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TRANSLATOR'S NOTICE

THE modern developments of Thermodynamics, and the

applications to physical and chemical problems, have

become so important, that I have ventured to translate

Professor Planck's book, which presents the whole subject

from a uniform point of view.

A few notes have been added to the present English

edition by Professor Planck. He has not found it neces-

sary to change the original text in any way.

To bring the notation into conformity with the usual

English notation, several symbols have been changed.

This has been done with the author's sanction. Here I

have followed J. J. van Laar and taken ^ to signify what

he calls the Planck''sches Potential, i.e. the thermodynamic

potential of Gibbs and Duhem divided by 0.

Professor Planck's recent paper, "Uber die Grundlage
der Losungstheorie

"
(Ann. d. Phys. 10, p. 436, 1903), ought

to be read in connection with his thermodynamical theory

of solution.

I am indebted to Herren Veit & Co., Leipzig, for

kindly supplying the blocks of the five figures in the text.

A. 0.

-**< \ B R A ^^
DEVONPOBT,

June, 1903.
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PREFACE

THE oft-repeated requests either to publish my collected

papers on Thermodynamics, or to work them up into a

comprehensive treatise, first suggested the writing of this

book. Although the first plan would have been the

simpler, especially as I found no occasion to make any

important changes in the line of thought of my original

papers, yet I decided to rewrite the whole subject-matter,

with the intention of giving at greater length, and with

more detail, certain general considerations and demonstra-

tions too concisely expressed in these papers. My chief

reason, however, was that an opportunity was thus offered

of presenting the entire field of Thermodynamics from a

uniform point of view. This, to be sure, deprives the work

of the character of an original contribution to science, and

stamps it rather as an introductory text-book on Thermo-

dynamics for students who have taken elementary courses in

Physics and Chemistry, and are familiar with the elements

of the Differential and Integral Calculus.

Still, I do not think that this book will entirely super-

sede my former publications on the same subject. Apart

from the fact that these contain, in a sense, a more original

presentation, there may be found in them a number of

details expanded at greater length than seemed advisable

in the more comprehensive treatment here required. To
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enable the reader to revert in particular cases to the

original form for comparison, a list of my publications on

Thermodynamics has been appended, with a reference in

each case to the section of the book which deals with

the same point.

The numerical values in the examples, which have been

worked, as applications of the theory, have, almost all of

them, been taken from the original papers ; only a few,

that have been determined by frequent measurement, have

been taken from the tables in Kohlrausch's " Leitfaden der

praktischen Physik." It should be emphasized, however,

that the numbers used, notwithstanding the care taken,

have not undergone the same amount of critical sifting

as the more general propositions and deductions.

Three distinct methods of investigation may be clearly

recognized in the previous development of Thermodynamics.
The first penetrates deepest into the nature of the processes

considered, and, were it possible to carry it out exactly,

would be designated as the most perfect. Heat, according

to it, is due to the definite motions of the chemical

molecules and atoms considered as distinct masses, which

in the case of gases possess comparatively simple properties,

but in the case of solids and liquids can be only very

roughly sketched. This kinetic theory, founded by Joule,

Waterston, Krb'nig and Clausius, has been greatly extended

mainly by Maxwell and Boltzmann. Obstacles, at present

unsurmountable, however, seem to stand in the way of its

further progress. These are due not only to the highly

complicated mathematical treatment, but principally to

essential difficulties, not to be discussed here, in the

mechanical interpretation of the fundamental principles ofj

Thermodynamics.



PREFACE. ix

Such difficulties are avoided by the second method,

developed by Helmholtz. It confines itself to the most

important hypothesis of the mechanical theory of heat,

that heat is due to motion, but refuses on principle to

specialize as to the character of this motion. This is a

safer point of view than the first, and philosophically quite

as satisfactory as the mechanical interpretation of nature

in general, but it does not as yet offer a foundation of

sufficient breadth upon which to build a detailed theory.

Starting from this point of view, all that can be obtained

is the verification of some general laws which have already

been deduced in other ways direct from experience.

A third treatment of Thermodynamics has hitherto

proved the most fruitful. This method is distinct from

the other two, in that it does not advance the mechanical

theory of heat, but, keeping aloof from definite assump-

tions as to its nature, starts direct from a few very general

empiiical facts, mainly the two fundamental principles of

Thermodynamics. From these, by pure logical reasoning,

a large number of new physical and chemical laws are

deduced, which are capable of extensive application, and

have hitherto stood the test without exception.

This last, more inductive, treatment, which is used ex-

clusively in this book, corresponds best to the present state

of the science. "It cannot be considered as final, however,

but may have in time to yield to a mechanical, or perhaps

an electro-magnetic theory. I Although it may be of advan-

tage for a time to consider the activities of nature Heat,

Motion, Electricity, etc. as different in quality, and to

suppress the question as to their common nature, still our

aspiration after a uniform theory of nature, on a mechanical

basis or otherwise, which has derived such powerful en-

couragement from the discovery of the principle of the
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conservation of energy, can never be permanently repressed.

Even at the present day, a recession from the assumption
that all physical phenomena are of a common nature

would be tantamount to renouncing the comprehension of

a number of recognized laws of interaction between different

spheres of natural phenomena. Of course, even then, the

results we have deduced from the two laws of Thermo-

dynamics would not be invalidated, but these two laws

would not be introduced as independent, but would be

deduced from other more general propositions. At present,

however, no probable limit can be set to the time which it

will take to reach this goaL|
THE AUTHOR

BERLIN,

April, 1897.
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The reader is requested kindly to make the following corrections in the

es where they occur :

Page 26, line 8, for
" occurs

" read " occur."

30, 13 from bottom, for
"
Hydrobromamylene

" read "
Amy-

lene hydrobromide."

40, 4 in 58, for "different "read "definite."

78, 5, for
" restablishment

" read " re-establishment."

78, 14, for "stakes" read "states."

79, 9 in 108, for "Occasionally," etc., read "That attempts
are still made to represent this law as contained in the

principle of energy may be seen from the fact that the

too restricted term '

Energetics
'
is sometimes applied to

all investigations on these questions."

87, 2 in 118, for
" heat " read " work."

104, 10 from end, for
"
metaphysicists

"
read "

metaphysicians."

149, 3, /or "v" read "V'

152, lines 3 and 1 from end, read and throughout.\O v/2 \O V
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"
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read " 5M2"."

180, line 22, for
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quintiple
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quintuple."

185, 2, for
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" d log p
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</>
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214. line 15, for
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n^c^
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229, 14, for
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"
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is."

230, 14, for second minus read plus.

232, 2 from end, for
"
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equation."

241, equation (225), for
"
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."
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"
read " carbon."
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."
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PART I.

FUNDAMENTAL FACTS AND DEFINITIONS.

i

CHAPTER I.

TEMPERA TURE.

1. THE conception of " heat
"

arises from that particular

sensation of warmth or coldness which is immediately

experienced on touching a body. This direct sensation,

however, furnishes no quantitative scientific measure of a

body's state with regard to heat
;

it yields only qualitative

results, which vary according to external circumstances.

For quantitative purposes we utilize the change of volume

which takes place in all bodies when heated under constant

pressure, for this admits of exact measurement. Heating

produces in most substances an increase of volume, and thus

we can tell whether a body gets hotter or colder, not merely

by the sense of touch, but also by a purely mechanical

observation affording a much greater degree of accuracy.
We can also tell accurately when a body assumes a former

state of heat.

2. If two bodies, one of which feels warmer than the

other, be brought together (for example, a piece of heated

metal and cold water), it is invariably found that the hotter

body is cooled, and the colder one is heated up to a certain

B
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point, and then all change ceases. The two bodies are then

said to be in thermal equilibrium. Experience shows that

such a state of equilibrium finally sets in, not only when

two, but also when any number of differently heated bodies

are brought into mutual contact. From this follows the

important proposition : If a body, A, be in thermal equili-

brium with two other bodies, B and C, then B and C are in

thermal equilibrium with one another.* For, if we bring A,

B, and C together so that each touches the other two, then,

according to our supposition, there will be equilibrium at

the points of contact AB and AC, and, therefore, also at the

contact BC. If it were not so, no general thermal equili-

brium would be possible, which is contrary to experience.

3. These facts enable us to compare the degree of heat

of two bodies, B and C, without bringing them into contact

with one another; namely, by bringing each body into

contact with an arbitrarily selected standard body, A (for

example, a mass of mercury enclosed in a vessel terminating
in a fine capillary tube). By observing the volume of A
in each case, it is possible to tell whether B and C are in

thermal equilibrium or not. If they are not in thermal

equilibrium, we can tell which of the two is the hotter. The

degree of heat of A, or of any body in thermal equilibrium
with A, can thus be very simply defined by the volume of

A, or, as is usual, by the difference between the volume of

A and its volume when in thermal equilibrium with melting
ice under atmospheric pressure. This volumetric difference,

which, by an appropriate choice of unit, is made to read 100

when A is in contact with steam under atmospheric pressure,
is called the temperature in degrees Centigrade with regard
to A as thermometric substance. Two bodies of equal

temperature are, therefore, in thermal equilibrium, and vice

versa.

* As is well known, there exists no corresponding proposition for electrical

equilibrium. For if we join together the substances Cu
|

CuSO4 aq.
ZnSO4 aq. |

Zn to form a conducting ring, no electrical equilibrium is

sil
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4. The temperature readings of no two thermometric^-

substances agree, in general, except at and 100. The

definition of temperature is therefore somewhat arbitrary.

This we may remedy to a certain extent by taking gases, in

particular those hard to condense, such as hydrogen, oxygen,

nitrogen, and carbon monoxide, as thermometric substances.

They agree almost completely within a considerable range
of temperature, and their readings are sufficiently in accord-

ance for most purposes. Besides, the coefficient of expansion
of these different gases is the same, inasmuch as equal
volumes of them expand under constant pressure by the

same amount about ^f
-

s of their volume when heated

from C. to 1 C. Since, also, the influence of the external

pressure on the volume of these gases can be represented by
a very simple law, we are led to the conclusion that these

regularities are based on a remarkable simplicity in their

constitution, and that, therefore, it is reasonable to define

the common temperature given by them simply as tempera-
ture. We must consequently reduce the readings of other

thermometers to those of the gas thermometer, and prefer-

ably to those of the hydrogen thermometer.

5. The definition of temperature remains arbitrary in

cases where the requirements of accuracy cannot be satisfied

by the agreement between the readings of the different

gas thermometers, for there is no sufficient reason for the

preference of any one of these gases. A definition of tem-

perature completely independent of the properties of any
individual substance, and applicable to all stages of heat

and cold, becomes first possible on the basis of the second

law of thermodynamics ( 160, etc.). In the mean time, only
such temperatures will be considered as are defined with

sufficient accuracy by the gas thermometer.

6. In the following we shall deal chiefly with homo-

geneous, isotropic bodies of any form, possessing throughout
their substance the same temperature and density, and-

subject to a uniform pressure acting everywhere perpen-
dicular to the surface. They, therefore, also exert the same
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pressure outwards. Surface phenomena are thereby dis-

regarded. The condition of such a body is determined by
its chemical nature; its mass, M; its volume, V; and its

temperature, t. On these must depend, in a definite manner,
all other properties of the particular state of the body,

especially the pressure, which is uniform throughout, in-

ternally and externally. The pressure, >, is measured by the

force acting on the unit of area in the C.G.S. system, in

dynes per square centimeter, a dyne being the force which

imparts to a mass of one gramme in one second a velocity
of one centimeter per second.

7. As the pressure is generally given in atmospheres,
the value of an atmosphere in absolute C.G.S. units is here

calculated. The pressure of an atmosphere is the weight
of a column of mercury at C., 76 cm. high, and 1 sq. cm.

in cross-section, when placed in mean geographical latitude.

This latter condition must be added, because the weight,
i.e. the force of the. earth's attraction, varies with the locality.

The volume \

' ~
~>lumn of mercury is 76 c.c.

;
and since

the density ^. Is 13*596, the mass is 76 x
13'596. Mu j Aiig the mass by the acceleration of gravity
in mean latitude, we find the pressure of one atmosphere in

absolute units to be

76 x 13-596 x 981 = 1,013,650 or 2cm/ cm.-sec.

This, then, is the factor for converting atmospheres into

absolute units. If, as was formerly the custom in mechanics,

we use as the unit of force the weight of a gramme in mean

geographical latitude instead of the dyne, the pressure of

an atmosphere would be 76 X 13 '596 = 1033-3 grms. per

square centimeter.

8. Since the pressure in a given substance is evidently
controlled by its internal physical condition only, and not

by its form or mass, it follows that p depends only on the

temperature and the ratio of the mass M to the volume V
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(i.e. the density), or on the reciprocal of the density, the

volume of unit mass

V

which is called the specific volume of the substance. For

every substance, then, there exists a characteristic relation

P=f(v,t),

which is called the characteristic equation of the substance.

For gases, the function / is invariably positive ;
for liquids

and solids, however, it may have also negative values under

certain circumstances.

9. Perfect Gases. The characteristic equation as-

sumes its simplest form for the substances which we used

in 4 for the definition of temperature. If the temperature
be kept constant, then, according to the Boyle-Mariotte

law, the product of the pressure and the sDecific volume

remains constant for gases #* 'i -

f -
r

) j

where T, for a given gas, depends only on the tempera-
ture.

But if the pressure be kept constant, then, according to

3, the temperature is proportional to the difference between

the present volume v and the volume VQ at ;
i.e.

(2)

where P depends only on the pressure p. Equation (1) for

v becomes
'

pvQ = To, . v-V ... (3)

where T is the value of the function T, when t = C.
*

Finally, as has already been mentioned in 4, the

expansion of all permanent gases on heating from C. to

1? C. is the same fraction a (about g-|- 3 )
of their volume at
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(Gay-Lussac's law). Putting t = 1, we have v VQ = at>o,

and equation (2) becomes

1 = av P ...... (4)

By eliminating P, v
, and v from (1), (2), (3), (4), we obtain

the temperature function of the gas

T = T (l + 0>

which is seen to be a linear function of t. The characteristic

equation (1) becomes

10. The form of this equation is considerably simplified

by shifting the zero of temperature, arbitrarily fixed in 3,

by
-

degrees, and calling the melting point of ice, not C.,
a

but - C. (i.e. about 273 C.). For, putting t + - = 9

(absolute temperature), and the constant aT = C, the

characteristic equation becomes

CL CM,
(5)

This introduction of absolute temperature is evidently tanta-

mount to measuring temperature no longer, as in 3, by a

change of volume, but by the volume itself.

11. The constant C, which is characteristic for the

perfect gas under consideration, can be calculated, if the

specific volume v be known for any pair of values of 9 and p
(e.g.

and 1 atmosphere). For different gases, taken at

the same temperature and pressure, the constants C evidently

vary directly as the specific volumes, or inversely as the

densities -. It may be affirmed, then, that, taken at the

same temperature and pressure, the densities of all perfect

gases bear a constant ratio to one another. A gas is,

therefore, often characterized by the constant ratio which its
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density bears to that of a normal gas at the same tempera-
ture and pressure (specific density relative to air or hydrogen).
At 0. (0 = 273) and 1 atmosphere pressure, the densities

of the following gases are :

Hydrogen . 0-00008988 Ji
cm. 3

Oxygen 0'0014291

Nitrogen 0-0012507

Atmospheric nitrogen 0-0012571

Air 0-0012930

whence the corresponding values of C in absolute units can

be readily calculated.

All questions with regard to the behaviour of a substance

when subjected to changes of temperature, volume, and

pressure are completely answered by the^ characteristic

equation of the substance.

12. Behaviour under Constant Pressure (Isopiestic

or Isobaric Changes). Coefficient of expansion is the name

given to the ratio of the increase of volume for a rise of

temperature of 1 C. to the volume at C. This increase

for a perfect gas is, according to (5), . The same equa-

tion (5) gives the volume of the gas at C. as - - x 273,

hence the ratio of the two quantities, or the coefficient of

expansion, is 2 fo = a.

13. Behaviour at Constant Volume (Isochoric or

Isopycnic Changes). The pressure coefficient is the ratio

of the increase of pressure for a rise of temperature of 1 to

the pressure at C. For a perfect gas, this increase, accord-

ing to equation (5), is
-y-.

The pressure at C. is -^ x 273,

whence the required ratio, i.e. the pressure coefficient, is ^J-g,

therefore equal to the coefficient of expansion a.

14. Behaviour at Constant Temperature (Isother-

mal Changes). Coefficient of elasticity is the ratio of an
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infinitely small increase of pressure to the resulting con-

traction of unit volume of the substance. In a perfect gas,

according to equation (5), the contraction of volume V, in

consequence of an increase of pressure dp, is

_ CM0, V,-dv = r-dp=-4p.

The contraction of unit volume is therefore

dN _dp
IT'V

and the coefficient of elasticity of the gas is

dp =

P

that is, equal to the pressure.

The reciprocal of the coefficient of elasticity, i.e. the ratio

of an infinitely small contraction of unit volume to the

corresponding increase of pressure, is called the coefficient

of compressibility.

15. The three coefficients which characterize the be-

haviour of a substance subject to isopiestic, isopycnic, and

isothermal changes are not independent of one another,

but are in every case connected by a definite relation.

The general characteristic equation, on being differentiated,

gives

where the suffixes indicate the variables to be kept constant

while performing the differentiation. By putting dp =
we impose the condition of an isopiestic change, and obtain

the relation between dv and dO in isopiestic processes :

dv
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For every state of a substance, one of the three

coefficients, viz. of expansion, of pressure, or of compres-

sibility, may therefore be calculated from the other two.

Take, for example, mercury at C. and under atmo-

spheric pressure. Its coefficient of expansion is ( 12)

dsD - = o-ooois,
\d0/ VQ'p

V

its coefficient of compressibility in atmospheres ( 14) is

- (IT) r = 0-000003,

therefore its pressure coefficient in atmospheres ( 13) is

-
dp\ /dp\ ,dv\ dO f _ 0-00018 _

0-000003
~

This means that an increase of pressure of 60 atmospheres
is required to keep the volume of mercury constant when
heated from C. to 1 C.

/f

16. Mixture of Perfect Gases. If any quantities of

the same gas at the same temperatures and pressures be

at first separated by partitions, and then allowed to come

suddenly in contact with another by the removal of these

partitions, it is evident that the volume of the entire system
will remain the same and be equal to the sum-total of the

partial volumes. Starting with quantities of different gases,

experience still shows that, when pressure and temperature
are maintained uniform and constant, the total volume

continues equal to the sum of the volumes of the con-

stituents, notwithstanding the slow process of intermingling
diffusion which takes place in this case. Diffusion goes

on until the mixture has become at every point of precisely
the same composition, i.e. physically homogeneous.

17. Two views regarding the constitution of mixtures

thus formed present themselves. Either we might assume
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that the individual gases, while mixing, split into a large
number of small portions, all retaining their original volumes

and pressures, and that these small portions of the different

gases, without penetrating each other, distribute themselves

evenly throughout the entire space. In the end each gas
would still retain its original volume (partial volume), and
all the gases would have the same common pressure. Or,

we might suppose and this view will be shown below ( 32)
to be the correct one that the individual gases change
and interpenetrate in every infinitesimal portion of the

volume, and that after diffusion each individual gas, in so

far as one may speak of such, fills the total volume, and is

consequently under a lower pressure than before, diffusion.

This so-called partial pressure of a constituent of a gas
mixture can easily be calculated.

18. Denoting the quantities referring to the individual

gases by suffixes and p requiring no special designation,

as they are supposed to be the same for all the gases, the

characteristic equation (5) gives for each gas before

diffusion

CM ti n TVT Q
llYlll/ \_y2 lVl2l7

The total volume,

remains constant during diffusion. After diffusion we as-

cribe to each gas the total volume, and hence the partial

pressures become

n,M,fl v, _ c2M2 _ V2

and by addition

tt + f+.-..=
Vl + 1

y
+

>=!> (8)

This is Dalton's law, that in a homogeneous mixture of



TEMPERATURE. 11

t

gases the pressure is equal to the sum of the partial pressures
of the gases. It is also evident that

Pl :p-2 : . . . = Vi : V2 : . . . =-CiMi : C2M2 . (9)

i.e. the partial pressures are proportional to the volumes of

the gases before diffusion, or to the partial volumes which .

the gases would have according to the first view of diffusion

given above.

19. The characteristic equation of the mixture, ac-

cording to (7) and (8), is

p =
(CJtti + C2M2 +...)-

which corresponds to the characteristic equation of a perfect

gas with the following characteristic constant :

OiMi + C2M2 + . . .

Hence the question as to whether a perfect gas is a

chemically simple one, or a mixture of chemically different

gases, cannot in any case be settled by the investigation of

the characteristic equation.

20. The composition of a gas mixture is defined, either

by the ratios of the masses, MI, M2,
... or by the ratios

of the partial pressures p\, p%, . . . or the partial volumes

Vi, V2, ... of the individual gases. Accordingly we

speak of per cent, by weight or by volume. Let us take

for example atmospheric air, which is a mixture of oxygen

(1) and
"
atmospheric

"
nitrogen (2).

The ratio of the densities of oxygen, "atmospheric"

nitrogen and air is, according to 11,

0-0014291 : 0-0012571 : 0-0012930 = :

*
-

:
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Taking into consideration the relation (11)

CM" i r* ivr
, __ l-M-l T ^2^"-2

MI + M2

we find the ratio MI : M2 = 0-2998, i.e. 231 per cent,

by weight of oxygen and 76-9 per cent, of nitrogen.

Furthermore,

CiMi : C2M2 = Pl : p2 = Vi : V2 = 0-2637

i.e. 20'9 per cent, by volume of oxygen and 79'1 per cent, of

nitrogen.

21. Characteristic Equation of Other Substances.
The characteristic equation of perfect gases, even in the

case of the substances hitherto discussed, is only an approxi-

mation, though a close one, to the actual facts. A still

further deviation from the behaviour of perfect gases is

shown by the other gaseous bodies, especially by those easily

condensed, which for this reason were formerly classed as

vapours. For these a modification in the form of the

characteristic equation is necessary. It is worthy of notice,

however, that the more rarefied the state in which we observe

these gases, the less does their behaviour deviate from that

of perfect gases, so that all gaseous substances, when suffi-

ciently rarefied, may be said in general to act like perfect

gases. The general characteristic equation of gases and

vapours, for very large values of v, will pass over, therefore,

into the special form for perfect gases.

22. We may obtain by various graphical methods an

idea of the character and magnitude of the deviations from

the ideal gaseous state. An isothermal curve may, e.g.,
be

drawn, taking v and p for some given temperature as the

abscissa and ordinate, respectively, of a point in a plane.

The entire system of isotherms gives us a complete repre-

sentation of the characteristic equation. The more the

behaviour of the vapour in question approaches that of a

perfect gas, the closer do the isotherms approach those of

equilateral hyperbolae having the rectangular co-ordinate
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axes for asymptotes, for pv = const, is the equation of an

isotherm of a perfect gas. The deviation from the hyper-
bolic form yields at the same time a measure of the

departure from the ideal state.

23. The deviations become still more apparent when
the isotherms are drawn taking the product pv (instead of

p) as the ordinate and say p as the abscissa. Here a perfect

gas has evidently for its isotherms straight lines parallel to

the axis of abscissae. In the case of actual gases, however, the

isotherms slope gently towards a minimum value of pv, the

position of which depends on the temperature and the nature

of the gas. For lower pressures (i.e. to the left of the

minimum), the volume decreases at a more rapid rate, with

increasing pressure, than in the case of perfect gases ; for

higher pressures (to the right of the minimum), at a slower

rate. At the minimum point the compressibility coincides

with that of a perfect gas. In the case of hydrogen the

minimum lies far to the left, and it has hitherto been

possible to observe it only at very low temperatures.

24. To van der Waals is due the first analytical formula

for the general characteristic equation, applicable also to

the liquid state. He also explained physically, on the basis

of the kinetic theory of gases, the deviations from the

behaviour of perfect gases. As we do not wish to introduce

here the hypothesis of the kinetic theory, we consider van
der Waals' equation merely as an approximate expression of

the facts. His equation is

K0 a
7

~
~~9>

v o v*
P =

1 aV - I V*

where K, a, and b are constants which depend on the nature
of the substance. For large values of v, the equation, as

required, passes into that of a perfect gas ;
for small values

of v and corresponding values of 0, it represents the charac-

teristic equation of a liquid.

Expressing p in atmospheres and calling the specific
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volume v unity for 9 = 273 and p = 1, van der Waals'

constants for carbon dioxide are

E = 0-00369
;
a = 0-00874

;
I = 0-0023.

As the volume of 1 gr. of carbon dioxide at C. and

atmospheric pressure is 505 c.c., the values of v cal-

culated from the formula must be multiplied by 505 to

obtain the specific volumes in absolute units.

25. Van der Waals' equation not being sufficiently

accurate, Clausius supplemented it by the introduction of

an additional constant. Clausius' equation is

K0 o

For large values of v, this too approaches the ideal

characteristic equation. In the same units as above, Clausius'

constants for carbon dioxide are :

E = 0-003688
;
a = 0-000843

;
b = 0-000977 ;

e = 2-0935.

Andrews' observations on the compressibility of gaseous
and liquid carbon dioxide are satisfactorily represented by
Clausius' equation.

26. If we draw the system of isotherms with the aid of

Clausius' equation, employing the graphical method de-

scribed in 22, the characteristic graphs for carbon dioxide

Fig. 1 are obtained.* For high temperatures the isotherms

approach equilateral hyperbolae, as may be seen from equation

(12). In general, however, the isotherm is a curve of the

third degree, three values of v corresponding to one of

p. Hence, in general, a straight line parallel to the axis of

abscissae intersects an isotherm in three points, of which

two, as actually happens for large values of 0, may be

imaginary. At high temperatures there is, consequently,

* For the calculation and construction of the curves, I am indebted to

Dr. Richard Apt.



Jso herms oj Carbon Dioxide

K

50

40*

31 9

20*

10

Cubic centimeters per gram.

FIG. 1.



1 6 THERMODYNA MICS.

only one real volume corresponding to a given pressure,
while at lower temperatures, there are three real values of

the volume for a given pressure. Of these three values

(indicated on the figure by a, j3, y, for instance) only the

smallest (a) and the largest (y) represent practically realiz-

able states, for at the middle point (/3) the pressure along
the isotherm would increase with increasing volume, and the

compressibility would accordingly be negative. Such a

state has, therefore, only a theoretical signification.

27. The point a corresponds to liquid carbon dioxide,

and y to the gaseous condition at the temperature of the

isotherm passing through the points and under the pressure
measured by the ordinates of the line cr/3y.

In general

only one of these states is stable (in the figure, the liquid

state at
a). For, if we compress gaseous carbon dioxide,

enclosed in a cylinder with a movable piston, at constant

temperature, e.g. at 20 C., the gas assumes at first states

corresponding to consecutive points on the 20 isotherm to

the extreme right. The point representative of the physical
state of the gas, then moves farther and farther to the left

until it reaches a certain place C. After this, further com-

pression does not move the point beyond C, but there now
takes place a partial condensation of the substance a split^

ting into a liquid and a gaseous portion. /Both parts, of course,

possess common pressure and temperature. The state of the:

gaseous portion continues to be characterized by the point

C, that of the liquid portion by the point A of the same

isotherm. C is called the saturation point of carbon dioxidfe

gas for the particular temperature considered. Isothermal

compression beyond C merely results in precipitating more *~

of the vapour in liquid form. During this part of the

isothermal compression no change takes place but the con-

densation of more and more vapour ;
the internal conditions

(pressure, temperature, specific volume) of both parts of the

substance are always represented by the two points A and C.

At last, when all the vapour has been condensed, the whole

substance is in the liquid condition A, and again behaves
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as a homogeneous substance, so that further compression

gives an increase of density and pressure along the isotherm.

The substance will now pass through the point a of the

figure. On this side, as may be seen from the figure, the

isotherm is much steeper than on the other, i.e. the compressi-

bility is much smaller. At times, it is possible to follow the

isotherm beyond the point G towards the point y, and to

prepare a so-called supersaturated vapour. Then only a

more or less unstable condition of equilibrium is obtained,

as may be seen from the fact that the smallest disturbance

of the equilibrium is sufficient to cause an immediate con-

densation. The substance passes by a jump into the stable

condition. Nevertheless, by the study of supersaturated

vapours, the theoretical part of the curve also receives a

direct meaning.

28. On any isotherm, which for certain values of p
admits 'of three real values of v, there are, therefore, two

definite points, A and (7, corresponding to the state of

saturation. The position of these points is not immediately
deducible from the graph of the isotherm. The propositions
of thermodynamics, however, lead to a simple way of finding
these points, as will be seen in 172. The higher the tem-

perature, the smaller becomes the region in which lines

drawn parallel to the axis of abscissae intersect the isotherm

in three real points, and the closer will these three points

approach one another. The transition to the hyperbola-like

isotherms, which any parallel to the axis of abscissae cuts

in one point only, is formed by that particular isotherm

on which the three points of intersection coalesce into one,

giving a point of inflection. The tangent to the curve at

this point is parallel to the axis of abscissae. It is called

the critical point (K of Fig. 1) of the substance, and its

position indicates the critical temperature, the critical

specific volume, and the critical pressure of the substance.-

Here there is no longer any difference between the saturated

vapour and its liquid precipitate. Above the critical tempe-
rature and critical pressure, condensation does not exist,

c
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as the diagram plainly shows. Hence all attempts to

condense hydrogen, oxygen, and nitrogen necessarily failed

as long as the temperature had not been reduced below

the critical temperature, which is very low for these

gases.

29. It further appears from our figure that there is

no definite boundary between the gaseous and liquid states,

since from the region of purely gaseous states, as at (7,

that of purely liquid ones, as at A, may be reached on

a circuitous path e
that nowhere passes through a state of

saturation on & curve, for instance, drawn around the critical

point. Thus a vapour may be heated at constant volume

above the critical temperature, then compressed at constant

temperature below the critical volume, and finally cooled

under constant pressure below the critical temperature.
Condensation nowhere occurs in this process, which leads,

nevertheless, to a region of purely liquid states./' The

earlier fundamental distinction between liquids, vapours,
and gases should therefore be dropped as no longer tenable.

A more modern proposal to denote as gaseous all states

above the critical temperature, and as vaporous or liquid

all others according as they lie to the right or left of the

theoretical regions (Fig. 1), has also this disadvantage, that

thereby a boundary is drawn between liquid and gas on

the one hand, and vapour and gas on the other hand, which

has no physical meaning. The crossing of the critical

temperature at a pressure other than the critical pressure
differs in no way from the crossing of any other temperature.

30. The position of the critical point may be readily

calculated from the general characteristic equation. Accord-

ing to 28 we have

= 0, and = 0.
2

The first of these means that the tangent to the isotherm

at K is parallel to the axis of abscissas ; and the second, that
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the isotherm has a point of inflection at K. On the basis

of Clausius' form of the characteristic equation (12), we
obtain for the critical point

These equations give for carbon dioxide from the above

data

9 = 304 = 273 + 31, p = 77 atm., v = 2-27
^'.

Qualitatively, all substances conform to these regularities,

but the values of the constants differ widely.

31. Eegarding the transition from the liquid to the

solid state, the same considerations hold as for that from

the gaseous to the liquid state. The system of isotherms

might be drawn for this process, and it is probable that

theoretical regions and a critical point would be verified

here also, if the means of experimental investigation were

adequate. A continuous passage from the liquid to the

solid state would then become possible along a path inter-

secting the critical isotherm on either side of the critical

* Obtained as follows :

K0 c
P = -

2c

/ay v = 2Re
^
_ = (3)

From (2) and (3), v = 3a + 26 (4)

Substituting (4) in (2) and reducing, we get

8c /e.,.

(6) Tr.

And substituting (4) and (5) in (1) and reducing, we have

cE

216(o + 6)
3
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point. In fact, there are certain substances which under

ordinary pressures pass without appreciable discontinuity
from the solid to the liquid state (pitch, glass, etc.), while

others possess for a definite temperature a definite pressure
of liquefaction or pressure of solidification, at which the

substance splits into two portions of different densities. The

pressure of liquefaction, however, varies with temperature
at a much greater rate than the pressure of the saturated

vapour. This view is physically justified, in particular by
the experiments of Barus and Spring, in which the pressures
were varied within wide limits.

In its most complete form the characteristic equation
would comprise the gaseous, liquid, and solid states simul-

taneously. No formula of such generality, however, has as

yet been established for any substance.

32. Mixtures. While, as shown in 19, the charac-

teristic equation of a mixture of perfect gases reduces in

a simple manner to that of its components, no such simpli-

fication takes place, in general, when substances of any
kind are mixed. Only for gases and vapours does Dalton's

law hold, at least with great approximation, that the total

pressure of a mixture is the sum of the partial pressures

which each gas would exert if it alone filled the total

volume at the given temperature. This law enables us

to establish the characteristic equation of any gas mixture,

provided that of the constituent gases be known. It also

decides the question, unanswered in 17, whether to the

individual gases of a mixture common pressure and different

volumes, or common volume and different pressures, should

be ascribed. From the consideration of a vapour differing

widely from an ideal gas, it follows that the latter of these

views is the only one admissible. Take, for instance, atmo-

spheric air and water vapour at C. under atmospheric

pressure. Here the water vapour cannot be supposed to be

subject to a pressure of 1 atm., since at 0. no water

vapour exists at this pressure. The only choice remaining
is to assign to the air and water vapour a common volume
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(that of the mixture) and different pressures (partial

pressures).
For mixtures of solid and liquid substances no law

of general validity has been found, that reduces the

characteristic equation of the mixture to those of its

constituents.



CHAPTEK II.

MOLECULAR WEIGHT.

33. IN the preceding chapter only such physical changes
have been discussed as concern temperature, pressure, and

density. The chemical constitution of the substance or

mixture in question has been left untouched. Cases are

frequent, however (much more so, in fact, than was formerly

supposed) in which the chemical nature of a substance is

altered by a change of temperature or pressure. / The more

recent development of thermodynamics has clearly brought
out the necessity of establishing a fundamental difference

between physical and chemical changes such as will exclude

continuous transition from the one kind to the other (cf.

42, et seq., and 238). It has, however, as yet not been

possible to establish a practical criterion for distinguishing

them, applicable to all cases. However strikingly most
chemical processes differ from physical ones in their violence,

suddenness, development of heat, changes of colour and
other properties, yet there are, on the other hand, numerous

changes of a chemical nature that take place with continuity
and comparative slowness; for example, dissociation. One
of the main tasks of physical chemistry in the near future

will be the further elucidation of this essential difference.*

34. Experience shows that all chemical reactions take

place according to constant proportions by weight. A
* In a word, we may, in a certain sense, say, that physical changes take

place continuously, chemical ones, on the other hand, discontinuously. In

consequence, the science of physics deals, primarily, with continuously vary-

ing numbers, the science of chemistry, on the contrary, with whole, or with

simple rational numbers.
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certain weight (strictly speaking, a mass) may therefore

be used as a characteristic expression for the nature of

a given chemically homogeneous substance, whether an

element or a compound. Such a weight is called an equiva-
lent weight. It is arbitrarily fixed for one element

generally for hydrogen at 1 gr. and then the equivalent

weight of any other element (e.g. oxygen) is that weight
which will combine with 1 gr. of hydrogen. The weight of

the compound thus formed is, at the same time, its equiva-
lent weight. By proceeding in this way, the equivalent

weights of all chemically homogeneous substances may be

found. The equivalent weights of elements that do not

combine directly with hydrogen can easily be determined,
since in every case a number of elements can be found that

combine directly with the element in question and also

with hydrogen.
The total weight of a body divided by its equivalent

weight is called the number of equivalents contained in the

body. Hence we may say that, in every chemical reaction,

an equal number of equivalents of the different substances

react with one another.

35. There is, however, some ambiguity in the above

definition, since two elements frequently combine in more

ways than one. For such cases there would exist several

values of the equivalent weight. Experience shows, how-

ever, that the various possible values are always simple

multiples or submultiples of any one of them. The

ambiguity in the equivalent weight, therefore, reduces itself

to multiplying or dividing that quantity by a simple integer.

We must accordingly generalize the foregoing statement,

that an equal number of equivalents react with one another,

and say, that the number of equivalents that react with one

another are in simple numerical proportions. Thus 16 parts

by weight of oxygen combine with 28 parts by weight of

nitrogen to form nitrous oxide, or with 14 parts to form

nitric oxide, or with 9J parts to form nitrous anhydride, or

with 7 parts to form nitrogen tetroxide, or with 5 parts to
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form nitric anhydride. Any one of these numbers may be

assigned to nitrogen as its equivalent weight, if 16 be taken

as that of oxygen. They are in simple rational proportions,

since

28 : 14 : 9J : 7 : 5g = 60 : 30 : 20 : 15 : 12,

36. The ambiguity in the definition of the equivalent

weight of nitrogen, exemplified by the above series of

numbers, is removed by selecting a particular one of them

to denote the molecular weight of nitrogen. In the definition

of the molecular weight as a quite definite quantity depend-

ing only on the particular state of a substance, and

independent of possible chemical reactions with other sub-

stances, lies one of the most important and most fruitful

achievements of theoretical chemistry. Its exact statement

can at present be given only for special cases, viz. for

perfect gases and dilute solutions. We need consider only
the former of these, as we shall see from thermodynamics
that the latter is also thereby determined.

The definition of the molecular weight for a chemically

homogeneous perfect gas is rendered possible by the further

empirical law, that gases combine, not only in simple

multiples of their equivalents, but also, at the same tempera-
ture and pressure, in simple volume proportions (Gay-Lussac).
It immediately follows that the number of equivalents, con-

tained in equal volumes of different gases, must bear simple
ratios to one another. The values of these ratios, however,

are subject to the above-mentioned ambiguity in the

selection of the equivalent weight. The ambiguity is,

however, removed by putting all these ratios = 1, i.e. by

establishing the condition that equal volumes of different

gases shall contain an equal number of equivalents. Thus

a definite choice is made from the different possible values,

and a definite equivalent weight obtained for the gas, which

is henceforth denoted as the molecular weight of the gas. At
the same time the number of equivalents in a quantity of

the gas, which may be found by dividing the total weight

by the molecular weight, is defined as the number of
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molecules contained in that quantity. Hence, equal volumes

of perfect gases at the same temperature and pressure contain

an equal number of molecules (Avogadro's law). The mole-

cular weights of chemically homogeneous gases are, therefore,

directly proportional to the masses contained in equal

volumes, i.e. to the densities. The ratio of the densities is

equal to the ratio of the molecular weights.

37. Putting the molecular weight of hydrogen = m
,

that of any other chemically homogeneous gas must be

equal to m multiplied by its specific density relative to

hydrogen ( 11). The following table gives the specific

densities relative to hydrogen, and the molecular weights of

several gases :

Specific Density. Molecular Weight.

Hydrogen VO m
Oxygen 16'0 .... 16'0 m
Nitrogen 14-0 .... 14-0 w
Water vapour .... 9'0 .... 9'0 m .

Ammonia 8*5 8'5 m

Now, since water vapour consists of 1 part by weight of

hydrogen and 8 parts by weight of oxygen, the molecule

of water vapour, 9 m
, must consist of m parts by weight of

hydrogen and 8 mo parts by weight of oxygen i.e., according
to the above table, of one molecule of hydrogen and half a

molecule of oxygen. In the same manner ammonia, accord-

ing to analysis, consisting of 1 part by weight of hydrogen
and 4f parts by weight of nitrogen, its molecule 8*5 mo must

necessarily contain T5 m parts by weight of hydrogen and

7 w parts by weight of nitrogen i.e., according to the

table, 1J molecules of hydrogen and J molecule of nitrogen.

Thus Avogadro's law enables us to give in quite definite

numbers the molecular quantities of each constituent present
in the molecule of any chemically homogeneous gas, pro-

vided we know its density and its chemical composition.

38. The smallest weight of a chemical element entering
into the molecules of its compounds is called an atom.
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Hence half a molecule of hydrogen is called an atom of

hydrogen, H ; similarly, half a molecule of oxygen an atom

of oxygen, ;
and half a molecule of nitrogen an atom

of nitrogen, N. The diatomic molecules of these substances

are represented by H2 , 2, N2 . An atom of mercury, on the

contrary, is equal to a whole molecule, because in the mole-

cules of its compounds no fractions of the molecular weight
of mercury vapour occurl| It is usual to put the atomic

weight of hydrogen H = 1. Then its molecular weight
becomes H2 = m-o = 2, and the molecular weights of our

table become :

Molecular

Weight.

Hydrogen . ....... 2 = H2

Oxygen ......... 32 = O2

Nitrogen ........ 28 = N2

Water vapour ....... 18 = H2O
Ammonia . ....... 17 = H3N

39. In general, then, the molecular weight of a

chemically homogeneous gas is twice its density relative to

hydrogen. Conversely, the molecular weight, m, of a gas

being known, its specific density, and consequently the

constant C in the characteristic equation (5), can be calcu-

lated. Denoting all quantities referring to hydrogen by
the suffix 0, we have, at any temperature and pressure, for

hydrogen,

for any other gas at the same temperature and pres-

sure,

C0

.*. : Co = :
- = wio : in,

VQ V

or =
, (13)m v '
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Now ra = 2, and C is to be calculated from the density of

hydrogen at C. and atmospheric pressure ( 11).

Since - = 0*00008988, p = 1013650, 9 = 273,
VQ

. r _ w Co _ mo pvo 2.1013650
__ 8260QOOO

m
=

m
' :~

m . 273 . 0-00008988
~ "

m~

Putting, for shortness, 82600000 = K, the characteristic

equation of a chemically homogeneous perfect gas of mole-

cular weight in becomes

P = ---, (14)m v

where K, being independent of the nature of the individual

gas, is generally called the absolute gas constant. The
molecular weight may be deduced directly from the charac-

teristic equation by the aid of the constant R, since

Since v = TT
' we have

ivi

. ...... (15)

M
p m'

But is the quantity defined above as the number of

molecules in the gas, and, therefore, if = n,

v E(9
V = -^

P

which means that at a given temperature and pressure the

volume of a quantity of gas depends only on the number of

the molecules present, and not at all on the nature of the

gas.

40. In a mixture of chemically homogeneous gases of
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molecular weights m\ 9 m.2 . . . the relation between the

partial pressures is, according to (9),

pi : pz : . . . = CiMi : C2M2 . . .

T? T?

But in (15) we have Ci = ; C2
=

;
. . .

mi m2
'

M! M2
.: Pi:p*:... =-:--:... = m : n, . . .

i.e. the ratio of the partial pressures is also the ratio of the

number of molecules of each gas present. Equation (10)

gives for the total volume

PA + C2M + . . .fl

P

= Bfl/Mi M, \

p \Wi w?2

= On -f i + '.'.')

(16)

The volume of the mixture is therefore determined by
the total number of the molecules present, just as in the

case of a chemically homogeneous gas.

41. It is evident that we cannot speak of the molecular

weight of a mixture. Its apparent molecular weight, how-

ever, may be defined as the molecular weight which a

chemically homogeneous gas would have if it contained in

the same mass the same number of molecules as the

mixture. If we denote the apparent molecular weight by
m, we have

M! + M2 + . . . _ Mi
,
MQ

m m/i m%

Mi + M2 + . . .

and m =
Mi. Mi
m>i m%
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The apparent molecular weight of air may thus be calcu-

lated. Since

H = O2 = 32
;
w2 = N2 = 28

; MI : M2 = 0*3

we have m =
77-5 r- = 28-8,

which is somewhat larger than the molecular weight of

nitrogen.

42. The characteristic equation of a perfect gas, whether

chemically homogeneous or not, gives, according to (16), the

total number of molecules, but yields no means of deciding
whether or not these molecules are all of the same kind. In

order to answer this question, other methods must be resorted

to, none of which, however, is practically applicable to all

cases. A decision is often reached by an observation of the

process of diffusion through a porous or, better, a semi-

permeable membrane. The individual gases of a mixture

will separate from each other by virtue of the differences in

their velocities of diffusion, which may even sink to zero in

the case of semi-permeable membranes, and thus disclose

the inhomogeneity of the substance. The chemical consti-

tution of a gas may often be inferred from the manner in

which it originated. It is by means of the expression for

the entropy ( 237) that we first arrive at a fundamental

definition for a chemically homogeneous gas.

43. Should a gas or vapour not obey the laws of perfect

gases, or, in other words, should its specific density depend
on the temperature or the pressure, Avogadro's definition of

molecular weight is nevertheless applicable. The number

of molecules in this case, instead of being a constant, will

be dependent upon the momentary physical condition of the

substance. We may, in such cases, either assume the number

of molecules to be variable, or refrain from applying Avoga-
dro's definition of the number of molecules. In other words,

the cause for the deviation from the ideal state may be



30 THERMODYNAMICS.

sought for either in the chemical or physical conditions. The
latter view preserves the chemical nature of the gas. The
molecules remain intact under changes of temperature and

pressure, but the characteristic equation is more complicated
than that of Boyle and Gay-Lussac like that, for example,
of van der Waals or of Clausius. The other view differs

essentially from this, in that it represents any gas, not obey-

ing the laws of perfect gases, as a mixture of various kinds

of molecules (in nitrogen peroxide N^O^ and N02,
in phos-

phorus pentachloride PC15 , PC13, and C12). The volume of

these is supposed to have at every moment the exact value

theoretically required for the total number of molecules of

the mixture of these gases. The volume, however, does not

vary with temperature and pressure in the same way as that

of a perfect gas, because chemical reactions take place
between the different kinds of molecules, continuously alter-

ing the number of each kind present, and thereby also the

total number of molecules in the mixture. This hypothesis
has proved fruitful in cases of great differences of density-
so-called abnormal vapour densities especially where, be-

yond a certain range of temperature or pressure, the specific

density once more becomes constant. When this is the

case, the chemical reaction has been completed, and for this

reason the molecules henceforth remain unchanged. Sydfo-

brornamylene, for instance, acts like a perfect gas below

160 and above 360, but shows only half its former density
at the latter temperature. The doubling of the number of

molecules corresponds to the equation

CgHnBr = C5H 10 + HBr.

Mere insignificant deviations from the laws of perfect

gases are generally attributed to physical causes as, e.g., in

water vapour and carbon dioxide and are regarded as the

forerunners of condensation. The separation of chemical

from physical actions by a principle .which would lead to a

more perfect definition of molecular weight for variable

vapour densities, cannot be accomplished at the present
time. The increase in the specific density which many
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vapours exhibit near their point of condensation might
just as well be attributed to such chemical phenomena as

the formation of double or multiple molecules. In fact,

differences of opinion exist in a number of such cases. The
molecular weight of sulphur vapour below 800, for instance,

is generally assumed to be SQ = 192
;
but some assume a

mixture of molecules S8 = 256 and S2 = 64, and others still

different mixtures. In doubtful cases it is safest, in general,

to leave this question open, and to admit both chemical

and physical changes as causes for the deviations from the

laws of perfect gases. This much, however, may be affirmed,

that for small densities the physical influences will be of far

less moment than the chemical ones, for, according to

experience, all prases approach the ideal condition aa their

densities decrease ( 21). This is an important point, which

we will make use of later.



CHAPTER III.

QUANTITY OF HEAT.

44. If we plunge a piece of iron and a piece of lead, both

of equal weight and at the same temperature (100 C.), into

two precisely similar vessels containing equal quantities of

water at C., we find that, after thermal equilibrium has

been established in each case, the vessel containing the iron

has increased in temperature much more than that contain-

ing the lead. Conversely, a quantity of water at 100 is

cooled to a much lower temperature by a piece of iron at 0,
than by an equal weight of lead at the same temperature.
This phenomenon leads to a distinction between temperature
and quantity of heat. As a measure of the heat given out

or received by a body, we take the increase or decrease of

temperature which some normal substance (e.g. water) under-

goes when it alone is in contact with the body, provided all

other causes of change of temperature (as compression, etc.)

are excluded. The quantity of heat given out by the body
is assumed to be equal to that received by the normal sub-

stance, and vice versa. The experiment described above

proves, then, that a piece of iron in cooling through a given
interval of temperature gives out more heat than an equal

weight of lead (about four times as much), and conversely,

that, in order to bring about a certain increase of tempera-

ture, iron requires a correspondingly larger supply of heat

than lead.

45. It was, in general, customary to take as the unit of

heat that quantity which must be added to 1 gr. of

water to raise its temperature from C. to 1 C. (zero
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calorie). This is almost equal to the quantity of heat which
will raise 1 gr. of water 1 C. at any temperature. The
refinement of calorimetric measurements has since made it

necessary to take account of the initial temperature of the

water, and it is often found convenient to define the calorie

as that quantity of heat which will raise 1 gr. of water

of mean laboratory temperature (15 to 20) 1 degree of

the Centigrade scale. This laboratory calorie is about

J700fi
^ a zero ca^or^e - Finally, a mean calorie has been

introduced, namely, the hundredth part of the heat required
to raise 1 gr. of water from C. to 100 0. The mean
calorie is about equal to the zero calorie. Besides these

so-called small calories, there are a corresponding number
of large or kilogram calories, which contain 1000 small

calories.

46. The ratio of Q, the quantity of heat each gram
of a substance receives, to A0, the corresponding increase of

temperature, is called the mean specific heat, or mean heat

capacity of 1 gr. of the substance between the initial and

final temperatures of the process

,

A0 m'

Hence, the mean heat capacity of water between and

1 is equal to one zero calorie.

Passing to infinitely small differences of temperature,
the specific heat of a substance, at the temperature 0,

becomes

dO
= C'

This, in general, varies with temperature, but very slowly
for most substances. It is usually permissible to put the

specific heat at a certain temperature equal to the mean

specific heat of an adjoining interval of moderate size.

47. The heat capacity of solids and liquids is very
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nearly independent of any variations of external pressure
that may take place during the process of heating. Hence
the definition of the heat capacity is not, usually, encumbered

with a condition regarding pressure. The specific heat of

gases, however, is influenced considerably by the conditions

of the heating process. In this case the definition of

specific heat would, therefore, be incomplete without some

statement as to the accompanying conditions. Neverthe-

less, we speak of the specific heat of a gas, without further

specification, when we mean its specific heat at constant

(atmospheric) pressure, as this is the value most readily

determined.

48. That the heat capacities of different substances

should be referred to unit mass is quite arbitrary. It arises

from the fact that quantities of matter can be most easily

compared by weighing them. Heat capacity might, quite
as well, be referred to unit volume. It is more rational to

compare masses which are proportional to the molecular

and atomic weights of substances, for then certain regu-
larities at once become manifest. The corresponding heat

capacities are obtained by multiplying the specific heats

(per unit mass) by the molecular or atomic weights. The

values thus obtained are known as the molecular or atomic

heats.

49. The chemical elements, especially those of high
atomic weight, are found to have nearly the constant atomic

heat of 6*4 (Dulong and Petit). It cannot be claimed that

this law is rigorously true, since the heat capacity depends
on the molecular constitution, as in the case of carbon, and

on the state of aggregation, as in the case of mercury, as

well as on the temperature. The effect of temperature is

especially marked in the elements, carbon, boron, and

silicon, which show the largest deviations from Dulong
and Petit's law. The conclusion is, however, justified, that

Dulong and Petit's law is founded on some more general
law of nature, which has not yet been formulated.
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50. Similar regularities, as appear in the atomic heats of

elements, are also found in the molecular heats of compounds,

especially with compounds of similar chemical constitution.

According to F. Neumann's law, subsequently confirmed by

Kegnault, compounds of similar constitution, when solid,

have equal molecular heats. Joule and Woestyn further

extended this law by showing that the molecular heat is

merely the sum of the atomic heats, or that in any com-

bination every element preserves its atomic heat, whether

or not the latter be 6*4, according to Dulong and Petit's

law. This relation also is only approximately true.

51. Since all calorimetric measurements, according to

44, extend only to quantities of heat imparted to bodies or

given out by them, they do not lead to any conclusion as

to the total amount of heat contained in a body of given

temperature. It would be absurd to define the heat con-

tained in a body of given temperature, density, etc., as the

number of calories absorbed by the body in its passage from

some normal state into its present state, for the quantity
thus defined would assume different values according to the

way in which the change was effected. A gas at and

atmospheric pressure can be brought to a state where its

temperature is 100 and its pressure 10 atmospheres, either

by heating to 100 under constant pressure, and then com-

pressing at constant temperature; or by compressing

isothermally to 10 atmospheres, and then heating isopie-

stically to 100; or, finally, by compressing and heating

simultaneously or alternately in a variety of ways. The

total number of calories absorbed would in each case be

different ( 77). It is seen, then, that it is useless to speak
of a certain quantity of heat which must be applied to a

body in a given state to bring it to some other state. If

the "total heat contained in a body" is to be expressed

numerically, as is done in the kinetic theory of heat, where

the heat of a body is defined as the total energy of its

internal motions, it must not be interpreted as the sum-

total of the quantities of heat applied to the body. As we
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shall make no use of this quantity in our present work, no

definition of it need be attempted.

52. In contrast to the above representation of the facts,

the older (Carnot's) theory of heat, which started from the

hypothesis that heat is an indestructible substance, neces-

sarily reached the conclusion that the " heat contained in a

body
"
depends solely on the number of calories absorbed

or given out by it. The heating of a body by other means

than direct application of heat, by compression or by friction

for instance, according to that theory produces no change in

the " total heat." To explain the rise of temperature which

takes place notwithstanding, it was necessary to make the

assumption that compression and friction so diminish the

body's heat capacity, that the same amount of heat now

produces a higher temperature, just as, for example, a

moist sponge appears more moist if compressed, although
the quantity of liquid in the sponge remains the same. In

the meantime, Kumford and Davy proved by direct experi-
ment that bodies, in which any amount of heat can be

generated by an adequate expenditure of work, do not in

the least alter their heat capacities with friction. Kegnault,

likewise, showed, by accurate measurements, that the heat

capacity of gases is independent of or only very slightly

dependent on volume
;

that it cannot, therefore, diminish,

in consequence of compression, as much as Carnot's theory
would require. Finally, W. Thomson and Joule have

demonstrated by careful experiments that a gas, when ex-

panding without overcoming external pressure, undergoes
no change of temperature, or an exceedingly small one

(
Gf- 70), so that the cooling of gases generally observed

when they expand is not due to the increase of volume per

se, but to the work done in the expansion. Each one of

these experimental results would by itself be sufficient to

disprove the hypothesis of the indestructibility of heat, and

to overthrow the older theory.

53. While, in general, the heat capacity varies con-

tinuously with temperature, every substance possesses,
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under certain external pressures, so-called singular values

of temperature, for which the heat capacity, together
with other properties, is discontinuous. At such tempera-
tures the heat absorbed no longer affects the entire body,
but only one of the parts into which it has split ;

and it no

longer serves to increase the temperature, but simply to

alter the state of aggregation, i.e. to melt, evaporate, or

sublime. Only when the entire substance has again become

homogeneous will the heat imparted produce a rise in

temperature, and then the heat capacity becomes once more

capable of definition. The quantity of heat necessary to

change 1 grain of a substance from one state of aggregation
to another is called the latent heat, in particular, the lieat of

fusion, of vaporization, or of sublimation. The same amount

of heat is set free when the substance returns to its former

state of aggregation. Latent heat, as in the case of specific

heat, is best referred, not to unit mass, but to molecular or

atomic weight. Its amount largely depends on the external

conditions under which the process is carried out ( 47),

constant pressure being the most important condition.

54. Like the changes of the state of aggregation, all

processes involving mixture, or solution, and all chemical

reactions are accompanied by an evolution of heat of greater

or less amount, which varies according to the external con-

ditions. This we shall henceforth designate as the heat

effect (Warmetonung) of the process under consideration, in

particular as the heat of mixture, of solution, of combina-

tion, of dissociation, etc. It is reckoned positive when heat

is set free or developed, i.e. given out by the body (exo-

thermal processes) ; negative, when heat is absorbed, or

rendered latent, i.e. taken up by the body (endothermal

processes).



PART II.

THE FIRST FUNDAMENTAL PRINCIPLE OF
THERMODYNAMICS.

CHAPTEE I.

GENERAL EXPOSITION.

55. THE first law of thermodynamics is nothing more

than the principle of the conservation of energy applied
to phenomena involving the production or absorption of

heat. Two ways lead to a deductive proof of this principle.

We may take for granted the correctness of the mechanical

view of nature, and assume that all changes in nature can

be reduced to motions of material points between which

there act forces which have a potential. Then the principle
of energy is simply the well-known mechanical theorem of

kinetic energy, generalized to include all natural processes.

Or we may, as is done in this work, leave open the question

concerning the possibility of reducing all natural processes
to those of motion, and start from the fact which has been

tested by centuries of human experience, and repeatedly

verified, viz. that it is in no way possible, either by mechanical,

thermal, chemical, or other devices, to obtain perpetual motion,

i.e. it is impossible to construct an engine which will work

in a cycle and produce continuous work, or kinetic energy,
from nothing. We shall not attempt to show how this single
fact of experience, quite independent of the mechanical

view of nature, serves to prove the principle of energy in

its generality, mainly for the reason that the validity of

the energy principle is nowadays no longer disputed. It
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will be different, however, in the case of the second law of

thermodynamics, the proof of which, at the present stage
of the development of our subject, cannot be too carefully

presented. The general validity of this law is still con-

tested from time to time, and its significance variously

interpreted, even by the adherents of the principle.

56. The energy of a body, or system of bodies, is

a magnitude depending on the momentary condition of

the system. In order to arrive at a definite numerical

expression for the energy of the system in a given state,

it is necessary to fix upon a certain normal arbitrarily

selected state (e.g. C. and atmospheric pressure). The ^ -

energy of the system in a given state, referred to the

arbitrarily selected normal state, is then equal to the alge-

braie sum of the mechanical equivalents of all the effects
''

produced outside the system when it passes in any way from
the given to the normal state. The energy of a system is,

therefore, sometimes briefly denoted as the faculty to

produce external effects. Whether or not the energy of a

system assumes different values according as the transition

from the given to -the normal state is accomplished in

different ways is not implied in the above definition. It

will be necessary, however, for the sake of completeness,
to explain the term " mechanical equivalent of an external

effect."

57. Should the external effect be mechanical in nature

should it consist, e.g.,
in lifting a weight, overcoming

atmospheric pressure, or producing kinetic energy then

its mechanical equivalent is simply equal to the mechanical

work done by the system on the external body (weight,

atmosphere, projectile). It is positive if the displacement
take place in the direction of the force exercised by the

system when the weight is lifted, the atmosphere pushed

back, the projectile discharged, negative in the opposite

sense.

But if the external effect be thermal in nature if it

consist, e.g.,
in heating surrounding bodies (the atmosphere,
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a calorimetric liquid, etc.) then its mechanical equivalent is

equal to the number of calories which will produce the same

rise of temperature in the surrounding bodies multiplied

by an absolute constant, which depends only on the units

of heat and mechanical work, the so-called mechanical

equivalent of heat. This proposition, which appears here

only as a definition, receives through the principle of the

conservation of energy a physical meaning, which may be

put to experimental test.

58. The Principle of the Conservation of Energy
asserts, generally and exclusively, that the energy of a

system in a given state, referred to a fixed normal state,

has a quite ^ff^ffiTvfl1110 in other words substitutingA ' O
the definition given in 56 that the algebraic sum of the

mechanical equivalents of the external effects produced
outside the system, when it passes from the given to the

normal state, is independent of the manner of the trans-

formation. On passing into the normal state the system
thus produces a definite total of effects, as measured in

mechanical units, and it is this sum the " work-value
"

of the external effects that represents the energy of the

system in the given state.

59. The validity of the principle of the conservation

of energy may be experimentally verified by transferring a

system in various ways from a given state to a certain other

state, which may here be designated as the normal state,

and measuring the mechanical equivalents of all external

effects in each case. Special care must be taken, however,
that the initial state of the system is the same each time,

and that none of the external effects is overlooked or taken

into account more than once.

60. As a first application we shall discuss Joule's famous

experiments, in which the external effects produced by

weights falling from a certain height were compared, first,

when performing only mechanical work (e.g. lifting a load),

and second, when by suitable contrivances generating heat
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by friction. The initial and final position of the weights

may be taken as the two states of the system, the work or

heat produced, as the external effects. The first case,

where the weights produce only mechanical work, is simple,
and requires no experiment. Its mechanical equivalent is

the product of the sum of the weights, and the height

through which they fall. The second case requires accurate

measurement of the increase of temperature, which the

surrounding substances (water, mercury) undergo in conse-

quence of the friction, as well as of their heat capacities, for

the determination of the number of calories which will

produce in them the same rise of temperature. It is, of

course, entirely immaterial what our views may be with

regard to the details of the frictional generation of heat, or

with regard to the ultimate form of the heat thus generated.
The only point of importance is that the state produced
in the liquid by friction is identical with a state produced

by the absorption of a definite number of calories.

Joule, by equating the mechanical work, corresponding
to the fall of the weights, to the mechanical equivalent of

the heat produced by friction, showed that the mechanical

equivalent of a gram-calorie is, under all circumstances,

equal to the work done in lifting a weight of a gram through
a height of 423-55 meters. That all his experiments with

different weights, different calorimetric substances, and

different temperatures, led to the same value, goes to prove
the correctness of the principle of the conservation of

energy.

61. In order to determine the mechanical equivalent

of heat in absolute units, we must bear in mind that Joule's

result refers to laboratory calories ( 45), and the readings

of a mercury thermometer. At the temperature of the

laboratory, 1 of the mercury thermometer represents about

PQ07
of 1 of the gas thermometer. A calorie referred to

the gas thermometer has, therefore, a mechanical equivalent

of 423-55 X 1-007 = 427.
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The acceleration of gravity must also be considered,

since raising a gram to a certain height represents, in

general, different amounts of work in different latitudes.

The absolute value of the work done is obtained by multi-

plying the weight, i.e. the product of the mass and the

acceleration of gravity, by the height of fall. The follow-

ing table gives the mechanical equivalent of heat in the

different calories :

Unit of heat referred to

gas thermometer.
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to a state 2, we should, according to the definition of the

energy in 58, have to measure Ui as well as U2 by the

mechanical equivalent of the external effects produced in

passing from the given states to the normal state. But,

supposing we so arrange matters that the system passes

from state 1, through state 2, into the normal state, it is

evident then that Ui U2 is simply the mechanical equiva-
lent of the external effects produced in passing from 1 to 2.

The decrease of the energy of a system subjected to any

change is, then, the mechanical equivalent of the external

effects resulting from that change ; or, in other words, the

increase of the energy of a system which undergoes any

change, is equal to the mechanical equivalent of the heat

absorbed and the work expended in producing the change :

U2
- Uj = Q + W. . . / .- (17)

Q is the mechanical equivalent of the heat absorbed by the

system, e.g. by conduction, and W is the amount of work

expended on the system. W is positive if the change takes

place in the direction of the external forces. The sum

Q + W represents the nCrV.Mncal equivalent of all the

thermal and mechanical opt^dons of the surrounding
bodies on the system. We shall use Q and W always in

this sense.

The value of Q + W is independent of the manner of

the transition from 1 to 2, and evidently also of the selec-

tion of the normal state. When differences of energy of

one and the same system are considered, it is, therefore, not

even necessary to fix upon a normal state. In the expres-

sion for the energy of the system there remains then an

arbitrary additive constant undetermined.

64. The difference U2
- Ui may also be regarded as

the energy of the system in state 2, referred to state 1 as

the normal state. For, if the latter be thus selected, then

Ui = 0, since it takes no energy to change the system from

1 to the normal state, and U2
- Ui = U2. The normal
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state is, therefore, sometimes called the state of zero

energy.

65. States 1 and 2 may J?e identical, in which case the

system changing from 1 to 2 passes through a so-called

cycle of operations. In this case,

U2
= Ui and Q + W = . . . (18)

The mechanical equivalent of the external effects is zero, or

the external heat effect is equal in magnitude and opposite
in sign to the external work. This proposition shows the

impracticability of perpetual motion, which necessarily

presupposes engines working in complete cycles.

66. If no external effects (Q = 0, W = 0) be produced

by a change of state of the system, its energy remains

constant (conservation of the energy). The quantities, on

which the state of the system depends, may undergo con-

siderable changes in this case, but they must obey the

condition U = const.

A system which changes without being acted on by
external agents is called a perfect system. Strictly speak-

ing, no perfect system can be found in nature, since there

is constant interaction between all material bodies of the

universe. It is, however, of importance to observe that by
an adequate choice of the system which is to undergo the

contemplated change, we have it in our power to make
the external effect as small as we please, in comparison
with the changes of energy of portions of the system itself.

Any particular external effect may be eliminated by making
the body which produces this effect, as well as the recipient,
a part of the system under consideration. In the case of a

gas which is being compressed by a weight sinking to a

lower level, if the gas by itself be the system considered,

the external effect on it is equal to the work done by the

weight. The energy of the system accordingly increases.

If, however, the weight and the earth be considered parts of

the system, all external effects are eliminated, and the
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energy of this system remains constant. The expression
for the energy now contains a new term representing the

potential energy of the weight. The loss of the potential

energy of the weight is exactly compensated by the gain
of the internal energy of the gas. All other cases admit

of similar treatment.



CHAPTER II.

APPLICATIONS TO HOMOGENEOUS SYSTEMS.

67. WE shall now apply the first law of thermodynamics
as expressed in equation (17),

U2
- U! = Q + W,

to a homogeneous substance, whose state is determined,

besides by its chemical nature and mass M, by two vari-

ables, the temperature 6 and the volume V, for instance.

The term homogeneous is used here in the sense of physically

homogeneous, and is applied to any system which appears
of completely uniform structure throughout. The sub-

stance may be chemically homogeneous, i.e. it may consist

entirely of the same kind of molecules, or chemical trans-

formations may take place at some stage of the process,

as, for example, in the case of a vapour, which partially

dissociates,on being heated. The homogeneous state must,

however, be a single valued function of the temperature
and the volume. As long as the system is at rest, the

total energy consists of the so-called internal energy U,
which depends only on the internal state of the substance

as determined by its density and temperature, and on its

mass, to which it is evidently proportional. In other cases

the total energy contains, besides the internal energy U,
another term, namely, the kinetic energy, which is known
from the principles of mechanics.

In order to determine the functional relation between U,

0, and V, the state of the system must be changed, and the

external effects of this change calculated. Equation (17)
then gives the corresponding change of energy.
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68. If a gas, initially at rest and at uniform temperature,
be allowed to suddenly expand by the opening of a stopcock,
which makes communication with a previously exhausted

vessel, a number of intricate mechanical and thermal

changes will at first take place. The portion of the gas

flowing into the vacuum is thrown into violent motion, then

heated by impact against the sides of the vessel and by

compression of the particles crowding behind, while the

portion remaining in the first vessel is cooled down by

expansion, etc. Assuming the walls of the vessels to be

absolutely rigid and non-conducting, and denoting by 2 any

particular state after communication between the vessels

has been established, then, according to equation (17), the

total energy of the gas in state 2 is precisely equal to that

in state 1, for neither thermal nor mechanical forces have

acted on the gas from without. The reaction of the walls

does not perform any work. The energy in state 2 is,

in general, composed of many parts, viz. the kinetic and

internal energies of the gas particles, each one of which, if

taken sufficiently small, may be considered as homogeneous
and uniform in temperature and density. If we wait until

complete rest and thermal equilibrium have been re-estab-

lished, and denote this state by 2, then in 2, as in 1, the total

energy consists only of the internal energy U, and we have

U2 = Ui. But the variables 6 and V, on which U depends,
have passed from Oi, Vi to 2, 2, where V2 > Vi. By
measuring the temperatures and the volumes, the relation

between the temperature and the volume in processes where

the internal energy remains constant may be established.

69. Joule performed such an experiment as described,

and found that for perfect gases 2
= #1- He put the two

communicating vessels, one filled with air at high pressure,

the other exhausted, into a common water-bath at the

same temperature, and found that, after the air had ex-

panded and equilibrium had been established, the change
of temperature of the water-bath was inappreciable. It

immediately follows that, if the walls of the vessels were
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non-conducting, the final temperature of the total mass of

the gas would be equal to the initial temperature ;
for other-

wise the change in temperature would have communicated

itself to the water-bath in the above experiment.

Hence, if the internal energy of a nearly perfect gas
remains unchanged after a considerable change of volume,
then its temperature also remains almost constant. In other

words, the internal energy of a perfect gas depends only on the

temperature, and not on the volume.

70. For a conclusive proof of this important deduc-

tion, much more accurate measurements are required. In

Joule's experiment described above, the heat capacity of

the gas is so small compared with that of the vessel and the

water-bath, that a considerable change of temperature in

the gas would have been necessary to produce an appreciable

change of temperature in the water. More reliable results

are obtained by a modification of the above method devised

by Sir William Thomson (Lord Kelvin), and used by him,

along with Joule, for accurate measurements. Here the

outflow of the gas is artificially retarded, so that the gas

passes immediately into its second state of equilibrium.
The temperature 2 is then directly measured in the stream

of outflowing gas. No limited quantity of gas rushes

tumultuously into a vacuum, but a gas is slowly transferred

in a steady flow from a place of high pressure, p-^ to one of

low pressure, p2 (the atmosphere), by forcing it through a

boxwood tube stopped at one part of its length by a porous

plug of cotton wool or filaments of silk. The results of the

experiment show that when the flow has become steady there

is, for air, a very small change of temperature, and, for hydrq-

gen, a still smaller, hardly appreciable change. Hence the

conclusion appears justified, that, for a perfect gas, the

change of temperature vanishes entirely.

This leads to an inference with regard to the internal

energy of a perfect gas. When, after the steady state of

the process has been established, a certain mass of the gas
has been completely pushed through the plug, it has been
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operated upon by external agents during its change from

the volume, Vi, at high pressure, to the larger volume, V2,.

at atmospheric pressure. The mechanical equivalent of

these operations, Q 4- W, is to be calculated from the

external changes. The state of the porous plug remains

the same throughout ;
hence the processes that take place

in it may be neglected. No change of temperature occurs

outside the tube, as the material of which it is made is

practically non-conducting ;
hence Q = 0. The mechanical

work done by a piston in pressing the gas through the plug
at the constant pressure pi is evidently piVi 9

and this for a

perfect gas at constant temperature is, according to Boyle's

law, equal to the work >2V2,
wni n is gained by the

escaping gas pushing a second piston at pressure p% through
a volume V2 . Hence the sum of the external work W is

also zero, and therefore, according to equation (17), 72= U\*

As the experimental results showed the temperature to be

practically unchanged while the volume increased very con-

siderably, the internal energy of a perfect gas can depend

only on the temperature and not on the volume, i.e. 9

For nearly perfect gases, as hydrogen, air, etc., the

actual small change of temperature observed shows how far

the internal energy depends on the volume. It must,

however, be borne in mind that for such gases the external

work,

does -not vanish ;
hence the internal energy does not remain

constant. For further discussion, see 158,

71. Special theoretical importance must be attached to

those thermodynamical processes which progress infinitely

slowly, and which, therefore, consist of a succession of

states of equilibrium. Strictly speaking, this expression is

vague, since a process presupposes changes, and, therefore,

disturbances of equilibrium. But where the time taken is

E
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immaterial, and the result of the process alone of con-

sequence, these disturbances may be made as small as we

please, certainly very small in comparison with the other

quantities which characterize the state of the system under

observation. Thus, a gas may be compressed very slowly to

any fraction of its original volume, by making the external

pressure, at each moment, just a trifle greater than the

internal pressure of the gas. Wherever external pressure

enters as, for instance, in the calculation of the work of

compression a very small error will then be committed, if

the pressure of the gas be substituted for the external

pressure. On passing to the limit, even that error vanishes.

In other words, the result obtained becomes rigorously
exact for infinitely slow compression.

This holds for compression at constant as well as at

variable pressure. The latter may be given the required
value at each moment by the addition or removal of small

weights. This may be done either by hand (by pushing

weights to one side), or by means of some automatic device

which acts merely as a release, and therefore does not con-

tribute towards the work done.

72. The conduction of heat to and from the system may
be treated in the same way. When it is not a question of

time, but only of the amount of heat received or given out

by the system, it is sufficient, according as heat is to be

added to or taken from the system, to connect it with a heat-

reservoir of slightly higher or lower temperature than that

of the system. This small difference serves, merely, to

determine the direction of the flow of the heat, while its

magnitude is negligible compared with the changes of the

system, which result from the process. We, therefore, speak
of the conduction of heat between bodies of equal tempera-

ture, just as we speak -of the compression of a gas by an

external pressure equal to that of the gas. This is merely

anticipating the result of passing to the limit from a small

finite difference to an infinitesimal difference of temperature
between the two bodies.



APPLICATIONS TO HOMOGENEOUS SYSTEMS. 51

This applies not only to strictly isothermal processes,
but also to those of varying temperature. One heat-reser-

voir of constant temperature will not suffice for carrying
out the latter processes. These will require either an

auxiliary body, the temperature of which may be arbitrarily

changed, e.g. a gas that can be heated or cooled at pleasure

by compression or expansion ;
or a set of constant-tempera-

ture reservoirs, each of different temperature. In the latter

case, at each stage of the process we apply that particular
heat-reservoir whose temperature lies nearest to that of the

system at that moment.

73. The value of this method of viewing the process
lies in the fact that we may imagine each infinitely slow

process to be carried out also in the opposite direction. Ife

a process consist of a succession of states of equilibrium
with the exception of very small changes, then evidently a

suitable change, quite as small, is sufficient to reverse the

process. This small change will vanish when we pass over

to the limiting case of the infinitely slow process, for a

definite result always contains a quite definite error, and if

this error be smaller than any quantity, however small, it

must be zero.

74. We pass now to the application of the first law to

a process of the kind indicated, and, therefore, reversible in

its various parts. Taking the volume V (abscissa) and

the pressure p (ordinate) as the independent variables, we

may graphically illustrate our process by plotting its suc-

cessive states of equilibrium in the form of a curve in the

plane of the co-ordinates. Each point in this plane corre-

sponds to a certain state of our system, the chemical

nature and mass of which are supposed to be given, and

each curve corresponds to a series of continuous changes
of state. Let the curve a from 1 to 2 represent a reversible

process which takes the substance from a state 1 to a state 2

(Fig. 2). Along a, according to equation (17), the increase

of the energy is

^J
2
- Ui = W + Q,
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whereW is the mechanical work expended on the substance,

and Q the total heat absorbed by it.

75. The.value of W can be readily determined. W is

made up of the elementary quantities of work done on the

system during the infinitesimal changes corresponding to

the elements of arc of the curve a. The external pressure

is at any moment equal to that of the substance, since the

process is supposed to be reversible. Consequently, by the

FIG. 2.

laws of hydrodynamics, the work done by the external

forces in the infinitely small change is equal to the product
of the pressure p, and the decrease of the volume, dV, no

matter what the geometrical form of the surface of the

body may be. Hence the external work done during the

whole process is

= -
few, (20)

in which the integration extends from 1 to 2 along the

curve a. If p be positive, as in the case of gases, and

V2 >Vi as in Fig. 2, W is negative.
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In order to perform the integration, the. curve a, i.e. the

relation between p and Y, must be known. As long as only
the points 1 and 2 are given, the integral has no definite

value. In fact, it assumes an entirely different value along
a different curve, |3, joining 1 and 2. Therefore pdN is

not a perfect differential. Mathematically this depends on

the fact that p is in general not only a function of Y, but

also of another variable, the temperature 0, which also changes

along the path of integration. As long as a is not given,
no statement can be made with regard to the relation be-

tween and Y, and the integration cannot be performed.
The external work, W, is evidently represented by the

area (taken negative) of the plane figure bounded by the

curve a, the ordinates at 1 and 2, and the axis of abscissse.

This, too, shows that W depends on the path of the curve

a. Only for infinitesimal changes, i.e. when 1 and 2 are

infinitely near one another and a shrinks to a curve element,

is W determined by the initial and final points of the

curve alone.

76. The second measurable quantity is Q, the heat

absorbed. It may be determined by calorimetric methods

in calories, and then expressed in mechanical units by mul-

tiplying by the mechanical equivalent of heat. We shall

now consider the theoretical determination of Q. It is, like

W, the algebraical sum of the infinitely small quantities of

heat added 'to the body during the elementary processes

corresponding to the elements of the curve a. Such an

increment of heat cannot, however, be immediately calculated,

from the position of the curve element in the
.
co-ordinate

plane, in a manner similar to that of the increment of work.

To establish an analogy between the two, one might, in

imitation of the expression pcTV, put the increment of

heat = CdO, where dO is the increment of temperature, and

C the heat capacity, which is usually a finite quantity.

But C has not, in general, a definite value. It does not

depend, as the factor p in the expression for the increment

of work, alone on the momentary state of the substance, i.e.
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on the position of the point of the curve considered, but

also on the direction of the curve element. In isothermal

changes C is evidently = GO, because dO = 0, and the

heat added or withdrawn is a finite quantity. In adiabatic

changes C = 0, for here the temperature may change in

any way, while no heat is added or withdrawn. For a given

point, C may, therefore, in contradistinction ..to p, assume

all values between + oo and GO. (Cf. 47.) Hence the

analogy is incomplete in one essential, and does not, in the

general case, simplify the problem in hand. We shall also

find that the breaking up of the -heat absorbed into the two

factors and d<$ ( 120), is permissible only in some very

special cases.

77. Although the value of Q cannot, in general, be

directly determined, equation (17) enables us to draw some

important inferences regarding it. Substituting the value

of W from equation (20) in equation (17), we obtain

,. - - - (21)

which shows that the value of Q depends not only on the

position of the points 1 and 2, but also on the connecting

path (a or /3). Carnot's theory of heat cannot be reconciled

with this proposition, as we have shown at length in

51 and 52.

78. The complete evaluation of Q is possible in the

case where the substance returns to its initial state, having

gone through a cycle of operations. This might be done by
first bringing the system from 1 to 2 along a, then back

from 2 to 1 along /3. Then, as in all cycles ( 65),

Q= -W.
The external work is

W = -

the integral to be taken along the closed curve Ia2/31.
W evidently represents the area bounded by the curve,
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and is positive if the process follows the direction of the

arrow in Fig. 2.

79. We shall now consider the special case where the

curve a, which characterizes the change of state, shrinks

into an element, so that the points 1 and 2 lie infinitely
near one another. W here becomes the increment of work,

pdV, and the change of the internal energy is d\J.

Hence, according to (21), the heat absorbed assumes the

value :
*

Per unit mass, this equation becomes

q = du + pdv, ..... (22)

where the small letters denote the corresponding capitals

divided by M. In subsequent calculations it will often be

advisable to use as an independent variable, either in

conjunction with p, or v. We shall, in each case, select as

independent variables those which are most conducive to a

simplification of the problem in hand. The meaning of the

differentiation will be indicated whenever a misunderstand-

ing is possible.

We shall now apply our last equation (22) to the most

important reversible processes.

80. It has been repeatedly mentioned that the specific

heat of a substance may be defined in very different ways

according to the manner in which the heating is carried out.

But, according to 46 and equation (22), we have, for any

heating process,

du dv /-^N
- (23)

* It is usual to follow the example of Clausius, and denote this quantity

by dQ, to indicate that it is infinitely small. This notation, however, has

frequently given rise to misunderstanding, for dQ, has been repeatedly

regarded as the differential of a known finite quantity Q. We therefore

adhere to the notation given above. Other authors use d'Q, in order to

obviate the aforesaid misunderstanding.
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In order to give a definite meaning to the differential

coefficients, some arbitrary condition is required, which will

prescribe the direction of the change. A single condition

is sufficient, since the state of the substance depends on two

variables only.

81. Heating at Constant Volume. Here dv = 0,

c = c
v , the specific heat at constant volume. Hence, accord-

ing to equation (23),

82. Heating under Constant Pressure. Here dp = 0,

c = cp, the specific heat at constant pressure. According
to equation (23),

or c =

By the substitution of

A in (26), cp may be written in the form

r ,, , . M^JnHWrwl

or, by (24),

IP*/

f<

83. By comparing (25) and (27) and eliminating u, we
are led to a direct experimental test of the theory.



APPLICATIONS TO HOMOGENEOUS SYSTEMS. 57

whence, differentiating the former equation with respect to

v, keeping p constant, and the latter with respect to p,

keeping v constant, and equating, we have

, d*0 dcp d0 _ Se. 50 _^ ' C

'fy^
+

3p

'

5^ a*
'

dp
""

,

'

This equation contains only quantities which may be

experimentally determined, and therefore furnishes a means

for testing the first law of thermodynamics by observations

on any homogeneous substance.

84. Perfect Gases. The above equations undergo
considerable simplifications for perfect gases. We have,

from (14),

= ?-, . (30)m v

where R = 826 x 105 and m is the (real or apparent) mole-

cular weight. Hence

0=
"

and equation (29) becomes

771
JL

Assuming that only the laws of Boyle, Gay-Lussac, and

Avogadro hold, no further conclusions can be drawn from

the first law of thermodynamics with regard to perfect gases.

85. We shall now make use of the additional property
of perfect gases, 'established by Thomson and Joule ( 70),

that the internal energy of a perfect gas depends only on

the temperature, and not on the volume, and that hence

per unit mass, according to (19),

or THE

UNIVERSITY
^ C4I I
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The general equation,

**-(S) +(?)*\dOjv
r
\dv/

then becomes, for perfect gases,

*-(SX"' v :

and, according to (24),

du = cv .dO (32)

It follows from (28) that

dv

or, considering the relation (30),

,

E
C
*
= G

" + m '

i.e. there is a constant difference between the specific heat

at constant pressure and the specific heat at constant

volume. Referring the heat capacity to the molecular

weight m, instead of to unit mass, we have

mcp mc v = R. . . . . . (33)

The difference is, therefore, independent even of the nature

of the gas.

86. Only the specific heat at constant pressure, 0p,
is

capable of direct experimental determination, because a

quantity of gas enclosed in a vessel of constant volume, has

far too small a heat capacity to produce sufficient thermal

effects on the surrounding bodies. Since cv, according to

(24), like u, depends on the temperature only, and not on

the volume, the same follows for cp, according to (33).

This conclusion was first confirmed by Regnault's experi-

ments. He found cp constant within a considerable range
of temperature. By (33), c c is constant within the same

range.
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If the molecular heats be expressed in calories, R must
be divided by Joule's equivalent J. The difference be-

tween the molecular heats at constant pressure and at

constant volume is then

me
p
- E S26-105

= 1-971 (34)

87. The following table contains the specific heats

and molecular heats of several gases at constant pressure,

measured by direct experiment; also the molecular heats

at constant volume found by subtracting 1'97, and also

xi

the ratio ~ =
-y

:
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Assuming, again, a perfect gas, and substituting the

values of du from (32) and of p from (30), we have

=<**+ 5

or, on integrating,
T>

c
v log H log v = const.

Replacing
l

according to (33) by cp cv, and dividing

by cv,
we get

log + (j
-

1) log v = const. . . (37)

(i.e. during adiabatic expansion the temperature decreases)

Remembering that according to the characteristic equation

(30)

log p + log v log 8 = const,

we have, on eliminating v,

j log 9 + (j 1) log p = const.

(i.e. during adiabatic compression the temperature rises) ;

or, on eliminating 0,

log p + 7 log v = const.

The values of the constants of integration are given by
the initial state of the process.

If we compare our last equation in the form
.

pvy = const (38)

with Boyle's law pv = const., it is seen that during adiabatic

compression the volume decreases more slowly for an in-

crease of pressure than during isothermal compression,
because during adiabatic compression the temperature rises.

The adiabatic curves in the pv plane ( 22) are, therefore,

steeper than the hyperbolic isotherms.

89. Adiabatic processes may be used in various ways
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for the determination of y. the ratio of the specific heats.

The agreement of the results with the value calculated from

the mechanical equivalent of heat forms an important
confirmation of the theory.

Thus, the measurement of the velocity of sound in a gas

may be used for determining the value of y. It is proved
in hydrodynamics that the velocity of sound in a fluid is

;,
where p = -, the density of the fluid. Since gases

'O V

are bad conductors of heat, the compressions and expansions
which accompany sound-vibrations must be considered as

adiabatic, and not isothermal, processes. The relation

between the pressure and the density is, therefore, in

the case of perfect gases, not that expressed by Boyle's

law *- = pv = const., but that given by equation (38), viz.

= const.

Hence, by differentiation Q

or, according to (30),

^_ 50

m dp
7 ~ We' dp

In air at 0, the velocity of sound is v/$ = 33280
;v

dp sec.

hence, according to our last equation, taking the values of

m from 41, and of K from 84, and 6 = 273,

288 332802

__
7 ~ 826 -105

'

273

This agrees with the value calculated in 87.

Conversely, the value of y, calculated from the velocity



62 THERMODYNAMICS.

of sound, may be used in the calculation of cv in calories,

for the determination of the mechanical equivalent of heat

from (33). This method of evaluating the mechanical

equivalent of heat was first proposed by Kobert Meyer in

1842. It is true that the assumption expressed in equation

(31), that the internal energy of air depends only on the

temperature, is essential to this method. In other words,

this means that the difference of the specific heats at con-

stant pressure and constant volume depends only on the

external work. The direct proof of this fact, however,
must be considered as first given by the experiments of

Thomson and Joule, described in 70.

90. We shall now consider a more complex process,

a reversible cycle of a special kind, which has played an

important part in the development of thermodynamics,
known as Carnot's cycle, and shall apply the first law to it

in detail.

Let a substance of unit mass, starting from an initial

state characterized by the values 0i, Vi, first be compressed

adidbatically until its temperature rises to 2(#2> #1) and its

volume reduced to v%(v2 <Vi) (Fig. 3). Second, suppose it

be now allowed to expand isothermally to volume v%(v% > v.2),

in constant connection with a heat-reservoir of constant

temperature, 2 , which gives out the heat of expansion Q2 .

Third, let it be further expanded adialatieally until its

temperature falls to 0i, and the volume thereby increased

to Vi'. Fourth, let it be compressed isothermally to the

original volume vif while a heat-reservoir maintains the

temperature at 61, by absorbing the heat of compression.
All these operations are to be carried out in the reversible

manner described in 71. The sum of the heat absorbed

by the system, and the work done on the system during
this cycle is, by the first law,

Q + W = 0. . . . . . (39)

The heat Q, that has been absorbed by the substance, is

Q = Qi + Q2 (40)
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(Qi is here negative). The external work W may be calcu-

lated from the adiabatic and the isothermal compressibility
of the substance. According to (20),

W = -
/ pdv -

I pdv -
I pdv -

I pdv.
vl> #1 V2> &2 V2'> &2 Vl't QI

These integrals are to be taken along the curves 1, 2, 3, 4

respectively; 1 and 3 being adiabatic, 2 and 4 isothermal.

Fio. 3.

Assuming the substance to be a perfect gas, the above

integrals can readily be found. If we bear in mind the

relations (30) and (36), we have

0-2

The work of the adiabatic compression in the first part of

the process is equal in value and opposite in sign to that

of the adiabatic expansion in the third part of the process.



64 THERMODYNAMICS.

There remains, therefore, the sum of the work in the

isothermal portions

Now, the state (v2,02) was developed from (0i,0i) by an

adiabatic process ; therefore, by (37),

log 2 + (7
-

1) log v2
= log 0i + (7

-
1) log vi.

Similarly, for the adiabatic process, which leads from (v2', 02)

to (V, 0i),

log 02 + (7
-

1) log va
' = log 0i + (7

-
1) log vi

f

.

From these equations, it follows that

and .-. W = -
(fc

-
ft) log

Since, in the case considered, 2 > 0i, and -~ = > 1,

the total external work W is negative, i.e. mechanical work

has been gained by the process. But, from (39) and (40),

Q = Q1 + Q2= - W; ... (42)

therefore Q is positive, i.e. the heat-reservoir at temperature

2 has lost more heat than the heat-reservoir at tempera-
ture $1 has gained.

The value of W, substituted in the last equation,

gives

Q=Ql + Qa = ?(0a -fc)log|L..
. (43)

The correctness of this equation is evident from the direct

calculation of the values of Qi and Q2. The gas expands

isothermally while the heat-reservoir at temperature 2 is

in action. The internal energy of the gas therefore remains

constant, and the heat absorbed is equal in magnitude and
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opposite in sign to the external work. Hence, by equating
Q2 to the second integral in (41),

and, similarly, by equating Qi to the fourth integral in

(41),

Q1=^1 log^ = -?ftlog^,m &
vi m b

vi

which agrees with equation (43).

There exists, then, between the quantities Qi, Q2, W,
besides the relation given in (42), this new relation

Qi : Q2 : W = (-ft) : 2 : (ft
-

ft,) . . (44)

91. In order, now, to survey all the effects of the

above Carnot cycle, we shall compare the initial and final

states of all the bodies concerned. The gas operated upon
has not been changed in any way by the process, and may
be left out of account. It has done service only as a trans-

mitting agent, in order to bring about changes in the

surroundings. The two reservoirs, however, have undergone
a change, and, besides, a positive amount of external work,

W' = W, has been gained; i.e. at the close of the process
certain weights, which were in action during the compression
and the expansion, are found to be at a higher level than at

the beginning, or a spring, serving similar purposes, is at a

greater tension, etc. On the other hand, the heat-reservoir

at 02 has given out heat to the amount Q2 ,
and the cooler

reservoir at 0i has received the smaller amount Qi' = Qi.

The heat that has vanished is equivalent to the work gained.

This result may be briefly expressed as follows: The

quantity of heat Q2, at temperature 2 , has passed in part

(Qi') to a lower temperature (0i), and has in part (Q2
-

Qi'

= Qi + Q2)
been transformed into mechanical work. Carnot's

cycle, performed with a perfect gas, thus affords a means of

drawing heat from a body and of gaining work in its stead,

without introducing any changes in nature except the
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transference of a certain quantity of heat from a body of

higher temperature to one of lower temperature.

But, since the process described is reversible in all its

parts, it may be put into effect in such a way that all the

quantities, Qb Q2, W, change sign, Qi and W becoming

positive, Q2 = Q2
'

negative. In this case the hotter

reservoir at 2 receives heat to the amount Q2 ', partly from

the colder reservoir (at 0i), and partly from the mechanical

work expended (W). By reversing Carnot's cycle, we have,

then, a means of transferring heat from a colder to a hotter

body without introducing any other changes in nature than

the transformation of a certain amount of mechanical work

into heat. We shall see, later, that, for the success of

Carnot's reversible cycle, the nature of the transmitting

agent or working substance is immaterial, and that perfect

gases are, in this respect, neither superior nor inferior to

other substances (cf. 137).



CHAPTER III.

APPLICATIONS TO NON-HOMOGENEOUS SYSTEMS.

92. THE propositions discussed in the preceding chapter

are, in a large part, also applicable to substances which are

not perfectly homogeneous in structure. We shall, there-

fore, in this chapter consider mainly such phenomena as

characterize the inhomogeneity of a system.
Let us consider a system composed of a number of

homogeneous bodies in juxtaposition, separated by given

bounding surfaces. Such a system may, or may not, be

chemically homogeneous. A liquid in contact with its

vapour is an example of the first case, if the molecules

of the latter be identical with those of the former. The

beginning of a chemical reaction, inasmuch as a substance

is in contact with another of different chemical constitution,

is an example of the second. Whether a system is physi-

cally homogeneous or not, can, in most cases, be ascertained

beyond doubt, by finding surfaces of contact within the

system, or, by other means in the case of emulsions, for

example, by determining the vapour pressure or the freezing

point. The question as to the chemical homogeneity, i.e.

the presence of one kind of molecule only, is much more

difficult, and has hitherto been answered only in special

cases. For this reason we classify substances according
to their physical and not according to their chemical

homogeneity.

93. One characteristic of processes in non-homogeneous

systems consists in their being generally accompanied by
considerable changes of temperature, e.g. in evaporation or
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in oxidation. To maintain the initial temperature and

pressure consequently requires considerable exchange of

heat with the surroundings and corresponding external

work. The latter, however, is generally small compared
with the external heat, and may be neglected in most

chemical processes. In thermochemistry, therefore, the

external effects,

Q + W = U2 -U!, . . . . (45)

are generally measured in calories (the heat equivalent of

the external effects). The external work, W, is small com-

pared with Q. Furthermore, most chemical processes are

accompanied by a rise in temperature, or, if the initial

temperature be re-established, by an external yield of heat

(exothermal processes). Therefore, in thermochemistry, the

heat given out to the surroundings in order to restore the

initial temperature is denoted as the "
positive heat effect

"

of the process. In our equations we shall therefore use Q
(the heat absorbed) with the negative sign, in processes with

positive heat effect (e g. combustion) ; with the positive

sign, in those with negative heat effect (e.g.
. evaporation,

fusion, dissociation).

94. To make equation (45) suitable for thermochemistry
it is expedient to denote the internal energy U of a system
in a given state, by a symbol denoting its chemical con-

stitution. J. Thomsen introduced a symbol of this kind.

He denoted by the formulas for the atomic or molecular

weight of the substances enclosed in brackets, the internal

energy of a corresponding weight referred to an arbitrary

zero of energy. Thus [Pb], [S], [PbS] denote the energies
of an atom of lead, an atom of sulphur, and a molecule of

lead sulphide respectively. In order to express the fact that

the formation of a molecule of lead sulphide from its atoms

is accompanied by a heat effect of 18,400 cal., the external

work of the process being negligible, we put

Ui = [Pb] + [S]; Ua
= [PbS];

W = 0; Q= - 18,400 cal.,
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and equation (45) becomes

- 18,400 cal. = [PbS]
-

[Pb]
-

[S],

or, as usually written,

[Pb] + [S]
-

[PbS] = 18,400 cal.

This means that the internal energy of lead and sulphur,
when separate, is 18,400 calories greater than that of

combination at the same temperature. That the internal

energies compared actually refer to the same material

system, can be checked by the use of the molecular formulae.

The equation could be simplified by selecting the uncombined

state of the elements Pb and S as the zero of energy. Then

(64),[Pb] + [S]=0,and

[PbS] = - 18,400 cal.

95. To define accurately the state of a substance, and

thereby its energy, besides its chemical nature and mass, its

temperature and pressure must be given. If no special

statement is made, as in the above example, mean laboratory

temperature, i.e. about 18 C., is generally assumed, and the

pressure is supposed to be atmospheric pressure. The

pressure has, however, very little influence on the internal

energy; in fact, none at all in the case of perfect gases

[equation (35) ].

The state of aggregation should also be indicated. This

may be done, where necessary, by using brackets for the

solids, parentheses for liquids, and braces for gases. Thus

[H20], (H20), {H20} denote the energies of a molecule of

ice, water, and water vapour respectively. Hence, for the

fusion of ice at C.,

(H20) - [H20] = 80 X 18 = 1440 cal.

It is often desirable, as in the case of solid carbon, sulphur,

arsenic, or isomeric compounds, to denote by some means

the special modification of the substance.

These symbols may be treated like algebraic quantities,

whereby considerations, which would otherwise present
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considerable complications, .'may be materially shortened.

Examples of this are given below.

96. To denote the energy of a solution or mixture of

several compounds, we may write the formulae for the mole-

cular weights with the requisite number of molecules.

Thus,

(H2S04) + 5(H20)
- (H2S04 .5H20) = 13,100 cal.

means that the solution of 1 molecule of sulphuric acid in

5 molecules of water gives out 13,100 calories of heat.

Similarly, the equation

(H2S04) + 10(H20)
- (H2S04 . 10H20) = 15,100 cal.

gives the heat eifect on dissolving the same in ten molecules

of water. By subtracting the first equation from the second,

we get

(H2S04 . 5H 20) + 5(H20)
- (H2SO4 . 10H20) = 2000 cal.,

i.e. on diluting a solution of 1 molecule of sulphuric acid

dissolved in 5 molecules of water, by the addition of another

5 molecules of water, 2000 calories are given out.

97. As a matter of experience, in very dilute solutions

further dilution no longer yields any appreciable amount of

heat. Thus, in indicating the internal energy of a dilute

solution it is often unnecessary to give the number of mole-

cules of the solvent. We write briefly

(H2S04) + (aq.)
- (H 2S04 aq.)

= 17,900 cal.

to express the heat effect of infinite dilution of a molecule

of sulphuric acid. Here (aq.) denotes any amount of water

sufficient for the practical production of an infinitely dilute

solution.

98. Volumetric changes being very slight in chemical

processes which involve only solids and liquids, the heat

equivalent of the external work W ( 93) is a negligible
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quantity compared with the heat effect. The latter alone,

then, represents the change of energy of the system

Ua
- Ui = Q.

It, therefore, depends on the initial and final states only,
and not on the intermediate steps of the process. These

considerations do not apply, in general, when gaseous sub-

stances enter into the reaction. It is only in the combustions

in the " calorimetric bomb," extensively used by Berthelot

and Stohmann in their investigations, that the volume

remains constant and the external work is zero. In these

reactions the heat effect observed represents the total change
of energy. In other cases, however, the amount of external

work W may assume a considerable value, and it is

materially influenced by the process itself. Thus, a gas may
be allowed to expand, at the same time performing work,

which may have any value within certain limits, from zero

upwards. But since its change of energy U2 Ui depends
on the initial and final states only, a greater amount of work

done against the external forces necessitates a smaller heat

effect for the process, and vice versa. To find the latter, not

only the change of the internal energy, but also the amount

of the external work must be known. This renders necessary

an account of the external conditions under which the process

takes place.

99. Of all the external conditions that may accompany
a chemical process, constant (atmospheric) pressure is the

one which is of the most practical importance : p = p$. The

external work is then, according to equation (20),

W = - V = p Vi - V2) ; . . (46)

that is, equal to the product of the pressure and the decrease

of volume. This, according to (45), gives

-Va). . (47)

Now, the total decrease of volume, Vi - V2 , may generally
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be put equal to the decrease of volume of the gaseous

portions of the system, neglecting that of the solids and

liquids. Since, by (16),

Vi - V2 = R(m -
*,),

where ni t n2 are the number of gas molecules present before

and after the reaction, the heat equivalent of the external

work at constant pressure is, by (46) and (34),

W =MVy V.) =

The heat effect of a process at constant pressure is

therefore

- Q = Ui - U2 + l-970(wi
-

wa) cal. . (48)

If, for instance, one gram molecule of hydrogen and

half a gram molecule of oxygen, both at 18 C., combine

at constant pressure to form water at 18 C., we put

Ui = (H2 ) + i(02 }; U2
= (H20); % = |; % = 0; = 291.

The heat of combustion is, therefore, by (48),

- Q = (H2 ) + i(02 )
- (H20) + 860 cal,

i.e. 860 cal. more than would correspond to the decrease of

the internal energy, or to the combustion without the

simultaneous performance of external work.

100. If we write equation (47) in the form

(U + jp V)a
- (U + ^ V)i = Q, . . (49)

it will be seen that, in processes under constant pressure pQ)

the heat effect depends only on the initial and final states,

just as in the case when there is no external work. The
heat effect, however, is not equal to the difference of the

internal energies U, but to the difference of the values of

the quantity (U + poV) at the beginning and end of the

process. This quantity is Gibbs's " heat function at constant
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pressure." If, then, only processes at constant pressure be

considered, it will be expedient to regard the symbols {H2 },

{H20}, etc., as representing the above function (U + poV),
instead of simply the energy U. Thus the difference in

the two values of the function will, in all cases, directly

represent the heat effect. This notation is therefore adopted
in the following.

101. To determine the heat effect of a chemical reaction

at constant pressure, the initial and final values of the heat

function, U + poV, of the system suffice. The general
solution of this problem, therefore, amounts to finding the

heat functions of all imaginable material systems in all

possible states, Frequently, different ways of transition

from one state of a system to another may be devised,

which may serve either as a test of the theory, or as a check

upon the accuracy of the observations. Thus J. Thomsen
found the heat of neutralization of a solution of sodium

bicarbonate with caustic soda to be : >

(NaHC03 aq.) + (NaHO aq.)
- (Na2C03 aq.)

= 9200 cal.

He also found the heat of neutralization of carbon dioxide

to be:

(C02 aq.) + 2(NaHO aq.)
- (Na2C03 aq.)

= 20,200 cal.

By subtraction

(C02 aq.) + (KaHO aq.)
- (NaHC03 aq.)

= 11,000 cal.

This is the heat effect corresponding to the direct com-

bination of carbon dioxide and caustic soda to form

sodium bicarbonate. Berthelot verified this by direct

measurement.

102. Frequently, of two ways of transition, one is

better adapted for calorimetric measurements than the

other. Thus, the heat effect of the decomposition of

hydrogen peroxide into water and oxygen cannot readily

be measured directly. Thomsen therefore oxidized a solution
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of stannous chloride in hydrochloric acid first by means of

hydrogen peroxide :

(SnCla. 2HC1 aq.) + (H2 2 aq.)
-

(SnCl4 aq.)
= 88,800 cal.,

then by means of oxygen gas :

(SnCl2 . 2HC1 aq,) + L{02 )
-

(SnCl 4 aq.)
= 65,700 cal.

Subtraction gives

(H2 2 aq.)
- i{02 )

-
(aq.)

= 23,100 cal.

for the heat effect of the decomposition of dissolved hydro-

gen peroxide into oxygen and water.

103. The heat of formation of carbon monoxide from

solid carbon and oxygen cannot be directly determined,

because carbon never burns completely to carbon monoxide,

but always, in part, to carbon dioxide as well. Therefore

Favre and Silbermann determined the heat effect of the

complete combustion of carbon to carbon dioxide :

[C] + {02 }
- {C02 } = 97,000 cal.,

and then determined the heat effect of the combustion of

carbon monoxide to carbon dioxide :

(CO) + i(02 )
- {C02 } = 68,000 cal.

By subtraction we get

[C] + i(02 )
- (CO) = 29;000 cal.,

the required heat of formation of carbon monoxide.

104. According to the above, theory enables us to

calculate the heat effect of processes which cannot be

directly realized, for as soon as the heat function of a

system has been found in any way, it may be compared
with other heat functions.

Let the problem be, e.g., to find the heat of formation

of liquid carbon bisulphide from solid carbon and solid

sulphur, which do not combine directly. The following

represent the reactions :
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The combustion of solid sulphur to sulphur dioxide gas :

[S] + (02 )
- {S02 } = 71,100 cal.

The combustion of solid carbon to carbon dioxide :

[c] + icy - (ccy = 97,000 cai.

The combustion of carbon bisulphide vapour to carbon

dioxide and sulphur dioxide :

{CS2 } + 3{02 }
- {C02 }

- 2{S02 ) = 265,100 cal.

The condensation of carbon bisulphide vapour :

{CS2 }
-

(CSa) = 6400 cal.

Elimination by purely mathematical processes furnishes the

required heat of formation :

[C] + 2[S]
-

(CSa) = - 19,500 cal,

hence negative.
In organic thermochemistry the most important method

of determining the heat of formation of a compound consists

in determining the heat of combustion, first of the compound,
and then of its constituents.

Methane (marsh gas) gives by the complete combustion

to carbon dioxide and water (liquid) :

{CH4 } + 2{02 )
- (C02 )

- 2(H20) = 211,900 cal.,

but {H2 } + J{02 }
- (H20) = 68,400 cal., (50)

and [C] + (02 )
- (C02 ) = 97,000 cal.;

therefore, by elimination, we obtain the heat of formation

of methane from solid carbon and hydrogen gas :

[C] + 2{H2 )
- {CH4 } = 21,900 cal.

105. The external heat, Q, of a given change at constant

pressure will depend on the temperature at which the pro-

cess is carried out. In this respect the first law of thermo-

dynamics leads to the following relation :
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From equation (49) it follows that, for any two given

temperatures, 9 and 9',

(Ua + poVz)e (Ui -f poVi)e = Q#

and (U2 + poV2V -
(Ui +

Hence, by subtraction,

Q#'
"~ Q^ ==

[('^2
"

'.e. the difference in the heat effects (Q# Q^) resulting

from performing the process at different temperatures, is

equal to the difference in the quantities of heat which,

before and after the reaction, would be required to raise the

temperature of the system from 9 to 9'.

Thus the influence of the temperature on the combustion

of hydrogen to water (liquid) may be found by comparing
the heat capacity of the mixture (H2 + ^02) with that of

the water (H20). The former is equal to the molecular

heat of hydrogen plus half the molecular heat of oxygen.

According to the table in 87, this is

6-82 + 3-47 = 10-29.

The latter is 1 X 18 = 18.

The difference between these values is 7*71, and, therefore,

the heat of combustion of a gram molecule of hydrogen
decreases with rising temperature by 7*7 cal. per degree

Centigrade.



PART III.

THE SECOND FUNDAMENTAL PRINCIPLE
OF THERMODYNAMICS.

CHAPTER I.

INTRODUCTION.

106. THE second law of thermodynamics is essentially
different from the first law, since it deals with a question in

no way touched upon by the first law, viz. the direction in

which a process takes place in nature. Not every change
which is consistent with the principle of the conservation of

energy satisfies also the additional conditions which the

second law imposes upon the processes, which actually take

place in nature. In other words, the principle of the con-

servation of energy does not suffice for a unique determi-

nation of natural processes.

If, for instance, an exchange of heat by conduction takes

place between two bodies of different temperature, the first

law, or the principle of the conservation of energy, merely
demands that the quantity of heat given out by the one body
shall be equal to that taken up by the other. Whether the

flow of heat, however, takes place from the colder to the

hotter body, or vice versa, cannot be answered by the energy

principle alone. The very notion of temperature is alien to

that principle, as can be seen from the fact that it yields no

exact definition of temperature. Neither does the general

equation (17) of the first law contain any statement with
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regard to the direction of the particular process. The

special equation (50), for instance,

{H2 } + i

{02 }
- (H20) = 68,400 cal,

means only that, if hydrogen and oxygen combine under

constant pressure to form water, the restablishment of the

initial temperature requires a certain amount of heat to be

given up to surrounding bodies; and vice .versa, that this

amount of heat is absorbed when water is decomposed into

hydrogen and oxygen. It offers no information, however,

as to whether hydrogen and oxygen actually combine to

form water, or water decomposes into hydrogen and oxygen,
or whether such a process can take place at all in either

direction. From the point of view of the first law, the

initial and final sta'kes of any process are completely

equivalent.

107. In one particular case, however, does the principle
of the conservation of energy prescribe a certain direction

to a process. This occurs when, in a system, one of the

various forms of energy is at an absolute maximum (or

minimum). It is evident that, in this case, the direction of

the change must be such that the particular form of energy
will decrease (or increase). This particular case is realized

in mechanics by a system of particles at rest. Here the

kinetic energy is at an absolute minimum, and, therefore,

any change of the system is accompanied by an increase of

the kinetic energy, and, if it be an isolated system, by a

decrease of the potential energy. This gives rise to an

important proposition in mechanics, which characterizes the

direction of possible motion, and lays down, in consequence,
the general condition of mechanical equilibrium. It is

evident that, if both the kinetic and potential energies be

at a minimum, no change can possibly take place, since

none of these can increase at the expense of the other.

The system must, therefore, remain at rest.

If a heavy liquid be initially at rest at different levels in

two communicating tubes, then motion will set in, so as to
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equalize the levels, for the centre of gravity of the system
is thereby lowered, and the potential energy diminished.

Equilibrium exists when the centre of gravity is at its

lowest, and therefore the potential energy at a minimum,
i.e. when the liquid stands at the same level in both tubes.

If no special assumption be made with regard to the initial

velocity of the liquid, the above proposition no longer holds.

The potential energy need not decrease, and the higher level

might rise or sink according to circumstances.

If our knowledge of thermal phenomena led us to

recognize a state of minimum energy, a similar proposition
would hold for this, but only for this, particular state. In

reality no such minimum has been detected. It is, there-

fore, hopeless to seek to reduce the general laws regarding
the direction of thermodynamical changes, as well as those

of thermodynamical equilibrium, to the corresponding pro-

positions in mechanics which hold good only for systems at

rest.

108. Although these considerations make it evident

that the principle of the conservation of energy cannot

serve to determine the direction of a thermodynamical

process, and therewith the conditions of thermodynamical

equilibrium, unceasing attempts have been made to make

the principle of the conservation of energy in some way or

other serve this purpose. These attempts have, in many
encases, stood in the way of a clear presentation of the second

Jaw.^, Occasionally we still find the endeavour made to

represent this law as contained in the energy principle, in

that the doubtless too restricted term of "
energetics

"
is

applied to all investigations on these questions. The con-

ception of energy is not sufficient for the second law. It

cannot be exhaustively treated by breaking up a natural

process into a series of changes of energy, and then in-

vestigating the direction of each change. We can always

tell, it is true, what are the different kinds of energy

exchanged for one another ;
for there is no doubt that the

principle of energy must be fulfilled, but the expression of
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the conditions of these changes remains arbitrary, and
this ambiguity cannot be completely removed by any
general assumption.

We often find the second law stated as follows : The

change of mechanical work into heat may be complete, but,

on the contrary, that of heat into work must needs be

incomplete, since, whenever a certain quantity of heat is

transformed into work, another quantity of heat must

undergo a corresponding and compensating change; e.g.

transference from higher to 'lower temperature. This is

quite correct in certain very special cases, but it by no

means expresses the essential feature of the process, as a

simple example will show. An achievement which is

closely associated with the discovery of the principle of

energy, and which is one of the most important for the

theory of heat, is the proposition expressed in equation (19),

70, that the total internal energy of a gas depends only
on the temperature, and not on the volume. If a perfect

gas be allowed to expand, doing external work, and be pre-
vented from cooling by connecting it with a heat-reservoir

of higher temperature, the temperature of the gas, and at

the same time its internal energy, remains unchanged, and

it may be said that the amount of heat given out by the

reservoir is completely changed into work without an ex-

change of energy taking place anywhere. Not the least

objection can be made to this. The proposition of the
"
incomplete transformability of heat into work

"
cannot

be applied to this case, except by a different way of viewing
the process, which, however, changes nothing in the physical

facts, and cannot, therefore, be confirmed or refuted by
them, namely, by the introduction of new kinds of energy,

only invented ad hoc. This consists in dividing the

energy of the gas into several parts, which may then

individually depend also on the volume. This division has,

however, to be carried out differently for different cases (e.g.,

in one way for isothermal, in another for adiabatic pro-

cesses), and necessitates complicated considerations even in

cases of physical simplicity. But when we pass from the
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consideration of the first law of thermodynamics to that of

the second, we have to deal with a new fact, and it is evident

that no definition, however ingenious, although it contain

no contradiction in itself, will ever permit of the deduction

of a new fact.

109. There is but one way of clearly showing the signi-
ficance of the second law, and that is to base it on facts

by formulating propositions which may be proved or dis-

proved by experiment. The following proposition is of this

character : It is in no way possible to completely reverse

any process in which heat has been produced by friction.

For the sake of example we shall refer to Joule's experi-
ments on friction, described in 60, for the determination

of the mechanical equivalent of heat. Applied to these,

our proposition says that, when the falling weights have

generated heat in water or mercury by the friction of the

paddles, no process can be invented which will completely
restore everywhere the initial state of that experiment, i.e.

which will raise the weights to their original height, cool

the liquid, and otherwise leave no change. The appliances
used may be of any kind whatsoever, mechanical, thermal,

chemical, electrical, etc., but the condition of complete

restoration of the initial state renders it necessary that all

materials and machines used must ultimately be left exactly
in the condition in which they were before their application.

Such a proposition cannot be proved a priori, neither does

it amount to a definition, but it contains a definite asser-

tion, to be stated precisely in each case, which may be

verified by actual experiment. The proposition is there-

fore correct or incorrect.

110. Another proposition of this kind, and closely

connected with the former, is the following : It is in no

way possible to completely reverse any process in which a

gas expands without performing work or absorbing heat,

i.e. with constant total energy (as described in 68). The
word "

completely
"
again refers to the accurate reproduc-

tion of the initial conditions. To test this, the gas, after
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it had assumed its new state of equilibrium, might first be

compressed to its former volume by a weight falling to a

lower level. External work is done on the gas, and it is

thereby heated. The problem is now to bring the gas to

its initial condition, and to raise the weight. The gas might
be reduced to its original temperature by conducting the

heat of compression into a colder heat-reservoir. In order

that the process may be completely reversed, the reservoir

must be deprived of the heat gained thereby, and the weight
raised to its original position. This is, however, exactly

what was asserted in the preceding paragraph to be im-

practicable.

111. A third proposition in point refers to the con-

duction of heat. Supposing that a body receives a certain

quantity of heat from another of higher temperature, the

problem is to completely reverse this process, i.e. to convey
back the heat without leaving any change whatsoever. In

the description of Carnot's reversible cycle it has been

pointed out, that heat can at any time be drawn from a

heat-reservoir and transferred to a hotter reservoir without

leaving any change except the expenditure of a certain

amount of work, and the transference of an equivalent
amount of heat from one reservoir to the other. If this

heat could be removed, and the corresponding work re-

covered without other changes, the process of heat-conduc-

tion would be completely reversed. Here, again, we have

the problem which was declared in 109 to be impracticable.
Further examples of processes to which the same con-

siderations apply are, diffusion, the freezing of an overcooled

liquid, the condensation of a supersaturated vapour, all

explosive reactions, and, in fact, every transformation of a

system into a state of greater stability.

112. A process which can in no way be completely
reversed is termed irreversible, all other processes re-

versible. That a process may be irreversible, it is not

sufficient that it cannot be directly reversed. This is the
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case with many mechanical processes which are not irre-

versible (cf. 113). The full requirement is, that it be

impossible, even with the assistance of all agents in nature,
to restore everywhere the exact initial state when the

process has once taken place. The propositions of the three

preceding paragraphs, therefore, declare, that the generation
of heat by friction, the expansion of a gas without the per-
formance of external work and the absorption of external

heat, the conduction of heat, etc., are irreversible processes.

113. We now turn to the question of the actual

existence of reversible and irreversible processes. Numerous
reversible processes can at least be imagined, as, for instance,

those consisting of a succession of states of equilibrium, as

fully explained in 71, and, therefore, directly reversible in

all their parts. Further, all perfectly periodic processes,

e.g. an ideal pendulum or planetary motion, are reversible,

for, at the end of every period, the initial state is completely
restored. Also, all mechanical processes with absolutely

rigid bodies and absolutely incompressible liquids, as far as

friction can be avoided, are reversible. By the introduction

of suitable machines with absolutely unyielding connecting

rods, frictionless joints and bearings, inextensible belts, etc.,

it is always possible to work the machines in such a way as

to bring the system completely into its initial state without

leaving any change in the machines, for the machines of

themselves do not perform work.

If, for instance, a heavy liquid, originally at rest at

different levels in two communicating tubes ( 107), be set

in motion by gravity, it will, in consequence of its kinetic

energy, go beyond its position of equilibrium, and, since

the tubes are supposed frictionless, again swing back to its

exact original position. The process at this point has been

completely reversed, and therefore belongs to the class of

reversible processes. As soon as friction is admitted, how-

ever, its reversibility is at least questionable. Whether
reversible processes exist in nature or not, is not a priori

evident or demonstrable. There is, however, no purely
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logical objection to imagining that a means may some day
be found of completely reversing some process hitherto con-

sidered irreversible : one, for example, in which friction or

heat-conduction plays a part. But it can be demonstrated

and this will be done in the following chapter that if, in

a single instance, one of the processes declared to be irre-

versible in 109, etc., should be found to be reversible,

then all of these processes must be reversible in all cases.

Consequently, either all or none of these processes are

irreversible. There is no third possibility. If those pro-

cesses are not irreversible, the entire edifice of the second

law will crumble. None of the numerous relations deduced

from it, however many may have been verified by experience,
could then be considered as universally proved, and theo-

retical work would have to start from the beginning. (The
so-called proofs of "

energetics
"
are not a substitute, for a

closer test shows all of them to be more or less imperfect

paraphrases of the propositions to be proved. This is not

the place, however, to demonstrate this point.) It is this

foundation on the physical fact of irreversibility which forms /

the strength of the second law. If, therefore, it must be

admitted that a single experience contradicting that fact

would render the law untenable, on the other hand, any
confirmation of part supports the whole structure, and gives
to deductions, even in seemingly remote regions, the full

significance possessed by the law itself.

114. Since the decision as to whether a particular

process is irreversible or reversible depends only on whether

the process can in any manner whatsoever be completely
reversed or not, the nature of the initial and final states,

and not the intermediate steps of the process, entirely settle

it. The question is, whether or not it is possible, starting
from the final state, to reach the initial one in any way with-

out any other change. The second law, therefore, furnishes

a relation between the quantities connected with the initial

and final states of any natural process. The final state of

an irreversible process is evidently in some way discriminate
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from the initial state, while in reversible processes the two

states are in certain respects equivalent. The second law

points out this characteristic property of both states, and

also shows, when the two states are given, whether a trans-

formation is possible in nature from the first to the second,

or from the second to the first, without leaving changes in

other bodies. For this purpose, of course, the two states

must be fully characterized. Besides the chemical consti-

tution of the systems in question, the physical conditions

viz. the state of aggregation, temperature, and pressure in

both states must be known, as is necessary for the applica-
tion of the first law.

The relation furnished by the second law will evidently
be simpler the nearer the two states are to one another.

On this depends the great fertility of the second law in its

treatment of cyclic processes, which, however complicated

they may be, give rise to a final state only slightly different

/ from the initial state
( 91).

115. Since there exists in nature no process entirely

free from friction or heat-conduction, all processes which

actually take place in nature, if the second law be correct,

are in reality irreversible ; reversible processes form only an

ideal limiting case. They are, however, of considerable

importance for theoretical demonstration and for application

to states of equilibrium.



CHAPTER II.

PROOF.

116. THE second fundamental principle of thermo-

dynamics being, like the first, an empirical law, we can

speak of its proof only in so far as its total purport may be

deduced from a single self-evident proposition. We, there-

fore, put forward the following proposition as being given

directly by experience : It is impossible to construct an engine

ivliicli irill work in a complete cycle, and produce no effect except

the raising of a weight and the cooling of a heat-reservoir.

Such an engine could be used simultaneously as a motor

and a refrigerator without any waste of energy or material,

and would in any case be the most profitable engine ever

made. It would, it is true, not be equivalent to perpetual

motion, for it does not produce work from nothing, but from

the heat, which it draws from the reservoir. It would not,

therefore, like perpetual motion, contradict the principle of

energy, but would, nevertheless, possess for man the essential

advantage of perpetual motion, the supply of work without

cost
;
for the inexhaustible supply of heat in the earth, in

the atmosphere, and in the sea, would, like the oxygen
of the atmosphere, be at everybody's immediate disposal.

For this reason we take the above proposition as our starting

point. Since we are to deduce the second law from it, we

expect, at the same time, to make a most serviceable appli-

cation of any natural phenomenon which may be discovered

to deviate from the second law. As soon as a phenomenon
is found to contradict any legitimate conclusions from the

second law, this contradiction must arise from an inaccuracy
in our first assumption, and the phenomenon could be used
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for the construction of the above-described engine. We
shall in the following, according to the proposal of Ostwald,

speak of perpetual motion of the second kind, since it stands

in the same relation to the second law as perpetual motion

of the first kind does to the first law. In connection with all

objections to the second law, it must be borne in mind that,

if no errors are to be found in the line of proof, they are

ultimately directed against the impossibility of perpetual
motion of the second kind ( 136).*

117. From the impossibility of perpetual motion of

the second kind, it follows, in the first place, that the

generation of heat by friction is irreversible (cf. def. 112).
For supposing it were not so, i.e. supposing a method could

be found by which a process involving generation of heat

by friction could be completely reversed, this very method
would produce what is identically perpetual motion of the

second kind : viz. a change which consists of nothing but

the production of work, and the absorption of an equivalent
amount of heat.

118. It follows, further, that the expansion of a gas
without the performance of external heat, of" the absorption
of heat, is irreversible. For, suppose a method were known
of completely reversing this process, i.e. of reducing the

volume of a gas, without leaving any other change what-

soever, this method could be utilized for the production of

perpetual motion of the second kind in the following manner.

Allow the gas to do work by expansion, supplying the energy

* I desire to emphasize here, that the starting point selected by me for

the proof of the second law coincides fundamentally with that which R.

Clausius, or which Sir W. Thomson, or which J. Clerk Maxwell used for the

same purpose. The fundamental proposition which each of these investi-

gators placed at the beginning of his deductions asserts each time, only in

different form, the impossibility of the realization of perpetual motion' of the

second kind. I have selected the above form of expression, because of its

apparent technical significance. Not a single really rational proof of the

second law has thus far been advanced which does not require this fun-

damental principle, however numerous the attempts in this direction may
have been in recent times, nor do I believe that such an attempt will ever

meet with success.
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lost thereby by the conduction of heat from a reservoir at

the same or higher temperature, and then, by the assumed

method, reduce the volume of the gas to its initial value

without leaving any other change. This process might be

repeated as often as we please, and would therefore represent
an engine working in a complete cycle, and producing no

effect except the performance of work, and the withdrawal

of heat from a reservoir, i.e. perpetual motion of the second

kind.

On the basis of the proposition we have just proved, that

the expansion of a gas without the performance of work

and the absorption of heat is irreversible, we shall now carry

through the proof of the second law for those bodies whose

therrnodynamical properties are most completely known,
viz. for perfect gases.

119. If a perfect gas be subjected to infinitely slow

compression or expansion, and if, at the same time, heat be

applied or withdrawn, we have, by equation (22), in each

infinitely small portion of the process, per unit mass,

q = du 4- pdv

or, since for a perfect gas,

du = cvdO,

E ,

and p = -, /m v
T> f\

q = cndO H - dv.
* m v

If the process be adiabatic, then q = 0, and the inte-

gration of the above equation gives (as in 88) the function

T>

0.
log + ^ los v

equal to a constant. We shall now put

T>

fy
= c

v log H log v 4- const., . . (51)
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and call this function, after Clausius, the entropy of unit mass
of the gas. The constant, which has to be added, can be

determined by arbitrarily fixing the zero state. Accord-

ingly

<t> = M0 = M^ log + -
log v +

const.")
. (52)

is the entropy of mass M of the gas. The entropy of the

gas, therefore, remains constant during the described

adiabatic change of state.

120. On the application of heat, the entropy of the

gas changes, in the case considered, by

R dv\ M ? Q
i-t)- o -o-

It increases or decreases according as heat is absorbed or

evolved.

The absorbed heat Q has here been broken up into two 1

factors, 6 and d<&. According to a view which has recently
been brought forward, this breaking up of heat into factors is

regarded as a general property of heat. It should, however,
be emphasized that equation (53) is by no means generally
true. It holds only in the particular case where the external

work performed by the gas is expressed by pdV. The
relation

dv7^ ivr/' ,

v\ +p
d<5> = M( a-* H .

)
= - ^

\ V 8 m v J

holds, quite generally, for any process in which the tempera-
ture of the gas is increased by dO, and the volume by dV.

It is, in fact, only a different mathematical form for the

definition of the entropy given in (52). On the other

hand, the equation

holds by no means in all cases, but should, in general, be

replaced by

Q + W = dU,
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where W, the work done on the substance, may have any
value within certain limits. For instance, W = 0, if the

gas be conveyed into its new state of equilibrium without

performing external work (as described in 68). In this

case, Q = dlJ, and the equation Q = Od<& no longer holds.

121. We shall now consider two gases which can com-

municate heat to one another by conduction, but may, in

general, be under different pressures. If the volume of

one, or both, of the gases be changed by some reversible

process, care being taken that the temperatures of the gases

equalize at each moment, and that no exchange of heat

takes place with surrounding bodies, we have, according
to equation (53), during any element of time, for the first

gas,

and, for the second gas,

**- |
According to the conditions of the process,

0! = 2 and Q! + Q2 = 0,

whence, fZ<f>i 4- 6?4>2 =

or, for a finite change,

<!>! + q>2 = const...... (54)

The sum of the entropies of the two gases remains constant

during the described process.

122. Any such process with two gases is evidently
reversible in all its parts, for it may be directly reversed

without leaving changes in the surroundings. From this

follows the proposition that it is always possible to bring
two gases, by a reversible process, without leaving changes
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in * other bodies, from any given state to any other given
state, if the sum of the entropies in the two states be equal.

Let an initial state of the gases be given by the tempe-
ratures b 2,

and the specific volumes vh v2 ;
a second state

by the corresponding values 0i', 2

'

; Vi, v%. We now

suppose that

<P! + cp 2 = <*>/ + $ 2

'

. . . . (55)

Bring the first gas to the temperature 2 by a reversible

adiabatic compression or expansion ; then place the two gases
in thermal contact with one another, and continue to com-

press or expand the first infinitely slowly. Heat will now pass
between the two gases, and the entropy of the first one will

change, and it will be possible to make this entropy assume

the value 4>i'. But, according to (54), during the above

process the sum of the two entropies remains constant, and
= 4>i + $2; therefore the entropy of the second gas is

(4>i + $2) 3>i'> which is, according to (55), equal to <>
2'. If

we now separate the two gases, and compress or expand
each one adiabatically and reversibly until they have the

required temperatures 0/ and 2', the specific volumes must

then be v\ and v2', and the required final state has been

reached.

This process is reversible in all its parts, and no changes
remain in other bodies

;
in particular, the surroundings

have neither gained nor lost heat. The conditions of the

problem have therefore been fulfilled, and the proposition

proved.

123. A similar proposition can readily be proved for

any number of gases. .
It is always possible to bring a

system of n gases from any one state to any other by
a reversible process without leaving changes in other bodies,

if the sum of the entropies of all the gases is the same in

both states, i.e. if

#1 + $2 + + $n = &i + #2' + . + $'. (56)

* The emphasis is to be put on the word "in." Changes of position of

ponderable bodies (for example, the raising or lowering of weights) are not

internal changes ; but, of course, temperature and density changes are.



92 THERMODYNAMICS.

By the process described in the preceding paragraph we

may, by the successive combination of pairs of gases of the

system, bring the first, then the second, then the third, and

so on to the (n l)th gas, to the required entropy. Now,
in each of the successive processes the sum of the entropies

of all the gases remains constant, and, since the entropies of

the first (n
-

1) gases are 4>i', <P 2
'

. . . <',t _i, the entropy of

the nth gas is necessarily

Oi + $2 + 4- $) - Oi' + $a' + + <&'-!)

This is, according to (56), the required value <P
M

'. Each gas
can now be brought by an adiabatic reversible process into

the required state, and the problem is solved.

If we call the sum of the entropies of all the gases the

entropy of the whole system, we may then say : If a system

of gases has the same entropy in two different states^ it may
be transformed from the one to the other by a reversible process,

without leaving changes in other bodies.

124. We now introduce the proposition proved in

118, that the expansion of a perfect gas, without per-

forming external work or absorbing heat, is irreversible
; or,

what is the same thing, that the transition of a perfect gas
to a state of greater volume and equal temperature, without

external effects, as described in 68, is irreversible. Such

a process corresponds to an increase of the entropy, accord-

ing to the definition (52). It immediately follows that it

is altogether impossible to decrease the entropy of a gas
without producing a change in surrounding objects. If this

were possible, the irreversible expansion of a gas could be

completely reversed. After the gas had expanded without

external effects, and had assumed its new state of equili-

brium, the entropy of the gas could be reduced to its initial

value, without leaving changes in other bodies, by the

supposed method, and then, by an adiabatic reversible

process, brought to its initial temperature, and thereby also

to its original volume. This would completely reverse the
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first expansion, and furnish, according to 118, perpetual
motion of the second kind.

125. A system of two or more gases behaves in the

same way. There exists, in nature, no means of diminishing
the entropy of a system of perfect gases, without leaving

changes in bodies outside the system. A contrivance

which would accomplish this, be it .mechanical, thermal,

chemical, or electrical in nature, might be used to reduce

the entropy of a single gas without leaving changes in

other bodies.

Suppose a system of gases to have passed in any manner

from one state in which their entropies are <I>i, <J> 2 <!>,

to a state where they are </, <J> 2
'

. . . 4>', and that no

change has been produced in any body outside the system,
and let

Oi' + $2' + ... + <*>;< Oi + 4> 2 + . . . + *, (57)

then it is possible, according to the proposition proved in

123, to bring the system by a reversible process, without

leaving changes in other bodies, into any other state in

which the sum of the entropies is

$1' + $2' + . . . + $;,

and accordingly into a state in which the first gas has

the entropy $1, the second the entropy <J> 2 . >
the

(n i)th the entropy On _i, and the nib. in consequence the

entropy

($1' + $a
f + + $')

- $1 - #2 -
-
- $-i (58)

The first (n i) gases may now be reduced to their

original state by reversible adiabatic processes. The nth gas

possesses the entropy (58), which is, according to the supposi-

tion (57), smaller than the original entropy 3> TC . The entropy
of the nth gas has, therefore, been diminished without

leaving changes in other bodies. This we have already

proved in the preceding paragraph to be impossible.
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The general proposition has, therefore, been proved, and
we may immediately add the following.

126. If a system of perfect gases pass in any way from
one state to another, and^nn ^^igesj^emain in surrounding
bodies, the entropy of the system is certainly not smaller,

but either greater than, or, in the limit, equal to that of the

initial state ; in other ivords, the total change of the entropy
> 0. The sign of inequality corresponds to an irreversible

process, the sign of equality to a reversible one. The

equality of the entropies in both states is, therefore, not

only a sufficient, as described in 123, but also a necessary
condition of the complete reversibility of the transformation

from the one state to the other, provided no changes are to

remain in other bodies.

127. The scope of this proposition is considerable,

since there have designedly been imposed no restrictions

regarding the way in which the system passes from its

initial to its final state. The proposition, therefore, holds

not only for slow and simple processes, but also for physical
and chemical ones of any degree of complication, provided
that at the end of the process no changes remain in any

body outside the system. It must not be supposed that

the entropy of a gas has a meaning only for states of

equilibrium. We may assume each sufficiently small

particle, even of a gas in turmoil, to be homogeneous and

at a definite temperature, and must, therefore, according to

(52), assign to it a definite value of the entropy. M, v,

and 9 are then the mass, specific volume, and temperature
of the particle under consideration. A summation extending
over all the particles of the mass within which the values

of v and 9 may vary from particle to particle gives the

entropy of the whole mass of the gas in the particular state.

The proposition still holds, that the entropy of the whole

gas must continually increase during any process which

does not give rise to changes in other bodies, e.g. when a

gas flows from a vessel into a vacuum ( 68). It will be

seen that the velocity of the gas particles does not influence
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the value of the entropy ; neither does their height above
a certain horizontal plane, although they are considered to

have weight.

128. The laws which we have deduced for perfect gases

may be transferred to any substance in exactly the same

way. The main difference is, that the expression for the

entropy of any body cannot, in general, be written down
in finite quantities, since the characteristic equation is not

generally known. But it can be demonstrated and this is

the deciding point that, for any other body, there exists a

function with the characteristic properties of the entropy.

Imagine any homogeneous body to pass through a cer-

tain reversible or irreversible cycle and to be brought back

to its exact original state, and let the external effects of

this process consist in the performance of work and in the

addition or withdrawal of heat. The latter may be brought
about by means of any required number of suitable heat-

reservoirs. After the process, no changes remain in the

substance itself; the heat-reservoirs alone have suffered

change. We shall now assume all the heat-reservoirs to be

perfect gases, kept either at constant volume or at constant

pressure, but, at any rate, subject only to reversible changes
of volume. According to our last proposition, the sum of

the entropies of all these gases cannot have decreased, since

after the process no change remains in any other body.
If Q denote the amount of heat given to the substance

during an infinitely small element of time by one of the

reservoirs; 0, the temperature of the reservoir at that

moment
; then, according to equation (53), the reservoir's

change of entropy during that element of time is

Q
*t

The change of the entropy of all the reservoirs, during all

the elements of time considered, is
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Now, according to 126, we have the following condition :

-

This is the form in which the second law was first enunciated

by Clausius.

A further condition is given by the first law
; for, ac-

cording to (17) in 63, we have, during every element of

time of the process,

Q + W = cZU,

U being the initial energy of the body, and W the work
done on the body during the element of time.

129. If we now make the special assumption that the

external pressure is, at any moment, equal to the pressure

p of the substance, the work of compression becomes,

according to (20),

W = -pdV,
whence Q = dU +

If, further, each heat-reservoir be exactly at the tempe-
rature of the substance at the moment when brought into

operation, the cyclic process is reversible, and the inequality
of the second law becomes an equality

or, on substituting the value of Q,

^dV+pdV _ nZ V

All the quantities in this equation refer to the state of

the substance itself. It admits of interpretation without

reference to the heat-reservoirs, and amounts to the follow-

ing proposition.
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130. If a homogeneous body be taken through a series of
states of equilibrium ( 71), that follow continuously from one

another, back to its initial state, then the summation of the

differential

cZU + pdV

extending over all the states of that process gives the value

zero. It follows that, if the process be not continued until

the initial state, 1, is again reached, but be stopped at a

certain state, 2, the value of the summation

depends only on the states 1 and 2, not on the manner
of the transformation from state 1 to state 2. If two

series of changes leading from 1 to 2 be considered

(e.g. curves a and /3 in Fig. 2, 75), these can be com-

bined into an infinitely slow cyclic process. We may,
for example, go from 1 to 2 along a, and return to 1

along j3.

It has been demonstrated that over the entire cycle

+pdV f dU + pdV
whence

The integral (59) with the above-proved properties has

been called by Clausius the entropy of the body in state

2, referred to state 1 as the zero state. The entropy of a

body in a given state, like the internal energy, is completely
determined up to an additive constant, whose value depends
on the zero state.

H
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Denoting the entropy, as formerly, by 3>, we have :

and to .. .. . (60)
(7

or per unit mass :

-

:t
d<j>

= *L^? ..... (61)

This, again, leads to the value (51) for a perfect gas.

The expression for the entropy of any body may be found

by immediate integration ( 254), provided its energy,
U = Mw, and its volume, V = Mv, are known as functions,

say, of and p. Since, however, these are not completely
known except for perfect gases, we have to content ourselves

in general with^ the differential equation. For the proof,

and for many applications of the second law, it is, however,

sufficient to know that this differential equation contains

in reality a unique definition of the entropy.

131. We may, therefore, just as in the case of perfect

gases, speak of the entropy of any substance as of a finite

quantity determined by the momentary values of tempe-
rature and volume, even when the substance undergoes
reversible or irreversible changes. The differential equation

(61) holds, as was stated in 120 in the case of perfect

gases, for any change of state, including irreversible changes.
This more general application of the conception of the

entropy in no wise contradicts the manner of its deduction.

The entropy of a body in any given state is measured by
means of a reversible process which brings the body from

that state to the zero state. This ideal process, however,

has nothing to do with any actual reversible or irreversible

changes which the body may have undergone or be about

to undergo.
On the other hand, it should be stated that the differ-

ential equation (60), while it holds for changes of volume

and temperature, does not apply to changes of mass, for
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this kind of change was in no way referred to in the

definition of the entropy.

Finally, we shall call the sum of the entropies of a

number of bodies briefly the entropy of the system composed
of those bodies. Thus the entropy of a body whose particles
are not at uniform temperature, and have different velocities,

may be found, as in the case of gases ( 127), by a sum-

mation extending over all its elements of mass, provided
the temperature and density within each infinitely small

element of mass may be considered uniform. Neither the

velocity nor the weight of the particles enter into the

expression for the entropy.

132. The existence and the value of the entropy

having been established for all states of a body, there is

no difficulty in transferring the proof, which was given for

perfect gases (beginning in 119), to any system of bodies.

Just as in 119 we find that, during reversible adiabatic

expansion or compression of a body, its entropy remains

constant, while by the absorption of heat the change of the

entropy is

This relation holds only for reversible changes of volume,

as was shown for perfect gases in 120. Besides, it is found,

as in 121, that during reversible expansion or compression
of two bodies at a common temperature, if they be allowed

to exchange heat by conduction with one another, but not

with surrounding bodies, the sum of their entropies remains

constant. A line of argument corresponding fully to that

advanced for perfect gases then leads to the following

general result :

*
It is impossible in any waij to diminish the

* With regard to the generalization of the theorem which was proved for

a perfect gas in 124, it may be stated that a certain difficulty arises in the

special case of an incompressible body. In this case the body cannot be

expanded. Professor Krigar-MenzeJ, who drew my attention to this, sent

me at the same time the following proof. Proposition : It is impossible to

diminish the entropy of an incompressible body without leaving changes in

other bodies. Proof: Bring the body into thermal contact with a perfect
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entropy of a system of bodies without thereby leaving behind

changes in other bodies. If, therefore, a system of bodies has

changed its state in a physical or chemical way, without

leaving any change in bodies not belonging to the system,
then the entropy in the final state is greater than, or, in the

limit, equal to the entropy in the initial state. The limit-

ing case corresponds to reversible, all others to irreversible,

processes.

133. The restriction, hitherto indispensable, that no

changes must remain in bodies outside the system is easily

dispensed with by including in the system all bodies that

may be affected in any way by the process considered. The

proposition then becomes : Every physical or chemical process
in nature takes place in such a way as to increase the sum of
the entropies of all the bodies taking any part in the process.

In the limit, i.e. for reversible processes, the sum of the

entropies remains unchanged. This is the most general
statement of the second law of Thermodynamics.

134. As the impossibility of perpetual motion of the

first kind leads to the first law of Thermodynamics, or the

principle of the conservation of energy ;
so the impossibility

of perpetual motion of the second kind has led to the second

law, properly designated as the principle of the increase of
the entropy. This principle may be presented under other

forms, which possess certain practical advantages, especially

for isothermal or isopiestic processes. They will be men-

tioned in our next chapter. It should be emphasized, how-

ever, that the form here given is the only one of unrestricted

gas, isolate the system adiabatically, and diminish the volume of the gas by
reversible compression. Heat thereby passes from the gas into the body, and

the entropy of the gas diminishes in consequence, while that of the body
increases by an equal amount. Now separate the body from the gas. If the

proposition were false, and there existed an uncompensated entropy diminish-

ing process, we could by means of it bring the body back to its original
smaller entropy, and therewith to its initial state. The only outstanding

change of the whole process would be the diminution of the entropy of the

perfect gas. But this contradicts 118. The proposition is therefore not

false, but true.
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applicability to any finite process, and that no other universal

measure of the irreversibility of processes exists than the

amount of the increase of the entropy to which they lead.

All other forms of the second law are either applicable to

infinitesimal changes only, or presuppose, when extended to

finite changes, the existence of some special condition im-

posed upon the process ( 140, etc.). The real meaning of

the second law has frequently been looked for in a "
dissi-

pation of energy." This view, proceeding, as it does, from
the irreversible phenomena of conduction and radiation of

heat, presents only one side of the question. There are

irreversible processes in which the final and initial states

show exactly the same form of energy, e.g. the diffusion of

two perfect gases ( 238), or further dilution of a dilute

solution. Such processes are accompanied by no perceptible
transference of heat, nor by external work, nor by any notice-

able transformation of energy.* They occur only for the

reason that they lead to an appreciable increase of the

entropy. The amount of "lost work" yields a no more

definite general measure of irreversibility than does that of

"dissipated energy." This is possible only in the case of

isothermal processes ( 143). An exhaustive general state-

ment of the second law can be made only by means of the

conception of the entropy.

135. Clausius summed up the first law by saying that

the energy of the world remains constant; the second by

saying that the entropy of the world tends towards a

maximum. -

Objection has justly been raised to this form

of expression. The energy and the entropy of the world

have no meaning, because such quantities admit of no

accurate definition. Nevertheless, it is not difficult to

* In reply to a criticism of this statement, I have simply to refer to

108, wherein the remark is made, that, to be sure, by the introduction of

new kinds of energy, conceived ad hoc, it is possible to speak of an energy
transformation even for the cases now under discussion. There is, however,

nothing arbitrary in the statement made in the text, where the energy

appears as completely defined by 56, but rather in the introduction of the

new kinds of energy.
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express the characteristic feature of those propositions of

Clausius in such a way as to give them a meaning, and to

bring out more clearly what Clausius evidently wished to

express by them.

The energy of any system of bodies changes according
to the measure of the effects produced by external agents.
It remains constant, only, if the system be isolated. Since,

strictly speaking, every system is acted on by external

agents for complete isolation cannot be realized in nature

the energy of a finite system may be approximately, but

never absolutely, constant. Nevertheless, the more ex-

tended the system, the more negligible, in general, will the

external effects become, in comparison with the magnitude
of the energy of the system, and the changes of energy of its

parts ( 55) ; for, while the external effects are of the order of

magnitude of the surface of the system, the internal energy
is of the order of magnitude of the volume. In very small

systems (elements of volume) the opposite is the case for

the same reason, since here the energy of the system may
be neglected in comparison with any one of the external

effects. Frequent use is made of this proposition, e.g. in

establishing the limiting conditions in the theory of the con-

duction of heat. In the case here considered, it may, there-

fore, be said that the more widely extended a system we

assume, the more approximately, in general, will its energy
remain constant. A comparatively small error will be com-

mitted in assuming the energy of our solar system to be

constant, a proportionately smaller one if the system of all

known fixed stars be included. In this sense an actual

significance belongs to the proposition, that the energy
of an infinite system, or the energy of the world, remains

constant.

The proposition regarding the increase of the entropy
should be similarly understood. If we say that the en-

tropy of a system increases quite regardless of all outside

changes, an error will, in general, be committed, but the

more comprehensive the system, the smaller does the pro-

portional error become.
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136. In conclusion, we shall briefly discuss the question
of the possible limitations to the second law. If there exist

any such limitations a view still held by many scientists

and philosophers this much may be asserted, that their

existence presupposes an error in our starting-point, viz.

the impossibility of perpetual motion of the second kind, or

a fault in our method of proof. From the beginning we
have recognized the legitimacy of the first of these objections,

and it cannot be removed by any line of argument. The
second objection generally amounts to the following. The

impracticability of perpetual motion of the second kind is

granted, yet its absolute impossibility is contested, since our

limited experimental appliances, supposing it were possible,

would be insufficient for the realization of the ideal processes

which the line of proof presupposes. This position, however,

proves untenable. It would be absurd to assume that the

validity of the second law depends in any way on the skill

of the physicist or chemist in observing or experimenting.
The gist of the second law has nothing to do with experi-

ment; the law asserts briefly that there exists in nature a

quantity wliicli changes always in the same sense in all natural

processes. The proposition stated in this general form may be

correct or incorrect ;
but whichever it may be, it will remain

so, irrespective of whether thinking and measuring beings

exist on the earth or not, and whether or not, assuming

they do exist, they are able to measure the details of physical

or chemical processes more accurately by one, two, or a

hundred decimal places than we can.* The limitations

to the law, if any, must lie in the same province as its

essential idea, in the observed Nature, and not in the

Observer. That man's experience is called upon in the de-

duction of the law is of no consequence ;
for that is, in fact,

* We do not say that the second law is applicable to every single

detail of a process. Upon closer examination the matter appears to be thus.

The entropy, like temperature, pressure, and density, cannot be defined as an

absolute, continuous quantity, but as a certain average value of a large

number of single values. As long, therefore, as we regard simply one or

more single values, the entropy cannot be defined any more than the

temperature or pressure, and the second law neither applied nor proved.
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our only way of arriving at a knowledge of natural law.

But the law once discovered must receive recognition of its

independence, at least in so far as Natural Law can be said

to exist independent of Mind. Should any one deny this,

he would have to deny the possibility of natural science.

The case of the first law is quite similar. To most

unprejudiced scientists the impossibility of perpetual motion

of the first kind is certainly the most direct of the general

proofs of the principle of energy. Nevertheless, hardly

any one would now think of making the validity of that

principle depend on the degree of accuracy of the experi-
mental proof of that general empirical proposition. Pre-

sumably the time will come when the principle of the

increase of the entropy will be presented withouj any
connection with experiment. Some metaphysicians may
even put it forward as being a priori valid. In the

mean time, no more effective weapon can be used by both

champions and opponents of the second law than inde-

fatigable endeavour to follow the real purport of this law

to the utmost consequences, taking the latter one by one

to the highest court of appeal experience. Whatever
the decision may be, lasting gain will accrue to us from

such a proceeding, since thereby we serve the chief end of

natural science the enlargement of our stock of knowledge.



CHAPTER III.

GENERAL DEDUCTIONS.

137. OUR first application of the principle of the entropy
which was expressed in its most general form in the pre-

ceding chapter, will be to Carnot's cycle, described in detail

for perfect gases in 90. This time, the system operated

upon may be of any character whatsoever, and chemical re-

actions, too, may take place, provided they are reversible.

Eesuming the notation used in 90, we may at once state

the result.

In a cyclic process, according to the first law, the heat,

Q2, given out by the hotter reservoir is equivalent to the

sum of the work done by the system, W = W, and the

heat received by the colder reservoir, Q/ = - Qi :

Q2 = W + Qi'

or Qi + Q2 + W = . . . . (63)

According to the second law, since the process is re-

versible, all bodies which show any change of state after

the process, i.e. the two heat-reservoirs only, possess the

same total entropy as before the process. The change of

the entropy of the two reservoirs is, according to (62) :

^' = - ^ for the first, and - 5* for the second, (64)
01 01 02

their sum: % + I* = ....'. (65)
01 02

whence, by (63),
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as in (44), but without any assumption as to the nature of

the substance passing through the cycle of operations.
In order, therefore, to gain the mechanical work, W,

by means of a reversible Carnot cycle of operations with

any substance between two heat-reservoirs at the tempera-
tures 0i and 6-2 (9.2

> Oi), the quantity of heat

must pass from the hotter to the colder reservoir. In

other words, the passage of the quantity of heat Q/ from

0-2 to 0i may be taken advantage of to gain the mechanical

work

W = ^Qi' ..... (66)

138. For an irreversible cycle, i.e. one involving any
irreversible physical or chemical changes of the substance

operated upon, the equation of energy (63) still holds, but

the equation for the change of the entropy (65) is replaced

by the inequality :

Observe, however, that the expressions (64) for the

change of the entropy of the reservoirs are still correct,

provided we assume that any changes of volume of the

substances used as reservoirs are reversible. Thus,

o' Q2 < -

hence, from (67) and (63),

W'= -W = Q1

' W' < ^
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This means that the amount of work, W, to be gained by
means of a cyclic process from the transference of the heat,

Q/, from a hotter to a colder reservoir, is always smaller

for an irreversible process than for a reversible one. Conse-

quently the equation (66) represents the maximum amount
of work to be gained from any cyclic process between heat-

reservoirs at the temperatures 2 and ft.

In particular, if W' = 0, it follows from the equation of

energy (63) that

f, = -Q1
= Q1

'

and the inequality (67) becomes

In this case the cyclic process results in the transference

of heat (Q2)
from the reservoir of temperature 2 to that of

temperature ft, and the inequality means that this flow

of heat is always directed from the hotter to the colder

reservoir.

Again, a special case of this type of process is the direct

passage of heat by conduction between heat-reservoirs, with-

out any actual participation of the system supposed to pass

through the cycle of operations. It is seen to be an irre-

versible change, since it brings about an increase of the

sum of the entropies of the two heat-reservoirs.

139. We shall now apply the principle of the entropy
to any reversible or irreversible cycle with any system of

bodies, in the course of which only one heat-reservoir of

constant temperature is used. Whatever may be the

nature of the process in detail, there remains at its close no

change of the entropy except that undergone by the heat-

reservoir. According to the first law, we have

W + Q = 0.

W is the work done on the system, and Q the heat absorbed

by the system from the reservoir.

According to the second law, the change of the entropy
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of the reseryoir, within which only reversible changes of

volume are supposed to take place, is
'

or Q < 0,

whence W > 0.

Work has been expended on the system, and heat added

to the reservoir. If, in the limit, the process be reversible,

the signs of inequality disappear, and both the work W
and the heat Q are zero. On this proposition rests the great

fertility of the second law in its application to isothermal

reversible cycles.

140. We shall no longer deal with cycles, but shall

consider the general question of the direction in which a

change will set in, when any system in nature is given.

For chemical reactions in particular is this question of

importance. It is completely answered by the second

law in conjunction with the first, for the second law con-

tains a condition necessary for all natural processes. Let

us imagine any homogeneous or heterogeneous system of

bodies at the common temperature 0, and investigate the

conditions for the starting of any physical or chemical

change. According to the first law, we have for any
infinitesimal change :

dU = Q + W, . .
;.

. . (68)

where U is the total internal energy of the system, Q the

heat absorbed by the system during the process,jmd Wjthe
work done on the system-

According to the second law, the change of the total

entropy of all the bodies taking part in the process is

d<S> -f d$>Q >

where < is the entropy of the system, 4> the entropy of

the surrounding medium (air, calorimetric liquid, walls of
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vessels, etc.). Here the sign of equality holds for reversible

cases, which, it is true, should be considered as an ideal

limiting case of actual processes ( 115).
If we assume that all changes of volume in the surround-

ing medium are reversible, we have, according to (62),

or, by (68), d* = -
~

-

On substituting the value of d$ , we have

d*-M^L> .'.... (69)

or d\J - Bd3> < W ..... (70)

All conclusions with regard to thermodynamic chemical

changes, hitherto drawn by different authors in different

ways, culminate in this relation (70). It cannot in general
be integrated, since the left-hand side is not, in general,
a perfect differential. The second law, then, does not lead

to a general statement with regard to finite changes of a

system taken by itself unless something be known of the

external conditions to which it is subject. This was to be

expected, and holds for the first law as well. To arrive at a

law governing finite changes of the system, the knowledge
of such external conditions as will permit the integration of

the differential is indispensable. Among these the following

are singled out as worthy of note.

141. Case I. Adiabatic Process. No exchange of

heat with the surroundings being permitted, we have Q = 0,

and, by (68),

dU = W.

Consequently, by (70), d<& > 0.

The entropy of the system increases or remains constant, a

case which has already been sufficiently discussed.
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142. Case II. Isothermal Process. The temperature

9 being kept constant, (70) passes into

d(U
- 0$)

< W
i.e. the increment of the quantity (U - 0$) is smaller than,

or, in the limit, equal to, the work done on the system.

This theorem is well adapted for application to chemical

processes, since isothermal changes play an important part

in nature.

Putting U - 6$ = F, ..... (71)

we have, for reversible isothermal changes :

dF = W
and, on integrating,

F2
- F! = SW ..... (72)

For finite reversible isothermal changes the total work

done on the system is equal to the increase of F ; or, the

entire work performed by the system is equal to the decrease

of F, and, therefore, depends only on the initial and final

states of the system. Where FI = F2, as in cyclic processes,

the external work is zero.

The function F, thus bearing the same relation to the

external work that the energy U does to the sum of the

external heat and work, has been called by H. v. Helmholtz

the free energy (freie Energie) of the system. (It should

rather be called "free energy for isothermal processes.")

Corresponding to this, he calls U the total energy (Gesammt-

energie), and the difference U F = 0<P, the latent energy

(gebundene Energie) of the system. The change of the

latter in reversible isothermal processes gives the amount
of the external heat absorbed. This splitting up of total

energy into free and latent energy is applicable to isothermal

processes only.
In irreversible processes, on the other hand, dF < W,

and on integrating we have

F2
- F! < SW ...... (73)
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The free energy increases by a less amount than that which

corresponds to the work done on the system. The results

for reversible and irreversible processes may be stated thus.

In irreversible isothermal processes the work done on the

system is more, or the work done by the system is less, than

it would be if the same change were brought about by a

reversible process, for in that case it would be the differ-

ence of the free energies at the beginning and end of the

process (72).

Hence, any reversible transformation of the system from

one state to another yields the maximum amount of work
that can be gained by any isothermal process between those

two states. In all irreversible processes a certain amount of

work is lost, viz. the difference between the maximum work

to be gained (the decrease of the free energy) and the work

actually gained.
The fact that, in the above, irreversible as well as

reversible processes between the same initial and final states

were considered, does not contradict the proposition that

between two states of a system either only reversible or

only irreversible processes are possible, if no external

changes are to remain in other bodies. In fact, the pro-
cess here discussed involves such changes in the surrounding

medium; for, in order to keep the system at constant

temperature, an exchange of heat between it and the sur-

rounding medium must take place in one direction or the

other.

143. If the work done during an isothermal process

vanish, as is practically the case in most chemical reactions,

we have
SW = 0,

and, by (73), F2
- F! < 0,

i.e. the free energy decreases. The amount of this decrease

may be used as a measure of the work done by the forces

(chemical affinity) causing the process, for the same is not

available for external work.

For instance, let an aqueous solution of some non-volatile
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salt be diluted isothermally, the heat of dilution being

furnished or received by a heat-reservoir according as the

energy, U2 ,
of the diluted solution (final state) is greater or

less than the sum, Ui, of the energies of the undiluted

solution and the water added (initial state). The free

energy, F2, of the diluted solution, on the other hand, is

necessarily smaller than the sum, F1? of the free energies of

tlje undijluted
solution and the water added. The amount

of the decrease
<pf

the free energy, or the work done by the

".affinity of- the*.solution for water
"

during the process of

dilution may b& measured. For this purpose, the dilution

should be performed in some reversible isothermal manner,

when, according to (72), the quantity to be measured is

actually gained 'itf the form of external work. For instance,

evaporate the water, which is to be added, infinitely slowly

under the pressure of its saturated vapour. When it has all

been changed to ..water vapour, allow the latter to expand

isothermally and reversibly until its density equals that

which saturate^ water vapour would possess at that tempera-
ture when in contact with the solution. Now establish

lasting contact between the water vapour and the solution,

whereby the equilibrium will not be disturbed. Finally, by
isothermal compression, condense the water vapour infinitely

slowly when in direct contact with the solution. It will

then be uniformly distributed throughout the -latter. Such

a process, as here described, is composed only of states of

equilibrium. Hence it is reversible, and the external work

thereby gained represents at the same time the decrease

of the free energy, F2 FI, which takes place on directly

mixing the solution and the water.

As a further example, we shall take a mixture of

hydrogen and oxygen which has been exploded by means
of an electric spark. The spark acts only the secondary

part of a release, its energy being negligible in comparison
with the energies obtained by the reaction. The work
of the chemical affinities in this process is equal to the

mechanical work that might be gained by chemically com-

bining the oxygen and hydrogen in some reversible and
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isothermal way. Dividing this quantity by the number of

oxidized molecules of hydrogen, we obtain a measure of the

force with which a molecule of hydrogen tends to become

oxidized. This definition of chemical force, however, has

only a meaning in so far as it is connected with that work.

144. In chemical processes the changes of the first

term, U, of the expression for the free energy (71), fre-

quently far surpass those of the second, 0<P. Under such

circumstances, instead of the decrease of F, that of U, i.e.

the heat effect, may be considered as a measure of the

chemical work. This leads to the proposition that chemical

reactions, in which there is no external work, take place in

such a manner as to give the greatest heat effects (Berthelot's

principle). For high temperatures, where 0, and for gases
and dilute solutions, where $ is large, the term 0<$ can no

longer be neglected without considerable error. In these

cases, therefore, chemical changes often do take place in

such a way as to increase the total energy, i.e. with the

absorption of heat.

145. It should be borne in mind that all these pro-

positions refer only to isothermal processes. To answer the

question as to how the free energy acts in other processes,
it is only necessary to form the differential of (71) viz. :

and to substitute in the general relation (70). We have

then

dF<W -

for any physical or chemical process. This shows that,

with change of temperature, the relation between the

external work and the free energy is far more complicated.

This relation cannot, in general, be used with advantage.

146. We shall now compute the value of the free

energy of a perfect gas. Here, according to (35),

U = Mw = M(cv
O + const.),

i
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and, by (52),
T>

4> = Md> = M(c log H log v + const.).
'TT?,

Substituting in (71), we obtain

-pn

F = M{^0(const
-

log 0)
---

log v + const) (74)

which contains an arbitrary linear function of 9.

For isothermal changes of the gas, we have, by 142,

or, by (74), since is const.,

, M0R dv ,,7 ^ TTTdF = - . = - pdV < W.m v r

If the change be reversible, the external work on the

gas is W = pdV, but if it be irreversible, then the

sign of inequality shows that the work of compression is

greater, or that of expansion smaller, than in a reversible

process.

147. Case III. Isothermal -isopiestic Process.

If, besides the temperature 0, the external pressure p be

also kept constant, then the external work is given by the

formula,

W =
-jprfV,

and the left-hand side of (69) becomes a complete differ-

ential :

In this case, it may be stated that for finite changes the

function,

*f .... (75)
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must increase, and will remain constant only in the limit

when the change is reversible.*

148. Conditions of Equilibrium. The most general
condition of equilibrium for any system of bodies is derived

from the proposition that no change can take place in the

system if it be impossible to satisfy the condition necessary
for a change.

Now, by (69), for any actual change of the system,

.

u

The sign of equality is omitted, because it refers to ideal

changes which do not actually occur in nature. Equilibrium

is, therefore, maintained if the fixed conditions imposed on

the system be such that they will permit only changes in

which

Here is used to signify a virtual infinitely small change,
in contrast to d, which corresponds to an actual change.

149. In most of the cases subsequently discussed, if any

given virtual change be compatible with the fixed con-

ditions of the system, its exact opposite is also, and is

represented by changing the sign of all variations involved.

This is true if the fixed conditions be expressed by equa-

tions, not by inequalities. Assuming this to be the case,

if we should have, for any particular virtual change,

*
Multiplying (75) by 6, we get P. Duhem's tliermodynamic potential at

constant pressure,
U + pV - 0*,

for which, so long as 6 remains constant, the same propositions hold as for

the function . However, the equation (153) in 211, which is important

for the dependence of the equilibrium on temperature and pressure, can be

more conveniently deduced from the function than from the thermo-

dynamic potential.
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which, by (69), would make its occurrence in nature im-

possible, its opposite would conform to the condition for

actual changes (69), and could therefore take place in

nature. To ensure equilibrium in such cases, it is necessary,

therefore, that, for any virtual change compatible with the

fixed conditions,

S*_NL = o .... (76)

This equation contains a condition always sufficient, but, as

we have seen, not always necessary to its full extent, for the

maintenance of equilibrium. As a matter of experience,

equilibrium will occasionally subsist when equation (76) is

not fulfilled, even though the fixed conditions permit of a

change of sign of all variations. This is to say, that

occasionally a certain change will not take place in nature,

though it satisfy the fixed conditions as well as the demands

of the second law. Such cases lead to the conclusion that

in some way the setting in of a change meets with a certain

resistance, which, on account of the direction in which it

acts, has been termed inertia resistance, or passive resist-

ance. States of equilibrium of this description are always
unstable. Often a very small disturbance, not comparable
in size with the quantities within the system, suffices to

produce the change, which under these conditions often

occurs with great violence. We have examples of this in

overcooled liquids, supersaturated vapour, supersaturated

solutions, explosive substances, etc. We shall henceforth

discuss mainly the conditions of stable equilibrium de-

ducible from (76).

This equation may, under certain circumstances, be

expressed in the form of a condition for a maximum or

minimum. This can be done when, and only when, the

conditions imposed upon the system are such that the left-

hand side of (76) represents the variation of some one

function. The most important of these cases are dealt with

separately in the following paragraphs. They correspond

exactly to the propositions which we have already deduced



GENERAL DEDUCTIONS. Hi

for special cases. From these propositions it may at once

be seen whether it is a case of a maximum or a minimum.

150. First Case ( 141). If no exchange of heat take

place with the surrounding medium, the first law gives

su = w,

hence, by (76), $3> = ....... (77)

Among all the states of the system which can proceed from

one another by adiabatic processes, the state of equilibrium
is distinguished by a maximum of the entropy. Should

there be several states in which the entropy has a maximum

value, each one of them is a state of equilibrium; but if

the entropy be greater in one than in all the others, then

that state represents absolutely stable equilibrium, for it

could no longer be the starting-point of any change what-

soever.

151. Second Case ( 142). If the temperature be

kept constant, equation (76) passes into

and, by (71),
- 8F = -W.

Among all the states which the system may assume at a

given temperature, a state of equilibrium is characterized

by the fact that the free energy of the system cannot

decrease without performing an equivalent amount of work.

If the external work be a negligible quantity, as it is

when the volume is kept constant or in numerous chemical

processes, then W = 0, and the condition of equilibrium
becomes

i.e. among the states which can proceed from one another

by isothermal processes, without the performance of external

work, the state of most stable equilibrium is distinguished

by an absolute minimum of the free energy.
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152. Third Case ( 147). Keeping the temperature
9 and the pressure p constant and uniform, we have

W = -2>SV, ..... (78)

and the condition of equilibrium (76) becomes

or, by (75), ^ = ...... (79)

i.e. at constant temperature and constant pressure, the state

of most stable equilibrium is characterized by an absolute

maximum of the function ^P.

We shall now proceed to consider, in succession, states

of equilibrium of various systems by means of the theorems

we have just deduced, going from simpler to more compli-

cated cases.



PART IV.

APPLICATIONS TO SPECIAL STATES OF EQUILIBRIUM.

CHAPTER I.

HOMOGENEOUS SYSTEMS.

153. LET the state of a homogeneous system be deter-

mined, as hitherto, by its mass, M ;
its temperature, 9

;
and

y
either its pressure, p, or its specific volume, v =

^.
For

the present, besides M, let and v be the independent

variables. Then the pressure p, the specific energy u =
^,

and the specific entropy ^ = TT? are functions of and v,

the definition of the specific entropy (61) being

/da\

pdv l/du\ JQ \dv) P
j- = *o + dv '

On the other hand,

7

<fy

Therefore, since cZ0 and ^ are independent of each other,

.-
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These two equations lead to an experimental test of the

second law
; for, differentiating the first with respect to v,

the second with respect to 0, we have

B2u /dp\ /du\
+ *

or

By this and equation (24), the above expressions for the

differential coefficients of become :

dOJv 9

154. Equation (80), together with (28) of the first

law, gives the relation :

which is useful either as a test of the second law or for the

calculation of cv when cp is given. But since in many cases

K-0
} cannot be directly measured, it is better to introduce

the relation (6), and then

As (
-)

is necessarily negative, cp is always greater than cv,

except in the limiting case, when the coefficient of expansion
is = 0, as in the case of water at 4 C., ;

then cp c v
= 0.

As an example, we may calculate the specific heat at

constant volume, e e ,
of mercury at C. from the following

data:

cp
= 0-0333; 9 = 273;

dp\ 1014000~
Or00000295 . v
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where the denominator is the coefficient of compressibility
in atmospheres ( 15) ; the numerator, the pressure of an

atmosphere in absolute units ( 17) ;
v = To; the volume

of 1 gr. of mercury at C.
;

g
= 0-0001812 . v, the

coefficient of thermal expansion ( 15).

To obtain cv in calories, it is necessary to divide by the

mechanical equivalent of heat, 419 x 105
( 61). Thus we

obtain from (83)

273 x 1014000 x 0-0001812*

0-00000295 x 13-6 x 419 x 105

whence, from the above value for cp,

cv = 0-0279.

155. This method of calculating the difference of the

specific heats cp cV) applicable to any substance, discloses

at the same time the order of magnitude of the different

influences to which this quantity is subject. According to

equation (28) of the first law, the difference of the specific

heats is %

K
The two terms of this expression, f^-J (~^ j

and p(^] ,

depend on the rate of change of the energy with the volume,

and on the external work performed by the expansion

respectively. In order to find which of these two terms has

the greater influence on the quantity ep
- cv, we shall find

the ratio of the first to the second :

or, by (80), J.'^.'
1

"

'

,

' ' ' ' <84>

-^(% . -^-ga-k- 1
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A glance at the tables of the coefficients of thermal

expansion and of the compressibility of solids and liquids

shows that, in general, the first term of this expression is

a large number, making the second, -
1, a negligible

quantity. For mercury at 0, e.g., the above data give the

first term to be

0-0001812
- )0 '

0-00000295

Water at 4 C. is an exception.
It follows that, for solids and liquids, the difference

Cp
- cv depends rather on the relation between the energy

and the volume than on the external work of expansion.
For perfect gases the reverse is the case, since the internal

energy is independent of the volume, i.e.

During expansion, therefore, the influence of the internal

energy vanishes in comparison with that of the external

work
;
in fact, the expression (84) vanishes for the charac-

teristic equation of a perfect gas. With ordinary gases,

however, both the internal energy and the external work

must be considered.

156. The sum of both these influences, i.e. the whole

expression cp c e, may be said to have a small value for

most solids and liquids ;
thus the ratio = y is but slightly

cv

greater than unity. This means that in solids and liquids
the energy depends far more on the temperature than on the

volume. For gases, 7 is large ; and, in fact, the fewer the

number of atoms in a molecule of the gas, the larger does

it become. Hydrogen, oxygen, and most gases with diatomic

molecules have y = 141
( 87). The largest value of 7 ever

observed is that found by Kundt and Warburg for the

monatomic vapour of mercury, viz. T666.

157. For many applications of the second law it is
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convenient to introduce p instead of v as an independent
variable. We have, by (61),

du

dp.

dv

On the other hand,

whence,

and

Differentiating the first of these with respect to p, the

second with respect to 0, we get

3% d*v

dtidp B

whence

The differential coefficients of < become, then, by (26),

Finally, differentiating the first of these with respect to

p, the second with respect to 9, and equating, we have

(X- -
<*

This equation contains only quantities that can be directly

measured, and establishes a relation between the rate of

change of the coefficient of thermal expansion of the sub-

stance with temperature (i.e.
the deviation from Gay-Lussac's
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law), and the rate of change of the specific heat with

pressure.

158. By means of the relations furnished by the second

law we may also draw a further conclusion from Thomson

and Joule's experiments ( 70), in which a gas was slowly

pressed through a tube plugged with cotton wool. The

interpretation in 70 was confined to their bearing on the

properties of perfect gases. It has been mentioned that the

characteristic feature of these experiments consists in giving
to a gas without adding or withdrawing heat * an increase

of volume, 2 Vi, or v2 Vi per unit mass, while the

external work done per unit mass is represented by

This expression vanishes in the case of perfect gases, since

then the temperature remains constant. In the case of

actual gases we may put

Pi=p, Pz=p p
Vi = v, v2

= v + Av (A v> 0)

whence W =

and by the first law, since Q = 0,

Aw = W + Q = -

For the sake of simplicity we shall assume Ap and

to be small, and we may then write the above equation :

or, by (24), (82), and (80),

* Whether this condition is actually fulfilled may be ascertained by
measurements in the medium surrounding the tube through which the gas
flows.
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and, by (6)

S) ' Kl) ^ + (?)M<50/p (\50/v \dvJo S

(86)

By means of this simple equation, the change of tempera-
ture (A0) of the gas in Thomson and Joule's experiments,
for a difference of pressure A^>, may be found from its

specific heat, c
p9

and its deviation from Gay-Lussac's law.

If, under constant pressure, v were proportional to 0, as in

Gay-Lussac's law, then, by equation (86), A0 = 0, as is

really the case for perfect gases.

159. Thomson and Joule embraced the results of their

observations in the formula

A0 =
^Ap,

where a is a constant. If we express p in atmospheres, we

have, for air,

= 0-276 x (273)
2

.

No doubt the formula is only approximate. Within the

region of its validity we get, from 86,

and, differentiating with respect to 0,

, a /dc\ 2ac

whence, by the relation (85),

p a/dep\ _2aep _
L

'

V3
'
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The general solution of this differential equation is

where / denotes an arbitrary function of its argument,
3 -

Bap.

If we now assume that, for small values of p, the gas, at

any temperature, approaches indefinitely near the ideal state,

then, when p = 0, cp becomes a constant = c^ (for air, 4 J

= 0-238 calorie). Hence, generally,

e = '

. ...... (88)

This expression for cp will serve further to determine v in

terms of and p. It follows from (87) that

i

whence

or

This is the characteristic equation of the gas, and j3,
the

constant of integration, may be determined from its density

at C. and atmospheric pressure. Equations (88) and (89),

like Thomson and Joule's formula, are valid only within

certain limits. It is, however, of theoretical interest to see

how the different relations necessarily follow from one

another.

160. A further, theoretically important application of

the second law is the determination of the absolute tem-

perature of a substance by a method independent of the
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deviations of actual gases from the ideal state. In 4 we

defined temperature by means of the gas thermometer, but

had to confine that definition to the cases in which the

readings of the different gas thermometers (hydrogen, air,

etc.) agree as nearly as the desired accuracy of the result

requires. For all other cases (including mean temperatures,
when a high degree of accuracy is desired) we postponed
the definition of absolute temperature. Equation (80)

enables us to give an exact definition of absolute tempera-

ture, entirely independent of the behaviour of special

substances.

Given the temperature readings, t, of any arbitrary

thermometer (mercury-thermometer, or the scale deflection

of a thermo-element, or of a bolometer), our problem is to

reduce the thermometer to an absolute one, or to express
the absolute temperature 9 as a function of t. We may by
direct measurement find how the behaviour of some appro-

priate substance, e g. a gas, depends on t and either v or p.

Introducing, then, t and v as the independent variables in

(80) instead of 9 and v, we obtain

where
(^'),jj,

and (v*
j represent functions of t and v,

which can be experimentally determined. The equation
can then be integrated thus :

If we further stipulate that at the freezing-point of water,

where t = fo,
= = 273, then,

,' (ty
.*

7ou\

(sv\
+ P
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This completely determines 9 as a function of t. It is

evident that the volume, v, no longer enters into the

expression under the sign of integration.

161. The numerator of this expression may be found

directly from the characteristic equation of the substance.

The denominator, however, depends on the amount of heat

which the substance absorbs during isothermal reversible

expansion. For, by (22) of the first law, the ratio of the

heat absorbed during isothermal reversible expansion to the

change of volume is

162. Instead of measuring the quantity of heat absorbed

during isothermal expansion, it may be more convenient,

for the determination of the absolute temperature, to experi-

ment on the changes of temperature of a slowly escaping

gas, according to the method of Thomson and Joule. If we

introduce t (of 160) instead of 9 into equation (86), which

represents the theory of those experiments on the absolute

temperature scale, we have

dv\ _ /dv\ dt

)p
=

\dt)p
'

~dtf

/ q\ __ /q\ dt _ ,dt
Cp
~

\dOj
~

\dt)
'

dO
~:

p

where c
p

is the specific heat at constant pressure, determined

by a t thermometer. Consequently, by (86),

dt

and again, by integration,
i
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The expression to be integrated again contains quantities
which may be measured directly with comparative ease.

163. The stipulation of 160, that, at the freezing-

point of water, = = 273, implies the knowledge of the

coefficient of expansion, a, of perfect gases. Strictly speak-

ing, however, all gases show at all temperatures deviations

from the behaviour of perfect gases, and disagree with one

another. To rid ourselves of any definite assumption about

a, we return to our original definition of temperature, viz.

that the difference between the absolute temperature of

water boiling under atmospheric pressure (0i), and that of

water freezing under the same pressure (0 )>
shall be

0! _ = 100 (91)

Now, if ti be the boiling-point of water, measured by
means of a t thermometer, then, by (90),

fl

i*)dt
(92)

and, eliminating and 0i from (90), (91), and (92), we find

the absolute temperature :

03)

From this we obtain the coefficient of thermal expansion of

a perfect gas, independently of any gas thermometer,

1 e
Jl - 1

a = TT = (94)"
100

'

Since, in both J and Ji, the expression to be integrated

depends necessarily on t only, it is sufficient for the calcula-

tion of the value of the integral to experiment at different

temperatures under some simplifying condition, as, for

instance, always at the same pressure (atmospheric pressure).

164. The formula may be still further simplified by
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using as thermometric substance in the t thermometer the

same gas as that on which Thomson and Joule's experi-
ments are being performed. The coefficient of expansion,

a', referred to temperature t, is then a constant, and if, as is

usual, we put = 0, and ti = 100,

V = + at),

v being the specific volume at the melting-point of ice

under atmospheric pressure. Also

i"
Hence, by (90),

a'dtTJ =

and, by (92),

fa
r'

'

dt
~

l + rf + i
1

*''
J

Q VQ Aj)

In the case of an almost perfect gas (e.g. air), A is small,

and the term -^ . acts merely as a correction term,

and, therefore, no great degree of accuracy is required in
the determination of ep

'

and v . For a perfect gas we should
have A = 0, and, from the last two equations,

J = log (1 -f a
't) 9 Jx

= log (1 + lOOa') ;

therefore, by (93),

and, by (94),

as it should be.
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As soon as accurate measurement of even a single

substance has determined 9 as a function of t, the question

regarding the value of the absolute temperature may be

considered as solved for all cases.

The absolute temperature may be determined not only

by experiments on homogeneous substances, but also from

the theory of heterogeneous substances (cf. 177).



CHAPTER II.

SYSTEM IN DIFFERENT STATES OF AGGREGATION.

165. WE shall discuss in this chapter the equilibrium of

a system which may consist of solid, liquid, and gaseous

portions. We assume that the state of each of these

portions is fully determined by mass, temperature, and

volume; or, in other words, that the system is formed of

but one independent constituent
( 198). For this it is not

necessary that any portion of the system should be chemi-

cally homogeneous. Indeed, the question with regard to

the chemical homogeneity cannot, in general, be completely
answered ( 92). It is still very uncertain whether the

molecules of liquid water are the same as those of ice. In

fact, the anomalous properties of water in the neighbour-
hood of its freezing-point make it probable that even in

the liquid state its molecules are of different kinds. The
decision of such questions has no bearing on the investiga-
tions of this chapter. The system may even consist of

a mixture of substances in any proportion ;
that is, it may

be a solution or an alloy. What we assume is only this :

that the state of each of its homogeneous portions is quite
definite when the temperature 9 and the specific volume v

are definitely given, and that, if the system consists of

different substances, their proportion is the same in all

portions of the system. We may now enunciate our problem
in the following manner :

Let us imagine a substance of given total mass, M,
enclosed in a receptacle of volume, V, and the energy, U,
added to it by heat-conduction. If the system be now
isolated and left to itself, M, V, and U will remain con-

stant, while the entropy, <, will increase. We shall now
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investigate the state or states of equilibrium which the

system may assume, finding at the same time the conditions

of its stability or instability. This investigation may be

completely carried through by means of the proposition

expressed in equation (77), that of all the states that may
adiabatically arise from one another, the most stable state

of equilibrium is characterized by an absolute maximum of

the entropy. The entropy may in general, however, as

we shall see, assume several relative maxima, under the

given external conditions. Each maximum, which is not

the absolute one, will correspond to a more or less un-

stable equilibrium. The system in a state of this kind

(e.g. as supersaturated vapour) may occasionally, upon

appropriate, very slight disturbances, undergo a finite

change, and pass into another state of equilibrium, which

necessarily corresponds to a greater value of the entropy.

166. We have now to find, first of all, the states in which

the entropy <!> becomes a maximum. The most general as-

sumption regarding the state of the system is that it consists

of a solid, a liquid, and a gaseous portion. Denoting the

masses of these portions by MI, M2, M3,
but leaving open,

for the present, the question as to which particular portion
each suffix refers, we have for the entire mass of the system
MI + Ma + M3 = M. All the quantities are positive, but

some may be zero. Further, since the state under discussion

is to be one of equilibrium, each portion of the system, also

when taken alone, must be in equilibrium, and therefore of

uniform temperature and density. To each of them, there-

fore, we may apply the propositions which were deduced in

the preceding chapter for homogeneous substances. If

0i> ^2> ^3, denote the specific volumes, the given volume of

the system is

4- M2i;2 4- M8v8 = V.

Similarly, the given energy is

MI^I 4- M2% 4- M3% = U,

where %, u^ u3 denote the specific energies of the portions.
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These three equations represent the given external

conditions.

167. For the entropy of the system we have

i> 02> 03 being the specific entropies.

For an infinitesimal change of state this equation gives

Since, by (61), we have, in general,

we obtain

ft
+ (95)

These variations are not all independent of one another.

In fact, from the equations of the imposed (external) con-

ditions, it follows that

.. (96)

With the help of these equations we must eliminate

from (95) any three variations, in order that it may contain

only independent variations. If we substitute in (95), for

instance, the values for SM2, &;2, and 8-1*2 taken from (96), the

equation for S< becomes

i =
4- SviSMi =
+ S^iSMi =

-
Va)

(97)
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Since the six variations occurring in this expression are

now independent of one another, it is necessary that each of

their six coefficients should vanish, in order that S<J> may be

zero for all changes of state. Therefore

0! = 2 = 3(
= 0)

PI = Pz = P3

%) 4- ^1(^1 ^2

2
-

03 =

_
2
-

- Wa 4-

(98)

These six equations represent necessary properties of any
state, which corresponds to a maximum value of the entropy,
i.e. of any state of equilibrium. As the first four refer to

equality of temperature and pressure, the main interest

centres in the last two, which contain the thermodynamical

theory of fusion, evaporation, and sublimation.

168. These two equations may be considerably simpli-
fied by substituting the value of the specific entropy 0,

which, as well as u and p, is here considered as a function of

and v. For, since (61) gives, in general,

7 du 4- pdv
city

= ^
,

we get, by integration,

/ du + pdv
0i

~
02 = 7i

where the upper limit of the integral is characterized by the

values 0i, Vi, the lower by 2, v%. The path of integration

is arbitrary, and does not influence the value of 0i 2 .

Since, now, 0i = 2
= (by 98), we may select an isothermal

path of integration (0 const.). This gives

u\ u<>. . 1
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The integration is to be taken along an isotherm, since p
is a known function of 9 and v determined by the charac-

teristic equation of the substance. Substituting the value

of 0i fa in the equations (98), we have the relations :

r*v\

/ pdv =
J V2

I pdv = p2(v2
-

J t-3

to which we add PI = p<> = p

. . . . (99)

With the four unknowns 9, v^ v^ v3 ,
we have four equations

which the state of equilibrium must satisfy. The constants

which occur in these equations depend obviously only on

the chemical nature of the substance, and in no way on the

given values of the mass, M, the volume, V, and the energy,

U, of the system. The equations (99) might therefore be

called the system's internal or intrinsic conditions of equili-

brium, while those of 166 represent the external conditions

imposed on the system.

169. Before discussing the values which the equations

(09) give to the unknowns, we shall investigate generally

whether, and under what condition, they lead to a maximum
value of the entropy and not to a minimum value. It is

necessary, for this purpose, to find the value of S2<P. If

this be negative i'or all virtual changes, then the state

considered is certainly one of maximum entropy.
From the expression for S<P (97) we obtain >

2
4>, which

may be greatly simplified with the help of the equations

(98). The equations of the imposed external conditions,

and the equations (96) further simplify the result, and we

obtain, finally,

,

This may be written
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To reduce all variations to those of the independent

variables, 9 and v, we may write, according to (81),

and *,

. (100)

Obviously, if the quantities (cv)i, (cv)2, (cw)3 be all posi-

tive, and the quantities Mp ... all negative, S2
<1> is

negative in all cases, and < is really a maximum, and the

corresponding state is .a state of equilibrium. Since c is

the specific heat at constant volume, and therefore always

positive, the condition of equilibrium depends on whether

is negative for all three portions of the system or not.

In the latter case there is no equilibrium. Experience

immediately shows, however, that in any state of equi-

librium -+- is negative, since the pressure, whether positive

or negative, and the volume always change in opposite
directions. A glance at the graphical representation of p,

as an isothermal function of v (Fig. 1, 26), shows that

there are certain states of the system in which 3- is posi-

tive. These, however, can never be states of equilibrium,

and are, therefore, not accessible to direct observation. If,

on the other hand, ~- be negative, it is a state of equi-

librium, yet it need not be stable; for another state of

equilibrium may be found to exist which corresponds to

a greater value of the entropy.

We shall now discuss the values of the unknowns, 0, Vi,

v2, v3, which represent solutions of the conditions of equi-

librium (98). Several such systems may be found. There-

after, we shall deal (beginning at 189) with the further
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question as to which of the different solutions in each case

represents the most stable equilibrium under the given
external conditions; i.e. which one leads to the largest

value of the entropy of the system.

170. First Solution. If we put, in the first place,

Vi = V2 = V3(= V)

all the equations (98) are satisfied, for, since the tempera-
ture is common to all three portions of the system, their

states become absolutely identical. The entire system is,

therefore, homogeneous. The state of the system is deter-

mined by the equations of 166, which give the imposed
conditions. In this case they are

Mi + M2 + M3 = M
M2 + M3)

= V
M2 + M8)

= U
V , U

From v and u, 6 may be found, since u was assumed to be

a known function of 9 and v.

This solution has always a definite meaning ; but, as we

saw in equation (100), it represents a state of equilibrium

only when ~- is negative. If this be the case, then, the

equilibrium is stable or unstable, according as under the

external conditions there exists a state of greater entropy
or not. This will be discussed later.

171. Second Solution. If, in the second case, we put

Vl < *>2, ^2 = V3,

the states 2 and 3 coincide, and the equations (98) reduce to
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or, instead of the second of these equations,

/*^l

/ pdv = P\(VI v%) . . . (102)
J v.2

In this case two states of the system coexist
;

for instance,

the vapour and the liquid. The equations (101) contain

three unknowns, 0, v\ 9
v2 ;

and hence may serve to express Vi

and v2, consequently also the pressure pi = p.2,
and the

specific energies % and u2, as definite functions of the

temperature 9. The internal state of two heterogeneous

portions of the same substance in contact with one another

is, therefore, completely determined by the temperature.
The temperature, as well as the masses of the two portions,

may be found from the imposed conditions ( 166), which

are, in this case,

M! + (M2 + M8)
= M

)

MlVl + (M2 + M8>2
= V . . (103)

MI^I + (M2 + M3)w2
= U J

These equations serve for the determination of the three

last unknowns, 0, MI, and M2 4- M3 . This completely
determines the physical state, for, in the case of the masses

M2 and M3,
it is obviously sufficient to know their sum.

Of course, the result can only bear a physical interpretation
if both MI and M2 4- M3 have positive values.

172. An examination of equation (102) shows that it

can be satisfied only if the pressure, p, which is known to

have the same value (pi
=

p%) for both limits of the integral,

assume between the limits values which are partly larger

and partly smaller than pi. Some of these, then, must

correspond to unstable states ( 169), since in certain places

p and v increase simultaneously (
~ >

j.
The equation

admits of a simple geometrical interpretation with the help
of the above-mentioned graphical representation of the

characteristic equation by isotherms (Fig. 1, 26). For

the integral I pdv is represented by the area bounded by
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the isotherm, the axis of abscissae, and the ordinates at Vi

and #2 ,
while the product PI(VI v2)

is the rectangle formed

by the same ordinates (pi
=

p%), and the length (v\ v2).
We learn, therefore, from equation (102) that in every
isotherm the pressure, under which two states of aggregation
of the substance may be kept in lasting contact, is repre-

sented by the ordinate of the straight line parallel to the

axis of abscissae, which intercepts equal areas on both sides

of the isotherm. Such a line is represented by ABC in

Fig. 1. We are thus enabled to deduce directly from the

characteristic equation for homogeneous, stable and unstable,

states the functional relation between the pressure, the

density of the saturated vapour and of the liquid in contact

with it, and the temperature.

Taking Clausius' equation (12) as an empirical expres-

sion of the facts, we have, for the specific volume v\ of the

saturated vapour, and v2 of the liquid in contact with it,

the two conditions

RB c K0_ e

fc
2
~

v - a

and, from (102),

R0

By means of these vi, v& and pi = p% may be expressed as

i'unctions of 0, or, still more conveniently, VL , v2 , pi, and as

functions of some appropriately selected independentvariable.
With Clausius' values of the constants for carbon dioxide

( 25), this calculation furnishes results which show a satis-

factory agreement with Andrews' observations. According
to Thiesen, however, Clausius' equation is by no means the

general form of the characteristic equation.

173. We shall now follow the interpretation of the

equation (101) in other directions. If we put, for shortness,

u -$<}>=/ ..... (104)

(free energy per unit mass, by equation (71)),
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the equations (101) become, simply,

Pi=p2 (105)

/8-/i = jn(*r-*) (106)

The function/ satisfies the following simple conditions.

By (79a), (J^
= - f . (107)

Also, by (104),

/d/\ = ,du\ _
\dv/0 \dlt/g

and, by (80) and (81),

The conditions of equilibrium for two states of aggrega-
tion in mutual contact hold for the three possible com-

binations of the solid and liquid, liquid and gaseous,

gaseous and solid states. In order to fix our ideas, how-

ever, we shall discuss that solution of those equations which

corresponds to the contact of a liquid with its vapour.

Denoting the vapour by the subscript 1, the liquid by 2, vi

is then the specific volume of the saturated vapour at the

temperature ; pi = pz ,
its pressure ;

v2 the specific volume

of the liquid with which it is in contact. All these

quantities, then, are functions of the temperature only,

which agrees with experience.

174. Further theorems may be arrived at by the

differentiation of the conditions of equilibrium with respect

to 0. Since all variables now depend only on 6, we shall

use
-T7)

to indicate this total differentiation, while partial
Ctu

differentiation with regard to at constant v will be

expressed, as hitherto, by
-
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Equations (105) and (106), thus differentiated, give

dpi dp.2

d0 dV

dfz dfi , .dpi (dvi dv2\
and

il -jo
= ^ - v

^do + Kar
"w

But, by (107) and (108), we have

. 2̂ /a/A /a/A . ^
dO \dO)v \dv) dO

whence, by substitution,

or, finally, by (101),

(109)

Here the left-hand side of the equation, according to

equation (17) of the first law, represents the heat of

vaporization, L, of the liquid. It is the heat which must
be added to unit mass of the liquid, in order to completely

change it to vapour under the constant pressure of its

saturated vapour. For the corresponding change of energy
is ui %, and the external work performed, here negative,
amounts to

W = -
PI(VI

- v2)

/. L = % - % 4- PI(VI
- v2),

. . (110)

whence L =
0(vi

- v2)- ...... (Ill)

This equation, deduced by Clapeyron from Carnot's theory,
but first rigorously proved by Clausius, may be used

for the determination of the heat of vaporization at

any temperature, if we know the specific volumes of the

saturated vapour and the liquid, as well as the relation

between the pressure of the saturated vapour and the
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temperature. This formula has been verified by experiment
in a large number of cases.

175. As an example, we shall calculate the heat of

vaporization of water at 100 C., i.e. under atmospheric

pressure, from the following data:

9 = 273 + 100 = 373.

Vi = 1658 (volume of 1 gr. of saturated water

vapour at 100 in c.c., according'to Wullner).
^2
= 1 (volume of 1 gr. of water at 100 in c.c.).

Jjh
is found from the experiments of Regnault. Saturated

water vapour at 100 C. gave an increase of pressure of

27-2 mm. of mercury for a rise of 1 C. In absolute units,

by 7,

dpi 27*2 -irvio^r^

i =
760

X 1013650 '

Thus, the required latent heat of vaporization is

373 x 1657 x 27-2 x 1013650-

By direct observation Regnault found the heat of vaporiza-

tion of water at 100 C. to be 536.

176. As equation (110) shows, part of the heat of

vaporization, L, corresponds to an increase of energy, and

part to external work. To find the relation between these

two it is most convenient to find the ratio of the external

work to the latent heat of vaporization, viz.

In the above case p = 760 mm., = 373,
~|

= 27*2 mm.,

and therefore,

PI(VI
-

tfr) _ 760~~ "
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This shows that the external work forms only a small

part of the value of the latent heat of vaporization.

177. Equation (111) also leads to a method of

calculating the absolute temperature 0, when the latent

heat of vaporization, L, as well as the pressure and the

density of the saturated vapour and the liquid, have been

determined by experiment in terms of any scale of

temperature t
( 160). We have

and therefore may be determined as a function of t. It

is obvious that any equation between measurable quantities,

deduced from the second law, may be utilized for a deter-

mination of the absolute temperature. The question as to

which of those methods deserves preference is to be decided

by the degree of accuracy to be obtained in the actual

measurements.

178. A simple approximation formula, which in many
cases gives good, though in some, only fair results, may be

obtained by neglecting in the equation (111) the specific

volume of the liquid, v2 ,
in comparison with that of the

vapour, Vi 9 and assuming for the vapour the characteristic

equation of a perfect gas. Then, by (14),

where R is the absolute gas constant, and m the molecular

weight of the vapour. Equation (111) then becomes

L = . . . (H2)m pi dO

For water at 100 C. we have E = 1 971
;
m = H2O = 18

;
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= 373
; pi = 760 mm.

; ^ = 27'2 mm. Hence the

latent heat of vaporization is

1-971 x 3732 x 27-2
L =

18 x 760
= 545 caL

This value is somewhat large ( 175). The cause of this

lies in the fact that the volume of saturated water vapour
at 100 is in reality smaller than that calculated from the

characteristic equation of a perfect gas of molecular weight
18. But, for this very reason, accurate measurement of the

heat of vaporization may serve as a means of estimating
from the second law the amount by which the density of a

vapour deviates from the ideal value.

Another kind of approximation formula, valid within the

same limits, is found by substituting in (109) the value of

the specific energy % = cvO -f const., which, by (39), holds

for perfect gases. We may put the specific energy of the

liquid u2
= c29 + const., if we assume its specific heat, c2, to

be constant, and neglect the external work. It then follows

from (109) that

,

no E 2
dpi

(cv - c2)S + const. H--- = -_._.. _*,
m m pi dO

If we multiply both sides by ^, this equation may be

integrated, term by term, and we finally obtain with the

help of (33)

where a and b are positive constants ;
cp and c2 the specific

heats of the vapour and the liquid, at constant pressure. This

relation between the pressure of the saturated vapour and

the temperature is the more approximately true, the further

the temperature lies below the critical temperature of the

vapour.
L
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For mercury vapaur, for example, according to a calcula-

tion by H. Hertz, if p be given in mm. of mercury,

a = 3-915 x 1010
;

I = 7695; ~fe - c2)
= - 0-847.

179. Equation (111) is applicable to the processes of

fusion and sublimation in the same manner as to that of

evaporation. In the first case L denotes the latent heat of

fusion of the substance, if the subscript 1 correspond to the

liquid state and 2 to the solid state, and p\ the melting

pressure, i.e. the pressure under which the solid and the

liquid substance may be in contact and in equilibrium. The

melting pressure, therefore, just as the pressure of evapora-

tion, depends on the temperature only. Conversely, a

change of pressure produces a change in the melting point :

(113)

For ice at C. and under atmospheric pressure, we have

L = 80 x 419 x 105

(heat of fusion of 1 gr. of ice in C.G.S.

units) ;

= 273
;

vi = 1-0 (vol. of 1 gr. of water at 0. in c.c.) ;

v2
= 1 09 (vol. of 1 gr. of ice at C. in c.c.).

7/1

To obtain -, in atmospheres we must multiply by 1,013,650 :

dO 273 x 0-09 x 1013650

^ =
80 x 419 x 10*

= - '0074 - <114>

On increasing the external pressure by 1 atmosphere, the

melting point of ice will, therefore, be lowered by 0'0074

C.
; or, to lower the melting point of ice by 1 C., the pressure

must be increased by about 130 atmospheres. This was first

verified by the measurements of W. Thomson (Lord Kelvin).

Equation (113) shows that, conversely, the melting point of

substances, which expand on melting, is raised by an increase



DIFFERENT STATES OF AGGREGATION. 147

of pressure. This has been qualitatively and quantitatively
verified by experiment.

180. By means of the equations (101) still further

important properties of substances in different states may
be shown to depend on one another. From these, along
with (110), we obtain

L _

Differentiating this with respect to 9, we have

'

d9 0* \deJv \ dv )i dO \ d'0 /, \dv /g
*

30'

or, by (81),

0/30
1 "

~TT ~~(w)/30
2

*

We now introduce cpt the specific heat at constant pressure,

for cv,
that at constant volume, and obtain by (82), on

multiplying by 0,

v

'

dS

or, since for both states, according to (6),

dP\ . (
dv

\~

at/J

Now, the expressions within the brackets are identical with

dpi __ dpz __
L

dO
=

30"~



I48 THERMOD YNAMICS.

This gives, finally,

dL L L

This equation, which is rigorously true, again leads to a

test of the second law, since all the quantities in it may be

observed independently of one another.

181. We shall again take as example saturated water

vapour at 100 C. (atmospheric pressure), and calculate

its specific heat at constant pressure. We have the following
data:

(op)2 = 1-03 (= spec, heat of liquid water at 100 C.) ;

L = 536
;

= 373 ;

-TV
= 0*708 (decrease of the heat of vaporization with

increase of temperature, according to Kegnault's

observations).

We determine v, and (37?) from the observations of
wir/p

Him, who found the volume of 1 gr. of steam, at 100 under

atmospheric pressure, to be 1650*4 c.c.; and at 118'5,
1740 c.c., whence

_ 1740 - 1650*4

Also Va = l-0;
(||)

=0*001.

These values, substituted in (115), give

(P)I
-

fe)a = -
0-56,

or, (cp)!
=

(ep)2
- 0*56 = 1-03 - 0*56 = 0*47.

By direct measurement, Kegnault found the mean specific
heat of steam under atmospheric pressure for temperatures
somewhat higher than 100 C. to be 0*48.
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182. The relation (115) may be simplified, but is in-

accurate, if we neglect the volume v2 of the liquid in com-

parison with ^ that of the vapour, and apply to the vapour
the characteristic equation of a perfect gas.

Then vl
=

and equation (115) becomes, simply,

, x
dL

(Cp)i
-

(C'ph
=

-30-

In our example,

fe)i
-

fe)2 = - 0-71

(ef)l = 1-03 - 0-71 = 0-32,

a value considerably too small.

183. We shall now apply the relation (115) to the

melting of ice at C. and under atmospheric pressure.

The subscript 1 now refers to the liquid state, and 2 to the

solid state. The relation between the latent heat of fusion

of ice and the temperature has probably never been measured.

It may, however, be calculated from (115), which gives

dL , . , >.
L L r/dvi\ /dv

in which

(cp)i
= 1 (spec, heat of water at C.) ;

(c/))2
= 0-505 (spec, heat of ice at C.) ;

L = 80; = 273; vi = 1; v2 = 1-09;

*] = _ 0-00006 (therm, coeff. of expansion of water at 0C.);O

jj\
= 0-00011 (thermal coeff. of expansion of ice at C.).
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Hence, by the above equation,

dL - 064w-
i.e., if the melting point of ice be lowered 1 C. by an

appropriate increase of the external pressure, its heat of

fusion decreases by O64 cal.

184. It has been repeatedly mentioned in the early

chapters, that, besides the specific heat at constant pressure,

or constant volume, any number of specific heats may be

defined according to the conditions under which the heating
takes place. Equation (23) of the first law holds in each

case:

du dv

In the case of saturated vapours special interest attaches

to the process of heating, which keeps them permanently in

a state of saturation. Denoting by li\ the specific heat of

the vapour corresponding to this process (Clausius called it

the specific heat of " the saturated vapour "), we have

No off-hand statement can be made with regard to the

value of hi ;
even its sign must in the mean time remain

uncertain. For, if during a rise of temperature of 1 the

vapour is to remain just saturated, it must evidently be

compressed while being heated, since the specific volume of

the saturated vapour decreases as the temperature rises.

This compression, however, generates heat, and the question
is, whether the latter is so considerable that it must be in

part withdrawn by conduction, so as not to superheat the

vapour. Two cases may, therefore, arise : (1) The heat of

compression may be considerable, and the withdrawal of

heat is necessary to maintain saturation at the higher

temperature, i.e. hi is negative. (2) The heat of compres-
sion may be too slight to prevent the compressed vapour,
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without the addition of heat, from becoming supersaturated.

Then, hi has a positive value. Between the two there is a

limiting case (hi
=

0), where the heat of compression is

exactly sufficient to maintain saturation. In this case the

curve of the saturated vapour coincides with that of

adiabatic compression. Watt assumed this to be the case

for steam.

It is now easy to calculate hi from the above formulae.

Calling h.2 the corresponding specific heat of the liquid, we

have

du<>

During heating, the liquid is kept constantly under the

pressure of its saturated vapour. Since the external

pressure, unless it amount to many atmospheres, has no

appreciable influence on the state of a liquid, the value of

h2 practically coincides with that of the specific heat at

constant pressure,

Subtracting (117) from (116), we get

But (110), differentiated with respect to 0, gives

dL d(ui
-

7/2) d(vi
- v2) . ,

m - ~w~ + lh de- + ^ -

.. .. dL , .dpi

'^-^^M-^-^-de'
or, by (118) and (111),

For saturated water vapour at 100, we have, as above,

(<ga
= 1-03; = - 0-71; L = 536; = 373;
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whence

hi = 1-03 - 0-71 -
fg-

= - 1-12.

Water vapour at 100 C. represents the first of the cases

described above, i.e. saturated water vapour at 100 is

superheated by adiabatic compression. Conversely, satu-

rated water vapour at 100 becomes supersaturated by
adiabatic expansion. The influence of the heat of compres-
sion (or expansion) is greater than the influence of the

increase (or decrease) of the density. Some other vapours
behave in the opposite way.

185. It may happen that, for a given value of 0, the

values of vi and v%, which are fully determined by the

equation (101), become equal. Then the two states which are

in contact with one another are identical. Such a value of

is called a critical temperature of the substance. From a

purely mathematical point of view, every substance must

be supposed to have a critical temperature for each of the

three combinations, solid-liquid, liquid-gas, gas-solid. This

critical temperature, however, will not always be real. The

critical temperature 9 and the critical volume v\ = v2 , fully

determine the critical state. We may calculate it from the

equations (101) by finding the condition that Vi v% should

vanish. If we first assume Vi v2 to be very small, Taylor's
theorem then gives for any volume v, lying between vi

and v2

-^)2 ... (119)

and therefore the first equation (101) becomes

and equation (102), by the integration of (119) with respect
to v, gives
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The last two equations give, as the conditions of the critical

state,

'dp\

,- , and(^) =0.
2

These conditions agree with those found in 30. They are

there geometrically illustrated by the curve of the critical

isotherm. In the critical state the compressibility is infinite ;

so are also the thermal coefficient of expansion and the

specific heat at constant pressure ;
the heat of vaporization

is zero.

For all temperatures other than the critical one, the

values of Vi and v2 are different. On one side of the critical

isotherm they have real, on the other imaginary values.

.In this latter case our solution of the problem of equilibrium
no longer admits of a physical interpretation. Several

reasons may be given for assuming that not only for

evaporation but also for fusion in the case of many sub-

stances there exists a real critical temperature at which the

solid and liquid states are identical
(

31 and 191).

186. Third Solution. In the third place, we shall

assume that in the conditions of equilibrium (98)

We have then, without further simplification,

Pi = p* = p3

*i
-

*a
= ~ 1

. . (120)

02 ^3
= -

ft

These refer to a state in which the three states of aggrega-
tion are simultaneously present. There are four equations,

and these assign definite values to the four unknowns 9, Vi,

VK v3. The coexistence of the three states of aggregation in

equilibrium is, therefore, possible only at a definite tempe-

rature, and with definite densities; therefore, also, at a
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definite pressure. We shall call this temperature the

fundamental temperature, and the corresponding pressure

the fundamental pressure of the substance. According to

equations (120), the fundamental temperature is character-

ized by the condition that at it the pressure of the saturated

vapour is equal to the pressure of fusion. It necessarily

follows, l>y addition of the last two equations, that this

pressure is also equal to the pressure of sublimation.

After the fundamental temperature and pressure have

been found, the external conditions of 166

M! + M2 + M3
= M

)

+ M2<;2 + M3^3 = V . . . (121)

+ M2W2 + M3% = U )

uniquely determine the masses of the three portions of

the substance. The solution, however, can be interpreted

physically only if MI, M2 ,
and M3 are positive.

187. Let us determine, e.g., the fundamental state of

water. C. is not its fundamental temperature, for at C.

the maximum vapour pressure of water is 4 -62 mm., but the

melting pressure of ice is 760 mm. Now, the latter decreases

with rise of temperature, while the maximum vapour pres-

sure increases. A coincidence of the two is, therefore, to

be expected at a temperature somewhat higher than C.

According to equation (114), the melting point of ice rises

by 0'0074 C. approximately, when the pressure is lowered

from 760 mm. to 4-62 mm. The fundamental temperature
of water is, then, approximately, 0*0074 C. At this

temperature the maximum vapour pressure of water nearly
coincides with the melting pressure of ice, and, therefore,

also with the maximum vapour pressure of ice. The

specific volumes of water in the three states are, therefore,

vi = 205,000 ;
v2
= I

;
v3 = 1-09.

For all temperatures other than the fundamental tem-

perature, the pressure of vaporization, of fusion, and of

sublimation differ from one another.
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188. We return once more to the intrinsic conditions

of equilibrium (101) which hold for each of the three

combinations of two states of aggregation. The pressure

pi, and the specific volumes of the two portions of the

substance, in each case depend only on the temperature,
and are determined by (101). It is necessary, however, to

distinguish whether the saturated vapour is in contact

with the liquid or the solid, since in these two cases the

functions which express the pressure and specific volume

in terms of the temperature are quite different. The state

of the saturated vapour is determined only when there is

given, besides the temperature, the state of aggregation
with which it is in contact, whether it is in contact with the

liquid or solid. The same applies to the other two states of

aggregation. If we henceforth use the suffixes 1, 2, 3, in

this order, to refer to the gaseous, liquid, and solid states,

we shall be obliged to use two of them when we refer to a

portion of the substance in a state of saturation. The first

of these will refer to the state of the portion considered,

the second to that of the portion with which it is in con-

tact. Both the symbols vJ2 and vi3 thus denote the specific

volume of the saturated vapour, t>i2 ,
in contact with the

liquid, and #13 in contact with the solid. Similarly v<% and

^2i> %i and v32> represent the specific volumes of the liquid,

and of the solid in a state of saturation. Each of these

six quantities is a definite function of the temperature
alone. The corresponding pressures are

Of vaporization. Of fusion. Of sublimation.

P\Z = P2\ P23 = P32 Psi = Pl3

These are also functions of the temperature alone. Only
at the fundamental temperature do two of these pressures
become equal, and therefore equal to the third. If we

represent the relation between these three pressures and the

temperature by three curves, the temperatures as abscissae

and the pressures as ordinates, these curves will meet in one

point, the fundamental pointy also called the triple point.



156 THERMODYNAMICS.

The inclination of the curves to the abscissa is given by
the differential coefficients

We have, therefore, according to equations (111),

where v refers to the fundamental state, and, therefore,

requires only one suffix. We can thus find the direction of

each curve at the fundamental point if we know the heat

of vaporization, of fusion, and of sublimation.

Let us compare, for example, the curve of vaporization,

jpi2,
of water, with its curve of sublimation, pi3, near the

fundamental point, 0*0074 C. We have, in absolute units,

Li2 = 604 x 419 X 105
(heat of vaporization of water at

0-0074 C.) ;

L13
= - LSI = (80 + 604) x 419 x 105

(heat of sublima-

tion of ice at 0'0074 C.) ;

V! = 205000
;
v2 = 1

;
v3 = 1-09

( 187) ;
9 = 273.

Hence

dpw _ 604 x 419 x 1Q5 x 760

dO
~~

273 x 205000 x 1013650
~

dpn _ 684 x 419 x 105 X 760

dO
'~

273 x 205000 x 1013650
~

in millimeters of mercury. The curve of the sublimation

pressure p^9 is steeper at the fundamental point than the

curve of the vaporization pressure piz. For temperatures
above the fundamental one, therefore, p^ > pi2 ;

for those

below it, pu > pl3. Their difference is

dpu _ dp* _ _
dO dff~~ ~3S~ 45
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If, therefore, the maximum vapour pressure of water be

measured above the fundamental point, and of ice below it,

the curve of pressure will show an abrupt bend at the funda-

mental point. This change of direction is measured by the

discontinuity of the differential coefficient. At - 1 C.,

(cW = 1), we have, approximately,

PIS
-

2>i2
= - 0-045 ;

i.e. at 1 C. the maximum vapour pressure of ice is

0*045 mm. less than that of water. This has been verified

by experiment. The existence of a sharp bend in the curve,

however, can only be inferred from theory.

189. We have hitherto extended our investigation only
to the different admissible solutions of the equations which

express the intrinsic conditions of equilibrium, and have

deduced from them the properties of the states of equilibrium
to which they lead. We shall now consider the relative merit

of these solutions, i.e. which of them represents the state of

greatest stability. For this purpose we resume our original
statement of the problem ( 165), which is briefly as follows :

Given the total mass M, the total volume V, and the total

energy U, it is required to find the state of most stable equi-

librium, i.e. the state in which the total entropy of the system
is an absolute maximum. Instead of V and U, however, it is

y
often more convenient to introduce v=

^,
the mean specific

volume of the system, and u =
^,

the mean specific energy

of the system.
We have found that the conditions of equilibrium admit,

in general, of three kinds of solution, according as the

system is split into 1, 2, or 3 states of aggregation. When
we come to consider which of these three solutions deserves

the preference in a given case, we must remember that the

second and third can be interpreted physically only if the

values of the masses, as given by the equations (103) and
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(121), are positive. This restricts the region of validity of

these two solutions. We shall first establish this region of

validity, and then prove that within its region the third

solution is always preferable to the other two, and, similarly,

the second is preferable to the first.

A geometrical representation may facilitate a general

survey of the problem. We shall take the mean specific

V U
volume, v =

jfi,
and the mean specific energy, u =

,|,
of the

system as the rectangular co-ordinate axes. The value

of M is here immaterial. Each point of this plane will,

Critical point

Critical point

Axis of mean specific volume : v =
M_

FIG. 4.

then, represent definite values of u and v. Our problem
is, therefore, to find the kind of stable equilibrium which
will correspond to any given point in this plane.

190. Let us consider the region of validity of the third
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solution. The values of the masses given by the equations

(121) are

M 1 :M2 :M3 :M=
111

V3V

U U.2 U3

111 Ill
V Vi V-2

U Ui U.2

111
Vi V.2 V3

Ui U.2 U3

where Vi, v2,'
v3, u\, w2,

u3, refer, as hereafter, to the special

values which these quantities assume in the fundamental

state.

It is obvious from this that the values of MI, M2 ,
M3 can

be simultaneously positive only when the point (v, u) lies

within the triangle formed by the points (vi, Ui) (v2 ,
w2)

and

0>3 U
B)>

The area of this triangle then represents the

region of validity of the third solution, and may be called

the fundamental triangle of the substance. In Fig. 4 this

triangle is represented by (123). The diagram is based on

a substance for which, as for water,

Vi > ^3 > v2 and u\ > u2 > u3 .

191. We shall now consider the region of validity of

the second solution contained in equations (101) and (103).

These equations furnish three sets of values for the three

possible combinations, and no preference can be given to

any one of these. If we consider first the combination of

liquid and vapour, the equations referred to become, under

our present notation,

1/1
==

%2 ~~
^21 H~ #12(^12

V>12
~

921
= ~"

7)
t/12

Mia + Mai = M
= V =
= U =

(122)

. (123)

In order to determine the area within which the point (v9 u)

must lie so that Mi2 and M2i may both be positive, we

shall find the limits of that area, i.e. the curves represented
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by the conditions Mi2
= 0, and M2i = 0. The introduction

of the latter (no liquid mass) gives Mi2
= M and

u

Since Vi2 and %2 are functions of a single variable, the

conditions (124) restrict the point (v, u) to a curve, one of

the limits of the region of validity. The curve passes

through the vertex 1 of the fundamental triangle, because,

at the fundamental temperature, v12
= vlt and ui2

= UL . To
follow the path of the curve it is necessary to find the

differential coefficient -y-A We, have

i2 _ /'u\ /u\~
?/ \dO)

The partial differential coefficients here refer to the

independent variables 8 and v. It follows from (80) and

(24) that

By means of this equation the path of the curve (124)

may be experimentally plotted by taking 0i2, or vi2) or some

other appropriate quantity as independent parameter.

Similarly, the conditionMi2 = (no vapour) gives another

bou^iary of the region of validity, viz. the curve,

V = V2i, U = 21,

which passes through the vertex 2 of the fundamental

triangle, and satisfies the differential equation

du21 /dp

since 2i = 6/12 and p^i = pi%.

The two limiting curves, however, are merely branches

of one curve, since they pass into one another af the critical

point (flu
= vzi) without -forming an angle or cusp at that
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point, as a further discussion of the values of -, and

,^will show. We may, therefore, include the two branches

under the name of the vaporization curve. Every point

(#i2> ^12) of one branch has a corresponding point (v2i, f%) on

the other, since these two represent the same temperature
12 = 21, and the same pressure pi2 = p^i> This co-ordina-

tion of points on the two branches is given by the equations

(122), and has been indicated on our diagram (Fig. 4) by

drawing some dotted lines joining corresponding points.

In this sense the vertices 1 and 2 of the fundamental

triangle are corresponding points, and the critical point is

self-corresponding.
This vaporization curve bounds the region of validity

of that part of the second solution which refers to liquid in

contact with its vapour. Equation (123) makes it obvious

that the region of validity lies within the concave side of

the curve. The curve has not been produced beyond the

vertices 1 and 2 of the fundamental triangle, because we

shall see later, that the side 12 of that triangle bounds the

area within which this solution gives stable equilibrium.
There may be found, quite analogous to the vaporization

curve, also a fusion curve the two branches of which are

represented by

and v = i>32, u = %2,
*

and a sublimation curve represented by

and v = #13, u = %3.

The former passes through the vertices 2 and 3, the latter

through 3 and 1, of the fundamental triangle. The region
of validity of the three parts of the second solution have been

marked (12), (23), and (31), respectively, in Fig. 4. The
relations w%ich have been specially deduced for the area

(12) apply to (23) and (31) as well^pnly with a corresponding
M
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interchange of the suffixes. Some pairs of corresponding

points have again been joined by dotted lines. On the

fusion curve a critical point has been marked, on the

assumption that, with falling temperature, the latent heat of

ice decreases by 0'64 calorie per degree Centigrade ( 183).

If, as a rough approximation, we assume this same ratio to

hold for much lower temperatures, the latent heat of fusion

would be zero at about 120 C., and this would be the

critical point of the fusion curve. The pressure here would

be about 17,000 atmospheres, and water and ice would

become identical. We might imagine this to be the result

of a considerable increase in the viscosity of water and in

the plasticity of ice, as they both approach this state.

192. Having thus fixed the region of validity for the

second solution, we find that for all points (v> u) outside this

region only the first solution admits of physical interpretation.

It follows that for such points the first solution represents
the stable equilibrium. The areas where such is the case

have been marked (1), (2), and (3) in our figure, to signify

the gaseous, liquid, and solid states respectively.

193. We have now to consider the,following question:
Which of the different states of equilibrium, that may
correspond to given values M, v, u (or to a given point of

the figure), gives to the system the greatest value of the

entropy ? Since each of the three solutions discussed leads

to a definite state of the system, we have Tor each given

system (M, v, u) as many values of the entropy as there are

solutions applying to it. Denoting these by <1>, <E>', and <t", we

get for the first solution

<P = Mtf> (125)

for the second

(126)

for tl

(127)

(or a cyclic interchange of the suffixes 1, 2, 3); for the

third
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All these quantities are fully determined by the given
values of M, v, and u. Now, we can show that for any system

(M, v, u) we have <I>" ><'><!>, or
<$>"

> <' > <, provided all

the partial masses are positive. It is more convenient to

deal with the mean specific entropies than with the en-

tropies themselves, because the former, being functions of v

and u alone, are quite independent of M.
As a geometrical representation, we may imagine, on the

plane of our figure (Fig. 4), perpendiculars erected at each

point (v, u), proportional in length to the values of <, <',

and 0" respectively, at that point. The upper ends of these

perpendiculars will generate the three surfaces of entropy,

<, ^>',
and 0".

194. We shall show that 0'
< is always positive, i.e.

that the surface of entropy, <//,
lies everywhere above

the surface 0.

While the value of < may be taken directly from (61),

which contains the definition of the entropy for homogeneous
substances, 0' may be found from (126), (122), and (123), in

terms of v and u. The surface
<f>'

forms three sheets corre-

sponding to the three combinations of two states of aggre-

gation. We shall in the following refer to the combination

of vapour and liquid.

With regard to the relative position of the surfaces and

0',
it is obvious that they have one curve in common, the

projection of which is the vaporization curve. At any

point on the vaporization curve we have v = v\^ u = u\^ and

for the first entropy surface, =
$12 ;

for the second we have,

from (123),

M21
= 0, M12 = M (128)

and, from (126),
<' = 12 .

In fact, for all points of the vaporization curve, both

solutions coincide. The curve of intersection of the

surfaces and
<j>'

is represented by

V = Vi, U = ^12, =
12
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where vt u, and are the three rectangular co-ordinates of a

point in space. v12 ,
ui2 , fa2 depend on a single variable

parameter, for example, the temperature, i2
=

2i- This

curve passes through the point (vit %, fa), which has the

vertex 1 for its projection. A second branch of the same

curve is given by the equations

V = V2i, U = U2i, $ = 021,

and these branches meet in a point whose projection is the

critical point. Each point of one branch has a corresponding

point on the other, since both correspond to the same

temperature, 9i2 = 02i> and the same pressure, pi2 = p2i .

Thus, (vi, ui, fa) and (va ,
u2, fa) are corresponding points.

It is further obvious that the surface
</>'

is a ruled surface

and is developable. The first may be shown by considering

any point with the co-ordinates

_ . _~

where X and
fj,

are arbitrary positive quantities. By giving
X and

IUL
all positive values, we obtain all points of the

straight line joining the corresponding points (0i2, UM, 0i2)

anrd (v2b w2i, ^21). But this line lies on the surface
0',

since all the above values of (v, u, <j>) satisfy the equations

(123) and (126) if we put M12 = X and M2i
=

/*.
The sur-

face 0', then, is formed of the lines joining the corresponding

points on the curve in which the surfaces 0' and meet.

One of these is the line joining the points (vi, Ui, fa) and

(vfy u2, ^2)* the projection of which is the side 12 of the

fundamental triangle. At the critical point, the line shrinks

to a point, and here the surface 0' ends. The other two

sheets of the surface are quite similar. One begins at the

line joining (v& u2, ^2) and (v3) u& 3), the other at the line

joining (v3, %, 8) and (vi, ul9 fa).

The developability of the surface $' may best be inferred

from the following equation of a plane :

0,
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where v, u, are variable co-ordinates, while piz, 0i2 ,

%2, 0i2, 0i2, depend, by (122), on one parameter, e.g. i2 .

This plane contains the point (0i2, u^ 0i2),
and by the

equations (122) the point (02i, ^21, 02i), which are cor-

responding points, and hence also the line joining them.

But it also, by (61), contains the neighbouring corresponding

points

(^12 4~ ^'012, ^12 4" dllizt 012 4" ^012/

and

(021 4- dv2i, Uzi + dllzi, 021 + ^02i)

hence also the line joining them. Therefore, two consecutive

generating lines are coplanar, which is the condition of

developability of a surface.

In order to determine the value of 0' 0, we shall

find the change which this difference undergoes on passing
from a point (v, u) to a neighbouring one (v + 80, u + $u).

During this passage we shall keep M = Mi2 -f M2i constant.

This does not affect the generality of the result, since

and 0' are functions of v and u only. From (126) we have

and, by (61),

ej
. St* + p$V

g0= -f-

But, by (123),

gMi2 + SMi =

(129)

Whence, by (122),

/ cU -

^ r ^^

0i

/ 1

and

, '
O/^ 4~ ^12 o/y /I OA\w =

fl (
L^
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If we now examine the surfaces < and $' in the neigh-
bourhood of their curve of contact, it is evident from the

last equation that they touch one another along the whole

of this curve. For, at any point of the vaporization curve,

we have v = viz and u = u^\ therefore also

6 = 12 ,
and p = piz .... (132)

and hence, for the entire curve, &(<' 0) = 0.

To find the kind of contact between the two surfaces, we
form S2(<' cj))

from (131), and apply it to the same points
of the curve of contact. In general,

-

According to (132) we have, at the points of contact of

the surfaces,

or, by (61),

All these variations may be expressed in terms of $0 and

Sv, by putting

We have now to express g012 in terms of SO and

Equations (129), here simplified by (128), give
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In these we put

. (134)

and obtain

If we consider that, by (109),

that, by (80),
-

J|
-

and that = + .

12
also that = +

...
we obtain

Equation (133), with all variations expressed in terms of

and Sv, finally becomes

^ - P -u-- - '

This ^expression is essentially positive, since ev is positive
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on account of its physical meaning, and
-j-

is negative for

any state of equilibrium ( 169). There is a limiting case,

dv,^
when

for, then, g20' -
f) = 0.

In this case the variation (SO, v) obviously takes place

along the curve of contact (0i2 ,
vi2) of the surfaces. Here

we know that 0'
=

<j>.

It follows that the surface 0',
in the vicinity of all points

of contact with 0, rises above the latter throughout, or that

<f>' $ is everywhere >0. This proves that the second

solution of the conditions of equilibrium, within its region
of validity, i.e. in the areas (12), (23), and (31), always re-

presents the stable equilibrium.

195. Similarly, it may be shown that the third solution,

within its region of validity, is preferable to the second

one. The quantities v and u being given, the value of the

mean specific entropy, 0", corresponding to this solution is

uniquely determined by the equations (127) and (121). The

quantities vit v2 ,
v3, Ui, u2 ,

u3 , and therefore also fa, fa, fa,

have definite numerical values, given by equations (120).

In the first place, it is obvious that the surface 0" is

the plane triangle formed by the points (vi, %, ^i), (v2,
u2 ,

fa), and (v3,
u3, fa), the projection of which on the plane of

the figure is the fundamental triangle, since any point with

the co-ordinates

_

_ ~

+ fji + v

+ fJifa + v

(X, ft, v may have any positive values) satisfies the equations

(121) and (127). To show this, we need only put Mj = X,
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M2
=

ju,
M3 = v. This plane meets the three sheets of the

developable surface
(ft'

in the three lines joining the points

Oi, MI, 0i), (v2 , UK, 2), (va, %, < 3).
In fact, by making

v = 0, i.e., by (121), M3 = 0, the third solution coincides

with the second ; for, then,

MI = Mi2 ;
M2 = M2i ;

v = v12 ; % = u

v2
= v2l ; Oi = 0i2 ;

etc.

If we also put /UL
= 0, then we have M2

= 0, Vi = v,

m = u, which means the coincidence of all three surfaces,

0", 0', and 0.

In order to find the sign of 0" 0', we again find

8(0" (f)')
in terms of $u and Sv. Equation (127) gives

. (138)

where, by (121),

Multiplying the last of these by TT-, the second by 4^, and
"i fi

adding to (138), we obtain, with the help of (120),

This, in combination with (130), gives

> (139)

if the surface $ is represented by the sheet (12). This

equation shows that the surface 0" is a tangent to the

sheet (12) along the line joining (vi9 Ui, <i) and
(<v2, u%, 2),

for all points of this line have 0i = i2, pi = p12 , so that

^(^" 0') vanishes. Thus, we find that the plane 0" is a

tangent plane to the three sheets of the surface
0'. The

curves of contact are the three straight lines which form
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the sides of the plane triangle 0". We have, from (139),

for any point of contact

since #1 and ^?i
are absolute constants ; or

12 . (140)

Now, by the elimination of <Mi2 and 8M2i, it follows, from

(129), that

or, by (135) and (134),

Substituting this expression in (140), and replacing

and jj^ by their values (136), we obtain
ftl/

This quantity is essentially positive, since Mi2, M2i, as well

as cw are always positive, and -

always negative for states

of equilibrium. There is a limiting case, when 12 = 0,

i.e. for a variation along the line of contact of the surfaces

</>"
and 0', as is obvious. It follows that the plane area 0"

rises everywhere above the surface
;

, and that 0"
-

0' is

never negative. This proves that the third solution within
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its region of validity (the fundamental triangle of the sub-

stance) represents stable equilibrium.

196. We are now in a position to answer generally the

question proposed in 165 regarding the stability of the

equilibrium.

The total mass M, the volume V, and the energy U of

a system being given, its corresponding state of stable

equilibrium is determined by the position of the point
V U

V ~~ W u =
TVP

^n ^e P^ane f ~^'18- 4

If this point lie within one of the regions (1), (2), or (3),
the system behaves as a homogeneous gas, liquid, or solid.

If it lie within (12), (23), or (31), the system splits into two

different states of aggregation, indicated by the numbers
used in the notation of the region. In this case, the common

temperature and the ratio of the two heterogeneous por-
tions are completely determined. According to the equation

(123), the point (v, u) lies on the straight line joining two

corresponding points of the limiting curve. If a straight

line be drawn through the given point (v, u), cutting the

two branches of that curve in corresponding points, these

points give the properties of the two states of aggregation
into which the system splits. They have, of course, the

same temperature and pressure. The proportion of the

two masses, according to the equation (123), is given by
the ratio in which the point (v, u) divides the line joining
the corresponding points.

If, finally, the point (v, u) lie within the region of the

fundamental triangle (123), stable equilibrium is charac-

terized by a division of the system into a solid, a liquid,

and a gaseous portion at the fundamental temperature and

pressure. The masses of these three portions may then be

determined by the equations (121a). It will be seen that

their ratio is that of the three triangles, which the point

(v, u) makes with the three sides of the fundamental

triangle.

The conditions of stable equilibrium of any substance
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can thus be found, provided its fundamental triangle, its

vaporization, fusion, and sublimation curves have been

drawn once for all. To obtain a better view of the different

relations, isothermal and isopiestic curves may be added to

the figure. These curves coincide in the regions (12), (23),

(31), and form the straight lines joining corresponding

points on the limiting curves. On the other hand, the area

(123) represents one singular isothermal and isopiestic (the

triple point). In this way we may find that ice cannot

exist in stable equilibrium at a higher temperature than the

fundamental temperature (O0074 C.), no matter how the

pressure may be reduced. Liquid water, on the other hand,

may, under suitable pressure, be brought to any temperature
without freezing or evaporating.

A question which may also be answered directly is the

following. Through what stages will a body pass if subjected
to a series of definite external changes ? For instance,

the behaviour of a body of mass M, when cooled or heated

at constant volume V, may be known by observing the line

y
v ~

iv/p
parallel to the axis of ordinates. The regions which

this line traverses show the states through which the body

passes, e.g. whether the substance melts during the process,
or whether it sublimes, etc.



CHAPTER III.

- SYSTEM OF ANY NUMBER OF INDEPENDENT
CONSTITUENTS.

197. WE proceed to investigate quite generally the equili-

brium of a system made up of distinct portions in contact

with one another. The system, contrary to that treated of in

the preceding chapter, may consist of any number of inde-

pendent constituents. Following Gibbs, we shall call each

one of these portions, inasmuch as it may be considered

physically homogeneous ( 67), a phase. Thus, a quantity
of water partly gaseous, partly liquid, and partly solid,

forms a system of three phases. The number of phases as

well as the states of aggregation is quite arbitrary, although
we at once recognize the fact that a system in equilibrium

may consist of any number of solid and liquid phases, but

only one single gaseous phase, for two different gases in

contact are never in equilibrium with one another.

198. A system is characterized by the number of its

independent constituents* in addition to the number of its

phases. The main properties of the state of equilibrium

depend upon these. We define the number of independent
constituents as follows. First find the number of elements

contained in the system, and from these discard, as depen-
dent constituents, all those whose quantity is determined in

each phase by the remaining ones. The number of the

remaining elements will be the number of independent
constituents of the system. It is immaterial which of the

*
Frequently termed components.
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constituents we regard as independent and which as depen-

dent, since we are here concerned with the number, and not

with the kind, of the independent constituents. The ques-

tion as to the number of the independent constituents has

nothing at all to do with the chemical constitution of the

substances in the different phases, in particular, with the

number of different kinds of molecules.

Thus, a quantity of water in any number of states forms

but one independent constituent, however many associations

and dissociations of H2 molecules may occur (it may be

a mixture of hydrogen and oxygen or ions), for the mass of

the oxygen in each phase is completely determined by that

of the hydrogen, and vice versa. Should, however, an excess

of oxygen or hydrogen be present in the vapour, we have

then two independent constituents.

An aqueous solution of sulphuric acid forms a system of

three chemical elements, S, H, and 0, but contains only two

independent constituents, for, in each phase (e.g. liquid,

vapour, solid) the mass of depends on that of S and H,
while the masses of S and H are not in each phase inter-

dependent. Whether the molecule H^SO* dissociates in

any way, or whether hydrates are formed or not, does not

change the number of independent constituents of the

system.

199. We denote the number of independent constituents

of a system by a. By our definition of this number we see,

at once, that each phase of a given system in equilibrium is

determined by the masses of each one of its a constituents,

the temperature 9, and the pressure p. For the sake of

uniformity, we assume that each of the a independent con-

stituents actually occurs in each phase of the system in a

certain quantity, which, in special cases, may become

infinitely small. The selection of the temperature and the

pressure as independent variables, produces a change in the

form of the equations of the last chapter, where the tem-

perature and the specific volume were considered as the

independent variables. The substitution of the pressure
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for the volume is more convenient here, because the pressure
is the same for all phases in free contact, and it can in most

cases be more readily measured.

200. We shall now consider the thermodynamical

equilibrium of a system, in which the total masses of the

a independent constituents MI, M2,
. . . Ma are given. Of

the different forms of the condition of equilibrium it is best

to use that expressed by equation (79)

(141)

which holds, if and p femaia constant, for any change

compatible with the given conditions. The function is

given in terms of the entropy <, the energy U, and the

volume V, by the equation

201. Now, let /3 be the number of phases in the system,

then <P, U, and V, and therefore also % are sums of ft

terms, each of which refers to a single phase, i.e. to a

physically homogeneous body :

= '+
" + ...+* (I42)

where the different phases are distinguished from one another

by dashes. For the first phase,

*.*-* . . . (H3)

4>', U', V and
'

are completely determined by 9, p, and

the masses Mb M2,
. . . Ma of the independent constituents

in the phases. As to how they depend on the masses, all

we can at present say is, that, if all the masses were increased

in the same proportion (say doubled), each of these functions

would be increased in the same proportion. Since the

nature of the phase remains unchanged, the entropy, the

energy, and the volume change in the same proportion as
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the mass
; hence, also, the function '. In other words, V

is a homogeneous function of the masses MI', M2 ',
. . . Mo

'

of the first degree, but not necessarily linear.

To express this analytically, let us increase all the masses

in the same ratio 1 4- e : 1, where e is very small. All

changes are then small
;
and for the corresponding change

of
'

we obtain

But, by supposition,

and, therefore,

dvlr'

\
*' =S*1 +

Various forms may be given to this Eulerian equation
frp

by further differentiation. The differential coefficients -^
d^i*

'

ATtin evidently depend on the constitution of the phase,
C/lVl2

and not on its total mass, since a change of mass changes
both numerator and denominator in the same proportion.

202. By (142), the condition of equilibrium becomes

S*' 4-W -h . . . S*? = . . . (145)

or, since the temperature and pressure remain constant,
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If the variation of the masses were quite arbitrary, then the

equation could only be satisfied, if all the coefficients of the

variations were equal to 0. According to 200, however,

the following conditions exist between them,

MX = MY + M/' + . . . + M
M2

= M2
' + M2

" + . . . + M
(147)

Ma = Ma
' + Ma

" + . . . + M/

and, therefore, for any possible change of the system,

= SM/ 4-W + . . . + 8M/
1

= SM2

' + SM2
" + . . . + SM/

= SMa
' + SM

tt

" + . . + 8M/

(148)

For the expression (146) to vanish, the necessary and suffi-

cient condition is

. . (149)

There are for each independent constituent (/3 1) equa-

tions, which must be satisfied, and therefore for all the

a independent constituents a(|3 1) conditions. Each of

these equations refers to the transition from one phase into

another, and asserts that this particular transition does not

take place in nature. This condition depends, as it must,
on the internal constitution of the phase, and not on its

total mass. Since the equations in a single row with regard
to a particular constituent may be arranged in any order,

it follows that, if a phase be in equilibrium as regards a

N
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given constituent with two others, these two other phases
are in equilibrium with one another with regard to that

constituent (they coexist). This shows that, since any

system in equilibrium can have only one gaseous phase, two

coexisting phases must emit the same vapour. For, since

each phase is in equilibrium with the other, and also with

its own vapour with respect to all constituents, it must also

coexist with the vapour of the second phase. The coexist-

ence of solid and liquid phases may, therefore, be settled

by comparing their vapours.

203. It is now easy to see how the state of equi-
librium of the system is determined, in general, by the given
external conditions (147), and the conditions of equilibrium

(149). There are a of the former and a(/3
-

1) of the latter,

a total of a]3 equations. On the other hand, the state of

the /3 phases depends on (o]3 + 2) variables, viz. on the aj3

masses, MI', . . . M/, the temperature 0, and the pressure p.

After all conditions have been satisfied, two variables still

remain undetermined. In general, the temperature and the

pressure may be arbitrarily chosen, but in special cases, as

will be showr\ presently, these are no longer arbitrary, and
in such cases two other variables, as the total energy and

the total volume of the system, are undetermined. By
disposing of the values of the arbitrary variables we com-

pletely determine the state of the equilibrium.

204. The a/B 4- 2 variables, which control the state of

the system, may be separated into those which merely

govern the composition of the phases (internal variables),

and those which determine only the total masses of the

phases (external variables). The number of the former is

(a l)/3 -f 2, for in each of the j3 phases there are a 1

ratios between its a independent constituents, to which must
be added temperature and pressure. The number of the

external variables is
j3,

viz. the total masses of all the

phases.

We found that the a(/3
-

1) equations (149) contain
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only internal variables, and, therefore, after these have been

satisfied, there remain

[(
-

1)3 + 2]
-

[(/3
-

1)]
= -

ft + 2

of the internal variables, undetermined. This number
cannot be negative, for otherwise the number of the

internal variables of the system would not be sufficient for

the solution of the equations (149). It, therefore, follows

that

/3
<

The number of the phases, therefore, cannot exceed the

number of the independent constituents by more than two ;

or, a system of a independent constituents will contain at

most (a + 2) phases. In the limiting case, where ]3
= a 4- 2,

the number of the internal variables are just sufficient to

satisfy the internal conditions of equilibrium (149). Their

values in the state of equilibrium are completely deter-

mined quite independently of the given external conditions.

Decreasing the number of phases by one increases the

number of the indeterminate internal variables by one.

This proposition, first propounded by Gibbs and univer-

sally known as the phase rule, has been amply verified,

especially by the experiments of Bakhuis Koozeboom.

205. We shall consider, first, the limiting case :

j3
= a + 2.

(Non-variant systems.) Since all the internal variables are

completely determined, they form an (n + 2)-ple point.

Change of the external conditions, as heating, compression,

further additions of the substances, alter the total masses of

the phases, but not their internal nature, including tempera-
ture and pressure. This holds until the mass of some one

phase becomes zero, and therewith completely vanishes from

the system.
If a 1, then |3

= 3. A single constituent may split
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into three phases at most, forming a triple point. An

example of this is a substance existing in the three states

of aggregation, all in contact with one another. For water

it was shown in 187, that at the triple point the tempera-
ture is O0074 C., and the pressure 4'62 mm. of mercury.
The three phases need not, however, be different states of

aggregation. Sulphur, for instance, forms several modifica-

tions in the solid state. Each modification constitutes a

separate phase, and the proposition holds that two modifica-

tions of a substance can coexist with a third phase of the

same substance, for example, its vapour, only at a definite

temperature and pressure.
A quadruple point is obtained when a = 2. Thus, the

two independent constituents, S02 (sulphur dioxide) and

H2O, form the four coexisting phases : S02,7H2 (solid), S02

dissolved in H2 (liquid), S02 (liquid), S02 (gaseous), at a

temperature of 12*1 C. and a pressure of 1770 mm. of mer-

cury. The question as to the formation of hydrates by S02

in aqueous solution does not influence the application of the

phase rule (see 198).
Three independent constituents (a

= 3) lead to a quin-

tflple point. Thus NaaSO* MgS04, and H2 give the double

salt Na2Mg(S04)2
4H2 (astrakanite), the crystals of the

two simple salts, aqueous solution, and water vapour, at a

temperature of 22 C. and a pressure of 19'6 mm. of mercury.

206. We shall now take the case

j3
= a + 1,

that is, a independent constituents form a + 1 phases

(Univariant systems). The composition of all the phases is

then completely determined by a single variable, e.g. the

temperature or the pressure. This case is generally called

perfect heterogeneous equilibrium.
If a = 1, then

)3
= 2 : one independent constituent in

two phases, e.g. a liquid and its vapour. The pressure and
the density of the liquid and the vapour depend on the

temperature alone, as was pointed out in the last chapter.
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Evaporation involving chemical decomposition also belongs
to this class, since the system contains only one independent
constituent. The evaporation of solid NH 4C1. is a case in

point. Unless there be present an excess of hydrochloric
acid or ammonia gas, there will be for each temperature a

quite definite dissociation pressure.

If a = 2, then ft
= 3, for instance when the solution of a

salt is in contact with its vapour and with the solid salt, or

when two liquids that cannot be mixed in all proportions

(ether and water) are in contact with their common vapour.

Vapour pressure, density and concentration in each phase,
are here functions of the temperature alone.

207. We often take the pressure instead of the tem-

perature as the variable which controls the phases in

perfect heterogeneous equilibrium ; namely, in systems
which do not possess a gaseous phase, so-called condensed

systems. Upon these the influence of the pressure is so

slight that, under ordinary circumstances, it may be con-

sidered as given, and equal to that of the atmosphere. The

phase rule, therefore, gives rise to the following proposition :

A condensed system of a independent constituents forms a + 1

phases at most, and is then completely determined, temperature
included. The melting point of a substance, and the point

of transition from one allotropic modification to another, are

examples of a = 1, /3
= 2. The point at which the cryohy-

drate (ice and solid salt) separates out from the solution of

a salt, and also the point at which two liquid layers in

contact begin to precipitate a solid (e.g.
AsBr3, and H20)

are examples of a = 2, /3
= 3. We have an example of

a = 3, )3
= 4 when two salts, capable of forming a double

salt, are in contact with the solid simple salts, and also with

the double salt.

208. If

ft =!a,

then a independent constituents form a phases (Divariant

systems). The internal nature of all the phases depends
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on two variables, e.g. on temperature and pressure. Any
homogeneous substance furnishes an example of a = 1. A
liquid solution of a salt in contact with its vapour is an

example of a = 2. The temperature and the pressure deter-

mine the concentration in the vapour as well as in the liquid.

The concentration of the liquid and either the temperature
or the pressure are frequently chosen as the independent
variables. In the first case, we say that a solution of given
concentration and given temperature emits a vapour of

definite composition and definite pressure ;
and in the second

case, that a solution of given concentration and given pressure
has a definite boiling point, and at this temperature a vapour
of definite composition may be distilled off.

Corresponding regularities hold when the second phase
is solid or liquid, as in the case of two liquids which do not

mix in all proportions. The internal nature of the two

phases, in our example the concentrations in the two layers

of the liquids, depends on two variables pressure and

temperature. If, under special circumstances, the con-

centrations become equal, a phenomenon is obtained which

is quite analogous to that of the critical point of a homo-

geneous substance (critical solution temperature of two

liquids).

209. Let us now consider briefly the case

= a -
1,

where the number of phases is one less than the number of

the independent constituents, and the internal nature of

all phases depends on a third arbitrary variable, besides

temperature and pressure. Thus, a = 3, /3
= 2 for an aqueous

solution of two isomorphous substances (potassium chlorate

and thallium chlorate) in contact with a mixed crystal. The
concentration of the solution under atmospheric pressure
and at a given temperature will vary according to the com-

position of the mixed crystal. We cannot, therefore, speak
of a saturated solution of the two substances of definite

composition. However, should a second solid phase for
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instance, a mixed crystal of different composition separate

out, the internal nature of the system will be determined

by temperature and pressure alone. The experimental

investigation of the equilibrium of such systems may enable

us to decide whether a precipitate from a solution of two

salts forms one phase for example, a mixed crystal of

changing concentration or whether the two substances are

to be considered as two distinct phases in contact. If, at

a given temperature and pressure, the concentration of the

liquid in contact were quite definite, it would represent the

former case, and, if not, the latter.

210. If the expressions for the functions ', ", . . .

for each phase were known, the equations (149) would give

every detail regarding the state of the equilibrium. This,

however, is by no means the case, for, regarding the relations

between these functions and the masses of the constituents

in the individual phases, all we can, in general, assert is that

they are homogeneous functions of the first degree ( 201).

We can, however, tell how they depend upon temperature

and pressure, since their differential coefficients with respect

to and p can be given. This point leads to far-reaching

conclusions concerning the variation of the equilibrium with

temperature and pressure.

Since, for the first phase, according to (143),

we have, for an infinitely small change,

7
. d\3' + pdV + Ydp ,

IT + j>V'
d^' = d<S>' -- -g

L
-\
------

gf
--W.

Under the assumption that the change is produced only by
variations of p and 0, and not by that of the masses MI',

M2', . . . M a ', equation (60) gives



184 THERMODYNAMICS.

and, therefore,

U ' + I^'=
g

--

whence

dy' _ U
f + pT W _ V

30
= ~F ' 8 l

~d^
= "T

and for the system, as the sum of all the phases,

* V

211. These relations may be used to determine how
the equilibrium depends on the temperature and pressure.

For this purpose we shall distinguish between two different

kinds of infinitely small changes. The notation S will

refer, as hitherto, to a change of the masses MI', M2 ',
. . . Mj

consistent with the given external conditions, and, therefore,

consistent with the equations (148), temperature and pressure

being kept constant, i.e. $0 = and $p = 0. The state, to

which this variation leads, need not be one of equilibrium,
and the equations (149) need not, therefore, apply to it. The
notation d, on the other hand, will refer to a change from

one state of equilibrium to another, only slightly different

from it. All external conditions, including temperature and

pressure, may be changed in any arbitrary manner.

The problem is now to find the conditions of equilibrium
of this second state, and to compare them with those of the

original state. Since the condition of equilibrium of the

first state is

the condition for the second state is

(* + a&) = o,

hence &Z = ...... (151)
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But

where ^ denotes the summation over all the /3 phases of

the system, while the summation over the a constituents of

a single phase is written out at length. This becomes, by

(150),

The condition of equilibrium (151) therefore becomes

. . . = (152)

All variations of dO, dp, dKi, dMz ',
. . . disappear because

$0 = and $p = 0, and because in the sum

each vertical column vanishes. Taking the first column for

example, we have, by (149),
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and also, by (148),

Furthermore, since, by the first law, SU + p$V represents

Q, the heat absorbed by the system during the virtual

change, the equation (152) may also be written

n SV ft A\sr' i Aw"* '

(153)

This equation shows how the equilibrium depends on the

temperature, and the pressure, and on the masses of the

independent constituents of the system. It shows> in

the first place, that the influence of the temperature

depends essentially on the heat effect which accompanies
a virtual change of state. If this be zero, the first term

vanishes, and a change of temperature does not disturb

the equilibrium. If Q change sign, the influence of the

temperature is also reversed. It is quite similar with regard
to the influence of the pressure, which, in its turn, depends

essentially on the change of volume, SV, produced by a

virtual isothermal and isopiestic change of state.

212. We shall now apply the equation (153) to several

special cases
; first, to those of perfect heterogeneous equili-

brium, which are characterized ( 206) by the relation

= a + 1.

The internal nature of all the phases, including the pressure,

is determined by the temperature alone. An isothermal,

infinitely slow compression, therefore, changes only the total

masses of the phases, but does not change either the com-

position or the pressure. We shall choose a change of this

kind as the virtual change of state. In this special case it

leads to a new state of equilibrium. The internal nature of

all the phases, as well as the temperature and pressure,
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remain constant, and therefore the variations of the functions

d\j?' 3^'
5irr/> ai?-f> are aU equal to zero, since these quantities
C/M! c/M 2

depend only on the nature of the phases. The equation (153)
therefore becomes

dP Q n K4\

This means that the heat effect in a variation that leaves

the composition of all phases unchanged, divided by the

change of volume of the system and by the absolute tempe-

rature, gives the rate of change of the equilibrium pressure

with the temperature. Where application of heat increases

the volume, as in the case of evaporation, the equilibrium

pressure increases with temperature ;
in the opposite case,

as in the melting of ice, it decreases with increase of

temperature.

213. In the case of one independent constituent (a
= 1,

and ft
=

2), equation (154) leads immediately to the laws

discussed at length in the preceding chapter ; namely, those

concerning the heat of vaporization, of fusion, and of subli-

mation. If, for instance, the liquid form the first phase, the

vapour the second phase, and L denote the heat of vaporiza-

tion per unit mass, we have

Q = L8M"

where v and v" are the specific volumes of liquid and vapour,
and SM" the mass of vapour formed during the isothermal

and isopiestic change of state. Hence, by (154),

which is identical with the equation (111).

This, of course, applies to chemical changes as well,



1 88 THERMODYNA MICS.

whenever the system under consideration contains one con-

stituent in two distinct phases ;
for example, to the vapori-

zation of ammonium chloride (first investigated with regard
to this law by Horstmann), which decomposes into hydro-
chloric acid and ammonia

;
or to the vaporization of

ammonium carbamate, which decomposes into ammonia and

carbon dioxide. Hero L of our last equation denotes the

heat of dissociation, and p the dissociation pressure, which

depends only on the temperature.

214. We shall also consider the perfect heterogeneous

equilibrium of two independent constituents (a = 2, )3
= 3) ;

for example, water (suffix 1) and a salt (suffix 2) in three

phases ;
the first, an aqueous solution (MY the mass of the

water, M 2
'

that of the salt) ;
the second, water vapour

(mass MI") ;
the third, solid salt (mass M2'").

For a virtual

change, therefore,

SMi' + SMi" = 0, and SM2
' + SM2

'" = 0.

According to the phase rule, the concentration of the

solution (*rr = c \ as well as tne vapour pressure (p\ is a

function of the temperature alone. By (154), the heat

absorbed (0, p, c remaining constant) is

Q = fl.^aV...... (155)

Let the virtual change consist in the evaporation of a

small quantity of water,

W = - SM/.

Then, since the concentration also remains constant, the

quantity of salt

is precipitated from the solution. All variations of mass

have here been expressed in terms of SMi".
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The total volume of the system

V =
i/(Mi' + Ma') + v"Mi" + i/"Ma"',

where v', v", and v"' are the specific volumes of the phases,
is increased by

+ SM2') 4- t/'SMi" -f v"'8Ma

"f

=
[(v" + <w"')

-
(1 4- eXJSMi". . . (156)

If L be the quantity of heat that must be applied to

evaporate unit mass of water from the solution, and to pre-

cipitate the corresponding quantity of salt, under constant

pressure, temperature, and concentration, then the equation

(155), since

Q =

becomes L =
j(v

n + cv'" - (1 + c)v').

A useful approximation is obtained by neglecting v' and

v'", the specific volumes of the liquid and solid, in com-

parison with v", that of the vapour, and considering the

latter as a perfect gas. By (14),

m p

(R = gas constant, m = the molecular weight of the vapour)
and we obtain

L = ?fl
d
-^P..... (157)m dO

215. Conversely, L is at the same time the quantity of

heat given out when unit mass of water vapour combines, at

constant temperature and pressure, with the quantity of salt

necessary to form a saturated solution. This process may
be accomplished directly, or in two steps, viz. by condensing
unit mass of water vapour into pure water, and then dis-

solving the salt in the water. According to the first law of

thermodynamics, since the initial and final states are the
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same in both cases, the sum of the heat given out and the

work done is the same.

In the first case the heat given out is L, the work done,

7, ;
and the sum of these, by the approximation used

above, is

To calculate the same sum for the second case, we must

in the first place note that the vapour pressure of a solution

is different from the vapour pressure of pure water at the

same temperature. It will, in fact, in no case be greater,

but smaller, otherwise the vapour would be supersaturated.

Denoting the vapour pressure of pure water at the tempera-
ture 9 by PQ, then p < PQ.

We shall now bring, by isothermic compression, unit

mass of water vapour from pressure p and specific volume v"

to pressure pQ and specific volume VQ", i.e. to a state of satu-

ration. Work is thereby done on the substance, and heat

is given out. The sum of both, which gives the decrease of

the energy of the vapour, is zero, if we again assume that

the vapour behaves as a perfect gas, i.e. that its energy
remains constant at constant temperature. If we then

condense the water vapour of volume VQ", at constant tempe-
rature 9 and constant pressure PQ, into pure water, the sum
of the heat given out and work spent at this step is, by
equation (112),

T? 3 1 ^

-jpoW- (159)

No appreciable external effects accompany the further

change of the liquid water from pressure pQ to pressure p.

If, finally, we dissolve salt sufficient for saturation in the

newly formed unit of water, at constant temperature 9 and
constant pressure p, the sum of the heat and work is simply
the heat of solution

A (160)
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By the first law, the sum of (159) and (160) must be equal
to (158),

d

or, since, by Boyle's law _poV |w",

m
\.

This formula, first established by Kirchhoff, gives the heat

evolved when salt sufficient for saturation is dissolved in

1 gr. of pure water.

To express X in calories, E must be divided by the
v>

mechanical equivalent of heat, J. By (34), y
= 1-97, and

since m = 18, we have

d log

It is further worthy of notice that p, the vapour pressure
of a saturated solution, is a function of the temperature

alone, since c, the concentration of a saturated solution,

changes in a definite manner with the temperature.
The quantities neglected in this approximation may, if

necessary, be put in without any difficulty.

216. We proceed now to the important case of two

independent constituents in two phases (a
= 2, )3

=
2).

We assume, for the present, that both constituents are con-

tained in both phases in appreciable quantity, having the

masses MI', M2
'

in the first ; MI", M"2, in the second phase.

The internal variables are the temperature, the pressure,
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and the concentrations of the second constituent in both

phases ;

, andc,, = . m . . (162)

According to the phase rule, two of the variables, 0, p, c', c",

are arbitrary.

Equation (153) leads to the following law regarding the

shift of the equilibrium corresponding to any change of the

external conditions :

2
P ~

' l

3Mi'
2 3M2

' 1

3Mi"

+ dM2''S-^, = 0. (163)
c/ VI

Here, for the first phase,

(164)

Certain simple relations hold between the derived functions

of *' with respect to MI' and M2'. For, since, by (144),

partial differentiation with respect to MI' and M2
'

gives

= MI' M ,2

f\ n/r f

If we put, for shortness,
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a quantity depending only on the nature of the first phase,
on 6,p, and c', and not on the masses MV and M2

'

individually,*
we have

Mi
1

M2
'

2 ^9

dM/2

M'

. . . (166)

Analogous equations hold for the second phase if we put

n __ Tir n
1 '""

217. With respect to the quantities <p

f

and <p" all we
can immediately settle is their sign. According to 147,

is a maximum in stable equilibrium if only processes at

constant temperature and constant pressure be considered.

Hence

But

whence

0. (167)

= *' 4-

and

'

The general integral of V = Mi'|^ + M3'^ is *'= M27( gi_ ).-^

O
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If we introdace the quantities p' and <p", then

* TvrM

This relation shows that the inequality (167) is satisfied,

and only then, if both
<p'
and

<p"
are positive.

[
218. There are on the whole two kinds of changes

possible, according as the first or the second constituent

passes from the first to the second phase. We have, for the

first,

SMi' = - SMx" ; SM2
' = SMa

" =
;

. . (168)

and for the second,

We shall distinguish Q, the heat absorbed, and SV,

the change of volume, in these two cases by the suffixes 1

and 2. In the first case, the law for the displacement of the

equilibrium, by (163), (164), (168), (166), and (162), reduces

to

?W) =

and, introducing for shortness the finite quantities

i SV
1
=

i.e. the ratios of the heat absorbed and of the change of

volume to the mass of the first constituent, which passes
from the first to the second phase, we have

"dc" = 0. . (170)
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Similarly, for the second constituent passing into the

second phase, we get

f,M_ lf

,W =s0 _ (m)

These are the two relations connecting the four differen-

tials dO, dp, de', de" in any displacement of the equilibrium.

219. To show the application of these laws, let us

consider a mixture of two liquids (water and alcohol) in

two phases, the first a liquid, the second a vapour. The

phase rule leaves two of the variables 0, p, c', e" arbitrary.

The pressure p, and the concentration c" of the vapour, for

instance, are determined by the temperature and the con-

centration e' of the liquid mixture. Accordingly, for any

changes dO and dc' we have, from (170) and (171),

s' + (Li + e"L,)dO

(-+-
7 ft \Vl @ ^2
dc =

Of the many conclusions to be drawn from these equations,

we mention only the following :

Along an isotherm (dO = 0) the equations become

(172)

(173)

The vapour pressure p may rise or fall with increasing
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concentration. When p shows a maximum or minimum

value, as it does according to Konowalow for a 77 : 23 mixture

of propyl alcohol and water, then J-, vanishes, and, from

equation (172), c' = c", i.e. the percentage composition of

the liquid and the vapour is the same, or the liquid boils

at constant concentration. But if, along an isotherm, p
varies with c

f

, the concentration of the vapour will differ

from that of the liquid ;
in fact, the concentration of the

second constituent in the vapour will be more or less than

in the liquid (c"> or <c f

), according as the vapour pressure

p rises or falls with increasing concentration. This is an

immediate deduction from equation (172) if we bear in

mind that
<p

f

, Si, s2 ,
and c" are always positive.

The equation (173) shows that along an isotherm the

concentration of both phases always changes in the same

sense.

220. In the following applications we shall restrict

ourselves to the case in which the second constituent occurs

only in the first phase,

c" = 0,

and .-.^" = (174)

The first constituent which occurs along with the second

in the first phase, and pure in the second, will be called

the solvent
;
the second, the dissolved substance. By (174),

the equation (171) is identically satisfied, and from (170)
there remains

^dO- |^-<p^
= 0, . . . (175)

if we omit suffixes and dashes for simplicity.

We shall take, first, a solution of a nonvolatile salt in

contact with the vapour of the solvent, and investigate the

equation (175) in three directions by keeping in turn the

concentration c, the temperature 0, and the pressure p
constant.
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221. Concentration Constant: de = 0. The relation

between the vapour pressure and the temperature is, by
(175),

Here L may be called briefly the heat of vaporization
of the solution. If, instead of regarding L as the ratio of

two infinitely small quantities, we take it to be the heat of

vaporization per unit mass of the solvent, then the mass
of the solvent must be assumed so large that the concen-

tration is not appreciably altered by the evaporation of

unit mass. The quantity s may generally be put = v, the

specific volume of the vapour. Assuming, further, that the

laws of Boyle and Gay Lussac hold for the vapour, we get

(177)
//&

jJ

K? / rv I r\ rf AI \

and, by (176),

On the other hand, L is also the quantity of heat given
out when unit mass of the vapour of the solvent combines

at constant temperature and pressure with a large quantity
of a solution of concentration c. This process may be per-

formed directly, or unit mass of the vapour may be first

condensed to the pure solvent and then the solution diluted

with it.

In the first case the sum of the heat given out and the

work spent is

In the second case, by the method used in 215 we

obtain, as the sum of the heat given out and the work spent

during condensation and dilution,
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where p is the pressure, v the specific volume of the vapour
of the solvent in contact with the pure liquid solvent, A the

heat of dilution of the solution, i.e. the heat given out on

adding unit mass of the solvent to a large quantity of the

solution of concentration c. Both the above expressions

being equal according to the first law, we obtain, on applying

Boyle's law,

A = -02V- Jf*J, .... (178)
?)l > dti /

c

which is Kirchhoff's formula for the heat of dilution.

The quantities here neglected, by considering the vapour
a perfect gas, and its specific volume large in comparison
with that of the liquid, may readily be taken into account

when necessary.
The similarity of the expressions for A, the heat of

dilution, and for X, the heat of saturation (161), is only

external, since in this case the solution may be of any con-

centration, and therefore may be differentiated with respect
to the temperature, c being kept constant, while in (161)
the concentration of a saturated solution changes with

temperature in a definite manner.

222. Since A is small for small values of c (dilute solu-

tions, 97), then, according to (178), the ratio of the vapour

pressure of a dilute solution of fixed concentration to the

vapour pressure of the pure solvent is practically independent
of the temperature (Babo's law).

223. Temperature Constant : clO = 0. The relation

between the vapour pressure (p) and the concentration (c)

of the solution is, according to (175),

(f) = - ^. - (179)
\dc/0 s

Neglecting the specific volume of the liquid in comparison
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with that of the vapour, and considering the latter a perfect

gas of. molecular weight m, equation (177) gives

or

Since
<p

is always positive ( 217), the vapour pressure must
decrease with increasing concentration. This proposition
furnishes a means of distinguishing between a solution

and an emulsion. In an emulsion the number of particles

suspended in the solution has no influence on the vapour

pressure.

So long as the quantity <p
is undetermined, nothing

further can be stated with regard to the general relation

between the vapour pressure and the concentration.

224. As we have p = po when c = (pure solvent),^) PQ
is small for small values of c. We may, therefore, put

Hence, by (179),

and substituting for s, as in (177), the specific volume of

the vapour, considered a perfect gas, we get

- P -~ (181)

This means that the relative decrease of the vapour pressure

is proportional to the concentration of the solution (Wiillner's

law). For further particulars, see 270.

225. Pressure Constant : dp = 0. The relation
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between the temperature (boiling point) and the concen-

tration is, by (175),

Since
<p

is positive, the boiling point rises with increasing
concentration. By comparing this with the formula (179)
for the decrease of the vapour pressure, we find that any
solution gives

W\
t /dp\ Vs

dc)
l

\dc)9

~ ~
L'

i.e. for an infinitely small increase of the concentration the

rise in the boiling point (at constant pressure) is to the

decrease of the vapour pressure (at constant temperature)
as the product of the absolute temperature and the specific

volume of the vapour is to the heat of vaporization of the

solution.

Kemembering that this relation satisfies the identity

,'.--(!>.
we come immediately to the equation (176).

226. Let be the boiling point of the pure solvent

(e = 0), then, for some values of c, the difference between

and will be small, and we may put

*^/J i-\ il /) /J
O\J \J ~

t/0
" ~~

i/o

dc
~

c c

whereby the equation becomes

0-0o = C

-p (183)

This means that the elevation of the boiling point is pro-

portional to the concentration of the solution. For further

details, see 269.
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227. Let the second phase consist of the pure solvent

in the solid state instead of the gaseous state, as happens
in the freezing of an aqueous salt solution or in the pre-

cipitation of salt from a saturated solution. In the latter

case, in conformity with the stipulations of 220, the salt

will be regarded as the first constituent (the solvent), and

water as the second constituent (the dissolved substance).
The equation (175) is then directly applicable, and may be

discussed in three different ways. We may ask how the

freezing point or the saturation point of a solution of definite

concentration changes with the pressure (dc
=

0) ; or, how
the pressure must be changed, in order that a solution of

changing concentration may freeze or become saturated at

constant temperature (dd = 0) ; or, finally, how the freezing

point or the saturation point of a solution under given

pressure changes with the concentration (dp = 0). In the

last and most important case, if we denote the freezing

point or the saturation point as a function of the concen-

tration by 0', to distinguish it from the boiling point, equa-
tion (175) gives

L being the heat absorbed when unit mass of the solvent

separates as a solid (ice, salt) from a large quantity of the

solution of concentration c. Since L is often negative, we

may put L = L' and call L' the heat of solidification of

the solution or the heat of precipitation of the salt. We
have, then,

"

L"

The heat of solidification (L') of a salt solution is always

positive, hence the freezing point is lowered by an increase

of concentration c. On the other hand, if the heat of pre-

cipitation (L') of a salt from a solution be positive, the

saturation point 0' is lowered by an increase of the mass

of water, or rises with an increase of the concentration of
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the salt. If L' be negative, the saturation point is lowered

by an increase of the concentration of the salt. Should we

prefer to designate by c, not the amount of water, but the

amount of salt in a saturated solution, then, according to

the definition of e in (162) and of
<p

in (165), we should

have -
replacing c in (184) and ^replacing <p,

and therefore
7

Here c and & have the same meaning as in equation (184),
which refers to the freezing point of a solution.

228. Let OQ be the freezing point of the pure solvent

(c
=

0), then, for small values of e, 9' will be nearly = 0'o,

and we may put

<W _ 9' - Op' _ 6' - ft/

dc
~

c c

Equation (184) then becomes

' - ff =
C

J^.
.

'

....... (186)

which means that the lowering of the freezing point is

proportional to the concentration. For further particulars,

see 271.

229. The positive quantity, <p,
which occurs in all these

formulae, has a definite value for a solution of given c, 0,

and >, and is independent of the nature of the second phase.
Our last equations, therefore, connect in a perfectly general

way the laws regarding the lowering of the vapour pressure,

the elevation of the boiling temperature, the depression of the

freezing point, and the change of the saturation point. Only
one of these phenomena need be experimentally investigated
in order to calculate

<p,
and by means of the value thus

determined the others may be deduced for the same solution.
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We shall now consider a further case for which
<p

is of

fundamental importance, viz. the state of equilibrium which

ensues when the pure liquid solvent forms the second phase,
not in contact with a solution, for no equilibrium would

thus be possible, but separated from it by a membrane,

permeable to the solvent only. It is true that for no

solution can perfectly semipermeable membranes of this cha-

racter be manufactured. In fact, the further development of

this theory ( 259) will exclude them as a matter of prin-

ciple, for in every case the dissolved substance will also

diffuse through the membrane, though possibly at an

extremely slow rate. For the present it is sufficient that

we may, without violating a law of thermodynamics, assume

the velocity of diffusion of the dissolved substance as small

as we please in comparison with that of the solvent. This

assumption is justified by the fact that semipermeability

may be very closely approximated in the case of many
substances. The error committed in putting the rate of

diffusion of a salt through such a membrane equal to zero,

falls below all measurable limits. An exactly similar error

is made in assuming that a salt does not evaporate or

freeze from a solution, for, strictly speaking, this assumption
is not admissible ( 259). The condition of equilibrium
of two phases separated by a semipermeable membrane is

contained in the general thermodynamical condition of

equilibrium (145),

S' + S" = 0, .... (187)

which holds for virtual changes at constant temperature

and pressure in each phase. The only difference between

this case and free contact is, that the pressures in the two

phases may be different. Pressure always means hydrostatic

pressure as measured by a manometer. If, in the general

equation (76), we put

W = - p'W -
i/'SV",

it immediately follows that (187) is the condition of equili-

brium. The further conclusions from (187) are completely
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analogous to those which are derived, when there is a free

surface of contact. Corresponding to (163) we have for any

displacement of the equilibrium

Since the constituent 2 occurs only in the first phase, we get,

instead of (175),

^dO
- -

Qdp'
- S

-gdp"
-

?dc = 0. . . (188)
*

Here, as in 221, L is the " heat of removal
"
of the solvent

from the solution, i.e. the heat absorbed when, at constant

temperature and constant pressures p' and p", unit mass of

the solvent passes through the semipermeable membrane

from a large quantity of the solution to the pure solvent.

The change of volume of the solution during this process

is s' (negative), that of the pure solvent s" (positive). In the

condition of equilibrium (188), three of the four variables

0, p', p", c remain arbitrary, and the fourth is determined by
their values.

Consider the pressure p" in the pure solvent as given and

constant, say one atmosphere, then dp" = 0. If, further, we

put dO = and dc not equal to zero, we are then considering
solutions in which the concentration varies, but the tem-

perature and the pressure in the pure solvent remains the

same. Then, by (188),

Since
<p > 0, and s' < 0, p

f

the pressure in the solution

increases with the concentration.

The difference of the pressures in the two phases,

p' p" = P, has been called the osmotic pressure of the

solution. Since p" has been assumed constant, we may write

= - ^ (189)
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Thus the laws of the osmotic pressure have also been

expressed in terms of
<p,
which controls those of the depression

of the freezing point, the elevation of the boiling point, etc.

Since
<p

is positive, the osmotic pressure increases with in-

creasing concentration, and also, since p'
-
p" vanishes when

c = 0, the osmotic pressure is necessarily positive.
For small values of

<?,

dP _ P - P
do

~

and - s' is nearly equal to v the specific volume of the
solution. It therefore follows from (189) that

(190)

A further discussion of this question will be found in

272.

230. In the preceding paragraphs we have expressed
the laws of equilibrium of several systems, that fulfil the

conditions of 220, in terms of a quantity p which is cha-

racteristic for the thermodynamical behaviour of a solution.

Starting from the two equations (170) and (171), we find

that all the relations in question depend on
<p'
and

<p".
A

better insight into the nature of these quantities is gained

by extending to the liquid state the idea of the mole-

cule, hitherto applied only to gases. This step is taken in

the next two chapters, and it appears that the manner "in

which the idea applies is uniquely determined by the

propositions of thermodynamics, which have been given.

231. Just as the conditions of equilibrium (170) and

(171) were deduced for two independent constituents in two

phases from the general relation (153), so in the same

way an entirely analogous deduction may be made in the

general case.
'

We shall conclude this chapter by giving, briefly, the
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results for a system of a independent constituents in /3

phases.

Denoting the concentrations of the independent con-

stituents, relative to one fixed constituent 1, by

M2
' W. , M/_ ,

M7'
c*' M/ 3 ' M/

"

IV' _ M/. MY'_
Mi"

" C* ' M^
~ : C* '

M/'
~ : Ci

the condition that, by any infinitely small change of the

system : dQ, dp, dc2',
dc3', dc, . . . de2", dc3", dc^', . . . , the

equilibrium may remain stable with regard to the passage

of the constituent 1 from the phase denoted by one dash to

the phase denoted by two dashes is

^dO -
*jdp + Wdc2

" -
fr'dcfi + (ti'dej*

-
tide*') + . . . = 0,

"2
"

where, analogous to (165),

and LI, 81 denote the heat absorbed, and the increase of

volume of the system during the isothermal and isopiestic

transference of unit mass of constituent 1 from a large

quantity of the phase denoted by one dash to a large

quantity of the phase denoted by two dashes. The corre-

sponding conditions of equilibrium for any possible passage
of any constituent from any one phase to any other phase

may be established in the same way.



CHAPTEE IV.

GASEOUS SYSTEM.

232. THE relations, which have been deduced from the

general condition of equilibrium (79) for the different pro-

perties of thermodynamical equilibria, rest mainly on the

relations between the characteristic function ^F, the tempera-
ture, and the pressure as given in the equations (150). It

will be impossible to completely answer all questions regard-

ing equilibrium until can be expressed in its functional

relation to the masses of the constituents in the different

phases. The introduction of the molecular weight serves

this purpose. Having already defined the molecular weight
of a chemically homogeneous gas as well as the number of

molecules of a mixture of gases by Avogadro's law, we shall

turn first to the investigation of a system consisting of one

gaseous phase.
The complete solution of the problem consists in express-

ing V in terms of 9, p, and n\, n2 ,
n3, . . . , the number of

all the different kinds of molecules in the mixture.

Since we have, in general, by (75),

- G
-"-

)

we are required to express the entropy <, the energy U, and

the volume V as functions of the above independent variables.

This can be done, in general, on the assumption that the

mixture obeys the laws of perfect gases. Such a restriction

will not, in most cases, lead to appreciable errors. Even this

assumption may be set aside by special measurement of the
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quantities <S>, U, and V, as is given later. For the present,

however, perfect gases will be assumed.

233. The laws of Boyle, Gay Lussac, and Dalton deter-

mine the volume of the mixture, for equation (16) gives

V = 5(x + % +...) = *. (191)

By the first law of thermodynamics, the energy U of a

mixture of gases is given by the energies of its constituents,

for, according to this law, the energy of the system remains

unchanged, no matter what internal changes take place,

provided there are no external effects. Experience shows

that when diffusion takes place between a number of gases
at constant temperature and pressure, neither does the

volume change, nor is heat absorbed or evolved. The energy
of the system, therefore, remains constant during the process.

Hence, the energy of a mixture of perfect gases is the sum
of the energies of the gases at the same temperature and

pressure. Now the energy Ui of n\ molecules of a perfect

gas depends only on the temperature; it is, by (35),

(192)

where c
Vl

is the molecular heat of the gas at constant volume,
and hi is a constant. Hence the total energy of the mixture

is

U =
ZfafaQ + fc) (193)

234. We have now to determine the entropy < as a

function of 0, p, and %, %, . . . the number of molecules.

$, in so far as it depends on 6 and p, may be calculated from

the equation (60),
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where the differentials correspond to variations of and p,
but not of the number of molecules.

Now, by (193),

d\J =

and, by (191),

and, by integration,

4> = ^ni
(cVl log + E log 3)

+ C. . (194)

The constant of integration C is independent of and
jj,

but may depend on the composition of the mixture, i.e. on

the numbers n\ 9
w2,

n3 . . . . The investigation of this relation

forms the most important part of our problem. The deter-

mination of the constant is not, in this case, a matter of

definition. It can only be determined by applying the

second law of thermodynamics to a reversible process which

brings about a change in the composition of the mixture.

A reversible process produces a definite change of the entropy
which may be compared with the simultaneous changes of

the number of molecules, and thus the relation between the

entropy and the composition determined. If we select a

process devoid of external effects either in work or heat,

then the entropy remains constant during the whole process.

We cannot, however, use the process of diffusion, which leads

to the value of U ; for diffusion, as might be expected, and

as will be shown in 238, is irreversible, and therefore leads

only to the conclusion that the entropy of the system is

thereby increased. There is, however, a reversible process
at our disposal, which will change the composition of the
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mixture, viz. the separation by a semipermeable membrane,
as introduced and established in 229.

235. Before we can apply a semipermeable membrane

to the purpose in hand, we must acquaint ourselves with

the nature of the thermodynamical equilibrium of a gas in

contact with both sides of a membrane permeable to it.

The membrane will act like a bounding wall to those gases
to which it is impermeable, and will, therefore, not introduce

any special conditions. Experience shows that a gas on both

sides of a membrane permeable to it is in equilibrium when
its partial pressures ( 18) are the same on both sides, quite

independent of the other gases present. This proposition
is neither axiomatic nor a necessary consequence of the

preceding considerations, but it commends itself by its

simplicity, and has been confirmed without exception in

the few cases accessible to direct experiment.
A test of this kind may be established as follows:

Platinum foil at a white heat is permeable to hydrogen, but

impermeable to air. If a vessel having a platinum wall be

filled with pure hydrogen, and hermetically sealed, and the

platinum be then heated, the hydrogen must completely
diffuse out against atmospheric pressure. As the air cannot

enter, the vessel must finally become completely exhausted.*

* This inference was tested by me in the Physical Institute of the

University of Munich in 1883, and was confirmed within the limits of

experimental error as far as the actual deviation from ideal conditions might
lead one to expect. As this experiment has not been published anywhere,
I shall briefly describe it here. A glass tube of about 5 mm. internal diameter,

blown out to a bulb at the middle, was provided with a stop-cock at one end.

To the other"end a platinum tube 10 cm. long was fastened, and closed at the

end. The whole tube was exhausted by the mercury pump, filled with

hydrogen at ordinary atmospheric pressure, and then closed. The closed

end of the platinum portion was then heated in a horizontal position by a

Bunsen burner. The connection between the glass and platinum tubes

having been made by means of sealing-wax, had to be kept cool by a

continuous current of water to prevent the softtning of the wax. After

four hours the tube was taken from the flame, cooled to the temperature of

the room, and the stop-cock opened under mercury. The mercury rose

rapidly, almost completely filling the tube, proving that the tube had been

very nearly exhausted.
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236. We shall make use of the properties of semi-

permeable membranes to separate in a reversible and simple
manner the constituents of a gas mixture. Let us consider
the following example :

Let there be four pistons in a hollow cylinder, two of

them, A and A', in fixed positions ; two, B and B', movable
in such a way that the distance BB' remains constant, and

equal to AA'. This is indicated by the brackets in Fig. 5.

d) (Z)

(2)

FIG. 5.

Further, let A' (the bottom), and B (the cover) be im-

permeable to any gas, while A is permeable only to one

gas (1), and B' only to another one (2). The space above

B is a vacuum.

At the beginning of the process the piston B is close to

A, therefore B' close to A', and the space between them
contains a mixture of the two gases (1 and 2). The con-

nected pistons B and B' are now very slowly raised. The

gas 1 will pass into the space opening up between A and B,

and the gas 2 into that between A' and B'. Complete

separation will have been effected when B' is in contact with
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A. We shall now calculate the external work of this pro-

cess. The pressure on the movable piston B consists only
of the pressure of the gas 1, upwards, since there is a vacuum

above B ;
and on the other movable piston, B', there is only

the partial pressure of the same gas, which acts downwards.

According to the preceding paragraph both these pressures

are equal, and since the paths of B and B' are also equal,

the total work done on the pistons is zero. If no heat be

absorbed or given out, as we shall further assume, the energy
of the system remains constant. But, by (193), the energy
of a mixture of gases depends, like that of pure gases, on

the temperature alone, so the temperature of the system
remains constant throughout.

Since this infinitely slow process is reversible, the

entropy in the initial and final states is the same, if there

are no external effects. Hence, the entropy of the mixture

is equal to the sum of the entropies which the two gases
would have, if at the same temperature each by itself occu-

pied the whole volume of the mixture. This proposition

may be easily extended to a mixture of any number of gases.
The entropy of a mixture of gases is the sum of the entropies
which the individual gases would have, if each at the same

temperature occupied a volume equal to the total volume of the

mixture. This proposition was first established by Gibbs.

237. The entropy of a perfect gas of mass M and mole-

cular weight m was found to be (52)

M( log 9 H log v + const. \

where c
v is the molecular heat at constant volume, as in

(192). By the gas laws (14), the volume of unit mass is

K
v = -

m p
whence the entropy is

w(c,log 9 + E log
- + fc),

. . . (195)
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IVf

where n = , the number of molecules, and the constant km
T>

includes the term log . Hence, according to Gibbs's pro-

position, the entropy of the mixture is

log 9 + R log
~ + fe),

pi being the partial pressure of the first gas in the mixture.

Now, by (8), the pressure of the mixture is the sum of

the partial pressures, S^i = p, and, by 40, the partial

pressures are proportional to the number of molecules of

each gas,

pi : p2 : . . . = ni :%:...

Hence pi = + n2 + . .

or, if we introduce the concentrations of the different gases

in the mixture,

f~
'

PI = dp ; p* = <*p..... (
196)

Thus the expression for the entropy of a mixture as a

function of 0, p, and n the number of molecules, finally

becomes

$ = ^%(S log + E log
A + k). . (197)

Comparing this expression with the value of the entropy of
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a gas mixture given by (194), we see that the constant of

integration which was left undetermined is

C = m(fe
- K log Cl) ... (198)

238. Knowing the value of the entropy of a gas

mixture, we may answer the question which we discussed

in 234, whether and to what extent the entropy of a

system of gases is increased by diffusion. Let us take the

simplest case, that of two gases, the number of molecules

being % and n& diffusing into one another under common
and constant pressure and temperature. Before diffusion

begins, the entropy of the system is the sum of the entropies

of the gases, by (195),

n!(evi log + E log
- + ki) + n2(c t,2 log + E log

- + fe).

After diffusion it is, by (197),

i(*, log + E log
~ + fe) + n2(cv .2 log 9 + E log

~ + fe).

Therefore, the change of the entropy of the system is,

by (196),

n\ E log GI n2 E log c%

an essentially positive quantity. This shows that diffusion

is always irreversible.

It also appears that the increase of the entropy depends

solely on the number of the molecules n\, n& and not on

the nature e.g. the molecular weight, of the diffusing gases.

The increase of the entropy does not depend on whether the

gases are chemically alike or not. By making the two

gases the same, there is evidently no increase of the entropy,
since no change of state ensues. It follows that the chemi-

cal difference of two gases, or, in general, of two substances,

cannot be represented by a continuous variable; but that
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here we can speak only of a discontinuous relation, either

of equality or inequality. This fact involves a fundamental

distinction between chemical and physical properties, since

the latter may always be regarded as continuous.

239. The values of the entropy (197), the energy

(193), and the volume (191), substituted in (75), give the

function ^F,

* =
2i(<V. log -J- R log^ + k - s -

|
- B) ;

or, putting the quantity, which depends on p and 9, and

not on the number of molecules,

'n log
- 7

| + K log + A* - c
t.
- K = ?b (199)

240. This enables us to establish the condition of

equilibrium. If in a gas mixture a chemical change, which

changes the number of molecules ni n2 . . . by S%, Sa
be possible, then such a change will not take place if the

condition of equilibrium (79) be fulfilled, i.e. if, when S0 =

and p = 0,

S* = 0,

or (fli
- K log

The quantities <pb <pa depend on and ^ only, therefore

fyi
=

fya
= . . . = 0.

Further,

wi log ci + w2S log c2 + . . . =
^&?i

+
^^2

+ *
'

and, by (196),

=
(W! + % + . . .&i + 802 -f ..-)- ft

since
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The condition of equilibrium, therefore, reduces to

(<pi
- E lo ci8wi = 0.

Since this equation does not involve the absolute values of

the variations &&!, but only their ratios, we may put

and take vi, v2 to denote the number of molecules

simultaneously passing into the mass of each constituent.

They are simple integers, positive or negative, according as

the gas in question is forming, or is being used up in the

formation of others. The condition of equilibrium now

becomes

]> (<pi
- K log ci)vi

= 0,

or Vl log Cl + v2 log c, + . . .

The right-hand side of the equation depends only on tem-

perature and pressure (199). The equation gives a definite

relation between the concentrations of the different kinds of

molecules for given temperature and pressure.

241. We shall now substitute the values of
<?i, <p2 , . . .

If, for shortness, we put the constants

= logaK

E

TT

= 6 (202)

= c (203)
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then

or

242. This condition may be further simplified by
making use of the experimental fact ( 50) that the atomic
heat of an element remains unchanged in its combinations.

By equation (203) Kc is the change of the sum of the

molecular heats of all the molecules of the system during
the reaction. The sum of the molecular heats, however,

being the sum of the atomic heats, remains unchanged,
hence c = 0, and the equation becomes

_ b
,0\2i>j

\p)

243. According to this equation the influence of the

pressure on the equilibrium depends entirely on the number

Svi, which gives the degree to which the total number of

molecules, therefore also the volume of the mixture, is

increased by the reaction considered. Where the volume

remains unchanged, as, e.g., in the dissociation of hydriodic

acid, considered below, the equilibrium is independent of

the pressure.

The influence of the temperature depends further on the

constant 5, which is closely connected with the heat effect

of the reaction. For, by the first law,

which, by (193) and (191), and p being constant, becomes

Q =
(Coi + 7*! + R0) S*h.
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If we refer the heat effect to the finite numbers v, instead

of the infinitely small numbers Sw, then the heat absorbed is :

L = ^(s + h

and by (202) and (203), again putting c = 0,

L = K6 + K0Svi,

or, L = 1-97 (b + 0Svi) cal.

The term containing b refers to the heat spent in the increase

of the internal energy ;
the term containing to that spent

in external work.

244. Before proceeding to numerical applications, we
shall enumerate the principal equations.

Suppose that in a gaseous system

(n the number of molecules, m the molecular weight) any
chemical change be possible, in which the simultaneous

changes of the number of molecules are

(v simple, positive or negative integers) then there will be

equilibrium, if the concentrations

n.2

satisfy the condition

= <f'(?f. . (204)
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The heat absorbed during the change at constant temperature
and pressure is

L= l-97 {&+ (vi+ va + ...) 0} = l-97 O + flSvOcal. (205)

while the change of volume is

s = E(V! + V2 + . . .)-
=. K-Svi. . . (206)

245. Dissociation of Hydriodic Acid. Since hydriodic
acid gas splits partly into hydrogen and iodine vapour, the

system is represented by three kinds of molecules :

ni HI; n2 H2 ;
w3 I2 ;

The concentrations are :

The reaction consists in the transformation of two molecules

of HI into one of H2 and one of I2 :

v\ = 2; i>2
= 1; VB = 1.

By (204), therefore, in the state of equilibrium,

= = ae-. (207)
Ci

2
Wi

2

Since the total number of atoms of hydrogen (n\ + 2n2)

and of iodine (HI + 2%) in the system are supposed to be

known, equation (207) is sufficient for the determination of

the three quantities, wi, n2 , and n3, at any given temperature.
The pressure has in this case no influence on the equilib-

rium. Any two measurements of the degree of dissociation

are sufficient for the calculation of a and I. From Boden-

stein's measurements we have for

= 273 + 448 = 712
;

= 0-01984
;
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and for 6 = 273 + 350 = 623
; ^ = 0-01494.

Hence, by (207),

a = 0-120
;
I = 1300.

Thus the equilibrium of any mixture of hydriodic acid,

hydrogen, and iodine vapour at any temperature, even

when the hydrogen and the iodine are not present in

equivalent quantities, is determined by (207). Equation

(205) gives the heat of dissociation of two molecules of

hydriodic acid into a molecule of hydrogen and a molecule

of iodine vapour :

L = 1-971 x 1300 = 2560 cal.

246. Dissociation of Iodine Vapour. At high tem-

peratures iodine vapour appreciably decomposes, leading to

a system of two kinds of molecules :

MI I2 ;
n2 L

The concentrations are

The reaction consists in a splitting of the molecule I2 into

two molecules I,

/. Vl = - 1
; v2 = 2

;

and in equilibrium, by (204),

-
2 : n

^=a'e~.-. . (208)

a' and Z/ may be calculated from data given by Fr. Meier

and Crafts. When p = 728 mm. of mercury,

s ?? = 0-145 when = 273 + 940 = 1213,
2% 4- %

and = 0-662 when '= 273 + 1390 = 1663.
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This gives, if p be measured in millimeters of mercury,

a' = 9375; V = 14690;

from which the equilibrium of dissociation may be deter-

mined for any temperature and pressure.

The heat of dissociation of a molecule of iodine is,

by (205),

L = 1-97 (14690 + 0)
= 28900 -f 1 970 cal.

It will be seen that at such temperatures the external work,
on which the second term depends, has an appreciable
influence. At 1500 C. (0

= 1773) it amounts to 3500 cal.,

making the heat of dissociation

L = 32400 cal.

247. Graded Dissociation. Since, by equation (208),

the concentration c2 of the monatomic iodine molecules does

not vanish even at low temperatures, the decomposition of

the iodine vapour should be taken into account in deter-

mining the dissociation of hydriodic acid. This will have

practically no influence on the results of 245, but never-

theless we shall give the more rigorous solution on account

of the theoretical interest which attaches to it.

There are now four kinds of molecules in the system :

HI HI ;
n2 H2 ;

n3 12 ; % I-

Two kinds of chemical changes are possible :

(1) vi = 2
; 1/2

= 1; v3 = 1
;

v =
; and

(2) iY = 0; Va
'

=0; v8
' = - 1

; W = 2.

There will be equilibrium for each of these, if, by (204),

(1)
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and

(2) d"iV 2V3V4
' = ^

The constants a, &, a', Z/ have the values calculated above.

The total number of hydrogen atoms (% + 2%) and of

iodine atoms (% -f- 2n3 + %) being known, we have four

equations for the complete determination of the four

quantities n\, n^ n3, n^

248. The general equation of equilibrium (204) also

shows that at finite temperatures and pressures none of the

concentrations, c, can ever vanish
;

in other words, that the

dissociation can never be complete, nor can it completely
vanish. There is always present a finite, though perhaps
a very small number of all possible kinds of molecules.

Thus, in water vapour at any temperature at least a trace

of oxygen and hydrogen must be present (see also 259).

In a great number of phenomena, however, these quantities
are too small to be of any importance.



CHAPTER V.

DILUTE SOLUTIONS.

249. To determine as a function of the temperature 0,

the pressure p, and the number n of the different kinds of

molecules in a system of any number of constituents and

any number of phases, we may use the method of the pre-

ceding chapter. It is necessary first to find by suitable

measurements the volume V, and the internal energy U of

each single phase, and then calculate the entropy < from

the definition (60). A simple summation extending over

all the phases gives, by (75), the function ^f for the whole

system. On account of incomplete experimental data, how-

ever, the calculation of can be performed, besides for a

gaseous phase, only for a dilute solution, i.e. for a phase in

which one kind of molecule far outnumbers all the others in

the phase. We shall in future call this kind of molecule

the solvent, the other kinds the dissolved substances. This

differs from the definition of 220. If nQ be the number

of molecules of the solvent, n\, n2, n3) . . . the number of

molecules of the dissolved substances, then the solution

may be considered dilute if no be large in comparison with

each of the numbers r&i, %, n3. . . . The state of aggrega-

tion of the substance is of no importance, it may be solid,

liquid, or gaseous.

250. We shall now determine by the above method

the energy U and the volume V of a dilute solution. The

important simplification, to which this definition of a dilute

solution leads, rests on the mathematical theorem, that a

finite, continuous, and differentiate function of several
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variables, which have very small values, is necessarily a

linear function of these variables. This determines U and

Y as functions of nQt %, w2,
. . . Physically speaking, this

means that the properties of a dilute solution, besides

depending on the interactions between the molecules of the

solvent, necessarily depend only on the interactions between

the molecules of the solvent and the molecules of the dis-

solved substances, but not on the interactions of the dissolved

substances among themselves, for these are small quantities

of a higher order.

251. The quotient , i.e. the internal energy divided

by the number of molecules of the solvent, remains un-

changed if the numbers, n
, %, ^2 ... be varied in the same

proportion ; for, by 201, U is a homogeneous function of

the number of molecules nQ, n^ w2, . . ., of the first degree.

-
is, therefore, a function of the ratios

n
-, , . . ., and also a

nQ no no

linear function, since these- ratios are small, and the function

is supposed to be differentiate. The function is, therefore,

of the form

U ni ,

n2 ,- = u + u^ + a + . . .

no n no

where, UQ, u\ 9 u2 are quantities depending, not on the number
of molecules, but only on the temperature 0, the pressure p,
and the nature of the molecules. In fact, UQ depends only
on the nature of the solvent, since the energy reduces to

n u
,
when n\ = = n% = . . ., and Ui only on the nature of

the first dissolved substance and the solvent, and so on.

UQ, therefore, corresponds to the interactions between the

molecules of the solvent, Ui to those between the solvent

and the first dissolved substance, and so on. This contains

a refutation of an objection, which is often raised against the

modern theory of dilute solutions, that it treats dilute solu-

tions simply as gases, and takes no account of the influence

of the solvent.
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252. If the dilution is not sufficient to warrant the use
of this very simple form of the function U, a more accurate
relation may be obtained by expanding Taylor's series still

further,

/Wi\

(-)
n\ ._ = , + ,_ + . .

The coefficients uu, %2, u&, . . . refer to the influence of the

interactions of the dissolved molecules with one another.

This, in fact, is the only practicable way of obtaining a

rational thermodynamical theory of solutions of any con-

centration.

253. We shall here keep to the simple form, and write

U = n Uo + WiWi + n^Uz + . . . ) ^^
and Y = n v -f n^ + n2v2 -f . . . J

'

How far these equations correspond to the facts may be

determined by the inferences to which they lead. If we
dilute the solution still further by adding one molecule of

the solvent in the same state of aggregation as the solution,

keeping meanwhile the temperature 6 and the pressure p
constant, the corresponding change of volume and the heat

effect may be calculated from the above equations. One

molecule of the pure solvent, at the same temperature and

pressure, has the volume VQ and the energy UQ . After dilu-

tion, the volume of the solution becomes

V = (no + 1) v + niVi +

and the energy

The increase of volume brought about by the dilution is

therefore

V - (V + ,),

i.e. the increase of volume is zero. The heat absorbed is, by
the first law (47),
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This also vanishes. These inferences presuppose that the

number of molecules of the dissolved substances remain

unchanged, i.e. that no chemical changes (e.g. changes of

the degree of dissociation) are produced by the dilution. If

such were the case, the number of molecules of the dissolved

substances would have values in the equations for U' and V
different from those in the equations for U and V, and there-

fore would not disappear on subtraction. We may therefore

enunciate the following proposition : Further dilution of a

dilute solution, if no chemical changes accompany the process,

produces neither an appreciable change of volume nor an

appreciable heat effect; or, in other words, any change of
volume or any heat effect' produced by further dilution of a

dilute solution is due to chemical transformations among the

molecules of the dissolved substances.

254. We now turn to the calculation of the entropy 4>

of a dilute solution. If the number of molecules n
, n\,

n2, ... be constant, we have, by (60),

and, by (209),

Since u and v are functions of and p only, and not of n,

each of the coefficients of n , %, w2> > must be a perfect

differential, i e. there must be certain functions <, depending

only on 9 and p, such that

_ duQ 4- pdvQ

dui 4-
(210)
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We have, then,

4- nrfi + n^ + . . . + C, (211)

where the integration constant C cannot depend on 9 and p,
but may be a function of the number of molecules. C may
be determined as a function of WQ, HI, n%, . . . for a particular

temperature and pressure, and this will be the general ex-

pression for C at any temperature and pressure.
We shall now determine C as a function of n taking

the particular case of high temperature and small pres-
sure. By increasing the temperature and diminishing the

pressure, the solution, whatever may have been its original
state of aggregation, will pass completely into the gaseous
state. Chemical changes will certainly take place at the

same time, i.e. the number of molecules n will change. But
we shall assume that the process takes place in such a way
as to leave the number of the diiferent kinds of molecules

unaltered, because C remains constant only in this case.

Only an ideal process can accomplish this, since it passes

through unstable states. There is, however, no objection to

its use for our present purpose, since the above expression
for 3> holds not only for stable states of equilibrium, but for

all states characterized by quite arbitrary values of 0, p, %,
ni9 %, . . . Stable equilibrium is a special case, satisfying

a further condition to be established below.*

* Hr. Cantor maintains {Ann. d. Phys., 10, p. 205, 1903) that it is not per-

missible to suppose that the gaseous state may be reached in this way.
"
It

must be proved that this represents a possible state of the substance, that it

may be at least a momentary state. But no theoretical proof of this has

been advanced, and direct experience does not at all justify such an assump-
tion." In reply, it has first of all to be pointed out that the possibility of

varying the temperature and the pressure, keeping the number of molecules

constant, merely depends on the fact that the number of molecules together

with the temperature and the pressure form the independent variables which

are necessary for the unique determination of the state of solution under

consideration. The variables are not subject to any limitations, except that

the number of atoms must remain on the whole unchanged. This does not

concern us here, and is chemically self-evident. Therefore, from a general

thermodynamical point of view, nothing stands in the way of letting the

pressure diminish and the temperature rise in any way, keeping the number

of molecules constant, if the formation of a new phase is prevented. When
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At a sufficiently high temperature, and a sufficiently

low pressure, any gaseous system possesses so small a

density, that it may be regarded as a mixture of perfect

gases ( 21, and 43). We have, therefore, by (194), bear-

ing in mind that here the first kind of molecule is denoted

by the suffix 0,

0> = fi/e* log 4- E log -)

-I- m(evi log 9 + E log
? + . . . + C. (212)

The constant C is independent of 9 and p, and has the

value given in (198). On comparing this with (211), it is

seen that the expression for <ean pass from (211) into (212)

by mere change of temperature and pressure, only if the

constant C is the same in both expressions, i.e. if, by (198),

C = n (kQ
- E log c

) -f ni (ki
- E log Ci) -f

Here kQ,
kh k& . . . are constants, and the concentrations are

By (211), the entropy of a dilute solution becomes

. . . (213)

If we put, for shortness, the quantities which depend only
on and p,

. . . (214)

this is recognized, it requires only the hypothesis that by continuing this

process the ideal gaseous state is finally reached a supposition which scarcely

any one can object to, and which Hr. Cantor does not, at least directly, contra-

dict (Planck, Ann. d. Phys. 10, p. 436, 1903). TR.
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we have, finally, from (75), (213) and (209),

* = n (po
- E log e

) + m (<pi
- E log GI)

+ i(fa-Blogc8)+ ... (215)

This equation determines the thermodynamical properties of

a dilute solution.

255. We may now proceed to establish the conditions

of equilibrium of a system consisting of several phases. As

hitherto, the different kinds of molecules in the phase will

be denoted by suffixes, and the different phases by dashes.

For the sake of simplicity the first phase will be left with-

out a dash. The entire system is then represented by

nQ mo, Ui mi, n% m*, . . .
\
n

' w
', n\ mi, n% m2 ',

. . .

|

nQ
"
mi, HI' mi", ni' w2", (216)

The number of molecules aee denoted by n, and the

molecular weights by m, and the individual phases are

separated by vertical lines. In the general formula we

signify the summation over the different kinds of molecules

of one and the same phase by writing the individual terms

of the summation ;
the summation over the different phases,

on the other hand, by the symbol ]?.

In order to enable us to apply the derived formulae, we

shall assume that each phase is either a mixture of perfect

gases or a dilute solution. The latter designation will be

applied to phases containing only one kind of molecule, e.g.

a chemically homogeneous solid precipitate from an aqueous

solution. One kind of molecule represents the special case

of a dilute solution in which the concentrations of all the

dissolved substances are zero.

256. Suppose now that an isothermal isopiestic change

be possible, corresponding to a simultaneous variation

Swo, Swi, &ia, ^' %ni, 2W, ... of the number of mole-

cules wo ^i, W2, . . . W, MI', n-2, . . .
; then, by (79), this change
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will not take place, if at constant temperature and pressure

S =

or, by (215), if

^(^o
- E log c )<^o + (Pi

- E log Ci)Swi -*- (<pa
- E log C2)cw2

+ . . + ] %S(po
- E log c

) 4- ftiS(<pi
- E log ci)

+ %S(p2
- E log ca) + . . . =

The summation ^ extends over all the phases of the

system. The second series is identically equal to zero for

the same reason as was given in connection with equation

(200). If we again introduce the simple integral ratio

&*o : Swi : 8% : $%'
' $ni

' $n-2

'

= VQ : vi : v2 : vj i vi i vj i ... (217)

then the equation of equilibrium becomes

^(po-E log tf )vo-K<pi-E log ci>i+ (<p2
-E log c2)y2 ^-

=
or

]> vo log c + vi log ci + v2 log c.2 -f . . . = g vo<po 4-

= logK. , (218)

K like
<po? PI> <p2)

is independent of the number of mole-

cules n.

257. The definition of K gives its functional relation

to and p.

^ log K 1 ^ d<p Oft d 2

~~dO~
~ B^VaW "

V1
36T

"
V2M H

^logK 1^ fy ^! ^2
-5
-- = oivon- 4- vi^- 4- i'2--i

---h .

a^ K^* op 3jp 3^>
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Now, by (214), we have for an infinitely small change
of 6 and p

17

and therefore, by (210),

j* ^o 4- 2}Vo jn
fo = Q^dV

From this it follows that

Similarly

Hence

d|
=

dlogK-~
Denoting by s the increase of volume of the system, and

by L the heat absorbed, when the change corresponding to

(217) takes place at constant temperature and pressure,

then, by (209),

8 = VO^Q + viVi + v2^2 -f . . .

and, by the first law of thermodynamics,

L = v uo + viUi 4- ) + P(V(>VQ 4-

therefore - = ' ' ' ' ' ' (219)
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=---
The influence of the temperature on K, and therewith

on the condition of equilibrium towards a certain chemical

reaction, is controlled by the heat effect of that reaction,

and the influence of the pressure is controlled by the corre-

sponding change of volume of the system. If the reaction

take place without the absorption or evolution of heat, the

temperature has no influence on the equilibrium. If it

produce no change of volume the pressure has no influence.

The former equations (205) and (206) are particular cases

of (219) and (220), as may be seen by substituting for

log K the special value obtained from (218) and (204) :

log K = log a -
g
+ (vi + v2 + . .

.) log
-

258. By means of equation (218) a condition of equili-

brium may be established for each possible change in a

given system subject to chemical change. Of course, K
will have a different value in each case. This corresponds
to the requirements of Gibbs's phase rule, which is general
in its application ( 204). The number of the different

kinds of molecules in the system must be distinguished
from the number of the independent constituents

( 198).

Only the latter determines the number and nature of the

phases ;
while the number of the different kinds of molecules

plays no part whatever in the application of the phase rule.

If another kind of molecule be introduced the number of

the variables increases, to be sure, but so does the number
of the possible reactions, and therewith, the number of the

conditions of equilibrium by the same amount, so that the

number of independent variables is quite independent
thereof.

259. Equation* (218) shows further that, generally

speaking, all kinds of molecules possible in the system
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will be present in finite numbers in every phase ;
for instance,

molecules of H2 must occur in any precipitate from an

aqueous solution. Even solid bodies in contact must

partially dissolve in one another, if sufficient time be given.
The quantity K, which determines the equilibrium, possesses,

according to the definition (218), a definite, in general, a finite

value for each possible chemical change, and none of the

concentrations c can, therefore, vanish so long as the

temperature and the pressure remain finite. This prin-

ciple, based entirely on thermodynamical considerations, has

already served to explain certain facts, e.g. the impossibility
of removing the last traces of impurity from gases, liquids,

and even solids. It also follows from it that absolutely semi-

permeable membranes are non-existent, for the substance

of any membrane would, in time, become saturated with

the molecules of all the various kinds of substances in

contact with one side of it, and thus give up each kind of

substance to the other side.

On the other hand, this view greatly complicates the

calculation of the thermodynamical properties of a solution,

since, in order to make no mistake, it is necessary to assume

from the start the existence in every phase of all kinds of

molecules possible from the given constituents. We must

not neglect any kind of molecule until we have ascertained

by a particular experiment that its quantity is inappreciable.

Many cases of apparent discrepancy between theory and

experiment may probably be explained in this way.

We shall now discuss some of the most important particu-

lar cases. They have been arranged, in the first place, accord-

ing to the number of the independent constituents of the

system; in the second, according to the number of the

phases.

260. One Independent Constituent in One Phase.

According to the phase rule, the nature of the phase depends

on two variables, e.g. on the temperature and the pressure.

The phase may contain any number of different kinds of

molecules. Water, for instance, will contain simple, double,
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and multiple H2 -molecules
; molecules of hydrogen and

oxygen, H2 and 2 ; electrically charged ions H, HO, and

0, etc., in finite quantities. The electrical charges of the

ions do not play any important part in thermodynamics, so

long as there is no direct conflict between the electrical

and the thermodynamical forces. This happens when and

only when the thermodynamical conditions of equilibrium
call for such a distribution of the ions in the different phases
of the system as would lead, on account of the constant

charges of the ions, to free electricity in any phase. The
electrical forces strongly oppose such a distribution, and the

resulting deviation from the pure thermodynamical equi-
librium is, however, compensated by differences of potential
between the phases. A general view of these electromolecular

phenomena may be got by generalizing the expressions for

the entropy and the energy of the system by the addition

of electrical terms. We shall restrict our discussion to

states which do not involve electrical phenomena, and need

not consider the charges of the ions, which we may treat

like other molecules.

In the case mentioned above, then, the concentrations of

all kinds of molecules are determined by 6 and p. The

calculation of the concentrations has succeeded so far only

in the case of the H and OH ions (the number of the

ions is negligible), in fact, among other methods, by the

measurement of the electrical conductivity of the solution,

which depends only on the ions. Kohlrausch and Heydweiller
found the degree of dissociation of water, i.e. the ratio of

the mass of water split into H and OH ions to the total

mass of water to be, at 18 C.,

This number represents the ratio of the number of dis-

sociated molecules to the total number of molecules. We
may determine by thermodynamics the change of the dis-

sociation with temperature.
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The condition of equilibrium will now be established.

The system is, by (216),

n H2 ; % H
;
n2 OH.

Let the total number of molecules be

n = n + HI + %,

the concentrations are, therefore,

The chemical reaction in question,

VQ : v\ : v2
= S% * S% : %,

consists in the dissociation of one H2 molecule into H and

OH.

VQ = 1
; .
n = 1

; v2 = 1
;

and therefore, by (218), in the state of equilibrium

-
log c + log ci + log 02 = K,

or, since <?i
= c2 ,

and CQ = 1 nearly,

2 log Ci = log K.

This gives, by (219), the relation between the concentration

and the temperature :

Od log ci 1 L _,
2
-dO~

=
E'r '

According to Arrhenius, L, the heat necessary for the disso-

ciation of one molecule of H2 into H and OH, is equal to

the heat of neutralization of a strong monobasic acid and

base in dilute aqueous solution. J. Thomsen's experiments

give for mean temperatures :

L := 1045000
.
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On reducing calories to C.G.S. units, we get

d lo Cl 1 4045000

2 x 1-971

On integrating, we have

4045000 1 513000
logci= - = -

Cl = e

The value of the constant C is found from the degree of

dissociation at 18 C. (9 = 291) ;

Cl = c2 = 14-3 xlO- 10

/. C = 6-1 x 10- 7

Hence the degree of dissociation for any temperature is,

513000_
ci=6-le "2

X 10
- 7

.

This agrees well with the electrical conductivity of pure
water when measured at different temperatures. Only at

the absolute zero of temperature does the dissociation, and

with it the conductivity, vanish. On the other hand, it

does not increase indefinitely with temperature, but reaches

a maximum value C.

261. One Independent Constituent in Two or

Three Phases. The main features of these cases have

already been discussed in Chapter II., 205 to 207, and

213.

262. Two Independent Constituents in One Phase

(A substance dissolved in a homogeneous solvent).

According to the phase rule, one other variable besides the

pressure and the temperature is arbitrary, e.g. the number
of the molecules dissolved in 1 litre of the solution, a

quantity which may be directly measured. The values of
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these three variables determine the concentrations of all

kinds of molecules, whether they have their origin in dis-

sociation, association, formation of hydrates, or hydrolysis
of the dissolved molecules. Let us consider the simple
case of a binary electrolyte, e.g. acetic acid in water. The

system is represented by

n H20, m CH3.COOH, % ,
n3 CH.COO.

The total number of molecules,

n = nQ + ni -f n% + %,

is only slightly greater than nQ. The concentrations are

n ni w2 . %
C =

^' Cl= ^' C2 = ^>
c*=n'

The reaction to be considered is represented by

and consists in the dissociation of one molecule of CH3.COOH
into its two ions.

VQ
=

; vi = 1
; V2 = 1

; i>3
= !

Therefore, in equilibrium,

-
log ci 4- log c2 + log c3 = log K ;

or, since c2 = c3,

^ = K ..... (222)
Ol

Now, we may regard the sum

oi + c2 = c

as known, since the total number (% -f %)of the undissociated

and the dissociated molecules of the acid, and the total

number of water molecules, which may be put = n, are
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measured directly. Hence c\ and c.2 may be calculated from

the last two equations.

d
G ni 4

c n\ 4 ^2

With increasing dilution (decreasing c), the ratio -2 increases
c

in a definite manner approaching the value 1, i.e. complete
dissociation. This also gives for the electrical conductivity
of a solution of given concentration Ostwald's so-called law

of dilution of Unary electrolytes* which has been experi-

mentally verified in numerous cases. In a manner quite
similar to that of 260, the heat effect of the dis-

sociation shows how the degree of dissociation depends
on the temperature. Conversely, as was first shown by
Arrhenius, the heat of dissociation may be calculated from

the rate of change of the dissociation with temperature.

263. Usually, however, in a solution, not one, but a

large number of reactions will be possible. Accordingly,
the complete system contains many kinds of molecules.

As another example, we shall discuss the case of an electro-

lyte capable of splitting into ions in several ways, viz. an

aqueous solution of sulphuric acid. The system is repre-

sented by

nQ H20, wi H2S04, Ma H, % HS04, n^ S04.

The total number of molecules is

n = n 4- ni + n2 4- % 4- % (nearly equal to nQ).

* K = -

where A,, is the molecular conductivity at dilution v\ A* the molecular con-

ductivity at infinite dilution ; and v the molecular volume of the electrolyte.

TR.
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The concentrations are

n
Qt ni

t
n2 n3 n^

cn 9
ci
=

J Co = ; 3 = : c4 = .

n ' w ' ^ '

ft,

' n

Here two different kinds of reactions

must be considered
; first, the dissociation of one molecule

of H2S04 into H and HS04 :

i>Q 5 vi= " 1
J

v2
= 1

5 v3 = 1
J v4

=
5

second, the dissociation of the ion HS04 into H and S04

vo = ; n =
;

v2
= 1

;
v3 = - 1

; v4
= 1.

Hence, by (218), there are two conditions of equilibrium :

log GI -\- log c2 4- log CB log K

and log c2
-

log c3 + log c4 = log K'
;

or

and - = K'.

This further condition must be added, viz, that the total

number of 4 radicals (% + % + n) must be equal to half

the number of H atoms (2ni 4- % + %) ;
otherwise the

system would contain more than two independent con-

stituents. This condition is

Finally, the quantity of sulphuric acid in the solution is

supposed to be given :
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The last four equations determine ci, c2 c& ci, and hence the

state of equilibrium is found.

For a more accurate determination it would be necessary
to consider still other kinds of molecules. Every one of

these introduces a new variable, but also a new possible

reaction, and therefore a new condition of equilibrium, so

that the state of equilibrium remains uniquely determined.

264. Two Independent Constituents in Two Phases.

The state of equilibrium, by the phase rule, depends on

two variables, e.g. temperature and pressure. The wide range
of cases in point makes a subdivision desirable, according as

only one phase contains both constituents in appreciable

quantity, or both phases contains both constituents.

Let us first take the simpler case, where one (first) phase
contains both constituents, and the other (second) phase
contains only one single constituent. Strictly speaking
this never occurs (by 259), but in many cases it is a suffi-

cient approximation to the actual facts. The application
of the general condition of equilibrium (218) to this case

leads to different laws, according as the constituent in the

second phase plays the part of dissolved substance or solvent

( 249) in the first phase. We shall therefore divide this

case into two further subdivisions.

265. The Pure Substance in the Second Phase
forms the Dissolved Body in the First. An example of

this is the absorption of a gas, e.g. carbon dioxide in a liquid
of comparatively small vapour pressure. The system is

represented by

n H20, m C02
|
w/ C02 .

The concentrations of the different kinds of molecule of

the system in the two phases are
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The reaction

consists in the evaporation of one molecule of carbon dioxide

from the solution, therefore,

VQ = 0, Vi = 1, VQ = 1.

The condition of equilibrium

VQ log 0Q + Vi log 0i + VQ log
' = log K,

is, therefore,

-
log 0! = log K, .... (223)

or, at a given temperature and pressure (for these deter-

mine K), 0i the concentration of the gas in the solution is

determined. The change of concentration with pressure
and temperature is found by substituting (223) in (219)
and (220) :

d log 01 _ 1 s
1

^
~~

=Q 7j \AAri.)

-JP=-H- <*>

s is the increase of volume of the system, L the heat

absorbed during isothermal-isopiestic evaporation of one

gram molecule of C02. Since s represents nearly the

volume of one gram molecule of carbon^ dioxide gas, we

may, by (16), put

and equation (224) gives

d log d = 1

dp
~

p'

R
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On integrating, we have

log ci = log p + const,

or Cl = Cp (226)

i.e. the concentration of the dissolved gas is proportional to the

pressure of the free gas on the solution (Henry's law). The

factor C, which is a measure of the solubility of the gas, still

depends on the temperature, since (225) and (226) give

d log C _ 1 L
50

~ "
E

'

Of

If, therefore, heat is absorbed during the evaporation of the

gas from the solution, L is positive, and the solubility

decreases with increase of temperature. Conversely, from

the variation of C with temperature, the heat effect pro-

duced by the absorption may be calculated
;

K02 dC

irar

According to the experiments of Naccari and Pagliani,

the solubility of carbon dioxide in water at 20 (9
=

293),

(expressed in a unit which need not be discussed here),

is 0-8928, its temperature coefficient - 0-02483
; therefore,

by (34),

1-971 x 2932 x 0-02483L =
0-8928

- = 4700 col.

Thomsen found the heat effect of the absorption of one gram
molecule of carbon dioxide to be 5880 cal. The error

(according to Nernst) lies mainly in the determination of

the coefficient of solubility. Of the heat effect, the amount

K0 = 1-97 x 293 = 586 cal.

corresponds, by (48), to external work.

266. A further example is the saturation of a liquid
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with an almost insoluble salt ; e.g. succinic acid in water.
The system is represented by

H20,

CH2
- COOH

CH2
- COOH,

CH2
- COOH

CH2
- COOH,

if the slight dissociation of the acid in water be neglected.
The calculation of the condition of equilibrium gives, as in

223,

-
log d = log K,

0i is determined by temperature and pressure. Further, by
(219),

L = - R03l .... (227)

Van't Hoff was the first to calculate L by means of this

equation from the solubility of succinic acid at C. (2'88)
and at 8'5 C. (4-22)

^
log. 4-22 loge 2-88

O*O

This gives, for = 273, L = - 1-971 x 2732 x 0-4494

= 6600 cals. ; i.e. on the precipitation of oneynolecule
of the solid from the solution, 6600 cals. are given out.

Berthelot found the heat of solution to be 6700 cals.

If L be regarded as independent of the temperature,
which is permissible in many cases as a first approximation,
the equation (227) may be integrated with respect to 0,

giving

log ci = - + const.

267. The relation (227) becomes inapplicable if the

salt in solution undergoes an appreciable chemical trans-

formation, e.g. dissociation. For then, besides the ordinary
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molecules of the salt, the products of the dissociation are

present in the solution; for example, in the system of

water and silver acetate,

, %CH3COOAg, waAg, %CH3 cOO
|
%'CH3COOAg.

The total number of molecules in the solution :

n = nQ + HI + n2 + n3 (nearly = n
).

The concentrations of the different molecules in both phases
are

n HI n2 n3 ,
n'

.,

c = -^; d =
;

c2 = ;
c3 = ;

c' = -^ = 1.
OT- w ^ w n^

The reactions,

are :

(1) The precipitation of a molecule of the salt from the

solution :

VQ
= 0, VI 1, V2 = 0, V3 = 0, VQ

= 1.

(2) The dissociation of a molecule of silver acetate :

v = 0, vi = -
1, v2 = 1, v3 = 1, v

' = 0.

Accordingly, the two conditions of equilibrium are :

(1)
_

log Cl = log K
(2)

-
log ci + log c2 + log c3 = log K'

;

or, since c2 = c3,

At given temperature and pressure, therefore, there is in

the saturated solution of a salt a definite number of undis-

sociated molecules
;
and the concentration (c2) of the

dissociated molecules may be derived from that of the
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undissociated (ci) by the law of dissociation of an electrolyte,
as given in (222).

Now, since by measuring the solubility the value of

GI 4- c2, and by measuring the electrical conductivity the

value of c2, may be found, the quantities K and K' can be

calculated for any temperature. Their dependence on tempe-
rature, by (219), serves as a measure of the heat effect of the

precipitation of an undissociated molecule from the solution,

and of the dissociation of a dissolved molecule. Jahn has thus

given a method of calculating the actual heat of solution of

a salt, from measurements of the solubility of the salt and

of the conductivity of saturated solutions at different tempe-
ratures ; i.e. the heat effect which takes place when one

gram molecule of the solid salt is dissolved, and the fraction

is dissociated into its ions, as is actually the case in
01 + 02

the process of solution.

268. The Pure Substance occurring in the Second

Phase forms the Solvent in the First Phase. This case

is realized when the pure solvent in any state of aggregation
is separated out from a solution of another state of aggre-

gation, e.g. by freezing, evaporation, fusion, and sublimation.

The type of such a system is

The question whether the solvent has the same molecular

weight in both phases, or not, is left open. The total

number of molecules in the solution is

n = UQ + ni + % + % + (nearly
= MO).

The concentrations are

i

Ifln fl>\ %2 f ^() -I

Cn = 1 01 = j 02 = > 0Q
=

7T*
== '

n n n n
Q

A possible transformation,
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is the passage of a molecule of the solvent from the first

phase to the second phase, i.e.

.= -!; !
=

<); * = <);. ..v
' = ^. (228)m

o

Equilibrium demands, by (218), that

and, therefore, on substituting the above values of C
Q
and c ',

But
n

and, therefore, since the fraction on the right is very small,

By the general definition (218), we have

and, therefore, on substituting the values of v from (228),

This expression shows that log K also has a small value.

Suppose for the moment that log K = 0, i.e. that the

pure solvent takes the place of the solution

ni + wg + . . . = 0,

then, by (230),
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Since
<p

and
<p

'

depend only on 0, p and the nature of the

solvent, and not on the dissolved substances, the above

equation asserts a definite relation between temperature and

pressure, which is, in fact, the condition which and p must

fulfil, in order that the two states of aggregation of the pure
solvent may exist in contact. On substituting the values of

<p
and

<pQ

'

from (214), we return immediately to the condition

of equilibrium (101) which we deduced in the second chapter.
The pressure (vapour pressure) may be taken as depending
on the temperature, or the temperature (boiling point, melt-

ing point) as depending on the pressure.

Keturning now to the general case expressed in equa-
tion (230), we find that the solution of foreign molecules,

MI, %, %, . . . affects the functional relation between 9 and

p, which holds for the pure solvent. The deviation, in fact,

depends only on the total number of dissolved molecules,

and not on their nature. To find its amount in measurable

quantities, we may introduce either >
, the pressure which

would exist in the system at the given temperature 9, if

there were no dissolved molecules (lowering of the vapour

pressure), or the temperature 9 which would exist at the

given pressure p, if there were no dissolved molecules

(elevation of the boiling point, depression of the freezing

point). If we take the second alternative, 9 9 will be

very small, and we may, therefore, put

log K =

or, by (219), log K =
g ^(0

-
),

and

or 0- = (i+ !+ + 0(281)

By this formula the elevation of the boiling point may
be calculated directly from the number of the dissolved

molecules, the temperature, and the heat of vaporization.
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Since L refers to the evaporation of one gram molecule of the

liquid, the product %L depends only on the mass, and not

on the molecular weight (m )
of the liquid solvent. If L is

to be expressed in calories, we must put R = 1*97 (by 34).

For instance, for one litre of water under atmospheric

pressure,

nJL = 1000 x 536 cal. (approximately),
= 373,

and, therefore, the elevation of the boiling point is

1-97 x 3732

269. Let us now compare equation (231) with the

relation (183), also referring to the elevation of the boiling

point, but deduced from more general principles inde-

pendent of any molecular theory. The equation is

(232)

Here c denotes the ratio of the mass M2 of the dissolved

non-volatile substance to the mass MI of the solvent. In

the present notation,

e = i ... /233 )

L, in (232), is the heat of vaporization per unit mass of the

solvent
; therefore, in the present notation,

The equation (232), therefore, becomes

+ ntfnz +
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Comparison with (231) shows that the two theories will

agree perfectly only if

= B(m + *, +
...)_ (235)+ . .

The molecular theory here set forth specializes the previous
more general theory in such a way as to assign the particular

value (235) to the quantity <p, formerly defined by (165).

270. The quantity <p
was found to be of importance for

a whole series of other properties of solutions besides the

elevation of the boiling point. These relations may at once

be specialized for dilute solutions by substituting the value

of ep from (233) and (235),

c<p
= -J2* n*

m
%

, (236)

(237)

and for L and s, by (234), the values

In this way, for the lowering of the vapour pressure of dilute

solutions, we deduce, from (180),

-p/i

p -p = Oh + Wa + na -1- . .
.)

- (238)n s

If the vapour of the solvent form a perfect gas, and the

specific volume of the solution be negligible in comparison
with that of the vapour, then s (the change of volume of

the system produced by the evaporation of a gram molecule

of the liquid) is equal to the volume of the vapour formed.

By (228),

p
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therefore, by (238),

or, the relative lowering of the vapour pressure,

This relation is frequently stated thus : The relative lower-

ing of the vapour pressure of a solution is equal to the ratio

of the number of the dissolved molecules (% + % 4- % 4- . .
.)

to the number of the molecules of the solvent (n ), or, what is

the same thing in dilute solutions, to the total number of the

molecules of the solution. This proposition holds only, as is

evident, if m = m
', i.e. if the molecules of the solvent pos-

sess the same molecular weight in the vapour as in the

liquid. This, however, is not generally true, as, for example,
in the case of water. It may be well therefore to emphasize
this fact, that nothing concerning the molecular weight of

the solvent can be inferred from the relative lowering of the

vapour pressure, any more than from its boiling point, freez-

ing point, or osmotic pressure. Measurements of this kind

will not, under any circumstances, lead to anything but the

total number (ni + n2 + .
.)

of the dissolved molecules.

Thus, in the last equation the product n
Q
m

Q is immediately
determined by the mass of the liquid solvent, and the mole-

weight, mQ',
of the vapour by its density.

271. For the depression of the freezing point of a

dilute solution, it follows from (186), (236), and (237), that

L' being the heat of solidification of a gram molecule of the

solvent. The product, %L', is given by the mass of the

solvent
;

it is independent of its molecular weight. To

express L' in calories we must put K = 1 97 (by 34).
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Take water as an example : For 1 litre of water under

atmospheric pressure, %L/ = 1000 x 80 cal. approximately.
' = 273, and therefore the depression of the freezing point is

1 -Q7 v
oc.

272. Finally, for the osmotic pressure P we have, from

(190),

v is the specific volume of the solution, and therefore the

product n
Q
m v is approximately its whole volume Y.

Hence

-pfl

P =
-y(Wi

+ % + % + ..
.),

an expression identical with the characteristic equation of a

mixture of perfect gases with the number of molecules,

273. Each of the theorems deduced in the preceding

paragraphs contains a method of determining the total

number of the dissolved molecules in a dilute solution.

Should the number calculated from such a measurement

disagree with the number calculated from the percentage

composition of the solution on the assumption of normal

molecules, some chemical change of the dissolved molecules

must have taken place by dissociation, association, hydrolysis,

or the like. This inference is of great importance in the

determination of the chemical nature of dilute solutions.

The number and nature of the different kinds of molecules

are uniquely determined by the total number of mole-

cules only in quite special cases, viz. when the dissolved

substance undergoes a chemical change only in one way.
In this case the total mass of the dissolved substance

and the total number of molecules formed by it in the
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solution are sufficient for the calculation of the number

of all the different kinds of molecules present. This

case is exceptional, however, for we have seen
( 259)

that all the molecules a substance is capable of forming

necessarily occur in the solution in finite quantities. As
+

soon as two reactions (e.g. H2S04
= 2H -f S04 and

H2S04 = H 4- HS04)
must be considered, the analysis of

the equilibrium remains indeterminate, since there are more

unknown quantities than determining equations. For this

reason there is no direct connection between the depression
of freezing point, the elevation of the boiling point, etc., on

the one hand, and electrical conductivity on the other. For

the one set of quantities depends on the total number of

the dissolved molecules, charged or uncharged, while the

other depends on the number and nature of molecules

charged with electricity (ions), which cannot, in general,

be calculated from the former. Conversely, a disagreement
between the depression of the freezing point as calculated

from the conductivity, and as observed, is not in itself an

objection to the theory, but rather to the assumptions made
in the calculation concerning the kinds of molecules present.

Kaoult was the first to establish rigorously by experi-
ment the relation between the depression of the freezing

point and the number of the molecules of the dissolved

substance
;
and van't Hoff gave a thermodynamical explana-

tion and generalization of it by means of his theory of

osmotic pressure. Application to electrolytes was rendered

possible by Arrhenius' theory of electrolytic dissociation.

Thermodynamics has led quite independently, by the method
here described, to the necessity of postulating chemical

changes of the dissolved substances in dilute solutions.

274. Each Phase contains both Constituents in

Appreciable Quantity. The most important case is the

evaporation of a liquid solution, in which not only the

solvent, but also the dissolved substance is volatile. The

general equation of equilibrium (218), being applicable to
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mixtures of perfect gases whether the mixture may be

supposed dilute or not, holds with corresponding approxi-
mation for a vapour of any composition. The liquid, on the

other hand, must be assumed to be a dilute solution.

In general, all kinds of molecules will be present in

both phases, and therefore the system is represented by

The molecules have the same molecular weight in both

phases. The total number of molecules in the liquid is

n = nQ + HI + ?j2 + (nearly = n
),

in the vapour

i i . / - /.n = n
Q + n\ + .72/2 ~r

The concentrations of the different kinds of molecules are,

in the liquid,

_ nQ . _ n^
. __

^2
.~

w '
"
n 9 2 "~

n 9

in the vapour,

The reaction

i . ' . t

consists in the evaporation of a molecule of the first kind,

and therefore

VQ = 0, Vl = 1, V2 = 0, . . . VQ
' = 0, Vi = 1, Va'

= 0, . . .

The equation of equilibrium becomes

log GI + log GI = log K,
r

Cl TT
or - = ii.
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For every kind of molecule, which possesses the saute molecular

weight in loth phases, there is a constant ratio of distribution,

which is independent of the presence of other molecules

(Nernst's law of distribution).

If, on the other hand, a molecule of the solvent

evaporate, we have,

v = 1, Vl = 0, v2 = 0, . . . v
' = 1, vi = 0, v2

' = . . .
;

and the equation of equilibrium becomes

-
log c + log e

r = log K,

where

. ni 4- Wg +

= cl + e2 + ........... (239)

/. ci + e2 + . . . + log c
fl

' = log K, . . (240)

where ci, ca , . . . , the concentrations of the molecules dis-

solved in the liquid, have small values. Two cases must be

considered.

Either, the molecules in
Q
in the vapour form only a small

or at most a moderate portion of the number of the vapour
molecules. Then the small numbers cb c& . . .

, may be

neglected in comparison with the logarithm, and therefore

log CQ = log K.

This asserts ;that the concentration of the molecules of

the solvent in the vapour does not depend on the composi-
tion of the solution. An example of this is the evaporation
of a dilute solution, when the solvent is not very volatile,

e.g. alcohol in water. The partial pressure of the solvent

(water) in the vapour is not at all dependent on the con-

centration of the solution, but is equal to that of the pure
solvent.

Or, the molecules m in the vapour far outnumber all

the other molecules, as, e.g., when alcohol is the solvent in
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the liquid phase, water the dissolved substance. The con-

centrations Ci, c2 . . . must not be neglected, and, as in (239),

equation (240) therefore becomes

(* + * + ...)- (c/ + c*' + ...) = log K.

This relation contains an extension of van't Hoffs laws

concerning the elevation of the boiling point, the diminution

of the vapour pressure, etc., and asserts that when the

substance dissolved in the liquid also passes in part into the

vapour, the elevation of boiling point or the diminution of
the vapour pressure depends no longer on the concentrations

of the molecules dissolved in the liquid, but on the difference

of their concentrations in the liquid and in the vapour.
If this difference be zero, the distillate being of the same

composition as the liquid, the elevation of the boiling point
and the diminution of the vapour pressure vanish. This

conclusion has already been reached from a more general

point of view ( 219). If the concentration of the dissolved

substance in the vapour be larger than that in the liquid,

as may happen in the evaporation of an aqueous solution of

alcohol, the boiling point falls, while the vapour pressure

rises.

Exactly analogous theorems may, of course, be deduced

for other states of aggregation. Thus, the more general

statement of the law concerning the freezing point would

be : If both the solvent and the dissolved substance of a dilute

solution solidify in such a way as to form another dilute

solution, the depression of the freezing point is not proportional

to the concentrations of the dissolved substances in the liquid,

but to the difference of the concentrations of the dissolved

substances in the liquid and solid phases, and changes sign

with this difference. The solidification of some alloys is an

example.
While these laws govern the distribution of the mole-

cules in both phases, the equilibrium within each phase
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obeys the laws, which were deduced in 262, etc. We
again meet with the laws of dissociation, association, etc.

(Nernst).

275. Three Independent Constituents in one Phase.

Two dissolved substances in a dilute solution will not affect

one another unless they have certain kinds of molecules in

common, for there is no transformation possible, and there-

fore no special condition of equilibrium to fulfil. If two

dilute solutions of totally different electrolytes in the same

solvent be mixed, each solution will behave as if it had been

diluted with a corresponding quantity of the pure solvent.

The degree of the dissociation will rise to correspond to the

greater dilution.

It is different when both electrolytes have an ion in

common, as, for example, acetic acid and sodium acetate.

In this case, before mixing there are two systems :

^ H20, % CH3.COOH, wa H,

and < H20, %' CH3.COONa, n2

r

Na, n3
' CH3.COO.

As in (222), for the first solution,

K,. . . . (241)

for the second, = K', or - = K'. . . . (242)
ci ni n

After mixing the two, we have the system

H, na, 5CH3 COO,

where, necessarily,

n
Q
= n 4 UQ (number of H2 molecules)

n2 + HI = ni 4- W (number of Na atoms)

ni 4- ^3 = ni 4 n2 (number of H atoms)

r7 3 4 n = n5 (number of 4 ions = number of

ions).

(243)
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The total number of molecules iii the system is

n = n + 7*1 + tl2 + n3 + nA + ?j5 (nearly = n
).

The concentrations are

- ?o. - _ 7j
i.

-
^a. ,- MS w-4 W5c

o-*:> Cl ~^' *-*; <* = *; %-S;^.*
Iii the system there are two different reactions,

"u : vi : v2 : va : v4 : y5 = <H : S/li : &I2 : 8/ia : 8w4 : 8w6,

possible ; first, the dissociation of one molecule of acetic acid,

VQ
= 0, Vl = -

1, V2 = 0, V3 = 1, Vi = 0, V5 = 1,

and therefore the condition of equilibrium is, by (218),

-
log GI + log c3 + log c5 = log K,

-

second, the dissociation of a molecule of sodium acetate,

VQ
= 0, Vi = 0, V2 = -

1, Vj = 0, V4 = 1, l/5
= 1,

whence, for equilibrium,

-
log c2 + log c4 + log c5 = log K', or

C
l~ = K',
C

-2

?i^= *i^ =K'. (245)
Wa-w %(> + <)

The quantities K and K' are the same as those in (241)
and (242). They depend, besides on 9 and p, only on the

nature of the reaction, and not on the concentrations, nor

on other possible reactions. By the conditions of equilibrium

(244) and (245), together with the four equations (243), the

values of the six quantities w- , wi, . . . n5 are uniquely
s
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determined, if the original solutions and also the number of

molecules w , %, . . . and n
', n\ . . . be given.

276. The condition that the two solutions should be

isohydric, i.e. that their degree of dissociation should remain

unchanged on mixing them, is evidently expressed by the

two equations

H! = m, and n2
= n\ 9

i.e. the number of undissociated molecules of both acetic

acid and sodium acetate must be the same in the original

solutions as in the mixture. It immediately follows, by
(243), that

^""'

These values, substituted in (244) and (245), and combined

with (241) and (242), give

whence the single condition of isohydric solutions is

n% n2

'

,, ,.- = - or c2 = c2 (= c3 = c3'),n n

or, the two solutions are isohydric if the concentration of

the common ion CH 3COO is the same in both. This pro-

position was enunciated by Arrhenius, who verified it by
numerous experiments. In all cases where this condition

is not realized, chemical changes must take place on mixing
the solutions, either dissociation or association. The direc-

tion and amount of these changes may be estimated by ima-

gining the dissolved substances separate,and the entire solvent

distributed over the two so as to form isohydric solutions.
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If, for instance, both solutions are originally normal (1 gram
molecule in 1 litre of solution), they will not be isohydric,
since sodium acetate in normal solution is more strongly

dissociated, and has, therefore, a greater concentration of

CH3.COO-ions, than acetic acid. In order to distribute the

solvent so that the concentration of the common ion

CH3.COO may be the same in both solutions, some water

must be withdrawn from the less dissociated electrolyte

(acetic acid), and added to the more strongly dissociated

(Na-acetate). For, though it is true that with decreasing
dilution the dissociation of the acid becomes less, the con-

centration of free ions increases, as (262) shows, because the

ions are now compressed into a smaller quantity of water.

Conversely, the dissociation of the sodium acetate increases

on the addition of water, but the concentration of the free

ions decreases, because they are distributed over a larger

quantity of water. In this way the concentration of the

common ion CH3.COO may be made the same in both

solutions, and then their degree of dissociation will not be

changed by mixing. This is also the state ultimately

reached by the two normal solutions, when mixed. It

follows, then, that when two equally diluted solutions of

binary electrolytes are mixed, the dissociation of the more

weakly dissociated recedes, while that of the more strongly

dissociated increases still further.

277. Three Independent Constituents in Two
Phases. We shall first discuss the simple case, where the

second phase contains only one constituent in appreciable

quantity. A solution of an almost insoluble salt in a liquid,

to which a small quantity of a third substance has been

added, forms an example of this case. Let us consider an

aqueous solution of silver bromate and silver nitrate. This

two-phase system is represented by
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The concentrations are

_%.,._ WL _ '"a. .
< _<__ i

C ~
w ' * w ' 2

~
n '

' ~
M

'
"

where n = n + n\ -\- n.2 + % + ^4 4- % (nearly = n
).

Of the possible reactions,

we shall first consider the passage of one molecule of

AgBr03 from the solution, viz.

VQ
= 0, I/I

= 1, V-2
= 0, . . . 1/

' = 1.

The condition of equilibrium is, therefore,

-
log d + log e

' = log K

or ci = g....... (2-16)

The concentration of the undissociated molecules of silver

bromate in the saturated solution depends entirely on the

temperature and the pressure.

We may now consider the dissociation of a molecule of

AgBr03 into its two ions.

V = 0, Vi = -
1, 1/2

= 0, V3 = lj l>4
= 1, V5 = 0, 1>

' = 0,

and, therefore,

-
log d + log c3 + log c4 = log K',

or, by (246),

i.e. the product of the concentrations of the Ag and Br03

ions depends only on temperature and pressure. The con-

centration of the Ag-ions is inversely proportional to the
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concentration of the Br03-ions. Since the addition of silver

nitrate increases the number of the Ag-ions, it diminishes

the number of the Br03-ions, and thereby the solubility of

the bromate, which is evidently measured by the sum Ci -f c4 .

We shall, finally, consider the dissociation of a molecule

of AgN03 into its ions.

i'o
= 0, vi = 0, v2

= -
1, i>3

= 1, v4 = 0, v5 = 1, VQ
' = 0,

whence, by (218),

^ = K". . (248)
<**

To equations (246), (247), and (248), must be added, as a

fourth, the condition

and, as a fifth, the value of c2 + cs> given by the quantity of

the nitrate added, so that the five unknown quantities, eiy c.
2)

3, <?4, 5, are uniquely determined.

The theory of such influences on solubility was first

established by Nernst, and has been experimentally verified

by him, and more recently by Noyes.

278- The more general case, where each of the two

phases contains all three constituents, is realized in the

distribution of a salt between two solvents, which are them-

selves soluble to a small extent in one another (e.g. water

and ether). The equilibrium is completely determined by
a combination of the conditions holding for the transition of

molecules from one phase to another with those holding for

the chemical reactions of the molecules within one and the

pame phase. The former set of conditions may be summed

up in Nernst's law of distribution ( 274). It assigns to

each kind of molecule in the two phases a constant ratio of

distribution, which is independent of the presence of other

dissolved molecules. The second set is the conditions of
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the coexistence of three independent constituents in one

phase ( 275), to which must be added Arrhenius' theory of

isohydric solutions.

279. The same method applies to four or more inde-

pendent constituents combined into one or several phases.
The notation of the system is given in each case by (216),

and any possible reaction of the system may be reduced to

the form (217), which corresponds to the condition of equili-

brium (218). All the conditions of equilibrium, together
with the given conditions of the system, give the number of

equations which the phase rule prescribes for the determi-

nation of the state of equilibrium.

When chemical interchanges between the different sub-

stances in solution are possible, as, e.g.,
in a solution of dis-

sociating salts and acids with common ions, the term degree

of dissociation has no meaning, for the ions may be combined

arbitrarily into dissociated moleciiles. For instance, in the

solution

n H20, m NaCI, n2 KC1, % NaN03, m KN03, n5 Na, n6 K,

WT Cl, n8 N03

we cannot tell which of the Na-ions should be regarded as

belonging to NaCI, and which to NaN03 . In such cases

the only course is to characterize the state by the concen-

trations of the dissolved molecules.

The above system consists of water and four salts, but,

besides the solvent, only three are independent constituents,

for the quantities of the Na, the K, and the Cl determine

that of the N03. Accordingly, by 204 (
= 4, /3

=
1) all

the concentrations are completely determined at given

temperature and pressure by three of them. This is inde-

pendent of other kinds of molecules, and other reactions,

\vhich, as is likely, may have to be considered in establishing
the conditions of equilibrium.

280. If in a system of any number of independent
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constituents in any number of phases, the condition of

equilibrium (218) is not satisfied, i.e. if for any virtual

isothermal-isopiestic change

^v log c + vi log ci + v2 log c2 -f . . .

>
log K,

then the direction of the change which will actually take

place in nature is given by the condition dft >
( 147).

If we now denote by v , vi, v2 . . ., simple whole numbers,
which are not only proportional to, but also of the same

sign as the actual changes which take place, then we have,

by (215),

^VQ log c + vi log ci 4- v2 log c2 + . . . < log K,

for the direction of any actual isothermal isopiestic change,
whether it be a chemical change inside any single phase, or

the passage of molecules between the different phases. The
constant K is defined by (218).

To find the connection between the difference of the

expressions on the right and left and the time of the reaction

is immediately suggested, and, in fact, a general law for the

velocity of an irreversible isothermal isopiestic process may
be thus deduced. We shall not, however, enter further into

these considerations in this book.
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specific volume, 17 ; temperature,

17,152
Curves of evaporation, 158, 161

;
of

fusion, 158, 161
;

of sublimation,

158, 161

Cycle of operations, 44

1)

Dalton's law, 10, 20

Davy, 36

Decrease of free energy by dilution,

112

Deductions from second law of thermo-

dynamics, 105

Density, specific, 7 ;
abnormal vapour,

30

Depression of freezing point, 250

Developable surface, 164

Deviation from perfect gases, 13, 123

Difference of specific heats, 121

Diffusion, 9
;
increase of entropy by,

214; irreversible, 214

Dilute solutions, 223-263 ; energy of,

224 ; entropy of, 226
;

thermo-

dynamical theory of, 222 ;
volume of.

225

Dilution, decrease of free energy by,

112; heat of, 198 ; infinite, 70 ; law

of, of binary electrolytes, 238

Direction of natural process, 108

Dissipation of energy. 101

Dissociation, graded, 221 ; of H2S0 4 .

238: of hydriodic acid. 219; of

iodine vapour, 220 ; of water, 234 ;

Arrhenius' theory of electrolytic, 252

Distribution law (Nernst's), 254

Divariant system, 181

Dahem, How.

Dulong and Petit's law, 34

Dyne, 4

E

Elasticity, coefficient of, 7

Electrical conductivity of water, 236

Electrolyte, binary, 237

Electrolytic dissociation, Arrhenius'

theory of, 252

Elevation of boiling point, 200

Endothermal process, 37

Energetics, 79, 84

Energy, change of, 43; conservation

of, 38, 40; definition of, 39; dis-

sipation of, 101
; free, 110 ; internal,

47 ; internal, of perfect gas, 57 ;

latent, 110; of a solution, 70; of

dilute solution, 224 ;
of gas mixture,

209; potential, 45; total, 110;

zero, 44

Energy, free, of perfect gas, 113

Entropy, definition, 97 ; diminution

of, 93; increase of, by diffusion,

214; maximum value, 117; of a

gas, 89 ; of a system of gases, 92 ;

of dilute solution, 225 ;
of gas mix-

ture, 209-214 ; principle of increase

of, 100 ; specific, 119

Equation, characteristic, 5, 6, 11 ;

deduced from Thomson and Joule's

experiments, 126; Clausius', 14,

140; Van der Wads', 13

Equilibrium, thermal, 2 ; conditions of,

115, 136, 176 ; of gas mixture, 215,

217

Equivalent weight, 23

Equivalents, number of, 23

Euler, 176

Evaporation of ammonium carbamate,

188; of ammonium chloride, 188;

theory of, 135

Exothermal process, 37

Expansion, coefficient of, 7

External conditions of equilibrium,

136 ; effect, 39 ; variable, 178 ;
work

in complete cycle, 54 ;
work in re-

versible process, 51, 52



INDEX. 269

Favre, 74

First law of thermodynamics, 38, 42,

46

Free energy, 1 10 ; change of, with

temperature. 113; decrease of, by

dilution, 112; minimum value of,

117; of a perfect gas, 113

Freezing point, depression of, 250

Function ,114
Fundamental point (triple), loo;

pressure, 154; temperature, 154;

temperature of ice, 154 ; triangle,

159

Fusion, curve, 158, 161 ; theory of, 135

G

Gas constant, 27 ;
thermometer. 3 ;

volume, 27

Gas mixture, 9 ; energy of, 209 ;
en-

tropy of, 209-214 ; volume, 28

Gases, perfect, 5, 57

Gaseous system, 207-222

Gay-Lussac, 24, 57

Gay-Lussac's law, deviations from,

123

Gibbs, 73, 173, 212, 232

Gibbs's phase rule, 179, 232

Graded dissociation, 221

Gram-calorie, mechanical equivalent

of, 41

ir

Heat, absorbed, 53 ; atomic, 34 ; capa-

city, 33 ; conception of, 1 ; molecu-

lar, 34 ; molecular, of perfect gases,

58 ;
of combustion, 75, 76 ; of dilu-

tion, 198 ; of formation of C02 ,
of

CS2,
of CH4 , 75; of fusion, 37;

of neutralization, 73 ; of precipita-

tion, 201 ; of solidification, 201 ; of

solution, 190 ; of sublimation, 37 ;

of vaporization, 37; quantity, 32;

specific (definition), 33 ; total, 36 ;

unit, 32

Heat and work, analogy between, 53

Heat effect, 37 ; at coatant pressure,

71 ; in thermochemistry, 68 ; of

dilution of H2S04 , 70

Heat function at constant pressure, 73

Heat, latent, theory, 110; approxima-
tion formula, 143

Heating at constant pressure, 56 ; at

constant volume, 56

Henry's law, 242

Hertz, H., 146

Heterogeneous system, 180

Heydweiller, 234

Him, 148

Homogeneous substance, 138 ; system,
119-131

Horstmann, 188

Hydriodic acid, dissociation of, 219

Hydrobromamylene, 30

Hydrogen, affinity of, for oxygen, 112

Hydrogen peroxide, 74

Independent constituents, 173

Inertia resistance, 116

Infinite dilution, 70

Infinitely slow compression, 50; pro-

cess, 49-51

Inflection, point of, 17

Influence of pressure on specific heat,

123 ; of temperature on combustion,

76

Internal conditions of equilibrium,

136; variable, 178

Internal energy, 47; of perfect gas.

48

Iodine vapour, dissociation of, 220

Irreversible diffusion, 214

Isobaric change, 7

Isochoric change, 7

Isohydric solutions, 258 ;
Arrhenius'

theory of, 262

Isomorphous substance, 182

Isopiestic change, 7

Isopycnic change, 7

Isothermal processes, 110
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Isothennal-isopiestic process, 114

Isotherms of C02 ,
15

Isotropic bodies, 3

Jahn, 24.)

Joule, 36

Joule's experiments, 40-42, 47

Joule and Thomson's absolute tempera-

ture, 127-131 ; experiments, 48,

57, (theory) 124

K

Kirchhoff, 191

Kirchhoffs formula, 198

Kohlrausch, 234

Konowalow, 196

Krigar-Manzel, 99 n.

Kundt, 122

Latent energy, 110

Latent heat, 37, 140, 143 ;
from phase

rule, 187-189

Laws: Avogadro's, 25, 57; Babo's,

198 ; Boyle's, 5, 57 ; Dalton's,

10, 20; Dulong and Petit's, 34;

Gay-Lussac's, 6, 24, 57; Henry's,

242; Mariotte's, 5; Nernst's, 254;

Neumann's (Regnault), 35; Ost-

wald's, 238; Van't Hoff's, 255;

Wiillner's, 199

Laws of thermodynamics. See First

and Second

Lead sulphide, 68

Liquefaction pressure, 20

Lowering of freezing point, 202; of

vapour pressure, 199, 250

M

Mariotte's law, 5

Maximum value of entropy, 117; of

free energy, 117 ;
of

,
118

Maximum work, 111

Maxwell, 87

Mechanical equivalent of a gram-

calorie, 41 ; of heat, 40 ; of heat in

absolute units, 42

Meier, Fr., 220

Melting point of ice, 146; lowering

of, by pressure, 146

Membranes,- semipermeable, 29, 203

Meyer, Robert, 62

Mixture of gases, 9

Mixtures, 20

Molecular heat, 34 ; of perfect gases,

58

Molecular weight, 22
; apparent, 28

Molecules, number of, 25

X

Naccari, 242

Natural process, direction of, 108

Nernst, 242, 254, 261

Nernst's law of distribution, 254

Neumann, F., 35

Neutralization, heat of, 73

Nitrogen oxides, 23
; peroxide, 30

Non-variant system, 179

Noyes, 261

Osmotic pressure, 204, 251

Ostwald's law, 238

Oxides of nitrogen, 23

Pagliani, 2.42

Partial pressures, 10

Perfect gases, 5, 57 ; system, 44

Phase, denned, 173 ; rule, 179

Phosphorus pentachloride, 30

Planck, 228

Point (n + 2)-ple, 179
;
of inflection,

17; triple, 155, 180; quadruple,

180; quintiple, 180

Porous plug experiments, 48

Potassium chlorate, 182

Potential, energy, 45 ; thermodynatuic,
115n.



INDEX. 271

Precipitation, heat of, 201

Pressure coefficient, 7 ; of mercury, 9

Pressure, fundamental, 154; osmotic,

204, 251
;
of liquefaction, 20

Principle of Berthelot, 113

Process, adiabatic, 109 ; endothermal,

37; isothermal, 110; isothermal-

isopiestic, 114
; exothermal, 37

Processes, periodic, 83
;
reversible and

irreversible, 82

Q

Quadruple point, 180

Quantity of heat, 32

Quintiple point, 180

K

Ratio of specific heats, 59, 122

Regnault, 58, 143, 148

Eesistance inertia, 116

Reversibility of a process, complete,

condition of, 94

Roozeboom, Bakhuis, 179

Rumford, 36

Saturation point, 16

Second law of thermodynamics, in-

troduction, 77 ; proof, 86 ; possible

limitations, 103; deductions, 105;
test of, 147, 148

Seinipermeable membranes, 29, 203

Silbermann, 74

Silver acetate, 244; bromate, 259;

nitrate, 244, 259

Singular values, 37

Sodium carbonate, 73
; hydrate, 73

Solidification, heat of, 201 ; pressure,

20

Solution, heat of, 190 ; isohydric, 258

Solutions, dilute, 223-263

Solvent, 196

Sound, velocity of, 61

Specific density, 7

Specific entropy, 119

Specific heat, 33 ;
at constant pressure.

56, 59, 120
;
at constant volume,

56, 59, 120; influence of tem-

perature on, at constant pressure,

123; of saturated vapour, 150; of

steam, 148

Specific heats, difference of, 121 ;

ratio of, 59, 122

Spring, 20

States of aggregation, 69, 132
;

co-

existence of, 153

Stohmann, 71

Sublimation, curve, 158, 161
; theory

of, 135

Substance, isomorphous, 182

Succinic acid, 243

Sulphur, 31 ;
dioxide and water

equilibrium, 180

Sulphuric acid, dissociation of, 238

Surface, developable, 164

System, condensed, 181
; divariant,

181
; gaseous, 207-222 ; hetero-

geneous, 180; homogeneous, 119-

131
; non-variant, 179 ; perfect, 44

;

univariant, 180

Temperature, absolute, 6 ; critical,

17, 152
;

critical solution, 182 ;

definition of, 2, 3; fundamental,

154; fundamental, of ice, 154

Thallium chlorate, 182

Theoretical regions, 19

Thermal equilibrium, 2

Thermochemical symbols, 68

Thermodynamic potential, 115

Thermodynamical theory of dilute

solutions, 222
;
of fusion, vaporiza-

tion, and sublimation, 135

Thermometer, gas, 3

Thiesen, 140

Thomsen, J., 68, 73, 235

Thomson, 36, 87, 146. See Joule and

Thomson

Transformability of heat into work, 80

Triangle, fundamental, 159

Triple point, 155, 180
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Unit of heat, 32

Univariant system, 180

Van der Waals' constants for C02 , 14 ;

equation, 13

Van't Hoff's laws, 253

Vaporization curve, 158, 161 ; theory

of, 135

Vapour densities, abnormal, 30

Vapour pressure, lowering of, 199

Variable, internal and external, 178

\V

Warburg, 122

Water, dissociation of, 234

Weights molecular and equivalent?

22,23

Work, and heat, analogy between, 53 ;

external, in reversible process, 51
;

maximum, 111

Wiillner's law, 199

Zero calorie, 33 ; energy, 44; state, 92
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