values, there is only one for which _ is
positive.

Therefore, we have:

Two real, periodic solutions of the second type for % > 0 (or for
_<0).

No solution of the second type for % < 0 (or for % > 0).
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Let us again employ the notation given in Chapter XXVIII and, in
particular, that given in No. 331.

U1 maybe reduced to p2, and corresponds to the term containing
xlY 1 which appears in 0Q.

U0 maybe reduced to a constant factor multiplied by p4, corresponding
[d_q[d2  land

to terms coming fromL_u0j LT oJ

The first term of W which may not be reduced to a power U1 has the

following form

p,__=[A. cos(k -.- _)? ÷ B]

and comes from Ok+ 2.

The function whose maxima and minima we must study, and which must

play the role of the function

Uo__ =U 1= p,/(? zp'

studied on page 247, will have the following form

Apk+' cos(k_-:_)?+ P P_--zp',

where P is a whole polynomial in p2 with constant coefficients.

We have disregarded the particular cases in which the denominator of

n equals 2, 3 or 4.

Discussion of Particular Cases

367. Let us assume that this denominator equals 4.

F_ %l F_ <l
Then [O2], [_0J ' [7 u0Jwill no longer be independent of-_, and

e+4i_
they will include terms containing - •

The equation for _- wiil always yield two different solutions

which will provide us with two periodic solutions. Due to the fact that

only the sign of I may depend on _-, the following cases may occur:

Two real solutions of the second type for X > 0; zero solution for

x<O;

One real solution of the second type for X > 0; one solution for
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%<0;

Zero real solution of the second type for _ > Q; two solutions for
< O.

The function U0 + zU1 given on page 247 becomes

p_(Acos4?÷B)--_p,.

Let us now assumethat the denominator of n equals 3.

The expansion of _ in powers of e then begins with a term containing
E_0, so that if we set _ = %, we shall obtain c2_0 and e_/_- in series
which maybe developed in powers of %, and no longer of V_.

The sign of V_will depend on _, and if it is positive for_= D 0 it

will be negative for _ = WO + _.

Therefore, if it is always convenient for us to assume that V_ is
mainly positive, we shall readily find that we have:

A real solution of the second type for % > 0 and a real solution of

the second type for % < 0.

The function U0 + zU I given on page 247 becomes

Ap_cos3$-- zpL

Finally, if the denominator of n equals 2, [02] _|d02| Fd02] include
'Ld_0j ' Ldu0J'

terms containing e-+4i_, e+2i_. /323

The equation for _ takes the form

AcosC4w÷ B)_-A'cos(=_ ÷ B')=o

and it has eight solutions

3_
2 2

m_, _,÷_, _-_-_, m_-t- 3_--,

2

Of the two terms -_0 and _I, at least one is real.

The following hypotheses are possible: (4_ 0), (3, i), (2, 2), (i, 3),

(0, 4), (2, 0), (1, l), (0, 2).

The first number between the parenthesis represents the number of

periodic solutions for % > 0, and the second is the same number for I < 0.
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The function given on page 247 becomes
A_cos_c?-'-B?_cos2_-+-, C_s;n2?+D? _-z_ t"

Application to Equations of No. 13

368. Let us return to the canonical equations of dynamics:

dxl dF dyt _ dF
,_-7--_z,' -a_----u_"

(1)

Just as in No. 13, No. 42, No. 125, etc., I shall assume that F is a

periodic function of the y's, which may be developed in powers of a para-

meter _ in the following form

F=Fo+MFI+...

and that F0 depends only on the x's.

We saw in No. 42 that these equations have an infinite number of solu-

tions of the first type

zi = ?i(t), yt = +i(t) (2)

where the functions _i and _i may be developed in increasing powers of _. /324

Let us consider one of these solutions (2).

Let T be the period, and let _ be one of the characteristic exponents.

There will be two of them, which are different from zero, which are equal

and have opposite signs, where we may assume two degrees of freedom.

We saw in Chapter IV that a depends on _, and may be developed in

powers of _/_. When _ varies continuously, the same will hold true for
_. For _ = _0, let us assume that aT is commensurable with 2i_ and equal

to 2ni_.

We may conclude from this that, for _ which is close to _0, there are

solutions of the second type, which are derived from (2) and whose period

is (k + 2)T, where k + 2 designates the denominator of n.

If we put aside the cases in which k + 2 equals 2, 3, or 4, we have
seen that two of these solutions exist when I (here _ - _0) has a certain

sign, and that they do not exist when I (here _ - _0) has the opposite

sign.

I have stated that the cases in which k + 2 = 2, 3, 4 have been dis-

regarded, and I may do this without causing any inconvenience. The
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following
aT
_i_

may be developed in powers of _/_, and vanishes with _ For small
values of _, n is therefore very small, and its denominator is definitely

larger than 4.

We therefore have two hypotheses:

Either the solutions of the second type occur only for _ > _0, or

they occur for _ < _0"

Which of these two hypotheses is valid?

Everything depends on the sign of a certain term Q, which depends

itself on the coefficients of u0 and _0 in

d_oJ' LduoJ

In order to determine this sign, we shall not need to formulate this

term, and the following considerations will suffice.

369. Let us first take a simple case, which will be that presented /325

in No. 199. Let us set

F = x2 _xT+ _cosyt

with the canonical equations

da"i dF dyi _ dF
dt -- dyi ' dt dx_

which yields

dz, dY_ dz, . dyl

d--7--= o, --d-'['=--', d---_-= _ s,ny,, --_--------2x,. (i)

The function S of Jacobi may be written

= z°y, ÷f_C --_ cosy,S dr,

with two constants x02 and C. We may derive the following from this

l x_ = x °, y, = -- t+y °,/ dy,
x,=¢C-_cosy,, A--t= 2(C--_cosyi

(2)

where A and yO are two new integration constants.
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It may be seen that the elliptical integral is introduced

(3)

--;_cosyl

This integral has a real period, which is the integral taken between 0

and 2_, if ICI > I_], and two times the integral taken between

if ICl < I_]"

Let us call _ this real period.

A periodic solution corresponds to each value of _ which is commensur-

able with 2_. However, we must distinguish between two cases.

If ICl > I_], Yl and Y2 increase by a multiple of 2_ during one

period. The corresponding periodic solutions are solutions of the first

type.

If ICI < IDI, Y2 increases by a multiple of 2_ during one period,

and Yl returns to its original value. The corresponding solutions are

solutions of the second type.

This discussion must be supplemented by two unusual periodic solu-

tions which must be regarded as solutions of the first type. Let us set

> 0, and these solutions will then be

I x,=xl, y,=--t#y;, C= s, x,=o, y,=o, (4)

_x,=x_, y,=--t_y;, C=--S, x,=o, y,=_.

I have stated that it must be assumed that these latter solutions are

of the first type, and that the solutions corresponding to [el < lUl must

be regarded as solutions of the second type.

Let us assign to C a value which is a little higher than -_, and let

us set

C =(,--Q_,

where e is very small. Yl will not be able to deviate very greatly from _.

We shall approximately have

C--y. cosyl----_ _ - ' '

and the period m will be equal to

¢_'

i
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from which we may draw the following conclusions. Let a be an arbitrary
numberwhich is commensurablewith 2_. There is a series of periodic
solutions such that IcI < Ipl and that m= _. If _-is very close to

C will be very close to -B, and for

these periodic solutions will coincide with the second solution (4) which
is of the first type. Wemay now recognize the characteristic property
of solutions of the second type.

It maybe seen that the second solution (4) -- i.e., that of the
two solutions (4) which is stable -- gives rise to solutions of the second
type, as was explained in Chapter XXVIII.

If the other solutions of the first type -- those which are such that
ICI > I_l -- do not produce solutions of the second type, this is due to /327

the very particular form of the equations (i). (For these solutions, the

characteristic exponents are always zero.)

Let us first consider solutions of the first type, such that IcI > Ipl.

Let us set C = CO + s. The period _, i.e., the integral (3) taken

between 0 and 27, may be developed in powers of e and of p, and the known
terms may be reduced to

Let us assign an arbitrary commensurable value to V_. We shall have
a periodic solution every time that we have

The equation is satisfied for c = p = 0, and we may derive s and,

consequently, C from this equation, in series which develop in powers of

p. The equations (2) will then give us x I and Yl developed in powers of

_. These are the expansions of Chapter III.

Let us pass to the second type, such that ICI < IPl.
C = Ep. We shall have

9,= 2 _ --cosy,

Let us set

It can be seen that _/_is only a function of e. On the other hand,
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_--=¢_-co5y,, <,_,-t)¢_= f dx, ,

x 1

which indicates to us that sin Yl, cos Yl andv_ are functions of (A - t)V_-

and of E, which are doubl periodic with respect to (A - t) V_. They are

also functions of (A- t)V_- and of _, _inee _ is a function of _V_.
Therefore, if we assign a constant value which is commensurable with 27

to _, we shall obtain a series of periodic solutions. For these solutions Z328

cos y_, siny, and

may be developed in Fourier series according to the sines and cosines of the

multiples of 2_____t,where T is the smallest common multiple of w and 2_. The
T

function of _ is an arbitrary coefficient of the expansion, and it is this

function which I would like to study.

For this purpose, we must first study the relationship between e and

We may vary e from -i to +i. For e = -i, we have

_¢_=_-

For _ = +i, we have _--= _. Therefore, when e varies from -i to

+i, mV_-increases from_2 to + _.

Therefore, there is only a periodic solution corresponding to a given

value of m, which is commensurable with 2_, if

The coefficients of the Fourier expansion are therefore functions of _,

which are real for

and imaginary for

It is apparent that the same line of reasoning would lead to the same

result if, instead of
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we had set

where F0 depends only on Xl and x2, and IF1] depends only on xl, x2 and /329

Yl. The solutions of the second type would still have been real for

> PO"

370. In the general case, the quantity Q, which was in question at

the end of No. 368 and whose sign we shall try to determine, obviously de-

pends on _. If _ is sufficiently small, the first term of the expansion
will provide its sign.

Let us determine the function S by the Bohlin method, and let us set

S =So+V_S_+_S=+ ....

If p is small enough, it will obviously be the first two terms

So+ _S,

which will be the most important. If we set

F = Fo+ ;_Ft+ M_Ft+...,

we have seen in Chapter XIX that SO and S I depend neither on F 2 or F I -

[FI] , but only on F 0 and [FI] , where the mean value of F I is designated
by IF1].

Let us again take the quantity Q from No. 368. The first term of

its expansion will only depend on SO and SI, and consequently on F 0 and
IF1]. The same would hold true if we had set

F = Fo+ M[F,],

which is, consequently, the same as in the preceding section.

In the preceding section we found that solutions of the second type
exist only for

I_ > Fo.

This conclusion still holds in the general case, provided that _0 is suffi-
ciently small.

What is the value of _0 for which this conclusion would no longer hold?

Let us again consider the notation given in No. 361, which is that of

No. 275. The exponent a which appears there may be developed in powers of
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the product AA'.

It maybe reduced to the characteristic exponent for AA' = 0.

Since we assumethat the solution of the first type is stahle and
is imaginary, A and A' are imaginary and conjugate, and the product AA'

is positive.

For small values of _, _ decreases whenAA' increases. If the re-
verse were true, solutions of the second type would exist only for
P < PO"

The desired value of _0 is therefore that for which _ ceases to de-

crease when AA' increases. It is therefore that which cancels the deriva-

tive of _ with respect to AA'.

]330
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CHAPTERXXXI

PROPERTIESOFSOLUTIONSOFTHESECONDTYPE

Solutions of the Second Type and the Principle of Least Action /331

371. I cannot pass over the relationships between the theory of solu-

tions of the second type and the principle of least action in silence. I

wrote Chapter XXIX just for these relationships. However, in order to

understand them some preliminary remarks are still necessary.

Let us assume two degrees of freedom. Let x I and x 2 be the two

variables of the first series, which may be regarded as the coordinates

of a point in a plane. The plane curves which satisfy our differential

equations will comprise what I have designated as trajectories.

Let M be an arbitrary point in the plane. Let us consider the group

of trajectories emanating from the point M, and let E be their envelope.

Let F be the n-_ kinetic focus of M on the trajectory (T). This trajec-

tory will touch the envelope E at the point F, accordin_ to the definition

of kinetic focuses. I would like to recall that the tr_ focus of M, or its
focus of the order n, is the tn_-hpoint of intersection of T with the in-

finitely adjacent trajectory passing through M. However, the conditions

of this contact may vary. It may happen that F is not a singular point of
the curve E, and that the contact is of the first order. This is the most
general case.

Let

x,= ?(x,)

be the equations of the trajectory (T) and of a trajectory (T') which is

very close, emanating from the point M.

Let z I and z2 be the coordinates of the point M, and let u I and u2 /332

be the coordinates of F. Since (T) passes through M and F, and since (T')
passes through M, we shall have

=,= ?(=,), ul= _u,), _(_,)=o

Due to the fact that the trajectory (T') is very close to (T), the

function _ will be very small. I may call _ the angle at which two tra-

jectories intersect the point M. It is this angle which will define the

trajectory (T'), and the function _ will depend on the angle _. It will

be very small if, as we have assumed, this angle _ is itself very small,
and it will vanish with _.

The value of _'(z2) (designating the derivative of _ by 4') will have
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the samesign as _. With respect to _'(u 2) [if we assume that _ is very

small and if the system of coordinates has heen defined in such a way

that the function _(x2) is uniform, which is always possible], it has

the same sign as _, if F is a focus of even order, and it has the opposite

sign if F is a focus of odd order.

One characteristic of the case in which we are interested is the fact

that _(u2) is of the same order as _2, and always of the same sign.

For example, let us assume that _(u2) is positive.

If the sign of _ is such that _'(u2) is positive, the trajectory

(T') will intersect (T) at a point F' which is close to the point F, and

not as far away from M as the point F (assuming that u2 > z2)- In this

case, (T') touches E before F', while (T) touches E after F'. According

to a well-known line of reasoning, the action is larger (at least in abso-

lute motion) when we pass from M to F' proceeding along (T') than it is

when we pass from M to F' proceeding along (T).

If the sign of _ is such that _'(u2) is negative, (T) intersects (T)

at a point F' which is farther away from M than F. In this case, (T')

touches E after F', and (T) touches E before F'. When we pass from M to

F', the action is greater along (T) than it is along (T').

The results would be just the opposite if _(u2) were negative. How-

ever, in any case, among the trajectories (T') adjacent to (T) there are

some which intersect (T) close to F and beyond F, and others which inter-

sect (T) close to F and just short of F.

In this case, we may say that F is an ordinary focus.

It cannot happen that F is an ordinary point of E, and that the con-

tact is of a higher order than the first.

Let us develop _(x z) in powers of _, and let us set

The condition under which there would be a contact of higher order

would be
+_(,,,)= o

_333

But we already have

and the function _l(X2) satisfies a linear, differential equation of the

second order, whose coefficients are finite and given functions of x 2.

The coefficient of the second derivative is reduced to unity.
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If the integral _l(X2) vanishes, as well as its first derivative,

for x 2 = u2, it would be identically zero, which is absurd.

Therefore, there is never a contact of higher order.

However, it may happen that F is a cusp of the curve E. Either the

cusp point is on the side of M, so that a moving point proceeding from M

to F will encounter M with the cusp point directed at M, or the cusp point

is turned the opposite way so that the moving point encounters M with the

cusp point turned away from M. In the first case, I shall state that F

is a pointed focus, and in the second case I shall state that F is a taloned
focus.

In one and the other case, _(u2) is on the order of _3. In this case,

the pointed focus has the sign of _, if P is a focus of odd order, and it

has the opposite sign of _ if F is a focus of even order. The opposite is
true i_ the case of a taloned focus.

In the case of a pointed focus, all the trajectories (T') intersect

(T) at a point F' which is close to F and beyond F. Proceeding from M

to F', the action is greater along (T) than it is along (T').

In the case of a taloned focus, all the trajectories (T') intersect

(T) at a point F' which is close to F and just short of F. Proceeding

from M to F', the action is greater along (T') than it is along (T).

Let F' be a point of (T) which is sufficiently close to F. In the

case of a pointed focus, I may join M with F' by a trajectory (T'), if F'

is beyond F. In the case of a taloned focus, I may join M with F' if F'
is just short of F.

It could finally be the case that F is a singular point of E which is /334

more complicated than an ordinary cusp. I would then state that it is a

singular focus.

I would only like to note that we cannot pass from a pointed focus

to a taloned focus except through a singular focus, because at the time of
passage _(u2) must be of the order _4.

372. Let us now consider an arbitrary periodic solution. It will

correspond to a closed trajectory (T). Let _ be the characteristic ex-

ponent and T be the period. In Chapter XXIX we saw how to determine

successive kinetic focuses (No. 347).

2in_
Let us assume that _ equals T , where n is a commensurable number

whose numerator is p. In this case, the application of the rule given

in No. 347 shows that each point of 6) coincides with its 2p-_ focus.
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If, just as in No. 347, we take a unit of time such that the period
T equals 2_, we have _ = in. If we designate the value of the function

are the values of this
at the point M by t0, and if TI, _2, "''' T2p 2p_function • at the first, second, ..., up to the focus of M, according

to the rule given in No. 347, we shall have the following

it. 2it. _pir. 2p_

If p is the numerator of n, it can be seen that T2p - r0 is a multi-

ple of 2_, i.e., that M and its 2p_ focus coincide.

The trajectory emanating from the point M which is infinitely close

to (T) will therefore pass through the point M again after having gone

around the closed trajectory (T) k + 2 times, if k ÷ 2 is the denominator

of n.

The point M is therefore its 2p_ focus. However, we may wish to

know what category of focuses it belongs to, from the point of view of the

classification presented in the preceding section.

Let us adopt a system of coordinates which are similar to the polar

coordinates, so that the equation for the closed trajectory (T) is

and so that _ varies from 0 to 2_ when one passes around this closed tra-

jectory. The curves p = const, are then closed curves which form an en- /335

velope around each other in the same way as concentric circles. The
curves _ = const, form a bundle of divergent curves which intersect all

the curves p = const., in such a way that the curve m = a + 2_ coincides

with the curve _ = a.

Then let _0 be the value of m which corresponds to the point of de-

parture M. The value of _ which will correspond to this same point M,

regarded as the 2_ focus of the point of departure, will be

Let

be the equation of a trajectory (T') which is close to (T) and passes

through M. The function _(m) will correspond to the function _(x2) given

in the preceding section. We shall have _(m0) = 0, and we must now discuss

the sign of

_[_o÷ 2_ + _)_].
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Wemust therefore formulate the function _(_), and for this purpose
we need only apply the principles of Chapter VII, or the principles given
in No. 274. For example, if we apply the latter principles, we shall ob-
tain the following. The function @(_) maybe developed in powers of the
two quantities

Jt ¢=% A'e-_oJ

The coefficients of the expansion are periodic functions of the

period 2_; A and A' are two integration constants. With respect to s,

it is a constant which may be developed in powers of the product AA'

_ :_o-_-:_I(AA')_- =_(AA'): ÷ ....

The term _0 equals the characteristic exponent of (T), i.e., it
equals in.

If (T') differs very little from (T), the two constants A and A' are

very small. They are on the order of the angle which I called _ in the /336
preceding section, and which must not be confused with the exponent which

I have designated by the same symbol in the present section.

If we take the approximation up to the third order inclusively with

respect to A and A', _(_) will be reduced to a polynomial of the third

order with respect to these two constants, and I may then write

+(_)= Ae_ + A'e-_'+f(Ae=% A'e-_)

where f is a whole polynomial with respect to Ae _, and A'e -s_ only in-

cludes terms of the second and third degree. The coefficients of the

polynomial f, just the same as o and o', are periodic functions of the
period 2_.

Under this assumption, since s equals s0, up to terms of the second

order, and since it equals s0 + sI (AA') up to terms of the fourth order,
we may write the following, neglecting all terms of the fourth order with
respect to A and A':

or

_(_) --- A e=0,0_ + A'e-=,o _'

+ at c0AA'(A e=0oe -- A'e-=_o,'; + f(Ae=o% A'e-=0o).

When _ increases by (2k + 4)_, the coefficients of f, as well as

s0
o and o', do not change. The same holds true for es0_, since -_- = n has

k + 2 for the denominator. Therefore, the same still holds true for

Ae=_, A'e-=0_', f(Ae_% A'e-_).
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We finally have

+ (to+ _,_ + __)- +(_) = (_k + _)_, _'(A e_0_ --:X'e-_,_:').

However, _(w0) is zero. The term whose sign we must determine is

therefore

(_£ + 2)_, AA'(A e_o_'o_o-- A'e-_#o_' o).

I shall employ o 0 and o_0 to designate the values of o and o' for w = m0.

I should first point out that this term is of the third order which, /337

according to the preceding section, indicates to us that our focuses will

in general be pointed focuses or taloned focuses. It may now be stated
that this term always has the same sign, and that its coefficient cannot

vanish.

The two constants A and A' are related by the following relationship

q_(_Oo)=o

which may be written as follows, since A and A' are infinitely small quanti-

ties

A e_o_0,0 + A'e-=o_o,g --- o. (1)

In addition, a 0 is purely imaginary, and o 0 and o' 0 are imaginary and

conjugate. The same holds true for A and A'.

The product AA' is therefore positive, and cannot vanish, since A and

A' cannot be zero at the same time.

In addition, we cannot have

A e_o_o_0--A' e-_0_o _ ----"o,
(2)

because the equations (i) and (2) would entail the following

However, these equations are impossible. They would mean that all

trajectories close to (T) would pass through the point M, which is clearly

false.

Therefore, our term _(_0 + 2k_ + 4_) always has the same sign. Our

focuses are therefore all pointed focuses_ or are all taloned focuses.

Everything, depends on the sign of _I"

373. We have disregarded the case in which _i would be zero, an un-

usual case in which all the focuses would be singular, and that in which

k + 2 would equal 2, 3, or 4. Following is the reason for this.
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Wesaw in the computations performed in Chapter VII that the follow-
ing small divisors are introduced

(see No. 104, VolumeI, page 338).

The calculation is finished, and secular terms occur if one of these
divisors vanishes.

It maybe readily stated that if k + 2 equals 2, 3, or 4, we are /338

thus finished with the calculation of terms of the first three orders,

which are those which we had to take into account. If, on the other hand,

k + 2 > 4, we will only be finished with the calculation of the terms of

higher order, which are not included in the preceding analysis.

374. For example, let us assume that all the focuses are. pointed.

Let M be an arbitrary point of (T); this point will be the 2p-_ focus

with respect to itself. Let M' be a point located a little beyond the

point M in the direction in which the trajectory (T) and the trajectories

close to (T') are traversed. I may draw a trajectory (T') emanating from

point (M), which will deviate very little from (T), which will pass around

(T) k + 2 times, which will finally end at the point M', and which will

have 2p + 1 points of intersection with (T), counting the intersection
points M and M'

Due to the fact that the focus is a pointed focus, the trajectories

(T') which are close to (T) will all intersect (T) again beyond the focus.

We may therefore draw the trajectory (T') which satisfies the conditions

I have just discussed, provided that the distance MM' is smaller than _.

It is apparent that the upper limit, which must not exceed the distance MM',

depends upon the position of M on (T). However, it never vanishes, since

there is not a singular focus. It is therefore sufficient for me to set

6 equal to the smallest value which this upper limit can take on, and I
shall assume that 6 is a constant.

Therefore, if the distance MM' is smaller than 6, we may draw a tra-

jectory (T') satisfying our conditions. We may even draw two of them, one

intersecting (T) at M at a positive angle, and the other intersecting it

at a negative angle.

Under this assumption, let us assume that our differential canonical

equations depend on the parameter X. For X = 0, the closed trajectory (T)

has _0 = _n as the characteristic exponent. Let us assume that, for X > 0,

the characteristic exponent divided by i is larger than n, and that for

X < 0, on the other hand, it is smaller than n.

For X $ 0, the point M will no longer be its own 2p_ focus. Its

2p_ focus will be located a little short of M for X > 0, and beyond M
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for % < 0. Let F be this focus. The distance MF will naturally depend

on the position of M on (T). I shall designate E as the largest value of

this distance. It is apparent that c will be a continuous function of

%, and that it will vanish with %. We should point out, that for % _ O,

the focus F is always beyond M, or always a little short of it, according

to the principles given in No. 347, depending on the value of the charac-

teristic exponent. The distance MF can never vanish.

Let F' be a point located a little beyond F. We may connect M with

F' by a trajectory (T'), provided that the distance FF' is less than a

certain quantity 6'. It is apparent that 6' is a continuous function of

%, and that it may be reduced to 6 for % = O.

Let us set % > O, in such a way that M is beyond F. We may have M

play the role of F', and we may connect M to itself by a trajectory (T'),

provided that the distance MF is smaller than 6', or provided that

< 6'.

For % = 0, e is zero, and _' = 6 > O. Therefore, we may take % small

enough so that the inequality is satisfied.

We may then connect the point M to itself through a trajectory (T')

deviating a little from (+), passing around (T) k + 2 times, and inter-

secting (T) 2p + 1 times.

.C,

111

pf'/

O, D

Figure 12

In the figure, BA represents an arc of (T) on which M is located.

MC is an arc of (T') starting from M and DM is another arc of this same

trajectory bordering upon M. The arrows indicate the direction in which

the trajectories are traversed.

The point M may also be connected to itself not through one trajec-

tory, but through two (T'). For one, as the figure indicates, the angle

CMA is positive, so that CM is above MA. For the other, the angle CMA
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would be negative.

The trajectory (T') must not be regarded as a closed trajectory. It
leaves the point M to return to the point M, but the direction of the
tangent is not the sameat the point of departure as it is at the point
of arrival, so that the arcs MCand DMdo not join each other.

The trajectory (T'), thus proceeding from M to Mwith a hooked angle
at M, will form what maybe called a loop. If the same construction is

followed for the points M of (T), we shall obtain a series of loops. We

shall obtain two of them, the first corresponding to the case in which the

angle CMA is positive, and the second corresponding to the case in which

this angle is negative. These two series are separated from each other,

and the passage from one to another may only be made if the angle CMA is

infinitely small.

The trajectory (T'), which is infinitely close to (T), would pass

through the focus F, according to the definition of focuses. However,

since it must end at the point M, the points M and F would coincide, and

this cannot happen according to the principles presented in No. 347.

Therefore, if all of the focuses are pointed, we have two series of

loops for % > 0, and we have no more for % < O.

If all the focuses were taloned, the same line of reasoning could be

repeated. We would find that there are two series of loops for % < 0, and
that there are no more for % > 0.

375. Let us consider one of the series of loops defined in the pre-

ceding section. The action calculated along one of these loops will vary

with the position of the point M; it will have at least one maximum or
one minimum.

If the action is maximum or minimum, it may be stated that the two

arcs MC and CD coincide, so that the trajectory (T') is closed and corres-

ponds to a periodic solution of the second type.

For example, let us assume that the trajectory (T') corresponds to

the minimum of the action, and that the angle CMA is larger than the angle

BMD, just as in the figure. Let us then take a point M 1 to the left of

M and infinitely close to M, and let us construct a loop (T_) which /341

differs by an infinitely small amount from the loop (T'), having its

hooked point at M I. Let MIC 1 and MID 1 be two arcs of this loop.

From M and from M 1 I may draw two normals MP and MIQ on MIC 1 and MD.

According to a well-known theorem, the action along (T') from the

point M up to the point Q will equal the action along (Ti) from the point

337



P to M1. We shall therefore have

action (T',)=: action(T')÷ action(M,P)-- action(MQ)

or

action (T_ _ = action (T') _- action (,_13lt)(cosC3lA-- cosBMQ),

or finally

action(T_)< action(T'),

which is absurd, since (T') was assumed to correspond to the minimum of

the action.

If we set

CMA < 13MD,

we would arrive at the same absurd result placing M I to the right of M.

We must therefore assume that

C3IA ----BMD,

i.e., that the two arcs coincide.

The same line of reasoning may be applied to the case of the maximum.

Each series of loops therefore contains at least two closed trajec-

tories.

Each of these closed trajectories passes around (T) k + 2 times,

and intersects (T) at 2p points. For p of these points, the angle similar

to CMA is positive, and for the other p points, it is negative. Due to the

fact that the curve (T') is closed, it must intersect (T) as many times in

one direction as in the other direction.

Therefore, it may be assumed that this closed trajectory consists of

2p types of _, because we may regard any arbitrary one of our 2p points

of intersection as the hooked point. For p of these types, the loop thus

defined would belong to the first series, and for the other p types, it

would belong to the second series.

Among the loops of each series, there are therefore not two, but at

least 2p of them, which may be reduced to closed trajectories. However, /342

one thus obtains not 4p, hut only two different closed trajectories.

The fact that there are not more of them is, in general, not the

result of the preceding line of reasoning, but may be concluded from the

principles presented in the preceding chapter.

4
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trajectory (T') thus defined will have _(k + l)p double points,

if k is odd, and _(k + 2)p double points if k is even. This is valid for

small values of %, and it remains valid no matter how large % may be as

long as (T') exists. The number of double points could only vary if two

branches of the curve (T') were tangent to each other. However, two tra-

jectories cannot be tangent to each other without coinciding.

For the same reason, no matter how large % may be, as long as the two

trajectories (T) and (T') exist, they will intersect at 2p points.

376. The entire line of reasoning presented in the preceding section

assumes that we are dealing with absolute motion.

If this line of reasoning is extended to the case of relative motion,

difficulties will be encountered which are not insurmountable, but which I

shall not try to surmount at this point.

To begin with, we must modify the construction employed in the preceding

section. Instead of drawing MP and MIQ normal to MIC 1 and MD, we must pro-

ceed as follows. In order to construct MP, for example, we should construct

a circle which is infinitely small and which satisfies the following condi-

tions. It intersects MIC 1 at P and touches the line MP at this point. The

line connecting M to the center must have a given direction, and the ratio

of the line length to the radius must be given. The line MP thus constructed

has the same properties as the normal in absolute motion. Unfortunately, in

certain cases this construction entails certain difficulties.

In addition, the action (MMI) is not always positive. If it became zero,

this line of reasoning would still have a defect. The maximum or the minimum

could be reached at the point M, so that the action (MM I) is zero, and this

could occur without the necessity of the arcs MC and DM coinciding. /343

Our line of reasoning therefore only applies to the case of relative

motion, if the action is positive along (T).

In any case, one of the conclusions is still valid. The closed trajec-

tory (T') always exists, since -- if the line of reasoning given in the pre-

ceding section is lacking -- the same does not hold true for the line of

reasoning given in Chapters XXVIII and XXX. In addition, (IT') intersects

(T) at 2p points, and has _(k + i) or z_(k + 2) double points.

This is valid for small values of %, but it cannot be concluded any

longer that this is valid no matter what % may be, because two trajectories

may be tangent without coinciding, provided that they are traversed in the

opposite direction.
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Stability and Instabilit_

377. Let us assume that there are only two degrees of freedom, two

of the characteristic exponents are zero, and the two others are equal and

have opposite signs.

The equation which has the following as roots

c_=T

is an equation of the second order whose coefficients are real (T represents

the period and _ represents one of the characteristic exponents).

Its roots are therefore real or imaginary and conjugate.

If they are real and positive, the _'s are real, and the periodic solu-

tion is unstable.

If they are imaginary, the _'s are imaginary and conjugate. Since the

product equals +i, the _'s are purely imaginary, and the periodic solution

is stable.

If they are real and negative, the _'s are imaginary but complex, with
iT

the imaginary part equalling-_-. The periodic solution is still unstable.

+i.

They cannot be real and have opposite signs, since the product equals

the following two hypotheses

e _T_a_ e _T<o.

The passage from stable solutions to unstable solutions of the first

type occurs for the value

3:-----0.

The passage from stable solutions to unstable solutions of the second

type occurs for the value

type.

There are therefore two kinds of unstable solutions, corresponding to
/344

378. Let us first study the passage to unstable solutions of the first

At the moment of passage, we have

e _T -_- i.
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Let us again consider the terms _k and 4k defined in Chapter III, and
let us consider the equation

d+, a+, d+, d+,

d+, d_, _ s d,_, a+,

d,_h a+, d+__,_ s d+,

a,_,, d+_ d+, a+,

--:0°

(1)

This equation has the following roots

O_ O_ egT-- Ip e--gT__ i.

At the time of passage, the four roots become zero.

Before studying the simple case in which we are dealing with equations
of dynamics with two degrees of freedom, and in which we assume that the

function F does not depend explicitly on time and that, consequently, the

equations have the energy integral F = const., it is advantageous to consider

for a moment a case which is even simpler.

Let F be an arbitrary function of x, y and t, which is periodic of

period T with respect to t. Let us consider the canonical equations /345

,_ dF dy dF
2_ =Tjy' _7 =-- _7; (2)

These are the equations of dynamics with only one degree of freedom. How-

ever, due to the fact that F depends on t, they do not have the energy equa-
tion F = const.

Let us assume that these equations (2) have a periodic solution of

period T. The characteristic exponents will be provided by the following
equation which is similar to (i)

which has the following roots

d,_t
_-s

a+,

-----0

_e+,_ s
(3)

exT -- ! , e -_tT -- I.

These roots all become zero at the moment of passage.

Let us assume that F depends on a certain parameter v and that, for

= 0, the two roots of the equation (3) are zero. The functions 41 and 42
will depend not only on B1 and B2, but also on _. We shall assume that F
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may be developed in powers of _, and that consequently _I and _2 may be

developed in powers of BI, _2 and _.

The periodic solutions will be provided by the following equations

(4)
+,=o, % =o.

For _ = 0, _I = _2 = 0, the functional determinant of the _'s with

respect to the B's is zero. However, in general the four derivatives d_dB k

will not vanish at the same time. For example, let us assume

d+, Xo,

and we shall derive B1 in series developed in powers of B2 and v from the

first equation (4), and we shall substitute it in the second equation (1). /346

Let

•'(_,,z*)= o (5)

be the result of the substitution. Our functional determinant being zero,

we shall have

However, we may distinguish between two cases:

d_
i. The derivative _ is not zero, or, in other words, the functional

determinant of _I and _2 with respect to B1 and _ is not zero.

In this case, if we assume that B2 and H are the coordinates of a point

in a plane, the curve represented by equation (5) will have an ordinary

point at the origin, where the tangent will be the line _ = 0.

In general, the second derivative

"d! _1"

will not be zero, i.e., the origin will not be a point of inflection of the

curve (5).

If we intersect the line H = _0, where H0 is a rather small constant,

we may have, two points of intersection for this line and the curve (5) in

the vicinity of the origin, or we may not have any, depending on the sign

of _0.
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For example, if this curve is above its tangent, we shall have two
intersections for _0 > 0, and consequently two periodic solutions, and
for _0 < 0 we shall not have any.

Wehave thus seen two periodic solutions approach each other, coincide,
and then disappear.

Let us consider the two points of intersection of the line p = P0
with the curve (5). Theywill correspond to two consecutive roots of the
equation (5) and, consequently, to two values having opposite signs of the

d_
derivative d--_2,and therefore to two values of opposite signs of the func-

tional determinant of the _i's with respect to the B's, that is, of the /347
product

( e_'r-- I)(e -_r- I)=: 2 -- eat- e-_T

i.e., of _2.

Therefore, one of the two periodic solutions which coincides then to

disappear is always stable, and the other is unstable.

dP
2. The derivative _ = 0, or in other words the functional determinant

of _i and _2 with respect to Bl and p, is zero.

The curve (5) then has a singular point at the origin which, in general,
will be an ordinary, double point.

Two branches of the curve intersect at the origin, and the line p = P0
will always meet the curve at two points. We shall therefore have two

periodic solutions, no matter what the sign of _0 may be.

The two branches of the curve determine four regions in the vicinty

of the origin. In two of these regions which are opposite the peak _ will
be positive; in the other two regions, it will be negative.

Let OPI, OP2, OP3, Op 4 be the four half-branches which converge at the

origin. OP I will be the extension of OP 3 and OP 2 will be the extension of

OP4. OPI and OP 2 will correspond to P0 > 0; OP 3 and oP 4 will correspond to

uo < 0. The function I will be positive for the angles PIOP2, P3OPq, and
negative for the angles P2OP3, PiOP4.

We have just seen that the stability depends on the sign of the deriva-
d_

tive d--_2. For example, when we pass over OPI, _ will change from negative

to positive. The derivative will be positive, and the solution will be

stable, for example. It will also be stable when we pass over OP4, and

unstable when we pass over OP 2 or OP 3.
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The periodic solutions corresponding to OP 1 are stable, and they form

an analytical sequence with respect to those which correspond to OP 3 and

which are unstable.

Conversely, those which correspond to OP 2 and which are unstable are

the analytical sequence with respect to those which correspond to OP4, and

which are stable.

We thus have two analytical series of periodic solutions which coincide

for _ = 0, and at this instant of time the two series exchange their stabil-

We have just studied the two simplest cases, but there may be a multi-

tude of other cases corresponding to different singularities which the /348

curve (5) may have at the origin.

However, no matter what these singularities may be, we shall observe

an even p + q number of half-branches emanating from the origin, i.e., p

for _ > 0 and q for _ < 0. Let us assume that a small circle about the

origin encounters them in the following order

Let

(6)

be those which correspond to p > 0 and let

OPl,,._, 01"¢,+,., ..., OPp+q
(7)

be those which correspond to _ < 0.

Then the half-branches (6) will correspond alternately to periodic

stable solutions and to unstable solutions. For purposes of brevity, I

may state that these half-branches are alternately stable or unstable.

The same holds true for the half-branches (7).

In addition, OPp and OPp+ 1 are both stable or both unstable.

Consequently, the same holds true for OPp+q and OP I.

Therefore, let p' and p" be the number of stable half-branches and the

number of unstable half-branches for p > 0, so that we have

p'+p"=p.

Let q' and q" be the corresponding numbers for _ < 0, so that q' + q" = q.

There are therefore only three possible hypotheses
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In any case, we have

p'= p", q'= g',

p' ----Ia" :,-I, rl ' = q" -+ _,

/=/--I, c/= q'--I.

p" _p" _--q'_ q,.

Let us assume that p does not equal q, and, for example, that p > q,
in such a way that a certain number of periodic solutions disappears when

we pass from p > 0 to _ < 0. It may be seen that this number is always
even, and in addition as many stable solutions as unstable solutions would

always disappear, according to the preceding equation.

Let us now assume that w_ have an analytical series of periodic solu-

tions and that, for p = 0, we pass from stability to instability, or vice-

versa (in such a way that the exponent _ vanishes). Then q' and p" (for

example) are at least equal to i. Therefore, p' + q" is at least equal to

2. It follows from this that we shall have at least another analytical

series of real, periodic solutions which intersect the first for _ = 0.

Therefore, if, for a certain value of p, a periodic solution loses sta-

bility or acquires it (in such a way that the exponent _ is zero) it will

coincide with another periodic solution, with which it will have exchanged
its stability.

379. Let us now return to the case which I was first going to discuss

-- that in which the time does not enter explicitly in the equations, where,

consequently, we have the energy integral F = C, where finally there are
two degrees of freedom.

I shall pursue the same line of reasoning as was the case in No. 317_

and I shall assume that the period of the periodic solution, which is T for

the solution which corresponds to p = 0, fli = 0, equals T + T, and differs
very little from T for adjacent periodic solutions. I shall write the
following equations

_,= o. +,= o, _.,--o, F = Co, i%= o.
(i)

which include the following variables

_" _" _,, _, s, _.

According to our hypotheses, the functional determinant of the _'s

with respect to the _'s must vanish, as well as all its minors of the first

order. However, the minors of the second order will not all be zero at the
same time, in general.

Therefore let us set fll = 0 in equations (i), and let us consider the
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functional determinant A of

with respect to

/3SO

This determinant vanishes when the _'s, _'s and _'s vanish, but in

general the minors of the first order will not vanish.

Let us consider the functional determinants of F and of two of the

four functions _ with respect to _, and with respect to two of the four

variables B. Can they all be zero at the same time?

According to the theory of determinants this could only happen if

the following were true:

i. All the minors of the two first orders of the determinants of the

_'s with respect to the T's were zero at the same time, which does not

occur, in general, and which we shall not assume.

2. The derivatives of F were all zero at the same time. We saw in

No. 64 that they must be zero all along the periodic solution. We shall

no longer assume this.

3. The derivatives of the _'s and of F with respect to T were all zero

at the same time. The following values

would not correspond to a periodic solution strictly speaking, but to a

position of equilibrium (see No. 68).

We shall no longer assume this.

We may therefore always assume that all the minors of the first order

of A are not zero.

Let us then eliminate four of our unknowns B and • among the equations

(i).

For example, let us eliminate BI, B3, B4, r; we shall still have an

equation of the following form

Due to the fact that this equation has exactly the same form as equation (5)

of the preceding section, it will be handled in the same way, and we shall

arrive at the same results:
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i. When periodic solutions disappear after having coincided, an even

number, and as many stable as unstable solutions, always disappear.

2. When a periodic solution loses or acquires stability when we vary

continuously (in such a way that a vanishes), we may always he certain 3_

that at the moment of passage another real, periodic solution of the same
period coincides with it.

380. Let us proceed to the second case, that in which

Due to the fact that none of the characteristic exponents vanishes for

= o.

except the two which are always zero, there is no periodic solution of period
T which coincides with the first for

On the other hand, according to principles presented in Chapter XXVIII,

there are periodic solutions of the second type, of period 2T, which coin-

cide with the given solution whose period is T for _ = 0.

What may we say regarding their stability? For _ > 0, for example, we

shall have a stable solution of period T which will become unstable for _ < 0.

For U > 0, let p' and p" be the number of stable solutions and the num-

ber of unstable solutions which have the period 2T, without having the period

T. Let q' and q" be the corresponding numbers for _ < 0.

Let us then consider all the solutions of period 2T, whether they have

have the period T or not. Applying the principles presented in No. 378 to

them, I find that I may postulate the following three hypotheses regarding
these four numbers:

p'-'-l---p', q'=q"+1,

P'= P", q'= q"-+- 2,

a + p' = p", q" = q".

However, if we refer to the principles given in Chapter XXVIII, we

shall find that these four numbers cannot take all values which are compatible

with the three hypotheses. The simplest and most frequent cases are investi-
gated in No. 335.
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Application to the Orbits of Darwin /352

381. In Volume XXI of Acts Mathematics, M. G. H. Darwin studied cer-

tain periodic solutions in detail. He discusses the hypotheses given in

No. 9, and considers a perturbing planet which he calls Jupiter, and to
which he attributes a mass which is ten times smaller than that of the Sun.

This fictitious planet describes a circular orbit around the Sun, and a

small perturbed planet having zero mass moves in the plane of this orbit.

He has thus acknowledged the existence of certain periodic solutions

which are again included in those which I have called solutions of the

first type, and which he has studied in detail. These orbits are referred

to moving axes, turning around the Sun with the same angular velocity as

Jupiter. These orbits are closed curves, in relative motion with respect

to these moving axes.

M. Darwin has called the first class of periodic orbits the class of

planets A. The orbit is a closed curve encircling the Sun, but not encircling

Jupiter. The orbit is stable when the Jacobi constant is larger than 39, and

unstable in the opposite case. The instability corresponds to a characteris-

tic exponent having-_-as the imaginary part.

For values of the Jacobi constant which are close to 39, there are

therefore periodic solutions of the second type whose period is double.

The corresponding orbit will be a closed curve with a double point

passing around the Sun twice. The two loops of this curve differ very little

from each other, and both differ very little from a circle.

We shall study these solutions of the second type in greater detail at

a later point.

M. Darwin also obtained oscillating satellites which he called a and b,

and are those which we discussed in No. 52. They are always unstable.

Finally, he obtained satellites which, strictly speaking, with respect

to the system of moving axes under consideration, describe closed curves en-

circling Jupiter, but not encircling the Sun. /353

For C = 40 (C is the Jacobi constant), we have only one satellite A

which is stable. For C = 39.5,the satellite A becomes unstable with a real

exponent _. However, we have two new satellites B and C, the second of

which is stable, and the first of which is unstable with a real exponent _.

For C = 39, we obtain the same result. For C = 38.5, the satellite C becomes

unstable with a complex exponent _ (whose imaginary part is _). Finally,

for C = 38, we obtain the same result.
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Wemust therefore consider three passages:

i. The passage of satellite A from stability to instability;

2. The appearance of the satellites B and C;

3. The passage of satellite C from stability to instability;

The last two passages do not entail any difficulties.

Twoperiodic solutions B and C will appear simultaneously which differ
very little from each other. Oneis stable and the other is unstable; the
exponent _ is real for the unstable solution. This conforms with the con-
clusions reached in No. 378.

The passage of the satellite C from stability to instability no longer
presents any difficulties, because the exponent _ is complex in the case of
instability. The conditions presented in No. 380 therefore hold. We there-
fore have periodic solutions of the second type corresponding to closed
curves which pass around Jupiter twice.

382. On the other hand, the passage of satellite A from stability to
instability entails great difficulty, because the exponent _ is real in the
case of instability. According to No. 378, we should therefore have exchange

of stability, with other periodic solutions corresponding to closed curves

passing around Jupiter only once. This would not seem to result from the
calculations of Darwin.

We are naturally led to think that the unstable satellites A discovered

by Darwin do not represent the analytical extension of the stable satellites
A.

Other considerations lead to the same result.

The stable satellites A have ordinary closed curves for orbits; the /354

unstable satellites A have orbits in the form of a figure eight.

How may we pass from one case to another? This may only be done by a

curve having a cusp, but the velocity must be zero at the cusp and, for

reasons of symmetry, this cusp could only be located on the axis of the x's.

It could not be between the Sun and Jupiter. In Figure i, Darwin gives the

curves of zero velocity. For C > 40, 18, these curves intersect the axis

of the x's between the Sun and Jupiter, but this no longer holds for C < 40,
18, and the passage occurs between C = 40 and C = 39.5.

We are left with the hypothesis that the cusp is located beyond Jupiter,
but this is no longer satisfactory. Let us compare the two orbits corres-

ponding to C = 40 and to C = 39.5. The first intersects the axis of the x's
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twice at a right angle, once beyond Jupiter and once just short of it.

Let P and Q be the two intersection points. In the same way, the second

orbit (if we disregard the double point) intersects the axis of the x's

twice at a right angle, once beyond Jupiter, and once just short of Jupiter.

Let P' and Q' be the two intersection points. Let us consider the inter-

section point P or P' which is beyond Jupiter, and let us determine the

sign of dd-_t• We shall see that this sign is positive for one orbit or the

other. However, dd-_twould have to change sign when passing through the

cusp.

The point P, the hypothetical cusp, and the point P' cannot therefore

be regarded as the analytical extension of each other. We must then

assume that at a given moment an exchange has occurred between the two inter-

section points of the orbit of the satellite A' and of the x-axis, that which

is located on the right passing to the left, and vice versa. Nothing

in the behavior of the curves constructed by M. Darwin justifies such an

assumption.

Therefore, I may conclude that the unstable satellites A are not the

analytical extension of the stable satellites A. But when do the satel-

lites A become stable?

I can only formulate hypotheses on this point and, in order to do /355

otherwise, it would be necessary to reconsider the mechanical quadratures

of M. Darwin. However, if we examine the behavior of the curves, it appears

that at a certain time the orbit of the satellite A must pass through Jupiter,

and that it then becomes what M. Darwin has called an oscillatin_ satellite.

383. Let us study the planets A in greater detail, and the passage of

these planets from stability to instability.

The orbits of these planets correspond to what we have designated as

periodic solutions of the first_- The orbit with a double point,

which passes around the Sun twice and which differs very little from that of

the planet A at the moment when the orbit of this planet has just become

unstable' corresponds to which we have designated as periodic solutions of

the second type (47).

If we apply the procedure by which we deduced periodic solutions of the

second type from those of the first type to solutions of the first type, we

shall obtain solutions of the second type exactly.

In solutions of the second type, the mean anomalistic motions, which

differ ver_ little from the mean motions strictly speaking, are in a commensur-

able ratio, We must therefore consider the case in which, for our solution

of the second type (and, consequently, for the planet A at the time of
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passing from stability to unstability), the ratio of the meanmotions is
close to a simple commensurablenumber. Since the orbit must pass around

i
the Sun twice, this ratio will be close to a multiple of _.

In other words, at the momentof passage, the term which M. Darwin
has called nT must be close to a multiple of 7.

In effect, this is what occurs.
with the following

c = _o

C=39,5

C= 39

C = 38,5

The tables of M. Darwin provide us

A stable, nT .= r54°,

A stable, nT = 165°,

A unstable,nT = ,77%

A unstable_nT ----w9_o

It can be seen that the passage must be made around nT = 170 °, and
this number is close to 180 ° .

The mean motion of the planet A is therefore almost three times that

of Jupiter.

We could consider applying the principles presented in Chapter XXX

to a study of these solutions of the second type, but several difficulties

would be encountered because we would be dealing with an exception. It

would be better to resume this study directly.

384. Let us again consider the notation given in No. 313, and let us

set the following, just as in this section

z,= L--G, x,=L+G,

2yi---- l--g4-t, _Y2---- l'+g--t,

F'= R+G= Fo+/tF,+...,

Fo = _ x, -- x,

The term L must have the same sign as G (see page 201, in fgne), and the

eccentricity must be very small. Since x I is on the order of the square

of the eccentricity, this variable will also be very small.

Since we only wish to determine the number of periodic solutions and

their stability, we shall be content with an approximation.

We shall therefore neglect _2F 2 and the following terms. In the term

_FI, we only take into account secular terms and terms with a very long

period, and we shall neglect the powers which are higher than x I. We
shall have
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F" I _-= _t-+- b.z'l -F" CXi COsuJt

where a, b, c are functions only of x2, and where CXlCOS_ is the very long

period term which has been retained.

The very long period terms are terms with _ + 3g - 3t, i.e., terms

with 2y2 - Yl- We therefore have

We then have

:'1,,2 -- Xt' IF'= a + ...... +_.(a_a_bxt+cxlcosw )
(xt+ x,)' ",

and we may apply the method of Delaunay.

The canonical equations have the integral
_357

from which we have

F'= + - -- -- + 1_(a + bx,+ cxtcos_).
(/, = xl)' • a

With the approximation which has been adopted, we may replace a, b, c by

t
ao-- 2xlao_ bo_ Cot

da b c, become by ao, a'o, bo, co when we re-
designating that which a, dx---_' '

place x 2 by k. Thus,
t

_t--_ao, _ = bo-- 2ao, -_ = co

designate the constants which depend on k, and we have

_. k 3,r,
F' = ....... + _I(_+ _xt + 7x, cos_).

tk--x,)' ' 2 ".

Let us assume that k is a constant, ,!x_cos!_,_!_ sin_ are rectangular

coordinates of a point in a plane, and let us compile the curve

F r = C_

where C designates a second constant.

This curve also depends on the two constants k and C. If it has a

double point, this double point will correspond to a periodic solution,
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which will be stable if the two tangents to the double point are imaginary,
and unstable if the two tangents are real.

Weshould note that the curve is symmetrical with respect to the two
axes of the coordinates and that the two douhle points, which are symmetri-
cal to each other with respect to the origin, do not correspond to two
periodic solutions which are actually different.

The double points mayonly be located on one of the axes of the coordin-
ates, so that they will be obtained by setting

If we set
_0_0_ W=_.

k

the curve F' = C passes through the origin and has a double point.

gents to the double point are given by the equation

3
l_ _y costo..... :,- -q-- _ O.

f,':_ a

The tan-

/358

Therefore, if

3

the tangents are imaginary. If

3+_. __y,

the tangents are real. Finally, if

(2)

3
--- ÷s_,--sT>_ ._

the tangents are again imaginary.

(3)

The coefficient B is positive. I wrote the preceding inequalities

also assuming that y is positive. If y were negative, we would only have to

change _ into m + _.

The double point at the origin corresponds to the solution of the first

type, i.e., to planet A of M. Darwin. It may be seen that this solution is

stable when the inequalities (i) or (3) hold, and is unstable when the in-

equalities (2) hold.

Let us now study the double points which may be located on the line
= 0.
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If we set _ = 0, the function F' becomes

_, (4)F' = --_'--- + ..... +,_ + I1x,(_ ÷ _) = C.
( h -- x, )' "_ 2

Keeping k constant, if we vary x I from 0 to k, we find that the maxima and

minima of F' are given by the equation

3 (5)
.... + _(_ +-()-- o,
( k -- x l )'J ",

which has a solution if the inequality (3) holds, and does not have a solu-

tion in the opposite case.

Therefore, if the inequality (3) does not hold, the function F' is con-

stantly decreasing if it holds. The function F' first increases, reaching

a maximum, and then decreases.

This maximum corresponds to a double point located on the line _ = 0,/359

or rather to two double points which are symmetrical with respect to the

origln.

However, we must determine how we may obtain these double points for a

given value of the constant C. Equation (5) provides us with x I as a func-

tion of k. We must deduce x I from it as a function of C.

However, equations (4) and (5) may be written

from which we have

dF'

F'= C, dxl -- o

dC dF' dF' dk _ dF' d],"

dx, - _ + dk dxL _ 7ix,'

d _1r' d IF' dk
-- O.

(lar--_l÷tlk dxl -_!

Neglecting terms containing B, we have

dF' dF'

_ + dx,
_-- _-= --|

from which we have

d' F' d_ F' ct_ F' t '_.

dkdxl -- d--_ =°; dx_ -- (k--x,) _
_

and
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d/c dC

dxj

It results from this that x] is a constantly decreasing function of C.

For a value of C, we have only a maximum at the most, i.e., we have

at the most two double points which are symmetrical to each other with

respect to the origin on the line _ = 0.

Let CO be the value of C which satisfies the double equality

2 k
Co=_+--+iI_t,

._ 3
___ _ -_- i._(_ -__7)- o
/c _ _

We shall see that, for C > CO, there will not be a double point on the line

= 0 and that, for C < CO, there will be two of them. f360

The same discussion may be applied to the case of double points located

on the line _ = _. The values of x I will be given by the equation

3
(h---_ x,--3_- :_ + ,_(_ - "c)= o (5')

which has a solution if the inequalities (2) or (3) hold.

If C 1 is the value of C which satisfies the double equality

k
cL= %, + 7 + sx'

/._ -- _.+ s(_ --7)=0,

the condition for which there are two double points on the line

is C < C1 .

We would like to point out that C1 > CQ, that CO is the value of C

for which one passes from inequality (2) to inequality (3), and that C1 is

the one for which we may pass from inequality (i) to inequality (2).

When compiling the curves, we would readily find that the tangents are

real for the double points located on m = O, and that they are imaginary

for the double points located on m = _.
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Wemay therefore sumup our results as follows:

First case
C > Cl.

The inequality (i) holds.

The solution of the first type (planet A) is stable.

There is no solution of the second type (orbit with double point).

Second case
ci> C > C_,.

The inequalities (2) hold.

The solution of the first type becomes unstable.

There is a solution of the second type which is stable.

Third case
/36l

C < Co.

Inequality (3) holds.

The solution of the first type is stable.

There are two solutions of the second type, one of which is stable and

one of which is unstable. The first corresponds to the two double points

located on the line m = _, and the second corresponds to the two double points

located on the line m : 0.

These conclusions are valid, provided that _ is sufficiently small. Is
1

the value adopted by M. Darwin, _ :_, sufficiently small?

I have not verified this, but it seems very likely.

It is therefore likely that M. Darwin would have ohtained stable orbits

if he had continued his study of the planets A for values of C smaller than

38.
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CHAPTERXXXII

PERIODICSOLUTIONSOFTHESECONDTYPE

385. Let us again consider the equations of No. 13
dxi ,IF dyl dF
dt - dye' -i;F = -- 7/_' F = F0+ ,_F,+...

1362

(i)

with p degrees of freedom. According to the statements given in No. 42,

these equations will have periodic solutions such that, when t increases

by the period T, the variables YI' Y2' ..., yp increase respectively by

The integer numbers k I, k_, ..., _ may be arbitrary.

However, this is only valid if the hessian of F 0 with respect to the

x's is not zero. The proof presented in No. 42 is invalid when this

hessian is zero, particularly when F 0 does not depend on all the variables
x.

This is precisely what occurs in the three-body problem. I would like

to recall that Yl, Y2; Y3, Y%; Y5, Y6 represent, respectively, the mean

longitudes of the planets, of the perihelions and of the nodes, and that F 0

depends only on the two first variables x I and x 2 which are proportional to
the square roots of the major axes.

Let us consider a periodic solution. According to the stipulated con-

ventions, one solution will be assumed to be periodic, provided that the

differences of the y's increase by multiples of 2_, when t increases by
one period. In actuality, F only depends on these differences.

Let

be the quantities by which the following increase /363

y,--yc, y=--y_, y3--)'6, )'_--y_, y,--y,,

when t increases by a period.

In Chapter llI we could only establish the fact that there are periodic

solutions corresponding to arbitrary values of k I and k2, assuming that
k3, ky and k 5 are zero.
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It maybe inquired whether in this case, lust as in the general case,
there are periodic solutions corresponding to arbitrary values of the five

integer numbers k, solutions which I would like to designate as solutions

of the second type.

386. Do these solutions of the second type exist? It is a temptation

to answer in the affirmative, based upon reasons of continuity and considering

the fact that the form of the function F needs to be modified very little in

order to obtain canonical equations to which the line of reasoning pursued

in No. 42 applies.

However, one difficulty is entailed. What happens to these solutions

when we cancel the term we have designated as _ and which is proportional

to the disturbing masses?

If the disturbing masses are zero, the two planets obey the laws of

Kepler. The perihelions and the nodes are fixed, and it would appear that

the numbers k 3, k4 and k 5 can have no other value than zero.

This difficulty may be resolved as follows. If the masses are infinitely

small, the two planets will obey the laws of Kepler, unless their distance

itself becomes infinitely small at certain times.

Let us assume that the two planets, which are very far away from each

other, both describe a Keplerian ellipse. It could happen that these two

ellipses will meet, or will pass very close to each other, in such a way

that the distance between the two planets becomes very small at a certain

time. At this time, their mutual perturbing action could become significant,

and the two orbits could undergo large perturbations. The planets, moving /36____4

away from each other again, would then describe Keplerian ellipses again.

However, these new ellipses will differ greatly from the old ellipses. The

perihelions and the nodes will undergo considerable variations.

I would like to employ the word collision to designate this phenomenon,

although it is not a collision in the true sense of the word, since the two

planets do not come in contact and since the difference between them need

only be rather small in order to have considerable attraction, in spite of

the smallness of the masses.

However that may be, if we take these orbits with collisions into

account, it is no longer valid to state that the perihelions and the nodes

are fixed for _ = 0, and that consequently the numbers k 3, k4 and k6must be

zero.

We must thus conclude that solutions of the second type exist and that,

if w_ make _ strive to zero, they will tend to be reduced to orbits with a
series of collisions. However, this rough sketch is not sufficient, and a

more detailed examination is necessary.
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387. Let us first consider the effect of the collision. Let E and E'
be the ellipses described by the first planet before and after the colli-
sion; let E and Ef be the ellipses described by the second planet. Iti
is apparent that these four ellipses must intersect at the samepoint, in
such a way that the two planets describing these four orbits will pass
through the encounter point at the time of the collision.

As long as the distance between them is considerable, the two planets
describe curves which differ very little from an ellipse. During the very
short period of time when the distance between them is very small, they
describe orbits which are very different from an ellipse. These orbits may
be reduced to small arcs of curves C having a radius of curvature which is
very small; these arcs differ very little from arcs of a hyperbola. At the
limit, the very short time of the collision maybe reduced to an instant.
The small arcs C may be reduced to a point, and the orbit, being reduced to
two arcs of an ellipse, has a hooked point.

In order to define the orbits E, E', El, _i' it is necessary to know
the magnitude and direction of the velocities the two planets P and P1
before and after the collision. _at are the relationships between these
velocities? I would first like to note that the velocity of the center of
gravity of the two bodies P and P_ must be the samebefore and after the J365I
collision. The magnitude and direction must also be the samebefore and
after the collision.

Wemust now consider the relative velocity of P with respect to PI;
the magnitude of this velocity must be the same before and after the colli-
sion, but it may differ in direction.

Following is the rule for determining the direction of this velocity
after the collision.

Let us consider moving axes whose origin is at PI' and let us consider
a line AB which represents, in magnitude and direction, the relative velo-

city of P with respect to P1 before the collision. This line AB must pass

through the point PI' since the body which moves at the velocity which it

represents must collide with the point PI, which is fixed with respect to

our moving axes. However, this is only valid at the limit. This is only

valid because we regard the masses, on the one hand, and the distance at

which the mutual attraction of P and P1 begins to be manifested, on the
other hand -- i.e., that which could be designated as the radius of action --

as infinitely small quantities. It would therefore be more exact to say that

the distance d from P to the line AB is an infinitely small quantity of the
same order as the radius of action.

Let A'B' be the line which represents the relative velocity of P with

respect to P1 after the collision. In terms of magnitude, A'B' equals AB,

and the distance from P1 to A'B' equals 5.
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We finally have the rule for determining the direction of A'B'. The

point P1 and the two lines AB and A'B' are in the same plane (up to quanti-

ties which are infinitely small of higher order). The angle of AB and of

A'B' may be determined as follows. The tangent of half of this angle is

proportional to 6 and to the square of the length of AB.

It may thus be seen that the direction of A'B' may be arbitrary.

The only two conditions which must be imposed upon our four velocities

are the following: permanence of the velocity of the center of gravity in

magnitude and direction; permanence of the relative velocity in magnitude

alone. These conditions may be given as follows:

The energy and the area constants must not be changed by the collision.

388. Let us try to compile the orbits with collisions which are the /366

limits toward which the solutions of the second type tend when _ strives to

zero.

I would first like to point out that at least two collisions must be

assumed in order that such an orbit may be periodic. Let us assume that two

consecutive collisions never occur at the same point. Let E and E l be the

ellipses described by the planets P and P1 in the interval of two consecu-
tive collisions. These two ellipses must intersect at two points and, since

they have a common focus, they are in the same plane, unless the two inter-

section points and the focus are on a straight line.

Let us assume that we are dealing with an exception. Let Q and Q' be

the two intersection points of the ellipses E and _i which I shall assume

are not in the same plane. These two points are on a straight line with

the focus F; let E and E'1 be the ellipses described by the two planets after

the collision. They will pass through the point Q, where the collision has

just been produced, and they will not be in the same plane in general. Their

planes will intersect along the line FQ, so that their second intersection

point (which must exist if two consecutive collisions never occur at the

same point) will be located on this line FQ. I would like to add that the

two ellipses E and El will have the same parameter. Due to the fact that

the points F, Q and Q' are on a straight line, the inverse of the para-
' 1 1

meter of the ellipse E or of the ellipse E l will be _+ _,-

Under this assumption, we shall employ the following procedure. For

purposes of clarity, let us assume four collisions; let QI, Q2, Q3, Qh be

the points where the four collisions occur.

We may specify these four points arbitrarily, provided that they are

located on the same line passing through F.

We must construct two ellipses E and E l which intersect at QI and Q2,two
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ellipses E' and E'I which intersect at Q2 and Q3, two others E" and E'I'
which intersect at Q3 and Q_, and finally two others E'" and E'i' which
intersect at Q4andQI.

The orbit of P is composedof arcs pertaining to the four ellipses
E, E', E", _" , and the orbit of P1 is composedof arcs pertaining to the

111

four ellipses El, E'I, E_', E l .

We shall specify the energy and area constants arbitrarily. These /367
constants must be the same for the interval between the first two colli-

sions (orbits E and El) for the following interval, and for all the other

intervals. According to the statements presented in the preceding section,

this is the only condition which must be fulfilled.

In order to compile E and El, we shall proceed as follows. L_t us

consider the motion of three bodies. Since we assume _ = 0, this motion is

Keplerian, and the central body may be regarded as being fixed at F. We

know the total energy of the system. The two planets P and P1 must leave

the point Q1 simultaneously in order to arrive at the point Q2 simultane-

ously. When P and P1 go from Q1 to Q2, the true longitude of P increases

by (2m + I)_, and that of PI increases by (2m I + i)_. We may still specify

the two integer numbers m and m I arbitrarily. The problem has then been

completely determined. It should be pointed out that the inclination of

the orbits does not intervene. In order to resolve this, we may assume

planar motion. The problem can always be resolved. We need only apply the

principle of Maupertuis, and Maupertuis action, which is essentially positive_
always has a minimum.

We must now determine the planes of the two ellipses. We know the

area constants. We therefore know the invariable plane which passes through

the line FQiQ2. The areal velocity of the system is represented by a

vector perpendicular to the invariable plane, whose magnitude and direction

we know. It is the geometric sum of the areal velocities of the two

planets, represented by two vectors whose magnitude we know, since they

equal, respectively, mp and mlp , where m and m I are the masses of the two

planets and p is the common parameter of the two ellipses E and E 1. We may

therefore compile the directions of these two base vectors which are perpen-

dicular to the plane of E and to the plane of El, respectively.

v!

The terms E' and E_, E" and El, ..., may be determined in the same

way.

389. Let us now assume that all of the successive collisions occur

at the same point Q. The period will be divided into as many intervals as

there will be collisions. Let us consider one of these intervals during

which the two planets describe the two ellipses E and E l . As in the pre- /368

ceding section, we will specify the energy constant and the area constant

which must be the same for all the intervals. We must construct E and E l .
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Let us assume that during the interval under consideration the planet

P has performed m complete revolutions, and that the planet P1 has completed

ml complete revolutions. We can arbitrarily specify the two whole numbers

m and m I. Since we know these two whole numbers, we know the ratio of the

major axes. Since we know, on the other hand, the energy constant, we also

know the major axes themselves.

On the other hand, we know the area constant. Consequently, we know

the vector which represents the areal velocity of the system. This vector

can be decomposed an infinite number of ways into two base vectors which

represent the areal velocities of P and PI- We shall arbitrarily specify

this decomposition. If we know the two base vectors, we know the

planes of the two ellipses and their parameters. The orientation of each

of these ellipses in its plane remains to be determined. We will determine

it by passing the ellipse through the point Q.

Summarizing, we can arbitrarily specify:

i. The point Q and the number of intervals;

2. For all the intervals, the area constant and the energy constant;

3. For each interval, the whole numbers m and m I and the decomposition

of the areolar vector.

In order to make the problem tractable, these arbitrary numbers must

satisfy certain inequalities which I will not describe.

390. Let us disregard the exceptional case where all the collisions

take place along the same line or at the same point, and let us consider the

case of motion in a plane. Let QI, Q2, ..., be the points where the succes-

sive collisions take place. We will arbitrarily specify the energy constant

and the area constant which must be the same for all the intervals.

Let us consider one of the intervals, for example, the one where the

two planets pass from Q1 to Q2- We will arbitrarily specify the magnitude

of the radius vectors FQ 1 and FQ 2, but not the angle between these two radius

vectors, nor the duration of the interval.

We know that in this interval the difference in longitude of the two J369

planets has increased by 2m_. Let us arbitrarily specify the whole number

m.

Since we know this whole number, the two lengths FQI and FQ2, as well

as the two energy constants and the area constants, we have everything

needed to determine the orbits E and E]. This means that the principle of

Maupertuis must be applied. However, the Hamiltonian action must be defined

as was done in No. 339 and the Maupertuis action must be derived according
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to the procedure of Nos. 336 and 337. Unfortunately, this Maupertuis
action is not always positive and therefore one is not certain that it
always has a minimum.

Summarizing, we can arbitrarily specify:

i. The number of intervals and the lengths FQI, FQ2, ...;

2. The area constants and the energy constants;

3. For each interval, the whole numberm.

The collision orbits obtained in this way are all planar . Among
the periodic orbits of the second kind which reduce to these collision
orbits for _ = 0, there are certainly somewhich are planar. It is also
possible that there are somewhich are not planar for _ > 0, and only
becomeso at the limit.

391. Let us now see how one maydemonstrate the existence of periodic
solutions of the second kind which, in the limit, reduce to the collision
orbits which we constructed above.

Let us now consider one of the collision orbits and let t Obe a time
before the first collision and t I a time between the first and the second
collisions. In the sameway, let t 2 be a time between the second and the
third collisions. For the discussion I will assumethat there are three
collisions. I will call T the period in such a way that at the time t O+ T
the three bodies appear in the sameconfiguration as was the case at the
time t O.

As the variables, I will take the major axes, the inclinations and the
eccentricities, and the differences of the mean longitudes, the longitudes
of the perihelia and the nodes. In all, there are eleven variables. The

orbit is regarded as periodic if the three bodies have the same relative

configuration at the end of the period.

0 0
Let x_, x2, ..., xH be the values of these variables at the instant

tO fo_ the collision orbit under discussion and consequently for _ = 0. 3_

Let x_ be the values of these variables at the time tI for this same colli-

sion orbit, x$ their values at the time t2, and x$ their values at the time

t O + T. One will have

,r_ = x, ° + _ i_,,._

where mi is a whole number which must be zero for the major axes, the eccen-

tricities and the inclinations.
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Let us now consider an orbit which is slightly different from the col-

lision orbit. Let us assign a very small value to _, but different Q

from zero. In this new orbit, our variables will have the values x_ + _i
1 1 2 2

at the time to, x i + 8i at the time tI, x i + _i at the time t2 and finally
3 3

x i + 8i at the time tO + T + _.

The condition for which the solution is periodic with period T + T is

Assuming u = 0, in order that a collision occurs between the time tO

and the time t I, the variables _ must satisfy two conditions.

Let

._I o 0

be these two conditions.

Let us set

0_.0 (k=3,4, ... ii);/,(_0)::_?_,A(_7)=_; _,. - r,,

0v 0v
it can be seen that the Bi s are holomorphic functions of the 7i s and of

p. By applying the principles of Chapter II, it can be shown that the same

holds for the 8_'s.

In order that there be a collision between the times tl and t 2 (assuming

that _ = 0), two conditions are necessary, which I may write as follows

Replacing the B_'s in relationships (I) by their values as a function

Q's and of _, and then setting _ = 0, I obtain
of the Yi

Let us then set

Iv 2v "Ivs
I find that the Bi s and the Bi s are holomorphic functions of the Yi

O's and consequently for the 8_'s.
and of U. The same holds true for the _i '

Finally, in order that there be a collision between the times t2 and

t o + TT, two conditions are necessary which I may write as follows
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2_S Iv
If the 8i are replaced by their values as a function of the Yi s

and of p, and if we then set p = 0, they become

I may set

2,and I then find that the Bg'Sl, the 8 's, and the 81 s are holomorphlc func-

tions of the ¥i2's and of _. In the same way, the B13's are holomorphic func-
2w

tions of the Yi s, of _, and of T.

The relationships B_I = 8_ are therefore equations whose two terms are

holomorphic with respect to the y_'s, _, and T. These equations could be

discussed in the same manner as in Chapter III. The existence of solutions

of the second type could then be demonstrated.

I do not believe that this is necessary, because these solutions

deviate too much from the orbits traversed in actuality by celestial bodies.
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CHAPTERXXXIII

DOUBLYASYMPTOTICSOLUTIONS

Different Methods of Geometric Representation

392. In order to study doubly asymptotic solutions, we shall confine 1372

ourselves to a very special case, that of Section No. 9: Zero mass of the

perturbed planet; circular orbit of the perturbing planet ; zero inclinations.
The three-body problem then has the well-known integral called the Jacobi

integral •

Returning to No. 299 devoted to this problem from Eo. 9, we must dis-

tinguish between several cases. We saw on page 159 that we must have the

following inequality

_ __..... ,_ _ (_,+ ,,,)= v+ -- (_' 4--_')> --h. (1)
f*i ft 2 2

We then distinguished between the case in which m i is much smaller than m 2, and

in which -h is sufficiently large (page 160). We saw that the following

curve

V ,-n'($'+ ¢')= --h (2)
2

may be broken down into three closed branches which we have called CI, C2

and C3. Therefore, in view of the inequality (i), the point $, n must always

remain inside of CI, or always inside of C2, or always outside of C 3 (_,

are the rectangular coordinates of the perturbed planet with respect to the

moving axes).

We shall assume below that the value of the constant -h is large enough

for curve (2) to be broken down into three closed branches, and that the

point 5, _ always remains inside of C2. In this way, the distance r2 from

the perturbed planet to the central body may vanish, but this is not true /373

for the distance r I between the two planets.

This hypothesis corresponds to the following hypothesis, which we formu-

lated on pages 199 and 200 -- i.e., the curve F = C has the form shown in

Figure 9, and the point x I, x2 remains on the utilizable arc AB.

We shall employ the notation given in No. 313, and we shall introduce

the Keplerian variables L, G, i, g. However, these Keplerian variables

may be defined in two ways. Just as in No. 9, we could relate the perturbed

body to the center of gravity of the perturbing body and of the central body,
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and we could consider the oscillating ellipse described around this center
of gravity. However, it is preferable to refer the perturbed body to the
central body itself, and to consider the oscillating ellipse described
around this central body.

These two procedures are equally legitimate. Wesaw in No. ii that
the body B maybe related to the body A, and the body Cmay be related to
the center of gravity of A and of B. It is apparent that we could also
refer C to A,and B to the center of gravity of A and C. If A represents
the central body, B the perturbing body, and C the perturbed body, it can
be seen that the first solution is that which was adopted in No. 9. It
may also be seen that in the second solution, which we shall adopt from
this point on, the two bodies B and C are both related to the central body,
since -- due to the fact that the mass of C is zero -- the center of gravity
of A and C is at A.

Wethen have

[;'.=-Rq-G---- V/_-- :'t -+- G -4- _V/'7-'_t It (r_--I--,'])
L' ", 2 V'i --

where _ and 1 - U designate the masses of the perturbing body and of the

central body, r I designates the distance between the two planets, 1 desig-

nates the constant distance from the perturbing body to the central body,

and r2 designates the distance of the perturbed body to the central body.

Just as in No. 313, we shall set

x_:: L--G, x,=L+G,

_)'l=l--g+t, 2y,=l+g--t;

r '2 .'_ -- .'r____._w.I"' = F_,-_- _, F,,
Fo --= 7-L--_ + G -- (xt +x,)_ -.t- 2 '

v-F, = ¢' - ;" ' _ ¢'--:-,'] t_
_-r,: .... '...... ("_-'- "I)-

I would like to stress the following important point. It can be seen that /374
the function Fl always remains finite in the region from which the point _,
n cannot leave.

We shall employ the method of representation given on page 200 , and we

shall represent the configuration of the system by the point in space whose
rectangular coordinates are

X = _'._ cosy, y = _ siny,

¢.;;--7 __-,- .. ¢;, _o_y, ¢____ _., _ = ¢., _o_y,

Z = "_¢'_ _iny,
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xl is constant, the point X, Y, Z
It can be seen that, when the ratio x-_
describes a torus. This torus maybe reduced to the Z axis when this
ratio is infinite, and maybe reduced to the circle

Z-_-o_ Xz-i -Y_== l,

when this ratio is zero.

dF 1 dFl

The derivatives _ and d-_2 remain finite in the region under consi-

deration, just as does the function F I itself except when x I or x 2 is
' dFl dFl which

very small. This would not be true for the derivatives dy I, dy 2

could become infinite for r 2 = 0. As a result,

dF' dF'
---n,= _, -- n_= d_,.

dF 0 dF0

differ very little from_ and _2" We saw on page 201 that, in terms of

dF0

the hypothesis with which we are dealing, d-_2and consequently n2 cannot

vanish because the energy constant C (the constant C given in No. 313 may

be readily reduced to the constant h given in No. 299) is larger than
3 3

(on page 201, we must set _ instead of _ everywhere).
2

If x 2 is not very small, we shall therefore have

dF 2

because _-x2 can only become infinite for x 2 = 0, from which it follows that /375

Y2 is always increasing, except for very small x 2.

Let M be a point X, Y, Z, such that Y2 = 0. On the half-plane we

shall have

Y = o, X > o.

When Xl, x 2, Yl, Y2 vary in conformance with differential equations,

the point X, Y, Z will describe a certain trajectory. When Y2, which in-
creases constantly, reaches the value 2w, the point X, Y, Z -- which has

moved to M I -- will again be located on the half-plane Y = O, X > O.

The point M 1 is then the consequent of M, according to the definition

given in No. 305. Since Y2 is always increasing, every point on the half-

plane has a consequent and an antecedent. There is only an exception for
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very small x2 -- i.e., for points on the half-plane which are very far

from the origin, or very close to the Z axis.

We shall have an integral invariant, in terms of the meaning attribu-

ted to this word in No. 305. Let us try to formulate this invariant.

Due to the fact that the equations are canonical equations, they have

the following integral invariant

_Z,r,_lx_dy, dy2.

x2
Let us set z Xl , and let us select F'=-- , z, Yl, Y2 as new variables.

The invariant will become

._ (;v'(z: ,ly, 4r, _ ['_ aV'(t_.dr, at,
-- - aF' ,w'-j-._i,,-i+_-n] "

We may deduce the following triple invariant from this quadruple in-

variant (due to the existence of the integral F' = C)

/_i dz _'y' d.r,n, +_:_"

¢_F'

In this triple integral, we assume that x,,x2,n,=--_zT_, n2--

replaced as functions of z, Yl, Y2 by means of the equations

dF'
are

d.r,

xt -- ,v t z, F' ---- C.

Let us now take the variables X, Y, Z, and let us employ A to desig- /376

nate the Jacobian of X, Y, Z, with respect to z, Yl, Y2- The invariant will
become

f x_ dX dYdZ
g

(xtnt+x,n,)_

Let us set

R
_n _ sinr,

_- 2co,.r,' Z= ¢t;+ _- 2cos.r_'

from which it follows that

Let us again set

X :: R cosy', Y ::- R sinyt.

D -= [(R -- ,)' + Z'][(R + ,),-t- Z']-
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A simple calculation provides the following

RD

Our invariant may therefore be written

s.r_ v':.(:+ 45dx ,tY dz
(.:r,,_ T-x, ,,,5 a o -"

The principles presented in No. 305 enable us to deduce the following

invariant, in the sense of No. 305

D .r, nt -_ x2 n,

n 2 and R play the role which _ and O played in the analysis of No. 305.

The tern under the sign f is essentially positive, except for very

small x2 -- i.e., for points of the half-plane which are very far from the

origin, or very close to the Z axis.

393. This fact (that a point will no longer have a consequent if it

is too far, or if it is too close, to the Z axis) could cause some difficulty,

and it would be advantageous to avoid this difficulty by whatever method.

We could employ the statements presented in No. 311, and we could re-

place our half-plane by a simply connected curve on a surface. We shall
choose this curve on a surface in the following way.

If x 2 is very small, the eccentricity is very small, and the two planets

turn in the opposite direction. The principles presented in No. 40 are

applicable, and we may affirm the existence of a periodic solution of the _377

first type which will clearly satisfy the following conditions: The quanti-

ties

¢'x_cosys, ¢x_siny_, x,, cosy,, siny,

are periodic functions of the time t. These functions depend on _ and on

the energy constant C. They may be developed in powers of _; the period

T also depends on _ and on C. The angle Yl increases by 2_ when t increases

by a period. Finall_, _/_ cos Y2 and V_ sin y2 are divisible by _, so

that we have x 2 = 0 for _ = 0.

With our method of representation, this periodic solution, which I

have called o, is represented by a closed curve K. Since x 2 is very small

when _ is very small, this curve is displaced very little from the Z axis.
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It may be stated that it is displaced from it very little, in the same way

that a circle having a very large radius is displaced very little from a

straight line. Every point on the K curve is either very far from the origin

or very close to the Z axis.

Under this assumption, our curve on a surface S would have the curve

K for the perimeter, and it would be displaced very little from the half-

plane Y = O, X > O, except in the immediate vicinity of the curve K. It

would be very easy to conclude this determination in such a way that every

point on this surface would have a consequent on this surface itself. For

this purpose, if I designate an arbitrary trajectory by (T) -- i.e., one

of the curves defined in our method of representation by differential equa-

tions -- it would be sufficient that the surface S was not tangent at any

point to any of the trajectories (T).

However, there is still another method, which does not basically differ

from the first method. If we reflect on this a little, we will find that

this difficulty is similar to that in Chapter XII. We must therefore perform

the change in variables similar to that performed in No. 145.

Let us first set

_,= ¢,_ <or,, _,,= d:,_-<i,,z,,

and we then have

where S 1 is a function of 6'2, N2, X'I, Yl. Let us then set /37S

and finally

, dS = _, dS,.

t ,IS jdS = z; + _, ,(_.,,"_"=dy-7

, (IS dS, .

dS dS i

---7" •
_,;.= t/2._, s,ny,.

(1)

I should first point out that the canonical form of the equations will

not be changed when I pass from the variables Xl, Yl, x2, Y2, to Xl, Yll 62,
i

N2, then to X'l, Y'I, 6'2, D'2, and finally to x'l, Y'I' x2, yV2"

I must now choose the function SI.

I know that F' is a holomorphic function of %/_J:,cosy,, %/2"_x,siny,,

_/_x2cos)'_, _siny._, in the region under consideration. I would like it to
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remain a holomorphic function of the new variables

_ cosj,, _sin J,

V_i COSFor this purpose, I would like the old variables sin Yi to be holomor-

2V_x_ c°s , and of _.phic functions of the new variables sin Yi

To do this, we need only assume that S I is a holomorphic function of

dT-x',_o_>,,, ¢_._i.r,, _',, ,,,, =_

and is divisible by x'I.

For our periodic solution o, I would like to have

Therefore, let

r

F, = _,--- o, x', = x?= const.

be the equations of the periodic solution. A, B, C are functions of Yl

which are periodic of the period 2_ and may be developed in powers of _.

Then C - _ will also be a periodic function of Yl. Let x 7 be its
dyl

mean value. We may obtain another periodic function a such that

d A d:_

We shall no longer assume that, for x' 1 = x_, the function _S 1 may be re- /379

duced to

_ -- B _'2+ AT,,. (2)

This will be sufficient for the equations of the periodic solution

to be reduced with the new variables to

It is clearly possible to obtain a function _S I which may be developed

_I cosin powers of sin Yl, which may be divisible by x'I, and which at the

same time may be reduced to expression (2) for x'I = X°l•

Let us adopt the new variables X'l, Y'I, x'2, Y'2-
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The function F' which was holomorphic with respect to _ cos
' sin Yl,

_2s Os 2_xV 1 cOsin Y2, will also be holomorphic with respect to Y'I,sin

,o_/__vcos
Vzx_i n yh. In addition, since one of the solutions of the differential

equations is

X' --

we must have the following relationships for _'2 = @2 = O, x'I = x_

dF' dF' dF'
_---7 _ -_-0._, a_, _ (3)

For small values of _'2 and n'2, F' may be developed in powers of _'2

and @2. In view of relationships (3), for x'I = x_, the terms of the first

degree in this expansion will vanish, and the terms of zero degree will be

reduced to a constant which is independent of _i-

This constant can be nothing else than the energy constant C, so that

the conditions _'2 = n'2 = 0, x'I = x_ may be replaced by the following con-
ditions

G= _=o, F'= C.

Thus, for F' = C, the terms of the first degree in _2 and @2 will vanish

in the expansion of F'.

The difficulty arises from the fact that F' and F I include terms of
the first degree in /38O

dF I

and that, consequently, the derivative _ includes terms l-l--- which be-

come infinite for x 2 = 0.

This difficulty no longer exists now. We no longer have terms of the

dFl

first degree in _'2, _'2. Therefore the derivatlve d--x2 remains finite,

dF' dF 0

even for xh - O,and dx---_2, which differs very little frOm_x_2 , always retains

the same sign. Therefore, with our new variables which only differ from

the old variables by very small quantities on the order of _, we shall con-
stantly have

d--T> o.
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With our new variables, let us formulate a convention which is similar

to that given in the preceding section, and let us represent the configura-

tion of the system by the point in space whose coordinates are

"-7 • !

Y _ v/.c, ,nyi

Z --

d.x' 2
However, since

dtEverything which we have stated still holds .

can never vanish, every point on the half-plane, without exception, will

have a consequent.

It may now be stated that the integral invariant is always positive.

There can only be some question of doubt for the denominator which, with the

same variables, was xlnl + x2n2 and which now would be

- (x', </[+' aF"_

which -- assuming that F' is a function of the following four variables

may be written

,(<, dF'  F'k.- _ "' _-ffh_; _ +_i _-_ +_; a_;/

In this form, it may be readily seen that the denominator is holomorphic

with respect to the _' 's, the n''$ and _. However, for _ = 0, F' may be

reduced to

-L

_x_ + x',)t ' 2

and it may readily be shown that the denominator is always positive. It

will still be positive for small values of _.

394. In the following statements, we shall adopt the variables defined

in the preceding section. We shall remove the accents which have become
x'iuseless, and we shall write F, xi and Yi in place of F', and Y'i" We

then have the integral invariant (in the sense of No. 305)
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from which we have
D

dF
(_T4

dl; dF dX dZ

fJ ;: [( x -,):-_- z, ][(x -_-,)_+ z, ].

I would first like to note that this integral invariant, which is

always positive, remains finite when it is extended over the entire half-
plane.

If _(X - 1) 2 + Z2 is an infinitely small quantity of the first order,

the numerator x_ _ is an infinitely small quantity of the second

order, and the same holds true for D. If _/(X - 1) 2 + Z2 is an infinitely

large quantity of the first order, the numerator remains finite, while D is

very large of the fourth order. All of the other quantities remain finite.

I shall call J0 the value of the invariant J extended over the entire
half-plane.

The periodic solutions and the trajectory curves which represent them

are characterized by the fact that these curves intersect the half-plane at

points whose successive consequents are finite in number. For example, let

us refer to No. 312 and, in particular, to Figure 7 shown in page 195.

In this figure, the closed trajectory which represents a periodic /382
solution intersects the half-plane at five points M0, MI, M2, M3, M4 ' each

of which is the consequent of the others. For purposes of brevity, I

shall call such a system a system of periodic points or a periodic system.

Two systems of as_jrmptotic solutions correspond to each unstable, periodic

solution. These solutions are represented by trajectories (in the sense of

No. 312), and the total group of these trajectories forms what I have desig-

nated as asymptotic surfaces. The intersection of an asymptotic surface
with the half-plane will be called an asymptotic curve. Just as we saw in

Figure 7, page 195, four branches of asymptotic curves (MA, MB, MP, MQ) --

each two of which are located in the extension of the other -- lead to each

of the points M i of an unstable periodic system.

There is an infinite number of asymptotic curves, because there is an

infinite number of unstable, periodic solutions and, consequently, an

infinite number of systems of unstable periodic points, even if we confine

ourselves to solutions of the first type which we defined in Nos. 42 and 44.

A distinction may be drawn between asymptotic curves of the first
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family and of the second family, depending on whether the corresponding

characteristic exponent is positive or negative. Curves of the first

family are characterized by tbe following property: The tn-_-hantec edent

of an arbitrary point is very close to a periodic point if n is very

large. For curves of the second family, it would be the tn-_hconsequent,

and not the tn-_-hantecedent, which would be very close to a periodic point.

On the figure shown on page 195 , the curves MA and MP belong to the

first family, and the curves MB and MQ belong to the second family.

These asymptotic curves may be regarded as invariant curves in the

sense of Chapter XXVII, under the condition that one of the two following

conventions is employed. Let us again consider the figure shown on page

195, and we shall find the curve M0A 0 which has MIAI, M2A2, M3A3, M_A4, MoA5

for successive consequents. If we consider the five curves M0A 0 , MIAI, M2A2,

M3A3 , M_A4, this total _roup will clearly constitute an invariant curve. I_h

we only consider the consequents in groups of 5, and if we designate the 5p--_

consequent, which it has been called up to the present, as the p_ consequent,

it is apparent that only the curve MoAoA5 under consideration will be an in-/383
variant curve.

Two curves of the same family cannot intersect. These two curves will

end at the same periodic point -- for example, the point M 0. These two

curves will coincide (since M0A 0 with its extension MoP0 is the only curve

of the first family which passes through M0), and we must determine whether an

asymptotic curve can have a double point. The question has been answered

in the negative (No. 309, page 186).

Or, these two curves will lead to two periodic points of the same

periodic system -- for example, to the two points M 0 and M 1• If two curves,

which would then be M0A 0 and MIA I, had a point in common Q, the ante-

cedent of Q would have to be very close to M 0 for very large p, because Q

would belong to M0A 0, and it would have to be very close to M 1 at the same

time because Q would belong to MIAI. This is absurd.

Or, finally the two curves would lead to two points belonging to two

different periodic systems. For example, let us assume that the two curves

belong to the first family, and that Q is their point of intersection.

For very large n, the n_ antec endent of Q would have to be very close

to one of the points of the first periodic system and one of the points of

the second system at the same time. This is also impossible.

Conversely, there is no reason that two asymptotic curves of different

families cannot intersect.

Let S and S' be two unstable periodic solutions, let T and T' be the
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corresponding closed trajectories, and let P and P' be the corresponding
periodic systems.

Let _ andK ' be two asymptotic surfaces which pass through T and T',
respectively, and which intersect the half-plane along two asymptotic
curves C and C' -- one belonging to the first family, and the other belonging
to the second family.

What will happen if C and C' have a point in commonQ? The two sur-
faces E andK' will intersect along a trajectory T, which will correspond
to a special solution o. The trajectory r will belong to two asympototic
surfaces, so that for t = -_ it will closely approach T, and for t = +_ it
will closely approach T'. For very large n, the _ antecedent of Qwill be
very close to one of the points of system P and its tn_-hconsequent will be /384
very close to one of the points of system P'.

The solution o is therefore doubly asymptotic.

There is nothing absurd in any of these results.

We must distinguish between two cases, however. The two solutions S

and S' coincide, so that T first closely approaches T = T' then

recedes farther away from it, and again closely approaches this same tra-

jectory T = T'. I could then state that the solution o is homoclinous. Or,
S differs from S', and T differs from T'; I may then state that o is hetero-
clinous.

The existence of homoclinous solutions will be demonstrated very

shortly. The existence of heteroclinous solutions remains doubtful, at

least in the case of the three-body problem.

Homoclinous Solutions

395. At the end of No. 312, we found that "the arcs A0A 5 and B0B S

intersect". However, the arc A0A 5 belongs to the curve MoAoA 5 which is an

asymptotic curve of the first family, and the arc BoB 5 is part of the curve

M3B 0 which belongs to the second family.

The line of reasoning is general, and we must conclude that the two

asymptotic surfaces which pass through the same closed trajectory must

always intersect beyond this trajectory. The asymptotic curves of the first

family which lead to the points of a periodic system always intersect the

curves of the second family, which lead to these same points.

In other words, on each asymptotic surface there is at least one doubly

asymptotic, homoclinous solution. We shall see very shortly that there is

an infinite number of them, but we shall now show that there are at least two
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of them.

For this purpose, let us turn to the figure shownon page 195. Follow-
ing the line of reasoning in Nos. 308 and 312, we find that the integral
invariant J extended over the quadrilateral AoBoA5B5must be zero. It is
for this reason that this curvilinear quadrilateral cannot be convex, and
that the opposite sides AoA5and B0B5 must intersect. Let Q be one of the /385

intersection points of these two arcs. We should note that the point B 0

was chosen arbitrarily on the asymptotic curve MA 0. If we place the point

A 0 at the point Q itself, this point A 0 will also be located on the curve

M3B 0 and will coincide with the point B 0. If the two points A0 and B0 coin-

cide, the same will hold true for their five consequents A 5 and B S.

The quadrilateral AoBoAsB5 will therefore be reduced to the firgure

formed by two arcs of a curve having the same end points. This figure can-

not be convex, since the integral invariant extended over the quadrilateral

must be zero. Therefore the two arcs A0A 5 and B0B 5 must have points in com-

mon, other than their end points.

There will therefore be at least two different intersection points

(a point and an arbitrary consequent of it are not regarded as being differ-

ent).

There will therefore always be at least two doubly asymptotic solutions.

Let us assume that the points A 0 and B 0 coincide, and let us extend

the arcs A0A S and BoB S up to the first point at which they touch CO • We
will have thus determined an area which will be convex this time (from the

point of view of Analysis situs) and which will be bounded by two arcs

which are a part of the two arcs A0A S and B0B 5, respectively, having the

same end points -- i.e., A 0 = B0 and CO •

Let a 0 be this area, and let an be its tn_h consequent. _he area an --

like a0 -- will obviously be convex and bounded by two arcs of a curve --
one belonging to the first family, and the other belonging to the second

family.

]he integral J will have the same value for s 0 and an. Let j be this

value. Since the value J0 of the integral invariant for the entire half-

plane is finite, following the line of reasoning presented in No. 291, we

will find that, if

7'

the area a0 will have a part in common, at least with p of the areas
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Since n cannot be taken arbitrarily large, I may stipulate the following
result:

Among the areas o_, there is an infinite number of them which have a

part in conmion with s 0.

How may it happen that n 0 has a part in common with 0_?

The area s0 cannot be entirely within c_, since the integral invariant

has the same value for the two areas. For the same reason, the area an

cannot be entirely within s0. Neither can the two areas coincide. If one

part of an asymptotic curve (for example, belonging to the first family)

coincided with its n-19-consequent, the same would hold true for its p-_

antecedent, no matter how large p may be. However, if p is large, this

antecedent is very close to the periodic points, and the principles formu-

lated in Chapter VII will demonstrate that this coincidence does not occur.

We must therefore assume that the perimeter of s0 intersects that of

an. However, the perimeter of s 0 is composed of an arc AoHoC 0 belonging to
the curve MoAoA 5 of the first family, and of an arc

l::j K_Co :-: _ oK_,Co

belonging to the curve M3BsB 0 of the second family.

In the same way, the perimeter of an will be composed of the arc AnMnCn,
the tn-_hconsequent of AoHoC0, which will belong to the same asymptotic curve

as AoHoC 0 -- i.e., to a curve of the same family -- and it will also be com-

posed of the arc AnKnCn, the tn!khconsequent of AoKoC0, which will belong to

the same asymptotic curve as AoKoC 0 -- i.e., to a curve of the second family.

Due to the fact that two curves of the same family cannot intersect, it

is necessary that AoHoC0intersect AnKnCn, or that AoKoC 0 intersects AnHnC n.
However, if the two arcs AoKoC 0 and AnHnC n intersect, their tn_h antecendents

A-nK-nC_ n and AoHoC 0 will equally intersect. It is therefore necessary that

AoHoC 0 intersect the tr__hconsequent, or the tn__hantecedent, of AoKoC 0.

However, the arc AoKoC0, all of its antecedents, and all of its conse-

quents will belong to the same invariant curve of the second family, which

was shown in the figure on page 195 by the total group of curves M3B0, MIB3,
M_BI, M2B4, M0B 2.

]he arc AoHoC 0 is therefore intersected an infinite number of times by
this group _ curves.

the two surfaces _ and Z' which passed through the closed trajectory T
therefore have an infinite number of other intersection curves.
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_hqrefore_ on the surface K there is an infinite number of double

asymptotic, homoclinous solutions.

q.e.d.

396. Let AoHoC0 be an arbitrary arc of our asymptotic curve of the

first family, and let us assume that this arc intersects an asymptotic

curve of the second family at two end points A 0 and CO • It may be stated

that there will always be other points of intersection with the curve of

the second family between these two points A 0 and C O •

Let AoKoC0 be the arc of the curve of the second family which unites

these two points A 0 and C O•

Either the two arcs AoHoC0 and AoKoC0 have points in common other than

their end points, in which case the theorem has been proven.

Or, these two arcs do not have a point in common other than their end

points A 0 and CO • lhe two arcs then bound an area s 0 which is similar to
that which we considered at the end of the preceding section. _he same line

of reasoning may then be applied, and we may conclude that the arc AoHoC0

intersects the curve of the second family an infinite number of times.

_herefore, there is an infinite number of other points on an asymptotic

curve of the first family, between two arbitrary points of intersection with

the curve of the second family.

On an arbitrary asymptotic surface, between two doubly asymptotic ar-

bitrary solutions, there is an infinity of other solutions.

We may not yet conclude that the doubly asymptotic solutions are eve___-

where dense on the asymptotic surface, but this seems very likely.

the points of intersection of two asymptotic curves may be divided into

two categories. The asymptotic curve may be traversed in two opposite direc-

tions. We assume that this direction is positive, if we proceed from a point

to its consequent. Let A be a point of intersection of the two curves, and

let BAB', CAC' be two asymptotic curve arcs intersecting at A. Let us assume

that BAB' belongs to the first family, and CAC' belongs to the second family,

and that -- when following the curves in the positive direction -- one pro-

ceeds from A to B', and from A to C'. Depending upon whether the direc-

tion AB' is to the right or the left of AC' the intersection point A will

belong to the first or to the second category.

Under this assumption, let AoHoC0 be an arc of the first family, inter-

sected at A 0 and C O by an arc AoKoC0 of the second family. No matter what

category A0 and CO belong to, the group of two arcs AoHoCoKoA0 will form a
closed curve. If the two arcs have no other point in common except their

end points, this closed curve does not have a double point and defines an
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area s0. If the two arcs had points in common other than their end

points, and if, for example, the two arcs AoHoDoH_C0, AoKoDoK_C 0 inter-

sect at DO, we may replace the points A 0 and C O by the points A 0 and DQ

located between A 0 and CO, and the arcs AoHoC0, AoKoC 0 by the two arcs

AoHoD 0 and AoKoD 0. _his may be continued until we arrive at two arcs

which have no point in common other than their end points.

Let us assume that the two arcs define an area s0. According to the

statements we have just presented, the arc AoHoC 0 must intersect the asymp-

totic curve of the second family an infinite number of times. _erefore,

the curve of the second family must penetrate within s0 an infinite number

of times, and it must leave it an infinite number of times. It may pene-

trate it or leave it only by intersecting AoHoC0, because it cannot inter-

sect AoKoC 0 which also forms a part of the curve of the second family. It

is apparent that points through which it will penetrate into the area, and

the points through which it will leave the area, will not belong to the same
category.

_herefore_ between two arbitrary intersection points of two curves_

there is an infinity of other points belonging to the first category, and

an infinity of other points be!onging to the second category.

Let us employ (i), (2), (3), ..., to designate the successive points at

which the curve of the second family and the arc AoHoC 0 meet, taken in the

order in which they are encountered proceeding along the curve of the second

family in the positive direction. They will belong to two categories in

succession. Let us study the order in which they are encountered proceeding
along the arc AoHoC 0.

This order cannot be completely arbitrary, and certain successions are

excluded -- for example, the following: /389

(',m + i) (2p), (',_m), (_p i ,)

(_.m), C2/* + i._, (_.t '- ,), (_.p)

(2;_), (_.,¢), (_,n-- ,), (2o -,)

as well as the same inverse successions, and the similar successions where

2m + i and 2p + 1 are replaced by 2m - 1 and 2 p - i.

397. When we try to represent the figure formed by these two curves

and their intersections in a finite number, each of which corresponds to a

doubly asymptotic solution, these intersections form a type of trellis, tissue,
or grid with infinitely serrated mesh. Neither of the two curves must ever cut

across itself again, but it must bend back upon itself in a very complex

manner in order to cut across all of the meshes in the grid an infinite
number of times.
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The complexity of this figure will be striking, and I shall not even

try to draw it. Nothing is more suitahle for providing us with an idea of

the complex nature of the three-body problem, and of all the prohlems of

dynamics in general, where there is no uniform integral and where the Bohlin

series are divergent.

Different hypotheses are possible.

I. We may assume that the group of points of two asymptotic curves E0,

or the group of points in the vicinity of which there is an infinite number

of points belonging to E0 -- i.e., the group E'0, the "derivative of E0" --

occupies the entire half-plane. We would then have to conclude that insta-

bility of the solar system exists.

2. We may assume that the group E'0 has a finite area and occupies a

finite region of the half-plane, but does not occupy it completely. Either

one part of this half-plane remains outside of the meshes of our grid, or

a "gap" remains within one of these meshes. For example, let U 0 be one of

these meshes bounded by two or more asymptotic curve arcs of the two families.

Let us compile its successive consequents, and let us apply the procedure _390

presented in No. 291. Just as on page 145, let us formulate the following

u_, ub U_, u_, u_..... _.

If it is finite, the area E will represent one of the gaps which we

just mentioned. It would appear that we may apply the line of reasoning

employed in No. 294, and may conclude that this area must coincide with one

of its consequents. However, this group E could be composed of a region of

finite area and of a group located outside of this region, whose total area

would be zero. According to page 151, we may only conclude that EI (the Ith

consequent of E) includes E, and that the group EI - E has area zero. In the

same way, the groups E - E- I, E- I - E-21, ..', E-n% - E-(n+l)1 will have area

zero (by area of a group, we mean the value of the integral J extended over

this group). On the other hand E_(n+l)1 is a part of E_nl. When n increases

indefinitely, E_nl tends toward a group c including every point which is part

of all the groups E_nl at the same time. The area of this group c is finite

and equals that of E. Finally, E coincides with its Ith consequent.

3. Finally, we may assume that the group E' 0 has area zero.

It would then be similar to those "perfect groups which are not con-

densed in any interval".

398. We may represent the different intersection points of the two

curves in the following way. Let x be a variable which varies from -_ to +%

when the asymptotic curve of the first family M0A 0 is followed, from the

point M 0 up to infinity, and which increases by unity when we pass from one

point to its fifth consequent -- from A 0 to AS, for example (to clarify this

point, we shall assume that we are dealing with the conditions of the figure
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shownon page 195). Let y be another variable which varies from +_ to -_
when the curve of the second family M3B5 is followed from the point M3 up
to infinity, and which increases by unity whenwe pass from a point to its
fifth consequent.

the different intersection points of the two curves are characterized
by two values of x and y, and each of them mayhe represented by the point
on a plane whose rectangular coordinates are x and y.

Weshall thus have an infinite number of representative points of the /391
doubly asymptotic solutions in the plane. An infinite number of other points

may be deduced from each of these points. If the point x, y corresponds to

an intersection of the two curves, the same will hold true for the points

x-_-I,y-_; x+_,y+_] ...; x+n, y+n,

where n is a positive or negative whole number. In order to determine all

the representative points, it is sufficient to know all those which are in-

cluded in the region 0 < x < i, or in the region 0 < y < i.

We would also like to note that the order in which the projections of

these representative points will occur on the x axis will have no relation-

ship with the order in which their projections will occur on the y axis.
This results in the following.

Let us consider several doubly asymptotic solutions. For t which is

negative and very large, they will all be very close to the periodic solu-

tion, and they will appear in a certain order -- some of them will be closer

to, and others will be farther from, the periodic solution.

All of them will then recede appreciably from the periodic solution, and

-- for t which is positive and very large -- they will all again be very

close to it. However_ they will then appear in an entirely different order.

Out of two solutions, if the first is closer than the second to the periodic

solution for t = -% it may happen that for t = +_ the first is farther away

than the second from the periodic solution, but the opposite could also occur.

We have pointed this out in order to illustrate the great complexity of
the three-body problem, and to show how many different transcendents out of

all those which we know must be considered in order to solve it.

Heteroclinous Solutions

399. Do heteroclinous solutions exis_

As far as we can determine, if there is one of them, there is an infinite
number of them.
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Let M0 be a point belonging to a periodic system. Let M0rA0 and M0B0 1392
be two asymptotic curves bordering upon this point M0 -- one belonging to
the first family, and the other belonging to the second family. Wehave
just seen how these curves intersect, so that the doubly asymptotic, homo-
clinous solutions maybe determined.

Nowlet M_be a point belonging to another periodic solution. Let

M'0A_, M'uB'0 be two asymptotic curves, M'A'Q belongs to the first family,

and M'B' 0 belongs to,he second family.

Let us assume that M'0A _ intersects MoB0 at Q0. This intersection

will correspond to a doubly asymptotic, heteroclinous solution.

However, if these two curves intersect at Q0, they will also intersect

at an infinite number of points Qn, the consequents of Q0"

I shall state this precisely. For example, I shall assume that the

periodic system of which M 0 is a part is composed of five points M 0, MI, M2,

M 3, M4. Then the fifth consequent of an arbitrary point of the curve M0B 0
will still be located on this curve, and in general -- if Q0 is on this

curve -- the same will hold true for its tn_-hconsequent Qn, provided that n

is a multiple of five.

In the same way, let us assume that the periodic system of which M'0

is a part is composed of seven points. Then, if Q0 is on the curve M'0_ 0,

the same will hold true for its tn-_hconsequent Qn, provided that n is a

multiple of 7.

Therefore, if the two curves have an intersection at Q , they will still

have an intersection at Qn, provided that n is a multiple of 35.

Let QoHoQn be an arc of MoB0, and let QoKoQn be an arc of M'0A'0. Due

to the fact that these two arcs have the same end points, together they will

form a closed curve. We may pursue the same line of reasoning as in No. 396

for this closed curve. We shall find that, if the two arcs have no other

point in common except their end points, this closed curve does not have a

double point, and defines an area which is similar to the area s0 given in
Nos. 395 and 396. If the two arcs have points in common other than their

end points, we may obtain two other arcs which are part of the two arcs

QoHoQn, QoKoQn which have only their end points in common and which define

an area similar to s 0.

The same line of reasoning as was employed in Nos. 395 and 396 may be

used for this area s 0, and we will find that an infinite number of other

points may be obtained on each of the two curves, between two arbitrary /393

points of intersection with the other curve.

This line of reasoning shows that if there is one heteroclinous
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solution, there is an infinite numberof them.

400. If there is a heteroclinous solution, the grid of which we
spoke in No. 397 must be still more complicated. Instead of a single
curve M0A0 bending back upon itself without ever cutting across itself,
and intersecting the other curve M0B0 an infinite numberof times, we
shall have two curves MoA0,M'0_0 which must intersect M0B0 an infinite
number of times without ever cutting across each other.

In No. 397, we defined the group E'0 with respect to the point M0 and
to the asymptotic curves MoA0,M0B0. Wemay also define a similar group
with respect to the point M'0 and to two asymptotic curves _0_0, M'0_0.

If there is no heteroclinous solution, these two groups must be out-
side of each other; therefore, they cannot occupy the half-plane. If, on
the contrary, there is a heteroclinous solution, these two groups will
coincide. It maybe seen that the existence of such a solution -- if it
could be established -- would provide an argument against stability.

In Chapter XIII we studied the series of Newcomband Lindstedt, and
we showedin No. 149 that these series cannot converge for every value of
the constants which they contain. However, one question remains in doubt.
Could these series converge for certain values of these constants and_ for
example, could it happen that the convergence occurs when the ratio n__1 is

n2
the square root of a commensurablenumberwhich is not a perfect square
(see VolumeII, page 104, in fine).

However, if a heteroclinous solution does exist, the answer to this ques-

tion must be in the negative. Let us assume that for certain values of the
nl

ratio-- the series of Newcomb and Lindstedt converge, and let us return to
n2

our method of representation. The solutions of the differential equations
nl

which would correspond to this value of--could be represented by certain
n2

trajectory curves. The group of these curves would form a surface, having

the same connections as the torus, and this surface would intersect our /394

half-plane proceeding along a certain closed curve C.

The group E'0 which we just mentioned would have to be completely out-

side of this curve, or completely inside of it.

Let M 0 and M'0 be two points belonging to two different systems. If MQ

is within the curve C and M'0 is outside of this curve, the group E'0 with

respect to M 0 would have to be entirely within it, while the group E'0 with

respect to M'0 would have to be entirely outside of it.

These two groups could not have any point in common, and no doubly
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asymptotic, heteroclinous solution could exist, proceeding from MQ to M_ .

If we admit the hypothesis advanced in Volume II, page 104,which I

have just presented -- i.e., if the convergence occurs for an infinite
nl

number of values of the ratio-- for example, for those whose square is
n 2 '

commensurable -- there would be an infinite number of curves C which would

separate the points belonging to different periodic systems. This hypothesis

is incompatible with the existence of heteroclinous solutions (at least if

the two points M 0 and M'0 which we are considering, or the corresponding

periodic solutions correspond to two different values of the number nl.)
' _F2

Comparison with No. 225

401. Before trying to present examples of heteroclinous solutions, we

shall return to the example of No. 225, where the existence of doubly asymp-

totic, homoclinous solutions may be illustrated.

We set

--F --p + q'-- _s;n'Z --_z_(y)cosz
2

(p, x; q, y) are the two pairs of conjugate variables.

We then formulated the function S of Jacobi, and we developed it in

powers of

S = So+ S,E+ S,_'+ ....

Let us consider the second term, neglecting e 2, and let us write

We then obtain

S = So'+ St¢.

So= Ao_ + v'_fV/;+ _'n"r +,__

or, assigning the value zero to the constants A 0 and h,

So = ± _.vtf,_ cosY;

and we then obtain

St=: real part +eix,

where _ is a function of y defined by the equation

/395
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and assuming that

h = o, ?(y) :: siny, _ __ t
2

we obtained (pages 464 and 465, Volume II) two values of _ corresponding
to the two asymptotic curves of the two families. One of these values is

and the other is

+ = e f" t',
+ it-2= t _'

t £t t_ dt+'= I/'_ I + tz it-ta I + t t

_he equations of the two asymptotic surfaces will then be

d
p = _ _ real part [+e,'_,];

q=_/_-_sia +¢_-.fi real part [_e"_];
and

/396

.d
P = s _xx real part [+'e"_];

d

In order to obtain the doubly asymptotic solutions, we must determine

the intersection of these two asymptotic surfaces. It will he sufficient

for us to equate the two values of p and the two values of q.

Let us set

J _-=f** t==dt

u _ _ Iogt.

We shall obtain

_d real part [Jie-_,,+"_] = o,dx

d
d-_ real part [Jte-="+t¢]=o,
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or, setting J = pe im,

rl 7_

x 2 _f_ t-(o KT,-!- -

where K is a whole number.

This is the equation of doubly asymptotic solutions.

In reality, this equation provides us with two different solutions,

one corresponding to even values of K, and the other corresponding to odd

values of K.

402. We may be surprised at not obtaining more than two doubly asymp-

totic solutions, when we know that there is an infinite number of them.

The following approximations should provide us with no more than a

finite number of doubly asymptotic solutions. How may this paradox be

explaine_

In the preceding sections we saw that the different doubly asymptotic

solutions correspond in an infinite number to different intersections of a

certain arc AoHoC0 with the different consequents of another arc AoKoC 0.

Let us assume that the first of its consequents which encounters AoHoC0

is the consequent of order N. The number N will clearly depend on the con- /397

stant E, and the smaller the constant is, the larger it will be. It will

become infinite when e is zero.

If we develop in powers of e and stop at an arbitrary term in the ex-

pansion, it is as though we regarded e as being infinitely small.

The arc AoHoC0 no longer encounters the consequents of infinitely large

order of the other arc AoKoC0, and for this reason we have not analyzed the

majority of the doubly asymptotic solutions.

Examples of Heteroclinous Solutions

403. Let us try to generalize, and let us set

F = Fo+_Ft.

F 0 is a function of p, q and y, and F I is a function of p, q, x and y.

These two functions are periodic, both in x and y.

Let us consider the curves

Fo = const. (1)

388



in which we regard p as a parameter, and q and y are regarded as the coor-

dinates of a point.

Out of these curves, those which must draw our attention are the ones

having double points. These double points correspond to periodic solutions

of the canonical equations when we assume that _ is zero and that F may be
reduced to F 0.

We have a double infinity of curves (I) whose general equation is

F 0 : : _.

and which depend on two parameters p and h.

I have Just stated that the most interesting ones are those which have

a double point, especially in the case in which some of these curves have

two or more double points. It is in this case that we shall encounter /398
heteroclinous solutions.

Just as in No. 225, let us try to formulate the function S of Jacobi,
and let us set

The function SO may be formulated immediately. We shall have

dSo dSo fq

where q is a function of y defined by equation (i) and depending on two para-
meters p and h.

We then obtain

dFo dSt dFo dSi
,_t7 i&- + 7/,/- @ + F, ::o. (2)

dFo dF o
We regard p as a constant in--' -- and FI, and we replace q by its

dp dq

value obtained from equation (i). Equation (2) is therefore a linear equa-

tion with respect to the derivatives of SI, whose coefficients are the given

functions of x and y, which depend in addition on the parameters h and p.

Since F 1 is periodic in x, I shall set

F I : : v,I_nl eimz,

where _m only depends on y, just like the derivatives of F0.

In the same way, I shall set
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and the function _m will be given by the equation

(3)dl"o dFo d'b,n

whose coefficients are the given functions of y.

This equation may clearly be integrated by quadratures.

Let us try to determine our asymptotic surfaces in this way. We must

first choose the constants h and p so that the curve (i) has a double point.

In addition, I shall assume that these constants are such that two real

values of q correspond to each value of y (this is what occurs in the

example presented in No. 225).

These two values of q are periodic functions of y, which become equal !399

to each other at the double point -- for example, for y = Y0.

Just as in No. 225, we may also assume that these two values of q are

the analytical extension of each other.

The function q then seems to us to be uniform in y and periodic of

period 47 such as the function sin y2"

This uniform function will take the same value for y = Y0 and y = Y0 + 2_.

If we had several double points, instead of one, we could still regard

q as a uniform function of y of period 4_, if the number of double points

were odd. On the other hand, if this number were even, we would have two

values for q which would not be interchanged when y increased by 27, and

which could consequently be regarded as two different uniform functions of

y, having 2_ for the period.

In order to formulate our ideas more clearly, we shall assume that we

have two double points corresponding to the values Y0 and Yl of y.

As a result, for y = Y0 and for y = Yl, equation (i) must have a double
dF 0

root, since the two values of q coincide, and consequently_--must vanish.

Equation (3) is a linear equation with a second term, whose integra-
tion is similar to the integration of an equation without a second term, and

consequently similar to the integration of the following equation
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from which we have

dFo dOdFo 0-_- o (4)
@ a_ dy

,if*" u

0 = e J ,iq- .

The function 8 thus defined is a holomorphic function of y for all

real values of this variable, except for the values y = Y0, Y = Yl, which

correspond to the double points. For these values, the function e -- which

plays a role similar to that of t = tan _ in No. 226 -- becomes zero or

infinite.

We then obtain /4OO

+,,,.-_o,.,, / _ o ,,,,'b,,j__--#Fo -I- C,,, 0t,,,
J ap

where Cm is an integration constant, from which we have

s,-: ..... ......
I -. '=c,. o,',,,

,J @

In order to obtain equations of asymptotic surfaces, we may write

dS dS

assigning suitable values to the integration constants.

Let us first neglect ¢. We shall set S = SO, and we shall assign the

values corresponding to the curve which has two double points to the con-
stants h and p = PO.

With this approximation, the differential equations have the following
as periodic solutions

,o - Pc, q :'qo, Y ::Yo, (5)

P '= Po, q = q,, .r -----x,, (6)

where YO, qo; Yl, ql are the coordinates of the two double points.

In order to represent our asymptotic surfaces, we may take a point

in four-dimensional space, whose coordinates are

391



where a and b are two positive constants which are large enough that we

need only consider positive values of p + a and q + b.

Equations (5) and (6) then represent two closed curves of this four-
dimensional space, corresponding to the two periodic solutions.

Two asymptotic surfaces pass through each of these curves -- one be-

longing to the first family, and the other belonging to the second family.

However, with the degree of approximation employed -- i.e., neglecting
E -- these four asymptotic surfaces coincide pairwise. /401

The equations of the asymptotic surfaces will be

P =p0, F0= h.

As we have seen, the equation F 0 = h has two roots which coincide for

Y = Y0 and for y = Yl, which are not interchanged when y increases by 2_,
and which are periodic in y of period 2_. Let q' and q" be these two roots.

The equations of our asymptotic surfaces thus become

I p :_po, q _ q" (7)_Po, q = q'.

In order to determine the significance of these equations more pre-

cisely, let us distinguish between the different layers of our surfaces.

We have four asymptotic surfaces. Each of them passes through one of the

curves (5) or (6), and is divided into two layers by this curve, which I

shall designate by the following notation:

The surface of the first family passing through the curve (5) will be

divided into two layers N I and N'I •

The surface of the second family passing through the curve (5) will be

divided into two layers N 2 and N'2.

The surface of the first family passing through the curve (6) will be

divided into two layers N 3 and N'3.

The surface of the second family passing through the curve (6) will be

divided into two layers N4 and N'4.

With the degree of approximation employed, these layers will have the

following equation
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N,; P----po_ q =q', Y>Yo;

N_; P=po, q=q", y.t--yo;

Na; P=Po, q:-:q', Y>Yt;

N_; P=Po, q=q', Y>Yt;

N',; P----po, q : q', y'<yo;

N'2; P=:po, q=q', Y<Yo;

N_; p = Po, q ----q', Y<Yt;

N'; p :pc, q --: q', y _..yt.

It can be seen that the two surfaces N I + N' I and N_ + N' 4 coincide

with this degree of approximation, Just like the two surfaces N 2 + N' 2 and

N 3 + N' S .

Let us proceed to the following approximation, and let us set /4O2

S=So-÷-sSt.

In order to define SI, we must choose the constants Cm.

For the layers N I and N'I, we must choose these constants so that the

functions Sm have a regular behavior for q = q', Y = Y0. We need only refer

to the analysis given on page 466, Volume II, in order to understand that

this condition is sufficient for completely determining its constants. I

shall call Sl. 1 the function S I which is thus determined.

For the layers N 2 and N'2, we shall choose the Cm's so that the _m'S

are regular for q = q", y = Y0, and we shall call Sl. 2 the function S I
which is thus determined.

For the layers N 2 and N'2, we shall choose the Cm's so that the _m'S

are regular for q - q", y = Yl. For the layers N_ and N'4, the _m'S must

be regular for q = q', y = Yl- We shall designate the two functions S 1

which are thus determined by Sl. 3 and Sl. 4.

The equations of our four surfaces thus become

dS,.,, q, dS,., ."
N'-I-N'z; P "P°-_-s--d'_-" q= +_ dy '

dSt._ dSt.l.
N_-:-N_: P::I)o-_-* dx ; q = q'-+" _ dy "

dS,._ . dS,.s
Nj _-N_; p ::po-i-_ dx ' q=q'-+'* -_y ;

N_.-t- _'" dSjA., dSt._.
N_, P=po+_ dx ' q=q'+¢ dy

(8)

However, we should note that the function SI.I, for example, has a regu-

lar behavior for y = Y0, and has an irregular behavior for y = Yl. As a

result, our equations cease to be valid, even as a first approximation,

after the value Yl is exceeded.

In order to provide a better illustration of this, I shall confine
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myself to the following remarks.

Let y' and y" be two values of y such that

y0Cy'<yt<y L

Let M0 be the point of our asymptotic curve which corresponds to the

value y'. Let R n be its n IK consequent. I shall assume that n is chosen /403

large enough that the corresponding value of y is larger than y".

The value which must be assigned to n clearly depends on e, and it

increases indefinitely when E strives to zero.

In general, the following are the values of y for which our equations

may serve as the first approximation:

Nt ct N:; y,>y>Yo: N'l et N_: yo>y>y:--_.

Na et Nt; yo+_>y>Yi; N_ et N'6; yt>y:>Yo.

For example, if the surfaces NI and N'_ coincide, the intersection will

correspond to a heteroclinous, doubly asymptotic solution which will be

very close to the periodic solution (5) for t = -% and very close to the

periodic solution (6) for t = +_.

In order to determine this intersection, let us compare the equations

of N I and N'4

dSH dSt.i,
p =/_o+ ¢ ---_-x , p=po'4-*-'--_,

and the intersection will clearly be given by

(9)
d(S,.,-- St.,) =o.

dx

Sl.l - St.4 is a function of x and y, which may be developed in positive and

negative whole powers of

_ielx.

The fact that it is a periodic function of x is important to us. It there-

fore has at least a maximum and a minimum. Equation (9) therefore has at

least two solutions, which means that there are at least two heteroclinous

solutions •

In the same way, it could be shown that there are two solutions corres-

ponding to the intersections of the surfaces N4 and N'2, two corresponding

to the surfaces N2 and N'3, and two corresponding to the surfaces N3 and N'I.

The preceding analysis does not yield the homocllnous solutions.
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404. For example, let us set

Fo --p--ql+2H. sin'Y--Y°sin_Y--Y'
2 2

FI ----F"cosx sin(y --Yo) sin(y --Yl).

The periodic solutions (5) and (6) toward which the heteroclinous solutions /404
strive for t = -_ and t = +_ are then

x=t, p=q=o, Y:=Y0,
x =:t, p=q:=o, y=y_.

It will be noted that, for _ = 0, F may be reduced to -p - q2. Therefore, for

= 0, the function F depends only on variables of the first series p and q,

and does not depend on variables of the second series x and y. The function

F therefore has the form considered in Nos. 13, 125, etc.

Nevertheless, we shall not be content with this example, which proves

that the canonical equations having the form considered in No. 13 can have
heteroclinous solutions.

The two solutions (5) and (6) both correspond to the same value of the

dx dy i.e.
quantities _ and dt --

_Ix dy
di ::" dr-.... o.

dx dy are nothing else than the numbers
However, these quantities _, dt

which were called n I and n 2 above.

Therefore, we find that doubly asymptotic solutions exist, which come

infinitely close to two different periodic solutions for t = -_ and t = 4_.

However, these two periodic solutions correspond to the same values of the

numbers n I and n 2.

Therefore, I shall formulate another example, in which we shall deal

with equations having the same form as those presented up to No. 13, and

which have doubly asymptotic solutions coming arbitrarily close to two period-

ic solutions which are not only different, but correspond to different values

nl
of the ratio--.

n2

Unfortunately, I would like to show that these solutions exist for

values of U which are close to i, but I still am not able to establish the

fact that they also exist for small values of _.

405. We shall take two pairs of conjugate variables
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or J405

xl, y,; x,, ,ys,

by setting

b = I/_-_l cos,y,; _t = %/_zi sin y/.

This change in variables does not alter the canonical form of the

equations. We shall set

F = Fo(1-- _)+ _F,.

We shall assume that F 0 is a holomorphic function of x I and .x2, inde-

a2 i
pendent of Yl and Y2, and that for x I = --, x2 = _, we have

2

dFo dF0
d_, --0_ _ _-_I._

1 a 2

We shall also assume that for x 2 = _, xl =-_" we have

dFo dFo

dx-'-"_= -- " dx---?---o.

I shall assume that a < i holds for the quantity a.

It follows from these hypotheses that, if we set _ = 0, from which we

have F = F0, our equations will have two special periodic solutions.

The first solution, which I shall call _1 may be written

tx I 1

_i --_ --, X2= --, .y| = t, -ylt=O,

_1= =cost; _, : = sint, _=I, v_l =o.

The second solution, which I shall call o' 1 may be written

Zl----- -, Zl----- --_ yl=o, YI= t,
2

_s=1. _----o, _= _cost, _,= = sint.

The first corresponds to nl = 1, n 2 = O, and the second corresponds to

nl = 01 n2 = i. These two periodic solutions do not correspond to the same

value of the ratio n-J-I.
n2

In order to define FI, I shall set

_i ----- I-- r cosvo_ _I---- i -- r sinto,
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assigning a value which is essentially positive to the variable r.

I shall then assume that (due to the fact that P is a positive,

very small quantity) we have the following for r > 0
1406

, , (r--,)_ 4,(,_) (1)FI = _ql -_-_._ _+_¢ ___
'2 _ r 2

where _(w) is a function of _, which is regular for every real value of _,

periodic with the period 27, and finally which vanishes with its derivative

for _ = 0 and for _ = _
2"

Since the function (i) would be infinite for r = 0 -- i.e., for _i =

_2 = i -- I shall assume that for r <_p, the function F 1 takes on arbitrary

values, in such a way that it nevertheless remains finite and continuous,
as well as its derivatives of the two first orders.

It may be readily verified that for _ = i -- i.e., for F = F I -- our

equations still have two periodic solutions a and o'. For the first of

these solutions, we have _ = 0, and for the second we have _ =
2"

It may be immediately concluded that for every value of p, our equations
will have these two periodic solutions.

406. We shall now integrate our equations in the case of _ = i (assuming
at least that r constantly remains > p).

If we first assumed that e = 0, we would be dealing with the problem of

central forces, and the integration would be immediately possible, This is
hardly true in the general case.

The Jacobi method leads to the partial differential equation

where h is a constant.

, (4s], , (<_s]-,-_,_(,._,_ ¢(,,,_
7 \dr� + 2;.i \<t,.,/ --.f- --_ ,.,

Let us set

---- -=z ]/i

' (</SD'
7.\ d<,>i-'_(<'_)----D,

where k is a second constant, and we shall have

s=d7 h ).____ ......

The general solution of our equations is therefore 1407
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k.7

d,_ ')_,+(h -Oq'_ v/_3"_ -'_z"-"_(" -,)L

f r dr h'-4- t,

¢'_k -_ _q, +_ ,., v/_.-z,-'--- _.k -- _'_,'-,)'
_--z k',

(2)

(B)

where h' and k' are two new constants.

We shall obtain our two periodic solutions o and o', assigning the

following particular values to the constants

5 2

k =o, h= --, ,_.'_-,_ =o,
2

k==o, h= --, k' _-"
'2 2

Let us assume that we would like to employ equation (2) to define r as

a function of h' + t. If we assign values which are close to zero and

_2-- to the constants k and h, r will then be a periodic function of t + h'
2

We shall set

u --n[t -+ It'),

where the number n is chosen in such a way that r is a periodic function of

u with the period 2_. This number n, which is a type of mean motion, will

naturally depend on the constants h and k.

dr

In the same way, _ will be a periodic function of u.

For k = 0, we simply have

r=,

407. We therefore have two periodic solutions o and o' which will be

represented by two closed curves, if we may regard the _'s and the n's as
the coordinates of a point in four-dimensional space. Two asymptotic sur-

faces pass through each of these curves -- one belonging to the first
family, the other belonging to the second family. We shall see that the /40____8

four surfaces coincide pairwise, as occurred in No. 403 (equation 7), when

E is neglected.

In order to obtain the equations of these surfaces, it is sufficient to
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assign the values zero and _- to k and h. We thus have

.'(_!- I)NI q-(_,- I)_, = r _---" ( r --I)',

These are the equations of asymptotic surfaces for _ = i. It may be

seen that we only obtain two of these surfaces, corresponding to the double

sign of the second radical.

We shall assume that the function e_ which vanishes for m = 0 and

= 7' is positive for every other value of m.

We shall now try to formulate the equations of asymptotic surfaces

for values of _ which are close to i.

We have

F = F, _-(j-- M)(F0 _. F,);

where F 0 and F 1 are holomorphic functions of the _'s and the n's and con-

dr d_

sequently of r, _, _ and _.

The equations of our surfaces may be written

dS

dS
(_,--')_,--(_,-')n,= _,

where S is a function of r and m, satisfying the partial differential equa-
tion

F =: ¢0n$1._

dr dm dS
where we have replaced ---- and--by--- and-- --

dt dt dr

i dS

r 2 d_"

Let us develop S in powers of i -

S = So+(,-- _)S,+(,--S),$,÷ ....

and we shall have, as the first approximation,

dSo dSI
(_t -- l)!r_l-F- (_.2- t,)_2--'-- F_ -¢-(I- _)r "_F '

dSo dSi

/409

for the equations of our asymptotic surfaces.
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We have already obtained

dr
dS_2= * ¢_ ,_
doJ -- '

We must now determine S I. For this purpose, we have the equation

dS0 dS, I dS0 dS,
r/I-'-'7 dl--7 + r' de _ --Ft--Fo.

dr dm -- _2 (r 1) 2
In the second term, _ and_must be replaced by dSOdr = - -

, dSo *= _/_ This second term is therefore a known function of r
and by fi ,_,_.... /7- •

and _.

The equation becomes

dS, __+_/_-@ dS, ,"(F,-- Fo)."' v'_' -- (" - ')' _/ _ =

Let us set

f dr

It may be seen that r and _2 _ (r - 1)2 are periodic functions of v,

and we may regard S as a function of v and _.

Our equation then becomes

dSt __ _-_+ dSt ,a(F,--Fo.d---f-- _ -3-_=

The second term is a known function of v and m, which is periodic with

respect to v.

This equation thus has exactly the same form as equation (2) given in

No. 403, where v plays the role of x, and m plays the role of y.

It will be handled in the same way. The procedures presented in No. 403

will be employed to determine the four functions SI. 1 , SI.2, Sl.3, Sl.q

corresponding to four asymptotic surfaces.

Just as in No. 403, it will be found that these asymptotic surfaces /410

coincide, and consequently heteroclinous solutions exist.

However, this has only been established for values of B which are close

to i. I do not know whether this is still valid for small values of _.
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The result is therefore incomplete. However, I hope that the reader
will pardon the length of this digression, because the question which I
have posed, rather than solved, seemsto be directly related to the question
of stability, as I indicated in No. 400.
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