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TRANSLATOR'S PREFACE

The present volume is a translation of the second edition of

Professor Planck's WAERMESTRAHLUNG (1913). The profoundly

original ideas introduced by Planck in the endeavor to reconcile

the electromagnetic theory of radiation with experimental facts

have proven to be of the greatest importance in many parts of

physics. Probably no single book since the appearance of Clerk

Maxwell's ELECTRICITY AND MAGNETISM has had a deeper influence

on the development of physical theories. The great majority of

English-speaking physicists are, of course, able to read the work
in the language in which it was written, but I believe that many
will welcome the opportunity offered by a translation to study the

ideas set forth by Planck without the difficulties that frequently
arise in attempting to follow a new and somewhat difficult line

of reasoning in a foreign language.
Recent developments of physical theories have placed the quan-

tum of action in the foreground of interest. Questions regarding
the bearing of the quantum theory on the law of equipartition of

energy, its application to the theory of specific heats and to

photoelectric effects, attempts to form some concrete idea of

the physical significance of the quantum, that is, to devise a
" model" for it, have created within the last few years a large and

ever increasing literature. Professor Planck has, however, in

this book confined himself exclusively to radiation phenomena
and it has seemed to me probable that a brief resume of this

literature might prove useful to the reader who wishes to pursue
the subject further. I have, therefore, with Professor Planck's

permission, given in an appendix a list of the most important

papers on the subjects treated of in this book and others closely

related to them. I have also added a short note on one or two

derivations of formula) where the treatment in the book seemed

too brief or to present some difficulties.
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In preparing the translation I have been under obligation for

advice and helpful suggestions to several friends and colleagues

and especially to Professor A. W. Duff who has read the manu-

script and the galley proof.

MORTON MASIUS.

WORCESTER, MASS.,
February, 1914.



PREFACE TO SECOND EDITION

Recent advances in physical research have, on the whole, been

favorable to the special theory outlined in this book, in particular

to the hypothesis of an elementary quantity of action. My radi-

ation formula especially has so far stood all tests satisfactorily,

including even the refined systematic measurements which have

been carried out in the Physikalisch-technische Reichsanstalt

at Charlottenburg during the last year. Probably the most

direct support for the fundamental idea of the hypothesis of

quanta is supplied by the values of the elementary quanta of

matter and electricity derived from it. When, twelve years ago,

I made my first calculation of the value of the elementary electric

charge and found it to be 4.69 -10"~
10 electrostatic units, the value

of this quantity deduced by J. J. Thomson from his ingenious

experiments on the condensation of water vapor on gas ions,

namely 6.5-10" 10 was quite generally regarded as the most

reliable value. This value exceeds the one given by me by 38

per cent. Meanwhile the experimental methods, improved in

an admirable way by the labors of E. Rutherford, E. Regener,

J. Perrin, R. A. Millikan, The Svedberg and others, have without

exception decided in favor of the value deduced from the theory

of radiation which lies between the values of Perrin and Millikan.

To the two mutually independent confirmations mentioned,

there has been added, as a further strong support of the hypothe-

sis of quanta, the heat theorem which has been in the meantime

announced by W. Nernst, and which seems to point unmistakably

to the fact that, not only the processes of radiation, but also the

molecular processes take place in accordance with certain ele-

mentary quanta of a definite finite magnitude. For the hypoth-

esis of quanta as well as the heat theorem of Nernst may be re-

duced to the simple proposition that the thermodynamic proba-

bility (Sec. 120) of a physical state is a definite integral number,

or, what amounts to the same thing, that the entropy of a state

has a quite definite, positive value, which, as a minimum, becomes

vii
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zero, while in contrast therewith the entropy may, according to

the classical thermodynamics, decrease without limit to minus

infinity. For the present, I would consider this proposition as

the very quintessence of the hypothesis of quanta.
In spite of the satisfactory agreement of the results mentioned

with one another as well as with experiment, the ideas from which

they originated have met with wide interest but, so far as I am
able to judge, with little general acceptance, the reason probably

being that the hypothesis of quanta has not as yet been satis-

factorily completed. While many physicists, through conserva-

tism, reject the ideas developed by me, or, at any rate, maintain

an expectant attitude, a few authors have attacked them for the

opposite reason, namely, as being inadequate, and have felt com-

pelled to supplement them by assumptions of a still more radical

nature, for example, by the assumption that any radiant energy

whatever, even though it travel freely in a vacuum, consists of

indivisible quanta or cells. Since nothing probably is a greater

drawback to the successful development of a new hypothesis
than overstepping its boundaries, I have always stood for making
as close a connection between the hypothesis of quanta and the

classical dynamics as possible, and for not stepping outside of

the boundaries of the latter until the experimental facts leave no

other course open. I have attempted to keep to this standpoint
in the revision of this treatise necessary for a new edition.

The main fault of the original treatment was that it began with

the classical electrodynamical laws of emission and absorption,

whereas later on it became evident that, in order to meet the

demand of experimental measurements, the assumption of finite

energy elements must be introduced, an assumption which is in

direct contradiction to the fundamental ideas of classical electro-

dynamics. It is true that this inconsistency is greatly reduced

by the fact that, in reality, only mean values of energy are taken

from classical electrodynamics, while, for the statistical calcula-

tion, the real values are used; nevertheless the treatment must,
on the whole, have left the reader with the unsatisfactory feeling

that it was not clearly to be seen, which of the assumptions made
in the beginning could, and which could not, be finally retained.

In contrast thereto I have now attempted to treat the subject

from the very outset in such a way that none of the laws stated
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need, later on, be restricted or modified. This presents the

advantage that the theory, so far as it is treated here, shows no

contradiction in itself, though certainly I do not mean that it

does not seem to call for improvements in many respects, as

regards both its internal structure and its external form. To
treat of the numerous applications, many of them .very important,

which the hypothesis of quanta has already found in other parts

of physics, I have not regarded as part of my task, still less to

discuss all differing opinions.

Thus, while the new edition of this book may not claim to

bring the theory of heat radiation to a conclusion that is satis-

factory in all respects, this deficiency will not be of decisive

importance in judging the theory. For any one who would make
his attitude concerning the hypothesis of quanta depend on

whether the significance of the quantum of action for the ele-

mentary physical processes is made clear in every respect or may
be demonstrated by some simple dynamical model, misunder-

stands, I believe, the character and the meaning of the hy-

pothesis of quanta. It is impossible to express a really new

principle in terms of a model following old laws. And, as re-

gards the final formulation of the hypothesis, we should not

forget that, from the classical point of view, the physics of

the atom really has alwr

ays remained a very obscure, inacces-

sible region, into which the introduction of the elementary

quantum of action promises to throw some light.

Hence it follows from the nature of the case that it will require

painstaking experimental and theoretical work for many years

to come to make gradual advances in the new field. Any one

who, at present, devotes his efforts to the hypothesis of quanta,

must, for the time being, be content with the knowledge that the

fruits of the labor spent will probably be gathered by a future

generation.
THE AUTHOR.

BERLIN,
November, 1912.





PREFACE TO FIRST EDITION

In this book the main contents of the lectures which I gave at

the University of Berlin during the winter semester 1906-07 are

presented. My original intention was merely to put together

in a connected account the results of my own investigations,

begun ten years ago, on the theory of heat radiation; it soon be-

came evident, however, that it was desirable to include also the

foundation of this theory in the treatment, starting with Kirch-

hoff's Law on emitting and absorbing power; and so I attempted
to write a treatise which should also be capable of serving as an

introduction to the study of the entire theory of radiant heat on

a consistent thermodynamic basis. Accordingly the treatment

starts from the simple known experimental laws of optics and

advances, by gradual extension and by the addition of the results

of electrodynamics and thermodynamics, to the problems of the

spectral distribution of energy and of irreversibility. In doing

this I have deviated frequently from the customary methods of

treatment, wherever the matter presented or considerations

regarding the form of presentation seemed to call for it, especially

in deriving KirchhofFs laws, in calculating Maxwell's radiation

pressure, in deriving Wien's displacement law, and in generalizing

it for radiations of any spectral distribution of energy whatever.

I have at the proper place introduced the results of my own

investigations into the treatment. A list of these has been added

at the end of the book to facilitate comparison and examination

as regards special details.

I wish, however, to emphasize here what has been stated more

fully in the last paragraph of this book, namely, that the theory

thus developed does not by any means claim to be perfect or

complete, although I believe that it points out a possible way of

accounting for the processes of radiant energy from the same

point of view as for the processes of molecular motion.

XI
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PART I

FUNDAMENTAL FACTS AND DEFINITIONS





RADIATION OF HEAT

CHAPTER I

GENERAL INTRODUCTION

1. Heat may be propagated in a stationary medium in two

entirely different ways, namely, by conduction and by radiation.

Conduction of heat depends on the temperature of the medium
in which it takes place, or more strictly speaking, on the non-

uniform distribution of the temperature in space, as measured by
the temperature gradient. In a region where the temperature
of the medium is the same at all points there is no trace of heat

conduction.

Radiation of heat, however, is in itself entirely independent of

the temperature of the medium through which it passes. It is

possible, for example, to concentrate the solar rays at a focus by
passing them through a converging lens of ice, the latter remaining
at a constant temperature of 0, and so to ignite an inflammable

body. Generally speaking, radiation is a far more complicated

phenomenon than conduction of heat. The reason for this is

that the state of the radiation at a^given instant and at a given

point of the medium cannot be represented, as can the flow of

heat by conduction, by a single vector (that is, a single directed

quantity). All heat rays which at a given instant pass through
the same point of the medium are perfectly independent of one

another, and in order to specify completely the state of the

radiation the intensity of radiation must be known in all the

directions, infinite in number, which pass through the point in

question; for this purpose two opposite directions must be

considered as distinct, because the radiation in one of them is

quite independent of the radiation in the other.

1



2 FUNDAMENTAL FACTS AND DEFINITIONS

2. Putting aside for the present any special theory of heat

radiation, we shall state for our further use a law supported by a

large number of experimental facts. This law is that, so far as

their physical properties are concerned, heat rays are identical

with light rays of the same wave length. The term "heat radia-

tion," then, will be applied to all physical phenomena of the

same nature as light rays. Every light ray is simultaneously a

heat ray. We shall also, for the sake of brevity, occasionally

speak of the "color" of a heat ray in order to denote its wave

length or period. As a further consequence of this law we shall

apply to the radiation of heat all the well-known laws of experi-

mental optics, especially those of reflection and refraction, as

well as those relating to the propagation of light. Only the

phenomena of diffraction, so far at least as they take place in

space of considerable dimensions, we shall exclude on account of

their rather complicated nature. We are therefore obliged to

introduce right at the start a certain restriction with respect to

the size of the parts of space to be considered. Throughout the

following discussion it will be assumed that the linear dimensions

of all parts of space considered, as well as the radii of curvature

of all surfaces under consideration, are large compared with the

wave lengths of the rays considered. With this assumption we

may, without appreciable error, entirely neglect the influence of

diffraction caused by the bounding surfaces, and everywhere

apply the ordinary laws of reflection and refraction of light.

To sum up: We distinguish once for all between two kinds of

lengths of entirely different orders of magnitude dimensions of

bodies and wave lengths. Moreover, even the differentials of the

former, i.e., elements of length, area and volume, will be regarded
as large compared with the corresponding powers of wave lengths.

The greater, therefore, the wave length of the rays we wish to

consider, the larger must be the parts of space considered. But,

inasmuch as there is no other restriction on our choice of size

of the parts of space to be considered, this assumption will not

give rise to any particular difficulty.

3. Even more essential for the whole theory of heat radiation

than the distinction between large and small lengths, is the

distinction between long and short intervals of time. For the

definition of intensity of a heat ray, as being the energy trans-
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mitted by the ray per unit time, implies the assumption that the

unit of time chosen is large compared with the period of vibration

corresponding to the color of the ray. If this were not so, obvi-

ously the value of the intensity of the radiation would, in general,

depend upon the particular phase of vibration at which the

measurement of the 'energy of the ray was begun, and the inten-

sity of a ray of constant period and amplitude would not be inde-

pendent of the initial phase, unless by chance the unit of time

were an integral multiple of the period. To avoid this difficulty,

we are obliged to postulate quite generally that the unit of time,

or rather that element of time used in defining the intensity, even

if it appear in the form of a differential, must be large compared
with the period of all colors contained in the ray in question.

The last statement leads to an important conclusion as to

radiation of variable intensity. If, using an acoustic analogy,

we speak of
" beats" in the case of intensities undergoing peri-

odic changes, the "unit" of time required for a definition of

the instantaneous intensity of radiation must necessarily be small

compared with the period of the beats. Now, since from the

previous statement,our unit must be large compared with a period

of vibration, it follows that the period of the beats must be large

compared with that of a vibration. Without this restriction it

would be impossible to distinguish properly between "beats"

and simple "vibrations." Similarly, in the general case of an

arbitrarily variable intensity of radiation, the vibrations must

take place very rapidly as compared with the relatively slower

changes in intensity. These statements imply, of course, a certain

far-reaching restriction as to the generality of the radiation

phenomena to be considered.

It might be added that a very similar and equally essential

restriction is made in the kinetic theory of gases by dividing the

motions of a chemically simple gas into two classes: visible,

coarse, or molar, and invisible, fine, or molecular. For, since the

velocity of a single molecule is a perfectly unambiguous quantity,

this distinction cannot be drawn unless the assumption be made
that the velocity-components of the molecules contained in suffi-

ciently small volumes have certain mean values, independent of

the size of the volumes. This in general need not by any means be

the case. If such a mean value, including the value zero, does not
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exist, the distinction between motion of the gas as a whole and

random undirected heat motion cannot be made.

Turning now to the investigation of the laws in accordance with

which the phenomena of radiation take place in a medium sup-

posed to be at rest, the problem may be approached in two ways:
We must either select a certain point in space and investigate the

different rays passing through this one point as time goes on, or

we must select one distinct ray and inquire into its history, that

is, into the way in which it was created, propagated, and finally

destroyed. For the following discussion, it will be advisable to

start with the second method of treatment and to consider

first the three processes just mentioned.

4. Emission. The creation of a heat ray is generally denoted

by the word emission. According to the principle of the conserva-

tion of energy, emission always takes place at the expense of

other forms of energy (heat,
1 chemical or electric energy, etc.)

and hence it follows that only material particles, not geometrical

volumes or surfaces, can emit heat rays. It is true that for the

sake of brevity we frequently speak of the surface of a body as

radiating heat to the surroundings, but this form of expression

does not imply that the surface actually emits heat rays. Strictly

speaking, the surface of a body never emits rays, but rather it

allows part of the rays coming from the interior to pass through.

The other part is reflected inward and according as the fraction

transmitted is larger or smaller the surface seems to emit more or

less intense radiations.

We shall now consider the interior of an emitting substance

assumed to be physically homogeneous, and in it we shall select

any volume-element dr of not too small size. Then the energy
which is emitted by radiation in unit time by all particles in this

volume-element will be proportional to dr. Should we attempt
a closer analysis of the process of emission and resolve it into its

elements, we should undoubtedly meet very complicated con-

ditions, for then it would be necessary to consider elements of

space of such small size that it would no longer be admissible to

think of the substance as homogeneous, and we would have to

allow for the atomic constitution. Hence the finite quantity

1 Here as in the following the German "Korperwarme" will be rendered simply as

"heat." (Tr.)
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obtained by dividing the radiation emitted by a volume-element

dr by this element dr is to be considered only as a certain mean
value. Nevertheless, we shall as a rule be able to treat the phe-
nomenon of emission as if all points of the volume-element dr

took part in the emission in a uniform manner, thereby greatly

simplifying our calculation. Every point of dr will then be the

vertex of a pencil of rays diverging in all directions. Such a

pencil coming from one single point of course does not represent

a finite amount of energy, because a finite amount is emitted

only by a finite though possibly small volume, not by a single

point.

We shall next assume our substance to be isotropic. Hence
the radiation of the volume-element dr is emitted uniformly in

all directions of space. Draw a cone in an arbitrary direction,

having any point of the radiating element as vertex, and describe

around the vertex as center a sphere of unit radius. This sphere
intersects the cone in what is known as the solid angle of the cone,

and from the isotropy of the medium it follows that the radiation

in any such conical element will be proportional to its solid angle.

This holds for cones of any size. If we take the solid angle as in-

finitely small and of size dti we maj^ speak of the radiation emitted

in a certain direction, but always in the sense that for the emis-

sion of a finite amount of energy an infinite number of directions

are necessary and these form a finite solid angle.

5. The distribution of energy in the radiation is in general

quite arbitrary; that is, the different colors of a certain radiation

may have quite different intensities. The color of a ray in experi-

mental physics is usually denoted by its wave length, because

this quantity is measured directly. For the theoretical treatment,

however, it is usually preferable to use the frequency v instead,

since the characteristic of color is not so much the wave length,

which changes from one medium to another, as the frequency,

which remains unchanged in a light or heat ray passing through

stationary media. We shall, therefore, hereafter denote a cer-

tain color by the corresponding value of v, and a certain interval

of color by the limits of the interval v and /, where /> v. The
radiation lying in a certain interval of color divided by the magni-
tude v'-v of the interval, we shall call the mean radiation in the

interval v to /. We shall then assume that if, keeping v constant,
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we take the interval v'-v sufficiently small and denote it by dv

the value of the mean radiation approaches a definite limiting

value, independent of the size of dv, and this we shall briefly call

the "radiation of frequency v." To produce a finite intensity

of radiation, the frequency interval, though perhaps small, must
also be finite.

We have finally to allow for the polarization of the emitted

radiation. Since the medium was assumed to be isotropic the

emitted rays are unpolarized. Hence every ray has just twice

the intensity of one of its plane polarized components, which

could, e.g., be obtained by passing the ray through a NicoVs

prism.

6. Summing up everything said so far, we may equate the total

energy in a range of frequency from v to v-\-dv emitted in the

time dt in the direction of the conical element cZl2 by a volume

element dr to

The finite quantity e, is called the coefficient of emission of the

medium for the frequency v. It is a positive function of v and

refers to a plane polarized ray of definite color and direction. The
total emission of the volume-element dr may be obtained from

this by integrating over all directions and all frequencies. Since

is independent of the direction, and since the integral over all

conical elements dti is 4rr, we get:
00

dt-dr.S*
j

tvdv.
^

(2)

7. The coefficient of emission e depends, not only on the fre-

quency v, but also on the condition of the emitting substance

contained in the volume-element dr, and, generally speaking,

in a very complicated way, according to the physical and chemical

processes which take place in the elements of time and volume in

question. But the empirical law that the emission of any volume-

element depends entirely on what takes place inside of this ele-

ment holds true in all cases (Prevost's principle). A body A
at 100 C. emits toward a body B at C. exactly the same

amount of radiation as toward an equally large and similarly

situated body B' at 1000 C. The fact that the body A is cooled
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by B and heated by B r
is due entirely to the fact that B is a

weaker, B' a stronger emitter than A.

We shall now introduce the further simplifying assumption
that the physical and chemical condition of the emitting sub-

stance depends on but a single variable, namely, on its absolute

temperature T. A necessary consequence of this is that the

coefficient of emission e depends, apart from the frequency v

and the nature of the medium, only on the temperature T.

The last statement excludes from our consideration a number

of radiation phenomena, such as fluorescence, phosphorescence,

electrical and chemical luminosity, to which E. Wiedemann has

given the common name "
phenomena of luminescence." We

shall deal with pure
"
temperature radiation" exclusively.

A special case of temperature radiation is the case of the

chemical nature of the emitting substance being invariable. In

this case the emission takes place entirely at the expense of the

heat of the body. Nevertheless, it is possible, according to what

has been said, to have temperature radiation while chemical

changes are taking place, provided the chemical condition is com^

pletely determined by the temperature.

8. Propagation. The propagation of the radiation in a medium
assumed to be homogeneous, isotropic, and at rest takes place in

straight lines and with the same velocity in all directions, diffrac-

tion phenomena being entirely excluded. Yet, in general, each

ray suffers during its propagation a certain weakening, because

a certain fraction of its energy is continuously deviated from its

original direction and scattered in all directions. This phenome-
non of

"
scattering," which means neither a creation nor a

destruction of radiant energy but simply a change in distribution,

takes place, generally speaking, in all media differing from an

absolute vacuum, even in substances which are perfectly pure

chemically.
1 The cause of this is that no substance is homogene-

ous in the absolute sense of the word. The smallest elements of

space always exhibit some discontinuities on account of their

atomic structure. Small impurities, as, for instance, particles of

dust, increase the influence of scattering without, however, appre-

ciably affecting its general character. Hence, so-called ''turbid"

i See, e.g., Lobry de Bruyn and L. K. Wolff, Rec. des Trav. China, des Paya-Bas 23,

p. 155, 1904.
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media, i.e., such as contain foreign particles, may be quite prop-

erly regarded as optically homogeneous,
1

provided only that the

linear dimensions of the foreign particles as well as the distances

of neighboring particles are sufficiently small compared with the

wave lengths of the rays considered. As regards optical phenom-
ena, then, there is no fundamental distinction between chemically

pure substances and the turbid media just described. No space
is optically void in the absolute sense except a vacuum. Hence
a chemically pure substance may be spoken of as a vacuum made
turbid by the presence of molecules.

A typical example of scattering is offered by the behavior of

sunlight in the atmosphere. When, with a clear sky, the sun

stands in the zenith, only about two-thirds of the direct radiation

of the sun reaches the surface of the earth. The remainder is

intercepted by the atmosphere, being partly absorbed and

changed into heat of the air, partly, however, scattered and

changed into diffuse skylight. This phenomenon is produced

probably not so much by the particles suspended in the atmos-

phere as by the air molecules themselves.

Whether the scattering depends on reflection, on diffraction, or

on a resonance effect on the molecules or particles is a point that

we may leave entirely aside. We only take account of the fact

that every ray on its path through any medium loses a certain

fraction of its intensity. For a very small distance, s, this frac-

tion is proportional to s, say

As (3)

where the positive quantity $v is independent of the intensity of

radiation and is called the "coefficient of scattering" of the me-
dium. Inasmuch as the medium is assumed to be isotropic, fa

is also independent of the direction of propagation and polariza-

tion of the ray. It depends, however, as indicated by the

subscript v, not only on the physical and chemical constitution of

the body but also to a very marked degree on the frequency.
For certain values of v, &v may be so large that the straight-line

propagation of the rays is virtually destroyed. For other values

of v, however, 0, may become so small that the scattering can

1 To restrict the word homogeneous to its absolute sense would mean that it could not be

applied to any material substance.
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be entirely neglected. For generality we shall assume a mean
value of ft,. In the cases of most importance ft increases quite

appreciably as v increases, i.e., the scattering is noticeably larger

for rays of shorter wave length;
1 hence the blue color of diffuse

skylight.

The scattered radiation energy is propagated from the place

where the scattering occurs in a way similar to that in which the

emitted energy is propagated from the place of emission, since

it travels in all directions in space. It does not, however, have

the same intensity in all directions, and moreover is polarized

in some special directions, depending to a large extent on the

direction of the original ray. We need not, however, enter into

any further discussion of these questions.

9. While the phenomenon of scattering means a continuous

modification in the interior of the medium, a discontinuous

change in both the direction and the intensity of a ray occurs

when it reaches the boundary of a medium and meets the surface

of a second medium. The latter, like the former, will be assumed

to be homogeneous and isotropic. In this case, the ray is in

general partly reflected and partly transmitted. The reflection

and refraction may be "
regular," there being a single reflected

ray according to the simple law of reflection and a single trans-

mitted ray, according to Snell's law of refraction, or, they may be

"diffuse," which means that from the point of incidence on the

surface the radiation spreads out into the two media with intensi-

ties that are different in different directions. We accordingly

describe the surface of the second medium as
" smooth" or

"rough" respectively. Diffuse reflection occurring at a rough
surface should be carefully distinguished from reflection at a

smooth surface of a turbid medium. In both cases part of the

incident ray goes back to the first medium as diffuse radiation.

But in the first case the scattering occurs on the surface, in the

second in more or less thick layers entirely inside of the second

medium.

10. When a smooth surface completely reflects all incident

rays, as is approximately the case with many metallic surfaces,

it is termed "reflecting." When a rough surface reflects all

incident rays completely and uniformly in all directions, it is

i Lord Rayleigh, Phil. Mag., 47, p. 379, 1899.
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called
"
white." The other extreme, namely, complete trans-

mission of all incident rays through the surface never occurs with

smooth surfaces, at least if the two contiguous media are at all

optically different. A rough surface having the property of

completely transmitting the incident radiation is described as
"
black."

In addition to
"
black surfaces" the term "black body" is also

used. According to G. Kirchhoff
1

it denotes a body which has

the property of allowing all incident rays to enter without surface

reflection and not allowing them to leave again. Hence it is

seen that a black body must satisfy three independent conditions.

First, the body must have a black surface in order to allow the

incident rays to enter" without reflection. Since, in general, the

properties of a surface depend on both of the bodies which are in

contact, this condition shows that the property of blackness as

applied to a body depends not only on the nature of the body
but also on that of the contiguous medium. A body which is

black relatively to air need not be so relatively to glass, and vice

versa. Second, the black body must have a certain minimum
thickness depending on its absorbing power, in order to insure

that the rays after passing into the body shall not be able to

leave it again at a different point of the surface. The more ab-

sorbing a body is, the smaller the value of this minimum thick-

ness, while in the case of bodies with vanishingly small absorbing

power only a layer of infinite thickness may be regarded as black.

Third, the black body must have a vanishingly small coefficient of

scattering (Sec. 8). Otherwise the rays received by it would be

partly scattered in the interior and might leave again through
the surface. 2

11. All the distinctions and definitions mentioned in the two

preceding paragraphs refer to rays of one definite color only.

It might very well happen that, e.g., a surface which is rough for a

certain kind of rays must be regarded as smooth for a different

kind of rays. It is readily seen that, in general, a surface shows
1 G. Kirchhoff, Pogg. Ann., 109, p. 275, 1860. Gesammelte Abhandlungen, J. A. Earth,

Leipzig, 1882, p. 573. In defining a black body Kirchhoff also assumes that the absorption
of incident rays takes place in a layer "infinitely thin." We do not include this in our

definition.
2 For this point see especially A. Schuster, Astrophysical Journal, 21, p. 1, 1905, who has

pointed out that an infinite layer of gas with a black surface need by no means be a black

body.
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decreasing degrees of roughness for increasing wave lengths

Now, since smooth non-reflecting surfaces do not exist (Sec. 10), it

follows that all approximately black surfaces which may be real-

ized in practice (lamp black, platinum black) show appreciable
reflection for rays of sufficiently long wave lengths.

12. Absorption. Heat rays are destroyed by
"
absorption."

According to the principle of the conservation of energy the

energy of heat radiation is thereby changed into other forms of

energy (heat, chemical energy). Thus only material particles

can absorb heat rays, not elements of surfaces, although some-

times for the sake of brevity the expression absorbing surfaces

is used.

Whenever absorption takes place, the heat ray passing through
the medium under consideration is weakened by a certain frac-

tion of its intensity for every element of path traversed. For a

sufficiently small distance s this fraction is proportional to s,

and may be written

,* (4)

Here av is known as the
"
coefficient of absorption" of the me-

dium for a ray of frequency v. We assume this coefficient to be

independent of the intensity; it will, however, depend in general
in non-homogeneous and anisotropic media on the position of s

and on the direction of propagation and polarization of the ray

(example: tourmaline). We shall, however, consider only ho-

mogeneous isotropic substances, and shall therefore suppose that

av has the same value at all points and in all directions in the

medium, and depends on nothing but the frequency v, the tem-

perature T, and the nature of the medium.

Whenever av does not differ from zero except for a limited range
of the spectrum, the medium shows "selective" absorption. For

those colors for which av
= and also the coefficient of scattering

^ = the medium is described as perfectly "transparent" or

"diathermanous." But the properties of selective absorption
and of diathermancy may for a given medium vary widely with

the temperature. In general we shall assume a mean value for

. This implies that the absorption in a distance equal to a

single wave length is very small, because the distance s, while

small, contains many wave lengths (Sec. 2).
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13. The foregoing considerations regarding the emission, the

propagation, and the absorption of heat rays suffice for a mathe-
matical treatment of the radiation phenomena. The calculation

requires a knowledge of the value of the constants and the initial

and boundary conditions, and yields a full account of the changes
the radiation undergoes in a given time in one or more contiguous
media of the kind stated, including the temperature changes
caused by it. The actual calculation is usually very complicated.
We shall, however, before entering upon the treatment of special

cases discuss the general radiation phenomena from a different

point of view, namely by fixing our attention not on a definite

ray, but on a definite position in space.

14. Let da be an arbitrarily chosen, infinitely small element of

area in the interior of a medium through which radiation passes.

At a given instant rays are passing through this element in many
different directions. The energy radiated through it in an
element of time dt in a definite direction is proportional to the area

da, the length of time dt and to the cosine of the angle 6 made by
the normal of do- with the direction of the radiation. If we make
da sufficiently small, then, although this is only an approximation
to the actual state of affairs, we can think of all points in da as

being affected by the radiation in the same way. Then the

energy radiated through da in a definite direction must be pro-

portional to the solid angle in which da intercepts that radiation

and this solid angle is measured by da cos 6. It is readily seen

that, when the direction of the element is varied relatively to the

direction of the radiation, the energy radiated through it vanishes

when

.

Now in general a pencil of rays is propagated from every point
of the element da in all directions, but with different intensities

in different directions, and any two pencils emanating from two

points of the element are identical save for differences of higher
order. A single one of these pencils coming from a single point
does not represent a finite quantity of energy, because a finite

amount of energy is radiated only through a finite area. This

holds also for the passage of rays through a so-called focus. For
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example, when sunlight passes through a converging lens and is

concentrated in the focal plane of the lens, the solar rays do not

converge to a single point, but each pencil of parallel rays forms

a separate focus and all these foci together constitute a surface

representing a small but finite image of the sun. A finite amount
of energy does not pass through less than a finite portion of this

surface.

15. Let us now consider quite generally the pencil, which is

propagated from a point of the element da as vertex in all direc-'

tions of space and on both sides of do-. A certain direction may
be specified by the angle 9 (between and TT), as already used,

and by an azimuth < (between and 2ii) . The intensity in this

direction is the energy propagated in an infinitely thin cone lim-

ited by 6 and B+dB and </> and 0+d0. The solid angle of this

cone is

dfi = sin B'dB'dQ. (5)

Thus the energy radiated in time dt through the element of area

da in the direction of the cone dl is:

dt da cos ddttK =K sin B cos B dd d<f> da dt. (6)

The finite quantity K we shall term the "specific intensity"

or the
"
brightness," d, the "solid angle" of the pencil emanating

from a point of the element da in the direction (0, <). K is a

positive function of position, time, and the angles B and 4>. In

general the specific intensities of radiation in different directions

are entirely independent of one another. For example, on sub-

stituting TT B for B and TT+ < for < in the function K, we obtain the

specific intensity of radiation in the diametrically opposite

direction, a quantity which in general is quite different from the

preceding one.

For the total radiation through the element of area da toward

one side, say the one on which B is an acute angle, we get, by

integrating with respect to from to 2?r and with respect to

B from to

id* r
t/ o t/ o

dBK sin B cos B da dt.
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Should the radiation be uniform in all directions and hence K be

a constant, the total radiation on one side will be

TT K da dt. (7)

16. In speaking of the radiation in a definite direction

(6, 0) one should always keep in mind that the energy radiated in a

cone is not finite unless the angle of the cone is finite. No finite

radiation of light or heat takes place in one definite direction only,

or expressing it differently, in nature there is no such thing as

absolutely parallel light or an absolutely plane wave front.

From a pencil of rays called
"
parallel

"
a finite amount of energy of

radiation can only be obtained if the rays or wave normals of the

pencil diverge so as to form a finite though perhaps exceedingly

narrow cone.

17. The specific intensity K of the whole energy radiated in

a certain direction may be further divided into the intensities of

the separate rays belonging to the different regions of the spec-

trum which travel independently of one another. Hence we
consider the intensity of radiation within a certain range of fre-

quencies, say from v to /. If the interval v'v be taken suffi-

ciently small and be denoted by dv, the intensity of radiation

within the interval is proportional to dv. Such radiation is called

homogeneous or monochromatic.

A last characteristic property of a ray of definite direction,

intensity, and color is its state of polarization. If we break up a

ray, which is in any state of polarization whatsoever and which

travels in a definite direction and has a definite frequency v,

into two plane polarized components, the sum of the intensities

of the components will be just equal to the intensity of the ray

as a whole, independently of the direction of the two planes,

provided the two planes of polarization, which otherwise may be

taken at random, are at right angles to each other. If their posi-

tion be denoted by the azimuth
\l/

of one of the planes of vibration

(plane of the electric vector), then the two components of the

intensity may be written in the form

and K,sinV+K/cosV (8)

Herein K is independent of \f/. These expressions we shall call
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the "
components of the specific intensity of radiation of frequency

v." The sum is independent of \f/ and is always equal to the

intensity of the whole ray K,,+ K/. At the same time Kv and

K/ represent respectively the largest and smallest values which

either of the components may have, namely, when \f/
= and \f/

= ~

Hence we call these values the
"
principal values of the intensi-

ties/' or the "principal intensities," and the corresponding planes
of vibration we call the "principal planes of vibration" of the

ray. Of course both, in general, vary with the time. Thus we

may write generally

S:
(9)

where the positive quantities K,, and K/, the two principal values

of the specific intensity of the radiation (brightness) of fre-

quency v, depend not only on v but also on their position, the time,

and on the angles 6 and <. By substitution in (6) the energy
radiated in the time dt through the element of area da in the direc-

tion of the conical element d& assumes the value
00

dt da cos 6 dtt [dv (K,+ K/) (10)

I
and for monochromatic plane polarized radiation of brightness

K,:

dt da cos B dtt K,, dv = dt da- sin 6 cos dd d$ K,, dv. (11)

For unpolarized rays K,,
= K/, and hence

oo

K = 2 (dv K,, (12)I \dv K

and the energy of a monochromatic ray of frequency v will be:

2dt da- cos e dQ K, dv = 2dt da- sin 6 cos 6 dd d<f> K, dv.(l3)

When, moreover, the radiation is uniformly distributed in all

directions, the total radiation through dcr toward one side may be

found from (7) and (12) ;
it is

I
K>. (14)
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18. Since in nature K,, can never be infinitely large, K will not

have a finite value unless K,, differs from zero over a finite range
of frequencies. Hence there exists in nature no absolutely

homogeneous or monochromatic radiation of light or heat. A
finite amount of radiation contains always a finite although possi-

bly very narrow range of the spectrum. This implies a funda-

mental difference from the corresponding phenomena of acoustics,

where a finite intensity of sound may correspond to a single

definite frequency. This difference is, among other things, the

cause of the fact that the second law of thermodynamics has an

important bearing on light and heat rays, but not on sound waves.

This will be further discussed later on.

19. From equation (9) it is seen that the quantity K,,, the

intensity of radiation of frequency v, and the quantity K, the

intensity of radiation of the whole spectrum, are of different

dimensions. Further it is to be noticed that, on subdividing
the spectrum according to wave lengths X, instead of frequencies

v, the intensity of radiation #\.of the wave lengths X correspond-

ing to the frequency v is not obtained simply by replacing v in

the expression for K,, by the corresponding value of X deduced

from

V =
I (15)
A

where q is the velocity of propagation. For if d\ and dv refer to

the same interval of the spectrum, we have, not Ex
=

K,,, but

Ex d\ = K, dv. By differentiating (15) and paying attention

to the signs of corresponding values of d\ and dv the equation

is obtained. Hence we get by substitution:

This relation shows among other things that in a certain spectrum
the maxima of Ex and K,, lie at different points of the spectrum.

20. When the principal intensities K, and K/ of all mono-
chromatic rays are given at all points of the medium and for all

directions, the state of radiation is known in all respects and all
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questions regarding it may be answered. We shall show this by
one or two applications to special cases. Let us first find the

amount of energy which is radiated through any element of area

do- toward any other element dcr'. The distance r between the

two elements may be thought of as large compared with the

linear dimensions of the elements da- and da' but still so small

that no appreciable amount of radiation is absorbed or scattered

along it. This condition is, of course, superfluous for diather-

manous media.

From any definite point of da rays pass to all points of da' .

These rays form a cone whose vertex lies in da and whose solid

angle is

dQ = da' cos (/, r)

r2

where v denotes the normal of da' and the angle (V, r) is to be

taken as an acute angle. This value of dtt is, neglecting small

quantities of higher order, independent of the particular position

of the vertex of the cone on da.

If we further denote the normal to da by v the angle 6 of (14)

will be the angle (v, r) and hence from expression (6) the energy of

radiation required is found to be :

dada' cos(v,r)-cos(v',r)
K- - -

at. (17)
r2

For monochromatic plane polarized radiation of frequency v the

energy will be, according to equation (11),

The relative size of the two elements da and da' may have any
value whatever. They may be assumed to be of the same or of a

different order of magnitude, provided the condition remains

satisfied that r is large compared with the linear dimensions of

each of them. If we choose da small compared with da', the rays

diverge from da to da f

,
whereas they converge from da to da',

if we choose da large compared with da'.

21. Since every point of da is the vertex of a cone spreading

out toward da', the whole pencil of rays here considered, which is
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defined by da and dcr', consists of a double infinity of point pencils

or of a fourfold infinity of rays which must all be considered

equally for the energy radiation. Similarly the pencil of rays

may be thought of as consisting of the cones which, emanating
from all points of da, converge in one point of da' respectively
as a vertex. If we now imagine the whole pencil of rays to be

cut by a plane at any arbitrary distance from the elements da

and da' and lying either between them or outside, then the

cross-sections of any two point pencils on this plane will not be

identical, not even approximately. In general they will partly

overlap and partly lie outside of each other, the amount of over-

lapping being different for different intersecting planes. Hence
it follows that there is no definite cross-section of the pencil of

rays so far as the uniformity of radiation is concerned. If, how-

ever, the intersecting plane coincides with either da or da'
,
then

the pencil has a definite cross-section. Thus these two planes
show an exceptional property. We shall call them the two
"
focal planes" of the pencil.

In the special case already mentioned above, namely, when one

of the two focal planes is infinitely small compared with the other,

the whole pencil of rays shows the character of a point pencil inas-

much as its form is approximately that of a cone having its vertex

in that focal plane which is small compared with the other. In

that case the
"
cross-section" of the whole pencil at a definite

point has a definite meaning. Such a pencil of rays, which is

similar to a cone, we shall call an elementary pencil, and the

small focal plane we shall call the first focal plane of the elemen-

tary pencil. The radiation may be either converging toward the

first focal plane or diverging from the first focal plane. All

the pencils of rays passing through a medium may be considered

as consisting of such elementary pencils, and hence we may base

our future considerations on elementary pencils only, which is a

great convenience, owing to their simple nature.

As quantities necessary to define an elementary pencil with a

given first focal plane da
}
we may choose not the second focal

plane da' but the magnitude of that solid angle dti under which

da' is seen from da. On the other hand, in the case of an arbi-

trary pencil, that is, when the two focal planes are of the same
order of magnitude, the second focal plane in general cannot be
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replaced by the solid angle d!2 without the pencil changing

markedly in character. For if, instead of da' being given, the

magnitude and direction of dft, to be taken as constant for all

points of do-, is given, then the rays emanating from do- do not

any longer form the original pencil, but rather an elementary

pencil whose first focal plane is da and whose second focal plane
lies at an infinite distance.

22. Since the energy radiation is propagated in the medium
with a finite velocity q, there must be in a finite space a finite

amount of energy. We shall therefore speak of the "space density

of radiation," meaning thereby the ratio of the total quantity of

energy of radiation contained in a volume-element to the magni-
tude of the latter. Let us now calculate the space density of

radiation u at any arbitrary point of the medium. When we
consider an infinitely small element of volume v at the point in

question, having any shape whatsoever, we must allow for all

rays passing through the volume-element v. For this purpose
we shall construct about any point of v as center a sphere
of radius r, r being large compared
with the linear dimensions of v but

still so small that no appreciable

absorption or scattering of the radia-

tion takes place in the distance r

(Fig. 1). Every ray which reaches

v must then come from some point
on the surface of the sphere. If,

then, we at first consider only all the

rays that come from the points of an

infinitely small element of area do- FlG
on the surface of the sphere, and
reach v, and then sum up for all elements of the spherical sur-

face, we shall have accounted for all rays and not taken any one

more than once.

Let us then calculate first the amount of energy which is con-

tributed to the energy contained in v by the radiation sent from

such an element do- to v. We choose do- so that its linear dimen-

sions are small compared with those of v and consider the cone of

rays which, starting at a point of do-, meets the volume v. This

cone consists of an infinite number of conical elements with the
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common vertex at P, a point of da, each cutting out of the volume

v a certain element of length, say s. The solid angle of such a

conical element is
2
where / denotes the area of cross-section

normal to the axis of the cone at a distance r from the vertex.

The time required for the radiation to pass through the distance

T = ~

q

From expression (6) we may find the energy radiated through a

certain element of a

hence the energy is :

certain element of area. In the present case dft = and =
0;

--Kda. (19)
r2
q

This energy enters the conical element in v and spreads out into

the volume fs. Summing up over all conical elements that start

from da and enter v we have

Kda Kda

This represents the entire energy of radiation contained in the

volume v, so far as it is caused by radiation through the element

da. In order to obtain the total energy of radiation contained

in v we must integrate over all elements da contained in the sur-

da
face of the sphere. Denoting by d!2 the solid angle of a

cone which has its center in and intersects in da the surface of

the sphere, we get for the whole energy:

The volume density of radiation required is found from this by

dividing by v. It is

u=- \KdQ. (20)
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Since in this expression r has disappeared, we can think of K
as the intensity of radiation at the point itself. In integrating,
it is to be noted that K in general depends on the direction (6, <).

For radiation that is uniform in all directions K is a constant and
on integration we get:

4irK
u =-

q

-
(21)

23. A meaning similar to that of the volume density of the

total radiation u is attached to the volume density of radiation

of a definite frequency u,,. Summing up for all parts of the spec-
trum we get:

u= I u,,dv. (22)

Further by combining equations (9) and (20) we have:

(23)

and finally for unpolarized radiation uniformly distributed in all

directions :

u, =^ (24)



CHAPTER II

RADIATION AT THERMODYNAMIC EQUILIBRIUM.
KIRCHHOFF'S LAW. BLACK RADIATION

24. We shall now apply the laws enunciated in the last chap-
ter to the special case of thermodynamic equilibrium, and hence

we begin our consideration by stating a certain consequence of

the second principle of thermodynamics: A system of bodies of

arbitrary nature, shape, and position which is at rest and is sur-

rounded by a rigid cover impermeable to heat will, no matter

what its initial state may be, pass in the course of time into a

permanent state, in which the temperature of all bodies of the

system is the same. This is the state of thermodynamic equilib-

rium, in which the entropy of the system has the maximum value

compatible with the total energy of the system as fixed by the

initial conditions. This state being reached, no further increase

in entropy is possible.

In certain cases it may happen that, under the given conditions,

the entropy can assume not only one but several maxima, of

which one is the absolute one, the others having only a relative

significance.
1 In these cases every state corresponding to a max-

imum value of the entropy represents a state of thermodynamic

equilibrium of the system. But only one of them, the one cor-

responding to the absolute maximum of entropy, represents the

absolutely stable equilibrium. All the others are in a certain

sense unstable, inasmuch as a suitable, however small, distur-

bance may produce in the system a permanent change in the

equilibrium in the direction of the absolutely stable equilibrium.

An example of this is offered by supersaturated steam enclosed in

a rigid vessel or by any explosive substance. We shall also meet

such unstable equilibria in the case of radiation phenomena
(Sec. 52).

1 See, e.g., M. Planck, Vorlesungen viber Thermodynamik, Leipzig, Veit and Comp., 1911

(or English Translation, Longmans Green & Co.), Sees. 165 and 189, et seq.

22
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25. We shall now, as in the previous chapter, assume that we
are dealing with homogeneous isotropic media whose condition

depends only on the temperature, and we shall inquire what laws

the radiation phenomena in them must obey in order to be con-

sistent with the deduction from the second principle mentioned

in the preceding section. The means of answering this inquiry
is supplied by the investigation of the state of thermodynamic

equilibrium of one or more of such media, this investigation to be

conducted by applying the conceptions and laws established in

the last chapter.

We shall begin with the simplest case, that of a single medium

extending very far in all directions of space, and, like all systems
we shall here consider, being surrounded by a rigid cover imper-
meable to heat. For the present we shall assume that the

medium has finite coefficients of absorption, emission, and

scattering.

Let us consider, first, points of the medium that are far away
from the surface. At such points the influence of the surface is,

of course, vanishingly small and from the homogeneity and the

isotropy of the medium it will follow that in a state of thermody-
namic equilibrium the radiation of heat has everywhere and in all

directions the same properties. Then K,,, the specific intensity of

radiation of a plane polarized ray of frequency v (Sec. 17), must be

independent of the azimuth of the plane of polarization as well as

of position and direction of the ray. Hence to each pencil of

rays starting at an element of area da and diverging within

a conical element d$l corresponds an exactly equal pencil of oppo-

site direction converging within the same conical element toward

the element of area.

Now the condition of thermodynamic equilibrium requires

that the temperature shall be everywhere the same and shall not

vary in time. Therefore in any given arbitrary time just as

much radiant heat must be absorbed as is emitted in each vol-

ume-element of the medium. For the heat of the body depends

only on the heat radiation, since, on account of the uniformity in

temperature, no conduction of heat takes place. This condition

is not influenced by the phenomenon of scattering, because scat-

tering refers only to a change in direction of the energy radiated,

not to a creation or destruction of it. We shall, therefore, cal-
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culate the energy emitted and absorbed in the time dt by a

volume-element v.

According to equation (2) the energy emitted has the value
CO

dt v8w I e, dvvSir I

Jo
where

,
the coefficient of emission of the medium, depends only

on the frequency v and on the temperature in addition to the

chemical nature of the medium.

26. For the calculation of the energy absorbed we shall employ
the same reasoning as was illustrated by Fig. 1 (Sec. 22) and

shall retain the notation there used. The radiant energy
absorbed by the volume-element v in the time dt is found by con-

sidering the intensities of all the rays passing through the element

v and taking that fraction of each of these rays which is absorbed

in v. Now, according to (19), the conical element that starts

from da- and cuts out of the volume v a part equal to fs has the

intensity (energy radiated per unit time)

rf./rd -

~*'
K

or, according to (12), by considering the different parts of the

spectrum separately:

Hence the intensity of a monochromatic ray is:

2 da ~ K, dv.

The amount of energy of this ray absorbed in the distance s in

the time dt is, according to (4),

dtavs2d(r- K, dv.
r2

Hence the absorbed part of the energy of this small cone of rays,

as found by integrating over all frequencies, is :



RADIATION AT THERMODYNAMIC EQUILIBRIUM 25

When this expression is summed up over all the different cross-

sections / of the conical elements starting at da and passing

through v, it is evident that 2/s = v, and when we sum up over

all elements da of the spherical surface of radius r we have

J
d*

=47T.

Thus for the total radiant energy absorbed in the time dt by the

volume-element v the following expression is found:

oo

f ,K,dt V STT I av K, dv. (25)

By equating the emitted and absorbed energy we obtain:

dp.I e, dv = I a, K,

Jo tJ o

A similar relation may be obtained for the separate parts of the

spectrum. For the energy emitted and the energy absorbed in the

state of thermodynamic equilibrium are equal, not only for the

entire radiation of the whole spectrum, but also for each monochro-
matic radiation. This is readily seen from the following. The

magnitudes of e,, ,
and Ky are independent of position. Hence,

if for any single color the absorbed were not equal to the emitted

energy, there would be everywhere in the whole medium a con-

tinuous increase or decrease of the energy radiation of that

particular color at the expense of the other colors. This would be

contradictory to the condition that K,, for each separate frequency
does not change with the time. We have therefore for each

frequency the relation:

e,
= av K,, or (26)

K,= '

(27)
OLV

i.e. : in the interior of a medium in a state of thermodynamic equi-

librium the specific intensity of radiation of a certain frequency is

equal to the coefficient of emission divided by the coefficient of absorp-

tion of the medium for this frequency.
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27. Since ev and depend only on the nature of the medium,
the temperature, and the frequency v, the intensity of radiation of

a definite color in the state of thermodynamic equilibrium is

completely defined by the nature of the medium and the tempera-
ture. An exceptional case is when a,,

=
0, that is, when the

medium does not at all absorb the color in question. Since K,

cannot become infinitely large, a first consequence of this is that

in that case ev
=

also, that is, a medium does not emit any color

which it does not absorb. A second consequence is that if ev

and av both vanish, equation (26) is satisfied by every value of

Ky . In a medium which is diathermanous for a certain color

thermodynamic equilibrium can exist for any intensity of radiation

whatever of that color.

This supplies an immediate illustration of the cases spoken of

before (Sec. 24), where, for a given value of the total energy of a

system enclosed by a rigid cover impermeable to heat, several

states of equilibrium can exist, corresponding to several relative

maxima of the entropy. That is to say, since the intensity of

radiation of the particular color in the state of thermodynamic

equilibrium is quite independent of the temperature of a medium
which is diathermanous for this color, the given total energy may
be arbitrarily distributed between radiation of that color and the

heat of the body, without making thermodynamic equilibrium

impossible. Among all these distributions there is one particular

one, corresponding to the absolute maximum of entropy, which

represents absolutely stable equilibrium. This one, unlike all the

others, which are in a certain sense unstable, has the property of

not being appreciably affected by a small disturbance. Indeed

we shall see later (Sec. 48) that among the infinite number of

values, which the quotient can have, if numerator and denom-
Civ

inator both vanish, 'there exists one particular one which depends
in a definite way on the nature of the medium, the frequency v,

and the temperature. This distinct value of the fraction is

accordingly called the stable intensity of radiation K,, in the me-

dium, which at the temperature in question is diathermanous for

rays of the frequency v.

Everything that has just been said of a medium which is dia-

thermanous for a certain kind of rays holds true for an absolute
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vacuum, which is a medium diathermanous for rays of all kinds,

the only difference being that one cannot speak of the heat and

the temperature of an absolute vacuum in any definite sense.

For the present we again shall put the special case of diather-

mancy aside and assume that all the media considered have a

finite coefficient of absorption.

28. Let us now consider briefly the phenomenon of scattering

at thermodynamic equilibrium. Every ray meeting the volume-

element v suffers there, apart from absorption, a certain weaken-

ing of its intensity because a certain fraction of its energy is

diverted in different directions. The value of the total energy
of scattered radiation received and diverted, in the time dt by
the volume-element v in all directions, may be calculated from

expression (3) in exactly the same way as the value of the absorbed

energy was calculated in Sec. 26. Hence we get an expression

similar to (25), namely,

dt v Sir I ft K, dp. (28)

I
The question as to what becomes of this energy is readily an-

swered. On account of the isotropy of the medium, the energy
scattered in v and given by (28) is radiated uniformly in all direc-

tions just as in the case of the energy entering v . Hence that part

of the scattered energy received in v which is radiated out in a

cone of solid angle dti is obtained by multiplying the last expres-

sion by -r-. This gives

00

2 dt v dtt ( ft K, dv,

and, for monochromatic plane polarized radiation,

dt v dQ ft K, dv. (29)

Here it must be carefully kept in mind that this uniformity of

radiation in all directions holds only for all rays striking the ele-

ment v taken together; a single ray, even in an isotropic medium,
is scattered in different directions with different intensities and

different directions of polarization. (See end of Sec. 8.)
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It is thus found that, when thermodynamic equilibrium of ra-

diation exists inside of the medium, the process of scattering pro-

duces, on the whole, no effect. The radiation falling on a volume-

element from all sides and scattered from it in all directions be-

haves exactly as if it had passed directly through the volume-

element without the least modification. Every ray loses by
scattering just as much energy as it regains by the scattering of

other rays.

29. We shall now consider from a different point of view the

radiation phenomena in the interior of a very extended homogene-
ous isotropic medium which is in thermodynamic

equilibrium. That is to say, we shall confine our

attention, not to a definite volume-element, but to a

definite pencil, and in fact to an elementary pencil

(Sec. 21). Let this pencil be specified by the infinitely

small focal plane da at the point (Fig. 2), perpen-
dicular to the axis of the pencil, and by the solid

angle dft, and let the radiation take place toward the

focal plane in the direction of the arrow. We shall

consider exclusively rays which belong to this pencil.

The energy of monochromatic plane polarized radi-

FIG. 2. ation of the pencil considered passing in unit time

through da is represented, according to (11), since in

this case dt = l, 6 = 0, by

da da K, dv. (30)

The same value holds for any other cross-section of the pencil.

For first, K,, dv has everywhere the same magnitude (Sec. 25),

and second, the product of any right section of the pencil and

the solid angle at which the focal plane da is seen from this sec-

tion has the constant value da dfi, since the magnitude of the

cross-section increases with the distance from the vertex of

the pencil in the proportion in which the solid angle decreases.

Hence the radiation inside of the pencil takes place just as if the

medium were perfectly diathermanous.

On the other hand, the radiation is continuously modified along
its path by the effect of emission, absorption, and scattering. We
shall consider the magnitude of these effects separately.

30. Let a certain volume-element of the pencil be bounded by
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two cross-sections at distances equal to r (of arbitrary length)

and r -\-dr respectively from the vertex 0. The volume will be

represented by dr -r
2
dtt. It emits in unit time toward the

focal plane da- at a certain quantity E of energy of monochro-

matic plane polarized radiation. E may be obtained from (1)

by putting

dt = l, dr = dr r 2
dQ, dQ= -g

TO

and omitting the numerical factor 2. We thus get

E = dr -dttd<r e, dp. (31)

Of the energy E, however, only a fraction E reaches 0, since

in every infinitesimal element of distance s which it traverses

before reaching the fraction (o:,,+^)s is lost by absorption and

scattering. Let Er represent that part of E which reaches a

cross-section at a distance r(<r ) from 0. Then for a small

distance s = dr we have

Er+dr-Er = Er(ar+&)dr,

or,

^-fl,(*+&),dr

and, by integration,

Er
= Ee(a +V (r

- r
* }

since, for r = r
,
Er
=E is given by equation (31). From this, >by

putting r = 0, the energy emitted by the volume-element at r

which reaches is found to be

E = Ee
- (a" +^ r

o = dr dQ do- e, e~ (o "+p"^dv. (32)

All volume-elements of the pencils combined produce by their

emission an amount of energy reaching da- equal to

I
da dv e,

\

dr e~ <>+W r
o = dQd<r-- dv. (33)

31. If the scattering did not affect the radiation, the total

energy reaching do- would necessarily consist of the quantities of

energy emitted by the different volume-elements of the pencil,

allowance being made, however, for the losses due to absorption
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on the way. For ft
= expressions (33) and (30) are identical,

as may be seen by comparison with (27). Generally, however,

(30) is larger than (33) because the energy reaching do- contains

also some rays which were not at all emitted from elements inside

of the pencil, but somewhere else, and have entered later on by

scattering. In fact, the volume-elements of the pencil do not

merely scatter outward the radiation which is being transmitted

inside the pencil, but they also collect into the pencil rays coming
from without. The radiation E r thus collected by the volume-

element at r is found, by putting in (29),

do-

dt =1, v = dr da r 2
,
da = >

/)> 2
'o

to be

E' = dr da da ft K, dv.

This energy is to be added to the energy E emitted by the vol-

ume-element, which we have calculated in (31). Thus for the

total energy contributed to the pencil in the volume-element at

r we find:

E+E' = dr da do- fo+ft K,) dv.

The part of this reaching is, similar to (32) :

dr da do- (e, + ft K,) dv e~
r
o
(<x > +ft >>

Making due allowance for emission and collection of scattered

rays entering on the way, as well as for losses by absorption and

scattering, all volume-elements of the pencil combined give for

the energy ultimately reaching do-

CO

r* \ R K
da do- fe+ft K,) dv dr e

- r (a" +ft^ = da da
P
"-dv,C

and this expression is real ]y exactly equal to that given by (30),

as may be seen by comparison with (26).

32. The laws just derived for the state of radiation of a homo-

geneous isotropic medium when it is in thermodynamic equilib-

rium hold, so far as we have seen, only for parts of the medium
which lie very far away from the surface, because for such parts

only may the radiation be considered, by symmetry, as independ-
ent of position and direction. A simple consideration, however,
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shows that the value of K,,, which was already calculated and given

by (27), and which depends only on the temperature and the

nature of the medium, gives the correct value of the intensity of

radiation of the frequency considered for all directions up to

points directly below the surface of the medium. For in the state

of thermodynamic equilibrium every ray must have just the same

intensity as the one travelling in an exactly opposite direction,

since otherwise the radiation would cause a unidirectional trans-

port of energy. Consider then any ray coming from the surface

of the medium and directed inward; it must have the same

intensity as the opposite ray, coming from the interior. A
further immediate consequence of this is that the total state of

radiation of the medium is the same on the surface as in the interior.

33. While the radiation that starts from a surface element and
is directed toward the interior of the medium is in every respect

equal to that emanating from an equally large parallel element of

area in the interior, it nevertheless has a different history. That
is to say, since the surface of the medium was assumed to be

impermeable to heat, it is produced only by reflection at the sur-

face of radiation coming from the interior. So far as special

details are concerned, this can happen in very different ways,

depending on whether the surface is assumed to be smooth, i.e.,

in this case reflecting, or rough, e.g., white (Sec. 10). In the first

case there corresponds to each pencil which strikes the surface

another perfectly definite pencil, symmetrically situated and

having the same intensity, while in the second case every incident

pencil is broken up into an infinite number of reflected pencils,

each having a different direction, intensity, and polarization.

While this is the case, nevertheless the rays that strike a surface-

element from all different directions with the same intensity K,,

also produce, all taken together, a uniform radiation of the same

intensity K,,, directed toward the interior of the medium.
34. Hereafter there will not be the slightest difficulty in

dispensing with the assumption made in Sec. 25 that the medium
in question extends very far in all directions. For after thermo-

dynamic equilibrium has been everywhere established in our me-

dium, the equilibrium is, according to the results of the last

paragraph, in no way disturbed, if we assume any number of

rigid surfaces impermeable to heat and rough or smooth to be
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inserted in the medium. By means of these the whole system is

divided into an arbitrary number of perfectly closed separate

systems, each of which may be chosen as small as the general
restrictions stated in Sec. 2 permit. It follows from this that

the value of the specific intensity of radiation K,, given in (27)

remains valid for the thermodynamic equilibrium of a substance

enclosed in a space as small as we please and of any shape what-

ever.

35. From the consideration of a system consisting of a single

homogeneous isotropic substance we now pass on to the treatment

of a system consisting of two different homogeneous isotropic

substances contiguous to each other, the system being, as before,

enclosed by a rigid cover impermeable to heat. We consider the

state of radiation when thermodynamic equilibrium exists, at

first, as before, with the assumption that the media are of consid-

erable extent. Since the equilibrium is nowise disturbed, if we
think of the surface separating the two media as being replaced
for an instant by an area entirely impermeable to heat radiation,

the laws of the last paragraphs must hold for each of the two

substances separately. Let the specific intensity of radiation of

frequency v polarized in an arbitrary plane be K,, in the first sub-

stance (the upper one in Fig. 3), and K/ in the second, and, in

general, let all quantities referring to the second substance be

indicated by the addition of an accent. Both of the quantities

K,, and K/ depend, according to equation (27), only on the tem-

perature, the frequency v, and the nature of the two substances,

and these values of the intensities of radiation hold up to very
small distances from the bounding surface of the substances, and

hence are entirely independent of the properties of this surface.

36. We shall now suppose, to begin with, that the bounding
surface of the media is smooth (Sec. 9). Then every ray coming
from the first medium and falling on the bounding surface is

divided into two rays, the reflected and the transmitted ray.

The directions of these two rays vary with the angle of incidence

and the color of the incident ray; the intensity also varies with

its polarization. Let us denote by p (coefficient of reflection) the

fraction of the energy reflected, then the fraction transmitted is

(1-p), p depending on the angle of incidence, the frequency, and

the polarization of the incident ray. Similar remarks apply to
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p the coefficient of reflection of a ray coming from the second

medium and falling on the bounding surface.

Now according to (11) we have for the monochromatic plane

polarized radiation of frequency v, emitted in time dt toward the

first medium (in the direction of the feathered arrow upper left

Bounding Surface

FIG. 3.

hand in Fig. 3), from an element do- of the bounding surface and

contained in the conical element d!2

where

dt da cos 6 d!2 K, dv,

dO d<fr.

(34)

(35)

This energy is supplied by the two rays which come from the first

and the second medium and are respectively reflected from or

transmitted by the element da in the corresponding direction

(the unfeathered arrows). (Of the element da only the one point

is indicated.) The first ray, according to the law of reflection,

continues in the symmetrically situated conical element d!2, the

second in the conical element

(36)

(37)

^sin 0' dtf dcj>'

where, according to the law of refraction,

sin0 q
; =^sm0' q

f
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If we now assume the radiation (34) to be polarized either in

the plane of incidence or at right angles .thereto, the same will

be true for the two radiations of which it consists, and the

radiation coming from the first medium and reflected from do-

contributes the part

p dt do- cos da K, dv (38)

while the radiation coming from the second medium and trans-

mitted through do- contributes the part

(1-p') dt da cos 0' dtf K/ dv. (39)

The quantities dt, do-, v and dv are written without the accent,

because they have the same values in both media.

By adding (38) and (39) and equating their sum to the expres-

sion (34) we find

p cos dfi K,,+(l-p') cos 0' dQ' K/ = cos dO K,.

Now from (37) we have

cos d0_cos tf d0'

q q'

and further by (35) and (36)

d 12 cos q'
2

dO' cos 0'= -

Therefore we find

or

K/ g'
2 1-p

37. In the last equation the quantity on the left side is inde-

pendent of the angle of incidence and of the particular kind of

polarization; hence the same must be true for the right side.

Hence, whenever the value of this quantity is known for a single

angle of incidence and any definite kind of polarization, this

value will remain valid for all angles of incidence and all kinds

of polarization. Now in the special case when the rays are

polarized at right angles to the plane of incidence and strike the
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bounding surface at the angle of polarization, p = 0, and p'
= 0.

The expression on the right side of the last equation then becomes
1

;
hence it must always be 1 and we have the general relations :

P-P' (40)

and

?
2 K,=9" K; (4i)

38. The"jirst of these two relations, which states that the

coefficient of reflection of the bounding surface is the same on

both sides, is a special case of a general law of reciprocity first

stated by Helmholtz. l
According to this law the loss of- intensity

which a ray of definite color and polarization suffers on its way
through any media by reflection, refraction, absorption, and

scattering is exactly equal to the loss suffered by a ray of the

same intensity, color, and polarization pursuing an exactly

opposite path. An immediate consequence of this law is that the

radiation striking the bounding surface of any two media is

always transmitted as well as reflected equally on both sides, for

every color, direction, and polarization.

39. The second formula (41) establishes a relation between the

intensities of radiation in the two media, for it states that, when

thermodynamic equilibrium exists, the specific intensities of radia-

tion of a certain frequency in the two media are in the inverse

ratio of the squares of the velocities of propagation or in the direct

ratio of the squares of the indices of refraction.
2

By substituting for K,, its value from (27) we obtain the fol-

lowing theorem: The quantity

q*K, = q
2

(42)
OLV

does not depend on the nature of the substance, and is, therefore,

a universal function of the temperature T and the frequency v alone.

The great importance of this law lies evidently in the fact that

it states a property of radiation which is the same for all bodies

1 H. v. Helmholtz, Handbuch d. physiologischen Optik 1. Lieferung, Leipzig, Leop. Voss,

1856, p. 169. See also Helmholtz, Vorlesungen fiber die Theorie der Warme herausgegeben

von F. Richarz, Leipzig, J. A. Earth, 1903, p. 161. The restrictions of the law of reciprocity

made there do not bear on our problems, since we are concerned with temperature radiation

only (Sec. 7).
2 G. Kirchhoff, Gesammelte Abhandlungen, Leipzig, J. A. Earth, 1882, p. 594.

R. Claurius, Pogg. Ann. 121, p. 1, 1864.
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in nature, and which need be known only for a single arbitrarily

chosen body, in order to be stated quite generally for all bodies.

We shall later on take advantage of the opportunity offered by
this statement in order actually to calculate this universal func-

tion (Sec. 165).

40. We now consider the other case, that in which the

bounding surface of the two media is rough. This case is much
more general than the one previously treated, inasmuch as the

energy of a pencil directed from an element of the bounding sur-

face into the first medium is no longer supplied by two definite

pencils, But by an arbitrary number, which come from both

media and strike the surface. Here the actual conditions may be

very complicated according to the peculiarities of the bounding

surface, which moreover may vary in any way from one element

to another. However, according to Sec. 35, the values of the

specific intensities of radiation K,, and K/ remain always the

same in all directions in both media, just as in the case of a smooth

bounding surface. That this condition, necessary for thermo-

dynamic equilibrium, is satisfied is readily seen from Helm-

holtz's law of reciprocity, according to which, in the case of sta-

tionary radiation, for each ray striking the bounding surface and

diffusely reflected from it on both sides, there is a corresponding

ray at the same point, of the same intensity and opposite direc-

tion,, produced by the inverse process at the same point on the

bounding surface, namely by the gathering of diffusely incident

rays into a definite direction, just as is the case in the interior of

each of the two media.

41. We shall now further generalize the laws obtained.

First, just as in Sec. 34, the assumption made above, namely,
that the two media extend to a great distance, may be abandoned

since we may introduce an arbitrary number of bounding surfaces

without disturbing the thermodynamic equilibrium. Thereby
we are placed in a position enabling us to pass at once to the case

of any number of substances of any size and shape. For when a

system consisting of an arbitrary number of contiguous substances

is in the state of thermodynamic equilibrium, the equilibrium is

in no way disturbed, if we assume one or more of the surfaces of

contact to be wholly or partly impermeable to heat. Thereby
we can always reduce the case of any number of substances to
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that of two substances in an enclosure impermeable to heat, and,

therefore, the law may be stated quite generally, that, when any
arbitrary system is in the state of thermodynamic equilibrium,
the specific intensity of radiation K,, is determined in each

separate substance by the universal function (42).

42. We shall now consider a system in a state of thermody-
namic equilibrium, contained within an enclosure impermeable
to heat and consisting of n emitting and absorbing adjacent bod-

ies of any size and shape whatever. As in Sec. 36, we again con-

fine our attention to a monochromatic plane polarized pencil

which proceeds from an element d<r of the bounding surface of the

two media in the direction toward the first medium (Fig. 3,

feathered arrow) within the conical element dfi. Then, as in

(34) ,
the energy supplied by the pencil in unit time is

dff cos 6 dtt K, dv = I. (43)

This energy of radiation I consists of a part coming from the first

medium by regular or diffuse reflection at the bounding surface

and of a second part coming through the bounding surface from

the second medium. We shall, however, not stop at this mode of

division, but shall further subdivide I according to that one of

the n media from which the separate parts of the radiation I

have been emitted. This point of view is distinctly different

from the preceding, since, e.g., the rays transmitted from the

second medium through the bounding surface into the pencil

considered have not necessarily been emitted in the second

medium, but may, according to circumstances, have traversed a

long and very complicated path through different media and may
have undergone therein the effect of refraction, reflection, scat-

tering, and partial absorption any number of times. Similarly

the rays of the pencil, which coming from the first medium are

reflected at d<r, were not necessarily all emitted in the first

medium. It may even happen that a ray emitted from a certain

medium, after passing on its way through other media, returns to

the original one and is there either absorbed or emerges from this

medium a second time.

We shall now, considering all these possibilities, denote that

part of I which has been emitted by volume-elements of the first

medium by I\ no matter what paths the different constituents
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have pursued, that which has been emitted by volume-elements

of the second medium by 7 2 ,
etc. Then since every part of I

must have been emitted by an element of some body/ the follow-

ing equation must hold,

I = /1+/2+/8+ In. (44)

43. The most adequate method of acquiring more detailed

information as to the origin and the paths of the different rays

of which the radiations 7i, 72 , Is, In consist, is to

pursue the opposite course and to inquire into the future fate of

that pencil, which travels exactly in the opposite direction to

the pencil I and which therefore comes from the first medium in

the cone dti and falls on the surface element da- of the second me-

dium. For since every optical path may also be traversed in the

opposite direction, we may obtain by this consideration all paths

along which rays can pass into the pencil 7, however complicated

they may otherwise be. Let J represent the intensity of this

inverse pencil, which is directed toward the bounding surface

and is in the same state of polarization. Then, according to

Sec. 40,

J = I. (45)

At the bounding surface dcr the rays of the pencil J are partly

reflected and partly transmitted regularly or diffusely, and

thereafter, travelling in both media, are partly absorbed, partly

scattered, partly again reflected or transmitted to different

media, etc., according to the configuration of the system. But

finally the whole pencil J after splitting into many separate rays

will be completely absorbed in the n media. Let us denote that

part of J which is finally absorbed in the first medium by J 1} that

which is finally absorbed in the second medium by /2 , etc., then

we shall have

J = / 1+j-24-j3+ +Jn .

Now the volume-elements of the n media, in which the absorp-

tion of the rays of the pencil J takes place, are precisely the same

as those in which takes place the emission of the rays constituting

the pencil 7, the first one considered above. For, according to

Helmholtz's law of reciprocity, no appreciable radiation of the pen-

cil J can enter a volume-element which contributes no appreci-

able radiation to the pencil 7 and vice versa.
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Let us further keep in mind that the absorption of each volume-

element is, according to (42), proportional to its emission and that,

according to Helmholtz's law of reciprocity, the decrease which

the energy of a ray suffers on any path is always equal to the de-

crease suffered by the energy of a ray pursuing the opposite path.

It will then be clear that the volume-elements considered absorb

the rays of the pencil / in just the same ratio as they contribute

by their emission to the energy of the opposite pencil /. Since,

moreover, the sum I of the energies given off by emission by all

volume-elements is equal to the sum J of the energies absorbed

by all elements, the quantity of energy absorbed by each separate
volume-element from the pencil / must be equal to the quantity
of energy emitted by the same element into the pencil 7. In

other words : the part of a pencil I which has been emitted from a

certain volume of any medium is equal to the part of the pencil

JT(
= 7) oppositely directed, which is absorbed in the same volume.

Hence not only are the sums 7 and J equal, but their constitu-

ents are also separately equal or

7i = 7!, /2
= 72 ,

...... /n = 7n . (46)

44. Following G. Kirchhoff
1 we call the quantity 72 , i.e., the

intensity of the pencil emitted from the second medium into the

first, the emissive power E of the second medium, while we call

the ratio of J% to /, i.e., that fraction of a pencil incident on the

second medium which is absorbed in this medium, the absorbing

power A of the second medium. Therefore

A=(^l). (47)

The quantities E and A depend (a) on the nature of the two

media, (b) on the temperature, the frequency v, and the direction

and the polarization of the radiation considered, (c) on the nature

of the bounding surface and on the magnitude of the surface

element da and that of the solid angle dfi, (d) on the geometrical

extent and the shape of the total surface of the two media, (e) on

the nature and form of all other bodies of the system. For a ray

may pass from the first into the second medium, be partly trans-

mitted by the latter, and then, after reflection somewhere else,

i(?. Kirchhoff, Gesammelte Abhandlungcn, 1882, p. 574.
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may return to the second medium and may be there entirely
absorbed.

With these assumptions, according to equations (46), (45),

and (43), Kirchhoff's law holds,

Tjl

- = I = do- cos e dtt K, dv, (48)
A.

i.e., the ratio of the emissive power to the absorbing power of any body
is independent of the nature of the body. For this ratio is equal to

the intensity of the pencil passing through the first medium,
which, according to equation (27), does not depend on the second

medium at all. The value of this ratio does, however, depend on
the nature of the first medium, inasmuch as, according to (42),

it is not the quantity Ky but the quantity g
2
K,,, which is a univer-

sal function of the temperature and frequency. The proof of this

law given by G. Kirchhoff I.e. was later greatly simplified by
E. Pringsheim.

1

45. When in particular the second medium is a black body
(Sec. 10) it absorbs all the incident radiation. Hence in that case

Jz = J, A =
l, and E = A^.e., the emissive power of a black body is

independent of its nature. Its emissive power is larger than that

of any other body at the same temperature and, in fact, is just equal to

the -intensity of radiation in the contiguous medium.

46. We shall now add, without further proof, another general
law of reciprocity, which is closely connected with that stated at

the end of Sec. 43 and which may be stated thus: When any

emitting and absorbing bodies are in the state of thermodynamic

equilibrium, the part of the energy of definite color emitted by a body

A, which is absorbed by another body B, is equal to the part of the

energy of the same color emitted by B which is absorbed by A. Since

a quantity of energy emitted causes a decrease of the heat of the

body, and a quantity of energy absorbed an increase of the heat of

the body, it is evident that, when thermodynamic equilibrium

exists, any two bodies or elements of bodies selected at random

exchange by radiation equal amounts of heat with each other.

Here, of course, care must be taken to distinguish between the

radiation emitted and the total radiation which reaches one body
from the other.

1 E. Pringsheim, Verhandlungen der Deutschen Physikalischen Gesellschaft, 3, p. 81, 1901.
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47. The law holding for the quantity (42) can be expressed in a

different form, by introducing, by means of (24), the volume

density uv of monochromatic radiation instead of the intensity

of radiation K,,. We then obtain the law that, for radiation in

a state of thermodynamic equilibrium, the quantity

u, <Z

3
(49)

is a function of the temperature T and the frequency v, and is

the same for all substances. 1 This law becomes clearer if we
consider that the quantity

u, d,-^ (50)
vz

also is a universal function of T, v, and v+dv, and that the

product uv dv is, according to (22), the volume density of the

radiation whose frequency lies between v and v-\-dv, while the

quotient represents the wave length of a ray of frequency v in
v

the medium in question. The law then takes the following sim-

ple form : When any bodies whatever are in thermodynamic equilib-

rium, the energy of monochromatic radiation of a definite frequency,

contained in a cubical element of side equal to the wave length, is

.the same for all bodies.

48. We shall finally take up the case of diathermanous (Sec. 12)

media, which has so far not been considered. In Sec. 27 we
saw that, in a medium which is diathermanous for a given color

and is surrounded by an enclosure impermeable to heat, there can

be thermodynamic equilibrium for any intensity of radiation

of this color. There must, however, among all possible intensities

of radiation be a definite one, corresponding to the absolute

maximum of the total entropy of the system, which designates

the absolutely stable equilibrium of radiation. In fact, in equa-

tion (27) the intensity of radiation K,, for = () and e,,
=

assumes the value-' and hence cannot be calculated from this

equation. But we see also that this indeterminateness is removed

by equation (41), which states that in the case of thermodynamic

1 In this law it is assumed that the quantity q in (24) is the same as in (37). This does

not hold for strongly dispersing or absorbing substances. For the generalization applying

to such cases see M. Laue, Annalen d. Physik, 32, p. 1085, 1910.
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.equilibrium the product g
2 Ky has the same value for all sub-

stances. From this we find immediately a definite value of Kv

which is thereby distinguished from all other values. Further-

more the physical significance of this value is immediately seen

by considering the way in which that equation was obtained.

It is that intensity of radiation which exists in a diathermanous

medium, if it is in thermodynamic equilibrium when in contact

with an arbitrary absorbing and emitting medium. The volume

and the form of the second medium do not matter in the least,

in particular the volume may be taken as small as we please.

Hence we can formulate the following law: Although generally

speaking thermodynamic equilibrium can exist in a diathermanous

medium for any intensity of radiation whatever, nevertheless there

exists in every diathermanous medium for a definite frequency at a

definite temperature an intensity of radiation defined by the universal

function (42). This may be called the stable intensity, inasmuch

as it will always be established, when the medium is exchanging

stationary radiation with an arbitrary emitting and absorbing

substance.

49. According to the law stated in Sec. 45, the intensity of a

pencil, when a state of stable heat radiation exists in a diather-

manous medium, is equal to the emissive power E of a black

body in contact with the medium. On this fact is based the

possibility of measuring the emissive power of a black body,

although absolutely black bodies do not exist in nature. 1 A
diathermanous cavity is enclosed by strongly emitting walls 2

and the walls kept at a certain constant temperature T. Then
the radiation in the cavity, when thermodynamic equilibrium is

established for every frequency *>,
assumes the intensity corre-

sponding to the velocity of propagation q in the diathermanous

medium, according to the universal function (42). Then any
element of area of the walls radiates into the cavity just as if the

wall were a black body of temperature T. The amount lacking

in the intensity of the rays actually emitted by the walls as

compared with the emission of a black body is supplied by rays

1 W. Wien and 0. Lummer, Wied. Annalen, 56, p. 451, 1895.
2 The strength of the emission influences only the time required to establish stationary

radiation, but not its character. It is essential, however, that the walls transmit no radia-

tion to the exterior.
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which fall on the wall and are reflected there. Similarly every
element of area of a wall receives the same radiation.

In fact, the radiation 7 starting from an element of area of a

wall consists of the radiation E emitted by the element of area and

of the radiation reflected from the element of area from the

incident radiation I, i.e., the radiation which is not absorbed

(1A)I. We have, therefore, in agreement with Kirchhoff's

law (48),

If we now make a hole in one of the walls of a size do-, so small

that the intensity of the radiation directed toward the hole is

not changed thereby, then radiation passes through the hole to

the exterior where we shall suppose there is the same diather-

manous medium as within. This radiation has exactly the same

properties as if da were the surface of a black body, and this

radiation may be measured for every color together with the

temperature T.

50. Thus far all the laws derived in the preceding sections for

diathermanous media hold for a definite frequency, and it is to

be kept in mind that a substance may be diathermanous for one

color and adiathermanous for another. Hence the radiation of a

medium completely enclosed by absolutely reflecting walls is,

when thermodynamic equilibrium has been established for all

colors for which the medium has a finite coefficient of absorption,

always the stable radiation corresponding to the temperature
of the medium such as is represented by the emission of a black

body. Hence this is briefly called
" black" radiation. 1 On the

other hand, the intensity of colors for which the medium is dia-

thermanous is not necessarily the stable black radiation, unless

the medium is in a state of stationary exchange of radiation with

an absorbing substance.

There is but one medium that is diathermanous for all kinds of

rays, namely, the absolute vacuum, which to be sure cannot be

produced in nature except approximately. However, most gases,

e.g., the air of the atmosphere, have, at least if they are not too

dense, to a sufficient approximation the optical properties of a

vacuum with respect to waves of not too short length. So far as

1 M. Thiesen, Verhandlungen d. Deutschen Physikal. Gesellschaft, 2, p. 65, 1900.
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this is the case the velocity of propagation q may be taken as the

same for all frequencies, namely,

PTYl

(51)

51. Hence in a vacuum bounded by totally reflecting walls any
state of radiation may persist. But as soon as an arbitrarily

small quantity of matter is introduced into the vacuum, a sta-

tionary state of radiation is gradually established. In this the

radiation of every color which is appreciably absorbed by the

substance has the intensity K,, corresponding to the temperature
of the substance and determined by the universal function (42)

for q = c, the intensity of radiation of the other colors remaining
indeterminate. If the substance introduced is not diatherma-

nous for any color, e.g., a piece of carbon however small, there

exists at the stationary state of radiation in the whole vacuum for

all colors the intensity K, of black radiation corresponding to the

temperature of the substance. The magnitude of Kv regarded as

a function of v gives the spectral distribution of black radiation in

a vacuum, or the so-called normal energy spectrum, which depends
on nothing but the temperature. In the normal spectrum,
since it is the spectrum of emission of a black body, the intensity

of radiation of every color is the largest which a body can emit at

that temperature at all.

52. It is therefore possible to change a perfectly arbitrary

radiation, which exists at the start in the evacuated cavity with

perfectly reflecting walls under consideration, into black radiation

by the introduction of a minute particle of carbon. The charac-

teristic feature of this process is that the heat of the carbon par-

ticle may be just as small as we please, compared with the energy
of radiation contained in the cavity of arbitrary magnitude.

Hence, according to the principle of the conservation of energy,

the total energy of radiation remains essentially constant during
the change that takes place, because the changes in the heat of the

carbon particle may be entirely neglected, even if its changes in

temperature should be finite. Herein the carbon particle exerts

only a releasing (auslosend) action. Thereafter the intensities

of the pencils of different frequencies originally present and having
different frequencies, directions, and different states of polari-
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zation change at the expense of one another, corresponding to

the passage of the system from a less to a more stable state of

radiation or from a state of smaller to a state of larger entropy.
From a thermodynamic point of view this process is perfectly

analogous, since the time necessary for the process is not essential,

to the change produced by a minute spark in a quantity of oxy-

hydrogen gas or by a small drop of liquid in a quantity of super-
saturated vapor. In all these cases the magnitude of the dis-

turbance is exceedingly small and cannot be compared with the

magnitude of the energies undergoing the resultant changes, so

that in applying the two principles of thermodynamics the cause

of the disturbance of equilibrium, viz., the carbon particle, the

spark, or the drop, need not be considered. It is always a case of

a system passing from a more or less unstable into a more stable

state, wherein, according to the first principle of thermodynamics,
the energy of the system remains constant, and, according to the

second principle, the entropy of the system increases.





PART II

DEDUCTIONS FROM ELECTRODYNAMICS
AND THERMODYNAMICS





CHAPTER I

MAXWELL'S RADIATION PRESSURE

53. While in the preceding part the phenomena of radiation

have been presented with the assumption of only well known

elementary laws of optics summarized in Sec. 2, which are com-

mon to all optical theories, we shall hereafter make use of the

electromagnetic theory of light and shall begin by deducing a

consequence characteristic of that theory. We shall, namely,
calculate the magnitude of the mechanical force, which is exerted

by a light or heat ray passing through a vacuum on striking a

reflecting (Sec. 10) surface assumed to be at rest.

For this purpose we begin by stating Maxwell's general equa-
tions for an electromagnetic process in a vacuum. Let the vector

E denote the electric field-strength (intensity of the electric field)

in electric units and the vector H the magnetic field-strength in

magnetic units. Then the equations are, in the abbreviated

notation of the vector calculus,

E = c curl H H = c curl E
(

.

div. E = div. H =

Should the reader be unfamiliar with the symbols of this notation,

he may readily deduce their meaning by working backward from

the subsequent equations (53).

54. In order to pass to the case of a plane wave in any direction

we assume that all the quantities that fix the state depend only

on the time t and on one of the coordinates x f

, y', z', of an ortho-

gonal right-handed system of coordinates, say on x 1

'. Then the

equations (52) reduce to

.

d E,, dH^~

49
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= c
da;'

c (53)

= =

Hence the most general expression for a plane wave passing

through a vacuum in the direction of the positive z'-axis is

=

(54)

H.,

Vacuum
x<

where / and
gr represent two arbitrary functions of the same

argument.
55. Suppose now that this wave strikes a reflecting surface,

e.g., the surface of an absolute conductor (metal) of infinitely

large conductivity. In such a

conductor even an infinitely

small electric field-strength pro-

duces a finite conduction cur-

rent; hence the electric field-

strength E in it must be always

and everywhere infinitely small.

For simplicity we also suppose

the conductor to be non-mag-

netizable, i.e., we assume the

magnetic induction B in it to be

equal to the magnetic field-

strength H, just as is the case

in a vacuum.

If we place the z-axis of a

right-handed coordinate system

(xyz) along the normal of the sur-

face directed toward the interior

of the conductor, the x-axis is the normal of incidence. We
place the (x'y

r

) plane in the plane of incidence and take this as

the plane of the figure (Fig. 4) . Moreover, we can also, without

FIG. 4.
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any restriction of generality, place the ?/-axis in the plane of the

figure, so that the z-axis coincides with the z'-axis (directed from
the figure toward the observer). Let the common origin of

the two coordinate systems lie in the surface. If finally 6

represents the angle of incidence, the coordinates with and with-

out accent are related to each other by the following equations:

x = x' cos y' sin x f = x cos 6+y sin 6

y = x' sin B+y' cos y'
= x sin d+y cos

z' = z

By the same transformation we may pass from the components
of the electric or magnetic field-strength in the first coordinate

system to their components in the second system. Performing
this transformation the following values are obtained from (54)

for the components of the electric and magnetic field-strengths

of the incident wave in the coordinate system without accent,

/K .

Ex = smd-f H x =
sin0-g(

Ey
= cos0-/ Hy = cos0-0

Ez
= g H. = /

Herein the argument of the functions / and g is

.
z'

.
s cos 0+y sin

i
-- = t

---
c c

56. In the surface of separation of the two media x = 0. Ac-

cording to the general electromagnetic boundary conditions the

components of the field-strengths in the surface of separation,

i.e., the four quantities Ey ,
EZ} \-\ y ,

H z must be equal to each

other on the two sides of the surface of separation for this value

of x. In the conductor the electric field-strength E is infinitely

small in accordance with the assumption made above. Hence
Ev and Ez must vanish also in the vacuum for x = 0. This con-

dition cannot be satisfied unless we assume in the vacuum,
besides the incident, also a reflected wave superposed on the for-

mer in such a way that the components of the electric field of the

two waves in the y and z direction just cancel at every instant

and at every point in the surface of separation. By this assump-
tion and the condition that the reflected wave is a plane wave

returning into the interior of the vacuum, the other four compo-
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nents of the reflected wave are also completely determined. They
are all functions of the single argument

-x cos 0+y sin
t (ol)

c

The actual calculation yields as components of the total electro-

magnetic field produced in the vacuum by the superposition of

the two waves, the following expressions valid for points of the

surface of separation x = 0,

Ex
= -sin0-/- sin0-/=

- 2 sin0-/

Ey
= cos0-/

-
cos0-/ =

E* = g -g = (58)

H x
= sin 0-gr sin0-0 =

Hj,
= COS0-0 cosd-g = 2 cosd-g

H. =/+/=2/.
In these equations the argument of the functions / and g is, ac-

cording to (56) and (57),

From these values the electric and magnetic field-strength within

the conductor in the immediate neighborhood of the separating

surface x = Q is obtained:

* *
(59)Ey

= \-\v
= -2 cosd-g

Ez
= H 2

= 2f

where again the argument t
--- is to be substituted in the

C

functions / and g. For the components of E all vanish in an abso-

lute conductor and the components H^, Hj/, H 2 are all continuous

at the separating surface, the two latter since they are tangential

components of the field-strength, the former since it is the normal

component of the magnetic induction B (Sec. 55), which likewise

remains continuous on passing through any surface of separation.

On the other hand, the normal component of the electric field-

strength Ex is seen to be discontinuous; the discontinuity shows
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the existence of an electric charge on the surface, the surface

density of which is given in magnitude and sign as follows:

- 2 sin0./= sin0./. (60)
TtTT W

In the interior of the conductor at a finite distance from the

bounding surface, i.e., for x>0, all six field components" are infi-

nitely small. Hence, on increasing x, the values of H y and H 2 ,

which are finite for x = Q, approach the value at an infinitely

rapid rate.

57. A certain mechanical force is exerted on the substance of

the conductor by the electromagnetic field considered. We shall

calculate the component of this force normal to the surface. It

is partly of electric, partly of magnetic, origin. Let us first con-

sider the former, Fe . Since the electric charge existing on the

surface of the conductor is in an electric field, a mechanical force

equal to the product of the charge and the field-strength is exerted

on it. Since, however, the field-strength is discontinuous, having
the value 2 sin 9f on the side of the vacuum and on the side

of the conductor, from a well-known law of electrostatics the mag-
nitude of the mechanical force Fe acting on an element of surface

da of the conductor is obtained by multiplying the electric charge
of the element of area calculated in (60) by the arithmetic mean
of the electric field-strength on the two sides. Hence

sin 6
f

sin2
,

e=
~2^ f da(-~ sm B fi

=
~^~ f d

This force acts in the direction toward the vacuum and therefore

exerts a tension.

58. We shall now calculate the mechanical force of magnetic

origin Fm . In the interior of the conducting substance there are

certain conduction currents, whose intensity and direction are

determined by the vector I of the current density

l= curlH. (61)
4rr

A mechanical force acts on every element of space dr of the con-

ductor through which a conduction current flows, and is given by
the vector product

-[IH] (62)
c
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Hence the component of this force normal to the surface of the

conductor x = is equal to

(I.H.-I.H,).
c

On substituting the values of \ y and I 2 from (61) we obtain

In this expression the differential coefficients with respect to

y and are negligibly small in comparison to those with respect to

x, according to the remark at the end of Sec. 56; hence the expres-

sion reduces to

&H, &H.\
~

drl

~\ H

Let us now consider a cylinder cut out of the conductor perpen-
dicular to the surface with the cross-section da, and extending
from x = to z=oo. The entire mechanical force of magnetic

origin acting on this cylinder in the direction of the z-axis, since

dr = da x, is given by

4rr

e/ o

On integration, since H vanishes for x oo
,
we obtain

or by equation (59)

By adding Fe and Fm the total mechanical force acting on the

cylinder in question in the direction of the z-axis is found to be

do-
F = cos2 (f+0 2

). (63)
ZTT

This force exerts on the surface of the conductor a pressure, which

acts in a direction normal to the surface toward the interior and is
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called "Maxwell's radiation pressure." The existence and the

magnitude of the radiation pressure as predicted by the theory
was first found by delicate measurements with the radiometer by
P. Lebedew. 1

59. We shall now establish a relation between the radiation

pressure and the energy of radiation Idt falling on the surface

element da of the conductor in a time element dt. The latter

from Poynting's law of energy flow is

c
Idt = (Ey )r\ z EzHy) da dt,

4rr

hence from (55)

Idt = cos (/
2+0 2

) da dt.
4?r

By comparison with (63) we obtain

F = I. (64)
C

From this we finally calculate the total pressure p, i.e., that

mechanical force, which an arbitrary radiation proceeding from

the vacuum and totally reflected upon incidence on the con-

ductor exerts in a normal direction on a unit surface of the con-

ductor. The energy radiated in the conical element

da = sin d0 d(j>

in the time dt on the element of area da is, according to (6),

Idt=K cos da da dt,

where K represents the specific intensity of the radiation in the

direction da toward the reflector. On substituting this in (64) and

integrating over da we obtain for the total pressure of all pencils

which fall on the surface and are reflected by it

cos 2 e da, (65)

the integration with respect to $ extending from to 2?r and with

respect to from to
2

P. Lebedew, Annalen d. Phys., 6, p. 433, 1901. See also E. F. Nichols and O. F. Hull,

Annalen d. Phys., 12, p. 225, 1903.
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In case K is independent of direction as in the case of black

radiation, we obtain for the radiation pressure
IT

2K Cl f 7
^K

p = I d4> I dd cos 2 sinJfd<p I (

t/

3c

or, if we introduce instead of K the volume density of radiation u

from (21)

P =
y. (66)

This value of the radiation pressure holds only when the reflec-

tion of the radiation occurs at the surface of an absolute non-

magnetizable conductor. Therefore we shall in the thermody-
namic deductions of the next chapter make use of it only in such

cases. Nevertheless it will be shown later on (Sec. 66) that

equation (66) gives the pressure of uniform radiation against any
totally reflecting surface, no matter whether it reflects uniformly
or diffusely.

60. In view of the extraordinarily simple and close relation

between the radiation pressure and the energy of radiation, the

question might be raised whether this relation is really a special

consequence of the electromagnetic theory, or whether it might

not, perhaps, be founded on more general energetic or thermo-

dynamic considerations. To decide this question we shall cal-

culate the radiation pressure that would follow by Newtonian

mechanics from Newton's (emission) theory of light, a theory

which, in itself, is quite consistent with the energy principle.

According to it the energy radiated onto a surface by a light ray

passing through a vacuum is equal to the kinetic energy of the

light particles striking the surface, all moving with the constant

velocity c. The decrease in intensity of the energy radiation

with the distance is then explained simply by the decrease of the

volume density of the light particles.

Let us denote by n the number of the light particles contained

in a unit volume and by m the mass of a particle. Then for a
beam of parallel light the number of particles impinging in unit

time on the element da- of a reflecting surface at the angle of

incidence is

nc cos da. (67)
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Their kinetic energy is given according to Newtonian mechanics

by
9?? C (*

I = nc cos do-
- = nm cos 6-d<r. (68)
2 2

Now, in order to determine the normal pressure of these particles

on the surface, we may note that the normal component of the

velocity c cos 6 of every particle is changed on reflection into a

component of opposite direction. Hence the normal component
of the momentum of every particle (impulse-coordinate) is

changed through reflection by 2mc cos 6. Then the change
in momentum for all particles considered will be, according to (67),

-2nm cos 2 c2
dor. (69)

Should the reflecting body be free to move in the direction of

the normal of the reflecting surface and should there be no force

acting on it except the impact of the light particles, it would be

set into motion by the impacts. According to the law of action

and reaction the ensuing motion would be such that the momen-
tum acquired in a certain interval of time would be equal and

opposite to the change in momentum of all the light particles

reflected from it in the same time interval. But if we allow a

separate constant force to act from outside on the reflector, there

is to be added to the change in momenta of the light particles

the impulse of the external force, i.e., the product of the force

and the time interval in question.

Therefore the reflector will remain continuously at rest, when-

ever the constant external force exerted on it is so chosen that its

impulse for any time is just equal to the change in momentum
of all the particles reflected from the reflector in the same time.

Thus it follows that the force F itself which the particles exert

by their impact on the surface element da is equal and opposite

to the change of their momentum in unit time as expressed in (69)

F = 2 nm cos 2 c
2
do-

and by making use of (68),

4 cos
r 1 .

c

On comparing this relation with equation (64) in which all

symbols have the same physical significance, it is seen that
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Newton's radiation pressure is twice as large as Maxwell's for the

same energy radiation. A necessary consequence of this is that

the magnitude of^Maxwell's radiation pressure cannot be deduced

from general energetic considerations, but is a special feature of

the electromagnetic theory and hence all deductions from Max-
well's radiation pressure are to be regarded as consequences of the

electromagnetic theory of light and all confirmations of them
are confirmations of this special theory.
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STEFAN-BOLTZMANN LAW OF RADIATION

61. For the following we imagine a perfectly evacuated hollow

cylinder with an absolutely tight-fitting piston free to move in a

vertical direction with no friction. A part of the walls of the

cylinder, say the rigid bottom, should consist of a black body,
whose temperature T may be regulated arbitrarily from the out-

side. The rest of the walls including the inner surface of the pis-

ton may be assumed as totally reflecting. Then, if the piston

remains stationary and the temperature, T, constant, the radia-

tion in the vacuum will, after a certain time, assume the charac-

ter of black radiation (Sec. 50) uniform in all directions. The

specific intensity, K, and the volume density, u, depend only on

the temperature, T, and are independent of the volume, V, of

the vacuum and hence of the* position of the piston.

If now the piston is moved downward, the radiation is com-

pressed into a smaller space; if it is moved upward the radiation

expands into a larger space. At the same time the temperature
of the black body forming the bottom may be arbitrarily changed

by adding or removing heat from the outside. This always
causes certain disturbances of the stationary state. If, however,
the arbitrary changes in V and T are made sufficiently slowly, the

departure from the conditions of a stationary state may always be

kept just as small as we please. Hence the state of radiation in

the vacuum may, without appreciable error, be regarded as a

state of thermodynamic equilibrium, just as is done in the ther-

modynamics of ordinary matter in the case of so-called infinitely

slow processes, where, at any instant, the divergence from the

state of equilibrium may be neglected, compared with the changes
which the total system considered undergoes as a result of the

entire process.

If, e.g., we keep the temperature T of the black body forming
the bottom constant, as can be done by a suitable connection

59
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between it and a heat reservoir of large capacity, then, on raising

the piston, the black body will emit more than it absorbs, until

the newly made space is filled with the same density of radiation

as was the original one. Vice versa, on lowering the piston the

black body will absorb the superfluous radiation until the original

radiation corresponding to the temperature T is again established.

Similarly, on raising the temperature T of the black body, as

can be done by heat conduction from a heat reservoir which is

slightly warmer, the density of radiation in the vacuum will be

correspondingly increased by a larger emission, etc. To accel-

erate the establishment of radiation equilibrium the reflecting

mantle of the hollow cylinder may be assumed white (Sec. 10),

since by diffuse reflection the predominant directions of radiation

that may, perhaps, be produced by the direction of the motion

of the piston, are more quickly neutralized. The reflecting

surface of the piston, however, should be chosen for the present as

a perfect metallic reflector, to make sure that the radiation pres-

sure (66) on the piston is Maxwell's. Then, in order to produce
mechanical equilibrium, the piston must be loaded by a weight

equal to the product of the radiation pressure p and the cross-

section of the piston. An exceedingly small difference of the

loading weight will then produce a correspondingly slow motion

of the piston in one or the other direction.

Since the effects produced from the outside on the system in

question, the cavity through which the radiation travels, during
the processes we are considering, are partly of a mechanical

nature (displacement of the loaded piston), partly of a thermal

nature (heat conduction away from and toward the reservoir),

they show a certain similarity to the processes usually considered

in thermodynamics, with the difference that the system here

considered is not a material system, e.g., a gas, but a purely ener-

getic one. If, however, the principles of thermodynamics hold

quite generally in nature, as indeed we shall assume, then they
must also hold for the system under consideration. That is to

say, in the case of any change occurring in nature the energy of

all systems taking part in the change must remain constant

(first principle), and, moreover, the entropy of all systems taking

part in the change must increase, or in the limiting case of revers-

ible processes must remain constant (second principle).
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62. Let us first establish the equation of the first principle for

an infinitesimal change of the system in question. That the

cavity enclosing the radiation has a certain energy we have

already (Sec. 22) deduced from the fact that the energy radiation

is propagated with a finite velocity. We shall denote the energy

by U. Then we have

U=Vu, (70)

where u the volume density of radiation depends only on the

temperature of T the black body at the bottom.

The work done by the system, when the volume V of the cavity

increases by dV against the external forces of pressure (weight of

the loaded piston), is pdV, where p represents Maxwell's radiation

pressure (66). This amount of mechanical energy is therefore

gained by the surroundings of the system, since the weight is

raised. The error made by using the radiation pressure on a

stationary surface, whereas the reflecting surface moves during

the volume change, is evidently negligible, since the motion may
be thought of as taking place with an arbitrarily small velocity.

If, moreover, Q denotes the infinitesimal quantity of heat in

mechanical units, which, owing to increased emission, passes

from the black body at the bottom to the cavity containing the

radiation, the bottom or the heat reservoir connected to it loses

this heat Q, and its internal energy is decreased by that amount.

Hence, according to the first principle of thermodynamics, since

the sum of the energy of radiation and the energy of the material

bodies remains constant, we have

dU+pdV-Q = 0. (71)

According to the second principle of thermodynamics the cav-

ity containing the radiation also has a definite entropy. For

when the heat Q passes from the heat reservoir into the cavity,

the entropy of the reservoir decreases, the change being

_Q
T

Therefore, since no changes occur in the other bodies inas-

much as the rigid absolutely reflecting piston with the weight on

it does not change its internal condition with the motion there
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must somewhere in nature occur a compensation of entropy hav-

ing at least the value > by which the above diminution is com-

pensated, and this can be nowhere except in the entropy of the

cavity containing the radiation. Let the entropy of the latter be

denoted by S.

Now, since the processes described consist entirely of states

of equilibrium, they are perfectly reversible and hence there is no

increase in entropy. Then we have

dS-|
=

0, (72)

or from (71)

dS = (73)

In this equation the quantities U, p, V, S represent certain

properties of the heat radiation, which are completely defined by
the instantaneous state of the radiation. Therefore the quantity
T is also a certain property of the state of the radiation, i.e., the

black radiation in the cavity has a certain temperature T and

this temperature is that of a body which is in heat equilibrium
with the radiation.

63. We shall now deduce from the last equation a consequence
which is based on the fact that the state of the system considered,

and therefore also its entropy, is determined by the values of two

independent variables. As the first variable we shall take V, as

the second either T, u, or p may be chosen. Of these three quan-
tities any two are determined by the third together with V.

We shall take the volume V and the temperature T as indepen-
dent variables. Then by substituting from (66) and (70) in

(73) we have

- dV. (74)
j. a ol

From this we obtain

/cXS\ _VduL
\t>T/ v~T dT
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On partial differentiation of these equations, the first with respect
to V, the second with respect to T, we find

1 du 4 du 4u

or

du _4:U

~dT^~T

and on integration

u = aT* (75)

and from (21) for the specific intensity of black radiation

X =-- W =f
C

r*. (76)
4r 4?r

Moreover for the pressure of black radiation

P=lT<, (77)
o

and for the total radiant energy

. (78)

This law, which states that the volume density and the specific

intensity of black radiation are proportional to the fourth power
of the absolute temperature, was first established by /. Stefan

1 on

a basis of rather rough measurements. It was later deduced

by L. Boltzmann2 on a thermodynamic basis from Maxwell's

radiation pressure and has been more recently confirmed by
0. Lummer and E. Pringsheim* by exact measurements between

100 and 1300 C., the temperature being defined by the gas

thermometer. In ranges of temperature and for requirements

of precision for which the readings of the different gas thermome-

ters no longer agree sufficiently or cannot be obtained at all, the

Stefan-Boltzmann law of radiation can be used for an absolute

definition of temperature independent of all substances.

64. The numerical value of the constant a is obtained from

measurements made by F. Kurlbaum. 4
According to them, if

1 J. Stefan, Wien. Berichte, 79, p. 391, 1879.
2 L. Boltzmann, Wied. Annalen, 22, p. 291, 1884.
8 0. Lummer und E. Pringsheim, Wied. Annalen, 63, p. 395, 1897. Annalen d. Physik, 3,

p. 159, 1900.
4 F. Kurlbaum, Wied. Annalen, 65, p. 759, 1898.
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we denote by St the total energy radiated in one second into air

by a square centimeter of a black body at a temperature of t C.,

the following equation holds

Sioo-o = 0.0731
cm 2 cm 2 sec

Now, since the radiation in air is approximately identical with

the radiation into a vacuum, we may according to (7) and (76)

put

and from this

= irK = --
(273+Z)

4

4

= (373
4 -273 4

),
4

therefore

a-. .. . =7.061X10-*-
3 X 10 10 X (373

4 - 273 4
) cm3

degree
4

Recently Kurlbaum has increased the value measured by him

by 2.5 per cent.,
1 on account of the bolometer used being not

perfectly black, whence it follows that a = 7.24-10~ 15
.

Meanwhile the radiation constant has been made the object
of as accurate measurements as possible in various places. Thus
it was measured by Fery, Bauer and Moulin, Valentiner, Fery and

Drecq, Shakespear, Gerlach, with in some cases very divergent

results, so that a mean value may hardly be formed.

For later computations we shall use the most recent detertnina-

tion made in the physical laboratory of the University of Berlin2

= o- = 5.46-10- 12
W
f4 cm 2
degree

4

From this a is found to be

erg

3-10 10 cm 3
degree

4

which agrees rather closely with Kurlbaum's corrected value.

1 F. Kurlbaum, Verhandlungen d. Deutsch. physikal. Gesellschaft, 14, p. 580, 1912.
2
According to private information kindly furnished by my colleague H. Rubens (July,

1912). (These results have since been published. See W. H. Westphal, Verhandlungen d.

Deutsch. physikal. Gesellschaft, 14, p. 987, 1912, Tr.)
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65. The magnitude of the entropy S of black radiation found

by integration of the differential equation (73) is

S = ^-aT*V. (80)
o

In this equation the additive constant is determined by a choice

that readily suggests itself, so that at the zero of the absolute

scale of temperature, that is to say, when u vanishes, S shall

become zero. From this the entropy of unit volume or the

volume density of the entropy of black radiation is obtained,

|==|or. (si)

66. We shall now remove a restricting assumption made in

order to enable us to apply the value of Maxwell's radiation

pressure, calculated in the preceding chapter. Up to now we
have assumed the cylinder to be fixed and only the piston to be

free to move. We shall now think of the whole of the vessel,

consisting of the cylinder, the black bottom, and the piston, the

latter attached to the walls in a definite height above the bottom,
as being free to move in space. Then, according to the principle

of action and reaction, the vessel as a whole must remain con-

stantly at rest, since no external force acts on it. This is the

conclusion to which we must necessarily come, even without,

in this case, admitting a priori the validity of the principle of

action and reaction. For if the vessel should begin to move,
the kinetic energy of this motion could originate only at the ex-

pense of the heat of the body forming the bottom or the energy of

radiation, as there exists in the system enclosed in a rigid cover

no other available energy; and together with the decrease of

energy the entropy of the body or the radiation would also de-

crease, an event which .would contradict the second principle,

since no other changes of entropy occur in nature. Hence the

vessel as a whole is in a state of mechanical equilibrium. An
immediate consequence of this is that the pressure of the radiation

on the black bottom is just as large as the oppositely directed

pressure of the radiation on the reflecting piston. Hence the

pressure of black radiation is the same on a black as on a reflecting

body of the same temperature and the same may be readily proven
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for any completely reflecting surface whatsoever, which we may
assume to be at the bottom of the cylinder without in the least

disturbing the stationary state of radiation. Hence we may also

in all the foregoing considerations replace the reflecting metal

by any completely reflecting or black body whatsoever, at the

same temperature as the body forming the bottom, and it may
be stated as a quite general law that the radiation pressure

depends only on the properties of the radiation passing to and

fro, not on the properties of the enclosing substance.

67. If, on raising the piston, the temperature of the black body

forming the bottom is kept constant by a corresppnding addition

of heat from the heat reservoir, the process takes place isother-

mally. Then, along with the temperature T of the black body,
the energy density u, the radiation pressure p, and the density of

the entropy s also remain constant; hence the total energy of

radiation increases from U =uV to U' = uV, the entropy from

S = sV to S' =sV and the heat supplied from the heat reservoir

is obtained by integrating (72) at constant T,

or, according to (81) and (75),

Thus it is seen that the heat furnished from the outside exceeds

the increase in energy of radiation (U'U) by J ( U' U) .

This excess in the added heat is necessary to do the external work

accompanying the increase in the volume of radiation.

68. Let us also consider a reversible adiabatic process. For

this it is necessary not merely that the piston and the mantle but

also that the bottom of the cylinder be assumed as completely

reflecting, e.g., as white. Then the heat furnished on compression
or expansion of the volume of radiation is Q = and the energy
of radiation changes only by the value pdV of the external work.

To insure, however, that in a finite adiabatic process the radiation

shall be perfectly stable at every instant, i.e., shall have the char-

acter of black radiation, we may assume that inside the evacuated

cavity there is a carbon particle of minute size. This particle,

which may be assumed to possess an absorbing power differing
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from zero for all kinds of rays, serves merely to produce stable

equilibrium of the radiation in the cavity (Sec. 51 et seq.) and

thereby to insure the reversibility of the process, while its heat

contents may be taken as so small compared with the energy of

radiation, U, that the addition of heat required for an appreciable

temperature change of the particle is perfectly negligible. Then
at every instant in the process there exists absolutely stable

equilibrium of radiation and the radiation has the temperature of

the particle in the cavity. The volume, energy, and entropy of

the particle may be entirely neglected.

On a reversible adiabatic change, according to (72), the entropy
S of the system remains constant. Hence from (80) we have as

a condition for such a process

T3F = const.,

or, according to (77),
4

= const.,

i.e., on an adiabatic compression the temperature and the pressure

of the radiation increase in a manner that may be definitely

stated. The energy of the radiation, U, in such a case varies

according to the law

-=-S = const.,

i.e., it increases in proportion to the absolute temperature, al-

though the volume becomes smaller.

69. Let us finally, as a further example, consider a simple case

of an irreversible process. Let the cavity of volume V, which is

everywhere enclosed by absolutely reflecting walls, be uniformly
filled with black radiation. Now let us make a small hole

through any part of the walls, e.g., by opening a stopcock, so

that the radiation may escape into another completely evacuated

space, which may also be surrounded by rigid, absolutely reflect-

ing walls. The radiation will at first be of a very irregular char-

acter; after spme time, however, it will assume a stationary con-

dition and will fill both communicating spaces uniformly, its total

volume being, say, V. The presence of a carbon particle will

cause all conditions of black radiation to be satisfied in the new
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state. Then, since there is neither external work nor addition of

heat from the outside, the energy of the new state is, according

to the first principle, equal to that of the original one, or Uf U
and hence from (78)

which defines completely the new state of equilibrium. Since

V> V the temperature of the radiation has been lowered by the

process.

According to the second principle of thermodynamics the

entropy of the system must have increased, since no external

changes have occurred; in fact we have from (80)

_
~VV'

70. If the process of irreversible adiabatic expansion of the

radiation from the volume V to the volume V takes place as

just described with the single difference that there is no carbon

particle present in the vacuum, after the stationary state of radia-

tion is established, as will be the case after a certain time on

account of the diffuse reflection from the walls of the cavity, the

radiation in the new volume V will not any longer have the

character of black radiation, and hence no definite temperature.

Nevertheless the radiation, like every system in a definite physical

state, has a definite entropy, which, according to the second prin-

ciple, is larger than the original S, but not as large as the S' given
in (82). The calculation cannot be performed without the use

of laws to be taken up later (see Sec. 103). If a carbon particle

is afterward introduced into the vacuum, absolutely stable

equilibrium is established by a second irreversible process, and,

the total energy as well as the total volume remaining constant,

the radiation assumes the normal energy distribution of black

radiation and the entropy increases to the maximum value S'

given by (82).



CHAPTER III

WIEN'S DISPLACEMENT LAW

71. Though the manner in which the volume density u and the

specific intensity K of black radiation depend on the temperature
is determined by the Stefan-Boltzmann law, this law is of compara-
tively little use in finding the volume density u,, corresponding
to a definite frequency v, and the specific intensity of radiation

K,, of monochromatic radiation, which are related to each other

by equation (24) and ton and K by equations (22) and (12).

There remains as one of the principal problems of the theory of

heat radiation the problem of determining the quantities u,, and
Kv for black radiation in a vacuum and hence, according to (42),

in any medium whatever, as functions of v and T, or, in other

words, to find the distribution of energy in the normal spectrum
for any arbitrary temperature. An essential step in the solu-

tion of this problem is contained in the so-called
"
displacement

law" stated by W. Wien,
1 the importance of which lies in the

fact that it reduces the functions u,, and K, of the two arguments
v and T to a function of a single argument.
The starting point of Wien's displacement law is the following

theorem. If the black radiation contained in a perfectly evac-

uated cavity with absolutely reflecting walls is compressed or

expanded adiabatically and infinitely slowly, as described above
in Sec. 68, the radiation always retains the character of black radia-

tion, even without the presence of a carbon particle. Hence the

process takes place in an absolute vacuum just as was calculated

in Sec. 68 and the introduction, as a precaution, of a carbon

particle is shown to be superfluous. But this is true only in this

special case, not at all in the case described in Sec. 70.

The truth of the proposition stated may be shown as follows:

i W. Wien, Sitzungsberichte d. Akad. d. Wissensch. Berlin, Febr. 9, 1893, p. 55. Wiede-
mann's Annal., 52, p. 132, 1894. See also among others M. Thiesen, Verhandl. d. Deutsch.
phys. Gesellsch, 2, p. 65, 1900. H. A. Lorentz, Akad. d. Wissensch. Amsterdam, May 18,

1901, p. 607. M. Abraham, Annal. d. Physik. 14, p. 236, 1904.

69
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Let the completely evacuated hollow cylinder, which is at the

start filled with black radiation, be compressed adiabatically

and infinitely slowly to a finite fraction of the original volume.

If, now, the compression being completed, the radiation were no

longer black, there would be no stable thermodynamic equilib-

rium of the radiation (Sec. 51). It would then be possible to

produce a finite change at constant volume and constant total

energy of radiation, namely, the change to the absolutely stable

state of radiation, which would cause a finite increase of entropy.

This change could be brought about by the introduction of a

carbon particle, containing a negligible amount of heat as com-

pared with the energy of radiation. This change, of course,

refers only to the spectral density of radiation uv ,
whereas the

total density of energy u remains constant. After this has been

accomplished, we could, leaving the carbon particle in the space,

allow the hollow cylinder to return adiabatically and infinitely

slowly to its original volume and then remove the carbon particle.

The system will then have passed through a cycle without any
external changes remaining. For heat has been neither added

nor removed, and the mechanical work done on compression has

been regained on expansion, because the latter, like the radiation

pressure, depends only on the total density u of the energy of radia-

tion, not on its spectral distribution. Therefore, according to

the first principle of thermodynamics, the total energy of radia-

tion is at the end just the same as at the beginning, and hence

also the temperature of the black radiation is again the same.

The carbon particle and its changes do not enter into the calcu-

lation, for its energy and entropy are vanishingly small com-

pared with the corresponding quantities of the system. The

process has therefore been reversed in all details; it may be

repeated any number of times without any permanent change

occurring in nature. This contradicts the assumption, made

above, that a finite increase in entropy occurs; for such a finite

increase, once having taken place, cannot in any way be com-

pletely reversed. Therefore no finite increase in entropy can have

been produced by the introduction of the carbon particle in the

space of radiation, but the radiation was, before the introduction

and always, in the state of stable equilibrium.

72. In order to bring out more clearly the essential part of
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this important proof, let us point out an analogous and more or

less obvious consideration. Let a cavity containing originally

a vapor in a state of saturation be compressed adiabatically and

infinitely slowly.

"Then on an arbitrary adiabatic compression the vapor remains

always just in the state of saturation. For let us suppose that it

becomes supersaturated on compression. After the compression

to an appreciable fraction of the original volume has taken place,

condensation of a finite amount of vapor and thereby a change

into a more stable state, and hence a finite increase of entropy of

the system, would be produced at constant volume and constant

total energy by the introduction of a minute drop of liquid, which

has no appreciable mass or heat capacity. After this has been

done, the volume could again be increased adiabatically and

infinitely slowly until again all liquid is evaporated and thereby

the process completely reversed, which contradicts the assumed

increase of entropy."

Such a method of proof would be erroneous, because, by the

process described, the change that originally took place is not

at all completely reversed. For since the mechanical work

expended on the compression of the supersaturated steam is not

equal to the amount gained on expanding the saturated steam,

there corresponds to a definite volume of the system when it is

being compressed an amount of energy different from the one

during expansion and therefore the volume at which all liquid is

just vaporized cannot be equal to the original volume. The

supposed analogy therefore breaks down and the statement made

above in quotation marks is incorrect.

73. We shall now again suppose the reversible adiabatic process

described in Sec. 68 to be carried out with the black radiation

contained in the evacuated cavity with white walls and white

bottom, by allowing the piston, which consists of absolutely

reflecting metal, to move downward infinitely slowly, with the

single difference that now there shall be no carbon particle in the

cylinder. The process will, as we now know, take place exactly

as there described, and, since no absorption or emission of radia-

tion takes place, we can now give an account of the changes of

color and intensity which the separate pencils of the system

undergo. Such changes will of course occur only on reflection
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from the moving metallic reflector, not on reflection from the

stationary walls and the stationary bottom of the cylinder.

If the reflecting piston moves down with the constant, infinitely

small, velocity v, the monochromatic pencils striking it during
the motion will suffer on reflection a change of color, intensity,

and direction. Let us consider these different influences in order. l

74. To begin with, we consider the change of color which a mono-

chromatic ray suffers by reflection from the reflector, which is

A moving with an infinitely small veloc-
Reflector t ., -^ , ,

. . -,

/ ity. For this purpose we consider
X Reflectort + $t ,. , . , . ,

. ..

first the case of a ray which falls

normally from below on the reflector

and hence is reflected normally down-

ward. Let the plane A (Fig. 5) repre-

sent the position of the reflector at the

B
""stationary"

time t, the plane A' the position at

F - the time t-\-dt, where the distance

AA' equals vdt, v denoting the velocity
of the reflector. Let us now suppose a stationary plane B to be

placed parallel to A at a suitable distance and let us denote by
X the wave length of the ray incident on the reflector and by X'

the wave length of the ray reflected from it. Then at a time t

there are in the interval AB in the vacuum containing the radia-

tion waves of the incident and - waves of the reflected ray,
X X

as can be seen, e.g., by thinking of the electric field-strength as

being drawn at the different points of each of the two rays at

the time t in the form of a sine curve. Reckoning both incident

and reflected ray there are at the time t

waves in the interval between A and B. Since this is a large num-

ber, it is immaterial whether the number is an integer or not.

1 The complete solution of the problem of reflection of a pencil from a moving absolutely

reflecting surface including the case of an arbitrarily large velocity of the surface may be
found in the paper by M. Abraham quoted in Sec. 71. See also the text-book by the same
author. Electromagnetische Theorie der Strahlung, 1908 (Leipzig, B. G. Teubner).
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Similarly at the time t+dt, when the reflector is at A', there are

waves in the interval between A' and B all told.

The latter number will be smaller than the former, since in the

shorter distance A 'B there is room for fewer waves of both kinds

than in the longer distance AB. The remaining waves must have

been expelled in the time dt from the space between the stationary

plane B and the moving reflector, and this must have taken place

through the plane B downward; for in no other way could a

wave disappear from the space considered.

Now vbt waves pass in the time dt through the stationary

plane B in an upward direction and v'bt waves in a downward

direction; hence we have for the difference

or, snce

AB-A'B =
vdt,

and

v v

c+v
If' =-- If

c v

or, since v is infinitely small compared with c,

75. When the radiation does not fall on the reflector normally
but at an acute angle of incidence 0, it is possible to pursue a very
similar line of reasoning, with the difference that then A, the

point of intersection of a definite ray BA with the reflector at

the time t, has not the same position on the reflector as the point
of intersection, A', of the same ray with the reflector at the time

t-i-dt (Fig. 6). The number of waves which lie in the interval

BA at the time t is
--

Similarly, at the time t the number of
A

waves in the interval AC representing the distance of the point



74 DEDUCTIONS FROM ELECTRODYNAMICS

A from a wave plane CC', belonging to the reflected ray and

AC
stationary in the vacuum, is

-

A

Hence there are, all told, at the time t in the interval BAC

BA AC
X

""

V

waves of the ray under consideration. We may further note

that the angle of reflection 6' is not exactly equal to the angle

Reflector t

Reflector t + 5 1

Stationary

FIG. 6.

of incidence, but is a little smaller as can be shown by a simple

geometric consideration based on Huyghens' principle. The
difference of 6 and B'

', however, will be shown to be non-essential

for our calculation. Moreover there are at the time t+8t, when
the reflector passes through A',

BA' A'C'~ ~

waves in the distance BA'C'. The latter number is smaller than

the former and the difference must equal the total number of

waves which are expelled in the time dt from the space which is

bounded by the stationary planes BB' and CC'.

Now vdt waves enter into the space through the plane BB' in

the time dt and v'U waves leave the space through the plane CC'

Hence we have
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but

BA-BA'-AA'~'*
COS

AC-A'C' =AA r w$ (0+0')

v v'

Hence

,
c cos 0+y

c cos B v cos (0+0')

This relation holds for any velocity v of the moving reflector.

Now, since in our case v is infinitely small compared with c, we
have the simpler expression

c cos 6

The difference between the two angles 6 and 0' is in any case of

the order of magnitude -; hence we may without appreciable
c

error replace 6' by 6, thereby obtaining the following expression

for the frequency of the reflected ray for oblique incidence

/, ,

2v cos 0\v'=v I H -I (83)
\ c /

76. From the foregoing it is seen that the frequency of all rays

which strike the moving reflector are increased on reflection, when
the reflector moves toward the radiation, and decreased, when the

reflector moves in the direction of the incident rays (v<Q).

However, the total radiation of a definite frequency v striking the

moving reflector is by no means reflected as monochromatic radia-

tion but the change in color on reflection depends also essentially

on the angle of incidence 6. Hence we may not speak of a cer-

tain spectral
"
displacement

"
of color except in the case of a sin-

gle pencil of rays of definite direction, whereas in the case of the

entire monochromatic radiation we must refer to a spectral
"
dispersion." The change in color is the largest for normal inci-

dence and vanishes entirely for grazing incidence.

77. Secondly, let us calculate the change in energy, which the
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moving reflector produces in the incident radiation, and let us

consider from the outset the general case of oblique incidence.

Let a monochromatic, infinitely thin, unpolarized pencil of rays.

which falls on a surface element of the reflector at the angle of

incidence 0, transmit the energy I8t to the reflector in the time

5t. Then, ignoring vanishingly small quantities, the mechanical

pressure of the pencil of rays normally to the reflector is, accord-

ing to equation (64),

2 cos e

c

and to the same degree of approximation the work done from the

outside on the incident radiation in the time 5t is

^0!_V (84 )

According to the principle of the conservation of energy this

amount of work must reappear in the energy of the reflected radia-

tion. Hence the reflected pencil has a larger intensity than the

incident one. It produces, namely, in the time dt the energy
1

=
I(
\

(85)

Hence we may summarize as follows: By the reflection of a

monochromatic unpolarized pencil, incident at an angle on a

reflector moving toward the radiation with the infinitely small

velocity v, the radiant energy Idt, whose frequencies extend from

v to v+dv, is in the time dt changed into the radiant energy
I'bt with the interval of frequency (/, v'-\-dv'), where /' is given

by (85), v' by (83), and accordingly dv', the spectral breadth of

the reflected pencil, by

(86)
c

A comparison of these values shows that

>-'=?-'
'

' 1 (87)
I v dp

1 It is clear that the change in intensity of the reflected radiation caused by the motion of

the reflector can also be derived from purely electrodynamical considerations, since elec-

trodynamics are consistent with the energy principle. This method is somewhat lengthy,

but it affords a deeper insight into the details of the phenomenon of reflection.
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The absolute value of the radiant energy which has disappeared

in this change is, from equation (13),

l5t = 2Kv da cos dtt dv dt, (88)

and hence the absolute value of the radiant energy which has

been formed is, according to (85),

7' = 2K,d<r cos B dtt dvl+tt. (89)
\ c I

Strictly speaking these last two expressions would require an

infinitely small correction, since the quantity / from equation (88)

represents the energy radiation on a stationary element of area

d<r, while, in reality, the incident radiation is slightly increased

by the motion of do- toward the incident pencil. The additional

terms resulting therefrom may, however, be omitted here without

appreciable error.

78. As regards finally the changes in direction, which are im-

parted to the incident ray by reflection from the moving reflector,

we need not calculate them at all at this stage. For if the motion

of the reflector takes place sufficiently slowly, all irregularities

in the direction of the radiation are at once equalized by further

reflection from the walls of the vessel. We may, indeed, think of

the whole process as being accomplished in a very large number of

short intervals, in such a way that the piston, after it has moved

a very small distance with very small velocity, is kept at rest for

a while, namely, until all irregularities produced in the directions

of the radiation have disappeared as the result of the reflection

from the white walls of the hollow cylinder. If this procedure

be carried on sufficiently long, the compression of the radiation

may be continued to an arbitrarily small fraction of the original

volume, and while this is being done, the radiation may be always

regarded as uniform in all directions. This continuous process

of equalization refers, of course, only to difference in the direction

of the radiation; for changes in the color or intensity of the

radiation of however small size, having once occurred, can

evidently never be equalized by reflection from totally reflecting

stationary walls but continue to exist forever.

79. With the aid of the theorems established we are now in a

position to calculate the change of the density of radiation for
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every frequency for the case of infinitely slow adiabatic compres-
sion of the perfectly evacuated hollow cylinder, which is filled

with uniform radiation. For this purpose we consider the radia-

tion at the time t in a definite infinitely small interval of fre-

quencies, from v to v+dv, and inquire into the change which

the total energy of radiation contained in this definite constant

interval suffers in the time dt.

At the time t this radiant energy is, according to Sec. 23, V udv,

at the time t-\-dt it is (Vu+ d (Vu))dv, hence the change to be

calculated is

S(Vu)dv. (90)

In this the density of monochromatic radiation u is to be regarded
as a function of the mutually independent variables v and t, the

differentials of which are distinguished by the symbols d and d.

The change of the energy of monochromatic radiation is pro-

duced only by the reflection from the moving reflector, that is

to say, firstly by certain rays, which at the time t belong to the

interval (v,dv), leaving this interval on account of the change in

color suffered by reflection, and secondly by certain rays, which at

the time t do not belong to the interval (v,dv), coming into this

interval on account of the change in color suffered on reflection.

Let us calculate these influences in order. The calculation is

greatly simplified by taking the width of this interval dv so small

that

dv is small compared with -v, . (91)
c

a condition which can always be satisfied, since dv and v are

mutually independent.
80. The rays which at the time t belong to the interval (v,dv)

and leave this interval in the time 8t on account of reflection from

the moving reflector, are simply those rays which strike the

moving reflector in the time dt. For the change in color which

such a ray undergoes is, from (83) and (91), large compared with

dv, the width of the whole interval. Hence we need only cal-

culate the energy, which in the time dt is transmitted to the re-

flector by the rays in the interval (v,dv).

For an elementary pencil, which falls on the element da- of the
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reflecting surface at the angle of incidence 0, this energy is,

according to (88) and (5),

!8t = 2Kvda cos 6 dtt dp dt = 2Kv do- sin cos dd d<f> dv 5t.

Hence we obtain for the total monochromatic radiation, which

falls on the whole surface F of the reflector, by integration with

respect to < from to 2?r, with respect to 6 from to -, and with
2i

respect to da- from to F,

2ir F Kp dv 5t. (92)

Thus this radiant energy leaves, in the time dt, the interval of

frequencies (v,dv) considered.

81. In calculating the radiant energy which enters the interval

(v,dv) in the time dt on account of reflection from the moving

reflector, the rays falling on the reflector at different angles of

incidence must be considered separately. Since in the case of a

positive v, the frequency is increased by the reflection, the rays

which must be considered have, at the time t, the frequency

PI<P. If we now consider at the time t a monochromatic pencil

of frequency (vi,dvi), falling on the reflector at an angle of inci-

dence 6, a necessary and sufficient condition for its entrance, by

reflection, into the interval (v,dv) is

/ 2v cos 0\ / 2v cos 0\
p=pi\l-\ -) and dv = dvA H

\ c I \ c /

These relations are obtained by substituting v\ and v respectively

in the equations (83) and (86) in place of the frequencies before

and after reflection v and v' .

The energy which this pencil carries into the interval (pi,dp)

in the time dt is obtained from (89), likewise by substituting PI

for v. It is

2K,i do- cos 6d$ldpi(l+ -)dt
= 2Kv i da- cos BdttdvU.

\ c /

Now we have

where we shall assume - - to be finite.
OP
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Hence, neglecting small quantities of higher order,

2?t;cos B dK
V, K*

-- "
^T~

c dv

Thus the energy required becomes

_ /.. 2w cos B dK\
2cM K,

- -
I sin 8 cos dB d<f> dv 5t,

\ c dv I

and, integrating this expression as above, with respect to do-, <f>,

and 0, the total radiant energy which enters into the interval

vdv in the time dt becomes

dv U. (93)
3 c ov I

82. The difference of the two expressions (93) and (92) is equal
to the whole change (90), hence

3 c Ov

or, according to (24),

1 du-- Fv vBt =
3 OP

or, finally, since Fvdt is equal to the decrease of the volume V,

1 du
, (94)

3 dv

whence it follows that

/?bu \SV
u-(is- u)r (95)

This equation gives the change of the energy density of any
definite frequency v, which occurs on an infinitely slow adiabatic

compression of the radiation. It holds, moreover, not only for

black radiation, but also for radiation originally of a perfectly

arbitrary distribution of energy, as is shown by the method of

derivation.

Since the changes taking place in the state of the radiation in

the time dt are proportional to the infinitely small velocity v and

are reversed on changing the sign of the latter, this equation

holds for any sign of 5F; hence the process is reversible.
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83. Before passing on to the general integration of equation

(95) let us examine it in the manner which most easily suggests

itself. According to the energy principle, the change in the

radiant energy

'S.
udv,

occurring on adiabatic compression, must be equal to the external

work done against the radiation pressure

udv. (96)

Now from (94) the change in the total energy is found to be

C
J

or, by partial integration,
00

8V.,
"

3\L
- JO

_

and this expression is, in fact, identical with (96) ,
since the prod-

uct vu vanishes for v = as well as for v < . The latter might
at first seem doubtful; but it is easily seen that, if vu for v <

had a value different from zero, the integral of u with respect to

v taken from to oo could not have a finite value, which, however,

certainly is the case.

84. We have already emphasized (Sec. 79) that u must be

regarded as a function of two independent variables, of which we
have taken as the first the frequency v and as the second the time

t. Since, now, in equation (95) the time t does not explicitly

appear, it is more appropriate to introduce the volume V, which

depends only on t, as the second variable instead of t itself. Then

equation (95) may be written as a partial differential equation as

follows:

From this equation, if, for a definite value of V, u is known as a

function of v, it may be calculated for all other values of V as a
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function of v. The general integral of this differential equation,

as may be readily seen by substitution, is

U= 1 0((,3 F)) (Q8)

where denotes an arbitrary function of the single argument
i>
3 F. Instead of this we may, on substituting v*V<j>(i>*V) for

0<V7), write

u = v*<f>(v*V). (99)

Either of the last two equations is the general expression of

Wien's displacement law.

If for a definitely given volume V the spectral distribution of

energy is known (i.e., u as a function of v), it is possible to deduce

therefrom the dependence of the function (f> on its argument, and

thence the distribution of energy for any other volume V, into

which the radiation filling the hollow cylinder may be brought by
a reversible adiabatic process.

84a. The characteristic feature of this new distribution of

energy may be stated as follows : If we denote . all quantities

referring to the new state by the addition of an accent, we have

the following equation in addition to (99)

u' = / 3
4> (v'*V).

Therefore, if we put
V>*V'= V*V, (99a)

we shall also have

^7=--andu'y' = uF, (99b)
/* V

A

i.e., if we coordinate with every frequency v in the original state

that frequency v' which is to v in the inverse ratio of the cube

roots of the respective volumes, the corresponding energy
densities u' and u will be in the inverse ratio of the volumes.

The meaning of these relations will be more clearly seen, if we
write

V^__V
V 3 ~X3

This is the number of the cubes of the wave lengths, which

correspond to the frequency v and are contained in the volume
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of the radiation. Moreover udvV = \Jdi> denotes the radiant

energy lying between the frequencies vand v-\-dv, which is con-

tained in the volume V. Now since, according to (99a),

<jFOr =- (99C)
V V

we have, taking account of (99b),

These results may be summarized thus: On an infinitely slow

reversible adiabatic change in volume of radiation contained in

a cavity and uniform in all directions, the frequencies change in

such a way that the number of cubes of wave lengths of every

frequency contained in the total volume remains unchanged, and

the radiant energy of every infinitely small spectral interval

changes in proportion to the frequency.
85. Returning now to the discussion of Sec. 73 we introduce

the assumption that at first the spectral distribution of energy is

the normal one, corresponding to black radiation. Then, accord-

ing to the law there proven, the radiation retains this property
without change during a reversible adiabatic change of volume

and the laws derived in Sec. 68 hold for the process. The radia-

tion then possesses in every state a definite temperature T, which

depends on the volume V according to the equation derived in

that paragraph,

TW = const. =T'W. (100)

Hence we may now write equation (99) as follows:.

or

Therefore, if for a single temperature the spectral distribution

of black radiation, i.e., u as a function of v, is known, the depen-
dence of the function <f> on its argument, and hence the spec-

tral distribution for .any other temperature, may be deduced

therefrom.
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If we also take into account the law proved in Sec. 47, that,

for the black radiation of a definite temperature, the product

ug
3 has for all media the same value, we may also write

where now the function F no longer contains the velocity of

propagation.

86. For the total radiation density in space of the black radia-

tion in the vacuum we find

1

= C"di> =- (102)

T
or, on introducing = re as the variable of integration instead

v

of v,
00

J. I F (X) j /-t f\o\u i Lax. UUD;
c3

I x 5

t/o

If we let the absolute constant

=a (104)

^x

the equation reduces to the form of the Stefan-Boltzmann law of

radiation expressed in equation (75).

87. If we combine equation (100) with equation (99a) we

obtain

Hence the laws derived at the end of Sec. 84a assume the fol-

lowing form: On infinitely slow reversible adiabatic change in

volume of black radiation contained in a cavity, the temperature
T varies in the inverse ratio of the cube root of the volume V,

the frequencies v vary in proportion to the temperature, and

the radiant energy \Jdv of an infinitely small spectral interval

varies in the same ratio. Hence the total radiant energy U as

the sum of the energies of all spectral intervals varies also in

proportion to the temperature, a statement which agrees with the
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conclusion arrived at already at the end of Sec. 68, while the

space density of radiation, u = > varies in proportion to the

fourth power of the temperature, in agreement with the Stefan-

Boltzmann law.

88. Wien's displacement law may also in the case of black

radiation be stated for the specific intensity of radiation K,, of

a plane polarized monochromatic ray. In this form it reads

according to (24)

(106)

If, as is usually done in experimental physics, the radiation inten-

sity is referred to wave lengths X instead of frequencies v, accord-

ing to (16), namely

P eK,
Ex =^

equation (106) takes the following form:

(107)

This form of Wien's displacement law has usually been the start-

ing-point for an experimental test, the result of which has in all

cases been a fairly accurate verification of the law. 1

89. Since Ex vanishes for X = as well as for X =
,
Ex must

have a maximum with respect to X, which is found from the

equation

dE 5j\T\ .
1 T

where F denotes the differential coefficient of F with respect to

its argument. Or

(108)
c c i c

KT
This equation furnishes a definite value for the argument ,

so

1
E.g., F. Paschen, Sitzungsber. d. Akad. d. Wissensch. Berlin, pp. 405 and 959, 1899.

0. Lummer und E. Pringsheim, Verhandlungen d. Deutschen physikalischen Gesellschaft 1,

pp. 23 and 215, 1899. Annal. d. Physik 6, p. 192, 1901.
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that for the wave length Xm corresponding to the maximum of the

radiation intensity E^ the relation holds

6. (109)

With increasing temperature the maximum of radiation is

therefore displaced in the direction of the shorter wave lengths.

The numerical value of the constant b as determined by
Lummer and Pringsheim

1
is

6 = 0.294 cm. degree. (110)

* Paschen2 has found a slightly smaller value, about 0.292.

We may emphasize again at this point that, according to

Sec. 19, the maximum of E^ does not by any means occur at the

same point in the spectrum as the maximum of K,, and that hence

the significance of the constant b is essentially dependent on the

fact that the intensity of monochromatic radiation is referred to

wave lengths, not to frequencies.

90. The value also of the maximum of Ex is found from (107)

by putting X=Xm. Allowing for (109) we obtain

Ema* = const. T5
, (111)

i.e., the value of the maximum of radiation in the spectrum of the

black radiation is proportional to the fifth power of the absolute

temperature.
Should we measure the intensity of monochromatic radiation

not by Ex but by K,,, we would obtain for the value of the radia-

tion maximum a quite different law, namely,

K max = const. T\ (112)

1 0. Lummer und E. Pringsheim, 1. c.

2 F. Paschen, Annal. d. Physik, 6, p. 657, 1901.



CHAPTER IV

RADIATION OF ANY ARBITRARY SPECTRAL DISTRI-
BUTION .OF ENERGY. ENTROPY AND TEMPERA-

TURE OF MONOCHROMATIC RADIATION

91. We have so far applied Wien's displacement law only to

the case of black radiation; it has, however, a much more general

importance. For equation (95) ,
as has already been stated, gives,

for any original spectral distribution of the energy radiation con-

tained in the evacuated cavity and radiated uniformly in all direc-

tions, the change of this energy distribution accompanying a

reversible adiabatic change of the total volume. Every state of

radiation brought about by such a process is perfectly stationary

and can continue infinitely long, subject, however, to the con-

dition that no trace of an emitting or absorbing substance exists

in the radiation space. For otherwise, according to Sec. 51, the

distribution of energy would, in the course of time, change

through the releasing action of the substance irreversibly, i.e.,

with an increase of the total entropy, into the stable distribution

correponding to black radiation.

The difference of this general case from the special one dealt

with in the preceding chapter is that we can no longer, as in the

case of black radiation, speak of a definite temperature of the

radiation. Nevertheless, since the second principle of thermo-

dynamics is supposed to hold quite generally, the radiation, like

every physical system which is in a definite state, has a definite

entropy, S = Vs. This entropy consists of the entropies of the

monochromatic radiations, and, since the separate kinds of rays

are independent of one another, may be obtained by addition.

Hence
00 00

s= (sdv, S = V fsdv, (113)
Jo J o

where sdv denotes the entropy of the radiation of frequencies

between v and v+dv contained in unit volume. S is a definite

87
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function of the two independent variables v and u and in the

following will always be treated as such.

92. If the analytical expression of the function s were known,
the law of energy distribution in the normal spectrum could

immediately be deduced from it; for the normal spectral distri-

bution of energy or that of black radiation is distinguished from

all others by the fact that it has the maximum of the entropy of

radiation S.

Suppose then we take s to be a known function of v and u.

Then as a condition for black radiation we have

dS = Q, (114)

for any variations of energy distribution, which are possible

with a constant total volume V and constant total energy of

radiation U. Let the variation of energy distribution be char-

acterized by making an infinitely small change 5u in the energy u

of every separate definite frequency v. Then we have as fixed

conditions
CO

67 = and (*8udv = 0. (115)

The changes d and 6 are of course quite independent of each

other.

Now since dV = 0, we have from (114) and (113)

or, since v remains unvaried

I
'bs

du

and, by allowing for (115), the validity of this equation for all

values of 5u whatever requires that

ds-= const. (116)
oti

for all different frequencies. This equation states the law of

energy distribution in the case of black radiation.

93. The constant of equation (116) bears a simple relation to

the temperature of black radiation. For if the black radiation,
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by conduction into it of a certain amount of heat at constant vol-

ume V, undergoes an infinitely small change in energy dU, then,

according to (73), its change in entropy is

*?
su-'

However, from (113) and (116),

5S=V \ ^ 5u dv =~V \ Su dv = -

hence

and the above quantity, which was found to be the same for all

frequencies in the case of black radiation, is shown to be the recip-

rocal of the temperature of black radiation.

Through this law the concept of temperature gains sig-

nificance also for radiation of a quite arbitrary distribution of

energy. For since s depends only on u and v, monochromatic

radiation, which is uniform in all directions and has a definite

energy density u, has also a definite temperature given by (117),

and, among all conceivable distributions of energy, the normal one

is characterized by the fact that the radiations of all frequencies

have the same temperature.

Any change in the energy distribution consists of a passage of

energy from one monochromatic radiation into another, and, if

the temperature of the first radiation is higher, the energy
transformation causes an increase of the total entropy and is

hence possible in nature without compensation; on the other hand,
if the temperature of the second radiation is higher, the total

entropy decreases and therefore the change is impossible in nature,
unless compensation occurs simultaneously, just as is the case

with the transfer of heat between two bodies of different tem-

peratures.

94. Let us now investigate Wien's displacement law with regard
to the dependence of the quantity s on the variables u and v.
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From equation (101) it follows, on solving for T and substituting

the value given in (117), that

//^3ii\ ?Vo

(118)

where again F represents a function of a single argument and the

constants do not contain the velocity of propagation c. On

integration with respect to the argument we obtain

C3U

the notation remaining the same. In this form Wien's displace-

ment law has a significance for every separate monochromatic

radiation and hence also for radiations of any arbitrary energy
distribution.

95. According to the second principle of thermodynamics, the

total entropy of radiation of quite arbitrary distribution of

energy must remain constant on adiabatic reversible compression.

We are now able to give a direct proof of this proposition on the

basis of equation (119). For such a process, according to

equation (113), the relation holds:

CXI

J.t/ o

Idsdv(V SU+S57)- (120)

Here, as everywhere, s should be regarded as a function of u and

v, and dv = Q.

Now for a reversible adiabatic change of state the relation (95)

holds. Let us take from the latter the value of 6u and substitute.

Then we have

_,y
("<,,{*
J o [du

-u+s

In this equation the differential coefficient of u with respect to v

refers to the spectral distribution of energy originally assigned

arbitrarily and is therefore, in contrast to the partial differential

coefficients, denoted by the letter d.
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Now the complete differential is:

cte_ds du bs

dv du dv dj>

Hence by substitution:

But from equation (119) we obtain by differentiation

-=-pl
j
and =-^W J- _jpf -J (122)

Hence

~ = 2s-3u-^ (123)
oi> du

On substituting this in (121), we obtain

or,

as it should be. That the product vs vanishes also for v = oo

may be shown just as was done in Sec. 83 for the product i>u.

96. By means of equations (118) and (119) it is possible to give
to the laws of reversible adiabatic compression a form in which

their meaning is more clearly seen and which is the generalization
of the laws stated in Sec. 87 for black radiation and a supplement
to them. It is, namely, possible to derive (105) again from (118)

and (99b). Hence the laws deduced in Sec. 87 for the change of

frequency and temperature of the monochromatic radiation

energy remain valid for a radiation of an originally quite arbitrary
distribution of energy. The only difference as compared with
the black radiation consists in the fact that now every frequency
has its own distinct temperature.
Moreover it follows from (119) and (99b) that
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Now sdvV = Sdv denotes the radiation entropy between the

frequencies v and v+dv contained in the volume V. Hence on

account of (125), (99a), and (99c)

S'dv' = Sdv, (126)

i.e., the radiation entropy of an infinitely small spectral interval

remains constant. This is another statement of the fact that the

total entropy of radiation, taken as the sum of the entropies of all

monochromatic radiations contained therein, remains constant.

97. We may go one step further, and, from the entropy s

and the temperature T of an unpolarized monochromatic radia-

tion which is uniform in all directions, draw a certain conclusion

regarding the entropy and temperature of a single, plane polar-

ized, monochromatic pencil. That every separate pencil also has

a certain entropy follows by the second principle of thermo-

dynamics from the phenomenon of emission. For since, by the

act of emission, heat is changed into radiant heat, the entropy
of the emitting body decreases during emission, and, along with

this decrease, there must be, according to the principle of increase

of the total entropy, an increase in a different form of entropy as

a compensation. This can only be due to the energy of the

emitted radiation. Hence every separate, plane polarized, mono-
chromatic pencil has its definite entropy, which can depend only
on its energy and frequency and which is propagated and

spreads into space with it. We thus gain the idea of entropy

radiation, which is measured, as in the analogous case of energy

radiation, by the amount of entropy which passes in unit time

through unit area in a definite direction. Hence statements,

exactly similar to those made in Sec. 14 regarding energy radia-

tion, will hold for the radiation of entropy, inasmuch as every

pencil possesses and conveys, not only its energy, but also its

entropy. Referring the reader to the discussions of Sec. 14,

we shall, for the present, merely enumerate the most important
laws for future use.

98. In a space filled with any radiation whatever the entropy
radiated in the time dt through an element of area do- in the

direction of the conical element dtt is given by an expression of

the form

dt d<r cos 6dttL=L sin cos 6 dB d$ dv dt. (127)
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The positive quantity L we shall call the
"
specific intensity of

entropy radiation" at the position of the element of area do-

in the direction of the solid angle dtt. L is, in general, a function

of position, time, and direction.

The total radiation of entropy through the element of area

da toward one side, say the one where 6 is an acute angle, is ob-

tained by integration with respect to $ from to 2?r and with

respect to 6 from to -. It is

2x x

da- dt I d<f> I dd L sin 6 cos 6.

J<> Jo

When the radiation is uniform in all directions, and hence L

constant, the entropy radiation through da- toward one side is

*Ld<r dt. (128)

The specific intensity L of the entropy radiation in every direc-

tion consists further of the intensities of the separate rays belong-

ing to the different regions of the spectrum, which are propagated

independently of one another. Finally for a ray of definite color

and intensity the nature of its polarization is characteristic.

When a monochromatic ray of frequency v consists of two

mutually independent
1

components, polarized at right angles to

each other, with the principal intensities of energy radiation

(Sec. 17) K,, and K/, the specific intensity of entropy radiation

is of the form

(129)

The positive quantities Lv and L'v in this expression, the

principal intensities of entropy radiation of frequency v, are

determined by the values of K, and K/. By substitution in

(127), this gives for the entropy which is radiated in the time

1
"
Independent" in the sense of

"
noncoherent." If, e.g., a ray with the principal intensities

K and K' is elliptically polarized, its entropy is not equal to l_+L_', but equal to the

entropy of a plane polarized ray of intensity K + K'. For an elliptically polarized ray may
be transformed at once into a plane polarized one, e.g., by total reflection. For the en-

tropy of a ray with coherent components see below Sec. 104, et seq.\
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dt through the element of area dcr in the direction of the conical

element dti the expression
00

dt do- cos 6 dtt

and, for monochromatic plane polarized radiation,

dt da- cos e dtt Lv dv = L v dv sin 6 cos 6 dd d(j> do- dt. (130)

For unpolarized rays LV
= \JV and (129) becomes.

For radiation which is uniform in all directions the total entropy
radiation toward one side is, according to (128),

2?r da dt

99. From the intensity of the propagated entropy radiation

the expression for the space density of the radiant entropy may also

be obtained, just as the space density of the radiant energy
follows from the intensity of the propagated radiant energy.

(Compare Sec. 22.) In fact, in analogy with equation (20), the

space density, s, of the entropy of radiation at any point in a

vacuum is

!, (131)

where the integration is to be extended over the conical elements

which spread out from the point in question in all directions.

L is constant for uniform radiation and we obtain

(132)
c

By spectral resolution of the quantity L, according to equation

(129), we obtain from (131) also the space density of the mono-
chromatic radiation entropy:

8--f(L+L')da,
C"

and for unpolarized radiation, which is uniform in all directions

s = (133)



SPECTRAL DISTRIBUTION OF ENERGY 95

100. As to how the entropy radiation L depends on the energy
radiation K Wien's displacement law in the form of (119) affords

immediate information. It follows, namely, from it, considering

(133) and (24), that

L=-/2
K\
r)*
/

and, moreover, on taking into account (118),

&L_<te_l_
bK~du~T

Hence also

V>K
N

(136)
\ v

a
/

or

T\
-) (137)
v I

It is true that these relations, like the equations (118) and

(119), were originally derived for radiation which is unpolarized

and uniform in all directions. They hold, however, generally in

the case of any radiation whatever for each separate monochro-

matic plane polarized ray. For, since the separate rays behave

and are propagated quite independently of one another, the inten-

sity, L, of the entropy radiation of a ray can depend only on the

intensity of the energy radiation, K, of the same ray. Hence

every separate monochromatic ray has not only its energy but

also its entropy defined by (134) and its temperature defined by

(136).

101. The extension of the conception of temperature to a

single monochromatic ray, just discussed, implies that at the

same point in a medium, through which any rays whatever pass,

there exist in general an infinite number of temperatures, since

every ray passing through the point has its separate temperature,

and, moreover, even the rays of different color traveling in the

same direction show temperatures that differ according to the

spectral distribution of energy. In addition to all these tempera-
tures there is finally the temperature of the medium itself, which

at the outset is entirely independent of the temperature of the

radiation. This complicated method of consideration lies in the
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nature of the case and corresponds to the complexity of the

physical processes in a medium through which radiation travels

in such a way. It is only in the case of stable thermodynamic

equilibrium that there is but one temperature, which then is

common to the medium itself and to all rays of whatever color

crossing it in different directions.

In practical physics also the necessity of separating the concep-
tion of radiation temperature from that of body temperature
has made itself felt to a continually increasing degree. Thus it

has for some time past been found advantageous to speak, not

only of the real temperature of the sun, but also of an "
apparent"

or
"
effective" temperature of the sun, i.e., that temperature

which the sun would need to have in order to send to the earth

the heat radiation actually observed, if it radiated like a black

body. Now the apparent temperature of the sun is obviously

nothing but the actual temperature of the solar rays,
1
depending

entirely on the nature of the rays, and hence a property of the

rays and not a property of the sun itself. Therefore it would be,

not only more convenient, but also more correct, to apply this

notation directly, instead of speaking of a fictitious temperature
of the sun, which can be made to have a meaning only by the

introduction of an assumption that does not hold in reality.

Measurements of the brightness of monochromatic light have

recently led L. Holborn and F. KuHbaum 2 to the introduction of

the concept of
" black" temperature of a radiating surface. The

black temperature of a radiating surface is measured by the

brightness of the rays which it emits. It is in general a separate

one for each ray of definite color, direction, and polarization,

which the surface emits, and, in fact, merely represents the

temperature of such a ray. It is, according to equation (136),

determined by its brightness (specific intensity), K, and its

frequency, i>,
without any reference to its origin and previous

states. The definite numerical form of this equation will be

given below in Sec. 166. Since a black body has the maximum
emissive power, the temperature of an emitted ray can never be

higher than that of the emitting body.

1 On the average, since the solar rays of different color do not have exactly the same

temperature.
2 L. Holborn und F. Kurlbaum, Annal. d. Physik., 10, p. 229, 1903.
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102. Let us make one more simple application of the laws just

found to the special case of black radiation. For this, according
to (81), the total space density of entropy is

s = -a*T. (138)
o

Hence, according to (132), the specific intensity of the total

entropy radiation in any direction is

L =~aT, (139)
07T

and the total entropy radiation through an element of area da-

toward one side is, according to (128),

. (140)
3

As a special example we shall now apply the two principles of

thermodynamics to the case in which the surface of a black body
of temperature T and of infinitely large heat capacity is struck

by black radiation of temperature Tf

coming from all directions.

Then, according to (7) and (76), the black body emits per unit

area and unit time the energy

and, according to (140), the entropy

f-
On the other hand, it absorbs the energy

It

and the entropy

1$

Hence, according to the first principle, the total heat added to the

body, positive or negative according as T' is larger or smaller

than T, is

Q = T 4- T4 = (T
4-T4

),
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and, according to the second principle, the change of the entire

entropy is positive or zero. Now the entropy of the body changes

by ,
the entropy of the radiation in the vacuum by

Hence the change per unit time and unit area of the entire entropy
of the system considered is

In fact this relation is satisfied for all values of T and T". The
minimum value of the expression on the left side is zero

;
this value

is reached when T=T'. In that case the process is reversible.

If, however, T differs from T', we have an appreciable increase

of entropy; hence the process is irreversible. In particular we
find that if T = the increase in entropy is

t i.e., the absorption
of heat radiation by a black body of vanishingly small tempera-
ture is accompanied by an infinite increase in entropy and

cannot therefore be reversed by any finite compensation. On the

other hand for T' = 0, the increase in entropy is only equal to

a c
T 3

, i.e., the emission of a black body of temperature T without
\Z

simultaneous absorption of heat radiation is irreversible without

compensation, but can be reversed by a compensation of at least

the stated finite amount. For example, if we let the rays emitted

by the body fall back on it, say by suitable reflection, the body,
while again absorbing these rays, will necessarily be at the same

time emitting new rays, and this is the compensation required by
the second principle.

Generally we may say : Emission without simultaneous absorp-
tion is irreversible, while the opposite process, absorption without

emission, is impossible in nature.

103. A further example of the application of the two principles

of thermodynamics is afforded by the irreversible expansion of

originally black radiation of volume V and temperature T to

the larger volume V as considered above in Sec. 70, but in the

absence of any absorbing or emitting substance whatever. Then
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not only the total energy but also the energy of every separate

frequency v remains constant; hence, when on account of diffuse

reflection from the walls the radiation has again become uniform

in all directions, U VV = u
f

vVtm
,
moreover by this relation, according

to (118), the temperature T'v of the monochromatic radiation of

frequency v in the final state is determined. The actual calcula-

tion, however, can be performed only with the help of equation

(275) (see below). The total entropy of radiation, i.e., the sum
of the entropies of the radiations of all frequencies,

-f,Jo
dv,

must, according to the second principle, be larger in the final state

than in the original state. Since T'v has different values for the

different frequencies v, the final radiation is no longer black.

Hence, on subsequent introduction of a carbon particle into the

cavity, a finite change of the distribution of energy is obtained,
and simultaneously the entropy increases further to the value

S' calculated in (82).

104. In Sec. 98 we have found the intensity of entropy radia-

tion of a definite frequency in a definite direction by adding the

entropy radiations of the two independent components K and K',

polarized at right angles to each other, or

L(K)+L(K'), (141)

where L denotes the function of K given in equation (134).

This method of procedure is based on the general law that the

entropy of two mutually independent physical systems is equal
to the sum of the entropies of the separate systems.

If, however, the two components of a ray, polarized at right

angles to each other, are not independent of each other, this

method of procedure no longer remains correct. This may be

seen, e.g., on resolving the radiation intensity, not with reference

to the two principal planes of polarization with the principal

intensities K and K', but with reference to any other two planes
at right angles to each other, where, according to equation (8),

the intensities of the two components assume the following
values

K cos2
1//+ K' sin2

^ = K" (142)
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In that case, of course, the entropy radiation is not equal to

L(K")+ L(K'").

Thus, while the energy radiation is always obtained by the

summation of any two components which are polarized at right

angles to each other, no matter according to which azimuth the

resolution is performed, since always

(143)

a corresponding equation does not hold in general for the entropy
radiation. The cause of this is that the two components, the

intensities of which we have denoted by K" and K'", are, unlike

K and K', not independent or noncoherent in the optic sense.

In such a case

L(K'0 + L(K''0>L(K)+ L(K'), (144)

as is shown by the following consideration.

Since in the state of thermodynamic equilibrium all rays of

the same frequency have the same intensity of radiation, the

intensities of radiation of any two plane polarized rays will tend

to become equal, i.e., the passage of energy between them will

be accompanied by an increase of entropy, when it takes place
in the direction from the ray of greater intensity toward that of

smaller intensity. Now the left side of the inequality (144)

represents the entropy radiation of two noncoherent plane polar-

ized rays with the intensities K" and K'", and the right side the

entropy radiation of two noncoherent plane polarized rays with the

intensities K and K'. But, according to (142), the values of K"
and K'" lie between K and K'; therefore the inequality (144)

holds.

At the same time it is apparent that the error committed, when
the entropy of two coherent rays is calculated as if they were

noncoherent, is always in such a sense that the entropy found is

too large. The radiations K" and K'" are called
"
partially

coherent," since they have some terms in common. In the

special case when one of the two principal intensities K and K'

vanishes entirely, the radiations K" and K'" are said to be
"
completely coherent," since in that case the expression for one

radiation may be completely reduced to that for the other. The

entropy of two completely coherent plane polarized rays is equal
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to the entropy of a single plane polarized ray, the energy of which

is equal to the sum of the two separate energies.

105. Let us for future use solve also the more general problem

of calculating the entropy radiation of a ray consisting of an

arbitrary number of plane polarized noncoherent components

Ki, K 2 ,
K 3 ,

..... ,
the planes of vibration (planes of

the electric vector) of which are given by the azimuths i/% T/%

^ 3? ..... This problem amounts to finding the principal

intensities K and K '
of the whole ray; for the ray behaves in

every physical respect as if it consisted of the noncoherent com-

ponents Ko and K</. For this purpose we begin by establishing

the value K^, of the component of the ray for an azimuth \f/

taken arbitrarily. Denoting by / the electric vector of the ray

in the direction \l/,
we obtain this value K^, from the equation

f=fi cos (^i-iM+/2 cos (fo-iM+/3 cos (^ 3 --iW+ .....
where the terms on the right side denote the projections of the

vectors of the separate components in the direction ^, by squaring

and averaging and taking into account the fact that /i, /2 , /a, . .

are noncoherent

or ^
= cos sn sn cos

where A = K! cos 2 ii+K 2 cos2
^ 2+ ...... (145)

C = 2(Ki sin i/'i cos ^1+ K 2 sin i^2 cos

The principal intensities K and Ko
7

of the ray follow from this

expression as the maximum and the minimum value of K^,

according to the equation

= or. tan 2\1/ =
d\p AB

Hence it follows that the principal intensities are

V(A-) 2 + C 2
), (146)

or, by taking (145) into account,
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Then the entropy radiation required becomes:

L(Ko)+ L(K '). (148)

106. When two ray components K and K', polarized at right

angles to each other, are noncoherent, K and K' are also the prin-

cipal intensities, and the entropy radiation is given by (141).

The converse proposition, however, does not hold in general, that

is to say, the two components of a ray polarized at right angles to

each other, which correspond to the principal intensities K and

K', are not necessarily noncoherent, and hence the entropy radia-

tion is not always given by (141).

This is true, e.g., in the case of elliptically polarized light.

There the radiations K and K' are completely coherent and their

entropy is equal to L(K+K'). This is caused by the fact that

it is possible to give the two ray components an arbitrary dis-

placement of phase in a reversible manner, say by total reflection.

Thereby it is possible to change elliptically polarized light to

plane polarized light and vice versa.

The entropy of completely or partially coherent rays has been

investigated most thoroughly by M. Laue. 1 For the significance

of optical coherence for thermodynamic probability see the next

part, Sec. 119.

i M. Laue, Annalen d. Phys., 23, p. 1, 1907.



CHAPTER V

ELECTRODYNAMICAL PROCESSES IN A STATIONARY
FIELD OF RADIATION

107. We shall DOW consider from the standpoint of pure elec-

trodynamics the processes that take place in a vacuum, which

is bounded on all sides by reflecting walls and through which

heat radiation passes uniformly in all directions, and shall then

inquire into the relations between the electrodynamical and the

thermodynamic quantities.

The electrodynamical state of the field of radiation is deter-

mined at every instant by the values of the electric field-strength

E and the magnetic field-strength H at every point in the field,

and the changes in time of these two vectors are completely
determined by Maxwell's field equations (52), which we have

already used in Sec. 53, together with the boundary conditions,

which hold at the reflecting walls. In the present case, however,

we have to deal with a solution of these equations of much greater

complexity than that expressed by (54), which corresponds to a

plane wave. For a plane wave, even though it be periodic with

a wave length lying within the optical or thermal spectrum, can

never be interpreted as heat radiation. For, according to Sec. 16,

a finite intensity K of heat radiation requires a finite solid angle

of the rays and, according to Sec. 18, a spectral interval of finite

width. But an absolutely plane, absolutely periodic wave has a

zero solid angle and a zero spectral width. Hence in the case of

a plane periodic wave there can be no question of either entropy

or temperature of the radiation.

108. Let us proceed in a perfectly general way to consider the

components of the field-strengths E and H as functions of the

time at a definite point, which we may think of as the origin of

the coordinate system. Of these component's, which are pro-

duced by all rays passing through the origin, there are six; we
select one of them, say E*, for closer consideration. However

103
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complicated it may be, it may under all circumstances be written

as a Fourier's series for a limited time interval, say from =
to t = T; thus

(149)

where the summation is to extend over all positive integers n,

while the constants Cn (positive) and 8n may vary arbitrarily

from term to term. The time interval T, the fundamental

period of the Fourier's series, we shall choose so large that all

times t which we shall consider hereafter are included in this

time interval, so that 0<<T. Then we may regard Ez as

identical in all respects with the Fourier's series, i.e., we may
regard Ez as consisting of

"
partial vibrations," which are strictly

periodic and of frequencies given by

n
" =
f

Since, according to Sec. 3, the time differential dt required for

the definition of the intensity of a heat ray is necessarily large

compared with the periods of vibration of all colors contained

in the ray, a single time differential dt contains a large number of

vibrations, i.e., the product vdt is a large number. Then it

follows a fortiori that vt and, still more,

vT = n is enormously large (150)

for, all values of v entering into consideration. From this we
must conclude that all amplitudes Cn with a moderately large

value for the ordinal number n do not appear at all in the

Fourier's series, that is to say, they are negligibly small.

109. Though we have no detailed special information about

the function Ez ,
nevertheless its relation to the radiation of heat

affords some important information as to a few of its general

properties. Firstly, for the space density of radiation in a vacuum

we^have, according to Maxwell's theory,

u =~ (^+17+E?+H72+IH72+Hl72).

Now the radiation is uniform in all directions and in the stationary
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state, hence the six mean values named are all equal to one

another, and it follows that

u=
l^*' (151)

Let us substitute in this equation the value of Ez as given by (149) .

Squaring the latter and integrating term by term through a

time interval, from to t, assumed large in comparison with all

periods of vibration - but otherwise arbitrary, and then divid-
v

ing by t, we obtain, since the radiation is perfectly stationary,

=-

From this relation we may at once draw an important conclu-

sion as to the nature of Ez as a function of time. Namely,
since the Fourier's series (149) consists, as we have seen, of a

great many terms, the squares, Cn
2

,
of the separate amplitudes

of vibration the sum of which gives the space density of radiation,

must have exceedingly small values. Moreover in the integral of

the square of the Fourier's series the terms which depend on the

time t and contain the products of any two different amplitudes

all cancel; hence the amplitudes Cn and the phase-constants 6n

must vary from one ordinal number to another in a quite irregular

manner. We may express this fact by saying that the separate

partial vibrations of the series are very small and in a
" chaotic" 1

state.

For the specific intensity of the radiation travelling in any
direction whatever we obtain from (21)

110. Let us now perform the spectral resolution of the last two

equations. To begin with we have from (22) :

On the right side of the equation the sum ^ consists of separate

1 Compare footnote to page 116 (Tr.).
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terms, every one of which corresponds to a separate ordinal

number n and to a simple periodic partial vibration. Strictly

speaking this sum does not represent a continuous sequence of

frequencies v, since n is an integral number. But n is, according
to (150), so enormously large for all frequencies which need be

considered that the frequencies v corresponding to the successive

values of n lie very close together. Hence the interval dv,

though infinitesimal compared with v, still contains a large

number of partial vibrations, say nf

,
where

dv =^ (155)

If now in (154) we equate, instead of the total energy densities,

the energy densities corresponding to the interval dv only,

which are independent of those of the other spectral regions, we
obtain

n+ n'

or, according to (155),
n+ n'

where we denote by Cn
2 the average value of Cn

2 in the interval

from n to n+n'. The existence of such an average value, the

magnitude of which is independent of n, provided n' be taken

small compared with n, is, of course, not self-evident at the

outset, but is due to a special property of the function Ez which is

peculiar to stationary heat radiation. On the other hand, since

many terms contribute to the mean value, nothing can be said

either about the magnitude of a separate term Cn
2

,
or about the

connection of two consecutive terms, but they are to be regarded
as perfectly independent of each other.

In a very similar manner, by making use of (24), we find for

the specific intensity of a monochromatic plane polarized ray,

travelling in any direction whatever,
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From this it is apparent, among other things, that, according
to the electromagnetic theory of radiation, a monochromatic

light or heat ray is represented, not by a simple periodic wave, but

by a superposition of a large number of simple periodic waves,
the mean value of which constitutes the intensity of the ray. In

accord with this is the fact, known from optics, that two rays of

the same color and intensity but of different origin never interfere

with each other, as they would, of necessity, if every ray were a

simple periodic one.

Finally we shall also perform the spectral resolution of the mean
value of E2

2
, by writing

00

v (158)

Then by comparison with (151), (154), and (156) we find

According to (157), J,, is related to K,,, the specific intensity of

radiation of a plane polarized ray, as follows:

(160)

111. Black radiation is frequently said to consist of a large

number of regular periodic vibrations. This method of expres-

sion is perfectly justified, inasmuch as it refers to the resolution

of the total vibration in a Fourier's series, according to equation

(149), and often is exceedingly well adapted for convenience and

clearness of discussion. It should, however, not mislead us into

believing that such a "regularity" is caused by a special physical

property of the elementary processes of vibration. For the

resolvability into a Fourier's series is mathematically self-evident

and hence, in a physical sense, tells us nothing new. In fact, it

is even always possible to regard a vibration which is damped
to an arbitrary extent as consisting of a sum of regular periodic

partial vibrations with constant amplitudes and constant phases.

On the contrary, it may just as correctly be said that in all^nature

there is no process more complicated than the vibrations of black
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radiation. In particular, these vibrations do not depend in any
characteristic manner on the special processes that take place

in the centers of emission of the rays, say on the period or the

damping of the emitting particles; for the normal spectrum is

distinguished from all other spectra by the very fact that all

individual differences caused by the special nature of the emitting
substances are perfectly equalized and effaced. Therefore to

attempt to draw conclusions concerning the special properties

of the particles emitting the rays from the elementary vibra-

tions in the rays of the normal spectrum would be a hopeless

undertaking.

In fact, black radiation may just as well be regarded as con-

sisting, not of regular periodic vibrations, but of absolutely

irregular separate impulses. The special regularities, which we
observe in monochromatic light resolved spectrally, are caused

merely by the special properties of the spectral apparatus used,

e.g., the dispersing prism (natural periods of the molecules), or

the diffraction grating (width of the slits). %
Hence it is also in-

correct to find a characteristic difference between light rays and

Roentgen rays (the latter assumed as an electromagnetic process

in a vacuum) in the circumstance that in the former the vibra-

tions take place with greater regularity. Roentgen rays may,
under certain conditions, possess more selective properties than

light rays. The resolvability into a Fourier's series of partial

vibrations with constant amplitudes and constant phases exists

for both kinds of rays in precisely the same manner. What

especially distinguishes light vibrations from Roentgen vibrations

is the much smaller frequency of the partial vibrations of the

former. To this is due the possibility of their spectral resolution,

and probably also the far greater regularity of the changes of the

radiation intensity in every region of the spectrum in the course of

time, which, however, is not caused by a special property of the

elementary processes of vibration, but merely by the constancy

of the mean values.

112. The elementary processes of radiation exhibit regularities

only when the vibrations are restricted to a narrow spectral region,

that is to say in the case of spectroscopically resolved light, and

especially in the case of the natural spectral lines. If, e.g., the

amplitudes Cn of the Fourier's series (149) differ from zero only
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between the ordinal numbers n = n Q and n = n\, where -

UQ

is small, we may write

(161)
\ I /

where
m

n n ^n /2Tr(n-no)t
CQ COS 0Q = J>j Cn COS I

Co sin 0o=- >,Cn sin
(

- -

and Ez may be regarded as a single approximately periodic vibra-

tion of frequency VQ = with an amplitude Co and a phase-

constant 6 Q which vary slowly and irregularly.

The smaller the spectral region, and accordingly the smaller

,
the slower are the fluctuations ("Schwankungen") of

UQ

Co and
,
and the more regular is the resulting vibration and also

the larger is the difference of path for which radiation can inter-

fere with itself. If a spectral line were absolutely sharp, the

radiation would have the property of being capable of interfering

with itself for differences of path of any size whatever. This

case, however, according to Sec. 18, is an ideal abstraction, never

occurring in reality.





PART III

ENTROPY AND PROBABILITY





CHAPTER I

FUNDAMENTAL DEFINITIONS AND LAWS.
HYPOTHESIS OF QUANTA

113. Since a wholly new element, entirely unrelated to the

fundamental principles of electrodynamics, enters into the range
of investigation with the introduction of probability considera-

tions into the electrodynamic theory of heat radiation, the ques-
tion arises at the outset, whether such considerations are justi-

fiable and necessary. At first sight we might, in fact, be inclined

to think that in a purely electrodynamical theory there would be

no room at all for probability calculations. For since, as is well

known, the electrodynamic equations of the field together with

the initial and boundary conditions determine uniquely the way
in which an electrodynamical process takes place, in the course

of time, considerations which lie outside of the equations of the

field would seem, theoretically speaking, to be uncalled for and in

any case dispensable. For either they lead to the same results

as the fundamental equations of electrodynamics and then they
are superfluous, or they lead to different results and in this case

they are wrong.
In spite of this apparently unavoidable dilemma, there is a

flaw in the reasoning. For on closer consideration it is seen

that what is understood in electrodynamics by
"
initial and

boundary" conditions, as well as by the "way in which a process

takes place in the course of time," is entirely different from what

is denoted by the same words in thermodynamics. In order to

make this evident, let us consider the case of radiation in vacuo,

uniform in all directions, which was treated in the last chapter.

From the standpoint of thermodynamics the state of radiation

is completely determined, when the intensity of monochromatic

radiation K,, is given for all frequencies, v. The electrodynamical

observer, however, has gained very little by this single statement;

because for him a knowledge of the state requires that every one

8 113
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of the six components of the electric and magnetic field-strength

be given at all points of the space; and, while from the thermo-

dynamic point of view the question as to the way in which the

process takes place in time is settled by the constancy of the

intensity of radiation Ky ,
from the electrodynamical point of

view it would be necessary to know the six components of the

field at every point as functions of the time, and hence the ampli-

tudes Cn and the phase-constants 6n of all the several partial

vibrations contained in the radiation would have to be calculated.

This, however, is a problem whose solution is quite impossible,

for the data obtainable from the measurements are by no

means sufficient. The thermodynamically measurable quan-

tities, looked at from the electrodynamical standpoint, represent

only certain mean values, as we saw in the special case of

stationary radiation in the last chapter.

We might now think that, since in thermodynamic measure-

ments we are always concerned with mean values only, we need

consider nothing beyond these mean values, and, therefore, need

not take any account of the particular values at all. This method

is, however, impracticable, because frequently and that too just

in the most important cases, namely, in the cases of the processes

of emission and absorption, we have to deal with mean values

which cannot be calculated unambiguously by electrodynamical

methods from the measured mean values. For example, the

mean value of Cn cannot be calculated from the mean value of

Cn
2

,
if no special information as to the particular values of Cn is

available.

Thus we see that the electrodynamical state is not by any
means determined by the thermodynamic data and that in cases

where, according to the laws of thermodynamics and according

to all experience, an unambiguous result is to be expected, a purely

electrodynamical theory fails entirely, since it admits not one

definite result, but an infinite number of different results.

114. Before entering on a further discussion of this fact and

of the difficulty to which it leads in the electrodynamical theory

of heat radiation, it may be pointed out that exactly the same case

and the same difficulty are met with in the mechanical theory of

heat, especially in the kinetic theory of gases. For when, for

example, in the case of a gas flowing out of an opening at the time
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=
0, the velocity, the density, and the temperature are given

at every point, and the boundary conditions are completely

known, we should expect, according to all experience, that these

data would suffice for a unique determination of the way in which

the process takes place in time. This, however, from a purely
mechanical point of view is not the case at all; for the positions

and velocities of all the separate molecules are not at all given

by the visible velocity, density, and temperature of the gas, and

they would have to be known exactly, if the way in which the

process takes place in time had to be completely calculated from

the equations of motion. In fact, it is easy to show that, with

given initial values of the visible velocity, density, and tempera-

ture, an infinite number of entirely different processes is mechan-

ically possible, some of which are in direct contradiction to the

principles of thermodynamics, especially the second principle.

115. From these considerations we see that, if we wish to cal-

culate the way in which a thermodynamic process takes place

in time, such a formulation of initial and boundary conditions

as is perfectly sufficient for a unique determination of the process

in thermodynamics, does not suffice for the mechanical theory of

heat or for the electrodynamical theory of heat radiation. On
the contrary, from the standpoint of pure mechanics or electro-

dynamics the solutions of the problem are infinite in number.

Hence, unless we wish to renounce entirely the possibility of

representing the thermodynamic processes mechanically or elec-

trodynamically, there remains only one way out of the difficulty,

namely, to supplement the initial and boundary conditions by

special hypotheses of such a nature that the mechanical or

electrodynamical equations will lead to an unambiguous result

in agreement with experience. As to how such an hypothesis

is to be formulated, no hint can naturally be obtained from the

principles of mechanics or electrodynamics, for they leave the

question entirely open. Just on that account any mechanical or

electrodynamical hypothesis containing some further specializa-

tion of the given initial and boundary conditions, which cannot

be tested by direct measurement, is admissible a priori. What

hypothesis is to be preferred can be decided only by testing the

results to which it leads in the light of the thermodynamic prin-

ciples based on experience.
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116. Although, according to the statement just made, a deci-

sive test of the different admissible hypotheses can be made only
a posteriori, it is nevertheless worth while noticing that it is possi-
ble to obtain a priori, without relying in any way on thermody-
namics, a definite hint as to the nature of an admissible hypothesis.
Let us again consider a flowing gas as an illustration (Sec. 114).
The mechanical state of all the separate gas molecules is not at

all completely defined by the thermodynamic state of the gas,
as has previously been pointed out. If, however, we consider all

conceivable positions and velocities of the separate gas molecules,
consistent with the given values of the visible velocity, density,
and temperature, and calculate for every combination of them the

mechanical process, assuming some simple law for the impact
of two molecules, we shall arrive at processes, the vast majority
of which agree completely in the mean values, though perhaps
not in all details. Those cases, on the other hand, which show

appreciable deviations, are vanishingly few, and only occur

when certain very special and far-reaching conditions between the

coordinates and velocity-components of the molecules are

satisfied. Hence, if the assumption be made that such special

conditions do not exist, however different the mechanical details

may be in other respects, a form of flow of gas will be found,
which may be called quite definite with respect to all measurable

mean values and they are the only ones which can be tested

experimentally although it will not, of course, be quite definite

in all details. And the remarkable feature of this is that it is

just the motion obtained in this manner that satisfies the postu-
lates of the second principle of thermodynamics.

117. From these considerations it is evident that the hypothe-
ses whose introduction was proven above to be necessary com-

pletely answer their purpose, if they state nothing more than that

exceptional cases, corresponding to special conditions which exist

between the separate quantities determining the state and which
cannot be tested directly, do not occur in nature. In mechanics

this is done by the hypothesis
1 that the heat motion is a " molecu-

lar chaos";
2 in electrodynamics the same thing is accomplished

1 L. Boltzmann, Vorlesungen uber Gastheorie 1, p. 21, 1896. Wiener Sitzungsberichte

78, Juni, 1878, at the end. Compare also S. H. Burbury, Nature, 51, p. 78, 1894.
2 Hereafter Boltzmann's "Unordnung" will be rendered by chaos, "ungeordaet" by

chaotic (Tr.).
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by the hypothesis of
"
natural radiation," which states that

there exist between the numerous different partial vibrations (149)

of a ray no other relations than those caused by the measurable

mean values (compare below, Sec. 148). If, for brevity, we
denote any condition or process for whicn such an hypothesis
holds as an "

elemental chaos," the principle, that in nature any
state or any process containing numerous elements not in themselves

measurable is an elemental chaos, furnishes the necessary condition

for a unique determination of the measurable processes in mechan-
ics as well as in electrodynamics and also for the validity of the

second principle of thermodynamics. This must also serve as a

mechanical or electrodynamical explanation of the conception of

entropy, which is characteristic of the second law and of the

closely allied concept of temperature.
1 It also follows from this

that the significance of entropy and temperature is, according to

their nature, connected with the condition of an elemental

chaos. The terms entropy and temperature do not apply to a

purely periodic, perfectly plane wave, since all the quantities in

such a wave are in themselves measurable, and hence cannot be

an elemental chaos any more than a single rigid atom in motion

can. The necessary condition for the hypothesis of an elemental

chaos and with it for the existence of entropy and tempera-
ture can consist only in the irregular simultaneous effect of

very many partial vibrations of different periods, which are

propagated in the different directions in space independent
of one another, or in the irregular flight of a multitude of

atoms.

118. But what mechanical or electrodynamical quantity

represents the entropy of a state? It is evident that this quan-

tity depends in some way on the
"
probability

"
of the state.

For since an elemental chaos and the absence of a record of any
individual element forms an essential feature of entropy, the

tendency to neutralize any existing temperature differences,

which is connected with an increase of entropy, can mean nothing
for the mechanical or electrodynamical observer but that uniform

1 To avoid misunderstanding I must emphasize that the question, whether the hypothesis

of elemental chaos is really everywhere satisfied in nature, is not touched upon by the pre-

ceding considerations. I intended only to show at this point that, wherever this hypothesis

does not hold, the natural processes, if viewed from the thermodynamic (macroscopic) point
of view, do not take place unambiguously.
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distribution of elements in a chaotic state is more probable than

any other distribution.

Now since the concept of entropy as well as the second prin-

ciple of thermodynamics are of universal application, and since

on the other hand the laws of probability have no less universal

validity, it is to be expected that the connection between entropy

and probability should be very close. Hence we make the

following proposition the foundation of our further discussion:

The entropy of a physical system in a definite state depends solely

on the probability of this state. The fertility of this law will be

seen later in several cases. We shall not, however, attempt to

give a strict general proof of it at this point. In fact, such an

attempt evidently would have no meaning at this point. For,

so long as the "probability" of a state is not numerically denned,

the correctness of the proposition cannot be quantitatively

tested. One might, in fact, suspect at first sight that on this

account the proposition has no definite physical meaning. It

may, however, be shown by a simple deduction that it is possible

by means of this fundamental proposition to determine quite

generally the way in which entropy depends on probability,

without any further discussion of the probability of a state.

119. For let S be the entropy, W the probability of a physical

system in a definite state; then the propositon states that

S=f(W) (162)

where /(TF) represents a universal function of the argument W.
In whatever way W may be defined, it can be safely inferred from

the mathematical concept of probability that the probability of

a system which consists of two entirely independent
1
systems

is equal to the product of the probabilities of these two systems

separately. If we think, e.g., of the first system as any body
whatever on the earth and of the second system as a cavity con-

taining radiation on Sirius, then the probability that the terres-

trial body be in a certain state 1 and that simultaneously the

radiation in the cavity in a definite state 2 is

W = WiW2 , (163)
1 It is well known that the condition that the two systems be independent of each other is

essential for the validity of the expression (163) . That it is also a necessary condition for the

additive combination of the entropy was proven first by M. Laue in the case of optically

coherent rays. Annalen d. Physik, 20, p. 365, 1906.
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where Wi and Wz are the probabilities that the systems involved

are in the states in question.

If now Si and $2 are the entropies of the separate systems in

the two states, then, according to (162), we have

But, according to the second principle of thermodynamics, the

total entropy of the two systems, which are independent (see

footnote to preceding page) of each other, is $ = $i+$2 and hence

from (162) and (163)

From this functional equation / can be determined. For on

differentiating both sides with respect to Wi, Wz remaining con-

stant, we obtain

On further differentiating with respect to W2 , Wi now remaining

constant, we get

or

The general integral of this differential equation of the second

order is

f(W)=k\og TF+ const.

Hence from (162) we get

S = k log TF-f const.,

an equation which determines the general way in which the en-

tropy depends on the probability. The universal constant of

integration ..k is the same for a terrestrial as for a cosmic system,

and its value, having been determined for the former, will remain

valid for the latter. The second additive constant of integration

may, without any restriction as regards generality, be included

as a constant multiplier in the quantity W, which here has not yet

been completely denned, so that the equation reduces to

s=k\o%w. ;

120. The logarithmic connection between entropy and prob-

ability was first stated by L. Boltzmann 1 in his kinetic theory of

1 L. Boltzmann, Vorlesungen iiber Gastheorie, 1, Sec. 6.
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gases. Nevertheless our equation (164) differs in its meaning
from the corresponding one of Boltzmann in two essential points.

Firstly, Boltzmann' s equation lacks the factor k, which is due

to the fact that Boltzmann always used gram-molecules, not the

molecules themselves, in his calculations. Secondly, and this is

of greater consequence, Boltzmann leaves an additive constant

undetermined in the entropy S as is done in the whole of classical

thermodynamics, and accordingly there is a constant factor of

proportionality, which remains undetermined in the value of the

probability W.
In contrast with this we assign a definite absolute value to the

entropy S. This is a step of fundamental importance, which

can be justified only by its consequences. As we shall see later,

this step leads necessarily to the "
hypothesis of quanta" and

moreover it also leads, as regards radiant heat, to a definite law

of distribution of energy of black radiation, and, as regards heat

energy of bodies, to Nernst's heat theorem.

From (164) it follows that with the entropy S the probability

W is, of course, also determined in the absolute sense. We shall

designate the quantity W thus defined as the "
thermodynamic

probability," in contrast to the
" mathematical probability," to

which it is proportional but not equal. For, while the mathe-

matical probability is a proper fraction, the thermodynamic

probability is, as we shall see, always an integer.

121. The relation (164) contains a general method for calcu-

lating the entropy S by probability considerations. This,

however, is of no practical value, unless the thermodynamic

probability W of a system in a given state can be expressed

numerically. The problem of finding the most general and most

precise definition of this quantity is among the most important

problems in the mechanical or electrodynamical theory of heat.

It makes it necessary to discuss more fully what we mean by the
"
state" of a physical system.

By the state of a physical system at a certain time we mean the

aggregate of all those mutually independent quantities, which

determine uniquely the way in which the processes in the system
take place in the course of time for given boundary conditions.

Hence a knowledge of the state is precisely equivalent to a knowl-

edge of the "initial conditions." If we now take into account
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the considerations stated above in Sec. 113, it is evident that we
must distinguish in the theoretical treatment two entirely differ-

ent kinds of states, which we may denote as
"
microscopic

" and
"
macroscopic" states. The microscopic state is the state as

described by a mechanical or electrodynamical observer; it con-

tains the separate values of all coordinates, velocities, and field-

strengths. The microscopic processes, according to the laws of

mechanics and electrodynamics, take place in a perfectly unam-

biguous way; for them entropy and the second principle of ther-

modynamics have no significance. The macroscopic state,

however, is the state as observed by a thermodynamic observer;

any macroscopic state contains a large number of microscopic

ones, which it unites in a mean value. Macroscopic processes

take place in an unambiguous way in the sense of the second

principle, when, and only when, the hypothesis of the elemental

chaos (Sec. 117) is satisfied.

122. If now the calculation of the probability W of a state is

in question, it is evident that the state is to be thought of in the

macroscopic sense. The first and most important question is

now: How is a macroscopic state defined? An answer to it will

dispose of the main features of the whole problem.
For the sake of simplicity, let us first consider a special case,

that of a very large number, N, of simple similar molecules. Let

the problem be solely the distribution of these molecules in space
within a given volume, V } irrespective of their velocities, and fur-

ther the definition of a certain macroscopic distribution in space.

The latter cannot consist of a statement of the coordinates of all

the separate molecules, for that would be a definite microscopic
distribution. We must, on the contrary, leave the positions of

the molecules undetermined to a certain extent, and that can be

done only by thinking of the whole volume V as bein^ divided

into a number of small but finite space elements, G, each contain-

ing a specified number of molecules. By any such statement a

definite macroscopic distribution in space is defined. The man-
ner in which the molecules are distributed within every separate

space element is immaterial, for here the hypothesis of elemental

chaos (Sec. 117) provides a supplement, which insures the unam-

biguity of the macroscopic state, in spite of the microscopic
indefiniteness. If we distinguish the space elements in order by
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the numbers 1, 2, 3, and, for any particular macro-

scopic distribution in space, denote the number of the molecules

lying in the separate space elements by Ni, #2, #3 ,

then to every definite system of values #1, #2, #3 ,

there corresponds a definite macroscopic distribution in space.

We have of course always:

#i+#2+#3+ =N (165)

or if

#! #2= Wl =w2 ,

Wi+w2+w s+ =1. (167)

The quantity Wi may be called the density of distribution of the

molecules, or the mathematical probability that any molecule

selected at random lies in the ith space element.

If we now had, e.g., only 10 molecules and 7 space elements, a

definite space distribution would be represented by the values:

#1 = 1, #2 = 2, #3 = 0, #4 = 0, #5 = 1, #6 = 4, #7 = 2, (168)

which state that in the seven space elements there lie respectively

1, 2, 0, 0, 1, 4, 2 molecules.

123. The definition of a macroscopic distribution in space may
now be followed immediately by that of its thermodynamic

probability W. The latter is founded on the consideration that

a certain distribution in space may be realized in many different

ways, namely, by many different individual coordinations or
"
complexions," according as a certain molecule considered will

happen to lie in one or the other space element. For, with a

given distribution of space, it is of consequence only how many, not

which, molecules lie in every space element.

The number of all complexions which are possible with a given
distribution in space we equate to the thermodynamic probability

W of the space distribution.

In order to form a definite conception of a certain complexion,
we can give the molecules numbers, write these numbers in

order from 1 to #, and place below the number of every molecule

the number of that space element to which the molecule in ques-

tion belongs in that particular complexion. Thus the following
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table represents one particular complexion, selected at random,
for the distribution in the preceding illustration

123456789 10
(

.617562266 7

By this the fact is exhibited that the

Molecule 2 lies in space element 1.

Molecules 6 and 7 lie in space element 2.

Molecule 4 lies in space element 5.

Molecules 1, 5, 8, and 9 lie in space element 6.

Molecules 3 and 10 lie in space element 7.

As becomes evident on comparison with (168), this com-

plexion does, in fact, correspond in every respect to the space

distribution given above, and in .a similar manner it is easy to

exhibit many other complexions, which also belong to the same

space distribution. The number of all possible complexions

required is now easily found by inspecting the lower of the two

lines of figures in (169). For, since the number of the molecules

is given, this line of figures contains a definite number of places.

Since, moreover, the distribution in space is also given, the num-
ber of times that every figure (i.e., every space element) appears
in the line is equal to the number of molecules which lie in that

particular space element. But every change in the table gives

a new particular coordination between molecules and space

elements and hence a new complexion. Hence the number of

the possible complexions, or the thermodynamic probability, W,
of the given space distribution, is equal to the number of

"
per-

mutations with repetition" possible under the given conditions.

In the simple numerical example chosen, we get for W, according

to a well-known formula, the expression

-=37,800.
1!2!0!0! 1!4

The form of this expression is so chosen that it may be applied

easily to the general case. The numerator is equal to factorial

N, N being the total number of molecules considered, and the

denominator is equal to the product of the factorials of the num-

bers, Ni, Nz, NB, of the molecules, which lie in every

separate space element and which, in the general case, must be
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thought of as large numbers. Hence we obtain for the required

probability of the given space distribution

AMW =
NS.NS.N,l

(170)

Since all the N's are large numbers, we may apply to their

factorials Stirling's formula, which for a large number may be

abridged
1 to 2

.'-(;)' W
Hence, by taking account of (165), we obtain

IN \
Nl /N\ N* iN\ Ni

w
=(w) U (!) ;

:

I

(172)

124. Exactly the same method as in the case of the space dis-

tribution just considered may be used for the definition of a

macroscopic state and of the thermodynamic probability in the

general case, where not only the coordinates but also the veloci-

ties, the electric moments, etc., of the molecules are to be dealt

with. Every thermodynamic state of a system of N molecules

is, in the macroscopic sense, defined by the statement of the

number of molecules, Ni, N*, Ns, ,
which are con-

tained in the region elements 1, 2, 3, .. . . . . of the "state

space." This state space, however, is not the ordinary three-

dimensional space, but an ideal space of as many dimensions as

there are variables for every molecule. In ather respects the

definition and the calculation of the thermodynamic probability

W are exactly the same as above and the entropy of the state is

accordingly found from (164), taking (166) also into account, to

be

S=-kN2wi\ogwi,. (173)

where the sum S is to be taken over all region elements. It is

obvious from this expression that the entropy is in every case a

positive quantity.

125. By the preceding developments the calculation of the

1 Abridged in the sense that factors which in the logarithmic expression (173) would give
rise to small additive terms have been omitted at the outset. A brief derivation of equation

(173) may be found on p. 218 (Tr.).
2 See for example E. Czuber, Wahrscheinlichkeitsrechnung (Leipzig, B. G. Teubner)

p. 22, 1903; H. Poincar6, Calcul des Probabilites (Paris, Gauthier-Villars), p. 85, 1912.
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entropy of a system of N molecules in a given thermodynamic
state is, in general, reduced to the single problem of rinding the

magnitude G of the region elements in the state space. That

such a definite finite quantity really exists is a characteristic

feature of the theory we are developing, as contrasted with that

due to Boltzmann, and forms the content of the so-called hypo-

thesis of quanta. As is readily seen, this is an immediate conse-

quence of the proposition of Sec. 120 that the entropy S has an

absolute, not merely a relative, value; for this, according to (164),

necessitates also an absolute value for the magnitude of the ther-

modynamic probability W, which, in turn, according to Sec. 123,

is dependent on the number of complexions, and hence also

on the number and size of the region elements which are used.

Since all different complexions contribute uniformly to the value

of the probability W, the region elements of the- state space

represent also regions of equal probability. If this were not so,

the complexions would not be all equally probable.

However, not only the magnitude, but also the shape and posi-

tion of the region elements must be perfectly definite. For since,

in general, the distribution density w is apt to vary appreciably

from one region element to another, a change in the shape of a

region element, the magnitude remaining unchanged, would, in

general, lead to a change in the value of w and hence to a change
in S. We shall see that only in special cases, namely, when the

distribution densities w are very small, may the absolute magni-
tude of the region elements become physically unimportant, inas-

much as it enters into the entropy only through an additive con-

stant. This happens, e.g., at high temperatures, large volumes,

slow vibrations (state of an ideal gas, Sec. 132, Rayleigh's radia-

tion law, Sec. 195). Hence it is permissible for such limiting

cases to assume, without appreciable error, that G is infinitely

small in the macroscopic sense, as has hitherto been the practice

in statistical mechanics. As soon, however, as the distribution

densities w assume appreciable values, the classical statistical

mechanics fail.

126. If now the problem be to determine the magnitude G
of the region elements of equal probability, the laws of the class-

ical statistical mechanics afford a certain hint, since in certain

limiting cases they lead to correct results.
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Let 0i, 02, 03, ..... be the
"
generalized coordinates,"

^i, ^2, ^3, ..... the corresponding "impulse coordinates"

or
"
moments," which determine the microscopic state of a cer-

tain molecule
;
then the state space contains as many dimensions

as there are coordinates and moments
\f/

for every molecule.

Now the region element of probability, according to classical

statistical mechanics, is identical with the infinitely small element

of the state space (in the macroscopic sense)
1

d0id0 2 d0 3 ..... d^idfadtz ..... (174)

According to the hypothesis of quanta, on the other hand,

every region element of probability has a definite finite magnitude

f= I dd>i

J
(175)

whose value is the same for all different region elements and, more-

over, depends on the nature of the system of molecules considered.

The shape and position of the separate region elements are deter-

mined by the limits of the integral and must be determined anew
in every separate case.

1 Compare, for example, L. Boltzmann, Gastheorie, 2, p. 62 et seq., 1898, or J. W. Gibbs,

Elementary principles in statistical mechanics, Chapter I, 1902.



CHAPTER II

IDEAL MONATOMIC GASES

127. In the preceding chapter it was proven that the introduc-

tion of probability considerations into the mechanical and

electrodynamical theory of heat is justifiable and necessary, and

from the general connection between entropy S and probability

W, as expressed in equation (164), a method was derived for cal-

culating the entropy of a physical system in a given state. Before

we apply this method to the determination of the entropy of

radiant heat we shall in this chapter make use of it for calculating

the entropy of an ideal monatomic gas in an arbitrarily given
state. The essential parts of this calculation are already con-

tained in the investigations of L. Boltzmann 1 on the mechanical

theory of heat; it will, however, be advisable to discuss this

simple case in full, firstly to enable us to compare more readily

the method of calculation and physical significance of mechanical

entropy with that of radiation entropy, and secondly, what is

more important, to set forth clearly the differences as compared
with Boltzmann''s treatment, that is, to discuss the meaning of

the universal constant k and of the finite'region elements G. For

this purpose the treatment of a special case is sufficient.

128. Let us then take N similar monatomic gas molecules in

an arbitrarily given thermodynamic state and try to find the

corresponding entropy. The state space is six-dimensional,

with the three coordinates x, y, z, and the three corresponding
moments w, my, m, of a molecule, where we denote the mass

by m and velocity components by , y, . Hence these quantities

are to be substituted for the < and ^ in Sec. 126. We thus obtain

for the size of a region element G the sextuple integral

G =m*da, (176)

where, for brevity
dx dy dz d^drjd^do- (177)

i L. Boltzmann, Sitzungsber. d. Akad. d. Wissensch. zu Wien (II) 76, p. 373, 1877. Com-
pare also Gastheorie, 1, p. 38, 1896.

127
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If the region elements are known, then, since the macroscopic
state of the system of molecules was assumed as known, the

numbers NI, Nz } Ns, ..... of the molecules which lie in

the separate region elements are also known, and hence the dis-

tribution densities Wi, w2 ,
w 3 ,

..... (166) are given and the

entropy of the state follows at once from (173).

129. The theoretical determination of G is a problem as difficult

as it is important. Hence we shall at this point restrict ourselves

from the very outset to the special case in which the distribution

density varies but slightly from one region element to the next

the characteristic feature of the state of an ideal gas. Then the

summation over all region elements may be replaced by the inte-

gral over the whole state space. Thus we have from (176) and

(167)

m C m 3 C
j trj wd* = l

>

in which w is no longer thought of as a discontinuous function

of the ordinal number, i, of the region element,, where i = l,

2, 3, ..... n, but as a continuous function of the variables,

x
) V) z

) > *?> )
of the state space. Since the whole state region

contains very many region elements, it follows, according to

(167) and from the fact that the distribution density w changes

slowly, that w has everywhere a small value.

Similarly we find for the entropy of the gas from (173) :

"^^ ^ ^7 3 /

S=kN^.Wi logwi = kN~- I w logw d<r. (179)^ Cr ^

Of course the whole energy E of the gas is also determined by the

distribution densities w. If w is sufficiently small in every

region element, the molecules contained in any one region
element are, on the average, so far apart that their energy depends

only on the velocities. Hence:

E =

(18 )

where i?7i"i denotes any velocity lying within the region element

1 and EQ denotes the internal energy of the stationary molecules,
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which is assumed constant. In place of the latter expression we
may write, again according to (176),

-w/ZlT J

130. Let us consider the state of thermodynamic equilibrium.

According to the second principle of thermodynamics this state

is distinguished from all others by the fact that, for a given volume
V and a given energy E of the gas, the entropy S is a maximum.
Let us then regard the volume

xdydz (182)

and the energy E of the gas as given. The condition for equi-
librium is S =

0, or, according to (179),

and this holds for any variations of the distribution densities

whatever, provided that, according to (167) and (180), they

satisfy the conditions

This gives us as the necessary and sufficient condition for thermo-

dynamic equilibrium for every separate distribution density w:

log w+/3(
2
+i?

2+r 2
)+ const. =0

or

w = ae-P+'+, (183)

where a and |8 are constants. Hence in the state of equilibrium

the distribution of the molecules in space is independent of

x, y, z, that is, macroscopically uniform, and the distribution of

velocities is the well-known one of Maxwell.

131. The values of the constants a and may be found from

those of V and E. For, on substituting the value of w just

found in (178) and taking account of (177) and (182), we get
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and on substituting w in (181) we get

^NV r / r

~J J J

or

3am*JVF 1
& = J ~\ T^

~~

Solving for a and /3 we have

(184)

From this finally we find, as an expression for the entropy S of

the gas in the state of equilibrium with given values of N, V,

and E,

V i^rem (E-E )\i

G\ (186)

132. This determination of the entropy of an ideal monatomic

gas is based solely on the general connection between entropy and

probability as expressed in equation (164); in particular, we have

at no stage of our calculation made use of any special law of the

theory of gases. It is, therefore, of importance to see how the

entire thermodynamic behavior of a monatomic gas, especially

the equation of state and the values of the specific heats, may be

deduced from the expression found for the entropy directly by
means of the principles of thermodynamics. From the general

thermodynamic equation defining the entropy, namely,

(187)

the partial differential coefficients of S'with respect to E and V
are found to be
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Hence, by using (186), we get for our gas

I) -1 FT-? < 188)
LV V i j Sii 1

and

The second of these equations

P=-y- (19 )

contains the laws of Boyle, Gay Lussac, and Avogadro, the last

named because the pressure depends only on the number N, not

on the nature of the molecules. If we write it in the customary
form:

where n denotes the number of gram molecules or mols of the gas,

referred to 2
=

32gr, and R represents the absolute gas constant

(192)
degree

we obtain by comparison

If we now call the ratio of the number of mols to the number of

molecules
, or, what is the same thing, the ratio of the mass of a

molecule to that of a mol, <o =
,
we shall have

IV

k = o>R. (194)

From this the universal constant k may be calculated, when co is

given, and vice versa. According to (190) this constant k is

nothing but the absolute gas constant, if it 'is referred to mole-

cules instead of mols.

From equation (188)

(195)
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Now, since the energy of an ideal gas is also given by

E = AncvT+E (196)

where cv is the heat capacity of a mol at constant volume in

calories and A is the mechanical equivalent of heat:

(197)
cal

it follows that

_
Cv ~2An

and further, by taking account of (193)

3# 3831X10 5

as an expression for the heat capacity per mol of any monatomic

gas at constant volume in calories. 1

For the heat capacity per mol at constant pressure, cpt we
have as a consequence of the first principle of thermodynamics :

R
cp-c^-

and hence by (198)

bR c 5

as is known to be the case for monatomic gases. It follows from

(195) that the kinetic energy L of the gas molecules is equal to

(200)

133. The preceding relations, obtained simply by identifying
the mechanical expression of the entropy (186) with its thermo-

dynamic expression (187), show the usefulness of the theory

developed. In them an additive constant in the expression for

the entropy is immaterial and hence the size G of the region ele-

ment of probability does not matter. The hypothesis of quanta,

however, goes further, since it fixes the absolute value of the

entropy and thus leads to the same conclusion as the heat theorem

1 Compare F. Richarz, Wiedemann's Annal., 67, p. 705, 1899.
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of Nernst. According to this theorem the "
characteristic func-

tion" of an ideal gas
1
is in our notation

T

where a denotes Nernst's chemical constant, and 6 the energy
constant.

On the other hand, the preceding formulae (186), (188), and

(189) give for the same function <1> the following expression:

/5 \ E
3> = N(-k log T-k log p+a'J --^

\-fl /i
where for brevity a' is put for:

1

\kN -

a! = /clog -(27rw/c)
( e(jr

From a comparison of the two expressions for $ it is seen, by
taking account of (199) and (193), that they agree completely,

provided

N .

/rt

(27rm)
iv

(201)

n

This expresses the relation between the chemical constant a of

the gas and the region element G of the probability.
2

It is seen that G is proportional to the total number, N}
of the

molecules. Hence, if we put G = Ng,we see that g}
the molecular

region element, depends only on the chemical nature of the gas.

Obviously the quantity g must be closely connected with the

law, so far unknown, according to which the molecules act micro-

scopically on one another. Whether the value of g varies with

the nature of the molecules or whether it is the same for all

kinds of molecules, may be left undecided for the present.

1 E.g., M. Planck, Vorlesungen uber Thermodynamik, Leipzig, Veit und Comp., 1911,

Sec. 287, equation 267.
2 Compare also O. Sackur, Annal. d. Physik, 36, p. 958, 1911, Nernst-Festschrift, p. 405,

1912, and H. Tetrode, Annal. d. Physik, 38, p. 434, 1912.
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If g were known, Nernst's chemical constant, a, of the gas

could be calculated from (201) and the theory could thus be

tested. For the present the reverse only is feasible, namely, to

calculate g from a. For it is known that a may be measured

directly by the tension of the saturated vapor, which at suffi-

ciently low temperatures satisfies the simple equation
1

(202)

(where r is the heat of vaporization of a mol at in calories).

When a has been found by measurement, the size g of the mo-
lecular region element is found from (201) to be

(203)
*
./

Let us consider the dimensions of g.

According to (176) g is of the dimensions [erg
3sec 3

]. The
same follows from the present equation, whenwe consider that the

dimension of the chemical constant a is not, as might at first be

P
thought, that of R, but, according to (202), that of R log

T
134. To this we may at once add another quantitative rela-

tion. All the preceding calculations rest on the assumption that

the distribution density w and hence also the constant a in

(183) are small (Sec. 129). Hence, if we take the value of a
from (184) and take account of (188), (189) and (201), it follows

that

p ---i
&e

R must be small.

When this relation is not satisfied, the gas cannot be in the ideal

state. For the saturated vapor it follows then from (202) that
_Aro

e RT is small. In order, then, that a saturated vapor may be

assumed to be in the state of an ideal gas, the temperature T
A r

must certainly be less than r or . Such a restriction is un-
H 2

known to the classical thermodynamics.

1 M. Planck, 1. c., Sec. 288, equation 271.



CHAPTER III

IDEAL LINEAR OSCILLATORS

135. The main problem of the theory of heat radiation is to

determine the energy distribution in the normal spectrum of

black radiation, or, what amounts to the same thing, to find the

function which has been left undetermined in the general expres-

sion of Wien's displacement law (119), the function which con-

nects the entropy of a certain radiation with its energy. The

purpose of this chapter is to develop some preliminary theorems

leading to this solution. Now since, as we have seen in Sec. 48,

the normal energy distribution in a diathermanous medium can-

not be established unless the medium exchanges radiation with

an emitting and absorbing substance, it will be necessary for the

treatment of this problem to consider more closely the processes

which cause the creation and the destruction of heat rays, that is,

the processes of emission and absorption. In view of the complex-

ity of these processes and the difficulty of acquiring knowledge of

any definite details regarding them, it would indeed be quite

hopeless to expect to gain any certain results in this way, if it

were not possible to use as a reliable guide in this obscure region

the law of Kirchhoff derived in Sec. 51. This law states that a

vacuum completely enclosed by reflecting walls, in which any

emitting and absorbing bodies are scattered in any arrangement

whatever, assumes in the course of time the stationary state of

black radiation, which is completely determined by one parame-
ter only, namely, the temperature, and in particular does not

depend on the number, the nature, and the arrangement of the

material bodies present. Hence, for the investigation of the

properties of the state of black radiation the nature of the bodies

which are assumed to be in the vacuum is perfectly immaterial.

In fact, it does not even matter whether such bodies really exist

somewhere in nature, provided their existence and their proper-

ties are consistent with the laws of thermodynamics and electro-

135
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dynamics. If, for any special arbitrary assumption regarding the

nature and arrangement of emitting and absorbing systems, we
can find a state of radiation in the surrounding vacuum which is

distinguished by absolute stability, this state can be no other

than that of black radiation.

Since, according to this law, we are free to choose any system

whatever, we now select from all possible emitting and absorbing

systems the simplest conceivable one, namely, one consisting

of a large number N of similar stationary oscillators, each consist-

ing of two poles, charged with equal quantities of electricity of

opposite sign, which may move relatively to each other on a fixed

straight line, the axis of the oscillator.

It is true that it would be more general and in closer accord with

the conditions in nature to assume the vibrations to be those of an

oscillator consisting of two poles, each of which has three degrees

of freedom of motion instead of one, i.e., to assume the vibrations

as taking place in space instead of in a straight line only. Never-

theless we may, according to the fundamental principle stated

above, restrict ourselves from the beginning to the treatment of

one single component, without fear of any essential loss of

generality of the conclusions we have in view.

It might, however, be questioned as a matter of principle,

whether it is really permissible to think of the centers of mass

of the oscillators as stationary, since, according to the kinetic

theory of gases, all material particles which are contained in

substances of finite temperature and free to move possess a cer-

tain finite mean kinetic energy of translatory motion. This

objection, however, may also be removed by the consideration

that the velocity is not fixed by the kinetic energy alone. We
need only think of an oscillator as being loaded, say at its positive

pole, with a comparatively large inert mass, which is perfectly

neutral electrodynamically, in order to decrease its velocity for a

given kinetic energy below any preassigned value whatever. Of

course this consideration remains valid also, if, as is now frequently

done, all inertia is reduced to electrodynamic action. For this

action is at any rate of a kind quite different from the one to be

considered in the following, and hence cannot influence it.

Let the state of such an oscillator be completely determined

by its moment /(O, that is, by the product of the electric charge
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of the pole situated on the positive side of the axis and the pole

distance, and by the derivative of / with respect to the time or

(204)

Let the energy of the oscillator be of the following simple form:

Z7 =W2+i/ 2
, (205)

where K and L denote positive constants, which depend on the

nature of the oscillator in some way that need not be discussed

at this point.

If during its vibration an oscillator neither absorbed nor

emitted any energy, its energy of vibration, U, would remain

constant, and we would have :

dU = Kfdf+Lfdf= 0, (205 a)

or, on account of (204),

Kf(t)+Lf(t) = 0. (206)

The general solution of this differential equation is found to be a

purely periodical vibration:

/=Ccos (2jrvt-e) (207)

where C and 8 denote the integration constants and v the number
of vibrations per unit time:

'-sVf (208)

136. If now the assumed system of oscillators is in a space
traversed by heat rays, the energy of vibration, U, of an oscillator

will not in general remain constant, but will be always changing

by absorption and emission of energy. Without, for the present,

considering in detail the laws to which these processes are subject,
let us consider any one arbitrarily given thermodynamic state

of the oscillators and calculate its entropy, irrespective of the

surrounding field of radiation. In doing this we proceed entirely

according to the principle advanced in the two preceding chapters,

allowing, however, at every stage for the conditions caused by
the peculiarities of the case in question.

The first question is: What determines the thermodynamic
state of the system considered? For this purpose, according to
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Sec. 124, the numbers JVi, Nz ,
Ns ,

of the oscillators,

which lie in the region elements 1, 2, 3, . . . . . of the "
state

space
" must be given. The state space of an oscillator contains

those coordinates which determine the microscopic state of an

oscillator. In the case in question these are only two in number,

namely, the moment/ and the rate at which it varies, /, or instead

of the latter the quantity

+ =Lf, (209)

which is of the dimensions of an impulse. The region element

of the state plane is, according to the hypothesis of quanta

(Sec. 126), the double integral

t = h. (210)

The quantity h is the same for all region elements. A priori,

it might, however, depend also on the nature of the system con-

sidered, for example, on the frequency of the oscillators. The

following simple consideration, however, leads to the assumption
that h is a universal constant. We know from the generalized

displacement law of Wien (equation 119) that in the universal

function, which gives the entropy radiation as dependent on the

energy radiation, there must appear a universal constant of the

C
3U

dimension - and this is of the dimension of a quantity of action 1

v
z

(erg sec.). Now, according to (210), the quantity h has precisely

this dimension, on which account we may denote it as "element

of action" or "quantity element of action." Hence, unless a

second constant also enters, h cannot depend on any other phys-
ical quantities.

137. The principal difference, compared with the calculations

for an ideal gas in the preceding chapter, lies in the fact that we
do not now assume the distribution densities Wi,w 2,w s

of the oscillators among the separate region elements to vary but

little from region to region as was assumed in Sec. 129. Accord-

ingly the w's are not small, but finite proper fractions, and the

summation over the region elements cannot be written as an

integration.

1 The quantity from which the principle of least action takes its name. (Tr.)
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In the first place, as regards the shape of the region elements,

the fact that in the case of undisturbed vibrations of an oscillator

the phase is always changing, whereas the amplitude remains

constant, leads to the conclusion that, for the macroscopic state

of the oscillators, the amplitudes only, not the phases, must be

considered, or in other words the region elements in the fa plane

are bounded by the curves C = const., that is, by ellipses, since

from (207) and (209)

The semi-axes of such an ellipse are :

a = Cand& = 27rj>LC. (212)

Accordingly the region elements 1, 2, 3, ..... n .....
are the concentric, similar, and similarly situated elliptic rings,

which are determined by the increasing values of C :

0, Ci, C 2 ,
C8 ,

..... - Cn ..... (213)

The nth region element is that which is bounded by the ellipses

C = C rl
-

l
and C = Cn . The first region element is the full

ellipse Ci. All these rings have the same area A, which is found

by subtracting the area of the full ellipse Cn _i from that of the

full ellipse Cn ;
hence

h= (anbn-an- l
bn- l )w

or, according to (212),

ft = (Cn
2-CM _i

2
) 27r

2
j>L,

where n = l, 2, 3, .....
From the additional fact that C =

0, it follows that :

Thus the semi-axes of the bounding ellipses are in the ratio of

the square roots of the integral numbers.

138. The thermodynamic state of the system of oscillators

is fixed by the fact that the values of the distribution densities

Wi, W2, Ws, ..... of the oscillators among the separate

region elements are given. Within a region element the distri-

bution of the oscillators is according to the law of elemental

chaos (Sec. 122), i.e., it is approximately uniform.
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These data suffice for calculating the entropy S as well as the

energy E of the system in the given state, the former quantity

directly from (173), the latter by the aid of (205). It must be

kept in mind in the calculation that, since the energy varies

appreciably within a region element, the energy En of all those

oscillators which lie in the nth region element is to be found by an

integration. Then the whole energy E of the system is:

E = E!+E2+ ..... En+ ..... (215)

En may be calculated with the help of the law that within every

region element the oscillators are uniformly distributed. If the

nth region element contains, all told, Nn oscillators, there are per
Nn Nn

unit area -~ oscillators and hence - -
df-d\l/ per element of area.

h h

Hence we have:

h

In performing the integration, instead of / and ^ we take C and <,

as new variables, and since according to (211),

/=(7 cos \l/
= 2irvLC sin

<f> (216)

we get:

UCdC
h

to be integrated with respect to 4> from to 2ir and with respect

to C from Cw _ f to Cn . If we substitute from (205), (209)

and (216)

U = iKC 2
, (217)

we obtain by integration

and from (214) and (208):

that is, the mean energy of an oscillator in the nth region element

is (n %)hv. This is exactly the arithmetic mean of the energies

(n \)hv and rihv which correspond to the two ellipses C = Cn-i

and C = Cn bounding the region, as may be seen from (217), if

the values of Cft-i and Cn are therein substituted from (214).
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The total energy E is, according to (215),
n = oo

= Nhv

139. Let us now consider the state of thermodynamic equi-

librium of the oscillators. According to the second principle of

thermodynamics, the entropy S is in that case a maximum for a

given energy E. Hence we assume E in (219) as given. Then

from (179) we have for the state of equilibrium:

i

where according to (167) and (219)
00 00

SSwn = and S(n-i)5tyn =
i i

From these relations we find:

log wn+/3n+ const. =

or

wn = <*Y*. (220)

The values of the constants a and 7 follow from equations (167)

and (219) :

= ^
2E-Nhv 2E+Nhv

Since wn is essentially positive it follows that equilibrium is not

possible in the system of oscillators considered unless the total

Nhv
energy E has a greater value than -, that is unless the mean

2

hv
energy of the oscillators is at least -

This, according to

(218), is the mean energy of the oscillators lying in the first

region element. In fact, in this extreme case all N oscillators

lie in the first region element, the region of smallest energy;

within this element they are arranged uniformly.

The entropy S of the system, which is in thermodynamic

equilibrium, is found by combining (173) with (220) and (221)
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140. The connection between energy and entropy just obtained

allows furthermore a certain conclusion as regards the tempera-

ture. For from the equation of the second principle of thermo-

dE
dynamics, dS = - and from differentiation of (222) with respect

to E it follows that

i^Wl*^4
1 e kT \^ kT l/\ I

Hence, for the zero point of the absolute temperature E becomes,
hv

not 0, but N This is the extreme case discussed in the pre-
2

ceding paragraph, which just allows thermodynamic equilibrium
to exist. That the oscillators are said to perform vibrations even

at the temperature zero, the mean energy of which is as large as

hv
and hence may become quite large for rapid vibrations, may

at first sight seem strange. It seems to me, however, that certain

facts point to the existence, inside the atoms, of vibrations

independent of the temperature and supplied with appreciable

energy, which need only a small suitable excitation to become

evident externally. For example, the velocity, sometimes very

large, of secondary cathode rays produced by Roentgen rays,

and that of electrons liberated by photoelectric effect are inde-

pendent of the temperature of the metal and of the intensity of

the exciting radiation. Moreover the radioactive energies are

also independent of the temperature. It is also well known that

the close connection between the inertia of matter and its energy
as postulated by the relativity principle leads to the assumption
of very appreciable quantities of intra-atomic energy even at the

zero of absolute temperature.
For the extreme case, T = oo

,
we find from (223) that

E^NkT, (224)

i.e., the energy is proportional to the temperature and indepen-

dent of the size of the quantum of action, h, and of the nature of

the oscillators. It is of interest to compare this value of the

energy of vibration E of the system of oscillators, which holds at

high temperatures, with the kinetic energy L of the molecular
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motion of an ideal monatomic gas at the same temperature as

calculated in (200). From the comparison it follows that

E = IL (225)

This simple relation is caused by the fact that for high tem-

peratures the contents of the hypothesis of quanta coincide with

those of the classical statistical mechanics. Then the absolute

magnitude of the region element, G or h respectively, becomes

physically unimportant (compare Sec. 125) and we have the

simple law of equipartition of the energy among all variables in

question (see below Sec. 169). The factor fin equation (225)

is due to the fact that the kinetic energy of a moving molecule

depends on three variables (, r?, ,) and the energy of a vibrating

oscillator on only two (/, ^).

The heat capacity of the system of oscillators in question is,

from (223),
hv

dT~
Nk

(kT/ "IT (226)

(e*r-l)

It vanishes for T = and becomes equal to Nk for T = .

A. Einstein 1 has made an important application of this equation

to the heat capacity of solid bodies, but a closer discussion of

this would be beyond the scope of the investigations to be made
in this book.

For the constants a and 7 in the expression (220) for the dis-

tribution density w we find from (221) :

hv hv

kT (227)

and finally for the entropy S of our system as a function of tem-

perature :

hv

= kN
kT

-log! l-e

hv

'kT

(228)

1 A. Einstein, Ann. d. Phys. 22, p. 180, 1907. Compare alsoM . Born uud Th. von Kdrman,
Phys. Zeitschr. 13, p. 297, 1912.



CHAPTER IV

DIRECT CALCULATION OF THE ENTROPY IN THE
CASE OF THERMODYNAMIC EQUILIBRIUM

141. In the calculation of the entropy of an ideal gas and of a

system of resonators, as carried out in the preceding chapters, we

proceeded in both cases, by first determining the entropy for an

arbitrarily given state, then introducing the special condition of

thermodynamic equilibrium, i.e., of the maximum of entropy,
and then deducing for this special case an expression for the

entropy.

If the problem is only the determination of the entropy in the

case of thermodynamic equilibrium, this method is a roundabout

one, inasmuch as it requires a number of calculations, namely,
the determination of the separate distribution densities w\, w^
Ws, . . . . . . which do not enter separately into the final

result. It is therefore useful to have a method which leads

directly to the expression for the entropy of a system in the state

of thermodynamic equilibrium, without requiring any considera-

tion of the state of thermodynamic equilibrium. This method
is based on an important general property of the thermodynamic

probability of a state of equilibrium.

We know that there exists between the entropy S and the ther-

modynamic probability W in any state whatever the general
relation (164). In the state of thermodynamic equilibrium both

quantities have maximum values; hence, if we denote the maxi-

mum values by a suitable index:

Sm = k\ogWm . (229)

It follows from the two equations that :

Now, when the deviation from thermodynamic equilibrium is at
o or

all appreciable, is certainly a very large number. Accord-
A/

144
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ingly Wm is not only large but of a very high order large, com-

pared with W, that is to say: The thermodynamic probability

of the state of equilibrium is enormously large compared with the

thermodynamic probability of all states which, in the course of

time, change into the state of equilibrium.

This proposition leads to the possibility of calculating Wm

with an accuracy quite sufficient for the determination of Sm ,

without the necessity of introducing the special condition of

equilibrium. According to Sec. 123, et seq., Wm is equal to the

number of all different complexions possible in the state of thermo-

dynamic equilibrium. This number is so enormously large com-

pared with the number of complexions of all states deviating from

equilibrium that we commit no appreciable error if we think of

the number of complexions of all states, which as time goes on

change into the state of equilibrium, i.e., all states which are at

all possible under the given external conditions, as being included

in this number. The total number of all possible complexions

may be calculated much more readily and directly than the

number of complexions referring to the state of equilibrium only.

142. We shall now use the method just formulated to calculate

the entropy, in the state of equilibrium, of the system of ideal

linear oscillators considered in the last chapter, when the total

energy E is given. The notation remains the same as above.

We put then Wm equal to the number of complexions of all

states which are at all possible with the given energy E of the

system. Then according to (219) we have the condition:

Whereas we have so far been dealing with the number of complex-
ions with given Nn ,

now the Nn are also to be varied in all ways
consistent with the condition (230).

The total number of all complexions is obtained in a simple

way by the following consideration. We write, according to

(165), the condition (230) in the following form:

10
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or

-f-f-P.

'

(231)
hv 2

P is a given large positive number, which may, without

restricting the generality, be taken as an integer.

According to Sec. 123 a complexion is a definite assignment of

every individual oscillator to a definite region element 1, 2,

3, ..... of the state plane (/, ^). Hence we may charac-

terize a certain complexion by thinking of the N oscillators as

being numbered from I to N and, when an oscillator is assigned

to the nth region element, writing down the number of the

oscillator (n 1) times. If in any complexion an oscillator is

assigned to the first region element its number is not put down at

all. Thus every complexion gives a certain row of figures, and

vice versa to every row of figures there corresponds a certain com-

plexion. The position of the figures in the row is immaterial.

What makes this form of representation useful is the fact that

according to (231) the number of figures in such a row is always

equal to P. Hence we have "combinations with repetitions of

N elements taken P at a time," whose total number is

(N+2) .....
12 3 ..... P (N-l)\Pl

If for example we had N = 3 and P = 4 all possible complexions

would be represented by the rows of figures:

1111 1133 2222

1112 1222 2223

1113 1223 2233

1122 1233 2333

1123 1333 3333

The first row denotes that complexion in which the first oscil-

lator lies in the 5th region element and the two others in the first.

The number of complexions in this case is 15, in agreement with

the formula.

143. For the entropy S of the system of oscillators which is
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in the state of thermodynamic equilibrium we thus obtain from

equation (229) since N and P are large numbers :

and by making use of Stirling's formula (17 1)

If we now replace P by E from (231) we find for the entropy

exactly the same value as given by (222) and thus we have

demonstrated in a special case both the admissibility and the

practical usefulness of the method employed.
2

1 Compare footnote to page 124. See also page 218.
2 A complete mathematical discussion of the subject of this chapter has been given by

H. A. Lorentz. Compare, e. g., Nature, 92, p. 305, Nov. 6, 1913. (Tr.)





PART IV

SYSTEM OF OSCILLATORS IN A STATION-
ARY FIELD OF RADIATION





CHAPTER I

THE ELEMENTARY DYNAMICAL LAW FOR THE
VIBRATIONS OF AN IDEAL OSCILLATOR.
HYPOTHESIS OF EMISSION OF QUANTA

144. All that precedes has been by way of preparation. Before

taking the final step, which will lead to the law of distribution of

energy in the spectrum of black radiation, let us briefly put

together the essentials of the problem still to be solved. As we
have already seen in Sec. 93, the whole problem amounts to the

determination of the temperature corresponding to a mono-
chromatic radiation of given intensity. For among all conceiv-

able distributions of energy the normal one, that is, the one

peculiar to black radiation, is characterized by the fact that in it

the rays of all frequencies have the same temperature. But the

temperature of a radiation cannot be determined unless it be

brought into thermodynamic equilibrium with a system of mole-

cules or oscillators, the temperature of which is known from other

sources. For if we did not consider any emitting and absorbing
matter there would be no possibility of defining the entropy and

temperature of the radiation, and the simple propagation of free

radiation would be a reversible process, in which the entropy and

temperature of the separate pencils would not undergo any

change. (Compare below Sec. 166.)

Now we have deduced in the preceding section all the charac-

teristic properties of the thermodynamic equilibrium of a system
of ideal oscillators. Hence, if we succeed in indicating a state of

radiation which is in thermodynamic equilibrium with the system
of oscillators, the temperature of the radiation can be no other

Hhan that of the oscillators, and therewith the problem is solved.

145. Accordingly we now return to the considerations of Sec.

135 and assume a system of ideal linear oscillators in a stationary

field of radiation. In order to make progress along the line

proposed, it is necessary to know the elementary dynamical law,

151
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according to which the mutual action between an oscillator and the

incident radiation takes place, and it is moreover easy to see that

this law cannot be the same as the one which the classical electro-

dynamical theory postulates for the vibrations of a linear Hertzian

oscillator. For, according to this law, all the oscillators, when

placed in a stationary field of radiation, would, since their

properties are exactly similar, assume the same energy of vibra-

tion, if we disregard certain irregular variations, which, however,
will be smaller, the smaller we assume the damping constant of

the oscillators, that is, the more pronounced their natural vibra-

tion is. This, however, is in direct contradiction to the

definite discrete values of the distribution densities wi, w^
w 3 ,

which we have found in Sec. 139 for the stationary
state of the system of oscillators. The latter allows us to conclude

with certainty that in the dynamical law to be established the

quantity element of action h must play a characteristic part.

Of what nature this will be cannot be predicted a priori; this much^
however, is certain, that the only type of dynamical law admis-

sible is one that will give for the stationary state of the oscillators

exactly the distribution densities w calculated previously. It is in

this problem that the question of the dynamical significance of the

quantum of action h stands for the first time in the foreground,
a question the answer to which was unnecessary for the calcula-

tions of the preceding sections, and this is the principal reason

why in our treatment the preceding section was taken up first.

146. In establishing the dynamical law, it will be rational to

proceed in such a way as to make the deviation from the laws of

classical electrodynamics, which was recognized as necessary, as

slight as possible. Hence, as regards the influence of the field of

radiation on an oscillator, we follow that theory closely. If the

oscillator vibrates under the influence of any external electro-

magnetic field whatever, its energy U will not in general remain

constant, but the energy equation (205 a) must be extended to

include the work which the external electromagnetic field does on
the oscillator, and, if the axis of the electric doublet coincides with

the z-axis, this work is expressed by the term Ez df=Ez fdt.
Here Ez denotes the z component of the external electric field-

strength at the position of the oscillator, that is, that electric

field-strength which would exist at the position of the oscillator,
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if the latter were not there at all. The other components of

the external field have no influence on the vibrations of the

oscillator.

Hence the complete energy equation reads :

Kfdf+Lfdf=E,df
or: Kf+Lf=E,, (233)

and the energy absorbed by the oscillator during the time element

dtis:

Ez fdt (234)

147. While the oscillator is absorbing it must 'also be emitting?
for otherwise a stationary state would be impossible. Now, since

in the law of absorption just assumed the hypothesis of quanta
has as yet found no room, it follows that it must come into play
in some way or other in the emission of the oscillator, and this is

provided for by the introduction of the hypothesis of emission of

quanta. That is to say, we shall assume that the emission does

not take place continuously, as does the absorption, but that it

occurs only at certain definite times, suddenly, in pulses, and in

particular we assume that an oscillator can emit energy only at

the moment when its energy of vibration, U, is an integral mul-

tiple n of the quantum of energy, e = hv. Whether it then really

emits or whether its energy of vibration increases further by
absorption will be regarded as a matter of chance. This will not

be regarded as implying that there is no causality for emission;
but the processes which cause the emission will be assumed to be

of such a concealed nature that for the present their laws cannot

be obtained by any but statistical methods. Such an assumption
is not at all foreign to physics; it is, e.g., made in the atomistic

theory of chemical reactions and the disintegration theory of

radioactive substances.

It will be assumed, however, that if emission does take place,

the entire energy of vibration, U, is emitted, so that the vibration

of the oscillator decreases to zero and then increases again by
further absorption of radiant energy.

It now remains to fix the law which gives the probability that

an oscillator will or will not emit at an instant when its energy has

reached an integral multiple of e. For it is evident that the sta-

tistical state of equilibrium, established in the system of oscil-
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lators by the assumed alternations of absorption and emission

will depend on this law; and evidently the mean energy U of the

oscillators will be larger, the larger the probability that in such a

critical state no emission takes place. On the other hand, since

the mean energy U will be larger, the larger the intensity of the

field of radiation surrounding the oscillators, we shall state the

law of emission as follows: The ratio of the probability that no

emission takes place to the probability that emission does take place

is proportional to the intensity I of the vibration which excites the

oscillator and which was defined in equation (158). The value

of the constant of proportionality we shall determine later on by
the application of the theory to the special case in which the

energy of vibration is very large. For in this case, as we know,
the familiar formulae of the classical dynamics hold for any period

of the oscillator whatever, since the quantity element of action

h may then, without any appreciable error, be regarded as infinitely

small.

These statements define completely the way in which the

radiation processes considered take place, as time goes on, and

the properties of the stationary state. We shall now, in the

first place, consider in the second chapter the absorption, and,

then, in the third chapter the emission and the stationary dis-

tribution of energy, and, lastly, in the fourth chapter we shall

compare the stationary state of the system of oscillators thus

found with the thepmodynamic state of equilibrium which was

derived directly from the hypothesis of quanta in the preceding

part. If we find them to agree, the hypothesis of emission of

quanta may be regarded as admissible.

It is true that we shall not thereby prove that this hypothesis

represents the only possible or even the most adequate expression

of the elementary dynamical law of the vibrations of the oscilla-

tors. On the contrary I think it very probable that it may be

greatly improved as regards form and contents. There is, how-

ever, no method of testing its admissibility except by the investi-

gation of its consequences, and as long as no contradiction in

itself or with experiment is discovered in it, and as long as no

more adequate hypothesis can be advanced to replace it, it may
justly claim a certain importance.



CHAPTER II

ABSORBED ENERGY

148. Let us consider an oscillator which has just completed an

emission and which has, accordingly, lost all its energy of vibra-

tion. If we reckon the time t from this instant then for i we

have/=0 and df/dt
=

0, and the vibration takes place according

to equation (233). Let us write Ez as in (149) in the form of a

Fourier's series:

_ ,
,

2irnt 2irnt
Ez
= >, A n cos - - +Bn sin - -

(235)

where T may be chosen very large, so that for all times t consid-

ered t<~\. Since we assume the radiation to be stationary,

the constant coefficients A n and Bn depend on the ordinal num-

bers n in a wholly irregular way, according to the hypothesis of

natural radiation (Sec. 117). The partial vibration with the

ordinal number n has the frequency v, where

(236)

while for the frequency v of the natural period of the oscillator

IK

Taking the initial condition into account, we now obtain as

the solution of the differential equation (233) the expression

CO

[an (cos coi cos co 0+6n (sin ut sin co Q], (237)
C0

i

where

an = -- r^ --
' bn =

n
(238)

L(co
2 w 2

) L(co
2

co
2
)
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This represents the vibration of the oscillator up to the instant

when the next emission occurs.

The coefficients an and bn attain their largest values when co

is nearly equal to co . (The case co = co may be excluded by
assuming at the outset that i> T is not an integer.)

149. Let us now calculate the total energy which is absorbed

by the oscillator in the time from t = Q to t = r, where

w r is large. (239)

According to equation (234), it is given by the integral

(240)

the value of which may be obtained from the known expression
for Ez (235) and from

CO

=
-^[an ( cosin co+o> sin co^)+&n(w cos coZ co cos co ()]. (241)

i

By multiplying out, substituting for an and bn their values from

(238), and leaving off all terms resulting from the multiplication
of two constants A n and Bn ,

this gives for the absorbed energy
the following value:

T

i r , x^ r ^n 2

I at >. cos co( co sin co + co sin cocL J ^J
|
co

2
co

2

o 1

Bn
z

'

1
- sin co(co cos co co cos ut) . (24 la)

co
2 -co 2

J

In this expression the integration with respect to t may be per-

formed term by term. Substituting the limits T and it gives

- vn i o r .

1 > A n
*

s

T
^^

2 2

Jj i co
2

co
2
L

/ . 9
co +co . co co

>

sin2- r sin 2 r.

sm 2
cor 2 2

1 2-^ [
sin2a?r_

! co
2 -co 2

L 2
~ W

v co -f-co co co

:C0

~f~ CO C0 CO

sin 2 r sin 2 -
i

co -|-co co co
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In order to separate the terms of different order of magnitude, this

expression is to be transformed in such a way that the difference

co co will appear in all terms of the sum. This gives

n
2

COQ CO .

co
2
l_2(co -|-co)

co co . co +3co

L ^u o !, , x
sm2coH sin ^ r sm-

i

C0 C0

+- -sm2 -
C0 CO A

""""

co co co .

sin- T -sin
co +co

co -}~3co co co co
" T+ -sin 2 - T

2 co -co 2 J

The summation with respect to the ordinal numbers n of the

Fourier's series may now be performed. Since the fundamental

period T of the series is extremely large, there corresponds to

the difference of two consecutive ordinal numbers, An = l only
a very small difference of the corresponding values of co, dco,

namely, according to (236),

An = l = Td*/ = -, (242)

and the summation with respect to n becomes an integration with

respect to co.

The last summation with respect to A n may be rearranged as

the sum of three series, whose orders of magnitude we shall first

compare. So long as only the order is under discussion we may
disregard the variability of the A n

2 and need only compare the

three integrals
oo

sin 2
cor

I
r

dw
(co + co)

2
(co co)

./ o

and

co . co co co +3co
sm ~ T ' sm ~~

/:

,
co . co co

dco. sin 2 -
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The evaluation of these integrals is greatly simplified by the fact

that, according to (239), COOT and therefore also cor are large num-

bers, at least for all values of co which have to be considered.

Hence it is possible to replace the expression sin 2
cor in the integral

Ji by its mean value \ and thus we obtain:

^ 1==T
4co

It is readily seen that, on account of the last factor, we obtain

J 2
=

for the second integral.

In order finally to calculate the third integral J3 we shall lay
off in the series of values of co on both sides of co an interval

extending from coi(<co ) to co 2(>co ) such that

to coi co 2 co
/f ,,o\- and - - are small, (243)

C0 C0

and simultaneously

(co coi)r and (co 2 COO)T are large. (244)

This can always be done, since co r is large. If we now break up
the integral J 3 into three parts, as follows:

Oil 0>2

it is seen that in the first and third partial integral the expression
C0 CO

sin 2 T may, because of the condition (244), be replaced by its

mean value i. Then the two partial integrals become:

O)l OO

J 2(co + co)(co -co)
2
and

j 2(co +co)(co -~c7T
2

'

C02

These are certainly smaller than the integrals :

Wl OO

/dco
C dco

2(^=^ ^J^^
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which have the values

\
- -^- and ^

(246)
1 C0 (C0 COi) Z(to)2 Mo)

respectively. We must now consider the middle one of the three

partial integrals:

Because of condition (243) we may write instead of this:

co
2 gm 2

J<
2(co -co)

2

wi

and by introducing the variable of integration x, where

and taking account of condition (244) for the limits of the integral,

we get:
+ 00

T r sin2 x dx _ r

4 J x 2 "4^'
oo

This expression is of a higher order of magnitude than the expres-

sions (246) and hence of still higher order than the partial inte-

grals (245) and the integrals Ji and J2 given above. Thus for

our calculation only those values of co will contribute an appre-

ciable part which lie in the interval between coi and co 2 ,
and hence

we may, because of (243), replace the separate coefficients A n
2 and

Bn
2 in the expression for the total absorbed energy by their mean

values A 2 and B 2 in the neighborhood of co and thus, by taking

account of (242), we shall finally obtain for the total value of the

energy absorbed by the oscillator in the time r :

T (247)
Li O

If we now, as in (158), define I, the "intensity of the vibration
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exciting the oscillator," by spectral resolution of the mean value

of the square of the exciting field-strength E2 :

CO

E2
2 =

| \,dv (248)
Jo

we obtain from (235) and (242) :

00 00

(A n
2+#n*)=i f

'

(A
J

and by comparison with (248) :

l=i (A *+B *) T.

Accordingly from (247) the energy absorbed in the time r be-

comes :

J^
4L

T)

that is, in the time between two successive emissions, the energy U
of the oscillator increases uniformly with the time, according to the

law

f-i-
Hence the energy absorbed by all N oscillators in the time dt is:

I
~dt = Nadt. (250)



CHAPTER III

EMITTED ENERGY. STATIONARY STATE

150. Whereas the absorption of radiation by an oscillator

takes place in a perfectly continuous way, so that the energy of

the oscillator increases continuously and at a constant rate, for

its emission we have, in accordance with Sec. 147, the following

law: The oscillator emits in irregular intervals, subject to the

laws of chance; it emits, however, only at a moment when its

energy of vibration is just equal to an integral multiple n of the

elementary quantum e = hv, and then it always emits its whole

energy of vibration ne.

We may represent the whole process by the following figure in

which the abscissae represent the time t and the ordinates the

energy

U = ne+ p, (p<e) (251)

FIG. 7.

of a definite oscillator under consideration. The oblique parallel

lines indicate the continuous increase of energy at a constant

rate.

11 161
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which is, according to (249), caused by absorption at a constant

rate. Whenever this straight line intersects one of the parallels

to the axis of abscissae U = e, U = 2e, ..... emission may
possibly take place, in which case the curve drops down to zero

at that point and immediately begins to rise again.

151. Let us now calculate the most important properties of

the state of statistical equilibrium thus produced. Of the N
oscillators situated in the field of radiation the number of those

whose energy at the time t lies in the interval between U = ne-}-p

and U-}-dU = ne-\-p+dp may be represented by

NRn ,Pdp, (253)

where R depends in a definite way on the integer n and the quan-

tity p which varies continuously between and e.

dp
After a time dt = all the oscillators will have their energy in-

a

creased by dp and hence they will all now lie outside of the energy
interval considered. On the other hand, during the same time

dt, all oscillators whose energy at the time t was between ne+p dp

and ne+p will have entered that interval. The number of all

these oscillators is, according to the notation used above,

NRn , P
-dpdP . (254)

Hence this expression gives the number of oscillators which are

at the time t-\-dt in the interval considered.

Now, since we assume our system to be in a state of statistical

equilibrium, the distribution of energy is independent of the time

and hence the expressions (253) and (254) are equal, i.e.,

Rn)p = Rn. (255)

Thus Rn does not depend on p.

This consideration must, however, be modified for the special

case in which p = 0. For, in that case, of the oscillators,

N =Rn-idp in number, whose energy at the time t was between

dp
ne and ne dp, during the time dt = some enter into the energy

a

interval (from U ne to U+dU = ne+dp) considered; but all of

them do not necessarily enter, for an oscillator may possibly emit

all its energy on passing through the value U = ne. If the proba-
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bility that emission takes place be denoted by r?(<l) the number
of oscillators which pass through the critical value without

emitting will be

NRn-i(l-rj)dp, (256)

and by equating (256) and (253) it follows that

Rn = Rn-i(l--n),

and hence, by successive reduction,

# = #0(1-17)". (257)

To calculate R we repeat the above process for the special case

when n = and p = 0. In this case the energy interval in question
extends from U = to dU dp. Into this interval enter in the

dp
time dt = all the oscillators which perform an emission during

a

this time, namely, those whose energy at the time t was between

e dp and e, 2e dp and 2e, 3e dp and 3e .....
The numbers of these oscillators are respectively

NRodp, NRidp, NR 2dp,

hence their sum multiplied by 77 gives the desired number of

emitting oscillators, namely,

Nr,(R +R l+R 2+ ..... ) dp, (258)

and this number is equal to that of the oscillators in the energy
interval between and dp at the time t-\-dt, which is NR dp.

Hence it follows that

R = v(Ro+Ri+R<>+ ..... ). (259)

Now, according to (253), the whole number of all the oscillators

is obtained by integrating with -respect to p from to e, and

summing up with respect to n from to . Thus

N =^2 J Rn dp=N 2 R
n = o

and

2. = --
(261)

e

Hence we get from (257) and (259)

R = *
}
Rn =

*
(l-rj)\ (262)
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152. The total energy emitted in the time element dt =

is found from (258) by considering that every emitting oscillator

expends all its energy of vibration and is

Nr, dp(R +2R 1+ZRt+ ..... )

**N dp^Nadt.

It is therefore equal to the energy absorbed in the same time by
all oscillators (250), as is necessary, since the state is one of

statistical equilibrium.

Let us now consider the mean energy U of an oscillator. It is

evidently given by the following relation, which is derived in the

same way as (260) :

J (ne+p)Rn dp. (263)

From this it follows by means of (262), that

hv
Since 77 < 1, U lies between - and . Indeed, it is immediately

evident that U can never become less than since the energy
2

of every oscillator, however small it may be, will assume the value

e= hv within a time limit, which can be definitely stated.

153. The probability constant rj contained in the formulae for

the stationary state is determined by the law of emission enun-

ciated in Sec. 147. According to this, the ratio of the probability
that no emission takes place to the probability that emission does

take place is proportional to the intensity I of the vibration

exciting the oscillator, and hence

=
pl (265)

fj

where the constant of proportionality is to be determined in
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such a way that for very large energies of vibration the familiar

formulae of classical dynamics shall hold.

Now, according to (264), r/ becomes small for large values of U
and for this special case the equations (264) and (265) give

and the energy emitted or absorbed respectively in the time dt by
all N oscillators becomes, according to (250),

On the other hand, H. Hertz has already calculated from

Maxwell's theory the energy emitted by a linear oscillator

vibrating periodically. For the energy emitted in the time of

one-half of one vibration he gives the expression
1

3X 3

where X denotes half the wave length, and the product El (the C
of our notation) denotes the amplitude of the moment /

(Sec. 135) of the vibrations. This gives for the energy emitted

in the time of a whole vibration

16rr
4C 2

3X 3

where X denotes the whole wave length, and for the energy
emitted by N similar oscillators in the time dt

/

since X = On introducing into this expression the energy U of
v

an oscillator from (205), (207), and (208), namely

we have for the energy emitted by the system of oscillators^
H. Hertz, Wied. Ann. 36, p. 12, 1889.
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and by equating the expressions (266) and (267) we find for the

factor of proportionality p

154. By the determination of p the question regarding the

properties of the state of statistical equilibrium between the

system of the oscillators and the vibration exciting them receives

a general answer. For from (265) we get

1

and further from (262)

Hence in the state of stationary equilibrium the number of

oscillators whose energy lies between nhv and (n-{-l)hv is, from

equation (253),

N RndP = NRne
=N, (270)

O

where n = 0, 1, 2, 3, .....



CHAPTER IV

THE LAW OF THE NORMAL DISTRIBUTION OF
ENERGY. ELEMENTARY QUANTA OF

MATTER AND ELECTRICITY

155. In the preceding chapter we have made ourselves familiar

with all the details of a system of oscillators exposed to uniform

radiation. We may now develop the idea put forth at the end of

Sec. 144. That is to say, we may identify the stationary state

of the oscillators just found with the state of maximum entropy
of the system of oscillators which was derived directly from the

hypothesis of quanta in the preceding part, and we may then

equate the temperature of the radiation to the temperature of

the oscillators. It is, in fact, possible to obtain perfect agree-

ment of the two states by a suitable coordination of their corre-

sponding quantities.

According to Sec. 139, the "
distribution density" w of the

oscillators in the state of statistical equilibrium changes abruptly
from one region element to another, while, according to Sec. 138,

the distribution within a single region element is uniform. The

region elements of the state plane (f\j/) are bounded by concentric

similar and similarly situated ellipses which correspond to those

values of the energy U of an oscillator which are integral multiples
of hv. We have found exactly the same thing for the stationary
state of the oscillators when they are exposed to uniform radia-

tion, and the distribution density wn in the nth region element

may be found from (270), if we remember that the nth region
element contains the energies between (n l)hv and nhv. Hence:

(pi)*-
1

i p\-=
(iT^=pi(ry <

This is in perfect agreement with the previous value (220) of

wn if we ut

1 p\
a - and7=-

167
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and each of these two equations leads, according to (221), to the

following relation between the intensity of the exciting vibration

I and the total energy E of the N oscillators:

l
(272)

156. If we finally introduce the temperature T from (223), we

get from the last equation, by taking account of the value (268) of

the factor of proportionality p,

eW+1
Moreover the specific intensity K of a monochromatic plane

polarized ray of frequency v is, according to equation (160),

(274)

and the space density of energy of uniform monochromatic unpo-
larized radiation of frequency v is, from (159),

_"=
(275)

Since, among all the forms of radiation of differing constitutions,

black radiation is distinguished by the fact that all monochro-

matic rays contained in it have the same temperature (Sec.

93) these equations also give the law of distribution of energy in

the normal spectrum, i.e., in the emission spectrum of a body
which is black with respect to the vacuum.

If we refer the specific intensity of a monochromatic ray not to

the frequency v but, as is usually done in experimental physics,

to the wave length X, by making use of (15) and (16) we obtain the

expression
c2h 1 ci 1

This is the specific intensity of a monochromatic plane polarized

ray of the wave length X which is emitted from a black body at the

temperature T into a vacuum in a direction perpendicular to the
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surface. The corresponding space density of unpolarized radia-
o^

tion is obtained by multiplying Ex by .

c

Experimental tests have so far confirmed equation (276).
l

According to the most recent measurements made in the Physi-
kalisch-technische Reichsanstalt 2 the value of the second radia-

tion constant GZ is approximately

ch
C2 = -- = 1-436 cm degree.

K

More detailed information regarding the history of the equa-
tion of radiation is to be found in the original papers and in the

first edition of this book. At this point it may merely be added
that equation (276) was not simply extrapolated from radiation

measurements, but was originally found in a search after a

connection between the entropy and the energy of an oscillator

vibrating in a field, a connection which would be as simple as

possible and consistent with known measurements.

157. The entropy of a ray is, of course, also determined

by its temperature. In fact, by combining equations (138)

and (274) we readily obtain as an expression for the entropy
radiation L of a monochromatic plane polarized ray of the

specific intensity of radiation K and the frequency v,

,

c
2K\ /

,

c 2K\ c2K c
2 Kl

T~3) log( 1 +T~3/-T~3 1 gTl 278
hv*/ \ hv*/ hv z hv*}

which is a more definite statement of equation (134) for Wien's

displacement law.

Moreover it follows from (135), by taking account of (273),

that the space density of the entropy s of uniform monochromatic

unpolarized radiation as a function of the space density of

energy u is

This is a more definite statement of equation (119).

1 See among others H. Rubens und F. Kurlbaum, Sitz. Ber. d. Akad. d. Wiss. zu Berlin

vom 25. Okt. f 1900, p. 929. Ann. d. Phys. 4, p. 649, 1901. F. Paschen, Ann. d. Phys. 4,

p. 277, 1901. O. Lummer und E. Pringsheim, Ann. d. Phya. 6, p. 210, 1901. Tatigkeits-

bericht der Phys.-Techn. Reichsanstalt vom J. 1911, Zeitschr. f. Instrumentenkunde, 1912,

April, p. 134 ff.

2 According to private information kindly furnished by the president, Mr. Warburg.
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158. For small values of XT7

(i.e., small compared with the

ch\
constant ) equation (276) becomes

/c /

r 2
/)

ch

^ =~e ^
(280)

an equation which expresses Wien's 1 law of energy distribution.

The specific intensity of radiation K then becomes, according to

(274),

hv* -
K =^e (281)

c

and the space density of energy u is, from (275),

(282)
c

159. On the other hand, for large values of XT (276) becomes

rlcTE^~ (283)

a relation which was established first byLord Rayleigh* &nd which

we may, therefore, call
"
Rayleigh's law of radiation."

We then find for the specific intensity of radiation K from (274)

(28*)

and from (275) for the space density of monochromatic radiation

we get

Rayleigh's law of radiation is of very great theoretical interest,

since it represents that distribution of energy which is obtained

for radiation in statistical equilibrium with material molecules

by means of the classical dynamics, and without introducing the

hypothesis of quanta.
3 This may also be seen from the fact

that for a vanishingly small value of the quantity element of

action, h, the general formula (276) degenerates into Rayleigh's

formula (283). See also below, Sec. 168 et seq.

1 W. Wien, Wied. Ann. 58, p. 662, 1896.
2 Lord Rayleigh, Phil. Mag. 49, p. 539, 1900.
3 J. H. Jeans, Phil. Mag. Febr., 1909, p. 229, H. A. Lorentz, Nuovo Cimento V, vol. 16,

1908.



LAW OF NORMAL DISTRIBUTION OF ENERGY 171

160. For the total space density, u, of black radiation at any

temperature T we obtain, from (275),

U
f
udv=J^ (

v

~^r
Jo

"
Jo e

kT _ l

or

hv 2ht

kT . kT
+e

and, integrating term by term,

(286)

where a is an abbreviation for

=1.0823. (287)

This relation expresses the Stefan-Boltzmann law (75) and it

also tells us that the constant of this law is given by

(288)

161. For that wave length Xm to which the maximum of the

intensity of radiation corresponds in the spectrum of black radia-

tion, we find from (276)

On performing the differentiation and putting as an abbreviation

we get

The root of this transcendental equation is

= 4.9651, (289)

and accordingly XTOT = -, and this is a constant, as demanded
p/c
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by Wien's displacement law. By comparison with (109) we
find the meaning of the constant b, namely,

6 =
-^,

(290)

and, from (277),

r* 1 42fi
= 0.289 cm- degree, (291)

while Lummer and Pringsheim found by measurements 0.294 and

Paschen 0.292.

162. By means of the measured values 1 of a and c2 the universal

constants h and k may be readily calculated. For it follows from

equations (277) and (288) that

(292)
48

Substituting the values of the constants a, Cz, a, c, we get

/i = 6.415-10-27
erg sec., /c^l.34-10- 16-^-

(293)
degree

163. To ascertain the full physical significance of the quantity

element of action, h, much further research work will be required.

On the other hand, the value obtained for k enables us readily

to state numerically in the C. G. S. system the general connection

between the entropy S and the thermodynamic probability W
as expressed by the universal equation (164). The general

expression for the entropy of a physical system is

S = 1.34-10-16
log W T

61^-
(294)

degree

This equation may be regarded as the most general definition of

entropy. Herein the thermodynamic probability W is an integral

number, which is completely defined by the macroscopic state of

the system. Applying the result expressed in (293) to the kinetic

1 Here as well as later on the value given above (79) has been replaced by a =

7.39-10-15, obtained from a = a c/4 = 5.54-10- 6
. This is the final result of the newest meas-

urements made by W. Westphal, according to information kindly furnished by him and

Mr. H. Rubens. (Nov., 1912). [Compare p. 64, footnote. Tr.]
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theory of gases, we obtain from equation (194) for the ratio of the

mass of a molecule to that of a mol,

that is to say, there are in one mol

- = 6.20X1023

CO

molecules, where the mol of oxygen, 2 ,
is always assumed as

32 gr. Hence, for example, the absolute mass of a hydrogen
atom (}# 2

= 1-008) equals 1.62X10~ 24
gr. With these numer-

ical values the number of molecules contained in 1 cm. 3 of an

ideal gas at C. and 1 atmosphere pressure becomes

The mean kinetic energy of translatory motion of a molecule

at the absolute temperature T = l is, in the absolute C. G. S.

system, according to (200),

-/c = 2.0MO-16
(297)

2

In general the mean kinetic energy of translatory motion of a

molecule is expressed by the product of this number and the

absolute temperature T.

The elementary quantity of electricity or the free charge of a

monovalent ion pr electron is, in electrostatic units,

4.67-10- 10
. (298)

Since absolute accuracy is claimed for the formulse here em-

ployed, the degree of approximation to which these numbers

represent the corresponding physical constants depends only on

the accuracy of the measurements of the two radiation constants

a and c2 .

164. Natural Units. All the systems of units which have

hitherto been employed, including the so-called absolute C. G. S.

system, owe their origin to the coincidence of accidental circum-
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stances, inasmuch as the choice of the units lying at the base of

every system has been made, not according to general points of

view which would necessarily retain their importance for all

places and all times, but essentially with reference to the special

needs of our terrestrial civilization.

Thus the units of length and time were derived from the pres-

ent dimensions and motion of our planet, and the units of mass

and temperature from the density and the most important

temperature points of water, as being the liquid which plays the

most important part on the surface of the earth, under a pressure

which corresponds to the mean properties of the atmosphere

surrounding us. It would be no less arbitrary if, let us say, the

invariable wave length of Na-light were taken as unit of length.

For, again, the particular choice of Na from among the many
chemical elements could be justified only, perhaps, by its com-

mon occurrence on the earth, or by its double line, which is in

the range of our vision, but is by no means the only one of its

kind. Hence it is quite conceivable that at some other time,

under changed external conditions, every one of the systems of

units which have so far been adopted for use might lose, in part

or wholly, its original natural significance.

In contrast with this it might be of interest to note that, with

the aid of the two constants h and k which appear in the universal

law of radiation, we have the means of establishing units of length,

mass, time, and temperature, which are independent of special

bodies or substances, which necessarily retain their significance

for all times and for all environments, terrestrial and human or

otherwise, and which may, therefore, be described as
"
natural

units."

The means of determining the four units of length, mass, time,

and temperature, are given by the two constants h and k men-

tioned, together with the magnitude of the velocity of propaga-
tion of light in a vacuum, c, and that of the constant of gravita-

tion, /. Referred to centimeter, gram, second, and degrees

Centigrade, the numerical values "of these four constants are as

follows :

h =
sec
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or cm2

k = 1.34-10- 16

c = 3-10 10

sec

sec 2
degree

cm

/ = 6.685-10-*

If we now choose the natural units so that in the new system of

measurement each of the four preceding constants assumes the

value 1, we obtain, as unit of length, the quantity

faJ- = 3.99-10-33
cm,

c 3

as unit of mass

^j
= 5.37-10- 5

0,

as unit of time

-\ r_ . 1 QQ.in~-43oprt\/ J..OO JLU ocO,

as unit of temperature

1 lc
bh

7-\-y
= 3.60-1032

degree.
K f

These quantities retain their natural significance as long as

the law of gravitation and that of the propagation of light in

a vacuum and the two principles of thermodynamics remain

valid; they therefore must be found always the same, when
measured by the most widely differing intelligences according to

the most widely differing methods.

165. The relations between the intensity of radiation and the

temperature expressed in Sec. 156 hold for radiation in a pure
vacuum. If the radiation is in a medium of refractive index n,

the way in which the intensity of radiation depends on the

frequency and the temperature is given by the"proposition of

Sec. 39, namely, the product of the specific intensity of radiation

K,, and the square of the velocity of propagation of the radiation

i F. Richarz and 0. Krigar-Menzel, Wied. Aan. 66, p. 190, 1898.
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has the same value for all substances. The form of this universal

function (42) follows directly from (274)

* e"-
(299)

Now, since the refractive index n is inversely proportional to the

velocity of propagation, equation (274) is, in the case of a medium
with the index of refraction n, replaced by the more general rela-

tion

hv*n* 1

K, = ^T -*T- (300)
e kT I

and, similarly, in place of (275) we have the more general relation

STT/IJ/W 1

u = 3 IT- (301)
e kT 1

These expressions hold, of course, also for the emission of a body
which is black with respect to a medium with an index of refrac-

tion n.

166. We shall now use the laws of radiation we have obtained

to calculate the temperature of a monochromatic unpolarized

radiation of given intensity in the following case. Let the light

pass normally through a small area (slit) and let it fall on an

arbitrary system of diathermanous media separated by spherical

surfaces, the centers of which lie on the same line, the axis of

the system. Such radiation consists of homocentric pencils and

hence forms behind every refracting surface a real or virtual

image of the emitting surface, the image being likewise normal

to the axis. To begin with, we assume the last as well as the first

medium to be a pure vacuum. Then, for the determination of

the temperature of the radiation according to equation (274),

we need cakulate only the specific intensity of radiation K,, in

the last medium, and this is given by the total intensity of the

monochromatic radiation /, the size of the area of the image F,

and the solid angle of the cone of rays passing through a point

of the image, For the specific intensity of radiation K,, is,

according to (13), determined by the fact that an amount

2K, da dtt dv dt
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of energy of unpolarized light corresponding to the interval of

frequencies from v to v+dv is, in the time dt, radiated in a normal

direction through an element of area da within the conical element

d$l. If now da denotes an element of the area of the surface

image in the last medium, then the total monochromatic radia-

tion falling on the image has the intensity

7,=2I

l v is of the dimensions of energy, since the product dv dt is a mere

number. The first integral is the whole area, F, of the image,
the second is the solid angle, 2, of the cone of rays passing

through a point of the surface of the image. Hence we get

/, = 2K,Fa, (302)

and, by making use of (274), for the temperature of the radiation

k i-J 2^3^.^ (303 )

If the diathermanous medium considered is not a vacuum but

has an index of refraction n, (274) is replaced by the more general

relation (300), and, instead of the last equation, we obtain

(304)
log

or, on substituting the numerical values of c, h, and k,

0.479-10- 10
!/

/1.43-10-47

log ^~
- +1

degree Centigrade.

In this formula, the natural logarithm is to be taken, and / is

to be expressed in ergs, v in
"
reciprocal seconds," i.e., (seconds)"

1
,

F in square centimeters. In the case of visible rays the second

term, 1, in the denominator may usually be omitted.

The temperature thus calculated is retained by the radiation

considered, so long as it is propagated without any disturbing
12
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influence in the diathermanous medium, however great the dis-

tance to which it is propagated or the space in which it spreads.

For, while at larger distances an ever decreasing amount of energy
is radiated through an element of area of given size, this is con-

tained in a cone of rays starting from the element, the angle of

the cone continually decreasing in such a way that the value of K
remains entirely unchanged. Hence the free expansion of radia-

tion is a perfectly reversible process. (Compare above, Sec. 144.)

It may actually be reversed by the aid of a suitable concave mirror

or a converging lens.

Let us next consider the temperature of the radiation in the

other media, which lie between the separate refracting or reflect-

ing spherical surfaces. In every one of these media the radiation

has a definite temperature, which is given by the last formula

when referred to the real or virtual image formed by the radiation

in that medium.

The frequency v of the monochromatic radiation is, of course,

the same in all media; moreover, according to the laws of geomet-
rical optics, the product nzFti is the same for all media. Hence,

if, in addition, the total intensity of radiation / remains constant

on refraction (or reflection) ,
T also remains constant, or in other

words: The temperature of a homocentric pencil is not changed

by regular refraction or reflection, unless a loss in energy of

radiation occurs. Any weakening, however, of the total inten-

sity / by a subdivision of the radiation, whether into two or

into many different directions, as in the case of diffuse reflection,

leads to a lowering of the temperature of the pencil. In fact, a

certain loss of energy by refraction or reflection does occur, in

general, on a refraction or reflection, and hence also a lowering of

the temperature takes place. In these cases a fundamental

difference appears, depending on whether the radiation is weak-

ened merely by free expansion or by subdivision or absorption.

In the first case the temperature remains constant, in the second

it decreases. 1

167. The laws of emission of a black body having been deter-

1 Nevertheless regular refraction and reflection are not irreversible processes; for the

refracted and the reflected rays are coherent and the entropy of two coherent rays is not

equal to the sum of the entropies of the separate rays. (Compare above, Sec. 104.) On
the other hand, diffraction is an irreversible process. M. Laue, Ann. d. Phys. 31, p. 547,

1910.
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mined, it is possible to calculate, with the aid of Kirchhoff's law

(48), the emissive power E of any body whatever, when its

absorbing power A or its reflecting power 1 A is known. In the

case of metals this calculation becomes especially simple for long

waves, since E. Hagen and H. Rubens 1 have shown experimentally
that the reflecting power and, in fact, the entire optical behavior

of the metals in the spectral region mentioned is represented by
the simple equations of Maxwell for an electromagnetic field with

homogeneous conductors and hence depends only on the specific

conductivity for steady electric currents. Accordingly, it is

possible to express completely the emissive power of a metal for

long waves by its electric conductivity combined with the for-

mulae for black radiation. 2

168. There is, however, also a method, applicable to the case

of long waves, for the direct theoretical determination of the elec-

tric conductivity and, with it, of the absorbing power, A, as well

as the emissive power, E, of metals. This is based on the ideas

of the electron theory, as they have been developed for the ther-

mal and electrical processes in metals by E. Riecke 3 and especially

by P. Drude.* According to these, all such processes are based on

the rapid irregular motions of the negative electrons, which fly

back and forth between the positively charged molecules of mat-

ter (here of the metal) and rebound on impact with them as well

as with one another, like gas molecules when they strike a rigid

obstacle or one another. The velocity of the heat motions of the

material molecules may be neglected compared with that of the

electrons, since in the stationary state the mean kinetic energy of

motion of a material molecule is equal to that of an electron, and

since the mass of a material molecule is more than a thousand

times as large as that of an electron. Now, if there is an electric

field in the interior of the metal, the oppositely charged particles

are driven in opposite directions with average velocities depend-

ing on the mean free path, among other factors, and this explains

the conductivity of the metal for the electric current. On the

other hand, the emissive power of the metal for the radiant heat

follows from the calculation of the impacts of the electrons. For,

E. Hagen und H. Rubens, Ann. d. Phs.yll, p. 873, 1903.
* E. Aschkinass, Ann. d. Phya. 17, p. 960, 1905.
3 E. Riecke, Wied. Ann. 66, p. 353, 1898.
4 P. Drude, Ann. d. Phys. 1, p. 566, 1900.



180 A SYSTEM OF OSCILLATORS

so long as an electron flies with constant speed in a constant

direction, its kinetic energy remains constant and there is no
radiation of energy; but, whenever it suffers by impact a change
of its velocity components, a certain amount of energy, which

may be calculated from electrodynamics and which may always
be represented in the form of a Fourier's series, is radiated into the

surrounding space, just as we think of Roentgen rays as being
caused by the impact on the anticathode of the electrons ejected

from the cathode. From the standpoint of the hypothesis of

quanta this calculation cannot, for the present, be carried out

without ambiguity except under the assumption that, during the

time of a partial vibration of the Fourier series, a large number of

impacts of electrons occurs, i.e., for comparatively long waves,
for then the fundamental law of impact does nob essentially

matter.

Now this method may evidently be used to derive the laws of

black radiation in a new way, entirely independent of that pre-

viously employed. For if the emissive power, E, of the metal,

thus calculated, is divided by the absorbing power, A, of the same

metal, determined by means of its electric conductivity, then,

according to Kirchhoff's law (48), the result must be the emissive

power of a black body, irrespective of the special substance used

in the determination. In this manner H. A. Lorentz 1

has, in a

profound investigation, derived the law of radiation of a black

body and has obtained a result the contents of which agree exactly

with equation (283), and where also the constant k is related to

the gas constant R by equation (193) . It is true that this method
of establishing the laws of radiation is, as already said, restricted

to the range of long waves, but it affords a deeper and very impor-
tant insight into the mechanism of the motions of the electrons

and the radiation phenomena in metals caused by them. At the

same time the point of view described above in Sec. Ill,'according

to which the normal spectrum may be regarded as consisting of a

large number of quite irregular processes as elements, is expressly

confirmed.

169. A further interesting confirmation of the law of radiation

of black bodies for long waves and of the connection of the

radiation constant k with the absolute mass of the material

1 H. A. Lorentz, Proc. Kon. Akad. v. Wet. Amsterdam, 1903, p. 666.
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molecules was found by /. H. Jeans 1
by a method previously

used by Lord Rayleigh,
2

: which differs essentially from the

one pursued here, in the fact that it entirely avoids making
use of any special mutual action between matter (molecules,

oscillators) and the ether and considers essentially only the

processes in the vacuum through which the radiation passes.

The starting point for this method of treatment is given by the

following proposition of statistical mechanics. (Compare above,
Sec. 140.) When irreversible processes take place in a system,
which satisfies Hamilton's equations of motion, and whose state

is determined by a large number of independent variables and
whose total energy is found by addition of different parts depend-

ing on the squares of the variables of state, they do so, on the

average, in such a sense that the partial energies corresponding
to the separate independent variables of state tend to equality,

so that finally, on reaching statistical equilibrium, their mean
values have become equal. From this proposition the stationary
distribution of energy in such a system may be found, when the

independent variables which determine the state are known.

Let us now imagine a perfect vacuum, cubical in form, of

edge Z, and with metallically reflecting sides. If we take the

origin of coordinates at one corner of the cube and let the axes of

coordinates coincide with the adjoining edges, an electromagnetic

process which may occur in this cavity is represented by the

following system of equations:

diirx
, biry . CTTZ,

Ex
= cos - sin sm (e\ cos 2jrvt+e'i sinLit

SiirX iry ,
CirZ.

j/
= sm cos _ sm (e^ cos 2irvt-\-e 2 sin 2irvf),III

B.TTX . biry CTTZ,
2
= sm sm cos (e 3 cos 2*14+61 sm 2wvt),

, biry Cirz, t

z = sin- cos cos (hi sm 2irvt h'i cos
i i I

1 J. H. Jeans, Phil. Mag. 10, p. 91, 1905.
2 Lord Rayleigh, Nature 72, p. 54 and p. 243, 1905.
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ZTTX . biry Cirz jyH
J/

= cos- sin cos (hz sin 2Trvt h 2 cos ZTTVI),ILL
diirx biry .

C7r2.
TH z =cos cos : sin

~T~yi
sin 2irvt h 3 cos 27r^);

6 6 v

where a, b, c represent any three positive integral numbers.

The boundary conditions in these expressions are satisfied by the

fact that for the six bounding surfaces x = Q, x = l, y = 0, y = l,

2 = 0, 2 = I the tangential components of the electric field-strength

E vanish. Maxwell's equations of the field (52) are also satisfied,

as may be seen on substitution, provided there exist certain condi-

tions between the constants which may be stated in a single

proposition as follows : Let a be a certain positive constant, then

there exist between the nine quantities written in the following

square:

ac be cc

2lv 2lv 2lv

^1 ^?

a a a

all the relations which are satisfied by the nine so-called
"
direc-

tion cosines" of two orthogonal right-handed coordinate systems,

i.e., the cosines of the angles of any two axes of the systems.

Hence the sum of the squares of the terms of any horizontal

or vertical row equals 1, for example,

(306)

Moreover the sum of the products of corresponding terms in any
two parallel rows is equal to zero, for^example,
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Moreover there are relations of the following form:

hi_e2 cc 63 be

a a 2lv a 2lv

and hence

2^~- ,,etc. (308)

If the integral numbers a, b, c are given, then the frequency v is

immediately determined by means of (306). Then among the

six quantities ei, ez, 3, hi, h 2) h s , only two may be chosen arbi-

trarily, the others then being uniquely determined by them by
linear homogeneous relations. If, for example, we assume e\

and 62 arbitrarily, es follows from (307) and the values of hi, hz,

hz are then found by relations of the form (308). Between the

quantities with accent ei, ej, e$ , hi, hi', h 3
'
there exist exactly

the same relations as between those without accent, of which

they are entirely independent. Hence two also of them, say

hi and h* ', may be chosen arbitrarily so that in the equations

given above for given values of a, b, c four constants remain

undetermined. If we now form, for all values of a b c whatever,

expressions of the type (305) and add the corresponding field

components, we again obtain a solution for Maxwell's equations
of the field and the boundary conditions, which, however, is now
so general that it is capable of representing any electromagnetic

process possible in the hollow cube considered. For it is always

possible to dispose of the constants ei, e2 , hi, h 2
f which have

remained undetermined in the separate particular solutions in

such a way that the process may be adapted to any initial state

(t
=

Q) whatever.

If now, as we have assumed so far, the cavity is entirely void

of matter, the process of radiation with a given initial state is

uniquely determined in all its details. It consists of a set of

stationary vibrations, every one of which is represented by one

of the particular solutions considered, and which take place

entirely independent of one another. Hence in this case there

can be no question of irreversibility and hence also none of any

tendency to equality of the partial energies corresponding to the

separate partial vibrations. As soon, however, as we assume the
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presence in the cavity of only the slightest trace of matter which
can influence the electrodynamic vibrations, e.g., a few gas

molecules, which emit or absorb radiation, the process becomes
chaotic and a passage from less to more probable states will take

place, though perhaps slowly. Without considering any further

details of the electromagnetic constitution of the molecules, we

may from the law of statistical mechanics quoted above draw
the conclusion that, among all possible processes, that one in

which the energy is distributed uniformly among all the inde-

pendent variables of the state has the stationary character.

From this let us determine these independent variables. In

the first place there are the velocity components of the gas mole-

cules. In the stationary state to every one of the three mutually

independent velocity components of a molecule there corresponds

on the average the energy \L where L represents the mean energy
of a molecule and is given by (200). Hence the partial energy,

which on the average corresponds to any one of the independent
variables of the electromagnetic system, is just as large.

Now, according to the above discussion, the electro-magnetic
state of the whole cavity for every stationary vibration corre-

sponding to any one system of values of the numbers a b c is

determined, at any instant, by four mutually independent quan-
tities. Hence for the radiation processes the number of inde-

pendent variables of state is four times as large as the number
of the possible systems of values of the positive integers a, b, c.

We shall now calculate the number of the possible systems of

values a, b, c, which correspond to the vibrations within a certain

small range of the spectrum, say between the frequencies v and

v-\-dv. According to (306), these systems of values satisfy the

inequalities

c2< (?K^y, (309)
\ C /

21 v 2ldv
where not only but also - -

is to be thought of as a large
c c

number. If we now represent every system of values of a, b, c

graphically by a point, taking a, b, c as coordinates in an orthog-

onal coordinate system, the points thus obtained occupy one

octant of the space of infinite extent, and condition (309) is
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equivalent to requiring that the distance of any one of these

21 v

points from the origin of the coordinates shall lie. between -

c

and - Hence the required number is equal to the
c

number of points which lie between the two spherical surface-

octants corresponding to the radii and Now since
c c

to every point there corresponds a cube of volume 1 and vice

versa, that number is simply equal to the space between the two

spheres mentioned, and hence equal to

8 \c / c
'

and the number of the independent variables of state is four times

as large or

Since, moreover, the partial energy
-

corresponds on the aver-
o

age to every independent variable of state in the state of equilib-

rium, the total energy falling in the interval from v to v+dv
becomes

-

Since the volume of the cavity is Z
3

,
this gives for the space

density of the energy of frequency v

and, by substitution of the value of L = from (200),N

(310)

which is in perfect agreement with Rayleigh's formula (285).

If the law of the equipartition of energy held true in all
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cases, Rayleigh's law of radiation would, in consequence, hold for

all wave lengths and temperatures. But since this possibility

is excluded by the. measurements at hand, the only possible

conclusion is that the law of the equipartition of energy and,

with it, the system of Hamilton's equations of motion does not

possess the general importance attributed to it in classical dynam-
ics. Therein lies the strongest proof of the necessity of a funda-

mental modification of the latter.



PART V

IRREVERSIBLE RADIATION PROCESSES





CHAPTER I

FIELDS OF RADIATION IN GENERAL

170. According to the theory developed in the preceding sec-

tion, the nature of heat radiation within an isotropic medium,
when the state is one of stable thermodynamic equilibrium, may
be regarded as known in every respect. The intensity of the

radiation, uniform in all directions, depends for all wave lengths

only on the temperature and the velocity of .propagation, accord-

ing to equation (300), which applies to black radiation in any
medium whatever. But there remains another problem to be

solved by the theory. It is still necessary to explain how and by
what processes the radiation which is originally present in the

medium and which may be assigned in any way whatever,-

passes gradually, when the medium is bounded by walls imper-

meable to heat, into the stable state of black radiation, corre-

sponding to the maximum of entropy, just as a gas which is

enclosed in a rigid vessel and in which there are originally cur-

rents and temperature differences assigned in any way whatever

gradually passes into the state of rest and of uniform distribution

of temperature.
To this much more difficult question only a partial answer can,

at present, be given. In the first place, it is evident from the

extensive discussion in the first chapter of the third part that,

since irreversible processes are to be dealt with, the principles of

pure electrodynamics alone will not suffice. For the second prin-

ciple of thermodynamics or the principle of increase of entropy is

foreign to the contents of pure electrodynamics as well as of pure
mechanics. This is most immediately shown by the fact that the

fundamental equations of mechanics as well as those of electro-

dynamics allow the direct reversal of every process as regards

time, which contradicts the principle of increase of entropy.

Of course all kinds of friction and of electric conduction of cur-

189
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rents must be assumed to be excluded; for these processes, since

they are always connected with the production of heat, do not

belong to mechanics or electrodynamics proper.
This assumption being made, the time t occurs in the funda-

mental equations of mechanics only in the components of

acceleration; that is, in the form of the square of its differential.

Hence, if instead of t the quantity t is intrpduced as time variable

in the equations of motion, they retain their form without change,
and hence it follows that if in any motion of a system of material

points whatever the velocity components of all points are sud-

denly reversed at any instant, the process must take place
in the reverse direction. For the electrodynamic processes in

a homogeneous non-conducting medium a similar statement

holds. If in Maxwell's equations of the electrodynamic field

t is written everywhere instead of t, and if, moreover, the sign of

the magnetic field-strength H is reversed, the equations remain

unchanged, as can be readily seen, and hence it follows that if in

any electrodynamic process whatever the magnetic field-strength

is everywhere suddenly reversed at a certain instant, while the

electric field-strength keeps its value, the whole process must take

place in the opposite sense.

If we now consider any radiation processes whatever, taking

place in a perfect vacuum enclosed by reflecting walls, it is found

that, since they are completely determined by the principles of

classical electrodynamics, there can be in their case no question of

irreversibility of any kind. This is seen most clearly by con-

sidering the perfectly general formulae (305), which hold for a

cubical cavity and which evidently have a periodic, i.e., reversible

character. Accordingly we have frequently (Sec. 144 and 166)

pointed out that the simple propagation of free radiation

represents a reversible process. An irreversible element is

introduced by the addition of emitting and absorbing sub-

stance.

171. Let us now try to define for the general case the state of

radiation in the thermodynamic-macroscopic sense as we did

above in Sec. 107, et seq., for a stationary radiation. Every one

of the three components of the electric field-strength, e.g., Ez may,
for the long time interval from t = to t = T, be represented at

every point, e.g., at the origin of coordinates, by a Fourier's
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integral, which in the present case is somewhat more convenient

than the Fourier's series (149) :

00

E2
= CdvCv cos (2TTvt-ev} y (311)

o

where Cv (positive) and # denote certain functions of the posi~

tive variable of integration v. The values of these functions are

not wholly determined by the behavior of Ez in the time interval

mentioned, but depend also on the manner in which Ez varies

as a function of the time beyond both ends of that interval.

Hence the quantities Cv and dv possess separately no definite

physical significance, and it would be quite incorrect to think

of the vibration Ez as, say, a continuous spectrum of periodic

vibrations with the constant amplitudes Cv . This may, by the

way, be seen at once from the fact that the character of the vibra-

tion Ez may vary with the time in any way whatever. How the

spectral resolution of the vibration Ez is to be performed and to

what results it leads will be shown below (Sec. 174).

172. We shall, as heretofore (158), define J, the "
intensity of

the exciting vibration/'
1 as a function of the time to be the mean

value of E2
2 in the time interval from t to 2+r, where r is taken

as large compared with the time \/v, which is the duration of one

of the periodic partial vibrations contained in the radiation, but

as small as possible compared with the time T. In this statement

there is a certain indefiniteness, from which results the fact that

J will, in general, depend not only on t but also on T. If this is

the case one cannot speak of the intensity of the exciting vibra-

tion at all. For it is an essential feature of the conception of the

intensity of a vibration that its value should change but unap-

preciably within the time required for a single vibration. (Com-
pare above, Sec. 3.) Hence we shall consider in future only those

processes for which, under the conditions mentioned, there exists

a mean value of E2
2
depending only on t. We are then obliged

to assume that the quantities Cv in (311) are negligible for all

values of v which are of the same order of magnitude as - or

smaller, i.e.,

vr is large. (312)
1 Not to be confused with the "field intensity" (field-strength) E2 of the exciting vibra-

tion.
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In order to calculate / we now form from (311) the value of

Eg
2 and determine the mean value E2

2 of this quantity by inte-

grating with respect to t from t to t+r, then dividing by r and

passing to the limit by decreasing r sufficiently. Thus we get
00 00

EZ
2 = C Cdv' dv Cv

> Cv cos (Zirv't-Bs) cos

-JUTJo Jo

If we now exchange the values of v and /, the function under

the sign of integration does not change; hence we assume

v'>v

and write :

|
(

= C C

dv' dv Cv
> Cv cos (^v't-d^ cos

or

' dv C, C,fcos [2ir(v'-v)t-ev>+ev}

And hence

-ft
J , J n , ^'-^-eos [TT(V'-V) (2t+r)

-
av avL>L v i

sin ir(v'-\-v}r -COS [TC(V'-\-V) (2+r) 0/ 0J }

If we now let r become smaller and smaller, since vr remains

large, the denominator (V'-}-V)T of the second fraction remains

large under all circumstances, while that of the first fraction

(/ V)T may decrease with decreasing value of r to less than any
finite value. Hence for sufficiently small values of v'v the in-

tegral reduces to

dv' dvCv'Cv cos [%ir(v
f

v)t 0/+0J

which is in fact independent of r. The remaining terms of the

double integral, which correspond to larger values of / v, i.e.,

to more rapid changes with the time, depend in general on T and
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therefore must vanish, if the intensity / is not to depend on r.

Hence in our case on introducing as a second variable of integra-

tion instead of v

we have

(313)

or

J = I e?/z(A M cos Vnrnt+Bn sin
J
r

where AM
=

J

dvC,+!, cos (0v+M -0,) (314)

M
=

J
d^C,+MC, sin (0H_M -0,)

By this expression the intensity J of the exciting vibration,

if it exists at all, is expressed by a function of the time in the form

of a Fourier's integral.

173. The conception of the intensity of vibration J necessarily

contains the assumption that this quantity varies much more

slowly with the time t than the vibration Ez itself. The same
follows from the calculation of J in the preceding paragraph.
For there, according to (312), vr and v'r are large, but (*>' V)T

is small for all pairs of values Cv and Cv
> that come into considera-

tion; hence, a fortiori,

- = -
is small, (315)

V

and accordingly the Fourier
1

s integrals Ez in (311) and J in (314)

vary with the time in entirely different ways. Hence in the

following we shall have to distinguish, as regards dependence on

time, two kinds of quantities, which vary in different ways:

Rapidly varying quantities, as E2 ,
and slowly varying quantities

as J and I the spectral intensity of the exciting vibration, whose

value we shall calculate in the next paragraph. Nevertheless

this difference in the variability with respect to time of the quanti-
13
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ties named is only relative, since the absolute value of the differ-

ential coefficient of J with respect to time depends on the value of

the unit of time and may, by a suitable choice of this unit, be

made as large as we please. It is, therefore, not proper to speak
of J(t) simply as a slowly varying function of t. If, in the

following, we nevertheless employ this mode of expression for

the sake of brevity, it will always be in the relative sense, namely,
with respect to the different behavior of the function Eg (t).

On the other hand, as regards the dependence of the phase
constant 0, on its index v it necessarily possesses the property
of rapid variability in the absolute sense. For, although ju is

small compared with v, nevertheless the difference Qv +^ 6v

is in general not small, for if it were, the quantities A^ and 5M

in (314) would have too special values and hence it follows that

(jbBvfbv)-v must be large. This is not essentially modified by

changing the unit of time or by shifting the origin of time.

Hence the rapid variability of the quantities Bv and also C v

with v is, in the absolute sense, a necessary condition for the

existence of a definite intensity of vibration J, or, in other words,

for the possibility of dividing the quantities depending on the

time into those which vary rapidly and those which vary slowly

a distinction which is also made in other physical theories and

upon which all the following investigations are based.

174. The distinction between rapidly variable and slowly

variable quantities introduced in the preceding section has,

at the present stage, an important physical aspect, because in

the following we shall assume that only slow variability with

time is capable of direct measurement. On this assumption we

approach conditions as they actually exist in optics and heat

radiation. Our problem will then be to establish relations be-

tween slowly variable quantities exclusively; for these only can

be compared with the results of experience. Hence we shall now
determine the most important one of the slowly variable quanti-

ties to be considered here, namely, the "spectral intensity" I of

the exciting vibration. This is effected as in (158) by means of

the equation

\dv.
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By comparison with 313 we obtain:

cos 2iru,t-\-3.. sin

195

where

= 1 d/i(A

(316)

, cos

sn

By this expression the spectral intensity, I
,
of the exciting vibra-

tion at a point in the spectrum is expressed as a slowly variable

function of the time t in the form of a Fourier's integral. The
dashes over the expressions on the right side denote the mean
values extended over a narrow spectral range for a given value

of /*. If such mean values do not exist, there is no definite spec-
tral intensity.



CHAPTER II

ONE OSCILLATOR IN THE FIELD OF RADIATION

175. If in any field of radiation whatever we have an ideal

oscillator of the kind assumed above (Sec. 135), there will take

place between it and the radiation falling on it certain mutual

actions, for which we shall again assume the validity of the

elementary dynamical law introduced in the preceding section.

The question is then, how the processes of emission and absorp-

tion will take place in the case now under consideration.

In the first place, as regards the emission of radiant energy by
the oscillator, this takes place, as before, according to the hypothe-
sis of emission of quanta (Sec. 147), where the probability

quantity 77 again depends on the corresponding spectral intensity

I through the relation (265).

On the other hand, the absorption is calculated, exactly as

above, from (234), where the vibrations of the oscillator also

take place according to the equation (233). In this way, by
calculations analogous to those performed in the second chapter

of the preceding part, with the difference only that instead

of the Fourier's series (235) the Fourier's integral (311) is used,

we obtain for the energy absorbed by the oscillator in the time r

the expression

r C
_: I d/z(A_ cos ?TM sn

where the constants AM and BM denote the mean values expressed

in (316), taken for the spectral region in the neighborhood of

the natural frequency v of the oscillator. Hence the law of

absorption will again be given by equation (249), which now
holds also for an intensity of vibration I varying with the time.

176. There now remains the problem of deriving the expression

for I, the spectral intensity of the vibration exciting the oscil-

lator, when the thermodynamic state of the field of radiation at

196
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the oscillator is given in accordance with the statements made in

Sec. 17.

Let us first calculate .the total intensity J = Ez
2 of the vibration

exciting an oscillator, from the intensities of the heat rays strik-

ing the oscillator from all directions.

For this purpose we must also allow for the polarization of the

monochromatic rays which strike the oscillator. Let us begin

by considering a pencil which strikes the oscillator within a con-

ical element whose vertex lies in the oscillator and whose solid

angle, d$l, is given by (5), where the angles 6 and <, polar coordi-

nates, designate the direction of the propagation of the rays.

The whole pencil consists of a set of monochromatic pencils,

one of which may have the principal values of intensity K and

K' (Sec. 17). If we now denote the angle which the plane of

vibration belonging to the principal intensity K makes with .the

plane through the direction of the ray and the 2-axis (the axis of

the oscillator) by ^, no matter in which quadrant it lies, then,

according to (8), the specific intensity of the monochromatic

pencil may be resolved into the two plane polarized components
at right angles with each other,

K cos 2
$ + K' sin2 ^

K sin2 ^ + K' cos 2
$,

the first of which vibrates in a plane passing through the 2-axis

and the second in a plane perpendicular thereto.

The latter component does not contribute anything to the

value of E2
2

,
since its electric field-strength is perpendicular to

the axis of the oscillator. Hence there remains only the first

7T

component whose electric field-strength makes the angle

with the 2-axis. Now according to Poynting's law the intensity of

x

a plane polarized ray in a vacuum is equal to the product of
4ir

and the mean square of the electric field-strength. Hence the

mean square of the electric field-strength of the pencil here

considered is

(K cos2 iH-K' sin2
^) dv dQ,

c
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and the mean square of its component in the direction of the

2-axis is

(K cos 2
iH-K' sin 2

^) sin2 dv da (317)
c

By integration over all frequencies and all solid angles we then

obtain the value required

E?= fgin2 OdQ f<MK, cos 2 ^+K/ sin2 t)=J. (318)

The space density u of the electromagnetic energy at a point

of the field is

------'--

where E,
2

,
E v

2
,
E3

2
, H*2

, HV, H, 2 denote the squares of the

field-strengths, regarded as "slowly variable" quantities, and are

hence supplied with the dash to denote their mean value. Since

for every separate ray the mean electric and magnetic energies

are equal, we may always write

4?r
x

If, in particular, all rays are unpolarized and if the intensity of

radiation is constant in all directions, K,,
= K/ and, since

8rr

3 (319a)

32rr 2

3c

and, by substitution in (319),

f '

2 - f f i
3

J
sin2

i dQ
J J

d0-

F-t 32. 2 C
tz

2 = -^ 1 K,, a^ = Ex
2 = E

J/

2

which agrees with (22) and (24).

177. Let us perform the spectral resolution of the intensity J

according to Sec. 174; namely,

J =
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Then, by comparison with (318), we find for the intensity of a

definite frequency v contained in the exciting vibration the value

= I sii

c J
sin2 6 dfl(K, cos 2 ^+K/ sin2

$). (320)

For radiation which is unpolarized and uniform in all directions

we obtain again, in agreement with (160),

178. With the value (320) obtained for I the total energy

absorbed by the oscillator in an element of time dt from the

radiation falling on it is found from (249) to be

(
si

J
sn e ft cos sn

cL

Hence the oscillator absorbs in the time dt from the pencil striking

it within the conical element d$l an amount of energy equal to

sin 2
0(K cos 2 ^+K' sin2

^)dQ. (321)
cL



CHAPTER III

A SYSTEM OF OSCILLATORS

179. Let us suppose that a large number N of similar oscillators

with parallel axes, acting quite independently of one another, are

distributed irregularly in a volume-element of the field of radia-

tion, the dimensions of which are so small that within it the inten-

sities of radiation K do not vary appreciably. We shall investi-

gate the mutual action between the oscillators and the radiation

which is propagated freely in space.

As before, the state of the field of radiation may be given by
the magnitude and the azimuth of vibration \f/ of the principal
intensities Kv and K/ of the pencils which strike the system of

oscillators, where Ky and K/ depend in an arbitrary way on the

direction angles 6 and </>. On the other hand, let the state of the

system of oscillators be given by the densities of distribution

wit w2 , MS, ..... (166), with which the oscillators are dis-

tributed among the different region elements, wi, w2 ,
w s ,

. . . .

being any proper fractions whose sum is 1. Herein, as always,
the nth region element is supposed to contain the oscillators

with energies between (n l)hv and nhv.

The energy absorbed by the system in the time dt within the

conical element dtt is, according to (321),

irNdt
sin2

0(K cos 2
if'+K' sin 2

tfdto. (322)
cL

Let us now calculate also the energy emitted within the same
conical element.

180. The total energy emitted in the time element dt by all N
oscillators is found from the consideration that a single oscillator,

according to (249) ,
takes up an energy element h v during the time

Ti (323)

200
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and hence has a chance to emit once, the probability being 77.

We shall assume that the intensity I of the exciting vibration

does not change appreciably in the time T. Of the Nwn oscil-

lators which at the time t are in the nth region element a number
Nwn rj will emit during the time T, the energy emitted by each

being nhv. From (323) we see that the energy emitted by all

oscillators during the time element dt is

dt Nf]\dt
n 77 nh v = 2nwn ,

T 4L

or, according to (265),

nwn . (324)

From this the energy emitted within the conical element dSl

may be calculated by considering that, in the state of thermo-

dynamic equilibrium, the energy emitted in every conical element

is equal to the energy absorbed and that, in the general case, the

energy emitted in a certain direction is independent of the energy

simultaneously absorbed. For the stationary state we have

from (160) and (265)

K-K'--^,
*!=_

(325 )
32-7T

2 32?r 2
pj]

and further from (271) and (265)

"-'11-*" 1
' (326)

and hence

1

Thus the energy emitted (324) becomes

(328)

This is, in fact, equal to the total energy absorbed, as may be

found by integrating the expression (322) over all conical ele-

ments dti and taking account of (325).



202 IRREVERSIBLE RADIATION PROCESSES

Within the conical element dtt the energy emitted or absorbed

will then be

sin'0 Krffl,
cL

or, from (325), (327) and (268),

^^nwn sin 2 dfl dt, (329)
C iy ^"

and this is the general expression for the energy emitted by the

system of oscillators in the time element dt within the conical

element d!2, as is seen by comparison with (324).

181. Let us now, as a preparation for the following deductions,

consider more closely the properties of the different pencils

passing the system of oscillators. From all directions rays
strike the volume-element that contains the oscillators; if we

again consider those which come toward it in the direction

(6, 0) within the conical element dti, the vertex of which lies in

the volume-element, we may in. the first place think of them as

being resolved into their monochromatic constituents, and then

we need consider further only that one of these constituents which

corresponds to the frequency v of the oscillators
;
for all other rays

simply pass the oscillators without influencing them or being
influenced by them. The specific intensity of a monochromatic

ray of frequency v is

K+K'

where K and K' represent the principal intensities which we
assume as non-coherent. This ray is now resolved into two com-

ponents according to the directions of its principal planes of

vibration (Sec. 176).

The first component,

K sin 2
i/'-f-K' cos 2

^ }

passes by the oscillators and emerges on the other side with no

change whatever. Hence it gives a plane polarized ray, which

starts from the system of oscillators in the direction (0,</>) within

the solid angle dti and whose vibrations are perpendicular to the

axis of the oscillators and whose intensity is

K sin 2
^-f-K'cos't/^K". (330)
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The second component,

K cos^+K'sin2
^,

polarized at right angles to the first consists again, according to

Sec. 176, of two parts

(K cos 2 iH-K' sin2
) cos 2 8 (331)

and

(K cos 2
iH-K' sin2

f) sin2
0, (332)

of which the first passes by the system without any change, since

its direction of vibration is at right angles to the axes of the oscil-

lators, while the second is weakened by absorption, say by the

small fraction 0. Hence on emergence this component has only

the intensity

(1-0) (K cos 2
<A+K' sin2

^) sin 2
0. (333)

It is, however, strengthened by the radiation emitted by the sys-

tem of oscillators (329), which has the value

j8'(l-i?) Vnwn sin2
0, (334)

where $' denotes a certain other constant, which depends only

on the nature of the system and whose value is obtained at once

from the condition that, in the state of thermodynamic equi-

librium, the loss is just compensated by the gain.

For this purpose we make use of the relations (325) and (327)

corresponding to the stationary state, and thus find that the sum
of the expressions (333) and (334) becomes just equal to (332) ;

and thus for the constant (3' the following value is found :

3c hv*

c

Then by addition of (331), (333) and (334) the total specific

intensity of the radiation which emanates from the system of

oscillators within the conical element dft, and whose plane of

vibration is parallel to the axes of the oscillators, is found to be

K'" = K cos 2 t+ K' sin2 ^+
/3sin

2 0(K.-(K cos 2 ^+K' sin2
*))

where for the sake of brevity the term referring to the emis-

sion is written

Ke . (336)
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Thus we finally have a ray starting from the system of oscil-

lators in the direction (6,<f>) within the conical element dtt and

consisting of two components K" and K'" polarized perpendicu-

larly to each other, the first component vibrating at right angles

to the axes of the oscillators.

In the state of thermodynamic equilibrium

a result which follows in several ways from the last equations.

182. The constant /3 introduced above, a small positive num-

ber, is determined by the spacial and spectral limits of the radia-

tion influenced by the system of oscillators. If q denotes the

cross-section at right angles to the direction of the ray, A v the

spectral width of the pencil cut out of the total incident radiation

by the system, the energy which is capable of absorption and

which is brought to the system of oscillators within the conical

element d& in the time dt is, according to (332) and (11),

gAKK cos2 ^+K' sin 2
^) sin2 9 dtt dt. (337)

Hence the energy actually absorbed is the fraction /? of this value.

Comparing this with (322) we get

q-Av



CHAPTER IV

CONSERVATION OF ENERGY AND INCREASE OF
ENTROPY. CONCLUSION

183. It is now easy to state the relation of the two principles of

thermodynamics to the irreversible processes here considered.

Let us consider first the conservation of energy. If there is no

oscillator in the field, every one of the elementary pencils, infinite

in number, retains, during its rectilinear propagation, both its

specific intensity K and its energy without change, even though it

be reflected at the surface, assumed as plane and reflecting, which

bounds the field (Sec. 166). The system of oscillators, on the

other hand, produces a change in the incident pencils and hence

also a change in the energy of the radiation propagated in the

field. To calculate this we need consider only those mono-
chromatic rays which lie close to the natural frequency v of the

oscillators, since the rest are not altered at all by the system.
The system is struck in the direction (0, 0) within the conical

element dti which converges toward the system of oscillators by
a pencil polarized in some arbitrary way, the intensity of which
is given by the sum of the two principal intensities K and K'.

This pencil, according to Sec. 182, conveys the energy

q&v(K+K')dQ dt

to the system in the time dt; hence this energy is taken from the

field of radiation on the side of the rays arriving within dtt. As
a compensation there emerges from the system on the other side

in the same direction (0, $) a pencil polarized in some definite

way, the intensity of which is given by the sum of the two com-

ponents K" and K'". By it an amount of energy

is added to the field of radiation. Hence, all told, the change in

energy of the field of radiation in the time dt is obtained by sub-

205
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tracting the first expression from the second and by integrating
with respect to dti. Thus we get

dt

or by taking account of (330), (335), and (338)

wNdt

cL

tC

r**
sin 2

(K e-(K cos 2 ^+K' sin 2
+)). (339)

184. Let us now calculate the change in energy of the system
of oscillators which has taken place in the same time dt. Accord-

ing to (219), this energy at the time t is

2
i

where the quantities wn whose total sum is equal to 1 represent
the densities of distribution characteristic of the state. Hence
the energy change in the time dt is

00 00

1 1

To calculate dwn we consider the nth region element. All of

the oscillators which lie in this region at the time t have, after

'the lapse of time r, given by (323), left this region; they have

either passed into the (n+l)st region, or they have performed
an emission at the boundary of the two regions. In compensa-
tion there have entered (l ri)Nwn-i oscillators during the

time r, that is, all oscillators which, at the time t, were in the

(n l)st region element, excepting such as have lost their energy

by emission. Thus we obtain for the required change in the

time dt

.^Wn-i-Wn). (341)

A separate discussion is required for the first region element n = I .

For into this region there enter in the time r all those oscillators

which have performed an emission in this time. Their number
is
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Hence we have

Ndwi = N(rj Wi).
T

We may include this equation in the general one (341) if we
introduce as a new expression

w, = --?-. (342)
I-?;

Then (341) gives, substituting T from (323),

and the energy change (340) of the system of oscillators becomes

N\dt

4L

The sum S may be simplified by recalling that

S nwn-i= S (n l)wn-i+S wn-\
i i i

OO OO
-j

= ^nwn -\-w -\-1
= S mi?n+ .

i i 1 n

Then we have

N\dt
dE= r4L (344)

This expression may be obtained more readily by considering that

dE is the difference of the total energy absorbed and the total

energy emitted. The former is found from (250), the latter from

(324), by taking account of (265).

The principle of the conservation of energy demands that the

sum of the energy change (339) of the field of radiation and the

energy change (344) of the system of oscillators shall be zero,

which, in fact, is quite generally the case, as is seen from the rela-

tions (320) and (336).

185. We now turn to the discussion of the second principle, the

principle of the increase of entropy, and follow closely the above

discussion regarding the energy. When there is no oscillator in

the field, every one of the elementary pencils, infinite in number,
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retains during rectilinear propagation both its specific intensity

and its entropy without change, even when reflected at the sur-

face, assumed as plane and reflecting, which bounds the field.

The system of oscillators, however, produces a change in the

incident pencils and hence also a change in the entropy of the

radiation propagated in the field. For the calculation of this

change we need to investigate only those monochromatic rays

which lie close to the natural frequency v of the oscillators, since

the rest are not altered at all by the system.
The system of oscillators is struck in the direction (0,0) within

the conical element d!2 converging toward the system by a pencil

polarized in some arbitrary way, the spectral intensity of which

is given by the sum of the two principal intensities K and K' with

the azimuth of vibration ^ and --h^ respectively, which are
a

assumed to be non-coherent. According to (141) and Sec. 182

this pencil conveys the entropy

dl2cft- (345)

to the system of oscillators in the time dt, where the function

L(K) is given by (278). Hence this amount of entropy is taken

from the field of radiation on the side of the rays arriving within

d!2. In compensation a pencil starts from the system on the

other side in the same direction (0,0) within d$l having the

components K" and K'" with the azimuth of vibration - and
Ji

respectively, but its entropy radiation is not represented by
L(K")+ L(K"'), since K" and K'" are not non-coherent, but by

L(K ) + L(K/) (346)

where K and K '

represent the principal intensities of the pencil.

For the calculation of K and K ' we make use of the fact that,

according to (330) and (335), the radiation K" and K'", of which

the component K'" vibrates in the azimuth 0, consists of the

following three components, non-coherent with one another:

with the azimuth of vibration tg
z

\j/i
=

l-/3sin
2
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K2
= K' cos2 f+ K' sin2 *(l-0 sin2

0)
= K'(l

- sin2 sin 2
^)

cot 2
\f/

with the azimuth of vibration tg
2

\J/z
=

,

1 jSsm
2

and,
K 3
=

/3 sin2 Ke

with the azimuth of vibration tg \f/ s
= 0.

According to (147) these values give the principal intensities

K and K/ required and hence the entropy radiation (346).

Thereby the amount of entropy

^A4L(K ) + L(K
/

)]^12 dt (347)

is added to the field of radiation in the time dt. All told, the en-

tropy change of the field of radiation in the time dt, as given by
subtraction of the expression (345) from (347) and integration

with respect to dQ,, is

I. (348)

Let us now calculate the entropy change of the system of

oscillators which has taken place in the same time dt. According
to (173) the entropy at the time t is

S= kN^wn log wn .

1

Hence the entropy change in the time dt is

CO

dS= fcZVS log Wn dw
1

and, by taking account of (343), we have:

n
~

(l ~^ Wn~ i log Wn - (349)

186. The principle of increase of entropy requires that the sum
of the entropy change (348) of the field of radiation and the

entropy change (349) of the system of oscillators be always

positive, or zero in the limiting case. That this condition is in

fact satisfied we shall prove only for the special case when all rays

falling on the oscillators are unpolarized, i.e., when K' = K.

14
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In this case we have from (147) and Sec. 185.

;j =i{2K+/3sin
2 0(K-K) ft sin2

0(K e -K)},
j

and hence

K =K+/3sin2
0(K e -K), K ' = K.

The entropy change (348) of the field of radiation becomes

'/'

f , dL(K)= dAi> I tfdft sin2
0(K e-K)-~^

J
' dK

or, by (338) and (278),

l/<
. d!2 sin2

0(K e K) lo& , -
,

,

Ac*>L J \ c2K/

On adding to this the entropy change (349) of the system of

oscillators and taking account of (320), the total increase in en-

tropy in the time dt is found to be equal to the expression

vkNdt C
2 I / K _x\] (-[ -

chvL J { i V c2K

where

f = l-i?. (350)

We now must prove that the expression

F= I d& sin

is always positive and for that purpose we set down once more the

meaning of the quantities involved. K is an arbitrary positive

function of the polar angles and 0. The positive proper frac-

tion f is according to (350), (265), and (320) given by

-f- =-^JK sin2 B dQ. (352)

The quantities Wi, w 2 ,
w 3 ,

are any positive proper
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fractions whatever which, according to (167), satisfy the condition
CO

Swn = 1 (353)

while, according to (342),

w = -
(354)

Finally we have from (336)

K e
= 2nwn . (355)

c
2

i

187. To give the proof required we shall show that the least

value which the function F can assume is positive or zero. For

this purpose we consider first that positive function, K, of 6 and 0,

which, with fixed values of
,
w i} w 2 , Wz, and K e ,

will

make F a minimum. The necessary condition for this is dF = 0,

where according to (352)

SKsin2 6 d 12 = 0.

This gives, by considering that the quantities w and do not

depend on 6 and 0, as a necessary condition for the minimum,

SF = 0= f dO sin'9 a KJ -log(l+~)-~^J { \ c2 K/ c K K
7 I

"^

and it follows, therefore, that the quantity in brackets, and hence

also K itself is independent of 6 and 0. That in this case F really

has a minimum value is readily seen by forming the second varia-

tion

-~
3
+l

which may by direct computation be seen to be positive under all

circumstances.

In order to form the minimum value of F we calculate the value

of K, which, from (352), is independent of and 0. Then it

follows, by taking account of (319a), that

K=^ f
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and, by also substituting K e from (355) ,

CO

1~7 2 (Wn~^n-l) log Wn -[(l-fin-I] Wn log f.

1

188. It now remains to prove that the sum

Wn -[(l-fin-l] WB log f, (356)

where the quantities wn are subject only to the restrictions that

(353) and (354) can never become negative. For this purpose
we determine that system of values of the w's which, with a fixed

value of
,
makes the sum <i> a minimum. In this case 8 $> = 0, or

CO

. dWn
Wn f Swn_i) lOg Wn+(wn fWn-l)

~
(357)Wn

where, according to (353) and (354),

00

2 dwn = and 6^ = 0. (358)
i

If we suppose all the separate terms of the sum to be written out,

the equation may be put into the following form:

i+
n
~

n~l - [(i- r)n- 1] log ri =o.

(359)

From this, by taking account of (358), we get as the condition

for a minimum, that

log wn -{ log W*i4~^- [(l-r)n-l] log r (360)wn

must be independent of n.

The solution of this functional equation is

for it satisfies (360) as well as (353) and (354). With this value

(356) becomes

$ = 0. (362)
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189. In order to show finally that the value (362) of $ is really

the minimum value, we form from (357) the second variation

where all terms containing the second variation 8
2wn have been

omitted since their coefficients are, by (360), independent of n

and since

This gives, taking account of (361),

8'*=i(i?^-^
i

or
00

vn
2 8wn-i8w,

r
That the sum which occurs here, namely,

w^,
+ *wj__

^Stt>
3+
5^_ 5^to4

+ (363)

is essentially positive may be seen by resolving it into a sum of

squares. For this purpose we write it in the form

which is identical with (363) provided ai = 0. Now the a's

may be so determined that every term of the last sum is a perfect

square, i.e., that

1 an OLn+l _ / 1 V
f" "f n+1 ~\r/

or

(364)-o
By means of this formula the a's may be readily calculated. The

first values are:

n r r
i
=

0, aa
= -, ^3 = :,

.....
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Continuing the procedure an remains always positive and less

than
' = -(! V 1 f ) To prove the correctness of this state-

2 \ /

ment we show that, if it holds for an ,
it holds also for an+\.

We assume, therefore, that an is positive and < a'. Then from

(364) an+ i is positive and <~r^r ~~^> But '

4(1- a')' 4(1-00
~

Hence an+i<a
f
. Now, since the assumption made does actu-

ally hold for n = l, it holds in general. The sum (363) is thus

essentially positive and hence the value (362) of <i> really is a

minimum, so that the increase of entropy is proven generally.

The limiting case (361), in which the increase of entropy

vanishes, corresponds, of course, to the case of thermodynamic

equilibrium between radiation and oscillators, as may also be

seen directly by comparison of (361) with (271), (265), and (360).

190. Conclusion. The theory of irreversible radiation proc-

esses here developed explains how, with an arbitrarily assumed

initial state, a stationary state is, in the course of time, established

in a, cavity through which radiation passes and which contains

oscillators of all kinds of natural vibrations, by the intensities

and polarizations of all rays equalizing one another as regards

magnitude and direction. But the theory is still incomplete in

an important respect. For it deals only with the mutual actions

of rays and vibrations of oscillators of the same period. For a

definite frequency the increase of entropy in every time element

until the maximum value is attained, as demanded by the second

principle of thermodynamics, has been proven directly. But, for

all frequencies taken together, the maximum thus attained does

not yet represent the absolute maximum of the entropy of the

system and the corresponding state of radiation does not, in gen-

eral, represent the absolutely stable equilibrium (compare Sec.

27). For the theory gives no information as to the way in which

the intensities of radiation corresponding to different frequencies

equalize one another, that is to say, how from any arbitrary

initial spectral distribution of energy the normal energy distri-

bution corresponding to black radiation is, in the course of time,

developed. For the oscillators on which the consideration was

based influence only the intensities of rays which correspond
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to their natural vibration, but they are not capable of changing

their frequencies, so long as they exert or suffer no other action

than emitting or absorbing radiant energy.
1

To get an insight into those processes by which the exchange of

energy between rays of different frequencies takes place in nature

would require also an investigation of the influence which the

motion of the oscillators and of the electrons flying back and

forth between them exerts on the radiation phenomena. For, if

the oscillators and electrons are in motion, there will be impacts

between them, and, at every impact, actions must come into play

which influence the energy of vibration of the oscillators in a

quite different and much more radical way than the simple emis-

sion and absorption of radiant energy. It is true that the final

result of all such impact actions may be anticipated by the aid

of the probability considerations discussed in the third section,

but to show in detail how and in what time intervals this result

is arrived at will be the problem of a future theory. It is certain

that, from such a theory, further information may be expected

as to the nature of the oscillators which really exist in nature,

for the very reason that it must give a closer explanation of

the physical significance of the universal elementary quantity of

action, a significance which is certainly not second in importance

to that of the elementary quantity of electricity.

* Compare P. Ehrenfest, Wien. Ber. 114 [2a], p. 1301, 1905. Ann. d. Phys. 36, p. 91,

1911. H. A. Lorentz, Phys. Zeitachr. 11, p. 1244, 1910. H. Poincart, Journ. de Phys. (5)

2, p. 5, p. 347, 1912.
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On Deductions from Stirling's Formula.

The formula is

(a) lim
n '

=1,

or, to an approximation quite sufficient for all practical purposes,

provided that n is larger than 7

(b) /

For a proof of this relation and a discussion of its limits of

accuracy a treatise on probability must be consulted.

On substitution in (170) this gives

/tfjx /tf,\ ... Va^T,

On account of (165) this reduces at once to

NN

Passing now to the logarithmic expression we get

S = k log W = K[N logN-Ni log#i-#8 log]V2

+log V2xAr -lo

or,

Now, for a large value of Ni, the term Ni log JV,- is very much

larger than log V27rZV,-, as is seen by writing the latter in the form

\ log 27r +1 log Ni. Hence the last expression will, with a fair

approximation, reduce to

218
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Introducing now the values of the densities of distribution

w by means of the relation

Ni=WiN
we obtain

or, snce

Wi+W2+W 3+ ... =1,
and hence

(wi+w z+w 3+ . . . ) log N = log N,
and

N 1

log N-log ATi = log
-jj-=

log = -log wi,

we obtain by substitution, after one or two simple transformations

S = k log W= -kN2 wi log wi,

a relation which is identical with (173).

The statements of Sec. 143 may be proven in a similar manner.

From (232) we get at once

7
.

S = klogWm = k log

Now log (N- 1) /= log N!- log N,

and, for large values of N, log N is negligible compared with

log N! Applying the same reasoning to the numerator we

may without appreciable error write

Substituting now for (N-\-P)! } N!, and PI their values from (b)

and omitting, as was previously shown to be approximately

correct, the terms arising from the v2ir(N-\-P) etc., we get,

since the terms containing e cancel out

S = k[(N+P) log (N+P)-N log N-P log P]

= k[(N+P) log ~-+P log N-P log P]

This is the relation of Sec. 143.
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is interpreted as angular momentum.
The logical reason for the quantum theory is found in the

fact that the Rayleigh-Jeans radiation formula does not agree
with experiment. Formerly Jeans attempted to reconcile

theory and experiment by the assumption that the equilibrium
of radiation and a black body observed and agreeing with

Planck's law rather than his own, was only apparent, and that

the true state of equilibrium which really corresponds to his law

and the equipartition of energy among all variables, is so slowly

reached that it is never actually observed. This standpoint,

which was strongly objected to by authorities on the experi-

mental side of the question (see, e.g., E. Pringsheim in 2), he

has recently abandoned. H. Poincare, in a profound mathe-

matical investigation (H. Poincare, Sur. la Theorie des Quanta,
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Journal de Physique (5), 2, p. 1, 1912) reached the conclusion

that whatever the law of radiation may be, it must always, if

the total radiation is assumed as finite, lead to a function pre-

senting similar discontinuites as the one obtained from the

hypothesis of quanta.

While most authorities have accepted the quantum theory for

good (see J. H. Jeans and H. A. Lorentz in 2), a few still enter-

tain doubts as to the general validity of Poincare's conclusion

(see above C. Benedicks and R. A Millikan 3). Others still

reject the quantum theory on account of the fact that the ex-

perimental evidence in favor of Planck's law is not absolutely

conclusive (see R. A. Millikan 3); among these is A. E. H. Love

(2), who suggests that Korn's (A. Korn, Neue Mechanische

Vorstellungen uber die Schwarze Strahlung und eine sich aus

denselben ergebende Modification des Planckschen Verteilungs-

gesetzes, Phys. Zeitschr., 14, p. 632) radiation formula fits the

facts as well as that of Planck.

H. A. Callendar, Note on Radiation and Specific Heat, Phil.

Mag., 26, p. 787, has also suggested a radiation formula that fits

the data well. Both Korn's and Callendar's formulae conform

to Wien's displacement law and degenerate for large values of

XT' into the Rayleigh-Jeans, and for small values of XT' into

Wien's radiation law. Whether Planck's law or one of these

is the correct law, and whether, if either of the others should

prove to be right, it would eliminate the necessity of the adop-
tion of the quantum theory, are questions as yet undecided.

Both Korn and Callendar have promised in their papers to follow

them by further ones.



ERRATA

Page 77. The last sentence of Sec. 77 should be replaced by:
The corresponding additional terms may, however, be omitted

here without appreciable error, since the correction caused by
them would consist merely of the addition to the energy change
here calculated of a comparatively infinitesimal energy change of

the same kind with an external work that is infinitesimal of the

second order.

Page 83. Insert at the end of Sec. 84 a:

These laws hold for any original distribution of energy what-

ever; hence, e. g., an originally monochromatic radiation remains

monochromatic during the process described, its color changing
in the way stated.
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