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PREFACE.

Although it is intended that these Illustrations^

if they be found useful to the British student, should

be extended not only to the whole of the Celestial

Mechanics of Laplace, but possibly to some othei?

works relating to astronomy and the higher mathe-

matics
; yet they may be considered as forming, eveiii

in their present state, a work completely independent

of all others : and the separate publication of each

part has been considered as possessing the advantage

of dividing a long journey, into stages of a less for-

midable appearance, for the convenience both of the

traveller and of his conductor, so that if either party

should discontinue the undertaking, before the whole

tour is completed, the part actually travelled over

may be considered as making a whole within itself

and affording sufficient information and improvement

to repay the labour of the journey, even without any

ulterior view to the completion of the remaining part.

The translator having been accustomed to consider

the elementary doctrines of motion, and some other

parts of the subjects discussed, in a point of view^

which . has from habit become more familiar to
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bim, and which he is, perhaps on that account, invo-

luntarily disposed to think more natural and satisfac-

tory, he has extracted, from his own former publica-

tions, such parts as he has felt himself compelled to

substitute for Mr. Laplace's introductory investiga-

tions, but without omitting, as collateral illustrations,

such of Mr. Laplace's demonstrations as appear to be

the most ingenious and satisfactoiy. In these earlier

parts, he has found it most convenient to adopt the

order and arrangement of his own elementary works,

inserting any of Mr. Laplace's remarks in the form

of Scholia or otherwise : but in the principal part of

the book he has followed the order of the original

sections, introducing any additions of his own in the

form of Lemmas or Scholia, besides the explanatory

remarks, and details of demonstration, which are dis-

tinguished by being included in crotchets. The text

is, however, throughout the whole, divided into dis-

tinct propositions, enunciated at the beginning of each

investigation, which is perhaps a departure from a

strict analytical order, but which affords the memory,

as well as the apprehension of the student, a very

material advantage. The steps required for each

demonstration are filled up by a recurrence to the

fundamental principles of mathematics and mecha-

nics, without reference to any other introductory work,

which indeed would have been insufficient for the

information of the mere English reader : but these

summary demonstrations must not be understood as
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intended to be fully comprehended by a mere begin-

ner, or as calculated to supersede the necessity of the

study of many other works, on the different branches

of mathematical science. The translator flatters

himself, however, that he has not expressed the

author's meaning in English words alone, but that he

has rendered it perfectly intelligible to any person, who

is conversant with the English mathematicians of the

old school only, and that his book will serve as a con-

necting link between the geometrical and algebraical

modes of representation. A Mosaic work of this

kind may perhaps possess less of perfect harmony,

than if it had been more regularly modelled into a

continuous system : but the want of strict method is

in part compensated, by the greater interest, which

naturally arises from a mixture of the direct applica-

tion to the phenomena of nature, with the abstract in-

vestigation of purely mathematical truths. To the

illustrious author of the work, however, some apology

is certainly due, for having ventured to depart from

the original symmetry of his design; and the best

excuse, that can be assigned, will perhaps be the

universal acquaintance of all judges of the higher

mathematics, with the M^canique Celeste in its

original form, which will enable them at once to attri-

bute to the translator any want of analytical refine-

ment, that may have been admitted by the alterations.

To those who are desirous of confining their atten-

tion to whatever is absolutely new and original, or
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placed in a decidedly new light, it may be proper to

point out the extreme simplicity which is given, at

the end of the book, to the theory of waves and of

sounds, and the still greater novelty of that of the

cohesion of fluids, which, it is presumed, will be

allowed to be deduced in a most unexceptionable

manner from the general principle of virtual veloci-

ties. There are, also, some remarks on the applica-

tion of Taylor's theorem, which may be found of

considerable utility in computing the forms of the

surfaces of fluids, and which are still more im-

portant on account of the great assistance, which

may be derived from them, in calculations respecting

the figure of the earth, as connected with its

compressibility.

It is almost superfluous to add, that any correc-

tions, which may occur to the mathematical reader,

whether of errors of the press, or of more serious

mistakes, will be gratefully received, and candidly

acknowledged, by the author of these illustrations.

London, 28 Feb, 1821.
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INTRODUCTION.

RUDIMENTS OF THE MATHEMATICS.

SRCTION I. OP QUANTITY AND NUMBER.

1. Definition. The letters of the alphabet are em-

ployed at pleasure for denoting any quantities, as algebrai-

cal symbols or abbreviations. But, in general, the first

letters in order are used to denote known quantities, and

the last to denote unknown quantities ; and constant quan-

tities are often distinguished from variable quantities in

the same manner.

2. Definition. Quantities are equal when they are

of the same magnitude.

Scholium. The abbreviation azzb implies that a is equal to b;

a>b that a is greater than b ; and a<b that a is less than b.

3. Definition. Addition is the joining of magnitudes

into one sum.

Scholium. The symbol of addition is an erect cross: a -\-b im-

plies the sum of a and &, and is called a more b.

4. Definition. Subtraction is the taking as much

from one quantity as is equal to another.

Scholium. Subtraction is denoted by a single line, as a—b, or

a less 6, which is the part of a remaining, when a part equal to b has

been taken from it.

B



2 INTRODUCTION.

5. Definition. A negative quantity is of an oppo-

site nature to a positive one, with respect to addition or

subtraction ; the condition of its determination being such,

that it must be subtracted where a positive quantity would

be added, and the reverse.

Scholium. A negative quantity is denoted by the sign of sub-

traction : thus if a -f ^=^a

—

c, hzz — c and cz= —b. A debt is a

negative kind of property, a loss a negative gain, and a gain a nega-

tive loss.

6. Definition. A unit is a magnitude considered as

a whole complete within itself.
,

Scholium. When any quantities are enclosed in a parenthesis,

or have a line drawn over them, they are considered as one quantity

with respect to other symbols ; thus a — {b-\-c), or a — b-\-c, implies

the excess of a above the sum of 6 and c.

7. Definition. A whole number is a number com-

posed of units by continued addition.

Thus one and one compose two, 2+li=:3, 3-j-l~4, or 2+2zi4.

Such numbers are also called multiples of unity.

8. Definition. A simple fraction is a number which

by continual addition composes a unit, and the number of

such fractions, contained in a unit, is denoted by the deno-

minator, or number below the Hne.

Thus ^-hl+^zrl.

9. Definition. A number composed of such simple

fractions, by continual addition, may properly be termed a

multiple fraction ; the number of simple fractions compos-

ing it is denoted by the upper figure or numerator.

In this sense §, §, |, are multiple fractions, and §ii:l, |=i§+^z::l-f g>

or 1^.

10. Definition. Such quantities as are expressible

by the relations denoted by whole numbers, or fractions,

are called commensurable quantities.
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Scholium. All quantities may, in practice, be considered as

commensurable, since all quantities are expressible by numbers,

citlier accurately, or with an error less than any assignable quantity.

11. Definition. Multiplication is the adding toge-

ther so many numbers equal to the multiplicand as there

are units in the multiplier, into one sum, called the pro-

duct.

Scholium. Multiplication is expressed by an oblique cross, by a

point, or by simple apposition; axhzza.bzzab.

12. Definition. Division is the subtraction of a

number from another as often as it is contained in it ; or

the finding of that quotient, which, when multiplied by a

given divisor, produces a given dividend.

Scholium. Division is denoted by placing the dividend before the

sign ~ or : , and the divisor after it ; as a^bzza ', b.

13. Axiom. AVhen no difference can be shown or

imagined between two quantities, they are equal.

14. Axiom. Quantities, equal to the same quantity,

are equal to each other.

If azzb and czzJ, then azzc.

15. Axiom. If to equal quantities equal quantities

be added, the wholes will be equal.

If flizJ, then a-}-czift-|-c; if a—ftzzc, then adding 6, fliz&-fc ; if

a-{-b—czzd, then adding c, a-\-b::zc-\-d.

IG. Axiom. If from equal quantities equal quantities

be subtracted, the remainders will be equal.

If azzby a—cmb—c, if a-{-bz=:b-^c, azzc.

17. Axiom. If equal quantities be multiplied by equal

numbers, the products will be equal.

If a-=.b, SazzSb ; if «=& : 3, 3azib ; and if a—b, ca—cb.

18. Axiom. If equal quantities be divided by equal

numbers, the quotients will be equal.

If OazilOft, «—2i; and if cazzcb, ai:^b.

B 2



4 INTRODUCTION.

Scholium. Articles 16, 17, 18, might have been deduced from

art. 15, but they are all easily admitted as axioms. We must how-

ever observe that this proposition does not extend to the case of

for a div isor.

19. Theorem. A multiple fraction is equal to the

quotient of the numerator divided by the denominator.

Or, JLzna'.b, for —=J-a (9)? and ft.-lziJ.i-a (17); but
6 bo

h.—zzl (8); and b.—azrl.«=:«, therefore 6.---=a (14), and a ', hzzbo
Scholium. Hence — is a common symbol for a : b.

b

20. Theorem. A quantity, multiplied by a simple frac-

tion, is equal to the same quantity divided by its denomi-

nator.

Or «.—-=« : 6,*fora.---zi-f-(9), and 4-=« \ * (19), therefore a
b b b b

=a : b (14).

21. Theorem. A quantity, divided by a simple frac-

tion, is equal to the same quantity multiplied by its deno-

minator.

1 lie
Or a : —-ZZ ab, for if a ; ---zic,rt:zc—(12)=

—

zzc ; b (20), and
b b b b

multiplying^ by b, ab-zicziLa \ -—
b

22. Theorem. A quantity multiplied by a multiple

fraction is equal to the same quantity multiplied by the

numerator, and then divided by the denominator.

Or a

—

"Ziab ; c; fora

—

zza.b—zza&.

—

iidb ', c (20).
c c c c

23. Theorem. A quantity divided by a multiple frac-

tion is equal to the same quantity multiplied by the de-

nominator, and divided by the numerator.
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Or a : ^:=Lac ; 6 ; for a : —i=a : ih,— )=(a ; 6) : — =l(a : 6) .c

c C ^ C ' c

(21), =ac : h.

Scholium. A beginner may perhaps render these demonstrations

more intelligible, by substituting any numbers at pleasure for the cha-

racters. For example, the demonstration of the first theorem may

be written thus. Twelve fourths, ^^, are equal to 12 divided by 4 ;

for, by the definition of a multiple fraction, \2zrl2.^, and multiplying

these equals by 4, 4.'|z:4.12.^ ; but by the definition of a simple frac-

tion 4.|z:l, therefore 4.12.|zzl2, whence 4.',^zrl2, and by the defini-

tion of division, 12 : 4iz':f. But, in fact, the proposition is too evi-

dent to admit much demonstrative confirmation.

24. Theorem. A positive number or quantity being

multiplied by a positive one, the product is positive.

For the repeated addition of a positive quantity must make the

result actually greater. What is true of numbers may practically

be afiirmed of quantities in general (10).

25. Theorem. A negative number or quantity being

multiplied by a positive one, the product is negative.

For since adding a negative quantity is equivalent to subtracting

a positive one, the more of such quantities that are added, the

greater will the whole diminution be, and the sum of the whole, or

the product, must be negative.

26. Theorem. A negative number or quantity being

multiplied by a negative one, the product is positive.

Or— a.--6z:a&. For «.—fc:— aJ(25): that is, when the positive

quantity a is multiplied by the negative h, the product indicates that

a must be subtracted as often as there are units in h : but when a is

negative, its subtraction is equivalent to the addition of an equal

positive number ; therefore in this case an equal positive number

must be added as often as there are units in h.

27. Definition. If the qftotients of two pairs of

numbers are equal, the numbers are proportional, and the

first is to the second, as the third to the fourth ; and any

quantities, expressed by such numbers, are also propor-

tional.
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If rt : hzzc l dj a is to b us c io (I, or a l by,c I d.

28. Theorem. Of four proportionals, the product of

the extremes is equal to that of the means.

Since a ', b:^c ', d, a ', b. bdzzc I d. bd. (17), or adzzcb.

29. Theorem. If the product of the extremes of

four numbers is equal to that of the means, the numbers

are proportional.

If adzz.cbj ad ', bd:z.cb \ bd(\8), and a '. bzzc * d; also ad ', cdzzcb ',

cd, and a : crzb I d.

30. Theorem. Four proportionals are proportional

alternately.

U a :b::c : d, ad:=ibc (28), therefore a : c\\b : d (29).

31. Theorem. Four proportionals are proportional

by inversion.

\i a ', b'.\c '. dy adzzbcy ad * aczibc '. ac, and d l czib I a.

32. Theorem. Four proportionals are proportional

by composition.

If a : fe: \c : d, a-\-b : b'. ',c-\-d ; rf; for since adzzbcy ad-\-bdzzbc+bd

(15), or (a+6). d={e+d). &, therefore a+6 : b: :c-f rf : d{29).

33. Theorem. Four proportionals are proportional

by division.

If a l b'.'c l dj a—b '. b\ \c—d '. d; for since ad:nbc, ad—bdzz.bc—
bd (16), {a—b). d={c—d). b, and a—b : b: \c—d ; d (29).

34. Theorem. If any number of quantities are pro-

portional, the sum of the antecedents is in the same ratio

to the sum of the consequents.

li a ', b',\c \ d, a '. b'. \a-\-c '. b-\-d; for since adzzbc, ab-i-adzzab+

be, a. (b-\-d) zzb. {a-^c), and a '. b\ \a-\-c ', b+d{29).

35. Theorem. If any number of antecedents and any

number of consequents be added together, the ratio of the

sums will be less than the greatest of the single ratios,

when those ratios are unequal.
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Lct--.>--, thcn-2_<---; forif--= , c > c, and-^ >-Z-
6 d b-\-d b ha h-{-d b-\-d

(34); consequently-— >--i-. Tlie same demonstration may be ex-
b b-\-d

tended to any number of ratios.

36. Definition. A series of numbers, formed by the

continual addition of the same number to any given num-

ber, is called an arithmetical progression.

2, 5, 8, 11, 14, 17, 20, by adding 3.

20, 17, 14, 11, 8, 5, 2, by adding—3.

a, a+6, 0+26, a-\-3b, a'\-{n—1).&, in general.

Scholium. It may be observed that the sum of each pair of the

numbers of these equal progressions is 22zi2-f-20zza4-«-|- {n—l).bzz

2a-\-(ii.—l).b ; the whole sum 22x 7zi(2a+ (n—1). b). n, and the sum

of each, na -f . ft, a being the first term, h the difference, and n

the nnmber of terms.

37. Definition. A series of numbers, formed by con-

tinual multiplication by a given number, is called a geome-

trical progression.

As 2, 6, 18, 64; multiplying 2 continually by 3.

a, flft, cibb, ahbb ; multiplying a by b.

38. Definition. If one of the terms of a geometri-

cal progression is unity, the other terms are called powers

of the common multiplier.

As
j's, ^, \y ^, \, 1, 2, 4, 8, 16, 32. Each term is denoted by placing

obliquely over the common multiplier a number expressive of its dis

tance from unity, as 8=2^ : negative numbers, implying a contrary

situation to positive ones, denote that the term precedes instead of fol-

lowing the unit, as |=2"^.

By reversing the series it is obvious that giiGV, and 8:1(2)"^

It appears that tlie addition of the indices denoting the places of

any terms will point out a term which is their product, as 2^x2^zz2^y

or 8 X 4:i:32 ; and that the subtraction of the index is equivalent to

division by the term. Hence if a'z:6—6',a' must be equal to 62 in
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order that fri X bi.mny make &'=a^ So that simple fractional num-

bers serve as indices of the number of times that the quantity must

be multiplied together, in order tliat the product may be the com-

mon multiplier of the scries, or the simple number b.

Scholium. Fractional powers are sometimes denoted by the

mark z^/, meaning root : thus v' «:=«^, n/ azzai. The second power

of a number a being called its square, and the third its cube, the

fractional powers arc called square and cube roots.

The sums of geometrical progressions may be thus computed, if

a-^ab+ab^ . . . -|-a6»—^zza-, ab-\-ab^-}-a¥ . . . +«6"=6.r, and sub-

tracting the former equation from the latter ab"—anix—a:, therefore

ab^—a
6—1

which, when b<\ and nzza, or infinite, becomes

l—b
The binomial theorem, for involution, is (rt-|-&)«zza"+w.a»—* b-\-n.

In simple cases, its truth

may be shown by induction. See 244.

POWERS OF NUMBERS.

1st

2

2d 3d. 4th. 5tli. 6th. 7th. 8th.

4 8 16 32 64 128 256
3 9 27 81 243 729 2187 6561
4 16 64 256 1024 4096 16384 65536
5 25 125 625 3125 15625 78125 390625
6 36 216 1296 7776 46656 279936 1679616
7 49 343 2401 16807 117649 823543 5764801
8 64 512 4096 32768 262144 2097152 16777216
9 81 729 6561 59049 531441 4782969 43046721

251=1.414213; 32,1.732; d, 2.236; 6^,2.449; 75, 2.646; 85,2.828;

105, 3.162.

23=1.26; 33, 1.442: 4^ 1.587; 53, 1.71; 63, 1.817; 73, 1.913;

9^, 2.08; 103, 2.154.
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39. Definition. In decimal arithmetic, each figure

is supposed to be multiplied by that power of JO, positive

or negative, which is expressed by its distance from the

figure before the point.

Thus 672.53 means 6 x lO^-j-? X 10'+2 x 1 0«, or 2 x 1, +5 X 10"',

or ^ or -^+3 x lO'"^ or ygjj, together 67^.
Scholium. On some occasions other numbers are substituted for

10 in calculations : particularly 12, which has many advantages, and

is used in operations respecting carpenter's work ; and sometimes

the number 2 facilitates computations ; and it may be employed

where it is inconvenient to multiply characters ; since two different

marks, or a mark and a vacant place, are sufficient, when continu-

ally repeated, to express all numbers. The powers of 60 are also

used in the subdivisions of time, and of angles.

40. Definition. The reciprocal of a number is the

quotient of a given unit divided by that number.

Scholium. Mr. Barlow has inserted an ample table of reciprocals

in his very useful collection of Tables.

41. Definition. The harmonic mean of two quanti-

ties is the quantity of which the reciprocal is the half sum

of their reciprocals.

Thus, the harmonic mean of 3 and 6 is 4 ; for ^ Q-|-^)=:|. And the

harmonic mean is equal to the product divided by the half sum.

Thus f=z4.

42. Definition. The common logarithm of a num-

ber is that power of 10 which expresses it.

For instance, 1 1000=3, since 1 0^=1000. 1 2=.30103, for

10«5o::i:2. The principal use of logarithms is derived from that pro-

perty of indices, by which their addition and subtraction is equivalent

to the multiplication and division of the respective numbers.

43. Problem. To solve a quadratic equation.

Reduce the equation to the form xx±.axzzb, add the square of half

a; then Ta,±aa:-f—zi6-f-—, whence a;±~= ± s/ (*+^) and xzz

±V(H^):.^.
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SKCT. II. OF THE COMPARISON OF VARIABLE

QUANTITIES.

44. Definition. The quantities by which two varia-

ble magnitudes are increased or decreased, in the same

time, are called their increments or decrements, or their

increments positive or negative.

Scholium. They are sometimes denoted by an accent placed aver

the variable quantity ; thus x' and y are the simultaneous incre-

ments of X and y.

45. Definition. The ratio, which is the limit of the

ratios of the increments of two connected quantities, as

they are taken smaller and smaller, is called the ratio of

the velocities of their increase or decrease.

Scholium. It would be difficult to give any other sufficient defi-

nition of velocity than this. If both the quantities vary in the same

proportion, the ratio of x' and j/ will be constant (18), and may be

determined without considenng them as evanescent ; but if they

vary according to different laws, that ratio must vary, accordingly as

the time of comparison is longer or shorter : and since the degree of

variation, at any instant of time, does not depend on the change pro-

duced at a finite interval before or after that instant, it is necessary,

for the comparison of this variation, that the increments should be

considered as diminished without limit, and their ultimate ratio de-

termined ; and it is indiflerent whether these evanescent increments

be taken before, or after the given instant, or whether the mean be-

tween both results be employed.

46. Definition. Any finite quantities, in the ratio of

the velocities of increase or decrease of two or more mag-

nitudes, are the fluxions of those magnitudes.

Scholium. They are denoted by placing a point over the variable

quantity, thus, x,y. And— is always ultimately equal to—.. The
y y

variable quantity is called a fluent with respect to its fluxion, as x is

thcfluentof;r,or a:—ya:. On the continent* tlie term fluxion is not
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used, but the evanescent increment is called a difFcrence, and de-

noted by d or h, and tlie variable quantity is conceived to consist of

the entire sum or integral of such differences, and marked /, as a:~

IdXf prj^x. This mark has the advantage of differing in form from

the short s, which is used as a literal character. See 229.

47. Theorem. When the fluxions of two quantities

are in a constant ratio, their finite increments are in the

same ratio.

For if it be denied, let the ratios have a finite difference ; then if

the time, in which the increments are produced, be continually di-

vided, the ratio of the parts may approach nearer to the ratio of the

fluxions than any assignable difference, for that ratio is their limit

(46), and this is true, by the supposition, in each part; therefore the

sums of all the increments will be to eacli other in a ratio nearer to

that of the fluxions than the assigned difference (36).

48. Theorem. The fluxion of the product of two

quantities is equal to the sum of the products of the

fluxion of each into the other quantity.

Or {xy)":^yx+xy. Let the quantities increase from x and y to

x-\-x' and y-{-y, then their product will be first xy and afterwards

xy-{-y3t!-\-xy-\-x'y', of which the difference isyrc'-f-rry +x'y',and the ratio

of the increments of a: and xy is that of a:' to yx' -\-xy -\-x'y' ; or, when

the increments vanish, to yx'+xy, since in this case xfy' vanishes in

comparison with xy. But x* ', {yx'-^-xy)'. ',x ', {yx-\-xy), and the fluxion

is rightly determined (46) ; for since .:Lz:^, ^zz^ (18) ; but
x^ X a/ X

^

y£=yi (18),andl!f-t2'=»f+^(15).XX x' X

Scholium. It is also obvious, that the fluxion of any quantity xy

is equal to the sum of the results obtained by multiplying it by the

fluxion of each variable quantity, and dividing it by that quantity

:

i\\m,{xyyzzxy (~ +iLj
; {xx)'zzxxy^ ^JL^zz'ixx.
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49. Theorem. The fluxion of any power of a varia-

ble quantity is equal to the fluxion of that quantity multi-

plied by the index of the power, and by the quantity raised

to the same power diminished by unity.

Or {xn)':iznx^i-^x. Let wzz2, then {xx)'=.xx-\-xx (48)=:2a:^=

nar»—ix. If 7izz3, x^'z:z{xx).Xy and its fluxion is x {xx)' -^{xx)x:=z2xxx

^xxxzz3x^x:=inxn-ix^K And the same may he proved of any whole

number. If w is a fraction, as — ,
put ^=a;^, then x^nyPy and xzz

V
X \ 1

pyP—iy,yz=. • = y^—Px{38):=:— i/. Tf—Px—nxn—iXi as before;

and in tlie same manner the proof may be extended to all possible

cases.

50. Theorem. When the logarithm of a quantity

varies equably, the quantity varies proportionally.

Or if I a:nwj— ==-^- For xzzby (42), and when y becomes y-\-
a X

y^+x'zzb^'^-^zzbu.by'zzx.by, andx'zzxM—x^x. (by'—I
J;

huty be-

ing constant, by the supposition, bv'— 1 is constant, and maybe called

^, and x'zzlZ. ; therefore iir—, and— ir^.
a a a X a

Scholium. Numerical logarithms do not, strictly speaking, vary

by evanescent increments ; but other quantities may flow continually,

and be always proportional to logarithms : in either case the propo-

sition is true. In Briggs's logarithms, commonly used, b is 10, and «,

the modulus, is .4342944819 ; dividing all the system by a, or multi-

plying by 2.302585093, we have Napier's original hyperbolical loga-

rithms, wherej becomes =:— , and «=1.
X

51. Theorem. The fluxion of any power of a quan-

tity, of which the exponent is variable, is equal to the

fluxion of the same power considered as constant, toge-

ther with the fluxion of the exponent multiplied by the

power and by the hyperbolical logarithm of the quantity.

lixvizzj zZiyary—JA-|-(hl x). xyy; for hi zzzy. (hi a), (42); now
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(hU)-=f
, (50) ; RYid i=z. (h\ zyzzz. (7j. hi .r)-=r. (— + (hi x).j),

Z X

(48, 50):=:ijxy-ix-\-{h\ x) zy.

52. Theorem. When a variable quantity is greatest

or least, its fluxion vanishes.

For a quantity is greatest when it ceases to increase, and before it

begins to decrease ; that is, when it has neither increment nor decre-

ment ; and it is least when it has ceased to have a decrement and

has not yet an increment.

53. Problem. To solve a numerical equation by

approximation.

The most general and useful mode of solving all numerical equa-

tions is by approximation. Substitute for the unknown quantity a

number, found by trial, which nearly answers to tlie conditions

;

then the error will be a finite difference of the whole equation ; which,

when small, will be to the error of the quantity substituted, nearly in

the ratio of the evanescent differences, or of the fluxions ; and this

ratio may be easily determined.

Thus, if a:^—6x2+4a:zz6699, call 6099,y, then Sx^x—Uxx-^-^xzzj,

and;rr= — , and a:'z: — nearly ; now assume x:=z
3a;2—12x4-4 Sar^—12a:+4

20, then yzi5680, andjz:1019, whence a?' 1.05, and x corrected is

21.05 ; by repeating the operation we may approach still nearer to

the true value 21.

If x"y, xz=. -^— , whence the common rule for the extraction of

roots is derived. In order to find the nearest integer root, the digits

must be divided, beginning with the units, into parcels of as many as

there are units in the index, and the nearest root of the last or high-

est parcel being found, and its power subtracted, the remainder must

be divided by its next inferior power multiplied by the given index,

in order to find the next figure, adding the next parcel to the re-

mainder before the division. There are also, in particular cases,

other more compendious methods.

It is, however, often more convenient to solve an equation by the

rule of double position, taking two approximate values of the root,

and finding a third which difl'ers from one of them by a quantity bear-

ing the same proportion to their difference as the error of that one

bears to the difference of the two errors.
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SECTION III. OF SPACE.

54. Definition. A solid is a portion of space limited

iu magnitude on all sides.

Scholium. Space is a mode of existence incapable of definition,

and supposed to be understood by tradition.

60. Definition. A surface is tlie limit of a solid.

56. Definition. A line is the limit of a.surface.

57. Definition. A point is the limit of a line.

_^^nf^ ^—7 Scholium. The paper, ofwhich tliis-

j"^ y^ / figure covers apart, is an example of a

j^mi- - Z. ' solid, the shaded portion represents a

portion of surface : the boundaries of that surface are lines, and the

tliree terminations or intersections of those lines are points. In con-

formity with this more correct conception, these definitions are

illustrated by representations of the respective portions of space of

which the limits are considered ; and also by the more usual method

of denoting a line by a narrow surface, and a surface by such a line

surrounding it.

58. Definition. A line joining two points is called

their distance.

59. Definition. When the distance of any two or

more points remains unchanged, they are said to be at

rest; and a space of which all the points are at rest, is

a quiescent space.

60. Definition. A line which

must be wholly at rest, with respect to any quiescent space,

when two of its points are at rest in that space, is

a straight line.

^ -rmi ^y ^*^ 61. Definition. A line

which is neither a straight line, nor composed of straight

lines, is a curve line.
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62. Definition. A plane is a surface, in which if any

two points be joined by a straight line, the whole of the

straight line will be in the surface.

63. Definition. An angle is the

inchnation of two Hues to each other.

Scholium. An angle is sometimes denoted by this mark /., and

is described by tiiree letters placed near the Hues, the middle letter

at the angular point.

64. Definition. When a straight

line standing on another straight line

makes the adjacent angles equal,

they are called right angles.

65. Definition. A straight line between two right

angles is called a perpendicular to the line on which it

stands.

66. Definition. Whenaplane ^^g^^ /^nTTN
surface is contained by a circum- ^^p^^^ ( / |

ference, such tliat all straight lines ^^^^^^ \ I J
drawn to it from a certain point in ^^^^^ ^-^

—

the plane are equal, the surface is a circle.

67. Definition. The point, equally distant from the

circumference, is called the centre.

6S. Definition. Any straight line, drawn from the

centre to the circumference, is called a radius.

69. Dkfini J ION. The term circle also often implies

the circumference, and not th^ circular surface.

70. Definition. A portion of the circumference of

a circle is called an arc.

71. Definition. A straight line, joining the ex-

tremities of an arc, is its chord.
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72. Definition. The surface,

contained between an arc and its

chord, is called a segment of a circle.

^^"^^ /^ ^ 73. Definition. A chord

fe - -^ / \ passing through the centre is

^^KK^K \ J ^ diameter.

M A /^ /\ 74. Definition. A trian-

^B ^:=- L I Z A gle is a surface contained be-

tween three lines ; and these lines are understood to be

straight, unless the contrary is expressed.

M= 75. Definition. When two
"^^^ - 'straight lines, lying in the same

plane, may be produced both ways indefinitely, without

meeting, they are parallel.

Scholium. The parallelism of lines is sometimes denoted by this

mark ||.

76. Postulate. It is required that the length of

a straight line be capable of being identified, whether by

the effect of any object on the senses, or merely in

imagination, so that it may remain invariable.

Scholium. This is practically performed by making visible marks

on a material surface ; although, strictly speaking, no such marks

remain at distances absolutely invariable, on account of changes of

temperature, and of other circumstances.

77. Postulate. That a straight line of indefinite

length may be drawn through any two given points.

78. Postulate. That a circle may be described on

any given centre with a radius equal to any given straight

line.

79. Axiom. A straight line joining two points is the

shortest distance between them.
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Scholium. With respect to all straight lines, this axiom is a de-

monstrable proposition ; but since the demonstration does not extend

to curve lines, it becomes necessary to assume it as an axiom.

80. Axiom. Of any two figures meeting in the ends of

a straight fine, that which is nearer the Hne has the shorter

circumference, provided there he no contrary flexure.

81. Axiom. Two straight lines, coinciding in two

points, coincide in all points.

Scholium. If tliey did not coincide in all points, the two points of

coincidence bein^j^ at rest, and one of the lines being made the axis of

motion, the other must revolve round it, contrarily to the definition

of a straight line. Although this is sufiicieutly obvious, it can scarcely

bo called a formal demonstration.

82. Axiom. All right angles are equal.

83. Axiom. A straight line, cutting one of two parallel

lines, may be produced till it cut the other.

84. Problem. From the greater of two right lines,

AB, to cut oiF a part equal to the less, CD.
On the centre A describe a circle with a radius \

equal to CD (78), and it will cut off AEizCD (66). ^^ ^^ g

85. Problem. On a given right line, AB, to describe

an equilateral triangle.

On the centres A and B draw two circles, with ^
radii equal to AB, and to their intersection C, draw
AC and BC ; then ABzzACizBC (66), and the tri-

angle ABC is equilateral.

A B
86. Theorem. Two triangles, having two sides and

the angle included, respectively equal, have also the base

and the other angles equal.



A B D E

18 INTRODUCTION.

y In the triangles ABC, DEF, let ACnDF,
BC=EF, and L ACBzzDFE. Now supposing

a triangle equal to DEF to be constructed on

AC, the side equal to FE must coincide in po-

sition with CB, because Z. ACBziDFE, and

also in magnitude, for they are equal, therefore the point B will be

an angular point of the supposed triangle ; and since the base of both

triangles must be a right line, it must be the same line AB (81), and

the supposed triangle will coincide every where with ABC ; there-

fore ABCizlDEF, and the angles at A and B are equal to the angles

at D and E.

87. Theorem. If two sides of a triangle are equal,

the angles opposite to them are equal.

In the sides AB and A.C produced, take at pleasure

ADziAE, and join BE, CD; then since ADzzAE,
and ACizAB, and the angle at A is common to the

/--^^^^^^ triangles ADC, AEB, those triangles are equal (86),

1>A^^^E and /. ACDizABE, Z ADC=:AEB, and CDzrBE

;

but BDziCE (16), therefore L BCDziCBE (86),

and L ACD—BCDzzABE—CBE (16), or L ACEzzABC.

88. Theorem. If two angles of a triangle are equal,

the sides opposite to them are equal.

^ Let L ABCizBCD ; then AC=AB. If it bo de-

Anied, take, in the greater AC, CD equal to the less

AB; then, since L ABC=:DCB, ABzzDC, and

^ C BC is common, the triangle ABC=DCB (86), the

whole to a part, which is impossible.

89. Theorem. If two triangles have their bases equal,

and their sides respectively equal, their angles are also

respectively equal.

C F If a triangle be supposed to be constructed

^^ /j on AB, the base of ABC, equal to DEF, the

/ vertex of the triangle must coincide with C, and

« T* -^ the whole triangle with ABC. For if it be de-

nicd, let G be the vertex of the triangle so con-

structed; join CG ; then since ACz:AG, Z. ACG=:AGC (87), and
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in the same manner /. BGCziBCG ; but BGC > AGC, therefore

BGC > ACG; and ACG>BCG, therefore much more BGOBCG,
to which it was shown to be equal. And the same may be proved

in any other position of the point G ; therefore the triangle equal to

DEF, supposed to be described on AB, coincides with ABC.

90. Problem. To bisect a given angle.

In the right lines forming the angle, take at pleasure A
ABizAC ; on BC describe an equilateral triang'le Ji

BCD, and AD will bisect the angle BAC. For AB=
AC, BDzzCD, and the base AD is common, therefore

the triangle ABDzrACD (89), and Z BADizCAD. i)

91. Problem. To bisect a given right line, AB*
Describe on it tw^o eqtiilateral triangles, ABC,

ABD ; and CD, joining their vertices, w ill bisect AB
in E. For since ACziCB, ADnBD, and CD is

common to the triangles ACD, BCD, /_ ACDzz
BCD (89) ; but CE is common to the triangles ACE
and BCE, therefore AEzzEB (86).

92. Problem. To erect a perpendicular to a given

right line at a given point.

On each side of the point A, take at pleasure ABzz
AC, and on BC make an equilateral triangle, BCD.
Then AD shall be perpendicular to BC For the

sides ofBAD and CAD are respectively equal, there-

fore the angle BADzrCAD (89), and both are right

angles (64), and AD is perpendicular to BC (65).

93. Problem. From a point. A, without aright line,

BC, to let fall a perpendicular on it. ^

On the centre A, through any point D, beyond ^
BC, describe a circle, which must obviously cut BC
join AB and AC, and bisect the angle BAC by the

line AE; AE will be perpendicular to BG. For

Z-BAEziCAE, AB=AC, and AE is common to

the triangles BAE, CAE; therefore ZAEB=AEC (86), and both

are right angles (64).

D

C 2
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94. Theorem. The angles, which any right line makes

on one side of another, are, together, equal to two right

angles.

A p Let AB be perpendicular to CD, and EB oTjliqne

/ to it, then CBE+EBD=:CBA+ABE-fEBD=
CBA+ABD(14).

C B D

95. Theorem. If two right lines make with a third,

at the same point, but on opposite sides, angles together

equal to two right angles, they are in the same right line.

-J)
If it be denied, let AB, which together with AC,

x^U makes with AD, the angles BAD, DAC equal to two

P a"^^"!? "o^^* angles, be not in the right line CAE. Then

BAD 4-DAC, being equal to two right angles, is

equal to EAD+DAC (94), and BADizEAD, the less to the greater,

which is impossible.

96. Theorem. If two right lines intersect each other,

the opposite angles are equal.

From the equals, ABC+ABD and ABD+DBE
(94, 82), subtract ABD, and the remainders, ABC,

DBE, are equal. In the same manner ABDzi
CBE.

97. Theorem. If one side of a triangle be produced,

the exterior angle will be greater than either of the interior

opposite angles.

A E Bisect AB in C, draw DCE; take CEzzCD,

and join BE, then the triangle ACDz=BCE (96,

86), and ZCBEzzCAD; but ABF>CBE, tlierc-

jy jjj, fore ABF>CAD. And in the same manner it

may be proved, by producing AB, that^ABF is

greater than ADB.

98. Theorem. The greater side of any triangle is

opposite to the greater angle.
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Let AB>AC, then ZACB>AI}C. For taking

AD=AC, and joining CD, ZACDzzADC (87).

But ZADC >CBD (97), and ACB > ACD, therefore a D"

much more /.ACB>CBD, or ABC.

99. Theorem. Of two triangles on the same base,

the sides of the interjior contain the greater angle.

Produce A B to C, then ZABD >ACD (97), and K

Z:ACD>AEC, therefore much more ABD>
AED. //^^

A D

100. Problem. To make a triangle, having its sides

equal to three given right lines, every one of them being

less than the sum of the other two.

Take AB equal to one of tlie lines, and on the

centres A and B describe two cucles with radii

equal to tlie other two lines; draw AC and BC to
A B

the intersection C, and ABC will be the triangle re-

quired.
-*

101. Problem. At a given point in a right line, to

make an angle equal to a given angle.

In the linos forming the given angle ABC, take

any two points, A and C, join AC, and taking

DEzzBC, make the triangle DEF, having DF=
BA and FE=AC (100), then Z.FDE=ABC

m-
102. Theorem. If two triangles have two angles and

a side respectively equal, the whole triangles are equal.

Let the equal sides be AB and CD, inter-

vening between the equal angles, tlien if on

AB a triangle equal to CDE be supposed to

be constructed, the points A and B, and the

angles at A and B being the same in this tri-

angle and in ABF, the sides must coincide both in position and in

length; therefore ABF=CDE.
If the equal sides are AF and CE, opposite to equal angles, then

AB=CD, and the whole triangles arc equal. For if AB is not equal
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to CD, let it be the greater, and let AGrrCD ; then, by what has

been demonstrated, the triangle AFG=CED,and Z_AGT—CI)E—
ABF, by the supposition ; but AGF>ABF (97), which is impossible.

103. Theorem. The shortest of all right lines, that

can be drawn from a given point to a given right line, is

that which is perpendicular to the line, and others are

shorter as they are nearer to it.

Let AB be perpendicular to CD, then AB is

sliorter than AD. Produce AB, take BEizAB,
and join DE ; then the triangle ABD=EBD (86),

and AD=DE. But AB+BE or 2AB is less than

AD+DE or 2AD (79), therefore AB<AD (18).

In a similar manner 2AD<2AF (80), and AD <
AF.

104. Theorem. If a right line, cutting two others,

makes the alternate angles equal, the two lines are pa-

rallel.

/ If Z_ABC=ADE ; BC and DE are

—p^ ~^^ parallel ; for if they meet, as in F, they

yji E will form a triangle BDF, and ZADE
^ >ABC (97).

105. Theorem. A right line, cutting two parallel lines,

makes equal angles with them.

Let AB cut the parallels BC, DE ; tlien if

/.ABC is not equal to ADE, let it be equal to

ADF, then BC and DF are parallel (104), and

>'5 —jr DE, which cuts DF, will also, if producedj cut

/^ BC (83), contrarily to the supposition.

106. Theorem. Right lines, parallel to the same line,

are parallel to each other.

Let AB and CD be parallel to EF ; draw

GHI cutting them all, then /.KGBziKIF

(105), and ZKHDzzKIF, therefore Z.KGB

=KHD, and AB
1

1 CD (104).

A G/ B

c «/ D
/

E /I F
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107. Problem. Through a given point to draw a right

line parallel to a given right Hne.

From A draw, at pleasure, AB, meeting BC in B, \ d
and make ^BAD=:ABC (101), then AD||CB ^\~
(104>

c B -

108. Theorem. The angles of any triangle, taken

together, are equal to two right angles.

Produce A B to C, and draw BD parallel to AE. ^ jj

Then ^EBDzzAEB (105), and ZDBCziEAB;
therefore the external angle EBC is equal to the

sum of the internal opposite angles, AEB, EAB, and A B C

adding ABE, the sum of all three is equal to ABE+EBC, or to two

right angles (94).

109. Theorem. Right lines,joining the extremities of

equal and parallel right lines, are also equal and parallel.

Let AB and CD be equal, and parallel. Then a B
AC will be equal and parallel to BD. For, joining

BC, /.ABCzrBCD (106), and the triangles ABC,
DCB, are equal (86), and ACz=DB ; also Z.ACB
ziDBC, therefore AC |j BD (104).

110. Definition. A figure, of which the opposite

sides are parallel, is called a parallelogram.

111. Definition. A straight line, joining the oppo-

site angles of a parallelogram, is called its diagonal.

112. Definition. A parallelogram, of which the

angles are right angles, is a rectangle.

113. Definition. An equilateral rectangle is a

square.

114. Theorem. The diagonal of a parallelogram

divides it into two equal triangles, and its opposite sides

are equal.

For ABC is equiangular with DCB (105), and A B
BC is common, therefore they arc equal (102), \

and AB=CD, and AC=:BD. V D
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115. Theorem. Parallelograms on the same base,

and between the same parallels, are equal.

A_^ C J) Since AB=CD, botli being eqnal to EF,

AC=13D (15, or 1(3), and the triangle AEC
is equiangular (105) and equal (102) to BFD ;

y therefore deducting each of them from the

figure AEFD, the remainder ED is equal to

the remainder AF.

116. Theorem. Parallelograms on equal bases, and

between the same parallels, are equal.

For each is equal to the parallelogram

formed by joining the extremities of the base

of the one, and of the side opposite to the base

of the other (115).

117. Theorem. Triangles on equal bases, and be-

tween the same parallels, are equal.

A Ti C 1) Take AB and CD equal to the base EF or

CH, and join BF and DH. Then EB and

GD are parallelograms between the same pa-

'fl
rallels (109), and on equal bases, therefore

they are equal (llO), and their halves, the

triangles AEF, CGH (114), are also equal (18).

118. Theorem. In any right angled triangle, the

square described on the hypotenuse is equal to the sura of

the squares described on the two other sides.

Draw AB parallel to CD, the side of the

square on the hypotenuse, then the parallelo-

gram CB is double any triangle on the same

base and between the same parallels (114

117), as ACD; but ACD=FCG, their angles

at C being each equal to ACG increased by a

right angle, FC to AC, and GC to DC. Again,

GAH is a right linc(95), parallel to CF, there-

fore the triangle FCG is halfof the square CH
on the same base, and CH=:CB, since they are the doubles of equal
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triangles. In tbo same manner it may be shown that GKzrGB

;

tlierefore the whole CDIG is equal to the sum of CH and OK.

119. Problem. To find a common measure of any

two quantities.

Subtract tlie less continually from the greater, the remainder from

the less, the next remainder from the preceding one, as often as pos-

sible, and proceed till there be no further remainder ; then the last

remainder will be the common measure required. For since it mea-

sures the preceding remainder, it will measure the preceding quan-

tities in which that remainder was contained, together with itself,

and which, increased at each step by these remainders, makes up the

original quantities.

For example, if the numbers 64 and 21 be proposed, 64

—

21—21

=12, 21—12=9, 12—9=3, 9—3—3—3=0, tlierefore 3 is the com-

mon measure, for it measures 9, and 9+3 or 12, and 12-|-9 or 21, and

2x21+12 or 54.

Scholium. Hence it is obvious, that there can be no greater

common measure of the two quantities than the quantity thus found

;

for it should measure the difference of the tw^o quantities, and all the

successive remainders down to the last, therefore it cannot be greater

than this last. It must also be remarked, that in some cases no ac-

curate common measure can be found, but the error, or the last re-

mainder, in this process, may always be less than any quantity that

can be assigned, since the process may be continued without limit.

That there are incommensurable quantities, may_be thus shown

:

every number is either a prime number, that is, a numbernot capable

of being composed by multiplication of other numbers, or it is com-

posed by the multiplication of factors, which are primes. Let the

number a be composed of the prime numbers hcd, or azzbcd, then

aazzhcd.hcdzz.hh.cc.dd and each prime factor of aa occurs twice ; so

that every square number must be composed of factors in pairs; and

a square number multiplied by a number which is not composed of

factors in pairs cannot be a square number : for instance, 2aa or 3«a

cannot be a square number, since the factors of 2 are only 1.2, and of

3, 1.3, and not in pairs : therefore the square root of 2 or 3 cannot be

expressed by any fraction, for the square of its numerator would be

twice or thrice the square of its denominator. Eut the ratio of tlie

hypotenuse of a triangle to its side may be that of */2 or ^/S to 1 ; so
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that quantillos numerically iiicommenBurablc may be geometrically

determined.

120. Th e o r em . Triangles and parallelograms of the

same height are proportional to their bases.

Let AB be a common measure

ofAC and AD, and let ABzzBE
=EF; join GB, GE, GF, then

the triangles AGB, BGE, EGF,

are equal, and the triangle AGD
is the same multiple of AGB that AD is of AB ; and AGO is the

same multiple ofAGB that AC isofAB,or AGD : AGB=:AD : AB,
and AGC ; AGBzzAC ; AB : hence, dividing the first equation by

the equal members of the second (18), AGD ,* AGCzzAD ; AC, and

2AGD : 2AGCzzAD : AC, therefore the parallelograms, which are

double the triangles, are also proportional.

Scholium. The demonstration may easily be extended to in-

commensurable quantities. For if it be denied that AC : ADiz
AGC : AGD, let AC ; AD be the greater, and let the difference be

1 ^, AC 1 AGC n.AC AD w.AC—AD ^ , ,^— .tlien—— ^—— n: := zz . Letwi.AD
» AD w AGD W.AD w.AD w.AD

be that multiple of AD wliich is less than w.AC, but greater than

W.AC—AD, then a triangle on the base m.AD will be equal to

m.AGD, which will be less than w.AGC, the triangle on n.AC ; now

_ i,. I
. ., ^ .. , n w.AGC 7i.AC—AD ,

multiplymg tlie former equation by—, = , andm w.AGD wi.AD

w.AGC.»t.AD=wi.AGD. (m.AC—AD) ; but the first factors have been

shown to be respectiTcly greater than the second, therefore tlieir pro-

ducts cannot be equal, and the supposition is impossible-

121. Theorem. The homologous sides of equiangular

triangles are proportional.

Let the homologous sides AB, BC, of tlio

equiangular triangles ABD, BCE, be placed

contiguous to each other in the same line,

then AD
1

1 BE, and BD
1

1 CE ; produce AD,

CE, till they meet in F, and join AE and BF.

Tlicn the triangles FAE., EAC, are propor-

tional to their bases FE, EC, and the triangles AFB, BFC, to AB,
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BC (120). But FAE=:AFB (117), and EAC=:EnC4-EAB=EDC
+EFB=BFC, therefore FAE : EACzzAFB : BFC, and FE : EC
ziAB : BC; but FEzzDB (114). In the same manner it may be

shown that the other homologous sides are proportional.

Scholium. Hence equiangular triangles are also called similar.

122. Theorem. Equal and equiangular parallelo-

grams have their sides reciprocally proportional.

If ABz=BC then DB : BEzzBF : BG. For A G
DB : BF=AB : GF(120)=:BC ; GFziBE: BG f

(120); or DB : BE=BF : BG.
^

123. Theorem. Equiangular parallelograms, having

their sides reciprocally proportional, are equal.

For they may be placed as in the last proposition, and tlie demon-

stration will be exactly similar.

Scholium. Hence is derived the common method of finding the

contents of rectangles ; let a and b be the sides of a rectangle, then

1 l a'.\b l ab, and the rectangle is equal to that of which the sides are

1 and ab, or to ab square units. The rectangle contained by two lines

is therefore equivalent to the product of their numeral representa-

tives.

124. Theorem. Equiangular parallelograms are to

each otlier in the ratio compounded of the ratios of their

sides.

Or in the ratio of the rectangles or numeral D
products of their sides. For since AB : BCzz / / /

AD : DC (120), and DC : CEzzDB : BE,mul- A B/
/
C

tiplying tlie former equation by the members of E
the latter, AB.DB : BC.BEzzAD.CE.

125. Theorem. Similar triangles, and figures com-

posed of similar triangles, are in the ratio of the squares

of their homologous sides.

Since similar triangles are the halves of q
equiangular parallelograms, which are in the

\ 7\ X
ratio compounded of the ratios of their sides \/^ \ \/\
(124), the triangles arc in the same ratio, or A B D E
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ABC : DEF=:An.BC : DE.EF ; but AB : DE=:BC : EF (121)^

tlicrcforc ABC : DEFrrAB.AB : DE.DE, or ABq : DEq. And

the same may be proved ot similar polygons, by composition (32).

126. Definition. An indeJBnite right line, meeting a

circle and not cutting it, is called a tangent.

127. Theorem. A right line, passing through any

point of a circle, and perpendicular to the radius at that

point, touches the circle.

Since the perpendicular AB is shorter than any

other line AC, that can be drawn from A to BC
(103), it is evident that AC is greater than the ra-

dius AD, and that C, as well as every other point

of BC, besides B, is without the circle ; therefore

BC does not cut the circle, but touches it.

128. Definition, BC is called the tangent of the

arc BD, or the angle BAD.

129. Definition. AC is the secant of BD, or

BAD.

130. Definition. DE perpendicular to AB, is the

sineofBDorBAD.

131. Definition. AE is the cosine of BD or BAD.

132. Definition. EB is the verse sine of BD or

BAD.
Scholium. The circle is practically supposed to be divided into

360 equal parts, called degrees ; each of these into 60 minutes ; a mi-

nute into 60 seconds; and the division may be continued without

limit; thus 60"±:1', 60'zzl°, and 90° make a right angle. Some mo-

dem calculators divide the quadrant into 100 equal parts, and sub-

divide these decimally, or rather centesimally.

133. Theorem. The angle subtended at the centre

of a circle, by a given arc, is double the angle subtended

at the circumference.
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Let ABC and ADC be subtended by AC. Draw

the diameter DBE, then Z.ABE=ADB-fBAD
(108)z=2ADB (87). Also /.CBE=:2CDB; there-

foreABE—CB E=2ADB—2CDB,orABC=2ADC.
In a simihir manner it may be proved in other posi-

tions.

134. Theorem. The angle contained by the tangent

and any chord, at the point of contact, is equal to the angle

contained in the segment on the opposite side of the

chord.

Draw the diameter A B, and join BC ; then L BC

A

is equal to half the angle subtended at the ceirtre by

tJie semicircle AB, or to a right angle, and ABC
and BAC make together anotlier right angle (93),

therefore deducting BAC, ABC=CAD. And it

appears also from the last proposition, that the angle, Ji A 1>

contained in the lesser segment CA, is equal to tlie complement of

ABC to two right angles, or to CAE.

135. Problem. To draw a tangent to a circle from a

given point without it.

Join AB, bisect it in C, and on C draw a

circle, with tlie radius CB, intersecting the

former circle in D, then AD shall touch the

circle. For the angle ADB, in a semicircle,

is a right angle (134, 127), and BD is the r^
dius of the given circle.

136. Theorem. In equal circles, equal angles stand

on equal arcs.

For the chords of equal angles are equal

(86), and the segments cut off by them con-

tain equal angles (133) ; and if a segment

equal to AB be supposed to be described on

the chord CD, and on the same side with

CED, it must cohicidc witli CED, for since, at each point of eacli

arc, CD subtends the same angle, the points of one are can never

be within those of the other (90) ; the ares are therefore equal.
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Scholium. Hence it may easily be shown, that multiple and

proportionate angles are subtended by multiple and proportionate

arcs.

137. Theorem. Iftwo chords of a given circle inter-

sect each other, the rectangles contained by the segments

of each are equal.

^—

^

Join AB and CD. Then ^lAEBzzDEC (96),

f /\\ and Z.BAE=DCE (133), both standing on BD,
^L %!—\q therefore the triangles AEB, CED, are similar,

\\ / J and AE : CE: :EB : ED (121), therefore AE.ED
^^^4--^ =:CE.EB (123).

138. Theokem. The rectangle, contained by the seg-

ments of a right line, intercepted by a circle and a given

point without it, is equal to the square of the tangent

drawn from that point.

D Join AB, AC ; then /.ABCziCAD (134), and

the angle at D is common, therefore the triangles

ABD, CAD, are similar, and BD ; AD: IAD ; CD
(121), whence BD.DC=:ADq (123).

139. Theorem. In every triangle, the sides are as the

sines of their opposite angles, the radius being given.

C Take AB=CD, and draw BE and CF per-

n^-^^^^ pendicular to AD, then they are the sines of

A ^^^^ I \ t'lc angles A and D, to the radins AB or CD
^' ^'

(130), and by similar triangles, AC:CF::
AB ; BE (121), or CD : BE. And the same may be shown of the

other sides and angles.

140. Theorem. The sineofthe sum, or difference, of

any two arcs, is equal to the sum or difference of the sines

of the separate arcs, each being reduced in the ratio of

the radius to the cosine of the other arc.
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Let AB and BC be tfie sines of any two angles,

ACB, BAG, then AC will be the sine of their sum

CBD, orofABC. Now malciug BE perpendicular

to AC, ACzzAE-f-EC, and rad. : cos. BAC: :AB : ^ ^^ ^ ^'

AE, and rad. : cos. ACB::BC ; CE (139). Again, make EF=:

EC ; then it is plain Hiat AF will represent the sino of ABF, tlic

difference of ACB or CFB and BAC (108).

141. Theorem. The ratio of the evanescent tangent,

arc, chord, and sine, is that of equality.

Let AB be the tangent, and CD the sine of

the arc AD. Let AE be taken at pleasure

in the tangent, and EF be always parallel to

DG, the radius of AD, and on the centre F,

draw the circle AH; join AH, then since

Z.EAD=|AGD=i|AFH, the chord AH will

coincide with the chord AD (133, 134). And
when DA vanishes, DG coinciding with AG,

EF will be parallel to AF, and the angle

EAH will vanish, therefore AH will coincide

with AE, and with IH parallel to the sine

CD ; and by similar triangles the ratio of AB,

AD, and CD, is tlie same as that of AE, AH, and IH, and is ulti-

mately tliat of equality. But the arc AD is nearer to the chord AD
than the figure ABD, and it has no contrary flexure, therefore it is

longer than the line AD (79), and shorter than ABD (80), until their

difference vanishes, and it coincides with both.

Scholium. The same is obviously true of any curve coinciding at

a given point with any circle ; and all the elements agree as well in

position as in length.

141, B. Theorem. The fluxion of the area of any

figure is equal to the parallelogram contained by the ordi-

nate and tlie fluxion of the absciss. See 190.

142. Theorem. The fluxion of the arc being con-

stant, the fluxion of the sine varies as the cosine.
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The fluxion of the arc is equal to that of the tan-

gent, since their evanescent incremeuts coincide

(141). Let AB be the sine, AC the cosine, BD tlie

increment of the tangent, DE that of the sine: tlien

ZABCzzEBD (16), and the triangles ABC, EBD,
are similar, and BD is to DE as BC to AC ; but the

ultimate ratio of the increments is that of the fluxions, therefore the

fluxion of the tangent, or of the are, is to that ofthe sine as the radius

to the cosine. The same may easily be inferred from the tlieorem

for finding the sine of the sum of two arcs (140).

143. Theorem. The area of a circle is equal to half

the rectangle contained by the radius and a line equal to

the circumference.

Suppose the circle to be described by the revolution of the radius :

the elementary triangle, to which the fluxion of the circle is propor-

tional (141), is equal to the contemporaneous increment of the rect-

angle, ofwhich the base is equal to the circumference, and the height

to half tlie radius : consequently the whole areas are equal (47).

144. Theorem. The circumferences of circles are in

the ratio of their diameters.

Supposing the circles to be concentric, and to be described by the

revolution of different points of the same right line, the ratio of the

fluxions, and consequently tliatof the whole circumferences, will be

the ratio of the radii, or of the diameters (47).

Scholium. The diameter of a circle is to its circumference

nearly as 7 to 22, and more nearly as 113 : 355, or 1 : 3.14159265359;

hence the radius is equal to 57.29578''=:3437.7467'=206264.8" ; and,

the radius being unity, F=:.017453293, 1'=.000290888, and 1"=

.000004848.

145. Definition. A straight line is perpendicular ta

a plane, when it is perpendicular to every straight line

meeting it in that plane.

146. Definition. A plane is perpendicular to a

plane, when all the straight lines, drawn in one of the planes^
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perpendicular to the common section, are perpendicular to

the other plane.

147. Definition. The inclination of a straight line

to a plane is the angle, contained by that line, and another

straight line drawn from its intersection with the plane to

the intersection of a perpendicular let fall from any point

of the hne upon the plane.

148. Definition. The inclination of two planes is

the inclination of two lines, one in each plane, perpendi-

cular to the common section.

149. Definition. Parallel planes are such as never

meet, although indefinitely produced.

150. Definition. A solid angle is made by the meet-

ing of two or more plane angles, in different planes.

151. Definition. Similar solid figures are such as

have all parts of their surfaces similar and similarly placed;

and all their sections, in similar directions, respectively

similar.

152. Definition. A pyramid is a solid contained by

a plane basis and other planes meeting in a point.

153. Definition. A prism is a solid contained by

planes of which two that are opposite, are equal, similar,

and parallel, and all the rest parallelograms.

154. Definition. A cube is a lolid contained by six

equal squares.

155. Definition. A solid of revolution is that which

is described by the revolution of any figure round a fixed

axis.

156. Definition. A sphere is described by the re-

volution of a semicircle on its diameter as an axis.
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157. Definition. A cone is a solid described by Ibe

revolution of an indefinite rigbt line passing througb a ver-

tex, and moving round a circular basis.

158. Definition. A cylinder is a solid, described by

tbe revolution of a rigbt angled parallelogram about one

side.

159. Theorem. Two straight lines catting each other

are in one plane.

For a plane passing through one of them may be supposed to re-

volve on it as an axis until it meet some point of the other; and tlieu

the second line will be wholly in the plane (62).

/ 160. Theorem. If two planes cut each other, their

section is a straight line.

For the straight line joining any two points of the section must be

in each plane (62), and must, therefore, be the common section of

the planes.

161. Theorem. A straight line, making right angles

with two other lines at the point of their intersection, is at

right angles to the plane passing through those lines.

B Let AB be perpendicular to CD and EF
intersecting each other in A : take AC at

pleasure, and make ACzrADzzAEnAF ;

draw through A any line GH, and join

CE, DF ; then the triangles ADH, ACG
are equal and equiangular, AHzzAG and

DH=:CG; but since the triangles CBE,

DBF, are equal, and equiangular, the angles BCG and BDH are

equal, and the triangle BCGzrBDH, BGzzBH, and the triangles

ABG, ABH, are equal and equiangular : consequently the angle

BAG~BAH, and both are right angles: and the same may be

proved of any other line passing through A ; therefore AB is perpen-

dioular to the plane passing through CD and EF (145).
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163* Theorem. Three straight Mncs, which meet in

one point, and are perpendicular to one line, are in one

plane.

Let AB, AC, and AD meet in A, and be per-

pendicular to AE, then they are all in one plane.

For if either of them AC is out of the plane which

passes through the other two, let a plane pass

through AE and AC, and let it cut the plane of

AB and AD in AF, then the angle EAF is aright

angle (161), and EAF=EAC, the greater to the less : which is im-

possible.

163. Theorem. Two straight lines, which are per-

pendicular to the same plane, are parallel to each other

;

and two parallel lines are always perpendicular to the

same planes.

Let AB, CD, be perpendicular to the plane

BED: draw DE at right angles to BD, and

equal to AB, then tlie hypotenuses AD, BE,

will be equal, and the triangles ABE, EDA,
having all their sides equal, will be equiangu-

lar, and the angle ADE will be a right angle:

consequently DE is perpendicular to the plane

BC (161), and to DC (162), and AB is in the same plane with DC

:

and ABD and BDC being right angles, AB || CD.

Again, ifAB
1 1 CD, and AB is perpendicular to the plane BED,

the triangles ABE and EDA being equiangular, ADE is a right

angle: therefore CDE is a right angle (161); but CDB is a right

angle (105), therefore CD is perpendicular to BED.

164. Theorem. Straight lines, which are parallel to

the same straight line, not in the same plane, are parallel

to each other.

1
From any point in the third line, draw perpen-

diculars to the two first, and let a plane pass

through these perpendiculars : then the third line

is perpendicular to this plane (161); consequently the first and se*

D 2

7
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cond are perpendicular to it, and therefore parallel to each other

(163).

165. Theorem. If the legs of two angles, not in the

same plane, are parallel, the angles are equal.

Let ABIJCD, and BE||DF, then ZABE=
CDF. Take AB=BE=CD=DF: then AC 11=
BD1|=EF(109), and AErrCF (109); therefore

ABE and CDF are equal and equiangular.

166. Problem. To draw a line, perpendicular to a

plane, from a given point above it.

From the point A let fall on any line BC in the

given plane a perpendicular AD ; draw DE per-

pendicular to BC in the same plane, and from A
draw AE perpendicular to DE : then AE will

be perpendicular to the plane^BEC ; for if EF
be parallel to BC, it will he perpendicular to the plane ADE (163),

and consequently to AE ; therefore AE, being perpendicular to DE
and EF, will be perpendicular to the plane passing through them.

167. Problem. From a given point in a plane, to

erect a perpendicular to the plane.

From any point above the plane let fall a perpendicular on it, and

draw a line parallel to this from the given point: this line will be the

perpendicular required.

168. Theorem. If two parallel planes are cut by any

third plane, their sections are parallel lines.

For if the lines are not parallel, they must meet; and, if they meet,

the planes in which they are situated must meet, contrarily to the

dclinition of parallel planes.

169. Definition. A parallelepiped is a solid con-

tained by six planes, three of which are parallel to the

other three.

170. Theorem. The opposite planes of every paral-

lelepiped are equal and equiangular parallelograms.
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The opposite sides of all the fig^ures are parallel, because they are

the sections of one plane with two parallel planes (168) : the corres-

ponding sides of two opposite planes being, for the same reason, pa-

rallel to each other, contain equal angles (165), and they are also

equal, as being the opposite sides of parallelograms ; consequently

the opposite figures are the doubles of equal triangles, and are, there-

fore, equal parallelograms.

171. Theorem. If a prism be divided by a plane, pa-

rallel to its two opposite surfaces, its segments will be to

each other as the segments of any of the divided surfaces

or lines.

Let the prism AB be divided by

the plane CDE parallel to AFG and

BHI. Find FK a common mea-

sure of FD and DB(119), make KL
=FK, and let the planes KMN, LOP be parallel to AFG ; then the

prisms AK, ML may be shoVn to be contained by similar and equal

figures similarly situated, in the same manner as it is shown of paral-

lelepipeds, and there is no imaginable difference between these

prisms: they are therefore equal; and the prism AD is the same

multiple of AK that FD is of FK, and AB the same multiple ofAK
thatFB isofFK, or AD ; AKzrFD : FK, and AB : AK=FB : FK,

whence AD ; ABziFD ; FB, and the prisms are in the same ratio as

the segments of the line FB, or of the parallelogram GB (27),

If the segments are incommensurable, they are still in the same

ratio, for it may be shown that the ratio of the prisms is neither

greater nor less than that of the lines.

172. Theorem. Parallelepipeds on the same base,

and contained between the same planes, are equal.

The parallelepiped AB is equal

to CD standing on the same base

BC, and terminated by the plane

AED. For each is equal to the

parallelepiped EF ; since the trian-

gular prism GB is similar and equal

to the triangular prism HC, and

deducting these from the solid HCI,
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the remainders AB and EF are equal. And in the same manner tt

may be sbown that CDzzEF ; therefore AB=:CD.

173. Theorem. Parallelepipeds on equal bases, and

of the same height, are equal.

Each parallelepiped is equal to the

erect parallelepiped on the same base.

Let one of these be so placed, that the

plane of one of the sides AB may coin-

A *" 1^ cide with the plane BC of the other

parallelepiped CD, and that EBC may be a straight line. Then pro-

ducing FB, and making CG parallel to it, the parallelepiped BH
will be equal to CD (172). Now, completing the parallelepiped IK,

as the parallelogram CF is to EF, so is KI to AF (171) ; and as CF
to BG, so is KI to BH, but EF is equal to the base of AF, and BG
to the base ofCD, they are tlierefore equal, and the parallelepipeds

AF and BH are equal, and AF=:CD.

174. Theorem. Paralellepipeds, of the same height,

are to each other as their bases.

For one of them is equal to a parallelepiped of the same height on

an equal base which forms a single parallelogram Avith the base of

the other; and this is to the other in the ratio of the bases (171); con-

sequently the first two are in the same ratio.

175. Theorem. Parallelepipeds are to each other in

the joint ratio of their bases and their heights.

For one of them is to a third parallelepiped of the same height with

itself, but on the basis of the second, in the ratio of the bases, and the

third is to the second in the ratio of the heights, consequently the first

is to the second in the joint ratio of the bases and the heights. Thus,

a and h being the bases, c and di\iG heights, e,y, and g the three pa»-

rallelepipeds, a ', h'.'.e '. g^ and c '. d' '.g if; ac '. hdzze \f.

Scholium. Hence is derived the common mode of finding the

content of a solid, by multiplying the numerical representatives of its

length, breadth, and height, and thus comparing it wkh the cubic

unit of the measure.
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178. Theorem. Similar parallelepipeds are in the

triplicate ratio of their homologous sides.

For the joint ratio of the bases and heights is the same as the iii-

plicato ratio of tlie sides.

177. Theorem. A plane, passing through the dia-

gonals of two opposite sides of a parallelepiped, divides it

into two equal prisms.

The diagonals are parallel, because the lines in which they terroi-

nato are parallel and equal, and every line and

angle of the one prism is equal to the correspond-

ing line and angle of the other prism ; consequent-

ly the prisms are equal. Thus ABrrCD, AE:=:CF,

DE=:BF, the angle EAB=:DCF, EAH=:GCF,
and BAH=:DCG.

178. Theorem. Prisms are to each other in the joint

ratio of their bases and their heights.

Triangular prisms are in the same ratio as the parallelepipeds on

bases twice as great, of which they are the halves ; and all prisms

may be divided into triangular prisms, by planes passing through

lines similarly drawn on tlieir ends, and they will be equal together

to the half of a parallelepiped on a basis twice as great ; conse-

quently two such prisms are in the same ratio as the parallelepipeds,

179. Theorem. All solids, of which the opposite sur*

faces are planes, and the sides such that a straight line

may be drawn in them, from any point of the circumference

of the ends, parallel to a given line, are to each other in the

joint ratio of their bases and their heights.

For if they are terminated by rectilinear figures, the solids are

prisms ; and if they are terminated by curvilinear figures, they will

always be greater than prismatic figures, of which the bases are in-

scribed polygons, and less than figures of which the bases are cir-

cumscribed polygons ; and if the proposition be denied, it will always

be possible to inscribe a prism in one of the solids, which shall be

greater than any solid, bearing to the .other solid a ratio assignably

le»s than the ratio determined by the proposition, and to circum-
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scribe a prism less than any solid bearing a ratio assignably greater.

Such solids may not improperly be called cylindroids.

180. Theorem. The fluxion of any solid, described

by the revolution of an indefinite line, passing through a

vertex, and moving round any figure in a plane, is equal

to the prismatic or cylindroidal solid, of which the base is

the section parallel to the given plane, and the height the

fluxion of the height.

In any increment of the solid, which is cut

otf by planes determining the increment of the

height, suppose a prismatic or cylindroidal solid

to be inscribed, of which the base is equal to

the upper surface of the segment, and the sides

such that a line may always be drawn in them parallel to a given

line passing through the vertex and the basis of the solid : and let

another solid be similarly described on the lower surface of the seg-

ment as a basis : then it is obvious that the increment is always

greater than the inscribed solid, and less than the circumscribed;

and that when the increment is diminished without limit, its two sur-

faces are ultimately in the ratio of equality, and the increment coin-

cides with the cylindroid described on its basis. Such solids may

be termed in general pyramidoidal.

181. Theorem. All pyramidoidal solids are equal to

one third of the circumscribing prismatic or cylindroidal

solids of the same height.

The area of each section of such a figure, parallel to the basis, is

proportional to the square of its distance from the plane of the ver-

tex. For each section is either a polygon similar to the basis, or it

may have polygons inscribed and circumscribed, which are similar

to polygons inscribed and circumscribed in and round the basis, and

which may differ less from each other in magnitude than any assign-

able quantity, consequently each section is as the square of any ho-

mologous line belonging to it, or, by the properties of similar tri-

angles, as the square of the distance from the vertex, or from the

plane of the vert,ex. If, then, 'the area of the base be a, the whole

height bf and the distance of any section from the plane of the vertex
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X, the area of the section will be -rr-^* ^^^ *^® fluxion of the solid
00

-f-ar2;f, of which the fluent is ^ —-a;^, and when x:i:b, the content is

bb bb

lax, which is one third of the content of the whole prismatic or cylin-

droidai solid. Hence a pyramid is one third of the circumscribing

prism, and a cone one third of the circumscribing cylinder.

182. Theorem. The fluxion of any solid is equal to

the parallelepiped, of which the base is equal to the section

of the solid, and the height to the fluxion of its height.

For every part of a solid may be considered as touching some py-

ramidoidal solid, and having the same fluxion : and the fluxion ex-

pressed by a cylindroid is equal to a parallelepiped, on the same base,

and of the same height.

183. Theorem. The curve surface of a sphere is

equal to the rectangle contained by its verse sine and the

sphere's circumference.

The fluxion of the surface is obviously equal to the rectangle con-

tained by the fluxion of the circumference and the circumference of

the circle of which the radius is the sine; it varies, therefore, as the

sine ; but the fluxion of the cosine or of the verse sine varies as the

sine, consequently the smface varies as the verse sine. Now, where

the tangent becomes parallel to the axis, the fluxion of the surface

becomes equal to the rectangle contained by the sphere's circum-

ference, and the fluxion of the verse sine : hence the whole surface

of any segment is equal to the whole rectangle contained by its verse

sine and the sphere's circumference; and the surface of the whole

sphere is four times the area of a great circle.

184. Theorem. The content of a sphere is two thirds

of that of the circumscribing cylinder.

The fluxion of the sphere is to that of the cylinder as the square of

the sine to the square of the radius ; or if the fluxion of the cylinder

be fuibxy a being the radius, and a; the verse sine, that ofthe sphere will

be (2ax—xx)bxj or 2abxx—bxxx, of which the fluent is abx^—^^bx^ ;

which, when xiza, becomes la% while the content of the cylinder is
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185. Theorem. When a picture is projected on a

plane, by right lines supposed to be drawn from each point

to the eye, the whole image of every right line, produced

without limit, is a right line drawn from its intersection

with the plane of projection, to its vanishing point, or the

point where a line drawn from the eye, parallel to the

given line, meets the plane of projection ; and this image

is divided, by the image of any given point, in the ratio of

the portion of the line, intercepted by that point and the

picture, to the line drawn from the eye to the vanishing

point; so that if any two parallel lines be drawn from the

ends of the whole image, and the distances of the eye and

of the given point be laid off on them respectively, the line,

joining the points thus found, will determine the place of

the required image of the point.

For A being the eye, and B the va-

nishing point of the line CD ; AB and

CD, being parallel, are in the same

plane, and AD is also in that plane

(62); and BC is the intersection of this

plane with that of-the picture; therefore E, the image of the point D,

is always in the line BC ; and AB : CD: ;BE : EC ; and taking the

parallel lines BF, CG, in the same ratio, FG will also cut BC in E.

When AB is perpendicular to the plane, B is called the point of

sight, and is the vanishing point of all lines perpendicular to the plane

of the pictiu-e : and the vanishing point of any other line may be

found by setting oflF from B a line equal to the tangent of its inclina-

tion to the perpendicular line, the radius being AB.

Scholium. When a line becomes parallel to the plane of the pic-

ture, the distance of its vanishing point becomes infinite, and tlie

image is, tlierefore, parallel to the original. Jn this case, the magni-

tude of the image may be determined by means of lines drawn in any

other direction through the extremities of the original line. In the

orthographical projection, the images of all parallel linens whatever
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beoome parallel, the distance of the eye, and consequently that of

the vanishing point, becoming infinite.

186. Definition. Tlie subcontrary section of a sca-

lene cone is that which is perpendicular to the triangular

section of the cone, passing through the axis, and perpen-

dicular to the base, and which cuts off from it a triangle

similar to the whole, but in a contrary position,

187. Theorem. The subcontrary section of a scalene

cone is a circle.

Through any point A oF the section, let a

plane be draAvn parallel to the base ; then its

section will be a circle, as is easily shown by

the properties of similar triangles ; and the

common section of tlie planes will be per-

pendicular to the triangular section of the

cone to which they are both perpendicular

;

consequently, ABq=:CB.BD ; but since the

triangles CBE, FBD are equiangular and similar, CB::BE:!BF :

BD, and CB.BD=:BE.BF=ABq ; tlierefore EAF is also a circle.

188. Theorem. The stereographic projection of any

circle of a sphere, seen from a point in its surface, on a

plane perpendicular to the diameter passing through that

point, is a circle.

Let ABC be a great circle of the sphere pas-

sing through the point A and the centre of the

circle to be projected, then the angle ACB=
BADrrBEF, and ABC=CAG=CHI, and the

triangle AHE is similar to ABC, and the plane

ABC is perpendicular to the plane BC and the

plane HE, therefore HE is a subcontrary sec- qT

lion of the cone ABC, and is consequently a circle.
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SECTION IV. OF THE PROPERTIES OF CURVESr

189. Definition. Any parallel right lines, inter-

cepted between a curve and a given right line, are called

ordinates; and each part of that line, intercepted between

an ordinate and a given point, is the absciss corresponding

to that ordinate.

" 190." [141,B.] Theorem. The fluxion of the area

of any figure is equal to the parallelogram contained by

the ordinate and the fluxion of the absciss.

Let AB be the absciss, and BC the ordinate

through C draw DCEIJAB, and take DCzi
DE=:half the increment of AB, then the simul-

taneous increment of the figure ABC will ulti-

mately coincide with the figure I'CGEB, since

the curve ultimately coincides with its tangent

(141), but the triangles CDF, CEG, are equal, therefore the paral-

lelogram DBE is ultimately equal to the increment of ABC. And
if any other line^ than DE represent the fluxion of AB, as DE is to

this line, so is the parallelogram DBE to the parallelogram contained

by BC and this line : therefore that parallelogram is the fluxion of

ABC (46).

Scholium. Those, who prefer the geometrical mode of represen-

tation, may deduce from this proposition a demonstration of the

theorem for determining the fluxion of the product of two quantities

(48) ; for every rectangle may be diagonally divided into two such

figures as are here considered, and the sum of their fluxions, accord-

ing to this proposition, will be the same with the fluxion of the rect-

angle determined by that theorem. It is obvious that this theorem

ought not to have followed article 180.

191. Definition. A flexible line being supposed to

be applied to any curve, and to be gradually unbent, the

curve, described by its extremity, is called the involute of

the first curve, and that curve the evolute of the second.

192. Definition. The radius of curvature of the in-
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volute is that portion of the flexible line which is unbent,

when any part of it is described.

193. Theorem. The radius of- curvature always

touches the evolute, and is perpendicular to the involute.

If the radius of curvature did not touch the evolute, it would make

an angle with it, and would, therefore, not be unbent ; and if the

evolute were a polygon composed of right lines, each part of the in-

volute would be a portion of a circle, and its tangent, therefore, per-

pendicular to the radius : but the number of sides is of no conse-

quence, and if it became infinite, the curvature would be continued,

and the curve would still at eacli point be perpendicular to the

radius of curvature.

194. Theorem. The chord, cut off in the ordinate by

the circle of curvature, is directly as the square of the

fluxion of the curve, and inversely as the second fluxion

of the ordinate, that is, as the fluxion of its fluxion.

The constant fluxion of the absciss being equal

to AB, the fluxion of the ordinate, at A, is BC,

at D, DE, consequently its increment is CD+ A
BE, or CD+AF, twice the sagitta of the arc — ^^

DV

AD : and the chord is equal to the square of AC divided by CD,

and it is, therefore, always in the direct ratio of the square of the

fluxion of the curve, and the inverse ratio of the second fluxion of

the ordinate. See 268.

195. Theorem. When the curve approaches infi-

nitely near to the absciss, the curvature is simply as the

second fluxion of the ordinate.

For the fluxion of the curve becomes equal to that of the absciss,

and the perpendicular chord to the diameter.

196. Definition. If the sum of two right lines,

drawn from each point of a curve to two given points, is

constant, the curve is an ellipsis, and the two points are

its foci.
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197. Definition. The right line passing throagh the

foci, and terminated by the curve, is the greater axis, and

the Une bisecting it at right angles, the lesser axis.

198. Theorem. A right line passing through any point

of an ellipsis, and making equal angles with the right lines

drawn to the foci, is a tangent to the ellipsis.

^''
r::^ _ Let AB make equal angles with

BC and BD, tlien it will touch the

ellipsis in B. Let E be any otlier

point in AB. Produce DB, take

BF=zBC, and join CF, then AB
bisects the angle CBF, and CAB
is a right angle. Join EC, ED,

EP, GD,then ECriEF, and EC+ED^rEF+ED, and is greater

than DF (79), or BC+BD, or GC+GD, therefore E is without the

ellipsis, and AB touches it,

199. Theorem. The right lines, drawn from any point

of the ellipsis to the foci, are to each other as the square

of half the lesser axis to the square of the perpendicular

from either focus, on the tangent at that point.

Let A and B be the foci, C the

point of contact, and AD the per-

pendicular to the tangent CD,

draw BE and BF parallel to AD
and CD, produce AD each way,

and let it meet BF and BC in F
and G. Then since ^ACDz:
BCEzzDCG, CGzzAC ; and BG

=:AC4-BC. And BFqnBGq—FGqzzBAq—FAq (118), therefore

BGq—BAqrrFGq—FAq ; but (FG+FA). (FG—FA)=:FGq—
FAq; and FG+FA=:2FD=:2BE, and FG—FA=AG=2AD ; also

BG=:2BH, and BA=:2BI, whence BGq—BAqr=4HIq, therefore

BKADizHIq, and BE=ii^, but BE : BC::AD : AC, and BErr

,^BC Hlq BC Hlq
AD.— zi —^, oi'— :z: •

AC AD AC ADq
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200. Theorem. The chord of the circle of equal cur-

rature with an ellipsis at any point, passing through the

focus, is equal to twice the harmonic mean of the distances

of the foci from the given point, or to the product of the

distances divided by one fourth of the greater axis.

Let AB bo an evanescent arc of

the ellipsis, coinciding with the

tangent, then the radius of curvar

ture bisecting always the angle

CAD or CBD, the point E, in which

tlie radii AE and BE meet, will ul-

timately be the centre of the circle

of equal curvature. Let BF, BG,

be parallel to AC, AD ; then BH,
bisecting FBG, will be parallel to AE: but EBHrrCBF-f-FBH—
CBE=CBF+iFBG—^CBDzrCBF—^CBF+iDBGrz I (CBF-f

DBG)=:i(ACB4-ADB). Now, in the triangles ABC, ABD, as AC
is to the sine of ABC, so is AB to the sine of ACB, and as AD is to

the sine of ABD, so is AB to the sine of BDA ; but the sines of ABC
and ABD are ultimately equal ; consequently ACB and ADB are

inversely as AC and AD, or as their reciprocals, and EBH or AES,
which is the half sum of ACB and ADB, is as the mean of those re-

ciprocals : let BI be the reciprocal of that mean, or the harmonic

mean of AC and AD, then the angle AIBzrAEB ; for the evanes-

cent angler* ACB, AIB, or their sines, arc reciprocally as AC, AI,

since these angles have the same side AB opposite to them in the

triangles ABC, ABI, and their equals BC, BI are opposite to the

same angle BAC ; for the same reason, faking BK=:2BI, AKB is

half of AEB ; consequently K is in tlie circle of curvature, and BK
is its chord.

201. Theorem. The square of the perpendicular, fall-

ing on the tangent of an ellipsis from its focus, is to the

square of the distance of the point of contact from the fo-

cus, as a third proportional to the axes is to the focal chord

of curvature.
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p Ch
V̂II

It has been shown that ABq :

CDq::AE:EF (199), therefore

ABq : AEq: 1 CDq : AE.EF ; but

the chord of the circle of equal

2AE.EF
curvature, EG, is iz-

CH

AE.EF=iEG.CH,therefore ABq : AEq: :CDq : \ EG.CH: : 2

and

CDq
CH

:EG.

Scholium. It may easily be demonstrated that a perpendicular

to the normal of the curve, or to the line perpendicular to its tan-

gent, [massing through the point where it meets the axis, bisects the

focal chord of curvature, and that a perpendicular, falling from the

same point on the chord, cuts off a constant portion from it, equal to

the third proportional to the semiaxes.

202. Theorem. The square of any ordinate of an

ellipsis, parallel to the lesser axis, is to the rectangle con-

tained by the segments of the greater axis, as the square

of the lesser axis to the square of the greater.

On the centre A describe the

circle BCDE, passing through

the focus B; then EFlBF::
CF : DF (138). Call HI,«,

HB,&, AB,a^, GH,2r, then EF=:2a,

BF= 2ft, CF=5BH— 2BGzr

2GH=:22r, DF=EF—ED=i2a—
2t, and 2a : 2&: \2z \ 2a—2x, a .* h'. \z '. a—x, a \ a-\-h\ \z '. z-\-a—x

: '.a-\-z : 2a

—

X +b-\-z (32); also a ', a—b'. \z \ z—(a

—

x)', \a—z \ la

—X—(6+z), and by multiplying the terras, aa \ aa—hh'. '.{a-\-z).

(a—z) : (2a—x)2—(6+2)2, or Hlq.HKq: '.IG.GL : AFq—GFq, or

AGq.

203. TheOH EM. The area of an ellipsis is to that of

its circumscribing circle, as the lesser axis to the greater.

For since the square of the ordinate is to the rectangle contained

by the segments of the axis, or to the square of the corresponding

ordinate of the circle (137), as the square of the lesser axis to that of

the greater, the ordinate itself is to that of the circle in the constant
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ratio of the lesser axis to the greater. For if four quantities are pro-

portional, their squares are proportional, and tlie reverse. But the

fluxions of the areas are equal to the rectangles contained by these

ordinates and the same fluxion of the absciss (190), they are, there-

fore, in the constant ratio of the ordinates, and the corresponding

areas are also in the same ratio (47).

204. Definition. If the square of the absciss is equal

to the rectangle contained by the ordinate and a given

quantity, the curve is a parabola, and the given quantity

its parameter.

Scholium. Thus ABqziP.BC.

If the axes of an ellipsis are sup-

posed infinite, it becomes a parabola

for since — =z

—

^— , if a becomes
a^ ax—XX

infinite,a;a; vanishes in comparison with ax, and -1- zi~,— x =:y^, and
a^ ax a

is the parameter of the parabola ; and the distance from the focus
a

is in a constant ratio to the square of the perpendicular falling on

the tangent.

205. Definition. When the ordinate is as any other

power of the absciss than the second, the curve is still a

parabola of a different order.

Thus when the ordinate is as the third power of the absciss, the

curve is a cubic parabola.

206. Theorem. If any figure be supposed to roll on

another, and any point in its plane to describe a curve, that

curve will always be perpendicular to the right line joining

the describing point and the point of contact.

Suppose the figures rectilinear polygons ; then the point of contact

will always be the centre of motion, and the figure described will

consist of portions of circles meeting each other in finite angles, so

that each portion will be always perpendicular to the radius, though

no two radii meet in the point of contact. And if the number of

" E
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sides be increased without limit, the polygons will approach infi-

nitely near to curves, and each portion of the curve described will

still be perpendicular to the line passing through the point of con-

tact.

207. Definition. A circle being supposed to roll on

a straight line, tlie curve described by a point in the cir-

cumference is called a cycloid.

208. Theorem. The evolute of a cycloid is an equal

cycloid, and the lengtli of its arc is double that of the por-

tion of the tangent cut off by the vertical tangent.

Let two equal circles AB, BC,

rolling on the parallel bases DA and

EB, at the distance of a diameter

of the circles, describe witli tlie

points F and G the equal cycloids

EF and EG. Draw the diameter

FH ; then H will be the point that

coincided with D, and HAziDAzz
EBn arc BG, and the remainders AF and GC are equal, therefore

ZABF=CBG (133), and FBG is a right line (96). But FG is per-

pendicular to AF (134), therefore it touches EF (206), and it is

always perpendicular to EG (206) ; therefore EG will coincide with

the involute of EF, for they set out together from E, and are always

perpendicular to the same line FG (193), which tluey could not be if

they ever separated. Consequently the curve EF is always equal

to FG (192), or 2FB, twice the portion of the tangent cut off by EB.

209. THEORFiM. The fluxion of the cycloidal arc is to

that of the basis, as the evolved radius to the diameter of

the generating circle.

For the increment GI=:2BK, and BK : BL'/.BG

: BC, and 2BK : BL: : FG ; BC, which is therefore

the ratio of the fluxions.

Scholium. If the fluxion of the base be constant'

that of the curve will vary as the distance of the

describing point from tbe point of contact.
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210. Definition. If the absciss be eqnal to the arc

of a given circle, and the perpendicular ordinate to the

corresponding sine, the curve will be a figure of sines.

211. Definition. If a second figure of sines be

added, by taking ordinates equal to the cosines, the pair

may be called conjugate figures of sines.

212. Theorem. The radius of curvature of the figure

of sines at the vertex is equal to the ordinate.

For the fluxion of the base becoming ultimately equal to that of

tlie absciss in the corrosponding circle, while the ordinates are also

equal, tlic curve ultimately coincides witli a portion of that circle.

21 3. Theorem. The area of each half of the figure of

sines is equal to the square of the vertical ordinate.

For the fluxion of the absciss being con-

stant, that of the sine varies as the cosine

(142), therefore the fluxion of the ordinate of

tlie figure of sines may always be represented

by tlie corresponding ordinate of the conju-

gate figure. Let AB, CD, be the conjugate

figures, tlien EF will represent the fluxion of EG, and, since the arc

and sine are ultimately equal, the fluxion of EG at C will be equal

to that of tlie absciss, therefore BC will always represent the con-

stant fluxion of the absciss. But the fluxion of the area AEF is the

rectangle, under the fluxion of the absciss AE and the ordinate EF ;

tliat is, the rectangle under BC and the fluxion of EG, and the fluent

BC.(AD—EG) is, therefore, equal to the area, which at C becomes

BCq.

214. Definition. Each ordinate of the figure of sines

being diminished in a given ratio, the curve becomes the

harmonic curve.

Scholium. The ordinates being diminished in a constant pro-

portion, their increments and fluxions are diminished in the same

proportion, the fluxion of the base remaining constant.

E 2
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215. Theorem. The radius of curvature at the vertex

of the harmonic cnrve is to that of the figure of sines, on

the same base, as the greatest ordinate of the figure of

sines to that of the harmonic curve.

For, taking any equal evanescent portions of the vertical tangents,

the radii will be inversely as the sagittae, which are similar portions

of the corresponding ordinates, and are tlierefore to each other in

the ratio of those ordinates.

216. Theorem. The figure, of which the ordinates

are the sums of the corresponding ordinates of any two

harmonic curves, on equal bases, but crossing the absciss

at different points, is also a harmonic curve.

The absciss of the one curve being x, that of the other will be a-\-

X, and the ordinates will be &.(sin. x) and c (sin. a-{-x) ; now sin. «-f-

a:zz(cos. a:).(sin. a) +(cos. a).(sin. x) and the joint ordinate will be

(6+c.(cos. fl)).(sin. rr).+c.(sin. a).(cos.a:); if, therefore, d be the angle

of which the tangent is ——

—

'—-— its sine and cosine will be in the
i>4-c.(cos. a)

ratio of c.(sin. a.) to 6+c(cos. a), and (cos. c?).(sin. a;)+(sin. rf).(cos.a:),

will be to the ordinate in the constant ratio of sin. d to c.(sin. a)

;

but (cos. c?).(sin. x)+(sin. d').(cos. x) is the sine of d-\-x; conse-

quently the newly formed figure is a harmonic curve.

jy
The same may be shown geometri-

es cally, by placing two circles, having

their diameters equal to the greatest

ordinates of the separate curves, so as

to intersect each other in an angle equal

to the angular distance of the origin of

the curves : then a right line revolving

round their intersection, with an equable velocity, will have segments

cut off by each circle equal to the corresponding ordinate, and the

sum or difference of the segments will be the joint ordinate : and if

a circle be described through the point of intersection, touching the

common chord of the two circles, and having its radius equal to the

distance of their centres, this circle will always cut off in the re-

volving line a portion equal to the ordinate. For if AB be made
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parallel to CD, and EB to FG, /iABE=CGF=:CHF : but ElB is

a right angle, as well as HCF, and EI : IB: '.FC : CH: :AE : CH,
since AF is equal to twice the distance of the centres, which bisect

AH and FH, and therefore to CE, and FCzzAE, or EI : AE: :1B

: CH ; but EI : AE: :ID : AC, therefore IB : CH: :ID : AC, and

the triangles ACH, DIB, are similar, and Z-DBIrzCHAzzDKA,
and AD is a parallelogram, consequently KDzzABzzCG.

If the circle CG be supposed to revolve round C, the intersection

H will always show the angular distance of the point in which ihe

curve crosses the axis ; and the distance of the centres will be equal

to the greatest ordinate. If, therefore, the circles are equal, the

greatest ordinate will also vary as the chord of an arc increasing

equably, or as the ordinate of the harmonic curve.
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MOTION.
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" CHAPTER I.

OP THE EQUILIBRIUM AND COMPOSITION OF FORCES

ACTING ON A MATERIAL POINT.

§1,2. 0/ motion, force, and the composition and de-

composition offorces. M. C. P. 3. (249.)

§ 3. Equation ofthe equilibrium ofapoint subjected to

various forces. Method of determining pressure. T'heory

of momenta, or rotatory pressures. P.O. (250, 256.)

CHAPTER II.

OP THE MOTION OP A MATERIAL POINT.

§ 4. Of the law of inertia, uniform motion, and velo-

city. P. 14. (221.)

§ 5, 6. Investigation of the relation between force and

velocity, which in nature are proportional to each other.

Results of this law. P. 15.

§ 7. Equation of the motion of a body actuated by any

number offorces. P. 19. (264.)
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§ 8. Geiieral expression of the square of the velocity,

(264, Cor.) The body describes a curve in which the sum of

the products of the velocity into the elements of space for

the whole curve is a minimum, P. 21. (266.)

§ 9. Determination of the pressure of a moving point

on a surface or a curve. Centrifugalforce. P. 23. (272.)

§ 10. Motion of a gravitating point in a resisting me-

dium. Laiv of resistance requiredfor the description of a

particular curve. (273.) Case where there is no resist-

ance. P. 25. (274 . . .)

§11. Motion ofa body in a spherical surface. Time of

the oscillation. Very small oscillations isochronous. P. 28.

(280.)

§ 12. Investigation of the curve in which the isochronism

is perfect, in a resisting medium, with resistances propor-

tional to thefirst tv^o powers of the velocity. P. 31. (282)"

The order ofthe subsequent sections is preserved unaltered.



CHAPTER I.

[ OF MOTION, FORCE, AND PRESSURE.

Section I. Of undisturbed motion,

9^Yl. Axiom. Like causes produce like

effects, or, in similar circumstances, similar

consequences ensue.

Scholium 1, This axiom has always been essentially

concerned in every improvement of natural philosophy, but

it has been more and more employed, ever since the revi-

val of letters, under the name Induction. It is the most

general and the most important law of nature ; it is the

foundation of all analogical reasoning, and it is collected

from constant experience, by an indispensable and un-

avoidable propensity of the human mind.

Scholium 2. It does not appear that we can have any

other accurate conception of causation, or of the con-

nexion of a cause with its effect, than a strong impression

of the observation, from uniform experience, that the one

has constantly followed the other. We do not know the

intimate nature of the connexion by which gravity causes

a stone to fall, or how the string of a bow urges the arrow

forwards; nor is there any original absurdity in supposing

it possible, that the stone might have remained suspended

in the air, or that the bowstring might have passed through

the arrow as hght passes through glass. But it is obvioua
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that we oannot help concluding the stone's weight to be the

immediate and necessary cause of its fall, and that every

heavy body will fall unless supported; and the pressure of

the string to be the necessary cause of the arrow's motion,

and that if we shoot, the arrow will fly ; and if we hesitated

to make these conclusions, we should often pay dear for

our scepticism. This explanation is sufficient to show the

identity of the two expressions, that "like causes produce

like efifects," and that "in similar circumstances, similar

consequences ensue." And such is the ground of argument

from experience, the simplest principle of reasoning, after

pure mathematical truths ; which appear to be so far prior to

experience, as their contradiction always implies an absur-

dity repugnant to the imagination.

Scholium 3. In the application of induction, the

greatest caution and circumspection are necessary ; for it

is obvious that, before we can infer with certainty the com-

plete similarity of two contingent events, we must be per-

fectly well assured that we are acquainted with every cir-

cumstance which can have any relation to their causes.

The error of some of the ancient schools consisted princi-

pally in the want of sufficient precaution in this respect

;

for although Bacon is, with great justice, considered as the

author of the most correct method of induction, yet, ac-

cording to his own statement, it was chiefly the guarded

and gradual appHcation of the mode of argument, that he

laboured to introduce. He remarks, that the Aristotelians,

from a hasty observation of a few concurring facts, pro-

ceeded immediately to deduce universal principles of

science, and fundamental laws of nature, and then derived

from these, by their syllogisms, all the particular cases,

which ought to have been made intermediate steps in the

inquiry. Of such an error we may easily find a familiar
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instance. We observe, that, in general, heavy bodies fall to

the ground unless they are supported ; it was therefore con-
,

eluded that all heavy bodies tend downwards: and since

flame was most frequently seen to rise upwards, it was in-

ferred that flame was naturally and absolutely light. Had
sufficient precaution been employed in observing the eflects

of fluids on falling and on floating bodies, in examining the

relations of flame to the circumambient atmosphere, and

in ascertaining the specific gravity of the air at different

temperatures, it would readily have been discovered, that

the greater weight of the colder air was the cause of the

ascent of the flame ; flame being less heavy than common

air, but yet having no spontaneous tendency to ascend.

And accordingly the Epicureans, whose arguments, as

far as they related to matter and motion, were often more

accurate than those of their contemporaries, had corrected

this error ; for we find in the second book of Lucretius a

very just explanation of this phenomenon.

" See with what force yon river's crystal stream

Resists the weight of many a massy beam

;

To sink the wood the more we vainly toil,

The higher it rebounds with swift recoil. ^

Yet that the beam would of itself ascend

Will no man rashly venture to contend.

Thus too the flame possesses weight, though rare,

Nor mounts but when compelled by heavier air.*'

218. Definition. Motion is the change

of rectilinear distance between two points.

Scholium 1. Allowing the accuracy of this definition,

it appears that two points at least are necessary to consti-

tute motion ; that in all cases, when we are inquiring whe-

ther or no any body or point is in motion, we must recur

to some other point with which we can compare it, and that
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if a single atom existed alone in the universe, it could nei-

ther be said to be in motion nor at rest. This may seem

in some measure paradoxical, but it is the necessary con-

sequence of admitting the definition, and the paradox is

only owing to the difficulty of imagining the existence of a

single atom, unsurrounded by innumerable points of space

which we represent to ourselves as immoveable.

Scholium 2. It has been for want of a precise defini-

tion of the term motion, that many authors have fallen into

confusion with respect to absolute and relative motion.

For the definition of motion, as the change of rectilinear

distance between two points, appears to be the definition

of what is commonly called relative motion ; but, on a strict

examination, we shall find, that what we usually call abso-

lute motion is merely relative to some space, which we

imagine to be without motion, but which may very often be

so in imagination only. The space, which we call quiescent,

is in general that which is in the neighbourhood of the

earth's surface: yet we well know, from astronomical con-

siderations, that every point of the earth's surface is per-

petually in motion, and that the direction of its motion is

even continually varying : nor are there any material objects

accessible to our senses, which we can consider as abso-

lutely motionless, or even as completely motionless with

regard to each other, since the continual variation of tem-

perature, to which all bodies are liable, and the minute agi-

tations, arising from the motions of other bodies with which

they are connected, will always tend to produce some

imperceptible change of their distances.

Scholium 3. These minute changes are neglected in

the elementary operations of practical geometry : it must

not, however, be forgotten that they exist, and it is right

to make it one of the postulates, which are the basis af
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mathematical demonstration, "that the length of a straight

line be capable of being identified, whether by the elfect

of any object on the senses, or merely in imagination, so

that it may remain invariable" (76) : although this postulate

has more generally been tacitly understood than expressed.

Scholium 4. When, therefore, we assert that a body

is absolutely at rest, we only mean to express its relation to

some comparatively large space in which it is contained : for

that there exists a body, or even a point, absolutely at rest,

in as strict a sense as an absolutely straight line may be

conceived to exist, we cannot positively affirm; and if such

a quiescent body or point did exist, we have no criterion

by which it could be distinguished. Supposing a ship to

move at the rate of three miles in an hour, and a person

on board to walk or to be drawn towards the stern at the

same rate, he would be relatively in motion, with respect to

the ship, yet we might very properly consider him as abso-

lutely at rest : but he would, on a more extended view, be

at rest only in relation to the earth's surface ; for he would

still be revolving round the axis of the earth with that sur-

face, and with the whole earth round the sun: and with the

sun and the whole solar system he would perhaps be slowly

moving among the starry worlds which surround us. Now
with respect to any effects within the ship, all the subse-

quent relations to exterior objects are of no consequence

whatever, and the change of his rectilinear distance, from

the various parts of the ship, is all that needs to be consi-

dered in determining those effects. In the same manner,

if the ship appear, by comparison with the water only, to

be moving through it with the velocity of three miles an

hour, and the water be moving at the same time in a con-

trary direction at the same rate, in consequence of a tide

or current, the ship will be at rest with respect to the shore,
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but the mutual actions and relations of the ship and the

water will be the same, as if the water were actually at rest,

and the ship in motion. Laplace (§1. P. 3.) views this

subject in the more popular light, and employs much mathe-

matical reasoning", to deduce from it the principles, here laid

down as fundamental. (§ 4. P. 14. §. 5. P. 15.)

219. Definition. A space or surface,

of which all the points remain spontaneously

at equal distances from each other, is said to

be quiescent, or at rest within itself.

Scholium. The term " spontaneously" is introduced,

in order to exclude, from the definition of a quiescent

space, any surface, of which the points are only retained

at rest by means of a centripetal force, while they revolve

round a common centre ; for, with respect to such a re-

volving space or surface, the motions of any body will de-

viate from the laws which govern them in other cases.

220. Definition. When a point is con-

sidered as in motion with respect to a quies-

cent space, the right line, joining any two of

its proximate places, is called its direction,

and such a point is often simply denominated

a moving point.

Scholium. Supposing the point to remain continually

in one right line drawn in the quiescent space, that line is

always the line of its direction ; if it describes several right

lines, each line is the line of its direction as long as it

continues in it; but if its path becomes curved, we can no

longer consider it as perfectly coinciding at any time with

a right line, and we must recur to the letter of the defini-
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tion, by supposing a right line to be drawn through two

successive points in which it is found; and then if these

points be conceived to approach each other without limit,

we shall have the line of its direction. Now, such a line

is called in geometry a tangent, for it meets the curve, but

does not cut it, provided that the curvature be continued

without contrary flexure (126).

221. Theorem. A moving point never

quits the line of its direction without a new

disturbing cause.

A right line being the same with respect

to all sides, since it must remain wholly at

rest if it be supposed to turn round any two

of its points (60), there can be no imaginable

reason why the point should incline to one

side more than to another. LetAB be the direction of the

motion ofA in the plane ABC, and let CB and DB be equal

and perpendicular to AB, then the triangles ABC andABD
are equal (86), and A is similarly related to C and D. But

if A depart from AB, and be found in any point out of it,

as E, ED will be greater than EC (103), and A will be no

longer similarly related to C and D, contrarily to the ge-

neral law of induction (217).

Scholium. This argument appears to be sufficiently

satisfactory to give us ground for asserting, that the law

of motion, here laid down, may be considered as inde-

pendent of experimental proof. It was once proposed as

a prize question by the Academy of Sciences at Berlin, to

determine whether the laws of motion were necessary or

accidental; that is, whether they were to be considered as

mathematical or as physical truths. Maupertuis, then

president of the academy, endeavoured to deduce them
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from a metaphysical principle of the minimum of action^

which is of a very complicated and almost fanciful nature

;

and the intricacy of his theory tends only to envelope the

subject in unnecessary obscurity; while the fundamental

laws of motion appear to be easily demonstrable from the

simplest mathematical truths, granting only the homoge-

neity or similarity of matter with respect to motion, and

allowing the general axiom, that like causes produce like

effects. If, however, any person thinks differently, he is

at liberty to call these laws experimental axioms, collected

from a comparison of various phenomena : for we cannot

easil} reduce them to direct experiments, since we can

never remove from our apparatus the action of all disturb-

ing causes ; for either gravitation, or the contact of sur-

rounding bodies, will interfere with all the motions which

we can examine.

222. Definition. The times, in which

a point, moving without distm'bance, describes

equal parts of the Hne*of its direction, are

called equal times.

223. Theorem. The equality of times

being estimated by any one undisturbed mo-

tion, all other points, moving without disturb-

ance, will describe equal portions of their

lines of direction in equal times.

ACE BDE G ^^* ^ ^"^ ^ ^^ "'''^^"^

'
' '

' •
•

' in the same line, and while

A describes AC, let B describe BD ; then while A de-

scribes CE=:AC, B will describe DFziBD. For sup-

pose AC=2BD, and let AGz=2AB, then AB and BG
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have been equally decreased in one instance, and the rela-

tions remaining the same, they will still be equally de-

creased(217) : the relative motion ofA and B being equal

to that of B and G, and any absolute motion being no way

determinable, there can be no reason why the one should

be otherwise affected than the other ; therefore CE will be

twice DF : and a similar mode of reasoning may be ex-

tended to all other cases, where the proportion of the mo-

tions is less simple.

Scholium 1. Having established the permanency of

the rectilinear direction of undisturbed motion, we come

to consider its uniformity. Here the idea of time enters

into our subject; and we must have some measure of

equal times, which cannot be merely intellectual, and must

therefore be estimated by some changes in external ob-

jects. Of these changes, the simplest aud most convenient

is the apparent motion of the sun, or rather of the stars,

derived from the actual rotation of the earth on its axis,

which is not, indeed, an undisturbed rectilinear motion,

but which is equally applicable to every practical purpose:

and hence we obtain, by astronomical observations, the

well known measures of the duration of time, implied by

the terms day, hour, minute, and second.

Scholium 2. Now, the equality of times being thus

estimated from any one motion, all other bodies, moving

without disturbance, will describe equal successive parts

of their lines of direction in equal times. And this is the

second law of motion, which, with the former law, con-

stitutes Newton's first axiom or law of motion; ** that

every body perseveres in its state of rest or uniform rectili-

near motion, except so far as it is compelled by some force

to change it." This second law appears to be strictly

dcducible from the axioms and definitions which have been

F
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premised, and principally from the consideration of the

relative nature of motion, and the total deficiency of any

criterion of absolute motion : it is also confirmed by its

perfect agreement with all experimental observations, al-

though it is too simple to admit of an immediate proof.

For we can never placie any body in such circumstances, as

to be totally exempt from the operation of all accelerating

or retarding causes; and the deductions from such expe-

riments, as we can make, would require, in general, for

the accurate determination of the necessary corrections, a

previous assumption of the law which we wish to demon-

strate.

Scholium 3. When, indeed, we consider the motion

of a projectile, we have only to allow for the disturbing

force of gravitation, which so modifies the effect, that the

body deviates from a right line, but remains in the same

vertical plane; whence we may infer, that, in the absence

of the force of gravitation, the body would continue to

move in every other plane in which its motion began, as

well as in the vertical plane, since in that case all planes

would be indifferent to it ; it would, therefore, necessarily

remain in their common intersection, which could only be a

straight line : so that, by thus combining argument with

observation, we may obtain a confirmation of the law of

the rectilinear direction of undisturbed motion, founded in

great measure on direct experiment. The uniformity of

undisturbed motion, is, however, still less subjected to

immediate examination ; yet, from a consideration of the

nature of friction and resistance, combined with the laws

of gravitation, we may ultimately show the perfect coinci-

dence of the theory with experiment.

Scholium 4. The tendency of matter to persevere in

the state of rest, or of uniform rectilinear motion, is called
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its inertia, or sometimes, very improperly, its vis inertiae.

But the properties of matter, as such, belong to physical

rather than to mathematical science : and we are, at pre-

sent, considering the motions of a supposed inert point

only.

224. Theorem. If any number of points

move in parallel lines, describing equal spaces

in equal times, they are quiescent with respect

to each other ; and if all the points of a plane

move in this manner on another plane, either

plane will be in rectilinear motion with re-

spect to the other.

Let A, B, and C describe in a given A B^

time the equal parallel lines AD, BE, /\
CF, then AB=i:DE, EF=BC, and ^\\
DF=:AC (109), and the points are c p
mutually quiescent (218, 219). It is also obvious, that if

two points have equal and parallel motions, the whole of

the plane will also have a similar motion.

225. Definition* If a plane be in rec-

tilinear motion with respect to another plane,

in contact with it, and if, besides this general

motion of the plane, any point be supposed

to have a particular motion in it, this point

will have two motions with respect to the

other plane, one in common with its plane,

and the other peculiar to itself; and the joint

effect of these motions, with respect to the

F 2
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other plane, is called the result of the two

motions.

226. Theorem. The result of two mo-

tions, with respect to a quiescent space, is the

diagonal of the parallelogram of which the

two sides would be described by the separate

motions ; and any motion may be considered

as the result of any other motions thus com-

posing it.

Y XB C ^®t -^> ^' ^^^ ^ ^^ three quiescent

/^ points, and let Z, Y, and X be three

X~~l points in another plane which moves in

the direction AZ, or BY ; then the point

A has a rectilinear motion ZA with respect to the plane

ZYX. Now, while AZ is described by Z, let A have a

motion in its own plane equal to AB ; then it will have

two motions with respect to ZYX, by the joint effect of

which it will arrive at X in that plane ; and if the motions

are both equable, it may be shown, by the properties of

similar triangles, that it describes the diagonal ZX. But

it is of no consequence to the relative motion of A and

ZXY which, or whether either, be imagined to be abso-

lutely at rest : therefore, in general, the result of two mo-

tions, in a quiescent space, is the diagonal of the parallelo-

gram of which the sides would be described by the sepa-

rate motions : and the motion, thus produced, is precisely

the same as if it were derived from a simpler cause.

Scholium 1. The existence of two or more motions

at the same time, in the same body, is not at first compre-

hended without some difficulty. But it is, in fact, only a
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combination or separation of relations that is considered

;

in the same manner as by combining the relation of son to

father, and brother to brother, we obtain the relation of

nephew to uncle, so by combining the motion of a man

walking in a ship, with the motion of the ship, we deter-

mine the relative velocity of the man with respect to the

earth's surface.

Scholium 2. When an arm is made to sHde upon a

bar, and a thread, fixed to the bar, is made to pass, over a

pulley at the end of the arm next the bar, to a slider

which is moveable along the arm, the slider moves on the

arm with the same velocity as the arm on the bar ; but if

the thread, instead of being fixed to the slider, be passed

again over a pulley attached to it, and then brought back

to be fixed to the arm, the motion of the slider will be only

half tliat of the arm; and this will be true in whatever po-

sition the arm be fixed. Here we have two motions in the

slider, one in common with the arm, and the other pecu-

liar to itself, which may be either equal or unequal to the

first ; and by tracing a fine on a fixed plane, with a point

attached to' the slider, we may easily examine the joint

result of both the motions.

Scholium 3. The line described by the tracing point

of this apparatus will be precisely the same, whether it is

simply drawn along by the hand in the given direction, or

made to move on the arm with a velocity equal to that of

the arm, or when the arm is in a diff'erent position, with

only half that velocity. The line AB, for example, may

be either simply drawn in the y p JB

direction AB, or it may be

traced by the equal motions

AC and AD of the arm and its J^ q - £

slider, or by the unequal motions AE and AF.
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Scholium 4. There is some difficulty in imagining a

slower motion to contain, as it were, within itself, two more

rapid motions opposing each other: but, in fact, we have

only to suppose ourselves adding or subtracting mathe-

matical quantities, Bnd we must relinquish the prejudice,

derived from our own feelings, which associates the idea of

effort with that of motion. When we conceive a state of

rest as the result of equal and contrary motions, we use the

same mode of representation, as when we say, that a cipher

is the sum of two equal quantities with opposite signs
;

for instance, plus ten and minus ten make nothing.

Scholium 5. The law of motion, here established,

differs but little, in its enunciation, from the original words

of Aristotle, as they stand in his Mechanical Problems.

He says, that " if a moving body has two motions, bear-

ing a constant proportion to each other, it must necessarily

describe the diameter of a parallelogram, of which the

sides are in the ratio of the two motions." It is obvious,

that this proposition includes the consideration not only of

uniform motions, but also of motions which are similarly

accelerated or retarded: and we should scarcely have ex-

pected, that, from the time at which the subject began to

be so clearly understood, an interval of two thousand years

would have elapsed, before the law began to be applied to

the determination of the velocity of bodies actuated by de-

flecting forces, which Newton has so simply and elegantly

deduced from it.

Scholium 6. In the laws of motion, which are the

chief foundation of the Principia, their great author intro-

duces at once the consideration of forces ; and the first

corollary stands thus :
** a body describes the diagonal of

a parallelogram by two forces acting conjointly, in the same

time, in which it would describe its sides, by the same forces
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acting separately." It appears, however, to be more na-

tural and perspicuous to defer the consideration of force

until the simpler doctrine of motion has been separately

examined.

227. Theorem. Any equable motions,

represented by the sides of a triangle or poly-

gon, supposed to take place in the same

moveable point, in directions parallel to those

sides, and in the order of going round the

figure, destroy each other, and the point

remains at rest.

For two sides of the triangle, AB, BC, JB
are sides of the parallelogram ABCD,
therefore by the motions AB, BC, or AB,

AD, A would arrive at C, while by the mo- B
tion CA it would be brought back to A in the same time

;

and all the motions being equable, it will always remain

in A : and, in the same manner, the proof may be ex-

tended to a figure with any greater number of sides. The

truth of the proposition will also appear by considering

several successive planes as moving on each other, and the

point A as moving in the last : or we may imagine each

motion to take place in succession for an equal small in-

terval of time ; then the point would describe a small po-

lygon similar to the original one, and would be found, at

the end of the whole of the small intervals, in its original

situation.

Scholium. When the motions to be combined are

numerous and diversified, it is often convenient to resolve

each motion into three parts, reduced to the directions of

three given lines perpendicular to each other : and, in this
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mnnuer, the general result of any number of motions may

be obtained, by addition aild subtraction only. Thus, if a

bird ascended in an oblique direction, we might describe

its flight by estimating its progress northwards or south-

wards, eastwards or westwards, and at the same time up-

wards, as accurately as if we ascertained the immediate

bearing and angular elevation of its path, and its velocity

in the direction of its motion.

SECTION II. OF SIMPLE ACCELERATING FORCES.

228. Definition. Any immediate cause

of a change of motion is called a force.

Scholium 1. The word force ought to be very strictly

confined to a cause which produces motion in a body at

rest, or which increases, diminishes, or modifies it in a

body which was before in motion. Thus, the power of

gravitation, which causes a stone to fall to the ground, is

called a force ; but when the stone, after descending down

a hill, rolls along a horizontal plane, it is no longer im-

pelled by any force, and its relative motion continues un-

altered, until it is gradually destroyed by the retarding

force of friction. It was truly asserted by Descartes,

that the state of motion is equally natural with that of rest,

and that when a body is once in motion, it requires no

foreign power to sustain its velocity. Since, however, the

inertia of one body may easily become the cause of motion

in another which is impelled by it, the term force is not

uncommonly employed as almost synonymous with motion,

and hence has arisen the incorrect notion oHhe vis inertiae,

and of the force possessed by a moving body : but we must

be careful to recollect that this sense of the term force is

only so far correct, as it is applied to the power of causing
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motion in another body, and not to the motion of any od<

body considered separately.

Scholium 2. It is a necessary condition In the defi-

nition of force, that it be the cause of a change of motion

with respect to a quiescent space. For if the change were

only in the relative motion of two points, it might happen

without the operation of any force : thus, if a body be

moving without disturbance, its motion with respect to

another body, not in the line of its direction, will be per-

petually changed; and this change, considered alone, would

indicate the existence of a repulsive force: and, on the

other hand, two bodies may be subjected to the action of

an attractive force, while their distance remains unaltered,

in consequence of the centrifugal effect of a rotatory mo-

tion : the inertia here becoming a relative force, which

tends to increase the distance of the body from a point out

of the line of its direction, with an accelerated motion,

unless counteracted by an attractive force.

Scholium 3. The muscular exertion of an animal, the

unbending of a bow, and the impulsion produced by the

apparent contact of a moving body, are familiar instances

of the actions of forces. We must not imagine that the

idea of force is naturally connected with that of labour or

difficulty ; this association is only derived from habit, since

our voluntary actions are in general attended with a cer-

tain effort, leaving an impression almost inseparable from

that of the force which it calls into action. ^

Scholium 4. It is natural to inquire, in what imme-

diate manner any force acts, so as to produce motion ; for

instance, by what means the earth causes a stone to gravi-

tate towards it. In some cases, indeed, we are disposed

to imagine that we understand better the nature of the

action of a force, as, when a body in motion strikes ano-
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ther, we conceive that the impenetrability of matter is a

suflQcient cause for the communication of motion, since the

first body cannot continue its course without displacing the

second ; and it has been supposed, that if we could dis-

cover any similar impulse, which might be the cause of gra-

vitation, we should have a perfect idea of its operation.

But tlie fact is, that even in cases of apparent impulse, the

bodies impelling each other are not actually in contact

;

and if any analogy between gravitation and impulse be ever

estabUshed, it will not be by referring them both to the

.

impenetrability of matter, but to the intervention of some

common agent, which must probably be imponderable. It

was observed by Newton, that a considerable force was

necessary to bring two pieces of glass into a degree of

contact, which still was not quite perfect; and Robison

has estimated this force at a thousand pounds for every

square inch. These extremely minute intervals have been

ascertained by observations on the colours of the thin

plate of air included between the glasses ; and when an

image of these colours is exhibited by means of the solar

microscope, it is very easily shown that the glasses are

separated from each other, by the operation of this repul-

sive force, as soon as the pressure of the screws which

confine them is diminished; tho rings of colours, dependent

on their distance, contracting their dimensions accord-

ingly. Hence it is obvious, that whenever two pieces of

glass strike each other, without exerting a pressure equi-

valent to a thousand pounds for each square inch, they

may affect each other's motion without actually coming

into contact. It might perhaps be imagined, that this re-

pulsion depended on some particles of air adhering to the

glass ; but the experiment has been found to succeed

equally well in the vacuum of an air pump. We must.
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therefore, be contented to acknowledge our total igno-

rance of the intimate nature of forces of every kind ; and

we have, at present, only to examine the effect of forces,

considered with regard to their magnitude and direction,

without inquiring into their origin.

229. Defhstition. When the increase or

diminution of the velocity of a moving body

is uniform, its cause is called a uniform force;

the increments of space, which would be de-

scribed in any given time with the initial velo-

cities, being always equally increased or di-

minished.

Scholium 1. The word velocity appears to be suflfi-

ciently understood from common usage, although it is not

easy to give a correct definition of it. The velocity of a

body may be said to be the quantity or degree of its mo-

tion, independently of any consideration of its mass or

magnitude ; and it might always be measured by the space

described in a certain portion of time, for instance, a se-

cond, if there were no other motions than undisturbed or

uniform motions : but the velocity may vary very consi-

derably within the second, and we must, therefore, have

some other measure of it than the space actually described

in any finite interval of time. If, however, the times be

supposed infinitely short, the elements of space described

may be considered as the true measures of velocity.

These elements, though conceived to be smaller than any

assignable quantity, may yet be accurately compared with

each other; and the reason that they afibrd a true criterion

of the velocity is this, that the change produced in the

velocity, during an evanescent interval of time, must be
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absolutely inconsiderable in comparison with the whole

velocity ; so that the element of space becomes a true

measure of the temporary velocity, in the same manner as

any larger portion of space may be the measure of a uni-

form velocity.

Scholium 2. In this country it has been usual, at

least till very lately, to preserve the geometrical accuracy

introduced by the great inventor of the method effluxions,

and to call " any finite quantities, in the ratio of the velo-

cities of increase and decrease of two or more magni-

tudes," the fluxions of these magnitudes (46). Thus, if

we call the increments of x and y, x and J, we have, for

the fluxions, any magnitudes x and y, so assumed, that

X : y shall be equal to x : j' when these increments become

evanescent. On the continent, it has been more common

to write dx and dy for x aud y, considered as actually

evanescent. It has been observed by Euler, at the be-

ginning of his 1 ntegral Calculus, that the language of the

English is the more correct, but that the continental nota-

tion is the more convenient. His words are these

:

" Quas enim nos quantitates variabiles vocamus, eas An-

gli, nomine magis idoneo, quantitates fluentes vocant, et

earum incrementa infinite parva seu evanescentia fluxiones

nominant, ita ut fluxiones ipsis idem sint, quod nobis dif-

ferentialia. Haec diversitas loquendi ita jam usu inva-

luit, ut conciliatio vix unquam sit expectanda : equidem

Anglos in formulis loquendi lubenter imitarer, sed signa,

quibus nos utimur, illorum signis longe anteferenda viden-

tur." Art. 6. In fact, however, the English do not call

the evanescent increments fluxions, any more than a mile

is an evanescent quantity, when we speak of a velocity of a

mile an hour. There are certainly some cases in which
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the fluxiooal notation is inconvenient; thus, when we have

occasion to write d^xnSdx, it would be impossible to ex-

press this equation without deviating from that method ; we

might, indeed, write {^x)'z^^x, but we still introduce a

heterogeneous character. It is, however, a great inele-

gance, to say the least, not to distinguish a characteristic

from a multiplying quantity by a difference of type ; for dx

means, according to all analogy, the product of d and x :

and it is much more intelligible to write dx, as Lacroix

and many others have done, instead of dx, as it is generally

printed in the works of Laplace. It must always be un-

derstood, then, that da:, as well as x, denotes a finite quan-

tity proportional to an evanescent element : but when we

use otlier characteristics of variation, such as S or A, it

is not always necessary to limit their signification so pre-

cisely : and it will sometimes be convenient to employ the

mark d for an element of matter, considered as evanescent,

and AX for an evanescent increment of x, corresponding

to the fluxion dx.

Scholium 3. Now, a uniform force is a force that

uniformly increases the velocity of a moving body. For

example, if the velocities, at the beginning of any two

separate seconds, be such that the body would describe

one foot and ten feet in the respective seconds, and the

spaces actually described become two feet and eleven feet,

each being increased one foot, the accelerating force must

be denominated uniform : it must also be uniform, in the

still stricter sense of the definition, if the velocities, at the

end of the second, have been so increased, that the body

would describe two and eleven feet respectively in another

second, if they continued their motion unaltered.

Scholium 4. The power of gravitation, acting at or

near the earth's surface, may, without sensible error, be
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considered as a uniform force. Thus, if a body begins to

fall from a state of rest, it acquires in a single second a

velocity of 32^^ feet in a second ; and in two seconds a

velocity of 64^ feet : having described in the first second

16^ feet or 16-09, and in the second 32^+ 163^=48^.
The decrease of the force of gravitation, in proportion to

the square of the distances from the earth's centre, is

barely perceptible, at any heights within our reach, by the

nicest tests that we can employ. See 288.

230. Theorem. The velocity, produced

by any uniformly accelerating force, is pro-

portional to the magnitude of the force, and

the time of its operation, conjointly.

For, the time and the velocity both flowing equably, their

finite increments will be in a constant ratio (229, 47), and

the velocity being the measure of the force, the velocity

generated in a given time must also be proportional to the

force. It may also readily be shown, by the composition

of motion, that a double action must produce a double velo-

city : for when the equal sides of a parallelogram, repre-

senting two separate motions, approach to each other, and

at last coincide in direction, the diagonal of the parallelo-

gram, representing their joint effect, becomes equal to the

sum of the sides: and the action of two independent

forces must be truly represented by the two sides of the

parallelogram, which represent them separately, otherwise

they would not be independent, nor could their combination

be called a double force. If we call the accelerating force

a, the time t, and the velocity produced v, we shall have v

proportional to at, and — a constant quantity; or, if this

quantity be called unity, at-=zv.
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Scholium 1. The v of Laplace is sometimes em-

ployed as denotiDg the number of metres described in a

decimal second, or '864% which is also the number of my-

riometers described in a decimal hour, or the tenth of a

day (§ 4. P. 15.) : but it is often more convenient for com-

putation to make v the number of English feet described

in an ordinary second.

Scholium 2. The machine, invented by Mr. Atwood,

furnishes us with a very convenient mode -of making expe-

riments on accelerating forces. The velocity, produced by

the undiminished force of gravity, is much too great to be

conveniently submitted to experimental examination ; but

by means ofthis apparatus, we can diminish it in any degree

that is required. Two boxes, which are attached to a

thread passing over a pulley, may be filled with different

weights, which counterbalance each other, and constitute,

together with the pulley, an inert mass, which is put into mo-

tion by a small weight added to one of them. The time of

descent is measured by a second or half second pendulum,

the space described being ascertained by the place of a

moveable stage, against which the bottom of the descend-

ing box strikes : and when we wish to determine immedi-

ately the velocity acquired at any point, by measuring the

space uniformly described in a given time, the accelerating

force is removed, by means of a ring, which intercepts the

preponderating weight, and the box proceeds with a uniform

velocity, except so far as the friction of the machine retards

it. By changing the proportion of the preponderating

weight to the whole weight of the boxes, it is obvious that

we may change the velocity of the descent, and thus exhi-

bit the effects of forces of different magnitudes. Now,

that the velocity generated is proportional to the time of the

action of the force, or that the force of gravitation, at least
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when thus modified, is properly called a uniform accelerat-

ing force, may be shown by placing the moveable ring so

as to intercept the same bar successively at two different

points; thus the space uniformly described in a second, by

the box alone, is twice as great, when the force is with-

drawn after a descent of ten half seconds, as it is after a

descent of five. And if we chose to vary the weight of the

bar, we might show, in a similar manner, that the velocity

generated in a given time is proportional to the force

employed.

231. Theorem. The increment of space

described is as the increment of the time, and

as the velocity, conjointly.

This is evident from the definition of velocity (45) ; and

calling the space described x, and its increment x, we have

xTZLvt'y or Aa;zivAif ; if we make the unities of time and

space equivalent. This proposition is true of all incre-

ments, when the motion is uniform, but when variable, of

evanescent increments only,

232. Theorem. The space described,

by means of a uniformly accelerating force, is

as the square of the time of its action ; it is

also equal to half the space which would be

described in the same time with the final velo-

city ; and if the forces vary, the spaces are as

the forces, and the squares of the times, con-

jointly : or x:^^af.

Since the velocity v is expressed by at, the product of

the force and the time (280), and since xzzvt' (231), or
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substituting fluxions for increments, xzz vi, or(231) dj;'=vdf

and vd<=a^df, and the fluent x is equal to ^at^ (49) or ^vt.

Consequently x varies as ^^^ ^ud v being the velocity ac-

quired at the end of the time t, the space described by

it in tliat time would be vt, instead of ^vt, the space ac-

tually described with the accelerated motion.

Scholium. The law, discovered by Galileo, that the

space described is as the square of the time of descent,

and that it is also equal to half the space which would be

described in the same time with the final velocity, is oiie

of the most useful and interesting propositions in the

whole science of mechanics. Its truth is easily shown in

a popular manner, by comparing the time with the base,

and the velocity with the perpendicular of a right angled

triangle gradually increasing in length and height, the area

of which will represent the space described. We may also

observe, by means of Atwood's machine, that a quadruple

space is always described in a double time, by the con-

tinued operation of any constant accelerating force.

233, A. Theorem. The times are as the

square roots of the spaces directly, and of the

forces inversely ; they are also as the spaces

directl/, and the final velocities inversely.

2jc 2j7
Sincex^^at^ ,tzz >^— ; hxxi v :=z at, x—^vt, and fz:—

.

a V

233, B. Theorem. The final velocities

are also as the spaces directly, and the times

inversely.

That is, vzzat-— (233, A).

G
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234. Theorem. The forces are as the

spaces directly, and the squares of the times

inversely, beginning from the state of rest

:

they are also as the squares of the velocities

directly, and as the spaces inversely.

c,. 2x . vv
omce x=:^ at ^, azz— : and since v^zza^t^, a:=.—

^
tt att

~ Tx

Scholium. Thus it may be shown by experiment, that

if a body falls through one foot in a second by means of a

certain force, it will require a quadruple force to make it

fall through the same space in half a second ; and that, in

general, where the spaces are equal, the forces are as the

squares of the velocities.

235. Theorem. The fluxions of the

squares of the velocities are as the fluxions of

the spaces, and as the forces conjointly, whe-

ther the forces be uniform or variable.

In the evanescent time t'y the variation of the force

vanishes in comparison with the whole, so that it may be

considered as a uniform accelerating force, and v'—at^

(230); consequently dv=:«d^: but d^i=?;dif (231) ; there-

fore aditdiX—vditdiV, and adiX—vdiVzz^di (v^) (49).

Scholium. This proposition is one of the most im-

portant of the discoveries of Newton ; and it is of con-

sequence to bear in mind, that wherever the space and the

force remain the same, whether the force be uniform or

aof, the squares of any two velocities, with which a body
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enters the space, will receive equal additions during the

passage through it.

236, Theorem. In considering the ef-

fects of a retarding force, the body may be

supposed to be at rest in a moveable plane,

and the motion generated by the force may

be deducted from that of the plane.

In this case a being negative, we have vzzb-~at, and

dxzzvdt=ihdt—atdt, whence xzzbt—^at^, ht being the

space described by the initial velocity, and ^at- being

deducted from it by the effect of the retarding force.

Scholium. The degrees, by which an ascending

body loses its motion, are the same as those by which it is

again accelerated at the same points, when it has acquired

its greatest height and again descends. We may thus

calculate to what height a body will rise, when projected

upwards with a given velocity, and retarded by the force

of gravitation. Since the force of gravitation produces or

destroys a velocity of 32 feet in every second, an initial

velocity of 320 feet, for instance, will be destroyed in 10

seconds ; and in 10 seconds a body would fall through 100

times 16 feet, or 1600 feet, which is therefore the height,

to which a velocity of 320 feet in a second will carry a

body, moving without resistance in a vertical direction.

We may also obtain the same result by squaring one

eighth of the velocity ; thus one eighth of320 is 40, of which

the square is 1600, the height corresponding to the given

velocity ; and this velocity is sometimes called the velocity

due to the height, being found by multiplying its square

root by 8 ; thus V 1600 x 8 zz320.

G 2
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237. Theorem. If two forces act in the

same right Hne on a moveable body, varying

inversely as the square of its distance from two

given points, situated at the distance a from

each other, the magnitudes of the forces being

expressed by b and c at the distance d, the

square of the velocity generated in the passage

of the body, between any two points of which

the distances from the first centre are succes-

sive values of a\ is the difference of the cor-

responding values oi 2cP (-+ —r-).

fitl

The sum of the forces, acting on the body, is h —±c
XX

and since vdv="adj7" (235), rdt?—— dx ±
(a±j)2 XX

odd . , vv bdd cdd .

dar, and—-— , consequently vv zz
{a±xY 2 X a±x
/2hdd 2cdd\ , .^ ^ , ,2h

ip/ 1 ) : and it cizO, v:=zds/ —

.

V X a±.x^ X

Scholium. This proposition is not altogether entitled

to a place among the elementary doctrines of motion,

having arisen from an inquiry into the origin of the me-

teoric stones : but it serves as a very good illustration of

the utility of the 235th article. In the case of a body

projected from the moon towards the earth, c?iz20 900 000

feet, azzGOJ, 6=:fS2.2 feet^ the velocity produced in a

second at the earth's surface; and czn^b, nearly; then

taking jrnrf^a, at the moon's surface, and |^a, at the

point wi: 3re the force becomes neutral, we have (^^
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-i--\)x220and^^(-^+j^)x94, of which the diffe-

. rr7SShd(l r^^^.^j , , .

rence is , or .uyo4o bd, and its square root about
a

8070 feet. Hence, if the velocity of a projectile from the

moon exceed 8070 feet, it may pass the neutral point, and

descend to the earth, where its velocity will become more

than 36000 feet in a second.

SECTION III. OF PRESSURE AND EQUILIBRIUM.

238. "281.'' Definition. A pressure

is a force counteracted by another force, so

that no motion is produced.

Scholium. Thus we continually exert a pressure by

means of our weight, upon the ground on which we

stand, the seat on which we sit, and the bed on which we

sleep ; but at the instant when we are falling or leaping,

we neither exert nor experience a pressure on any part.

239. " 282.'' Definition. Equal and

proportionate pressures are such, as are pro-

duced by forces, which would generate equal

and proportionate motions in equal times.

240. " 283.'' Theorem. Two contrary-

pressures will balance each other, when the

motions, which the forces would separately

produce in contrary directions, are equal

;

and one pressure will counterbalance two

others, when it would produce a motion equal
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and contrary to the result of the motions, which

would be produced by the other forces.

If we conceive the forces to act alternately, during

equal evanescent intervals of time, then the one will at

each step destroy the preceding effect of the other, and

there will be no motion left : then if we suppose this action

to be doubled, the forces will become a continual pressure,

and the total effect will still be the state of rest.

241. " 284." Theorem. If a body re-

main at rest by means of three pressures, they

must be related in magnitude as the sides of a

triangle parallel to the directions.

This proposition is the immediate conse-

quence of the law of the composition of

motion (226, 240). Suppose the body A,

for example, to be suspended by the thread

AB, on the inclined plane AC, to which AD
is perpendicular, BD being the direction of

gravity. Then in order that the force BD may be de-

stroyed, it must be opposed by an equal force DB, and

if DB be composed of forces acting in the directions DA,

AB, the forces must be as those sides of the triangle, or

as the sides of the parallelogram of which DB is the

diagonal ; and the same is true of any other pressures.

Scholium 1. This extension of the laws of the com-

position of motion to that of pressure seems to be free

from any material objection. For since we measure forces

by the motions which they produce, the composition of

forces seems to be obviously included in the doctrine of

the composition of motions ; and when we combine these
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forces according to the laws of motion, there can be no

question that the resulting motion is truly determined in

all cases, whatever may be its magnitude, nor can any

reason be given why it should be otherwise, when this

motion is evanescent, and the force becomes a pressure.

Scholium 2. The proposition may be familiarly illus-

trated by a simple experiment ; we attach three weights

to as many threads, united in one point, and passing over

three pullies ; then by drawing any triangle, of which the

sides are in the directions of the threads, or in directions

parallel to them, we may always express the magnitude of

each weight by the length of the side of the triangle corres-

ponding to its thread.

Scholium 3. The laws of pressure have however

been deduced by some of the most celebrated mathema-

ticians, independently of those of motion, from the prin-

ciple of the equality of the effects of equal causes; and

such a demonstration may be found in an improved form,

in the article Dynamics of the First Supplement of the

Encyclopasdia Britannica, contributed to that publication

by the late Professor Robison; but its steps are still tedious

and intricate. It will however be necessary, in conformity

with the plan of this work, to insert here the demonstra-

tion of Laplace, which is sufficiently conclusive, though

less simple than conld perhaps be desired: and it will be

convenient to premise some lemmas, which are but very

slightly connected with the immediate subjects of discus-

sion. Every lemma is indeed an interruption of systematic

order, and is inadmissible in a completely methodical trea-

tise; but in following the steps of another author, this

interruption may sometimes become indispensable.
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242. Definition. A series of units, a

series of natural numbers, a series of their

sums, and a series formed of the sums of all

the numbers of any preceding series, are

called figurate numbers of the first, second,

and other higher orders respectively.

243. Lemma A. The figurate number,

of which the place is m, in the order n, is

pnnal in
M(M + l)(M+2).. (M + N-2)

equal to 172 . 3 . . (n-^
For, the two successive values of this expression, taken

^ 1 J r (M—1) M (M + 1) . . (M -fN—3)
for M—1 and for m, are — ~—\ ^ \—^^^rr1.2.3. .(N— 1)

, m(m + 1)(m + 2) ..(M-f-N-2) , ^. . ,.^.
and —^^

i
—;^—T> ;

—
^^iT —, and their difference

1.2.3..(N — I)

\ ^^^ .,, M(M + 1)..(M+N—3)_ M(M + 1)..(m+(N—1)—2)
'^^

^* L2..(N—1) 1.2..(N—2)
'

which is the Mth figurate number of the order N—1,

•according to the definition: and when Niz2, we obtain the

I . r-^4. c- 1 m(m + 1)..(m+n— 2)
natural series of ihtegers. bmcealso rr-^ '-

1.2.3...(M+N-2) w • u • .1, *= 1.2.3..(M-1).1.2..(N-1) '
'* * °^''°"^ *^^* '" ^""l ^

are equally concerned in the expression, and the number

which occupies the place m in the order N is the same as

the number N of the order m.

244. Lemma B. The binomial or rather

dinomial quantity {^+x) = 1 + nx+ n •-^ x^ +

N~l N-2 ,
,



OF PRESSURE AND EQUILIBRIUM. 89

By actual multiplication, we find

l-\-x

XX=i x^x^

xx:=. x + 2x~ +x^

1+ 3a: +3^2 4-^', and the coefficients are

(N)

1,1 each being obtained by adding together

1,2,

1

two contiguous coefficients of the pre-

1.3, 3, 1 ceding lines ; whence it follows, that each

1.4, 6, 4, 1 of the vertical columns must contain a

1,5,10,10,5,1 series of figurate numbers of an order

1,6,15,20,15,6,1 indicated by its distance from the begin-

ning, the place of the coefficients in the

order being lowered by one at each step, so that for any

horizontal line answering to the power N, we have I, T^g*

(N— 1)3, (N— 2)4 ... denoting the place of the figurate

number by the letters N, (N— 1). . , and the order by the

figures below. Now, the third coefficient, (n— 1)3, put-

ting 3 for " n", is ^^^

^

—-, and then substituting N—

I

for M, — : in the same manner the fourth coefficient

cix m(m + 1)(m+2) . (N— 2)(N— 1)N
(N-2)4, or ^

^^£^ -, becomes -^^ ^^—^;
and the subsequent terms may be shown in a similar man-

ner to follow the same law.

Scholium. This demonstration is only strictly appli-

cable to integral and positive powers, such as are very

properly denoted, in the article Fluents of the Supple-

ment of the Encyclopaedia Britannica, by small Roman
capitals : it may be extended without much difficulty to
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other cases : but for the present purpose, that of showing

the analogy to the laws of differences, the integral powers

are sufficient. See 278.

245. Lemma C. If Az^, a^w .. .be the suc-

cessive finite differences of the quantities

W, W , 1/ . . . , we shall have u :=:u-^nAu+ n*
1 2 n

—^r-A2M4-. . . , and A'^Mzzz^

—

nu +w. —^

—

u — ...

In the first place

Kit —7/ —7/ A^M ^lA^M,— A^M

'^''^"-''^"''^
A4z^=A3z.,-.A32/

Hence,

u^^u -\-Au

Mg^Mi+AWj =zm4-Am + A(m + Am) =u+ Au
-|-Am + A2m=:

tt3=W2+AM2=^ + 2^^ + ^^^ ( + ^^2) M+2Am+ A2m

w +3Am + 3A2m+ A3m
Now the steps of this operation are just the same as if

we multiplied each time by 1+A, though the symbol A" is

not exactly a power of A : but we may always ; make

Amj zz Au + A2 w when m^ isizw 4- Am,which is in itself suffici-

ently evident, and is also shown bythe equation A^uz^Au^^ —
Am whence Au^:=:Au-\-A^u. The process is thus obviously

similar to that of involution, and the law of the coefficients

must be the same (244.) This method of reasoning, ap-

plied to the eye only, has been much extended by La-

grange, Arbogast, and others.
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Again Auz=:u^—u=z

A'mA=A(A2m)=:Am2"~2^"i +^^

M3—3^2+3^1—

M

Here the operation of the characteristic A at each step

doubles the number of terms to be added together, the

coefficients being always formed, as in involution, by the

addition of two contiguous ones of the former step : con-

sequently the same law prevails as in the dinomial theorem.

246. Lemma D. If a constant finite dif-

ference of X be called h, and any other diffe-

rence h\ the difference of u^ corresponding to

h, being Aw, that which corresponds to h' will be

Since u^zzu-\- nAu+ 71.—ZLA 2 u-\- ... (245), ifwe suppose

a-^-nh-zix, x representing an absciss of which u is an ordi-

nate, and a the initial value; or, in other words, m being a

function of oc, and the difference Am corresponding to the

X'~-~(l
difference hzzAx, substituting for n its value —r*> ^^

1-111- ^—« A Z—a /x—a ^\A^u
.

shall have u^=u + _.A»+t^.(-^-l)_j3 + . . .

;
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and substituting li' for x—a, and t>!\i for u —m, A'w=:-—.

Scholium. This proposition, which was invented

by Newton, may be applied with great convenience

to some cases of interpolations, the constant diffe-

rence of time being ^, and the variations of any other

quantities depending on it being Au and A^w. For

this purpose, if we make the fraction -y-^.m, the theo-

rem will become A'M=mAM—m. —-—A^m+ ^w.—~ -—
-^ .4

A^M— . ..; and these three terms will be abundantly suflS-

cient for almost all cases that can occur in practice.

247. Lemma E. Supposing the quantity

X to vary gradually and uniformly, and h to

be any finite difference of x^ the corres-

ponding finite difference ofanother quantity w,

depending on it, will be aw'= A. ^ + j^ . -jj^ +

Y^Q-g-i + . . . 5 w' being the initial value of the

quantity u.

If we suppose the constant finite difference h of the

preceding proposition to become evanescent, we shall have

Am dw ,._^ A2m d^M
—=-p (46), -J-=-7^,

and the equation will become

jMuzzK t- + -riT'^^«^ + . . ., since h'—h, //—2A may be qon-
dx 1 .2

sidered as simply equal to h\ when h vanishes : and we
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may write A and h for A' and //, in tlie same sense. The

initial value of u has sometimes been distinguished by a

capital letter (Phil. Trans. 1819); Mr. Wronsky marks it

by a point, u, at least when u is supposed to vanish ; but

we must not altogether forget that this is the Newtonian cha-

racter for a fluxion ; the point, if it were thought neces-

sary, might be written under the letter, m, or a prosodial

mark might be employed instead of it, as m, or rather m,

which would partly explain itself; as indeed u may be said

to do.

Corollary 1. If A be an arc zzs and u its

.• ' A , dtt' ^ d2i^'
sine, makinsTMzzO, we have -r- = cos szz\-. -—

=

° d* (IS-

—sm «=U; -7---ZI —1..., whence sin 5=5— rr-rs*

+

2..5

Corollary 2. In the same manner cos 5=1 —

1:2^0""* •

Corollary 3. If M=:a^ since -r-=a^hk (51),
yxX

d^M
T-ji=a%l2a, ...; putting x'zuO, and a^izl, we have

x^ x^
a'zzl+hla.x + hl^a. ---4.hl3a.-r--+ ...

V.iZ I..0

^ . ,p , „ ^ dw' 1 d^w'
Corollary 4. If u—\x\(a-^x\ t-=-, -—= —

^ ^' d:c a' d:t2

1 d^u 2 ,^. ^ ^, J? :r2 <i;3

^'d^=a----' ^""^^^ + ^)=^^^ +~2^ +S^—
x^ x^
2"^ 3

^2 /pS'

Hence hi (l-^x)zzx'- ^+ —— . . , ; and hl(l—a:)=i—jr-

-J— -g—-...; consequently hlr-—=2 {xi-^ -\"-r-. . ,);
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1^^ 2 1
andif^j zzz, x=';i—r; wbeDce the hyperbolical laga-

rithm of any number z may be readily found.

Scholium 1. Though the Taylorian theorem may be

called a universal solvent of all analytical difficulties, yet

considerable judgment is required, as with other universal

remedies, for its proper application ; and accident, perhaps,

rather than talent, will often point out a device which will

obtain from it unexpected results. There are however two

general observations, respecting the employment of this

theorem, which it will be proper to bear in mind. The first

is, that where several variable quantities are concerned in a

problem, it will be right to consider which of them is the

most capable of affording a converging expression for the

others b} a series of its powers ; thus, in the case of atmos-

pherical refraction, the change of density ofthe medium may

be easily obtained in terms of the refraction, supposed to be

given, while the series for expressing the refraction in

terms of the density is of little or no use ; although the

celebrated author of the theorem imagined, that he had

sufficiently solved the problem of refraction, by determin-

ing a few of its first coefficients. The second observation

is, that the employment of the theorem frequently requires

a beginning to be made with a series obtained by the

method of indeterminate coefficients ; and that it may then

be applied with advantage to the completion of the com-

putation, when the series thus found loses its convergency :

but in this case, we must not attempt to continue the

series from the differences of its terms, since its con-

vergence would be little affected by this operation, but we

must revert to the original equation, which furnished the

series by a different method. Taking for an example the
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equation fyxdx=sx=x. ^^(^i^^^rdy^)'
Pitting s=ai+

bx> +cx^+... and f=-J--^^=sa +is« + . . .), and

substituting for the powers of s, we obtain a value of y

which affords that of fi/xdx, and by comparing its terms

with those of the value of sjc, we determine the successive

coefficients. (Suppl, Enc. Brit. Art. Cohesion). But the

series is often inconvenient for want of convergence: we

may therefore supply its defects by means of the Tayloriaa

theorem, taking the successive fluxions of s at the point

of the curve where we find it necessary to abandon

the series: thus i/j:d.v z:zsdx-\-j:ds, y^- +7-, j-^y »'

.ds . ds sdx ._, ^ ^ dd* s y 2s
d-r-=dy + or, ifl—s2=m2 :z: ^ + —

,

dx ^ X XX dx" u X XX

, , , .
sds . du ss su d^s

and du hemg- zz , and ^— =: — ^, -— n:^ u dx ux u dx^

y 2s s^ s"-y % __ ^ f i — ^^^

U ux U^X 2/3 "^XX X^' ' M "" ' dx^

y 2t t^ t^y Sy 6s ^—' +—^+-^ r; that IS, since 1 + ^2 —
U X X U XX x^ ^

1 y 2t t^ ^ 6s J .u .. 1 n .

~r-, -^- '•,+ 77 r> ^^d the fourth fluxion
U* U^ X X XX x^

may be found in a similar manner, if its value be required :

but the first three will be fully sufficient, provided that the

curve be divided into small parts, even though they may be

much larger than those which Laplace has employed in the

Connaissance des Terns for 1810: and this method will

probably be found at least as convenient as the much more

elaborate process ofMr. Ivory. (Suppl. Enc. Br. IV). We
may take, for another example of a difficulty precisely simi-
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lar, the equation —^=:ryxHx,^=dz, (Phil. Tr. 1819)
y ^^ XX

the series, which it affords, losing its convergence when x

becomes large: herewefind:— =w;, putting pyx^dx—wx^'.

dd2;_dw_^^ 2fijx^dx 2w d^z^dy _2dw 2w _
xdx XX

y Aw 2io__Qw r "Z \
. , ^i d^z—wy—2-^-\ +—=—— (w;H ) y; and lastly —— ==

X XX XX XX ^ X I ^ '' dj?*

4?/ \2w t 4 \

Scholium 2. An important inversion of the Taylorian

theorem will be found at the end of this Book.

248. Lemma F. Whenever one quantity

is dependent on another, their evanescent in-

crements are ultimately in a constant propor-

tion to each other.

It is not sufficient to observe that, if yz=.ax -^-hx^ +cx**

-\-dx'P-\- ... the fluxion dy \^-=.dx{a-\-mhx^^~^-\-ncx^-'^-\-

pdxT^-^ + . . .) the quantity multiplying dx being constant

with regard to any small changes of the value of x and y

;

but it must also be shown, that the evanescent increment of

any quantity being supposed to be increased or diminished

in any given ratio, while it still remains evanescent, that

of another quantity depending on it will be increased or

diminished in the same ratio ; and this is not demonstrable

from the properties of the fluxions, strictly so called ; but

it may be understood by observing that, whatever be the

form of the curve representing y by its ordinates, while

the absciss is x, a very small portion of it may always be

considered as approaching infinitely near to a straight line.
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and the increment of the ordinate will be, for an infinitely

small space, proportional to that of the absciss, whether it

be doubled or quadrupled, or in any way subdivided. The

truth of the proposition is however shown more generally

and conclusively by means of the invaluable theorem of

Taylor, demonstrated in Lemma E, for the increment Am'

of the ordinate, beginning from u, is to the increment h of

the absciss in the constant ratio of -p to 1, as long as the

increment h remains so small, that its square and its higher

powers may be supposed to vanish in comparison with

itself.

Scholium. It is however necessary to except the

case in which the first fluxion of one of the quantities

compared becomes =0. (See 249, Sch. 2). ]

249- Theorem 240, of the Composition

of Forces, demonstrated in Laplace's man-

ner.

Case 1. The forces x and

y, acting at right angles to

each other, will produce a

joint result z, of which the

magnitude is expressed by the

diagonal of the rectangle xy.

For we may obviously suppose

X to be composed of two forces, x^ and /', also at right

angles to each other, and in the proportion of x to y, since

the same law must apply to forces similarly related, what-

ever their magnitude may be ; and the result x must be

derived from of and x^^ in the same manner as z from x

X 11

and y; consequently we have c/iz-jrand x^zz^x. Now

JC
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if y be in the direction of z, a'' must be perpendicular to

it; and supposing?/ to be similarly composed oi y^ and y,
y' being in the direction of z, and y^^ perpendicular to it;

x^^ must be equal and contrary to y^^ ; and x' and y^ toge-

?/ X
ther must be equal to z : but y'-=r y, and y^'-zz-y : so that

X v -

x^+ y^zz-x + '-y:=:z, and x^ +y^'=:z^ ; consequently z is
z z

equal to the diagonal of the rectangle, the sides of which

are x and y.

It must however be shown that z coincides with this

diagonal in position as well as in magnitude. For

this purpose we must consider one of the forces y as in-

creasing from nothing to its actual magnitude, and we

must trace the effects of its combination with x through

the intermediate steps. Now if an elementary force 8y

be combined with a finite force Xy the variation of the

angular direction of the result, which may be called ^d, will

be inversely as x and directly as some constant multiple or

submultiple of ^y, since the evanescent increments of two

quantities, related to each other, are initially in a constant

ratio, (248), so that the cbord of the angle Sfl may be called

k^y, and the angle itself —^: the elementary chord k^y

obviously depending on x and on the variation of the angle

x^d
Sd, in such a manner, that 3y may be expressed by —-p

and ^9 by —^ It is indeed sufficiently obvious that the

chord can in this case be no other than Sy itself, since a

force in the direction of the radius could scarcely influence

another in the direction of the circumference, but Laplace

do«8 not think it right to take this for granted without
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proof. We have therefore initially ^Q— —^. In any other

situation of the result z, we must suppose the clement Sy

to be resolved into two portions, one in the direction of z,

which only affects its magnitude, the other perpendicular

to it, which determines the increment of the angle ^6 from

z, in the same manner as Sy determined it in the first in-

stance from X, Now the por-

tion of the force Sy perpen-

dicular to 2: is - dy: conse-

quently S^zz ^
; or, since x

zz

is here considered as invariable, or =1, ^9——^. But
zz

the fluxion of the angle <p, of which the tangent is y, is

dy—~— , as is readily understood from considering the rela-

tive situation of the increments ; consequently, since z^ has

been shown to be equal to jr^^^s JLzn -^-l—— ^ anff^ ^ z" ^-\-yy

tang y, and di= k ang tang y-\-c. But since 6—0 when

yziO, c vanishes, and 6:=^ ang tangy.* and when y is

infinite, d=z90<^, since z coincides with y, consequently k

must be iz I, and Q— ang tang y. So that z must coincide

with the diagonal of the rectangle in position as well as in

magnitude.

Scholium 1. Laplace has supposed both the forces

X and y to vary together: but this is evidently an unneces-

sary complication.

Scholium 2. The principle of the proportional

variation of evanescent increments must not be applied

without some caution, for in the present investigation, if it

H t
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had been required to express the relation of ^y to ix

while y remained evanescent, the proposition would have

failed, since in this case ^x is initially ziO, and varies at

first as the square of 5y, the first term of the Taylorian

theorem, on which the reasoning is founded, here vanish-

ing altogether : but when the application is clearly under-

stood, the argument is readily admitted almost as an

axiom.

Case 2. When the forces concerned are not at right

angles to each other, they may both be referred to ortho-

gonal coordinates, and if their projections in any three

such directions be «, b, and c, these lines will represent

the respective portions of the force V {a^ +62 +02): and

if the second force be represented by similar ordinates

a't h'f and c', the forces may be combined by adding toge-

ther their constituent portions, as reduced to the same

directions, giving together a-\-a\ h-\- &', and c + c\ which

may again be combined into a single force ; and this force

z will always be represented by the diagonal of the paral-

lelogram, formed by lines representing the two former, x
and y : and in the same manner

y^^^^^^^^"^ b ' ^"y greater number of forces

^r^::::^^^^^..-.... \ may be combined, by reducing

^'yjy^
\ 5 them to three orthogonal direc-

j^;_,,J±., i
tions, and by adding together

^ ^
their respective results.

250. Theorem. When several forces act

on the same moving point, if we suppose the

place of the point to be changed in any

manner whatever to a minute distance, the

product of the joint force into this distance
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will be equal to the sum of the products of

each separate force into the respective dis-

tances or variations in the lines of their

directions.

Or, V^u=lShi (a);

F being the joint force, 3m the variation of the distance

in its direction, and ISh the sum of the quantities Sh
obtained by multiplying each force S by the variation of

the line of its direction h» §. 2. P. 7.

Let s be the distance of the point M from the origin of

one of the forces S, and let the position of 31 be deter-

mined by the three coordinates a:, y, and z, and that of the

origin of the force by a, b, and c ; we have then 5= V

|(.r—a)2+(y-—^>)2 4.(z_c)2 |, and the portions of S

acting in the directions of Xy y, and z will be S, ,

S.- , and S, respectively: and it is obvious that,
s s

if s be made to vary by the altera-

tion of X alone, h will be to ^x as

h x—a . f

^

X—a to 5, and -^7-= . Ac-
ox s

cording to the mode of notation commonly adopted, the

coefficient of this partial variation is compendiously ex-

pressed by the notation ^— , though it would be more cor-

rect to write it y, or even j-, in order that the same

symbol might not be employed for a partial and a total

variation : and it is easily found, by taking the fluxion of #,

.7: - or JJT
•'"v^-'''^

-* .-:::::^
>'^'^u

^..tfs:^^^^^'^
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Q S OS X CL

that -T— or-TT-zi . If there be a second force iS',
QiX ox s

and s' be the distance of M from any fixed point in its

direction, we have in a similar manner S'. r-' for the por-

tion of this force acting in the direction of x ; and employ-

ing the characteristic 2 for the sum of all the forces thus

rs
determined, we have X S. j- for the whole force in the

direction of x. Now if V be the result of all the forces

S, S', S^\ , . . thus combined, and u the distance of any

ru
point in its direction from M, we have F. -j- for the por-

tion of this force, which acts in the direction of x, and

rs
which must be equal to 2 S. y, by the supposition : and

by comparing, in the same manner, the forces in the direc-

^u ys ^u
lions V and z, we obtain F. -.r- = X S. ,r— , and F. -r-^

at/ dy az

zz 2 *S^. -77- ; and then, adding these partial variations, we
oz

obtain V^uzzXS.h, an equation which may be said to con-

tain the three formeB[W)ecause, since the variations are

perfectly arbitrary, we may make any two of them vanish,

and the third will remain alone on both sides of the

equation.

251. Corollary 1. When the point re-

mains in equiUbrium, the sum of the products

of each force, multipHed by the elementary-

variation of its distance, is equal to nothing.

Or XS.^zzO ; since F=0. (5)
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252. Corollary 2. For the equilibrium

of a point resting on a given surface, we may
either comprehend the reaction of the surface

among the forces S, or, with greater conve-

nience, call the direction of the reaction r, and

the force E, and we shall have i,S^s+Rdr=0.

ic)

253. Corollary 3. For a canal, or a

curved line, which may be considered as a

combination of two curved surfaces, the re-

action of the second surface being called R\
and the perpendicular to it r', we have 7:s^s+

mr + R^r'-O. {d)

Whatever the direction of the canal may be, its resist-

ance may be conceiv'ed to be the result of the reactions R
and R' of the two surfaces which determine its form, since

the resistance being perpendicular to the curve, it must be

in the same plane with the forces, which are perpendicular

to the surfaces, of which it is the intersection.

254. Scholium 1. If we^fcppose the arbitrary varia-

tions S.r, hj, Sz, to take place in the direction of the surface

to which the body is confined, we shall have ^r—O, and the

equation l.S^s:=.0 will still be true: but the variations of*

must then be taken so as to be limited to the given surface

by means of its equations, and they cannot be all arbitrary.

In the same manner we may make Sr and §/ both vanish

"when the motion is confined to a canal or a single curve,

but in that case any one of the variations of s will deter-

mine the other two. It is, however, more convenient to
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retain the variations 3r fnd Sr\ and to s'lbsti'U^^e for them

their values derived from the nature of the surface, since

we are thus en bled to determine the pressure.

Scholium 2. Now, if a, b, and c be the coordinates

of the origin of the perpendicular r, for the part of the sur-

face ia question, without any regard to this origin remain-

ing as a fixed point, we have the equation r^zz{x—a)^ +
(j,—&)2 +(z

—

cy, supposing only that a, 6, and c remain

constant for an elementary portion of the surface, as they

must do in all cases : we have, then, for Bx, 2rSVn2(a:—a)
o, , SV x—a J . ,, ^V__i/—6 J
bx, and T^= , and m the same manner — =^^ ,and

hx r 6y r

____;andsmce(-_) +{t-) +(__)»= l.we

have consequently (^) = + (g!)
» + (_'') == 1

.

[Scholium 3. The substance of these scholia is ex-

pressed by the author in a form somewhat different; and in

order that no injustice may be done to the symmetry of his

system, it will be proper to insert his reasoning in its ori-

ginal form, with some explanatory remarks. " Let w=0
be the equation of the surface, then the two equations 8r

=0 and SmuiO will both be true together, which implies

that hr may be :=:N^u, j>r being a function of x, y, and z.

In order to determine this function, the coordinates of the

origin of r may be called a, h, and c, we shall then have

r-zz^/\{x—aY -\-{y—h)- -^{z—c)^ >, whence we obtain

+ C^Y-\-{^y\-\', so that if we make 7.zzR : ^/
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U^y^^^y + ^^y J the term Rdr of the equation

(c) (252) will become a.^w, and tiie equation will become

Oz=:XS^s+ >^.du, in which the coefficients of the variations

^x, Sij, ^z must be made to vanish separately ; so that it

affords three separate equations, which, however, are only

equivalent to two, since they contain the indeterminate

quantity a." Now, supposing the equation of the surface

u:=:0 to be r^—x^.—y^—z^zzO, as in the sphere, the na-

tural sense of the symbol Sw is 2r^r—2x^x—2y^j/
—2zdz,

which must be =0: but it must here be understood as rela-

ting only to the variations of ar, y, and z, exclusively ofr, that

is, Sm= -— Sj7+ -k- ^y+ TT-S^- The subject may be further
ha; by hz

illustrated by an extract from the Mecanique Analytique of

Lagrange, Sect..ii. n. 7, 8.

" Supposing, as is always allowable, the force P to

tend to a fixed centre at the distance j9, we havejpzzv"

\ (x—a) 2 + (y
—b) 2 + (2—c) ^ > , and pdpz=:(x—a) dx+

(y~^)dy4-(2—c)dz. Now, if ^ be perpendicular to a

given surface, its variation with respect to that surface will

vanish, and we have dpzzO: the surface being spherical if

a, 6, and c, are constant, but ofany other form when they are

considered as variable. If now the force P be in general

perpendicular to a surface represented by the equation adx

+ i3dy+ 7ds=0, in order to make it coincide with the equa-

tion (x—a)dx-\-(2/—6)dy + (s—c)d2=:0, which results from

the supposition dpzuO, we must make —= , and —

=

7 z—c y

^— , whence a:—a=:-(s—c),andy—6=:-(2—c), and sub-
Z—

C

y 7

stituting these v^ues in the value of d^, it becomes dp:=.
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aix + $dy + ydz„ ^ . , v, , , is. , / s.

J
(f).+ (!).+] } (,_c)^ and ?=^= «

. 5:if =

—

;

. ; and w—&,and z—c afford, in a similar man-

ner, the terms /3dy and ydz.] " We obtain, therefore, the

value of dj9, whatever may be the form of the equation of

the surface, from the equation dj?=:dM : V < (7-)^ + (
J~)^

4-^_V V
, calling adjT + ^dy+ ydzr: dtt, which must be ad-

missible, since the differential equation of a surface must

be a complete fluxion: and employing the usual mode of

notation for the partial fluxions, in which -r-==«,— =:^,and^ ax dy

—— y\ and Pdp, the eiBcacy of the force P, will be ex-
dz

pressedbyPd«:v{©^ +
(J-p^

+ (i:)^}," the .lu

of the Mecanique Celeste.]

[255. Definition. The rotatory pressure

of a given force, with respect to any axis, is

the product of its magnitude into the distance

of its Une of direction from that axis.]

256. Theorem. The rotatory pressure of

the result of any number of forces is equal to

the sum of the rotatory pressures of the same

forces taken separately, with respect to the

same axis.
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The variations ^x, hj, ^z being considered as arbitrary

and independent, we may substitute, in the equation Vdu

zulS^s, for the coordinates Xy y, and z, three other quan-

tities depending on them : and then mai^e the coefficients

of the variations of these quantities equal to nothing. Thus

ifwe take
f , the radius drawn

from the origin of the co-

ordinates to the projection of

the point M on the plane of

X and y, and let 'zsr be the

angle formed by f with the

direction of x, we shall have

jTiTf cos 'sr, and 2/=f sin 'nr : and we may proceed to con-

sider u, and the values of *, as depending on
f,

'zsr, and z,

5s' 5s*

and take the variation V ^r~ 2*^^"* W [This supposition
o'sr o'er

is equivalent to taking the variation of the place ofM by

making it move in a plane parallel to that of x and y, while

it remains at an equal distance from the origin of the co-

ordinates, the element of its motion, or its variation, being

f
8'za-,] and the force V, so reduced to this direction, becomes

obviously V -^r- (250). Again, if V' be the portion of V,

"which acts in the plane of jr and y, and phe a perpendicu-

lar falling on its direction from the axis perpendicular to

X and y, passing through the origin of the coordinates, the

portion of F', which acts in the direction of the element

fS'Zflr, will be ^ F, consequently - Y'zzV -^y andp V'=z

5s'

1^-^. It follows, therefore, from the definition of rota-

tory pressure (254^ that F -r— is the rotatory pressure of
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the result of all the forces combined, which is equal to 2iS

^»

r;— , the sum of the rotatory pressures of the separate forces,

with respect to an axis parallel to z, and perpendicular to

the plane of x and y ; and this axis may be situated in any

imaginable direction with respect to the forces concerned,

the proposition holding good in all cases.



CHAPTER II.

OF DEFLECTIVE FORCES.

257. Definition. " 238.'' Any force,

tending to alter the direction of the motion

of a moving body or point, is called a deflec-

tive force.

Scholium. This definition includes not only accelera-

ting forces, which, when 'lirected to a point out of the line

of the body's motion, are called central forces, but also

the reaction of surfaces or threads, which limit the motion

to particular surfaces, and are subject to the same laws,

though they are only accelerative in a negative sense, as

retarding rather than producing motion : but this distinc*

tion is of no consequence, nor could it in all cases be

correctly established. It will serve as a useful introduc-

tion to the more general and analytical discussion of this

subject in Laplace's manner, to premise a simple geome-

trical illustration of some of the properties of central

forces, though they might be deduced as corollaries from

the formulas of the Mecanique Celeste.

258. Theorem. " 239." The force, by

which a body is deflected into any curve, is

directly as the square of the velocity, and

inversely as that chord of the circle of equal
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curvature, which is in the direction of the

force; and the velocity in the curve is equal

to that which would be generated by the same

force, during the description of one fourth of

the chord by its uniform action.

For the force is as the space described by

its action, beginning from a state of rest, or

as the evanescent sagitta through which the

body is drawn from the tangent of the curve

in a given instant of time : but the portion

AB of the tangent spontaneously described

in a given instant is as the velocity, and BC the sagitta isz::

ABq , . , ABq , . ,
„ ,,

, or ultimately >, that is, as the square oi the

velocity directly, and inversely as the chord of curvature

of the arc AC.

Now the velocity generated during the description of

BC is expressed by 2BC, since the force may be consi-

dered for an instant as constant, and the final velocity is

measured by twice the space actually described (232) : the

velocity generated is therefore to the orbital velocity as

2BC to AB, or as2AB to BD, or as AB to halfBD : and

if the time were increased in the ratio of AB to half BD,

the velocity generated by the force would be equal to the

orbital velocity, but in this time half BD would be de-

scribed by the velocity in the orbit, and half as much,

or one fourth of BD, by a uniformly accelerated velocity

(232).

259. Corollary 1. "240/' AVhenabody

describes a circle by means of a force di-



OF DEFLECTIVE FORCES. Ill

reeled to its centre, the velocity is every-

where equal to that which it would acquire in

falling, by the action of the same force, sup-

posed to be uniform, through the length of

half the radius : and the force is as the square

of the velocity directly, and as the radius

inversely.

Scholium. By means of this proposition we may

easily calculate the velocity, with which a sling of a given

length must revolve, in order to retain a stone in its plac€

in all positions ; supposing the motion to be in a vertical

plane, it is obvious that the stone will have a tendency to

fall when it is at the uppermost point of the orbit, unless

the centrifugal force be at least equal to the force of

gravity. Thus if the length of the sling be two feet, we

must find the velocity acquired by a heavy body in falling

through a height of one foot, which will be eight feet in

a second, since 8V I= 8; and this, at least, must be its

velocity at the highest point, in order that the string may

remain stretched throughout its revolution. With this

velocity it would perform each revolution in about a second

and a half; but its motion will be greatly accelerated

during its descent by the gravitation of the stone.

260. Corollary 2. " 241.'' In equal

circles the forces are as the squares of the

times inversely.

For the velocities are inversely as the times.

Scholium. It may easily be shown, by the apparatus

called a whirling table, that when two sliding stages arc
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equally loaded, one of them, which is made to revolve

with twice the velocity of the other, will raise four equal

weights at the same instant that the other raises a single

one, the velocities being gradually and slowly increased, by

turning the handle more and more rapidly, till the stages

fly off.

261. Corollary 3. "242" Ifthe times

are equal, the velocities being as the radii,

the forces are also as the radii ; and in general,

the forces are as the distances 'directly, and as

the squares of the times inversely : and the

squares of the times are directly as the dis-

tances, and inversely as the forces.

The forces are as the distances directly, and as the

squares of the times inversely, because the velocities are

as the distances directly, and as the times inversely, and

their squares are as the squares of the distances divided

by those of the times, and dividing these quantities by the

distances (259) we have the distances divided by the

squares of the times, whence the other part of the pro-

position follows.

Scholium. Thus if one of the stages of the whirling

table be placed at twice the distance of the other, it will

raise twice as great a weight, when the revolutions are

performed in the same time : and again, the same weight

revolving in a double time, at the same distance, will have

its effect reduced to one fourth, but at a double distance

the effect will again be increased to half of its original

magnitude, while the time remains doubled.
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262. Corollary 4. " 243/' If the

forces are inversely as the squares of the

distances, the squares of the times are as the

cubes of the distances.

For the squares of the times are as the distances di-

rectly, and as the forces inversely (261) : that is, in this

case, as the distances, and as the squares of the distances,

or as the cubes of the distances.

263. Theorem. " 244.'' The right line,

joining a revolving body and its centre of

attraction, always describes equal areas in

equal times, and the velocity oF the body is

inversely as the perpendicular drawn from the

centre to the tangent.

Let AB be a tangent to any jj

curve, in which a body is retained

by an attractive force directed to

C, and let AB lepresent its velo-

city at A, or the space which C

would be described in an instant of time without distur-

bance, and AD the space which would be described by

the action of C in the same time ; then completing the

parallelogram, AE will be the joint result (226); again,

take EFriAE, and EF will now represent its spontaneous

motion in another equal instant of time, and by the action

of C it will again describe the diagonal of a parallelogram

EG; but the triangles ABC, AEC ; AEC, ECF; ECF,
ECG, being between the same parallels, are equal (117);

and if these triangles be infinitely diminished, and the

action of C become continual, they will be the evanescent

I
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increments of the area described by the revolving radius,

while the body moves in the curvilinear orbit; and the

whole areas described in equal times will therefore be

equal. And since the constant area ABCzzAB.^ CH

(117, 114), ABz:2ABC.^ and AB, representing the

velocity, is always inversely as CH, or i?— -.

Scholium. Laplace demonstrates this proposition by

means of the law which makes the sum of a number of

rotatory pressures, which he calls moments, with respect

to a given axis, equal to the pressure of the result : ob-

serving that whatever is demonstrated of forces and their

composition may be applied with equal truth to combina-

tions of motions or velocities. It is true that the same

symbols and the same reasoning may generally be applied

to forces and to motions ; but it appears to be an inversion

of the natural order of demonstration to deduce the laws

of motion from those of pressure, especially in a case

where the real process of nature is so easily traced in the

geometrical representation. Laplace observes, however,

with respect to the laws of rotatory pressure, (256) that if

we project each force and the result of all the forces on a

fixed plane, the sum of the rotatory pressures of the cons-

tituent forces, with respect to any fixed point in the plane,

is equal to the rotatory pressure of the result of all the

forces : and drawing to this point a line, which is commonly

called the radius vector, but more properly in English the

revolving radius, this radius would describe an area in the

fixed plane, in virtue of each force acting separately,

equal to the product of the line described by the moving

body inlo4he perpendicular falling from this fixed point on

its direction, and consequently, for any one force or motion.
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proportional to the time, since the force is conceived to

have acted instantaneously, and to have produced a uni-

form velocity : this area is also expressed by the same

product which has been denominated the rotatory pres-

sure, that is the product of the perpendicular into the

projection of the force, or into the niotiou in the given

plane : consequently the area described, in virtue of all

the motions, is proportional to the projection of the whole

force, and the sum of the separate areas is equal to the

area described by tlie radius in virtue of the result of all

the motions. Now the addition of any force or forces,

directed to or from the given point, can make no difter-

ence in the magnitude of the area described round it

:

because no motion directed to the point would separately

cause any area at all to be described. §. 6. P. 18.

Corollary. Hence, reciprocally, if a

body describes equal areas round a given

point, the force by which it is actuated must

be directed to that point]

264. Theorem. When a moveable point

is actuated by a combination of forces, their

results being reduced to three orthogonal

directions ; the time being supposed to flow

uniformly, the forces, diminished bj^ quantities

proportional to the second fluxions of the

spaces described in each direction, and multi-

phed by the respective variations of the direc-

tions, will balance each other.

I 2
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Since, in the case of equilibrium, OzuXS^s, when there

is no motion, and since any uncompensated force must be

employed in producing- an increase or diminution of the

elocity proportional to its magnitude (230) ; it follows

that so much of the force, in the direction x, as is other-

wise uncompensated, must be employed in producing a

change of the velocity v expressed by du, in the elementary

portion of time expressed by d^ : and if the force be called

F, or more properly Pd#, because its effect depends on

the elementary portion of time in which it is supposed to

act, the unemployed portion may be called Pdt—dvzz

dx
Pdf— d T— ; and the same law will hold good, with res-

d^ ^

pect to the portions of any number of forces thus remaining

unemployed, as if the moving point remained at rest. Con-

sequently the equation OzzIiS^* (251) will afford us, chang-

ing the signs, = ^x (d £—Pdt) + hj (d •^^— Qdt) +lz

dz
(d Rdt) ; Cf). We have also, when the body is at

dt ^-^ ^

^ ddx ^ dd?/ , „ ddz
hberty,P=—.<?=^ and K = ^.
Scholium. We must here carefully distinguish the

arbitrary variations ^.r, dify cz, from the fluxions dx, dy, dz,

the former being subject to no conditions whatever, pro-

vided that all the forces concerned be comprehended in the

equation, while the latter are confined to the expression

of the actual motion of the body M.

Corollary 1. We are, however, at liberty to as-

sume the variations as equivalent to the fluxions, and to

substitute dx, dy, and dz, for ^x, hjy and ^z, and in this

dxddx
case the equation will become 0=—r- Pdtdx -f
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—r-^—Qdfda- H j RditAz, whence, taking the flu-

dj:2+d//2-|-clz-
ent, and dividing by d^ we have ^ — = r

rlr2 4- d7/2 -|-flz2

(ZMx+gdy + jRdz),and —^^^^ ::z2fPdx^QCy

+ Rdz), Now the first member of this equation is the

ds
square of the velocity --• or v, and the second may be

ci c

called c + 29, supposing the expression to be a possible

fluxion, or capable of integration, which it must be when

the forces are in any way dependent on the distance ofM
from their origins, as they generally are in nature: we

have then r^=c -f 2^ (235). (gj.

Corollary 2, This supposition of the equality of

the variations to the actual evanescent increments of the

body's path, is equally applicable to the motion of a body

in a given surface : and it follows from the preceding

corollary, that the velocity remains unaltered, if no other

force be acting on it but the pressure of the surface : as

indeed it is obvious that the portion destroyed by the

curvature at each step must be infinitely less than that

which remains, the hypotenuse of a triangle exceeding its

base by a quantity which is only the square of the perpen-

dicular, which may be compared with the evanescent

sagitta of the curvature. See 286.

Corollary 3. It is also obvious that the velocity

must be the same, by whatever path, or upon whatever

surface, the moveable body passes from one given point to

another.

265. Lemma. The variation of the dif-

ference or of the fluxion is equal to the dif-
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ference or the fluxion of the variation, that is

BAx:=zA^x, and ^djr=d^.r.

Supposing two successive values of the ordinate x,

corresponding to the abscisses y and y + h, to be x and x

+ Ajr, and the curve or the equation to be so altered, that

the ordinates receive the addition characterized by 8 ; the

values corresponding to y and y + h will then be x+ ^x,

and ot+ Ajt + S (ar+ Ajr)or a;-\-Ax-\-dx+ ^Aj:. If we now

suppose the latter variation to take place first, and then

the former, we shall have x and x+ 3x, both correspond-

ing to y ; and a:+ Ax and a;+ S^+A (:r+ ^x) =x-\-^x + Ax

+ AS.r, corresponding to y-\-h. Now the final effects

being the same, by the supposition, which ever change we

consider first, it follows that a' + Ax-l-Sa-f §Aa7=a:^-3a;+
Aa:+AS.r, and consequently SAr=:A§j:, which is true

whatever be the magnitude of the changes, and conse-

quently when they become evanescent, so that we may

substitute d for A, and ddx will be still equal to ddx.

The truth of this propo-

sition may also be easily

understood from a geome-

trical illustration, the varia-

tion or difference, expressed

by A, arising from the com-

parison of the ordinates at

y and at y + h, and the

variation S relating to the

?/ + ^ change produced in the

same ordinates by any arbitrary variation of the curve •

the same portion of the second ordinate representing ^Ax

and A8x.

Scholium. The foundation of the method of indepen-

dent variations was laid by Leibnitz, under the name of

A ^JC

Aa:

\ Sx



OF DEFLECTIVE FORCES. 119

" differentiation from curve to curve." For a further

illustration of this method, see article 289.]

266. Theorem. The path of a moveable

body is always such, that the fluent fvds,

taken between its extreme points, is less than

in any other curve subjected to the same

conditions.

Since v^=:c-^2f(Pdx + Qdy + Rdz) (264, Cor. 1) and

since the coefficients of the variation S and of the fluxion

d are the same, it follows that v^v=z F^x -\- Q^y -{- R^z ;

uX
consequently in the equation

(f,
264) 0=8x (d-r- —

PdO + %(d^-QdO 4- SzCdT^-JRdO, we may substi-

stitute uSrdf for P^ardt+ Q^ydt-^R^zdt, and it will become

z= Sard ~-h ^yd-^^-\- dzd^-v^vdUh);nowiHhGfiuxiou

of the curve be called d*, we shall have ds=vdt, and d^*

zzdx^ ^dy^+dz", consequently i^Svd^izdsSu ; and, taking

the variation of d*^, ds^ds = dxMx + dy^dy + dz^dz

= vd^Sd*. Now d {dxdx) = dxdSx -H dxd^x ; but since

ddx = ^dx (265), dxSda- = dxdgx = d (dx^x) - ^xd^x,

and the same substitutions being applied to the coordinates

y and z, the equation for ds^ds is transformed into vSdszz

d(dxSx-hdy^y-\-dz^z) ^ ,dx . , dy . ,dz

ir ^^^d7-^2/d5f-3^d^; which,

by means of the equation (hj becomes v^ds = d

d^gx + dyg,/+ dzgz
_^g^^^ butt,8«d<=d*8«.- and ^vds)

=:r8d* + d«dv = d ~ : and takmg the

flirent on both sides with respect to d, S/ud* = c -j-
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'--^-
. JNow at the beginning and end of the

body's motion, the variations Sx, 3y, Sz, must necessarily

vanish, because it is supposed to move from one fixed

point to another, the intermediate points only being sup-

posed to be subjected to an elementary variation : con-

sequently the value of ^fvds between these two points is

equal to nothing, and the quantity yi-ds is a minimum,

since its variation vanishes.

[Scholium. The nature of this fluent may be under-

stood by supposing the path to be changed towards the

middle by a slight variation dx of x only ; the variation

^fvds with respect to the whole portion of the path would

UXcX
then become •'

, , which is equal to the product of the

variation of x into the velocity of the body in its direction

at the given point.]

Corollary 1. If the body is moving

freely on a given surface with a uniform velo-

city V, we hsive fvds=:ii/'ds=vs^ consequently s

is also a minimum, and the curve is the

shortest that can be described between the

two points.

[Scholium. The curve in this case may always be

traced by bending a flattened wire over the surface, which

must necessarily determine the minimum, since the two

edges of the wire are of the same length, and the variation

of the length of the path contained within its limits va-

nishes: the same curve must also be that which a body

would describe spontaneously on the surface, because it
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lies always in a plane perpendicular to the surface, and

the pressure of the surface could cause ihe motion to be

deflected in no other direction. That the curve must be

in a plant perpendicular to the surface, is evident from the

motion of all bodies rolling on each other, which come into

contact in directions at right angles to the surface : and

the wire must bend continually, from the position of the

tangent into that of the curve, in such a manner that all its

points descend perpendicularly upon tho surface.

267. Lemma A. The sum of the squares

of the projections of any right line on three

orthogonal planes is equal to twice the square

of the line.

If the orthogonal ordinates of the line 5 be a, &, and c,

we have s^ = a- +h'^ -]-c^ ; now the projection on the plane

of a and b is x/Ca^ +&^), on that of a and c, s/{a^ +C');

and on that oft and c, '^{b^ +c2) ; consequently the sum

of the squares of the three is a^ -\-b" +a^ -\-c^ +b^ -{-c^zz

268. Lemma B. The fluxion of an arc is

as the radius of curvature and the fluxion of

the angular extent conjointly, or ds=rdd, and

the radius is ^=^-

The angle being measured in equal circles by the arc

subtending it, and in different circles being inversely as

the radius, when the arc is the same, it becomes evident

that the elementary arc of any curve must be as the angle

subtended by it, or as its angular extent and the radius of

the circle of curvature conjointly, the element of the curve
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coinciding in length and in curvature with that of the circle

of equal curvature at the given point. ' ,

269. Lemma C. The radius of curvature

is in general r=da: : d ^ = — di/ : d ~.

Since d sin 0= cos 6dQ (142), we have d6=: ; and
cos 9

since d cos z= — sin 6d9, d9 zz . Now sin 6zz
sin B

dy J /» ^-^ 1, 1/, jdyds , da: d*
^, and cos 6=-^ ; whence d9=i d -2.— = — d — .—

,

u* as ds dx ds dy

J ds J jdy - . dx
and rzi-r-'Zudx : d -^ = — dy : d -r-,

d9 ds ^ ds

270. Lemma D. When the fluxion of the

curve is constant, the radius of curvature is

r'
__d«da7__ d5dy__ d*^

'""ddy"" ddx~N/(d2a;2 4-d2y2y

When d^ is constant, we have d -=^=--^, and d -7- z=
d* ds ds

ddx , , J dw dsda: d^dy -r. ^ . , „-——, and r=dz : d -^=—-—- = —^ . Uut since dx^
ds ds ddy ddj7

-^dy^=ds^, dxd^x+ dyd^yzzO, and dx^d^x^^dy^d^y^^

d^y^ dx^ d'^y^ dx^
consequently ^^ = g-;, and ^.^.^^y = 5^5-73^

xrt^v da;2 ddy dx , d^da:
(34) = -;— , and ;

—- -=-— ; whence —r-r- =
^ ^ ds^ V'(d2a72+d2y2) d* ddy

d«2

^{d^x^+d^y^-y ^
271. Lemma E. When the curve is re-

ferred to three orthogonal ordinates, its fluxion
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ds being constant, the radius of curvature is

We may first suppose a plane to pass through the tan-

gent of the curve and the ordinate z, which we may call

vertical, while x and y are horizontal, and a second plane

to pass through the tangent, and to be perpendicular to the

first or supposed vertical plane: then if the curve be pro-

jected vertically on this plane, the horizontal ordinates z

and y will be the same for the projection as for the curve,

and the tangent will be the same, and the curves will only

differ in length as the tangent differs from the curve, the

elements of all three being ultimately in the ratio of equa-

lity: the sagitta of curvature, 75-, of the projection, will

be horizontal, being perpendicular to the first plane, which

is vertical; it is, therefore, the projection of the primitive

sagitta on a plane parallel to that of x and y : and the same

may be shown of two other projections on the other two

orthogonal planes, of x and z, and ofy andz, substituting

y and x successively in the place of z.

Now, the sagittac of the three projections are -^ ^(A^ar*

+ aY)> i N/(A2a:s + A«z2), andi ^ {A^y^+ a'^z^ Q.nd the sum

of their squares is i a/Ca^JC^+aY -HaV), consequently the

primitive sagitta of which they are the projections, is i

(a^x^+ A^y^+ A^z^), and the true radius of the curve

As^ _^ ds2

VCA^x^+ A^i/^+ A^z^)"" V {d^x^ +dy + dV)'

Scholium. The characteristic a is here substituted for

d in speaking of the sagitta, A being intended to represent

an actual evanescent variation, while the fluxion d is a finite

magnitude proportional to it (229). The student will
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readily understand that dx^ is generally used for {dxy and

d^x\ A^x\ for {d-xf; {A-^xy ; and not for d(x"), (\\xy, as

might have been done without impropriety, if it had been

equally convenient.

272. Theorem. The pressure of a moving

body on any curve, derived from its centrifu-

gal force, is expressed by the square of the

velocity, divided by the radius of curvature :

and the pressure on any surface is expressed

by the square of the velocity divided by the

radius of curvature of its path, and multiplied

by the sine of the inclination of the plane of

the curvature to the plane of the surface.

(§. 9. p. 23.)

The equation F^wziSS^s (250) affords us here the con-

ditions of equilibrium between the forces depending on

the curvature, and the pressure; but those forces are

--— , --^, and —— , (233, 264), or, since d5=i;d^, d^=:
dt' dV^ di"^

be respectively equal to F -^ , V — , and F ^r-, or, in
ex hy hz

this case, putting A for the pressure, and r for the perpen-

dicular to the surface, to A —-, A -rr-, and A 7—, since the
ex by cz

forces in each direction must balance each other. "We have

consequently, adding together the squares of each equa-

i
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(d^x" -i-d-y- +d'Z"). But ds being constant, we have

-2_ V(d=.^ +d^y« +d=.') =1 (271); a„d(g)= + (|)a

+ (|^)2z=l (254, Sch. 2): consequently A=—, as has

already been inferred, with respect to the central force in

a circle, from a simpler mode of Reasoning (258); but the

coincidence is of use in strengthening the basis of the

analytical investigation.

Now, if the surface be spherical, the curve described

will obviously be a great circle of the sphere, and its radius

of curvature that of the sphere, since the deflection can

only be in the direction of the radius, and in the plane in

which the body moves. And if a thread be substituted

for a surface, the tension of the thread will be equivalent

and equal to the pressure on the surface.

The whole pressure on the surface will be obtained, by

adding to the centrifugal force any extraneous forces which

may be acting on the body. And since the force always

acts in the direction of the plane of the body's motion,

when that plane is not perpendicular to the surface, the

pressure on the surface will obviously be reduced in the

proportion of the radius to the sine of the inclination of

the plane to the tangent plane ; the remaining portion act-

ing in the direction of the surface, and. requiring to be

counteracted by some other force. But in the absence of

such forces, it has been shown that the centrifugal force

is simply equal to the pressure on the surface ; the plane of

the motion is, therefore, in that case, always perpendicular

to the surface.
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The curve thus described, on a spheroid, has heen called

the perpendicular to the meridian : and it traces, as has

already been observed, (266) the shortest distance between

any two places in its direction. It does not, however,

remain actually perpendicular to the meridians which it

crosses, but is conceived to be traced by levelling-, in the

same way as a flattened wire would trace it when bent on

the spheroid.

[Scholium. It follows from considering the propor-

tion of the sagitta of curvature in a perpendicular and in

an oblique plane, that the radius of curvature must always

vary in the direct ratio of the sine of the inclination of the

planes, so that the pressure on the plane is the same whe-

ther the body move in a great or a lesser circle, the imme-

diate centrifugal force being increased, by the increase of

curvature, in the same ratio that its action with regard to

the surface is diminished, provided that the velocity be the

same in both cases.]

273. Theorem. If a body move in a

resisting medium, and be subject to a uniform

gravitation in a vertical direction, its motion

will be defined by the equation —=-^„4 > ^

being the space described in the direction of

the motion, z the vertical ordinate, a: a horri-

zontal one, c the resistance, and g the force

of gravity, dx being constant : and if the

resistance is as the square of the velocity, and

h =—y ^= ae ; a being a constant quan-

tity, and hle=:l.
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Resuming the equation
(f,

264), 0=Sx(d -77— Pdt)-i-

gy (d-~— ^dO+ Sz (d-77— UdO, and supposing z to

begin at tlie highest point of the curve, we may resolve the

force of resistance Q into three directions, and it will

afford us — C -T^, — ^ -p, and — C j- ; consequently P

X, dj: ^ ^ d?/ , „ ^ dz __
= — ^T-, 0=— ^7^, and i? =— Ct-^-s-. Hence we

ds ^ as d* '^

have0=8.(dj-i+ egdO +S,(dJ+cgdO+ g.(dg +C

dz
-r-d#— o^d<) : and if the motion is subjected to no further

limitation, we have the three equations O^id-rr + b -r-^ d^ ds

At; Oi=d^ + ^^d^; andO=d^ + ^^df-gd^. From
at as at as °

the two first, we obtain, by multiplication and subtraction,

dw dju ax all

jj. ^ jT= JT' d
7J7

» and, d# being constant, dividing both

., - dxdy ^ dda; ddy
, ,,, ..^ ,,

sides by •

, we have-:—^-p^, and hlda;=hid3/ + c-:::hl

fdy, and da:z=/dy, /"beinga constant quantity. But since

dx=/dy, the horizontal motion must be rectilinear, and

the body must move in a vertical plane, which is indeed

sufficiently obvious from the absence of any lateral force.

We may, therefore, consider x as situated in this plane, y
dx

being always =0; and from the two equations 0=id-j- +

^ da: dz dz
fc T-df, and = d-j- + ^ -77^^—yd^, we obtain, making
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ax constant, and df of course variable, da'-r—-i=t ^r— d^
at' as

^

, ^ dsddt , ^ ddz dzdd^ . dz,^ ,^
^^^ ^ = -^7^-^ -I- ^ = ^-d/— +^d^^'-^^''

dzddf ^d^i.o ,
dd^

consequently ^rd^^ = ddz Tr~ + ^T:^' * ""* ~h7^d^ d* d^

ds
•—;-—, SO that gdt^=d^z, and, taking the fluxion, 2^d^d2<

^d^'
, , . ddz

rzd^z ; now since dH = —r— , and d^^= , we have d'z
ds g

2Cd^z2c ^ no -. ^
^d^' 2«C ^ ^ 2(7^ /ddZv2

d* d* ds ^ g ^ gds

Q dsd^z
and - — -z-,T-o* which determines the law of the resistance

g 2d-z-

Qf required for the description of a particular curve.

Now supposing the resistance proportional to the square

of the velocity, which is nearly true in a medium of

dA'2

uniform density, Q being expressed by h-T-o* we have
Q L"

Q Jids"' Ad6-2 , , ^ d^z . hds'' Q d.sd"z

g gat- d'z 2ddz ddz g 2d^z"

hence, taking the fluent, we have 7is:=:^ hld^z + c, or 2hs:z:

hld'^z + c, in which, since dx is constant, we must take

h!d"zH-c=:hl—:— , and since hi {ae ^^*^) =.2hs + h\a, we have
ddz

l2zH-c=:hI

dd2:— ofi^/w

dx^-""^
•

Corollary. If we make ^=0, and suppose the

resistance to vanish, we have d"z=adx^ ; the fluent of

which is dz:=z:^axdx -\-bdx, whence z=^ax'^-\-bx-}-c, which

is the equation of a parabola (204) b and c being deter-

mined by the conditions of projection ; and since d^zzz
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adx^=gdi\ we have d/^ - fdar^ and tzzxs/^+f -, but if

X, Zy and t begin together, c=:0, and/' = 0, consequently

t -=1 X ^ -y xzz. s/ —ty and z-=.\ ax"-\-hx^ whence zz=.\a

9 «

^-k-hts/— :=. ^qt^ + htJ— : and these equations contain

the whole theory of projectiles moving without resistance :

they show that the horizontal velocity is uniform, and that

the velocity in a vertical direction is the same as if the body

fell in a right line.

[Scholium. It seems to be an unnecessary departure

from the simple order of investigation to examine a very

complicated and intricate case in order to deduce from it

a very simple one : and yet it may be said that unless this

were done, we should have frequent repetitions from con-

sidering the same case in its simple form, and then as an

inference from a more general law. But for a student, it

is better to have such repetitions, than to be without a

clear conception of the shortest path by which he may

arrive at an elementary conclusion. It seems, therefore,

not altogether superfluous to insert here a few illustrations

of the motions of projectiles, demonstrated in the most

natural and simple manner.

274. Theorem. The velocity of a pro-

jectile may be resolved into two parts, its

horizontal and its vertical velocity : the hori-

zontal motion will not be affected by the

action of gravitation perpendicular to it, and

will therefore continue uniform ; and the ver-

tical motion will be the same as if it had no

horizontal motion.
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For gravitatioD, being considered as a uniformly ac-

celerating force, must act, by the definition of such a

force, equally on a body in motion and at rest, so that the

vertical motion will not be affected by the horizontal mo-

tion ; and the diagonal motion, resulting from the combina-

tion, will terminate in the same vertical line as the simple

horizontal motion would have done ; and consequently the

horizontal motion must remain unaltered.

Scholium. Thus if we let fall, from the head of the

mast of a ship, sailing uniformly along in smooth water, a

weight, which partakes of its progressive motion, the

weight will descend by the side of the mast in the same

manner, and in the same time, as if neither the ship nor

the weight had any horizontal motion.

275. Theorem. The greatest height, to

which a projectile will rise, may be determined

by finding the height from which a body must

fall, in order to gain a velocity equal to its

vertical velocity; and the horizontal range

may be found, by calculating the distance

described by its horizontal velocity, in twice

the time of rising to its greatest height.

This is evident from the equality of the velocity of

ascending and descending bodies at equal heights, and

from the independence of the vertical and horizontal mo-

tions of the projectile.

Scholium. For example, suppose a musket to be

so elevated, that the muzzle is higher than the but end by

half of the length, that is, at an angle of 30*^ ; and let the

ball be discharged with a velocity of 1000 feet in a second ;

then iti vertical velocity will be half as great, or 500 feet
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in a second : now the square of one eighth of 500 is

—T—^=3906, consequently the height, to which the ball

would rise, if unresisted by the air, is 3906 feet, or three

quarters of a mile. But in fact a musket ball, actually

shot directly upwards, with a velocity of 1670 feet in a

second, which would rise six or seven miles in a vacuum,

is so retarded by the air, that it does not attain the height

of a single mile. The time, in which the velocity of 500

feet would be destroyed, is found by dividing it by 32, or

twice the time if we divide by 16 : we have, therefore, 31

seconds for the time of the whole range ; and the horizon-

tal velocity, being 1000 x V(l-i)z=886 feet, the ball

would describe in 31 seconds, with this velocity, nearly

28000 feet, or above five miles. But the resistance of the

air will reduce this distance also to less than one mile.

276. Theorem. With a given velocity,

the horizontal range is proportional to the sine

of twice the angle of elevation.

The time of ascent being as the vertical velocity, that is

as the sine of the angle of elevation, when the oblique

velocity is given, the range must be as the product of the

horizontal and vertical velocities, or as the product of the

sine and cosine ; that is, as the sine of twice the angle

(140).

Scholium. Hence it follows, that the greatest hori-

zontal range will be when the elevation is half a right

angle; supposing the body to move in a vacuum. But the

resistance of the air increases with the length of the path,

and the same cause also makes the angle of descent much

greater than the angle of ascent, as we may observe in the

track of a bomb. For both these reasons, the best eleva-

K 2
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tion is somewhat less than 45^ and sometimes, when the

velocity is very great, as little as 30^. But it usually

happens in the operations of natural causes, that near the

point where any quantity is greatest or least, its variation

is slower than elsewhere : a small difference, therefore, in

the angle of elevation, is of little consequence to the ex-

tent of the range, provided that it continue between the

limits of 45^ and 35^ ; and for the same reason, the angular

adjustment requires less accuracy in this position than in

any other, which, besides the economy of powder, makes

it in all respects the best elevation for practice, where the

object is to carry a ball or shell to the greatest possible

distance.]

[277- Lemma A. If the equation a+hx

^co^+dx^^ . , , -0 be true for all values of

x^ it will follow that each coefficient must be

separately =0,

For, putting or zzO, we have aizO, therefore 'bx-\-cx^-\- ...

=0; then, dividing by a:, h -\- ex -\- dx^ -{ ...zzO; conse-

quently 6=0 ; and in the same manner all the coefficients

may be made to vanish in succession.

278. Lemma B. The binomial or dino-

mial theorem (244) is true for all powers,

whether entire or fractional.

Its truth may be the most easily shown from the principles

of fluxions, and the Taylorian theorem combined. For

since d(x")=i«ac"-idx/ making dx constant, we have di\x^)

= w(w— l)a;'^-2dx2, and &\x'') =zn{n—l) (w— 2) x""-^ dsc^

;

du' h^
whence, taking mz= {x-irhy\ we have Am' = ^ -r—•"To
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-; )-..., M* being zra:", the initial value of u ; and Ax^

= hnx"-^+ A^. ""^"0— ^"~^
• • • ' consequently (x+ A)«=

which is the theorem in question, without limitation.

279. Lemma C. The fluent /sin'^^d^zr

-— sin**"* z cos z-\-f—— sin
^^"^ zdz ; and%

sin" 2clz = ^- 7" sin"-'rdz.

2

The fluxion d (sin ^-i z cos z) =sin ^^^ zd cos z+ cos

zd sin **-^z = — sin^ zdz + cos^z (m — 1) sin^-* zdz = —

sinM zdz+ (1 - sin^z) (M—1) sin ^-2 zdz= (m—1) sin ^-2

M—

1

zdz— M sin ** zdz ; consequently sin ^ zdz = sin"-*

1 TT

zdz d(sinM-*z cos z) ; and in the case of zzr-^, or

a quadrant, the cosine vanishing, the first term of the fluent

vanishes.

Corollary. When m = 2, the particular fluent

becomes^ sin^z dz=l/'dz=:^ z=i tt ; when M = S,/'

M—

1

sin^dzzzf/" sin zdz=i—| cos z=:0 ; if M=4, —-— = |,

and the fluent is K-r'-^'-> i" the same manner for M=:6,

we have ^'
'

.-^ ; and the series may be continued at

pleasure for all the even values of M.]
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280. Theorem. The oscillations of a

gravitating body, moving freely on a spherical

surface, ofwhich the radius is r, are performed

m a time l-.v-. .v-^^r^J l +yv-f (g;j>

13 5
y* + (2X6 ) 'y^ + • • •

' '^ being the semicircum-

ference to the radius 1, a the greatest and b

the least distance of the body below the

centre, g the space described by a heavy

body in the unit of time, and y^= t^——"^•

In this case we obtain from the equation 2*S^5-f 12Sr=:0,

compared with P = -^, Q=i -^, and jR = -^ (264),

.1 .1 .. r. ddj7 ^ X ^ My y ,

the three equations = -r-^ + A -, 0= —r^ + A —, and
dr^ r at^ r

ddz z
0=1-7-^ + A ^, A being the pressure on the surface ;

cv X c T y
for since r^nj^ + i/^+ z^ vve have -sr-^—,-?r- = —,and^ tx r hy r

gV 2 ^^ . „ djT^ + dv^ + dz^ _ ^^ ^,
s-=:-. Now smce v^zz -|^ z=/ (Pdjt + Qdy

+

JRd^;), P, Q, and i? being the accelerating forces concerned

(264 Cor.), the fluent here becomes v'^^2fgdiZzzc-\-2gZy

consequently the pressure derived from the centrifugal

force will be simply ~ (272 Schol.) to which adding

^V z
the force of gravity, reduced in the ratio -^, or— , that is

qz . c + ^qz—, we obtain —.—^— , for the whole pressure on the

surface.
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If we multiply the first equation by — y, and the second

by jr, and add them together, we have —^, A ~ +

xdSy xy ^ ordd?/— 7/ddar

-j/ + Af=0= \^i — : but d (xdy) = xAhj +

AxAy, and d (yix) = ydrx + dixAy, consequently d {xiy—
c xCiii i/djir

ydix) zzjvd^y—yd^x, andO + -^=
dt^

~' ^^ ^^^^^ ^°"*

stant. Now the equation of the surface gives us xdx +
ydy+zdzznO: we have therefore the three equations xdx

^ A A A A ^A*
,d:r2+ df + dz^

•\-ydy:=i—zdz, xdy—ydx:=.cdtf and j- =. c +

2yz. Adding together the squares of the two first, we
obtain x^dx^+ y^dy^+ x^dy^+ y^dx^—z^dz^+ c'^dt^z:i{x^ + y^)

(darHdy^) zz (r^—s^) ^2 + dy^z:i{r^—z^) l(c + 2gz) dt*

—dz^l : consequently(r2—2;2)(c + 2^zX-"c'2d<2~ (y.2__22)

dz2 4. z2d22 =z rMz^, and d* = ~
sj [{r'^—z^) (c + 2gz)—c'^\

But it is most convenient to substitute for the denominator

s/ \ {a—z) {z—b) (2gz +/) > ; for which we find, by actual

multiplication, cr^ -f 2gr'^z—cz^—2gz^— c'^ =:: (az—ah^z^-h

hz) {2gz-^f)-2agz''^ 2abgz-2gz^-{-2hgz^ + afz - abf—

fz--\-bfz ; then, by equating the coefficients of z (277), 2gr^

= -^2abg + a/-{^bf, consequently/ =: 2g.——7- : we have

next, from z"-, — c — 2ag +25^—/, czzf—2g{a-\-b) =. 2g

(r^ + ab ,
' ^ r^—a'^—ab—¥

, , ,

I z (a •\- b) •=. 2g. j ; and lastly cr'
^ a-\-b ^ ^ a-\-b ^

— c'* = —abfy whence e'^ •=. #r* + abx2g. -7- z=
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r^^a^r^^abr^—b^r^ ah r^ + a ^b^\

r*—a^r^—b^r^+a^b2
—I . It must be observed that the

a+ b

quantities a and b will be the greatest and least values of

z ; [for otherwise the fluxion rdz would not vanish, as it

must do, when the curve becomes horizontal],

a—z
Making now sin dzz. V 7, we have d sin 5= cos 6d9=z

—dz - . z—b .

-, and smce cos zz s/ =-, d 5 =1
2s/{a—z) ^/ (a—&)

' ^ a—b *

—d^ a—b __ —dz

2V(a—z) s/ {a—U)' ^ z—b ""
2v'.(a—z) ^ {z—V)

'

consequently, in the ascent of the body,

—rdz , 2rd9
:r= dt =. —-7; TT' NowV(a—z)n/(z—6)V(2^z+/) -

V(2^;2+/)

a—z
since sin* 5=: ^, (a

—

b) sin ^9—

a

—z,zzza—(a—&) sin^ 9,

f2 ^ab
and/ being = 2^. r-, 2gz+fzz2g{a—(a—6) sin 25+

r«+a^>v ^ a2_j.ct6 + r2+a6—(a2—62) sin 2

=— ) = 2 (7
~

, and
a+ 6 /

^ a-\-b

a^—b^
, ,

r
makmff — —?r^= y^> we have dt — >J — . >J

& a2+r2H-2a& g
2r(a + b) d9

a2+r2+2a6 ^/{l—y^s'm^9)

bmce sm2 9 zz and cos 20zz r,wehavea cos*
a—o a—

^ _ . ^ az—ab+ ab—bz , 2: .„ , ,+ 6 sm2 0=: =2: and — will be the cosme
a—b r

of the inclination of the radius to the vertical diameter.

If -zr be the angle made by the revolving vertical plane of r

and z,with the plane of a^andz, we have ta 'sr—— and dta-arzi
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d-sr, andxdy—7/dT=(a:2 -[y^)Ans;:=: (r^—z^) d-sr : and since

it has been shown that xdy—ydx =. c^dt, we have d-zn- =
c^dt

: hence, substitutins: for z and dt their values in

terms of 6, we shall have the relation of -sr and d, which is

sufficient for determining the place of tlie moving body.

If we call the time occupied by the body, in its passage

from the highest to the lowest point of its motion, a semi-

oscillation, or i T, we may determine it by finding the

fluent of the value of df, taken from 0=0 to d=^7r=90^ ;

first resolving ——,
:
——— into a series by means of

the dinomia! theorem, which gives us-—j =1 +— x^

13 1 S 5
+K^^* + oVfi^^ + . . •, and then taking the particular

fluents of do multiplied by the powers of y^ sin^O, by

o 4.U r 1 nr • «Af 1
1.3.5..(2m—J)5r

means oi the lormula "/ sm ^m ^dz = —-—— -—;
^^ 2.4. . 2m 2

u . . r^
"" r 2r(a + b) C /I x

whence we obtain Tzztt J --J ^-r \ 1 + I :t j^*)^
^ y^a2+r2+2a6 t ^2^

/1.3\ / 1.3.5 X 7

Corollary 1. Supposing the point to be suspended

by a thread, without weight or inertia, and fixed at its

upper extremity, its length being r, the motion will be

exactly the same as if it rested on a spherical surface; and

the greatest deviation of the thread, from the vertical

direction, will be the angle of which the cosine is —. If

the velocity, in this situation, be supposed to vanish, the
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oscillation will be in a vertical plane : we shall then have

a-ziTy Tzz z: n
, y bemff the sine

of half the greatest angle that the thread forms with the

vertical line, and its square half the verse sine of that

angle. The time of the oscillation will then be T—iusJ-

8>*fiX^+(t!)M^')'+(SI)--(^)--i'.
If' fy

Corollary 2. If the oscillation is very small, --—
,

2r

being a very minute fraction, may be neglected in compa-

rison with unity : we may therefore call, in this case, Tn:

T
Its/—, and we may consider the small vibrations as iso-

9
chronous, whatever their comparative extent may be.

Corollary 3. AYe may, therefore, employ expe-

riments on the length of a pendulum, vibrating in a given

time, for the determination of the variations of the inten-

sity of gravitation in different parts of the earth. If z be

the height through which a body would fall in the time T,

we have z—\g T^ (232); consequently since T^zi^r^—

^

9
Z-=.^7r^r ; hence we may determine the space described by

a gravitating body with the greatest precision by means of

the pendulum.

Scholium. It has been found, by very accurate expe-

riments, first made by Newton, that the length of the pen-

dulum vibrating in a given time is the same, whatever is

the nature of the substances composing it : whence it fol-

lows, that gravitation acts equally on all bodies, producing

in them the same velocity in the same time ; that is, in the

absence of a resisting medium.
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281. The equation of the tautochronous

curve, in a resisting medium, is 72gdz=kds

(1—e"-''*)
; g being the force of gravity, z the

vertical ordinate, s the length of the curve

from the lowest point, and k a constant quan-

tity : the resistance being expressed by m

The forces acting on the moving point are, first, the

force of gravity reduced to the direction of the curve,

which is expressed by ^ — ; and secondly r, the resistance

of the medium, which depends in general on the velocity

ds
•J- : and it follows from the definition of an accelerating
at

force, thj^t the fluxion of the velocity is its measure, (228,

d^:

_dc

dt ' " ds "' ^'' ° ' '~^dt'

dz
229), consequently, in the ascentof the body,

—

dv=g—-\-r,

and 0=d j^+ ^r — + r, or, making d^ constant, 0=-j^ +

dz
g h r, which is more circuitously expressed in the ori-

ds

ginal notation 0:^—+g—+<P {tt)* («)> r being called

d*
a ** function" of -J- . The notation is, however, imme-

dt

diately exchanged for the more convenient supposition of

a resistance proportional to the sum of two powers of the

Telocity, (p (— -)being m —+ n —. We must now assume

a variable quantity t/, dependent on x, and makingp=
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^, and q^% we shall have ^-i=i>% and^^ p ^dw ^ dw d* ^ d^ d^2 -^ ^1^2

. , dw ddw
, dw^ , ,

"^ ^2^^
di^
^

"dF"
* equation {i) will be-

^ ddw
,

dM^ djr dw ^ dw^comeO=^—+ 5_+ g— +mp^^+nf— , or. d.-

expressed, in the original notation, by 0= —^ +/» _f. +
d(^~ d^

d/2 ^V + ?<^^V)2
,

p-dz ,K T 1.

dw^
destroy the coefficient of j^, by making g + wp^ziO, that

is, -p-4-wp2=0, and -^+ dMi=0, whence —=m4-c, — =

n(M + c) and odwzr = d*, consequently 5=1 hl(w+ c)

+ c', or z: hi j A(m+ c) ^^, h and c being constant quan-

tities : and supposing u to begin with s, we have hc'^zzl ;

and it will be simplest to make h=l, and c— I, so that s

T

becomes =1 hl(M-f I)", nsz=,h[(u-\-l), and M+l=e«*, if hi

e=:l, whence w=ie«*—1, and »=—-7-— = = -^ e-«*.

We thus reduce the equation to Ozz-r— + «w_!f+j?—^
d<2 d^ p'-du;

and supposing z^ to be small, the last term is capable of

being developed in the form of a series ascending accord-

ing to its powers, which will be of this form, ku-\-M + ,,.,

i being greater than unity, so that the equation will be-

come 0=:-j-— 4- wi -—-f^t^ -I- /t^^-f- .. . In order to obtain
at^ at
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the fluent of this equatioo, which in its present form cannot

be integrated for want of the relation between u and d^,

we may multiply it by e ^ (cosyf + *^ •— 1 sin yt) df, which

we may call e^ Fd^, observing that dFzirv' — lydf, and d

mt m
(e 2 T)zze a V(—-\-'^—ly)d<. Now, beginning with the

first term ——, and taking the fluxion of its fluent multi-

mt
/> '^ ddi^ '"' dw r —

*

plied by e 2 r, we obtain^ 2 r——= eg- f __—/e x r

(—+ V—ly) dw : the next step must, therefore, be with

mt
mdtt— f ^+ »y—ly)dM,or(-— >/—ly)dM ; and we have fe \

r (|-^^.)d«=e?^(f-^/=i.>-/.?^ (|.-

V—17)(-^ 4- *^^-iy)^u : and this last term, that is^e 7 r

(—— + 7^ M, together with ku, may be made to disappear

by putting '^ +7^=it, and 7= V(^ j-) : so that the

mt .Au
whole equation will become e T (cos yf + v —1 sin yt){-T7

+ ——V—ly)MJi: — Ife 2 (cos yf+^—1 sin yO^^df— ...

Ifwe compare the real and imaginary parts of this equa-

tion separately, which, as is well known, must always be

allowable, because imaginary quantities can never be

equated with real ones, unless they are compensated by

some other imaginary quantities, we shall obtain two equa-



142 CELESTIAL MECHANICS. 1. ii. 12.

tions for finding the value of~ : but it will be sufficient

at present to consider that part which is multiplied by v —1,

and which affords us the equation e-^ sin ytj-^-e'z l^sin
d^ ^<*

mt

yt—y cos yt)iiz=: —ife T sin yt u'dt — . . . ; the flowing

quantities in the second member being supposed to begin

with t. Now, at the end of the ascent, putting the time

T, the fluxion d* vanishes, and with it dw, which is zz{nu

-\-l)ds; at this moment, then, we have e ~T u (—sin 7 T—
>-*

mt

y cos yT) = —
If^

^ sin yf u'dt— . .
.

; which being uni-

versally true, it must be true also when the whole value of

u is evanescent, and since in this case u^ is infinitely small

in comparison with u, the whole of the fluents in the second

member of the equation, which depend on the powers of u,

must vanish in comparison with the first member, and we

shall have 0=:-p-sinyT—y cos T, and—-.— yl'izy.or tana:
2 2 cos °

yTz=^— , 7^ being the whole time of describing the arc s,

whatever its length may be, since, by the conditions of the

problem, this time must always be the same, so that the

equation 0= -^sin yT—y cos y Twill be true in all cases,
2

mt

whence in general —Z.^^ e ^ sin yt u'dt— ... n: ; but

when s and u are small, the first term is the only one that

remains considerable, the others vanishing in comparison

with it, consequently this term must also vanish, which can

only happen if 1=0, since none of the quantities concerned

change their values from positive to negative within the
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limits of ^=0 and tzziT. We must therefore make ku

alone equal to ^---=;^, and ^(e'"—1)=^-— , whence
p-dit pas pan

kds («"*

—

l)=gdz. —=^dz.we"% and ngdz—kds (1—e-'").

P

282. Corollary. When the resistance

either disappears, or is proportional to the ve-

locity only, n=0^ and the equation becomes

gdz=ksds, which belongs to the cycloid.

For since e-«*=:l

—

ns-]——+ . . .(247, Cor. 3), when h
/£

vanishes, 1—e^^^zin*, and ngdz:=nksds, [This equation

is shown to belong to the cycloid in article 287.]

Scholium 1. It is remarkable that the coefficient n

of the part of the resistance proportional to the square of

the velocity does not enter into the expression of the time

T; and it is obvious, from the steps of the analysis, that

the expression would be the same, if we added to the pre-

ceding law of the resistance terms proportional to the

d*^ ds*
higher powers of the velocity — , -774 •• • [That k is inde-

pendent of n, appears from making s very small, when ngdz

sds
zznksds,3ind k-=. -j-, whether n be greater or smaller.]

Scholium 2. " In general, if the retarding force in

the curve be U, we shall have 0= . \-Ry the space s be-

ing a function of the time t and of the whole arc described,

which is of course a function of t and s ; and by taking

the fluxion of this last function, we may obtain an equa-

ds
tionofthe form—=F, the velocity being thus repre-
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sented by its relation to t and 5, and this function vanish-

ing, according to the conditions of the problem, when t

has a determinate value, independent of the arc described.

Supposing F, for example, represented by «ST, S being

a function of s alone, and T of ^ alone, we shall have

^=d^4^)=T^^.^+ S^l-;- which indeed might be
At" it As At At' ^

written T —-+ «S — » since iS^ can only vary with s, and

this expression could cause no ambiguity. " But, since

^ F d5 ^AS As AS As'^ ^ . ^. „

^=^'";sd^' ^d^- ir jas' At^'
^^^ '''''' * '' " ^""^-

tion of T, or of —j-, we may also suppose --— to be a func-

Ac d s^ d f

tion of— , and we may call it —— ^/—), and we

- ,. , dd5__ ds2 C d5 , ./ As^l o c u •

shall have —-~4^+^(_)j=--i2. Such is

the expression for the resistance derived from the diffe-

d*
rential equation —zzST; which comprehends the case of

a resistance proportional to the two first powers of the

resistance, multiplied by constant coefficients : but other

d*
differential equations representing -— would give diffe-

rent forms to the expression of the resistance."

[Scholium 3. Instead of attempting to show the

utility of this very general formula, which is certainly not

extremely obvious in its present state, it will probably be

more useful to insert here a more elementary view of the

properties of the pendulum, remarking first that this pro-

position i? only demonstrated with respect to the ascent of

a body in the curve to be investigated, and that the descent

will require some of the signs to be changed, the re-

sistance cooperating with gravitation in the one instance.
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and counteracting- it in the other. Since however the steps

of the demonstration do not depend on the positive cha-

racter of the symbols m and w, we may simply make m

negative, and we shall have tang y Tzn , implying that

the time is as much greater in the descent, as it is less in

the ascent, than when the body moves without resistance

:

so that the whole time of the oscillation can never be sen-

sibly affected by any small resistance of this kind: a

conclusion which is of the more importance, as the resis-

tances acting on pendulums, vibrating in common circum-

stances, appears to vary very nearly in the simple ratio of

the velocity, the arcs decreasing proportionally in equal

intervals of time.]

[283. Theorem. " 255." When a body

descends along an inclined plane, without fric-

tion, the force in the direction of the plane is

to the whole force of gravity as the height of

the plane is to its length.

For if AB represent the motion which ^
would be produced by gravity in a given

time, this motion may be resolved into AC
and CB ; by means of AC the body arrives ^ -^

at the line CB in the same time as if it were at liberty

;

but the motion CB is destroyed by the resistance of the

plane ; and as AB to AC, so is AD to AB (121). But

forces are measured by the spaces described in the same

time (230).

Scholium. Hence, by employing a plane differing but

little from a horizontal direction, we may lessen the velocity

of descent, so as to make some illustrative experiments on

L

S.
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the effects of accelerating forces, without the inconveni-

ence of too great a velocity: although, if the weights

employed roll down the plane, some force will be lost in

the production of rotatory motion ; and if they slide, they

will be retarded by friction.

284. Theorem. ''256/' When bodies

descend on any inclined planes ofequal height,

their times of descent are as the lengths of the

planes, and the final velocities are equal.

2r 1
Since t:= ^ (—) {2m\ and here a=-^, tzz >^(2x^)=.

\ a f X

s/2x; and the times vary as the spaces: but the times

being greater in the same proportion as the forces are less,

the velocities acquired are equal (230).

Scholium. Thus a body will acquire a velocity of 32

feet in a second, after having descended 16 feet, either in

a vertical line or in an oblique direction ; but the time oi^

descent will be as much greater than a second, as the

oblique length of the path is greater than 16 feet : and if

we suffer three balls to descend together along three

grooves of the same height, but of the lengths of 1, 2,

and 3 feet respectively, we may estimate by the ear the

equality of the intervals at which they reach the bottom.

285. Theorem. "257." The times of

falling through all chords drawn to the lowest

point of a circle are equal.

Dl,^ The accelerating force in any chord A B
is to that of gravity as A C to A B, or as

A B to A D (121), therefore the forces

being as the distances, the times are equal

;
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for their squares are as the spaces directly and the forces

inversely (233).

Scholium, This elegant proposition may be illus-

trated by an easy experiment : if we place two bodies at

different points of a circle, fixed in a vertical situation,

and suffer them to descend at the same instant along two

planes, which meet in the lowest point of the circle, they

will arrive there at the same time.

286. Theorem. "258.'' When a body is

retained in any curve by its attachment to

a thread, or descends along any perfectly

smooth surface of continued curvature, its

velocity is the same, at the same height, as if

it fell freely.

Since the velocity is the same at A, whe- c

ther the body has descended an equal vertical

distance from B or from C, it will proceed

in A D with the same velocity in both cases, provided that

no motion be lost in the change of its direction, and

therefore its velocity will be the same, after passing any

number of surfaces, as if it had fallen perpendicularly from

the same height.^ But where the curvature is continued,

no velocity is lost in the change of direction ; for let A B
be the thread, or its evolved portion, the body B, if no

longer actuated by gravity, would proceed in the

circular arc with uniform motion (263); conse-

quently no velocity is destroyed by the resistance

of the thread, nor by that of the surface BC, ^
which can only act in the same direction, per-

pendicular to the direction of the moving body.

L 2
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Scholium. We may easily show, by an experiment

on a suspended ball, that its velocity is the same, when it

descends from the same height, whatever may be the form

of its path; and this we prove by observing the height to

which it rises on the opposite side of the lowest point,

whether in the same curve, or in different ones. We may
alter the form of its path both in descending and in ascend-

ing, by placing pins at different points, so as to interfere with

the thread that supports the ball, and to form, in succes-

sion, temporary centres of motion ; and we shall find, in

all cases, that the body

ascends to aheightequal

to that from which it has

^D descended, with a small

deduction on account of

friction. Thus, the same

ball, descending from equal heights at A, B, or C, by

different paths, will rise to the same height at D on the

opposite side of E, and the reverse.

287. Theorem. " 259/' If a body be

suspended by a thread Vjetween two cycloi-

dal cheeks, it will describe an equal cycloid

by the evolution of the thread (208) ; and the

time of descent will be equal, in whatever part

of the curve the motion may begin, and will be

to the time of falling through one half of the

length of the thread, as half the circumference

of a circle is to its diameter : and the space

described in the cycloid will be always equal
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to the verse sine of an arc which increases

uniformly.

For since the acceleraliDg force, in the

direction of the curve, is always to the

force of gravity as AB to BC, or as BC f.

to the constant quantity BD, it yarics as \
BC, or as its double, CE, the arc to be

described, and CE being called s, the force

dz
g — must vary as « (208). If therefore any two arcs be
as

supposed to be equally divided into an equal number of

evanescent spaces, the force will be every where as the

space to be described ; and it may be considered, for each

space, as equable, and the increments of the times, and

consequently the whole times, will be equal. Supposing

the generating circle to move uniformly, the velocity of

the describing point C will always be as CD (209), or

since AD : CD:: CD : BD, and CD = V(AD.BD) as

i/AD,- but the velocity of a body falling in DA, or

descending in FC, varies in the same ratio (232, 230,

286) ; therefore if the velocity at E be equal to that which

a body acquires by falling through GE, the describing

point C will always coincide with the place of a heavy

body descending in FCE ; and the velocity of the point

of contact D is half that of C at E (209), it would there-

fore describe a space equal to GE in the time that a body

would fall through GE, and will describe FG in a time

which is to that time as FG to GE, or as half the circum-

ference of a circle to its diameter, and this will be the

time of descent in a cycloidal arc. And since FC=:2DB
—2BC, FC is equal to the verse sine of the angle CBD,
t© the radius 2BD : but the angle CAD increasing uni-
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formly, its half CBD must also increase uniformly. And

if the motion begin at any other point of the curve, it

follows, from the former part of the demonstration, that

the velocity will be in a constant ratio to the velocity in

similar points of the whole cycloid. It is also obvious

that the arc of ascent will be equal to the arc of descent,

and described in an equal time, supposing the motion

without friction.

288. Theorem. "260.'' The times of

vibration of different cycloidal pendulums

are as the square roots of their lengths.

For the times of falling through half their lengths are in

the ratio of the square roots of these halves, or of the

wholes.

Scholium. Major Kater has ascertained, by a great

number of very accurate experiments, performed with an

apparatus of his own invention, that the length of the

pendulum vibrating in a second in London, on the level of

the Thames, and in a vacuum, is 39*14 inches, very nearly.

Hence the time of falling through 19*57 inches will be

V— , and the space described in a second 19*57 x cr*. Now
TT

Log 31415922= -9943 and Log 19*57=1*2916,* their sum

2-2859 is the logarithm of 193*15 inches, or 16*096 feet,

the space described by a heavy body in the first second of

its descent. More accurately the numbers are 39.1387

and 16.095.

289. Theorem. " 26i" The cycloid is

the curve of swiftest descent between any two

points not in the same vertical line.
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Let AB and CD be Iwo parallel verti- G a Ejq,

cal ordinates at a constant evanescent

distance, in any part of the curve of B

swiftest descent, and let a third, EF, be

interposed, which is always in length an arithmetical mean

between them, and which, as it approaches more or less to

AB, will vary the curvature of the element BFD. Call

AB, a, EF, 6; 6—a, c; AE, u; and EC, v: then BF=
>/(m"+ c«), and since CD-EF=EF-AB, FDzi VCv^^
c^). But the velocities at B and F are as V« and »yh,

and the elements BF, FD being supposed to be described

with their velocities, the time of describing BD is V

f
J

-f- s/l—7— J ; which must be a mmimum, audits

2udu 2i;di;

fluxion must vanish : or^ ,, c rT-f-,-^ ,,, ^ TT
2V(a^WM+ccp 2>^(h^vv+ cci)

=0; but since AC, or tz+r, is constant, dw+ drizO, or

dwiz— du; therefore — r =: —j—; -.

>s/ a s/ {uu -^ cc) ^/ s/ {vv -\- cc)

Let the variable absciss GA be now called or, the ordinate

AB, y, and the arc GB,z, then u and v are increments of

X, and BF and FD of z, when y becomes equal to a and h

respectively ; we have, therefore, -r, the same in both

cases, so that it may be called -, and-, or -r-=—^. Now
a s dz a

in the cycloid the chord of the generating circle must be

always a mean proportional between the verse sine y and

the radius, since, in article 287, CDiz VCAD.BD) and the

arc z being perpendicular to that chord, its fluxion, by

similar triangles, is to that of the absciss a?, as the diameter

to s/y : therefore the cycloid answers the condition in

every part, and consequently in the whole curve.
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Scholium 1. The demonstration implies that the ori*

gin of the curve must coincide with the uppermost given

point : now only one cycloid can fulfil this condition and

pass through the other point, and it will often happen that

the curve must descend below the second point, and rise

again.

Scholium 2. The method of independent variations

may be applied with great elegance and simplicity to pro-

blems of this kind, although it has too commonly been made

complicated and perplexed by unnecessary abstraction.

An example of its application has already occurred in the

investigation of the properties o(fods (266), but it will not

be superfluous to enter into some further illustration of

the method on this occasion.

Let it be required, for example, to determine the equa-

tion of the line which gives the shortest distance between

two points, from the property of maximums and mini-

mums which are unaltered by any slight variation of their

elements. We have, therefore, S«=iO; but dsizjd^s, the

characteristicy^relating to the fluxional variation expressed

by d ; and J^d^s:=zfMs (265), Now, x and y being the

prdinates, and s the curve, we have ds^zzdjr^+ dy^, and

8d5-- J

—

-—-; and, for the sake of simplicity, we

may make 3da:=0, supposing the curve to pass into a

neighbouring form by the variation of dy only : we have,

then, 8d5=:-T^ 8dy, of which we must find the fluent. Now

quently/^dszi^^y—:/d -~ ^y^i^s. This expression im-

plies, when geometrically considered, that the variation of
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the length of the curve, ^s, is expressed by the variation

of the ordinate y at any given point, reduced to the direc-

tion of the curve, and lessened by the length of a minute

curve of equal angular extent to the curve in question,

and of which the radius of curvature is equal to the varia-

tion Sy reduced to a direction perpendicular to the curve.

Now, in order to determine the shortest distance, we must

put §5=0, and -—^y^f^ -r- ^V- ^^^ at the beginning
d^ d*

and at the end of the line in question Sy must be =0, both

the points being fixed ; consequently the fluentyd ^ dj/

=0, which can only happen when d t^=0, since ^y is not

=0, and the fluent cannot have different values, destroying

each other, in different parts of the line, because the value

must vanish equally for all parts of the line, which must be

always the shortest distance between their extremities:

d?/
and the sine of the inclination -r^ being constant, the curve

d*

must become a right Hne.

In the case of the present problem, we have Ozz^tzz

simplify by making SdyziO and SyizO, confining the varia-

tion to dx, according to the spirit of the preceding de-

monstration of the theorem; consequently mtzz.—
d^=

—

—T- d^or; and comparing this equation with the

dy
-7- ddy of the former example, we have in a similar manner
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^t=f--^dlv=-^ lv~-d--^ ^x = 0. Hence
-^ a^yaz a^ydz as/yaz

i\x dx
Sazzcl—

-—J- Zxf which vanishing for the whole
a>s/y(iz Qs/ydz

curve and for all its parts, as d -p was shown to vanish

do?
before, it follows that^—7~P must be a constant quantity ;

which is the property of the cycloid.

290. Theorem. " 262/' The time of

vibration of a simple circular pendulum, in

a small arc, is ultimately the same as that of

a cycloidal pendulum of the same length ;

" but in larger arcs the times are greater/'

(280).

In small cycloidal arcs the radius of curvature is very

nearly constant ; but at greater distances from the lowest

point, the circular arc falls without the cycloidal, andis less

inclined to the horizon, so that the force is smaller, and

consequently the velocity is smaller.

291. Theorem. '5.265.'' If a body sus-

pended by a thread revolve freely round

the vertical line, the times of revolution will

be the same, when the height of the point of

suspension above the plane of revolution is

the same, whatever be the length of the

thread.

For, by the resolution of forces, the force urging the body

towards the vertical line is to that of gravity as the dis-
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tance from that line to the vertical height ; the other part

of the force being counteracted by the tension of the

thread ; and when the forces are as the distances, the times

must be equal. (261).

Scholium. Thus, if a number of balls are fixed to

threads, or rather wires, connected to the same point of

an axis, which is made to revolve by means of the whirling

table, they will so arrange themselves, as to remain very

nearly in the same horizontal plane.

292. Theorem. " 264.'' The time of a

revolution of a body, suspended by a thread,

is equal to the time occupied by a cycloidal

pendulum, of which the length is equal to the

height of the point of suspension above the

plane ofrevolution, in vibrating once forwards

and once backwards to the point at which its

motion began; and if the revolutions be

small, and the thread nearly vertical, they

will be very nearly isochronous, whatever be

their extent.
J^

For, supposing the distance to be equal to the height,

the centrifugal force will be equal to the force of gravity,

and while the body describes a distance equal to the

radius, another body, actuated by the same force, would

describe half that radius, (259) and the whole time of

revolution is, therefore, to this time, as the circumference

to the radius, and is consequently equal to the time of

four semivibrations of a cycloidal pendulum, of which the

length is equal to the given height (287). And since the
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time varies, in the same revolving pendulum, only as the

square root of the cosine of the angle of inclination, it will

be nearly constant for all small revolutions.

Scholium. The near approach of these revolutions

to isochronism has sometimes been applied to the measure-

ment of time, but more frequently, and more successfully,

to the regulation of the motions of machines. Thus, in

Mr. Watt's steam engines, two balls are fixed at the

ends of rods in continual revolution, and as soon as the

motion becomes a little too rapid, the balls rise consider-

ably, and turn a cock, which regulates the quantity of

of steam admitted.

293. Theorem. " 265.'' The vibrations

of a cycloidal pendulum will be performed in

the same time, whether they be without re-

sistance, or retarded by a uniform force.

Let the relative force of
n

gravity, at the distance AB in

XE—.—H_—_ the curve from its lowest point,

be always represented by the

ordinate AC ; then CB will be

a right line : now the resistance may always be represented

ty the equal ordinates AD, BE ; and DC will express the

remaining force, which becomes neutral at F, and then

negative : therefore the force is always the same, at equal

distances on each side of F, as in the simple pendulum on

each side of B, and the vibration will be perfectly similar

to the vibration of the simple pendulum in a smaller arc,

but it will extend only to G, where the ordinate HI is

equal to DC, and FHzi FD. In the return of the body

from G, the neutral point will be determined by the inter-

ISE
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section of KL, parallel to AB, and as much below it, as

DE was above it ; this vibration will terminate in a point

as far on one side of K as I is on the other : so thatrthe

extent of each vibration will be less than that of the pre-

ceding one, by twice the length of FE, until the whole

force is exhausted, the time of each complete vibration

remaining unaltered.

294. Theorem. "A." (Nich. Journ. 1813.)

If the point of suspension (A) of a pendulum

(AB) be made to vibrate in a regular manner,

that is, according to the law of cycloidal vibra-

tions, the pendulum itself may also vibrate

regularly in the same time, provided that the

extent of its vibrations (BC) be to that of

the vibrations of the point of suspension (AD)
as the length of the thread (AE) supposed to

carry this point as a pendulum, is to the dif-

ference of the lengths of the two threads.

In representing the vibrations, we may
j;

disregard the curvature of the paths, ji

considering them as of evanescent ex-

tent, the forces being however still sup-

posed to depend on the inclination of the

threads, which must be exaggerated in

the figures employed. Let F be the in-

tersection of AB with the vertical line

EF; then, upon the conditions of the

theorem, BF will be equal to AE ; that

is, if BC : AD=AE : AEco AB, since b
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by similar triangles BC : ADzzBF : BFco

AB, it follows that AE=:BF. Consequently

the inclination of the thread AB will always

be the same as if F were its fixed point of

suspension, and the body B will begin and

continue its vibrations like a simple pendu-

lum attached to that point, the true point

of suspension accompanying it with a pro-

portional velocity, so as to be always in the

right line passing through it and through F.

It is obvious, that when the thread supposed

to suspend the moveable point of suspension is the longer

of the two, the vibrations will be in the same direction

;

when the shorter, in contrary directions.

Scholium 1. The truth of this proposition may

easily be illustrated, by holding any pendulous body in the

hand, and causing it to vibrate more or less rapidly, by

moving the hand regularly backwards or forwards, in a

longer or in a shorter time than that of the spontaneous

vibrations.

Scholium. 2. The same mode of reasoning is appli-

cable to oscillations of any other kinds, which are governed

by forces proportional to the distances of the bodies

concerned, from a point of which the situation, either in a

quiescent space, or with respect to another moveable

point, varies according to the law of the cycloidal pendu-

lum, or may be expressed by the sines of arcs varying

with the time: such forces always producing periodical

variations, of which the extent is to that of the excursions

of the supposed point of suspension in the ratio of n to

w— 1, n being to 1 as the square of the time of the forced

to that of tlie time of the spontaneous vibration; and
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and when n—1 is negative, the displacement being in a

direction opposite to that of* the supposed point of sus-

pension. Consequently, when a body is performing ojicil-

lations by the operation of any force, and is subjected to

the action of any other periodical forces, we have only to

inquire at what distance a moveable point must be situated

before or behind it, in order to represent the actual mag-

nitude of the periodical force by the relative situation,

according to the law of the primary force concerned, and

to find an expression for this distance in terms of the sines

of arcs increasing equably, in order to obtain the situation

and velocity of the body at any time, provided that we

suppose it to have attained a permanent state of vibration.

Scholium 3. We may easily express this reasoning in

a form more strictly algebraical : thus the time, with respect

to the forced vibration of the centre of suspension, being

called t, the place of the vertical line passing through that

point will be indicated by sinf, supposing t to begin from

the middle of a vibration: now the force acting on the

moving body will always be as its distance from this

moveable vertical line, considered with relation to the

length of the true pendulum m ; that is, it will be expressed

5——sin t
by/= , the unit ofw being the length of the imagi-

narjTpendulum carrying the point of suspension, since when

5=0 and sin t— 1, the force must be=il orizo-. Now we

may satisfy this equation by the particular solution s—sin t

= a sin t, which represents a vibration either correspond-

ing in its direction with the former, or in an opposite

direction, accordingly as a is positive or negative ; and s,

the space actually described, will be the sum or difference

of the spaces belonging to the separate vibrations so
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combined: then since vzz—ffdit, and s =fvdt, we have

vzz.—/ d^ =— cos < 4- c, and 5=—sm ^ + cf =: a
^ m m m

sm f + sin f, and c=0,— = a +m
l,a= 1: (--l)=

m .„ 1 1 , „
or II n-=.— , 7, as before.

Scholium 4. If the oscillating body be initially in

any otlier condition, its subsequent motion may be deter-

mined, by considering it as peribrming a secondary vibra-

tion with respect to a point vibrating in the manner here

supposed, which will consequently represent its mean

place ; but if there be no resistance, the body will have

no tendency to assume the form of a regular simple vibra-

tion, rather than any other. Supposing, for example, that

the point had been initially at rest in the middle vertical line,

when the centre of suspension passed that line ; it will then

agree in situation with the point representing its mean

place, but not in velocity ; and it will return to its mean

place after every interval equal to a complete single spon-

taneous vibration of the true pendulum ; and when this

coincidence happens in the middle vertical Hne as at first,

the whole cycle of motions will begin again, after a period

depending on the comparative lengths of the supposed

pendulums : and at some intermediate time the coincidence

will in most cases occur near the extremity of the vibra-

tion representing the mean place, and the excursion will

be much greater than that of this vibration, while at ano-

ther part of the cycle it may be almost obliterated. Such

a succession of cycles may be often observed in the actual

vibrations of elastic bodies of irregular forms, the excur-

sions being alternately greater and smaller without any

interference of external causes.
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Scholium 5. A more general apalytical solution of

the problem may be obtained by making szzh sinf + c sin

(el-i-h) whence v:=z--fj^dt=.-^jn^ (^—1) sin * + c sin {et

4-A) >d^zz«< (6—1) cos f 4--- cos (et^h) J 4-2, since dcos

(e^ + /0=:— sin(e^-|-/i) ed^; and s^ifvdtzzn^ {b—l) sin i

+— sin (ef-hh) ? -{-it -^kzzb sin t + c sin(e*+ A); whence
ee J

nc o
n(b—1)=:6, — =:c, 2=0 and ^=0; consequently w=£—r-

ee —1,

1 n
and 6= -, — izl, and c= Vn, h and c remaining alto-

n—1 ee

gether undetermined. We may, therefore, accommodate

this expression to any relative values of the supposed vi-

brations, or of the forces belonging to them, and to any

K conditions ofmotion or rest in the initial state ofthe moving

body. Thus, ifwe suppose it initially at rest, so that 5=0
and v=0 when f=0, the length n being given, we have

5=6 sin t-\-c sin (ef + ^)=0, and consequently A=0, and

C C C M-

«=?w (6—1) cos t-j--- cos c*=6 + -=0, and -=—6=
e e e n—

1

,
—« s/n J ,

sin^ . Jn
whence c= ;= , and we have szz • + -—- sm

n—1 1

—

71 n—1 n—

1

295. Theorem. " B/' If the resistance

be simply proportional to the velocity, a pen-

dulum with a vibrating point of suspension

may perform regular vibrations, isochronous

with those of the point of suspension, provided

M
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that, at the middle of a vibration, the point of

suspension (A) be so situated, as to cause a

propelling force equal to the actual resist-

ance, the extent of the vibrations being re-

duced, in the ratio of the whole excursion of

the point of suspension (BC) to its distance

from the middle, at the beginning of the mo-

tion of the pendulous body (DC) : and it will

ultimately acquire this mode of vibration,

whatever may have been its initial condition.

Let FG be the supposed length of the thread carrying

the point of suspension, and draw FE passing through D
instead of B ; then ifHC,r2EG, be the extent of the vibra-

tion, it will be maintained according to the law of the

cycloidal pendulum. Draw the concentric circles BI,

DK, HL : then the initial force may be represented by

HD, which determines

the greatest inclination of

the thread; and at any

subsequent part of the

vibration, if the point of

suspension be advanced

from D to M, the time

elapsed will be expressed

by the arc IN, DI and

MN being perpendicular

to AB, and taking HL
similar to IN, the per-

pendicular LP will show

the place ofthe pendulous

/ /

1

1

5

// \
1 B my Q C M M '

/ \

% (Jf i
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body, and PM the

force, which may be di-

vided or resolved into

two parts, PQ and

QM. But PQ is to

LK, or HD, as PC to

LC, or HC; conse-

quently this part ofthe

force will always be

employedin generating

the regular velocity;

and QM is equal to

KR, which is the sine

of the angle KNR or BCL to the radius KN=;DI=AC,
each of these lines being equal to the sine ofBI ; the lineQM
therefore varies as the velocity, and will always be equiva-

lent to the friction, provided that it be once equivalent to

it, as it is supposed to be at A ; the ratio of the forces con-

cerned, in any two succeeding instants, being always such

as to maintain a regular vibration.

If the pendulum be initially in any other situation than

that which is here supposed, its subsequent motion may be

determined by comparison with that of a point so vibrating,

and its progress may be estimated, with tolerable accuracy,

while this deviation exists, by supposing it to perforin

small vibrations with respect to its mean place, in which

the immediate effect of resistance may be neglected : but

since these vibrations are not supported by any new sus-

taining force, they will evidently be rendered by degrees

smaller and smaller, so that the pendulum will ultimately

approach infinitely near to the regular state of vibration

here described, which may, therefore, be considered aS

affording a stable equilibrium cf motion.

M 2
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Scholium 1. Supposing the relation of the resistance

to the velocity to be altered, the relation of the sine AC to

the cosine CD must be similarly altered, the force equiva-

lent to the resistance varying* as the sine, and the extent

of the vibrations, and consequently the velocity, a* the co-

sine of the displacement BI : but the relation of the sine

to the cosine is that of the tangent to the radius : so that

the tangent of the displacement will be as the mean resist-

ance : and the sine of the displacement, AC, is to the ra-

dius BC, as the greatest resistance is to the greatest force

which would operate on the pendulous body if it remained

at rest at G: the displacement at the extremity of the

vibration having the same angular measure, but becoming,

with respect to the place of the body, the verse sine only,

instead of the sine.

Scholium 2. It is obvious, from the figures, that the

body G will always be behind the place S, which it would

have occupied without the resistance, when the vibration is

direct, but before it when inverted.

Scholium 3. When the resistance is very small, a

simple pendulum with a similar resistance may be conceived

to vibrate nearly in a similar manner: and if we neglect the

diminution of the velocity in the consideration of the re-

sistance, and call rzzmv=.m cos t, we have vz:z-—/fdtzz

--y(sin t-j-m cos t)dt=zcos t—m sin t, and szufodt—sm t

-\-m cos t —a:=z ^(X-^-wF) sin (# + &)

—

a, h being the angle

of which the tangent is m (216), and a=:>/(l+i»2) sin 6=:

k/CV-^-mP)—

;

zzm, consequently s=. ^/iX-^-w?) sin

it-^h)—7», which implies a vibration observing the period

of t, but beginning at ^ point at the distance h further back

in the circle, so that the time of ascent will be diminished

and that of djescent increased very nearly in an equal de-
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gree, as may be inferred from Laplace's formula (282) tang

yr= -^,whence cotyT=^r-, y^beiDgl —; and ultimately
m 2y 4

cot T= -jr- : the value of m in this scholium being equal to

—of article 282, since here the greatest velocity in the

pendulum, due to a height equal to half its length, is made

the unit of v and of r, instead of a more direct comparison

with the value of g the force of gravity. ]



CHAPTER III.

OF THE EQUILIBRIUM OF A SYSTEM OF

BODIES.

§. 13. [Introduction]. Conditions of the equilibrium

of two systems ofpoints, meeting each other, with veloci-

ties directly contrary. Definition of the quantity of mo-

tion, and of similar moveable points. P. 36.

[296. Definition. " 9^66'' A moveable

body is to be imagined as a point, composed

of single points or particles equally moveable,

which, as they differ in number, constitute the

proportionally different mass or bulk of the

body.

297. Definition. " 267.'' A reciprocal

action between two bodies is an action which

affects the single particles of both equally,

increasing or diminishing their distance.

298. Definition. " 268.'' The centre

of inertia of two bodies is that point, in the

right line joining them, which divides it reci-

procally in the ratio of their magnitudes.
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299. Theorem. " 269." The centre of

inertia of two bodies, initially at rest in any

space, remains at rest, notwithstanding^ any

reciprocal action of the bodies.

Suppose the bodies equal^ ^
and consisting each of a single .

[

particle, then it is obvious that

both will be equally moved by

any reciprocal action, and the centre of inertia will still

bisect their distance (217). Again, let one body A be

double the other B, and suppose A to be divided into two

points placed very near each other, as C, D. Join BC,

BD, take any equal distances CE, DF, BG, BH, and

they will represent the mutual actions of B on C and D,

and of C and D on B, and the motions produced by these

equal actions; complete the parallelogram BGIH, and

the diagonal BI will be the joint result of the motions ofB;

which, when C and D coincide in A and K, becomes

equal to 2BG, 2CE, or 2AK; but L being the centre of

inertia, BL=:2AL (298) therefore IL remains equal to

2KL (15), and L is still the centre of inertia. And in the

same manner the theorem may be proved when the bodies

are in any other proportion.

Scholium. This important theorem is capable of an

easy experimental illustration; iirst observing, that all

known forces are reciprocal, and among the rest the action

of a spring : we place two unequal bodies so as to be

separated when a spring is set at liberty, and we find that

they describe, in any given interval of time, distances

which are inversely as their weights ; and that consequently

the place of the centre of inertia remains unaltered. They
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may either be made to float on water, or may be suspended

by long threads: the spHng may be detached by burning

a thread that confines it, and it may be observed whether

or no they strike at the same instant two obstacles, placed

at such distances as the theory requires ; or, if they are

suspended as pendulums, the arcs which they describe may

be measured, the velocities being always nearly propor-

tional to these arcs, and accurately so to the chords, which

are as the square roots of the verse sines, representing the

heights of ascent.

300. Definition. '''270.'' The joint

ratio of the masses and velocities of any two

bodies is the ratio of their momenta.

301. Theorem. ''271." The momentum
of any body is the true measure of the quan-

tity of its motion.

For the same reciprocal action produces in a double

body half the velocity, the common centre of inertia remain-

ing at rest ; and, the cause being the same, the effects

must be considered as equal: and when the reciprocal

force varies, the velocity of both bodies varies in the same

ratio.

Scholium 1. We may also demonstrate experi-

mentally, by means of Mr. Atwood's machine, that the

same momentum is generated, in a given time, by the same

preponderating force, whatever may be the quantity of

matter moved. Thus if the preponderating weight be

one sixteenth of the whole weight of the boxes, it will fall

one foot in a second, instead of 16, and a velocity of two

feet will be acquired by the whole mass, instead of a
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velocity of 32 feet, which the preponderating weight alone

would have acquired. And when we compare the centri-

fugal forces of bodies revolving in the same time, at

different distances from the centre of motion, we find that

a greater quantity of matter compensates for a smaller

force ; so that two balls, connected by a wire, with liberty

to slide either way, will retain each other in their respective

situations, when their common centre of inertia coincides

with the centre of motion; the centrifugal force of each

particle of the one being as much greater than that of an

equal particle of the other, as its weight, or the number of

the particles, is smaller.

302. Scholium 2, A.] The simplest case of the

equilibrium of several bodies is that of two material points

meeting each other with equal and directly contrary velo-

cities ; their mutual impenetrability must evidently annihi-

late their motion, and reduce them to a state of rest.

[B.] Let us now suppose a number m of contiguous

material points, arranged in a right line, and moving in its

direction with the velocity m: and again another number

mf of contiguous points, disposed in the same line, and

moving with the velocity u^ in a contrary direction, so that

the two systems meet each other; there must exist a

relation between u and u\ such that the systems may both

remain at rest after the shock.

[C] In order to determine this condition, we may

observe that the system m, moving with the velocity u,

would destroy the motion of a single point, moving with

the velocity mu, for every point in the system would

destroy, in this last point, a velocity equal to u, and conse-

quently the m points would destroy the whole velocity mu:

we may therefore substitute for this system a single point,
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moving with the velocity mu. In the same manner we

may substitute for the system m! a single point moving

with the velocity mV: but the two systems being supposed

capable of destroying each other's motion, the two points,

possessing respectively equal quantities of motion, must

remain at rest after meeting, consequently their velocities

must be equal (A); we have therefore, for the condition of

the equilibrium of the two systems, 7/iMzzwV.

[D.] The mass of a body consists in the number of its

material points, and the product of the mass by the velocity

is called the quantity of motion of a body: and this product

is also [sometimes] considered as the force of a body in

motion. In order that two bodies meeting may destroy

each other's motion, the quantities of motion in opposite

directions must be equal, and consequently the velocities

must be inversely as the masses.

[E.] The density of a body depends on the number of

material points which it contains within a given volume or

bulk. In order to ascertain its absolute density, it would

be necessary to compare it with a body having no pores

:

but since we know of no such body, we can only compare

any given substance with some other as a standard with

respect to density. It is obvious that the mass of a body

is in the joint proportion of the volume and the density,

so that calling the mass M, the bulk C7, and the'density 1>,

we have in general M=:DU; the quantities 31, D, and U,

relating to different units, each of its own species.

[F.] In this reasoning we suppose that bodies are formed

of similar material points, and that they only differ in the

relative situation of the atoms composing them. But the

intimate nature of matter being unknown, this assumption

is at least hypothetical, and it is perfectly possible that
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there may be a difference in the elementary particles of

matter. Fortunatelj', however, the truth of the hypothesis

is of no consequence to the science of mechanics, and we

may adopt it without any danger of error, provided that,

by similar material points, we understand points, which,

when they meet wi*h equal velocities, destroy each other's

motion, whatever their nature may be.

§. 14. Of tha reciprocal action of material points.

Reaction is always equal and contrary to action. Equa-

tion of the equilibrium of a system of bodies, giving the

law of virtual velocities. Method of determining the

pressure of bodies on the surfaces or the curves to which

they are confined. P. 37.

303. Theorem. Action and reaction are

always equal and contrary.

Two material points, of which the masses are m and ?»', %

can only act on each other in the direction of the right

line joining them. If, indeed, they are united by a thread

passing over a pulley, their reciprocal action may be other-

wise directed : but in this case the fixed pulley may be

considered as having at its centre a body of infinite den-

sity, which reacts on the two bodies m and m\ so as to

make their mutual action indirect only.

If the action of m on m', exerted by means of an in-

flexible line, without inertia, uniting them, be called p,

and if it be met by a contrary force, expressed by —p,
this force will destroy in the body m a force equal to p,

and the force p in the right line will be communicated

entirely to m. This loss of force in m, occasioned by its

action on in, is called the reaction of m' ; so that, in the
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communication of motion, *' reaction is always equal and

contrary to action." And it is found by observation that

this principle holds good with respect to all forces in

nature.

[Scholium 1. All the forces in nature, with which we

are acquainted, act reciprocally between different masses

of matter, so that any two bodies, repelling or attracting

each other, are made to recede or approach with equal

momenta. This circumstance is generally expressed by

the third law of motion, that action and reaction are equal.

There would be something peculiar, and almost inconceiv-

able, in a force which could affect unequally the similar

particles of matter ; or in the particles themselves, if they

could be possessed of such different degrees of mobility,

as to be equally moveable with respect to one force, and

unequally with respect to another. For instance, a

magnet and a piece of iron, each weighing a pound, will

i remain in equilibrium when their weights are opposed to

each other by means of a balance ; they will be separated

with equal velocities, if impelled by the unbending of a

spring placed between them ; and it is difficult to conceive

that they could approach each other with unequal veloci-

ties in consequence of magnetic attraction, or of any other

natural force. The reciprocality of force is, therefore, a

necessary law in the mathematical consideration of mecha-

nics, and it is also perfectly warranted by experience.

The contrary supposition is so highly improbable, that the

principle may almost as justly be termed a necessary axiom,

as a phenomenon collected from observation.

Scholium 2. Sir Isaac Newton observes, in his third

law of motion, that " reaction is always contrary and equal

to action, or, that the mutual actions of two bodies are
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always equal, and directed contrary ways." He proceeds,

** if any body draws or presses another, it is itself as much

drawn or pressed. If any one presses a stone with his

finger, his finger is also pressed by the stone. If a horse

is drawing a weight tied to a rope, the horse is also equally

drawn backwards towards the weight ; for the rope, being

distended throughout its length, will, in the same en-

deavour to contract, urge the horse towards the weight,

and the weight towards the horse, and will impede the pro-

gress of the one as much as it promotes the advance of

the other." Now, although Newton has always appUed

this law in the most unexceptionable manner, yet it must

be confessed that the illustrations here quoted are clothed

in such language as to have too much the appearance of

paradox* When we say that a thing presses another, we

commonly mean, that the thing pressing has a tendency to

move forwards into the place of the thing pressed : but the

stone would not sensibly advance into the place of the

finger, if it were removed ; and in the same manner we

understand, that a thing pulling another has a tendency

to recede further from the thing pulled, and to draw this

after it : but it is obvious that the weight, which the horse

is drawing, would not return towards its first situation,

with the horse in its train, although the exertion of the

horse should entirely cease ; in these senses, therefore, we

cannot say, that the stone presses, or that the weight

pulls ; and we have no reason to offend the natural pre-

judices of a beginner, by introducing paradoxical expres-

sions without necessity. Yet it is true in both cases, that

if all friction, and all connexion with the surrounding

bodies, could be instantaneously destroyed, the point of

the finger and the stone would recede from each other,
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and the horse and the weight would approach each other,

with equal quantities of motion. And this is what we
mean by the reciprocality of forces, or the equality of

action and reaction.

304. Theorem. " 285.'' If two gravi-

tating bodies be suspended at constant dis-

tances from each other and from a given

point, they vfill be at rest when their centre of

inertia is in the vertical line passing through

the point of suspension : and the equilibrium

will be stable when the centre of inertia would

ascend in quitting the vertical line, tottering

when it would descend, and neutral when it

cannot quit it.

jy
Suppose the bodies A and B, of which

x^^^^nX C is the centre of inertia, to be sus-

C'~"-^\ pended from D by the threads AD, BD,

B and to be retained at the distance AB by

the rod AB, and let C be in the vertical line DC. Let the

force of gravity be represented by DC, then AD will

represent the action of the thread, and AC the pressure

exerted by A on any obstacle at C (241); and in the same

manner BC will represent the pressure of B in the

direction BC, supposing the weights A and B equal, and

each represented by DC ; but since they are unequal, the

ratio of their masses must be compounded with that of

the relative forces, and A.AC will represent the actual

force of A, and B.BC that of B ; but these products, by

the supposition, are equal, since A : B=;BC : AC (298);
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therefore the pressures are equal, and the bodies will

remain in equilibrium. If now the centre of inertia

ascended towards either weight, as A, the segment AC,

which determines the action of A, would be increased,

and BC lessened; therefore the weight of A would pre-

vail, and the centre would return to the vertical line. But,

supposing C above D, the rod and threads must change

places, and the same demonstration will hold good; and

since in this case the weights pull against each other, the

prevalence of A, if the centre of inertia descended

towards its place, would draw it still further from the

vertical line, and the equiUbrium would be lost.

Now the magnitude of the . _^_J?-
distance of C above or below , c
^ . ^ , A D B
JJ is 01 uo consequence to the C
existence of the equilibrium; therefore when that dis-

tance vanishes, and the thread and rod are united into one

inflexible right line or lever, those points will coincide, and

there will still be an equilibrium ; which may properly be

termed neutral, since no change of the position of the

bodies will create a tendency either to return to their

places, or to proceed further from them. But the case

of an inflexible right line is perfectly out of the reach of

experiment, since the strength, necessary for the inflexi-

bility of a mathematical line, becomes infinite, and that, in

an infinitely small quantity of matter.

Scholium. The demonstrations of the fundamental

property of the lever have been very various. Archimedes

himself has given us two. Huygens, Newton, Maclaurin,

Dr. Hamilton, and Mr. Vince, have elucidated the same

subject by different methods of considering it. The

demonstration of Archimedes, as improved by Mr. Vince,
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is ingenious and elegant; but it is neither so general and

natural as one of Dr. Hamilton's, which is here adopted,

nor so simple and convincing as Maclaurin's, which it may
also be worth our while to notice. Supposing two equal

weights, of an ounce each, to be fixed at the ends of the

equal arms of a lever; in this case it is obvious that there

will be an equilibrium, since there is no reason why either

weight should preponderate. It is also evident, that the

fulcrum supports the whole weight of two ounces, neg-

lecting that of the lever; consequently we may substitute

for the fulcrum a force equivalent to two ounces, drawing

the lever upwards ; and instead of one of the weights, we

may place the end of the lever under a firm obstacle, and

this equilibrium will still remain, the lever being now of

the description which is called the second kind, the fixed

point being at one end. Here, therefore, the weight re-

maining at the other end of the lever counterbalances a

force of two ounces, acting at half the distance from the

new fulcrum ; and we may substitute for this force a

weight of two ounces, acting at an equal distance on the

other side of that fulcrum, supposing the lever to be suf-

ficiently lengthened ; and there will still be an equilibrium.

In this case the fulcrum will sustain a weight of three

ounces; and we may substitute for it a force of three

ounces, acting upwards, and proceed as before. In a

similar manner the demonstration may be extended to any

commensurable proportion of the arms ; and it is easy to

show that the same law must be true of all ratios whatever,

even if they happen to be incommensurable (120, Sch.);

the forces remaining always in equilibrium, when they are

to each other inversely as the distances at which they are

applied. Lagrange, in his Mecanique Analytique, has
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entered very fully and clearly into the history of this pro-

position.

305. Theorem. If a system of bodies be

in equilibrium, the sum of the products of the

forces, acting on the several bodies, into the

infinitely small variations of their places, in the

directions of the forces, the variations being so

taken as to be subjected to the conditions of

the system, must be equal to nothing. Or, if

p be the force acting on each body, and 8/* the

variation of the place ofthe body in its direc-

tion, 0=xptf; which is the Law of virtual velo-

cities.

Let us first suppose two heavy bodies, m and w', fixed

to the extremities of a horizontal line, supposed to be in-

flexible and without weight, being at liberty to turn round

a fixed point within its length. In order to conceive the

action of these bodies on each other when they are in equi-

librium, we must suppose the right line to be infinitely little

bent at the fixed point, so as to be formed of two right

lines, making at that point an angle which differs but infi-

nitely little from two right angles ; and tbis difference we

may call «. Let f andf be the distances of m and m^

from the fixed point ; if we decompose the weight of m
into two parts, the one acting on the fixed point, in the

direction of the bent line, the other directed towards rnf,

this last will be ., , rng being the weight of the

body : [for sinceAB : sin ADB=DB : sin DAC, (P.175)
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, . T^ir- DB.sinADB /o) , ^^we have sm DAC= -,pr = 4—r-. and DC = sm

DAC.AD : but if DC represent the weight mg, AC or

AD will be the pressure in the direction AB, which will

be»i<7.-r-r: = ^—:r?rT^~ ftw- ,., .1 For the same reason the
•^ DC sin DAC J o>

action of m' on wi will be m'o*^—si-» and since these two
-^

forces must be equal, in the case of equilibrium, we shall

have mf-=zmy\ which is the well known law of the action

of a lever, and which explains how two forces, acting- in a

parallel direction, may cause reciprocal effects, and ba-

lance each other [that is, by calling into action a third

force equal to their sum, and acting in a contrary direc-

tion],

"We may next consider the equilibrium of a system of

points, 2W, m\ nf, .

.

, actuated by any number of forces,

and reacting on each other. Let /be the distance of m
from m\f' that of ?w from m'\ and/'' the distance of m'

from m'^\ \eip be the reciprocal action of m on m\ p' that

of m on 7n\ p" that of ni on m' ; and lastly, let m S, m' S\

rd' S"

,

.
.

, be the forces acting on m, m', and m" y and 5, s',

^\ the distances of any fixed points, in the directions of

those forces, from the bodies to which they belong. We
may consider the point m either as being perfectly at

liberty, but held in equiUbrium by means of its own force

mS, and the action of the other bodies m , m". .
.

, or as

subject, besides these forces, to the reaction of a surface

or a curve to which it may be confined. Now, if ^5 be the

variation of 5, and ^J that of/ taken with regard to this

variatfon only, supposing rri to be fixed ; and if 3^/' be

the variation of/', supposing m!' to be fixed ; R and R
being the reaction of the two surfaces, forming, by their
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intersection, the curve to which the motion of m is con-

fined, and r, / the lines perpendicular to these surfaces,

we shall have, from the equation 0:=.1,S^s -\- ll^r -\r B!^r

(d) (253), 0=mS^s +p^J-\-p%f + . . . + i^Sr + B!lr, In

tlie same manner m' may be considered as a point held in

equilibrium by means of the force w!S'y together with the

actions of the bodies m, m"^ . * . , and the reactions of the

surfaces, which may be called R' and R". If, then, the

variation of s be called ^s\ that of/, taken with regard to

this variation, and supposing m to be fixed, ^^J, that of

/", supposing m" fixed, 8,/", and the variations in the

directions of R' and R" be Sr ' and gr ", we shall have,

for the equilibrium of m', (^-zim'S'ls -\-p^J+p"lJ" ^- > • -

\-R'^r"^R"lr"': and the rest of the points will adord

similar variations, which we may add together, observing

that for the total variations, ?/*=3/H-3,/, ^f^^f + ^„

f'.y

.

. ; each distance being liable to two partial variations,

one at each end. We shall thus obtain

In estimating the forces acting on, each point ni, m". .
.

, it

is obvious that we may either consider any number of dif-

ferent forces separately multiplied by the respective varia-

tions of their distances, or consider the whole as combined,

for each body, into a single result, by the equation (a)

VSu=I.S^s (2^0).

If the bodies are united at fixed distances from each

other, the lines /,/',/"..., becoming constant, this con-

dition may be expressed by making §/':=: 0, §/''=0, ^f
:=0 . . . The variations of the coordinates, comprehended

in the equation (k), may be subjected to this condition, and

tlien the forces p, expressing the reciprocal actions of the

bodies, will no longer be concerned in it : we may also

N 2
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omit the terms HSr, R^r. .
.

, if we limit the variations to

the surfaces in which the bodies are compelled to move.

The equation (k) will then become

Hence it follows that, in the case of equilibrium, the

sum of the products of the forces, into the elementary va-

riations of their directions, will be equal to nothing, pro-

vided that the conditions of the connexion of the system be

observed in those variations.

It may be further shown that this theorem, which is here

demonstrated upon the supposition that the bodies are

united at invariable distances, is true in general, for all

conditions of the connexion of the different parts of the

system. In order to prove this, it will be sufficient to

show, that, observing these conditions, we have, in the

equation (^), 0=Xpdf-\-^Rdr, since it will then follow

that Swj*SS*izO also. But it is clear that Sr, Sr . . . will

necessarily vanish when the variations are confined to the

given surfaces, and we have only to show that Sp^:=0

under the same circumstances.

Let us, therefore, conceive the system to be subjected

only to the forces p, p\ p", . . . , and suppose the bodies to

be at liberty to move in obedience to them upon the given

surfaces : these forces may be resolved into others, some

of which q, q\q",,..t will act in the directions of/,/',

/",.• • 1* which will destroy each other [as the forces p in

the former supposition, in virtue of the equality of action

and reaction], without producing any motion in the curves

in question ; others 7\ T\ T'\ . . ., will be perpendicular

to the curves described ; and others again will be in the

directions of the tangents of those curves, and capable sepa-

rately of giving motion to the system : but it is easy to see
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that the sum of these last forces must be equal to nothing,

since the system is at liberty to move in the respective di-

rections, [unless each point were held at rest by equal and

opposite forces, so that the sums of the opposite forces

must be equal for all the points, and all these forces will

vanish,] producing neither pressure on the given curves,

nor reaction between the bodies, so that they may be ex-

cluded from the equation, and tlie forces ^, j)\ p" must be

in equilibrium without them, or in other words —-p, —p',

—-y, . . . together with gr, q\ q'\ . . . , must afford an equi-

librium among themselves. Now, if Se, Si', ... be the va-

riations of the lines of direction of the forces T, T', T",.„,

we shall have, from the equation {Jc)fi:=. S {q
—p) S/*+ ST3i;

but the system being supposed to remain at rest in conse-

quence of the forces gr, gr', . .
.

, without any action upon

the curves or surfaces, the equation {k) gives us also 0=
^qlfi consequently OzzSpSf— ST^z. But in the condi-

tions of the problem Si=0, Si'=:0, ..., the variations be-

ing confined to the curves, so that we have finally O^SpS/",

whence it follows, that with the conditions of the connexion

of the system, S?wiSS«=0, as before.

[Scholium. The object of the second part of the de-

monstration is to prove that if^, p', p"y . .
.
, represent not

the reciprocal actions, but the total forces exerted on each

body, exclusive of the pressure of the surfaces, these

forces may be decomposed so as to aflPord forces equivalent

to the reciprocal actions of the respective bodies, and that

the remaining portions of the forces, as well as these reci-

procal actions, will balance each other, in the case of equi-

librium, according to the terms of the proposition].

306. Corollary. The converse of this

proposition is equally true, and whenever the
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law of virtual velocities is observed, the sys-

tem must remain in equilibrium.

For if it were otherwise, and the points ?w, m', . .
. , ac-

quired the increments of velocity ^^ V)\ . .
.

, while ^mSZs

remained=0, the system would be held in equilibrium by

the forces mSy 7iiS\ diminished by the forces expended on

the velocities, which may be called mv, m'v\ . . . [making

the increment of time unity] ; and if we call the variations

in the directions of these forces ^v, Su , . . . , we shall have,

by the proposition, (}z=.'2mS^s—^mv^v. and since ^mS^s

=zO, we have also Ozz^viv^v. But as the variations ^v,

^v', must be subject to the conditions of the system, we

may suppose them equal to vdt, or to v, and we have then

OzzSmt;^, which can only happen when v=:0, v'—O,,..

since all squares are positive : it follows, therefore, that the

system must remain at rest in consequence of the forces

niS, m'S', ... , alone.

Scholium. The conditions of the connexion of the

different parts of a system with each other may always be

reduced to equations between the coordinates of the diffe-

rent bodies concerned. Suppose these equations to be

w— 0, m'zzO, u"=.0, we may alwa3S add to the equation

O—'^iiiS^s (I) the quantity SaSm, the functions aSm, ?^'^u\,..

of which it is the sum, being dependent on the coordinates,

[and of such a nature as to substitute an expression de-

rived from them for the variations of the perpendiculars to

the surfaces and for those ofthe distances of the bodies (245,

Sch. 3)]; the equation will then become 0=:S/W/S35 4-SaSm.

In tliis case the variations of all the coordinates will be

arbitrary,and their coefficients maybe separately made equal

to nothing, which will give as many different equations for

the determination of a and /. If we compare this equa-
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tion with the equation (k), we shall have 2x^M=:SpS/*4-

^R^r ; whence it will be easy to infer the reciprocal ac-

tions of the bodies m, m\ . .
. , as well as the pressures

—R, —R', . .
. , which they exert on the surfaces to which

they are confined.

§ 15. Conditions ofequilibrium for a system^ of which

all thepoints are united in an invariable manner. Centre

ofgravity : mode of determining its position with respect

to three planes or three given points, P. 42.

307. Theorem. The forces acting on any

system of bodies in equilibrium being referred

to three orthogonal directions, the sum of all the

forces acting in each direction must vanish, as

well as the sum of the rotatory pressures with

respect to axes in each of the three directions.

If all the bodies of a given system be invariably united

to each other, its position will be determined by that of

any three points belonging to it, which are not in a right

line : now the position of each of these points depends on

three coordinates, so that nine different distances are

comprehended in their equations: but since the three

distances of the points are given, they reduce the number

of independent quantities to six, which will afford as many

arbitrary variations : and by supposing the coefficients of

these to vanish, we shall obtain six equations, which will

inchide all the conditions of the equilibrium.

For this purpose, we may suppose ac, y, z, to be the

coordinates of m; x, y', z', those of m\ and x", y'\ z'\

those of m'', . .
. ; we shall then have
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/'=v \(x"-xy+{r-yy+(z"-z y]
/"=v{(^''-x')«+(y"-j^)«+(z"-.' )'}...;

and if we suppose dxzz^xf-=:^x"zz ,. ,, dj/zzdy'=:dy"zz ,..,

and gz=gz'=gz"= . .., we shall have g/=0, S/'=0, ^f
=0, ...; and the distances will be invariable, accord-

ing to the conditions of the system. We may then infer,

from the equation Ozz^mSdsy (Z),

Ozz^rnS—; Ozz^mS^; 0=S?w5|i. (m)
bx by bz

For since Sx=^/= ... the quantity 'SimS^'s, which is the

sum of the partial differences with respect to x, x,,, ., must

be divisible by dx; and the same is true with respect to y
and z. It is obvious that these equations constitute the

first part of the proposition.

It will still be consistent with the conditions 8/n 0,

§/*'=:0, . . ., to suppose z, z', z'\ . . ,, invariable, and to

make dx^zzy^'sr, ^x'z=.y'^T!T, . . . ; Sy =: —x^'sr, ^y'zzxf^'ST, . . .

;

^-sr being- any variation at pleasure [for example, that ofan

angle described round an axis parallel to z] : and substi-

tuting their values in two of the equations Ozz'SimS^'s, we

have, since "SimS •^r-^xzz'2mS -^^-y^'^f and 2m^ :=r- %
/

bx bx by

=;Sw5-y- (

—

x^nsi), adding these together, and ^ divi-

ding them by d'sr, 0=Sw5 (y^ a:y^; [the third equa-

tion disappearing, because ^z is supposed to vanish, as

when the variation takes place in a circle described on the

axis parallel to ^.] Fof the same reasons, we may obtain
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similar equations for x and r, omitting y, and for y and z,

omitting x, so that

0=...(.g-4;);0=.»s(.£-.g);

0=..5(yg-.g). (,)

Now the quantity ^mSijY- is the rotatory pressure of all

the forces reduced to a direction- parallel to x, with regard

to an axis parallel to z (256, 304). In the same manner

the quantity ^viSx^ is the sum of the rotatory pressures

of all the forces parallel to y, tending to turn the system

round the axis of z, but in a direction contrary to the

former : it follows therefore from the first of the equations

(n), that the whole rotatory pressure must vanish with

respect to the axis parallel to z. The second and third

equations indicate, in a similar manner, that the sum of

the rotatory pressures is nothing with respect to axes

parallel to y and to x : and these six equations complete the

conditions of equilibrium expressed in the proposition.

308. Corollary. If any point in the

system, invariably connected with the whole,

be permanently at rest, it must be in conse-

quence of a force equal and opposite to the

result of the three forces acting in the three

given directions ; and the conditions of equi-

librium will then be reduced to the equality

of the rotatory pressures with respect to the

three orthogonal axes.
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Supposing the bodies m, m\ m'\ to be subject to the

force of gravitation only, its action and direction being

the same with respect to the whole system, we shall have

o o/ q// S'* ^s ^'s S's ^'s d^s

- - •'ii-&r,-K~"''''^rwr^r'"''

^r-=-cr—=-^r— » • .-land the equation z=S?wS(yT^ x^)
dz bz^ bz^^ ^ bx cy^

(w), becomes S (^ S??^?/——Smar)> since the quantity _
is the same for all the bodies concerned, as well as the

force S: and the conditions of the equations, thus trans-

formed, may be fulfilled, by putting

^mx=zO, ^myzzOy and S?w2:zz0. (o)

The three forces ^mS ^^, ^mS ^-> and S/wS, -^ parallel
tx by bz

the three axes, which are destroyed by the reaction of the

^'" 2\
fixed point, become, for a similar reason, tS^r- lm,S~^m,

ex by
^>

andAS^Sm; and these forces compose a force -SS/w,

which is equal to the weight of the body; since (7r-)^+
\by'

(^j^ + (^)^are alwayszzl, and tlie resulting force is

expressed by the diagonal of the parallelepiped.

Scholium 1. The origin of the coordinates, thus con-

sidered as the fixed point of the system, is very remarkable

for the property of affording an equilibrium of the weight

of the whole system, whenever it is simply supported,

whatever the angular situation of the system may be.

Hence it is called the cetitre of gravity of the system. Its

place is determined by the property, that if we suppose

any plane to pass through this point, the sum of the
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products of all the separate bodies, into their distances

from this plane, is equal to nothing : for the distances must

be in some given proportion to all the coordinates x, y,

and z, [depending on the properties of similar triangles

(117) and therefore ** linear functions", not involving their

squares; for example nx, n^y, or n'^z: but when 2wx=iO,

it is obvious that Xmnx^O, since n is constant;] -whence

the property of the plane passing through the centre of

gravity is evident.

In order to determine the position of the centre of

gravity of any body, we may suppose X, Y, and Z to be

its coordinates with respect to any given origin, x, y, andz

being those of m, x\ y\ and / of »i', . .
.

, with respect to

the same point. We shall then have, from the equations

(o), 0=:S7w(a;— X)[the x of those equations being supposed

to begin at the centre of gravity, and therefore answering

to x—X here]; now ^mXzzX^m, Sm being the mass of

the system; we have therefore Xz:-—— ; and in the same

manner Yzz---^, and Zzz. . It is also evident that

the coordinates X, Y, and Z, being thus completely deter-

mined by the magnitude and position of the separate bodies

of the system, they can only belong to a single point for

any one system of bodies at the same time. For the direct

distance of the centre of gravity we have the equation

X2 + Y^ + Z-—^ v^ a
"

; which may be

transformed into

^mm' { jx'^xf^iy' -^yf+ {z'^zY }
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The finite integral being understood as comprehending all

the combinations ofthe different bodies in pairs. [Thus for

two bodies, m and m\ 'Em being m+ m', Xmx:=imx+ m'x\

and S?w?w' =: 7nm\ we have {XmxyzzmV + wt'V^+ 2mm'xx'z=L

l.mx^.'Lm— mwl{x'~xf=.{mx^+ wi'x'") (m+ m)—mmXx'^+ a;^

x^'^ + 2mm'xx' : and adding a third body, if Emx be wa:+
mV+ »*V,we have (Swi:r) 2=w2j;2+ »i'V24-m''V4-2mm'

a:a;' + 2mm"a:a;"+ 2w'7?i''a;V'= (mx^+ wiV^ + J^V^) (w + m'

^m'')'-'mm' ix'—xf—mm" {x"—xj—n^rd' {x'—xy-, and a

similar proof may be extended to any number of bodies.]

By this mode of computation, we may determine the

distance ofthe centre of gravity from any fixed point, when

we know the distances of the different bodies of the system

from this point and from each other : and when the distance

of the centre of gravity from any three points is thus

found, its situation is in all respects completely ascertained.

Scholium 2. The denomination of " centre of gra-

vity" has [sometimes] been extended to any system of bodies

with or without weight, as determined by the three coor-

dinates X, y", and Z, thus computed [,but it is more

correct to employ, in this sense, the term " centre of

inertia" (298)].

§ 16« Conditions of the equilibrium of a solid of any

figure whatever, P. 46.

309. Theorem. For a single solid body,

whatever its figure may be, we have the same

conditions of equihbrium as for a system of

bodies, substituting fluxions nnd fluents for

single bodies and finite integrals : that is
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0=/Pd/w, 0=fQdm, 0=fRdm;0=f{Py-Qx)
dm, 0=f{Pz-Rx) dm, 0=f{Ry-Qz) dm.

In fact we have only to conceive the solid as a system of

an infinite number of points, united in an invariable man-

ner. If, then, we suppose Am to be an infinitely small

point or atom of the body, of which x, y, and z are the or-

thogonal coordinates, and P, Q, R, the forces acting on

the particle in the directions of x, y, and z, the equations

(m) and (n) will only require the substitution of P for S

^r-f Q for S K—, and R for S k—, to which they are respec-
dx dy cz

J r

tively equal, and we shall have SPatw^zO, . .
.

, and conse-

quentlyyjPd/»=:0; [for since the fluxions are always in a

constant ratio to the evanescent increments, whenever

SPAmziO, we may makeypdm^iO also; and in the same

manner the substitutions in all the six equations may be

shown to be admissible : the character of integration J"
being understood as extending to the whole solid, in all its

dimensions.

Scholium. If the body is only at liberty to move round

a given point, at which the coordinates begin, the latter

three equations are suflficient to determine the conditions

of its equilibrium.



^ CHAPTER IV.

OF THE EQUILIBRIUM OF FLUIDS,

§ 17. [Introduction]. General equations of this equili-

hrium. Application to the equiiihrium of a homogeneous

fluid, of which the surface is at liberty, and which covers a

solid nucleus of any figure. P. 47.

[310. Definition. " 367/' A fluid is a

collection of particles considered as infinitely

small spheres, moving freely on each other

without friction.

311. Theorem. " 368.'^ The surface of

a gravitating fluid, at rest, is horizontal.

If the surface were in the least incliued to the horizon,

the particles found in it could not remain in equilibrium,

but would descend, in virtue oftheir power of perfect free-

dom of motion, until the level were restored. But it is

more satisfactory to consider the immediate action of the

particles concerned: and we may suppose two minute

straight tubes, differently inclined to the horizon, and joined

at the bottom by a curved portion, to be filled with eva-

nescent spherules: then the relative

force of gravity is inversely as the

length, when the height is the same
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(283), and the number of particles is directly as the length:

consequently the absolute pressure will be equal, and there

will be an equilibrium ; and if the fluid in either arm be

higher, it will preponderate. The pressure on the tube at

any part is only the effect of the particle immediately in

contact with it, and acts in the direction perpendicular to

the tube, therefore if another similar row of particles in

equilibrium were placed on the first, this pressure, acting

in the same direction, would not disturb the equilibrium

of the particles among themselves, however they might be

situated with respect to the first. And conceiving any

fluid to be divided into an infinite number of tubes, bent

or straight, in which the particles form a continuous series,

there can be no force to preserve the equilibrium in each

of them, unless the height of each portion be equal.

312. Theorem. "370.'' The pressure

of a fluid on every particle of the vessel con-

taining it, or of any other surface, real or

imaginary, in contact with it, is equal to the

weight of a column of the fluid, of which the

base is equal to that particle, and the height

to its depth below the surface of the fluid.

Imagine an equable tube to be so bent,

that one of its arms may be vertical, and the

other perpendicular to the given surface

:

then drawing a horizontal line AB, the fluid

in the portion of the tube AB will remain in

equilibrium, and will only transmit the pres-

sure of BC to the surface at A, and this will be true

whatever be the position of the imaginary tube ; and since
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some particles of the fluid may be so arranged as to be no

more disturbed in their initial tendency to motion than the

fluid in such a tube would be, the equilibrium can never

be permanent, unless the pressures be such as are here

assigned.

Scholium 1. If therefore any portion of the superior

part of a fluid be replaced by a part of the vessel, the

pressure against this from below will be the same which

before supported the weight of the fluid removed, and,

every part remaining in equilibrium, the pressure on the

bottom will be the same as if the horizontal section of the

vessel were every where of equal dimensions. In this

manner the smallest given quantity of a fluid may be made

to produce a pressure capable of sustaining a weight of

any magnitude, either by diminishing the diameter of the

column and increasing its height, or by increasing the

surface which supports the weight: a property which has

been called the hydrostatic paradox, and which is the

foundation of the construction of Bramah's powerful

presses.

Scholium 2. These properties may be still further

illustrated by imagining a vessel to be made of ice, and to

be immersed in a larger reservoir of water, and then

thawed : in this case the water will make a part of the

general contents of the reservoir, and consequently will

remain at rest, if its surfaces are level with that of the

reservoir : and it is obvious that the vessel has acquired no

new power of supporting the pressure from being thawed:

consequently the water will stand at the same height in

every part of the vessel of ice as if it had remained water;

exerting the same pressure on the sides of the vessel, as if

it had to react against the weight of a fluid column imme-
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tubes or branches belonging to it, the water will stand at

the same height in all.

313. Lemma A. The partial variations

^y i^xu) and ^a: (V) arc equal.

For, when the variation of u is taken with respect to x,

the quantities depending on y remain unaltered, and the

process leads to the same result, when the variation is

afterwards taken with respect to y, as if it had been in-

verted. For example, if wzza'y, ^j;U— mx"^~^ ^x.y^, and

gy {^,,u)=:mnx"'-^ y»-^^xhj=:d-c {^yu): again, i(u=ax^~-{-

bi/, S:cU-2ax^J7, gy (M^O; lyU-2hy^, ^^ (gyM)zzO:

and if Miza:"*y"2P, the same results will be obtained, for the

variations with respect to x and y, as if z were a constant

quantity.

314. Lemma B. If ^u=mx-\-M.hj-^Uz,

we nave -k—=t—»
"^—^t—5 and -^r-^-^r-.

by ex tz gx ' tz by

For ^^uzzMx, and ^yU-Mhjy and gy(Sa:M)=Sy (Mx)=

gx(M(313)=§,,(M5^y)=i^5'%=^ ^y^x; conse-

quently -^=:--—: and m the same manner the other

equations are obtained, by comparing the variations in

pairs.

315. Corollary. An exact variation,

containing two or more variable quantities,

must always be conformable to the condition

of this proposition.

Scholium. This condition of integrability was first

laid down by Nicolas Bernoulli, in 1728.]

o
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316. Theorem. The surfaces, dividing

the different strata of a fluid of different den-

sities, must be perpendicular to the results of

the forces acting on them.

If we wished to determine the laws of the equilibrium

and motion of the separate particles of fluids, it would be

necessary that we should ascertain their precise form,

which is totally unknown to us : but in fact we have only

occasion to obtain such laws as are applicable to fluids

considered as masses, or assemblages of particles, and for

this purpose the knowledge of the figures of the particles

is superfluous. Whatever these figures may be, and what-

ever may be the affections of the separate particles as de-

pending on them, all fluids, taken as aggregates, must

afibrd the same phenomena in their equilibrium and their

motions, so that the observation of the phenomena can lead

us to no conclusions respecting the forms of the particles.

These general phenomena depend on the perfect mobiUty

of the particles, which may be displaced by the slightest

force : and it is by this mobility that fluids are distin-

guished from solids. It is the necessary consequence of

this mobility, that every particle of a fluid must be held in

equilibrium by means of the forces acting on it, together

with the pressures to which it is subjected, and which are

transmitted by the surrounding particles. We must now

examine the equations which may be deduced from this

constitution of a fluid.

We may, therefore, consider a system of elementary par-

ticles, forming an infinitely small rectangular parallele-

piped ; and we may suppose the coordinates, x, y, and z, to

belong to the angle nearest to their common origin. Let

I
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the infinitely small differences /ir, Ay, az, be the sides of

the parallelepiped: let p be the mean pressure on the dif-

ferent points of the surface ^y^Zy which is perpendicular

to Xy and p' the same quantity belonging to its opposite

surface : the parallelepiped will be urged in the direction

of^ by a force equal fo {p—p') AyAz. Now (p'—p) is the

difference of p, taken on the supposition that x alone is

variable; for though js' is supposed to act in the direction

contrary to that of/?, yet the pressure, i\\3it a point of a

fluid undergoes, being the same in all directions, we may

consider jp'

—

p as the difference of the two forces, acting

in the same direction, at an infinitely small distance from

each other : so that we hayep'—p=Aa:p, and {p—p')AyAZ

=

—

Aj:pAyAz=: -^ AXAyAz, Let P, Q, and R be the three

accelerating forces which act on the fluid particles, inde-

pendently of their connexions, in directions parallel to x,

y, and z: if we call the density of the parallelepiped ^ , its

mass will be ^AxAyAZ, and the product of the force P by

this mass will represent the whole motive force derived

from it; consequently the whole force, acting in the direc-

tion of jr, will be (f P ^) AXAyAz. For similar rea-

sons, the elementary system will be solicited, in directions

parallel to y and z, by the forces (^ Q -j AxAyAz, and
y

l^R ~\ AxAyAz, We shall therefore have, for the

conditions of equilibrium (b) (251)

5^=f(P3x + Qay-fi2^z)[:since^='!^,andJtoz:^^a; +
ox AX ox

O 2
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~Sy + TT ^2;]. Now j9 being a possible and consistent quan-

tity, its variations, and consequently its fluxion, must be

exact (315): we have therefore (314), £^^=^-Mi ;

dy da-

d'(pP)_d'(fl2) d'(fQ)_d'(fjR) ,, r • A>r T»^—f—^=~^T— ; —^-^=—^r-^; consequently r, since d(pjr)
dz do: dz dy

=:fd'P + Pd'f , ..., we have, by combining the three last equa-

tions, multiplied by P, Q, and 12, 0=P
(p^ + Q^ -

^

\e -;— + -P T^— P —;^—Q -r^^ • and since the terms con-
\^ dy dy dx dx/

taining d'p obviously destroy each other, we obtain, from

those which are multiplied by
f, the equation]

dz dz dy dy dx djr

And this equation expresses the relation between the

forces P, Q, and R, which is required in order that the

equilibrium may be possible.

If the surface of the fluid, or any part of the surface, is

at liberty, the value ofp must be evanescent at that point,

since there is no pressure that could be measured by^;

we have therefore for the direction of the surface 5]pz::0,

the variations ^x, hj, ^z, being so related as to belong to it.

The independent forces must therefore balance each other

with respect to any motion in the direction of the surface,

and {):=iF'^x-\-Qhj-\-R'^z: but this c^^n only happen when

the result of these forces is perpendicular to the surface,

the general equation S^^5 + '* R' ^r=0(c) (252) becoming

here P^x + QS^y + i^J^z + " JR" ^rzzO, and P^x + Q^-^R^z
z:— " i^" J'r, indicating a result in the direction of r, the

perpendicular to the surface.
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Supposing the variation P^x -{- Q^y -^ R^z to be exact,

which must be the case whenever it arises from any attrac-

tive forces that can be combined in nature, and caUing this

variation 3/", we shall have ^pz=.^^/: consequently p must

depend on p and/; and since the fluent of this equation

gives us/ in terms of^, we shall have j^ determinable from

f, so that the pressure p must be the same wherever the

density
f

is the same, and dp or Ap must vanish with re-

spect to those strata of the fluid, in the direction of which

the density is constant : we have therefore, with regard to

these surfaces, OzzP^x + Q^y + R^z, consequently the re-

sult of the forces, acting at any such surface, must be per-

pendicular to it : and such strata are called level strata [,at

least with respect to the force of gravity]. This condition

is always satisfied throughout the fluid, when it is homo-

geneous and incompressible, since then the strata, to which

the result is perpendicular, are always of the same density.

For the equilibrium of a homogeneous fluid, of which

the upper surface is at liberty, it is necessary, and it is

sufficient, first that the quantity P^x + QJy + R^z be an

exact variation, and secondly, that the result of these

forces, at the exterior surface, he directed perpendicularly

towards that surface.



CHAPTER V.

GENERAL PRINCIPLES OF THE MOTION OF

A SYSTEM OF BODIES.

§ 18. General equation of the motion of a system, P. 50.

317. Theorem. If we have any number

of bodies, w, m\ w^ . . . , the places of which

are denoted by the coordinates x^ y^ z^ a'^ y\ z\

: . . 5 and which are subject to the forces P, Q,

JR, P', Q'5 H', . . . 5 respectively, we shall have,

supposing At constant, 0=.t\mlx{^-^—P) +

^^^ini—^)+^^^('d^

—

^)\'> ^^^ characte-

ristic 2 implying the sum of all the quantities

of the same form, belonging to each of the

bodies respectively.

The laws of the motion of a point have been compared

with those of its equilibrium, by [conceiving' the motion

created or destroyed in each instant to form an equilibrium

with the force or forces producing the change, or, in other

words, by] decomposing its momentary motion into two

parts, one of which it retains in the next instant, while the

other is destroyed by the effect of the forces to which it is

-subjected. The same method may be employed in order

to determine the motion of a system of bodies, m, m\ m'^,
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. . . Thus, let mP, mQ, mR, be the motive forces which

impel the body m iD directions parallel to the orthogonal

coordinates x, y, z ; let 7ii P'y m' Q, mf R', be the forces

belonging to m'; and let the time be t. The momentum

of m, reduced to the respective directions, will be m

T-t'ni-T-i and m -r- '. to this the force P, so far as it is not
d^ At at

other «rise compensated, will add a momentum, which may

be expressed by w * P' A^, and which is obviously equal

Ax
to m A-r-, since in the time ^t the momentum becomes m

at

dx ujc dx
TT + ^wA -r- ; and m ' P' dtzzmdTr • consequently the un-

compensated force in the direction of x will be m P
ddx ddx

dt r— [or more properly m P—-r-j; for it is on-

necessary to combine the idea of time with that of force in

estimating its comparative magnitude] ; and the same may

be shown with respect to the other forces concerned. We
have, therefore, from the principle of virtual velocities,

that is 0= XmS^s (I) (305), 0=mdx (^.-P) + w § y

From this general equation we may eliminate, by means

of the particular conditions of the system, as many of the

variations as there are of these conditions ; and then by

making the coefficients of the remaining variations vanish

separately, we shall obtain all the equations necessary for

determining the motion of the different bodies of the

system.
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§ 19. Of the principle of living force. It is only

true where the motions change hy imperceptible degrees.

Mode of estimating the alteration of the limng force in

the abrupt changes of the motions of a system. P. 51.

[318. Definition. The product of the

mass of any body, into the square of its

velocity, is called its impetus or energy.

319. Theorem. The joint impetus of any

system of bodies is equally increased or di-

minished by the action of any combination

of forces, provided that the initial and final

places of the system are the same, whatever

may have been the intermediate paths de-

scribed by the different bodies.]

We may derive from the equation (P) of the last pro-

position several general principles of motion, which it will

be proper to -examine in detail. The variations Sx, ^y,

^z, ^x\ , . . , will obviously be subjected to all the condi-

tions of the connexion of the system, if they be supposed

proportional to the fluxions do:, dy, dz, da:', . . . , which

represent the actual motion ; we may, therefore, make

this substitution in the equation (P) and it will then

becomeOiz 2 \ mdx (—^— "^
) + ^^^^ ("tI~~ ^ ) + ^ ^^

(tt5 ^\ C' whence we have Q—Xm—-—^- f-

- 2> (Pdx + Qdy + mz) and s/w ;^^!±^^ti£!

= C4-22w/(Pdx-|-Qdy + i2dz), C being a constant

quantity. (Q)
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If the forces P, Q, R, are the results of attractions

directed to fixed points, -and of attractions of the bodies

to each other, the quantity Xm {Pdx + Qdy -\- Rdz) is an

exact fluxion. For the part which depends on the attrac-

tion to fixed points is an exact fluxion, because the forces

in the three directions are obtained by the resolution of

single forces acting in given lines, each of which must

afford a true or exact variation when resolved, so that their

sum, however combined, must still be an exact variation.

And with respect to the parts depending on the mutual

attractions of the bodies of the system, if we call the dis-

tance of m from ni\ f, and the attraction of m' for m, mfF,

the part of m {Pdx + Qdy + Rdz) that relates to this

attraction will be mmfFd'/, the fluxion dy relating to the

change of the coordinates of m only ; but since reaction

is alway equal and contrary to action, the part of m' (P'dx'

+ Q'dy' + Rdz') depending on the action of m or m' is

equal to —mm'Fdy, supposing dy* to relate to the change

of the coordinates of m' only: consequently the whole

eff*ect of the reciprocal action of m and m' is represented

by the product —mm'Fdf, df being the total variation of

/; and Fdfis an exact fluxion whenever 2^ is a function of

/, or when the attraction is dependent on the distance, as

we suppose to be the case with respect to attractive forces

in general. Consequently the sum of all such actions

must be expressed by an exact fluxion, whenever the

forces concerned depend on the attraction of the bodies

of the system for each other, or for any fixed points. If

then we suppose this fluxion to be d(p, and if we call the

velocity of m, v, that of m\ v', . .
. , we shall have
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This equation is analogous to the simpler equation v^zi

c-\-2(p{g) (264), and expresses algebraically the law of

living forces [or energies. Dr. Wollaston has given to

this function of a moving body the very appropriate name

of impetus ; a short time before, the term energy had been

proposed, and either or both of these words may be em-

ployed with advantage : energy is perhaps more Hkely to

be misconstrued in a moral sense, but it is more convenient

when a plural is wanted].

320. Scholium 1. This principle is,

however, only applicable when the motions

of the bodies concerned are changed by im-

perceptible degrees.

For if the motions undergo abrupt changes, the impetus

is diminished in a manner which may be thus determined.

We may employ, in this case, the character A (317) as

denoting a finite variation of the velocity, and we shall

have for the part of the force P not accelerating m, m

(p—A-r)» and the equation (P) will become 0= Stw
V d^'

In this equation we may substitute for Ex, dar+ Adx, for

^y, dy+ Ady, and for Ez, dz+Adz, since it is perfectly

consistent with the conditions of the system, to make the

arbitrary variations such as actually happen, the variations

preserving the proportions of these fluxions though they

remain infinitely small. The equation will then become
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^) A ^ I
-Sw* { P(dx+ Adx) -f e (dy + Ady) + E (dz +

Adz)].

The sum or integral of this expression, considered with

regard to the finite differences, may be denoted by 2^, the

sum of the similar expressions, derived from the separate

bodies of the system, being still distinguished by 2. Now
X^m F (dx 4- Adjr) is evidently equal to JmPdx : and we

have =:Xm g| + 2, 2^
|

(A _) + (^ ^)

+ (A ^)* }—22 /m(Pda:+ Qdy+ Rdz) : [for, ifAi^ be the

finite difference of u, A {u^)=:(u-\-Auy—u^=:2uAu + Aw^,

and A(u^) + Am«= 2uAu+2Au% consequently u^+ X^ Au^

=22^ (uAu+ Au^\ and, in the present case dx^+ X^ (Adxf

1=22^ (dx+ Ada:) Adx: and with respect to the integral of

mP (dx + Adx) it is evident that the expression being only

of one dimension, the product mPdx will remain unaltered,

whether it be supposed to vary by finite or by infinitely

small differences, provided that the same value of P be

always attributed to the same value of x, so that the dif-

ference of the values ofJmPdx for any two values of x
will be equal to the difference of the values of 2/n (Pd»r+

Adj;) ; that fluent may, therefore, be considered as the

integral represented by the character 2^ .] If, therefore,

we denote by v, v', v", . . . , the velocities of m, m', rd\ . . .,

we shall have 2»«;2 = C— 2^ 2j7i
|
(a ^)V (a ^)'+

(A-^)^ + 22/Jw(Pdj:+ Qdy 4- Rdx), Now the quantity

under the sign 2^ being necessarily positive, we see that

the impetus of the system is diminished by the mutual
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action of the bodies concerned, whenever, in the course of

1 • ^ , . . da: .d?/ _ .^

the motion, any of the variations ^Tr>^T7> . .
. , are nnite

:

and the preceding" equation affords a very easy method of

determining this diminution.

At every abrupt variation of the motion of the system,

we may conceive the velocity of m to be divided into two

portions, the one v, which it retains, theother F, destroyed

by the actions of the other bodies [, for, even if the velocity

be increased, we have only to suppose that a negative

portion of it has been destroyed, in order to justify this

expression of Dalembert, which is so often used by

TIT .u 1
-^ f u • dx2 + d3/2 + d22

Laplace] : now the velocity of m being V -p >

at

before this decomposition, and afterwards

(dx + Adx)2 + (dy + Ad?/)2+ (dz + Ad2)2 . .,

js/ TT^ , it is easy to see

that F2= (a ^y+{^ £y+ (a £)^ [since the diagonal

of a parallelepiped, of which the square is equal to the sum
of the squares of its sides, may be divided into two portions

of which the squares must be respectively equal to the

sums of the squares of the parts of those sides : in fact

± V must be simply equal to the square root of this

quantity; since the sum of the squares of the finite dif-

ferences of the velocities, in the three orthogonal direc-

tions, must necessarily give tlie square of the difference

of the actual velocity :] and the preceding equation may be

expressed in this form, I.mv^= C—X^XmV^ + 2Xfm{Pdx
j-Qdy + Rdz).

[Scholium 2. It is very doubtful whether an abrupt

change of velocity ever takes place in nature, though th«
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loss of force by friction, and by the change of the form

of aggregation may sometimes produce almost the same

phenomena : but the investigation of such cases scarcely

requires to be conducted in a very general manner, or in

great detail. It may be of more utility to insert here a

geometrical demonstration, subservient to the illustration

of the principle of the preservation of impetus or living

force, though it might, without impropriety, have been

introduced somewhat earlier, since it relates to a single

moving point only.

321. Corollary. " 245.'' Two bodies

being attracted towards a given centre, with

equal forces at equal distances, if their velo-

cities be once equal at equal distances, they

will always renaain equal at equal distances,

w hatever their direction naay be.

Let one of the bodies descend in the A
right line AB towards C, and let the other

describe the curve AD, and let the velocities ^

at B and D be equal; let DE, in the tangent ^
of AD, be the space which would be de-

scribed in an evanescent portion of time by

the velocity at D, FG the arc of a circle of

which the centre is C, and GE its tangent

;

and while BF would be described by the

velocity at B, let FH be added to it by the

attractive force; draw the arc HI and its ^

tangent IK, and EL parallel to DC, and KL perpendi-

cular to DK, then DG : DE::GI : EK::EK : EL, by

similar triangles ; therefore GI is to EL in the duplicate

ratio of DG to DE, or as the square of DG to the
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square of D E (194) : consequently EL will be the space

described by the attractive force, while DE would have

been described by the velocity at D ; for the force may be

considered as uniform during the evanescent increments,

and the spaces described by such a force are as the

squares of the times : hence the joint result will be DL,
which is ultimately equal to DK, and the whole velocity

will be increased in the ratio of DK to DE, or DI to

DG, or BH to BF ; consequently, since H, I, and K are

ultimately equidistant from C, the velocities in AB and

AD, being always equally increased at equal distances,

will therefore always remain equal at equal distances.

Scholium 3. We may observe that every known force

in nature acts in conformity with this condition, and

operates always equally at equal distances from its origin

:

as Laplace has himself remarked in this article, asserting

that J^ is always a function of /: and if the case were

otherwise, with respect to gravitation or magnetism, for

example, we might easily obtain a source of perpetual

motion, by causing a body to describe, in its descent, a

path in which the force is greater, and to ascend by one

in which it is smaller at the same distance. There is

indeed a supposed exception, in the hypothesis, which

Laplace has elsewhere adopted, respecting the extraordi-

nary refraction of crystallized bodies : but the exception is

by far too paradoxical, to be admitted by any person, not

previously determined to deduce the motions of light

from the laws of attractive and repulsive forces : for here

it is assumed that the force depends, not on the distance

of the attracting substance, but on the direction of the

motion, with which it varies perpetually. The New-

tonian demonstration of the laws of ordinary refraction

had the advantage, on the other hand, of simplifying their
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supposed cause, since it shows that the phenomena may

be deduced from the operation of a constant force, acting

equally upon the moving body, whatever its direction

might be, and fulfilling the condition, that " I'attraction

est comme une fonction de la distance, ainsi que nous le

supposerons toujours," P. 58.]

§ 20. Of the principle of the preservation of the motion

of the centime of gravity: which is true even when the

bodies exert abrupt actions on each other. P. 54.

322. Theorem. The centre of gravity of

any system of bodies perseveres in its state of

rest or uniform rectilinear motion, notwith-

standing any reciprocal action between the

bodies.

If we substitute, for the variations of the places of all

the bodies m\ m", . . ., the variations of the place of m
augmented by the difference of the variations, and make

^X'ZZ^X+ ^X\ V=^y + V/ ^2f=^Z^^2^^

gx"=gx4-s< V=^y+V/ ^2"=S2+8z",

substituting these values in the expressions for tlie varia-

tions of/,/', . .
.

, the distances of the bodies (307); it is

obvious that ^x, 3y, ^z will disappear from these expres-

• r 4k s^
^- 2(x'-a:)(gx'-8x) 2{x'^x) ^, .^^^.^

sionsf; thus 8 /=:-^^ ^ ^=—^—-—^ Bxf, (307)1
f f

Now if the system is at liberty, none of its parts being con-

nected with any foreign bodies, the conditions, relating to

their mutual connexion, depending only on their distances

from each other, the variations dx, Sy, ^z, which relate to

a quiescent point, will be independent of these conditions;

whence it follows, that if we substitute these values of

the variations in the equation (P) (317), we may suppose
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either ^x, ^y, or ^z to subsist alone, so that its coefficients

will vanish: we have thus the three equations 0=2m

(f-P).0=X.@-Q),0=X.(^:-«). Nowsup.

posing X, y, andZ to be the three coordinates of the centre

of gravity of the system, we have X=:--— :Y——-; Z=

2/wz ^, , J 1 x;- Smddx
, ^ ddX

--— : consequently, since ddXzz— , we haveOzi
Im 2m d^^

—SmP ^ ddF Sma , ^ ddZ SmK
; 0--— — , and 0=--- — ; so that

2w dt^ 2m dt^ Hm
the motion of the centre of gravity of the system is the

same, as if all the bodies, and all the forces acting on them,

were united in it. (264).

If the system is only subjected to the mutual actions of

the bodies composing it, we shall have

OzzXmP; OziSmQ; OzzSmjK;

For if we express the mutual action ofm and m' by p, and

their distance by /, we shall have, as far as this action

alone is concerned,

^p^^'). ^Q^tol). r„R=p^y

^p,jPj^). ^(^^p(y^). „,'K=P^.

Hence mP-{-m'P'=0 ; mQ-\-m'Qz:zO; mR + m'RzzO:
the mutual actions of the bodies in the respective directions

obviously destroying each other: and it is manifest that

these equations would be equally true ifp represented any

finite and instantaneous action. We have also, in the ab-

sence of any foreign force,

0=——,0=—— , 0=.^; and by taking the fluent

twice, X=o + 6^ Yzza' + h't, and Z=a" -^-b^t, the as and
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5s being constant quantities. These equations will give

us linear relations between X, Y, and Z, if we extermi-

nate t ; whence it follows that the motion of the centre of

gravity is rectilinear: and its velocity being equal to ^

always constant, and the motion is uniform.

Scholium. It is obvious from this analysis that the

invariability of the motion of tlie centre of gravity of a

system of bodies, whatever their mutual actions may be,

holds good even in the case of an instantaneous loss of a

finite quantity of motion in the separate bodies, by means

of their mutual action.

§ 21 . Of the principle of the constancy of areas. It

subsists notwithstanding the abruptness of any changes in

the system. Determination of a system of coordinates,for

which the sum of the areas described by the projections of

the revolving radii vanishes for two of the planes of the

ordinatesy the sum being a maximum on the third, and

vanishing for every plane perpendicular to it. P. 56.

[^General properties ofprojections.']

323. Theorem. The sum of the areas

described by the projections of the revolving

radii of any system of bodies, upon any given

plane, multiplied respectively by their masses,

is proportional to the time, supposing the

bodies subject only to their reciprocal actions,

and to a force directed to the origin of the

radii.
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We may obtain from the equation (P) (317) the particu-

lar value OizSm ^—^^—--\-Xm {Fy—Qx\ if we cause

the variation ^x to disappear from the expression ^f=.^^/

I
{x'—xf -f(y—yy+i^—zf

I
by making 5ir'=:^ + ^x'^ ;

y y y

= \-^y" ; ... ; [the part of each of these expressions,

y
that involves S^o:, belonging to a supposed revolution of the

body round the axis parallel to z : for if the distance of m

from this axis be s, and that of m', s', the elementary arc

described by rn will be — Zx, and the arc described by
y

m\ —.— ^^=— S.r, whence the variation of j?' will be -^.
s y y . s

— Sa;zi^Sa:]. This substitution gives us the value of S/',

y y

^ff ^f^> — » independently of S'x, [as it must necessarily do

from the agreement of the variations substituted with a

rotatory motion] : we are therefore at liberty to assign any

value to ^x at pleasure, while we observe these conditions,

and its coefficients may be made to vanish, [as they must

obviously do if ^x be infinitely greater than the other varia-

tions concerned]. In making this substitution for ^x\ . . .

,

in the equation (1*) (317), thatis,0=7»Sa; (—^

—

P\ .. +,

m'Zx' l——

—

P'\ ... we are only required to employ for ^x\

^—, since '^x\ is supposed to vanish in comparison with
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^ar, and we have 0=m (-r^— ^) +tn\^ (^^~F\ or

Py\ and in the same manner the substitution of ,...,

for 3y, ^y, ... , gives us, for m^y (-r-f— Q) -\- m'^y

( "T^""^"^)- • • »
—^''*

(~d/3
~^^) * ^^^"^^ ^^® obtain

^m, ^
y~^l

^
+ S»t (Py—Qj:)=0 : and by taking the

fluent, we have c—lm ^ ^~^ ^
+ 2//« {Py—Qx)dl,

[since d(xdy)=xd2y + dxdy, and d(i/da?)=i?/d2.rH-dj:dy]; c

being a constant quantit}. By employing the same mode
of reasoning with respect to the variations of a- and z, and

of y and z, compared together, we obtain two other similar

equations ; consequently

c =Im ^^y—y^^
+ xfm (Py—Qx) dt,

d =l.m f^fZlf^+ S/^ (Pz—Rx) dt, and

y'=:Em y±=^+ lfm {Qz-Ry) dt.

Let us now suppose that the different bodies are only

subjected to each other's reciprocal actions, and to a force

directed to the origin of the coordinates. Calling the

reciprocal action of m and m', p, we shall have, as far as

this action is concerned, 0=?w(Py—Qa:)+m'(Py—QV);

[for mP=fc£>. n^'F=P^\ M=P^.n'Q'=

6/—Ml, as in article 322, and »«Py+m'Fy'=5i~^ y

P 2
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/^p(y ?/) piy'—y)

x' ; but these two sums being equal, their difference 2m
(Py—Qx) vanishes:] and the same is, therefore, true re-

specting all the other reciprocal actions of the system, and

with respect to all these the sum 2m (Py

—

Qx) vanishes.

Again, if S be the force which urges m towards the origin

of the coordinates, we shall have, as far as this force alone

—Sx
is concerned, P=: , and Qzi

s/^xx^yy-^zz)

: consequently Pyzz Qx, and their diffe-
^/{xx+yy-^zz)

rence vanishes. When., therefore, the bodies are only sub-

jected to their mutual action, and to the forces directed

to the origin of the coordinates, we have

-ydx , „ xdz—zdx
c=:2m

—

--^
d^

Xm
dt

e'-Xm
dt

{Z)

y

{m) If we suppose the place of

Ay the body m to be projected on

the common plane of x andj/,

the fluxion i (xdj/—-ydx) will

represent the area traced by

the radius drawn, from the ori-

gin of the coordinates, to the

projection of m : it follows,

therefore, that the sum of the areas described by the radii,

belonging to the different bodies of the system, multiplied

by their masses, is proportional to the fluxion of the time,

and, for any finite interval, proportional to the time itself.

This constitutes the principle of the constancy of areas,

which is obviously true for any plane whatever, since the
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motion of the bodies bears no determinate relation to x, y,

and z ; and, if the attractive force vanishes, the principle

is also true with respect to any point whatever : nor is the

demonstration limited to changes produced by insensible

degrees.

324. Lemma. If we have two systems

of orthogonal coordinates, x^ ?/, z, and jiV//? y^n

z,,,^ originating from the same point : if be

the incUnation of the plane oi x,,, and y,,^ to

that of X and y^ [its positive values implying

that z^^, inclines towards the same side of x

with +?/], and if ^ be the angular distance of

X from the intersection of these planes, and (p

that of x^„^ the equations between the coor-

dinates will be

x^x,„ (cos ^ sin ^ sin ^+ cos ^ cos <p)

•Vy,„ (cos fi sin ^ cos <p— cos ^^ sin <p)

+ 2r,,, sin dsin4'

y—x,,, (cos 5 cos ^^ sin <?—: sin ^ cos <p)

+y,„ (cos d cos A^ cos ?»+ sin 4^ sin 9)

^-z,„ sin fi cos A^

z—z,„ cos 5

—

y,„ sin d cos q>
—x,,, sin 6 sin (p.

In order to assist the imagination, we may suppose the

origin of the coordinates to be at the centre of the earth,

the plane of x and y to be the ecliptic, and z to be directed

to its north pole \_x being considered as positive when it

tends more or less to approach the vernal equinox cyj, and

y when it tends towards the sign 25, and negative on the



214 CELESTIAL MECHANICS. I. V. 21.

opposite side of the centre] : tlien if the plane of x^^^ and y^,^

be tbat of the equator, we shall have z^^, parallel to the

earth's axis, pointing to the north pole [, and inclining

towards the sign eb, towards which y is positive]; the

obliquity of the ecliptic will then be [ + ] 0, and 4' will be

the longitude of the axis x with respect to the vernal

equinox, which is the intersection of the two planes on the

side of +x; the distance of x^,^ and y,,^ from the same line

will be (p and ^-h— respectively, these angles varying with

the rotation of the earth.

Now if x^, y^f and z^, be an intermediate system of

orthogonal coordinates, x^ being the line of the vernal

equinox, y, the projection of the earth's axis on the plane

of the ecliptic, and z, coinciding with the axis of the

ecliptic z ; the ordi-

nates x, t/, x^, and y^

being in the same

plane, we have

x=x, cos •^+y, sin '^;

y=y, cos4<—ar^sin^.;

zzzz^.

In the next place, let a:,,, y^^ and z^^ be another system

of coordinates, of which ar,^ is parallel to the line of the

vernal equinox, and z,, to the earth's axis, y^^ being conse-

quently in the plane of the

equator : we have then y^^ and

z,, in the plane passing through

u ,-•••"

f/i

A
y/

\t
\ ^^^

.r^

* \
y/

y, and z,. while x. and x^^ coin-

cide: consequently

yy=y/yCOs6+z,,sin6;

z,=z,,cos 6—y^^sin*.
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Lastly, while z,,^ is substituted for its equal f,^, with

wliicli it is identical, we shall have x^^^ and y^^^in the same

plane with x^, and y,^,

which is that ofthe equa-

tor : we have thus

yy.=y/,/COS^ H-o:,,, sin^;

[The second sign in the value of x^^ is here negative,

because the axis x^^ is not between x^^, and y,^,, while y^, is

between y^,^ and x^^^.] By substituting successively the

values thus obtained, we have [first

^.=^,// cos (p—y^,, sin <p ;

y^^y^,, cos (p cos 5+x^^, sin (p cos fl + 2;^^, sin 5;

^,'=-z^i^ cos 5

—

y^^^ cos <p sin 5—x^^, sin ^ sin 5; then

a:=:a[r,^, cos <p cos 4.

—

y^^^ sin ^ cos \|/ 4- y^^^ cos ^ cos 6 sin 4^ + x^^^

sin ^ cos d sin ^-hz^^^ sin sin i|/

;

y^y,,, cos ^ cos 6 cos 4' +•2^/// sin ^ cos 6 cos \|/+ z^^, sin 6 cos t^

—or,,, cos ^ sin ^\-y,„ sin ^ sin i|/

;

z=z^^, cos 9—y,„ cos ^ sin fl

—

x^,, sin ^ sin 6; or, collecting

the coefficients]

xzzx^,^ (cos 9 cos "4/+ sin ^ cos 6 sin >|^) -f y^^^
(cos ^ cos 9 sin i|/

— sin (p cos %|.) 4- a;^^^ sin 5 sin ij/

;

yi=x^^, (sin ^ cos 9 cos \|/—cos^ sin ^) + y,„ (cos ^ cos d cos -^

+ sin ^ sin i|/) + 2^^^ sin 9 cos >|^ ,•

z=—jc^,, sin ^ sin 9—y^^^ cos ^ sin S-f z^^, cos 5.

Corollary 1. We find also

x^^,=:x (cos 9 sin -4/ sin ^ -f- cos \|/ cos ^)

+y (cos 9 cos >|/ sin ^—sin ^ cos ^)

—

z sin d sin ^

;

y,„=^x (cos d sin 4/ cos 9—cos -^ sin ^)

-Hy (cos 9 cos 4^ cos ^ + sin %[/ sin ^)-^z sin 6 cos p ;

z^^^=x sind sinil'+y sind co8t|/+z cosfi.
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These values are obtained by multiplying each of the

former equations by the respective coefficients of r^^^ and

adding the three products together; and by repeating the

operation for y,^^ and s,^, in the same manner [: or, much

more simply, by merely substituting

—

9, (p, and 4^ for ^> "i^*

and (p, x^^y y,„, and z^,,, for jt, y, and z, and the reverse,

according to the terms of the proposition].

Scholium. These different transformations of the co-

ordinates will be very useful hereafter. We may distin-

guish those which belong to the bodies rn\ m"y . . . , by

adding accents above the respective characters, as a',

[Corollary 2. Putting y,,,=:0, and z]^,—0, we have
X

Jf=:af
,^
(cos 5 sin ^ sin ^ + cos ^ cos (p) and in this case

///

is the cosine of the angle formed by x and ar^,,, or of the arc

intercepted between them: while fl is the spherical angle op-

posite to that arc or side, and i|/ and (p the two sides including

z
it. We have also — zz— sin d sin ^, for the cosine of the

angle formed by z and a:^^^, which is equivalent to sin

Latzrsin Obi Eel x sin Long. ]

[39^5, Lemma A. If a perpendicular be

let fall from the vertex of a triangle on the

base, the difference of the segments will be a

fourth proportional to the' base and to the

sum and difference of the two sides.

The segments of the base being a' and a", the diffe-

rence of their squares is a!^—a"^; but the difference of

their squares is equal to the difference of the squares

of the two sides, since the perpendicular is the same
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for both the right angled triangles formed by the divi-

sion of the base: we have therefore a"^-^a'^—h"— c^:

hxxi a"'-a"^=i{c^—a') {a' + a!')- {a!-a") a, and ¥—c''-

{h^c){h—cy. consequently a'—a"=-^^±^^^^\

326. Lemma B. If an angle of a rectan-

gular parallelepiped be cut off by a plane

passing through three of its diagonals, the

three planes perpendicular to the section, and

passing through the edges meeting in the

angle, will be perpendicular to the opposite

sides of the section.

For the perpendicular falling from the solid angle on the

diagonal between the sides or edges a and h will divide

that diagonal into two segments, of which the difference is

equal to -~, (325), and the perpendicular from the

opposite angle of the section will fall on the same point, for

in this case the difference of the squares of the sides is a^-^c^

—(b^+ c^), which is equal to a^— h^, and the diagonal is

common to both triangles: but both the perpendiculars

being perpendicular to the same line, the plane in which

they lie will be perpendicular to this

line and to the section; and this

plane passes tlirough the edge in

question.

327. Lemma C. If an angle of a parallele-

piped be cut off by a plane, the square of the

area of the section will be equal to the sum of
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the squares of the areas of the three trian-

gular faces of the soUd angle.

The area of the face between a and b is ^ ah, and the

perpendicular falling on its base from the solid angle is

: but this perpendicular must be perpendicular
>s/{aa-{-bb)

to the third side c, and the square of the hypotenuse of the

trianorle lyinar between them must be c^H --, which
^ -> ^ aa-\-ob

multiplied by the square of the side to which it is perpen-

dicular, or a^+ h", must be the square of twice the area;

consequently the square of the area is i ^ (a^ + b^) c^+ a^¥ >

zz^a^J^ +iaV+ ifeV, which is the sum of the squares of

the areas of the three faces.

328. Lemma D. The sum of the squares

of the projections of any area, on three ortho-

gonal planes, is equal to the square of the

area itself.

For the projection of the area on each plane is to the

original in the same proportion, as the whole face of the

parallelepiped is to the whole oblique section; the pro-

portion of the areas being determined by the inclination of

the planes, whatever the form of the area projected

may be.

329. Lemma E. The cosine of the incli-

nation of the section to either of the faces

will be expressed by the area of that face di-

vided by the area of the section.
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For if the area be resolved into elementary rectangles,

the breadth of each, parallel to the common section of the

planes, being the same in the projection as in the original,

the length of the projection will be to that of the original

as the cosine of the inclination to the radios; and the

whole areas will be in the same constant ratio as their

elements.

Corollary. Hence the sum of the squares of the

sines of the angles, formed by the three faces of the

parallelepiped with the section, is equal to the square of

the radius, or unity.]

330. Theorem. For every independent

system of bodies, a fixed plane may be deter-

mined, with respect to which the sum of the

projections of all the areas, described by the

revolving radii, multiplied by the masses of

the respective bodies, is the greatest possible ;

and for every plane perpendicular to which,

the sum of the projections vanishes.

" By taking the fluxions of the equations for the values

of x^^^y y^^^f and z^// [, the angles remaining constant], " and

substituting c, ©', and c'\ for

2w—^-TT-—, Im 71 , and Im ^—t7-~> we
d^ d^ at

obtain

2^ ^,„ y,,r-ynA^iu^ ^ ^^g ^_^/ sin Q ^.Qs^ _j,
^'/

sijj Q sin ^.

X dz ~'~~z ux
l,m "'" "' —^=c sin decs (p -\- d (sin >?. sin ^ + cos d

cos 4^ cos 9) + c"(cos ^ sin ^—cos B

sin -^ cos ^)

;
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y ^z —Z dw
2;^ ,Lm—/// /// :y///_—^ g|jj 5 sin ^ + c'(sm -^ cos ^—cos fl

cos 4^ sin ^) + c" (cos ^^ cos (p + cos d

sin 4/ sin f>).

" If we determine ij. and 6 in such a manner, that sin 6

c" c
sinT^=--7 ;—/-J-;

—

mr.i and sin cos -^r-

s/ {cc + cc' + c"c"y n/ (c- + c'2 + c''2),

c
whence cos fizz: ., .,

,

—75-;—770^ ; we shall have

consequently the values of c' and c" will vanish when the

plane of x^^^ and y,^^ is thus determined. And there is

only one plane which possesses this property : for if there

were any other, and x and y were the coordinates, and d

and (p the angles belonging to it, we should have

X dz —z diX
^m-^—

'"At

'"—^~^ ^^" ^ ^^^ ^' ^"^^

but since c' and c"=0, bythe supposition, for the supposed

plane; and since these quantities have been shown to be

=0, for the planes of x^^^, z^^^, and y^,^, z^^^, we have sin flirO,

and the two planes must coincide. The value of 2m

^"^^'\'^"' ^"'
being equal to ^(c^+ c'^ +O whatever

be the plane of x and y from which it is derived, it follows

that this quantity may be deduced equally well from any

other system of coordinates, and that the plane of x^^^ and

y^^^, determined by it, will always be that which makes this

elementary area a maximum ; and since the angle <p re-
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mains undetermined, it follows that, whatever may be its

value, the projections of the areas on the planes perpen-

dicular to this plane will vanish. Hence we may at any

time find the situation of this plane, in the same way as

the centre of gravity may at any time be found, notwith-

standing- any mutual actions of the system, and for this

reason, it is as natural to suppose the coordinates x and

y to be situated in this plane, as to make them begin at the

centre of gravity."

[This proposition may be much more simply and intel-

ligibly demonstrated by means of Lemma D ; for if e^^,,

c',^,, and c^\^^ be the sums of the products of the masses by

the projections of the areas described by the revolving

radii of the different bodies of the system on the three

planes belonging to the system of ordinates x^^,, y^,^,

and z^^^, the sum of the squares of c,^,, c',,^, and c",^^ will be

equal to the sum of the squares of c, c, and c'' : and

since this sum is a constant quantity for all systems of

planes, it is obvious that when the portion belonging to

any one plane is equal to the whole, there can be none

left for any plane or planes perpendicular to it. We
have, therefore, only to determine the inclination of the

section of the parallelepiped to either of its faces, and

we shall have the angle 6, the cosine of which will be ex-

pressed by ^ ,^ „^. for the plane oix and y (329)

:

and since ^J/ is the distance of jt from the intersection of

the planes (324), that is, the angle of the face c adjoining to

X, its tangent will be — —-jy since the areas of the faces
X c

d and c" are to each other as the

sides X and y to which they are ad-

jacent, the side z being common to

both triangles.]
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§ 22. The principles of the preservation of impetus

and of areas will still hold goody if the origin of the

coordinates he supposed to have a uniform rectilinear

motion. In this case, the plane passing through this

point J on which the sum of the areas described is a maxi-

mum, remains always parallel to itself. These properties

may he referred to the relations of the coordinates of the

mutual distances of the hodies of the system. The planes

which pass throuqh the centre of gravity of each body of
the system, parallel to the general mean plane of revolu-

tion, are possessed of similar properties. P. 61

.

331. Theorem. The constancy of the

mipetus and of the areas described is ob-

served by a system of bodies, referred to a

common origin, which moves uniformly in a

right Hne.

If we call the coordinates of the moveable origin of the

ordinates of the system X, Y, and Z, and suppose

xzzX + x/, y-Y+y^ ; z^Z+z^
x—X.-\-xl; y^Y-\-y\\ zf=Z-\-z'/^ the coordinates

of m, m', . .
.

, referred to the moveable origin, will be

X,, y,, z^, x\, . .
.

, and since by the properties of the centre

of gravity (322), we have for any detached system of

(dd.27 \

-j-^ — P j, . .
.

, we obtain, by substitution

0=2/w (d^F-f d^y^)—SmQd^^.

0=2?w(d2Z+d2z^)— 2ml2df2; consequently Swid^—
2»iPd^2— Q^ since d^X^O by the supposition, and in the

same manner, l^m^y^—SmQdf^iziO, andXmd^z^— 2mi2d^*

=0. Then in the equation (P), {S-Xmlx{^ - P ). . .,
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substituting 8X+Sx^ for 8a?, we have [0 = l.m {IX -^Ix)

(1^_ p)+... but 2m8X(^— P) = 0, because

2^/r_:? — P \=:0, IX being the same for all the quanti-

ties of which the sum is denoted by 2 ; consequently 0=

2»i 3a:,(-^ — P )
. . . , or, d^x being equal to d^jj OziSm

«-X^'|^ - ^ ) + x-s,,(^^|--a ) +X.&(^^^^-11 );

an equation which is exactly of the same form with the

equation (P), 'supposing the forces P, Q, R, to depend

only on the coordinates x^, y,y z^, /^, .... If, therefore,

we apply to it the same reasoning, as was grounded on that

equation, we may derive from it the same conclusions, with

respect to the preservation of the impetus, aud the de-

scription of areas, relative to the moveable origin of the

coordinates.

If the system is not subjected to the action of any ex-

traneous force, its centre of gravity will have a rectilinear

and uniform motion (322) : so that if we suppose the or-

dinates jr, y, and z to begin at the centre of gravity, the

laws in question will always we observed : and X, Y, and

Z being the coordinates of the centre of gravity, we shall

have, by the nature of this point, 0=:2/?2j:^, OzzT/wy^, and

^ x^y—y^x ZdF—FdZ ^
O^zSwjz,; whence we have Sm

—

"—^ iz r: • 2w
' dr dr

^ ardy,—ydx , ^ da^ + dw^+ dz*^

+ ^^ \t -
^'^^ ^^ " tt-

=

dx^+dr^+dzy ^_, d^z+dj/Z+dz;^

j^^
Dm +Sw—

^

^^ ^[, for dX and

^Y being common to all the system, we have SwidXiz

dXSm, 2mdy=dy2w; and the sums of the squares of
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(dX+ dj^) (dA' +dx',). . . must be equal to the sums of

the squares of dX, dX', . . . , da-^, dx'^, . . . , since (dX+
dj7,)2=:dX2 4-da'/ + 2dXda;, and S?wdXdar^=dASwdx^=:

0, since S»^r^=:0, and d{^mx)z=.0']. It appears, therefore,

that the quantities, concerned in the impetus and the areas,

are composed, first, of the quantities which would have ex-

isted, if all the bodies of the system had been united in their

common centre of gravity; and secondly, ofthe similar quan-

tities derived from the centre of gravity, considered as im-

moveable: and the first system of quantities being- constant,

it is easily understood that the second must be also constant.

It follows, therefore, that if we fix the origin of the co-

ordinates X, y, Zy a:', . . . of the equations (Z) (323) at the

centre of gravity, the conclusions derived from them will

still hold good, and the angleg of the planes concerned

will remain unaltered ; whence it follows that the mean

plane of revolution, which affbrds the maximum of pro-

jected areas, must pass through the centre of gravity of

the system, and remain always parallel to itself during the

motion of the system ; and that the sum of the areas, com-

puted for any plane perpendicular to this plane, must always

vanish.

[Scholium. The whole of this elaborate demonstration

is rendered perfectly superfluous, ifwe exclude the distinc-

tion of absolute and relative motion from the definitions

relating to it (218, 224) : but it is satisfactory to find that

a complicated analysis is still true when apphed to the test

of demonstrating by it a very simple proposition.]

332. Theorem. The sum of the projec-

tions of the areas, described by the radii join-

ing each body of a system with each of the
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other bodies, considered as at rest, on any

given plane, multiplied by the products of the

two masses respectively, is equal to the pro-

duct of the mass of the ^s hole system, into the

sum of the projections of the areas described

by the separate revolving radii round the com-

mon centre of gravity on the same plane, mul-

tiplied by the separate masses respectively.

^(j ft .7/qX
Since c:=z'Em —--r — » ^^ obtain, by proper substitu-

Q Z

tions clm^lmm'.
(y-..) (d;/-dy)--(y-y) (d^-d.)

d^

[For c^m—(m-\-m -j-m". . .) (m —^-^-—^ 1-m —'-^—
d^ d^

+ » . .) in which all the binary combinations of the different

values ofm occur once witli each of the two corresponding-

fractions ; and taking the first two for example, we have

, , K / xdy—ydx , x'dv —?/dx\ , , ,(m-^m), \^m. —^-j^— + m'. —^—y- j=(mm + m7n)xdy

—{mm+ mm')ydx + {mm' + m'm')x'6y— {mm' + m'm') y'dx',

neglecting the divisor: but mm' {x'—x) (dy— dj/)
—

(/—;/) (dx'—dx) =1 mm' (x'dy—x'dij—xdj/' + xdi/— y'dx'

•^y'dx + ydx'—ydx), the difference of the two expressions

being mmxdy—mmydx + m'm'x'dy'—m'm'y'dx' + mrn'x'dy—
mm'y'dx + mm'xdy—mm'ydx', or m{mjc + m'x')dy—m{my+
m'y')dx-\-m' {m'x ^mx)dy'—m!{m'y' + my)dx' '. and if we
added together any others of the bodies in pairs, it is ob-

vious that the coefficients of the fluxions in this difference

would make the series mx-\-m'x' \'m"x"+ . , , —l.w.x—0,

by the property of the centre of gravity ; consequently

Q
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the difference would at last vanish, and the two expres-

sions would be equal, as was to be proved, though the

transformation is by no means obvious without a demon-

stration.]

For similar reasons we have

d^

c^'^m^Zmm'. (y^.V) (dz^-dzMz-^z) (dy-dy)

d^

It is obvious that the sum, thus ascertained, will be liable

to the same conditions of becoming a maximum and va^

nishing, which have been demonstrated respecting the radii

drawn to the common centre of gravity : and that the same

mean plane of revolution, determined from it, will always

remain parallel to itself.

333. Theorem. The sum of the squares

of the velocities of any system of bodies,

taken in pairs, of which the one is considered

as moving round the other at rest, and mul-

tipUed by the products of the masses of the

respective pairs, is expressed by a constant

quantity lessened by twice the product of the

sum of all the masses into the sum of the reci-

procal forces between each pair, combined

with the spaces through which they act, and

multiplied by the products of the respective

, (da:'—dx)2 + (d?/—dy)3 + (dz'—dzy
masses ; or i.mm —

'
-

^.^ -—^ -
at*

=0~2^m^fmmFdf
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For since Sm
d^'+^.g + '

ji' ^ C- 22/k,«'Fd/; (319)

t

''^^
d^2

^'^ ^2 + .
•

. ; multiply-

ing by i:mz=:m+ m' + m" + . .., we have {m + m' -\-. . .) (m

dx^+ dy^ + dz^ ,dx'"- + d/>^-fdz'2^
X r^/ OV Vr ^

Fdf; but the first member of the equation of the propo-

sition will be found to be equal, when expanded, to the first

member of this last, the difference of each part becoming

= : thus, taking m and m for an example, the difference

will be mm' (dx'—dxY—(m-}-m') (mdx^ H- 7?z'd j:'^) — mm'dx'^

{•mm dx"^—2mm'dx'dx—mmdx'^—mm'dx'^—mm'dx^ — m'm'

dx'* zz—2mm'dx'dx-~7nmdx^ —wV/dx'^n — {mdx-\-m'dxf\

and by the successive addition of the diflferent pairs, this

difference will become {l.mdxf=0, since 2/wa:= and

rwdjTzzO, by the properties of tbe centre of gravity, con-

sequently] the two expressions are equal for the whole

system.

§ 23. Principle of the least action. Combined with

that of the preservation of impetus^ it gives the general

equation of motion. P. 63.

334. Theorem. The momenta of a sys-

tem of bodies being multiplied by the fluxions

of the spaces respectively described, the sum

of the fluents, taken, for the whole system,

between any given points of space, is always

a minimum.

The equation (R) (319), lmv^=:c-^2<p=2Xmf {Pdx-h

Qdy + -Rdz), affords us tbe variation Jlmv^vzzXm (P^x-H

QSy -fRSz), and combining this with the equation (P)(317)

Q 2
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Ozzlm^x (^- P) + . .
.

, we obtain 0=2m (Sa-d 1| +

^y d -^ + gz d -r^WS/wd^vgu. Now ds being the fluxion

of the path of m, let d*' be that of the path of 7n\ . . . , and

vdi^ids, v'dt=ds\..,; ds being- ^{dx'' + di/ + dz^): and

as it has already been shown (266) with respect to any par-

^ , , , dxg.T + dr/Sy + dzgz
, .

ticular body, that S(vd5)=d ~j , we obtain

by adding the results for the different bodies, 2mS (t;ds)=z

Imd ^^ + dygv + dzjz^
^^^ ^^^^ ^^^^^^ ^^^.^^ .^ ^^^^^ .^_

d^

dependently both of the variation, and of the integration ex-

^^ ^ . ^^^ , ^ ,
_. dx^x + di/^i/ + dz^z

pressed by 2, gives us z^ymvdszz C + 2.m- — ;

the variations of the ordinates being those which belong to

the extreme points of the curves to be compared. Hence it

appears, that when these points are supposed invariable, the

equation becomes X^fmvdszzO, consequently the quantity

^Jmvds is a minimum. And this is the law of the least ac-

tion, as applied to the motion of a system of bodies, a law

which is evidently derivable, by mathematical considera-

tions, from the fundamental principles of equilibrium and

of motion.

Scholium. It is also apparent that this law, combined

with that of the preservation of impetus, would afford the

equation (P) (317), which includes all that is necessary to

the determination of the motions of the system ; and it ap-

pears from the preceding propositions, that the same prin-

ciples are applicable to the case of a moveable system of

bodies, provided that the motion of its centre of gravity be

uniform and rectilinear, and the system be detached from

the operation of all foreign forces.



CHAPTER VI.

OF THE LAWS OF THE MOTION OF A SYSTEM

OF BODIES, ACCORDING TO ANY RELA-

TION MATHEMATICALLY POSSIBLE BE-

TWEEN FORCE AND VELOCITY.

§ 24. New principles corresponding^ on this more en-

larged hypothesis, to those of the preservation of impetus,

the constancy of areas, the motion of the centre of gra-

vity, and the least action. Forces reduced to a given

direction : referred to an axis ; and combined with the

elements of the spaces,

335. Theorem. The sum of the products

of the masses of any system ofbodies, into the

fluent of the product of the velocity into any

function of the velocity, which may be sup-

posed to represent the force, is constant with

regard to the intervals between any two places

of the system.

There are many conceivable relations between force

and velocity, which imply no mathematical contradiction,

although the simplest is their being directly proportional

to each other, as we find that they actually are in nature.
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The preceding equations of the motion of a system of

bodies have been derived from this law: but the same mode

of investigation may be easily extended to all other rela-

tions between force and velocity which are mathematically

possible, and the principles of motion may thus be exhi-

bited in a new point of view.

For this purpose we may suppose F the force and v the

dF
velocity, putting F=.<p(v)^ and let ^'(v)=:--p' [or, more

simply, let <p denote <p(v) or F, and ^'du, d^ ]. If this

force be reduced to the direction of x, it will become

<p.-T- . and in the next instant it will be 9.-r--fA(^-;-^ or

^ dx /o dx\
since dszuvdt.

Now if F, Q, and R be the forces, acting on the body m,

in directions parallel to the respective coordinates, the

system would remain in equilibrium in virtue of the action

of all such forces combined with the elementary differences

a(---*—j considered as negative, since these differences

are the effects of the results of the forces, and the fluxions

are their measures: we shall therefore have, instead of the

equation (P) (317),

0=Sm{ 8x(d(J?.-^)-Pdf)+ gy(d(g.^)- Qdt)^ gz(d

which only differs from it by the substitution of

5Lfor — or unity. This alteration would render its gene-
V V

ral application to mechanical problems very diflScult: we

may however derive from it some principles, analogous to
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those of the preservation of impetus, the constancy of

areas, and the motion of the centre of gravity. By sub-

stituting da:, dy, and dz, for Sir, 3i/, and ^z, we obtain

d<p'[=Smt;dpdi: for, dxd (^S) =^ df + i d:cd ^'
^d* u' at V V at

and the three parts together make -r— d -^+ — d ^-r-°
dt V V 2dt

= d {~'^^) — —vdvdtzz d ( ^v^dt) -. (pdvdt = d

/<pvdt) — (pdvdt zzvd<pdt, and the integral is truly ex-

pressed hyl.mvdpdt.] Hence, dividing by dt, and taking

the fluents, S/mrd^ = c + Xjm {Pdx+ Qdy + lidz); or,

supposing the latter member an exact fluxion, and equal

to dx, we have the equation •

'2fmvd(p=c+x (T)

an equation resembling {H) (319) and which is converted

into it by making ^=:t?; consequently the principle of liv-

ing force is maintained in this hypothesis, if we understand

by living force the product of the mass into " twice" the

fluent of the velocity multiplied by the fluxion of that

function of the velocity, which expresses the force.

336. Theorem. The sum of the finite

forces of a system, reduced to any given di-

rection, is constant, and vanishes in the case

of equihbrium.

If we substitute, in the equation {S), ^x-\-^a^^ for ^jif,

Sy-fV/ for V' ^^ + S/, for gz; ^x + da/'^ for gar" , ... ; we
shall obtain, by making the three variations vanish sepa-
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ratel,.0=.4,gX)_Pd.};0=..{d(f,:)

—Qd^|, and 0= Swi^d (^^-^) - J^df |, exactly in the

same manner as similar equations have been deduced from

(P) in article 322; and as it was inferred in that case, that

the motion of the centre of gravity must be uniform, so

now, if the system be only subject to the mutual attraction

of the bodies comprehended in it, since S?wP, 2wQ, and

T?nR are evanescent, on account of the reciprocality of

action and reaction, we have c:=:^m — ; c'ziSm-^.—
at V 6t V

and c"zzlm-r-."' but m-T' — z=. mo -r* which is the
dt V at V ds

finite force of the body m, reduced to the direction of x:

consequently the sum of the finite forces of the system,

reduced to the direction of any given axis, is constant,

whatever may be the relation of the force to the velocity

;

aud the state of rest is distinguished by the disappearance

of that sum. This result is common to every hypothesis

respecting the relation of force to motion, but it is only

in the natural state of this relation that the motion of the

centre of gravity becomes uniform and rectilinear.

337. Theorem. The sum of the finite

forces, tending to turn the system round any

given axis, is constant, and vanishes in the case

pf equiUbrium.

We may make again, in the equation {S),

, / y y
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Sy= -f- %, , cy = +6y, , . .

.

so that ^x may be made to disappear from the variations

of the mutual distances, f»f , -- -, as in article 323, and

from the values of the forces depending on these distances.

We shall then have, if the system is free from foreign in-

terference, by making dx =0, 0] = Im. < a:d ^-^ .— j—yd

/ jc_ ^\
I ^ ^jji{Pi/ — Qx) dt ; and by taking the fluent,

ezzHm ^^^^^ ~ ^ Xfm (Py—Qx) dt ; and in the same
d^ « -^

manner, taking c' and c" two other constant quantities^

c'= Smi^^5=fi^. -^ + ^fm {Pz-Rx) d^ and
dt V ^

If the system is only subject to the mutual actions of its

parts, we have 2m {Py—Qx)—0; ^m (Pz—Rx) = 0, and

2w (^2—jRy)=0, as has been shown in article 323: and

(QM dx\
X ~— y -r^

J
— is the rotatory power of the finite force

of the body m, reduced to the plane of x and i/, and tend-

ing to turn the system round the axis parallel to z; conse-

quently the integral Xm (—~^—)— is the sum of the

rotatory powers of all the finite forces of the bodies of the

system, with respect to the same axis ; and this sum is

shown to be constant : and in the state of equilibrium it

vanishes : so that there is here the same difference, be-

tween the conditions of motion and of rest, as with respect

to the forces parallel to any given axis. In the case of

the natural relation of the forces, this property implies tho
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constancy of the areas described by the revolving radii in

given times; but this constancy is not observed in the case

of any other supposed relation.

[Scholium. The definition of rotatory power ought

properly to have been premised to this demonstration, but

its nature is so purely speculative, that it was thought un-

necessary to anticipate any part of the important investi-

gation of rotation on this occasion; it is already as intelli-

gible as there is any reason to desire : especially consider-

ing the unavoidable confusion attending the idea of a

finite force as possessed by a moving body, which is almost

incompatible with the true conception of force, as a cause

of a change of motion.']

338. Theorem. The sum of the fluents

of the finite forces of a system, multiplied by

the fluxions of the paths described, is always

a minimum, and vanishes in the case of equi-

librium.

By taking the variation of the function 2/?w^ds, which is

here considered, we have ^Xfm<pds::z'L/m(pdds-\-Xfmdsd(p:

-,- dxSdJT+ d?/Sd?/ 4- dzgdz 1 /do: j^ tly j^ .

r gds=: ^--^ =~ 1— ddx-b-^ ddy +
d* V \dt dt

now

^ ddz) (265); consequently ^Sfm^pdszzX ?^(^ g:r+ ^

— .-r- dSi' + Sar d (—1.-— ). .. Now the terminations of
V dt ^ V dt ^

the curves, described by the different bodies of the



OF THE MOTION OF A SYSTEM. 235

system, being fixed, the part of the variation, not in-

cluded under the sign^^ must vanish for the whole paths,

so that we have from the equation (5), ^lfm^ds=:Xjmds^<f>

—:E/mdt (Pdx+Q^y + Rdz); but the variation of the

equation (T), multiplied by dt, affbrdsus S2/mrd^d^=:S/wi

dt (P^x+ Q^tz+ R^z); or. Xfmvdt^(p=zXfmd(pds=l/mdt

{P^x -h Q^y+R^z) [since the variation of any quantity

is always the same as its fluxion, with the substitution

of the character of a variation for that of a fluxion : the

«teps, by which a variation and a fluxion are obtained,

being always identical and undistinguishable ; consequently

^XjiTKpdszzO, This equation corresponds to the law of least

action, in the natural relation of the force to the velocity,

since m<p is the total force of the body 7n ; and the principle

implies that the sum of the fluents of the finite forces of all

the bodies of the system, combined with the elements of

the spaces described, is a minimum ; and in this form the

principle is applicable to any relation between the force

and the velocity, that can be supposed to be mathematically

possible. In the state of equilibrium, the sum of the forces,

multiplied by the elements of their lines of direction, disap-

pears, in consequence of the principle of virtual velocities

;

so that, in all cases, the same differential function, which

disappears in the state of equiUbrium, becomes, after

taking the fluent, a minimum in the state of motion.



CHAPTER VII.

OF THE MOTIONS OF A SOLID BODY OF

ANY GIVEN DIMENSIONS.

§ 25, 26. [Introduction.'] Equations which determine

the progressive and rotatory motion of the body in

question.

[339^ Theorem. " 349/' When a system

of bodies has a rotatory motion round any

centre, the effect of each body, in turning the

system round a given point, must be esti-

mated by the product of its momentum into

the distance of the body from that point ; and

the power of each body, with respect to the

original centre of rotation, will be expressed

by the product of the mass into the square of

the distance.

Suppose the bodies A and B, fixed to the ends of two

equal levers, to meet each other, and simply to communi-

cate their motion, and let B be twice A, and moving with

half its velocity, then the motion of A will exactly de-

stroy the motion of B, and this effect is therefore the mea-

sure of the motion of A : but if tlie bodies A and B be con-
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nected with the arms of an inflexible line, and move with

equal velocities in the same direction, they will obviously

be totally stopped by the application of a fulcrum at the

centre of gravity ; for the propositions respecting equi-

librium are as well deducible from the composition of mo-

tion as from that of force, and the motion of A is here

equivalent to the motion of B, which now moves with

equal velocity at half the distance from the fulcrum, being

still twice as large as A : but it was before shown to be

equal to the motion of B, when it moved with half the ve-

locity at a distance equal to its own : consequently these

two motions of B are equivalent, with respect to effect in

producing rotatory motion : and the same may be shown

when the bodies and their motions are in any other pro-

portions. It is also obvious, that since the velocity is as

the distance from the centre of rotation, the power, with

respect to that centre, will be as the square of that dis-

tance, or as the square of the velocity.

Scholium. It is therefore of importance to bear in

mind, that although the equilibrium of a system of bodies

is determined by the equality of the product of their

weight into their effective distances on each side of the cen-

tre, yet the estimation of the mechanical power of each body,

when once in motion, requires the mass to be multiplied

by the square of the distance, or of the velocity. For this

reason, and for some others, the square of the velocity has

been considered by many persons as affording the true

measure offeree; but the properties of motion, concerned

in the determination of rotatory power, are in reality no

more than necessary consequences of the simpler laws, on

which the whole theory of mechanics is founded. It is

only within about half a century, that the mechanical philo-

sophers of Great Britain have begun to entertain correct
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notions on this subject ; they had been perhaps in some

degree misled by an accidental error committed by New-

ton in computing the precession of the equinoxes : the

experiments of Smeaton served to set the question in a

clearer point of view, and Dr. WoUaston has more lately

removed every remaining obscurity from the subject, in

one of his Bakerian Lectures, published in the Philoso-

phical Transactions. Mr. Smeaton's apparatus consisted

of a vertical axis, turned by a thread, passing over a pulley,

and supporting a scale with weights ; the thread was ap-

plied to different parts of the axis, having different dia-

meters, and the axis supported two arms, on which two

leaden weights were fixed, their distances being variable

at pleasure. The experiment being thus arranged, the

same force produces, in the same time, but half the velocity,

in the same situation of the weights, when the thread is ap-

plied to a part of the axis of half the diameter : and if the

weights are removed to a double distance from the axis,

a quadruple force will be required in order to produce an

equal angular velocity in a given time. '

340. Definition. '' 350." The centre

of gyration is a point, into which if all the

particles of a revolving body were condensed,

with its actual velocity, the body would retain

the same quantity of rotatory power ; and

the radius of gyration is the distance of this

point from the axis of motion.

341. Definition. The rotatory inertia

of a body with respect to any given axis, is

the sum of all the products of the elementary
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particles, multiplied by the squares of their

distances from that axis.

Scholium 1. Consequently the rotatory inertia is

equal to the mass multiplied by the square of the radius

of gyration. This product is generally called on the con-

tinent the ** momentum of inertia," but there is no reason

for abandoning the Newtonian acceptation of the word

momentum.

Scholium 2. The elements and the squares of the

distances being always positive, the products must be al-

ways positive, and any addition to the bulk of a body,

wherever applied, will always increase the rotatory inertia.

Scholium 3. The rotatory inertia will generally be

different with respect to different axes, but the various

cases are often easily deduced from each other, especially

when the axes are parallel.]

342. Theorem. If ^, ?/, and z be the co-

ordinates of the centre of gravity of a body,

of which the particles are subjected to the

forces P, Q, and i?, acting in the respective

directions, the sum of the quantities relating

to all the particles being denoted by the cha-

racteristic S, m being the mass, and j^m the

particle, we shall have the equations m -^^

SPd//i, m ^=SQd7w, and m '^=SRBm.[A)

The fluxional equations of the progressive and rotatory

motions of a solid body may easily be deduced from those

which have been demonstrated in the fifth chapter ; but
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their importance in the system of the world makes it con-

venient to develope them somewhat more in detail.

If the coordinates of the particle Dm, referred to the

centre of gravity, be jr', y , zf, so that its whole motion is

determined by the sums jr + o:', y + y and z + z' ; "the

forces destroyed at each instant in the particle Dw, in the

respective directions, considering the element of the time

as constant, will be

dda7 + dda/

d^
Dm-^PdtDm ;

—

—

^. ^ Dm + QdtDm ; and
d^

dds-fdd^;' , „.^Dm -{- KatDm.
dt

It is therefore necessary that all the forces thus destroyed

should be in equilibrium with each other" [that is, as

causes and effects] : and that the sum of all the forces pa-

rallel to any given axis, should vanish (307) : hence we

have the three following equations

tj dda^ + ddo;'
c? t^ c ddy -^-ddy' c? ^

dt dt

, c dd2:+ dd2' c>n -kt jand o Dm=:SlcDw. J\ow smce a:, y, and z
dt

are the same for all the particles, they may be excluded

from the quantity under the sign S ; so that we have

S __^ Dmrzm -— , . . . ; we have also, by the nature of

the centre of gravity Sx'Dm-=.0, . . . ; consequently S

^—Dm=0,S ^Dm^O, and S^^ Dm-0 : and lastly

m^zzSPDm, m^=:SQDm,andm^^ = S RDm.

These three equations determine the motion of the centre
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of gravity of the body, and being analogous to the equa-

tions of article 323 relating to a system of bodies.

[Scholium. There can be no objection,~ln the strictest

geometrical sense, to the employment of the character d

to denote the element of a material body, as we have no

evidence to make it necessary to suppose that the particles

of matter are infinitely small, or that one material body is

ever incommensurable to anotlier : but then the particular

character S must always be applied to the corresponding

integral, which is here an actuul sum.]

343. Theorem. Retainino; the same nota-

tion, (342) and making x\ y\ and z the or-

dinates of the particles with respect to the

centre of gravi-ty. we have also

S ^-^lrI!^iy,nzzSf{Q^'-^Py') d< Dm-N ;

dt

S y^£z£^ Dm-SfiRy-Qz') dt Dm-N\ (B)

Since it is necessary for the equilibrium of a sohd body,

that the sum of the forces parallel to x multiplied by the dis-

tances of their lines of direction from the axis parallel to z,

diminished by the sum of the forces parallel to y multiplied

by their distances from the same axis, should vanish : we

shall have

^ c , ddy+ ddi/ , ,
ddx + ddjr' ->

S hx + x') Q—{y+y') P > Dm " (1)" : and since

S (xddy-'yddx) Bmzzm {xddy—ydda;), "
[2J' ; and

S {Qx— Py) vm=xSQDm—ySPDm, *' [3]" : and lastly
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S (or'ddy+xddy

—

y^ddx— yddx') Dm—ddij Sx'Dm— ddac

Sy^B7?i+x S ddi/Dm—y Sdda' Dm ; each of the terms of

the second member of this equation being equal to no-

thing, by the properties of the centre of gravity, the

equation "(1)" will become S ^ ^ Dm=S(Q;v

— PyXBm), since the parts [2] and [3] destroy each other

in consequence of the equation (A) of the preceding pro-

position ; and the fluent of this expression, considered with

jj" diy "~~~ u ojb /-•

respect to the time f, gives us S— i.
— Bm=Sj {Qx'

--Pj/)dtDm.

Scholium 1. These three equations include the prin-

ciple of the constancy of the areas described ; they are suf-

ficient to determine the rotatory motion of the body, round

its centre of gravity, and in combination with the three

equations of the preceding proposition, Uiey aflbrd us the

complete determination of the progressive and rotatory

motion of the body.

Scholium 2. If the body is attached to a fixed point

with liberty to move round it, the motions may be deter-

mined by means of this proposition, as is obvious from

article 308 ; but in that case the coordinates .r\ y\ and z'

must be supposed to originate at that point.

344. Definition. The three principal

axes of rotation of any body are those, with

respect to which the three sums Sxy'jym^ Sx"

zTun^ and Sy'zTun vanish, x'\ y\ and z being

axes moveable with the body.

[Scholium 1. If the body revolve about a;"', the sum

Sj/'y"Dm will be the effect of the centrifugal force of all
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the particles Dm, tendiag to turn the body about z", since

this force is simply as the distance from x" (261) or as V
{x/'"-\-2!'% but when reduced to the direction ofy, as y"

only, acting on the lever x" ; and the same sum will ob-

viously be the rotatory pressure with regard to the same

axis, ify instead of x" be the axis of rotation.

Scholium 2. The rotatory inertia, with respect to

these three axes, is S (a?"^ +/2) d^- c, S {x"^^7!'^) dw=
J5, and ^{y"^-\-7!"^)VimzzA respectively.

Scholium 3. The evanescence of Sx'y'D??z and ^x"

z"iim determines only the position of the axis x" ; but when

that of Si/'z"Dm is added, it obviously gives us the two

necessary conditions with respect both to y" and to z'\

since we have for the former Sy"x^'DmzzO and Sy'z'Dm

=0, and for the latter Sz"x'Dm—0, and Sz'y'Dw^iO.]

345. Theorem. If ^", y\ and z'^ parallel

to the principal axes of rotation of a solid, be

the coordinates of the particle T>7n, A^ B, and

C, the rotatory inertia with respect to these

axes, 6 the angle made by the plane ofw and

y" with that of x and ?/, <? the distance of x"

from the intersection, and ^ [that of a:-, which

is also] the complement of the angle made

with <r by the projection of z'' on the same

plane ; putting d?-—d4' cos 6=pdt, d^l^ sin o sin

(p—do cos (p:=qdt, and d4' sin 6 cos ^+dd sin ^=

rdt, we shall have

Aq sin q sin <p-{-Br sin q cos <P—Cp cos &=—N
{Aq cos ^ sin (p-\-Br cos o cos p + Cp sin o) cos'^

R 2
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+ (J3r sin (p—Aq cos ?>) sin ^-—ISl'

(Er sin (p—Aq cos ^) cos >|/
—{Aq cos 9 sin ?> +

£r cos cos ?' + Cp sin &) sin >!'=—N";

Nheing=SJ{Qx—Py')dtDm,R=SJ{Ra:—Pz')

dtBm, and iV"=3/(Ry—Q^Od^om, (343) ; and

af^y\ and 2' being the coordinates, referred to

the centre of gravity, and parallel to j:, 3/,

and z. ' (C)

We have first, for x\ y' aud 2', which are the x, y, and

« of article 324,

x'—x" (cos 5 sin 4^ sin cp + con-]^ cos (p)-\-y" (cos fl sin 4/ cos

^—cos 4/ sin <p)+z'' sin 5 sin i|/.

y''=-x" (cos fi cos 4' sin (p—sin 4' cos (p)-\-y" cos cos 4^ cos

^ + sin 4' sin <p)+z" sin 9 cos 4^.

z'—z" cos fi—y sin fl cos <p
—x" sin 5 sin ^ : [and if we sub-

stitute for these equations, in order to shorten a very tedi-

ous reduction, x'=: ax'' 4-^1/"+ 7z'', 2/' =1:^0;'' + £y''+ ^2"; and

then, in order to obtain the value of x'dy'—y'dx' (343),

make dx'=cix" -{-^y" -\-yz", and dy=i^'x''-{-ey'-\-tz", we

may omit in the products rU the terms containing x"y",

x"z", Qxy'z , since their sum vanishes for the whole body,

and we shall obtain a result in the form^V^H- J3y'2+ C'z'"^,

which may be transformed into \ {B'+C—A) A+^{A'+
C—B')B+^(A-\-B'—C) C, for the whole body, since

A-S{y"^ + z"^)Dm, B=S {x"'' + z'"')Bm, and C=S (^'^^

y"^)Dm. Now for x'dy—y'dx\ we have cc^x"- + &Ey"^ +
ytz'^-a^h^^—^sy^'^—y'^z"^, and A'z=icc^'—a% R=^/-^
^B, and e=y^-y^

Again,

a=cos 9 sin 4^ sin <^-f cos 4^ cos (p
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0=

7=

a'g=:

aS'-

=

—

do. sin 5 sin 4^ sin ^+ d4'.(cos cos ^l^ sin <p—sin 4^

cos (p)

+ d^.(cos 9 sin 4' cos (p—cos ^l^ sin cp)

= cos 5 cos a|/ sin ^—sin 4' cos ^

=

—

69. sin 6 cos ^|/ sin (p—d>J/.(cos 6 sin 4' sin^ + cos 4'

cos^)

+d^.(cos 6 cos 4' cos ^~sin 4 sin ^)

= cos 9 sin 4^ cos ^—cos 4 sin ^
—d9. sin 5 sin 4 cos ^4-d4'.(cos 5 cos 4 cos ^ + sin 4^

sin (p)

—d^. (cos 9 sin 4- sin ^ + cos 4 cos (p)

cos d cos 4/ cos 9+ sin 4* sin ^
:

—

d9. sin 9 cos 4/ cos (p—d4'. (cos 9 sin 4 cos ^—cos 4
sin ^)

—d^. (cos 9 cos 4' sin (p—sin 4^ cos <p)

sin 9 sin 4
-.do. cos 5 sin 4'+ d4'. sin 9 cos 4^

sin 9 cos 4^

. cos 9 cos 4

—

^4* sin 6 sin 4^. Hence

zz—d9. (sin cos 9 sin cos 4^ sin ^ ^ + sin 9 cos ^ 4' sin cos <p)

—d4'. (cos ^9 sin ^4' sin 2^4- cos 6 sin cos 4 sin cos ^-|-

cos d sin cos 4^ sin cos ^ + cos ^4 cos "^)

+ d^. (cos ^9 sin cos 4^ sin cos (p -f- cos 5 sin ^4' sin *^ -f-

cos 9 cos 24, cos ^(p + sin cos 4^ sin cos (p)

d9. (sin cos 9 sin cos 4^ sin ^^—sin 9 sin ^4^ sin cos ^)

+ d4'. (cos ^9 cos ^4^ sin 2^—cos 6 sin cos 4^ sin cos ^—
cos 9 sin cos 4^ sin cos (p+ sin ^4 cos 2^)

+ d^. (cos ^ sin cos 4' sin cos p—cos 9 cos ^4 sin 2^—

cos 9 sin ^^4^ cos ^^+ sin cos 4^ sin cos (p)

aS=—d5. sin 9 sin cos ^

—d4'. (cos 25 sin ^(p + cos 2^)

f d^. (cos 9 sin ^^ -f cos 9 cos 2^) or . . +
d^. cos 9

^A
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^£=— do. (sin cos 9 sin cos v[/ cos "(p—sin 9 cos^o^/ sin cos (p)

—d^|/. (cos -9 sin -^^ cos 2^— cos 9 sin cos ^ sin cos (p

—cos 9 sin cos 4' sin cos ^+oos ^4' sin ^(p)

—d^. (cos -9 sin cos 4^ sin cos <p— cos 9 sin -^ cos ^(p

—cos 9 cos 24, sin 2<p + sin cos 4' sin cos (p)

0E——69. (sin cos 9 sin cos ^ cos ^^ + sin 9 sin ^4/ sin cos <p)

+ d->^. (cos 2fi cos 24^ cos 2^ + cos 9 sin cos -^ sin cos 9

+ COS 9 sin cos 4^ sin cos ^ + sin^T^ sin ^(p)

—d^. (cos "5 sin cos -^ sin cos ^ + cos 5 cos 2>|/ cos ^(p

+ COS fi sin 24, sin 2 ^4- sin cos 4' sin cos ^)

/gf'— /3'£— d5. sin sin cos ^ -v

—d^/. (cos 2 cos 2,j5 + sin 2^) i^^
+ d(p. cos 9 (cos 2^ 4- sin 2^) or . . + d(p. cos 9 ^

7^zzd9, sin cos 5 sin cos 4'

—d^.. sin 25 sin 24,

y'^zz d5. sin cos 5 sin cos 4^

+ d4.. sin 2dcos «4.

7^—yfc—d4' sin 2d=:C'.

Combining these results, we have B'-\-C'—A'—2d9. sin

9 sin cos ^—d4' (cos 2 5 cos 2 ^ + sin 2 ^ + sin ^d—cos 2 5 sin 2

^

—cos 2(p) or . .d4' (cos ^9 (1—sin 2^_sin 2<p) + sin 2<p—1 4-

sin2^ + sin 25)r:d4^(co3 2^—2 cos ^9 sin 2<^ + 2 sin 2^—14-

sin 25) =z d4.|2sin2^(l— cos 25)|=2 d4.. sin ^cp sin 25,

and i {Bf + C—A!) A— {d9. sin ^ sin cos <p—d-^. sin 25 sin

«^) ^.

If we subtract this from C, the remainder will be \ {A'

4- C—B)— —d9. sin 5 sin cos (p 4- d4.. (sin 25 sin 2^--sin 2^)

=

—

d9. sin 5 sin cos f—d4^. sin «S cos 29, the coefficient

of JB.

Subtracting the same quantity from B\ we obtain ^{A'

4_B'—C0=d4.. (sin 25 sin 2^—cos ^9 cos 29_sin 2<p)4-d^.

cos 9 =. d-^. y — cos 25 (sin 2(p4-cos 2^) > 4-d^. cos 9=

—
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d%/^. COS ^+ d(p COS 9; which is the coefficient of C in the

value o£ x'dy—y'dx\

We have next to perform a similar computation for the

areas x'dz—zfdx', and y'dz'—z'dy' : and the same charac-

ters may again be employed in each of these cases with

their appropriate significations : half of them retaining the

same values.

a zz cos 9 sin 4- sin ^ -f cos ^ cos (p

a zz — d9, sin 9 sin %[/ sin <p 4- d^. (cos 9 cos 4^ sin o— sin 4^

cos (p)

+ d^. (cos 9 sin 4^ cos ^— cos 4' sin <p)

^zz — sin fl sin <p

^'zz -~d9, cos 9 sin (p— d(p. sin 9 cos (p

$ =: cos 9 sin 4' cos ^— cos v|/ sin <p

0=. —d9, sin 9 sin 4^ cos ^ + d4' (cos 9 cos 4 cos <p -\- sin^

sin <p)

—d^ . (cos 9 sin 4^ sin <p + cos 4' cos <p)

s =: — sin d cos (p

e'zz — d9. cos 9 cos ^ + d(p. sin fl sin <p

y 1= sin 5 sin 4'

y'zz dfi. cos S sin 4'+d>I/. sin 9 cos 4'

C = cos 6

^z: - d9. sin 5

aJ^'z: — dfi.(cos25 sin 4/ sin ^^-f cos 9 cos 4. sin cos 9).

— d^.(sin cos 9 sin 4^ sin cos ^ + sin 9 cos 4' cos ^^)

a'S= d9, sin ^d sin 4' sin ^(p— d>|/. (sin cos 9 cos 4^ sin ^(p—
sin d sin 4^ sin cos (p)—d^ (sin cos 9 sin 4^ sin cos cp—
sin 9 cos ^ sin 2^)

ay-^ad=. — d9. (sin 4^ sinV+ cos 5 cos ^ sin cos ^)

-j- d\|/ (sin cos fl cos 4' sin ^^— sin 5 sin ^|/ L
__^

sin cos ^)
"~

— d^. sin 9 cos ^
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^e'zz — d9. (cos "9 sin %|/ cos 2^—cos Q cos ^ sin cos <p)

+ d^. (sin cos Q sin >^ sin cos ?>—sin cos %[/ sin ^(p)

^'ezz d5. sin "& sin 4^ cos 2^—d^J. . (sin cos Q cos ^ cos ^^ +

sin sin %|/ sin cos <p)

+ d^. (sin cos Q sin 4' sin cos ^ + sin 5 cos 4^ cos 2^)

^£—^b:=.— do. (sin ^ cos^ ^—cos cos >J/ sin cos 9)

+ d-^ . (sin cos Q cos ^ cos -^ + sin 6 sin -v^l

sin cos (p)

—dip. sin 9 cos 4'

r^ =z — d9, sin ^9 sin 4.

y'Cr: dfl. cos^d sin^' +d4'. sin cos 5 cos x^

7^—7'^— — dfl . sin -^ *-d 4^ sin cos 9 cos 4^ = C
Hence B' + C — ^' = — d 0. (sin 4^ (cos V—-sin 2^)—

2 cos 9 cos 4/ sin cos (p + sin 4^) + d^- . (sin cos 9 cos \p (cos*

^— sin 2^) + 2 sin 5 sin -^ sin cos ^— sin cos 9 cos 4) = —
d5 . (2 sin 4^ cos -^— 2 cos cos ^ sin cos (p)-— d^^ (2 sin cos 9

cos 4^ sin 2 (p —.2 sin 5 sin 4^ sin cos <p), half of which is in the

coefficient of J. in the value of— N'.

For that of B, we subtract this half from C, and ob-

tain— d9 (sin 4^ (1— cos ^(p)+ cos 9 cos 4. sin cos <p) + d 4. (sin

cos 9 cos 4' (sin ^^— 1)— sin 9 sin -J/ sin cos (p) — — d9 (sin

1^^ sinV + cos 9 cos 4^ sin cos (p)
— d4' (sin cos 9 cos 4^ cos ^(p

+ sin 5 sin 4^ sin cos ^) : and subtracting it from B\ we

have d4'. sin cos 9 cos 4'— d^. sin fi cos 4'-

It is easy to perceive that these are the coefficients al-

ready assigned for the value of N\ divided by d^: for

qdt being z= — d9. cos ^ + d4'. sin 6 sin <p, we have for q
cos 9 sin ^ cos 4^— q cos ^ sin 4', — d5 . (cos 9 cos 4^ sin cos

(p— sin 4^ cos ^(p) + d4'. (sin cos 9 cos 4^ sin ^^— sin 9 sin 4*

sin cos <p); and, since rdfzidd. sin ^ + d4'. sin 6 cos ^, forr

cos 9 cos ^ cos 4^ + ^ sin <p sin 4, d9 , (cos 9 cos 4' sin cos ^
r|- sin 4' sin ^(p) + d4' . (sin cos 9 cos ^ cos ^^ -j- sin 9 sin 4^ sin
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COS ^); and jod^ being =— d-^ cos 6 + d^, we obtain forp

sin 6 cos 4^, — di^. sin cos 6 cos a|/+ d(p. sin 6 cos 4^. In the

last place, for N",

azi cos 9 cos 4' sin (p— sin 4' cos (p

azz — d9, sin 9 cos 4' sin ^— d4^. (cos 9 sin 4' sin ^+cos 4.

cos ^)

+d^. (cos 9 cos 4' cos ^+sin 4' sin ^)

8=:— sin 9 sin ^

^z=— d9 . cos 9 sin ^—d^. sin 9 cos ^

/3=:cos 9 cos 4' cos ^+ sin 4' sin ^

^1=— d5.sinflcos4'Cos^—d4'. (cos5sin4' cos^—cos4'6in^)

—d^. (cos 9 cos 4^ sin (p—sin 4' cos (p)

fz=— sin 9 cos ^

£'=— d9. cos 5 cos 4'+d(p. sin 9 sin ^

7= sin 9 cos 4'

y'zz d5. cos cos4'— d4'. sind sin4'

^zi cos

^=:— d9. sin fi

a^zi—d5.(cos 25 cos 4' sin ^(p— cos 9 sin 4^ sin cos^)

— d^. (sin cos 9 cos 4^ sin cos ^—sin 9 sin 4* cos^ip)

a ^= d6. sin 25 cos 4' sin ^(p 4- d4/ (sin cos 5 sin 4^ sinV + sin 9

cos 4^ sin cos ^)

—d^.(sin cos 9 cos4' sin cos ^+ sin d sin 4^ sin^p)

aJ"'

—

a^zz— d9. (cos 4^ sin^^—cos 9 sin 4^ sin cos ^)

— d4'. (sin cos 9 sin 4^ sin ^^ + sin 9 cos 4^

sin cos (p )

4- d^. sin 9 sin 4'

^c'z: — d9. (cos ^fi cos 4^ cos ^(p + cos 5 sin 4^ sin cos ^)

+ d^. (sin cos 9 cos 4^ sin cos ^ + sin 5 sin 4. sin ^g>)

0e— d9, sin ^9 cos 4^ cos ^(p + d4' (sin cos 9 sin 4^ cos ^(p—
sin 9 cos 4^ sin cos (p)

4- d^. (sin cos 9 eos 4^ sin cos ^—sin 9 sin 4' 00s ^^)

= /!'
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&£—/?'£=:—dd. (cos -^ cos ^(p + cos sin 4/ sin cos (p

—d^. (sin cos 5 sin -^ cos "(p—sin Q cos 4^ sin
. V— Jo

cos ^)

4- d^. sin d sin 4^

7^=—dd. sin 25 cos 4.

y'Z— d5. cos 2fi cos 4^—d4'. sin cos d sin 4'

7^

—

y^^— d^. cos4' + d4' sin cos sin 4^ =C^'

We have here jB'+ C

—

A'zi. — d5 (cos 4^ (cos ^^—sin ^(p

4-1) + 2 cos Q sin 4' sin cos ^)—d4' (sin cos 5 sin -^ (cos ^(p—
sin 2^—])—2 sin Scos4' sin cos(p) =— dd (2 cos 4^ cos ^^

+

2 cos Q sin ^ sin cos (p) + d4'. (2 sin cos fl sin 4^ sin ^^ 2 sin

6 cos 4^ sin cos (p) twice the coefficient of A ; whence we

obtain, as before, for the other coefficients,— dd. (cos 4^

sin "(p—cos d sin 4^ sin cos <p) + d4'. (sin cos B sin 4^ cos -^

—

sin Q cos 4^ sin cos ^), and— d4'. sin cos 5 sin 4^ + d^. sin fl

sin 4' ; which we must compare with —q cos (p cos 4^— g^ cos

6 sin (p sin 4^, with r sin ^ cos 4'

—

r cos 6 cos <p sin 4^, and

with

—

p sin 6 sin 4^ respectively : of these the first becomes

4- d5. (cos ^(p cos 4' 4- cos Q sin cos ^ sin 4')—d4'. (sin & sin cos

^ cos 4^ 4- sin cos B sin ^^ sin4'), the second dd. (sin ^^ cos -^

—cos 6 sin cos (p sin 4^) 4- d4^. (sin sin cos (p cos 4^— sin

cos cos 2 (p sin 4^) and the third d4/. sin cos 5 sin 4'— d^.

sin 5 sin 4^; agreeing in -each instance with the reduction

here detailed, which is inserted more for the sake of pre-

serving the uniformity of system, and of leaving nothing

undemonstrated, than for its immediate importance to a

student.]

346. Theorem. Retaining the notation

of the last propositions, and making 4. infi-

nitely small, or x infinitely near to the plane

of x" and y\ putting also Cp—p'^ Aqzzq\ and

Br=r\ we obtain the equations
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dp'+~j- .qr'dt=dN, cos e—d N\ sin e

;

AB
7-1

CBdq' + -777T-'rpdt—^(dN, sin g+dN'cos 9) sin<p^

dN", cos 9

;

AC
A—C

dr'+ --j-r7-pYd^=:— (dJV. sin s+ d^'. cos 5) COS^—

dW, sin <p, {!))

The equations for N afford us, by taking their fluxions,

when sin >J/=:0, and cos tJ'^Ij

d5. cos 6 (J5r cos <p + Aq sin 9) + sin OA {Br cos (p + Aq
sin ^)— d {Cp cos 5) = — diV;

di)/. (Br sin <p— ^^ cos (p)—dfi. sin 5 (^r cos ^ + Aq sin ^)

+ cos d (JBr cos (p -\- Aq sin ^) + d (Cp sin 0)=—diV^';

d (J5r. sin <p—Aq cos ^)— d\|/. cos 5 (^r cos (p-\-Aq sin 9)

—Cpd^'Sinfl zz—diVT''.

Hence we have [d N. cos 0-=:—d5. cos H {Br cos ^-f-^g

sin <p)—sin cos 5 . d (Ur cos (p +Aq sin ^) -f cos 5. d ( Cp cos 5),

and—diV^'. sin fizz— dfi . sin ^Q {Br cos ^ + ^^r sin ^)+ sin

cos fl . d {Br cos <?» + ^gr sin ^ + sin fi . d (Cp sin fi) + dt^.

sin d ( Br sin <p—^^ cos ^), and adding these together,

-the sum will be —dfi (jBr cos (p +Aq sin ^4-d {Cp) +d4..

sin 5 (J?r sin (p—Aq cos ^) + d {Cp)—Br (sin d sin ^. d^.—

cos (p . dfi)

—

Aq (sin ^ . dfl+ sin 5 cos ^ . A-^)— Brqdit—Aqr^t

+ dp', and dp'+ (^— -4) ^rd^zz] d N, cos Q - diV^'. sin B

= dp'+ »grVd^ In the next place [— d3i^. sind

sin (p=:dS . sin cos fi sin <p (5r cos <p +Aq sin ^) + sin ^5 sin

(p . d(Br cos^ + il^sinip)— sinfi sin^. d (Cpcosfi) ;— d3^'.

co§5 sin ^zz— dd . sin cos 5 sin (p {Br cos <p +Aq sin ^) +
d%|/.cos 9 sin <p (^r sin (p

—Aq cos ^) + cos ^ sin ^ . d {Br

cos ^ + ^gsin^)+ cosd sinip.d (Cpsinfi); + dW cos (p=.

d>j^ . oos d oos ^ {Br cos ^-{-il^' sin (p)—cos <pA {Br sin ^
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+Aq COS (p) + Cpdi-^ sin 6 cos ^ ; the sum of which is sin (p.

d (Br cos ^+ J.g sin (p)—cos ^.d (Br sin ^—^gr cos 9)+

dd.(sin2d + cos «^). sin ^ Cp-^^^
J
cos d sin q> (Br sin ^

—

Aq cos ^) + cos fl cos <p {Br cos ^ + >4^ sin ^) > + Cj^d >^

sinfl cos^=

—

Brd ^ + d (Jgr) +^0 , sin ^ Cjp + d>^ (cos Q

Br -f Cp sin 5 cos (p) = dq* + Cp (d5. sin (p 4- di^. tin 6 cos

<p)^Br(d(p—d4^. cos 5)izd^' +(Cpr—^rp) df=] clg'+-^o-

ryd^=z~(djV sin 9-\-dN' cos 6) sin (p-^dN" cos ^. Lastly

[(—dlST. sin cos (p—dQ. sin cos d cos (p {Br cos (p-\-Aq sin ^)

+ sin 2^ cos :p.d {Br cos<p +Aq sin ^)—sin 5 cos ^ d {Cp cos

d) ;—d N\ cos cos <p——dQ. sin cos d cos <p {Br cos(p+Aq

sin ^)+ d^|/ cos cos (p {Br sin <p
—Aq cos ^)4- cos^ 5 cos f»d

(Br cos (p+Aq sin <p + cos 6 cos <p.d {Cp sin 6); and

—

dN"
sin ^=—d^J/ cos 9 sin (p (Br cos ^+Aq sin ^)+ sin ^d {Br

sin 9—^g^ cos ^)—Cpd ij/ sin 6 sin ^ ; and adding- these

together we have cos ^.d {Br cos (p-^-Aq sin (p)— cos ^.d^.

Cp + d-^ cos 6 ^ cos (p {Br sin ^ — Jg cos (p)— sin (p {Br

COS ^+Aq sin ^) > +sin ^d (Br sin <p
—Aq cos (p) — Cp.d-^

sin sin ^=id (Br)+^g'.dp + cos <p.dd. Q?~-d%[.. cos 9 Aq
4- Cjp d^j. sin 9 sin ^— dr' + Aq (d^— d^. cos 9)—Cp

{d-\^ sin 9 sin ^ — d5 cos (p) zz dr' + Aqpdt— Cpdt = ]

d/+ ^^^^^ p'q'dt=-{dN sin fi+ diV^' coa 9) cos ^—di\r"

sin ^.

Scholium. These three equations are very convenient

for the computation of the rotatory motion of a body, when

it turns very nearly round one of its principal axes, which

is the case with the rotiitions of the heavenly bodies.
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§ 27. Of the principal axes of rotation. In general

a body has only one system of principal axes. Of
[rotatory'] inertia. The greatest and least inertia belong

to the principal axes, and the least ofall belongs to one of

the three principal axes passing through the centre of

gravity. Case in which there is an infinity of principal

axes. P. 73.

347. Theorem. Every material body has

at least three principal axes of rotation, at

right angles to each other.

In order to determine the situation of the axes x" y",

and z\ in such a manner as to agree with the conditions

of the definition (344) we have (324 Cor.)

x"z=.x' (cos d sin v|/ sin (p -f cos 4' cos (f)

+y (cos 5 cos x|/ sin ^—sin 4^ sin ^)—z'sin d sin <p\

y"-=.z' (cos 6 sin \|/ cos (p—cos ^ sin (p)

\-y\cos Q cos -^ cos (p + sin >J/ sin (p)
—z' sin 6 cos (p;

z"z=.x' sin Q sin ^\-y' sin 6 cos %|/+ s' cos 5. Hence we

readily obtain

x" cos (p
—y" sin (p:izx' cos '^—y sin ^

jf' sin (p-\-y" cos (pz=.x' cos d sin %|/+y cos cos 4

—

z' sin 5.

If we now put Sa'^Dm =. c^, Sy^D?n^zb', Sz^Dm=.c^ ;

Sx'y'Dm:=.f Sx'z'Dmzng, SyVDm=:^, we shall have Sx"z"

Dm. cos (p—Sy V'Dm sin ^z=[S (x'^ sin 5 sin cos -^'^-x'y'

sin 5 cos ^•^\-x'z' cos d cos ^|/—y^ sin fi sin ^4/—y'^ sin d sin

cos -^-ry'z' cos fi sin ^) d/wiz] (a^

—

b-) sin fi sin cos -^ -^ f
sin d (cos^^/.—sin^^,) +cos 5 («; cosvf/—A sin 4^); S x"z"Dm.

sin ^ + SyVD?w. cos ^[zz S {x'^ sin cos d sin^ 4^ + x'y' sin

cos fl sin cos >|/ + x'z' cos^ d sin •^^-{-x'y' sin cos fi sin cos 4'+
y 2 sin cos Q cos ^4^ + y ^' cos H cos 4/— x'z' sin ^5 sin 4'—
yz' sin «5 cos -^—z!^ sin cos 5) Dwi]=sin cos fi (a^ sin^ 4'+
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ft2 COS "^ — c^ +2/ sin cos %J.) + (cos =^5—sin ^d). {g sin ^^ + /i

COS yf).

Now since the first members of each of these equations

must vanish, the second will vanish also, and we have sin Q

< (a-

—

h- sin ^^ cos ^|.+/(cos -^J/—sin 24,)n cos (Ji sin ^^—

^

cos ^|/), consequently =

h sin ^|/ (7 cos "4/ 1 r • • a
Z.—:L 1 ; and jsmce sm cos 6

{a^'~-¥) sin cos 4^ +/(cos 24.—sm^^,)

{a^ sin~^^+ ^»2 cos ^^.—cs> 2/'sm cos 4.) = sin ^fi—cos «d

(^ sin 4/+ A cos 4'), whence

a2sin~4.+ &^cos~4.—c2+2/'sin4'Cos4._sin 6 cosj

^ sin 4^+ /* cos 4/ cos d sin d'

subslitutingM for tang 4^= , having divided by =1

cos 4. a2 sin 2 4, + &2 cos 2 4,— c^ + 2/" sin 4. cos 4/ _
cos 24.' gu+h

Jiu-g __[ (a^—I)^)u+f{\—u^) ^
COS24,

(a2sin24, + 62cos24,—c2+2/sincos4.)5(a2— &2)2^^y(^l_

1/2)
I
(hu-g)={hu-gy{c/u+h)—

^
(a2- J^)^ +/(l~.2/2) |

«

cosH {(/u+h) ; or 0=(gM+7i). (Am—g)®— 1(«5~&2>+/

(\—u*)}{U(i^—b^)u+f{l~-u^)^cosH(gu+h) + (a^

sin 24. + 62 cos34/— c2 +2/" sin cos 4.)) /m—^^ I V in which

the latter part becomes

—

c^ (hu—g) + a^ {u cos 24, (^^+ K)

-1- sin 24. (Jiu—g)—¥ (u cos 24. (^gu+ h)~-cos ^ (hu—g) ^J
\ (1—w2) cos24^5rM+A)+2 sin cos ^Qiu—g) \ z= ^c^{hu—g)
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4- or {gu- cos ^-^+ hu cos 24. -f/m sin ^A^—g sin ^•^)—¥ {gu^

cos 2v|, -I- ^M cos 2^J,
— hu cos "4^+ ^r cos ^^i.) -\-f{gu cos 2^|,

—gu^ cos H+ A cos "^

—

hu ^cos ^^+2 /m sin cos ^— 2g
sin cos .^)= -c2 (/iM-<7) + a^ {hu)—b^ (g) + f{~gu+h\
whence the whole equation will be] =: {gu-\-h). {hu—gf

4.
I
(a2—62). w 4.y (1—z^2)

I
.

^
(hc^^ha^+ fg) u + g b^

-gc^-hfj'

By solving this cubic equation, we may always find a

value of M, such that both cos (p Sx^z^Dm—sin (p Sy"z''Dm

and sin (p Sx'z'Dm + cos 9 Si/z"Dm may vanish ; conse-

quently their squares and the sum of their squares (SarV

mny -\-{Sg'z"Dmy will vanish, and each of these integrals

must vanish separately.

Having found the angles -^ and 9 from this computation,

we may determine (p by means of the value of Sx"y"Dm,

which may be obtained in terms of the angles and 4^, and

of a^, 6^, c^tf, g and /i, and making this expression vanish,

we shall have the value of—«n :---=i-|^ang2(p [, since
cos-^—sni^^ ^ o u

2 sin cos <p:=i%m 2(p, and (1—4sin ^ cos2(p)=zcos22^=: (I—

4

sin ^(p (1

—

sm'^(p) = 1—4 sin ^(p-\-4 sin V= (1—2 sin^^)^ =:

(cos ^(p—sin^^)^].

By these means we may find the angles 5, %^, and (p, such

as to make Sx'y'DmznO, Sa/'z^vm-O, and Si/Vdw=:0.

It might indeed be expected that the equation of the third

degree would afford three values of u, and three systems of

axes; [since in general the equation {x— a).{x—b).(x— c)

=0 must vanish when x is equal to a, to 6 or c;] but we

must observe that u is the tangent of the angle 4^ formed by

X with the intersection of the two first planes, and as there

is no condition to distinguish the plane of x'' and y'' from
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the planes of x'' and 2" and ofy and z", the solution must

be equally applicable to the three intersections formed by

the plane of x and y with the three principal planes of the

body respectively : hence it follows that all tlie three^roots

of the equation are possible, and that they determine in all

cases the same system of three axes in the body: [although,

as Euler observes, it would be difficult to demonstrate, from

a direct consideration of the equation, that all its roots must

necessarily be possible.]

348. Corollary. If O be the rotatory

inertia with respect to the axis z\ we shall

find C = -4 sin ^e sin V + E sin ^0 cos V + C
cos 'a.

This may be shown by substituting the values ofx' and y'

in the expression C=iS{a:'* -{-y'i)Bm[; or rather in C'zzS

I
(x"^ -\-y"^ +2''2)_2'2 I D^^ which is equal to it, z'« being

=:2f'^ cos 20-fy'2 sin zq cos ^p+x'^ sin 25 sin 2^; since

all the products of the cross multiplications vanish in the

integral, and CzzSjx"^ (1— sin ^0 sin 2^)4-
y"

2 (1—sin«fi

cos ^(p) + z"^ (I— cos ^9) >Bm, whence, by adding to-

gether two of the coefficients, and subtracting the third,

as in article 345, we have sin ^9 {sin ^(p—cos ^(p)+sm ^9=.

sin H (2 sin ^<p—l+l) and half this, or sin 2<p sin % is the

coefficient ofA ; hence we have, secondly, sin ^9—sin ^^

sin H=.sm^9 cos ^(p; and thirdly, I— sin H cos ^(p—sin ^
sin 2(pizl— sin ^dizcos ^ for the coefficient of C.].

Scholium. The quantities sin H sin ^(p, sin ~9 cos ^(p,

and cos ^9, are the squares of the cosines of the angles made

by 2' with x'\ y\ and z" : [for with respect to zf\ it is ob-
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vious that the angle fl is

equal to the angle formed

by the two axes perpendicu-

lar to the planes of which it

is the inclination; and the

projection of 7! on the equa-

torial plane of the body, or

on that of x" and \j\ being t!

sin d, and the perpendiculars falling from its extremity, on

x" and on y'\ z sin Q sin ^ and z' sin 5 cos <p respectively,

these perpendiculars will be the cosines of the angles

formed with z', when z' is the radius. ]

Scholium 2. Hence it follows in general, that if we

multiply the rotatory inertia belonging to each principal

axis by the square of the cosine of the angle which it

makes with any other axis, the sum of the three pro-

ducts will be the rotatory inertia with respect to this axis.

349. CoROLLAEY 2. The greatest and

the least rotatory inertia belong to two of the

principal axes of rotation.

For the quantity C is always less than the greatest of

the three quantities A, B, and C, [, because their joint co-

efficients are always equal to unity] ; it is also greater than

the smallest, for a similar reason.

350. Corollary 3. The minimum of

rotatory inertia belongs to one of the principal

axes passing through the centre of gravity.

Let the coordinates of the centre of gravity, reckoned

from the common origin at the centre of motion be X, Y,

and Z, then the coordinates of the particle Dm as referred
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to the centre of gravity, will be x'—X, ^— Y", and t!—Z;

consequently the rotatory inertia with respect to an axis

parallel to z', and passing through the centre of gravity,

will be S ^(jc'—X)2+(y'—F)2|.Dm; now, by the pro-

perties of the centre of gravity we have Sar'Dw=mX, and

S y'Dm=mY; consequently S(x'2~2a;'X+ X2+/2—2y F
— F2).Dm=—m(X2+r2)+ S(yH/').Dm[, Xand Fbe-

ing invariable in the integration]. We may thus obtain

the rotatory inertia of the solid with regard to an axis pas-

sing through any point whatever, when it is known with

regard to the axes passing through the centre of gravity

:

and it is obvious that [when X and Y vanish, and the

centres of motion and of gravity coincide, the rotatory

inertia with respect to the centre of motion is only equal

to that which belongs to the centre of gravity, exceeding it

in other cases by m {X^+Y^), so that] the minimum of the

rotatory inertia takes place with respect to one of the prin-

cipal axes passiug through the centre of gravity.

351. Theorem. If the rotatory inertia

with respect to two of the principal axes of a

soHd is of equal magnitude, it will also be the

same for any other axis situated in the same

plane with them.

1^ A=:By we have CzzJ sin ^ sin ^(p-\-B sin ^ cos ^<p

-\-C cos^pzzA sin ^5-fCcos^d; and whenever the new

axis z' is in the plane of x" and y'\ it forms a right angle

with z", and C'zi:^.

It is easy to understand that in this case, for the axis z"

and for any two y, and y', that are perpendicular to it, we

have S x't/DmzzO, Sx'zf'Dm=0, and S «/V'Dm=:0, for
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taking x" iind y" for the two given principal axes, we have

by the sup^iosition S{x'"^+z"~)Dm—S{y''--\-z''^)jjm, whence

Sx''^Dm=Si/"^Dm : now if e be the angle made by x' and

ar", we shall have, as in article 324, x'zzx" cos £-\-y" sin e,

y'-=.y" cos £ —a-'' sin f, whence Sx'y'vm = Sx"y"Dm (cos-e

—sin^f) 4- S(y"2— x"^)Dm s'm cos eizO. And in the same

manner it may be shown tha1?SiV'Dm=0, andSyz^DwrrO;

so that all the axes perpendicular to z" will be principal

axes ; and their number will be unlimited.

352. Corollary. If A=:B=C, we have

in general C=A^ and the rotatory inertia is

equal for every axis.

We have here S a//Dm=0, SxVd/wziO, S yVDm=:0
whatever may be the position of the axes x' and y\ so that

all the lines passing through the centre of gravity are

principal axes. This is the case with the sphere, and we

shall hereafter find that the property belongs to an infinite

number of other solids, of which the general equation will

be demonstrated.

§ 28. Investigation of the momentary axis of rotation of

a body : the quantities, which determine its position with

resjoect to the principal axes, give at the same time the

velocity of rotation. P. 79.

353. Theorem. There is always one axis

at rest, in every body of which any point is at

rest, although the same axis may only be at

rest for a moment.

[We may readily conceive the nature of a momentary

axis, by considering that a rolling cylinder revolves round

s 2
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every line of its surface in succession as an axis ; but in

more complicated cases it is not so obvious, without a de-

monstration, that the whole of some one line must neces-

sarily be at rest at each instant. Now] the quantities p,

q, r, which have been introduced into the equations (C)

(345), are remarkable for affording the situation of the true

momentary axis of rotation with regard to the principal

axes. For if we take the fluxions of the values of x\ y\

and 2' (345 or 324) and make them vanish, and afterwards

take also ^^i^O, which is always allowable, since the posi-

tion of the fixed ordinates is wholly arbitrary, we shall

have, [retaining the notation of article 345, dx'iziaV-f i3'y"

+ yV', and d/=8V'+ £y'+ ^'z", or d/= a;"5~dfi. sin 5

sin -^ sin ^+ di|/.(cos Q cos 4' sin (p—sin ^ cos ^)+d^.(cos 5

sin \|/ cos ^—cos -^ sin p) > +%/ < —d5 . sin 6 sin a|/ cos (p-\-

d^* . (cos 5 cos -^ cos ^ + sin nj' sin (p)—d^ . (cos sin -4/ sin <p

+COS 4^ cos (p) J
+2;''(d5 , cos 5 sin 4/+ d4' . sin Q cos ^)\ or

putting '4'=^^>] ^x':=ix"{di-^ . cos 5 sin (p—d^ . sin (p)+ i/'''(d4'.

cos 5 cos (p—d^. cos (py +z"idL-^ . sin 5)i=0. In the same

manner we obtain dy'iz

j^\—dfi . sin 5 sin (p
—di-^ . cos (p-fd^ . cos 5 cos <p)+y'\—dfl

.

sin Q COP ^ + d^- . sin cp— d^ . cos 5 sin ^)+j2;"d5 .

cos 5=::0; and dz'~

x'\—d5 . cos d sin (p—&(p . sin 5 cos (p)-{-yX — d5 . cos Q cos (p

+d^ . sin 5 sin (p)-\-z'X—d5. sin ^)=:0.

If we multiply the first of these equations by—sin ^, the

second by cos cos (p, and the third by —sin Q cos ^, and

then add them together, we obtain

[x"\ — d5.(sin cos Q sin cos ^— sin cos 6 sin cos <p)
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—d4'.(cos fisin ^^-f cos 9 cos ^(p)

4-d^.(sin V + cos *5 cos *^+ sin ^9 cos V) ( +

y" ) —d5.(sin cos dcos ^p—sin cos 6 cos *^)

—d\^.(cos sin cos (p—cos 9 sin cos ^)

+ d^.(sin cos ^—cos *d sin cos ^—sin ^9 sin cos ^) J -f

z" j d5.(cos ^9 cos ^+ sin ^9 cos ^)

—d^' . sin fl sin ^ > ==

a/'(—dij' . cos e+d^)-{-z"(de.cos <p—d4' sin fi sin (p)izdt.]{px"

Secondly, multiplying the first equation by cos p, the

second by cos 9 sin ^, and the third by —sin 9 sin (p, we

have

lx"< d9.(—sin cos dsin •^+sin cos 9 sin ^p)

+d>['.(cos 9 sin cos ^—cos 6 sin cos f)

-f d^.(—sin cos ^ 4- cos ^d sin cos ^+ sin^ sin cos ^) > +

y" ) d6.(— sin cos 9 sin cos ^+sincos fisin cos^)

+d4'(cos 9 cos *^+cos 9 sin 2^)

-|-d^(— cos *^—cos 25 sin 2^— sin ^9 sin V) ( +

«" J d9.(cos H sin ^+sin *d sin (p)

-t-d4. . sin 6 cos ^ ? =

y"(d4^ . cos fl—d^)+2"(^^'Sin (p d^ sin 9 cos ^)=:(—py'^H-

rOdf=0; and];?/—rz"=0.

Lastly, if we multiply the second equation by sin 9, and

the third by cos 9, and add them together, or more simply,
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[if we multiply jt?.T"

—

q7!' by r, and jji/''

—

rz' by gr, we have

jprx"—^rz^izO and pqif— (jrz" znO; whence, by subtrac-

tion,] qy"—rx"—0. Thus the evanescence of the three

fluxions is reduced to the two conditions px"':=.qz", and

py"-=zrz'\ which belong to a right line, forming angles with

af'y y\ and z" of which the cosines are ,, o o ^v»

-, and
,f o o -^ ; consequently this line

V {p'' + 9' + ^') v (p' ^- 5'+ ^-)

is at rest, and forms the true momentary axis of rotation,

since the equations hold good equally with respect to all

its points, whatever may be the actual magnitude of their

coordinates of, /, and z\

354. Theorem. Retaining the notation

of article 345, the angular velocity of rotation

is ^ {p^+q^-^r").

We may consider the motion of £i point so situated,

that z!^ may be 1, jr"=0, and 2/"=0; we shall then have

the velocity of this point, in the directions of x', y\ and 2',

by dividing the respective fluxions by df, and we shall thus

. ^ . d^^ . ^ d5 ^ d5 . , ^. ,

obtam—— sm d, —— cos 5, and--— sm 5 respectively; con-
d^ ' d^

'

d^
r J

sequently the whole velocity of the point in question will

<p—d5 COS <p, and rdf=zdi|/ sin 5 cos ^ + d5 sin <p\ Now
dividing this velocity by the distance of the point in ques-

tion from the momentary axis of rotation, which is evi-

dently the sine of the angle made by that axis with z\ of

which , -^—r— ^. is the cosine, that is, by J . '
'

'

-,
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we shall have »s/{p^+q^-hr^) ^ot the angular velocity of

rotation.

Scholium. It is obvious that the quantities jo, ^, and

r, of which the determination is extremely important in all

inquiries respecting rotatory motion, are independent of

the situation of the plane of x' and /, and that they are

sufficient to express the relation of the momentary axis of

rotation to the principal axes of the body, being however

themselves susceptible of perpetual variation at succes-

sive times.

§ 29. Equations for determining the position of the

momentary axis, and of the principal axes, in terms of the

time. Case of rotation derivedfrom an impulse not passing

through the centre of gravity. Formula for determining

the direction of the primitive impulse. Example of the

rotation of the planets and of the earth in particular,

P* 80.

355. Theorem. When the body revolves

freely, without any foreign disturbance, we

have, with respect to the plane of greatest ro-

tatory power, cos 5 = y, ta 9 =:y and d^' =

being a constant quantity ; d^ being also in

general =
ABCAp'

V \
{ACk"^-H^-{-{AB-AC)p"') . {H^BCk^-iAB-Bqp'^^

The equations (X>) ,(346), afford us, by making the

fluxions diV, diV', and dJV", which depend on the forces.
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vanish, and multiplying them respectively by y, g', and /,

p'dp' =z .—---.. p'q'r'dt; q'dq'— q'rp'dt, and r'dr'

=

^^^^. ryq'dt;hutBC—AC-\-JC—AB+JB—BC= 0,

and the sum of the three equations becomes 0=p'dp' +5'd^'

+/d/; or taking the fiueut, p'^ +q'^ -^r'^^ik^, k being a

constant quantity, to be determined by the conditions of

the motion.

Again, if we multiply the three equations by ABp\
BCq'y and ACr\ and add them together, we obtain, by

taking the fluent, ABp'^-^BCq''-{-ACr"':=.H^, an equa-

tion which includes the condition of the preservation of

the impetus of the system, [being equivalent to ABC(p* +
q2 -^r^)zzH^, which implies that the square of the angu-

lar velocity of rotation is constant ; and H^-=.ABCk'^, if

h' be the angular velocity.]

Now since JC(p'2+^'«+^'*)=^C^^, we have ACk*
— H^zzAC (p'« + q'^) — ABp'^— BCq'^ and q'^ =
ACk^—H^-{-(AB—AC)p'^ , . ..

-—^——

—

-^-—; and m the same manner weAC—-dC

. , ,„ h^-BCk^+{BC—AB)p'^, , . ,

find r^zr ^ ^^— : whence we may tmd

q' and / from jp' if H and k are known. Now the first

of the equations (J>) gives in this case dtz= "
,

'j{A —B)q r

and by substituting for q' and / we obtain the equation of

the theorem, which, however, can only be integrated when

to of the three quantities. A, B, and C, are equal.

The determination of ja', q\ and / from t includes there-

fore that of three independent quantities H, k, and the

constant quantity to be introduced in the fluent of t. But
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this determination relates only to the situation of the mo-

mentary axis of rotation with regard to the principal axes,

and to the angular velocity of rotation. In order to ascer-

tain the true motion of the body with respect to a quies-

cent space, the position of the principal axes, witli regard

to that space must be known ; and for this purpose three

new independent quantities are required, and three more

integrations, which united to the former, afford the com-

plete solution ofthe problem. The equations (C), of article

345, include three independent quantities, N, N\ and N",

but they are not altogether distinct from H and k, for if

we add together the squares of the first members of the

equations (C), we havep'«+5'*+A=iV2+N'2-|-N''2=K

[For these equations are q' sin Q sin ^ -f r' sin d cos ^—p'

cos 9z=,—N ; {q* cos sin (p-\-r' cos fi cos (p-\-p' sin B) cos -^

+ (/ sin <p—q' cos <p) sin ^zz—N', and— {q' c6s d sin ^+ »^

cos 6 cos <p -{- p' sin 0) sin >|/ + ) /sin f>—5'' cos (f) cos tP=—
N'\ which may be called (a -f ^— r), (^ +« +K) cosvj/ + n

sin %^, and—(S+ £ + sin •4'+ »J cos ^ ; now the sum of the

squares of the two latter quantities is i^+s-\-(f + >i-, and

the whole becomes (a +^— y)^-}- (S +£+«r)^+ »jS which,

since here (a + |3) . y z= (S+ e) -T, is equal to (a + &f+y^'\-

(S+ £)2+4:2+>»2: now (a+ ^y = q^ sin«fl sin ^.p + r'" sin^d

cos ^p -H 29V sin H sin cos f, and (8+ e) «= ^'^ cos H sin 2^

+r'* cos 25 cos 2^+2^V' cos H sin cos ^', their sum being q'^

sin 2^ -\- /^ cos "^ -}- 2^V sin cos ^, to which adding y^4-^

-t-u* or jp'2 cos H-^ 4-/- sin ^fi-f-/ 2 gjn z^+^f'^ cos ^<p—2q'r'

sin cos ^, we have finally p'*^ ^'2 .^r^zrN^-h N'^+ ^y^'/s^j

The constant quantities, iV, ^', and K', correspond

to c, g', and c" of article 323 [c being there 2m—^—-^^—

,

and N here s^%W^^'dm]. and the quantity !•* V(;j'«+
d/
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g'^+ r^^) expresses the sum of the areas described in the

time t by the projections of the revolving" radii of all the

molecules on the plane with regard to which this sum is a

maximum, and with respect to which N' and N" vanish.

For this plane we obtain, by making N' and A'' = 0, Ozi

•n . J r- , • / 1 sin ,

Br sm O—Aq cos (p, [or r sm ^zro cos ^, and =:ta?>
^ "*

cos<p

zr-2-J, and Aq cos sin (p—Br cos Q cos ^ + Q) sin fi=0,
r

[or — p' sin 6 z=. q' cos 5 sin ^ + r cos 6 cos ^, whence

sin ^ ^ r/ . r' . ^ ta^= —ta^zz-i-sincH—; cos <p : now sm (p •=. =:
cosfi p p sec?)

q'
. r^ q , r

i_ / » , 13: Z
. and cos n: • con-

r'*^ci'^-^r"' ^{q'^+ r^y ^ ^{q'^+ r'r

seqnently — ta 5 =: / = -^^—;—^,1 whence

1 »' p' . .

cos fl= = —,^-^
,„ ;- =. -r-, sin B sin <p =

seed VCp'+^Hr^) k*

_ '^.Il-L—i_.
^
^

; =: —7^, and sm fi cos ^ =

By means of these equations we obtain the values of &

and p for any given time with regard to the plane of

greatest rotatory power. We have only further to deter-

mine the angle 4^, made by x' with the common intersec-

tion of the fixed plane and that of the two principal axes

x" and y\ which requires a distinct integration. Now
since qd^tzzdi'^, sin fl sin (p—dd . cos ^, and rdf=:d%^ . sin d

cos ^ . -t- dd . sin ^, we have qAt . sin fl . sin cp + rdf . sin Q

cos (p zz dk^ , sin ^5, and d^/ = — od^. -.—•?—

r

rdf

.

<^2 4- r^
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q^ -r r' ^T^. .(i-
+ -^)= but since 5'Hr'^=F-yS

and B(i^ + Ar'^ = ?!—A^^ we have d ^ ==

—Mt,{H^— ABp'^)

If we substitute in this equation the value of df already

found, we shall be able to find '^ in terms ofy : and we shall

thus obtain the three angles 5, q>, and ^ in terms of p', q',

and /, which will also be derived from the time t. Hav-

ing therefore computed in this manner the values of these

angles, with regard to the plane of x' and y' which has

been considered, it will be easy to deduce from them, by

spherical trigonometry, the similar quantities which belong

to any other plane, and of which the determination will

introduce two new independent quantities, which, with

the three already mentioned, and that which belongs to

the fluemt of x^, will constitute the six independent quan-

tities required in the complete solution of the problem:

but the investigation is obviously simplified by referring

it to the fixed plane of greatest rotatory power.

Scholium. The position of the three principal axes

with respect to the body being supposed to be known, if

we are acquainted with that of the momentary axis of ro-

tation for any instant, and with the angular velocity of ro-

tation, we shall have the values of p, ^, and r, for the

given time, since their values are equal to the products of

the angular velocity into the cosines of the angles formed

by the momentary axis with the principal axis : hence we

shall obtain the values oip\ q\ and r, which are propor-

tional to the sines of the angles formed by the principal

axes with the plane of greatest rotatory power, which is
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supposed in this proposition to be that of x' and y, and

with respect to which the sum of the projections of the

areas described by the revolving radii, multiplied by the

masses of the respective particles, is a maximum. We
may therefore determine at every instant the intersection

of the surface of the body with this plane, and may conse-

quently find its situation by the actual conditions of the

motion of the body.

[356. Lemma. The square of the radius

of gyration of a sphere is -^ of the square of

the semidiameter.

r
The fluxion of the surface of a sphere is as dx— . y zz

y
^

T
rAx, that of a great circle being da: — , where the sine is

X, and the cosine y: and at last, when xz=.r, the surface

of the hemisphere becomes equal to that of the cor-

responding semicylinder (183): the fluxion of the rotatory

inertia of the surface will be represented by rdiX.y^z=.{r^—
xP) rAxzzr^diX— rx^d^r, and the fluent byr'x

—

^rx^ or,

for the hemisphere, by ^ r^ which, divided by r^ gives the

square of the radius of gyration fr^, and the rotatory in-

ertia I r^Mf M being the content or mass of the surface

of which the radius is r.

If the sphere be now supposed to increase by concen-

tric surfaces, the fluxion of the mass will be as r^dr.f, if f

be the density, and that of the rotatory inertia as fr*dr .f,

/pr*dr
and the square of the radius of gyration will be f y. -,

which, when przl, becomes 4'^^

—

=. xr^, and the rota-

tory inertia of the homogeneous sphere will be f r^m.']
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357. Theorem. In a homogeneous

sphere, the distance/, at which an impulse

must have been given, in order to cause a re-

volution and a rotation at once, must be f

.

fr*' r U
R being the radius of the sphere, r its dis-

tance from the centre of revolution, p the

angular velocity of rotation, and U that of

revolution.

An impulse acting on any part of the body will produce

the same progressive motion as if it were immediately ap-

plied to the centre of gravity itself (322, 331) and the

same rotatory motion as if the centre of gravity were

fixed. [Thus if we imagined the force to be communi-

cated by a particle moving with a given velocity, and at-

taching itself to the substance, it is evident, from the pro-

perties of the centre of gravity, that the velocity of this

point will be the same, whatever be the part of the body

to which the particle attaches itself; and, with respect to

the velocity of rotation round the centre, it is obvious that

this velocity would not be affected by the subsequent appli-

cation of any force to the centre of gravity capable of de-

stroying the progressive motion, neither will it be affected

by the interference of the obstacle, either immediately after,

or at, the very beginning of the motion.] The sum of the

areas described round the centre of gravity, by the projec-

tions of the revolving radii of the different particles on a

fixed plane, multiplied by their masses, will always be pro-

portional to the rotatory power of the primitive force, pro-

jected on the same plane ; and the plane, with respect to

which the projection of tho momentum is greatest, must
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obviously be the plane in wbich the force itself acts, and

which passes through the centre of gravity : this plane is

therefore the invariable plane of rotation. Now calling

the distance of the direction of the primitive impulse from

the centre of gravity /, and v the velocity communicated

to the centre of gravity, m being the mass of the body,

the rotatory power of the impulse must have been nifv ;

and multiplying this by ^t, the product will be equal to the

sum of the areas described during the time t, which has

already been found equal to |tv'(p'* + ^'^ + r'-) (355);

consequently ^/(p'^ + q'^ + r'^') = mfv. Hence if we know

the origin of the motion, and the position of the principal

axes of the body with regard to the invariable plane, as

determining the angles Q and <p, we shall have the values of

/>', q\ and r' in the first instance, and consequently those of

p, q, and r, whence the values of the same quantities may

be found for any other time.

Now if we imagine any one of the planets to be a homo-

geneous sphere,"deriving its rotation and its annual motion

round the sun from a single impulse, the radius being R,

and the angular velocity of revolution U\ r being the dis-

tance from the sun, we shall have vzzrXJ'. and ify be the

distance of the direction of the impulse from the centre, it

is plain that the planet will acquire a rotatory motion round

an axis perpendicular to the invariable plane. If therefore

we consider this axis as the third principal axis z", we shall

have 6=0, and consequently ^'=0 and /z:0, and p'z=.mfv,

or CpzzmfrU, Now, in the sphere, CzifmR" (356), con-

2J2 p
sequently /= f— • yz, whence we have/, the distance

of the direction of the impulse from the centre of the

planet, which corresponds to the proportion between the
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two velocities. With regard to the earth, —^ being

R
=366.25638,aDd— , the sun's parallax, = .000042665, /
is found very nearly j^|^ R, [or about 25 miles].

Scholium. The planets not being homogeneous, they

may here be considered as formed of concentric spherical

strata of different densities, and in this case we have C =-|

f^R'^dR ^^^.. , r . P f?R*dI^ . T
"^JlFdR^

^'"^^ "'^"^^ f=^
TiT' 'J^UMR-'

^"' ^'' ^^

it is natural to suppose, the strata nearest the centre are

rpR^dR
the densest, the quantity •^;.

,, , ^, will be less than -S-R*,

J^R^d ti
"

and the value of f will be less than for a homogeneous

body.

§ 30. Of the oscillations of a bodj/ wJiich turns very

nearly round one of the principal axes. Stability of the

motion round the principal axes of which the rotatory in-

ertia is the greatest and the least: instahility with re-

spect to the third axis, P. 85.

[358. Lemma. The cosine of an imagi-

nary arc may be expressed by a real expo-

nential quantity : thus we have sin V"iri vt =
e—v^—e"^ , e—^i + e^*

and cos ^/ —\vt—
2V-1 2

IfTncos y* + VZi sin 7*, driz— sin 7^ . yd/ + <^ZI

cos yf . ydf = rv^i y^t, and -— == dhlF == V^iydf,

^ 1 "vt
whence r=6 , if hlez:l. Again, ifTiz cos y<

—
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n/Zi siayd^dr=:(—sinyi>— s/~"icosydOydf=:— rVl^
—.v'ZZIiy^

ydt and r = e : consequently F — Tzz 2Vi;i

sin yi = e ""^^ —

e

^^
, and F + T z= 2 cos y^ =

^.— I yt •— s/__i "v^ . ___
€ +e . And if we substitute V— iv for

the indeterminate quantity y, we have 2-v/Zri sin ^/ZZ\vt

—vt vt J ^ .— . —vt
,

vt T
zze —e , and !^ cos V „ivr = e 4-e .]

359. Theorem. The permanency of ro-

tation round two of the principal axes of

every irregular body is stable, and round the

third unstable.

We might deduce the laws of the oscillations of a body

turning round an axis very near to the third principal axis

from the fluents found in the preceding propositions ; but

it is more simple to derive them at once from the differen-

tial equations (D) of article 346. The forces acting on

E—A
the body being supposed to vanish, we have dj^'zz

AB
n j5 ^ r

^V'df=0, Aq-\--—;~- ryd^zrO, and dr'+-——- p'q'&t =

0; and substituting Cp, Aq, and Br, for/?', q\ and r', dp

B—A ,, ^ , C—B . ^ , , A—C
H ~— qrdtzzO, Qq-\ — rpatzzO, and Qr-\ —— pq

C> A B
d#=0.

Now supposing the solid to perform its rotation very

nearly round the third principal axis, so that q and r may

be very small, their squares and their products may ob-

viously be neglected in comparison with the other quan-

tities concerned; we shall therefore have dp—0, and if we

substitute in the other equations the indeterminate values

q:=:/ii sin (ni-hy), and r=z/^' cos (nt-ry) [in order to obtain

a particular solution of the problem], wo shall have nzzp



OF THE MOTIONS OF A SOLID BODY. S7S

^-
;^B

* and /^=: —A*V-g^—^,/^ and 7 being

two constant independent quantities ; and the angular ve-

locity of rotation, which is s/{p'^-\-q'-^r^)i will be reduced

simply to p, by neglecting the squares of q and /•, so that

this velocity may be considered as constant, and the sine

of the minute angle formed by the momentary axis of rota-

tion with the third principal axis will be —-L -. [For
P

the value of Aq, being, according to the substitution, /* cos

{nt-\-y)m\t, and that of drzz—/ sin (wf + y)/id^, we have a*

cos {nt + y)n-{-pfx cos {nt-\-y) —-— izO, or yin-\.p(x

=0 and —/ sin (wf + 7)w+j[?^ sin {nt-\-y) ——_zzO, or—
A—C ^ , , A A-C

fAn-\-pfj, —-_zrO; whence ix——fin -—

—

xr—ptJi —- ,B p{C—B) nB
j^ fi ^

and n —-

—

—= P——-, consequently wVl^=i»2 (C~A)
p{C -B) uB 1 ^

1-

,n vf. A ' t^ XC-A).(C-B) J
.(C B);^ndf.=—.p^ ^1

-CH-ii^-^ ^

-—J-,
—— .] Now if, at the beginning of the motion, q=.

Jj{L—n) ^

0, and rzzO, that is, if the momentary axis of rotation coin-

cides with the principal axis, wc shall have fx—0, f/—0,

and q and r will always remain zzO, the axis of rotation

always coinciding with the thirti principal axis ; whence it

follows that if the body begins to turn round one of the

principal axes, it will continue to turn uniformly round the

same axis. This remarkable property, belonging to the

principal axes, has caused them to be denominated axes of

permanent rotation, and it belongs to them exclusively ;

for if the momentary axis of rotation be supposed invariable
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with respect to the body, we must have dj3=0, d^=0, and

^ j^
dr=0, whence, from the equations (J>) we have —-^

—

rq

(J JJ Jf Q
=0, —-— rp=0, and —5— i>5'=0: and, in the general

extent of the theorem. A, B, and C being all unequal, it

follows that two of the three quantities p, q, and r must

vanish, which supposes the momentary axis of rotation to

coincide with one of the principal axes.

If two of the three quantities. A, B and C, are equal,

for example if ^ == ^, these three equations only give us

rpzuO and pq= 0, which will be true ifp only be supposed

to vanish, so that the axis of rotation may be perpendicular

to the third principal axis, and it has been already shown

that, in this case (351), all the axes so situated are principal

axes. And again, if A^ B, and C are all equal, the three

equations will be true, whatever may be the values ofp, q,

and r ; but in this case all the axes are principal axes (352).

Hence it follows that the principal axes only can be

permanent axes of rotation : but they do not possess this

property in the same manner: the rotation round that

axis, with regard to which the rotatory inertia is inter-

mediate between the two others, may be disturbed in a

sensible degree by the slightest cause, so that such a mo-

tion is possessed of no stability.

Stability consists in such a state of a system, that when

it is very slightly deranged, the derangement can only re-

main extremely slight, and the system will oscillate about

the state of stability. Thus if we imagine the momentary

axis of rotation to be infinitely little removed from the

third principal axis, in this case the values of q and r will

always remain infinitely small, and the momentary axis will

only make excursions of the same order about the third

J
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principal axis. But if the value of n^ became negative,

and n were .consequently imaginary, the values of sin

{nt-\-y) and cos {nt^-y) would be changed into exponential

or logarithmic quantities (358), and the expressions for

q and r might then increase indefinitely, and these quan-

tities would no longer be infinitely small, so that the mo-

tion would have no stability. Now the value of w is real if

C is the greatest or the smallest of the three quantities

Ay B, and C, for then the product {C—A) . (C—B) is

positive, but this product is negative when C is of inter-

mediate magnitude, and n then becomes imaginary.

360. Corollary. Retaining the same

notation, if 9 be very small, we shall have

Asm fl sin ^=6* sin (p^+^)— ^ /^ sin (nt+y)^ and

sin & COS <P—^ COS {pt+>)— -^f*' cos (iit-^y) ; ^

and A being two new constant quantities.

In order to determine the position of the axes with re-

gard to a quiescent space, we may suppose the third prin-

cipal axis very nearly perpendicular to the plane of x^ and

y\ so that we may be able to neglect the square of d, and

to make cos 5z=l, we shall then find for the value o^pdt,

instead of d^— d>|/. cos 9, d(p—d-^, whence >^ = ^—pt— e,

s being a constant quantity. We have then, since qdt:=z

d%|/. sin 9 sin p—d9. cos (p, and rd^=idv|/. sin 9 cos (p + d9.

sin (p, putting sin 9 sin (p:=:s, and sin 9 cos (p=:u, d^zzcos 9

sin (p d9 -{- sin 9 cos (pd<pz=:sm (pd9+ sm9 cos (pd(p, pudt=
sin 5 cos (p {d(p—d^\ds—pudt—{y\n ^dd+ sin 9 cos (pd^^zirdt ;

and dttzzcos ^dd—sin 9 sin (pd(p, psdtzz s\n 9 sin (p {dp—d^^)

and du-i-psdt:=zco3(pd9— sin d sin ^d>|/=i

—

qdt. Now the

T 2
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conditions of this fluxional equation are fulfilled by putting

5 = ^ sin (p^+ a)— __/i fin (nt-^y) or = C sin (pf+^)—

A B— q, and uzz^ cos{pt-\->^) — j^ im cos {nt -f y), or =: C

cos(jjf-f a)— —-r [, since d* becomes =:f cos (p^ + A)pd^

A B— -—-clflr, andpMd^zi^cos(p^+A)pdf

—

tt ^^^ ' but since
Cp C

dg= 5Z?rpd<(360), A d^=:-:?^^' rdf, and d*--pMd/=
Ji. \^p C/

/ TT") ^d?=rd^, and dwzi -— C sin {pt-^-y^p^t—

jD
j4 JB C A

-J- dr,p5d^=:C sin (/)^+A)pd^— 7rS'<^^ ^"^^ 7T ^^~ —
t:
—

Cp C Cp c
grdf, whence dw-fp^d^z: —^d^].

In this manner the problem is completely resolved, since

the values of s and u afford us 5 and (p in terms of the

time, and since 4/ is deduced from (p and t. If the quan-

tity ^ — 0, the plane of x' and y becomes the invariable

plane, to which the angles fi, (p, and 4/ have been referred

in the preceding section (355).

§ 31 . Of the motion of a solid body round a fixed axis.

Determination of the simple pendulum oscillating in the

same time with the body. P. 88.

361. Theorem. The vibrations of a gravi-

tating body, whatever may be its form, are

synchronous with those of a simple penduhim
C .

of the length -j^ C being the rotatory inertia

with respect to the axis of motion, or S (j/''^+



OF THE MOTIONS OF A SOLID BODT. S77

z'^) D/w, 7n the mass, and h the distance of

the centre of gravity from the axis of motion.

The preceding investigations are sufficient for determin-

ing the motion of a solid round its centre of gravity, when

it is either at liberty, or fixed to a single point of suspen-

sion only : it now remains for us to consider the motion of

a solid round a fixed axis.

We may call the axis of motion x\ and suppose its di-

rection to be horizontal : the last of the equations {B)

(343), will be sufficient to determine the motion ; that is

S^'^^^vm=Sf(Ri/—Qz')6tDmz:iN'\ We may

suppose y' to be also harizontal, and z' vertical, or per^

pendicular to the horizon, the plane of y' and z' passing

through the centre of gravity of the body, and a moveable

axis being supposed to pass constantly through this centre

and the origin of the coordinates. Now Q being the angle

which this new axis makes with z\ and y" and if' being

the coordinates perpendicular and parallel to this new axis

in the plane of y and z', we

have y =y" cos 6-\-z" sin d,

and zf—z'^ cos 6— y" sin 9,

consequently [j/dzf—zfdy'^z.

dd < Q/" cos d-{-z" sin 9). (—

z" sin 9—y" cos 9)—{zf' cos

—f sin 9), {—f sind-f-^'

cos 5)
I

=:d9
I ^{f cos 9

y

\
\ z

i

i

;

:

:

1

iW'

+z" sin «)«—(?" cosS—y sin «)«| = -d«| y"«(cos'«+ sin«9)

+ ,"« (sin H + CO. •«) \ and] S i^^^^Z^^m^— S
3 d^ di
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(y"2+ s"2) Dm-—f. C=N"; and taking the fluxion/-^'
at at

rz C, dt being constant : and the body being sub-

ject only to the force of gravitation, P and Q will be =0,

and R will be constant; therefore dN" =. dSfRy'dtDm '=.

dN"
SRy'dtDm ; =:SRyDm=:RSyDm =iR cos 6 Si/'nm

-^-R sin 5 Ss'^Dm : but since z" passes through the centre

of gravity of the body, we have Sy"Dm—0; and if A be

the distance of the centre of gravity from the axis of mo-

tion Xy we have Sz''Dm=:mh, m being the mass of the body,

, dN" 7T^ . . T
ddfl —mJiR s'md

whence —;— = mhR sm Q, and -r— = jz .

d^
'

dt^ C
If we now consider a second body, of which all the atoms

are united in a single point at the distance I from the axis

x", we have in this case Czzm'l^, m' being the mass: and

, , ^, dd5 — m'/iR sinQ R . ^ rniA=/; consequently -r-r-iz j^ z=.-r- sm 9, Ihe
dt^ mr I

two bodies will therefore have exactly the same oscillatory

motion, if their initial angular velocities, when their centres

of gravity are in the vertical line, are equal, and if / =:

C—-. The second body here taken into consideration is the
mh
simple pendulum, of which the oscillations have been de-

termined in § 11 (280) ; and we may always assign, by

means of this formula, the length / of the simple pendulum,

of which the oscillations are isochronous with that of the

solid here considered, which constitutes a compound pen-

dulum. It is thus that the length of the simple pendulum,

vibrating in a second, has been determined from observa-

tions on the vibrations of compound pendulums.



CHAPTER VIII

OF THE MOTIONS OF FLUIDS.

§ 32. [Introduction.'] Equations of the motion of

fluids : condition relating to their continuity,

[Introduction. The subject of this section being

somewhat intricate, and involving a variety of connected

quantities, it may probably be of advantage to premise, as

a detached illustration of the mode of treating it, the in-

vestigation of Poisson, which is nearly similar, but reduced

to more elementary principles, and in some instances more

clearly expressed. Traite de Mecanique, 1811, Vol. II*

P. 472.

" We are now about to consider the motion of fluids in

the most general point of view, and to examine the condi-

tions of the motion of the fluid mass, for which we have

already investigated the laws of equilibrium. The fluid

may be either homogeneous or heterogeneous, eitherincom-

pressible or elastic ; all its particles are supposed to be ac-

tuated by given forces, such as their mutual attractions,

and other attractive forces directed either to fixed or to

moveable centres. But all these forces we suppose to be

reduced to three, parallel to three fixed orthogonal axes,

and to the coordinates x, y, and z ; and we may call these
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three forces X, Y, and Z. These forces are simply de-

pendent on .r, y, and z, when their intensity is invariable

in magnitude and direction ; but when they are directed to

moveable centres of attraction, or are dependent on the

mutual actions of the particles, their values will compre-

hend the time that has elapsed : so that calling the time if,

we may consider the forces Xy Y, Z, in general as func-

tions of x, y, 2, and t»

" Now if we call the velocity of the element, to which

the ordinates x, y, and z belong, reduced to the direction

of the axes, w, v, and w^ these quantities will be unknown

functions of or, 3/, z, and t\ they must depend on the ordi-

nates Xy y, Zy because, at the same instant, or for the same

value of ty the velocity may vary between one particle and

another in magnitude and in direction : they must also de-

pend on the time ty because in the same place, and for the

same original values of x, y, z, the velocity may change,

from one instant to another. If we wish to compare the

velocities of any one particle in two consecutive instants,

we must suppose that the variable quantity t becomes ^-|-

d^, [or rather ^ + A^]; and in the same time the coordi-

nates of the particles Xy y, and z, will become [x + ma^,

y+i?Af, aud z\-w^t\\ for in virtue of the velocities w, v, i(;,

the same particle which belonged to the coordinates x,y,2:,

at the end of the time f, will correspond to ar + MA^, y + vAf,

and z^rw^ty at the end of the time t -{- Lt, It follows, then,

that in order to obtain the variation of the quantities m, Vy

and Wy with regard to the same particle at the different

instants, we must take the differences with regard to f,

and with regard to Xy y, and z, considering ma/, v^ty and

w^t as the elementary variations of tJiese quantities. We
have therefore
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du=. —r-dt + -Y-udt-\--—- vdt + —— wdt ;

dt dx dy dz

d'v , dw ,. d'u ,^ .
d'u ,^ ,

du = d^ + -;— «d^ + -;

—

vdt + -r— wdt ; and
df dx dy dz

d'wj, d'w j^ .
d'w j^ ,

d'l/; ,.
dw = -r

—

dt + —— wdf + -7— ^^i + -J— ^^^•
d^ dx dy dz

** The fluid being supposed to be divided into infinitely

small rectangular parallelepipeds, of which the sides are

parallel to the coordinates, we have, for the volume of the

element corresponding to x, y, and z, [dxdi/dz, using the

characteristic D with regard to the variations of space for

the same instant of time, while a and d are employed for

the successive changes only.] The density of the fluid

may be considered as constant throughout this space, and

may be called p, so that the mass will be ^Da-Dj/Dz. We
may also designate by p the pressure, on each unit of the

surface, exerted by the fluid in contact with the different

faces of the parallelepiped, and which, according to the

fundamental property of fluids, is the same in all direc-

tions. The two quantities, ^ and p, as well as the velocif-

ties u, V, w, are unknown functions of x, y, z, and t ; the

five quantities, u, v, w, f , and p, are required to be found

for the solution of the problem ; and when these have been

obtained, in terms of x, y, z, and t, the state of the fluid will

be known for every instant, the velocity and direction of

the motion of each particle being determined, together

with the density of the fluid and the pressure exerted,

whether at the surface or within the substance of the fluid.

We must therefore proceed to seek for the equations ex-

pressing these five quantities.
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** Now three of these equations are immediately afforded

us by the principle of Dalembert. The velocities " losf*

during the instant At, by the particle subjected to the

action of the forces X, F, and Z, are X.At—aw, YM—av,

and Z^t— Aic; for am, av, and am?, express the augmenta-

tions of velocity which really take place in the given in-

stant, and X^t, YAf, and ZM, those which would be pro-

duced by the forces X, Y, and Z, if the particle were free

and insulated. These supposed velocities, divided by M,

will give the measures of the forces capable of producing

them ; and calling the quotients X!, Y', Z\ we have

,^ ^u d'w d'w d*M .^,U—— 17 —-wz=.ji.
;

d^ da; dy dz

^y. d'v d'u d'v d'u ^^, Jr— i— M——-i;—-3— ^ = r . and
d^ do: dy dz '

-, d'ti; d'tf? d'w d'i(7 ^,Z ^ r- «* ;— ^ T-wziZ'.
d^ dx dy ' dz

'* Now, according to the principle in question, the fluid

mass would be in equilibrium, if all the particles were actu-

ated by forces capable of communicating to them the

velocities lost or gained at each instant; [or in other words

the unemployed forces of the whole system must hold each

in equilibrium:] we may therefore satisfy the general con-

ditions of equilibrium by considering X' Y' and Z' as the

forces, parallel to the coordinates, acting on each particle,

instead of X, Y", and Z, which represent the whole forces

in those directions. Hence we have

4^= f X'; ^= f F'; and ^ - o Z' '. or substi-
Ax dy dz

tuting for these quantities, and dividing by ^

;
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d> ,, d'M d'M d'M d'tt

fdar d^ da* dy dz

d'o -^ d'v d'u d'u d'v—— = y J- — u J- V — —.—Wt
fdy at ax ay az

d'/? __ d w d'M? d'w d'w

^djr
""

d^ dx Ay d^: *

" Each of the elements, into which the fluid is supposed

to be divided, will change its form during the instant A^,

and it may also change its volume, if the fluid is compres-

sible : but since the mass must always remain constant, it

follows that if we find its volume and its density at the

end of the time # + Af, their product must be the same as

at the end of the time t : and by making the variation of

this product vanish, we shall obtain a new equation for the

motion,

" In order to form this equation, we may consider the

rectangular parallelepiped, of which the volume was ex-

pressed by nxDyDz at the end of the time t, and examine

the form which it will assume at the end of the time t-\-At,

supposing M to be the summit of the parallelepiped which

corresponds to the coordinates or, y, z, and MN, ML, MK,
the three sides or edges which meet in it, and which are

parallel to the axes 02 Qy and ©a; respectively, so that we

have MNizDZ, ML=DY, andMK=DX: supposing

also E,F,G, and H, to be the four other angles of the pa-

rallelepiped ; and the points M,N,L,K,E,F,G,H, to be

removed, during the instant Af, to M',N',L',K', K,F,G',

H'. The new soUd will still be a parallelepiped, as may

be thus demonstrated.
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iM

/li

& F

" The coordinates, ^, y,z, of the pointM, become, at the

end of the instant Af, a: -hwd^, y + rA^, and z + w^Af, which

are therefore the coordinates of the point M', and those of

any other angular point may be found by substituting the

corresponding variations : thus for the point N', the ordi-

nates are at first x, y, and z-\-vz, and afterwards, u being

changed to w + D w in each instance, we have for the

J. . . d'w , d'w
new ordmates x + wAf + —r- dzM ; y -f- vAt -f —r- dza^

az "
Qz

and z + Dz-fwA^-h —r— DzAt. The differences are —-DZAf,
az QZ

dz
DZAt, and DzH—^

—

BzAt, and the sum of their
dz

squares will be the square of M' N' : but the two former

being infinitely small in comparison with the latter, their

d w
squares may be neglected, and M'N'zzDz-f--— DZDf.

dz

** The coordinates of the point E' must be deduced

from those of M', and the coordinates of F' from those of

N', by substituting x-\-dx and y+ Dy in the place of or and

y: consequently the length of E' V may be deduced in the

same manner from that of M' N' ; hence we have
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dz dzda; dzdy

which only differs from M'N' by quantities evanescent in

comparison with itself; and in the same manner K'H'

and L'G'may be shown to be ultimately equal to M'N'.

Precisely in the same manner, by substituting first y and

r, and then x and u, for z and w, we obtain

MX'=:Di/+ -r- DyAif,andM'K'=:Da:+ -— BxAt\ and the
dy "^ ax

opposite sides of the parallelepiped will be found to be

respectively equal to them, so that the figure still remains

that of a parallelepiped, although its angles are rendered

oblique ; but the obliquity produced in the instant A^ is

infinitely small, so that, without neglecting the cosine of

the angles, their sines may still be considered as unity, and

the volume of the solid will be expressed by the product of

its three sides M'N'.M'L'.M'K'. This product, neglecting

the terms involving the higher powers of the differences,

which are comparatively evanescent, becomes DxDyDz(l 4-

/—- -{--—\-—— \^t): and this is the volume of the element
xax ay dz /

which, at the end of the time t, was DarDyDz. Now the

density ^ being a function of x, y, z^ and t, it follows that

when t becomes t-\^ty and Xy y, and z are changed to j:+

u^ty y-\-vAt, and z-\-wAt, it becomes p-^-^£it-\-—^uAt -f
* at ax

j^ VAt+~ wAt: and if we multiply this density by the

corresponding volume, the product will express the mass

at the end of the time : from which ifwe subtract ^DxDyDz,

the initial mass, the remainder will be the variation of

the mass: and this must vanish. Hence, neglecting the
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terms which contain the square of Af, and dividing by

DxDyDZAf, we obtain

d'p
.
d'p dV ,

d'p /dV , dV ,
d't^x ^ , ^

d^ do: dy dz ^ ^dx dy dz /

amounts to the same, -l-\--\^-i-\--^~^ + -l^LJ— 0. It is

d^ dx ay qz

unnecessary to pursue Mr. Poisson's investigation any ftir-

ther, since it is only introduced as an illustration of some of

the less perspicuous parts of Laplace's mode of consider-

ing the subject, to which we are now to return.]

S6S. Theorem. The motions of fluids in

general may be deduced from the equation

W heing=P^a^-hQ^y+R^Zy p the pressure, f

the density, and P, Q, R the external forces

acting in the directions of the coordinates ^,

I/, and z.

It will be convenient to deduce the laws of the motions

of fluids from those of th^ir equilibrium, in the same man-

ner as, in Chapter V, the laws of the motions of a system

of solid bodies have been deduced from those of the equi-

librium of the system. For this purpose we may resume

the equation ^p=:^ {P^x -\- Q^y + R^z) from the demonstra-

tion of article 316.

Now when the fluid is in motion, the forces unemployed

in generating motion are F —
-, Q r-f , and R——-— ,

which must hold each other in equilibrium : we must there-

fore substitute these forces for the P, (3, and R of the
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equation of equilibrium, and it will become S/}= f J SjrfP

—

)+Jy{«-^)+SKi«-^-^')}; or, supposing

Pdx+ Qhj -tRh to be an exact variation, and equal to

f dt- ^ dt^ df^

364. Corollary. Since the three varia-

tions are independent, their coefficients may
be made to vanish separately, and the theorem

may be resolved into three distinct equations.

S65, Theorem. The condition of the

continuity of the fluid is expressed by the

equation f^=(f)i (G)

(f) being the initial value of the density f

,

and ^— *^'^ ^'y ^^ _d'a' d'y d'z d'a' d'y d'^ d'x d'y d'z

da db dc da dc db d6 dc *da ' db da'dc

d'x d'?/ d'z d'x d'y d'z .1 • -x- i 1 n

^d-cTa'db-^c'db'd-a'' ^^^ '^'^'^^ ^^1"^^ «f ^'3^'

and z being expressed by a, i, and c, which

are variable from particle to particle only.

The coordinates, x, y, and z, are functions of the primi-

tive coordinates a, b, c, and of the time t: [it is evident,

for example, in the propagation of a wave, that the motion

of any particle, to which the ordinates x, y, and z belong",

depends entirely on the initial state of other ordinates of

the surface of the fluid, in combination with the time

elapsed from the beginning of the motion :] consequently,

[if the variations 8 be taken with respect to any one instant

of time,]
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d'x ^ d'or d'jc .^

^ da d6 dc

d'z ^ d'z ^, d'z ^

By substituting these values in the equation (F) (363),

we may obtain three separate equations of the coefficients

of Sa, db, and 8c, considered as vanishing separately ; these

equations expressing the relations of the partial fluxions

of the coordinates x, y, and z, the primitive ordinates a,

6, and c, and the time t.

We must next investigate the conditions required for

the continuity of the fluid. For this purpose we may con-

sider the elementary portion of the fluid, at the beginning

of the motion, as a rectangular parallelepiped, of which

the sides are Da, d6, and dc, and the mass
(f) DaD^Dc.

We may call this parallelepiped {A) : and it is easy to see

that after the time t it will be changed into an oblique pa-

rallelepiped ; for all the molecules at first situated in any

face of the parallelepiped {A) will still be in the same plane,

at least if we neglect the infinitely small eff'ect of curvature

on the infinitely small faces; and all the particles situated

in the parallel edges of (A) will be found in elementary

right lines equal and parallel to each other. We may call

this new parallelepiped {B), and we may conceive two

planes, parallel to that of x and y, to pass through the ex-

tremities of its edge formed by the particles which in (A)

occupied the edge Dc. Then if all the edges of (B) be

prolonged, until they meet these two planes, they will form

a new parallelepiped (C), equal to (B); for it is clear that

as much as one of these planes cuts off from the parallele-

piped (B), so much is added to it by the other. The
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parallelepiped(C)

will have its two

bases parallel to

the plane of.rand

y: its height be-

tween the bases

will evidently be

equal to the ele-

ment of 2 ; and

since in this point

(B)

-®
of view jr, y, and t may all be considered as constant, and

the same values only of a and 1) enter into the determina-

d'i:

tion, the element will be merely -r— Dc [, which must be
dc

equivalent to the T)z-\-—r— \)z^t of Poisson]. The base of
dz

the parallelepiped (C) will be found by observing that it is

equal to the section of {B) by a plane parallel to that of x

and y; and we may call this section (e) : with respect to

the particles situated in it, the value of z will be the same

d'z d'z d'z
for all, and we shall have Dz-:0=:-p- Da-f —r D&-f -r- ^c.

da do dc

Now if Bp' and Dq be two contiguous sides of the section

(f), the first derived from the face answering to d6dc of

{A), the second from DaDc : if through the extremities of

the side Dp' we imagine two right lines to be drawn paral-

lel to X, and the side opposite to Dp to be produced so as

to meet these lines, they will intercept a new parallelogram

(x) equal to (f), having its base parallel to x. The side D/)'

is formed by some of the particles belonging to the face

D&Dc, that is, by those particles with regard to which the

value of z is invariable, and it is easy to see that the height

of the parallelogram (>.) is the element of y, taken on the

u
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supposition that h and c only vary, while a, t, and z remain

constant. Hence

dV , dV r, d'z - d'2
Dy=-jf d6+ -^ Dc; 0=—- d6+ j- dc.

do dc do dc

d'z / d]y £5)
d& , , JdV dc'dJ

consequently De=—-—- d6, and Dy=:Do|~—-—

—

"d^ \
""

=d5,

dVd^___£y£f
db dc dc *d6

dc

dc

: which is the height of the paral-

lelogram (x). Its base is equal to the section of the pa-

rallelogram formed by a line parallel to x, belonging to a

plane in which those particles of the parallelepiped (A) are

found, with respect to which z and y are constant: the

length of this section is therefore equal to the element of

X, supposing z, y, and t to be constant.

We have therefore, for the element Dar, the three equa-

tions

d'jc d'jT , d'x
Dx=-7- Da 4- -77- d6+ -r- DC

da do dc

^ dV d'y . .
d'y ^ d'z d'z , d'z

0=-r^ Da+ -if D64- 1-^ dc; 0=-— Da+ — d6+ t- dc:
da do dc da do dc

d'2 d'y
[and multiplying the second by— , and the third by—^,we

dc dc

have

^ d'y d'z d'y d'z , d'y d'z d'y d'z , ,

Ozz-r^.-r-Da-^ -rr^T- d6—r^.^- Da— r-^.— D6: whence
da dc do dc dc da dc do

Dbzz

d'y d'z d'y d'z

da dc dc da

dy d'z d'y d'z'

dc 'db db 'dc

Da ; and in a similar manner we obtain
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dz Jy
dc

d'z

'db

Soa
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d;yd;z_d>d;z

Dc= —TT-'^a-A consequently Dx=:-- .Da+
d y d'z d y d z da

d6 *dc dc *d6

d;^ d> dz^dTor dy dj; d^ dy dTz^do: d> dj

d6*dc*da d6*da*dc dc'dadft dc .db 'da ,

Dx=d'yd'z d'yd'2; which is the base of the parallelo-

db 'dc dc 'db

€Dai}b

gram(^); and its height being Dy, its area is = d'z :

dF
which is also the area of the parallelogram (e), and which,

d'z
multiplied by — . dc, will become ^DaD^Dc, for the vo-

lume of the parallelepipeds (C) and (J5): and ^ being the

density after the time t, the mass must be fCdadSdc, which

being equal to (f)
DaDftDc, we shall have f^=:(f) for the

equation implying the continuity of the fluid.

§ 33. Transformation of these equations : shown to be

integrable provided that the density be anyfunction of the

pressure, and that the sum of the velocities parallel to three

orthogonal coordinates, each being multiplied by the ele-

ment of its direction, make an exact variation. This con-

dition fulfilled at every instant if it is at a single one.

P. 94.

366. Theorem. If w, v, and w be the

velocities of a particle in the directions of j:,

y, and z, we have S V— ^=^^(^"+ u^+ v

J^^

u 2
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<3'm,
, rs /d'u . d't? d'u d'u \ , v M'w , .

'd'u

oj: dw dz /dy
(H)

For since

dz

—-zzM,-Jl=u, and -r- = i«, if we take the
at dt dt

fluxions of these equations, regarding u, v, and w as func-

tions of the coordinates a:, y, and z of the particle, and of

the time t, we shall have

ddjr d'w
,

d'w , d'u d'u

-d?=d7'-''di-*-''d^+-"'dT=

ddy d'u
, d'v . d'v

, d'v ,

-r-5-= -r- + U -r~ + V -r--{-W ; and
dt^ dt dx dy d%

d'w
[For since

dd2 d'w
, d'w

, d'v
.=——+ U -f V -{-W

d^2 fit da: dy dz

du=: ^-dt + -^dx + -Jf dj/ + -Jf dz, and dxzzudt, dyzzvdt,
dx dy dz

-^ mdt

and dzzzwdt, the truth of the equations is manifest; and

by substituting these values in the equation (F) 363, we

obtain the equation {H) of this proposition. ]

367. Theorem. For the equation of con-

tinuity we have also o^'J+^^+'M+'^l
•^ d^ dx dy dz

If we suppose the coordinates, x, y, and z, to be infi-

nitely near to a, &, and c, we may conceive a, h, and c in

the value of S, to be equal to x, y, and z, and x, y, and z

to become x + uAt, y + vAt, andz-\-ioAt: we shall then have

C=iI+a; (— +—+——) ;
[since

vdj; d?/ dz /

becomes —^' +
da da

d'« d'or
.
d'l/ ^ , ^ dM dV 1 . ^ d'u , d'2

dx dx dx db ij/ dc
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1+Af.—-— , so that the first term of the value of C becomes
dz

equal to the product of these three quantities, and the five

other terms vanish, since -— =:0, -— =0, —i: =0,-^^ =0,
do dc da dc

d'z d'z
7- =0> Ti =0.] The equation (G) becomes therefore
da do

. /d'zf
,
d'u

, d'w\ ^ ^ , ./» ,

^At ^j- 4-— +-T— j+?—(f)=0: and if f be considered

as a function of x, y, z, and t, we have

{p)-=.p—M rr^—uAt rr—vM -p^—wdf—
"

» SO that the pre-
d^ ax dy dz

'^

ceding equation becomes

d>
_^ dXgu) _^ dXft;)^dXH _. ^ ^

d^ dj7 dy dz

It is easy to see that this equation is the fluxion of the

equation (O) (365) taken with regard to the time < [ : for it

has been deduced from G by taking the difference of its

terms with regard to the evanescent element of time A^].

368. Theorem, l^u^x + v^y + w^z— 5^^, ^

being any function of the pressure p^ we shall

WeF-/i=A.i{(^-'r.(|)'+(|)'l.

and, for homogeneous fluids, tt~+"tt" +

d22
"•

When u^x-^v^y-^-w^z is an exact variation of x, y, and z

(313) and f is also a function of the pressure, the equation

(£r) is susceptible of integration, for it becomes SF—

'f=«S**'U-S)"+(^)^(-a'r)'|c^ since
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^V . d'a„ d'a^ d'u. d'u „ d't)„

-H^S. (314, and xg {^^ =u,.^^^ u^y g-fug.

and the variations of the other parts of the

expressions being transformed in a similar manner, the

sum will obviously be equal to the corresponding terms

of (H) ]. The fluent of this equation is F-/-^ z=^
+ * { (^df)'-^(lf

)'+©'}• Itwouldbenecessary

to add an independent constant quantity, expressed in

terms of t, to this fluent, but this quantity may be sup-

posed to be included in ^. The velocity of the particles,

in the directions of the coordinates, is obtained from the

dV dV 1 d>
quantity <p; smce u:=.-rr- > vzz.—!^ and wzz^.

ax ay az

The equation (K), expressing the continuity ofthe fluid,

orO=—i+--^ 4--7^—+—^, becomes 0=^+-7^ .^
at ax ay az at ax ax

. dV d>^d'p d> ^ /dd> . dd>, dd>v ,,

with regard to homogeneous fluids, since df'=0, we have

dd>_^dd>_^ddV ^_d:u^^v^d'wx
""

da:2 d/ dz^ L dx dy dz J'

369. Theorem. If the quantity w j? +

t;8i/ + w^z is an exact variation of oc^y^ and ;2:, at

any one instant, it will always remain so.

If, for example, this variation be at any one instant

equal to l<p: it will be at the next instant equal to d^+Af

/2Jf&+--Ji 3y4.-_ lx\ which will still be an exact
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. . .^ d!u ^ d'v ^ d'w ^ . J. ' M.'

variation if -r- dar + -^—dy+ —r— 02 is an exaot variation
at at ^ at

in the first instance : now we Lave from the equation (H) in

this case ^Jx + ^%H-^ Sz = 8F- xg
J
(-^>+

( -z—
) + ( -—- ) I

-' the first member of the equation is

consequently an exact variation of a function of ar, y, and z;

the function udx + vdy + w^z is therefore an exact variation

in the subsequent instant if it is in the preceding : it is

therefore an exact variation at every instant.

370. Theorem. When the motion of the

fluid is infinitely small, we have V —f-^ =:-£-

Neglecting the squares and products of u, v, and w,

the partial velocities, the latter part of the equation (H)

(366, 368) will vanish; and in this case u^x+v^y + w^z:^

^(p must be an exact variation whenever jp is a function of

f : and when the fluid is homogeneous, the equation of con-

. . . ^ dd^ dd^ ddo ^,
tinuity remains 0=z^ +— +-— . These two

equations contain the whole theory of infinitely small un-

dulations of homogeneous fluids.

§ 34. Case of the rotation of a homogeneous fluid

mass, with a uniform velocity, round one of the axes of

the coordinates, P. 97.

371. Theorem. In the case of a homo-

geneous fluid, revolving round an axis with a

uniform velocity, the equation of the pressure
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becomes—=5^F+ w2(y3^j/+zgz); and the quan-

tity u^x+v^y+w^z is not an exact variation.

Supposing X to be the axis of motion, and the angular

velocity n, at a distance considered as unity, we shall

have V——7iz, wzuni/, and the equation (JJ)(366) becomes

^P r>»^ d'v *, d'w rv rvxr ^

p 6z '^ ay ^ ^7
n,nz.^z-=z^V-\-n-{y'^y-\-z^z): an equation of which both

the members are exact variations, and which is therefore

possible. The equation (K) (367), will become 0=Af

-—•+ uM -r^ + vAt~-^ u-wAt-r:^: and it is obvious that this
d^ do: dy dz

equation will be satisfied if the fluid is homogeneous. Both

equations therefore being true, the supposed motion is

possible, and a fluid may move uniformly round an axis,

[without any internal change of the disposition of its par-

ticles.]

The centrifugal force, at the distance ^(y^-\-z*) from the

axis of rotation, is expressed by the square of the velo-

city n\y"-\-z^), divided by the distance ; consequently the

quantity n^(i/dy+zdz) is the product of the centrifugal

force w* \/(y2 +2^) into the element ofits direction • ^„^
^{y^+ z^}

it is evident, therefore, by comparing this equation with

the general equation of the equilibrium of fluids in § 17

(316) that the conditions of the motion are reduced to

those of the equilibrium of a fluid actuated by the same

forces, and by the centrifugal force in addition to them

:

which is also sufficiently obvious from the nature of the

case.
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If the external surface of the mass is at liberty, we have

here dp— 0, and consequently 0=:SF+w-(^Sy + z8z) ; con-

sequently the result of all the forces that act on the external

surface must be perpendicular to that surface; it must

also be directed towards the interior of the fluid: and

when these conditions are fulfilled, a homogeneous fluid

mass may be in equilibrium, whatever may be the form of

the solid which it covers.

This case is one of those in which the variation u^x-i-

vh/+wdz is not exact; for this variation becomes equal to

—n(zhj—ydz): and zdy— i/^z is not an integrable quan-

tity. Consequently in the theory of the tides we cannot

suppose the variation d<p to be exact, since it is not so in

the very simple case of the sea having no other motion

than its rotation in common with the earth.

§ 35. Determination of the very small oscillations of a

komoyeneousfluid, covering a revolving spheroid. P. 98.

372. Theorem. If rbe the primitive dis-

tance of a particle from the centre, o the angle

formed by r with the axis ^, 'sr the angle

formed by the plane of x and r with that of a;

and y ; and if, after the time t, r become r+

as, d, 9+aU, and 'sr, nt + 's^+at;, a being very

small, we shall have

/ddw ^ .
^*' \ +

^r»m-T7f — ^n sm cos d. -5^)
^

dt^

. ddv . dw 2n sin *& ds x

«r«g^sm^dj^+2w sin cose -5^+—;—.-^) +
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agr(-^ —2nr siim -^ )
=^8 5 (r+ as)sin + au)

j

It is obvious that the coordinate x will be, at the end of

the time t, (r-\-as) cos(d+ aM); and the projection of the

radius, on the plane perpendicular to x, being {r-^-as) sin

(9-^au) we shall have

yzz(r + as) sin {9+ au) cos (nt+ ij+ av),

zz=:(r+as) sin (9+au) sin (wf+w+ au); and substituting

these values in the equation (F) (363), that is SF—— =
?

-. ddo; » ddy . ddz
i ,. ^i o

"dF""^^d72 +^^dF~'
"^S^ecting the square of a,

[and calling x, x cos /i* ; y, v cos ^ ; and z, v sin ^], we have

[^xzr^A. cos /A— 3)u.A sin /A

d^izd^A. cos fji.—d-/*x sin /*, since dA d/A=0, and d/A^zzO,

these quantities being multiplied by a^ .

8xd-x=8A(d-A cosV—dV?^ sin cos /u)— ^fjt(d^h,\ sin cos fc—

dV^^ sin 2^)

3y=Sy. cos I—81 . V sin I

d^yzid^v. cos I—2dvd|. sin |—d^l.vsin |—dl^.v cos |

8yd2y= J'vCd^y. cos 2|—2dyd|. sin cos |—d^l.vsin cos |—d|«.

vcos^l)

—81 (d^v.v sin cos |—2d>/d|.v sin2|_:.d2|.v« sin «|—d|^v«^

sin cos I)

S'zrzSv. sin |+8|. vcos |

d«2i=d2y. sin lH-2dvd|. cos l+d^l.vcos |—d| v sin ^

^jsd^z^SvCd^v.sin^l + 2dvd^. sin cos 4 + d^^.v sin cos $—d^*.»

sin 24)

+8^(d2v.vsin cos$-i-2dvd|.vcos2^+d«^va co8«^—

d^.j^sin cos I)

gyd«y4-S2;d«2.=8Kd'u—d|*#)4-8K2dvd|.y4-d2|.i.«)
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Now ^xzz^r-^ads

dxzzads

d^xzzad^s

dfAZzadu

d^f^zzad'U

^v=(^r-^ah) sin 0+(r+cts) cos 6 (^9 -\- adu)

dvnr cos 6 adu + ads . sin 9

d"v=:r cos d ad^u + ad^s^sin 9

^^^^zT+adv

di=:ndt+ a^v

dH=ad^v

Hence ^j: d"x=(^r+ads).{ad^s. cos ^9—ad^u,r sin cos 9)

—(S'S+ aSw). (ad^^.r sin cos 9—adHr^ sin ^9)\ in which

c^s and a^u may obviously be omitted : again, ^yd^y +

hd^zz=, j^(8r + ah)s'm9-\-{r-\-as)cos9{l9+alu)\A (r

cos 9adH+ad^s, sin 9)—2andtdv,r sin 6 (— J S(v*).7i2di*

+(J''Er+a3i;)
J
2(^cos 9 adw+ad^. s\n9)ndt, r sin 9 -^ad^v.r*

sin«5 ?=:(gr. sind+r cosdSfl)a< (r cos5d*M+d«5.sinfl)

—2«dfdt; .r sin d >—^3'(v2).7i2d<2+d'Br.a(2r2 sin cos 9 du.ndt

+ r sm^ ndt .ds + d^y. r* sin ^0); consequently Sjcd^x +
Vy+ Szd22=

Sr.a(d"5. cos^fi—d*M.r sin cos fl-t-d^M.rsin cos 9

+ d^*. sin 2^—2d*—dr.rn sin 9)

+ Sd.a(— d^i.r sin cos fi + d^^.r^sm^fl + d«M.r« cos«fl

H- d^s . r sin cos 9— 2dtdv,r^n sin cos 9)

—iS(v2).»2d<«

+ lia,a(^dudt, r^n sin cos 9+ 2dsdLrn sin ^d -f- d«i;.r« sin «0»
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and this, divided by d^^, becomes equivalent to] the ex-

pression contained in the proposition.

373. Corollary. At the surface of the

sea, we have r^^Q [-r^ — 2n sin cos ^ tt) + r^^'^

t . ddr - . ^ dw ^ . d5\
(sin«5 j7^ H- 2/? sin cos fi ^ + 2n sinsd^jiz-

g^y +SF: g being the force of gravity, aly' the

elevation above the surface of equihbrium,

and aSP the part of g F which relates to the

disturbing forces only.

At the external surface of the fluid, we have gp = 0,

and in the state of equilibrium

0=-|-»2g |(r+a5) sin (9 + aw)|« + (SF), (3^F) being

the value of ^'F which belongs to this state: [since the cen-

trifugal force, together with the force contained in F, must

in this state balance each other; and the quantities s, u,

and V being constant, the first member of the equation (L)

must necessarily vanish.] If the fluid in question be the

sea, the variation (3^F) at its surface will be the force of

gravity multiplied by the element of its direction: and

calling this force ^, and making ai/ the elevation of a par-

ticle of the surface above the surface of equilibrium, which

may in this case be considered as the true level of the sea

;

it will be evident that the variation {^V) will be increased,

in the state of motion, by the quantity

—

ctg^y'> because the

force of gravity acts very nearly in the direction of y\ and

tends towards its origin [ : the y' here intended being

however very different from the y of the former part of the

proposition, which is an immoveable line, and the force
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considered being referred to the particles situated at the

surface of equilibrium, and not at the momentary surface,

on which the gravitation of the particles below it can have

no effect.] Tlien if we denote by a^V the part ofSF which

relates to the new forces depending on the state of mo-

tion, whether they arise from the changes produced by the

motion, or from the attractions of the solid or the fluid, or

of any foreign body, we shall have, at the surface [of equi-

librium], S F=(S V)-agly' + aS F'.

The variation ^n'^^ \ {r + as) sin (5+ aw) J is increased

by the quantity an^^y. r sin *d, in virtue of the elevation of

the particle of water above the level of the sea ; [since Sr

becomes = aJy', and 3'(r2 sin «d.)=:2^r.r sin 25,]: but this

quantity may be neglected in comparison with —aghj\ be-

n-r
cause even , the value of the centrifugal force, at

9

the equator, where it is greatest, is only a very small frac-

tion, equal to ——-. Lastly, the variation of the radius r

is so inconsiderable, for the diflierent parts of the surface,

in comparison with its whole magnitude, that, for the pre-

sent purpose, we may make ^rziO; and dividing the equa-

tion (X) thus modified, by the coefficient a, we obtain the

equation of the proposition.

374. Corollary 2. The equation of con-

tinuity will become 0—r*
|^
/ + ^?)(-^ "^

d~
"** **

cota Q ) \ +^^^-^^ the density, after the time ^

being expressed by (p)+a?'-
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The initial dimensions of an elementary rectangular pa-

rallelepiped being here Dr, rD'sr sin 0, and rD9, calling the

values ofr, 9, and -ssr after the time t, r\ Gf and -sr', and fol-

lowing the steps of article 365, we shall find that the

volume of the elementary figure will become equal to a

dr
rectangular parallelepiped, of which the height is --- Dr;

the breadth r' sin & ( -—D-ar-u—r—Drl» from which Dr may
d-ar dr /

dr dr
be exterminated by the equation --—O'er 4- r;—DrzzO;

d'sr dr

(d^ d^ d^ \

"X:*d^+"^i^^+ -T- D'arj, pro-

vided that we make

dr' dr' dr'
-^^r+-^D9+ -f^D^^O, and

d'sr dw d^sr
--,—Dr-f- --TT-D5+ --j— D'STzzO; [r, 'zet and 6, and r\

'fs* and & being here substituted for a, 6, c, ^, y and z\ : and

,. ^_dr'd6^d^ dr^ dS^ d^ ^ d9^ __d£

° "" dr'dd* d'sr dr ' dw' d9 dQ ' d'sr
' dr

dr' dd' d'sr' jd/ d6^ d^ dr' jdd^ d^
dS ' dr * d'sr d-sr dr ' dfl * d'sr ' dfi dr

volume of the element, after the time t, will be Q' r'^ sin fl

Dr D0 D-ar ; consequently, if we call the primitive density

(f),
and f the density corresponding to the time #, we shall

have, since the masses must be equal, ffV'^ sin d'=(f)r2sin

^, which is the equation of continuity ; and substituting for

r\r-\-as\ for d', 5+ aw, and for 'sr', wf+ -ar -f au, we shall have,

if we neglect the quantities of the order a^, C= 1 + a

-r- -Ha-TT+ * T- [in the same manner as C was found equal
dr dfl dw "- ^
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to 1+Af {^+^ + -§) in article 365]. Hence we

obtain the equation

0='^^'+(f).l^+,-+-;i^)j+(f)-i;i.>. [For

f being = (f)+af'.{(f)+«f'j(l+aJ+«^+«^\(r« +

2<»r«) sin (8+aa) =
(f) »•- sin «, (f) r«(sin 6+au cos «)— (j) t*

•in fl+ajV sin « +(f) r"* sin fl (aJ+ „
^J+

« ^) + (f)2<.r»

sin«=0(140).0=4,'^(,)(J4^+ii5^V(.)^''i-^

36. Cflwe q/* the motion of the sea, supposing it to he

deranged from the state of equilibrium by the action of
very smallforces, P. 101.

375. Theorem. Retaining the notation

of the preceding propositions, and supposing

the sea of inconsiderable depth, we have, for

the surface, r^^Q-
^"dF"" ^^ ^^^ ^^^

^~it)
"^ ''^^'^^

(sin *6 -^|- + 2w sin cos Q ^)= -gSy+SF'. (M)

Since the density of the sea is uniform, we have^'izO,

, ^, d(rrs) „ /dw
, dr ,

m cos d\ ^ ^^
and consequently -V-^ 4- r2 (-Ta +-r- + —^—r ]=0. Now

dr Vdd d-zar sm d /

we may suppose the depth of the sea inconsiderable in com-

parison with the radius r of the terrestrial spheroid; and

calling this depth y, we may imagine y to be a very small

function of 6 and w, determined by the law of the depth.

If we consider the nature of the fluent of this equation
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with regard to the variable quantity r, between the sur-

face of the solid spheroid and that of the sea, it is obvi-

ous that the value of s will be a function of 9, 'sr^ and t,

independent of r, together with a very small function of r,

standing in the same relation to u and v, as y does to r.

JSTow at the surface of the solid covered by the sea, when

the angles 9 and 'zsr are changed into 9+ au and nt-\-'5T-\-av,

it is easy to see that the distance of a particle of water con-

tiguous to that surface, from the centre of gravity of the

earth, can only vary by a quantity which is very small with

respect to au and av, and which is of the same order as the

products of these quantities into the eccentricity of the

spheroid covered by the sea ; consequently the function,

independent of r, that enters into the expression of 5, must

therefore be of the same order, and very minute, so that

we may in general neglect s as inconsiderable in compari-

son with u and v, [Thus if the sea were 4 miles deep, y

would be about xoVo ^^ ^> ^^^ ^^® ascent and descent of a

particle even at the surface of the sea would in general be

little more than y^ro ^^ ^^^ horizontal motion, supposing

the neighbouring particles, for a considerable extent in

comparison with the radius, to be moving in the same di-

rection.] We may therefore omit the quantity d* in the

equation of article 373, and it affords the equation of this

proposition.

376. Theorem. The equation of conti-

., 1 d(yu) dCyt;) yu cos 9 .^jv
nuity becomes y=:—-77- ——r- /.

•? (N)^ ^ dd d'ar sin 5 ' ^ '

y being the elevation above the surface of

equihbrium, and y the depth of the sea.

The equation (i), article 372, which is applicable to

every particle of the fluid, affords us, in the case of equi-
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\ihrmm,0=in^B I r+as) sin {Q-\-au) I ^ + (gF)——;(5^F)
t 3 p

and (Sjo) being the values of ^Fand ^p which belong, in the

state of equilibrium, to the quantities r-\-as, Q-\-au, and

Tsr+ av, and which, in the state of motion, we may suppose

to become ^V =: (^V) -h a^V\ and ^p-{^p) + a^p' ; and

[since the variations and forces in the three different di-

rections afford independent equations,] we have

\ ~Z I =.—— —2nr sin^d—- : [the other parts of the
;

i— d^^ d^ '-

*^

dr

equation remaining the same as in the case of equilibrium,

and therefore balancing each other]. Now it appears from

dv
the equation {M) (375), that w -- is of the same order with

yti

y or with 5, and consequently with— ; the value of the first

member of the present equation must therefore be of the

same order; and if we multiply this value by dr, and

find the fluent for the whole depth of the sea, we shall hav**

T) ys
for V—^ a very small function, of the order — , besides a

f r

function of 5, -ar, and t independent of r, which we may call

\\ consequently if in the equation (L) we only consider the

two variable quantities Q and -ar, it will afford us the equa-

tion (iW), with this difference only, that the second member

will become ^x. But since x is independent of the depth

of the particle, this equation becTomes equally applicable to

the surface and its neighbourhood, and the equations (M)

and (L) must in this case coincide with each other : hence

we have Ih—'^V—ghj^ and consequently l(V'—l.\ — ^V

—g^y; the SF' in the second member of the equation re-
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lating to the surface of the sea. It will appear, in the

theory of the tides, that this value is very nearly the same

for all the particles situated in the same radius of the earth,

from the bottom of the sea to the surface : we have there-

fore, for all these particles, J^zzg^y, consequently p' must

be equal to ^gi/, with the addition of some function inde-

pendent of 6, Tsr, and r, as a correction of the fluent: now

at the surface of equilibrium of the sea, the quantity ap'

must be equal to the pressure of the little column of water

ay, which is elevated above this surface, and this pressure

is expressed by a^gy : hence it follows, that throughout

the interior of the fluid mass, from the surface of the sphe-

roid covered by the sea, to the surface of the sea itself,

p'—^gy, or that, in other words, any point of the surface of

the solid spheroid is more pressed than in the state of equi-

hbrium, by all the weight of the little column of water, con-

tained between the surface of the sea and the surface of

equilibrium ; and that this excess of pressure becomes ne-

gative at the parts in which the sea is depressed below this

surface of equilibrium. [There seems, however, to be want-

ing in this theory, the consideration of the time required for

the transmission of pressure, as well as of the possibility of

the divergence of pressure from a direction completely verti-

cal. It cannot be supposed that every ripple, which curls the

surface of the ocean, produces an instantaneous diversity

of pressure at the depth of several miles ; nor is it very

probable that each inch of the bottom of the sea at such a

depth, is, after any interval of time, affected separately by

the transitory inequalities of the surface exactly above it.

With respect to the gradual transmission of pressure, it

can scarcely be slower in a fluid than it would be in the

same substance if congealed into a solid mass: for the
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effect must depend on the ultimate elasticity of the par-

ticles themselves, and not on the rigidity of the aggregate ;

although Mr. Poisson seems disposed to consider the

primary transmission of the pressure as depending on the

same conditions as the propagation of a small wave of

finite magnitude. With regard to the want of vertica-

lity of the pressure, depending perhaps on a want of per-

fect fluidity, it seems to be diflicult to make any allowance

for it in a correct computation : but fortunately, in the great

problem of the tides, the depth being inconsiderable iu

comparison with the extent of a similar and synchronous

state of the surface, neither of these sources of inaccuracy

can have any material effect.]

It may in general be observed, that having regard to

the variations of 6 and -et only, [and neglecting the slight

vertical motion] the equation (L) becomes equivalent to

(M) for all the interior parts of the fluid. The values of

u and V, relative to all the particles of the sea, situated in

the same radius of the earth, are therefore determined by

the same differential equations : consequently, if we sup-

pose, as it will be convenient to do in the theory of the

tides, that at the origin of the motion, the values of ti,

-r-, Vf and — were the same for all the particles situated
dt dt

^

in the same radius, these particles will still remain in the

radius, during the oscillations of the fluid : the values of r,

M, and V may therefore be supposed very nearly the same

throughout the small portion of the radius intervening be-

tween the bottom and the surface of the sea: we may

d (I'T'Si

therefore consider r^s as the fluent of —

^

dr, and call-
ar

ing the value of r^s at the bottom of the sea {r-s) we shall

X 2
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Liie uueui ui lue equauoii uir

M COS 5\

sin 9

have, for the fluent of the equation 0=z—i

—

--{-r^ (--4--—
dr \dfi 0'^

j, taken with respect to r, Ozrr^s—(>"«) + r^y

/du
,
dv u cos 5\ . . ^, . , 1 /• Tj(---+—- 4-

—

: , since y is the particular value of/dr
\d6 d'CT sin 6 /

'^ *^

between these limits. The quantity r^s—(rh) is also very

nearly equal to r^ < s— (5) >+ 2ry (5), (5) being the value

of 5 at the bottom of the sea, and considering- the minute-

ness of 7 and of s, the latter part of this expression may be

neglected in comparison with the former, and we may call

r^s— (t^^s) — r-) s— (s) >. Now the depth of the sea,

corresponding to the angles 0-\-ccu, and nt + 'sr+ av, is y+ a

} s— (a) > : and if we consider the angles 6 and " nt + "

'Z57 as beginning at a fixed point and a fixed meridian on

the surface of the earth, which will soon appear to be ad-

missible, this depth will he y-\-a,u -—-\-av-—, besides the
do d'ST

elevation ay of the particle above the surface of equili-

brium, [for since y is, by the supposition, a function of 9

and '23', it is necessary to comprehend in the equation its

variations dependent on those of these angles;] conse-

dv dv
quently s— {s)— 2/-ru t""^ ^* T~* '^^^ equation^of the con-

tinuity of the fiuid will therefore become 3/ = ^
——

d(yv) yii cos 9 du dy dv dy

diir sin 9 ^^ ~'^
d9
~ ^

d9 '^ d^ " ^ d^

yii COS 9 .
^ ^ /du

,
dv , u cos 9\ dy

'^t—; since 5—(s)=:—y(-^ +— +—-. )zzy+u —
sm d ^ ' ^\d9 d'sy sinfi / ^ d9

dy
-f V -~ , which amounts to the samel,

dw
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It may be observed that, in this equation, the angles

Q and " n< + "'ar are reckoned from a fixed point, and a

fixed meridian, on the earth, while in the equation (3/^ the

same angles are referred to the axis x, and to a plane

passing- through that axis, and having a rotatory motion

round it expressed by n : now this axis and this plane are

not precisely fixed with regard to the surface of the earth,

because the attraction and the pressure of the fluid, which

covers it, must alter in a slight degree their position on the

surface, as well as the rotatory motion of the spheroid.

But it is easy to see that these alterations must be to the

values of au and ar, almost in the proportion of the mass

of the sea to that of the solid spheroid : consequently in

order to refer the angles 6 and *' n^+"'2r to an invariable

point and an invariable meridian on the surface of the

spheroid, in the two equations (ill) and (N), it must be

sufficient to alter u and v by quantities of the order

1_ and —-, which we have neglected in this computation

:

r r

it may therefore be assumed, in these equations, that au and

av are the motions of the fluid in latitude and longitude.

[It seems more natural to call the angle made by the plane

in question with the first meridian -et or '2r+ ai> only, and to

express by nt the rotatory motion of the earth only : and

perhaps nt-^Tff may have been an error of the pen only for

'sr-faz;.]

It may also be remarked, that the centre of gravity of the

spheroid being supposed immoveable, we must transfer to

the particles of the fluid in a contrary direction, the efi*ect of

the reaction of the sea on that spheroid : but since the place

of the common centre of gravity of the solid spheroid and

of the sea is not changed in consequence of this reaction,

it is evident that the relation of this Telocity to that with
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which the particles are impressed, by the action of the

spheroid, is of the same order with the relation of the mass

of the fluid to that of the spheroid, or of the order— , and

that it may therefore be neglected in the calculation of SF'.

§ 37. Of the earth's atmosphere^ considered first in

the state of equilibrium. Of the oscillations which it un-

dergoes in ihe state of motion, having regard only to the

regular causes which agitate it ; and of the variations

which these motions produce in the height of the baro-

meter. P. 105.

377. Theorem. The oscillations of the

atmosphere may be determined by the equa-

yddw ^ . dv' \ „^ /ddt;' . o

tions r^gfi.
(j^^
—-2n sm cos 9^j + r^dTs: .^— . sm-fi

+ 2n sin cos 5 ^)~^V~gdy'—g^2/ ; audy'=

, / du' dv' u' cos 6k ,v .... , ,—/ (-77 +-1— +—r-r-): the quantities u and
^ do d'23- sin 9 / ^

t?' being analogous to u and v in the case of a

hotfiogeneous fluid (372), SF' being the por-

tion of 3F which belongs to the state of

motion only, ccy the elevation above the level

of the sea, y the variation of height corres-

ponding to the temporary change of density,

and g the force of gravitation.

In examining the motions of the atmosphere, we may

omit the consideration of the variation of heat, in different

latitudes and at different heights, as well as all the irregu-
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lar causes of agitatioD, including in the computation those

forces only which act regularly upon it as upon the sea.

We may therefore consider the sea as covered by an elas-

tic fluid of a uniform temperature : and we may suppose

the density of this fluid proportional to the pressure, as it

is found to be by actual experience. This supposition

implies that the height of the atmosphere must be infinite,

but it is easy to see that, at a very moderate height, the

density is so small that it may be regarded as evanescent.

If we now call the quantities s, u, and v, for the parti-

cles of the atmosphere, s\ u\ and v\ the equation {L)(S72)

will become

ir^^d. {-, 2n sm cos 9 -p-
j

\dt^ dt 1

. 0^ / • «A ddv ^ . ^ du' 2nsmH ds'

\

+ ar^6'ar. I sm*d -t;t-+ Zn sm eos Q 1 • -r-l
\ dr* dt r at

'

+ g7_^Z.: which, in the

state of equilibrium, affords us, when integrated,
-J-

w* r*

sin^fi 4- V—J^=:C, a constant quantity. But since

the pressure p is supposed to be proportional to the den-

sity
f,

we may call pizlg^y g being the force of gravity in

a determinate place, for instance at the equator, and / a

constant quantity, which expresses the height of an atmos-

phere supposed homogeneous, and of the same density as

at the surface of the sea ; a height which is very small in

comparison with the radius of the earth, being less than

yI^ of this radius. The fluenty.^ or Jig J- is there-

fore Ig hlf : and the equation of the equilibrium of the at-
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mosphere becomes /o^hlf=:C^- F+^nV^ siq^ 9, Now at

the surface of the sea, the value of V, expressing the

force, must be the same for a particle of air as for the par-

ticle of water in contact with it, the same forces acting in

both cases : but from the condition of the equilibrium of

the sea, we have V + ^n^ r^ sin ^9 constant; consequently

/ghl^ must be constant, and ^, the density of the stratum

of air, contiguous to the sea, must be every where the same

in the state of equilibrium. [It is not intended by this

constancy of the force, to imply that gravitation is equal

throuohout the surface of the sea, but that the pressure on

it must be every where equal.]

If we make R equal to the part of the radius r compre-

hended between the centre of the spheroid and the sur-

face of the sea, and r the part between that surface and a

particle of air elevated above it, we may consider / as the

vertical height of the particle above the surface, which it

will be with only an error of the order I

—

r') : R; and

quantities of this order may be neglected without iuaccu-

dP ddT'
racy. Then if F', -;— , and

. ^ be the values of these
dr dr^

quantities at the surface of the sea, we shall have, for the

dV r'2 ddF'
elevation /, F =: F' + / H —-- . , [by Taylor s

dr 2 dr^

theorem (247)] and the equation lgh]p:=: C+ V+^n^r^ sin^d

dF' r"^ ddP
will become lq\do zz C + F' + / h — .

---- + -i-
w«

dr 2 dr^

R^ sin H + w2 Er' sin H : and for the value of F' at the

surface of the sea, we have F -\- ^n^R^ sin^^zra constant

quantity : the effect of gravitation at this surface being

-^--p -^n^ R sin H, which we may call g\ The quantity
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—-— being multiplied by the very small square r'*^, we

may find its value upon the supposition that the earth is

spherical, and we may also neglect the density of the at-

mosphere in comparison with that ot* tbe earth. We may

therefore take [, by anticipating the law of gravitation],

—

-—z: pr =: -—-- m being the mass of the earth, conse-
dr ° it%

. ddF 2m 2(7'
. , m 27ndr "1

quently ——=— ^—~ ;p . fsmce d

—

=. * I

we have therefore /^hlp zzC — rg
7i~g'' consequently

n being a constant multiplier representing the density of the

air at the surface of the sea, and hle=l. If we make h

and h' equal to the length of the pendulum vibrating se-

conds, at the surface of the sea under the equator, and in

the latitude of the particle of the atmosphere in question,

we shall have -2. z=—- and consequently x=—_(l -h-^)*

Hence it appears that the strata of air of equal density are

every where equally elevated above the sea, with the excep-

tion of the quantity -^--
; but in the exact calculation

of the heights of mountains, by observations of the baro-

meter, this quantity must not be neglected.

We may now proceed to determine the oscillations of a

stratum which is on a level, or of the same density, in the

state of equilibrium. If we make a(p the elevation of a

particle of air above the level of the surface to which it

belongs in the state of equilibrium, it is obvious that in

virtue of this elevation the value of SF will be augmented
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by the differential variation —ag'^^, and that SFm (3F) —
ag'^(p -\-a^V ; (SF) being the value of ^F which belongs to

the stratum in the state of equilibrium, and to the angles

tf+owand w^ + '37 + ai;, and SF' being the part of S F belong-

ing to the new forces, which act on the atmosphere in the

state of motion.

Let f be=i(f) + af', (f) being the density of the level stra-

turn in the state of equilibrium. If we make — == ?/, we
(f) "^

shall have -!-— ^—l~ + agSy ; [since p — Ig^ — Ig

^r^ilJS^ +ug^^, or, substituting (f)

far p in the denominator, their difference being inconsider-

able in comparison with the whole quantity, zzlg —^ +
f

a.gly\ Now in the state of equilibrium

0=:i«2g|y._|.^)sin (5+ aM)|2 + (g|^)_%[A\ Conse-
^ ^

(f)

quently the general equation of the motion of the atmos-

phere will become, in relation to the level strata, with re-

gard to which Sr is nearly evanescent,

r^lQ. I
2n sm cos fi -—

)

-\-r^^'ST.( &mH-—-- +2n sm cos 9 -r- + - .—-)= gF'
\ d/2 dt r at ^

—g^(p—g^'+ n^rsin-Q ^<s'— (s')>,a (s") being the varia-

tion of r corresponding, in the state of equilibrium, to the

variations au' and ai/ of the angles 6 and 'zjt. [For ^V—

^ becoming ={Wy-ag^p-\raW—^, and (^F)—^ be-

ing =:—|w^S J (r-i-a«) sin (d+ aw) p •— ag^y' = — owV
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sin"9 ^ {s')—ag^j/y this part of the second member of the

equation derived from (L), combined with the former part,

which is here an~r sin-9h\ affords us the equation here laid

down.]

If we suppose that all the particles of air, originally situ-

ated on the same radius of the earth, remain constantly on the

same radius during their motion, as has been shown to take

place with respect to the sea, we may proceed to examine

whether this supposition is consistent with the equations of

motion and of continuity. For this purpose, it is necessary

that the values of u' and u' [representing the motions in

latitude and longitude,] should be the same for all these

particles : now it will appear hereafter, when we consider

the forces concerned, that these forces are very nearly the

same for all the particles : the variations ^(p and ^1/ must

therefore necessarily be the same for all the particles, and

the quantities 2nr^'Br sin^fl, and nrr sin^ 6^) s'— (5') > must

be so small as to be capable of being neglected in the pre-

ceding equation.

At the surface of the sea, we have (p^y^ ay being the

elevation of the surface of the sea above the surface of

equilibrium. We may therefore inquire whether the sup-

positions of ^=y, and of y being constant for all the par*-

tides of air situated on the same radius, are consistent

with the equation of continuity of the fluid, which, by article

we have ^=-1 g!f2 +^ +5^+!^^), [since j/=^ V r^dr dd dw sm9 ^

— p'l. Now, r+ as' is equal to the value of r at tbe aur-
(0'
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face of equilibrium, corresponding to the angles Q + au

and -zar-f au, increased by the elevation of the particle of

air above this surface ; the part of as', which depends on

the variation of the angles 9 and -ar, being of the order

, it maybe neglected in the preceding value ofy, and
if

we may consequently suppose in this expression /=:9 ; and

if we then make ^=v, we shall have—- =. 0, since the

value of p is then the same, with regard to all the particles

situated in the same radius: besides, y itself is obvi-

TlTl

ously of the same order as /, or as — . : we shall therefore

have, for the value of y\

, ,
(dv!

,
du' .u cos 5\

*i • / J
y =.—/ (-r +-7- +

—

—7-
) • consequently, smce u and

v' are the same, for all particles originally situated in the

same radius, y' must be the same for all these particles. It

follows also, from these considerations, that the quantities

2nr^'m, sm-9 -— , and n^r sin^ 9^ < s'—{s') > , may be ne-

glected in the preceding equation of the motion of the

atmosphere, which may then be fulfilled by supposing u'

and v' the same for all the particles of air originally situated

in the same radius; and that the supposition of the con-

tinuance of all these particles in the same radius, during

the oscillations of the fluid, is consistent with the equations

both of motion and of continuity. In this case, the oscil-

lations of the different level strata are the same, and may

be determined by means of these equations;

). (^' _2» sin cos 6 ^') +r^g^.( sin'S^ + 2„
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sia COS Q~]^W-ghj—gly; and y'=—l {—•{^

u cos d \

sin 6^ /

Scholium 1. These oscillations of the atmosphere most

produce analogous oscillations in the heights of the baro-

meter. In order to determine tliese from those of the

atmosphere, we may consider a barometer fixed at any

given height above the surface of the sea. The height of

the mercury is proportional to the pressure, to which the

surface exposed to the air is subjected ; it may therefore be

represented by Icj^ : but this surface is successively exposed

to the pressure of different level strata, which rise and fall

like the surface of the sea: consequently the value of
f>
at

the surface of the mercury varies, first so far as it belongs

to a level stratum, which in the state of equilibrium was less

elevated by a quantity ay, and secondly because, in the state

of miotion, the density of a given stratum is increased by the

quantity a^' or —y^. In virtue of the first cause the va-

riation off is— ay —r-, or ^
; [since this variation must

dr /

be to (p) the whole density, as the elementary column ay to

the height /] ; consequently the total variation ofthe density
f

,

at the surface of the mercury, is a(f) -LL-X-. Hence, if we

call the height of the mercury A: in the state of equilibrium,

its oscillations in the state of motion will be expressed by

the quantity —^—— ; consequently these oscillations are

similar at all heights above the sea, and proportional in

their extent to the heights of the barometer.

Scholium 2. It now only remains, for the determina-



S18 CELESTIAL MECHANICS. I. vii. 37.

tion of the oscillations of the sea, and of the atmosphere, to

investigate the forces which act on their respective fluids,

and to find the fluents of the preceding fluxional equations

with regard to those forces ; which will be done in a subse-

quent part of this work.

[Scholium 3. Instead of attempting to shorten and

simplify the steps of this refined investigation, which will

hereafter appear to be unnecessarily general, it will be

sufficient to insert some collateral considerations on the

simplest cases of the transmission of motion through

fluids, adapted to a notation resembling that which is em-

ployed by the author.

378. Theorem. "395." When the sur-

face of an incompressible fluid, contained in a

narrow prismatic canal, is elevated or de-

pressed a little at any part above the general

level ; if we suppose a point to move in the

surface each way, with a velocity equal to that

of a heavy body falling through half m the

depth of the fluid, the surface of the fluid, at

the part first affected, will always be in a right

line between the two moveable points.

The particles constituting any column of the fluid, ex-

tending across the canal, are actuated by two forces,

derived from the hydrostatic pressures of the columns on

each side, these pressures being supposed to extend to the

bottom of the canal, with an intensity regulated only by the

height of the columns themselves ; and this supposition

would be either perfectly or very nearly true, if the particles

of the fluid were infinitely elastic, that is, absolutely incom-
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pressible; and if the fluidity were at the same time so per-

fect, that no particle of the fluid should be affected by any

pressure not tending directly towards it. A distinguished

mathematician of the present day appears indeed to have

assumed, that the pressure is transmitted downwards with a

velocity determined by the depth, and related to the velo-

city of the horizontal transmission, if not identical with it:

but it seems sufficiently obvious, that if the canal be sup-

posed incompressible, the pressure must descend in it, as

it confessedly would do in an organ pipe, with a velocity

dependent only on the intimate elasticity of the medium,

which in this proposition is supposed infinite.

Now the difference of the forces on each side of the thin

transverse section of the canal, constituting a partial pres-

sure, is the immediate cause of the horizontal motion ; and

the vertical motion is the effect of the modification of the

horizontal motion : and the difference of the pressures is

every where to the weight of the column or section, or of

any of its parts, as the difference of the heights to the thick-

ness of the column, or as the fluxion of the height 3/ to that

of the horizontal length of the canal x. Hence, if the

weight of any particle be called^, the horizontal force act-

ing on it will be-r-^^. Such therefore is the force acting

horizontally on any elementary column : but the elon-

gation or abbreviation of the column depends on the

difference of the velocities, with which its two transverse

surfaces are made to advance, and this elevation or depres-

sion of the upper surface is therefore to the whole height,

as the variation of the fluxion of the length, or thickness,

produced by the operation of the force, is to the whole

fluxion of the length ; that is, ^y is to y as ddx to dx, or as

^Dx to D:r. But the force which produces the change
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being d -^ gzz-—^ g^ makiog dor constant, it may be sup-

posed to be increased, with reference to the acceleration of

the upper surface of the fluid, in the ratio of the synchronous

variations Zdx and Sy, or that of dx to y, and it will then be-

come— . -r^ q:=i--4'qy, which will be the measure of the
djT da; ^ Ax^^^

acceleration of the surface, and the surface will ascend or

descend precisely as if immediately subjected to the opera-

tion of such a force. We may therefore inquire what

must be the velocity of a body moving along the curved

surface, or what must be the horizontal velocity of a similar

surface moving along through the body, in order that the

vertical motion should represent the efiect of the force

-r^gy- Now in the common expression of the magnitude

of a force acting in the direction of y, we sayf=:—-; we

^ j_. n I
dd?/ dd?/ dx^ - dx

must thereiore make -—^——-^gy, or —

—

— ay, ana—

-

df2 da;2^^' dt^ ^^ dt

zz s/ (gg) : consequently if x flow with the constant velocity

dx
v=-j—:=. s/igy)t the second fluxion of y will always repre-

sent the actual acceleration of the surface of the fluid, the

part of the curve corresponding to the time t always repre-

senting the actual position of the particle, as well as its mo-

tion. But s/ijgy) is the velocity Required by a body in falling

through i 2/, since in general v-—2gs, (232) and v— s/(^gs),

or := s/(2gM). In this simple manner we attain a strict de-

monstration, on the premised supposition respecting tlie

nature of the fluid, that the velocity of the surface will be

represented by that of the surface of a wave advancing with
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the horizontal velocity thus determined, or in other word»,

that the wave will actually advance with that velocity.

But in this form the solution is limited to the case

of a wave already in progress. It may, however, readily

be exteiided to all possible cases. For since the actions of

any two or more forces are always expressed by the addi-

tion or subtraction of the results produced, in any given

time, by their single operations, it may easily be understood

that any two or more minute impressions may be propa^

gated in a similar manner through the canal, without im-

peding each other ; the inclination of the surface, which is

the original cause of the acting force, being the joint effect

of the inclinations produced by the separate impressions,

and producing singly the same force, as would have resulted

from the combination of the two separate inclinations ; and

the elevation or depression becoming always the sum or

difference of those which belong to the separate agita-

tions. If then we suppose two similar impulses, waves,

or series of waves, to meet each other in directions pre-

cisely opposite, they will still pursue their course : and at

the instant when they meet in such a manner as to destroy

completely each other's horizontal and vertical motions, the

elevation and depression of each series will coincide and

be redoubled, and the fluid will be quiescent, with an undu-

lated surface : but in the next instant the two series will

proceed uninterrupted, as before : consequently the fluid

being supposed to be initially in the same state, its pro-

gressive changes will be represented by the effects of the

two series of waves meeting each other, and the place of

each point will be determined by the middle between the

two places which it would have held by the separate effect*

y
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of the two series, that is, by the mean between the eleva-

tion or depression of the two points supposed in the pro-

position.

Corollary 1, The points, in which the similar parts

of the two opposite series of waves continue to meet, will

always be free from horizontal motion ; hence it follows

that a solid obstacle in a verticgd direction might be inter-

posed without altering the phenomenon : and consequently

that any fixed obstacle meeting the waves would produce

precisely the same effect on the subsequent state of either

series, as is produced by the opposition of a similar series,

and would reflect it in a form similar to that of the oppo-

site series, which would have travelled over it, if it had

originated from a primitive cause of motion on the other side

of the obstacle.

Scholium. It will appear, by considering the combi-

nation of the horizontal with the vertical motion, that each

particle of the surface will describe an oval figure, which it

will be simplest to suppose an ellipsis ; the motion in the

upper part of the orbit being direct with regard to the pro-

gress of the wave, and in the lower part retrograde : and

the orbit will be of tlie same form and magnitude for each

particle of the surface, when the canal is supposed to be

prismatic.

379. Theorem. The divergence of a wave

makes no sensible difference in the velocity of

its propagation, and its height will vary as the

square root of the distance from the centre.

The immediate horizontal force is the same for a diverg-

ing wave as for a prismatic canal, its measure being always
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— ^r, as well for the parts lying without the sides of a sup-

posed prismatic canal, as for the parts contained within it,

the inclination of the surface being the same without as

within those limits, and the fluxion of the height being in

the same proportion to that of the length x, notwithstand-

ing that the pressure in one direction is derived, for the

extreme parts, from the surface of the collateral portion

of the wave : consequently the force, as referred to the sur-

face of the fluid, will still be expressed by —JLgy, It will,

however, be modified by the depression attending a pro-

gressive motion, necessary for preserving the continuity of

the fluid, which must obviously be such that —hj may be to

Sar, the progressive velocity, as y to x, and ^^^^^x ^'. and

the accelerative force —^ a. considered with regard to its
dx ^ *

effect at the surface, will be modified in the same propor-

tion as the velocity, so that instead of --^^, it will become

— -Z^JLz:: A^y* consequently the joint acceleration of

the surface will be (-rr— rAqV' Now -7-^=^7-,

(194) which is the reciprocal of the diameter of the circle

of curvature, and -4- is the reciprocal of x -r-, the height
XQX ay

of the intersection of the vertical line passing through the

centre of divergence with the perpendicular to the surface

of the wave, which will be very great in comparison with

the diameter of curvature, when the distance from the centre

Y 2
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becomes considerable : and the second part of the expres-

sion will become a small disturbing force, depending on the

tangent of the inclination of the surface, which represents

the fluent of the curvature, or of the accelerating force, and

being therefore proportional to the velocity : so that Uke

the resistance of a pendulum proportional to the velocity, it

will not sensibly affect the whole period of the alternate

motion, or the propagation of the wave depending on it.

We obtain the law of the diminution of the height of the

waves in diverging, from the principle of the preservation

of impetus (319), since the mass affected at once by the

similar velocities increases directly as the distance from the

centre x, when the depth is equable, consequently all the

velocities concerned must decrease as the square root of a:,

in order that the sum of the masses, multiplied by the

squares of the velocities may remain constant. There will

always be a continual but insensible reflection, which will

preserve the centre of gravity immoveable, though it con-

sumes no considerable part of the impetus ; except at the

very origin of the wave, where there seems to be some-

thing like a vibratory motion from this reflection, for a short

space, at the beginning of the motion.

Scholium. It is obvious that the surface of a wave so

diminishing cannot be supposed to glide on unaltered, but

the demonstration shows that the motion of each point of

the surface is the same as that of a surface, affected by a

series of equal waves, of the magnitude ofthe actual wave

at the given point, which is the condition supposed in the

comparison of the force with the curvature.

380. "400." Theorem. All minute im-

pulses are conveyed through a homogeneous
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elastic medium with a uniform velocity, equal

to that which a heavy body would acquire, by

falling through half m, the height of the me-

dium causing the pressure.

In this case we have to call the density y, instead of the

height of an incompressible fluid in article 378, and to

imagine the surface of the wave to be that of a curve repre-

senting the density by its ordinate y, which is equal to the

height of a uniform column of the medium capable of pro-

ducing the pressure, or in other words, to the height of

the modulus of- elasticity of the medium : then ~-g will be

the direct accelerating force, and -r-^ gy the acceleration of

the ordinate of the curve of density, since here again the

variation of density '^y is to y, as Sdx to dx : and the same

conclusion is inferred, respecting the velocity with which

the curve of densities must advance, in order that it may

represent the instantaneous change at each point, and con-

sequently for all the points in succession.

381. " 397, Sch.'' Theorem. Every

small change of form is propagated along an

elastic chord, with a velocity equal to that

which is due to half the length m, of a portion

of the chord, of which the weight is equal to

the force producing the tension, and is re-

flected from the extremities in an opposite

direction.
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This proposition, though not belonging to the motions

of fluids, is inserted here to complete the analogy between

the height of a liquid, the modulus of elasticity of an elastic

medium, and the modulus of tension of a vibrating chord.

The force, impelling any small portion of the chord towards

the quiescent position, or axis, is obviously expressed by the

diagonal of the elementary parallelogram, formed by its

extreme tangents, that is the line intercepted between the

intersection of those tangents and a line equal and parallel

to the second drawn from the extremity of the first, or in

other words, by the second fluxion of the ordinate, when

the tangent represents the first fluxion of the axis, the

curve being always supposed infinitely near to the axis,

and in general the force will be to the tension as the

second difference AAy to the first difference ax: but the

tension is to the weight of the element a^ as M to aj;, con-

M
sequently the tension of ax is— g, and the accelerative

force—- •—(J——-Mgzz-r^ Mg, which we may maker:/'
AX AX-^ AX^ ^ dx2 ^' J J

d^V= —^, and we shall have vn: s/(gM), as vzz >^{gy) in ar-
d^^

tide 378 ; and the velocity will be that which is due to

half the height M.

The reflection at the extremities of the chord may

be represented by delineating the initial figure, and re-

peating it in an inverted position below the absciss: then

taking, in the absciss, each way, a distance propor-

tional to the time ; and the half sum of the correspond-

ing ordinates will indicate the place of the point at the

expiration of that time. The chord will thus represent a

portion of the surface of a liquid agitated by a series of
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waves : and on the other hand a wave reflected backwards

and forwards within a prismatic canal of its own length,

abruptly terminated at each end, will exhibit a vibration

precisely resembling that of an elastic chord. It may
be inferred from the consideration of the motion of a chord

so continued, that the point corresponding to the end of

the primitive chord will always remain at rest ; whence it

follows that the motion of the chord, terminated by such a

fixed point, must be the same as if it were continued in the

manner described, the reasoning being the same as in the

cage of the reflection of a wave.





APPENDIX A.

OF THE COHESION OF FLUIDS. "^

382. Theorem. If there be a series of

equal particles, arranged at equal intervals in

a right line, each attracting or repelling its

immediate neighbour, only with a constant

force/; the force FM, acting on any obstacle

M at one end of the whole line u, supposing

the other to be fixed, will be equal to/.

The general principle of virtual velocities is XmS^s=:0,

{1, 305) or, taking any one of the forces combined with each

other as the result of the rest, and in an opposite direc-

tion, MV^u=i:mSh: and in applying this principle, the

variations may be taken in any manner capable of repre-

senting their relations to each other, without confining

them to such as are likely to occur in the natural pheno-

mena to be considered ; and the motive force VM may

always be found, if we can determine its equal —^
.

Now if the number of particles concerned be m, and their

masses equal to unity, we shall have S«=—, since we may
m

suppose the particles to remain equally distributed

throughout the line after the variation of their distances.
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and *S^ being =/, we have lmSds:=:f^u; consequently

383. Theorem. If an attractive or re-

pulsive force extend to a given distance c

among a series of m particles situated at equal

distances in a right line, the mutual forces of

any two particles being /, and their masses

each unity, the tension acting on an obstacle

at the end of the line u will be --— f.
uu -^

The number of particles in the line u being m, the num-

ber acting at any one point will be 2m — ; and when the

length u is varied, the variation of the distance of the re-

motest of these particles will be Sm —, while that of the
u

particles at a smaller distance will be proportionally smal-

ler : and the mean variation of the distances of the par-

ticles within the respective spheres of action will be half

the extreme variation. For each particle, therefore, th^

variation XmS^s will be ^ ^m — 2c —f =— mfht, and
^ u u uu

cc
for the whole line, consisting of in particles, m^ — /^,

• TillHCC

which, divided by ^u, gives VMn /.

Corollary 1. Hence, if m be given, the tension will

vary as the square of the number of particles or density m,

and as the square of the extent gf the sphere of action c,

conjointly.

Corollary 2. If there be two forces, a cohesive force
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C, and a repulsive force U, holding each other in equili-

brium, but extending to the different distances c and r,

they will balance each other, in this hypothetical case, if

c^C=r^R, that is, if the primitive forces of the single

pairs of particles be inversely as the squares of the minute

distances, to which they extend.

Scholium. It is obvious that the length u is indiffe-

rent to the force, since m must vary as m, and — must re-
u

main constant, when the density is given.

384. Theorem. If a fluid, composed of

cohesive and repulsive particles, holding each

other in equilibrium, be contained between

two parallel surfaces, of unlimited extent, the

equal and opposite forces, acting on either of

the surfaces M, will be g cP c^ Mf; d being

the density, and ^r the circumference of a circle

divided by its diameter.

The number of particles in the space Mu being dMu, the

number of those, which are within the limits of the sphere

of action of each particle, will be cf-jTrc'. Supposing now

the distances of the particles to be varied by a slight

change of the density ; it is evident that the variation of

the density will be in the triplicate proportion of that of

the distances, since if d:=.x^, Mzz^c(f^ Ax; and the varia-

tion of the whole space Mu being M^Uy that of the density

Zdzz—8m — , and that of any linear distance c will be ^c
u

= —\M '-j-:=.\^u — , which will be the variation of the
a u
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distance of the particles, at the surface of the sphere of ac-

tion, from its centre. But the mean distance of each ele-

mentary pyramid from its vertex, or of the whole sphere

from the centre, is a of the height or the radius, since the

products of the elements of the content into the distance

k^ 1* 1* T)3T

added together and divided by the content, or—'—

=:A. The mean variation of distance for the whole fluid

is therefore i c ^ ; and this variation, multiplied by the

number of particles within the sphere of action, becomes

_ ipTC*— ; which being again multiplied by the number of

centres Mud, and by the force/, and divided^by ^u, gives

us F=5 t/^c* Mff for the whole force acting on the sur-
o

face M.

Corollary. In this case if the two forces C and R
hold each other in equilibrium, we must have c*C=^r^R,

and C must be to R, for each pair of particles, as r* to c*:

each force still varying as the square of the density.

Scholium 1. The determination of the attractive or

repulsive force of a sphere thus constituted may be illus-

trated and confirmed by a simpler mode of considering the

joint action of the particles of each hemisphere, which is

easily shown to be half as great as if they were collected

into one line. For it is obvious that each particle in any

spherical surface must have its action on the central point

reduced in the proportion that the radius bears to its dis-

tance from the plane dividing the hemispheres, conse-

quently the whole force will be represented by the distance

pf the centre of gravity of the surface, multiplied into the
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mass, or the number^f particles contained in it. Now the

centre of gravity of a spherical surface is situated in the

middle of its absciss or verse sine, since the increments of

the surface are proportional to those of the verse sine (183).

Hence it follows, that the joint force of all the particles in

each surface is half what it would be, if they were all

situated in the given direction : and the proportion being

the same for all the concentric surfaces, it must also remain

the same for the whole hemisphere. If we had only to

consider the attractions of a series of particles, situated

in a circular circumference, upon a central particle, it

might be shown, in a similar manner, that they would be

together equal to that of a number of particles represented

by the chord, supposed to be placed at the middle of the

arc.

Scholium 2. If any of the elastic fluids, with which

we are acquainted, be considered as thus constituted, we

must suppose the fourth power of the distance r to vary

inversely as the density d, since the force V is found to

F TT

vary simply as the density, and —=—- dc*Mf\s constant.

It would have been more natural to expect, that if c were

not constant, its cube c' would have varied inversely as

the density, supposing the number of particles cooperating

to be given. But in the Newtonian demonstration the

elementary force /is also supposed to vary inversely as the

distance, while the number of particles cooperating is in-

variable. In this case the number of particles in the space

Mu are as dMu, and the elementary forces as di, the va-

riations of the distances, for a given value of 8m, being as

"3, so that the products of these quantities remain con-
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stant, and the effective force is as the number of particles

concerned, or simply as d,

385. Lemma. If the height of a cone be

a, the radius of the base i, and the obhque

side c, the mean distance of the base from the

vertex will be -g. -^—

"

For, if the fluxion of the radius of the base be djr, the

product of the elementary ring Stt^ax, into its distance a/

(a^

+

x% will be ^ttx^x V (a^

+

x^) ; and since d
J

(a^

+

x^)i \

=fx2a;dx ^/{a^-\^x^\ we hme flTtx s/{a^-\-x^)diX—'^

{a^+ x^y^, which becomes initially— a% and when x=h,
o

2'7r

-^ c^, and the difference, divided by vrb^, the area of the
o

base, that is, f ———, or f _ , will be the mean dis-

tance of the base from the vertex.

Corollary. For a solid cone, the mean distance be-

comes f of that of the base, as in the case of the sphere

:

and the expression becomes, in this case, ^ — -.

386. Theorem. The deficiency of the

mutual actions of the superficial particles of a

fluid, of limited extent, deducts from the tension

-g- of the whole force of a stratum equal in

thickness to the radius of the sphere of equal

action.
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For the interior parts of the fluid, the actions of all the

particles will be the same as in a fluid of unlimited extent,

that is, ^ c^Mfy calling the density unity, since its finite

variations do not enter into the present question. But for

the particles within the distance c of the surface, the forces

will be able to act on such a number of other particles only,

as are contained in a segment of the sphere, of which the

verse sine is c-\-Xf the distance from the surface being ar,

which are not only fewer than in the whole sphere, but are

also at a smaller mean distance from the centre.

Each of these segments may be divided into two por-

tions ; that which is contained between the centre and the

spherical circumference, and the cone, which lies between

the centre and the plane surface : the variation of the mean

distance of the former will be the same as for the whole

sphere; but for the cone, instead of the variation belonging

to that of the corresponding portion of the sphere, which

will be expressed by the product of its content into f of

the variation of the radius, we shall have the content of

the cone into the variation of its mean distance, or

9r ^ - «v . . , c^—x^ ^«^ .1 X • "^ , 1 ^\ S«
(c2—a;2) X mto i .— that is, — {c^—x^) x —

,

O C X" U O OVL

instead of 25rc(c

—

x) --- into \c —, or — (c*

—

c^x) 5-, the
o oz^ ^ oil

difl^erence being -7r(3c*—4c\T-f a:*) 5-, for each particle at
o ou

the distance x from the surface ; and in order to find the

total difference for the whole stratum, we must multiply this

bv the fluxion of Xy and find the fluent, which will be —

•

u

(3c*a:

—

2cV -f ^x^)^ or, when or= c, ~ . fc^—- =-—-c^ —

,

OM O Oil lO U
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and for Uie lengths, -^ c^^u, while the force of the whole
ID

stratum, of the thickness c, would have been -^ c^c, substi-
3

tuting c for M in article 385, and the deficiency is to the

whole force as -^ to i, or as 1 to 5).

Corollary. If the cohesive force C and the repulsive

R be in equilibrium for the whole fluid considered as incom-

parably greater in thickness than c or r, the difference of

the forces with regard to the superficial stratum on each

side only, will be—'-—(c^C—r^E): now it has been shown

that c^C^=:r*i2, consequently c^C—r^R—c^C{c—r)y and

the joint deficiency in the cohesive force will be— . — (fiC
5 3

c y(

Corollary 2. The deficiency being positive when

c is greater than r, it follows that if the superficial cohesion

prevail in a fluid so constituted, it must be because r is

greater than c and the defect is greatest with regard to the

repulsive force. In such cases the fluid must be slightly

condensed in its interior parts, so as to produce a resist-

ance equivalent to the excess of cohesion of the surface.

Corollary 3. These conclusions are applicable, with

slight modifications only, to the case of a repulsion like

that of elastic fluids, as assumed by Newton. For we

have only to take r equal to the radius of the actual mean

sphere of action for the fluid in any given state of com-

pression, and the superficial deficiency of the force will be

very nearly as determined by this proposition, the distance

r becoming in this case somewhat smaller than the whole

extent of the sphere of action. The utmost possible cohe-
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sive force would be obtained from the supposition that c

is incomparably smaller than r, and this force would be

1 5r 1
-r- -^ r^R, or -^ of the repulsive force of a stratum of the

interior part of the fluid of the thickness r; but in every

case that can actually occur, the superficial force must

probably be much less than this.

Scholium. On the whole, we are fully justified in con-

cluding that, since the phenomena of capillary action neces-

sarily lead us to infer the existence of a superficial tension,

and since, without this supposition, we should be obliged

to admit the possibility of a perpetual source of motion,

from an unequal hydrostatic pressure, upon any floating

body not homogeneous ; the existence of such a cohesive

tension proves that the mean sphere of action of the re-

pulsive force is more extended than that of the cohesive

:

a conclusion, which, though contrary to the tendency of

some other modes of viewing the subject, shows the abso-

lute insufficiency of all theories built upon the examination

of one kind of corpuscular force alone. It must also be

recollected that, as far as our experiments enable us to

observe, the repulsive force of solids does actually extend

further than the cohesive, though, with respect to its

mean intensity, we have no direct method of ascertaining

the comparative extent of the spheres of action of the two

forces.
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OP INTERPOLATION AND EXTERMINATION.

387. Theorem. The fluxions of any

quantity u may be found from its finite diffe-

rences, taken at equal intervals with respect

to another flowing quantity oc^ by the theorem

^ h'=A^U —iA*U +iA^U —^-iA^U +|fA7|/ — . .

.

dV

dV

—^ h^zz A^u —^A^i 4- . .

.

We obtain, for the value of u„, first m+wAm+w . —^r-
lit

A^u + . . . (245), and secondly, putting the finite difference

oixzznh. u+ Au'=:nh ^ +^ .54 + .. .(247). Thefirst
dx 1.2 dx*

h'^zzA'^u -^AHl + "iA^u —iA^U +

A*- A5^—fA% + \^A^u ~. .

.
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n
expression affords us, by expanding its terms, u„^u-^~-^u

-rr- ^'"+
1.2.3 ^ "+—15:34—

/Aa A% , 2A'« 6A*m \ ^ /A=m 3A»i/
"="+ (T~i:2 + ^~2::4-)"-^(o--i:2^

+ r::4-)» + {i:3-o-+-^" + {o-V' ^-i

by equating the terms containing'.the same powers ofn (277),

- dw /Am A^?^ \ 1 dtt'

we have m=m, nh -t- = (-:r-—^^r-^... ) n and -p- AzzAu

—

do: ^1 1.2 / djc

A^M d^M*
1- ..,, = . .

.
; and the respective series may be con-

tinued to any number of terms by the actual developemcnt

of the different products.

Scholium 1. It may be observed that the coefficients

of the different terms of the first series agree with those of

the developemcnt of the quantity hi (1 + A), and that in fact

the whole may be represented to the eye by the expression

— A=hl (1 + A) u. It was also remarked by Laplace, that

the powers of this equation will afford us, with equal accu-
Jo f

racy, the values of the higher fluxions ; thus -r-^- h^= < hi

(1 + A) I^m: but this mode of finding the coefficients is

little more useful, in common cases, than the original com-

putation of Euler. ^

Scholium 2. This theorem may very often be of use

in deriving formulae from the results of observation, but it

is necessary that the observations should be extremely ac-

curate, since very minute errors will affect the higher or-

ders of differences in a material degree.
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Corollary. The fluxions, thus obtained, will enable

us not only to find any intermediate values of the variable

quantity m, but also the areas contained by these values as

ordinates, the contents of the corresponding solids, or any

other derivative quantities. If it were required, for ex-

ample, to determine the magnitude of an area contained

between a curve and its absciss from four equidistant ordi-

nates, affording us four successive differences. Am, A'^m,

A^M, and A*u ; we should have to deduce the four succes-

sive fluxions from the four first terms of each series, which

would afford us, by substituting the values derived from

the expression A"m=m«-— wm„_i + ..., that is, Amzzm —u,

1

Ahizzu —2tt +u, i^^u—u —3w +3m —m, and l^uiiu
2 1 3 2 1 4

dw'—4m -I-Gm —4m -f m, the equations -^ h =.—^u-\-4u
3 2 1 d-^ 1

—Su +Am ~1m , —~h''-j^u—%^u +Vm — V^ +
2 3 4 dX 12 3

Hw » -T^ 7i^=:-4u-\-9u —12m +7u — fM , and —^ ¥
^^

4 d>r3 •

1 2 3 4 da*

= u—4m +6m —4m +m . Then if we multiply each
1 2 3 4

of these expressions by d^, considering h as variable,

and take the fluent for the whole length 4/i, we shall have

1 . I , .. ^ . , ^ 16A 64A 256A
to multiply the respective coemcients by —-, —^, —j-

and 15H1?, or if 4Azz?, by 21, y/, 16/, and ^Ao/, and to
5

divide them by 1, 2, 6, and 24, making the multipliers 21,

fZ, f/, and j^l; the whole being equal to

/ /—2_5m+8m —6m +fM —|m
V 12 3 4

12 3 4
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12 3 4/

=^(-f*w+if« +^w 4-ifM +-J^w \, which is

the area beyond the rectangle luy and adding this as the

correction of the fluent, we have for the true area yoI(Ju-\-

S2u -\-l2u +32m +7w ). This interpolation is very ac-12 3 4'

curate where the curve does not become extremely oblique

to the absciss: but for a semicircle, or seuiiellipsis, it gives

the area too small in the ratio of .7737 to .7854, and if

great accuracy were required in s^ similar case, it would be

proper to divide the curve into two parts, and to compute

the area of each separately : or to add a little by estima-

tion ; to take, for example, 8m instead of 7m, which would

make the area of the semicircle .784.

Scholium 3. If the ordinates arc not equidistant, it

will be easiest to represent them by an equation of the

form y—a-{-bx-{-cx^+ dx^+ . . . consisting of as many terms

as we have values of y, and finding each of the unknown

quantities a, 2>, c, . . . , by comparing these values with each

other. This process is generally a little tedious, and it is

not possible to shorten it materially by any artifice, though

the results may be expressed in a form which is not wholly

without symmetry.

388. Theorem. If there be any number

of linear equations, involving as many un-

known quantities, in the form a x+b y-h. , . =^

1 1

A , a x+b I/+. . ,-=A , . . . ; we shall have i=12 2 2

aA —jS^ -\-yA —. ..

-; the coefficients «, ^, y, be-1 2 i

aa —&a +ya
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ing obtained from the original coefficients, by

exterminating all the miknown quantities, ex-

cept ^5 in succession.

For example, if there are two equations between x and

h A —h A
y, we have azzh and $:=.h , and x-=i ~ ^—-l—2-: if

2 o a —6 a
2 1 12

there are three, between x,y, and z, we have a:=ib c —
2 3

h c , ^=:b c —h c and y—h c —h c . It will readily'
32 1331 1221

appear in all cases, that at every step of the process of

extermination, the quantities a and A are multiplied or

divided by the same factors, so that when all the other

quantities are exterminated, the factorof a;, which remains,

must contain all the as, with the same factors as belong to

the ^s on the opposite side of the equation. Thus, for

two equations, a x+ b i/=^A ,and a x+ 6 y=A , multi-111 2 2 2

plying- the first by b and the second by b , and taking
2 1

their difference, we have a b x—a b x-=zA b —A b : or
12 21 12 21

a a A A
dividing by b and b respectively, -1 x—-^ a;=—-^—-—£,12 b b b

1 2 12
which obviously leads to the same result. For three equa-

tions

a x-\-b y-\-c z:=zA ;111 1

a x-\-b y-f-c z—A ;

S 2 2 2

a x-\-b,y-\-c z=A ; we have first a b x-{- ., -\-b c z=
3 3 3 3 12 2 1

A b , a b x+ .. +b c zziA b , whence (a b —a b \x1221 12 21 ^12 21''

+ /& c —b c \zz:zA b —A b ; and in the same manner
\21 12/ 12 21
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(a h —a h \ x-V (h c —h c \ z=. A b — A b ; and
^13 31'' ^31 IS'' 13 31
from these two results we obtain (a b —a b

)
(be —^12 2 1 ^ ^ 3 1

be) X—(a b —a b \ (b c —b c \ ar= (A b —A b \

1 S'^ ^13 3 1^ ^ 2 1 12'' ^12 2 i/

(b c —b c
)
— /A b —A b

)
(b c —b c ) : whence, by

^31 l3^ Vl3 31/V21 12'
actual multiplication, we have abbe, or Abbe, marked thus,

(1,2,3,1-1,2,1,3-2,1,3,H-2,1,1,3)-(1,3,2,1-^1,3,1,2-

3,1,2,1+3,1,1,2), or since abbe=iabbc, (—1,2,1,3
1 2 3 1 1 3 2 1

—2,1,3,1 +2,1,1,3)-<-l,3,l,2-3,l,2,1 +3,1,1,2) which is

divisible by —b , and may therefore be reduced to (1,2,3+

2,3,1-2,1,3-1,3,2 - 3,2,1 + 3,1,2) = 1, (2,3-3,2)-2,

(1,3—3,1) +3, (1,2—2,1). And in the case of4 equations,

the analogy leads us to the value a=6 (c d —c d \—b
2^34 43/ a

(e d —c d \-\-b (e d —c d \: but in all such cases, a
A24 42'' 4^3 32/
numerical computation has the advantage in conciseness,

because the sums or differences of two numbers are as

easily multiplied as the numbers themselves.

The process may also be represented in a symmetrical

manner by calling the second series of equations a! x
1

-\-b' y-k-c' 2;+...=^' , a' x-\- ,,,•=!A' , the third series11 12 2

a!'x+ , , .=.A" <,,., until at last x is left alone on one side

:

1 1

a a c e a a

and so forth.

Scholium. We may take for an example the equation

yzza-^bx'\-cx^-\-dx^-\-ex*,io be determined from five va-
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lues of y; u, u , u J u , and u , corresponding to the12 3 4

values of or, 0, 3, 2, 3, and 4; or a—u;

1 1

2

Sh-\-9c+27d+Sle=u —u; and
3

4&-}-16c-f 64c/+256ez:w —u: we may
4

here get the second series of equations most easily by multi-

plyiug the first by the coefficients of e, whence

166 + 16c+ I6d+ 16ezi 16m —16m ; consequently
1

Uh-]-l2c-\-Sd=l6u —15m~m ;

1 2

and in the same manner

7Sb-^72c + 64d=:Slu -80i* -u ; and

2526+ 240c + 192c/=:256m —255m—i^ .

1 4

Here the coefficients of c are obviously the most manage-

able, and they afford us 6h—6d=.16u —10m— 6m +u ,

i 2 3

and 286-32c?=i64m —45m—20m 4-m ; then taking f^ of
1 2 4

the latter from the former, we have f&=z3m —-ffM—fm +m
1 2 3

— -^u ; and 6=4m —j^u—Su -\-^u — -Jm ; which agrees
4 1

"
2 3 4

with the result obtained, from the inversion of Taylor's the-

dM'
orem, for —- A : and this method, though less elegant, has

da;

the advantage of being more readily applicable to the case

of ordinates not equidistant.

HowLEiT aud Brimmkr,
Printers, 10, Fritli-8trect,S(>li(».
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