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PKEFACE.

Les causes primordiales ne nous sout point connues; rnais elles sont assu-

jetties a des lois simples et constantes, que Ton peut decouvrir par l'obser-

vation, et dont l'e'tude est l'objet de la philosopliie naturelle.—Fourier.

The term Natural Philosophy was used by Newton, and is

still used in British Universities, to denote the investigation of

laws in the material world, and the deduction of results not

directly observed. Observation, classification, and description

of phenomena necessarily precede Natural Philosophy in every

department of natural science. The earlier stage is, in some

branches, commonly called Natural History; and it might with

equal propriety be so called in all others.

Our object is twofold : to give a tolerably complete account

of what is now known of Natural Philosophy, in language

adapted to the non-mathematical reader
;
and to furnish, to

those who have the privilege which high mathematical acquire-

ments confer, a connected outline of the analytical processes by
which the greater part of that knowledge has been extended

into regions as yet unexplored by experiment.

We commence with a chapter on Motion, a subject totally

independent of the existence of Matter and Force. In this

we are naturally led to the consideration of the curvature and

tortuosity of curves, the curvature of surfaces, distortions or

strains, and various other purely geometrical subjects.
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VI PKEFACE.

The Laws of Motion, the Law of Gravitation and of Electric

and Magnetic Attractions, Hookes Law, and other fundamental

principles derived directly from experiment, lead by mathe-

matical processes to interesting and useful results, for the full

testing of which our most delicate experimental methods are as

yet totally insufficient. A large part of the present volume is

devoted to these deductions; which, though not immediately

proved by experiment, are as certainly true as the elementary

laws from which mathematical analysis has evolved them.

The analytical processes which we have employed are, as a

rule, such as lead most directly to the results aimed at, and are

therefore in great part unsuited to the general reader.

We adopt the suggestion of Ampere, and use the term

Kinematics for the purely geometrical science of motion in

the abstract. Keeping in view the proprieties of language, and

following the example of the most logical writers, we employ
the term Dynamics in its true sense as the science which treats

of the action offorce, whether it maintains relative rest, or pro-

duces acceleration of relative motion. The two corresponding
divisions of Dynamics are thus conveniently entitled Statics and

Kinetics.

One object which we have constantly kept in view is the

grand principle of the Conservation of Energy. According to

modern experimental results, especially those of Joule, Energy
is as real and as indestructible as Matter. It is satisfactory to

find that Newton anticipated, so far as the state of experi-

mental science in his time permitted him, this magnificent

modern generalization.

We desire it to be remarked that in much of our work,

where we may appear to have rashly and needlessly interfered

with methods and systems of proof in the present day generally

accepted, we take the position of Restorers, and not of Inno-

vators.

In our introductory chapter on Kinematics, the consideration

of Harmonic Motion naturally leads us to Fourier s Theorem,
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one of the most important of all analytical results as regards

usefulness in physical science. In the Appendices to that chapter

we have introduced an extension of Greens Theorem, and a

treatise on the remarkable functions known as Laplace's Go-

efficients. There can be but one opinion as to the beauty and

utility of this analysis of Laplace ;
but the manner in which it

has been hitherto presented has seemed repulsive to the ablest

mathematicians, and difficult to ordinary mathematical students.

In the simplified and symmetrical form in which we give it, it

will be found quite within the reach of readers moderately

familiar with modern mathematical methods.

In the second chapter we give Newton's Laws of Motion in

his own words, and with some of his own comments—every

attempt that has yet been made to supersede them having

ended in utter failure. Perhaps nothing so simple, and at

the same time so comprehensive, has ever been given as the

foundation of a system in any of the sciences. The dynamical

use of the Generalized Coordinates of Lagrange, and the Vary-

ing Action of Hamilton, with kindred matter, complete the

chapter.

The third chapter,
"
Experience," treats briefly of Observa-

tion and Experiment as the basis of Natural Philosophy.

The fourth chapter deals with the fundamental Units, and

the chief Instruments used for the measurement of Time, Space,

and Force.

Thus closes the First Division of the work, which is strictly

preliminary, and to which we have limited the present issue.

This new edition has been thoroughly revised, and very

considerably extended. The more important additions are to

be found in the Appendices to the first chapter, especially that

devoted to Laplace's Coefficients ; also at the end of the second

chapter, where a very full investigation of the "
cycloidal

motion' of systems is now given; and in Appendix B', which

describes a number of continuous calculating machines invented

and constructed since the publication of our first edition. A
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great improvement has been made in the treatment of La-

grange's Generalized Equations of Motion.

We believe that the mathematical reader will especially

profit by a perusal of the large type portion of this volume
;
as

he will thus be forced to think out for himself what he has

been too often accustomed to reach by a mere mechanical

application of analysis. Nothing can be more fatal to progress

than a too confident reliance on mathematical symbols ;
for the

student is only too apt to take the easier course, and consider the

formula and not the fact as the physical reality.

In issuing this new edition, of a work which has been for

several years out of print, we recognise with legitimate satis-

faction the very great improvement which has recently taken

place in the more elementary works on Dynamics published in

this country, and which we cannot but attribute, in great

part, to our having effectually recalled to its deserved posi-

tion Newton's system of elementary definitions, and Laws of

Motion.

We are much indebted to Mr Burnside and Prof. Chrystal

for the pains they have taken in reading proofs and verifying

formulas
;
and we confidently hope that few erratums of serious

consequence will now be found in the work.

W. THOMSON.
P. G. TAIT.

NOTE TO NEW IMPRESSION, 1912

A few slight additions and corrections have been made by

Sir George Darwin and Prof. H. Lamb, but, substantially, the

work remains as last passed by the authors. The additions can

be identified by the initials attached in brackets.
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Division i

PRELIMINARY.

CHAPTER I.—KINEMATICS.

1. There are many properties of motion, displacement, and

deformation, which may be considered altogether independently
of such physical ideas as force, mass, elasticity, temperature,

magnetism, electricity. The preliminary consideration of such

properties in the abstract is of very great use for Natural Philo-

sophy, and we devote to it, accordingly, the whole of this our

first chapter ;
which will form, as it were, the Geometry of our

subject, embracing what can be observed or concluded with re-

gard to actual motions, as long as the cause is not sought.

2. In this category we shall take up first the free motion of

a point, then the motion of a point attached to an inextensible

cord, then the motions and displacements of rigid systems
—and

finally, the deformations of surfaces and of solid or fluid bodies.

Incidentally, we shall be led to introduce a good deal of ele-

mentary geometrical matter connected with the curvature of

lines and surfaces.

3. When a point moves from one position to another it must Motion of a

. . . . point.

evidently describe a continuous line, which may be curved or

straight, or even made up of portions of curved and straight

lines meeting each other at any angles. If the motion be that

of a material particle, however, there cannot generally be any
such abrupt changes of direction, since (as we shall afterwards

see) this would imply the action of an infinite force, except in

the case in which the velocity becomes zero at the angle. It

is useful to consider at the outset various theorems connected

VOL. I. 1
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Motion of a with the geometrical notion of the path described by a moving

point, and these we shall now take up, deferring the considera-

tion of Velocity to a future section, as being more closely con-

nected with physical ideas.

4. The direction of motion of a moving point is at each

instant the tangent drawn to its path, if the path be a curve, or

the path itself if a straight line.

Curvature 5. If the path be not straight the direction of motion
of a plane

*
.

°
•curve.

changes from point to point, and the rate of this change, per
,7/1 '

\

unit of length of the curve
[-3- according to the notation below) ,

is called the curvature. To exemplify this, suppose two tangents

drawn to a circle, and radii to the points of contact. The angle

between the tangents is the change of direction required, and

the rate of change is to be measured by the relation between

this ancrle and the length of the circular arc. Let / be the

angle, c the arc, and p the radius. We see at once that (as

the angle between the radii is equal to the angle between

the tangents)

pl-c,

and therefore - •= - . Hence the curvature of a circle is in-
c p

versely as its radius, and, measured in terms of the proper unit

of curvature, is simply the reciprocal of the radius.

6. Any small portion of a curve may be approximately
taken as a circular arc, the approximation being closer and

closer to the truth, as the assumed arc is smaller. The curva-

ture is then the reciprocal of the radius of this circle.

If 8$ be the angle between two tangents at points of a curve

distant by an arc 8s, the definition of curvature gives us at once

86
as its measure, the limit of 5- when 8s is diminished without

OS

limit
; or, according to the notation of the differential calculus,

d$
But we have

us

«»•-£
if, the curve being a plane curve, we refer it to two rectangular



(1),

.(2).
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axes OX, OY, according to the Cartesian method, and if 6 denote Curvature
of & I 'i"f*

the inclination of its tangent, at any point x, y, to OX. Hence curve

*« tan-4
;dx

and, by differentiation with reference to any independent variable

t, we have

d(^)
m - Way _

dx dry
- dy d'x

(dy\'~
daf + dy*

+
\dx)

Also, ds = (dx" + dy')
1
.

Hence, if p denote the radius of curvature, so that

l_d$
p ds'

, ,
1 dx ds

y — dy d
2x

we conclude - = —^—
P (dx

2+ dy*)§

Although it is generally convenient, in kinematical and

kinetic formulae, to regard time as the independent variable, and

all the changing geometrical elements as functions of it, there

are cases in which it is useful to regard the length of the arc or

path described by a point as the independent variable. On this

supposition we have

= d (ds
2

)
= d (dx

2 + dy
2

)
= 2 (dx ds*x + dy d*y),

where we denote by the suffix to the letter d, the independent
variable understood in the differentiation. Hence

dx dy (dx
2 + dy

2

)*

d*y ~~d?x~ X(d
2

yf + (dg
2

x)
7
fi

'

and using these, with ds" = dx2 + dy
2

,
to eliminate dx and dy

from (2), we have

i_{(<W + (<W'}* .

p ds2

or, according to the usual short, although not quite complete,

notation,

1 UcEy\\(d^\\ l

P \\ds
2
) W) i

'

7. If all points of the curve lie in one plane, it is called a Tortuous

plane cu?*ve, and in the same way we speak of a plane polygon
or broken line. If various points of the line do not lie in one

plane, we have in one case what is called a curve of double

1—2

curve.
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Tortuous
curve.

Curvature
and tortu-

osity.

curvature, in the other a gauche polygon. The term 'curve of

double curvature' is very bad, and, though in very general use,

is, we hope, not ineradicable. The fact is, that there are not

two curvatures, but only a curvature (as above defined), of which

the plane is continuously changing, or twisting, round the

tangent line
;

thus exhibiting a torsion. The course of such

a curve is, in common language, well called 'tortuous;' and

the measure of the corresponding property is conveniently
called Tortuosity.

8. The nature of this will be best understood by consider-

ing the curve as a polygon whose sides are indefinitely small.

Any two consecutive sides, of course, lie in a plane
—and in

that plane the curvature is measured as above, but in a curve

which is not plane the third side of the polygon will not be in

the same plane with the first two, and, therefore, the new plane
in which the curvature is to be measured is different from the

old one. The plane of the curvature on each side of any point

of a tortuous curve is sometimes called the Osculating Plane of

the curve at that point. As two successive positions of it con-

tain the second side of the polygon above mentioned, it is

evident that the osculating plane passes from one position to

the next by revolving about the tangent to the curve.

9. Thus, as we proceed along such a curve, the curvature

in general varies
; and, at the same time, the plane in which the

curvature lies is turning about the tangent to the curve. The

tortuosity is therefore to be measured by the rate at which the

osculating plane turns about the tangent, per unit length of the

curve.

To express the radius of curvature, the direction cosines of

the osculating plane, and the tortuosity, of a curve not in one

plane, in terms of Cartesian ti'iple co-ordinates, let, as before,

80 be the angle between the tangents at two points at a distance

Bs from one another along the curve, and let Sep be the angle

between the osculating planes at these points. Thus, denoting

by p the radius of curvature, and t the tortuosity, we have

1 ^
p ds

'

d4
ds
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according to the regular notation for the limiting values of ~-
,
and tcrtu-

on osity.

and ~
,
when 8s is diminished without limit. Let OL, OL'

OS

be lines drawn through any fixed point parallel to any two

successive positions of a moving line PT, each in the directions

indicated by the order of the letters. Draw OS perpendicular

to their plane in the direction from 0, such that OL, OL', OS
lie in the same relative order in space as the positive axes of

co-ordinates, OX, OY, OZ. Let OQ bisect LOL', and let OR
bisect the angle between OL' and LO produced through 0.

Let the direction cosines
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Curvature and a, /?, y become the direction cosines of the normal, PC,

osity.

r

drawn towards the centre of curvature, C ;
and A, fj.,

v those of

the perpendicular to the osculating plane drawn in the direc-

tion relatively to PT and PC, corresponding to that of OZ

relatively to OX and OY. Then, using (8) and (9),
with (7),

in (5) and (6) respectively, we have

7 dx , chi 7 dz
d-j- d 4- d~T

ds ds ds
a =

p
_1

ds
'

p"' ds
'

p~
l ds

, Jlffi+ffi+tf**

dy dz dz dy dz dx dx dz dx dy dy dx

ds ds ds ds ds ds ds
'

ds ds ds ds ds .

X = —
' IX

= —
'

" = ~s ( }
"

The simplest expression for the curvature, with choice of inde-

pendent variable left arbitrary, is the following, taken from (10) :

d .

*U-
(12).

p as

This, modified by differentiation, and application of the formula

ds d-s = dxd 2x + dyd'y + dzd'z (13),

becomes
i j{{d°xy + (d?yy+(d'zy-(d'8y\ >

p~" ds
2 y '"

Another formula for - is obtained immediately from equations
P

(11) ;
but these equations may be put into the following simpler

form, by differentiation, &c,

dyd
sz- dzd2

y dzd2x — dxd2
z _ dxd*y

- dyd
2x

x=
p-a--"»'

1 =—
p^v?

--
'
v ~

rds
3
"

{lD);

from which we find

, {(dyd
2
z - dzd2

y)
2 + (dzd

2x -
dxd'z)

2 + (dxd
s

y
- dyd

2

x)
2

)^ n _

p --s -
3 (16).

Each of these several expressions for the curvature, and for the

directions of the relative lines, we shall find has its own special

significance in the kinetics of a particle, and the statics of a

flexible cord.

To find the tortuosity,
-~

,
we have only to apply the general

CIS

equation above, with A, p.,
v substituted for

/., m, n, and ~r >

\ Ts
'

\ t f0r a
' & V-

Thu3 WC lmve T"
{t)

+
(S)"

+
(S)

»
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if dv du.\
2

f dX .dvV f.d/x d\\ a

)t
Curvature

where X, /*, v, denote the direction cosine.s of the osculating

plane, given by the preceding formulae.

10. The integral curvature, or whole change of direction of integral
. . li-ii curvature

an arc of a plane curve, is the angle through which the tangent of a curve
1 ° ... (compare

has turned as we pass from one extremity to the other. The § we).

average curvature of any portion is its whole curvature divided

by its length. Suppose a line, drawn from a fixed point, to

move so as always to be parallel to the direction of motion of

a point describing the curve : the angle through which this

turns during the motion of the point exhibits what we have

thus denned as the integral curvature. In estimating this, we

must of course take the enlarged modern meaning of an angle,

including angles greater than two right angles, and also nega-
tive angles. Thus the integral curvature of any closed curve,

whether everywhere concave to the interior or not, is four right

angles, provided it does not cut itself. That of a Lemniscate, or

figure of ^ » is zero. That of the Epicycloid ^) is eight right

angles ;
and so on.

11. The definition in last section may evidently be extended

to a plane polygon, and the integral change of direction, or tho

angle between the first and last sides, is then the sum of its

exterior angles, all the sides being produced each in the direc-

tion in which the moving point describes it while passing round

the figure. This is true whether the polygon be closed or not.

If closed, then, as long as it is not crossed, this sum is four

right angles,
—an extension of the result in Euclid, where all

re-entrant polygons are excluded. In the case of the star-shaped

figure ^fc? ,
it is ten right angles, wanting the sum of the five

acute angles of the figure ;
that is, eight right angles.

12. The integral curvature and the average curvature of a

curve which is not plane, may be defined as follows :
—Let suc-

cessive lines be drawn from a fixed point, parallel to tangents

at successive points of the curve. These lines will form a

conical surface. Suppose this to be cut by a sphere of unit

radius having its centre at the fixed point. The length of the
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curve of intersection measures the integral curvature of the

given curve. The average curvature is, as in the case of a

plane curve, the integral curvature divided by the length of the

curve. For a tortuous curve approximately plane, the integral

curvature thus defined, approximates (not to the integral cur-

vature according to the proper definition, § 10, for a plane

curve, but) to the sum of the integral curvatures of all the

parts of an approximately coincident plane curve, each taken as

positive. Consider, for examples, varieties of James Bernouilli's

plane elastic curve, § 611, and approximately coincident tor-

tuous curves of fine steel piano-forte wire. Take particularly

the plane lemniscate and an approximately coincident tortuous

closed curve.

13. Two consecutive tangents lie in the osculating plane.

This plane is therefore parallel to the tangent plane to the cone

described in the preceding section. Thus the tortuosity may
be measured by the help of the spherical curve which we have

just used for defining integral curvature. We cannot as yet

complete the explanation, as it depends on the theory of rolling,

which will be treated afterwards (§§ 110—137). But it is enough

at present to remark, that if a plane roll on the sphere, along

the spherical curve, turning always round an instantaneous axis

tangential to the sphere, the integral curvature of the curve of

contact or trace of the rolling on the plane, is a proper measure

of the whole torsion, or integral of tortuosity. From this and

§ 12 it follows that the curvature of this plane curve at any

point, or, which is the same, the projection of the curvature of

the spherical curve on a tangent plane of the spherical surface,

is equal to the tortuosity divided by the curvature of the given

curve.

1
Let -

P
be the curvature and t the tortuosity of the given

curve, and ds an element of its length. Then /
— and

J
rds, each

integral extended over any stated length, I,

P

of the curve, are

respectively the integral curvature and the integral tortuosity.

The mean curvature and the mean tortuosity are respectively

r/f
and

ifa*'
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Infinite tortuosity will be easily understood, by considering integral
ii- n • t • t -it -l • l-i n curvature

a helix, oi inclination a, described on a right circular cylinder ot of a curve
(compare

radius r. The curvature in a circular section being
-

,
that of

r

, , . . . cos
8 a mi .

,
. sin a cos a

the helix is, ot course, . lhe tortuosity is
,
or

tan a x curvature. Hence, if a = - the curvature and tortuosity

are equal.

1 r
Let the curvature be denoted by -

,
so that cos

2a = -
. Let p

P P

remain finite, and let r diminish without limit. The step of the

helix being 2-n-r tan a - 2-rr J r ( 1—
j

, is, in the limit, 2ir Jpr,

which is infinitely small. Thus the motion of a point in the

curve, though infinitely nearly in a straight line (the path being

always at the infinitely small distance r from the fixed straight

line, the axis of the cylinder), will have finite curvature -
. The

tortuosity, being
- tan a or —==. (1— )", will in the limit be a
P sjpr\ pJ

mean proportional between the curvature of the circular section

of the cylinder and the finite curvature of the curve.

The acceleration (or force) recpiired to produce such a motion

of a point (or material particle) will be afterwards investi-

gated (§ 35
</.).

14. A chain, cord, or fine wire, or a fine fibre, filament, or Flexible
line.

hair, may suggest what is not to be found among natural or

artificial productions, a perfectly flexible and inexiensible line.

The elementary kinematics of this subject require no investiga-

tion. The mathematical condition to be expressed in any case

of it is simply that the distance measured along the line from

any one point to any other, remains constant, however the line

be bent.

15. The use of a cord in mechanism presents us with many
practical applications of this theory, which are in general ex-

tremely simple; although curious, and not always very easy,

geometrical problems occur in connexion with it. We shall

say nothing here about the theory of knots, knitting, weaving,
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Flexible
line.

Evolute.

plaiting, etc., but we intend to return to the subject, under

vortex-motion in Hyd isokinetics.

16. In the mechanical tracing of curves, a flexible and

inextensible cord is often supposed. Thus, in drawing an

ellipse, the focal property of the curve shows us that by fixing

the ends of such a cord to the foci and keeping it stretched by
a pencil, the pencil will trace the curve.

By a ruler moveable about one focus, and a string attached

to a point in the ruler and to the other focus, the hyperbola

may be described by the help of its analogous focal property ;

and so on.

17. But the consideration of evolutes is of some importance
in Natural Philosophy, especially in certain dynamical and

optical questions, and we shall therefore devote a section or

two to this application of kinematics.

Def. If a flexible and inextensible string be fixed at one

point of a plane curve, and stretched along the curve, and be

then unwound in the plane of the curve, its extremity will

describe an Involute of the curve. The original curve, con-

sidered with reference to the other, is called the Evolute.

18. It will be observed that we speak of an involute, and

of the evolute, of a curve. In fact, as will be easily seen, a curve

can have but one evolute, but it has an infinite number of

involutes. For all that we have to do to vary an involute, is

to change the point of the curve from which the tracing point

starts, or consider the involutes described by different points of

the string, and these will, in general, be different curves. The

following section shows that there is but one evolute.

19. Let AB be any curve, PQ a portion of an involute,

pP, q Q positions of the free part of the string. It will be seen

at once that these must be tangents

to the arc AB at p and
q. Also (see

§ 90), the string at any stage, as

pP, revolves about p. Hence pP is

normal to the curve PQ. And thus

the evolute of PQ is a definite curve,

viz., the envelope of the normals drawn at every point of PQ,
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or, which is the same thing, the locus of the centres of curva- Bvolute.

ture of the curve PQ. And we may merely mention, as an

obvious result of the mode of tracing, that the arc pq is equal to

the difference of q Q and pP, or that the arc pA is equal to pP.

20. The rate of motion of a point, or its rate of change of Velocity,

position, is called its Velocity. It is greater or less as the space

passed over in a given time is greater or less : and it may be

uniform, i.e., the same at every instant; or it may be variable.

Uniform velocity is measured by the space passed over in

unit of time, and is, in general, expressed in feet per second
;

if very great, as in the case of light, it is sometimes popularly

reckoned in miles per second. It is to be observed, that time

is here used in the abstract sense of a uniformly increasing

quantity
—what in the differential calculus is called an inde-

pendent variable. Its physical definition is given in the next

chapter.

21. Thus a point, which moves uniformly with velocity v,

describes a space of v feet each second, and therefore vt feet in

t seconds, t being any number whatever. Putting s for the

space described in t seconds, we have

s — vt.

Thus with unit velocity a point describes unit of space in unit

of time.

22. It is well to observe here, that since, by our formula,

we have generally

s
v=v

and since nothing has been said as to the magnitudes of s and t,

we may take these as small as we choose. Thus we get the

same result whether we derive v from the space described in a

million seconds, orfrom that described in a millionth of a second.

This idea is verv useful, as it makes our results intelligibleJ » O

when a variable velocity has to be measured, and we find our-

selves obliged to approximate to its value by considering the

space described in an interval so short, that during its lapse the

velocity does not sensibly alter in value.
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Vakwity. 23. When the point does not move uniformly, the velocity

is variable, or different at different successive instants; but we

define the average velocity during any time as the space de-

scribed in that time, divided by the time, and, the less the

interval is, the more nearly does the average velocity coincide

with the actual velocity at any instant of the interval. Or

again, we define the exact velocity at any instant as the space

which the point would have described in one second, if for one

second its velocity remained unchanged. That there is at every

instant a definite value of the velocity of any moving body, is

evident to all, and is matter of everyday conversation. Thus, a

railway train, after starting, gradually increases its speed, and

every one understands what is meant by saying that at a par-

ticular instant it moves at the rate of ten or of fifty miles an

hour,—although, in the course of an hour, it may not have

moved a mile altogether. Indeed, we may imagine, at any

instant during the motion, the steam to be so adjusted as to

keep the train running for some time at a perfectly uniform

velocity. This would be the velocity which the train had at

the instant in question. Without supposing any such definite

adjustment of the driving power to be made, we can evidently

obtain an approximation to this instantaneous velocity by con-

sidering the motion for so short a time, that during it the actual

variation of speed may be small enough to be neglected.

24. In fact, if v be the velocity at either beginning or

end, or at any instant of the interval, and s the space actually

described in time t, the equation v = - is more and more nearly

true, as the velocity is more nearly uniform during the interval

t; so that if we take the interval small enough the equation

may be made as nearly exact as we choose. Thus the set of

values—
Space described in one second,

Ten times the space described in the first tenth of a second,

A hundred „ „ „ hundredth „

and so on, give nearer and nearer approximations to the velocity

at the beginning of the first second. The whole foundation of
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the differential calculus is, in fact, contained in this simple velocity

question, "What is the rate at which the space described in-

creases ?
"

i.e., What is the velocity of the moving point ?

Newton's notation for the velocity, i, e. the rate at which s

increases, or the fluxion of s, is .9. This notation is very con-

venient, as it saves the introduction of a second letter.

Let a point which has described a space s in time t proceed

to describe an additional space 8s in time 8t, and let v
x
be the

greatest, and v., the least, velocity which it has during the in-

terval 8t. Then, evidently,

8s <
vfit,

Ss > v„8t,

8s 8s
l - e

->8t
<v» M >v

*-

But as 8t diminishes, the values of v and v become more and

more nearly equal, and in the limit, each is equal to the velocitv

at time t. Hence
ds

dt

25. The preceding definition of velocity is equally applica-
Resolution

ble whether the point move in a straight or curved line
; but,

since in the latter case the direction of motion continually

changes, the mere amount of the velocity is not sufficient com-

pletely to describe the motion, and we must have in every such

case additional data to remove the uncertainty.

In such cases as this the method commonly employed,
whether we deal with velocities, or as we shall do farther on

with accelerations and forces, consists mainly in studying, not

the velocity, acceleration, or force, dwectly, but its components

parallel to any three assumed directions at right angles to each

other. Thus, for a train moving up an incline in a NE direc-

tion, we may have given the whole velocity and the steepness
of the incline, or we may express the same ideas thus—the train

is moving simultaneously northward, eastward, and upward—
and the motion as to amount and direction will be completely
known if we know separately the northward, eastward, and up-
ward velocities—these being called the components of the whole

velocity in the three mutually perpendicular directions N, E,

and up.
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Resolution ^ n general the velocity of a point at x, y, e, is (as we have
of velocity. .

^. 2
rf

2 ^ s ,

seen) -=-
, or, which is the same, -,

-=- + -f- + t e •

Now denoting by w the rate at which x increases, or the velo-

city parallel to the axis of x, and so by v, w, for the other two
;

. dx dy dz T_ ... _ .

Ave have u — —
,
v =—

,
«; =— . Hence, calling a, /s, y the

angles which the direction of motion makes with the axes, and

ds .

putting q = -J- ,
we have

dx

dx dt u
cos a = —-= — = -

.

as tfs tf

Hence u — q cos a, and therefore

26. A velocity in any direction may be resolved in, and

perpendicular to, any other direction. The first component is

found by multiplying the velocity b}
7 the cosine of the angle

between the two directions—the second by using as factor the

sine of the same angle. Or, it may be resolved into components
in any three rectangular directions, each component being
formed by multiplying the whole velocity by the cosine of the

angle between its direction and that of the component.

It is useful to remark that if the axes of x, y, z are not rect-

angular, -j ,

-
, -j-

will still be the velocities parallel to the
ctt ctt at

axes, but we shall no longer have

ds\* _ /dx\r /dy\* /dz\*

Kdt)
~
\dt)

+
\dt)

+
\dt)

"

"We leave as an exercise for the student the determination of the

correct expression for the whole velocity in terms of its com-

ponents.

If we resolve the velocity along a line whose inclinations to

the axes are A, /x, v, and which makes an angle 6 with the di-

rection of motion, we find the two expressions below (which

must of course be ecmal) according as Me resolve q directly or

by its components, u, v, w,

q cos - u cos A + v cos ll + w cos v.
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Substitute in this equation tlie values of
v., v, vo already given, Resolution

§ 25, and we have the well-known geometrical theorem for the

angle between two straight lines which make given angles with

the axes,
cos 6 = cos a cos X + cos /3 COS

fJL
+ cos y cos v.

From the above expression we see at once that

27. The velocity resolved in any direction is the sum of the composi-

coraponents (in that direction) of the three rectangular com- velocities.

ponents of the whole velocity. And, if we consider motion in

one plane, this is still true, only we have but two rectangular

components. These propositions are virtually equivalent to the

following obvious geometrical construction :
—

To compound any two velocities as OA, OB in the figure ;

from A draw A G parallel and equal
9 "^P to OB. Join OG:—then OG is the

/ ^Sj/ resultant velocity in magnitude and

/ ^^ / direction.

/^^ / OG is evidently the diagonal of the

O A parallelogram two of whose sides are

OA, OB.

Hence the resultant of velocities represented by the sides of

any closed polygon whatever, whether in one plane or not, taken

all in the same order, is zero.

Hence also the resultant of velocities represented by all the

sides of a polygon but one, taken in order, is represented by
that one taken in the opposite direction.

When there are two velocities or three velocities in two or

in three rectangular directions, the resultant is the square root

of the sum of their squares
—and the cosines of the inclination

of its direction to the given directions are the i-atios of the com-

ponents to the resultant.

It is easy to see that as 8s in the limit may be resolved into Sr

and rB8, where r and are polar co-ordinates of a plane curve,

j- and r -=- are the resolved parts of the velocity along, and

perpendicular to, the radius vector. We may obtain the same

result thus, x = r cos 0, y-r sin 6.



16 PRELIMINARY. [27.

Oomposi- dx dr . . , d(i dy dr . . . d$
tion of Hence -=- = -=- cos u — r sin b -=-

, -f-
- -r- sir. p + / cos a -=- .

velocities. dt dt dt dt dt dt

But by § 26 the whole velocity along r is -j^cosO + -~ sin 0,
o. t clt

dv
i. e., by the above values, -=- . Similarly the transverse velocity is

dii , dx . . dO
-f cos r «in v, or r —r .

dt dt
'

dt

Acceiera- 28. The velocity of a point is said to be accelerated or re-

tarded according as it increases or diminishes, but the word

acceleration is generally used in either sense, on the understand-

ing that we may regard its quantity as either positive or nega-

tive. Acceleration of velocity may of course be either uniform

or variable. It is said to be uniform when the velocity receives

equal increments in equal times, and is then measured by the

actual increase of velocity per unit of time. If we choose as the

unit of acceleration that which adds a unit of velocity per unit

of time to the velocity of a point, an acceleration measured by a

will add a units of velocity in unit of time—and, therefore, at

units of velocity in t units of time. Hence if V be the change
in the velocity during the interval t,

V
V=at, or a = — .

v

29. Acceleration is variable when the point's velocity does

not receive equal increments in successive equal periods of time.

It is then measured by the increment of velocity, which would

have been generated in a unit of time had the acceleration re-

mained throughout that interval the same as at its commence-

ment. The average acceleration during any time is the whole

velocity gained during that time, divided by the time. In

Newton's notation v is used to express the acceleration in the

direction of motion
; and, if v = s, as in § 24, we have

a = v = if.

Let v be the velocity at time t, 8v its change in the interval

St, a
l

and a
a
the greatest and least values of the acceleration

during the interval St. Then, evidently,

8r < a. St, 8f> aJSt,
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ov Bv Accelere-

or
8*
<a" Tt

>a
°--

As St is taken smaller and smaller, the values of a,
and a

2 ap-

proximate infinitely to each other, and to that of a the required

acceleration at time t. Hence

dv— — a.
dt

It is useful to observe that we may also write (by changing

the independent variable)

dv ds dv
a — v ~r = v t •

ds dt ds

ds d2
s . .

Since v = -r , we have a = -r-„ ,
and it is evident from similar

dt at

reasoning that the component accelerations parallel to the axes

are =-=- , -rf , -r» • But it is to be carefully observed that -j-=
dt'

'

dt
2

dt
2 df

is not generally the resultant of the three component accelera-

tions, but is so only when either the curvature of the path, or

the velocity is zero; for
[§

9
(14-)]

we have

/d2
s\

2

_ /d2x\ 2 /d
2

y\
2

fd
2

z\
2 /l d£\

M

\dt
2
)
*
\d?)

+
\df)

+
\dt

2

)
"
\p dt

2
)

•

The direction cosines of the tangent to the path at any point

x, y, z are

1 dx 1 dy \ dz

v dt
'

v dt
'

v dt'

Those of the line of resultant acceleration are

1 d*x 1 d*y \<£z
f dt

2 '

f dt
2 »

f dt
2 '

where, for brevity, we denote by f the resultant acceleration.

Hence the direction cosines of the plane of these two lines are

dyd
2
z — dzd2

y

{{dyd
2
z - dzd2

yf+ (dzd
2x - dxd2

z)
2+ (dxd

2

y- dyd*x)
2

$
'

These (§ 9) show that this plane is the osculating plane of the

curve. Again, if 6 denote the angle between the two lines, we
have

. {(dyd*z
-

dzdry)
2 + (dzd

2x - dascPz)' + (dxd
2

y - dyd
3

x)*f

VOL. I. 2
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Accelera- or, according to the expression for the curvature (§ 9),
tion.

•

a
ds3 v°

pvfdt
3

fp

Hence /sin# =
v2

n 1 fdx d x dy dy dz d~z\ ds d's d's
Again, cos tf ——

(

——— + ——-5 + -j- -j-t )
= —

. ,
, = -^-,-s .

'

vf\dtdf dt df dtdt'J vjdf fdt*

d's
Hence /'cos 6 =

-y-2 ,
and therefore

Resolution 30. The whole acceleration in any direction is the sum of

sitfon°o?
P
ii^ the components (in that direction) of the accelerations parallel

ce orations. ^ ^^ three rectangular axes— each component acceleration

being found by the same rule as component velocities, that

is, by multiplying by the cosine of the angle between the di-

rection of the acceleration and the line along which it is to

be resolved.

31. When a point moves in a curve the whole acceleration

may be resolved into two parts, one in the direction of the

motion and equal to the acceleration of the velocity
—the other

towards the centre of curvature (perpendicular therefore to the

direction of motion), whose magnitude is proportional to the

square of the velocity and also to the curvature of the path.

The former of these changes the velocity, the other affects only
the form of the path, or the direction of motion. Hence if a

moving point be subject to an acceleration, constant or not,

whose direction is continually perpendicular to the direction of

motion, the velocity will not be altered—and the only effect

of the acceleration will be to make the point move in a curve

whose curvature is proportional to the acceleration at each

instant.

32. In other words, if a point move in a curve, whether

with a uniform or a varying velocity, its change of direction

is to be regarded as constituting an acceleration towards the

centre of curvature, equal in amount to the square of the

velocity divided by the radius of curvature. The whole accele-

ration will, in every case, be the resultant of the acceleration,
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thus measuring
1 chancre of direction, and the acceleration of K

*f
olutlon

o o ' ana corupo-

actual velocity along the curve.
ctterationit

We may take another mode of resolving acceleration for a

plane curve, which is sometimes useful
; along, and perpendicular

to, the radius-vector. By a method similar to that employed in

§ 27, we easily find for the component along the radius-vector

cZV_ /d9\ 2

W~ r
\dt)'

and for that perpendicular to the radius-vector

1 d / o d0N1 d / U0\

r dt\ dt)
'

33. If for any case of motion of a point we have given the Determina-
. •

-i i r tion of the

whole velocity and its direction, or simply the components of motion from
J

. . given velo-

the velocity in three rectangular directions, at any time, or, as «ty or ac-
J ° .... celeration.

is most commonly the case, for any position, the determination

of the form of the path described, and of other circumstances of

the motion, is a question of pure mathematics, and in all cases

is capable, if not of an exact solution, at all events of a solution

to any degree of approximation that may be desired.

The same is true if the total acceleration and its direction

at every instant, or simply its rectangular components, be given,

provided the velocity and direction of motion, as well as the

position, of the point at any one instant, be given.

For we have in the first case

dec— = u = q cos a, etc.,
etc

three simultaneous equations which can contain only x, y, z, and

t,
and which therefore suffice when integrated to determine x, y,

and z in terms of t. By eliminating t among these equations, we

obtain two equations among x, y, and z—each of which repre-

sents a surface on which lies the path described, and whose

intersection therefore completely determines it.

In the second case we have

d3x d2

y _ d2
z

dT
= a

'

~d7
= ^

dt2=7 '

to which equations the same remarks apply, except that here

2—2
each has to be twice integrated
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Dctcnnina- The arbitrary constants introduced by integration are deter-

motionfrom mined at once if we know the co-ordinates, and the components

Sty ora<?" °f tne velocity, of the point at a given epoch,
celeration.

Examples of 34. From the principles already laid down, a great many
interesting results may be deduced, of which we enunciate a
few of the most important.

a. If the velocity of a moving point be uniform, and if its

direction revolve uniformly in a plane, the path described is

a circle.

Let a be the velocity, and a the angle through which its direc-

tion turns in unit of time
; then, by properly choosing the axes,

we have

dx . dy
-jt

= — a sin at,
—' = a cos at,

dt dt '

2

whence (x-A)
3

+(y- B)* = _
a

1

b. If a point moves in a plane, and if its component velo-

city parallel to each of two rectangular axes is proportional to

its distance from that axis, the path is an ellipse or hyperbola
whose principal diameters coincide with those axes; and the

acceleration is directed to or from the origin at every instant.

dx dy
iT 1*

dt
= vx-

__ d'x d2

y , ,

<£?
=

ftvx' J?
=

/XV^' a whole acceleration is

towards or from 0.

Also
-=j-

=
,
from which py

3 - vx" = C, an ellipse or hyper-

bola referred to its principal axes. (Compare § 65.)

c. When the velocity is uniform, but in direction revolving

uniformly in a right circular cone, the motion of the point is in

a circular helix whose axis is parallel to that of the cone.

Kxampiesof 35. a. When a point moves uniformly in a circle of radius

tioa.

lera*

-ft. with velocity V, the whole acceleration is directed towards

V3

the centre, and has the constant value -5- . See § 31.
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b. With uniform acceleration in the direction of motion, a e^p10* °?
' aeeelera-

point describes spaces proportional to the squares of the times tion -

elapsed since the commencement of the motion.

In this case the space described in any interval is that

which would be described in the same time by a point moving

uniformly with a velocity equal to that at the middle of the

interval. In other words, the average velocity (when the

acceleration is uniform) is, during any interval, the arithmeti-

cal mean of the initial and final velocities. This is the case of

a stone falling vertically.

For if tke acceleration be parallel to x, we have

u"0t* flu*

-j-T,
= a, therefore —-= v = at, and x ~ kat

2
.

dt*
'

dt
> a

And we may write the equation (§ 29) v- =
a, whence — = ax.

If at time t = the velocity was V, these equations become at

once

v2 V 2

v = V + at, x = Vt + ^at
2

,
and — = — + ax.

'2i n

And initial velocity = V,

final „ = V + at;

Arithmetical mean — V + \al,

x
=
7'

whence the second part of the above statement.

c. When there is uniform acceleration in a constant direc-

tion, the path described is a parabola, whose axis is parallel to

that direction. This is the case of a projectile moving in

vacuum.

For if the axis of y be parallel to the acceleration a, and if the

plane of xy be that of motion at any time,

d2
z ,. dz_ =0

,

_ = 0, *=0,

and therefore the motion is wholly in the plane of xy.
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Examples of and by integration

tion. x=Ui + a, y = \af + Vt + b,

where U, V, a, b are constants.

The elimination of t gives the equation of a parabola of which the

axis is parallel to y, parameter — ,
and vertex the point whose co-

ordinates are

UV . Vs

x = a
, y = 6 - =- .

a Za

d. As an illustration of acceleration in a tortuous curve, we
take the case of § 13, or of § 34, c.

Let a point move in a circle of radius r with uniform angular

velocity w (about the centre), and let this circle move perpen-
dicular to its plane with velocity V. The point describes a

helix on a cylinder of radius r, and the inclination a is given by

tan a = — .

The curvature of the path is - ^ =-= or == =—.
,
and the

. to F Vu
tortuosity y ff^ptf

=
yr~r^

The acceleration is ro>", directed perpendicularly towards the

axis of the cylinder.
—Call this A.

Curvature

Tortuosity

Let A be finite, r indefinitely small, and therefore w indefinitely

great.

Curvature (in the limit) = -™ •

Tortuosity ( „ )
=
-p

•

Thus, if we have a material particle moving in the manner speci-

fied, and if we consider the force (see Chap. II.) required to pro-

duce the acceleration, we find that a finite force perpendicular to

V 2 +

V
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the line of motion, in a direction revolving with an infinitely Examples
. . . . „ . ofaccelera-

great angular velocity, maintains constant infinitely small de- tion.

flection (in a direction opposite to its own) from the line of un-

disturbed motion, finite curvature, aud infinite tortuosity.

e. When the acceleration is perpendicular to a given plane
and proportional to the distance from it, the path is a plane

curve, which is the harmonic curve if the acceleration be towards

the plane, and a more or less fore-shortened catenary (§ 580)
ii from the plane.

/"/"*
gj ft£>

As in case c, -^s
= 0,

-— =
0, aud z — 0, if the axis of z be

(it tit

perpendicular to the acceleration and to the direction of motion

at any instant. Also, if we choose the origin in the plane,

d'x d2

y

Hence -r- = const. = a (suppose),

d2

y [x. y

This gives, if ij, is negative,

y = P cos
( j-

+ Q
)

,
the harmonic curve, or curve of sines.

X X

If ix be positive, y = iV + Qe
b

;

and by shifting the origin along the axis of x this can be put in

the form

which is the catenary if 2E = b
;
otherwise it is the catenary

stretched or fore-shortened in the direction of y.

36. ["Compare SS 233—236 below.l a. When the accele- Acceleration.,.,«*• i .i i • directedtoa
ration is directed to a fixed point, the path is in a plane passing fixed centre,

through that point; and in this plane the areas traced out by
the radius-vector are proportional to the times employed. This

includes the case of a satellite or planet revolving about its

primary.

Evidently there is no acceleration perpendicular to the

plane containing the fixed and moving points and the direction
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Acceleration of motion of the second at any instant; and, there being no

axed centre, velocity perpendicular to this plane at starting, there is there-

fore none throughout the motion; thus the point moves in the

plane. And bad there been no acceleration, the point would

have described a straight line with uniform velocity, so that in

this case the areas described by the radius-vector would have

been proportional to the times. Also, the area actually described

in any instant depends on the length of the radius-vector and

the velocity perpendicular to it, and is shown below to be

unaffected by an acceleration parallel to the radius-vector.

Hence the second part of the proposition.

Wehave ^ = P*, g = P*, |* P*
fdf r df r '

dt
3 r

'

the fixed point being the origin, and P being some function of

x, y, z
;

in nature a function of r only.

TT d 2

'/ d 2x ^Hence x-
t -y~ = 0, etc.,

which give on integration

dz dy ,. dx dz „ dy dx ~

dt dt " dt dt *' dt
*

dt 3

Hence at once G
{
x -f G

2y + G
3
z = 0, or the motion is in a plane

through the origin. Take this as the plane of xy, then we have

only the one equation

ctt/ doc
x
dt- y dl

= c
>
= h{?nvv°^-

In polar co-ordinates this is

7 2 dd . dA
h = r -r = 2 —

dt dt

if A be the area intercepted by the c\vrve, a fixed radius-vector,

and the radius-vector of the moving point. Hence the area in-

creases uniformly with the time.

b. In the same case the velocity at any point is inversely as

the perpendicular from the fixed point upon the tangent to the

path, the momentary direction of motion.

For evidently the product of this perpendicular and the

velocity gives double the area described in one second about the

fixed point.



36.] KINEMATICS. 25

Or thus—if p be the perpendicular on the tangent. Accelerationr l l ° '
directed to a

dy dx fixed centre -

1 ds
J ds'

. ,. „ ds dy dx ,

and therefore » — = a; ,--?/ — = /t.1
dt dt J

dt

If we refer the motion to co-ordinates in its own plane, we
have only the equations

d2x Px d2

y PyW = T '

dt
2= ~'

whence, as before, r
2

-=- = h.
dt

If, by the help of this last equation, we eliminate t from

d2x Px
-r-g

= —
, substituting polar for rectangular co-ordinates, we

arrive at the polar differential equation of the path.

For variety, we may derive it from the formulae of § 32.

Theygxve ^~r(^)
=

<Pr [d&\
%

n a d6 .

r -j- = ft-

dt

Putting — = u, we
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Other examples of these principles will be met with in the

chapters on Kinetics.

iiudograph. 37. If from any fixed point, lines be drawn at every instant,

representing in magnitude and direction the velocity of a point

describing any path in any manner, the extremities of these

lines form a curve which is called the Hodograph. The inven-

tion of this construction is due to Sir W. R. Hamilton. One of

the most beautiful of the many remarkable theorems to which

it led him is that of § 38.

Since the radius-vector of the hodograph represents the

velocity at each instant, it is evident (§ 27) that an elementary
arc represents the velocity which must be compounded with the

velocity at the beginning of the corresponding interval of time,

to find the velocity at its end. Hence the velocity in the hodo-

graph is equal to the acceleration in the path ;
and the tangent

to the hodograph is parallel to the direction of the acceleration

in the path.

If x, y, z be the co-ordinates of the moving point, £, % £ those

of the corresponding point of the hodograph, then evidently

* _ dx _dy dz
*~

dt' v ~dt' Q
~Jt'

, .. e d£ dt] dt,and therefore -—- = —-. = —i.
,d x d~y d z

dF ~dt* di*

or the tangent to the hodograph is parallel to the acceleration in

the orbit. Also, if cr be the arc of the hodograph,

dt V \dt) \dt) \dtj

V(s0 +
(3?)

+
(3?)'

or the velocity iu the hodograph is equal to the rate of accelera-

tion in the path.

Hodograph 38. The hodograph for the motion of a planet or comet is

comet.de- always a circle, whatever he theform and dimensions of the orbit.

Kepler's In the motion of a planet or comet, the acceleration is directed

towards the sun's centre. Hence (§ 36, b) the velocity is in-
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versely as the perpendicular from that point upon the tangent Hodograpb

to the oi-bit. The orbit we assume to be a conic section, whose comet" de°

i ) i-> i iii- • duced from
focus is the sun s centre. r>ut we know that the intei'section Kepler's

of the perpendicular with the tangent lies in the circle whose

diameter is the major axis, if the orbit be an ellipse or hyper-

bola; in the tangent at the vertex if a parabola. Measure off

on the perpendicular a third proportional to its own length and

any constant line; this portion will thus represent the velocity

in magnitude and in a direction perpendicular to its own—
so that the locus of the new points in each perpendicular will be

the hodograph turned through a right angle. But we see by

geometry* that the locus of these points is always a circle.

Hence the proposition. The hodograph surrounds its origin if

the orbit be an ellipse, passes through it if a parabola, and the

origin is without the hodograph if the orbit is a hyperbola.

For a projectile unresisted by the air, it will be shewn in

Kinetics that we have the equations (assumed in § 35, c)

d'x » d2

y
~dt

2
=

'

~df
= ~ 9 '

if the axis of y be taken vertically upwards.

Hence for the liodograph

d£ drj

di
=

°> d-t=- (J '

or £=-C, r)=C —
gt, and the hodograph is a vertical straight

line along which the describing point moves uniformly.

For the case of a planet or comet, instead of assuming as Hodograph

above that the orbit is a conic with the sun in one focus, assume
com'etl'de-

01'

(Newton's deduction from that and the law of areas) that the Newton's"
11

acceleration is in the direction of the radius-vector, and varies
orce"

inversely as the square of the distance. We have obviously

d2x
/j.x

d2

y fiy

1F
=
^' d¥

=V
where r2 = x2 + y

2
.

Hence, as in § 36, x-^-
— y -z--h (1),

* See our smaller work, § 51.
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Godopraph
for planet or
comet, de-
duced from
Newton's
law of force.

and therefore

d*x

df
'

dy dx
x-f--y-r-

/jlx
dt dt

h r

= '-

h'

Hence

/ o o\ ty ( dx dy\ .dy dr
r
tt-yr

dt

dx .ay
T- +4 = T ~.
dt h r

dt h r

(2).

(3).

/*

Applica-
tions of the

hodograph.

Curves of

pursuit.

Similarly

Hence for the hodograph

{Z + Ay +
i-n

+ BY^,
the circle as before stated.

We may merely mention that the equation of the orbit will be

cl
rc dti

found at once by eliminating -=- and — among the three first
(it tit

integrals (1), (2), (3) above. We thus get

— h + Ay - Bx =
j r,

a conic section of which the origin is a focus.

39. The intensity of heat and light emanating from a point,

or from an uniformly radiating spherical surface, diminishes with

increasing distance according to the same law as gravitation.

Hence the amount of heat and light, which a planet receives

from the sun during any interval, is proportional to the time

integral of the acceleration during that interval, i.e. (§37) to

the corresponding arc of the hodograph. From this it is easy

to see, for example, that if a comet move in a parabola, the

amount of heat it receives from the sun in any interval is pro-

portional to the angle through which its direction of motion

turns during that interval. There is a corresponding theorem

for a planet moving in an ellipse, but somewhat more com-

plicated.

40. If two points move, each with a definite uniform velo-

city, one in a given curve, the other at every instant directing

its course towards the first describes a path which is called a
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Curve of Pursuit. The idea is said to have been suggested Curves of

by the old rule of steering a privateer always directly for the

vessel pursued. (Bouguer, M4m. de I Acad. 1732.) It is the

curve described by a dog running to its master.

The simplest cases are of course those in which the first

point moves in a straight line, and of these there are three, for

the velocity of the first point may be greater than, equal to,

or less than, that of the second. The figures in the text below

represent the curves in these cases, the velocities of the pur-
suer being f, 1, and ^ of those of the pursued, respectively. In

the second and third cases the second point can never over-

take the first, and consequently the line of motion of the first

is an asymptote. In the first case the second point overtakes

the first, and the curve at that point touches the line of motion

of the first. The remainder of the curve satisfies a modified

form of statement of the original question, and is called the

Curve of Flight.
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Curves of

pursuit

Angular
velocity

PRELIMINARY.
[40.

We will merely form the differential equation of the curve,

and give its integrated form, leaving the work to the student.

Suppose Ox to be the line of motion of the first point, whose

velocity is v, AP the curve of pursuit, in which the velocity is u,

then the tangent at P always passes through Q, the instan-

taneous position of the first point. It will be evident, on a

moment's consideration, that the curve AP must have a tangent

perpendicular to Ox. Take this as the

axis of y, and let OA = a. Then, if

OQ =
£, AP~s, and if x, y be the co-

ordinates of P, we have

APOQ
u v

'

because A, and P, Q are pairs of si-

multaneous positions of the two points.

> dx
This gives -s = es=x~y — .

u J
dy

From this we find, unless e = 1,

(
x + ^t)

= y
!+l

a"

a-(e + l) jT
1

(e-1)

and if e = 1, 2 \X 4
4/ 2a

a log,
y
a

the only case in which we do not get an algebraic curve. The

axis of x is easily seen to be an asymptote if e <£ 1.

41. When a point moves in any manner, the line joining
it with a fixed point generally changes its direction. If, for

simplicity, we consider the motion as confined to a plane

passing through the fixed point, the angle which the joining
line makes with a fixed line in the plane is continually alter-

ing, and its rate of alteration at any instant is called the

Angular Velocity of the first point about the second. If

uniform, it is of course measured by the angle described in

unit of time
;

if variable, by the angle which would have

been described in unit of time if the angular velocity at the

instant in question were maintained constant for so long. In

this respect, the process is precisely similar to that which we
have already explained for the measurement of velocity and

acceleration.
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Unit of angular velocity is that of a point which describes, Angular
vclocitv

or would describe, unit angle about a fixed point in unit of

time. The usual unit angle is (as explained in treatises on

plane trigonometry) that which subtends at the centre of a circle

an arc whose length is equal to the radius; being an angle of

1 on"— = 57°. 29578 ... = 57° 17' 44".8 nearly.
7T

For brevity we shall call this angle a radian.

42. The rate of increase or diminution of the angular velo- ^"f"^™
"

city when variable is called the angular acceleration, and is

measured in the same way and by the same unit.

By methods precisely similar to those employed for linear

velocity and acceleration we see that if 6 be the angle-vector

of a point moving in a plane
—the

Angular velocity is cj = —
,
and the

. , . ddi d'B dia
Angular acceleration is — =

, . - w -r^ .8
dt dt2 dd

dB
Since (§ 27) r — is the velocity perpendicular to the radius-

at

vector, we see that

The angular velocity of a point in a plane is found by

dividing the velocity perpendicular to the radius-vector by the

length of the radius-vector.

43. When one point describes uniformly a circle about Angular
. . . velocity.

another, the time of describing a complete circumference being

T, we have the angle 2tt described uniformly in T; and, there-

fore, the angular velocity is -~ . Even when the angular velo-

city is not uniform, as in a planet's motion, it is useful to

27T
introduce the quantity -~, which is then called the mean

angular velocity.

When a point moves uniformly in a straight line its angular

velocity evidently diminishes as it recedes from the point about

which the angles are measured.
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Angular
velocity.

Angular
velocity
of a plane.

Relative
motion.

The polar equation of a straight line is

r = a sec 6.

But the length of the line between the limiting angles and #

is a tan 6. and this increases with uniform velocity v. Hence

v = -=- (a tan V) = a sec v —r ~
r- •

dt x '
dt a dt

Hence — — —j ,
and is therefore inversely as the square of the

radius-vector.

Similarly for the angular acceleration, we have by a second

differentiation,

at
3

\dtj

d2
B 2av* / ar\h . lx,

'

. . .

t. e., j- j— [ ] — —
1

,
and ultimately varies inversely as

the third power of the radius-vector.

44. We may also talk of the angular velocity of a moving

plane with respect to a fixed one, as the rate of increase of the

angle contained by them—but unless their line of intersection

remain fixed, or at all events parallel to itself, a somewhat

more laboured statement is required to give definite informa-

tion. This will be supplied in a subsequent section.

45. All motion that we are, or can be, acquainted with, is

Relative merely. We can calculate from astronomical data for

any instant the direction in which, and the velocity with which

we are moving on account of the earth's diurnal rotation. We
may compound this with the similarly calculable velocity of the

earth in its orbit. This resultant again we may compound
with the (roughly known) velocity of the sun relatively to the

so-called fixed stars; but, even if all these elements were accu-

rately known, it could not be said that we had attained any
idea of an absolute velocity; for it is only the sun's relative

motion among the stars that we can observe
; and, in all pro-

bability, sun and stars are moving on (possibly with very great

rapidity) relatively to other bodies in space. We must there-

fore consider how, from the actual motions of a set of points, we

may find their relative motions with regard to any one of them;



45.] KINEMATICS. 33

and how, having given the relative motions of all but one with Relative

regard to the latter, and the actual motion of the latter, we

may find the actual motions of all. The question is very

easily answered. Consider for a moment a number of pas-

sengers walking on the deck of a steamer. Their relative

motions with regard to the deck are what we immediately

observe, but if we compound with these the velocity of the

steamer itself we get evidently their actual motion relatively

to the earth. Again, in order to get the relative motion of

all with regard to the deck, we abstract our ideas from the

motion of the steamer altogether
—that is, Ave alter the velocity

of each by compounding it with the actual velocity of the vessel

taken in a reversed direction.

Hence to find the relative motions of any set of points with

regard to one of their number, imagine, impressed upon each in

composition with its own velocity, a velocity equal and opposite

to the velocity of that one
;

it will be reduced to rest, and the

motions of the others will be the same with regard to it as

before.

Thus, to take a very simple example, two trains are running
in opposite directions, say north and south, one with a velocity

of fifty, the other of thirty, miles an hour. The relative velocity

of the second with regard to the first is to be found by im-

pressing on both a southward velocity of fifty miles an hour;
the effect of this being to bring the first to rest, and to give the

second a southward velocity of eighty miles an hour, which is

the required relative motion.

Or, given one train moving north at the rate of thirty miles

an hour, and another moving west at the rate of forty miles an

hour. The motion of the second relatively to the first is at

the rate of fifty miles an hour, in a south-westerly direction

inclined to the due west direction at an angle of tan
-1
f . It

is needless to multiply such examples, as they must occur to

every one.

46. Exactly the same remarks apply to relative as compared
with absolute acceleration, as indeed we may see at once, since

accelerations are in all cases resolved and compounded by the

same law as velocities.

vol, i. 3
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Relative If x
> Vi %, and x

't V >
z

'>
De the co-ordinates of two points

referred to axes regarded as fixed ;
and £} rj, £ their relative

co-ordinates—we have

i-x-x, i)
=y-y, £=«'-?,.

and, differentiating,

d£ dx' dx

dt dt dt' ''

which give the relative, in terms of the absolute, velocities
;
and

d?~~dtf ~df'
et°"'

proving our assertion about relative and absolute accelerations.

The corresponding expressions in polar co-ordinates in a plane

are somewhat complicated, and by no means convenient. The

student can easily write them down for himself.

47. The following proposition in relative motion is of con-

siderable importance :
—

Any two moving points describe similar paths relatively to

each other, or relatively to any point which divides in a con-

stant ratio the line joining them.

Let A and B be any simultaneous positions of the points.

Take G or 0' in AB such that the ratio

Q' j" q r OA G'A .

** **
., D or -^j has a constant value. Ihen

as the form of the relative path depends only upon the length

and direction of the line joining the two points at any instant, it

is obvious that these will be the same for A with regard to B,

as for B with regard to A, saving only the inversion of the

direction of the joining line. Hence B's path about A, is ^4's

about B turned through two right angles. And with regard to

O and O' it is evident that the directions remain the same, while

the lengths are altered in a given ratio
;
but this is the definition

of similar curves.

48. As a good example of relative motion, let us consider

that of the two points involved in our definition of the curve of

pursuit, § 40. Since, to find the relative position and motion of

the pursuer with regard to the pursued, we must impress on

both a velocity equal and opposite to that of the latter, we see
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at once that the problem becomes the same as the following. A Relative,

• • 11 i i i
• i 'c motion.

boat crossing a stream is impelled by the oars with unitorm

velocity relatively to the water, and always towards a fixed

point in the opposite bank
;
but it is also carried down stream

at a uniform rate
;
determine the path described and the time of

crossing. Here, as in the former problem, there are three cases,

figured below. In the first, the boat, moving faster than the

current, reaches the desired point ;
in the second, the velocities

of boat and stream being equal, the boat gets across only after

an infinite time—describing

a parabola
—but does not land

at the desired point, which is

indeed the focus of the para-

bola, while the landing point

is the vertex. In the third

case, its proper velocity being

less than that of the water, it

never reaches the other bank,

and is carried indefinitely

down stream. The compari-

son of the figures in § 40 with those in the present section cannot

fail to be instructive. They are drawn to the same scale, and

for the same relative velocities. The horizontal lines represent

the farther bank of the river, and the vertical lines the path of

the boat if there were no current.

We leave the solution of this question as an exercise, merely

noting that the equation of the curve is

y
1+e

[—*
—

«

in one or other of the three cases, according as e is >, =
,
or < 1.

When e = 1 this becomes

y
2 — a2 — 2ax, the parabola.

The time of crossing is

a

u(l-e
a

)

'

which is finite only for e<l, because of course a negative value

is inadmissible.

3—2
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Relative 49. Another excellent example of the transformation of rela-

tive into absolute motion is afforded by the family of cycloids.

We shall in a future section consider their mechanical descrip-

tion, by the rolling of a" circle on a fixed straight line or circle.

In the mean time, we take a different form of enunciation,

which, however, leads to precisely the same result.

Find the actual path of a point which revolves uniformly in

a circle about another point
—the latter moving uniformly in a

straight line or circle in the same plane.

Take the former case first : let a be the radius of the relative

circular orbit, and w the angular velocity in it, v being the

velocity of its centre along the straight line.

The relative co-ordinates of the point in the circle are a cos wt

and a sin wt, and the actual co-ordinates of the centre are vt

and 0. Hence for the actual path

i = vt + a cos oit
, t]-a sin wt.

Hence i - - sin
' - + Ja2 -

rf, an equation which, by giving

different values to v and w, may be made to represent the cycloid

itself, or either form of trochoid. See § 92.

For the epicycloids, let b be the radius of the circle which B
describes about A, w

x
the angular velocity; a the radius of A's

path, to the angular velocity.

Also at time t — 0, let B be in the radius

OA of As path. Then at time t,
if A', B'

be the positions, we see at once that

tAOA' =
wt, iB'CA = wt

Hence, taking OA as axis of x,

x = a cos wt + b cos w
t t, y = a sin wt + b sin

wfi,

which, by the elimination of t, give an algebraic equation between

x and y whenever w and w
l
are commensurable.

Thus, for w
t

=
2o), suppose wt — 6, and we have

x = acosd + bcos26, y-asm + 6 sin 26,

or, by an easy reduction,

(a;"
+ tf- bj = a2

{(x + bf + tf\.
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Put x —b for x, i.e., change the origin to a distance AB to the Relative

left of 0, the equation becomes

a2

(x
2

+f) = (x
2 + y

2

-2bx)%

or, in polar co-ordinates,

a*=(r- 2b cos 6)
2

,
r = a + 2b cos 6,

and when 2b - a, r - a (1 + cos 6), the cardioid. (See § 94.)

50. As an additional illustration of this part of our subject, Resultant
* J ' motion.

we may define as follows :
—

If one point A executes any motion whatever with reference

to a second point B ;
if B executes any other motion with refer-

ence to a third point C
;
and so on—the first is said to execute,

with reference to the last, a movement which is the resultant of

these several movements.

The relative position, velocity, and acceleration are in such a

case the geometrical resultants of the various components com-

bined according to preceding rules.

51. The following practical methods of effecting such a com-

bination in the simple case of the movements of two points are

useful in scientific illustrations and in certain mechanical arrange-

ments. Let two moving points be joined by an elastic string ;

the middle point of this string will evidently execute a move-

ment which is half the resultant of the motions of the two

points. But for drawing, or engraving, or for other mechanical

applications, the following method is preferable :
—

CF and ED are rods of equal length

moving freely round a pivot at P, which

passes through the middle point of each—
GA, AD, EB, and BF, are rods of half the

length of the two former, and so pivoted

to them as to form a pair of equal rhombi

CD, EF, whose angles can be altered at

will. Whatever motions, whether in a plane, or in space of three

dimensions, be given to A and B, P will evidently be subjected

to half their resultant.

52. Amongst the most important classes of motions which Harmonio

we have to consider in Natural Philosophy, there is one, namely,

Harmonic Motion, which is of such immense use, not only in



38 PRELIMINARY. [52.

Harmonic ordinary kinetics, but in the theories of sound, light, heat, etc.,

that we make no apology for entering here into considerable

detail regarding it.

53. Def When a point Q moves uniformly in a circle, the

perpendicular QP drawn from its position

at any instant to a fixed diameter AA' of

the circle, intersects the diameter in a point

P, whose position changes by a simple har-

monic motion.

Thus, if a planet or satellite, or one of

the constituents of a double star, supposed

to move uniformly in a circular orbit about

its primary, be viewed from a very distant position in the plane

of its orbit, it will appear to move backwards and forwards in a

straight line, with a simple harmonic motion. This is nearly

the case with such bodies as the satellites of Jupiter when seen

from the earth.

Physically, the interest of such motions consists in the fact

of their being approximately those of the simplest vibrations of

sounding bodies, such as a tuning-fork or pianoforte wire
;
whence

their name
;
and of the various media in which waves of sound,

light, heat, etc., are propagated.

54. The Amplitude of a simple harmonic motion is the

range on one side or the other of the middle point of the course,

i.e., OA or OA' in the figure.

An arc of the circle referred to, measured from any fixed

point to the uniformly moving point Q, is the Argument of

the harmonic motion.

The distance of a point, performing a simple harmonic motion,

from the middle of its course or range, is a simple harmonic func-

tion of the time. The argument of this function is what we have

defined as the argument of the motion.

The Epoch in a simple harmonic motion is the interval of time

which elapses from the era of reckoning till the moving point

first comes to its greatest elongation in the direction reckoned

as positive, from its mean position or the middle of its range.

Epoch in angular measure is the angle described on the circle of

reference in the period of time defined as the epoch.
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The Period of a simple harmonic motion is the time which simple

elapses from any instant until the moving point again moves in motion,

the same direction through the same position.

The Phase of a simple harmonic motion at any instant is the

fraction of the whole period which has elapsed since the moving

point last passed through its middle position in the positive

direction.

55. Those common kinds of mechanism, for producing recti- simple
i. i - ., • . . , . , , harmonio
lineal trom circular motion, or vice versa, in which a crank motion in

• • ii mechanism

moving in a circle works in a straight slot belonging to a body
which can only move in a straight line, fulfil strictly the definition

of a simple harmonic motion in the part of which the motion is

rectilineal, if the motion of the rotating part is uniform.

The motion of the treadle in a spinning-wheel approximates
to the same condition when the wheel moves uniformly; the

approximation being the closer, the smaller is the angular motion

of the treadle and of the connecting string. It is also approx-

imated to more or less closely in the motion of the piston of a

steam-engine connected, by any of the several methods in use,

with the crank, provided always the rotatory motion of the

crank be uniform.

56. The velocity of a point executing a simple harmonic Velocity

motion is a simple harmonic function of the time, a quarter of motion.

a period earlier in phase than the displacement, and having its

maximum value equal to the velocity in the circular motion by
which the given function is defined.

For, in the fig. of § 53, if V be the velocity in the circle, it

may be represented by OQ in a direction perpendicular to its

own, and therefore by OP and PQ in directions perpendicular to

those lines. That is, the velocity of P in the simple harmonic

y
motion is

yr-^ PQ ; which, when P is at 0, becomes V.

57. The acceleration of a point executing a simple harmonic Acceiera-
r

.

°
j • l

tl0n m s# **•

motion is at any time simply proportional to the displacement motion.

from the middle point, but in opposite direction, or always

towards the middle point. Its maximum value is that with

which a velocity equal to that of the circular motion would
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Acceiera- be acquired in the time in which an arc equal to the radius
tioninS. H. • j -i j
motion. is described.

V2

For, in the fig. of § 53, the acceleration of Q (by § 35, a) is -y-^

along Q 0. Supposing, for a moment, Q to represent the mag-
nitude of this acceleration, we may resolve it in QP, PO. The
acceleration of P is therefore represented on the same scale by

V 2 PO V 2

P 0. Its magnitude is therefore -777.
•

-p-^ = -p-p-z PO, which is
QO QO QO 2

V 2

proportional to PO, and has at A its maximum value, nn ,
an

acceleration under which the velocity V would be acquired in

the time —p- as stated.

Let a be the amplitude, € the epoch, and T the period, of a

simple harmonic motion. Then if s be the displacement from

middle position at time t,
we have

<-2-t
s = a cos ,

Hence, for velocity, we have

(Is 2-n-a . {2irt \

Hence V, the maximum value, is —^ ,
as above stated (§ 5G).

Again, for acceleration,

dv \ir
2a /2tt« \ 4tt

2

dt
=
~~T^

C0
^\Y~

€

)
=
~'TlS-

(
See § '-)

Lastly, for the maximum value of the acceleration,

in2a
V_

T
where, it may be remarked, — is the time of describing an arc

equal to radius in the relative circular motion.

composi- 58. Any two simple harmonic motions in one line, and of

s
10

]el m. in one period, give, when compounded, a single simple harmonic

motion
;
of the same period ;

of amplitude equal to the diagonal
of a parallelogram described on lengths equal to their amplitudes
measured on lines meeting at an angle equal to their difference
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of epochs ;
and of epoch differing from their epochs by angles fj°n£°

si"

equal to those which this diagonal makes with the two sides of ^^JJ-
in

the parallelogram. Let P and P' be

two points executing simple harmonic

motions of one period, and in one line

B'BGAA'. Let Q and Q' be the uni-

formly moving points in the relative

circles. On CQ and CQ' describe a

parallelogram SQCQ' ;
and through &

draw SB perpendicular to B'A' pro-

duced. We have obviously P'B=GP

(being projections of the equal and

parallel lines Q'S, CQ, on GE). Hence

GB=CP+CP' ;
and therefore the

point B executes the resultant of the motions P and P'. But

CS, the diagonal of the parallelogram, is constant, and therefore

the resultant motion is simple harmonic, of amplitude CS, and

of epoch exceeding that of the motion of P, and falling short

of that of the motion of P', by the angles QCS and SGQ' re-

spectively.

This geometrical construction has been usefully applied by the

tidal committee of the British Association for a mechanical tide-

indicator (compare § 60, below). An arm CQ' turning round C
carries an arm Q'S turning round Q'. Toothed wheels, one of

them fixed with its axis through G, and the others pivoted on a

framework carried by CQ', are so arranged that Q'S turns very

approximately at the rate of once round in 12 mean lunar hours,

if CQ' be turned uniformly at the rate of once round in 12 mean
solar hours. Days and half-days are marked by a counter geared
to CQ'. The distance of S from a fixed line through G shows

the deviation from mean sea-level due to the sum of mean solar

and mean lunar tides for the time of day and year marked by

CQ' and the counter.

An analytical proof of the same proposition is useful, being as

follows :
—

(2irt
\

, (2ttI
A

«cos(^ T -ej+a cos(^---ej

/ a 27r£ . , . . 2-n-t /2-rrt A
= (a cos e + a cos e

)
cos -= + (a sin e + a sm e

)
sin -~- = r cos I

-
1) I

,
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Composi- where r = {(a cos e + a cos
e')

2 + (a sin t + a' sin
e')

2

}*
tion of
S. H. M. in * 2 . '2 . a ' / /\i^
eneline. =

\a + a + 2aa COS (e
- e )}

2
,

..

'

a sin c + a sm €

and tan v =
a cos e + a cos e

59. The construction described in the preceding section ex-

hibits the resultant of two simple harmonic motions, whether of

the same period or not. Only, if they are not of the same period,

the diagonal of the parallelogram will not be constant, but will

diminish from a maximum value, the sum of the component

amplitudes, which it has at the instant when the phases of the

component motions agree ;
to a minimum, the difference of those

amplitudes, which is its value when the phases differ by half

a period. Its direction, which always must be nearer to the

greater than to the less of the two radii constituting the sides

of the parallelogram, will oscillate on each side of the greater

radius to a maximum deviation amounting on either side to the

angle whose sine is the less radius divided by the greater, and

reached when the less radius deviates more than this by a

quarter circumference from the greater. The full period of this

oscillation is the time in which either radius gains a full turn

on the other. The resultant motion is therefore not simple

harmonic, but is, as it were, simple harmonic with periodically

increasing and diminishing amplitude, and with periodical ac-

celeration and retardation of phase. This view is particularly

appropriate for the case in which the periods of the two com-

ponent motions are nearly equal, but the amplitude of one of

them much greater than that of the other.

To express the resultant motion, let s be the displacement at

time t; and let a be the greater of the two component half-

amplitudes.

s — a cos {nt
—

«) + «' cos {n't
—

e')

= a cos {nt
—

e)
-*- a cos {nt- e+ cf>)

=
{a A- a cos

<f>)
cos .{nt

-
c)
- a' sin

<j>
sin {nt

—
e),

if
tj>
= (rit-e)-(nt-e);

or, finally, s = r cos {nt
- e + 0),
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if r = (a
2 + 2aa' cos d> + a'*)* Couiposi-

\
~

/ tion of

S. H. M. in

,
. a sin d> one lino.

and tan 6 = -. . .

a + a cos <p

The maximum value of tan 6 in the last of these equations is

found by making <£
= - + sin

-1 —
,
and is equal to— ~r (Jill

,
IH LM J.U \S\^ l"«l «V/ .

,

2 a'
(a

2-a' 2

)^

«'
and hence the maximum value of 6 itself is sin

-1 —
. The eeo-

a &

metrical methods indicated above (§ 58) lead to this conclusion

by the following very simple construction.

To find the time and the amount of the maximum acceleration

or retardation of phase, let GA be the greater half-amplitude.

From A as centre, with the less half-amplitude as radius, de-

scribe a circle. CB touching this circle is the generating radius

of the most deviated resultant. Hence CBA is a right angle ;

and . -r,n a -AB
sin B (JA = ytj .

(jA

60. A most interesting application of this case of the com- Examples of

«
t . . . . t i i ,

• i composition

position oi harmonic motions is to the lunar and solar tides
;
of s. h. m

i • i
•

i it nx oue ^ne*

which, except in tidal rivers, or long channels, or deep bays,

follow each very nearly the simple harmonic law, and produce, as

the actual result, a variation of level equal to the sum of varia-

tions that would be produced by the two causes separately.

The amount of the lunar equilibrium-tide (§ 812) is about 2T

times that of the solar. Hence, if the actual tides conformed to

the equilibrium theory, the spring tides would be 31, and the

neap tides only IT, each reckoned in terms of the solar tide
;

and at spring and neap tides the hour of high water is that of

the lunar tide alone. The greatest deviation of the actual tide

from the phases (high, low, or mean water) of the lunar tide

alone, would be about '95 of a lunar hour, that is, "98 of a solar

hour (being the same part of 12 lunar hours that 28° 26', or the

angle whose sine is —
,
is of 360°). This maximum deviation

would be in advance or in arrear according as the crown of the

solar tide precedes or follows the crown of the lunar tide
;
and it

would be exactly reached when the interval of phase between
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Examples of the two component tides is 395 lunar hours. That is to say,

of s
p
h.

1

m°" there would be maximum advance of the time of high water 4£

days after, and maximum retardation the same number of days

before, spring tides (compare § 811).

61. We may consider next the case of equal amplitudes in

the two given motions. If their periods are equal, their re-

sultant is a simple harmonic motion, whose phase is at every
instant the mean of their phases, and whose amplitude is equal
to twice the amplitude of either multiplied by the cosine of half

the difference of their phases. The resultant is of course nothing
when their phases differ by half the period, and is a motion of

double amplitude and of phase the same as theirs when they are

of the same phase.

When their periods are very nearly, but not quite, equal (their

amplitudes being still supposed equal), the motion passes very

slowly from the former (zero, or no motion at all) to the latter,

and back, in a time equal to that in which the faster has gone
once oftener through its period than the slower has.

In practice we meet with many excellent examples of this

case, which will, however, be more conveniently treated of when
we come to apply kinetic principles to various subjects in acou-

stics, physical optics, and practical mechanics
;
such as the sym-

pathy of pendulums or tuning-forks, the rolling of a turret ship

at sea, the marching of troops over a suspension bridge, etc.

Mechanism 62. If auv number of pulleys be so placed that a cord
for com- "

pounding passing from a fixed point half round each of them has its
S. H. mo- x ° A

tions in free parts all in parallel lines, and if their centres be moved
one line. * x

with simple harmonic motions of any ranges and any periods

in lines parallel to those lines, the unattached end of the

cord moves with a complex harmonic motion equal to twice

the sum of the given simple harmonic motions. This is the

principle of Sir W. Thomson's tide-predicting machine, con-

structed by the British Association, and ordered to be placed
in South Kensington Museum, availably for general use in

calculating beforehand for any port or other place on the sea

for which the simple harmonic constituents of the tide have

been determined by the " harmonic analysis
"

applied to
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previous observations*. We may exhibit, graphically, any case Graphical

of single or compound simple harmonic motion in one line by tionof

curves in which the abscissas represent intervals of time, and the motions in
one line.

* See British Association Tidal Committee's Eeport, 1868, 1872, 1875 : or

Lecture on Tides, by Sir W. Thomson, "Popular Lectures and Addresses,"

vol. in. p. 178.
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Graphical ordinates the corresponding distances of the moving point from
representa- . • i i i
tionof its mean position. In the case of a single simple harmonic
harmonic x

m .

motions in motion, the corresponding curve would be that described by the
one line.

. .

point P in § 53, if, while Q maintained its uniform circular

motion, the circle were to move with uniform velocity in any
direction perpendicular to OA. This construction gives the

harmonic curve, or curves of sines, in which the ordinates are

proportional to the sines of the abscissas, the straight line in

which moves being the axis of abscissae. It is the simplest

possible form assumed by a vibrating string. When the har-

monic motion is complex, but in one line, as is the case for any

point in a violin-, harp-, or pianoforte-string (differing, as these

do, from one another in their motions on account of the different

modes of excitation used), a similar construction may be made.

Investigation regarding complex harmonic functions has led to

results of the highest importance, having their most general

expression in Fourier's Theorem, to which we will presently devote

several pages. We give, on page 45, graphic representations of

the composition of two simple harmonic motions in one line, of

equal amplitudes and of periods which are as 1 : 2 and as 2 : 3,

for differences of epoch corresponding to 0, 1, 2, etc., sixteenths

of a circumference. In each case the epoch of the component of

greater period is a quarter of its own period. In the first, second,

third, etc., of each series respectively, the epoch of the component
of shorter period is less than a quarter-period by 0, 1, 2, etc.,

sixteenths of the period. The successive horizontal lines are the

axes of abscissae of the successive curves
;
the vertical line to the

left of each series being the common axis of ordinates. In each

of the first set the graver motion goes through one complete

period, in the second it goes through two periods.

1:2 2:3

(Octave) (Fifth)

y = sin x + sin ( 2x +
-^ j

. y
- sin 2x + sin (Sx + ~j .

Both, from x= to x= 2tt
;
and for « = 0, 1, 2 15, in succession.

These, and similar cases, when the periodic times are not com-

mensurable, will be again treated of under Acoustics.
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63. We have next to consider the composition of simple har- s. h. mo-
t r>p i

• t i
tions in

monic motions in different directions. In the first place, we see different

i i/>-ii • f-ii directions.

that any number of simple harmonic motions or one period, and

of the same phase, superimposed, produce a single simple har-

monic motion of the same phase. For, the displacement at any-

instant being, according to the principle of the composition of

motions, the geometrical resultant (see above, § 50) of the dis-

placements due to the component motions separately, these com-

ponent displacements, in the case supposed, all vary in simple

proportion to one another, and are in constant directions. Hence

the resultant displacement will vary in simple proportion to each

of them, and will be in a constant direction.

But if, while their periods are the same, the phases of the

several component motions do not agree, the resultant motion

will generally be elliptic, with equal areas described in equal
times by the radius-vector from the centre

; although in par-

ticular cases it may be uniform circular, or, on the other hand,

rectilineal and simple harmonic.

64. To prove this, we may first consider the case in which

we have two equal simple harmonic motions given, and these in

perpendicular lines, and differing in phase by a quarter period.

Their resultant is a uniform circular motion. For, let BA, B'A'

be their ranges; and from 0, their common middle point, as

centre, describe a circle through AA'BB'. The given motion of P
in BA will be (§ 53) defined by the motion

of a point Q round the circumference of

this circle
;
and the same point, if moving

in the direction indicated by the arrow, will

give a simple harmonic motion of F ,
in

B'A' ,
a quarter of a period behind that of

the motion of P in BA. But, since A' OA,

QP 0, and QF are right angles, the figure

QF OP is a parallelogram, and therefore Q is in the position of

the displacement compounded of OP and OF. Hence two equal

simple harmonic motions in perpendicular lines, of phases dif-

fering by a quarter period, are equivalent to a uniform circular

motion of radius equal to the maximum displacement of either

singly, and in the direction from the positive end of the range of
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the component in advance of the other towards the positive end

of the range of this latter.

65. Now, orthogonal projections of simple harmonic motions

are clearly simple harmonic with unchanged phase. Hence, if

we project the case of § 64 on any plane, we get motion in an

ellipse, of which the projections of the two component ranges

are conjugate diameters, and in which the radius-vector from the

centre describes equal areas (being the projections of the areas

described by the radius of the circle) in equal times. But the

plane and position of the circle of which this projection is taken

may clearly be found so as to fulfil the condition of having the

projections of the ranges coincident with any two given mutually

bisecting lines. Hence any two given simple harmonic motions,

equal or unequal in range, and oblique or at right angles to one

another in direction, provided only they differ by a quarter

period in phase, produce elliptic motion, having their ranges for

conjugate axes, and describing, by the radius-vector from the

centre, equal areas in equal times (compare § 34, b).

66. Returning to the composition of any number of simple

harmonic motions of one period, in lines in all directions and of

all phases : each component simple harmonic motion may be de-

terminately resolved into two in the same line, differing in phase

by a quarter period, and one of them having any given epoch.

We may therefore reduce the given motions to two sets, differing

in phase by a quarter period, those of one set agreeing in phase

with any one of the given, or with any other simple harmonic

motion we please to choose (i.e., having their epoch anything

we please).

All of each set may (§ 58) be compounded into one simple

harmonic motion of the same phase, of determinate amplitude,

in a determinate line
;
and thus the whole system is reduced to

two simple fully determined harmonic motions differing from

one another in phase by a quarter period.

Now the resultant of two simple harmonic motions, one a

quarter of a period in advance of the other, in different lines, has

been proved (§ 65) to be motion in an ellipse of which the ranges

of the component motions are conj ugate axes, and in which equal
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areas are described by the radius-vector from the centre in equal f.-

H - ,r

X L 1 OT19 1 1

mo-
jin

times. Hence the general proposition of § 63. dictions

Let
aj,

-
l

l

a
1
cos (wt

—
e,),'

y 1
=m

1
a

l cos(w<-€ i)A (1)

z
x

= n
x
a

y
cos (wt

- e
x ),

be the Cartesian specification of the first of the given motions ;

and so with varied suffixes for the others
;

I, m, n denoting the direction cosines,

«
f, „ half amplitude,

e „ „ epoch,

the proper suffix being attached to each letter to apply it to each

case, and w denoting the common relative angular velocity. The
resultant motion, specified by x, y, z without suffixes, is

x = %l
1
a

i
cos (wt

-
Cj)

= cos tat2,l
l

a
l
cos

e,
+ sin wfM

x
a

x
sin

e,,

y = etc.
;

z = etc.
;

or, as we may write for brevity,

x = P cos wt 4- P' sin oit,

y = Q cos wt + Q' sin wt, I (2)

z =E cos wt + K' sin wt,

(3)

where P = 2 l
x

a
x
cos

e, ,
P' = 2 £,a,

sin
e, ,

(^
- 1m

x

a
x
cos

c, , ()'
= 'Slm

l
a

l
sin

c, ,

^= S w,«, cos€p R' = ^ TO^ sin e .

The resultant motion thus specified, in terms of six component

simple harmonic motions, may be reduced to two by compounding

P, Q, R, and P', Q', R', in the elementary way. Thus if

»\i

P Q
rA =

[X

R

•(*)

A ~~ w > /
x ~~ w >

v —
yr )

the required motion will be the resultant of £ cos w£ in the line

(A, /a, r), and £' sin toi in the line (A', /u.', v'). It is therefore mo-

tion in an ellipse, of which 2£ and 2£' in those directions are

VOL. I. 4
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6 II. mo- conjugate diameters
;

with radius-vector from centre tracing
tions in r>

directions, equal areas in equal times
;
and of period

—
.

to

h. motions 67. We must next take the case of the composition of simple
of different . . n t /r • tcc t t
kinds and harmonic motions of different periods and m different lines. In
indifferent T i • v
line-.

general, whether these lines be in one plane or not, the line

of motion returns into itself if the periods are commensurable;

and if not, not. This is evident without proof.

If a be the amplitude, e the epoch, and n the angular velocity

in the relative circular motion, for a component in a line whose

direction cosines are A, fj.,
v—aud if £, 77, £ be the co-ordinates in

the resultant motion,

£=2. \
l

a
l
cos (n

x
t - ej, 77

= 2. /tx/^cos (n x
t -

e,), £= 2. v
x
a

x
cos (n x

t -
e,).

Now it is evident that at time t + T the values of £, 77, £ will recur

as soon as nT, n T, etc., are multiples of 2tt, that is, when T is

J.TT It?
the least common multiple of —

,

—
, etc.

n
x

n.

If there be such a common multiple, the trigonometrical func-

tions may be eliminated, and the equations (or equation, if the

motion is in one plane) to the path are algebraic. If not, they

are transcendental.

68. From the above we see generally that the composition

of any number of simple harmonic motions in any directions

and of any periods, may be effected by compounding, according

to previously explained methods, their resolved parts in each

of any three rectangular directions, and then compounding the

final resultants in these directions.

s. h. mo- 69. By far the most interesting case, and the simplest, is

rectangular that of tivo simple harmonic motions of any periods, whose di-
directions. ,. n ,

rections must oi course be in one plane.

Mechanical methods of obtaining such combinations will be

afterwards described, as well as cases of their occurrence in

Optics and Acoustics.

We may suppose, for simplicity, the two component motions

to take place in perpendicular directions. Also, as we can only

have a re-entering curve when their periods are commensur-

able, it will be advisable to commence with such a case.
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The following figures represent the paths produced by thes.H. mo-
tions in two
rectangula :

directions

combination of simple harmonic motions of equal amplitude in

two rectangular directions, the periods of the components being
as 1:2, and the epochs differing successively by 0, 1, 2, etc.,

sixteenths of a circumference.

In the case of epochs equal, or differing by a multirjle of ir,

the curve is a portion of a parabola, and is gone over twice

in opposite directions by the moving point in each complete

period.

For the case figured above,

x = a cos (2nt — e), y = a cos nt.

Hence x = a {cos 2nt cos e + sin 2nt sin e}

— a 2y
a -ijcose^iyi-gsincj

which for any given value of « is the equation of the correspond-

ing curve. Thus for e = 0,

ax 2y
2

— — —
g-
—

1, or y° = ^ (x + a), the parabola as above.

4—2
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S. H. mo- 7T X V / V*
tions in two For € = we have - = 2- ./ l-—„, or asx3 = W(a* -

if),
rectangular 2 a a V a
directions.

the equation of the 5th and 13th of the above curves.

In general

x = a cos (nt + e), 2/
= « cos (w,<

+
e,),

from which t is to be eliminated to find the Cartesian equation of

the curve.

Composi- 70. Another very important case is that of two groups of

uniform two simple harmonic motions in one plane, such that the resultant
circular .

motions. of each group is unilorm circular motion.

If their periods are equal, we have a case belonging to those

already treated (§ 63), and conclude that the resultant is, in

general, motion in an ellipse, equal areas being described in

equal times about the centre. As particular cases we may have

simple harmonic, or uniform circular, motion. (Compare § 91.)

If the circular motions are in the same direction, the resultant

is evidently circular motion in the same direction. This is the

case of the motion of S in § 58, and requires no further comment,
as its amplitude, epoch, etc., are seen at once from the figure.

71. If the periods of the two are very nearly equal, the re-

sultant motion will be at any moment very nearly the circular

motion given by the preceding construction. Or we may regard

it as rigorously a motion in a circle with a varying radius de-

creasing from a maximum value, the sum of the radii of the two

component motions, to a minimum, their difference, and increas-

ing again, alternately ;
the direction of the resultant radius

oscillating on each side of that of the greater component (as in

corresponding case, § 59, above). Hence the angular velocity

of the resultant motion is periodically variable. In the case of

equal radii, next considered, it is constant.

72. When the radii of the two component motions are equal,

we have the very interesting and important case figured below.

Here the resultant radius bisects the angle between the com-

ponent radii. The resultant angular velocity is the arithmetical

mean of its components. We will explain in a future section
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(§ 94) how this epitrochoid is traced by the rolling of one circle Composi-1 J b
tion of Uv(
uniform
circular
motions.

on another. (The particular case above delineated is that of a

non-reentrant curve.)

73. Let the uniform circular motions be in opposite direc-

tions
; then, if the periods are equal, we may easily see, as

before, § 66, that the resultant is in general elliptic motion,

including the particular cases of uniform circular, and simple

harmonic, motion.

If the periods are very nearly equal, the resultant will be

easily found, as in the case of § 59.

74. If the radii of the component motions are equal, we have

cases of very great importance in modern physics, one of which

is figured below (like the preceding, a non-reentrant curve).
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Composi-
tion of two
uniform
circula r

motions.

Fourier's
Theorem.

[74.

This is intimately connected with the explanation of two sets of

important phenomena,
—the rotation of the plane of polarization

of lio-ht, by quartz and certain fluids on the one hand, and by

transparent bodies under magnetic forces on the other. It is

a case of the hypotrochoid, and its corresponding mode of

description will be described in a future section. It will also

appear in kinetics as the path of a pendulum-bob which contains

a gyroscope in rapid rotation.

75. Before leaving for a time the subject of
,
the composition

of harmonic motions, we must, as promised in § 62, devote some

pages to the consideration of Fourier's Theorem, which is not

only one of the most beautiful results of modern analysis, but

may be said to furnish an indispensable instrument in the treat-

ment of nearly every recondite question in modern physics. To

mention only sonorous vibrations, the propagation of electric

signals alono- a telegraph wire, aud the conduction of heat by

the earth's crust, as subjects in their generality intractable with-

out it, is to give but a feeble idea of its importance. The follow-

ing seems to be the most intelligible form in which it can be

presented to the general reader :—

Theorem.—A complex harmonic function, with a constant term

added, is the proper expression, in mathematical language,

for any arbitrary periodic function; and consequently can

express any function whatever between definite values of

the variable.

76. Any arbitrary periodic function whatever being given,

the amplitudes and epochs of the terms of a complex harmonic

function which shall be equal to it for every value of the inde-

pendent variable, may be investigated by the " method of inde-

terminate coefficients."

Assume equation (14) below. Multiply both members first

by cos -—- d$ and integrate from to p : then multiply by
V

sin 1^2 dg an(:l integrate between same limits. Thus instantly
P

you find (13).
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This investigation is sufficient as a solution of the problem, Pouriei •>

,, c. . . ,. Theorem—to find a complex harmonic function expressing a given arbi-

trary periodic function,
—when once we are assured that the

problem is possible ;
and when we have this assurance, it pi'oves

that the resolution is determinate
;

that is to say, that no

other complex harmonic function than the one we have found

can satisfy the conditions.

For description of an integrating machine by which the

coefficients A i} Bt
in the Fourier expression (14) for any given

arbitrary function may be obtained with exceedingly little

labour, and with all the accuracy practically needed for the

harmonic analysis of tidal and meteorological observations, see

Proceedings of the Royal Society, Feb. 1876, or Chap. v. below.

77. The full theory of the expression investigated in § 76

will be made more intelligible by an investigation from a

different point of view.

Let F(x) be any periodic function, of period p. That is to

say, let F(x) be any function fulfilling the condition

F(x +
i2))

= F(x) (1),

where i denotes any positive or negative integer. Consider the

integral
c

F(x) dx

where a, c, c denote any three given quantities. Its value is

f
c dx f

c dx
less than F(z)

-

2
—

2 ,
and greater than F(z) I

-

2
——

2 ,
if z

J iOj ~\- OG J Cf Cb ~T its

and z denote the values of x, either equal to or intermediate

between the limits c and c', for which F(x) is greatest and least

respectively. But

<" c dx 1/ _, c .,A—
„
= - tan

• — tan -
c
i« + x' a\ a a J

and therefore

1 ^-(tan-^-tan-
1

^) (2),

f°.F(x)adx „,.'/. _, c _,c'\

and „ >^')(tan- 4̂ -tan->^).^

(3)
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Fourier's Hence if A be the greatest of all the values of F(x), and B the
Theoreiu . .

least,

(4)

(6)

[ F(x)adx , (tt _.c\ 1V — < il
( „

- tan -
,

Je
a- + x* \2 a'

>

and „ >i?
(
- -tarT' -

) .

V 2 a/ J

Also, similarly,

J_» « + a \ a 2/
j

and „
>2?(tan-^

+
^. j

Adding the first members of (3), (4), and (5),
and comparing

with the corresponding sums of the second members, we find

rn*)"d* < Wto-. 1 _ tan"'
C

')
+ AU- tan"'

C- + taa-^,1

and „ >W)ftan-
1 --tan- 1 -V^^-tan- 1 - + tan-

l -V Iw
\ a a) \ a a) j

But, by (1),

Now if we denote J— 1 by u,

u_=ju --
1 —^

a2 + (x + ip)
2

2av \x + ip
— av x + ip + avj

'

and therefore, taking the terms corresponding to positive and

equal negative values of i together, and the terms for % = sepa-

rately, we have

~»=" ( 1 \ _ I f 1

2S
i= °° x ~ av

- ~" \a
2 + (x + i/>)

2
/ 2av \x-av i " 1

i
2

p
2

-(x- avf
1 ,>» x + av

|

£c + av '- 1
rp

2 -
(a;

+ au)
2

J

= K < cot —^— - cot — }

2aj)v ( p P )

ir . 2ttciv ~
. 2-rrav

sin sin
2apv p apv p

„ irav „ irx 2rrav 2 77 a;
COS" cos — cos COS

p p p p
•lira _2na

€
p - e~ p

ap 2ZE? a 2™r Ittx
-—

c v — 2 cos + e p
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Hence, Fourier s

Theorem.
2nu 2nd „ _.. . T

2na 2tt« V°/ -r^)& * /- --\ ,»_

J
«*

2
-""-

THE
-

-^
_

'I COS + €
p

p

2w£u

Next, denoting temporarily, for brevity, c
p

by £, and putting

l-na

* V -« (9),

1 e
we have

2

i
a

n 2™ - 2

-? i-'tf+rw
c
p - 2 cos + c p

=
!478 {l + e(C +r i

) + e
2

(r +r 2

) + e
3

(r +r8
) + etc.}

e V 27TX „ 47TX 3 6tt:£ \= =—• . 1 + 2e cos + 2e- cos 1- 2e cos + etc. ) .

1 — e \ p p p J

Hence, according to (8) and (9),

r F(x)dx 77 /*
/ 27ra; „ 47ra; \ .,„

;
;

8
= —

I
.F(a;)da;(

1 + 2e cos + 2e"cos + etc. )...(10).
J-to CI + & Clp JO \ P P /

. Hence, by (6), we infer that

F(z) (W 1 - - tan" 1 -\ + a(tt- tan" 1 - + tan" >

-) >
\ a aj \ a aJ

and F(z') (tan"
1 - - tan" 1 -\ + b(it- tan" 1 - + tan" 1

-) <
1

\ a a) \ a a)

-

\ F(x)dx ( 1 + 2e cos— + etc. ) .

PJo \ P J

Now let c'=- c, and x = £'
—

$,

$' being a variable, and $ constant, so far as the integration is

concerned
;
and let

*(•)=•*< + *)- *(f),

and therefore F
(z)

=
<f> (£ + «),

J(0 =
*(*+*')•
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(11)

58 PRELIMINARY. [77.

The preceding pair of inequalities becomes

4>{£ + z).2 tan" 1 t+.A(r- 2 tan" 1

-)
>

and </>(£+ z') . 2 tan"
1 - + b(v - 2 tan"

1

-)
<

where <£ denotes any periodic function whatever, of period p.

Now let c be a very small fraction of p. In the limit, where c

is infinitely small, the greatest and least values of
</> {$') for values

of £' between $ + c and £ - c will be infinitely nearly equal to one

another and to <£ ($) ;
that is to say,

+(£+*)«+(£+') = +(&
Next, let a be an infinitely small fraction of c. In the limit

x -1 C «"
tan - =

and

a 2'

e~* =1.

Hence the comparison (11) becomes in the limit an equation

which, if we divide both members by 71-, gives

P \ Jo Jo P )

This is the celebrated theorem discovered by Fourier* for the

development of an arbitrary periodic function in a series of simple
harmonic terms. A formula included in it as a particular case

had been given previously by Lagranget.

If, for cos
* '

,
we take its value

P

2in$' 2iir£ . 2iv? . 2iv£
cos cos + sm sin —-

p p p p
and introduce the following notation :

—

-*.=-fJL*ffl*

A*=Z «/>(f)
COS —- ^, j>

F Jo V

t Jo V

(13)

Theorie analytique de la Chaleur. Paris, 1822.

t Anciens Memoires de VAcademie de Turin.
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we reduce (12) to this form :
— Fourier's

Theorem.

^)=,i0+ 2;::^-s^
+c:^-^ a^

which is the general expression of an arbitrary function in terms

of a series of cosines and of sines. Or if we take

P<=(A?+B?)\ and tane, =^ (15),
i

we have *(Q = A +j%F4m(^ -
^ (16),

which is the general expression in a series of single simple har-

monic terms of the successive multiple periods.

Each of the equations and comparisons (2), (7), (8), (10), and Converg-
611 CV Of

(1 1) is a true arithmetical expression, and may be verified by actual Fourier's
scries

calculation of the numbers, for any particular case
; provided only

that F (x) has no infinite value in its period. Hence, with this

exception, (12) or either of its equivalents, (14), (16), is a true

arithmetical expression ;
and the series which it involves is there-

fore convergent. Hence we may with perfect rigour conclude

that even the extreme case in Avhich the arbitrary function ex-

periences an abrupt finite change in its value when the inde-

pendent variable, increasing continuously, passes through some

particular value or values, is included in the general theorem.

In such a case, if any value be given to the independent variable

differing however little from one which corresponds to an abrupt

change in the value of the function, the series must, as we may
infer from the preceding investigation, converge and give a

definite value for the function. But if exactly the critical value

is assigned to the independent variable, the series cannot con-

verge to any definite value. The consideration of the limiting

values shown in the comparison (11) does away with all difficulty

in understanding how the series (12) gives definite values having

a finite difference for two particular values of the independent

variable on the two sides of a critical value, but differing in-

finitely little from one another.

If the differential coefficient ~p is finite for every value of

£ within the period, it too is arithmetically expressible by a series

of harmonic terms, which cannot be other than the series ob*

tained by differentiating the series for <£ (£),
Hence
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Converg-
>»ncy of
Fourier's
series.

ffy(Q _ 27

l7" fi

)
•(17),2 ti

j
sin

and this series is convergent ;
and we may therefore conclude that

the series for <£(£) is more convergent than a harmonic series

with
1 i i i etf>

» 2> 7P T' ^ L^v

for its coefficients.

72 J / /-\

If —r~- has no infinite values within the
or

period, we may differentiate both members of (17) and still have

an equation arithmetically true
;
and so on. We conclude that

if the wth
differential coefficient of

<f> (£) has
'

no infinite values,

the harmonic series for <£(£) must converge more rapidly than a

harmonic series with

1 1 1— — — etc*> nil! On) in) CIA,.,

for its coefficients.

Displace-
ment of a
rigid body.

Displace-
ments of a

plane figure
in its plane.

78. We now pass to the consideration of the displacement
of a rigid body or group of points whose relative positions are

unalterable. The simplest case we can consider is that of the

motion of a plane figure in its own plane, and this, as far as

kinematics is concerned, is entirely summed up in the result of

the next section.

79. If a plane figure be displaced in any way in its own

plane, there is always (with an exception treated in § 81) one

point of it common to any two positions ;
that is, it may be

moved from any one position to any other by rotation in its own

plane about one point held fixed.

To prove this, let A, B be any two points of the plane figure

in its first position, A', B the positions of the same two after

a displacement. The lines AA', BB will

not be parallel, except in one case to be

presently considered. Hence the line equi-
distant from A and A' will meet that equi-

distant from B and B' in some point 0.

Join OA, OB, OA', OB 1

. Then, evidently,

because OA' = OA, OF = OB and A'B
= AB, the triangles OA'B' and OAB are

equal and similar. Hence is similarly

situated with regard to A'B' and AB, and is therefore one and
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the same point of the plane figure in its two positions. If, for Displace-

the sake of illustration, we actually trace the triangle OA B upon plane figure

i i • i r\ ti -r%i •
l i ' • o i n HI its plane.

the plane, it becomes OA B m the second position of the figure.

80. If from the equal angles A'OB', AOB of these similar

triangles we take the common part A'OB, we have the remaining

angles AOA', BOB' equal, and each of them is clearly equal to

the angle through which the figure must have turned round the

point to bring it from the first to the second position.

The preceding simple construction therefore enables us not

only to demonstrate the general proposition, § 79, but also to

determine from the two positions of one terminated line AB,
A'B' of the figure the common centre and the amount of the

angle of rotation.

81. The lines equidistant from A and A', and from B and B',

are parallel if AB is parallel to A'B
;
and therefore the con-

struction fails, the point being

infinitely distant, and the theorem

becomes nugatory. In this case the

motion is in fact a simple trans-

lation of the figure in its own A

-£'

plane without rotation—since, AB being parallel and equal to

A'B1

,
we have AA' parallel and equal to BB

;
and instead of

there being one point of the figure common to both positions,

the lines joining the two successive positions of all points in the

figure are equal and parallel.

82. It is not necessary to suppose the figure to be a mere flat

disc or plane
—for the preceding statements apply to any one of

a set of parallel planes in a rigid body, moving in any way

subject to the condition that the points of any one plane in it

remain always in a fixed plane in space.

83. There is yet a case in which the construction in § 79 is

nugatory
—that is when AA is paral-

lel to BB, but the lines of AB and

A'B intersect. In this case, how-

ever, the point of intersection is the

point required, although the former

method would not have enabled us to find it
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Examples 84. Very many interesting applications of this principle may
ment in one be made, of which, however, few belong strictly to our subject,

and we shall therefore give only an example or two. Thus we
know that if a line of given length AB move with its extremities

always in two fixed lines OA, OB,

any point in it as P describes an

ellipse. It is required to find the

direction of motion of P at any in-

stant, i.e., to draw a tangent to the

ellipse. BA will pass to its next

position by rotating about the point

Q; found by the method of § 79

by drawing perpendiculars to OA
and OB at A and B. Hence P for the instant revolves about Q,

and thus its direction of motion, or the tangent to the ellipse, is

perpendicular to QP. Also AB in its motion always touches a

curve (called in geometry its envelop) ;
and the same principle

enables us to find the point of the envelop which lies in AB, for

the motion of that point must evidently be ultimately (that is

for a very small displacement) along AB, and the only point
which so moves is the intersection of AB with the perpen-
dicular to it from Q. Thus our construction would enable us

to trace the envelop by points. (For more on this subject
see § 91.)

85. Again, suppose AB to be the beam of a stationary engine

having a reciprocating motion about A, and by a link BD
turning a crank CD about C. Determine the relation between

the angular velocities of AB and CD in any position. Evi-

dently the instantaneous direction of motion of B is trans-

verse to AB, and of D transverse to CD—hence if AB, CD
produced meet in 0, the motion of BD is for an instant as if

it turned about 0. From thisA B
it may be easilv seen that if

the angular velocity of AB be

.. , fnn . AB OD .

co, that ot CD is Yyn ITF}
w - A-

similar process is of course

applicable to any combination of machinery, and we shall find it
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very convenient when Ave come to consider various dynamical Examples

problems connected with virtual velocities. ment in. one
plane.

86. Since in general any movement of a plane figure in its composition

plane may be considered as a rotation about one point, it is about*

evident that two such rotations may in general be compounded axes.

e

into one
;
and therefore, of course, the same may be done with

any number of rotations. Thus let A and B be the points of

the figure about which in succession the rotations are to take

place. By a rotation about A, B is brought say to B', and by a

rotation about B
,
A is brought to A'. The construction of § 79

gives us at once the point and the amount of rotation about it

which singly gives the same effect as those about A and B in

succession. But there is one case of exception, viz
, when the

rotations about A and B are of equal ^
amount and in opposite directions. In

this case A'B' is evidently parallel to

AB, and therefore the compound result

is a translation only. That is, if a body
"^ B'

revolve in succession through equal angles,, but in opposite di-

rections, about two parallel axes, it finally takes a position to

which it could have been brought by a simple translation per-

pendicular to the lines of the body in its initial or final position,

which were successively made axes of rotation
;
and inclined to

their plane at an angle equal to half the supplement of the

common angle of rotation.

87. Hence to compound into an equivalent rotation a rota- Composition

tiou and a translation, the latter being effected parallel to the and transia-

i /. i ,
,

... tions in one

plane ol the former, we may decompose the translation into two plane.

rotations of equal amount and opposite direction, compound one

of them with the given rotation by § 86, and then compound
the other with the resultant rotation by the same process. Or

we may adopt the following far

simpler method. Let OA be the

translation common to all points

in the plane, and let BOO be the

angle of rotation about 0, BO
being drawn so that OA bisects the exterior angle COB'.
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orations
11 tlie P°*nt & m BO produced, such that EC, the space through

tious^fi

n
one*

wn icn tDe rotation carries it, is equal and opposite to OA. This
plane. point retains its former position after the performance of the

compound operation ;
so that a rotation and a translation in

one plane can be compounded into an equal rotation about a

different axis.

In general, if the origin be taken as the point about which

rotation takes place in the plane of xy, and if it be through an

angle 6, a point whose co-ordinates were originally x, y will have

them changed to

£
- x cos — y sin 0, rj

= x sin 6 + y cos$,

or, if the rotation be very small,

£
- x -

yd, t]

-
y 4- xO.

omission of 88. In considering the composition of angular velocities

and higher about different axes, and other similar cases, we may deal with

small quan- infinitely small displacements only ;
and it results at once from

the principles of the differential calculus, that if these displace-

ments be of the first order of small quantities, any point whose

displacement is of the second order of small quantities is to be

considered as rigorously at rest. Hence, for instance, if a body
revolve through an angle of the first order of small quantities

about an axis (belonging to the body) which during the revolu-

tion is displaced through an angle or space, also of the first

order, the displacement of any point of the body is rigorously

what it would have been had the axis been fixed durins: the

rotation about it, and its own displacement made either before

or after this rotation. Hence in any case of motion of a rigid

system the angular velocities about a system of axes moving with

the system are the same at any instant as those about a system
fixed in space, provided only that the latter coincide at the

instant in question with the moveable ones.

superposi- 89. From similar considerations follows also the general prin-

motions
ma

ciple of Superposition of small motions. It asserts that if several

causes act simultaneously on the same particle or rigid body, and

if the effect produced by each is of the first order of small quan-

tities, the joint effect will be obtained if we consider the causes

to act successively, each taking the point or system in the posi-
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tion in which the preceding oue left it. It is evident at once Superposi-

i i
• • t i i c tion of small

that this is an immediate deduction irom the fact that the second motions,

order of infinitely small quantities may be with rigorous accuracy

neglected. This principle is of very great use, as we shall find

in the sequel ;
its applications are of constant occurrence.

A plane figure has given angular velocities about given axes

perpendicular to its plane, find the resultant.

Let there be an angular velocity w about an axis passing

through the point a, b.

The consequent motion of the point x, y in the time 8t is, as

we have just seen (§ 87),

—
(y
—

b) w&t parallel to x, and (x — a) wSt parallel to y.

Hence, by the superposition of small motions, the whole motion

parallel to x is

—
(?/2a>

—
2,ba))8t,

and that parallel to y (x'S.w — "%aw)8t.

Hence the point whose co-ordinates are

,
Saw

, 2&w
x =—— and y = -=—

-,"> -id)

is at rest, and the resultant axis passes through it. Any other

point x, y moves through spaces

—
(ySo)

—
26w) 8t, (x'S.w

-
~2,a(i))8t.

But if the whole had turned about x, y with velocity Q, we should

have had for the displacements of x, y,

—
{y

—
y') £l&t, (x

-
x) Q8t.

Comparing, we find Q, = 2w.

Hence if the sum of the angular velocities be zero, there is no

rotation, and indeed the above formulae show that there is then

merely translation,

~2<(bu))8t parallel to x, and -
2(«ci>)8£ parallel to y.

These formulae suffice for the consideration of any problem on

the subject.

90. Any motion whatever of a plane figure in its own plane Roiling of

might be produced by the rolling of a curve fixed to the figure curve,

upon a curve fixed in the plane.
For we may consider the whole motion as made up of suc-

cessive elementary displacements, each of which corresponds, as

we have seen, to an elementary rotation about some point in

vol l. 5
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Rolling of
curve on
curve.

Cycloids
and
Trochoids.

the plane.

the

0„,

Let
o,, o

a>
o
3 , etc., be the successive points of

moving
o , etc.
S>

figure about which the rotations take place, X ,

the positions of these points when each is the

instantaneous centre of rotation. Then the figure rotates about

o
1 (or 1}

which coincides with it) till o
2
coincides with

2 ,
then

about the latter till o
s
coincides with

3 ,
and so on. Hence, if we join o

x ,

o
2 , o

g , etc., in the plane of the figure,

and 0,, 2 , S , etc., in the fixed plane,

the motion will be the same as if the

polygon OjO/^g, etc., rolled upon the fixed

polygon OjOjOg, etc. By supposing the

successive displacements small enough
the sides of these polygons gradually diminish, and the polygons

finally become continuous curves Hence the theorem.

From this it immediately follows, that any displacement of a

rigid solid, which is in directions wholly perpendicular to a fixed

line, may be produced by the rolling of a cylinder fixed in the

solid on another cylinder fixed in space, the axes of the cylinders

being parallel to the fixed line.

91. As an interesting example of this theorem, let us recur

to the case of § 84 :
—A circle may evidently be circumscribed

about OBQA ;
and it must be of invariable magnitude, since in

it a chord of given length AB subtends a given angle at the

circumference. Also OQ is a diameter of this circle, and is there-

fore constant. Hence, as Q is momentarily at rest, the motion

of the circle circumscribing OBQA is one of internal rolling on

a circle of double its diameter. Hence if a circle roll internally

on another of twice its diameter, any point in its circumference

describes a diameter of the fixed circle, any other point in its

plane an ellipse. This is precisely the same proposition as that

of § 70, although the ways of arriving at it are very different.

As it presents us with a particular case of the Hypocycloid, it

warns us to return to the consideration of these and kindred

curves, which give good instances of kinematical theorems, but

which besides are of great use in physics generally.

92. When a circle rolls upon a straight line, a point in its

circumference describes a Cycloid ;
an internal point describes a
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Prolate, an external one a Curtate, Cycloid. The two latter ^loid9

varieties are sometimes called Trochoids. Trochoids.

The general form of these curves will be seen in the annexed

figures ;
and in what follows we shall confine our remarks to the

cycloid itself, as of immensely greater consequence than the

others. The next section contains a simple investigation of those

properties of the cycloid which are most useful in our subject.

93. Let AB be a diameter of the generating (or rolling) circle, Properties

BC the line on which it rolls. B P n cycloid -

The points A and B describe

similar and equal cycloids, of

which AQG and BS are portions.

If PQB be any subsequent posi-

tion of the generating circle, Q
and S the new positions of A and

B, *QPS is of course a right

angle. If, therefore, QB be drawn

parallel to PS, PB is a diameter
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Properties of the rolling circle. Produce QR to T, making RT= QR=P8.
cycloid. Evidently the curve A T, which is the locus of T, is similar and

equal to BS, and is therefore a cycloid similar and equal to AG.
But QR is perpendicular to PQ, and is therefore the instanta-

neous direction of motion of Q, or is the tangent to the cycloid

AQG. Similarly, PS is perpendicular to the cycloid BS at S,

and so is therefore TQ to AT at T. Hence (§ 19) AQG is the

evolute of AT, and arc AQ=QT=2QR.

Epicycloids, 94. When the circle rolls upon another circle, the curve

cycloids, described by a point in its circumference is called an Epicycloid,
or a Hypocycloid, as the rolling circie is without or within the

fixed circle
;
and when the tracing point is not in the circum-

ference, we have Epitrochoids and Hypotrochoids. Of the latter

we have already met with examples, §§ 70,

91, and others will be presently mentioned.

Of the former, we have in the first of the

appended figures the case of a circle rolling

externally on another of equal size. The
curve in this case is called the Cardioid

(§ 49).

In the second diagram, a circle

rolls externally on another of twice

its radius. The epicycloid so de-

scribed is of importance in Optics,

aud will, with others, be referred

to when we consider the subject of

Caustics by reflexion.

In the third diagram, we have

a hypocycloid traced by the rolling

of one circle internally on another

of four times its radius.
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The curve figured in § 72 is an epitrochoid described by a Epicycloids,

point in the plane of a large circular disc which rolls upon a cycfoids.etc.

circular cylinder of small diameter, so that the point, passes

through the axis of the cylinder.

That of § 74 is a hypotrochoid described by a point in the

plane of a circle which rolls internally on another of rather

more than twice its diameter, the tracing point passing through

the centre of the fixed circle. Had the diameters of the circles

been exactly as 1 : 2, § 72 or § 91 shows that this curve would

have been reduced to a single straight line.

The general equations of this class of curves are

x — (a + b) cos 6 — eb cos —r— 6,

y=(a +
b) sin v - eb sin , #,

where a is the radius of the fixed, b of the rolling circle
;
and eb

is the distance of the tracing point from the centre of the latter.

95. If a rigid solid body move in any way whatever, sub- Motion

ject only to the condition that one of its points remains fixed, fixed point,

there is always (without exception) one line of it through this

point common to the body in any two positions. This most

important theorem is due to Euler. To prove it, consider Euier's

a spherical surface within the body, with its centre at the

fixed point G. All points of this sphere attached to the

body will move on a sphere fixed in space. Hence the

construction of § 79 may be made, but with great circles

instead of straight lines
;
and the same reasoning will apply to

prove that the point thus obtained is common to the body
in its two positions. Hence every point of the body in the

line OC, joining with the fixed point, must be common to it

in the two positions. Hence the body may pass from any one

position to any other by rotating through a definite angle about

a definite axis. Hence any position of the body may be speci-

fied by specifying the axis, and the angle, of rotation by which

it may be brought to that position from a fixed position of re-

ference, an idea due to Euler, and revived by Rodrigues.
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RodEj«^es
, Let OX, OY, OZ be any three fixed axes through the fixed

nates. point round which the body turns. Let A, ft, v be the

direction cosines, referred to these axes, of the axis 01 round

which the body must turn, and x the angle through which it

must turn round this axis, to bring it from some zero position to

any other position. This other position, being specified by the

four co-ordinates A, /*, v, x (reducible, of course, to three by
the relation. A2 + /a

2 + v
2 =

1),
will be called for brevity (A., ti, v, y)-

Let OA, OB, 00 be three rectangular lines moving with the

body, which in the "zero" position coincide x'espectively with

OX, OY, OZ; and put

(XA), (YA), (ZA), (XB), (YB), (ZB), (XC), (YC), (ZO),

for the nine direction cosines of OA, OB, 00, each referred to

OX, OY, OZ. These nine direction cosines are of course reduci-

ble to three independent co-ordinates by the well-known six

relations. Let it be required now to express these nine direction

cosines in terms of Rodrigues' co-ordinates A, ti, v, x-

I jet the lengths OX, ..., OA, ..., 01 be equal, and call each

unity : and desci'ibe from as centre a spherical surface of unit

radius
;
so that X, Y, Z, A, B, 0, I shall be points on this sur-

face. Let XA, YA, ... XB, denote arcs, and XAY, AXB, ...

angles between arcs, in the spherical diagram thus obtained.

We have IA = IX — cvs
-1

A, and A'IA =
%• Hence by the isosceles

spherical triangle XIA,
cos XA = cos

2 IX + sin
2/A' cos x,

or (A^) = A2

+(l-A
2

)cos x (1).

And by the spherical triangle XIB,

cos XB — cos IX cos IB + sin IX sin IB cos XIl>

= \H.+ J(T^\*)(l-p
a

)
cos XIB

(2).

Now 1/^ = A7f + 17j5 = .177 + x ;
and by the spherical

triangle XIY we have

cos XY = = cos IX cos IY + sin IX sin IY cos XIY

=
X/i + 7(1 - A2

) (l-/*
2

)
cos XIY.

Hence J (I
- A2

) (1
- ti

2

)
cos XIY = -

A/i,

and V(l
- A2

) (1
-

/J) sin XIY = v/(l
- A2 -

//)
=

by which we have

7(1- A2

) (
1 -

(A-) cos (XIY + x)
— -

A/x.
cos x

- v sm X >
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and usine this in (2), Rodriguea'

cosXfi =
X/*(l

- cos x)
-

J' siii x (3 )-
nate8#

Similarly we find

cos AY -Xfx(l -cosx) + vsin x (4).

The other six formulae may be written out by symmetry from

(1), (3), and (4) ;
and thus for the nine direction cosines we find

'(X4)=\
a + (l-\

2
)cosx; (XB) =X/* (1 -oosx)-«' sin x; (K4) = AMl-cosx) +

"siiix;|

{ YB) =m2 + (1- V?) cos x ; ( YC)= ia> (1
- cos x)

- X sin x ; (25) =/w (1
- cos x ) + X sin x ; >(5).

.(ZC) = * S + (1- »2)cos X ; (Z4)=A 1 -cosx)-Msinx; (ZC) = ^X (1 -cos x)+M sin x-
'

Adding the three first equations of these three lines, and re-

membering that

\° + ^ + S = 1 (6),

we deduce

cos X = ^[(XA) + (YB) + (ZG)- I] (7);

and then, by the three equations separately,

41
\ + (XA)-(YB)-(ZG) "I

H-'
=

v =

Z-(XA)-(YB)-{ZCy

\-(XA) + (YB)-(ZC)

?>-(XA)-(YB)-(ZC)'

l-(XA)-(YB) + (ZC)

3-(XA)-(YB)-(ZC)' j

(8)

These formulae, (8) and (7), express, in terms of (XA), (YB),

(ZC), three out of the nine direction cosines (XA), ..., the

direction cosines of the axis round which the body must turn,

and the cosine of the angle through which il must turn round

this axis, to bring it from the zero position to the position

specified by those three direction cosines.

By aid of Euler's theorem above, successive or simultaneous Compo-
i in <> i

sition of

rotations about any number ot axes through the fixed point rotations,

may be compounded into a rotation about one axis. Doing this

for infinitely small rotations we find the law of composition of

angular velocities.

Let OA, OB be two axes about which a body revolves with Composi-
, , ... .. , tionofangu-

angular velocities &, p respectively. lar veloci-
ties.

With radius unity describe the arc AB, and in it take any
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Composi-
tion ofangu-
lar veloci-

ties.

Parallelo-

gram of

angular
velocities.

Composi-
tion ofangu
lar veloci-
ties about
axes meet-
ing in a
point.

Draw la, 1(3 perpendicular to OA, OB respectively.
Let the rotations about the two axes be

such that that about OB tends to raise I
above the plane of the paper, and that

about OA to depress it. In an infinitely

short interval of time t, the amounts of

these displacements will be pi(3. r and
— w/a.r. The point I, and therefore

every point in the line 01, will be at rest

during the interval t if the sum of these

displacements is zero, that is if p . 1/3 = -ar . la. Hence the line

01 is instantaneously at rest, or the two rotations about OA and

OB may be compounded into one about 01. Draw Ip, Iq,

parallel to OB, OA respectively. Then, expressing in two ways
the area of the parallelogram IpOq, we have

Oq . 1(3 = Op . la,

Oq : Op :: p : w.

Hence, if along the axes OA, OB, we measure off from lines

Op, Oq, proportional respectively to the angidar velocities about

these axes—the diagonal of the parallelogram of which these are

contiguous sides is the resultant axis.

Again, if Bb be drawn perpendicular to OA, and if O be the

angular velocity about 01, the whole displacement of B may
evidently be represented either by zr . Bb or Q . 1(3.

Hence

O : bt :: Bb : 1(3 :: sin BOA : sin JOB :: sin IpO : sinpIO,

:: 01 : Op.

Thus it is proved that,
—

If lengths proportional to the respective angular velocities

about them be measured off on the component and resultant

axes, the lines so determined will be the sides and diagonal of

a parallelogram.

96. Hence the single angular velocity equivalent to three

co-existent angular velocities about three mutually perpen-
dicular axes, is determined in magnitude, and the direction of

its axis is found (§ 27), as follows :
—The square of the resultant

angular velocity is the sum of the squares of its components,
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and the ratios of the three components to the resultant are the Composi-

direction cosines of the axis.
itl/about

Hence simultaneous rotations about any number of axes
fn^in a

meeting in a point may be compounded thus :
—Let w be the P°int>

angular velocity about one of them whose direction cosines are

I, m, n
;
Q the angular velocity and X, p.,

v the direction cosines

of the resultant.

AQ = 2 (lu>), /xO = 2 (ra«>),
vfi = 2 (nw),

whence ft
2 = 22

(fo>)
+ 22

(raw) + 22

(«o>),

2 (lw) 2 (raw) 2 (nw)
and x==

o '/*= sT-'
v = -o--

Hence also, an angular velocity about any line may be re-

solved into three about any set of rectangular lines, the resolu-

tion in each case being (like that of simple velocities) effected

by multiplying by the cosine of the angle between the directions.

Hence, just as in § 31 a uniform acceleration, perpendicular
to the direction of motion of a point, produces a change in the

direction of motion, but does not influence the velocity; so, if a

body be rotating about an axis, and be subjected to an action

tending to produce rotation about a perpendicular axis, the

result will be a change of direction of the axis about which the

body revolves, but no change in the angular velocity. On this

kinematical principle is founded the dynamical explanation of

the Precession of the Equinoxes (§ 107 J
and of some of the

seemingly marvellous performances of gyroscopes and gyrostats.

The following method of treating the subject is useful in

connexion with the ordinary methods of co-ordinate geometry.
It contains also, as will be seen, an independent demonstration

of the parallelogram of angular velocities :
—

Angular velocities -us, p, a about the axes of x, y, and z

respectively, produce in time M displacements of the point at

x, y, z (§§ 87, 89),

(pz
—

cry) St
|| x, (ax

—
tzsz) St

|| y, (vsy
—
px) St

||
z.

Hence points for which
x y z

w p a

are not displaced. These are therefore the equations of the axis
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Composi-
tion ofangu-
lar veloci-

ties about
axes meet-

ing in a

point.

Now the perpendicular from any point x, y, z to this line is,

by co-ordinate geometry,

x +v (wx + py + crzf

w2 + p
2 + <r

2

i

sfuT
2 + p

2 + <T
2 sj(pz

-
a-yf + (<rx

—
zjz)

2 + (my
—

px)'

whole displacement of x, y, z

The actual displacement of x, y, z is therefore the same as would

have been produced in time 8t by a single angular velocity,

ft = Jm* + p
2 + <T

2

,
about the axis determined by the preceding

equations.

Composi- 97. We give next a few useful theorems relating to the
tion of sue- . . n . _ .

cessiveflnite composition ol successive finite rotations.

If a pyramid or cone of any form roll on a heterochirally

similar* pyramid (the image in a plane minor of the first posi-

tion of the first) all round, it clearly comes back to its primitive

position. This (as all rolling of cones) is conveniently exhibited

by taking the intersection of each with a spherical surface.

Thus we see that if a spherical polygon turns about its angular

points in succession, always keeping on the spherical surface,

and if the angle through which it turns about each point is

twice the supplement of the angle of the polygon, or, which

will come to the same thing, if it be in the other direction,

but equal to twice the angle itself of the polygon, it will be

brought to its original position.

The polar theorem (compare § 134, below) to this is, that a

body, after successive rotations, represented by the doubles of

the successive sides of a spherical polygon taken in order, is

restored to its original position; which also is self-evident.

98. Another theorem is the following;
—

If a pyramid rolls over all its sides on a plane, it leaves its

track behind it as one plane angle, equal to the sum of the

plane angles at its vertex.

* The similarity of a right-hand and a left-hand is called heterochiral : that

of two right-hands, homochiral. Any object and its image in a plane mirror

are heterochirally similar (Thomson, Proc. R. S. Edinburgh, 1873).
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Otherwise :
—in a spherical surface, a spherical polygon having Composition

rolled over all its sides along a great circle, is found in the aive finite° °
. rotations.

same position as if the side first lying along that circle had

been simply shifted along it through an arc equal to the poly-

gon's periphery. The polar theorem is :
—if a body be made to

take successive rotations, represented by the sides of a spherical

polygon taken in order, it will finally be as if it had revolved

about the axis through the first angular point of the polygon

through an angle equal to the spherical excess (§ 134) or area

of the polygon.

99. The investigation of § 90 also applies to this case; and it Motion

is thus easy to show that the most general motion of a spherical point.

a
Ron-

figure on a fixed spherical surface is obtained by the rolling of

a curve fixed in the figure on a curve fixed on the sphere.

Hence as at each instant the line joining C and contains a

set of points of the body which are momentarily at rest, the

most general motion of a rigid body of which one point is fixed

consists in the rolling of a cone fixed in the body upon a cone

fixed in space
—the vertices of both being at the fixed point.

100. Given at each instant the angular velocities of the Position of

, , . . thebodydue

body about three rectangular axes attached to it, determine to given ro-
uitions.

its position in space at any time.

From the given angular velocities about OA, OB, OC, we

know, § 95, the position of the instantaneous axis 01 with re-

ference to the body at every instant. Hence we know the

conical surface in the body which rolls on the cone fixed in

space. The data are sufficient also for the determination of

this other cone
;
and these cones being known, and the lines of

them which are in contact at any given instant being deter-

mined, the position of the moving body is completely deter-

mined.

If X, (jl,
v be the direction cosines of 01 referred to OA, OB,

OC ; -us, p, <r the angular velocities, and w their resultant :

X. fi v 1

W p O" OJ

by § 95. These equations, in which -us, p, <r, u> are given functions

of t, express explicitly the position of 01 relatively to OA, OB,
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Position of 00, and therefore determine the cone fixed in the body. For

due to given the cone fixed in space : if r be the radius of curvature of its

iutersection with the unit sphere, r the same for the rolling

cone, we find from § 105 below, that if s be the length of the

arc of either spherical curve from a common initial point,

,
1 ds . _, . _, ,

1 ds
/.J-
—

js ,
,- 5

wr ——T sin sin r + sin r ) =- (r J 1 - r -+ r J 1 — r"),
r dt v r dt v ^ v '

which, as s, r and w are known in terms of t, gives r in terms

of t, or of s, as we please. Hence, by a single quadrature, the

"intrinsic" equation of the fixed cone.

101. An uusymmetrical system of angular co-ordinates -^,8,$,

for specifying the position of a rigid body by aid of a line OB
and a plane A OB moving with it, and a line Y and a plane

YOX fixed in space, which is essentially proper for many

physical problems, such as the Precession of the Equinoxes and

the spinning of a top, the motion of a gyroscope and its gimbals,

the motion of a compass-card and of its bowl and gimbals, is con-

venient for many others, and has been used by the greatest

mathematicians often even when symmetrical methods would

have been more convenient, must now be described.

ON being the intersection of the two planes, let Y0N=yjr,
and NOB =

;
and let 6 be the angle from the fixed plane,

produced through ON, to the portion NOB of the moveable

plane. (Example, 6 the
"
obliquity of the ecliptic," ty the

longitude of the autumnal equinox reckoned from OY, a fixed

line in the plane of the earth's orbit supposed fixed
;

the

hour-angle of the autumnal equinox ;
B being in the earth's

equator and in the meridian of Greenwich : thus
-v^, 0, are

angular co-ordinates of the earth.) To show the relation of

this to the symmetrical system, let OA be perpendicular to OB,

and draw OC perpendicular to both; OX perpendicular to OY,
and draw OZ perpendicular to OY and OX; so that OA, OB,

OC are three rectangular axes fixed relatively to the body,

and OX, Y, OZ fixed in space. The annexed diagram shows

-\|r, 6, 4> in angles and arc, and in arcs and angles, on a spherical

surface of unit radius with centre at 0.

To illustrate the meaning of these angular co-ordinates, sup-

pose A, B, C initially to coincide with X, Y, Z respectively.
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Then, to bring the body into the position specified by 6, <£, yft, f,™
1^ 1 ot

rotate it round OZ through an angle equal to ^ +
</>,

thus ^
,

t

e
at
t

1

°^en

Letter at cen-

tre of sphere
concealed by
Y.

XA' = f + <f>,

YN = f,

NB' =
<f>.

bringing A and B from X and Y to A' and B' respectively ;

and, (taking YN =
yjr,)

rotate the body round ON through an

angle equal to 6, thus bringing A, B, and C from the positions

A', B, and ^respectively, to the positions marked A, B, G in

the diagram. Or rotate first round ON through 6, so bringing
C from Z to the position marked G, and then rotate round

OC through ty + $. Or, while OG is turning from OZ to the

position shown on the diagram, let the body turn round OG
relatively to the plane ZGZ'O through an angle equal to

cj>.

It will be in the position specified by these three angles.

Let z XZG =
if/,

l ZGA = iv -
<£,

and ZG =
6, and -m, p, <r mean

the same as in § 100. By considering in succession instantaneous

motions of C along and perpendicular to ZG, and the motion of

AB in its own plane, we have

dd

di
= •m sin <£

and

p cos <£, sin
-j-

= p sin
</>
- w cos <p,

d(f>
,
cos 6 + —- - a.

dt dt

The nine direction cosines (XA), (YB), &c, according to the

notation of § 95, are given at once by the spherical triangles
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Position of

the body
due to given
rotations.

General
motion of a
rigid bod.v.

XXA, YNB, cfec.
;
each having N for one angular point, with 0,

or its supplement or its complement, for the angle at this point.

Thus, by the solution iu each case for the cosine of one side in

terms of the cosine of the opposite angle, and the cosines and

sines of the two other sides, we find

(
XA

)
= cos 6 cos

if/
cos

</>
- sin

if/
sin

tft,

(XB) = - cos 6 cos \p
sin <£

— sin
if/
cos

<f>,

( YA) = cos 6 sin
if/
cos

<f>
+ cos

if/
sin <£.

(YB)=.
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required. But by S 79 this may be effected by rotation about General
^

. tin motion of a

a certain axis perpendicular to the plane S, unless the motion riK'd b°dy

required belongs to the exceptional case of pure translation.

Hence [this case excepted] the body may be brought from the

first position to the second by translation through a determinate

distance perpendicular to a given plane, and rotation through a

determinate angle about a determinate axis perpendicular to

that plane. This is precisely the motion of a screw in its nut.

103. In the excepted case the whole motion consists of two

translations, which can of course be compounded into a single

one
;
and thus, in this case, there is no rotation at all, or every

plane of it fulfils the specified condition for S of § 102.

104. Returning to the motion of a rigid body with one point Precessionai

.

°
.

r
Rotation.

fixed, let us consider the case in which the guiding cones, § 99,

are both circular. The motion in this case may be called Pre-

cessionai Rotation.

The plane through the instantaneous axis and the axis of

the fixed cone passes through the axis of the rolling cone. This

plane turns round the axis of the fixed cone with an angular

velocity H (see § 105 below), which must clearly bear a con-

stant ratio to the angular velocity w of the rigid body about

its instantaneous axis.

105. The motion of the plane containing these axes is

called the precession in any such case. What we have denoted

by n is the angular velocity of the precession, or, as it is some-

times called, the rate of precession.

The angular motions to, D, are to one another inversely as

the distances of a point in the axis of the rolling cone from the

instantaneous axis and from the axis of the fixed cone.

For, let OA be the axis of the fixed
A

cone, OB that of the rolling cone, and 01
the instantaneous axis. From any point
P in OB draw PN perpendicular to OI,

and PQ perpendicular to OA. Then we ^

perceive that P moves always in the

circle whose centre is Q, radius PQ,
and plane perpendicular to OA. Hence
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g^onaithe actual velocity of the point P is (IQP. But, by the

principles explained above, § 99, the velocity of P is the
same as that of a point moving in a circle whose centre is N,
plane perpendicular to ON, and radius NP, which, as this radius

revolves with angular velocity &>, is wNP. Hence

11. QP = a>.NP, or w : O :: QP : NP.

Let a be the semivertical angle of the fixed, /3 of the rolling,
cone. Each of these may be supposed for simplicity to be

acute, and their sum or difference less than a right ande

though, of course, the formulas so obtained are (like all

trigonometrical results) applicable to every possible case. We
have the following three cases :

—
I. Convex
cone rolling
on convex.

II. Convex
cone rolling /

inside con- /
cave. /

Ill.Concave
cone rolling
outside con-
vex.

Cases of pre
cessional
rotation.

w sin ft
= d sin (a + ft),

where AOI = a, 10B =
ft.

Let ft be negative, and let /3'
- -

(3 ;

then /?' is positive, and we have

— W sin ft'
- Q, sin (a

-
ft'),

where A0I = a, £01=
ft'.

In the preceding let ft' > a.

It may then be conveniently
written

w sin
ft'
= Q sin

(ft'
-

a),

where A0I=a, £01= ft',

a and ft' being still positive.

106. If, as illustrated by the first of these diagrams, the
case is one of a convex cone rolling on a convex cone, the pre-
cessional motion, viewed on a hemispherical surface having A
for its pole and for its centre, is in a similar direction to
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that of the angular rotation about the instantaneous axis. ^S^"8"

This we shall call positive precessional rotation. It is the case rotati°n -

of a common spinning-top (peery), spinning on a very fine

point which remains at rest in a hollow or hole bored by itself;

not sleeping upright, nor nodding, but sweeping its axis round

in a circular cone whose axis is vertical. In Case III. also we

have positive precession. A good example of this occurs in the case

of a coin spinning on a table when its plane is nearly horizontal.

107. Case II., that of a convex cone rolling inside a concave

one, gives an example of negative precession : for when viewed

as before on the hemispherical surface the direction of angular
rotation of the instantaneous axis is opposite to that of the

rolling cone. This is the case of a symmetrical cup (or figure

of revolution) supported on a point, and stable when balanced,

i.e., having its centre of gravity below the pivot; when in-

clined and set spinning non-nutationally. For instance, if a

Troughton's top be placed on its pivot in any inclined position,

and then spun off with very great angular velocity about its

axis of figure, the nutation will be insensible
;
but there will

be slow precession.

To this case also belongs the precessional motion of the earth's Model
illustrating
Precessional

Equinoxes.
axis

;
for which the

angle a = 23° 27' 28",

the period of the ro-

tation » the sidereal

day ;
that of 12 is

25,868 years. If the

second diagram re-

present a portion of

the earth's surface

round the pole, the

arc ^17 = 8,552,000

feet, and therefore

the circumference of

the circle in which

Jmoves= 52,240,000

feet. Imagine this

circle to be the in-

VOL. I. 6
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Precession ner edge of a fixed ring in space (directionally fixed, that is
of tho equi- °, . ,° r

, . ,
J

.

uoxes. to say, but having the same translationai motion as the

earth's centre), and imagine a circular post or pivot of

radius BI to be fixed to the earth with its centre at B.

This ideal pivot rolling on the inner edge of the fixed

ring travels once round the 52,240,000 feet-circumference in

25,868 years, and therefore its own circumference must be

5 -53 feet. Hence BI= 0'88 feet; and angle BOI, or /3,

= 0"-00867.

fi'rf f°a

a *^ - ^ery interesting examples of Cases I. and ill. are fur-

caily sy'm-

1 '" n ished Dv projectiles of different forms rotating about any axis.

atwut
C

an
Thus the gyrations of an oval body or a rod or bar flung into

ans- the air belong to Class I. (the body having one axis of less

moment of inertia than the other two, equal) ;
and the

seemingly irregular evolutions of an ill-thrown quoit belong
to Class ill. (the quoit having one axis of greater moment of

inertia than the other two, which are equal). Case ill. has

therefore the following very interesting and important appli-

cation.

If by a geological convulsion (or by the transference of a few

million tons of matter from one part of the world to another)
the earth's instantaneous axis 01 (diagram III., § 105) were at

any time brought to non-coincidence with its principal axis of

greatest moment of inertia, which (§§ 825, 285) is an axis of

approximate kinetic symmetry, the instantaneous axis will, and

the fixed axis OA will, relatively to the solid, travel round the

solid's axis of greatest moment of inertia in a period of about

306 days [this number being the reciprocal of the most probable
G

' — A
value of ——,

—
(§ 828)]; and the motion is represented by the

diagram of Case in. with BI = 806 x AI. Thus in a very little

less than a day (less by ^— when BOI is a small angle)

I revolves round A. It is OA, as has been remarked by

Maxwell, that is found as the direction of the celestial pole

by observations of the meridional zenith distances of stars, and

this line being the resultant axis of the earth's moment of
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momentum (S 267), would remain invariable in space did no Free rota-
vo ' -1 tion of a

external influence such as that of the moon and sun disturb the body kineti-

caUy sym-
earth's rotation. When we neglect precession and nutation, metrical

° * about an

the polar distances of the stars are constant notwithstanding
axis -

the ideal motion of the fixed axis which we are now consider-

ing; and the effect of this motion will be to make a periodic

variation of the latitude of every place on the earth's surface

having for range on each side of its mean value the angle BOA,
and for its period 306 days or thereabouts. Maxwell* ex-

amined a four years series of Greenwich observations of Polaris

(1851-2-3—4), and concluded that there was during those

years no variation exceeding half a second of angle on each

side of mean range, but that the evidence did not disprove

a variation of that amount, but on the contrary gave a very

slight indication of a minimum latitude of Greenwich belonging
to the set of months Mar. '51, Feb. '52, Dec. '52, Nov. '53,

Sept. '54.

"This result, however, is to be regarded as very doubtful
" and more observations would be required to establish the
" existence of so small a variation at all.

"I therefore conclude that the earth has been for a long time
"
revolving about an axis very near to the axis of figure, if not

"
coinciding with it. The cause of this near coincidence is

"
either the original softness of the earth, or the present fluidity

" of its interior [or the existence of water on its surface].
" The axes of the earth are so nearly equal that a con-
" siderable elevation of a tract of country might produce a
"
deviation of the principal axis within the limits of observa-

"
tion, and the only cause which would restore the uniform

"
motion, would be the action of a fluid which would gradually

" diminish the oscillations of latitude. The permanence of
"
latitude essentially depends on the inequality of the earth's

"
axes, for if they had all been equal, any alteration in the

"
crust of the earth would have produced new principal axes,

" and the axis of rotation would travel about those axes, alter-

* On a Dynamical Top, Trans. JR. S. E., 1857, p. 559.

6—2
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Free rota-
"
ing the latitudes of all places, and yet not in the least altering

tionofa . . • - , . n i »
bodykineti-

" the position of the axis ot rotation among the stars.
cally sym-

r

aboutan Perhaps by a more extensive "search and analysis of the

"observations of different observatories, the nature of the
"
periodic variation of latitude, if it exist, may be determined.

"
I am not aware* of any calculations having been made to prove

"
its non-existence, although, on dynamical grounds, we have

"
every reason to look for some very small variation having the

"
periodic time of 325'6 days nearly" [more nearly 306 days],

" a period which is clearly distinguished from any other astro-

" nomical cycle, and therefore easily recognisedf."

The periodic variation of the earth's instantaneous axis thus

anticipated by Maxwell must, if it exists, give rise to a tide

of 306 days period (§ 801). The amount of this tide at the

equator would be a rise and fall amounting only to 5^- centi-

metres above and below mean for a deviation of the instan-

taneous axis amounting to 1" from its mean position OB, or

for a deviation BI on the earth's surface amounting to

31 metres. This, although discoverable by elaborate analysis

of long-continued and accurate tidal observations, would be less

easily discovered than the periodic change of latitude by astro-

nomical observations according to Maxwell's method^.

*
[Written in 18-57. G. H. D.]

f Maxwell; Transactions of the Royal Society of Edinburgh, 20th April, 1857.

J Prof. Maxwell now refers us to Peters (Recherches sur la parallaxe des

6toiles fixes, St Petersburgh Observatory Papers, Vol. i., 1853), who seems to

have been the first to raise this interesting and important question. He found

from the Pulkova observations of Polaris from March 11, 1842 till April 30,

1843 an angular radius of 0"'079 (probable error 0""017), for the circle round

its mean position described by the instantaneous axis, and for the time,

within that interval, when the latitude of Pulkova was a maximum, Nov. 16, 1842.

The period (calculated from the dynamical theory) which Peters assumed was

304 mean solar days: the rate therefore 1
-201 turns per annum, or, nearly

enough, 12 turns per ten years. Thus if Peters' result were genuine, and
remained constant for ten years, the latitude of Pulkova would be a maximum
about the 16th of Nov. again in 1852, and Pulkova being in 30° East longitude
from Greenwich, the latitude of Greenwich would be a maximum ^ of the period,
or about 25 days earlier, that is to say about Oct. 22, 1852. But Maxwell's ex-

amination of observations seemed to indicate more nearly the minimum latitude

of Greenwich about the same time. This discrepance is altogether in accordance

with a continuation of Peters' investigation by Dr Nyren of the Pulkova Ob-
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109. In various illustrations and arrangements of apparatus Commum-° ... cation of

useful in Natural Philosophy, as well as in Mechanics, it is an
p
u
V?
r
r

required to connect two bodies, so that when either turns about ^^{J^.
6"

a certain axis, the other shall turn with an equal angular
clined axes-

velocity about another axis in the same plane with the former.

but inclined to it at any angle. This is accomplished in

mechanism by means of equal and similar bevelled wheels, or

rolling cones
;
when the mutual inclination of two axes is not

to be varied. It is approximately accomplished by means of

Hooke's joint, when the two axes are nearly in the same line, .
H
- t̂

ke'

s

but are required to be free to vary in their mutual inclination.

A chain of an infinitely great number of Hooke's joints may be Flexible but

imagined as constituting a perfectly flexible, untwistable cord, cord.

which, if its end-links are rigidly attached to the two bodies,

connects them so as to fulfil the condition rigorously without

the restriction that the two axes remain in one plane. If we Universal

. flexurejomt.

imagine an infinitely short length of such a chain (still, how-

ever, having an infinitely great number of links) to have its

ends attached to two bodies, it will fulfil rigorously the con-

dition stated, and at the same time keep a definite point of one

body infinitely near a definite point of the other
;
that is to say,

it will accomplish precisely for every angle of inclination what

Hooke's joint does approximately for small inclinations.

The same is dynamically accomplished with perfect accuracy Elastic uni.

for every angle, by a short, naturally straight, elastic wire of flexurejoint.

servatory, in -which, by a careful scrutiny of several series of Pulkova observations

between the years 1842... 1872, he concluded tbat there is no constancy of

magnitude or phase in the deviation sought for. A similar negative conclusion

was arrived at by Professor Newcomb of the United States Naval Observatory,

Washington, who at our request kindly undertook an investigation of the ten-

month period of latitude from the Washington Prime Vertical Observations

from 1862 to 1867. His results, as did those of Peters and Nysen and Maxwell,
seemed to indicate real variations of the earth's instantaneous axis amounting
to possibly as much as J" or £" from its mean position, but altogether irregular

both in amount and direction; in fact, just such as might be expected from

irregular heapings up of the oceans by winds in different localities of the

earth.

We intend to return to this subject and to consider cognate questions regard-

ing irregularities of the earth as a timekeeper, and variations of its figure and

of the distribution of matter within it, of the ocean on its surface, and of the

atmosphere surrounding it, in §§ 267, 276, 405, 406, 830, 832, 845, 846.
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Elastic nni'
versal

flexurejoint,

Moving
body at-

tached to a
fixed object
by a univer-
sal flexure

joint.

A

truly circular section, provided the forces giving rise to any re-

sistance to equality of angular velocity between t*he two bodies

are infinitely small. In many practical cases this mode of con-

nexion is useful, and permits very little deviation from the con-

ditions of a true universal flexure joint. It is used, for instance,

in the suspension of the gyroscopic pendulum (§ 74) with perfect

success. The dentist's tooth-mill is an interesting illustration

of the elastic universal flexure joint. In it a long spiral spring

of steel wire takes the place of the naturally straight wire

suggested above.

Of two bodies connected by a universal flexure joint, let one

be held fixed. The motion of the other, as

long as the angle of inclination of the axes

remains constant, will be exactly that figured

in Case I., § 105, above, with the angles a and

/3 made equal. Let be the joint; A the

axis of the fixed body ;
OB the axis of the

moveable body. The supplement of the angle

A OB is the mutual inclination of the axes
;

and the angle AOB itself is bisected by the

instantaneous axis of the moving body. The

diagram shows a case of this motion, in which the mutual in-

clination, 6, of the axes is acute. According to the formulae

of Case I., § 105, we have

co sin a. = O sin 2a,

e

A

or co = 2H cos a = 2fl sin
2'

Two degrees
of freedom
to move en-

ioyed by a
body thus
suspended.

where co is the angular velocity of the moving body about its

instantaneous axis, 01, and CI is the angular velocity of its pre-

cession
;
that is to say, the angular velocity of the plane through

the fixed axis AA', and the moving axis OB of the moving

body.
•

Besides this motion, the moving body may clearly have any

angular velocity whatever about an axis through perpen-

dicular to the plane AOB, which, compounded with co round

01, gives the resultant angular velocity and instantaneous axis.

Two co-ordinates, 6 — A 'OB, and
<f)
measured in a plane per-

pendicular to AO, from a fixed plane of reference to the plane
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AOB, fully specify the position of the moveable body in this

case.

110. Suppose a rioid body bounded by any curved surface General

11 -ii iii • motion of

to be touched at any point by another such body. Anv motion one rigidiii. /• 7-1 body touch-

ot one on the other must be of one or more or the forms sliding, ing another.

rolling, or spinning. The consideration of the first is so simple
as to require no comment.

Any motion in which there is no slipping at the point of

contact must be rolling or spinning separately, or combined.

Let one of the bodies rotate about successive instantaneous

axes, all lying in the common tangent plane at the point of

instantaneous contact, and each passing through this point
—

the other body being fixed. This motion is what we call rolling,

or simple rolling, of the moveable body on the fixed.

On the other hand, let the instantaneous axis of the moving

body be the common normal at the point of contact. This is

pure spinning, and does not change the point of contact.

Let the moving body move, so that its instantaneous axis,

still passing through the point of contact, is neither in, nor

perpendicular to, the tangent plane. This motion is combined

rolling and spinning.

111. When a body rolls and spins on another body, the Traces of

trace of either on the other is the curved or straight line along
which it is successively touched. If the instantaneous axis is

in the normal plane perpendicular to the traces, the rolling

is called direct, If not direct, the rolling may be resolved into Direct
i. ,,. , . . . ,

, rolling.
a direct rolling, and a rotation or twisting round the tangent
line to the traces.

When there is no spinning the projections of the two traces

on the common tangent plane at the point of contact of the

two surfaces have equal and same-way directed curvature: or

they have "contact of the second order." When there is

spinning, the two projections still touch one another, but with

contact of the first order only : their curvatures differ by a

quantity equal to the angular velocity of spinning divided

by the velocity of the point of contact. This last we see by

noticing that the rate of change of direction along the pro-
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Direct iection of the fixed trace must be equal to the rate of change
rolling.

J n
.

°

of direction along the projection of the moving trace if held

fixed plus the angular velocity of the spinning.

At any instant let 2z = Aaf + 2Cxy +By
2

(1)

and 2z = A'x2 + 20'xy + By2

(2)

be the equations of the fixed and moveable surfaces £ and S'

infinitely near the point of contact 0, referred to axes OX, Y
in their common tangent plane, and OZ perpendicular to it :

let -us, p, cr be the three components of the instantaneous angular

velocity of S'
;
and let x, y, be co-ordinates of P, the point of

contact at an infinitely small time t, later : the third co-ordinate,

z, is given by (1).

Let P' be the point of »S"which at this later time coincides with P.

The co-ordinates of P' at the first instant are x + a-yt, y — axt
;

and the corresponding value of z is given by (2). This point is

infinitely near to (x, y, z), and therefore at the first instant the

direction cosines of the normal to S' through it differ but infinitely

little from

-(A'x + C'y), -(Cx + B'y), 1.

But at time t the normal to S' at P' coincides with the normal

to S at P, and therefore its direction cosines change from the

preceding values, to

-(Ax+Cy), -(Cx + By), 1:

that is to say, it rotates through angles

{G'-C)x + (B'-B)y round OX,

and -{{A'-A)x + (C'-(J)y) „ OY.

Hence mt = (C -C) x + (B'
- B)y )

Pt= -{(A'-A)x + (G'-G)y}j
{6) '

*= (C"-C)x + (B'-B)y )

p = -{(A'-A)x + (G'-G)y}j
< A

if x, y denote the component velocities of the point of contact.

Put 1=J(# + f) (5),

and take components of ts and p round the tangent to the traces

and the perpendicular to it in the common tangent plane of the

two surfaces, thus :

(twisting component)
- & + -

p

=
(C'-C)^

+
[{B'-B)-{A>-A)fl (6),
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and direct
.

^ raffing.

(direct-rolling component) --m p

= 1[(A'-A)tf + 2(C'-C)&$ + (B'-B)tf] (7).

Choose OX, OY so that C -C' = 0, and put A' - A = a, B'-B=($

(6) and (7) become

(twisting component)
- cr + - p =

(/? -a)
—

(8),

%i sb 1

(direct-rolling component)
- vs— p= -

(aaf+fti)
2

) (9).

[Compare below, § 124 (2) and (1).]

And for a, the angular velocity of spinning, the obvious pro-

position stated in the preceding large print gives

>,£.-$) do),cr

Vy y

if - and — be the curvatures of the projections on the tangent
T 7

plane of the fixed and moveable traces. [Compare below, § 124

(3)-]

From (1) and (2) it follows that

When one of the surfaces is a plane, and the trace on the

other is a line of curvature (§ 130), the rolling is direct.

When the trace on each body is a line of curvature, the

rolling is direct. Generally, the rolling is direct when the twists

of infinitely narrow bands (§ 120) of the two surfaces, along the

traces, are equal and in the same direction.

112. Imagine the traces constructed of rigid matter, and all

the rest of each body removed. We may repeat the motion

with these curves alone. The difference of the circumstances

now supposed will only be experienced if we vary the direction

of the instantaneous axis. In the former case, we can only do

this by introducing more or less of spinning, and if we do so

we alter the trace on each body. In the latter, we have always

the same moveable curve rolling on the same fixed curve
;
and

therefore a determinate line perpendicular to their common

tangent for one component of the rotation
;
but along with this

we may give arbitrarily any velocity of twisting round the

common tangent. The consideration of this case is very in-
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Curve
rolling on
curve.

Angular
velocity of

rolling in a

plane.

structive. It may be roughly imitated in practice by two stiff

wires bent into the forms of the given curves, and prevented

from crossing each other by a short piece of elastic tube clasping

them together.

First, let them be both plane curves, and kept in one plane.

We have then rolling, as of one cylinder on another.

Let p be the radius of curvature of the rolling, p of the fixed,

cylinder ;
<u the angular velocity of the former, V the linear velo-

city of the point of contact. "We have

1

i)
v.

For, in the figure, suppose P to be at any time

the point of contact, and Q and Q' the points which

are to be in contact after an infinitely small

interval t
; 0,0' the centres of curvature

; POQ
= 0, PO'Q' = &.

Then PQ - PQ' = space described by point of

contact. In symbols pd — p'& — Vt.

Also, before O'Q' and OQ can coincide in direc-

tion, the former must evidently turn through an

angle 6 + 0'.

Therefore tut ~ 8 + & ;
and by eliminating 6 and

&', and dividing by t, we get the above result.

It is to be understood, that as the radii of curvature have

been considered positive here when both surfaces are convex,

the negative sign must be introduced for either radius when the

corresponding curve is concave.

Hence the angular velocity of the rolling curve is in this

case equal to the product of the linear velocity of the point of

contact by the sum or difference of the curvatures, according

as the curves are both convex, or one concave and the other

convex.

Plane
curves not
in same
plane.

113. When the curves are both plane, but in different

planes, the plane in which the rolling takes place divides the

angle between the plane of one of the curves, and that of the

other produced through the common tangent line, into parts

whose sines are inversely as the curvatures in them respec-

tively ;
and the angular velocity is equal to the linear velocity
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of the point of contact multiplied by the difference of the pro- £J*J?

e

t

jections of the two curvatures on this plane. The projections of il

j^
me

the circles of the two curvatures on the plane of the common

tangent and of the instantaneous axis coincide.

For, let PQ, Pp be equal arcs of the two curves as before, and

let PR be taken in the common tangent {i.e.,
the intersection of

the planes of the curves) equal to each. Then QR, pR are

ultimately perpendicular to PR.

Hence jui =
- -

,

Z<j

PR-

2p

Also, l QRp = a, the angle between the planes of the curves.

PR* / 1 1 2We have Qp
s = ——

(

— + — cos a
4 \o- p- <rp

Therefore if w be the velocity of rotation as before,

(0=r /l 1 2cosa

v a2

p" up

Also the instantaneous axis is evidently perpendicular, and there-

fore the plane of rotation parallel, to Qp. Whence the above.

In the case of a = tt, this agrees with the residt of § 112.

A good example of this is the case of a coin spinning on a

table (mixed rolling and spinning motion), as its plane becomes

gradually horizontal. In this case the curvatures become more

and more nearly equal, and the angle between the planes of the

curves smaller and smaller. Thus the resultant angular velo-

city becomes exceedingly small, and the motion of the point

of contact very great compared with it.

114. The preceding results are, of course, applicable to tor- Curve roU-

, . . ... ingon
tuous as well as to plane curves ; it is merely requisite to sub- curve: two

1 j x.

degrees of

stitute the osculating plane of the former for the plane of the freedom,

latter.

115. We come next to the case of a curve rolling, with or Curve roii-...... ,. ingonsur-
without spinning, on a surlace. face: three

dGsrrGGS of

It may, of course, roll on any curve traced on the surface, freedom.

When this curve is given, the moving curve may, while rolling

along it, revolve arbitrarily round the tangent. But the com-
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Curve roll- ponent instantaneous axis perpendicular to the common tan-
ing on sur-

*
,

face: three gent, that is, the axis of the direct rolling of one curve on the
degrees of

, . , n T „
freedom. other, is determinate, § 113. If this axis does not lie in the

surface, there is spinning. Hence, when the trace on the surface

is given, there are two independent variables in the motion;

the space traversed by the point of contact, and the inclination

of the moving curve's osculating plane to the tangent plane of

the fixed surface.

Trace pre- 116. If the trace is given, and it be prescribed as a condi-

no spinning tion that there shall be no spinning, the angular position of the
permitted. ii. i • n i

rolling curve round the tangent at the point or contact is deter-

minate. For in this case the instantaneous axis must be in the

tangent plaue to the surface. Hence, if we resolve the rotation

into components round the tangent line, and round an axis per-

pendicular to it, the latter must be in the tangent plane. Thus

the rolling, as of curve on curve, must be in a normal plane to

the surface; and therefore (§§ 114, 113) the rolling curve must

Two degrees be always so situated relatively to its trace on the surface that

the projections of the two curves on the tangent plane may be

of coincident curvature.

The curve, as it rolls on, must continually revolve about the

tangent line to it at the point of contact with the surface, so as

in every position to fulfil this condition.

Let a denote the inclination of the plane of curvature of the

trace, to the normal to the surface at any point, a the same for

1 1
the plane of the rolling curve: -

,
- their curvatures. We

P P

reckon a as obtuse, and a acute, when the two curves lie on

opposite sides of the tangent plane. Then

1 . , 1 .—
,
sm a = - sm a,

P P

which fixes a or the position of the rolling curve when the point

of contact is given.

Angular ve- Let w be the angular velocity of rolling about an axis perpen-

rect^roUing!
dicular to the tangent, m that of twisting about the tangent, and let

V be the linear velocity of the point of contact. Then, since - cos a'

P
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and — cos a (each positive when the curves lie on opposite sides Angular ve-

p locity of di-

of the tangent plane) are the projections of the two curvatures on

a plane through the normal to the surface containing their com-

mon tangent, we have, by § 112,

to= V
[ --,

cos a cos a
\P P

a being determined by the pi'eceding equation. Let t and r

denote the tortuosities of the trace, and of the rolling curve, re-

spectively. Then, first, if the curves were both plane, we see

that one rolling on the other about an axis always perpendicular

to their common tangent could never change the inclination of

their planes. Hence, secondly, if they are both tortuous, such

rolling will alter the inclination of their osculating planes by an

indefinitely small amount (t
—

t')cI$ during rolling which shifts Angular ve-

the point of contact over an arc ds. Now a is a known function tangent.

of s if the trace is given, and therefore so also is a'. But a — a

is the inclination of the osculating planes, hence

(d(a-a') ,)

117. Next, for one surface rolling and spinning on another, surface on
oil |*y3 PA

First, if the trace on each is given, we have the case of § 113

or § 115, one curve rolling on another, with this farther con-

dition, that the former must revolve round the tangent to the

two curves so as to keep the tangent planes of the two surfaces

coincident.

It is well to observe that when the points in contact, and the Both traces

two traces, are given, the position of the moveable surface is onTde'gree'

quite determinate, being found thus :
—Place it in contact with

the fixed surface, the given points together, and spin it about

the common normal till the tangent lines to the traces coincide.

Hence when both the traces are given the condition of no

spinning cannot be imposed. During the rolling there must in

general be spinning, such as to keep the tangents to the two

traces coincident. The rolling along the trace is due to rotation

round the line perpendicular to it in the tangent plane. The

whole rolling is the resultant of this rotation and a rotation

about the tangent line required to keep the two tangent planes

coincident.
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Surface on In this case, then, there is but one independent variable—the

both traces space passed over by the point of contact : and when the velocity

one decree' of the point of contact is given, the resultant angular velocity,

and the direction of the instantaneous axis of the rolling body
are determinate. We have thus a sufficiently clear view of the

general character of the motion in question, but it is right that

we consider it more closely, as it introduces us very naturally

to an important question, the measurement of the twist of a rod,

wire, or narrow plate, a quantity wholly distinct from the tor-

tuosity of its axis (§ 7).

118. Suppose all of each surface cut away except an infinitely

narrow strip, including the trace of the rolling. Then we have

the rolling of one of these strips upon the other, each having at

every point a definite curvature, tortuosity, and twist.

Twist. 119. Suppose a flat bar of small section to have been bent

(the requisite amount of stretching and contraction of its edges

being admissible) so that its axis assumes the form of any plane

or tortuous curve. If it be unbent without twisting, i.e., if the

curvature of each element of the bar be removed by bending it

through the requisite angle in the osculating plane, and it be

found untwisted when thus rendered straight, it had no twist in

its original form. This case is, of course, included in the general

theory of twist, which is the subject of the following sections.

Axis and
transverse.

120. A bent or straight rod of circular or any other form of

section being given, a line through the centres, or any other

chosen points of its sections, may be called its axis. Mark a

line on its side all along its length, such that it shall be a

straight line parallel to the axis when the rod is unbent and

untwisted. A line drawn from any point of the axis perpen-

dicular to this side line of reference, is called the transverse of

the rod at this point.

The whole twist of any length of a straight rod is the angle

between the transverses of its ends. The average twist is the

integral twist divided by the length. The twist at any point

is the average twist in an infinitely short length through this

point ;
in other words, it is the rate of rotation of its transverse

per unit of length along it.



120.] KINEMATICS. 95

The twist of a curved, plane or tortuous, rod at any point is Twist

the rate of component rotation of its transverse round its tangent

line, per unit of length along it.

If t be the twist at any point, ftds over any length is the

integral twist in this length.

121. Integral twist in a curved rod, although readily de-

fined, as above, in the language of the integral calculus, can-

not be exhibited as the angle between any two lines readily

constructible. The following considerations show how it is to

be reckoned, and lead to a geometrical construction exhibiting

it in a spherical diagram, for a rod bent and twisted in any
manner :

—
122. If the axis of the rod forms a plane curve lying in one Estimation

plane, the integral twist is clearly the difference between the twist:

inclinations of the transverse at its ends to its plane. For in a plane
CUFV6 *

if it be simply unbent, without altering the twist in any part,

the inclination of each transverse to the plane in which its

curvature lay will remain unchanged ;
and as the axis of the

rod now has become a straight line in this plane, the mutual

inclination of the transverses at any two points of it has become

equal to the difference of their inclinations to the plane.

123. No simple application of this rule can be made to a

tortuous curve, in consequence of the change of the plane of

curvature from point to jjoint along it
; but, instead, we may

proceed thus :
—

First, Let us suppose the plane of curvature of the axis of in a curve

the wire to remain constant through finite portions of the curve, of plane

and to change abruptly by finite angles from one such portion different

to the next (a supposition which involves no angu-
lar points, that is to say, no infinite curvature, in £
the curve). Let planes parallel to the planes of cur-

vature of three successive portions, PQ, QR, RS (not

shown in the diagram), cut a spherical surface in the

great circles GAG', ACA', GE. The radii of the

sphere parallel to the tangents at the points Q and R
of the curve where its curvature changes will cut its ^
surface in A and G, the intersections of these circles.
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Let G be the point in which the radius of the sphere parallel to

the tangent at P cuts the surface
;
and let OH, AB, CD (lines

necessarily in tangent planes to the spherical surface), be paral-

lels to the transverses of the bar drawn from the points P, Q, R
of its axis. Then (§ 122) the twist from P to Q is equal to the

difference of the angles HGA and BAG'; and the twist from Q
to R is equal to the difference between BA C and DCA'. Hence
the whole twist from P to R is equal to

HGA -BAG' + BAC- DCA',

or, which is the same thing,

A'CE+ G'AC- (DCE-HGA).

Continuing thus through any length of rod, made up of portions
curved in different planes, we infer that the integral twist be-

tween any two points of it is equal to the sum of the exterior

angles in the spherical diagram, wanting the excess of the in-

clination of the transverse at the second point to the plane of

curvature at the second point above the inclination at the first

point to the plane of curvature at the first point. The sum of

those exterior angles is what is defined below as the "change of

direction in the spherical surface" from the first to the last side

of the polygon of great circles. When the polygon is closed, and

the sum includes all its exterior angles, it is (§ 134) equal to

277 wanting the area enclosed if the radius of the spherical sur-

face be unity. The construction we have made obviously holds

in the limiting case, when the lengths of the plane portions are

infinitely small, and is therefore applicable to a wire forming a

tortuous curve with continuously varying plane of curvature, for

which it gives the following conclusion :
—

Let a point move uniformly along the axis of the bar : and,

parallel to the tangent at every instant, draw a radius of a

sphere cutting the spherical surface in a curve, the hodograph
of the moving point. From points of this hodograph draw par-

allels to the transverses of the corresponding points of the bar.

The excess of the change of direction (§ 135) from any point to

another of the hodograph, above the increase of its inclination to

the transverse, is equal to the twist in the corresponding part

of the bar.
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The annexed diagram, showing the hodograph and the Estimation° ' & °
J

of integral

parallels to the transverses, illustrates this rule. Thus, for in-tw>st:inar ... continu-

stance, the excess of the change of direction in the spherical ?u
?'.

v

surface along the hodograph from A to C, above DCS—BAT, C[XTVe -

is equal to the twist in the bar between the points of it to

which A and C correspond. Or,

again, if we consider a portion of

the bar from any point of it, to

another point at which the tangent
to its axis is parallel to the tan-

gent at its first point, we shall have

a closed curve as the spherical hodograph ;
and if A be the

point of the hodograph corresponding to them, and AB and

AB' the parallels to the transverses, the whole twist in the

included part of the bar will be equal to the change of direction

all round the hodograph, wanting the excess of the exterior

angle B'A T above the angle BAT; that is to say, the whole

twist will be equal to the excess of the angle BAB' above

the area enclosed by the hodograph.

The principles of twist thus developed are of vital import-
ance in the theory of rope-making, especially the construction

and the dynamics of wire ropes and submarine cables, elastic

bars, and spiral springs.

For example : take a piece of steel pianoforte-wire carefully Dynamics

straightened, so that when free from stress it is straight : bend kinks'.

3

it into a circle and join the ends securely so that there can be

no turning of one relatively to the other. Do this first without

torsion: then twist the ring into a figure of 8, and tie the two

parts together at the crossiug. The area of the spherical hodo-

graph is zero, and therefore there is one full turn (2tt) of twist;

which (§ 600 below) is uniformly distributed throughout the

length of the wire. The form of the wire, (which is not in a

plane,) will be investigated in § 610. Meantime we can see

that the "torsional couples" in the normal sections farthest

from the crossing give rise to forces by which the tie at the

crossing is pulled in opposite directions perpendicular to the

plane of the crossing. Thus if the tie is cut the wire springs
back into the circular form. Now do the same thing again,

vol. i. 7
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JVnamics beginning with a straight wire, but giving it one full turn

kinks.
(27r) of twist before bending it into the circle. The wire will

stay in the 8 form without any pull on the tie. Whether

the circular or the 8 form is stable or unstable depends
on the relations between torsional and flexural rigidity. If

the torsional rigidity is small in comparison writh the flexural

rigidity [as (§§ 703, 704. 705, 709) would be the case if,

instead of round wire, a rod of -f shaped section were used],

the circular form wrould be stable, the 8 unstable.

Lastly, suppose any degree of twist, either more or less

than 2-7r, to be given before bending into the circle. The
circular form, which is always a figure of free equilibrium, may
be stable or unstable, according as the ratio of torsional to

flexural rigidity is more or less than a certain value depending
on the actual degree of twist. The tortuous 8 form is not (except
in the case of whole twist = 2tt. when it becomes the plane
elastic lemniscate of Fig. 4, § 610,) a continuous figure of free

equilibrium, but involves a positive pressure of the two cross-

ing parts on one another wrhen the twist > 2w, and a negative

pressure (or a pull on the tie) between them when twist < 2tt :

and with this force it is a figure of stable equilibrium.

8urfaeeroii- 124. Returning to the motion of one surface rolling and
inp on sur- . . , ,

,
- .

face-, both spinning on another, the trace on each being given, we may
traces jrivpii."

consider that, of each, the curvature (§ 6), the tortuosity (§ 7),

and the twist reckoned according to transverses in the tangent

plane of the surface, are known
;
and the subject is fully spe-

cified in § 117 above.

Let - and - be the curvatures of the traces on the rolling
P P

*

and fixed surfaces respectively; a and a the inclinations of their

planes of curvature to the normal to the tangent plane, reckoned

as in § 116; r' and r then tortuosities; t' and t their twists;

and q the velocity of the point of contact. All these being

known, it is required to find :
—

to the angular velocity of rotation about the transverse of the

traces; that is to say, the line in the tangent plane perpendicular

to their tangent line,

<c the angular velocity of rotation about the tangent line, and

u ,, ,, of spinning.
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We have Surface roll-

, ing on sur-

/l ,
1 \ .,. face; both

o) = q I
—

,
COS a COS a I (1) traeesgiven.

\P P J

—
»('-0-f{^J-(r-0} P).

and a = <? ( -, sin a sin a) (3).
V> - P /

These three formulas are respectively equivalent to (9), (8),

and (10)of§ 111.

125. In the same case, suppose the trace on one only of Surfaoeroii-

__ _ >

^
ing on sur-

the surfaces to be given. We may evidently impose the con- face without
° J j i

spinning.
dition of no spinning, and then the trace on the other is deter-

minate. This case of motion is thoroughly examined in § 137,

below.

The condition is that the projections of the curvatures of the

two traces on the common tangent plane must coincide.

If — and - be the curvatures of the rolling and stationary

surfaces in a normal section of each through the tangent line to

the trace, and if a, a', p, p have their meanings of § 124,

p'
= r' cos a', p = rcosa (Meunier's Theorem, § 129, below).11 r'

But -
1
sin a' = - sin a, hence tan a = — tan a, the condition re-

P P r

quired.

126. If a straight rod with a straight line marked on one Kxampiesof° °
tortuosity

side of it be bent along any curve on a spherical surface, so and twist -

that the marked line is laid in contact with the spherical sur-

face, it acquires no twist in the operation. For if it is laid

so along any finite arc of a small circle there will clearly be

no twist. And no twist is produced in continuing from any

point along another small circle having a common tangent with

the first at this point.

If a rod be bent round a cylinder so that a line marked

along one side of it may lie in contact with the cylinder,

or if, what presents somewhat more readily the view now de-

7-2
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Examples of sired, we wind a straight ribbon spirally on a cylinder, the

and twist, axis of bending is parallel to that of the cylinder, and therefore

oblique to the axis of the rod or ribbon. We may therefore

resolve the instantaneous rotation which constitutes the bending

at any instant into two components, one round a line perpen-

dicular to the axis of the rod, which is pure bending, and the

other round the axis of the rod, which is pure twist.

The twist at any point in a rod or ribbon, so wound on a

circular cylinder, and constituting a uniform helix, is

cos a sin a

T

if r be the radius of the cylinder and a the inclination of the

spiral. For if V be the velocity at which the bend proceeds

along the previously straight wire or ribbon, will be the

angular velocity of the instantaneous rotation round the line of

bending (parallel to the axis), and therefore

Fcosa . , Fcosa
sin a and cos a

are the angular velocities of twisting and of pure bending respec-

tively.

From the latter component we may infer that the curvature of

the helix is

cos
2a

a known result, which agrees with the expression used above

(§ 13).

]27. The hodograph in this case is a small circle of

the sphere. If the specified condition as to the mode of

laying on of the rod on the cylinder is fulfilled, the trans-

verses of the spiral rod will be parallel at points along it sepa-

rated by one or more whole turns. Hence the integral twist

in a single turn is equal to the excess of four right angles

above the spherical area enclosed by the hodograph. If a be

the inclination of the spiral, \tt
— a will be the arc-radius of the

hodograph, and therefore its area is 2tt (1
— sin a). Hence the

integral twist in a turn of the spiral is Zir sin a, which agrees

with the result previously obtained (§ 126).
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128. As a preliminary to the further consideration of the Curvature
r /

_
or surface.

rolling of one surface on another, and as useful in various parts

of our subject, we may now take up a few points connected

with the curvature of surfaces.

The tangent plane at any point of a surface may or may not

cut it at that point. In the former case, the surface bends away
from the tangent plane partly towards one side of it, and partly

towards the other, and has thus, in some of its normal sections,

curvatures oppositely directed to those in others. In the latter

case, the surface on every side of the point bends away from

the same side of its tangent plane, and the curvatures of all

normal sections are similarly directed. Thus we may divide

curved surfaces into Anticlastic and Synclastic. A saddle gives Synoiastto
~L andanti-

a srood example of the former class
;
a ball of the latter. Cur- clastic sur-

D L
_

faces.

matures in opposite directions, with reference to the tangent

plane, have of course different signs. The outer portion of an

anchor-ring is synclastic, the inner anticlastic.

129. Meuniers Theorem.—The curvature of an oblique sec- curvature

tion of a surface is equal to that of the normal section through sections.

the same tangent line multiplied by the secant of the inclina-

tion of the planes of the sections. This is evident from the

most elementary considerations regarding projections.

130. Euler's Theorem.—There are at every point of a syn-^^g

clastic surface two normal sections, in one of which the cur-

vature is a maximum, in the other a minimum
;
and these are

at right angles to each other.

In an anticlastic surface there is maximum curvature (but

in opposite directions) in the two normal sections whose planes

bisect the angles between the lines in which the surface cuts

its tangent plane. On account of the difference of sign, these

may be considered as a maximum and a minimum.

Generally the sum of the curvatures at a point, in any two Sumof

normal planes at right angles to each other, is independent of™*
the position of these planes. to"eaciT

s

other.

Taking the tangent plane as that of as, y, and the origin at the

point of contact, and putting

cur-
res in

sec-
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W)c

= A
*

\dxdy)
= B

> W) = ° >

we have z = 3 (-4a;
2 + 2Bxy + Cy~) + etc. (1)

a

The curvature of the normal section which passes through the

point x, y, z is (in the limit)

1 2z Ax2 + 2Bxy + Cy
2

r x2 + y
2 x2 + y

2

If the section be inclined at an angle to the plane of XZ, this

becomes

- = A cos
8 + 2B sinO cos + G sin

2
6>. (2)

Hence, if - and - be curvatures in normal sections at right
r s

D

angles to each other,

1 1
, r,- + - — A + t = constant.

r s

(2) may be written

- = hA(l + cos 26) 4- 2B sin 20 + (7(1
- cos 20)}

=
^{A

+C + A~^C~cos 20 + 2B sin 20] ,

or if s (A - G) =R cos 2a, B = R sin 2a,

that is R = /
j

I (A~ Of + Bs

\, and tan 2a = -^ ,

we have
^
=
^(A+C)+

/
jl (.4

-
C)

2 + B*\ cos 2 (0
-

a)

Principal The maximum and minimum curvatures are therefore those in
normal
sections normal places at right angles to each other for which = a and

7T

6— a+ -, and are respectively

l(A
+
C)^^{\(A-Cy

+ B2

].

Hence their product is AC - Bs
.

If this be positive we have a synclastic, if negative an anti-

clastic, surface. If it be zero we have one curvature only, and the

surface is cylindrical at the point considered. It is demonstrated
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(§ 152, below) that if this condition is fulfilled at every point, the Principal

surface is "developable" (§ 139, below). sections.

By (1) a plane parallel to the tangent plane and very near it

cuts the surface in an ellipse, hyperbola, or two parallel straight

lines, in the three cases respectively. This section, whose

nature informs us as to whether the curvature be synclastic,

anticlastic, or cylindrical, at any point, was called by Dupin
the Indicatrix.

A line of curvature of a surface is a line which at every point Definition

. .
of Line of

is cotangential with normal section of maximum or minimum Curvature.

curvature.

131. Let P, p be two points of a surface infinitely near to shortest

each other, and let r be the radius of curvature of a normal tween two

it mi i v n points on a

section passing through them, lhen the radius ol curvature surface.

of an oblique section through the same points, inclined to the

former at an angle a,- is (§ 129) r cos a. Also the length along
the normal section, from P to p, is less than that along the

oblique section—since a given chord cuts off an arc from a

circle, longer the less the radius of that circle.

If a be the length of the chord Pp, we have

(2
v

1 + -rr—-
2

)
,

„ ,, oblique section = a ( 1 + s—-s =—
)

.^
\ 2lr2

cos" a)

132. Hence, if the shortest possible line be drawn from one

point of a surface to another, its plane of curvature is every-

where perpendicular to the surface.

Such a curve is called a Geodetic line. And it is easy to see Geodetic

that it is the line in which a flexible and inextensible string

would touch the surface if stretched between those points, the

surface being supposed smooth.

133. If an infinitely narrow ribbon be laid on a surface

along a geodetic line, its twist is equal to the tortuosity of its

axis at each point. We have seen (§ 125) that when one body
rolls on another without spinning, the projections of the traces

on the common tangent plane agree in curvature at the point
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shortest of contact. Hence, if one of the surfaces be a plane, and the

tween two trace on the other be a geodetic line, the trace on the plane is a
points on a

'~
.

x

surface.
straight line. Conversely, it the trace on the plane be a straight

line, that on the surface is a geodetic line.

And, quite generally, if the given trace be a geodetic line,

the other trace is also a geodetic line.

Spherical 134. The area of a spherical triangle (on a sphere of unit

radius) is known to be equal to the "
spherical excess," i.e., the

excess of the sum of its angles over two right angles, or the

excess of four right angles over the sum of its exterior angles.

Area of The area of a spherical polygon whose n sides are portions

polygon. of great circles—i.e., geodetic lines—is to that of the hemi-

sphere as the excess of four right angles over the sum of its

exterior angles is to four right angles. (We may call this the
"
spherical excess

"
of the polygon.)

For the area of a spherical triangle is known to be equal to

A + B + C - 7T.

Divide the polygon into n such triangles, with a common

vertex, the angles about which, of course, amount to 2tt.

Area - sum of interior angles of triangles
— mr

= 2tt + sum of interior angles of polygon
- mr

— 2tt- sum of exterior angle of polygon.

Reciprocal Given an open or closed spherical polygon, or line on the

sphere.

'

surface of a sphere composed of consecutive arcs of great circles.

Take either pole of the first of these arcs, and the corresponding

poles of all the others (all the poles to be on the right hand, or

all on the left, of a traveller advancing along the given great

circle arcs in order). Draw great circle arcs from the first of

these poles to the second, the second to the third, and so on in

order. Another closed or open polygon, constituting what is

called the polar diagram to the given polygon, is thus obtained.

The sides of the second polygon are evidently equal to the

exterior angles in the first
;
and the exterior angles of the

second are equal to the sides of the first. Hence the relation

between the two diagrams is reciprocal, or each is polar to the

other. The polar figure to any continuous curve on a spherical
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surface is the locus of the ultimate intersections of great circles Reciprocal
• r>

• iii • I'olars on h

equatorial to points taken infinitely near each other along it. sphere.

The area of a closed spherical figure is, consequently, ac-

cording to what we have just seen, equal to the excess of 2tt

above the periphery of its polar, if the radius of the sphere be

unity.

135. If a point move on a surface along a figure whose integral...... chance of

sides are geodetic lines, the sum of the exterior angles of tins direction in
° °

# _
a surface.

polygon is defined to be the integral change of the direction in

the surface.

In great circle sailing, unless a vessel sail on the equator, or

on a meridian, her course, as indicated by points of the com-

pass (true, not magnetic, for the latter change even on a meri-

dian), perpetually changes. Yet just as we say her direction

does not change if she sail in a meridian, or in the equator, so

we ought to say her direction does not change if she moves in

any great circle. Now, the great circle is the geodetic line on

the sphere, and by extending these remarks to other curved

surfaces, we see the connexion of the above definition with that

in the case of a plane polygon (§ 10).

Note.—We cannot define integral change of direction here by Change of® ° J
direction in

any angle directly constructive from the first and last tangents a surface,
J & J

.

& of any arc

to the path, as was done (§ 10) in the case of a plane curve or traced on it.

polygon ;
but from §§ 125 and 133 we have the following

statement :
—The whole change of direction in a curved surface,

from one end to another of any arc of a curve traced on it, is

equal to the change of direction from end to end of the trace of

this arc on a plane by pure rolling.

136. Def. The excess of four right angles above the inte- integralJ
. curvature.

gral change of direction from one side to the same side next

time in going round a closed polygon of geodetic lines on a

curved surface, is the integral curvature of the enclosed portion

of surface. This excess is zero in the case of a polygon traced

on a plane. We shall presently see that this corresponds exactly

to what Gauss has called the curvatura integra.

Def. (Gauss.) The curvatura integra of any given portion Ourvatura

of a curved surface, is the area enclosed on a spherical surface
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Horograph,

of unit radius by a straight line drawn from its centre, parallel

to a normal to the surface, the normal being carried round the

boundary of the given portion.

The curve thus traced on the sphere is called the Horograph
of the given portion of curved surface.

The average curvature of any portion of a curved surface is

the integral curvature divided by the area. The specific curva-

ture of a curved surface at any point is the average curvature

of an infinitely small area of it round that point.

Change of
direction
round the

boundary in
the surface,
together
with area of

the horo-

graph,

equals four
right angles:
or "

Inte-

gral Curva-
ture" equals
"Cunatura
Integra."

Curvature*
integra,BM<{
horogra ph.

137. The excess of 2ir above the change of direction, in a sur-

face, of a point moving round any closed curve on it, is equal to

the area of the horograph of the enclosed portion of surface.

Let a tangent plane roll without spinning on the surface over

every point of the bounding line. (Its instantaneous axis will

always lie in it, and pass through the point of contact, but will

not, as we have seen, be at right angles to the given bounding

curve, except when the twist of a narrow ribbon of the surface

along this curve is nothing.) Considering the auxiliary sphere

of unit radius, used in Gauss's definition, and the moving line

through its centre, we perceive that the motion of this line is, at

each instant, in a plane perpendicular to the instantaneous axis

of the tangent plane to the given surface. The direction of

motion of the point which cuts out the area on the spherical

surface is therefore perpendicular to this instantaneous axis.

Hence, if we roll a tangent plane on the spherical surface also,

making it keep time with the other, the trace on this tangent

plane will be a curve always perpendicular to the instantaneous

axis of each tangent plane. The change of direction, in the

spherical surface, of the point moving round and cutting out the

area, being equal to the change of direction in its own trace on

its own tangent plane (§ 135), is therefore equal to the change
of direction of the instantaneous axis in the tangent plane to the

given surface reckoned from a line fixed relatively to this plane.

But having rolled all round, and being in position to roll round

again, the instantaneous axis of the fresh start must be inclined

to the trace at the same angle as in the beginning. Hence the

change of direction of the instantaneous axis in either tangent

plane is equal to the change of direction, in the given surface, of
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a point going all round the boundary of tLe given portion of it Cwvalura

(§ 135); to which, therefore, the change of direction, in the horogra'ph

spherical surface, of the point going all round the spherical area

is equal. But, by the well-known theorem (§ 134) of the

"spherical excess," this change of direction subtracted from 2tt

leaves the spherical ai-ea. Hence the spherical area, called by

Gauss the curvatura integra, is equal to 2tt wanting the change

of direction in going round the boundary.

It will be perceived that when the two rollings we have con-

sidered are each complete, each tangent plane will have come

back to be parallel to its original position, but any fixed line in

it will have changed direction through an angle equal to the

equal changes of direction j ust considered.

Note,—The two rolling tangent planes are at each instant

parallel to one another, and a fixed line relatively to one drawn

at any time parallel to a fixed line relatively to the other, re-

mains parallel to the last-mentioned line.

If, instead of the closed curve, we have a closed polygon of

geodetic lines on the given surface, the trace of the rolling of

its tangent plane will be an unclosed rectilineal polygon. If

each geodetic were a plane curve (which could only be if the

given surface were spherical), the instantaneous axis would be

always perpendicular to the particular side of this polygon which

is rolled on at the instant
; and, of course, the spherical area on

the auxiliary sphere would be a similar polygon to the given

one. But the given surface being other than spherical, there

must (except in the particular case of some of the geodetics

being lines of curvature) be tortuosity in every geodetic of

the closed polygon; or, which is the same thing, twist in

the corresponding ribbons of the surface. Hence the portion

of the whole trace on the second rolling tangent plane which

corresponds to any one side of the given geodetic polygon, must

in general be a curve
;
and as there will generally be finite angles

in the second rolling corresponding to (but not equal to) those in

the first, the trace of the second on its tangent plane will be an

unclosed polygon of curves. The trace of the same rolling on

the spherical surface in which it takes place will generally be

a spherical polygon, not of great circle arcs, but of other curves.

The sum of the exterior angles of this polygon, and of the

changes of direction from one end to the other of each of its sides,

is the whole change of direction considered, and is, by the proper
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»^«pra!and application of the theorem of § 134, equal to 2tt wanting the
horograph.

spherical area enclosed.

Or again, if, instead of a geodetic polygon as the given curve,

we have a polygon of curves, each fulfilling the condition that

the normal to the surface through any point of it is parallel to a

fixed plane ; one plane for the first curve, another for the

second, and so on; then the figure on the auxiliary spherical

surface will be a polygon of arcs of great circles
;

its trace on its

tangent plane will be an unclosed rectilineal polygon ;
and the

trace of the given curve on the tangent plane of the first rolling

will be an unclosed polygon of curves. The sum of changes of

direction in these curves, and of exterior angles in passing from

one to another of them, is of course equal to the change of

direction in the given surface, in going round the given polygon
of curves on it. The change of direction in the other will be

simply the sum of the exterior angles of the spherical polygon,

or of its rectilineal trace. E.emai'k that in this case the in-

stantaneous axis of the first rolling, being always perpendicular

to that plane to which the normals are all parallel, remains

parallel to one line, fixed with reference to the tangent plane,

during rolling along each curved side, and also remains parallel

to a fixed line in space.

Lastly, remark that although the whole change of direction of

the trace in one tangent plane is equal to that in the trace on

the other, when the rolling is completed round the given circuit;

the changes of direction in the two are generally unequal in any

part of the circuit. They may be equal for particular parts

of the circuit, viz., between those points, if any, at which the in-

stantaneous axis is equally inclined to the direction of the trace

on the first tangent plane.

Any difficulty which may have been felt in reading this Section

will be removed if the following exercises on the subject be

performed.

(1) "Find the horograph of an infinitely small circular area of

any continuous curved surface. It is an ellipse or a hyperbola

according as the surface is synclastic or anticlastic (§ 128). Find

the axes of the ellipse or hyperbola in either case.

(2) Find the horograph of the area cut off a synclastic surface

by a plane parallel to the tangent plane at any given point of it,

and infinitely near this point. Find and interpret the corre-

sponding result for the case in which the surface is anticlastic

in the neighbourhood of the given point.
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(3) Let a tangent plane roll without spinning over the ^™^M™
(,

boundary of a given closed curve or geodetic polygon on any borograph.

curved surface. Show that the points of the trace in the tangent

plane which successively touch the same point of the given

surface are at equal distances successively on the circumference

of a circle, the angular values of the intermediate arcs being each

2ir — K if taken in the direction in which the trace is actually

described, and K if taken in the contrary direction, K being

the "integral curvature" of the portion of the curved surface

enclosed by the given curve or geodetic polygon. Hence if K
be commensurable with -w the trace on the tangent plane, how-

ever complicatedly autotomic it may be, is a finite closed curve

or polygon.

(4) The trace by a tangent plane rolling successively over

three principal quadrants bounding an eighth part of the cir-

cumference of an ellipsoid is represented in the accompanying

diagram, the whole of which is traced when the tangent plane is

A

B"

&

c

A!'

B

C" A'"

rolled four times over the stated boundary. A, B, G ; A', B', C",

&c. represent the points of the tangent plane touched in order

by ends of the mean principal axis (A), the greatest principal

axis (B), and least principal axis (C), and AB, BC, CA' are the

lengths of the three principal quadrants.

be-
llies

138. It appears from what precedes, that the same equality j^^gj
or identity subsists between " whole curvature

"
iu a plane JJ*gJJff

arc and the excess of it above the angle between the terminal curvature.
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Analogy be- tangents, as between "whole curvature" and excess of 27r above
tween lines ° ...... „
andsurfaces change of direction along the bounding line in the surface tor
as regards ° ° °
curvature. any portion of a curved surface.

Or, according to Gauss, whereas the whole curvature in a

plane arc is the angle between two lines parallel to the terminal

normals, the whole curvature of a portion of curve surface is

the solid angle of a cone formed by drawing lines from a point

parallel to all normals through its boundary.
. change of direction

Again, average curvature in a plane curve is -, -r ;

and specific curvature, or, as it is commonly called, curvature,

change of direction in infinitely small length
at any point of it = j^^

•

Thus average curvature and specific curvature are for surfaces

analogous to the corresponding terms for a plane curve.

Lastly, in a plane arc of uniform curvature, i.e., in a circular

:
. And it is easily proved (as below)arc.

change of direction

length

that, in a surface throughout which the specific curvature is

uniform,
2tt -change of direction integral curvature 1

or ,
= —

, ,
where

PP

Horograph.

area area

p and p are the principal radii of curvature. Hence in a sur-

face, whether of uniform or non-uniform specific curvature, the

specific curvature at any point is equal to — . In geometry of
rr

three dimensions, pp (an area) is clearly analogous to p in a

curve and plane.

Consider a portion S, of a surface of any curvature, bounded

bv a given closed curve. Let there be a spherical surface, radius

r, and centre C. Draw a raduft CQ, parallel to the normal at

any point P of S. If this be done for every point of the bound-

ary, the line so obtained encloses the spherical area used in

Gauss's definition. Now let there be an infinitely small rect-

angle on S, at P, having for its sides arcs of angles £ and £', on

the normal sections of greatest and least curvature, and let their

radii of curvature be denoted by p and p. The lengths of these

sides will be p£ and p'£' respectively. Its area will therefore be

pp'££. The corresponding figure at Q on the spherical surface

will be bounded by arcs of angles equal to those, and therefore of
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lengths r£ and rg respectively, and its area will be r
2

££'. Hence
j^ograph

6

if dcr denote this area, the area of the infinitely small portion of

the given surface will be
a . In a surface for which pp' is

constant, the area is therefore =^ W«t = pp x integral curvature.

139. A perfectly flexible but inextensible surface is sug-^^^
gested, although not realized, by paper, thin sheet metal, or surface,

cloth, when the surface is plane ;
and by sheaths of pods, seed

vessels, or the like, when it is not capable of being stretched

flat without tearing. The process of changing the form of a

surface by bending is called
"
developing." But the term " De-

velopable Surface
"

is commonly restricted to such inextensible

surfaces as can be developed into a plane, or, in common lan-

guage,
" smoothed flat."

140. The geometry or kinematics of this subject is a great

contrast to that of the flexible line (§ 14), and, in its merest

elements, presents ideas not very easily apprehended, and sub-

jects of investigation that have exercised, and perhaps even

overtasked, the powers of some of the greatest mathematicians.

141. Some care is required to form a correct conception of

what is a perfectly flexible inextensible surface. First let us

consider a plane sheet of paper. It is very flexible, and we

can easily form the conception from it of a sheet of ideal

matter perfectly flexible. It is very inextensible
;

that is to

say, it yields very little to any application of force tending to

pull or stretch it in any direction, up to the strongest it can

bear without tearing. It does, of course, stretch a little. It

is easy to test that it stretches when under the influence of

force, and that it contracts again when the force is removed,

although not always to its original dimensions, as it may and

generally does remain to some sensible extent permanently

stretched. Also, flexure stretches one side and condenses the

other temporarily ; and, to a less extent, permanently. Under

elasticity (§§ 717, 718, 719) we shall return to this. In the

meantime, in considering illustrations of our kinematical propo-

sitions, it is necessary to anticipate such physical circumstances.
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Surface 142. Cloth woyen in the simple common way, very fine
i n pxtPTi si n If*

in two di- muslin for instance, illustrates a surface perfectly inextensible

in two directions (those of the warp and the woof), but suscept-

ible of any amount of extension from 1 up to */2 along one

diagonal, with contraction from 1 to (each degree of extension

along one diagonal having a corresponding determinate degree
of contraction along the other, the relation being e

2 + e'
2 = 2,

where 1 : e and 1 : e are the ratios of elongation, which will be

contraction in the case in which e or e is < 1) in the other.

"Elastic
finish" of

muslin
goods.

143. The flexure of a surface fulfilling any case of the

geometrical condition just stated, presents an interesting sub-

ject for investigation, which we are reluctantly obliged to

forego. The moist paper drapery that Albert Dlirer used on

his little lay figures must hang very differently from cloth.

Perhaps the stiffness of the drapery in his pictures may be to

some extent owing to the fact that he used the moist paper in

preference to cloth on account of its superior flexibility, while

unaware of the great distinction between them as regards

extensibility. Fine muslin, prepared with starch or gum, is,

during the process of drying, kept moving by a machine, which,

by producing a to-and-fro relative angular motion of warp and

woof, stretches and contracts the diagonals of its structure alter-

nately, and thus prevents the parallelograms from becoming
stiffened into rectangles.

Flexure of 144. The flexure of an inextensible surface which can be

de^iopaWe! plane, is a subject which has been well worked by geometrical

investigators and writers, and, in its elements at least, presents

little difficulty. The first elementary conception to be formed

is, that such a surface (if perfectly flexible), taken plane in

the first place, may be bent about any straight line ruled on

it, so that the two plane parts may make any angle with one

another.

Such a line is called a "
generating line

"
of the surface to be

formed.

Next, we may bend one of these plane parts about any other

line which does not (within the limits of the sheet) intersect

the former; and so on. If these lines are infinite in number,
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and the angles of bending infinitely small, but such that their Fiemre of

sum may be finite, we have our plane surface bent into a developable,

curved surface, which is of course "developable" (§ 139).

145. Lift a square of paper, free from folds, creases, or

ragged edges, gently by one corner, or otherwise, without

crushing or forcing it, or very gently by two points. It will

hang in a form which is very rigorously a developable surface
;

for although it is not absolutely inextensible, yet the forces

which tend to stretch or tear it, when it is treated as above

described, are small enough to produce no sensible stretching.

Indeed the greatest stretching it can experience without tear-

ing, in any direction, is not such as can affect the form of the

surface much when sharp flexures, singular points, etc., are

kept clear of.

146. Prisms and cylinders (when the lines of bending, § 144,

are parallel, and finite in number with finite angles, or infinite

in number with infinitely small angles), and pyramids and

cones (the lines of bending meeting in a point if produced), are

clearly included.

147. If the generating lines, or line-edges of the angles of

bending, are not parallel, they must meet, since they are in a

plane when the surface is plane. If they do not meet all in one

point, they must meet in several points : in general, each one

meets its predecessor and its successor in different points.

148. There is still no difficulty in understanding the form of,

say a square, or circle, of the plane surface when bent as explained

above, provided it does not include any
of these points of intersection. When the

number is infinite, and the surface finitely \

curved, the developable lines will in gene-
ral be tangents to a curve (the locus of the

points of intersection when the number is

infinite). This curve is called the edge of

regression. The surface must clearly, when

complete (according to mathematical ideas),

consist of two sheets meeting in this edge

Edge of

regressiou

VOL. I.
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Edpoof of regression (just as a cone consists of two sheets meeting m
regression. ^ vertex) f

because each tangent may be produced beyond

the point of contact, instead of stopping at it, as in the annexed

diagram.

Practical 149. To construct a complete developable surface in two
construe- , „ .

,
, c

tion of a sheets from its edge of regression
—

ffits
able

Lay one piece of perfectly flat, unwrinkled, smooth-cut

paper on the top of another. Trace any curve on the upper,

and let it have no point of inflec-

tion, but everywhere finite curvature.

Cut the two papers along the curve

and remove the convex portions. If

the curve traced is closed, it must be

cut open (see second diagram).

Attach the two sheets together by very slight paper or

muslin clamps gummed to them along the common curved

edge. These must be so slight as not to interfere

sensibly with the flexure of the two sheets. Take

hold of one corner of one sheet and lift the whole.

The two will open out into the two sheets of a

developable surface, of which the curve, bending

into a curve of double curvature, is the edge of

regression. The tangent to the curve drawn in

one direction from the point of contact, will

always lie in one of the sheets, and its continuation on the

other side in the other sheet. Of course a double-sheeted

developable polyhedron can be constructed by this process, by

starting from a polygon instead of a curve.

General 150. A flexible but perfectly inextensible surface, altered

fnSfibie in form in any way possible for it, must keep any line traced
surface. ^ it uncnanged

-m length; and hence any two intersecting

lines unchanged in mutual inclination. Hence, also, geodetic

lines must remain geodetic lines. Hence "the change of

direction
"

in a surface, of a point going round any portion of

it, must be the same, however this portion is bent. Hence

(§ 136) the integral curvature remains the same in any and

every portion however the surface is bent. Hence (§ 138,
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Gauss's Theorem) the product of the principal radii of curvature General
. . property of

at each point remains unchanged. mextensibie
1 °

surface.

151. The general statement of a converse proposition, ex-

pressing the condition that two given areas of curved surfaces

may be bent one to fit the other, involves essentially some

mode of specifying corresponding points on the two. A full

investigation of the circumstances would be out of place here.

152. In one case, however, a statement in the simplest Surface of

•ii • tii a p • if c01lst&nt

possible terms is applicable. Any two surfaces, m each of specific

which the specific curvature is the same at all points, and

equal to that of the other, may be bent one to fit the other.

Thus any surface of uniform positive specific curvature {i.e.,

wholly convex one side, and concave the other) may be bent

to fit a sphere whose radius is a mean proportional between its

principal radii of curvature at any point. A surface of uniform

negative, or anticlastic, curvature would fit an imaginary sphere,

but the interpretation of this is not understood in the present
condition of science. But practically, of any two surfaces of uni-

form anticlastic curvature, either may be bent to fit the other.

curvature.

153. It is to be remarked, that geodetic trigonometry on Geodetic

iy surface of uniform positive, o:

identical with spherical trigonometry

any surface of uniform positive, or synclastic, curvature, is such a
triangles on
such
face.

U
If a — —j=. ,

b =
-j== ,

c = . ;
,
where s, t,

u are the lengths
s/PP JpP slPP

of three geodetic lines joining three points on the surface, and

if A, B, C denote the angles between the tangents to the geodetic

lines at these points; we have six quantities which agree perfectly

with the three sides and the three angles of a certain spherical

triangle. A corresponding anticlastic trigonometry exists, al-

though we are not aware that it has hitherto been noticed, for any
surface of uniform anticlastic curvature. In a geodetic triangle

on an anticlastic surface, the sum of the three angles is of course

less than three right angles, and the difference, or " anticlastic

defect" (like the "spherical excess"), is equal to the area divided

by p x — p, where p and — p are positive.

154. We have now to consider the very important kinema- strain.

tical conditions presented by the changes of volume or figure

8—2
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Strain.

Definition
of homo-
geneous
strain.

Properties
of homo-
geneous
strain.

experienced by a solid or liquid mass, or by a group of points

whose positions with regard to each other are subject to known

conditions. Any such definite alteration of form or dimensions

is called a Strain.

Thus a rod which becomes longer or shorter is strained.

Water, when compressed, is strained. A stone, beam, or mass

of metal, in a building or in a piece of framework, if condensed

or dilated in any direction, or bent, twisted, or distorted in any

way, is said to experience a strain. A ship is said to
"
strain

"

if, in launching, or when working in a heavy sea, the different

parts of it experience relative motions.

155. If, when the matter occupying any space is strained

iu any way, all pairs of points of its substance which are initiallv

at equal distances from one another in parallel lines remain

equidistant, it may be at an altered distance
;
and in parallel

lines, altered, it may be, from their initial direction
;
the strain

is said to be homogeneous.

156. Hence if any straight line be drawn through the body
in its initial state, the portion of the body cut by it will con-

tinue to be a straight line when the body is homogeneously
strained. For, if ABC be any such line, AB and BC, being

parallel to one line in the initial, remain parallel to one line in

the altered, state
;
and therefore remain in the same straight

line with one another. Thus it follows that a plane remains

a plane, a parallelogram a parallelogram, and a parallelepiped

a parallelepiped.

157. Hence, also, similar figures, whether constituted by
actual portions of the substance, or mere geometrical surfaces,

or straight or curved lines passing through or joining certain

portions or points of the substance, similarly situated (i.e.,

having corresponding parameters parallel) wrhen altered ac-

cording to the altered condition of the body, remain similar

and similarly situated among one another.

158. The lengths of parallel lines of the body remain in

the same proportion to one another, and hence all are altered

in the same proportion. Hence, and from § 156, we infer that

any plane figure becomes altered to another plane figure which
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is a diminished or magnified orthographic projection of the first Properties

on some plane. For example, if an ellipse be altered into a Keneous
. . strain.

circle, its principal axes become radii at right angles to one

another.

The elongation of the body along any line is the proportion

which the addition to the distance between any two points in

that line bears to their primitive distance.

159. Every orthogonal projection of an ellipse is an ellipse

(the case of a circle being included). Hence, and from § 158,

we see that an ellipse remains an ellipse ;
and an ellipsoid re-

mains a surface of which every plane section is an ellipse ;

that is, remains an ellipsoid.

A plane curve remains (§ 156) a plane curve. A system of

two or of three straight lines of reference (Cartesian) remains

a rectilineal system of lines of reference; but, in general, a

rectangular system becomes oblique.

<** y
2

iLet —
5 + Ti = 1

a2
b

be the equation of an ellipse referred to any rectilineal conjugate

axes, in the substance, of the body in its initial state. Let a and

/3 be the proportions in which lines respectively parallel to OX
and OF are altered. Thus, if we call £ and

t\
the altered values

of x and y, we have

£ = kc, t]
=

fiy.

£* v
2

Hence
(^)

8 +
pj"

a '

which also is the equation of an ellipse, referred to oblique axes

at, it may be, a different angle to one another from that of the

given axes, in the initial condition of the body.
2 2.2

Or again, let -» + rs + -
2
= 1° ' a2

c

be the equation of an ellipsoid referred to three conjugate dia-

metral planes, as oblique or rectangular planes of reference, in the

initial condition of the body. Let a, ft, y be the proportion

in which lines parallel to OX, OY, OZ are altered; so that if

£, 7], £ be the altered values of x, y, z, we have

$* ff V
(«°) W (y°)
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Properl ies

of homo-
geneous
strain.

Strain

ellipsoid.

which is the equation of an ellipsoid, referred to conjugate dia-

metral planes, altered it may be in mutual inclination from those

of the given planes of reference in the initial condition of the

body.

160. The ellipsoid which any surface of the body initially

spherical becomes in the altered condition, may, to avoid cir-

cumlocutions, be called the strain ellipsoid.

161. In any absolutely unrestricted homogeneous strain there

are three directions (the three principal axes of-the strain ellip-

soid), at right angles to one another, which remain at right

angles to one another in the altered condition of the body

(§ 158). Along one of these the elongation is greater, and

along another less, than along any other direction in the body.

Along the remaining one, the elongation is less than in any
other line in the plane of itself and the first mentioned, and

greater than along any other line in the plane of itself and the

second.

Note.—Contraction is to be reckoned as a negative elongation :

the maximum elongation of the preceding enunciation may be

a minimum contraction : the minimum elongation may be a

maximum contraction.

Change of
volume.

162. The ellipsoid into which a sphere becomes altered may
be an ellipsoid of revolution, or, as it is called, a spheroid, pro-

late, or oblate. There is thus a maximum or minimum elonga-

tion along the axis, and equal minimum or maximum elongation

along all lines perpendicular to the axis.

Or it may be a sphere ;
in which case the elongations are

equal in all directions. The effect is, in this case, merely an

alteration of dimensions without change of figure of any part.

The original volume (sphere) is to the new (ellipsoid) evi-

dently as 1 : a/37.

Axes of « 163. The principal axes of a strain are the principal axes

of the ellipsoid into which it converts a sphere. The principal

elongations of a strain are the elongations in the direction of its

principal axes.
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164. When the position of the principal axes, and the magni- Elongation
*

.

° and cmmire

tudes of the principal elongations of a strain are given, the of direction
r r a O > of any line

elongation of any line of the body, and the alteration of angle
of thebody

between any two lines, may be obviously determined by a sim-

ple geometrical construction,

Analytically thus:—let a— 1, /?— 1, y
— 1 denote the principal

elongations, so that a, j3, y may be now the ratios of alteration

along the three principal axes, as we used them formerly for the

ratios for any three oblique or rectangular lines. Let I, m, n

be the direction cosines of any line, with reference to the three

principal axes. Thus,

Ir, mr, nr

being the three initial co-ordinates of a point P, at a distance

OP = r, from the origin in the direction
I, m, n

;
the co-ordinates

of the same point of the body, with reference to the same rect-

angular axes, become, in the altered state,

air, (3mr, ynr.

Hence the altered length of OP is

(a
2
l
2 + fi

2m2 + yV)*r,

and therefore the "elongation" of the body in that direction is

(a^ + yQW + yV^-l.
For brevity, let this be denoted by £—1, i.e.

let £=(aT +0W + yV)
4

.

The direction cosines of OP in its altered position are

al /3m yn
T' T' J ;

and therefore the angles XOP, YOP, ZOP are altered to having
their cosines of these values respectively, from having them of

the values I, m, n.

The cosine of the angle between any two lines OP and OP',

specified in the initial condition of the body by the direction

cosines l, m, n, is

W + mm' + ?in,

in the initial condition of the body, and becomes

a2W + fi
2mm' + y

2nn

(a
2f + /3

2m2 + y
2n2

f (a
2V2 + pm" + y

2
n'

2

)
h

in the altered condition.
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change of 165. With the same data the alteration of angle between

wxJy- any two planes of the body may also be easily determined,

either geometrically or analytically.

Let I, m, n be the cosines of the angles which a plane makes

with the planes YOZ, ZOX, XOY, respectively, in the initial

condition of the body. The effects of the change being the same

on all parallel planes, we may suppose the plane in question to

pass through 0; and therefore its equation will be

Ix + my + nz = 0.

In the altered condition of the body we shall have, as before,

$=ax, r)
=

(3y, £=yz,

for the altered co-ordinates of any point initially x, y, z. Hence

the equation of the altered plane is

1$ mrj n£ _b — H — U.
a (3 y

But the planes of reference are still rectangular, according to our

present supposition. Hence the cosines of the inclinations of

the plane in question, to YOZ, ZOX, XOY, in the altered con-

dition of the body, are altered from I, m, n to

I m n

a$ (3& y$

respectively, where for brevity
2

If we have a second plane similarly specified by I', mf, n, in the

initial condition of the body, the cosine of the angle between the

two planes, which is

IV + mm' + nn

in the initial condition, becomes altered to

IV mm nn'— + -sr + —
2a p y

Va
2+ P

+
y') V + F +

yV

Conical sur- 166. Returning to elongations, and considering that these are

elongation, generally different in different directions, we perceive that all

lines through any point, in which the elongations have any one
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value intermediate between the greatest and least, must lie on Conical sur-

mi • • -i i
• face of equal

a determinate conical surface. This is easily proved to be in elongation,

general a cone of the second degree.

For, in a direction denoted by direction cosines I, m, n, we

have
a2

Z
2 + /?

2m2 + yV=£2

,

where £ denotes the ratio of elongation, intermediate between a

the greatest and y the least. This is the equation of a cone of

the second degree, I, m, n being the direction cosines of a gene-

rating line.

167. In one particular case this cone becomes two planes, Two planes

the planes of the circular sections of the strain ellipsoid. tortion,

Let £ = /?.
The preceding equation becomes

aT + yW-/?
2

(l-m
2

)
=

0,

or, since 1 —m2 = l
2 + n2

,

(a
2

-/3
2

)f -(/3
2 -

y
2

),r = 0.

The first member being the product of two factors, the equation
is satisfied by putting either =

0, and therefore the equation re-

presents the two planes whose equations are

and l(a
2 -p2

)*-n(p
2

-y
2

)S
=

0,

respectively.

This is the case in which the given elongation is equal behiK the

. ,, . .
circular

to that along the mean principal axis of the strain ellipsoid, sections of
° r r

# #

r
#

t he strain

The two planes are planes through the mean principal axisof elliPsoid -

the ellipsoid, equally inclined on the two sides of either of the

other axes. The lines along which the elongation is equal to

the mean principal elongation, all lie in, or parallel to, either

of these two planes. This is easily proved as follows, without

any analytical investigation.

168. Let the ellipse of the annexed diagram represent the

section of the strain ellipsoid through the greatest and least

principal axes. Let 8' OS, TOT be the

two diameters of this ellipse, which are

equal to the mean principal axis of the

ellipsoid. Every plane through 0, per-

pendicular to the plane of the diagram,
cuts the ellipsoid in an ellipse of which



122 PRELIMINARY. [168.

Two planes one principal axis is the diameter in which it cuts the ellipse of

tortion, the diagram, and the other, the mean principal diameter of the
being the

'ii
circular ellipsoid. Hence a plane through either SS', or TT

', perpen-
sectionsof r

, ,. iv • f •

the strain dicular to the plane of the diagram, cuts the ellipsoid in an
ellipsoid.

*
.

°
i -i

ellipse of which the two principal axes are equal, that is to say,

in a circle. Hence the elongations along all lines in either of

these planes are equal to the elongation along the mean princi-

pal axis of the strain ellipsoid.

Distortion
in parallel
planes with
out change
of volume.

169. The consideration of the circular sections of the strain

ellipsoid is highly instructive, and leads to important views

with reference to the analysis of the most general character of

a strain. First, let us suppose there to be no alteration of

volume on the whole, and neither elongation nor contraction

along the mean principal axis. That is to say, let /?
= 1,

and 7 = ^ (§162).

Let OX and OZ be the directions of elongation a—1 and

contraction 1 respectively. Let A be any point of the
a.

X'- Al^.

initial and
altered posi-
tion of lines

of no elon-

gation.

body in its primitive condition,

and A
t
the same point of the

altered body, so that OA
t

= aOA.

Now, if we take OC = OA
t ,

and if C, be the position of that

point of the body which was in

the position C initially, we shall

have OC = - OC, and therefore
' a

OC=OA. Hence the two tri-

angles COA and C,OA i
are equal and similar.

Hence CA experiences no alteration of length, but takes

the altered position C
/
A

/
in the altered position of the body.

Similarly, if we measure on XO produced, OA' and OA
t equal

respectively to OA and 0A
t

,
we find that the line G A' experi-

ences no alteration in length, but takes the altered position G,A'.

Consider now a plane of the body initially through GA per-

pendicular to the plane of the diagram, which will be altered

into a plane through CA
t ,

also perpendicular to the plane of
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the diagram. All lines initially perpendicular to the plane of initial and,,. . , . li-ii,* ~ altered posi-
the diagram remain so, and remain unaltered m length. A C'tion of lines

has just been proved to remain unaltered in length. Hence gation.

(§ 158) all lines in the plane we have jubt drawn remain un-

altered in length and in mutual inclination. Similarly we see

that all lines in a plane through CA', perpendicular to the

plane of the diagram, altering to a plane through G
tA', per-

pendicular to the plane of the diagram, remain unaltered in

length and in mutual inclination.

170. The precise character of the strain we h ive now under

consideration will be elucidated by the following :
—Produce

CO, and take OG and 0(7' respectively equal to 00 and 0Cr
Join C'A, C'A', C'A,, and C'A', by plain and dotted lines as

in the diagram. Then we see that the rhombus GAG'A' (plain

lines) of the body in its initial state becomes the rhombus

0^,0,'A t

'

(dotted) in the altered condition. Now imagine
the body thus strained to be moved as a rigid body (i. e.,

with its state of strain kept unchanged) till A
t

coincides

with A, and C'
t
with G, keeping all the lines of the diagram

still in the same plane. A'C
t
will take a

position in CA' produced, as shown in the

new diagram, and the original and the

altered parallelogram will be on the same

base AC', and between the same parallels

AC and GA'
t ,

and their other sides will be .,/

equally inclined on the two sides of a per-

pendicular to these parallels. Hence, irre-

spectively of any rotation, or other absolute motion of the body
not involving change of form or dimensions, the strain under con-

sideration may be produced by holding fast and unaltered the

plane of the body through A C perpendicular to the plane of

the diagram, and making every plane parallel to it slide, keep-

ing the same distance, through a space proportional to this

distance
(i. e., different planes parallel to the fixed plane slide

through spaces proportional to their distances).

171. This kind of strain is called a simple shear. The simple

plane of a shear is a plane perpendicular to the undistorted
*

planes, and parallel to the lines of their relative motion. It
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Simple
shear.

Axes of
a shear.

has (1) the property that one set of parallel planes remain

each unaltered in itself; (2) that another set of parallel planes

remain each unaltered in itself. This

other set is found when the first set and

the degree or amount of shear are given,

thus :
—Let CC

t
be the motion of one

point of one plane, relative to a plane

KL held fixed—the diagram being in a

plane of the shear. Bisect CG
I
in N.

Draw NA perpendicular to it. A plane

perpendicular to the plane of the dia-

gram, initially through AC, and finally through AC/}
remains

unaltered in its dimensions.

172. One set of parallel undistorted planes, and the amount

of their relative parallel shifting having been given, we have

just seen how to find the other set. The shear may be other-

wise viewed, and considered as a shifting of this second set of

parallel planes, relative to any one of them. The amount of

this relative shifting is of course equal to that of the first set,

relatively to one of them.

173. The principal axes of a shear are the lines of maxi-

mum elongation and of maximum contraction respectively.

They may be found from the preceding construction (§ 171),

thus :
—In the plane of the shear bisect the obtuse and

acute angles between the planes destined not to become de-

formed. The former bisecting line is the principal axis of

elongation, and the latter is the principal axis of contraction,

in their initial positions. The former angle (obtuse) becomes

equal to the latter, its supplement (acute), in the altered con-

dition of the body, and the lines bisecting the altered angles

are the principal axes of the strain in the altered body.

Otherwise, taking a plane of shear for the plane of the

diagram, let i5bea line in which it is cut by one of either

set of parallel planes of no distortion.

On any portion AB of this as diameter,

describe a semicircle. Through C, its

middle point, draw, by the preceding

construction, CD the initial, and CE
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the final, position of an unstretched line. Join DA, DB, EA,^*T

ot *

EB. DA, DB are the initial, and EA, EB the final, positions

of the principal axes.

174. The ratio of a shear is the ratio of elongation or con- Measure of

traction of its principal axes. Thus if one principal axis is

elongated in the ratio 1 :a, and the other therefore (§ 169) con-

tracted in the ratio a : 1, a is called the ratio of the shear. It

will be convenient generally to reckon this as the ratio of

elongation : that is to say, to make its numerical measure

greater than unity.

In the diagram of § 173, the ratio of DB to EB, or of EA to

DA, is the ratio of the shear.

175. The amount of a shear is the amount of relative

motion per unit distance between planes of no distortion.

It is easily proved that this is equal to the excess of the

ratio of the shear above its reciprocal.

1 2a
Since DCA = 2DBA, and tan DBA = - we have tan DCA -= ^-^ .

a a"— I

But DE = 20NUn DON = 2C'^r cot DCA.

DE a3 -l 1
Hence -^-^ = A—— = a .ON 2a a

176. The planes of no distortion in a simple shear are Ellipsoidal... specifica-

clearly the circular sections of the strain ellipsoid. In thetjonofa
. . . . shear.

ellipsoid of this case, be it remembered, the mean axis remains

unaltered, and is a mean proportional between the greatest and

the least axis.

177. If we now suppose all lines perpendicular to the plane shear, sim-
1 x x x

. . pie elonga-
of the shear to be elongated or contracted in any proportion, tion, and

. .
«• i i expansion

without altering lengths or angles in the plane of the shear, combined.

and if, lastly, we suppose every line in the body to be elongated

or contracted in some other fixed ratio, we have clearly (§ 161)

the most general possible kind of strain. Thus if s be the ratio

of the simple shear, for which case s, 1,
- are the three principal

ratios, and if we elongate lines perpendicular to its plane in the
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shear, sim- ratio 1 : m, without any other change, we have a strain of
pie elonga- . .

tion.and which the principal ratios are
expansion,

x A

combined. 1

s, m, -
.

If, lastl}
7
,
we elongate all lines in the ratio 1 : n, we have a

strain in which the principal ratios are

n
ns, nm, -

,

s

n
where it is clear that ns, nm, and - may have any values

whatever. It is of course not necessary that nm be the mean

principal ratio. Whatever they are, if we call them o, /3, 7 re-

spectively, we have

/a /3
s
-\/ ^;

w = V«Y; andm=
v
~.

Analysis of 178. Hence any strain (7, /?, 7) whatever may be viewed as
«) c t 7*0 111

compounded of a uniform dilatation in all directions, of linear

•
—

• & « a.
ratio Va7, superimposed on a simple elongation -j=

m the

direction of the principal axis to which /3 refers, superimposed

on a simple shear, of ratio / -
[or

of amount / /
-J

in the plane of the two other principal axes.

179. It is clear that these three elementary component
strains may be applied in any other order as well as that

stated. Thus, if the simple elongation is made first, the body
thus altered must get just the same shear in planes perpen-
dicular to the line of elongation, as the originally unaltered

body gets when the order first stated is followed. Or the

dilatation may be first, then the elongation, and finally the

shear, and so on.

Displace- 180. In the preceding sections on strains, we have con-

body, rigid sidered the alterations of lengths of lines of the body, and of

point of angles between lines and planes of it; and we have, in parti-

hew fixed, cular cases, founded on particular suppositions (the principal

axes of the strain remaining fixed in direction, § 169, or one
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of either set of uiulistorted planes in a simple shear remain- DispiacoA
.

L ment of a

in"; fixed, § 170). considered the actual displacements of parts body, rigid& ° '
.

L l or not, one

of the body from their original positions. But to complete Poi,lt
"[

the kinematics of a non-rigid solid, it is necessary to take a heM lix,(l -

more general view of the relation between displacements and

strains. It will be sufficient for us to suppose one point of

the body to remain fixed, as it is easy to see the effect of super-

imposing upon any motion with one point fixed, a motion of

translation without strain or rotation.

181. Let us therefore suppose one point of a body to be

held fixed, and any displacement whatever given to any point

or points of it, subject to the condition that the whole substance

if strained at all is homogeneously strained.

Let OX, OY, OZ be any three rectangular axes, fixed with

reference to the initial position and condition of the body. Let

x, y, z be the initial co-ordinates of any point of the body, and

xv yv z
y
be the co-ordinates of the same point of the altered body,

with reference to those axes unchanged. The condition that the

strain is homogeneous throughout is expressed by the following

equations :
—

x
i

=
[Xx] x + [Xy] y + [Xz] z,

j

y l

= [Yx]x + [Yy]y + [Yz]z, I (1)

z
i

= [Zx]x + [Zy]y + [Zz]z,
I

where
[Xafj, [Xy], etc., are nine quantities, of absolutely arbi-

trary values, the same for all values of x, y, z.

[Xx], [Yx], [Zx] denote the three final co-ordinates of a point

originally at unit distance along OX, from 0. They are, of

course, proportional to the direction-cosines of the altered posi-

tion of the line primitively coinciding with OX. Similarly for

[Xy], [Yy], [Zy], etc.

Let it be required to find, if possible, a line of the body which

remains unaltered in direction, during the change specified by

[A'.f], etc. Let x, y, z, and x
, y ,

z
,
be the co-ordinates of the

primitive and altered position of a point in such a line. We
x 1/ z

must have —' = -1 - - 1 = 1 + e, where € is the elongation of the
x y z

line in question.
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Tims we have
a?,
=

(1 + e)x, etc., and therefore if
rj
= 1 + c

{[Xx]- V}x + [Xy]y + [Xz]z
=

0, ,

[r*> + {ITy]-i?}y +[Tz]z = 0,

[Zx]x + [Zy]y + {[Zz]- V}z
= 0. >

(2)

From these equations, by eliminating the ratios x : y : z according

to the well-known algebraic process, we find

([Xx]- V)([Yy]- V)([Zz]- v)

-
[Yz] [Zy]([Xx]

- v) - [Zx] [Xz] ([Yy] -r,)- [Xy][Yx]([Zz]
- v )

+ [Xz] [Yx] [Zy\ + [Xy] [Yz] [Zx] = 0.

This cubic equation is necessarily satisfied by at least one real

value of
77,

and the two others are either both real or both ima-

ginary. Each real value of 77 gives a real solution of the problem,

since any two of the preceding three equations with it, in place of

77,
determine real values of the ratios x : y : z. If the body is

rigid (i.e.,
if the displacements are subject to the condition of

producing no strain), we know (ante, § 95) that there is just one

line common to the body in its two positions, the axis round

which it must turn to pass from one to the other, except in the

peculiar cases of no rotation, and of rotation through two right

angles, which are treated below. Hence, in this case, the cubic

equation has only one real root, and therefore it has two imagi-

nary roots. The equations just formed solve the problem of finding

the axis of rotation when the data are the actual displacements

of the points primitively lying in three given fixed axes of

reference, OX, OY, OZ; and it is worthy of remark, that the

practical solution of this problem is founded on the one real root

of a cubic which has two imaginary roots.

Again, on the other hand, let the given displacements be

made so as to produce a strain of the body with no angular

displacement of the principal axes of the strain. Thus three

lines of the body remain unchanged. Hence there must be

three real roots of the equation in
77,

one for each such axis
;
and

the three lines determined by them are necessarily at right angles

to one another.

But if neither of these conditions holds, we may have three

real solutions and three oblique lines of directional identity; or

-are may have only one real root and only one line of directional

identity.



181.] KINEMATICS. 129

An analytical proof of these conclusions may easily be given ;

thus we may write the cubic in the form—

[Xx], [Xy], [Xz\

[Yx], [Yy], [Yz]

[Zx],[Zy],[Zz]

J
+ [Zz], [Zx]\ + \[Xx], [Xy]\\

[Xz],[Xxj \[Yx],[Yy]\]

Displace-
ment of a
body, rigid
or not, one-

point of
which is

held fixed.

+ rf{[Xx] + [Ty] + [Zz]\- v
' = 0. (3)

In the particular case of no strain, since [Xx], etc., are then

equal, not merely proportional, to the direction cosines of three

mutually perpendicular lines, we have by well-known geometrical

theorems

[Xx], [Xy], [Xz]

[Yx], [Yy], [Yz]

[Zx],[Zy],[Zz]

1, and \[Yy], [Yz]
=

[Xx], etc.

\[Zy], [Zz]

Hence the cubic becomes

1 - (r,- rf) {[Xx] + [Yy] + [Zz]}- rf = 0,

of which one root is evidently r/
= 1. This leads to the above

explained rotational solution, the line determined by the value 1

of -q being the axis of rotation. Dividing out the factor 1 —
rj,

we get for the two remaining roots the equation

\+(l-[Xx]-[Yy]-[Zz]) V + r = 0,

whose roots are imaginary if the coefficient of
rj

lies between

-f 2 and — 2. Now — 2 is evidently its least value, and for that

case the roots are real, each being unity. Here there is no

rotation. Also + 2 is its greatest value, and this gives us a pair

of values each =—1, of which the interpretation is, that there is

rotation through two right angles. In this case, as in general,

one line (the axis of rotation) is determined by the equations (2)

with the value + 1 for
rj ;

but with
rj
= — 1 these equations are

satisfied by any line perpendicular to the former.

The limiting case of two equal roots, when there is strain, is

an interesting subject which may be left as an exercise. It

separates the cases in which there is only one axis of directional

identity from those in which there are three.

Let it next be proposed to find those bines of the body whose

elongations are greatest or least. For this purpose we must find

the equations expressing that x 2 + y
2 + z* is a maximum, when

x2 + y
2 + z

2 — r2

,
a constant. First, we have

«, + Vi + «• Ax2 + By
2 + Cz2 + 2 (ayz + bzx + cxy) .

(4),

VOL. I. 9
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Displace-
ment of a
hody, rigid
or not, one
point of

which is

held fixed.

.(5).

(6),

}
(8)

where

A =
[Xx]

2

+[Yx]
2 + [Zx]

2

B =
[Xy]* + [Yy]* + [Zy]

2

C=[Xz]* + [Yzy + [Zz]
a

a = [Xy] [Xz] + [Yy] [Yz] + [Zy ] [Zz ]

b = [Xz] [Xx] + [Yz] [Yx] + [Zz ] [Zx]
c = [Xx] [Xy] + [Yx] [Yy] + [Zx] [Zy]

The equation

Ax2 + By
2 + Cz2 + 2 (ayz + bzx + cxy)

- r 2

where r is any constant, represents clearly the ellipsoid which a

spherical surface, radius r, of the altered body, would become if

the body were restored to its primitive condition. The problem

of making r a maximum when r is a given constant, leads to the

following equations :
—

x2 + y
2 + z

2 = r
2

( 7) ,

xdx + ydy + zdz = 0,

(Ax + cy + bz)dx + (ex + By + az)dy + (bx + ay + Gz)dz — 0.

On the other hand, the problem of making r a maximum or

minimum when r is given, that is to say, the problem of finding

maximum and minimum diameters, or principal axes, of the

ellipsoid (6), leads to these same two differential equations (8),

and only differs in having equation (6) instead of (7) to complete

the determination of the absolute values of x, y, and z. Hence

the ratios x : y : z will be the same in one pioblem as in the

other; and therefore the directions determined are those of the

principal axes of the ellipsoid (6). We know, thei-efore, by the

properties of the ellipsoid, that there are three real solutions,

and that the directions of the three radii so determined are

mutually rectangular. The ordinary method (Lagranges) for

dealing with the differential equations, being to multiply one of

them by an arbitrary multiplier, then add, and equate the co-

efficients of the separate differentials to zero, gives, if we take

—
r]

as the arbitrary multiplier, and the first of the two equations

the one multiplied by it,

(A
—

r])x + cy + bz = 0,

cx + (B
—

yj)y

bx + ay :0. *

(9)+ az

(C- V)z=

We may find what
t)
means if we multiply the first of these by x

f
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the second by y, and the third by z, and add
; because we thus Displace-

. . . mentofa
Obtain body, rigid

or not, one
Ax2+ By

2 + Cz2 + 2 (ayz + bzx + cxy)
-

77 (x
2+ y

2+ z
2

)
= 0, point of

or r
2

-r]r
2 =

0,
held fixed.

which gives rj
=
(-j (10).

Eliminating the ratios x : y : z from (9), by the usual method, we
have the well-known determinant cubic

(A -q)(B- V)(G -q)
- a\A -

r,)- b
2

(B
-
v )
- c

2

(C
-
v )

+ 2abc = 0...(11),

of which the three roots are known to be all real. Any one of

the three roots if used for
77,

in (9), harmonizes these three equa-
tions for the true ratios x : y : z

; and, making the coefficients of

x, y, z in them all known, allows us to determine the required

ratios by any two of the equations, or symmetrically from the

three, by the proper algebraic processes. Thus we have only to

determine the absolute magnitudes of x, y, and z, which (7)

enables us to do when their ratios are known.

It is to be remarked, that when \Yz\
=

\_Zy\ \Zx\
=

\Xz~\, and

[JT?/]
=
[TV], equation (3) becomes a cubic, the squares of whose

roots ai'e the roots of (11), and that the three lines determined

by (2) in this case are identical with those determined by (9).

The reader will find it a good analytical exercise to prove this

directly from the equations. It is a necessary consequence of

§ 183, below.

We have precisely the same problem to solve when the question

proposed is, to find what radii of a sphere remain perpendicular

to the surface of the altered figure. This is obvious when viewed

geometrically. The tangent plane is perpendicular to the radius

when the radius is a maximum or minimum. Therefore, every

plane of the body parallel to such tangent plane is perpendicular
to the radius in the altered, as it was in the initial condition.

The analytical investigation of the problem, presented in the

second way, is as follows :
—

Let l
l

x
l

+ m
1y l

+ nft =
(12)

be the equation of any plane of the altered substance, through
the origin of co-ordinates, the axes of co-ordinates being the

same fixed axes, OX, OY, OZ, which we have used of late. The

direction cosines of a perpendicular to it are, of course, propor-
tional to l

lf ro,,
n

x
. If, now, for x

Y , y Y , z
t ,
we substitute their

9—2
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values, as in (1), in terms of the co-ordinates which the same

point of the substance had initially, we find the equation of the

same plane of the body in its initial position, which, when the

terms are grouped properly, is this—
[l x[Xx] + m x[Yx] + n

x[Zx]\x +
{lx\Xy-\ + m\Yy\ + n\Zy\\y

+
{l x[Xz]+m x[Yz]+n l [Zz]}z

=
(13)..

The direction cosines of the perpendicular to the plane are pro-

portional to the co-efficients of x, y, z. Now these are to be the

direction cosines of the same line of the substance as was altered

into the line l
x

: m, : n
x

. Hence, if I : m : n are quantities propor-

tional to the direction cosines of this line in its initial position,

we must have

l
x[Xx] + m, [ Yx] + n, [Zx]

= vl

j

h[Xy\ + m
x[Yy\+n[Zy]=r,m\ (14),

l~[Xz) + m
x [Yz] + ni [Zz]

= Vn J

where
rj

is arbitrary. Suppose, to fix the ideas, that l
x , m,, n

are the co-ordinates of a certain point of the substance in its

altered state, and that
I, m, n are proportional to the initial co-

ordinates of the same point of the substance. Then we shall

have, by the fundamental equations, the expressions for l
x ,
m

x
,
n

x

in terms of I, m, n. Using these in the first members of (1-i),

and taking advantage of the abbreviated notation (5), we have

precisely the same equations for I, m, n as (9) for x, y, z above.

Anaiysisofa 182. From the preceding analysis it follows that any homo-

distortion geneous strain whatever applied to a body generally changes a

tion. sphere of the body into an ellipsoid, and causes the latter to

rotate about a definite axis through a definite angle. In pai'-

ticular cases the sphere may remain a sphere. Also there

may be no rotation. In the general case, when there is no

rotation, there are three directions in the body (the axes of the

ellipsoid) which remain fixed
;
when there is rotation, there

are generally three such directions, but not rectangular. Some-

times, however, there is but one.

Pure strain. 183. When the axes of the ellipsoid are lines of the body
whose directions do not change, the strain is said to be pure,

or unaccompanied by rotation. The strains we have already

considered were more general than this, being pure strains
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accompanied by rotation. We proceed to find the analytical Pure strain,

conditions of the existence of a pure strain.

Let OH. OH', OH" be the three principal axes of the strain,

and let I, m, n, I', m, u', I", m", n",

be their direction cosines. Let a, a, a" be the principal elonga-

tions. Then, if £, £', $" be the position of a point of the un-

altered body, with reference to OH, Op,', OH", its position in

the body when altered will be a£, a'£', a"£". But if x, y, z be

its initial, and
as,, y x ,

z
{

its final, positions with reference to

OX, OY, OZ. we have

£ = lx + my + nz, £' = etc., £
" = etc (15),

and x
x

= la$ + l'a!£' + l"a"£", y x

=
etc., z

1

— etc.

For $, $', £" substitute their values (15), and we have x
x , yv z

t

in

terms of x, y, z, expressed by the following equations :
—

Xi^iaP + aT* + a" r2
)x+(alm +a'l'm' + a'T'm" )y+ (aln +a'l'n' +a"l"n") zj

y1
= (aml + a'm'V'+ arm"l")x+ (am

2 + ct'wi'
2 + a" m"2

)y + (amn + a'm'n' + a"m"n") z >.(16).

z
1 =(anl + a'n'l' + a"n"l") x+(anm + a'n'm +a."n"vi")y+(av? + a'n"2 + a"n"3

) z)

Hence, comparing with (1) of § 181, we have

\Xx\ = al
2 + a'l'

2 + a"I"
2

,
etc.

;
'l ,-. „,

\Zy\
=

\_Yz\
— amn + a'm'n + u"/n"n", etc. J

In these equations, I, I', I", m, m, m", n, ri, n", are deducible

from three independent elements, the three angular co-ordinates

(§ 100, above) of a rigid body, of which one point is held fixed
;

and therefore, along with a, a', a", constituting in all six in-

dependent elements, may be determined so as to make the six

members of these equations have any six prescribed values.

Hence the conditions necessary and sufficient to insure no rotation

are

[Zy]
=

[Yz\, [Xz] = [Zx], [Xy] =
[Yx] (18).

184. If a body experience a succession of strains, each un- Composi-
. , •. . . t

. ».,. -n n tion of pure

accompanied by rotation, its resulting condition will generally strains,

be producible by a strain and a rotation. From this follows

the remarkable corollary that three pure strains produced one

after another, in any piece of matter, each without rotation,

may be so adjusted as to leave the body unstrained, but rotated

through some angle about some axis. We shall have, later,

most important and interesting applications to fluid motion,
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Composi- which (Vol. II.) will be proved to be instantaneously, or dif-

Btrains. ferentially, irrotational
;
but which may result in leaving a

whole fluid mass merely turned round from its primitive posi-

tion, as if it had been a rigid body. The following elementary

geometrical investigation, though not bringing out a thoroughly

comprehensive view of the subject, affords a rigorous demon-

stration of the proposition, by proving it for a particular case.

Let us consider, as above (§ 171), a simple shearing motion.

A point being held fixed, suppose the matter of the body in

a plane, cutting that of the diagram perpendicularly in CD, to

move in this plane from right to left parallel to DC; and in

other planes parallel to it let there be motions proportional to

their distances from 0. Consider first a shear from P to P
x ;

then from P, on to P9 ;
and let be taken in a line through

q v> a Pv perpendicular to

CD. Durintr the shear

from Pto Pj a point

Q moves of course to

Q 1 through a distance

QQX

= PP
X

. Choose Q midway between P and Pv so that

P
xQ = QP = \PX

P. Now, as we have seen above (§ 152), the

line of the body, which is the principal axis of contraction in the

shear from Q to Qv is OA, bisecting the angle QOE at the be-

ginning, and 0AV bisecting QfiE at the end, of the whole

motion considered. The angle between these two lines is half

the angle Q 1 OQ, that is to say, is equal to P
xOQ. Hence, if the

plane CD is rotated through an angle equal to P
xOQ, in the

plane of the diagram, in the same way as the hands of a watch,

during the shear from Q to Qv or, which is the same thing, the

shear from P to P
x , this shear will be effected without final

rotation of its principal axes. (Imagine the diagram turned

round till OA
t

lies along OA. The actual and the newly

imagined position of CD will show how this plane of the body
has moved during such non-rotational shear.)

Now, let the second step, Px
to P

2 ,
be made so as to complete

the whole shear, P to P
2 ,

which we have proposed to consider.

Such second partial shear may be made by the common shear-

ing process parallel to the new position (imagined in the preced-
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ing parenthesis) of CD, and to make itself also non-rotational. Composi-
. ,

,
, pi tionof puro

as its predecessor has been made, we must turn further round, strains.

in the same direction, through an angle equal to Q 1
OP

1
. Thus

in these two steps, each made non-rotational, we have turned

the plane CD round through an angle equal to Q tOQ. But now,

we have a whole shear PP
2 ;

and to make this as one non-rota-

tional shear, we must turn CD through an angle P x
OP only,

which is less than QfiQ by the excess of PfiQ above QOP.
Hence the resultant of the two shears, PP X ,

P
t
P

2 ,
each sepa-

rately deprived of rotation, is a single shear PP
2 ,
and a rota-

tion of its principal axes, in the direction of the hands of a watch,

through an angle equal to QOP 1

— POQ.

185. Make the two partial shears each non-rotationally. Re-

turn from their resultant in a single non-rotational shear : we

conclude with the body unstrained, but turned through the angle

QOPx

— POQ, in the same direction as the hands of a watch.

x
x

= Ax + cy + bz

y x

= cx + By + az

z
x
= bx + ay + Cz

is (§ 183) the most general possible expression for the displace-

ment of any point of a body of which one point is held fixed,

strained according to any three lines at right angles to one

another, as principal axes, which are kept fixed in direction,

relatively to the lines of reference OX, Y, OZ.

Similarly, if the body thus strained be again non-rotationally

strained, the most general possible expressions for x
2 , y„, z„,

the co-ordinates of the position to which x
x
, y x ,

z
x ,
will be brought,

are

x
2
= A

x

x
x

+c
xy x

+b
i
z

1

yf
= e

1
aj

1
+B

1y1
+a

1
z

i

z
2
= b

1
x

l +a,y, +0&.

Substituting ha these, for x
, y 1 ,

z
x ,

their preceding expressions,

in terms of the primitive co-ordinates, x, y, z, we have the follow-

ing expressions for the co-ordinates of the position to which the

point in question is brought by the two strains :
—

x
t
= (A x

A + c
x
c + b

x b) x+ (A i

c + c
l

B+ b
xa)y + (A x

b + c
x
a + b

x O) z

y2
= (c

x

A + B
x
c + a

x b) x + (c x
c +B

X

B + a
xa) y +

(c x

b + B
x
a + a

xC) z

z
2
= {b

x
A + a

x
c + C

xb) x + (b x
c + a

x

B + C\a) y + (b
x
b + a

x
a + C

X C) z.
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Composi-
tion of pure
strains.

Displace-
ment of a
curve.

Tangential
displace-
ment.

The resultant displacement thus represented is not generally of

the non-rotational character, the conditions (18) of § 183 not

being fulfilled, as we see immediately. Thus, for instance, we

see that the coefficient of y in the expression for x is not

necessarily equal to the coefficient of x in the expression for y2
.

Cor.—If both strains are infinitely small, the resultant displace-

ment is a pure strain without rotation. For A, B, G, A ,
Bv (7,

are each infinitely nearly unity, and a, b, etc., each infinitely

small. Hence, neglecting the products of these infinitely small

quantities among one another, and of any of them with the differ-

ences between th' former and unity, we have a resultant dis-

placement
a

2
= A

x
Ax + (c + c

} )y + (b + b
x )z

y2
=

(Cj
+

c) x + B
tBy +(a + a i)z

z
2
=

{b x +b)x +
(a,

+ a)y + Cfiz,

which represents a pure strain unaccompanied by rotation.

186. The measurement of rotation in a strained elastic solid,

or in a moving fluid, is much facilitated by considering sepa-

rately the displacement of any line of the substance. We are

therefore led now to a short digression on the displacement

of a curve, which may either belong to a continuous solid or

fluid mass, or may be an elastic cord, given in any position.

The propositions at which we shall arrive are, of course, appli-

cable to a flexible but inextensible cord (§ 14, above) as a

particular case.

It must be remarked, that the displacements to be considered

do not depend merely on the curves occupied by the given line

in its successive positions, but on the corresponding points of

these curves.

What we shall call tangential displacement is to be thus

reckoned:—Divide the undisplaced curve into an infinite num-

ber of infinitely small equal parts. The sum of the tangential

components of the displacements from all the points of division,

multiplied by the length of each of the infinitely small parts,

is the entire tangential displacement of the curve reckoned along

the undisplaced curve. The same reckoning carried out in the

displaced curve is the entire tangential displacement reckoned

on the displaced curve.
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187. The Avliole tangential displacement of a curve reckoned Two reckon-

t ii ii -it in£8 of tan_

along the displaced curve, exceeds the whole tangential dis- gentiaidis-°
. placement

placement reckoned along the undisplaced curve by half the compared,

rectangle under the sum and difference of the absolute terminal

displacements, taken as positive when the displacement of the

end towards which the tangential components are if positive

exceeds that at the other. This theorem may be proved

by a geometrical demonstration which the reader may easily

supply.

Analytically thus :
—Let x, y, z be the co-ordinates of any

point, P, in the undisplaced curve
; as, , y x ,

z
l ,

those of P, the

point to which the same point of the curve is displaced. Let

dx, dy, dz be the increments of the three co-ordinates corre-

sponding to any infinitely small arc, ds, of the first
;
so that

ds = (dx
2+ dy

2+ dz2

)i,

and let corresponding notation apply to the corresponding

element of the displaced curve. Let denote the angle between

the line PP
X
and the tangent to the undisplaced curve through

P
;
so that we have

„ x
l

— x dx y^
— ydy z

l

— zdz
cos V = —p- j-

+ -ir — +— -
,

where for brevity

£ =
{(x 1 -xy+(y l -yy + (z l -zy}K

being the absolute space of displacement. Hence

D cos 6ds =
(a?,

—
x)dx + (y }

— y)dy + (z
-

z) dz.

Similarly we have

D cos 6
l

ds
l

=
(a;,

-
x) dx y

+ (y {

-
y) dy^ + (z l

-
z) dz }

,

and therefore

D cos O
l
ds

l

- D cos 6ds =
(a?,

—
x)d(x x

-
x) +

(j/ l

-
y)d(y y

—
y)

+ (z l -z)d(z l -z),

or D cos
0,(78,

- D cos dds = \ d (
D 2

).

To find the difference of the tangential displacements reckoned

the two ways, we have only to integrate this expression. Thus

we obtain

JD cos 6
l

ds
l

- JD cos 6ds = \(B'
n -D'2

)
= l(D" + I)') (D" - D'),

where D" and D' denote the displacements of the two ends.
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Tangential
displace-
ment of a
closed curve.

Rotation
of a rigid
closed curve,

Tangential
displace-
ment in a
solid, in

terms of

components
of strain.

188. The entire tangential displacement of a closed curve

is the same whether reckoned along the undisplaced or the

displaced curve.

189. The entire tangential displacement from one to another

of two conterminous arcs, is the same reckoned along either as

along the other.

190. The entire tangential displacement of a rigid closed

curve when rotated through any angle about any axis, is equal

to twice the area of its projection on a plane perpendicular to

the axis, multiplied by the sine of the angle.

(a) Prop.—The entire tangential displacement round a closed

curve of a homogeneously strained solid, is equal to

2(Pm + QP + R<t),

where P, Q, R denote, for its initial position, the areas of its

projections on the planes YOZ, ZOX, XOY i-espectively, and

iff, p, <r are as follows :
—

<* = *{[^]-|>]}
p = ^{[Xz]-[Zx]\

To prove this, let, farther,

a = ^{[Zy] + [Yz]\

b = \{[Xz\ + [Zx]\

c-^l{[Yx\ + [Xy]}.

Thus we have

x = Ax + cy + bz+ oy — pz

y x
=cx + By + az + tffz — crx

z
x

— bx + ay + Gz + px
-

-my.

Hence, according to the previously investigated expression, we

have, for the tangential displacement, reckoned along the undis-

placed curve,

/{ (
x

i

- x
)
dx + {y i

-
y)dv + («!

- z
)
dz

\

= K¥\iA -l)x
2

+(B-l)y
2 + (C-l)z

2 +2 (ayz + bzx + cxy)}

+ vs (ydz
-
zdy) + p (zdx — xdz) + <r (xdy

—
ydx)\

The first part, J^d { },
vanishes for a closed curve.
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The remainder of the expression is Tangential
displace-

mj(ydz
-
zdy) + pf{zdx

-
xdz) + aj(xdy

-
ydx), £jg £

a

„ P . , terms of

which, according to the formulae lor projection ot areas, is equal components
of strain.

t0 2P*r + 2QP + 2Ra.

For, as in § 36 (a),
we have in the plane of xy

J(xdy
—
ydx) = Jr

2

d6,

double the area of the orthogonal projection of the curve on that

plane ;
and similarly for the other integrals.

(b) From this and § 190, it follows that if the body is rigid,

and therefore only rotationally displaced, if at all, \_Zy~]
—

[1VJ

is equal to twice the sine of the angle of rotation multiplied by
the cosine of the inclination of the axis of rotation to the line

of reference OX.

(c)
And in general \Zy~\

—
[1VJ measures the entire tangential

displacement, divided by the area on ZOY, of any closed curve

given, if a plane curve, in the plane YOZ, or, if a tortuous curve,

given so as to have zero area projections on ZOX and XOY.

The entire tangential displacement of any closed curve given in

a plane, A, perpendicular to a line whose direction cosines are

proportional to m, p, cr, is equal to twice its area multiplied by

J{"m
2 + p

s + o-
2

).
And the entire tangential displacement of any

closed curve whatever is equal to twice the area of its projection

on A, multiplied by J(tz
2 + p

2 + u2

).

In the transformation of co-ordinates, w, p, cr transform by the

elementary cosine law, and of course tz
2 + p

2 + a2
is an invariant

;

that is to say, its value is unchanged by transformation from one

set of rectangular axes to another.

id) In non-rotational homogeneous strain, the entire tangential

displacement along any curve from the fixed point to (x, y, z),

reckoned along the undisplaced curve, is equal to

1{{A
-

1) x* + (B
- 1

) y
2 + (C

- 1
)
z

2 + 2 (ayz + bzx + cxy)}.

Reckoned along displaced curve, it is, from this and § 187,

±{{A
-

1) x
2 + (B

-
1) y

2 + (C -
1) z* + 2 (ayz + bzx + cxy)}

+ h{[(A ~\)x + cy + bz]
2 + [ex

+ (B -1) y + az]
2

+ [bx + ay+(G-l)z]
2

}.

And the entire tangential displacement from one point along

any curve to another point, is independent of the curve, i.e.,

is the same along any number of conterminous curves, this of
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course whether reckoned in each case along the undisplaced or

along the displaced curve.

(e)
Given the absolute displacement of every point, to find the

strain. Let a, /?, y, be the components, relative to fixed axes,

OX, OY, OZ, of the displacement of a particle, P, initially in

the position x, y, z. That is to say, let x + a, y + /3, z + y be the

co-ordinates, in the strained body, of the point of it which was

initially at x, y, z.

Consider the matter all round this point in its first and second

positions. Taking this point P as moveable origin, let $, 77, t,

be the initial co-ordinates of any other point near it, and f,, t] y , £,

the final co-ordinates of the same.

The initial and final co-ordinates of the last-mentioned point,

with reference to the fixed axes OX, OY, OZ, will be

as + l, y +
77,

z + C

and x + a + il} y + P + rj^ z+y + £lf

respectively ;
that is to say,

a + ^-i, f3 + Vl -r), y + £,-£

are the components of the displacement of the point which had

initially the co-ordinates x + $, y +
77,

z + £, or, which is the same

thing, are the values of a, /?, y,
when x, y, z are changed into

x + $, y + rj,
z + C

Hence, by Taylor's theorem,

da. . da da. -,

1 dx dy dz

dp d[3 dp

ii-'-S^S'
+ S*

c.
f, dy . dy dy 9

the higher powers and products of $, 77, £ being neglected. Com-

paring these expressions with (1) of § 181, we see that they ex-

press the changes in the co-ordinates of any displaced point of

a body relatively to three rectangular axes in fixed directions

through one point of it, when all other points of it are displaced

relatively to this one, in any manner subject only to the con-

dition of giving a homogeneous strain. Hence we perceive that

at distances all round any point, so small that the first terms

only of the expressions by Taylor's theorem for the differences of

displacement are sensible, the strain is sensibly homogeneous,
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and we conclude that the directions of the principal axes of the Hetero-
„ , geneou.".

strain at any point (x, y, z),
and the amounts of the elongations strain,

of the matter along them, and the tangential displacements in

closed curves, are to be found according to the general methods

described above, by taking

If each of these nine quantities is constant
(i.e.,

the same for all °°™^"s

values of x, y, z), the strain is homogeneous : not unless. strain-

If) The condition that the strain may be infinitely small is that smaUstraia

da
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(i) If the disturbed condition is so related to the initial con-

dition that every portion of the body can pass from its initial to

its distui'bed position and strain, by a translation and a strain

without rotation
; i.e., if the three principal axes of the Strain at

any point are lines of the substance which retain their parallelism,

we must have, § 183 (18),

d/3 dy dy da da d(3

dz dy
'

dx dz' dy dx '

and if these equations are fulfilled, the strain is non-rotational, as

specified. But these three equations express neither more nor

less than that adx + pdy + ydz

is the differential of a function of three independent variables.

Hence we have the remarkable proposition, and its converse, that

if F (x, y, z) denote any function of the co-ordinates of any point
of a body, and if every such point be displaced from its given

position (x, y, z) to the point whose co-ordinates are

dFdF dF
1 dx ' Jl J

dy
' z,

- z +
dz (1)-

the principal axes of the strain at every point are lines of the

substance which have retained their parallelism. The displace-

ment back from (xv y { ,
z

x
) to (x, y, z) fulfils the same condition,

and therefore we must have

dF
x

dF.
x^^>y=y^id> * = *.+

fyi

dj\
dz.

(2),

where F
l
denotes a function of x

, y , y, ,
and -

T--
1

dx.
etc., its

partial differential coefficients with reference to this system of

variables. The relation between F and F is clearly

F +F^-^D2
.

where D 2
dF 2

dx2

dF 2 dF 2

dy
2 + dz2

dF 2 dF 2——
-\

dx* dy x

dF 2

h

dz*

•(3),

(4).

This, of course, may be proved by ordinary analytical methods,

applied to find x, y, z in terms of x
x , ylt

z
,
when the latter are

given by (1) in terms of the former.

(j )
Let a, /?, y be any three functions of x, y, z. Let dS be

any element of a surface
; I, m, n the direction cosines of its

normal.
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Then ffdS [l($-f) + » (t-T)* " (f ~
Pi) S2K

I \dy dzj \dz dx) \dx dyj) strain.

= f(adx + pd!/ + ydz) (5),

the former integral being over any curvilinear area bounded by a

closed curve
;
and the latter, which may be written

dx dy dz\. , / dx n dy dz\

being round the periphery of this curve line*. To demonstrate

this, begin with the part of the first member of (5) depending on

a
;
that is

HdS
(
m^-n

dt)
;

and to evaluate it divide S into bands by planes parallel to ZO Y,

and each of these bands into rectangles. The breadth at x, y, z,

1 1 dx
of the band between the planes x —= dx and x + s dx is ——jr ,

ifr 2 2 sin o

denote the inclination of the tangent plane of S to the plane x.

Hence if ds denote an element of the curve in which the plane

x cuts the surface S, we may take

dS = —.—7.
dx ds.

sinfl

And we have I — cos 6, and therefore may put

m = sin cos
cf>,

n = sin 6 sin
<f>.

Hence

HdS
(
m
Tz-

n
d

£)
= Udx ds

(
cos *£ - sin * t)

— jjdx ds -=- = jadx.

The limits of the s integration being properly attended to we see

that the remaining integration, Jadx, must be performed round

the periphery of the curve bounding *S'. By this, and correspond-

ing evaluations of the parts of the first member of (5) depending
on /? and y, the equation is proved.

* This theorem was given by Stokes in his Smith's Prize paper for 1854

{Cambridge University Calendar, 1854). The demonstration in the text is an

expansion of that indicated in our first edition. A more synthetical proof is

given in § 69 (q) of Sir W. Thomson's paper on "Vortex Motion," Trans. R. S. E.

1869. A thoroughly analytical proof is given by Prof. Clerk Maxwell in his

Electricity and Magnetism (§ 24).
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Hetero-

geneous
strain.

(k) It is remarkable that

(dam
\dz

dy
dx

+ n d/3(
dJL
\dx I)}

Displace-
ment func-
tion.

"
Equation

of con-

tinuity."

is the same for all surfaces having common curvilinear boundary;

and when a, /?, y are the components of a displacement from x, y, z,

it is the entire tangential displacement round the said curvi-

linear boundary, being a closed curve. It is therefore this that is

nothing when the displacement of every part is non-rotational.

And when it is not nothing, we see by the above propositions and

corollaries precisely what the measure of the rotation is.

(I) Lastly, We see what the meaning, for the case of no rota-

tion, of ( (adx + (3dy + ydz), or, as it has been called, "the dis-

placement function," is. It is, the entire tangential displacement

along any curve from the fixed point 0, to the point P (x, y, z).

And the entire tangential displacement, being in this case the

same along all different curves proceeding from one to another

of any two points, is equal to the difference of the values of the

displacement functions at those points.

191. As there can be neither annihilation nor generation

of matter in any natural motion or action, the whole quantity

of a fluid within any space at any time must be equal to the

quantity originally in that space, increased by the whole quan-

tity that has entered it and diminished by the whole quantity

that has left it. This idea when expressed in a perfectly com-

prehensive manner for every portion of a fluid in motion con-

stitutes what is called the "equation of continuity^ an unhappily

chosen expression.

integral 192. Two ways of proceeding to express this idea present

conHnu?ty. themselves, each affording instructive views regarding the pro-

perties of fluids. In one we consider a definite portion of the

fluid
;
follow it in its motions

;
and declare that the average

density of the substance varies inversely as its volume. We
thus obtain the equation of continuity in an integral form.

Let a, b, c be the coordinates of any point of a moving fluid,

at a particular era of reckoning, and let x, y, z be the co-ordinates

of the position it has reached at any time t from that era. To

specify completely the motion, is to give each of these three vavy-

ing co-ordinates as a function of a, b, c, t.
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Let 8a, 8b, 8c denote the edges, parallel to the axes of co-ordi- integral

i n i • i p i n • i equation of

nates, of a very small rectangular parallelepiped ol the fluid, when continuity.

t = 0. Any portion of the fluid, if only small enough in all its

dimensions, must (§ 190, e),
in the motion, approximately fulfil

the condition of a body uniformly strained throughout its volume.

Hence if 8a, 8b, 8c are taken infinitely small, the corresponding

portion of fluid must (§ 156) remain a parallelepiped during the

motion.

If a, b, c be the initial co-ordinates of one angular point of this

parallelepiped : and a + 8a, b, c
; a, b + 8b, c

; a, b, c + 8c
;
those

of the other extremities of the three edges that meet in it : the

co-ordinates of the same points of the fluid at time t, will be

x, y, z
\

dx ~ dy » de _
x + ^f- oa, V + -T- oa, 2 +— da ;

da J da ' da '

dx „ 7
dti 07 ffe„,x +

db
8b^ + tb^ z +

Tb
8b

>

dx dy dz _
x + -f- be, y +— 8c, z + -=- 8c.

dc dc dc

Hence the lengths and direction cosines of the edges are re-

spectively
—

dx

da/dx2

dy
2

dz2
\h »

\da~
2
+
«V

+
da~

2
)
^

/dx2

\da?
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which is the differential equation of continuity, in the form in

which it is most commonly given.

194. The other way referred to above (§ 192) leads im-

mediately to the differential equation of continuity.

Imagine a space fixed in the interior of a fluid, and consider

the fluid which flows into this space, and the fluid which flows

out of it, across different parts of its bounding surface, in any
time. If the fluid is of the same density and incompressible,

the whole quantity of matter in the space in question must re-

main constant at all times, and therefore the quantity flowing

in must be equal to the quantity flowing out in any time. If,

on the contrary, during any period of motion, more fluid enters

than leaves the fixed space, there will be condensation of

matter in that space ;
or if more fluid leaves than enters, there

will be dilatation. The rate of augmentation of the average

density of the fluid, per unit of time, in the fixed space in

question, bears to the actual density, at any instant, the same

ratio that the rate of acquisition of matter into that space bears

to the whole matter in that space.

Let the space S be an infinitely small parallelepiped, of which

the edges a, (3, y are parallel to the axes of co-ordinates, and let

x, y, z be the co-ordinates of its centre
;

so that x ± |a, y ± |/3,

z * iy are the co-ordinates of its angular points. Let p be the

density of the fluid at (x, y, z), or the mean density through the

space S, at the time t. The density at the time t + dt will be

p + -j-
dt

;
and hence the quantities of fluid contained in the

space S, at the times t, and t + dt, are respectively pafiy and

(p + -jdt j a/3y. Hence the quantity of fluid lost (there will of

course be an absolute gain if -£ be positive) in the time dt is
at

Now let u, v, w be the three components of the velocity of the

fluid (or of a fluid particle) at P. These quantities will be func-

tions of x, y, z (involving also t, except in the case of "
steady

motion "), and will in general vary gradually from point to point
of the fluid

; although the analysis which follows is not restricted
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by this consideration, but holds even in cases where in certain

places of the fluid there are abrupt transitions in the velocity,

as may be seen by considering them as limiting cases of motions

in which there are very sudden continuous transitions of velocity.

If w be a small plane area, perpendicular to the axis of x, and

having its centre of gravity at P, the volume of fluid which

flows across it in the time dt will be equal to uwdt, and the

mass or quantity will be puoidt. If we substitute By for w,

the quantity which flows across either of the faces B, y of the

parallelepiped S, will differ from this only on account of the

variation in the value of pu ;
and therefore the quantities which

flow across the two sides By are respectively

Hence a ,' Bydt, or %
'
aBydt, is the excess of the quantity

dx ' dx '

of fluid which leaves the parallelepiped across one of the faces

By above that which enters it across the other. By considering

in addition the effect of the motion across the other faces of the

parallelepiped, we find for the total quantity of fluid lost from the

space &', in the time dt,

|^M +^ + ^)| {h)m
{ dx dy dz J

Equating this to the expression (a), previously found, we have

(d(pu) cl(pv) d(pw)) dp 7

and we deduce

d (pu)
[

d(pv)
[

d(pw)
[
dp^ /4 x

dx dy dz dt

which is the required equation.

195. Several references have been made in preceding Freedom
and cou-

sections to the number of independent variables in a dis- straint.

placement, or to the degrees of freedom or constraint under

which the displacement takes place. It may be well, there-

fore, to take a general view of this part of the subject by

itself.
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196. A free point has three degrees of freedom, inasmuch

as the most general displacement which it can take is re-

solvable into three, parallel respectively to any three directions,

and independent of each other. It is generally convenient to

choose these three directions of resolution at right angles to

one another.

If the point be constrained to remain always on a given

surface, one degree of constraint is introduced, or there are

left but two degrees of freedom. For we may take the

normal to the surface as one of three rectangular directions of

resolution. No displacement can be effected parallel to it :

and the other two displacements, at right angles to each other,

in the tangent plane to the surface, are independent.

If the point be constrained to remain on each of two sur-

faces, it loses two degrees of freedom, and there is left but

one. In fact, it is constrained to remain on the curve which

is common to both surfaces, and along a curve there is at each

point but one direction of displacement.

197. Taking next the case of a free rigid body, we have

evidently six degrees of freedom to consider—three inde-

pendent translations in rectangular directions as a point has,

and three independent rotations about three mutually rect-

angular axes.

If it have one point fixed, it loses three degrees of freedom
;

in fact, it has now only the rotations just mentioned.

If a second point be fixed, the body loses two more degrees

of freedom, and keeps only one freedom to rotate about the

line joining the two fixed points. See § 102 above.

If a third point, not in a line with the other two, be fixed,

the body is fixed.

198. If a rigid body is forced to touch a smooth surface,

one degree of freedom is lost
;
there remain Jive, two dis-

placements parallel to the tangent plane to the surface, and

three rotations. As a degree of freedom is lost by a constraint

of the body to touch a smooth surface, six such conditions

completely determine the position of the body. Thus if six

points on the barrel and stock of a rifle rest on six convex
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portions of the surface of a fixed rigid body, the rifle may be Freedom11 i ii i r • • -ii and con-

placed, and replaced any number of times, in precisely the straint <>f a

same position, and always left quite free to recoil when fired,

for the purpose of testing its accuracy.

A fixed V under the barrel near the muzzle, and another

under the swell of the stock close in front of the trigger-guard,

give four of the contacts, bearing the weight of the rifle. A
fifth (the one to be broken by the recoil) is supplied by a

nearly vertical fixed plane close behind the second V, to be

touched by the trigger-guard, the rifle being pressed forward

in its V's as far as this obstruction allows it to go. This

contact may be dispensed with and nothing sensible of accuracy

lost, by having a mark on the second V, and a corresponding

mark on barrel or stock, and sliding the barrel backwards or

forwards in the V's till the two marks are, as nearly as can

be judged by eye, in the same plane perpendicular to the

barrel's axis. The sixth contact may be dispensed with by

adjusting two marks on the heel and toe of the butt to be

as nearly as need be in one vertical plane judged by aid of

a plummet. This method requires less of costly apparatus,

and is no doubt more accurate and trustworthy, and more

quickly and easily executed, than the ordinary method of

clamping the rifle in a massive metal cradle set on a heavy
mechanical slide.

A geometrical clamp is a means of applying and main- Geometrical
CiJllUD

taining six mutual pressures between two bodies touching

one another at six points.

A "
geometrical slide

"
is any arrangement to apply five Geometrical

degrees of constraint, and leave one degree of freedom, to

the relative motion of two rigid bodies by keeping them

pressed together at just five points of their surfaces.

Ex. 1. The transit instrument would be an instance if ^^J^f
one end of one pivot, made slightly convex, were pressed

slide -

against a fixed vertical end-plate, by a spring pushing at

the other end of the axis. The other four guiding points are

the points, or small areas, of contact of the pivots on the Y's.

Ex. 2. Let two rounded ends of legs of a three-legged

stool rest in a straight, smooth, V-shaped canal, and the third
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on a smooth horizontal plane*. Gravity maintains positive

determinate pressures on the five bearing points ;
and there

is a determinate distribution and amount of friction to be

overcome, to produce the rectilineal translational motion thus

accurately provided for.

Example of Ex. 3. Let onlv one of the feet rest in a V canal, and let
geometrical ^

clamp. another rest in a trihedral hollowf" in line with the canal, the

third still resting on a horizontal plane. There are thus six

bearing points, one on the horizontal plane, two on the sides of

the canal, and three on the sides of the trihedral hollow : and

the stool is fixed in a determinate position as long as all these

six contacts are unbroken. Substitute for gravity a spring,

or a screw and nut (of not infinitely rigid material), binding
the stool to the rigid body to which these six planes belong.

Thus we have a "geometrical clamp," which clamps two bodies

together with perfect firmness in a perfectly definite position,
* Thomson's reprint of Electrostatics and Magnetism, § 346.

t A conical hollow is more easily made (as it can he bored out at once by an

ordinary drill), and fulfils nearly enough for most practical applications the

geometrical principle. A conical, or otherwise rounded, hollow is touched at

tbree points by knobs or ribs projecting from a round foot resting in it, and
thus again the geometrical principle is rigorously fulfilled. The virtue of the

geometrical principle is well illustrated by its possible violation in this very
case. Suppose the hollow to have been drilled out not quite "true," and
instead of being a circular cone to have slightly elliptic horizontal sections:—
A hemispherical foot will not rest steadily in it, but will be liable to a slight

horizontal displacement in the direction parallel to the major axes of the

elliptic sections, besides the legitimate rotation round any axis through the

centre of the hemispherical surface: in fact, on this supposition there are just

two points of contact of the foot in the hollow instead of three. When the foot

and hollow are large enough in any particular case to allow the possibility of

this defect to be of moment, it is to be obviated, not by any vain attempt to

turn the hollow and the foot each perfectly
" true :"—even if this could be done

the desired result would be lost by the smallest particle of matter such as a

chip of wood, or a fragment of paper, or a hair, getting into the hollow when,
at any time in the use of the instrument, the foot is taken out and put in again.

On the contrary, the true geometrical method, (of which the general principle

was taught to one of us by the late Professor Willis thirty years ago,^ is to

alter one or other of the two surfaces so as to render it manifestly not a figure

of revolution, thus:—Roughly file three round notches in the hollow so as to

render it something between a trihedral pyramid and a circular cone, leaving

the foot approximately round
;
or else roughly file at three places of the rounded

foot so that horizontal sections through and a little above and below the points

of contact may be (roughly) equilateral triangles with rounded corners.
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without the aid of friction (except in the screw, if a screw Example of

. . . , t • • geometrical
is used) ;

and in various practical applications gives very damp,

readily and conveniently a more securely firm connexion by
one screw slightly pressed, than a clamp such as those com-

monly made hitherto by mechanicians can give with three

strong screws forced to the utmost.

Do away with the canal and let two feet ("instead of only one) Example of
J \ j / geometrical

rest on the plane, the other still resting in the conical hollow. slide-

The number of contacts is thus reduced to five (three in the

hollow and two on the plane), and instead of a "clamp" we
have again a slide. This form of slide,

—a three-legged stool

with two feet resting on a plane and one in a hollow,—will

be found very useful in a large variety of applications, in which

motion about an axis is desired when a material axis is not

conveniently attainable. Its first application was to the
" azimuth mirror," an instrument placed on the glass cover of

a mariner's compass and used for taking azimuths of sun or

stars to correct the compass, or of landmarks or other terrestrial

objects to find the ship's position. It has also been applied to

the "Deflector," an adjustible magnet laid on the glass of the

compass bowl and used, according to a principle first we believe

given by Sir Edward Sabine, to discover the "
semicircular"

error produced by the ship's iron. The movement may be

made very frictionless when the plane is horizontal, by weight-

ing the moveable body so that its centre of gravity is very nearly
over the foot that rests in the hollow. One or two guard feet,

not to touch the plane except in case of accident, ought to be

added to give a broad enough base for safety.

The geometrical slide and the geometrical clamp have both

been found very useful in electrometers, in the "siphon re-

corder," and in an instrument recently brought into use for

automatic signalling through submarine cables. An infinite

variety of forms may be given to the geometrical slide to suit

varieties of application of the general principle on which its

definition is founded.

An old form of the geometrical clamp, with the six pressures

produced by gravity, is the three V grooves on a stone slab

bearinsr the three legs of an astronomical or magnetic instru-
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E
e

X
ome?r?-

of men *' "^ *s not generaUy however so
"
well-conditioned" as

«ii slide, the trihedral hole, the V groove, and the horizontal plane

contact, described above.

For investigation of the pressures on the contact surfaces

of a geometrical slide or a geometrical clamp, see § 551, below.

There is much room for improvement by the introduction of

geometrical slides and geometrical clamps, in the mechanism

of mathematical, optical, geodetic, and astronomical instru-

ments : which as made at present are remarkable for disregard
of geometrical and dynamical principles in their slides, mi-

crometer screws, and clamps. Good workmanship cannot com-

pensate for bad design, whether in the safety-valve of an iron-

clad, or the movements and adjustments of a theodolite.

199. If one point be constrained to remain in a curve, there

remain four degrees of freedom.

If two points be constrained to remain in given curves, there

are four degrees of constraint, and we have left two degrees of

freedom. One of these may be regarded as being a simple
rotation about the line joining the constrained points, a motion

which, it is clear, the body is free to receive. It may be shown
that the other possible motion is of the most general character

for one degree of freedom
;
that is to say, translation and rota-

tion in any fixed proportions as of the nut of a screw.

If one line of a rigid system be constrained to remain parallel

to itself, as, for instance, if the body be a three-legged stool

standing on a perfectly smooth board fixed to a common window,

sliding in its frame with perfect freedom, there remain three

translations and one rotation.

But we need not further pursue this subject, as the number
of combinations that might be considered is endless

;
and

those already given suffice to show how simple is the determi-

nation of the degrees of freedom or constraint in any case that

may present itself.

One degree 200. One degree of constraint, of the most general character,

stmintof is not producible by constraining one point of the body to a

general curve surface
;
but it consists in stopping one line of the body

from longitudinal motion, except accompanied by rotation round

this line, in fixed proportion to the longitudinal motion, and
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leaving unimpeded every other motion : that is to say, free

rotation about any axis perpendicular to this line (two degrees of

freedom) ;
and translation in any direction perpendicular to the

same line (two degrees of freedom). These four, with the one

degree of freedom to screw, constitute the five degrees of freedom,

which, with one degree of constraint, make up the six elements.

Remark that it is only in case (b) below (§ 201) that there is

any point of the body which cannot move in every direction.

201. Let a screw be cut on one shaft. A, of a Hooke's ioint, and Mechanical
• • n \

illustration.

let the other shaft, L, be joined to a fixed shaft, B, by a second

Hooke's joint. A nut, N, turning on A, has the most general

kind of motion admitted by one degree of constraint
;

or

it is subjected to just one degree of constraint of the most

general character. It has five degrees of freedom
;
for it may

move, 1st, by screwing on A, the two Hooke's joints being
at rest

; 2d, it may rotate about either axis of the first Hooke's

joint, or any axis in their plane (two more degrees of freedom :

being freedom to rotate about two axes through one point) ;

'3d, it may, by the two Hooke's joints, each bending, have

irrotational translation in any direction perpendicular to the

link, L, which connects the joints (two more degrees of freedom).

But it cannot have a translation parallel to the line of the

shafts and link without a definite proportion of rotation round

this line; nor can it have rotation round this line without a

definite proportion of translation parallel to it. The same

statements apply to the motion of B if N is held fixed
;
but it

is now a fixed axis, not as before a moveable one round which

the screwing takes place.

No simpler mechanism can be easily imagined for producing-
one degree of constraint, of the most general kind.

Particular case (a).
—

Step of screw infinite (straight rifling),

i.e., the nut may slide freely, but cannot turn. Thus the

one degree of constraint is, that there shall be no rotation about

a certain axis, a fixed axis if we take the case of N fixed and B
moveable. This is the kind and degree of freedom enjoyed

by the outer ring of a gyroscope with its fly-wheel revolving

infinitely fast. The outer ring, supposed taken off its stand,

and held in the hand, cannot revolve about an axis perpen-
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Mechanical dicular to the plane of the inner ring* but it may revolve
illustration. .

r
•

i i •

freely about either of two axes at right angles to this, namely,
the axis of the fly-wheel, and the axis of the inner ring

relative to the outer
;
and it is of course perfectly free to

translation in any direction.

Particular case (6).
—

Step of the screw =0. In this case

the nut may run round freely, but cannot move along the axis

of the shaft. Hence the constraint is simply that the body
can have no translation parallel to the line of shafts, but may
have every other motion. This is the same as if any point of the

body in this line were held to a fixed surface. This constraint

may be produced less frictionally by not using a guiding sur-

face, but the link and second Hooke's joint of the present

arrangement, the first Hooke's joint being removed, and by

pivoting one point of the body in a cup on the end of the

link. Otherwise, let the end of the link be a continuous

surface, and let a continuous surface of the body press on it,

rolling or spinning when required, but not permitted to slide.

One degree a single degree of constraint is expressed by a single equation
straint among the six co-ordinates specifying the position of one rigid
expressed

° i J o l &

analyti- body, relatively to another considered fixed. The effect of this
cally.

•" * ....
on the body in any particular position is to prevent it from getting

out of this position, except by means of component velocities (or

infinitely small motions) fulfilling a certain linear equation among
themselves.

Thus if sr„ &,, zz
3 ,

zv
4 ,

ot
6 ,

ot
6 ,

be the six co-ordinates, and

F (ar l )
= the condition

;
then

dF
* ft

-i
— oV + =0
dw

x

1

is the linear equation which guides the motion through any par-

ticular position, the special values of
-ar^

-ar
2 ,

z?
3 , etc., for the

particular position, being used in -—
,

-—
,
&c.

Now, whatever may be the co-ordinate system adopted, we may,
if we please, reduce this equation to one between three velocities

of translation u, v, w, and three angular velocities m, p, o\

* " The plane of the inner ring" is the plane of the axis of the fly-wheel

and of the axis of the inner ring by which it is pivoted on the outer ring.
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Let this equation be One decree
of con-

Au + Bv + Gw + A'zz + B'p + C'a = 0. str"int
.r

expressed

This is equivalent to the following :
—

calt/

"

q + aw = 0,

if q denote the component velocity along or parallel to the line

whose direction cosines are proportional to

A, B, C,

w the component angular velocity round an axis through the

origin and in the direction whose direction cosines are propor-

tional to A', B', G",

/A'*
+ B'* + C"<

and lastly, a = / A * + jp jQ»
•

It might be supposed that by altering the origin of co-ordinates

we could do away with the angular velocities, and leave only a

linear equation among the components of translational velocity.

It is not so
;
for let the origin be shifted to a point whose co-

ordinates are $, rj, £. The angular velocities about the new axes,

parallel to the old, will be unchanged ;
but the linear velocities

which, in composition with these angular velocities about the

new axes, give -m, p, a, u, v, w, with reference to the old, are

(§ 89)
U —

(77)
+ pt~ u\

v — vjt, + a$= v',

w —
p$ + mrj

— w'.

Hence the equation of constraint becomes

Au' + Bv' + Gw + (A' + Bi:-Cv)v7 + etc. = 0.

Now we cannot generally determine £, rj, £, so as to make w,

etc., disappear, because this would require three conditions,

whereas their coefficients, as functions of £, rj, £, are not in-

dependent, since there exists the relation

A (B£
-

Crj) + B(d- AO + C'Ar}- B£) = 0.

The simplest form we can reduce to is

lu' + mv + nw' + a (fcr + mp + no) —
0,

that is to say, every longitudinal motion of a certain axis must be

accompanied by a definite proportion of rotation about it.

202. These principles constitute in reality part of the general

theory of "co-ordinates" in geometry. The three co-ordinates
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Generalized of either of the ordinary systems, rectangular or polar, required
co-ordi- . .

'

. ,
nates. to specify the position of a point, correspond to the three

Of a point, degrees of freedom enjoyed by an unconstrained point. The
most general system of co-ordinates of a point consists of

three sets of surfaces, on one of each of which it lies. When
one of these surfaces only is given, the point may be any-
where on it, or, in the language we have been using above, it

enjoys two degrees of freedom. If a second and a third sur-

face, on each of which also it must lie, it has, as we have seen,

no freedom left : in other words, its position is completely

specified, being the point in which the three surfaces meet.

The analytical ambiguities, and their interpretation, in cases in

which the specifying surfaces meet in more than one point,

need not occupy us here.

To express this analytically, let
yfr
=

a, <f>
=

/S, 6 = 7, where

yfr, <j>,
are functions of the position of the point, and a, /3, 7

constants, be the equations of the three sets of surfaces, different

values of each constant giving the different surfaces of the cor-

responding set. Any one value, for instance, of a, will determine

one surface of the first set, and so for the others : and three

particular values of the three constants specify a particular

point, P, being the intersection of the three surfaces which

they determine. Thus a, ft, 7 are the "co-ordinates" of P
;

which may be referred to as
" the point (a, /3, 7)." The form

of the co-ordinate surfaces of the
(-yV, <£, 6) system is defined

in terms of co-ordinates (x, y, z) on any other system, plane

rectangular co-ordinates for instance, if
-vjr, <p,

6 are given each

as a function of (x, y, z).

Orisinofthe 203. Component velocities of a moving point, parallel to

calculus, the three axes of co-ordinates of the ordinary plane rectangular

system, are, as we have seen, the rates of augmentation of

the corresponding co-ordinates. These, according to the

Newtonian fluxional notation, are written x, y, z
; or, according

to Leibnitz's notation, which we have used above, -7- , -f ,

~
.

at at at

Lagrange has combined the two notations with admirable skill and

taste in the first edition* of his Mecanique Analytique, as we shall

* In later editions the Newtonian notation is very unhappily altered by the
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see in Chap. II. In specifying the motion of a point according to

the generalized system of co-ordinates, yjr, <£, 6 must be considered

as varying with the time:
-*jr, <j>, 6, or

-^\ , -^ , -=-, will

then be the generalized components of velocity : and
-ijr, <£, 0, or

d4r d<j> d6 d'ylr d 26 d 2
.,. , ±. .. ,

IS' dt' W or W ~dJ> M' Wl11 be the generahzed

components of acceleration.

204. On precisely the same principles we may arrange sets co-ordi-

of co-ordinates for specifying the position and motion of a system.

'

material system consisting of any finite number of rigid bodies,

or material points, connected together in any way. Thus if

\|r, (f>, 6, etc., denote any number of elements, independently

variable, which, when all given, fully specify its position and

configuration, being of course equal in number to the degrees
of freedom to move enjoyed by the system, these elements are

its co-ordinates. When it is actually moving, their rates of

variation per unit of time, or
-\^, </>, etc., express what we shall

call its generalized component velocities
;
and the rates at which

^r, </>, etc., augment per unit of time, or
ifr, <£, etc., its component Generalized

accelerations. Thus, for example, if the system consists of of velocity.

a single rigid body quite free, yjr, <£,
etc

,
in number six, may be Examples,

three common co-ordinates of one point of the body, and three

angular co-ordinates (§ 101, above) fixing its position relatively

to axes in a given direction through this point. Then
yjr, <£, etc.,

will be the three components of the velocity of this point, and

the velocities of the three angular motions explained in § 101,

as corresponding to variations in the angular co-ordinates. Or,

again, the system may consist of one rigid bod}*- supported on

a fixed axis
;
a second, on an axis fixed relatively to the first

;

a third, on an axis fixed relatively to the second, and so on.

There will be in this case only as many co-ordinates as there

are of rigid bodies. These co-ordinates might be, for instance,
the angle between a plane of the first body and a fixed plane,

through the first axis; the angle between planes through the

substitution of accents,
' and ", for the • and ••

signifying velocities and
accelerations.
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Generalized second axis, fixed relatively to the first and second bodies, and

of velocity, so on
;
and the component velocities, -v/r, <p , etc. would then be

Examples, the angular velocity of the first body relatively to directions

fixed in space ;
the angular velocity of the second body re-

latively to the first
;
of the third relatively to the second, and

so on. Or if the system be a set, i in number, of material

points perfectly free, one of its Si co-ordinates may be the sum

of the squares of their distances from a certain point, either

fixed or moving in any way relatively to the system, and the

remaining 3*'— 1 may be angles, or may be mere ratios of

distances between individual points of the system. But it is

needless to multiply examples here. We shall have illustrations

enough of the principle of generalized co-ordinates, by actual

use of it in Chap. II., and other parts of this book.

APPENDIX TO CHAPTER I.

A».—Expression in Generalized Co-ordinates for
'»

Poisson's extension of Laplace's equation.

(a) In § 491 (c) below is to be found Poisson's extension

of Laplace's equation, expressed in rectilineal rectangular co-ordi-

nates
;
and in § 492 an equivalent in a form quite independent

of the particular kind of co-ordinates chosen : all with reference

to the theory of attraction according to the Newtonian law.

The same analysis is largely applicable through a great range of

physical mathematics, including hydro-kinematics (the
"
equation

of continuity" §192), the equilibrium of elastic solids (§734),

the vibrations of elastic solids and fluids (Vol. n.), Fourier's

theory of heat, &c. Hence detaching the analytical subject from

particular physical applications, consider the equation

d2 U d2U d2U . m
dj

+W +
~^

= ~
p ()

where p is a given function of x, y, z, (arbitrary and discontinuous

it may be). Let it be required to express in terms of generalized
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co-ordinates £, £', £", the property of U which this equation ex-
Jjg^"^

presses in terms of rectangular rectilinear co-ordinates. This generalized

may be done of course directly [§ (m) below] by analytical trans- dinates.

formation, finding the expression in terms of £, £;, £", for the

72 72 72

operation -=-* + %-* + Xs • But {t is done ^ the form most cou"

venient for physical applications much more easily as follows, by

taking advantage of the formula of § 492 which expresses the

same property of U independently of any particular system of

co-ordinates. This expression is

jj8UdS=-^JjjPdB (2),

where jfdS denotes integration over the whole of a closed surface

S, /// dB integration throughout the volume B enclosed by it,

and 8U the rate of variation of U at any point of S, per unit of

length in the direction of the normal outwards.

(b) For B take an infinitely small curvilineal parallelepiped

having its centre at
($, $', $"), and angular points at

(£*iK, ?*i*& *w*n-
Let R8£, R'8£', R"8$" be the lengths of the edges of the paral-

lelepiped, and a, a, a" the angles between them in order of

symmetry, so that R'R" sin a 8£8$", &c, are the areas of its faces.

Let DU, D'U, D"U denote the rates of variation of U, per

unit of length, perpendicular to the three surfaces £= const.,

I'
= const., £" — const., intersecting in

(£, £', £") the centre of the

parallelepiped. The value of Jj8 UdS for a section of the paral-

lelepiped by the surface £ = const, through ($, £', £") will be

R'R" sin a 8£8£"1)U.

Hence the values of Jj8 U dS for the two corresponding sides

of the parallelepiped are

R'R" sin a 8£' $£"DU^j. (R'R" sin a 8g 8£" DU).\ 8£.

Hence the value of jj8U dS for the pair of sides is

-^ (R'R" sin a 8£ 8£" DU).8£,

or ~
(R'R" sin a DU)8£ 8% 8£".

Dealing similarly with the two other pairs of sides of the

parallelepiped and adding we find the first member of (2). Its

VOL. 1. 11
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Laplace's second member is — 47rp . Q . RR'R" 8$ S£' S£", if Q denote the ratio

generalized of the bulk of the parallelepiped to a rectangular one of equal

diiiates. edges. Hence equating and dividing both sides by the bulk of

the parallelepiped we find

^^RR'^aD^^R'R^a'D'U)
+ — {RE sin a" D" U)\ =-4ttP ... (3).

(c) It remains to express D U, D' U, D"U in terms of the co-

ordinates $, $', £".

Denote by K, L the two points (£ g, g") and (£+S£, f, £")•

From L (not shown in the diagram) draw LM perpendicular to

the surface £ — const, through K.

Taking an infinitely small portion

of this surface for the plane of our

diagram, let Ks!, Ka" be the lines

in which it is cut respectively by the

surfaces £" = const, and £'
= const,

through K. Draw MN parallel to

N q-
* =!'K, and MG perpendicular to K=!.

Let now p denote the angle LKM.
A' „ „ „ LGM.

We have

ML = KL sin p = R sinp 8£,

NM= GM cosec a = ML cosec a cot A' — R sin p cosec a cot A' 8$.

Similarly KN= R sin p cosec a cot A "
8$,

if A" denotes an angle corresponding to A'
;
so that A' and A"

are respectively the angles at which the surfaces £" = const, and

£' = const, cut the plane of the diagram in the lines Ka' and A'H".

FN
R'

'

MN
Now the difference of values of £' for K and N is

an<i
55 55 55 55 55 fc 55 •" 55

"'"
55 nil •

Hence if U(K), U{M), U(L) denote the values of U respectively

at the points K, M, L, we have

„/1A „/zn 6**7 JOT e/tf NM

and G(L)=U(K) +
C

^8£.
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Pf nn U{L)~ U(M) Laplace's.
J »iit JJU =

jttj , equation m
"I-Lj generalized

co*or~

and so using the preceding expressions in the terms involved we dinates.

find

1 dU 1 dU 1 dU
R s inp d£ W sin a tanA"

dg R" sina tan ;1
'

d$"

Using this and the symmetrical expressions for D'U and D"U
y

in
(3), we have the required equation.

{d) It is to be remarked that «, «', «" are the three sides of

a spherical triangle of which A, A', A" are the angles, and p the

perpendicular from the angle A to the opposite side.

Hence by spherical trigonometry

cos a — cos a cos a'
COS A =

; ; ;
I

sm a sin a

. J( 1 — cos
2 a — cos

2 a — cos
2 a" + 2 cos a cos a' cos a")SlnA=-!L±

; ; ;
'-
....(o)l

sin a sm a

.(G).

sin p = sin A' siu a"

^/(l
- cos

2 a - cos
2
a' - cos

2 a" + 2 cos a cos a' cos a")

sin a

To find # remark that the volume of the parallelepiped is

equal toysinp . gh sin a if/*, g, h be its edges : therefore

Q = sin p sin a,..,
(7),

whence by (6)

Q — J{ 1 - cos
2 a - cos

2
a' - cos

2
a" + 2 cos-, a cos «' cos a") (8).

Lastly by (5) and (8) we have

tonA = - ~Q—, (9).cos a — cos a cos a x '

(e) Using these in (4) we find

1 /sin
2 a dU cos a" — cos a cos a dUDU

#sin«V R d£ W
'

d£

cos a' — cos a cos a" dU\~
R"~ ~WJ ( ''

Using this and the two symmetrical expressions in (3) and

adopting a common notation [App. B (g), §491 (c), &c. &c.l,

according to which Poisson's equation is written

V
2^=-47TP (11),

11~2
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Laplace's
equation in

generalized
co-or-
dinates.

we find for the symbol y
2
in terms of the generalized co-ordinates

v
2 =

1

QRR'R' dkQ

R'R"sin2 ad d

R -rrt + R" (cos a cos a — cos a") .

dg
v '

d£

+ Rlcos a" cos a — cos a) -ttt.

d 1 VR"R sin
3
a' d

d?Q
d

R'
, c, + R (cos a cos a'' — cos a) -,

«t
'

d£

+ R" (cos a cos a' - cos a") —.

- '

d£

d 1 [RR' sin
2 a" d d

+
d?'Ql R"

-rzr, + R'(cos a" cos a — cos a')
-T,

<T
R (cos «' cos a" - cos a) -=-p -(12),

Case of

rectangular
co-ordi-

nates,
curved or

plane.

where for Q, its value by (8) in terms of a, a', a" is to be used,

and a, a', a", R, R', R" are all known functions of £, £', £" when

the system of co-ordinates is completely defined.

(/") For the case of rectangular co-ordinates whether plane

or curved a = a — a" = A = A' = A" = 90° and Q=l, and therefore

we have

«
l

f
d
fR'R"

d \ d /R"R d \ d
(RR'

d \)V "
R~RR' [d£ \~R~ di)

+M \R"d^)
+

d£" \WdT'))
" '

(
'

j '

which is the formula originally given by Lame' for expressing

in terms of his orthogonal curved co-ordinate system the Fourier

equations of the conduction of heat. The proof of the more

general formula (12) given above is an extension, in purely

analytical form, of a demonstration of Lame's formula (13) which

was given in terms relating to thermal conduction in an article

" On the equations of Motion of Heat referred to curvilinear

co-ordinates" in the Cambridge Mathematical Journal (1843).

(g) For the particular case of polar co-ordinates, r, 6, (f>,

considering the rectangular parallelepiped corresponding to Sr,

S#, S<£ we see in a moment that the lengths of its edges are 8r.

r&0, r sin 08$. Hence in the preceding notation R=\, R' = r
t

R" = r sin 8, and Lame's formula (13) gives

sin 0\
sin 6

d
dr

d d
r

dr)
+

dd (
sin6

Je)
4-

sin 6 d<f>
2

)
.(U).
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(h) Again let the co-ordinates be of the kind which has Laplace's
\ / °

> equation in

been called "columnar"; that is to say, distance ironi an columnar

axis (r), angle from a plane of reference through this axis to dinates.

a plane through the axis and the specified point (<£),
and distance

from a plane of reference perpendicular to the axis
(z). The

co-ordinate surfaces here are

coaxal circular cylinders (r
=

const.),

planes through the axis
(cf>

—
const.),

planes perpendicular to the axis (z = const.).

The three edges of the infinitesimal rectangular parallelepiped

are now dr, rd<f>, and dz. Hence i? = l, R' = r, R" = 1, and

Lame's formula gives

which is very useful for many physical problems, such as the

conduction of heat in a solid circular column, the magnetization

of a round bar or wire, the vibrations of air in a closed circular

cylinder, the vibrations of a vortex column, &c. &c.

(i) For plane rectangular co-ordinates we have R = R' = R"
; Algebraic

so in this case (13) becomes (with x, y, z for £, g, |"), mation

,
d 2

d* d2
....^ =

dx2
+
dW

2
+ ^ <

1G
>'

which is Laplace's and Fourier's original form.

(j) Suppose now it be desired to pass from plane rectangular

co-ordinates to the generalized co-ordinates.

Let x, y, z be expressed as functions of £, £', £" ;
then putting

for brevity

rrx' I " Y
- %~

z > I " A" &c -
' I-

" *' &c ' " (17);

we have Sx = X8£ + X'Sg + X" 8£",
]

&y=Y8£+Y'Z? + Y"8?'l (18);

hz = Z8£ + Z'8% + Z"hg',\

whence

R = J(X
2 + Y 2 + Z% R = J(X'

2 + Y'2 + Z'2

),

R" = J(X"
2 + Y"2 + Z"2

) (19),

from plane
rectangular
to genera-
lized co-
ordinates
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Algebraic
trans I or-

mation
from plane
rectangular
to genera-
lized co-

ordinates.

and the direction cosines of the three edges of the infinitesimal

parallelepiped corresponding to S£, S£', S£" are

\R' R' RJ
' \R

r ' R" R')' \R"
' R'" R")

" " ( '"

Hence

cos a =
X'X"+Y'Y" + Z'Z'

R'R"
cos a =

X"X+Y"Y+Z"Z
R"R

XX'+YY' + ZZ'
cos a =

RR' .(21).

sin/)
=

Square of a
determi-
nant.

(k) It is important to remark that when these expressions

for cos a, cos a, cos a", R, R', R", in terms of X, &c. are used in

(8), Q
2 becomes a complete square, so that QRR'R" is a rational

homogeneous function of the 3rd degree of X, Y, Z, X', &c.

For the ordinary process of finding from the direction cosines

(20) of three lines, the sine of the angle between one of them and

the plane of the other two gives

X, Y, Z

X', Y',Z' URR,R"sma (21);

X", Y", Z"
\

from this and (7) we see that QRR'R" is equal to the deter-

minant. From this and (8) we see that

(X
2 + Y 2 + Z>) (X'

3 + Y'
2 + Z'

2

)(X'
2 + Y" 2 + Z" 2

)

-(X*+ Y
2+Z2

)(X'X"+ Y' Y"+Z'Z")
2

-(X'
2+ Y'2+Z'2

)(X'X+Y"Y+Z"Zf
_ (X

„3 + Y„2 + Z"^xX' + YY' + ZZ'f

4 2 (IT'+7T" + Z'Z"){X"X+Y"Y+Z"Z)(XX'+ YY'+ZZ)

X, Y, Z,

X', Y, Z\

X", Y", Z\
•(22),

an algebraic identity which may be verified by expanding both

members and comparing.

(I) Denoting now by T the complete determinant, we

have
T

q =
rWr~' (23) '

and using this for Q in (12) we have a formula for y 2
in which

only rational functions of X, Y, Z, X', &c. appear, and which
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is readily verified by comparing with the following derived from Algebraic

(1G) by direct transformation. mation

(m) Go back to (18) and resolve for S£, S£', S£". We find rectangular
to genera-

L M N liz
f^

co "

S£ =
yp

8x + ^ hj +
-^

82, Sf = &c, S£" = &c,

where

L = YZ"-Y"Z', M=Z'X"-Z"X', N=X'Y"-X"Y',\
L'= Y'Z- YZ", M'=Z"X-ZX ", N'=X"Y-X Y",

[ (24).

L"=YZ'-Y'Z, M"=ZX'-Z'X, N"=XY'-X'Y
t J

Hence

d L d L' d L" d d d

dx
==

Td$
+
TdJ'

+
~TdJf '

dy"
' dz

=
'

and thus we have

*_(L<1 V
&_ U_ _d_\* (M _tf ,

if'
d_ W_ d\ 2

~
\Td£

+ T d£'
+ T df)

+
\T d£

+
T dg

+
T d£")

(Nd N'd^ N^__d_\
2

d2 d2

Expanding this and comparing the coefficients of -j-^ ,

—- -

dt,- dt,dt,

—
. ,

<fcc. with those of the corresponding terms of (12) with (21)

and (23) we find the two formulas, (12) and (25), identical.

' »

A.—Extension of Green's Theorem.

It is convenient that we should here give the demonstration

of a few theorems of pure analysis, of which we shall have

many and most important applications, not only in the subject

of spherical harmonics, which follows immediately, but in the

general theories of attraction, of fluid motion, and of the con-

duction of heat, and in the most practical investigations regard-

ing electricity, and magnetic and electro-magnetic force.

(a) Let U and if' denote two functions of three indejDendent

variables, x, y, z, which we may conveniently regard as rect-

angular co-ordinates of a point P, and let a denote a quantity

which may be either constant, or any arbitrary function of the
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variables. Let jjjdxdydz denote integration throughout a finite

singly continuous space bounded by a close surface S; let ffdS
denote integration over the whole surface S

;
and let 8, prefixed

to any function, denote its rate of variation at any point of S,

per unit of length in the direction perpendicular to S outwards.

Then

ff a (dUdJT
dUdU' dUdV\

• J J \dx dx dy dy dz dz )

a constant

gives a
theorem of

<-£) <«f) <-£)!
=jjds.ra

2

8U'-jjju - +
1 [dxdydz

dx ay dz

(!)•

For, taking one term of the first member alone, and integrating
"
by parts," we have

m*tLis dxiydz ' {{u
'

a'

as
'"Jdz

-SSJU'-^d^;,

the first integral being between limits corresponding to the sur-

face S; that is to say, being from the negative to the positive

end of the portion within S, or of each portion within S, of the

line x through the point (0, y, z).
Now if A

2
and A

1
denote the

inclination of the outward normal of the surface to this line, at

points where it enters and emerges from S respectively, and if

dS and dS denote the elements of the surface in which it is cut

at these points by the rectangular prism standing on dydz, we

have

dydz = - cosA
2
dS

2
= cos A

ldS\.

Thus the first integral, between the proper limits, involves the

elements U'a2
-j- cos A

x
dS

t
,
and - U'a* — cos A

2
dS

2 ;
the latter

of which, as corresponding to the lower limit, is subtracted.

Hence, there being in the whole of S an element dS
2
for each

element dS
x ,
the first integral is simply

f f U'a
2—cos A dS,JJ dx
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for the whole surface. Adding the corresponding terms for y ^constant

and z, and remarking that theorem of
Green's.

dU . dU _ dU n srT—r- cos A -\
—j— cos h + -r- cos C —

oil,
dx ay dz

where B and C denote the inclinations of the outward normal

through dS to lines drawn through dS in the positive directions

parallel to y and z respectively, we perceive the truth of (1).

(b) Again, let U and U' denote two functions of x, y, z, which

have equal values at every point of S, and of which the first

fulfils the equation

d
[
a
'dx~)

d
\
a
~du)

d
\
a

7/~) Equation ol
> "*- J

.
\ cly J

,

\ az / _ a /0 v the conduc-

ed dy dz
~

lotion of heat.

for every point within 8.

Then if U' — U = u, we have

...(/ dU\ ( dU'\* ( dU'\ 2

) , , ,

M\{
a
lte)

+
\
a
lhj)

+
(
a
~dz-) j

dxdvdz

...(/ dU\ 2

( dU\* ( dUV) . i
7

+
^{(

a
S)

2+
(
a
|)"" (

a
t))

dxd*dz <
3
>'

For the first member is equal identically to the second member
with the addition of

9
...

2
/dUdu dU du dUdu\

J^
\dx dx dy dy dz dz)

But, by (1), this is equal to

*(»'f) <"f) <«'§)!

of which each term vanishes; the first, or the double integral,

because, by hypothesis, u is equal to nothing at every point of 8,

and the second, or the triple integral, because of (2).

(c) The second term of the second member of (3) is essentially property of

positive, provided a has a real value, whether positive, zero, or ^th'l/

negative, for every point (x, y, z) within 8. Hence the first
|,

lven over

member of (3) necessarily exceeds the first term of the second

member. But the sole characteristic of U is that it satisfies (2). solution

Hence U' cannot also satisfy (2). That is to say, U being any
prove to
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he determi-
nate;

proved to
be possible.

one solution of (2), there can be no other solution agreeing with

it at every point of 8, but differing from it for some part of the

space within S.

(d) One solution of (2) exists, satisfying the condition that U
has an arbitrary value for every point of the surface S. For let

U denote any function whatever which has the given arbitrary

value at each point of S
;

let u be any function whatever which

is equal to nothing at each point of S, and which is of any real

Unite or infinitely small value, of the same sign as the value of

dx dy dz

at each internal point, and therefore, of course, equal to nothing

at every internal point, if any, for which the value of this ex-

pression is nothing; and let V = U + 6u, where 6 denotes any
constant. Then, using the formulae of (b). modified to suit the

altered circumstances, and taking Q and Q' for brevity to denote

... (7 dU\
2

( dU\
2

f dU\
2

) , , ,

and the corresponding integial for V, we have

tf- «-»///•{£(<
dU\ d

+
dx ) dy \

du\*

fcSi*
dy ) dz

du\-
+^%WHa

ii'

a2C
^)} dxdydz

(
a
Tz) }

dxdydz-

The coefficient of - 26 here is essentially positive, in consequence

of the condition under which u is chosen, unless (2) is satisfied,

in which case it is nothing; and the coefficient of
1
is essentially

positive, if not zero, because all the quantities involved are real.

Hence the equation may be written thus :
—

q = Q - mO (n
-

6),

where m and n are each positive. This shows that if any positive

value less than n is assigned to 0, Q' is made smaller than Q ;

that is to say, unless (2) is satisfied, a function, having the same

value at S as U, may be found which shall make the Q integral

smaller than for U. In other words, a function U, which,

having any prescribed value over the surface
aS',

makes the

integral Q for the interior as small as possible, must satisfy

equation (2). But the Q integral is essentially positive, and

therefore there is a limit than which it cannot be made smaller.
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Hence there is a solution of (2) subject to the prescribed surface Solution
. . proved

condition. possible.

(e)
We have seen (c) that there is, if one, only one, solution

of (2) subject to the prescribed surface condition, and now we
see that there is one. To recapitulate,

—we conclude that, if

the value of U be given arbitrarily at every point of any closed a constant

surface, the equation "Green's
* theorem.

d_( t
dlf\ d_f 2 dU\ d /

t dU\_
dx\ dxj dy\ dy J dz\ dz J

determines its value without ambiguity for every point witliin

that surface. That this important proposition holds also for the

whole infinite space without the surface S, follows from the pre-

ceding demonstration, with only the precaution, that the different

functions dealt with must be so taken as to render all the triple

integrals convergent. S need not be merely a single closed

surface, but it may be any number of surfaces enclosing isolated

portions of space. The extreme case, too, of S, or any detached

part of S, an open shell, that is a finite unclosed surface, is clearly

included. Or lastly, S, or any detached part of S, may be an

infinitely extended surface, provided the value of U arbitrarily

assigned over it be so assigned as to render the triple and double

integrals involved all convergent.

B.—Spherical Harmonic Analysis.

The mathematical method which has been commonly referred object of
snlicricftl

to by English writers as that of "Laplace's Coefficients." but harmonic,.... ni 7-?7 analysis.
which is here called spherical harmonic analysis, has for its

object the expression of an arbitrary periodic function of two

independent variables in the proper form for a large class of

physical problems involving arbitrary data over a spherical sur-

face, and the deduction of solutions for every point of space.

(a) A spherical harmonic function is defined as a homogeneous Definition

function, V. of x, y, z, which satisfies the equation harmonic
functions.

d2r d2 v d2 v
dx*

+
df

+^ = ° (4) -

Its degree may be any positive or negative integer; or it may
be fractional; or it may be imaginary
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Examples. The functions written below are spherical har-
1

monies of the degrees noted; r representing (x
2

+y
2+z2

)^:
—

Degree Zero.

I.

tan

i;

-i2/

log
r + z

r — z

tan" *
log
^

j
rz(£-fl 2rzxy

x x r — z

Generally, in virtue of (g) (15) and (13) below,

II.

d\\ dVn dVn

TLIa

dx '

dy
' dz

'

if V denote any harmonic of degree : for instance, group III.

. below.

2zy , v xr . r+z
tan ' = -

-J
—

j log
—

x x +y r—z

2zx

r rx zx

x*+y
2> xz+y'

x ( rx-zx\ 2zy _.y xr r+z

r+z\ x+y J x2

+if x x+y ° r—z

ry W y _. y yr , r+z
-5 tan

*- + -?— log .

x+y x x'+y r—z

ivA

<.xr+y x"+y r+z

Generally, in virtue of (g) (15), (13), below,

where V
J
denotes any spherical harmonic of integral degree, j,

and 8,8, homogeneous integi'al functions of -=- , -^- , -r-
,"' "-•'- 1 ° ° dx dy' dz

of degrees n and n—j—l respectively : for instance, some of

. group II. above, and groups V. and VI. below.

rl" fan -1 ^

d-^r*-
1

)

d ten
x.

dz" dx"

rf- (f~)
d " Un~

l

x

dz"'
1

Remark that

tan-iV log

dy"

x+yj-l
x 2^-1 °x-yj-l'

and therefore

d" tan
-xV

dx"
= (-l)-1.2...(»-l)

sin n<f>

(x*+fy'
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so the preceding yields Examples 01
1 °

. spherical
Sill harmonics.

^"-'(r
2"" 1

)
cos'

1*

n-1 n >

,2 , „.2\2^
(^ + f)

where <£ denotes tan
-1 -

.

x

Taking, in IV., j=-l,

* r °r-z'

d d /-TV fd d i—jY)

or 8
-
=
273T l(s

+ ^ ^" V ~(^~^^~
1

)}

we find

w \rdrj \r r — v J '
sin

™

where -=- denotes differentiation with reference to r on the sun-
dr l

position of s constant, and -j- differentiation with reference to

z on supposition of x and y constant.

SZTb

Degree
- i — 1, or + i, and type H{z, ^/(x*+ y

3

)} n^>.

ZZ" denoting a homogeneous function
; n any integer ; and i

any positive integer.

Let U "

and F
"
denote functions yielded by V. and VI. pre-

ceding. The following are the two* distinct functions of the

degrees and types now sought, and found in virtue of (g) (15)

below :
—

TT-
n' -® TTW TTW __^ V
-<-i~dzl+l •' ~^~ dzi+l * '

* See § (?) below.
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Examples of or explicitly
spherical
harmonics. r

I.

v

cos

v{n) ~(
c±\

(x° + ff
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Examples ot

Degrees
— J ami + 1 . spherical

harmonics

f iC ?/ 2
1.

j
/ ' ~3 '

^3
i *') #> *

j^tan
-1 ^

IL
"j s—- : 2 tan

-1 -
.If*' x

{ z
,

r + z 2 . r + z _

in i -§ los
-

-o ;
* log 2n

IV. H

x2 -
i/

2

2xij r
3
(x

2 — y
2

)
2r3

xy

(^Tyy (ar + f)
2;

(x
2Tyy> W+~yf'

cos 2<£ sin 2 <A ?*
3
cos 2</> r3

sin 2d>
or

L x~ + y x2 + y
2 x + y x + y~

f 1 A r + a 2re- \ /.r + z 2rz \

I ? (
l0« ^l +

??]?;
*

;

(
l0« r~*

+
?T?J

"

j (the former being -=- of III. 2 degree
-

1, and the latter being

(_
—
jdz of VI. degree with n = 1).

The Bational Integral Harmonics of Degree 2.

I . Five distinct functions, for instance,

2z
2 -x2

-y
2

;
x2

-y
2

; yz; xz; xy.

Or one function with five arbitraiy constants.

( ax2 + by
2 + ex

2 + eyz +fzx + gxy,

( whnre a + b + c — 0.

Degrees
- n — 1, and + n (n any integer).

With same notation and same references for proof as above for

Degree 0, group IV.

I- 8
a+1F , 8V_1}

or S
n+iF,_,.



Examples of

spherical
harmonics.

176 PRELIMINAEY. [B (a).

Degrees e + vi, and — e — 1 — wf.

(v denoting V— 1, and e and /any real quantities.)

/ 1 [(x + vy)
e+vf+ (x

-
vy)

e+v
f] ;

—
[(x + vy)

e+vf-
(x

-
vy)e+vf] ;

or q
e+vf cos [(e

+
vf)<f>] ; q

e+vf
sin[(e + v/)<f>],

i.here q = J(x
2 + y

2

)
and

</S
= tan 1

\

1

or |9«
+
"/[e"(e+»'/)*

+ c -«(e +«/)<#>
J-
_

grC+v/[€
«(e+«/)*_ € -v(e +

u/M>"|
.

or -i ^
e
{e/* [cos (/ log <7

-
e<£) + v sin (f log g

—
e<f>)]

+ c-/* [cos (/ log q + e<£) + v sin (/ log q + e</>)]} ;

37C 07T
II. < the same with — + e<f> instead of ecj>.

or

III.,!

or

\ [(x + vy)
e+ vf +(x- vy)

e+ v
f] _

r2(e+u/)+i
'

^ r
-2e-l

?e^y?» €v(/log (?-2/'logr-e^) + £-^) eu(/log7-2/logr+^)l
;

cos ( y log
-
3
—

e4> )
+ v sin

(./log
— —

ecfi

cos f/ log ^ + e(£
J
+ u sin (/log ^ + e<£

^-26-1^^/^

+ £"/*

I'artial

Harmonics.

(6) A spherical surface harmonic is the function of two

angular co-ordinates, or spherical surface co-ordiuates, which a

spherical harmonic becomes at any spherical sui-face described

from 0, the origin of co-ordinates, as centre. Sometimes a func-

tion which, according to the definition (a), is simply a spherical

harmonic, will be called a spherical solid harmonic, when it

is desired to call attention to its not being confined to a spherical

surface.

(c)
A complete spherical harmonic is one which is finite and

of single value for all finite values of the co-ordinates.

A partial harmonic is a spherical harmonic which either does

not continuously satisfy the fundamental equation (4) for space

completely surrounding the centre, or does not return to the

same value in going once round every closed curve. The
"
partial

" harmonic is as it were a harmonic for a part of the

spherical surface : but it may be for a part which is greater than

the whole, or a part of which portions jointly and independently

occupy the same space.
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(d) It will be shown, later, § (h), that a complete spherical Algebraic

harmonic is necessarily either a rational integral function of the complete
- harmonics,

co-ordinates, or reducible to one by a factor of the form

(x* + y- + z-)- ,

m being an integer.

(e) The general problem of finding harmonic functions is Differential
. , , , equations of

most concisely stated thus :
—

To find the most general integral of the equation

d?u d'u d2u „

-j-j +t^ + T^ =
ax ay" dz

subject to the condition

equ
a liarmonic
of degree n.

(4')

du du
x — + y—ax ay

du

dz
— 7111 .

(5),

the second of these equations being merely the analytical expres-

sion of the condition that u is a homogeneous function of x, y, z

of the degree n, which may be any whole number positive or

negative, any fraction, or any imaginary quantity.

real. We have

Let P + vQ be a harmonic of degree e + vf, P, Q, e, f being Differential

equation for
real consti-
tuents of a
homogene-
ous function
of imagi-
nary degree.

dx

and therefore

*i:+yi7, + *Tj(F+vQ) = (e+vf)(p+ »Q)->
dy dz.

x
dP dP
dx +y

-dy

+ Z^= eP -fQ

x
dQ
dx

(IP

dz

dQ

»f+«5-/p+««
•(5')i

whence

and

"/ d d d V -g

\ dx dy dz J
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its results for solutions fulfilling: the conditions at bounding sur-

faces presented by physical problems. In a very large and most

important class of physical problems regarding space bounded by
a complete spherical surface, or by two complete concentric

spherical surfaces, or by closed surfaces differing veiy little from

spherical surfaces, the case of n any positive or negative integer,

integrated particularly under the restriction stated in
(d), is of

paramount importance. It will be worked out thoroughly below.

Again, in similar problems regarding sections cut out of spherical

spaces by two diametral planes making any angle with one

another not a sub-multiple of tiro right angles, or regarding spaces
bounded by two circular cones having a common vertex and

axis, and by the included portion of two spherical surfaces

described from then- vertex as centre, solutions for cases of

fractional and imaginary values of n are useful. Lastly, when
the subject is a solid or fluid, shaped as a section cut from the

last-mentioned spaces by two planes through the axis of the

cones, inclined to one another at any angle, whether a sub-

multiple of 7T or not, we meet with the case of n either integral
or not, but to be integrated under a restriction differing from

that specified in (d). We shall accordingly, after investigating

general expressions for complete spherical harmonics, give some

indications as to the determination of the incomplete harmonics,

whether of fractional, of imaginary, or of integral degrees, which

are required for the solution of problems regarding such portions

of spherical spaces as we have just described.

A few formulas, which will be of constant use in what follows,

are brought together in the first place.

(g) Calling the origin of co-ordinates, and P the point

x, y. z, let OP =
r, so that ar + y* + z

2 = r2
. Let 8, prefixed to

any function, denote its rate of variation per unit of space in

the direction OP
;
so that

r dx
'

r dy r dz"

If H
n
denote any homogeneous function of x, y, z of order n, we

have clearly

^H
n
= -

r
H

n (7);

J11 JH JH
whence a —r-1

' + u ——- + s—=-" = nil (o) or (b),
• lx dy az ' '
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the well-known differential equation of a homogeneous function
; Working

. , .... formula*,m winch, oi course, n may have any value, positive, integral,

negative, fractional, or imaginary. Again, denoting, for brevity,

72 72 72

-Tj-; + ^r-5 + -—
, by v 2

,
we have, by differentiation,

dx~ ay dz'

V
a

(r
m
)
= m(m+l)r

m~*
(9).

Also, if u, u' denote any two functions,

b / ,\ , o . fdu du du du' dv. du'\ ,
.

V (uu )
= u v« + 2

(^ -^
+¥^ +^ -^j

+ «v« (10);

whence, if « and ?t' are both solutions of (4),

'

\dx dx dy dy dz dz J"
'

or, by taking u = V
n ,

a harmonic of degree n, and u' = ?•'",

or, by (8) and (9),

V
!

(r
m r

j )
= m(2w + m+l)r'"-

2 r (12).

From this last it follows that r~ 2" -1 Fn is a harmonic
; which,

being of degree
— to— 1, may be denoted by F_ (t_,,

so that we

^-„-,
= '

,_2""
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Theorem
due to

Laplace.

and so on for any number of differentiations.

[B (g).

Hence if V
u

is

a harmonic of any degree i,

dj+kH Vt

is a harmonic of degree

.(15).

dxi
dy

kdzl

i-j-h-l; or, as we may write it,

dxidy
kdzl

~ Vt-J-k ~ l

Again, we have a most important theorem expressed by the

following equation:
—
//SVSVcfe=0 (16),

where dm denotes an element of a spherical surface, described

from as centre with radius unity ; Jj an integration over the

whole of this surface; and S^ S^ two complete surface harmonics,

of which the degrees, i and i', are neither equal to one another,

nor such that i + i' = — 1 . For, denoting the solid harmonics

riS
i
and r

%

S^ by V
{
and V$ for any point (x, y, z), we have, by

the general theorem (1) of A (a), above, applied to the space

between any two spherical surfaces having for their common

centre, and a and
a,

their radii
;

—
'dVidVe dVidVi dVidVi\ .

,
.

-—
1 dxdydzSIS dz Jdx dx dy dy dz

= SS Vi8 Vi d<r = //n8V&*-
% 1

But, according to (7), 8F* = — V*, and 8Fj = -
P* And for the

T r

portions of the bounding surface constituted by the two spherical

surfaces respectively, da- = ardm, and da- = a'dia. Hence the two

last equal members of the preceding double equations become

to satisfy which, when i differs from i', and ai+i
' +1 from a i+i ' +

\

(16) must hold.

The corresponding theorem for partial harmonics is this :
—

Let &'i, Sp denote any two different partial surface harmonics

of degrees i, i', having their sum different from — 1
;
and further,

fulfilling the condition that, at every point of the boundary of

some one part of the spherical sm-face either each of them

vanishes, or the rate of variation of each of them perpendicular

to this boundary vanishes, and that each is finite and single in

its value at every point of the enclosed portion of surface; then,

with the integration J J
limited to the portion of surface in
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question, equation (16) holds. The proof differs from the Extension
. , P , .

"' theorem

preceding: only in this, that instead of taking the whole space of Lap lace

f
° .i.i- ,

to partial
between two concentric spherical surfaces, we must now take harmonica.

only the part of it enclosed by the cone having for vertex, and

containing the boundary of the spherical area considered.

(/i) Proceeding now to the investigation of complete harmonics, Investiga-

we shall first prove that every such function is either rational and complete
1 *

. harmonics

integral in terms of the co-ordinates x, y, z, or is made so by
a factor of the form ?•'".

Let V be auy function of x, y, z, satisfying the equation

V
2 F=0 (17)

at every point within a spherical surface, S, described from as

centre, with any radius a. Its value at this surface, if a known

function of any arbitrary character, may be expanded according

to the general theorem of § 51, below, in the following series :
—

(r = a), V=S + S
1
+ S

a
+ +Si + etc (18)

where
aS^,

S
2 ,...St

denote the surface values of solid spherical

harmonics of degrees 1, 2,...i, each a rational integral function

for every point within S. But

S + S - + S
2
— + ... + S

i
—. + etc (19) Harmonic

CI a Cl solution of
Green's pro-

is a function fulfilling these conditions, and therefore, as was blem for the
-

. spacewithin

proved above, A(c), V cannot differ from it. Now, as a parti- a spherical

l-rri • • • i
surface.

cular case, let V be a harmonic function ol positive degree i,

which may be denoted by St
-

: we must have

«' ° * a 2 or a 1

This cannot be unless i = i, S\ = Si ,
and all the other functions

S
,
S

l}
8

2 , etc., vanish. Hence there can be no complete spheri-

cal harmonic of positive degree, which is not, as S.—., of integral Complete
x °

a' harmonics
of positive

degree and an integral rational function of the co-ordinates. degrees,
Droved

Again, let V be any function satisfying (17) for every point rational and

without the spherical surface S, and vanishing at an in6nite dis-

tance in every direction; and let, as before, (18) express its surface Harmonic

value at S. We similarly prove that it cannot differ from Green's pro-
blem for

n (? ,.2C' ,,3
a

s,i +l Q space ex-

~V ~f* T3
+~^ +etc \^h spherical

surface.
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Harmonic
solution of
Green's pro-
blem for

space ex-

ternal to a

spherical
surface.

Complete
harmonics
of negative
degree.

Orders and
degrees of

complete
harmonics.

General
expressions
forcomplete
harmonies.

B.v differ-

entiation of
harmonic of

degree -1.

Hence if, as a particular case, V be any complete harmonic

vKS«
of negative degree k, we must have, for all points out-

aK

side S,

fS* aSn a2
S, a\S

aK
+ +

a o,
+ —7-t-

1 + etc.,

which requires that k =— (i
+ 1), SK=Si ,

and that all the other func-

tions S
, aS'j ,

Sa , etc., vanish. Hence a complete spherical harmonic

a
St*2i+l u i' >of negative degree cannot be other than

(I

>.»+!
or

r r

where Sf* is not only a rational integral function of the co-

ordinates, as asserted in the enunciation, but is itself a spherical

harmonic.

(i) Thus we have proved that a complete spherical harmonic,

if of positive, is necessarily of integral, degree, and is, besides, a

rational integral function of the co-ordinates, or if of negative

degree,
-

(i
+ 1), is necessarily of the form -^f,, where V

i
is

a harmonic of positive degree, i. We shall therefore call the order

of a complete spherical harmonic of negative degree, the degree

or order of the complete harmonic of positive degree allied to it;

and we shall call the order of a surface harmonic, the degree or

order of the solid harmonic of positive degree, or the order of the

solid harmonic of negative degree, which agrees with it at the

spherical surface.

(j)
To obtain general expressions for complete spherical har-

monics of all orders, we may first remark that, inasmuch as a

constant is the only rational integral function of degree 0, a com-

plete harmonic of degree is necessarily constant. Hence, by
what we have just seen, a complete harmonic of the degree

- 1

A
is necessarilv of the form —

. That this function is a harmonicJ r

we knew before, by (14).

Hence, by (15), we see that

F-w =
1

(21),
dxj

dy
kdzl

(
x* + y

« + zy
if j + k + l = i J

where V_{_1
denotes a harmonic, which is clearly a complete

harmonic, of degree
-

(i +1). The differential coefficient here in-
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dicated, when worked out, is easily found to be a fraction, of which By differ-... ,
_ . . , -li entiation of

the numerator is a rational integral tunction of degree t, and the harmonic of

denominator is r"
i+1

. By what we have just seen, the nume-

rator must be a harmonic
; and, denoting it by V

t ,
we thus have

dJ+k+! 1

r _ rsm
dxj

dy
kdzz r (22).

The number of independent harmonics of order i, which we Number of
-i independent

can thus derive by differentiation from -, is 2i + 1. For, although of™
" 108

1
order.

there are 4r differential coefficients . . T .. 7 . . for
2 dxJ

dy
kdzl

which j + k + l = i, only 2/+ 1 of these are independent when -

is the subject of differentiation, inasmuch as

d 2
\ 1/ d* d2

\dx
2

dy
2 dz2

) r •(H),

which gives
d^_l_ fd

2

£\'\
dz2"

r K ' \dx
2 din

n being any integer, and shows that

dj+k+l 1
,

* dJ+k
( d

1 d 2

\', 1 ....

.(23), Relation
between
differential

coefficients
of har-
monics.

dxi
dy

kdz dxJ
dy

k
\dx

2

dy
2

/ r

or = (-1)"
<-=-

J djdk
( d

2 d 2x 2-1
..(24).

d d \t d 1 .„ , . , ,—
. + -=—_

"
-,
—

,
it I is odd

dxJ
dy

k
\dx

2

dy
2
/ dz t

Hence, by taking 1=0, and j + k =
i,

in the first place, we have

dJ+k
i + 1 differential coefficients 7 .

, , ;
and by taking next 1=1, and

dxJ
dy

k ' J °

dJ+k
/ + k = i— 1, we have i varieties of -

,
.

, , ;
that is to sav, we haveJ '

dx>dy
K

in all 2t + 1 varieties, and no more, when - is the subject. It is

easily seen that these 2i + 1 varieties are in reality independent.

We need not stop at present to show this, as it will be apparent

in the actual expansions given below.

Now if £fi(x, y, z) denote any rational integral function of

x, y, z of degree i, V 2
.^ (x, y, z) is of degree i — 2. Hence since

in H, there are
(t + 2)(t+l)

terms, in V 2

/^ there are (i-1)
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Complete
harmonic of

any degree
investigated
algebrai-
cally.

Hence if V iH
i

= 0, we have -

equations among the constant

coefficients, and the number of independent constants remaining is

—^ ™—-
,
or 2 i + 1

;
that is to say, tliere are 2v + 1

constants in the general rational integral harmonic of degree i.

But we have seen that there are 2i + 1 distinct varieties of dif-

ferential coefficients of — of order i, and that the numerator
r

of each is a harmonic of degree i. Hence every complete har-

monic of order i is expressible in terms of differential coefficients

of -
. It is impossible to form 21 + 1 functions symmetrically

among three variables, except when 2% + 1 is divisible by 3
;
that

is to say, when i-3n+l, n being any integer. This class of

cases does not seem particularly interesting or important, but

here are two examples of it.

Example 1. i-l, 21 + 1 = 3.

The harmonics are obviously

d_
1 dl dl

dx r
'

dy r
'

dz r
'

Formula (25) involves z singularly, and x and y symmetrically,

for every value of i greater than unity, but for the case of i = 1

it is essentially symmetrical in respect to x, y, and z, as in this

case it becomes

•¥
-
V

°
d.

V

1

I +a - + B -)-
dx '

dy
°
dz) r

Example 2. i = 4, 2i + 1 = 9.

Looking first for three differential coefficients of the 4th order,

singular with respect to x, and symmetrical with respect to

y and z
;
and thence changing cyclically to yzx and zxy, we find

d*
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\ . Complete
These nine differentiations of : are essentially distinct find harmonic of

7- any decree
investigated

give us therefore nine distinct harmonics of the 4th order tormed aleebnu-

,2 cally.

symmetrically among x, y, z. By putting in them for
-7^,

[d* d2

\ ., .

wherever it occurs, its equivalent -[-j-s
+

Zj
~«)j considering

1 d3

that it is - which is differentiated, and for -j-g ,
its equivalent

r dz

d_fd^
d2

dz \dx
2

dy
I ,

we may pass from them to (25).

But for every value of i the general harmonic may be exhibited

as a function, with 2% + 1 constants, involving two out of the

three variables symmetrically. This may be done in a variety

of ways, of which we choose the two following, as being the

most useful :
—

First,

,-MM0+i
'(i)'

1

| +^
2(0 Xd^

+ ---+Ai
(£j)

dy
ixj

dy- 1

ufiW-^

( d Y" 2 d

HiJ >b\tx) s +
*.Cs)"(ff

l (25).

General ex-

pression for

complete
harmonic of
order i.

/dy-1

)
d 1|

Secondly, let x + yv = f, x — yv -
rj

where, as formerly, v is taken to denote v — 1.

(26),

This gives x = %(£ + rj), y = ^(i-T]),

•(27);

r
(fy + z*)*

5^ ^ =
(l

+
|) [f' '1 1 I* y]

- v(wt^> ,3, Imaginary
/oq\ linear trans-

J- ...(Jo), formation.

where
[x, y] and

[£, 77]
denote the same quantity, expressed in

terms of x, y, and of £, -q respectively. From these we have,

further,
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Imaginary / d2 d2 d2

\ r
-, /a d~

linear trans-
( -j-* + -j-s + ~rj I b>", 2/, sj

=
( *-J7T + 13 M>' ^ ^J'

formation. V^'- W dzrJ \ dMi] dz* '

or, according to our abbreviated notation,

1

>-(29).

Hence, as v
2 P = 0, if P denote - or any other solid harmonic,

.(29').
*r—4* r

Using (28) in (25) and taking &,,, a,, 33
, i&p to denote

another set of coefficients readily expressible in terms of

^o> A m Bv>
S

i>
we find

K'-^^v+
«.(iri

+a
,(4y-'(0

+ ... +a
,(0}i i

,*+!
-
^0^
+KirwinKi

Expansion
of element-
ary term.

wy+..w-n--['"
(30) '

The differentiations here are performed with great ease, by the

aid of Leibnitz's theorem. Thus we have

1dm+n 1- i=(-r"ifi-(w+ «-i)
dfdif r

mn
v s

-
m i in - \).n (n

—
1)

1 .(ni+n— ^)
V-'f-v+

1 ., ;;; , ;' lw\;; , ;
/

3-i/"-"g'-v
- etc.

1 . ^ . (to+w-4)(wj+w-§)

and ,... (31)

1 m + it + 1 1

V*-- , ""*~rvv ,

"'<"'
- 1

',"/"-
1

' ,-i-v - etc." .

7
1. (*»+»+-£) 1.2.(»i4-n+^)(m+n--i)

Polar trans- This expression leads at once to a real development, in terms of
formation. ^^ co.01.

dinateSj thus ._ Let

z = r cos 0, a; = r sin cos
tf>, y = r sin sin $ (32) ;

so that £ = r sin 0€u*, ?;
= r sin 0e-W> (33).

Then, since $r)
= x2 + if = r

2
sin

2

8,

and

£V = (^)
m
^

J =
(£T7)

m
(rsin0)'(cos<£+usin<£)' = (rsin0)

m+,
*(coss4>+t;sins0),

where s = n — m
;
and if, further, we take

«. + «« = A., («. -«Jv = A.', ) m .
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we have

dm+ "
1 a

"
d£

m
drT r

=
(_)

m+
"i.£.f ...(m + rc-£);

-(>n+n+ I)

sin
B,+

"0 -

(A, cos s<£ + A,' sin s<£)

2 m(m- 1). n(n— 1)

1 . (m+w—|)

"""
1 . 2.(m+n-^)(m+n-4)

mn
sin"

sin" 0-etc.

Trigono-
metrical

expansions

-
di

m
drfch r

+
'"

d$
n
dr

}
'"dz r

=
(_)»+»

+1
£.8.f. ..(m+n+ i)r-

(m+*+5

>. (35)

j

sin
m+

"6
j?i/i

l.(m+7i+4)
sin

m+"-s^+

(Bs
cos sc£ +Bs'sin5^>)2cos 6

m(m— l).n(n- 1)

1 . 2 . (vi + re + i) (m + re — ^)

sin
m + " _4 #-etc.

J

Setting aside now constant factors, which have bem retained

hitherto to show the relations of the expressions we have investi-

gated, to differential coefficients of -
; taking 2 to denote sum-

mation with respect to the arbitrary constants, A> A', B, B';

and putting sin0 = v, cos0 = //; we have the following perfectly

general expression for a complete surface harmonic of order i :
—

m+ n=i m+n+l=i

St
= 2 (A,coss0 + A.'sin*0)® ( ,+ 2 (B J cos*^+B/sin^)/

xZ
(Miii,...(36)

where s = in ~ n, and

tin. nl

mn m+n—2
,

m(m- 1) .n(n— 1) -etc.

l.(m + n-V)"
'

1 .2.(ra + re—£-)(m+n~§)

while Z
lm n)

differs from (m „, only in having m + n + 1 in place

of m + n, in the denominators.

The formula most commonly given for a spherical harmonic

of order i (Laplace, Meccmique Celeste, livre ill. chap. II., or

Murphy's Electricity, Preliminary Prop, xi.) is somewhat simpler,

beins as follows :
—

w
<S',
= 2(A.cos*£ + BI sins<£)0 / (37;

s=0

©w J (is)(is-l) (i-s)(i-S-l)(i-s-2)(i-s-3) "I

='
[_*

"
2.(2i-l)

**
+

2.4.(«-l)(«-S)
h etU

J

(38),
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Trigono-
metrical

expansions.

{»)

where it may be remarked that @. means the same as
J-S-l

(- 1)
*

©(,„,„)
if m + n = i and m~n =

s, or as (- 1)
*

fiZ(niin) if

m +n+l = i and m~n — s. Formula (38) may be derived

algebraically from (36) by putting v/(l— /r) for v in ®
(m>n)

-^v'

and in Z^ B)
-f- v"/a : or it may be obtained directly by the method

of differentiation followed above, varied suitably. But it may
also be obtained by assuming (with a

t
and b

s
as arbitrary

constants)

V
t
= Sti*

= 2 («,£« + bjf)(st* +pr
2
z

i
-

s'- + qr*^*-
4 + etc.),

which is obviously a proper form
;
and determining p, q, etc., by

the differential equation y
aVt

= 0, with (29).

Another form may be obtained with even greater ease, thus :

Assuming

V
t
= 2(a, £' + btf) (z

1" + pl9t**bi +p2
z

!- s-i£S2 + etc. ),

and determining p , jt>„, etc., by the differential equation, we

have

F
4 =S(a^+j8fV)

(j- g)(t- 8 - l)

4.(s+l).l
'* W

I

(i-g)(i-a-l)(t-g-2)(t-g-3) _ 4 2 2

75
—

/ TT~, Kl t K * C 7 etc.

(39)

4 2
. («+l)(« + 2). 1. 2

which might also have been found easily by the differentiation of

1

Hence, eliminating imaginary symbols, and retaining the

notation of (37) and (38), we have

©?' ~Csiu»6
(i-s)(i-s-l) ,

where

4.(s+l).l
i-s— 2)(i— s

(*
+ 2) . 1 . 2

(2s+l)(2« + 2)...(i + «)

(»- J) (t-!ri )(i-,-2Xt-.-3) _
4 2

.(s+l)(s + 2).1.2
^

6'

(2* + l)(2*+3)...(2i-l)*

(40)

This value of C is found by comparing with (35). Thus we see

that G must be equal to the numerical coefficient of the last

term of (35), irrespectively of sign. Or C is found by comparing

(40) with (38) : it is equal to the coefficient of the last term of

(38) divided by the coefficient of the last term within the

brackets of (40). Or it is found directly (that is to say,
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independently of other equivalent formulas) thus :
—We have, Trfaono-r *

metrical

by (29'), expansions.

d* 1
, *? a.

,
d* I .. .

;
- =

(-)
" 2'-'-

,_. „ -, if i-s is even,

h(4i)

or =(-)"^~2'-*-
1 ^——,-, if *-« is odd.

risc/£
-

drj
-

Expanding the first member in terms of s, £, rj, by successive

differentiation, with reference first to
rj,

s times, and then z, i- s

times, we find

(_)^i.|...(5 _i)(2s + l)(2s+2)(2s +3)...(i + S)^-
5

^....(42),

for a term in its numerator : comparing this with (39) and (40),

and the second number of (41) with (35), we find C.

(k) It is very important to remark, first, that Important
propertiesof

jjw*r=o mtsss?
„ , . , rr . auxiliary

where U
i
and U' denote any two of the elements of which V is functions.

composed in one of the preceding expressions; and secondly, that

fV!W%in&?0=O (44),

the case of * = % being of course excluded. For, taking r = a,

the radius of the spherical surface; and d<r = a2

dm, as above;

we have d-nr = sin 0d6d<j>. etc., the limits of 6 and <£, in the inte-

gration for the whole spherical surface, being to ir, and to 27r,

,"277

respectively. Thus, since cos s<f>
cos s'<f> d<$>

- 0, we see the
•

truth of the first remark; and from (16) and (36) we infer the

second, which the reader may verify algebraically, as an exercise.

(I) Each one of the preceding series may be taken by either Expansions

end, and used with i or s, either or both of them negative harmonics

or fractional or imaginary. Whether finite or infinite in its and wedtes.

number of terms, any series thus obtained expresses when

multiplied by r* a harmonic of degree i
;
since it is of degree i,

and satisfies v 3H = 0. In any case in which one of the pre-

ceding series is not finite, the formula taken by one end gives

a converging series; taken by the other end a diverging series.

Thus (40) taken in the order shown above, converges when 6 is

between and 45°, or between 135° and 180°: and taken with

the last term of that order first it converges when 6 > 45° and
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Dismissal of
series which
diverge
when 9 is

real.

Finding of

convergent
expansions.

K=(-y

<135°. Thus, again, (mn) and Z
{m n)

of (36), being each of

a finite number of terms when either m or n is a positive

integer, become when neither is so, infinite series, which diverge

when v < 1 and converge when v > 1 . These two series, whether

both infinite or one finite and the other infinite, Avhen convergent

are so related that

H-Z(m-h, it-i)
= J~ l

©(,», n) (36'),

as is easily verified for a few terms by multiplying Z^m .^ n _-^

/ l\ h
. . 1

by the expansion of ( 1—
5)

in ascending powers of -„. But

expansions in ascendiug powers of — are of comparatively little

interest, as they are divergent for real values of 6, and therefore

not available for the proposed physical applications. To find

expansions which converge when v < 1 take the last terms

of (36) first. Tims, if we put

m(iii—l)...(m
—
ii-i-2)(ni—ji+l),n(ii

—
l)...'2. 1

(36");
l.2....(n—l)n,{m+n— h) (ni + n-^). . .(m+^)(m+^)'

supposing m to be > n, and n to be a positive integer, we find

©.—, = K.v'
.n)

1
n(m+±)

r^r v" +
n (n— 1). (m+V) (m+%)

\v4
-etc. ...(36'").

(m-n+\).\ (m-n+l)(m—re+2),1.2

Writing down the corresponding expression for Zim-hn-i)
from (36), and using (36'), we find

©,„.„,= A>" (n-$)(m + l) (n-i)(n-|).(m+l)(m + 2)

[7)1-71+ 1). 1 (7n-n+l){m—n + 2) . 1 . 2 ,..(36
iT

).

This expansion of
©,,„„, is derivable algebraically from (36'") by

multiplying the second member of (36'") by

f, •
, 1.3

4

p. ( 1 4- }, v + .—- v + etc.

(which is equal to unity). Both expansions converge when

v
s < 1, or, for all real values of 6; just failing when 6 = ^tt.

In choosing between the two expansions (36'") and (36
iy

), prefer

(36
iv

)
when n differs by less than \ from zero or some positive

integer, otherwise choose (36'"); but it is chiefly important to

have them both, because (36
iv

)
is finite, but (36'") infinite, when

2/- 1
u - —.— ;

and (36'") is finite, but (36
1V

) infinite, when n=j- 1
;

j being any positive integer.
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Put UOW tit + n -
i, )il — 11-

.<?, ) Complete
expressions

01" m=h(i + s), n=i(i — S), \ (3G
V
)

for spherical
- x harmonics

and denote by Eu? I figyg;
what the second members of (36'") and (36

1V

)
become with these

values for m and a. Again, put

in + n = i, a — ni = s,
]

or ?/4 = ^(t-s), H = |(i + 6-),
(. (36

w
)

and denote by Kv*

what the second members of (36'") and (36
iv

)
become with these

values for m and n. We thus have two equal convergent series

for u and two equal convergent series for v
,
and ««'

,
v* are

functions of v (or of 6) such that

u
s

(,4 cos sd> + B sin sd>) )
{ '

\ (36™) in ascending
i W / , , n •

i \ l powers of v.

and v, (A cos
s<f>

+ B sm s<p) )

are surface harmonics of order i.

The first terms of u and v are v
s and v~ s

,
or uvJ and «y~ s

,
i i

according as they are taken from (36'") or (36
iv

),
and in general

ti' and v are distinct from one another.

Two distinct solutions are clearly needed for the physical

problems. But in the particular case of s an integer, u
U]

and v
w

are not distinct. For in this case each term of v' after the first
i

s terms has the infinite factor
; thus if (7,- denote the coeffi-

s — s
3

w
cient of the (; + l)

th term of v
, the first s terms of _i_ vanish

C.

when s is an integer, and those that follow constitute the same

series as that expressing u
,
whether we take (36'") or (36

iv

).

For the case of s an integer the wanting solution is to be found

by putting

u
V

(j+ <r) i

io. - ~*'
;

,
when a =

ft •>—
(36™)

MJ thus found is such that

w>. (j4
cos

scji
+ B sin s<£)
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Complete
expressions
for spherical
harmonics
of any tes-

seral type;

inascending
powers of ju.

(-)

(«)

IIVs \ I

is a surface harmonic of order i distinct from u* . The first
i

term of w , according to (36'"), is v
s

log v, or
/u.v

s

log v according

to (36
iv

),
and subsequent terms are of the form (a + b log v) vv

,
or

(a + b log v) fxv
v

, j being an integer. The circumstances belong

to a well-known class of cases in the solution of linear dif-

ferential equations of the second order (see § (/') below).

Again, lastly, remark that (38), unless it is finite (which it is

if and only if i — s is a positive integer), diverges when /x
< 1

and converges when ix > 1
,

if taken in the order in which it is

given above. To obtain series which converge when li. < 1

(that is to say, for real values of 6), reverse the order of (38)

for the case of i-sa positive integer. Thus, according as i — s

is even or odd, we find

(i-s).(i + s + l) (i-s)(i-s-2).(i+s+l )(i+s+3 ) }- ix + — - -
Q
——

fx.
-etc.

1.2 •" 1.2.3.4

where, i — s being even,

H - (-**-* (w)(»-«-l)(t-»-a)(»-*-3)-4.3.2.1
1 ;

2A...(i-s-2)(i-s).(2i-l)(2i-3)...(i+s + 3)(i+s+\)

and

k.(3S'),

©</'= H
VJ/X-

(i-s-l)(i+s+2) (i-s-l)(i-S-3).(i+s+2)(i+s+.i ) , ^O tx+ 2.3.4.5 -/i-«te.

where, i-s being odd,
(38").

W- UV*~* (i-s)(i-s-l )(i-s-2)(i-s-3)...5A.3.2
K '

2A...{i-s-3)(i-s-l).(2i-l)(2i-3)...(i+s+i)(i+s+2)

Then, whatever be i - s, or i, or s, integral or fractional, positive

or negative, real or imaginary, the formulas within the brackets

{ }
are convergent series when they are not finite integral func-

tions of ix. Hence we see that if we put

is) , (i-s).(i+s + l) o (i-s)(i-s-2).(i + s+l)(i + s + 3) .,

P
t

= l iV ~^'+ -

i o\ a ^fi -etc.
1.2 1.2.3.4

and ] (38"')

(i-s-l).(i + s+2) a (i-s-l)(i-s-3).(i+s+2)(i+s+4:) 5

2.3

or

and

2.3.4.5

w
Pt
=A + A

2 ix

a +A
ifL*+&c.,

q
t

=A
lf
i + A

an
B + A ifi

s + &c.,

i i i 4 i j <
in-i + s)(n + l+i+s) .

where A-l, A=l, and A m+,^- £ >

A,

. (38*),
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the functions p
'

, a' thus expressed, whether they be algebraic Complete
1

i
2

i
*

expressions

or transcendental, are such that
harmonics

81

of any tes-

(s)
? W / Powersoft.

and q {A cos s<f> + B sin s<£) v', j

are the two surface harmonics of ox*der i, and of the form

y"(0) s<£. For example, if i — s be an even integer, p" is the

finite function with which we are familiar as giving a rational

integral solution of the form (38
v

),
and q

s

gives the solution of

the same form which is not integral or rational. And if i - a

is odd, q. gives the familiar rational integral solution, and p
s

the other solution of the same form but not integral or rational.

The corresponding solid harmonics of degrees i and — i — 1 are Correspond-10 °
ing solid

obtained by multiplying (35
v

) by r* and r l~\ Reducing the harmonics.

latter from polar to rectangular co-ordinates, we find them of the

form

-•—i (i—s)(i + s+ 1) _4_,_, ,

r ' ' J -^ ~v—
^ -r * ' V+etc.

1 . —
H.(x,y)

(38"),and

where H
t
denotes a homogeneous function of degree s. Now (15)

-=- of any solid harmonic of degree
— i is a solid harmonic of

degree
— i— 1. Hence

d
ri+V v

s Sm
sd>— [r~

t~'o'
)

1 Successive
COS dz <-i

J ' derivation
from lower
orders.

i ,+1 . , sin ,
d

r
.

(S )
-,

and r' rs
p
s

s<f> -j- \r
l

*p J,cos dz i—i

are surface harmonics of order i, and they are clearly of the first

and second forms of (38
v
). Hence, putting into the forms

shown in (38") and performing the indicated differentiation for

the first term of the q function and the first and second terms of

the p function, so as to find the numerical coefficients of r~ i
~s~ l

and r~ i~*~2z in the immediate results of the differentiation, and

then putting \x.r
for z, we find

VOL. I. 13
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Successive
derivation
from lower
orders.

r * s l

p = — r '

"q
i dz L

»-i J

and _,_,_, «; 1 d (s)

i~- s dz L ^<-i J

.(38*).

To reduce back to polar co-ordinates put for a moment
x2 + y

2 = a2
. Then we have

a a
? =

/(I-//) v'

ttjX afx

and ofe

(l-^)t v
3 '

Hence, instead of (38
vU

),
we have

w -j-.+s d
, i+ , w

,

i (»)

.... (38*").

{"
I+,
P«}and g

w=- *„-*-•«

[Compare § 782 (5) below.]

Supposing now s and i to be real quantities, and going back

to (38
lv

),
to investigate the convergency of the sei'ies for p' and

q, , we see that, when n is infinitely great,

±±M* 1 + *fezi)

Now if (1- F
2

)-" = 2V,
vre have, by the binomial theorem,

*.= 1, A =
0, and^

2 =l +
2

-^.n

Hence, when /t
= ±

(1
—

e),
where e is an infinitely small positive

quantity,

p. v = or = oo
, I

and

according as

(») 2/c A
q v — or = oo

,

k> s or k < s.

, (38
u
).

Hence if i > s, the quantities within the brackets under

-j-
hi ^S

7111

)
vanish when ^=±1; and as they vary con-
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tinuously, and within finite limits, when jx is continuously Acquisition

(s)

of roots with

increased from -1 to +1, it follows that p vanishes one time riseof order.

more than does q' ,
and q" one time more than does p . Now

looking to (38'"), and supposing (as we clearly may without loss

of generality) that s is positive, we see that every term of p_
is positive if i<s+l. Hence if i is any quantity between The rootless

8 and 8+1, v
i+ '

p° vanishes when
p,
=

=fel, and is finite and °^'

positive for every intermediate value of
fx.

Is)

Hence and from the second formula of (38™'), q vanishes

jnst once as \x
is increased continuously from — 1 to + 1 : thence

and from the first of (38""). p' vanishes twice : hence and from

the second again, q o
vanishes thrice, and so on. Again, as the

l i+2

coefficient of every term of the series (38'") for q' is positive J
he ot

f

her

when i < s + 1, this is the case for
q'_ ,

and therefore this func- onier has

•l in r\ • in i i
one r0ot '

—
tion vanishes only tor /x

=
U, as /a is increased irom - 1 to + 1. zero.

Hence p_ vanishes twice
; and, then, continuing alternate ap-

plications of the second and first of (38'"), we see that q'

vanishes thrice, p. four times, and so on. Thus, putting all

too-ether, we see that q has / or / + 1 roots, and p
*

has

j + 1 or j roots, according as j is odd or even : j being any

integer and i, as defined above, any quantity between s and

s + 1. In other words, the number of roots of p' is the even Census of
roots of tes-

number next above i — s; and the number of roots of q[ is the ^nj^of

odd number next above i-s. Farther, from (38
vUi

)
we see that anyor er'

the roots of p' lie in order between those of q*_ ,
and the roots

of q* between those of p
s

_ . [Compare § (p) below.] These

properties of the p and q functions are of paramount importance,

not only in the theory of the development of arbitrary functions

by aid of them, but in the physical applications of the

fractional harmonic analysis. In each case of physical ap-

plication thf>y belong to the foundation of the theory of the

simple and nodal modes of the action investigated. They
afford the principles for the determination of values of i — s,

which shall make (S) or
-77. @ vanish for each of two stated

• do '

13—2
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Electric

induction,
motion of

water, etc.,

in space be-
tween two
coaxal
cones.

values of 6. This is an analytical problem of high interest in con-

nexion with these extensions of spherical harmonic analysis : it is

essentially involved in the physical application referred to above

where the spaces concerned are bounded partly by coaxal cones.

When the boundary is completed by the intercepted portions of

two concentric spherical surfaces, functions of the class described

in (o) below also enter into the solution. When prepared to

take advantage of physical applications we shall return to the

subject; but it is necessary at present to restrict ourselves to

these few observations.

Electric

induction,
motion of

water, etc.,
in space
between
spherical
surface and
two planes
meeting in

a diameter.

(m) If, in physical problems such as those already referred

to, the space considered is bounded by two planes meeting, at

IT

any angle -, iu a diameter, and the portion of spherical surface

in the angle between them (the case of s < 1, that is to say, the

case of angle exceeding two right angles, not being excluded) the

harmonics required are all of fractional degrees, but each a finite

algebraic function of the co-ordinates £, rj,
z if s is any incom-

mensurable number. Thus, for instance, if the problem be to

find the internal temperature at any point of a solid of the shape

in question, when each point of the curved portiou of its surface

is maintained permanently at any arbitrarily given temperature,

and its plane sides at one constant temperature, the forms and

the degrees of the harmonics referred to are as follows :
—

Degree.

+ i,

s + 3,

r?>+3

Harmcuic.

r

dz r*+1

dz2
r*'"

dz
3

e

Degree.

2s.

Harmonic.

i
23

2s+l, r«+3

2s + 2

d £*

»4s + 5

dz r
4'+1

dz* .4S +1

2s + 3, r
,4s+7

dz3
?

it +i

Degree.

3s,

3s + 1,

Harmonic.

i
3'

d

dz

t*t

,.Gjt1

These harmonics are expressed, by various formulae (36)... (40),

etc., in terms of real co-ordinates, in what precedes.

(n) It is worthy of remark that these, and every other spherical

harmonic, of whatever degree, integral, real but fractional, or
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imaginary, are derivable by a general form of process, which in- Harmonic° * functions of

eludes differentiation as a particular case. Thus if
(
—-

)
denotes derived

\d-qj from that of

an operation which, when s is an integer, constitutes taking the by general-

s
tb differential coefficient, we have clearly entiation.

where P
t
denotes a function of s, which, when s is a real integer,

becomes (-)' £•§••£. ..{?-%).

The investigation of this generalized differentiation presents

difficulties which are confined to the evaluation of P
s ,
and which

have formed the subject of highly interesting mathematical in-

vestigations by Liouville, Gregory, Kelland, and others.

If we set aside the factor Ps ,
and satisfy ourselves with deter- Expansions

minations offorms of spherical harmonics, we have only to apply harmonics

Leibnitz's and other obvious formulae for differentiation with any by common

fractional or imaginary number as index, to see that the equiva- With gen'er-

lent expressions above given for a complete spherical harmonic diCes .

of any degree, are derivable from - by the process of generalized

differentiation now indicated, so as to include every possible

partial harmonic, of whatever degree, whether integral, or

fractional and real, or imaginary. But, as stated above, those

expressions may be used, in the manner explained, for partial

harmonics, whether finite algebraic functions of £, 77, z, or tran-

scendents expressed by converging infinite series; quite irrespec-

tively of the manner of derivation now remarked.

(0) To illustrate the use of spherical harmonics of imaginary imaginary

degrees, the problem regarding the conduction of heat specified ful when

above may be varied thus :
— Let the solid be bounded by two 'function's

concentric spherical surfaces, of radii a and a', and by two expressed,

cones or planes, and let every point of each of these flat or

conical sides be maintained with any arbitrarily given distribution

of temperature, and the whole spherical portion of the boundary
at one constant temperature. Harmonics will enter into the

solution, of degree

1 +W2
2
+

a
'

lo°* —
a'
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Derivation
of any har-
monic from
that of
decree -1
indicates
the charac-
ter and
number of
its nodes.

Expression
of an arbi-

trary func-
tion in a
series of
surface
harmonics.

Preliminary
proposition.

where j denotes any integer. [Compare § (d') below.] Converg-

ing series for these and the others required for the solution

are included in otir general formulas (36)... (40), etc.

(p) The method of finding complete spherical harmonics by the

differentiation of -, investigated above, has this great advantage,

that it shows immediately very important properties which they

possess with reference to the values of the variables for which

they vanish. Thus, inasmuch as - and all its differential coeffi-
r

and for z — ± oo ,cients vanish for x = ± oo
,
and for y = ± co

,

it follows that

dxJ
dy

kdzl r

vanishes^' times when x is increased from — go to + oo

?>
^

j> y j> >> >> ii

&nci
ii

^
ii

z
ii ii ii ii

[Compare with the investigation of the roots of p and q' in

§ (I) above.]

The reader who is not familiar with Fourier's theory of equations

will have no difficulty in verifying for himself the present appli-

cation of the principles developed in that admirable work. Its

interpretation for fractional or imaginary values of j, k, I is

wonderfully interesting, and of obvious value for the physical

applications of partial harmonics.

Thus it appears that spherical harmonics of large real degrees,

integral or fractional, or of imaginary degrees with large real

parts (a + (3 J-I, with a large), belong to the general class, to

which Sir William R. Hamilton has applied the designation
"
Fluctuating Functions." This property is essentially involved

in their capacity for expressing arbitrary functions, to the

demonstration of which for the case of complete harmonics we

now proceed, in conclusion.

(r) Let G be the centre and a the radius of a spherical

surface, which we shall denote by S. Let P be any external or

internal point, and let f denote its distance from G. Let dcr

denote an element of S, at a point E, and let EP = D. Then, Jf

denoting an integration extended over S, it is easily proved that
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(45).

1 1 -^ = -s >.
-

o when P is external to £
Jj£

3 Jf2 -a2

Preliminary
proposition.

and
Jfi

= '

8 _/2
when P is within £

This is merely a particular case of a very general theorem of

Green's, included in that of A (a), above, as will be shown when

we shall be particularly occupied, later, with the general theory

of Attraction : a geometrical proof of a special theorem, of which

it is a case, (§474, fig. 2, with P infinitely distant,) will occur

in connexion with elementary investigations regarding the dis-

tribution of electricity on spherical conductors : and, in the

meantime, the following direct evaluation of the integral itself

is given, in order that no part of the important investigation

with which we are now engaged may be even temporarily

incomplete.

Choosing polar co-ordinates, 6 = EGP, and <£ the angle be-

tween the plane of EGP and a fixed plane through GP, we haye

do- - a2
sin 6 dQ defy.

Hence, by integration from <£
— to

</>
=

2ir,

'da- _ „ [
n sin 6d6

Zira'D3

J D3
'

But D2 = a2 - 2a/cos 6 +f* ;

and therefore sin Odd =—7- :

<¥

the limiting values of D in the integral being

f— a, f+ a, when/> a,

and a—f, a+f, whenf< a.

Hence we have

rrdtr _ 2-n-a / 1 1 \ 2-rra / 1 1 \

IJjJ
3

--f~ \f^a ~f^a)
'
0V~T \fl-f~ ^r'f)

'

in the two cases respectively, which proves (45).

(s) Let now F(E) denote any arbitrary function of the position Solution of

of E on S, and let problem
for case of

r((f
2 ~a2

)E(E)da ,,., spherical
U= r^- ' V '

(46). surface, ex-

)) D6 V '
pressed by
definite

When/is infinitely nearly equal to a, every element of this in- integral.

tegral will vanish except those for which D is infinitely small.
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Grnen's
problem
tot case of

spherical
surface, ex-

pressed by
definite

integral.

Its expan-
sion in

harmonic
series.

Hence the integral will have the same value as it would have if

F(E) had everywhere the same value as it has at the part of S
nearest to P

; and, therefore, denoting this value of the arbitrary

function by F(P), we have

u = F(P)
ff D3

whenf differs infinitely little from a; or, by (45),

u=\vaF(P) (46').

Now, if e denote any positive quantity less than unity, we

have, by expansion in a convergent series,

(1
- 2e cos 6 + ey

i
= \ + Q

x

e+ Q/ + etc. •(47),

Q , Q2 , etc., denoting functions of 6, for which expressions will be

investigated below. Each of them is equal to + 1, when 6 — 0,

and they are alternately equal to - 1 and + 1, when 6 = tt. It

is easily proved that each is >— 1 and < + 1, for all values of

6 between and -k. Hence the series, which becomes the

geometrical series 1 ± e + e
9

=i= etc., in the extreme cases, con-

verges more rapidly than the geometrical series, except in those

extreme cases of 9 = and 6 = tt.

.(48).

„ 1 1/. Q x
a Q2

a2
. \ , , 1

Hence
jr

=
^

( 1 + —
\,
+ -~- + etc. ) when/ > a

i

and i = - (l + Q*f+ --{ + etc.) when /< a
D a\ a a* J >

Now we have

and therefore

Hence by (48),

dD
df

f - a2

cos —f
—jjz I

'

fv
1 + SQ a 5Q,a*

+ - 1 - +

and

/S
2--a-

^.iA + «a?+ »V
,

+ )„W<JD3 a\ a a2
J

J \

.

) wheny> a
j

(49).
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spherical
surface,
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harmonic
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Hence, for u (46), we have the following expansions:— Green's pro-

u= UjjF(E)dcr +jjJQ 1F(E)d(

T+^jJQ2F(E)d(T + ...

},

when f>a,

and

u=^JJF(E)da+¥ffQ iF(E)d<T +^jJQ2F(E)d<T+ ...

j,
when/< a

(51).

These series being clearly convergent, except in the case of/— a,

and, ill this limiting case, the nnexpanded value of u having been

proved (46') to be finite and equal to iiraF(P), it follows that the

sum of each series approaches more and more nearly to this value

when /approaches to equality with a. Hence, in the limit,

F(P)= ~JfJF(E)da + 3fJQF(F)da- + 5jjQ F(E)da + etc., }... (52), ggftfi
47TCI

(.

*

J harmonic
expansion of

which is the celebrated development of an arbitrary function in
fU\fc

1

t^n
rary

a series of "
Laplace's coefficients," or, as we now call them,

spherical harmonics.

(t)
The preceding investigation shows that when there is one

determinate value of the arbitrary function F for every point of

S, the series (52) converges to the value of this function at P.

The same reason shows that when there is an abrupt transition convergence

in the value of F, across any line on S, the series cannot con- neverfost

verge when P is exactly on, but must still converge, however
Abrupt

a

near it may be to, this line. [Compare with last two paragraphs v'af
"
e
g
of the

of § 77 above.] The degree of non-convergence is so slight that, expressed

as we see from (51), the introduction of factors e, e
2

,
e
3

,
&c. to

the successive terms e being < 1 by a very small difference, pro-

duces decided convergence for every position of P, and the value

of the series differs very little from F (P), passing very rapidly

through the finite difference when P is moved across the line of

abrupt change in the value of F(P).

(u) In the development (47) of

(1 -2ecos0 + e
2

)5

the coefficients of e, e
2

,...e\ are clearly rational integral functions

of cos 0, of degrees 1, 2...i, respectively. They are given ex-

plicitly below in (60) and (61), with & = 0. But, if x, y, z and
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Kxpansion

of 2 in
B

>ymmetrical
harmonic
functions
of the co-
ordinates
of the two
points

x\ y', z' denote rectangular co-ordinates of P and of E re-

spectively, we have

xx + yy + zz
1

cos =
rr

Biaxal har-
monic.

Expansion

of^by
Taylor's
theorem.

where r = (x
2 + y

2 + z
2

)*, and r = (x
2 + y'

2 + z'
2

)^. Hence, de-

noting, as above, by Q t the coefficient of e' in the development,
we have

Qi=
BM*,y,*\(*',y'>*')]

(53)>

H
i [(x, y, z), (x\ y', z')\ denoting a symmetrical function of (x, y, z)

and (x', y', z), which is homogeneous with reference to either set

alone. An explicit expression for this function is of course found

from the expression for Q. in terms of cos 6.

Viewed as a function of
(x, y, z), Q^r1

'

is symmetrical
round OE

;
and as a function of (x', y', z) it is symmetrical

round OP. We shall therefore call it the biaxal harmonic of

(x, y, z) (x, y', z) of degree i
;
and Qt

the biaxal surface har-

monic of order i.

(v) But it is important to remark, that the coefficient of any

term, such as x'Jy'
k
z'\ in it may be obtained alone, by means of

Taylor's theorem, applied to a function of three variables, thus:—
\ r r

(1
- 2e cos 6+ e

2

f (r*-2rr'cos 6+r'
2

fi [(»
-

x')
2 + (y- y')

2 + (z-z')
2

]$

'

Now if F(x, y, z) denote any function of x, y, and z, we have

F(x +fv+ z + h)-TT
l

T fYh * +k
«F(x,y,z).

where it must be remarked that the interpretation of 1.2.../,

when/^0, is unity, and so for k and I also. Hence, by taking

F (», y» *)
=
,—-' * .a '

we have
(x~+ y'+ z~y

1

[(x-xy+iy-y'y + iz-z)^

= 222 (- iy
+k+l

x'Jy'
k
z n dJ+k+l

1. 2 ...j. 1.2 ...k. 1. 2 ... I dxJ
dy

kdzl

(x* + y
2 + z

2

)b

'

a development which, by comparing it with (48), above, we see

to be convergent whenever
/9 /P /2 o 9 o

x 2 + y
2 + z < x' + y

2 + z'.
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Hence Expression
lor biaxal

U+k+l=i) (— 1 V+*+^.y ,/*«/' r7J+/c+l 1 harmonic
/rr'yn_ rSJ+i2SS_l_L2_?JLf _ i /5-H deduced.

the summation including all terms which fulfil the indicated con-

dition (j + k + 1 = i).
It is easy to verify that the second member

is not only integral and homogeneous of the degree i, in x, y, z,

as it is expressly in x, y', z
;
but that it is symmetrical with

reference to these two sets of variables. Arriving thus at the

conclusion expressed above by (53), we have now, for the function

there indicated, an explicit expression in terms of differential co-

efficients, which, further, may be immediately expanded into an

algebraic form with ease.

(y')
In the particular case of x'=0 and y'=0, (54) becomes

reduced to a single term, a function of x, y, z symmetrical about

the axis OZ
; and, dividing each member by r'\ or its equal, z'\

we have

(_ lVr2*41 d l

1
riQ _ J : (55) Axial har-

1 .2.3...i cfo* ,v ,2 2>i v /• mo„jcof

[x + y + z
) order L

By actual differentiation it is easy to find the law of successive Axial har-

c monic with
derivation of the numerators

;
and thus we find, with about equal its co-ordi-

ease, either of the expansions (31), (40), or (41), above, for the formed
136C01UGS

case in = n, or the trigonometrical formulae, which are of course biaxal.

obtained by putting z — r cos 6 and x* + y
2 = r2

sin
2
0.

. . r „ , . .. n . xx' + yy' + zz .
,

, .

ho) 11 now we put in tliese, coat) = ^ , introducing

again, as in
(11) above, the notation (x, y, z), (x', y ', z'),

we arrive

at expansions of Qt
in the terms indicated in (53).

(x) Some of the most useful expansions of Qt
are very readily Expansions

obtained bv introducing, as before, the imaginary co-ordinates harmonic,
of order i.

(£, 77)
instead of (r, y), according to equations (26) of (j), and

similarly, (£', -q) instead of
(a?', y'). Thus we have

z>
2

=(£-l')(W) + (*-*')
2

.

Hence, as above,

1

[($-£'Hv-v) + (*-*')*]*

= 222 r
l.2...j.\.2...k.l.2...l dgd-rfdz

1

(£7 + «*)*'
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Expansions
of thebiaxal
harmonic,
of order i.

Hence

U+k+l=i) <*'
+*+{

dt'drfdaf fa + s*)£

Of course we have in this case

r =
£rj + z

,
r = £ i/

+ z
,

(56).

and cos
r?.

And, just as above, we see that this expression, obviously a homo-

geneous function of £', rj', z, of degree i, and also of rj, £, z,

involves these two systems of variables symmetrically.

Now, as we have seen above, all the i
th

differential coefficients

of - are reducible to the 2i + 1 independent forms
r

d\'l \dz) d-qr' \dz) \dv) r'
'"

\dr,J r'
(-)-
\dz) r

'

(t
r d l

Biaxal har-
monic ex-

pressed in

symmetrical
srries of
differential

coefficients.

dzj dir' \ds) \di) r'
'"

\dU r'

Hence r'Q{ ,
viewed as a function of z, f, rj,

is expressed by

these 2% + 1 terms, each with a coefficient involving z
, $', rj .

And because of the symmetry we see that this coefficient must

be the same function of z, >/, £', into some factor involving

none of these variables (z, £, rj), (z', rj , $'). Also, by the

symmetry with reference to £, r[ and
rj, £', we see that the

numerical factor must be the same for the terms similarly involv-

ing £, rj on the one hand, and
rj, £' on the other. Hence,

dyl
G,= ("7 i—VI

[ dz'J r \dzj r

5VS,
I+ 1E

d* 1 d l

1 d* 1 d' 1)

E

,=i i \dz'
l

-d$'* r dz'-'dif r dz'^'dr/"V dz^d? r )

where

1

J r

M

.(57).

1.2...s.l.2...(i-s)i.|...(s-i).(2s+l)(2s+ 2)...(i+s) j

The value of E
.

is obtained thus :
—

Comparing the coefficient

of the term (zz')
i

~'(^rj)'
in the numerator of the expression

which (56) becomes when the differential coefficient is expanded,

with the coefficient of the same term in (57), we have

, . ,£*£.-. -J"* (58),
I .2 ...(i-s).l .2 ... s i

v "
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d' 1 Biaxal har-

where M denotes the coefficient of z'~
s

£' in r2'"1
" 1

T
. 7

—- -
, or, monic ex-

dz'~ drf r pressed in
. symmetrical

which is the same, the coefficient of z''~'ri'' in rm+l -r-n~r?jr, -.• differential
dz '

'dtj" r coefficients.

From this, with the value (42) for M, we find E'

as above.

(y) We are now ready to reduce the expansion of Q i
to a real

trigonometrical form. First, we have, by (33),

(£/')' + (i'vy = 2 (rr sin sin OJ cos 8
(<j>

-
<f>') (59).

Let now

$
(" = sin

s
6 cos'- 6 - (

"

.*)(

l *
-

1
)
cos4—2 6 sin

2
6

4 (s+ 1) . 1

(i-s)(i-s-l)(i-8-2)(i-8-3) . .. . 4/1 "1 //>m+
4> + l)(S + 2).1.2

coS
.-W«-etc.J...(60);M ~(»)

(that is to say, CS" =©., in accordance with the notation

of 40,) and let the corresponding notation with accents apply

to 0'. Then, by the aid of (57), (58), and (59), we have

Qi= 22-?-2_J 2/.^
A ' ^ ^ COS §(<£-<£)&. S'. ...(61),

metrical

s=o 1.2...S 1.2...(l-S) « l
;

expansion

of which, however, the first term (that for which s = 0) must be Sl

halved.

of biaxal
surface
harmonic.

(z) As a supplement tothe fundamental proposition J 'fSjSj d-ur- 0,

(16) of (g), and the corresponding propositions, (43) and (44),

regarding elementary terms of harmonics, we are now prepared to

evaluate JfS?dvr.

First, using the general expression (37) investigated above for

S
i}

and modifying the arbitrary constants to suit our present
Funda-

notation, we have definite in-

«=i , ,
tesral m "

J

$= 2^008 (*fr+a,)*
W

(62)>
vestigated.

Hence

ffSi
dm = ir2A, (&[)" sin 0d6 (63).

o J

To evaluate the definite integral in the second member, we have

only to apply the general theorem (52) for expansion, in terms of

surface harmonics, to the particular case in which the arbitrary

function F(E) is itself the harmonic, coss^S
-

,.. Thus, remem-

bering (16), we have

cos8^ =^^ ("sin ffdff I* dfcoB g+'&? Qt (64).
ilr Jo Jo
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j?unda-
mental defi-

nite integral
evaluated.

/"Jo

Using here for Q t
its trigonometrical expansion just investigated,

and performing the integration for <£' between the stated limits,

we find that cos s<f> $/ may be divided out, and (omitting the

accents in the residual definite integral) we conclude,

2 1.2.. .a 1.2. ..(*-*)
sine^yy-do

Spherical
harmonic
synthesis of

arbitrary
function
concluded.

2i+r ±4...(s-±)' (2s+l)(2s+2)...(2s+i-s)
.(65).

This holds without exception for the case s = 0, in which

2
the second member becomes

2t+l
It is convenient here to

recal equation (44), which, when expressed in terms of $.'

instead of ©
(m , „,,

becomes

'

am 6Sr^dO (66),

where i and % must be different. The properties expressed by
these two equations, (65) and (66), may be verified by direct

w
integration, from the explicit expression (60) for 3^ ;

and to

do so will be a good analytical exercise on the subject.

(a) Denote for brevity the second member of (65) by (i, s),

so that

fir

I 8m6($t)'d0 =
(i,s) (67).

-0

Suppose the co-ordinates 6, <f>
to be used in (52) ;

so that a, $, <£

are the three co-ordinates of P, and we may take dtr—a 2
sin 8,

d8d<f>.

Working out by aid of (61), (65), the processes indicated

symbolically in
(

;

^>2),
we find

,W •>(«) ,M,
F(8, 4) = 2V,&r + *(A7 c°s

scf>
+ #" sin s<f>)^'\

t=0 «=1

• (68),

\Yhere

At
=

2% + 1 f»
&. sin 8d6

ran

F(8,<}>)d<j>
Jo

A
{

? = jt~- I

"

3? sin 6d6
f

cos s6 F(8, <j>) d<j>

(l, S) TV J J

b\ sin 8 d8
J

sin
s<f> F(8, <f>) dcf>

Jo

Bis) =
(i, s) IT

(69),

which is the explicit form most convenient for general use, of the

expansion of an arbitrary function of the co-ordinates 8, 4> in

spherical surface harmonics. It is most easily proved, [when
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once the general theorem expressed by (66) and (65) has been in Spherical

any way established,] by assuming the form of expansion (68), analysis of

and then determining the coefficients by multiplying both mem- function,

bers by <&','
cos s<j>

sin 6d8dcf>, and again by b? sius<£ sin 6d9d<f>,

and integrating in each case over the whole spherical surface.

(b') In what precedes the expansions of surface harmonics, Review oi
> ' l * '

preceding
whether complete or not, have been obtained solely by the differ- expansionsr ' " " and mvesti-

1 ... . gations of

entiation of — with reference to rectilineal rectangular co- properties.
r

ordinates x, y, z. The expansions of the complete harmonics

have been found simply as expressions for differential coeffi-

cients, or for linear functions of differential coefficients of -.
r

The expansions of harmonics of fractional and imaginary orders

have been inferred from the expansions of the complete har-

monics merely by generalizing their algebraic forms. The pro-

perties of the harmonics have been investigated solely from the

differential equation

d2 V d2 V d 2 V .

a? +y + ^-° <
70 >'

in terms of the rectilineal rectangular co-ordinates. The original

investigations of Laplace, on the other hand, were founded

exclusively on the transformation of this equation into polar

co-ordinates. In our first edition this transformation was not

given
—we now supply the omission, not only on account of the

historical interest attached to "Laplace's equation" in terms of

polar co-ordinates, but also because in this form it leads directly by
the ordinary methods of treating differential equations, to every

possible expansion of surface harmonics in polar co-ordinates.

(c') By App. Ao(gr)(14) we find for Laplace's equation (70)

transformed to polar co-ordinates,

d fr-dV\ 1 d ( . a dV\ 1 d2 V n

In this put

V=Sf, or V=S
i
r- i

~
1

(72).

We find

./. ,v o 1 d / . A dS,\ 1 d% A
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C
').

Laplace's
equation lor

surface har-
monic in

polar co-

ordinates.

which is the celebrated formula commonly known in England

as "Laplace's Equation" for determining S
t ,

the "Laplace's

coefficient" of order i; i being an integer, and the solutions

admitted or sought for being restricted to rational integral

functions of cos 6, sin 6 cos
<f>
and sin 6 sin

<f>.

(d') Doing away now with all such restrictions, suppose i to

be any number, integral or fractional, real or imaginary, only if

imaginary let it be such as to make i (i + 1) real [compare § (o)]

above. On the supposition that S. is a rational integral func-

tion of cos 0, sin 6 cos
</>
and sin 6 sin

</>,
it would be the sum of

sin
terms such as ®r sd>.

cos
Now, allowing s to have any value

integral or fractional, real or imaginary, assume

S =©.(S)S1%4>'

cos
.(74).

This will be a form of particular solution adapted for application

to problems such as those referred to in §§ {I), (m) above; and

(73) gives, for the determination of ©.(s)

,

1 d

sin 6 dd
sin 6

d® w

dd

— s

sin" 6
+ i(i+ 1) ®.w = , .(75).

Definition of
"
Laplace's

functions."

(e) When i and s are both integers we know from §(/»)

above, and we shall verify presently, by regular treatment

of it in its present form, that the differential equation (75) has

for one solution a rational integral function of sin and cos 6.

It is this solution that gives the "Laplace's Function," or the

I,)
sin

"complete surface harmonic" of the form ® s</>
But being a

r t cos

differential equation of the second order, (75) must have another

distinct solution, and from § (h) above it follows that this second

solution cannot be a rational integral function of sin 6, cos 0. It

may of course be found by quadratures from the rational integral

solution according to the regular process for finding the second

particular solution of a differential equation of the second order

when one particular solution is known. Thus denoting by ©.w

any solution, as for example the known rational integral solu-

tion expressed by equation (38), or (36) or (40) above, or

§ 782 (e) or (/) with (5) below, we have for the complete
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solution,

0' »> = ©.<»' [ ~tl (7Q\
df* Definition

of "La-
place's
functions."

For a direct investigation of the complete solution in finite

terms for the case i - s a positive integer, see below § (n),

Example 2
;
and for the case i an integer, and s either not an

integer or not <i, see § (o') (HI).

The rational integral solution alone can enter, and it alone

suffices, when the problem deals with the complete spherical

surface. When there are boundaries, whether by two planes

meeting in a diameter at an angle equal to a submultiple of

four right angles, or by coaxal cones corresponding to certain

particular values of 6, or by planes and cones, both the rational

integi-al solution and the other are required. But when there

are coaxal cones for boundaries, the values of i required by the

boundary conditions [§ (I)]
are not generally integral, and it is

only when i — s is integi'al that either solution is a rational and

integral function of sin 8 and cos 0. Hence, in general, for the

class of problems referred to, two solutions are required and

neither is a rational integral function of sin0 and cos 0.'&'

(f) The ordinary process for the solution of linear differential

equations in series of powers of the independent variable when

the multipliers of the differential coefficients are rational alge-

braic functions of the independent variable leads easily from the

equation (75) to any of the forms of rational integral solutions

referred to above, as well as to the second solution in a form

corresponding to each of them, when i and s are integers; and,

quite generally, to the two particular solutions in every case,

whether i and s be integral or fractional, real or imaginary.

Thus, putting as above, § (k),

cos 6 =
fj.,

sin<9 = v (77),

make p. the independent variable in the first place, in order to Differ; r.tiai

find expansions in powers of /a: thus (75) becomes with v hide-

, . ._ , variable

—
(1
- a2

) —f— + -z r, + % (l + 1 ) ©jO = ( / 8). here for

dp L
^ '

dp \ [I -
pr

J
J

V '

brevity.

This is the form in which "
Laplace's equation

" has been most

commonly presented. To avoid the appearance of supposing

vol. I. 14



Commonest
form of
"
Laplace's

equation
"
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i and s to be integers or even real, put

®«=«o, i(i+l) = a, s
2 = b, (79).

Using this notation, and multiplying both members by (1
- ti

2

),

we have, instead of (78),

generalized. {1 ~^ii (W) ^J
+ [a(l-n

2

)-b]w =
.(80).

To integrate this equation, assume

w = 2AV,
Obvious
solution in

ascending
powers of ju. ;

why dis-

missed.

and in the series so found for its first member equate to zero the

coefficient of ti". Thus we find

{
n + l)(n + 2)Kn+2 =[2n*-a + b]K i -[(n-l)(n-2)-a]K i _ 2 ....(Sl).

The first member of this vanishes for n = -
I, and for n =— 2, if

K
l

and K be finite. Hence, we may put Kn
= for all negative

values of n, give arbitrary values to K and A^, and then find

K
2 ,
K

3 ,
K

4 , &c., by applications of (81) with n = 0, n = 1, n= 2,...

successively. Thus if we first put KQ =\, and K =
;

then

again K =
0, K —

1
;
we find two series of the forms

i + K
oy +xy + &c.

and
//.
+ A'

3 /i.

3 + A'
6
ti

s + &c,

each of which satisfies (80); and therefore the complete solu

tion is

w = C (1 + K%l
c + /i>

4 + etc.)
+ C"

(ji
+ A>8 + A>5 +

<fcc.)...(82).

From the form of (81) we see that for very great values of n we
have

K
n +2

= 2Kn
~ A\- 2 approximately,

and therefore

K
n + -2

~ K
n
= K

„
~ Kn- 2 approximately.

Hence each of the series in (82) converges for every value of ll

less than unity.

(g
1

)
But this is a very unsatisfactory form of solution. It

gives in the form of an infinite series 1 + A'
/a

2 +K /a

4 + &c. or

fx + K3 fx

3 + K
5 f*

+ &c., the finite solution which we know exists

in the form
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g Geometrical

,1 2\5 / i a a a i_<\ antecedents

(1
-

ft?)* (A + A
af
x- + ... A

;_sfi.
l- S

) surestmodified
* form of

or (1 -fi')^A^ + AaH.

a + ...^.y-*),
80luti0n:

when b is the square of an odd integer (s),
and when a = i (i

+ 1),

i being an odd integer or an even integer; and, a minor defect,

but still a serious one, it does not show without elaborate veri-

fication that one or other of its constituents 1 + K
2 fx

2 + &c. or

/j.
+ K

3 [jl

3 + &c. consists of a finite number, \i or \{i + 1), of terms

when b is the square of an even integer and a-i(i+ 1), i being

an even integer or an odd integer.

(hf) A fonn of solution which turns out to be much simpler

in every case is suggested by our primary knowledge [§ (J) above]

of integral solutions. Put

y/b

ty = (l-/r)2 v (83),

V6

in (80) and divide the first member by (1
—

fx

2

)
2

. Thus we

find
correspond-

(1 -*0%- 2 (Ji + l)n|+[-,/» W>
* l)>-0 (84). gLj,,"

equation:

Assume now

«=2AX (85);

equating to zero the coefficient of /x" in the first member of

(84) gives

(»+l)(»+a)^.-[(»-l)»+S(^+l)»-a+^(^6+l)]^=0...(86),{fj^
or {n + l)(n + 2)A n+a=(p + l + * + a)(n + i + s-a)An (87),

°^ :

if we put a = J(a + 1), s = Jb (88),

and with this notation (84) becomes

(
1

"^|?- 2(s + 1^^ +[a2
~

(
' +

-r3V=0 (84
'

}
'

The second member of (87) shows that if the series (85) is in

descending powers of \x its first term must have either

n =— \ — 8 + a, or n = — § — 8— a:

the expansion thus obtained would, if not finite, be convergent deeding
when n>l and divergent when /x<l, and it is there-

J^jj^jj

fore not suited for the physical applications. On the other chosen,

hand, the first member of (87) shows that if the series (85) is in

ascending powers of
fx,

its first term must have either n = or

14—2
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n = 1 : the expansions thus obtained are necessarily convergent
when /x

< 1, and it is therefore these that are suited for our pur-

poses. Taking then A — 1 and A
r

=
0, and denoting by p the

series so found, and again A = and A
}

-
1, and q the series

;
so

that we have

p = 1 +A
oJ

A,

2 + A^t + etc.
)

and q = /a
+ A

3 /x

3 + A
s /x

& + etc. j
^ ''

A
2 ,
Av etc. and A

3 ,
A

s ,
etc. being found by two sets of suc-

cessive applications of (87); then the complete solution of (84) is

v = Cp + C'q (90).

This solution is identical with (38
iT

)
of § (I) above, as we see by

(88) and (79), which give

a = i + h >. (91).

(i')
The sign of either u or s may be changed, in virtue of

(88). ]STo variation however is made in the solution by changing
the sign of a [which corresponds to changing i into — i— 1, and

verifies (13) (g) above]: but a very remarkable variation is made

by changing the sign of s, from which, looking to (88), (83), (87),

we infer that if p and q denote what p and q become when — s

is substituted for s in (89), we have

P = (!-/*>) ,
92) .

and q
= (l~fx.yq j

K h

and the prescribed modification of (89) gives

p = i + a,/*
9 + ®y + etc - ) /93 x

q = fx + & 3 /a

3 + <&
5 /x

s + etc. J"
'
K h

&.,, &4 , etc., and &
3 ,

21
5 ,

etc. being found by successive applica-

tions of

_(n + %- s + a)(n + %-s-a)
'--

^TTy(n+2)~
"*- w

(j') In the case of "complete harmonics" s is zero or an

integer, and the p or q solution expressing the result of multiply-

ing the already finite and integral p or q solution by the integral

polynomial (1
-

fjf)',
is only interesting on account of the way of

obtaining it from (87), etc. in virtue of (88). But when either

a — ^ or s is not an integer, the possession of the alternative solu-

tions, p or p, q or q may come to be of great intrinsic importance,

in respect to obtaining results in finite form. For, supposing a

and s to be both positive, it is impossible that both p and q can

be finite polynomials, but one or both of p and q may be so; or
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one of the p, q forms and the other of the p, q forms may be Cases

finite. This we see from (87) and ('J4), which show as follows:— algebraic
solution.

1. If \ +s — a is positive, p and q must each be an infinite

series
;
but p or q will be finite if either ^ + s — a or \ + s + a is

a positive integer*; and both p and q will be finite if £ + « — a

and I + s + a are positive integers differing by unity or any odd

number.

2. If a^s+^j one of the two series p, q must be infinite;

and if a — s — £ is zero or a positive integer, one of the two

series p, q is finite. If, lastly, a + s — ^ is zero or a positive

integer, one of the two p, q is finite. It is p that is finite if

a — s — £ is zero or even, q if it is odd : and p that is finite if

a + 8 — A is zero or even, q if it is odd. Hence it is p and p, or

q and q that are finite if 2* be zero or even; but it is p and q,

or q and p that are finite if 2s be odd. Hence in this latter case

the complete solution is a finite algebraic function of
/a.

(k') Remembering that by a and s we denote the positive

values of the square roots indicated in (88), we collect from (f)
1 and 2, that, if F denote a rational integral function of /x and

(1
—

/A

2

)*
is

> the character of the solution of (80) is as follows in

the several cases indicated :
—

A; a<n|; if s and a — ^ are integers.

B; a >s + ?'> ifs+2 an<^ a are integers.

The complete solution is J
1
.

f A j
a < s + ^ ;

if s ± (a
—

|) is an integer, but a — ^ not an

integer.

II.
{ B >

a ^ s + 5 j
if a —

2"
± s ^s an integer, but s + ^ not an

I

integer.

A particular solution is Y
',

but the complete solution is not Y-

(I') "Complete Spherical Harmonics," or "Laplace's Co-

efficients," are included in the particular solution J1 of Case II. B.

(m
r
)

Differentiate (84') and put

dv

5T« <
95 >-

Unity being understood as included in the class of "positive integers."
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Three We find immediately
mudes of

derivation r/
2
,, rh,

withdaange
{1 _^)<^_

2 (s + 2)p^+ [a*-(s +f» =
(96).

Let ^t' =
/ty- +(±a + s + |)v (97).

We have, as will be proved presently,

(1
-

/A2)^" 2(S + 2)/XV +[(a±1)2
"

(S + r]W
' = - (98) -

Lastly, let u" = (I
- p

2

)y-
-

(± a + s + h)W (99).

We have, as will be proved presently,

(
1 -^^'- 2(S + 1^^ +

f(a±1)2
-
(S+^ M

''=0-^ 10 °)-

The operation
—

performed on a solid harmonic of degree

sin— a - ^, and type H{z, J(x
2 + y

2

)) s<j>, and transformed to polar

co-ordinates r, fi, <f),
with attention to (83), gives the transition

from v to u", as expressed in (99), and thus (100) is proved by

iff) (15).

Similarly the operation

(s^lH* JWMf+vf* (£-|)»h V(^r)](-»yy,

transformed to co-ordinates r, /*, <f>, gives (97), and thu (98) is

proved by (g) (15).

Thus it was that (97) (98), and (99) (100) were found. But,

assuming (97) and (99) arbitrarily as it were, we prove (98) and

(100) most easily as follows. Let

w' = XB>", and u"=%B"y (101).

Then, by (97) and (99), with (85), we find

(102)..?i-rl+J + s±a >
and B"

n +

Lastly, applying (87), we find that the corresponding equa-

tion is satisfied by B'n+3 + B'
n ,

with a±l and s+1 instead of

a and s : and bv B". i-B" ,
with a±l instead of a, but with s

unchanged.
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As to (95) and (96), they merely express for the generalized Examples bf

surface harmonics the transition from s to s + 1 without change
of i shown for complete harmonics by Murphy's formula,

§ 782 (6) below.

(n) Examples of (95) (96), and (99) (100).

Example 1 . Let a = s + J.

(84') becomes
(
1 -

ft')

d
'\
- 2

(s + 1
) /*^ = 0,

of which the complete solution is

dfx
v = C

(1
- ^i+i + c,

,(103)

By (95) (96) we find

u

as a solution of

Tesserals
from sec-
torial by in-
crease of s,

with order i

unchanged.

(1 -H-
2

)t^~ '2(n + s + ^)fx ~T'
- n

(
n + '2s+ 1)« =

CvLL CljX,

(104).

This is the particular finite solution indicated in § (Jc) II. A.

The liberty we now have to let a be negative as well as positive

allows us now to include in our formula for u the cases repre-

sented by the double sign
± in II. A of (Jc).

Example 2. By m successive applications of (99) (100), with

the upper sign, to v of (103), we find for the complete integral of

(1
-

(jl')-j-^- 2(s+ l)/*-j— 4 m(m + 2s +l)u'=0

*= c
{fV)fc

d/x
2V

+ F(r)\ + C"Ffr)

Tesserals
from sec-

(105), torialbyin-
v ' crease of i,

with s un-
changed.

where
y'(/x), F^), F(m) denote rational integral algebraic func-

tions of
(X.

Of this solution the part 6"F (/<<•)
is the particular finite solution

indicated in § (k') II. B- We now see that the complete solution

r dfi.

fa-H-T
1

'

integer, this is reducible to the form

involves no other transcendent than When s is an

1 +
a losr°

1 -
(i + ffc),
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Examples of
derivation
continued.

Algebraic
case of
last exam-
ple.

Zonal of

order zero:

growing
into one
sectorial by
augmenta-
tion of s,

with order
jtill zero •

a being a constant and f(/a)
a rational integral algebraic function

of
//..

In this case, remembering that (105) is what (84')

becomes when m + s + ^ is put for a, we may recur to our

notation of §§ (g) (j), by putting i for m + s, which is now an

integer : and going back, by (83) to (80) or (78), put

w = (l-^ju' (83');

thus (105) is equivalent to

dfx
(I-/-

2

)

dw

dp.

-S2

1-
— + i(i-r 1) w = 0. (78').

The process of Example 2, § (>*'), gives the complete integral of

this equation when i - s is a positive integer. When also s, and

therefore also i, is an integer, the transcendent involved be-

• in this case the algebraic part of the solutionoumes log

[or C'F (/*)(! -H-
2

)* according to the notation of (105) and (78')]

is the ordinary "Laplace's Function" of order and type (i, s) ;

the ©W
, S-

5

',
&c. of our previous notations of §§ (j), (y). It is

interesting to know that the other particular solution which we

now have, completing the solution of the differential equation

for these functions, involves nothing of transcendent but

1 +
fJL

log

(o) Examples of (99) (100), and (95) (96) continued.

Example 3. Returning to («'), Example 2, let s + £ be an

integer : the integral In— ,,. + i
is algebraic. Thus we have the

/(i-M
case of (k') I. B, ^ which the complete solution is algebraic.

(p) Returning to
(?*'), Example 1 : let a = h and s = ,

(103) becomes

n t\
d2v o

dv
n

of which the complete integral is

.-jour*

(103').

+ C

As before, apply (95) (96) n times successively : we find

uI=4.1.2...(«-l)(7
V.1-/J U+/J .(106)
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as one solution of the other
derived

jg
7 from this bv

(l-tf™-2(n + l)F.p-n(n + l)u = (96'). Jg**^a
l
x a/* equivalent

to zero.

To find the other: treat (106) by (99) (100) with the lower

sign; the effect is to diminish a from h to -\, and therefore to

make no change in the differential equation, but to derive from

(106) another particular solution, which is as follows :

IV f -\
u

2 J.1.2...(n-l).n.C 1 - fij \l +
fi,

(106').

Giving any different values to G in (106) and (106'), and, using Complete° J '

. solution for

K, K' to denote two arbitrary constants, adding we have the com- tesserals of
order zero*

plete solution of (96'),
which we may write as follows :

~vhr+j&r <107> -

(q) That (107) is the solution of (96') we verify in a moment

by trial, and in so doing we see farther that it is the complete

solution, whether n be integral or not.

(/) Example 4. Apply (99) (100) with upper sign i times to derivation

(107) and successive results. We get thus the complete solution both tes-
SPT*fl IS i if

of (84') for a- h = i any integer, if n is not an integer. But if n every lute-
tiiI order

is an integer we get the complete solution only provided i < n :

"

this is case I. A of § (k').
If we take * = »-l, the result,

algebraic as it is, may be proved to be expressible in the form

_ G + C'jcl^l -ft
2

)""
1

]u -
(i-fsy

'

i

which is therefore for n an integer the complete I

^ (108) :

integral of

/i »,
d~u du _ except case

(1
~

{*') -j—»
~ 2

\
n + 1

)
1

,
- lnu = °> I of s an inte-

dflT dfx. J gerar.d
!>«. when

being the case of (84') for which a = s - £, and s = n an integer : ^Jf
applying to this (99) (100) with upper sign, the constant G dis-

f""^d
ionis

appears, and we find u'= C as a solution of

(l-rt0-«(,
+
l)^^-O (109).

Hence, for %%n one solution is lost. The other, found by
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Examples of
derivation
continued

Finite alge-
braic ex-

pression of

complete
solution for

tesseral har-
monics of

integral
order.

continued applications of (99) (100) with upper sign, is the

Sill

regular
"
Laplace's function" growing from 6" sin" 6 n<f>, which

is the case represented by u'= C in (109). But in this con-

tinuation we are only doing for the case of n an integer, part

of what was done in § (n
f

), Example 2, where the other part,

from the other part of the solution of (109) now lost, gives the

other part of the complete solution of Laplace's equation subject

to the limitation i-n (or i-s) a positive integer, but not to the

limitation of i an integer or n an integer.

(s') Returning to the commencement of § (r'), with s put

for n, we find a complete solution growing in the form

Wr*). + /
y
*y.(-io

(110);

(110');

(l-tf
v '

(1+ M )'

which may be immediately reduced to

(W7
yj denoting an integral algebraic function of the i

lh

degree, readily

found by the proper successive applications of (99) (100).

Hence, by (83) (79), we have

ic
_ */oo (l +tf+ (-yg/K-j*) (i

-
/*)'

(111)>

as the complete solution of Laplace's equation

rRw^l + r^+^'+i)]"^ (
112

)>
a

fx. |_ djj. J |_
1 —

fx.

for the case of i an integer without any restriction as to the

value of s, which may be integral or fractional, real or imaginary,

with no failure except the case of s an integer and i > s, of which

the complete treatment is included in § (in), Example 2, above.
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CHAPTER II.

DYNAMICAL LAWS AND PRINCIPLES.

205. In the preceding chapter we considered as a subject of ideas of

i
. P . ,. „

";

matter and

pure geometry the motion of points, lines, surfaces, and volumes, fo>-ee intro-

whether taking place with or without change of dimensions and

form
;
and the results we there arrived at are of course altogether

independent of the idea of matter, and of the forces which matter

exerts. We have heretofore assumed the existence merely of

motion, distortion, etc.; we now come to the consideration, not

of how we anight consider such motions, etc., to be produced, but

of the actual causes which in the material world do produce
them. The axioms of the present chapter must therefore be

considered to be due to actual experience, in the shape either

of observation or experiment. How this experience is to be

obtained will form the subject of a subsequent chapter.

206. We cannot do better, at all events in commencing, than

follow Newton somewhat closely. Indeed the introduction to

the Principia contains in a most lucid form the general founda-

tions of Dynamics. The Definitiones and Axiomata sive Leges

Motus, there laid down, require only a few amplifications and

additional illustrations, suggested by subsequent developments,
to suit them to the present state of science, and to make a much
better introduction to dynamics than we find in even some of

the best modern treatises.

207. We cannot, of course, give a definition of Matter which Matter,

will satisfy the metaphysician, but the naturalist may be con-

tent to know matter as that which can be perceived by the senses,

or as that which can be acted upon by, or can exert, force. The
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latter, and indeed the former also, of these definitions involves

Force. the idea of Force, which, in point of fact, is a direct object of

•sense; probably of all our senses, and certainly of the " mus-

cular sense." To our chapter on Properties of Matter we must

refer for further discussion of the question, What is matter?

And we shall then be in a position to discuss the question

of the subjectivity of Force.

208. The Quantity of Matter in a body, or, as we now call

Mass -

it, the Mass of a body, is proportional, according to Newton, to

Density. the Volume and the Density conjointly. In reality, the defini-

tion gives us the meaning of density rather than of mass
;

for

it shows us that if twice the original quantity of matter, air for

example, be forced into a vessel of given capacity, the density

will be doubled, and so on. But it also shows us that, of matter

of uniform density, the mass or quantity is proportional to the

volume or space it occupies.

Let ilf be the mass, p the density, and Fthe volume, of a homo-

geneous body. Then

M=VP ;

if we so take our units that unit of mass is that of unit volume of

a body of unit density.

If the density vary from point to point of the body, we have

evidently, by the above formula and the elementary notation of

the integral calculus,

M-
| \jp dxdydz,

where p is supposed to be a known function of x, y, z, and the

integration extends to the whole space occupied by the matter of

the body whether this be continuous or not.

It is worthy of particular notice that, in this definition,

Newton says, if there be anything which freely pervades the

interstices of all bodies, this is not taken account of in estimat-

ing their Mass or Density.

.Measure- 209. Newton further states, that a practical measure of the

mass mass of a body is its Weight. His experiments on pendulums,

by which he establishes this most important result, will be de-

scribed later, in our chapter on Properties of Matter.
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As will be presently explained, the unit mass most convenient

for British measurements is an imperial pound of matter.

210. The Quantity of Motion, or the Momentum, of a rigid Momentum,

body moving without rotation is proportional to its mass and

velocity conjointly. The whole motion is the sum of the motions

of its several parts. Thus a doubled mass, or a doubled velocity,

would correspond to a double quantity of motion; and so on.

Hence, if we take as unit of momentum the momentum of

a unit of matter moving with unit velocity, the momentum of a

mass M moving with velocity v is Mv.

211. Chanqe of Quantity of Motion, or Change of Momen- Change of

. , , . iii c • momentum
turn, is proportional to the mass moving and the change ot its

velocity conjointly.

Change of velocity is to be understood in the general sense

of § 27. Thus, in the figure of that section, if a velocity re-

presented by OA be changed to another represented by OC, the

change of velocity is represented in magnitude and direction

by AC
212. Rate of Chanqe of Momentum is proportional to the Rate of

J a j •» «
^ change of

mass moving and the acceleration of its velocity conjointly,
momentum.

Thus (§ 35, b) the rate of change of momentum of a falling

body is constant, and in the vertical direction. Again (§ 35, a)

the rate of change of momentum of a mass M, describing a

MV 2

circle of radius R, with uniform velocity V, is —~
,
and is

directed to the centre of the circle
;

that is to say, it is a

change of direction, not a change of speed, of the motion.

Hence if the mass be compelled to keep in the circle by a

cord attached to it and held fixed at the centre of the circle, the

MV2

force with which the cord is stretched is equal to —^— : this is

called the centrifugal force of the mass M moving with velocity

Fin a circle of radius R.

Generally (§ 29), for a body of mass M moving anyhow in

d2
s .

space there is change of momentum, at the rate, M—2
in the direc-
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Rate of

change of

momentum.

Kinetic

energy.

Particle
and point.

Iiiertia.

tion of motion, and M— towards the centre of curvature of the
P

path ; and, if we choose, we may exhibit the whole acceleration

d'x

dt
2 M ay

dt*
of momentum by its three rectangular components M

d2
zM—

, or, according to the Newtonian notation, Mas, My, Mz.

213. The Vis Viva, or Kinetic Energy, of a moving body is

proportional to the mass and the square of the velocity, con-

jointly. If we adopt the same units of mass and velocity as

before, there is particular advantage in defining kinetic energy
as half the product of the mass and the square of its velocity.

214. Rate of Change of Kinetic Energy (when defined as

above) is the product of the velocity into the component of

rate of change of momentum in the direction of motion.

d/Mv 2
\ _ d(Mv)

Jt\T)~
V
~Jr~

'For

215. It is to be observed that, in what precedes, with the

exception of the definition of mass, we have taken no account

of the dimensions of the moving body. This is of no conse-

quence so long as it does not rotate, and so long as its parts

preserve the same relative positions amongst one another. In

this case we may suppose the whole of the matter in it to be

condensed in one point or particle. We thus speak of a material

particle, as distinguished from a geometrical point. If the body

rotate, or if its parts change their relative positions, then we

cannot choose any one point by whose motions alone we may
determine those of the other points. In such cases the momen-

tum and change of momentum of the whole body in any direc-

tion are, the sums of the momenta, and of the changes of

momentum, of its parts, in these directions
;

while the kinetic

energy of the whole, being non-directional, is simply the sum

of the kinetic energies of the several parts or particles.

216. Matter has an innate power of resisting external in-

fluences, so that every body, as far as it can, remains at rest, or

moves uniformly in a straight line.

This, the Inertia of matter, is proportional to the quantity of
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matter in the body. And it follows that some cause is requisite inertia.

to disturb a body's uniformity of motion, or to change its direc-

tion from the natural rectilinear path.

217. Force is any cause which tends to alter a body's natural Force,

state of rest, or of uniform motion in a straight line.

Force is wholly expended in the Action it produces; and the

body, after the force ceases to act, retains by its inertia the

direction of motion and the velocity which were given to it.

Force may be of divers kinds, as pressure, or gravity, or friction,

or any of the attractive or repulsive actions of electricity, mag-

netism, etc.

218. The three elements specifying a force, or the three Specifica-

elements which must be known, before a clear notion of the force,

force under consideration can be formed, are, its place of appli
-

cation, its direction, and its magnitude.

(a) The place of application of a force. The first case to be place of

considered is that in which the place of application is a point.

It has been shown already in what sense the term "
point"

is to be taken, and, therefore, in what way a force may be

imagined as acting at a point. In reality, however, the place of

application of a force is always either a surface or a space of

three dimensions occupied by matter. The point of the finest

needle, or the edge of the sharpest knife, is still a surface, and

acts by pressing over a finite area on bodies to which it may
be applied. Even the most rigid substanoes, when brought

together, do not touch at a point merely, but mould each other

so as to produce a surface of application. On the other hand,

gravity is a force of which the place of application is the whole

matter of the body whose weight is considered; and the smallest

particle of matter that has weight occupies some finite portion

of space. Thus it is to be remarked, that there are two kinds

of force, distinguishable by their place of application
—

force,

whose place of application is a surface, and force, whose place

of application is a solid. When a heavy body rests on the

ground, or on a table, force of the second character, acting

downwards, is balanced by force of the fir3t character acting

upwards.
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Direction. (ty The second element in the specification of a force is its

direction. The direction of a force is the line in which it acts.

If the place of application of a force be regarded as a point, a

line through that point, in the direction in which the force

tends to move the body, is the direction of the force. In the

case of a force distributed over a surface, it is frequently pos-

sible and convenient to assume a single point and a single line,

such that a certain force acting at that point in that line would

produce sensibly the same effect as is really produced.

Magnitude.
(c) The third element in the specification of a force is its

magnitude. This involves a consideration of the method fol-

lowed in dynamics for measuring forces. Before measuring

anything, it is necessary to have a unit of measurement, or a

standard to which to refer, and a principle of numerical specifi-

cation, or a mode of referring to the standard. These will be

supplied presently. See also § 258, below.

Aoceierative 219. The Accelerative Effect of a Force is proportional to

the velocity which it produces in a given time, and is measured

by that which is, or would be, produced in unit of time; in

other words, the rate of change of velocity which it produces.

This is simply what we have already defined as acceleration, § 28.

force
Measure of 220. The Measure of a Force is the quantity of motion which

it produces per unit of time.

The reader, who has been accustomed to speak of a force of

no many pounds, or so many tons, may be startled when he finds

that such expressions are not definite unless it be specified at

what part of the earth's surface the pound, or other definite

quantity of matter named, is to be weighed ;
for the heaviness or

gravity of a given quantity of matter differs in different latitudes.

But the force required to produce a stated quantity of motion in

a given time is perfectly definite, and independent of locality.

Thus, let W be the mass of a body, g the velocity it would

acquire in falling freely for a second, and P the force of gravity

upon it, measured in kinetic or absolute units. We have

P = Wg.
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221. According; to the system commonly followed in mathe- inconveni-
o •> J cut system

matical treatises on dynamics till fourteen years ago, when a small ^uses™
instalment of the first edition of the present work was issued

for the use of our students, the unit of mass was g times the

mass of the standard or unit weight. This definition, giving a

varying and a very unnatural unit of mass, was exceedingly

inconvenient. By taking the gravity of a constant mass for S'lmdards

the unit of force it makes the unit of force greater in high than
^"not*

e*

in low latitudes. In reality, standards of weight are masses, f*l™™elt0t

not forces. They are employed primarily in commerce for the
jjjj^rf"

purpose of measuring out a definite quantity of matter; not an force-

amount of matter which shall be attracted by the earth with a

given force.

A merchant, with a balance and' a set of standard weights,

would give his customers the same quantity of the same kind of

matter however the earth's attraction might vary, depending as

he does upon weights for his measurement; another, using a

spring-balance, would defraud his customers in high latitudes,

and himself in low, if his instrument (which depends on constant

forces and not on the gravity of constant masses) were correctly

adjusted in London.

It is a secondary application of our standards of weight to

employ them for the measurement offorces, such as steam pres-

sures, muscular power, etc. In all cases where great accuracy

is required, the results obtained by such a method have to be

reduced to what they would have been if the measurements of

force had been made by means of a perfect spring- balance,

graduated so as to indicate the forces of gravity on the standard

weights in some conventional locality.

It is therefore very much simpler and better to take the

imperial pound, or other national or international standard

weight, as, for instance, the gramme (see the chapter on

Measures and Instruments), as the unit of mass, and to derive

from it, according to Newton's definition above, the unit of

force. This is the method which Gauss has adopted in his

great improvement (§ 223 below) of the system of measurement

of forces.

vol. i. 15
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ciairauit's 222. The formula, deduced by Clairault from observation,
formula for , . . . . . _ . . . „

'

the amount and a certain theory regarding the figure and density of the

earth, may be employed to calculate the most probable value

of the apparent force of gravity, being the resultant of true

gravitation and centrifugal force, in any locality where no

pendulum observation of sufficient accuracy has been made.

This formula, with the two coefficients which it involves,

corrected according to the best modern pendulum observations

(Airy, Encyc. Metropolitana, Figure of the Earth), is as fol-

lows :
—

Let G be the apparent force of gravity on a unit mass at the

equator, and g that in any latitude A,; then

g= G (1 + -005133 sin
2

\).

The value of G, in terms of the British absolute unit, to be

explained immediately, is

32-088.

According to this formula, therefore, polar gravity will be

g = 32088 x 1-005133 = 322527.

223. Gravity having failed to furnish a definite standard,

independent of locality, recourse must be had to something else.

The principle of measurement indicated as above by Newton,

Gauss's but first introduced practically by Gauss, furnishes us with

Unit of what we want. According to this principle, the unit force is

that force which, acting on a national standard unit of matter

during the unit of time, generates the unity of velocity.

This is known as Gauss's absolute unit
; absolute, because

it furnishes a standard force independent of the differing

amounts of gravity at different localities. It is however ter-

restrial and inconstaut if the unit of time depends on the earth's

rotation, as it does in our present system of chronometry. The

period of vibration of a piece of quartz crystal of specified shape

and size and at a stated temperature (a tuning-fork, or bar, as

one of the bars of glass used in the "musical glasses") gives us

a unit of time which is constant through all space and all time,

and independent of the earth. A unit of force founded on such

a unit of time would be better entitled to the designation abso-
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lute than is the "absolute unit" now generally adopted, which is Maxwell's

7 T-« 1
•

1 1
•

1 I
tw0 8UBKP3-

founded on the mean solar second. But this depends essentially tionsfor

i p t i i ii Absolute

on one particular piece of matter, and is therefore liable to ail unit of

the accidents, etc. which affect so-called National Standards

however carefully they may be preserved, as well as to the

almost insuperable practical difficulties which are experienced

when we attempt to make exact copies of them. Still, in the

present state of science, we are really confined to such approxi-

mations. The recent discoveries due to the Kinetic theory of

gases and to Spectrum analysis (especially when it is applied to

the light of the heavenly bodies) indicate to us natural standard

pieces of matter such as atoms of hydrogen, or sodium, ready made

in infinite numbers, all absolutely alike in every physical pro-

perty. The time of vibration of a sodium particle corresponding

to any one of its modes of vibration, is known to be absolutely

independent of its position in the universe, and it will probably

remain the same so long as the particle itself exists. The wave-

length for that particular ray, i. e. the space through which

light is propagated in vacuo during the time of one complete

vibration of this period, gives a perfectly invariable unit of

length; and it is possible that at some not very distant day the

mass of such a sodium particle may be employed as a natural

standard for the remaining fundamental unit. This, the latest

improvement made upon our original suggestion of a Perennial

Spring (First edition, § 406J, is due to Clerk Maxwell*; who

has also communicated to us another very important and in-

teresting suggestion for founding the unit of time upon physical

properties of a substance without the necessity of specifying any

particular quantity of it. It is this, water being chosen as the

substance of all others known to us which is most easily obtained

in perfect purity and in perfectly definite physical condition.—
Call the standard density of water the maximum density of

the liquid when under the pressure of its own vapour alone.

The time of revolution of an infinitesimal satellite close to the

surface of a globe of water at standard density (or of any kind

of matter at the same density) may be taken as the unit of

time
;

for it is independent of the size of the globe. This has

*
Electricity and Magnetism, 1872.

15—2
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Third sug- suggested to us still another unit, founded, however, still upon
Absolute* the same physical principle. The time of the gravest simple

Time. harmonic infinitesimal vibration of a globe of liquid, water at

standard density, or of other perfect liquids at the same density,

may be taken as the unit of time
;
for the time of the simple

harmonic vibration of any one of the fundamental modes of a

liquid sphere is independent of the size of the sphere.

Let y.be the force of gravitational attr-actioii between two

units of matter at unit distance. The force of gravity at the

4tt
surface of a globe of radius r, and density p, is

-^-fpr.
Hence

if to be the angular velocity of an infinitesimal satellite, we

have, by the equilibrium of centrifugal force and gravity

(§§ 212, 477),

2
±ir .

wr= -»-fpr.

Hence (i)

and therefore if I7 be the satellite's period,

3
T=2tt

(which is equal to the period of a simple pendulum whose length
is the globe's radius, and weighted end infinitely near the surface

of the globe). And it has been proved* that if a globe of liquid

be distorted infinitesimally according to a spherical harmonic of

order i, and left at rest, it will perform simple harmonic oscilla-

tions in a period equal to

/r_3_ k + ij>
V UVp'2*(*-i)/'

Hence if T' denote the period of the gravest, that, namely,
for which i — 2, we have

*-*-/»
The semi-period of an infinitesimal satellite round the earth is

equal, reckoned in seconds, to the square root of the number of

metres in the earth's radius, the metre being very approximately

* " Dynamical Problems regarding Elastic Spheroidal Shells and Spheroids

of Incompressible Liquid" (W. Thomson), Phil. Trans. Nov. 27, 1862.
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the length of the seconds pendulum, whose period is two Suggestions
, . , , , ,' „ „5 for Absolute

seconds. Hence taking the earths radius as 6,370,000 metres, Unit of

and its density as 5i times that of our standard globe,

T = 3h. 17 m.

7" = 3 h. 40 m.

224. The absolute unit depends on the unit of matter, the

unit of time, and the unit of velocity; and as the unit of velo-

city depends on the unit of space and the unit of time, there is,

in the definition, a single reference to mass and space, but a

double reference to time; and this is a point that must be par-

ticularly attended to.

225. The unit of mass may be the British imperial pound;
the unit of space the British standard foot; and, accurately

enough for practical purposes for a few thousand years, the unit

of time may be the mean solar second.

We accordingly define the British absolute unit force as "the British ab-

. ir f i
solute unit.

force which, acting on one pound ot matter tor one second,

generates a velocity of one foot per second." Prof. James

Thomson has suggested the name "Poundal" for this unit of

force.

226. To illustrate the reckoning of force in "absolute measure," Comparison

find how many absolute units will produce, in any particular gravity,

locality, the same effect as the force of gravity on a given mass.

To do this, measure the effect of gravity in producing accelera-

tion on a body unresisted in any way. The most accurate method

is indirect, by means of the pendulum. The result of pendulum

experiments made at Leith Fort, by Captain Kater, is, that the

velocity which would be acquired by a body falling unresisted

for one second is at that place 32207 feet per second. The

preceding formula gives exactly 322, for the latitude 55° 33',

which is approximately that of Edinburgh. The variation in

the force of gravity for one degree of difference of latitude about

the latitude of Edinburgh is only '0000832 of its own amount.

It is nearly the same, though somewhat more, for every degree
of latitude southwards, as far as the southern limits of the

British Isles. On the other hand, the variation per degree is sen-

sibly less, as far north as the Orkney and Shetland Isles. Hence
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Gravity of the augmentation of gravity per degree from south to north

or mass in throughout the British Isles is at most about -r^hm of its whole
terms of . .

Kinetic amount in any locality. The average for the whole of Great

Britain and Ireland differs certainly but little from 32 -

2. Our

present application is, that the force of gravity at Edinburgh is

32*2 times the force which, acting on a pound for a second,

would generate a velocity of one foot per second
;

in other

words, 32'2 is the number of absolute units which measures the

weight of a pound in this latitude. Thus, approximately, the

poundal is equal to the gravity of about half an ounce.

227. Forces (since they involve only direction and magni-

tude) may be represented, as velocities are, by straight lines in

their directions, and of lengths proportional to their magnitudes,

respectively.

Also the laws of composition and resolution of any number

of forces acting at the same point, are, as we shall show later

(§ 255), the same as those which we have already proved to

hold for velocities; so that with the substitution of force for

velocity, §§ 26, 27, are still true.

Effective 228. Iu rectangular resolution the Component of a force in

of a force"* any direction, (sometimes called the Effective Component in that

direction,) is therefore found by multiplying the magnitude of

the force by the cosine of the angle between the directions of

the force and the component. The remaining component in this

case is perpendicular to the other.

It is very generally convenient to resolve forces into com-

ponents parallel to three lines at right angles to each other;

each such resolution being effected by multiplying by the

cosine of the angle concerned.'O

Geometrical 229. The point whose distances from three planes at right

prehmtaary angles to one another are respectively equal to the mean dis-

of centre of" tances of any group of points from these planes, is at a distance

from any plane whatever, equal to the mean distance of the

gi'oup from the same plane. Hence of course, if it is in motion,

its velocity perpendicular to that plane is the mean of the velo-

cities of the several points, in the same direction.
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Let (x , 11 , z ), etc., be the points of the group in number i ;
Geometrical

v ' '

, . „ . ,. . Theorem
and x, y, z be the co-ordinates of a point at distances respectively preliminary

• t f ,t i p p _Lii to definition

equal to their mean distances Irom the planes ot reterence; tbat of centre of
inertia.

is to say, let

x^ + x
2
+ etc. . y { +y2

+ eto. __« 1
+ «

2
+etc.

,U=~ -r ,

5—Ly = --^ •**?- -. *
% % %

Thus, if p , p.2, etc., and p, denote the distances of the points in

question from any plane at a distance a from the origin of co-

ordinates, perpendicular to the direction (I, m, n), the sum of a

and p will make up the projection of the broken line xv y x , %
}

on
(I, m, n), and therefore

p l

= lx
x
+ my x

+ nz
x

—
a, etc.

;

and similarly, p — Ix + my + nz - a.

Substituting in this last the expressions for x, y, z, we find

», + »„+ etc.

P=^i— '

which is the theorem to be proved. Hence, of course,

at i\dt at

230. The Centre of Inertia of a system of equal material Pe
e

n
r*^

of

points (whether connected with one another or not) is the point

whose distance is equal to their average distance from any plane
whatever (§ 229).

A group of material points of unequal masses may always be

imagined as composed of a greater number of equal material

points, because we may imagine the given material points

divided into different numbers of very small parts. In any
case in which the magnitudes of the given masses are incom-

mensurable, we may approach as near as we please to a rigorous

fulfilment of the preceding statement, by making the parts into

which we divide them sufficiently small.

On this understanding the preceding definition may be ap-

plied to define the centre of inertia of a system of material

points, whether given equal or not. The result is equivalent to

this:—
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Centre of The centre of inertia of any system of material points what-
Inertia. . .

ever (whether rigidly connected with one another, or connected

in any way, or quite detached), is a point whose distance from

any plaue is equal to the sum of the products of each mass into

its distance from the same plane divided hy the sum of the

masses.

We also see, from the proposition stated above, that a point
whose distance from three rectangular planes fulfils this con-

dition, must fulfil this condition also for every other plane.

»'
The co-ordinates of the centre of inertia, of masses w

,
w

etc., at points (xl} ylf «,), (xs , y2 ,
z
s), etc., are given by the follow-

ing formula? :
—

wx + w x + etc. %wx 2wy 'S.wz
nt\ — _J_i g g == at — il >v —-

10^+ w2
+etc. 2w ' 2w ' 2w

These formulae are perfectly general, and can easily be put
into the particular shape required for any given case. Thus,

suppose that, instead of a set of detached material points, we

have a continuous distribution of matter through certain definite

portions of space ;
the density at x, y, z being p, the elementary

principles of the integral calculus give us at once

.fffpxdxdyde ^
J ffpdxdydz

'

where the integrals extend through all the space occupied by the

mass in question, in which p has a value different from zero.

The Centre of Inertia or Mass is thus a perfectly definite

point in every body, or group of bodies. The term Centre of

Gravity is often very inconveniently used for it. The theory

of the resultant action of gravity which will be given under

Abstract Dynamics shows that, except in a definite class of

distributions of matter, there is no one fixed point which can

properly be called the Centre of Gravity of a rigid body. In

ordinary cases of terrestrial gravitation, however, an approxi-

mate solution is available, according to which, in common

parlance, the term "Centre of Gravity" may be used as equi-

valent to Centre of Inertia; but it must be carefully re-

membered that the fundamental ideas involved in the two

definitions are essentially different.
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The second proposition in § 229 may now evidently be Centre of

stated thus :
—The sum of the momenta of the parts of the

system in any direction is equal to the momentum in the same

direction of a mass equal to the sum of the masses moving with

a velocity equal to the velocity of the centre of inertia.

231. The Moment of any physical agency is the numerical Moment,

measure of its importance. Thus, the moment of a force round

a point or round a line, signifies the measure of its importance

as regards producing or balancing rotation round that point or

round that line.

232. The Moment of a force about a point is defined as the Moment of
u lore©

product of the force into its perpendicular distance from the a^ a

point. It is numerically double the area of the triangle whose

vertex is the point, and whose base is a line representing the

force in magnitude and direction. It is often convenient to

represent it by a line numerically equal to it, drawn through
the vertex of the triangle perpendicular to its plane, through
the front of a watch held in the plane with its centre at the

point, and facino' so that the force tends to turn round this Moment of
r ' ° a force

point in a direction opposite to the hands. The moment of a about an
* L *

m
axis.

force round any axis is the moment of its component in any

plane perpendicular to the axis, round the point in which the

plane is cut by the axis. Here we imagine the force resolved

into two components, one parallel to the axis, which is ineffective

so far as rotation round the axis is concerned; the other perpen-
dicular to the axis (that is to say, having its line in any plane

perpendicular to the axis). This latter component may be called

the effective component of the force, with reference to rotation

round the axis. And its moment round the axis may be defined

as its moment round the nearest point of the axis, which is

equivalent to the preceding definition. It is clear that the

moment of a force round any axis, is equal to the area of the

projection on any plane perpendicular to the axis, of the figure

representing its moment round any point of the axis.

233. The projection of an area, plane or curved, on any Digression

plane, is the area included in the projection of its bounding tion o?
60

i areas.
line.
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Digression If we imagine an area divided into any number of parts, the
on projec-

J A

tionof projections 01 these parts on any plane make up the projection
of the whole. But in this statement it must be understood that

the areas of partial projections are to be reckoned as positive if

particular sides, which, for brevity, we may call the outside of

the projected area and the front of the plane of projection, face

the same way, and negative if they face oppositely.

Of course if the projected surface, or any part of it, be a plane
area at right angles to the plane of projection, the projection

vanishes. The projections of any two shells having a common

edge, on any plane, are equal, but with the same, or opposite,

signs as the case may be. Hence, by taking two such shells

facing opposite ways, we see that the projection of a closed

surface (or a shell with evanescent edge), on any plane, is

nothing.

Equal areas in one plane, or in parallel planes, have equal

projections on any plane, whatever may be their figures.

Hence the projection of any plane figure, or of any shell,

edged by a plane figure, on another plane, is equal to its area,

multiplied by the cosine of the angle at which its plane is in-

clined to the plane of projection. This angle is acute or obtuse,

according as the outside of the projected area, and the front of

plane of projection, face on the whole towards the same parts,

or oppositely. Hence lines representing, as above described,

moments about a point in different planes, are to be com-

pounded as forces are.— See an analogous theorem in § 96.

Couple. 234. A Couple is a pair of equal forces acting in dissimilar

directions in parallel lines. The Moment of a couple is the

sum of the moments of its forces about any point in their plane,

and is therefore equal to the product of either force into the

shortest distance between their directions. This distance is called

the Arm of the couple.

The Axis of a Couple is a line drawn from any chosen point

of reference perpendicular to the plane of the couple, of such

magnitude and in such direction as to represent the magnitude
of the moment, and to indicate the direction in which the couple

tends to turn. The most convenient rule for fulfilling the

latter condition is this:—Hold a watch with its centre at the
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point of reference, and with its plane parallel to the plane of ccupie;

the couple. Then, according as the motion of the hands is

contrary to or along with the direction in which the couple

tends to turn, draw the axis of the couple through the face

or through the back of the watch, from its centre. Thus a

couple is completely represented by its axis
;
and couples are to

be resolved and compounded by the same geometrical construc-

tions performed with reference to their axes as forces or velo-

cities, with reference to the lines directly representing them.

235. If we substitute, for the force in § 232, a velocity, we Moment of

have the moment of a velocity about a point ;
and by intro-

ducing the mass of the moving body as a factor, we have an

important element of dynamical science, the Moment of Momen- Moment of

turn. The laws of composition and resolution are the same
momen um*

as those already explained ;
but for the sake of some simple

applications we give an elementary investigation.

The moment of a rectilineal motion is the product of its Moment of
3. T"ppt 1 1 1 Tl P3 1

length into the distance of its line from the point. dispiace-
. ment.

The moment of the resultant velocity of a particle about any

point in the plane of the components is equal to the algebraic

sum of the moments of the components, the proper sign of each

moment being determined as above, § 233. The same is of

course true of moments of displacements, of moments of forces

and of moments of momentum.

First, consider two component motions, AB and AC, and let For two
forces

AD be their resultant (8 27). Their half moments round the motions,
velocities,

point are respectively the areas OAB, OCA. Now OCA or mo-.r 1 J menta, in

together with half the area of the parallelogram CABD, is one plane° r ° the sum of

equal to OBD. Hence the sum of the two half moments their mo-
j- ments

together with half the area of the parallelogram, is equal toP/ ™^^
AOB together with BOB, that is to say, to the area of the ™ment of

whole figure OABD. But ABD, a part ESftJy
of this figure, is equal to half the area of /{'\x thatpiane.

the parallelogram; and therefore the re- /
j

\ "X.

mainder, OAD, is equal to the sum of

the two half moments. But OAD is half / CJ- \ ^^?D
the moment of the resultant velocityround

the point 0. Hence the moment of the A
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resultant is equal to the sum of the moments of the two com-

ponents.

If there are any number of component rectilineal motions in

one plane, we may compound them in order, any two taken

Anynum- together first, then a third, and so on; and it follows that the

moments sum of their moments is equal to the moment of their resultant,

piancfcom- It follows, of course, that the sum of the moments of any number

addition.
y
of component velocities, all in one plane, into which the velo-

city of any point may be resolved, is equal to the moment of

their resultant, round any point in their plane. It follows also,

that if velocities, in different directions all in one plane, be

successively given to a moving point, so that at any time its

velocity is their resultant, the moment of its velocity at any
time is the sum of the moments of all the velocities which have

been successively given to it.

Cor.—If one of the components always passes through the

point, its moment vanishes. This is the case of a motion in

which the acceleration is directed to a fixed point, and we thus

reproduce the theorem of § 36, a, that in this case the areas

described by the radius-vector are proportional to the times
;

for, as we have seen, the moment of velocity is double the area

traced out by the radius-vector in unit of time.

Moment 236. The moment of the velocity of a point round any axis

ads!
an

is the moment of the velocity of its projection on a plane per-

pendicular to the axis, round the point in which the plane is cut

by the axis.

Moment of The moment of the whole motion of a point during any
a whole . .... .......
motion, time, round any axis, is twice the area described in that time
round an .

axis. by the radius-vector of its projection on a plane perpendicular to

that axis.

If we consider the conical area traced by the radius-vector

drawn from any fixed point to a moving point whose motion is

not confined to one plane, we see that the projection of this area

on any plane through the fixed point is half of what we have

just defined as the moment of the whole motion round an axis

perpendicular to it through the fixed point. Of all these

planes, there is one on which the jarojection of the area is greater
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than on any other; and the projection of the conical area on Moment or

any plane perpendicular to this plane, is equal to nothing, the motion,

proper interpretation of positive and negative projections being axis,

used.

If any number of moving points are given, we may similarly

consider the conical surface described by the radius-vector of

each drawn from one fixed point. The same statement applies

to the projection of the many-sheeted conical surface, thus pre-

sented. The resultant axis of the whole motion in any finite Resultant

time, round the fixed point of the motions of all the moving

points, is a line through the fixed point perpendicular to the

plane on which the area of the whole projection is greater than

on any other plane ;
and the moment of the whole motion round

the resultant axis, is twice the area of this projection.

The resultant axis and moment of velocity, of any number of

moving points, relatively to any fixed point, are respectively the

resultant axis of the whole motion during an infinitely short

time, and its moment, divided by the time.

The moment of the whole motion round any axis, of the

motion of any number of points during any time, is equal

to the moment of the whole motion round the resultant axis

through any point of the former axis, multiplied into the cosine

of the angle between the two axes.

The resultant axis, relatively to any fixed point, of the whole

motion of any number of moving points, and the moment of

the whole motion round it, are deduced by the same elemen-

tary constructions from the resultant axes and moments of the

individual points, or partial groups of points of the system, as

the direction and magnitude of a resultant displacement are

deduced from any given lines and magnitudes of component Moment of
J ° ° * momentum.

displacements.

Corresponding statements apply, of course, to the moments of

velocity and of momentum.

237. If the point of application of a force be displaced virtual
x x x

<

±
velocity.

through a small space, the resolved part of the displacement in

the direction of the force has been called its Virtual Velocity.
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This is positive or negative according as the virtual velocity is

in the same, or in the opposite, direction to that of the force.

The product of the force, into the virtual velocity of its point

of application, has been called the Virtual Moment of the force.

These terms we have introduced since they stand in the history

and developments of the science
; but, as we shall show further

on, they are inferior substitutes for a far more useful set of ideas

clearly laid down by Newton.

238. A force is said to do work if its place of application

has a positive component motion in its direction
;
and the work

done by it is measured by the product of its amount into this

component motion.

Thus, in lifting coals from a pit, the amount of work done is

proportional to the weight of the coals lifted
;
that is, to the

force overcome in raising them
;
and also to the height through

which they are raised. The unit for the measurement of work

adopted in practice by British engineers, is that required to

overcome a force equal to the gravity of a pound through the

space of a foot
;
and is called a Foot-Pound.

In purely scientific measurements, the unit of work is not

the foot-pound, but the kinetic unit force (§ 225) acting through
unit of space. Thus, for example, as we shall show further on,

this unit is adopted in measuring the work done by an electric

current, the units for electric and magnetic measurements being

founded upon the kinetic unit force.

If the weight be raised obliquely, as, .for instance, along a

smooth inclined plane, the space through which the force has

to be overcome is increased in the ratio of the length to the

height of the plane ;
but the force to be overcome is not the

whole gravity of the weight, but only the component of the

gravity parallel to the plane ;
and this is less than the gravity

in the ratio of the height of the plane to its length. By

multiplying these two expressions together, we find, as we

might expect, that the amount of work required is unchanged

by the substitution of the oblique for the vertical path.

239. Generally, for any force, the work done during an

infinitely small displacement of the point of application is the
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virtual moment of the force (8 237), or is the product of the worker*
. . . force,

resolved part of the force in the direction of the displacement
into the displacement.

From this it appears, that if the motion of the point of

application be always perpendicular to the direction in which

a force acts, such a force does no work. Thus the mutual

normal pressure between a fixed and moving body, as the

tension of the cord to which a pendulum bob is attached, or

the attraction of the sun on a planet if the planet describe a

circle with the sun in the centre, is a case in which no work is

done by the force.

240. The work done by a force, or by a couple, upon a body Wor
^

of a

turning about an axis, is the product of the moment of the

force or couple into the angle (in radians, or fraction of a radian)

through which the body acted on turns, if the moment remains

the same in all positions of the body. If the moment be varia-

ble, the statement is only valid for infinitely small displace-

ments, but may be made accurate by employing the proper

average moment of the force or of the couple. The proof is

obvious.

If Q be the moment of the force or couple for a position of

the body given by the angle 6, Q (6
l

—
o )

if Q is constant, or

/"ft
I Qdd = g(0

— 6
)
where q is the proper average value of Q

when variable, is the work done by the couple during the rotation

from 6 to r

241. Work done on a body by a force is always shown by a Transfonn-
. . . .

ationof

corresponding increase of vis viva, or kinetic energy, if no other work -

forces act on the body wbich can do work or have work done

against them. If work be done against any forces, the increase

of kinetic energy is less than in the former case by the amount

of work so done. In virtue of this, however, the body possesses

an equivalent in the form of Potential Energy (§ 273), if its Potential

physical conditions are such that these forces will act equally,

and in the same directions, if the motion of the system is

reversed. Thus there may be no change of kinetic energy pro-
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Potential duced, and the work done may be wholly stored up as potential
energy.

J J ± x

energy.

Thus a weight requires work to raise it to a height, a spring

requires work to bend it, air requires work to compress it, etc.;

but a raised weight, a bent spring, compressed air, etc., are

stores of energy which can be made use of at pleasure.

Newton's
Laws of

Motion.

Axiom.

242. In what precedes we have given some of Newton's

Definitiones nearly in his own words
;
others have been enun-

ciated in a form more suitable to modern methods
;
and some

terms have been introduced which were invented subsequent
to the publication of the Principia. But the Axiomata, sive

Leges Motus, to which we now proceed, are given in Newton's

own words
;
the two centuries which have nearly elapsed since

he first gave them have not shown a necessity for any addition

or modification. The first two, indeed, were discovered by

Galileo, and the third, in some of its many forms, was known
to Hooke, Huyghens, Wallis, Wren, and others

;
before the

publication of the Principia. Of late there has been a tendency
to split the second law into two, called respectively the second

and third, and to ignore the third entirely, though using it

directly in every dynamical problem ;
but all who have done so

have been forced indirectly to acknowledge the completeness of

Newton's system, by introducing as an axiom what is called

D'Alembert's principle, which is really Newton's rejected third

law in another form. Newton's own interpretation of his third

law directly points out not only D'Alembert's principle, but also

the modern principles of Work and Energy.

243. An Axiom is a proposition, the truth of which must

be admitted as soon as the terms in which it is expressed are

clearly understood. But, as we shall show in our chapter on
"
Experience," physical axioms are axiomatic to those only who

have sufficient knowledge of the action of physical causes to

enable them to see their truth. Without further remark we

shall give Newton's Three Laws
;

it being remembered that, as

the properties of matter might have been such as to render a

totally different set of laws axiomatic, these laws must be con-
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sidered as resting ou convictions drawn from observation and

experiment, not on intuitive perception.

244. Lex I. Corpus omne perseverare in statu suo quiescendi Kuwton'a

, ,. .. . . 7 . . . -77 7 v • -7
first hw.

vet movendi unijormiter in directum, nisi quatenus ittud a vinous

impressis cogitur statnm suum mutare.

Every body continues in its state of rest or of uniform motion

in a straight line, except in so far as it may be compelled by

force to change that state.

245. The meaning of the term Rest, in physical science Best.

is essentially relative. Absolute rest is undefinable. If the

universe of matter were finite, its centre of inertia might fairly

be considered as absolutely at rest
;
or it might be imagined to

be moving with any uniform velocity in any direction whatever

through infinite space. But it is remarkable that the first law

of motion enables us (§ 249, below) to explain what may be

called directional rest. As will soon be shown, § 267, the plane

in which the moment of momentum of the universe (if finite)

round its centre of inertia is the greatest, which is clearly de-

terminable from the actual motions at any instant, is fixed in

direction in space.

246. We may logically convert the assertion of the first law

of motion as to velocity into the following statements :
—

The times during which any particular body, not compelled

by force to alter the speed of its motion, passes through equal

spaces, are equal. And, again
—Every other body in the uni-

verse, not compelled by force to alter the speed of its motion,

moves over equal spaces in successive intervals, during which

the particular chosen body moves over equal spaces.

247. The first part merely expresses the convention uni- Time,

versally adopted for the measurement of Time. The earth, in

its rotation about its axis, presents us with a case of motion in

which the condition, of not being compelled by force to alter

its speed, is more nearly fulfilled than in any other which

we can easily or accurately observe. And the numerical

measurement of time practically rests on defining equal inter-

vals of time, as times during which the earth turns through equal

vol. I. 16
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angles. This is, of course, a mere convention, and not a law of

nature
; and, as we now see it, is a part of Newton's fh-st law.

Examples of 248. The remainder of the law is not a convention, but a

great truth of nature, which we may illustrate by referring to

small and trivial cases as well as to the grandest phenomena we

can conceive.

A curling-stone, projected along a horizontal surface of ice,

travels equal distances, except in so far as it is retarded by
friction and by the resistance of the air, in successive intervals

of time during which the earth turns through equal angles.

The sun moves through equal portions of interstellar space in

times during which the earth turns through equal angles, except
in so far as the resistance of interstellar matter, and the attrac-

tion of other bodies in the universe, alter his speed and that of

the earth's rotation.

Directional 249. If two material points be projected from one position,
tixcclncss.

A, at the same instant with any velocities in any directions,

and each left to move uninfluenced by force, the line joining
them will be always parallel to a fixed direction. For the law

asserts, as we have seen, that AP : AP' :: AQ : AQ',
if P, Q, and

again P', Q' are simultaneous positions ;
and therefore PQ is

parallel to P'Q'. Hence if four material points 0, P, Q, R are

all projected at one instant from one position, OP, OQ, OB
The "

inva- are fixed directions of reference ever after. But, practically,

Plane" the determination of fixed directions in space, § 267, is made to

system. depend upon the rotation of groups of particles exerting forces

on each other, and thus involves the Third Law of Motion.

250. The whole law is singularly at variance with the tenets

of the ancient philosophers who maintained that circular motion

is perfect.

The last clause, "nisi quatenus," etc., admirably prepares for

the introduction of the second law, by conveying the idea that

it is force alone which can produce a change of motion. How,
we naturally inquire, does the change of motion produced

depend on the magnitude and direction of the force which

produces it ? And the answer is—
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251. Lex II. Mutationem motlXs proportionalem esse vi xewton's
second Ihw

motrici impresses, et fieri secundum lineam rectam quel vis ilia

imprimatur.

Change of motion is proportional to force applied, and takes

place in the direction of the straight line in which the force acts.

252. If any force generates motion, a double force will

generate double motion, and so on, whether simultaneously or

successively, instantaneously, or gradually applied. And this

motion, if the body was moving beforehand, is either added

to the previous motion if directly conspiring with it
;

or is

subtracted if directly opposed ;
or is geometrically compounded

with it, according to the kinematical principles already ex-

plained, if the line of previous motion and the direction of the

force are inclined to each other at an angle. (This is a para-

phrase of Newton's own comments on the second law.)

253. In Chapter I. we have considered change of velocity,

or acceleration, as a purely geometrical element, and have seen

how it may be at once inferred from the given initial and final

velocities of a body. By the definition of quantity of motion

(§ 210), we see that, if we multiply the change of velocity,

thus geometrically determined, by the mass of the body, we

have the change of motion referred to in Newton's law as the

measure of the force which produces it.

It is to be particularly noticed, that in this statement there

is nothing said about the actual motion of the body before it

was acted on by the force : it is only the change of motion that

concerns us. Thus the same force will produce precisely the

same change of motion in a body, whether the body be at rest,

or in motion with any velocity whatever.
|

254. Again, it is to be noticed that nothing is said as to the

body being under the action of one force only ;
so that we

may logically put a part of the second law in the following

(apparently) amplified form :
—

When any forces whatever act on a body, then, whether the

body be originally at rest or moving with any velocity and in any

direction, each force produces in the body the exact change of

1G—2
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motion which it would have produced if it had acted singly on

the body originally at rest.

Composi- 255. A remai'kable consequence follows immediately from

forces. this view of the second law. Since forces are measured by the

changes of motion they produce, and their directions assigned

by the directions in which these changes are produced; and

since the changes of motion of one and the same body are in

the directions of, and proportional to, the changes of velocity
—

a single force, measured by the resultant change of velocity,

and in its direction, will be the equivalent of any number of

simultaneously acting forces. Hence

The resultant of any number offorces (applied at one point) is

to be found by the same geometrical process as the resultant of any
number of simultaneous velocities.

256. From this follows at once (§ 27) the construction of

the Parallelogram of Forces for finding the resultant of two

forces, and the Polygon of Forces for the resultant of any num-

ber of forces, in lines all through one point.

The case of the equilibrium of a number of forces acting at

one point, is evidently deducible at once from this
;
for if we

introduce one other force equal and opposite to their resultant,

this will produce a change of motion equal and opposite to the

resultant change of motion produced by the given forces
;

that

is to say, will produce a condition in which the point expe-

riences no change of motion, which, as we have already seen, is

the only kind of rest of which we can ever be conscious.

257. Though Newton perceived that the Parallelogram of

Forces, or the fundamental principle of Statics, is essentially

involved in the second law of motion, and gave a proof which

is virtually the same as the preceding, subsequent writers on

Statics (especially in this country) have very generally ignored
the fact

;
and the consequence has been the introduction of

various unnecessary Dynamical Axioms, more or less obvious,

but in reality included in or dependent upon Newton's laws

of motion. We have retained Newton's method, not only on

account of its admirable simplicity, but because we believe it
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contains the most philosophical foundation for the static as well

as for the kinetic branch of the dynamic science.

258. But the second law gives us the means of measuring .Measure-

force, and also of measuring the mass of a body. rome and

For, if we consider the actions of various forces upon the

same body for equal times, we evidently have changes of

velocity produced which are proportional to the forces. The

changes of velocity, then, give us in this case the means of

comparing the magnitudes of different forces. Thus the velo-

cities acquired in one second by the same mass (falling freely)

at different parts of the earth's surface, give us the relative

amounts of the earth's attraction at these places.

Again, if equal forces be exerted on different bodies, the

changes of velocity produced in equal times must be inversely

as the masses of the various bodies. This is approximately the

case, for instance, with trains of various lengths started by the

same locomotive : it is exactly realized in such cases as

the action of an electrified body on a number of solid or hollow

spheres of the same external diameter, and of different metals

or of different thicknesses.

Again, if we find a case in which different bodies, each acted

on by a force, acquire in the same time the same changes of

velocity, the forces must be proportional to the masses of the

bodies. This, when the resistance of the air is removed, is the

case of falling bodies
;
and from it we conclude that the weight

of a body in any given locality, or the force with which the

earth attracts it, is proportional to its mass
;

a most important

physical truth, which will be treated of more carefully in the

chapter devoted to
"
Properties of Matter."

259. It appears, lastly, from this law, that every theorem of Transia-

Kinematics connected with acceleration has its counterpart in the kine-

t-t .
,

. matics ofa
Kinetics. point.

For instance, suppose X, Y, Z to lie the components, parallel

to fixed axes of x, y, z respectively, of the whole force acting on

a particle of mass M. We see by § 212 that

M—-X M^y-7 M—-Z-
w Mx = X, My=Y, Mz = Z.
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Also, from these, we may evidently write,

[259.
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The second members of these equations are respectively the com-

ponents of the impressed force, along the tangent (§ 9), perpen-
dicular to the osculating plane (§ 9), and towards the centre of

curvature, of the path described.

260. We have, by means of the first two laws, arrived at a

definition and a measure of force
;
and have also found how to

compound, and therefore also how to resolve, forces
;
and also

how to investigate the motion of a single particle subjected to

given forces. But more is required before we can completely
understand the more complex cases of motion, especially those

in which we have mutual actions between or amongst two or

more bodies
;
such as, for instance, attractions, or pressures, or

transference of energy in any form. This is perfectly supplied

by

261. Lex III. Actioni contrariam semper et cequalem esse

reactionem : sive corporum duorum actiones in se mutub semper
esse cequales et in partes contrarias dirigi.

To every action there is always an equal and contrary re-

action: or, the mutual actions of any two bodies are always equal
and oppositely directed.

262. If oue body presses or draws another, it is pressed or

drawn by this other with an equal force in the opposite direc-

tion. If any one presses a stone with his finger, his fina-er is

pressed with the same force in the opposite direction by the

stone. A horse towing a boat on a canal is dragged back-

wards by a force equal to that which he impresses on the

towing-rope forwards. By whatever amount, and in whatever

direction, one body has its motion changed by impact upon
another, this other body has its motion changed by the same
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amount in the opposite direction
;

for at each instant during N'ewton'a

i. i i it • thirdlaT.
the impact the torce between them was equal and opposite on

the two. When neither of the two bodies has any rotation,

whether before or after impact, the changes of velocity which

they experience are inversely as their masses.

When one body attracts another from a distance, this other

attracts it with an equal and opposite force. This law holds

not only for the attraction of gravitation, but also, as Newton

himself remarked and verified by experiment, for magnetic
attractions : also for electric forces, as tested by Otto-Guericke.

263. What precedes is founded upon Newton's own com-

ments on the third law, and the actions and reactions con-

templated are simple forces. In the scholium appended, he

makes the following remarkable statement, introducing another

description of actions and reactions subject to his third law,

the full meaning of which seems to have escaped the notice of

commentators :
—

Si cestimetur agentis actio ex ejus vi et velocitate conjunctim ;

et similiter resistentis reactio cestimetur conjunctim exejuspartium

singularum velocitatibus et viribus resistendi ab earum attritione,

cohcesione, pondere, et acceleratione oriundis; erunt actio et reactio,

in omni instrumentorum usu, sibi invicem semper cequales.

In a previous discussion Newton has shown what is to be

understood by the velocity of a force or resistance
; i.e., that it

is the velocity of the point of application of the force resolved

in the direction of the force. Bearing this in mind, we may
read the above statement as follows :

—
If the Activity* of an agent be measured by its amount and its

velocity conjointly; and if, similarly, the Counter-activity of the

resistance be measured by the velocities of its several parts and

their several amounts conjointly, whether these arise from friction,

cohesion, iveight, or acceleration ;
—

Activity and Counter-activity,

in all combinations ofmachines, will be equal and opposite.

Farther on (§§ 264, 293) we shall give an account of the

* We translate Newton's word "Actio" here by
"
Activity"to avoid confusion

with the word " Action" so universally used in modern dynamical treatises, ac-

cording to the definition of § 326 below, in relation to Maupertuis' principle of

"Least Action."
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splendid dynamical theory founded by D'Alembert and La-

grange on this most important remark.

D'Aiem-_ 264. Newton, in the passage just quoted, points out that

cipk'.

s

forces of resistance against acceleration are to be reckoned as

reactions equal and opposite to the actions by which the ac-

celeration is produced. Thus, if we consider any one material

point of a system, its reaction against acceleration must be

equal and opposite to the resultant of the forces which that

point experiences, whether by the actions of other parts of the

system upon it, or by the influence of matter not belonging to

the system. In other words, it must be in equilibrium with

these forces. Hence Newton's view amounts to this, that all the

forces of the system, with the reactions against acceleration of

the material points composing it, form groups of equilibrating

systems for these points considered individually. Hence, by
the principle of superposition of forces in equilibrium, all the

forces acting on points of the system form, with the reactions

against acceleration, an equilibrating set of forces on the whole

system. This is the celebrated principle first explicitly stated,

and very usefully applied, by D'Alembert in 1742, and still

known by his name. We have seen, however, that it is very

distinctly implied in Newton's own interpretation of his third

law of motion. As it is usual to investigate the general equa-
tions or conditions of equilibrium, in dynamical treatises, before

entering in detail on the kinetic branch of the subject, this

principle is found practically most useful in showing how we

may write down at once the equations of motion for any

system for which the equations of equilibrium have been in-

vestigated.

Mutual 265. Every rigid body may be imagined to be divided into

tweenparti- indefinitely small parts. Now, in whatever form we may
ri«fd°body. eventually find a 'physical explanation of the origin of the forces

which act between these parts, it is certain that each such

small part may be considered to be held in its position

relatively to the others by mutual forces in lines joining them.

266. From this we have, as immediate consequences of the

second and third laws, and of the preceding theorems relating
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to Centre of Inertia and Moment of Momentum, a number of

important propositions such as the following :
—

(a) The centre of inertia of a rigid body moving in any Motion..;

manner, but free from external forces, moves uniformly in a inertia or a

,. rigid body.

straight line.

(6) When any forces whatever act on the body, the motion of

the centre of inertia is the same as it would have been had

these forces been applied with their proper magnitudes and

directions at that point itself.

(c) Since the moment of a force acting on a particle is the Moment of
. „ .,..„. momentum

same as the moment ot momentum it produces in unit oi time, of a rigid

the changes of moment of momentum in any two parts of a

rigid body due to their mutual action are equal and opposite.

Hence the moment of momentum of a rigid body, about any axis

which is fixed in direction, and passes through a point which

is either fixed in space or moves uniformly in a straight line, is

unaltered by the mutual actions of the parts of the body.

(d) The rate of increase of moment of momentum, when the

body is acted on by external forces, is the sum of the moments

of these forces about the axis.

267. We shall for the present take for granted, that the Conserva-

mutual action between two rigid bodies may in every case be momentum,

imagined as composed of pairs of equal and opposite forces ment of

, . -,-, i • • <» n l r»i momentum.
in straight lines. From this it follows that the sum ot the

quantities of motion, parallel to any fixed direction, of two

rigid bodies influencing one another in any possible way, re-

mains unchanged by their mutual action
;
also that the sum

of the moments of momentum of all the particles of the two

bodies, round any line in a fixed direction in space, and passing

through any point moving uniformly in a straight line in any

direction, remains constant. From the first of these propositions

we infer that the centre of inertia of any number of mutually

influencing bodies, if in motion, continues moving uniformly
in a straight line, unless in so far as the direction or velocity

of its motion is changed by forces acting mutually between

them and some other matter not belonging to them
;
also that

the centre of inertia of any body or system of bodies moves
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The' inva-just as all their matter, if concentrated in a point, would move

Plane" 13 a under the influence of forces equal and parallel to the forces

through the really acting on its different parts. From the second we infer
centre of

J
? ,

r
. ,

.

inertia, per- that the axis oi resultant rotation through the centre ol inertia
pendicular ....
to the re- of any system of bodies, or through any point either at rest or
sultant axis. .. . ...

moving uniformly in a straight line, remains unchanged in

direction, and the sum of moments of momenta round it

remains constant if the system experiences no force from with-

out. This principle used to be called Conservation of Areas,

Terrestrial a very ill-considered designation. From this principle it follows

that if by internal action such as geological upheavals or sub-

sidences, or pressure of the winds on the water, or by evapora-

tion and rain- or snow-fall, or by any influence not depending
on the attraction of sun or moon (even though dependent on

solar heat), the disposition of land and water becomes altered,

the component round any fixed axis of the moment of momen-

tum of the earth's rotation remains constant.

Rate of 268. The foundation of the abstract theory of energy is laid

by Newton in an admirably distinct and compact manner in the

sentence of his scholium already quoted (§ 263), in which he

points out its application to mechanics*. The actio agentis,

as he defines it, which is evidently equivalent to the product of

the effective component of the force, into the velocity of the

point on which it acts, is simply, in modern English phrase-

ology, the rate at which the agent works. The subject for

measurement here is precisely the same as that for which Watt,

Horse- a hundred years later, introduced the practical unit of a "Horse-

power," or the rate at which an agent works when overcoming

33,000 times the weight of a pound through the space of a foot

in a minute
;
that is, producing 550 foot-pounds of work per

second. The unit, however, which is most generally convenient

is that which Newton's definition implies, namely, the rate of

doing work in which the unit of energy is produced in the unit

of time.

* The reader will remember that we use the word "mechanics" in its true

classical sense, the science of machines, the sense in which Newton himself

used it, when he dismissed the further consideration of it by saying (in the

scholium referred to), Cceterum mechanicam tractare non est hujus imtituti.

power
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269. Looking at Newton's words (S 263) in this light, we Energy in

see that they may be logically converted into the following dynamica

form :
—

Work done on any system of bodies (in Newton's state-

ment, the parts of any machine) has its equivalent in work done

against friction, molecular forces, or gravity, if there be no

acceleration
;
but if there be acceleration, part of the work is

expended in overcoming the resistance to acceleration, and the

additional kinetic energy developed is equivalent to the work

so spent. This is evident from § 214.

When part of the work is done against molecular forces, as

in bending a spring ;
or against gravity, as in raising a weight ;

the recoil of the spring, and the fall of the weight, are capable

at any future time, of reproducing the work originally expended

(§ 241). But in Newton's day, and long afterwards, it was

supposed that work was absolutely lost by friction
; and, indeed,

this statement is still to be found even in recent authoritative

treatises. But we must defer the examination of this point till

we consider in its modern form the principle of Conservation of

Energy.

270. If a system of bodies, given either at rest or in

motion, be influenced by no forces from without, the sum of the

kinetic energies of all its parts is augmented in any time by an

amount equal to the whole work done in that time by the

mutual forces, which we may imagine as acting between its

points. When the lines in which these forces act remain all

unchanged in length, the forces do no work, and the sum of the

kinetic energies of the whole system remains constant. If, on

the other hand, one of these lines varies in length during the

motion, the mutual forces in it will do work, or will consume

work, according as the distance varies with or against them.

271. A limited system of bodies is said to be dynamically Conserva-

conservative (or simply conservative, when force is understood to

be the subject), if the mutual forces between its parts always

perform, or always consume, the same amount of work during

any motion whatever, by which it can pass from one particular

configuration to another.
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Foundation 272. The whole theory of energy in physical science is
of the theory - -. ,

,

. „ .,
of energy. rounded on the following proposition:

—
If the mutual forces between the parts of a material system

are independent of their velocities, whether relative to one

another, or relative to any external matter, the system must be

dynamically conservative.

For if more work is done by the mutual forces on the

different parts of the system in passing from one particular

Physical configuration to another, by one set of paths than by another

"thePer- set of paths, let the system be directed, by frictionless con-

Motion is strain t, to pass from the first configuration to the second by
introduced, one set of paths and return by the other, over and over again

for ever. It will be a continual source of energy without any

consumption of materials, which is impossible.

Potential 273. The potential energy of a conservative system, in the

constrra- configuration which it has at any instant, is the amount of work
tive system. . . .

required to bring it to that configuration against its mutual

forces during the passage of the system from any one chosen

configuration to the configuration at the time referred to. It

is generally, but not always, convenient to fix the particular

configuration chosen for the zero of reckoning of potential

energy, so that the potential energy, in every other configuration

practically considered, shall be positive.

274. The potential energy of a conservative s}
rstem, at any

instant, depends solely on its configuration at that instant,

being, according to definition, the same at all times when the

system is brought again and again to the same configuration.

It is therefore, in mathematical language, said to be a function

of the co-ordinates by which the positions of the different parts
of the system are specified. If, for example, we have a conser-

vative system consisting of two material points ;
or two rigid

bodies, acting upon one another with force dependent only on

the relative position of a point belonging to one of them, and a

point belonging to the other; the potential energy of the

system depends upon the co-ordinates of one of these points

relatively to lines of reference in fixed directions through the

other. It will therefore, in general, depend on three indepen-
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dent co-ordinates, which we may conveniently take as the dis- Potential

tance between the two points, and two angles specifying the conserva-
tivG system

absolute direction of the line joining them. Thus, for example,
let the bodies be two uuiform metal globes, electrified with any

given quantities of electricity, and placed in an insulating

medium such as air, in a region of space uuder the influence

of a vast distant electrified body. The mutual action between

these two spheres will depend solely on the relative position of

their centres. It will consist partly of gravitation, depending

solely on the distance between their centres, and of electric

force, which will depend on the distance between them, but

also, in virtue of the inductive action of the distant body, will

depend on the absolute direction of the line joining their

centres. In our divisions devoted to gravitation and electricity

respectively, we shall investigate the portions of the mutual

potential energy of the two bodies depending on these two

agencies separately. The former we shall find to be the pro-

duct of their masses divided by the distance between their

centres; the latter a somewhat complicated function of the

distance between the centres and the angle which this line

makes with the direction of the resultant electric force of the

distant electrified body. Or again, if the system consist of two

balls of soft iron, in any locality of the earth's surface, their

mutual action will be partly gravitation, and partly due to the

magnetism induced in them by terrestrial magnetic force. The

portion of the mutual potential energy depending on the latter

cause, will be a function of the distance between their centres

and the inclination of this line to the direction of the terrestrial

magnetic force. It will agree in mathematical expression with

the potential energy of electric action in the preceding case, so

far as the inclination is concerned, but the law of variation with

the distance will be less easily determined.

275. In nature the hypothetical condition of § 271 is appa- ilievitabie

rently violated in all circumstances of motion. A material system energy of

can never be brought through any returning cycle of motion Sms.
6 m°

without spending more work against the mutual forces of its

parts than is gained from these forces, because no relative

motion can take place without meeting with frictional or
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other forms of resistance
; among which are included (1 )

mutual friction between solids sliding upon one another; (2)

resistances due to the viscosity of fluids, or imperfect elasticity

of solids; (3) resistances due to the induction of electric cur-

rents; (4) resistances due to varying magnetization under the

influence of imperfect magnetic retentiveness. No motion in

nature can take place without meeting resistance due to some,

if not to all, of these influences. It is matter of every day

experience that friction and imperfect elasticity of solids impede
the action of all artificial mechanisms; and that even when

bodies are detached, and left to move freely in the air, as falling

bodies, or as projectiles, they experience resistance owing to the

viscosity of the air.

The greater masses, planets and comets, moving in a less

resisting medium, show less indications of resistance*. Indeed

it cannot be said that observation upon any one of these bodies,

with the exception of Encke's comet, has demonstrated resist-

ance. But the analogies of nature, and the ascertained facts of

physical science, forbid us to doubt that every one of them,

every star, and every body of any kind moving in any part of

space, has its relative motion impeded by the air, gas. vapour,

medium, or whatever we choose to call the substance occupying

the space immediately round it; just as the motion of a rifle

bullet is impeded by the resistance of the air.

276. There are also indirect resistances, owing to friction

impeding the tidal motions, on all bodies (like the earth) par-

tially or wholly covered by liquid, which, as long as these bodies

move relatively to neighbouring bodies, must keep drawing off

energy from their relative motions. Thus, if we consider, in

the first place, the action of the moon alone, on the earth with

its oceans, lakes, and rivers, we perceive that it must tend to

equalize the periods of the earth's rotation about its axis, and

of the revolution of the two bodies about their centre of inertia;

because as long as these periods differ, the tidal action on the

*
Newton, Principia. (Remarks on the first law of motion.)

"
Majora autem

Planetarum et Cometarum corpora motus suos et progressives et cireulares, in

spatiis minus resistentibus factos, couservant diutius."
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earth's surface must keep subtracting energy from their motions. Effect of

To view the subject more in detail, and, at the same time, to friction,

avoid unnecessary complications, let us suppose the moon to be

a uniform spherical body. The mutual action and reaction of

gravitation between her mass and the earth's, will be equivalent
to a single force in some line through her centre

;
and must be

such as to impede the earth's rotation as long as this is per-
formed in a shorter period than the moon's motion round the

earth. It must therefore lie in some such direction as the line

MQ in the diagram, which represents, necessarily with enormous

exaggeration, its deviation, OQ, from the

earth's centre. Now the actual force on

the moon in the line MQ, may be re-

garded as consisting of a force in the

line MO towards the earth's centre,

sensibly equal in amount to the whole

force, and a comparatively very small

force in the line MT perpendicular to

MO. This latter is very nearly tangential to the moon's path,
and is in the direction with her motion. Such a force, if sud-

denly commencing to act, would, in the first place, increase the

moon's velocity; but after a certain time she would have moved
so much farther from the earth, in virtue of this acceleration, as

to have lost, by moving against the earth's attraction, as much

velocity as she had gained by the tangential accelerating force.

The effect of a continued tangential force, acting with the mo-

tion, but so small in amount as to make only a small deviation

at any moment from the circular form of the orbit, is to gra-

dually increase the distance from the central body, and to cause

as much again as its own amount of work to be done against
the attraction of the central mass, by the kinetic energy of

motion lost. The circumstances will be readily understood, by

considering this motion round the central body in a very gradual

spiral path tending outwards. Provided the law of the central

force is the inverse square of the distance, the tangential

component of the central force against the motion will be twice

as great as the disturbing tangential force in the direction with

the motion; and therefore one-half of the amount of work done
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inevitable against the former, is done by the latter, and the other half by

energy of kinetic energy taken from the motion. The integral effect on

motions. the moon's motion, of the particular disturbing cause now under

friction. consideration, is most easily found by using the principle of

moments of momenta. Thus we see that as much moment of

momentum is gained in any time by the motions of the centres

of inertia of the moon and earth relatively to their common
centre of inertia, as is lost by the earth's rotation about its axis.

The sum of the moments of momentum of the centres of inertia

of the moon and earth as moving at present, is about 445 times

the present moment of momentum of the earth's rotation. The

average plane of the former is the ecliptic ;
and therefore the

axes of the two momenta are inclined to one another at the

average angle of 23° 272"', which, as we are neglecting the sun's

influence on the plane of the moon's motion, may be taken as

the actual inclination of the two axes at present. The resultant,

or whole moment of momentum, is therefore 5'38 times that of

the earth's present rotation, and its axis is inclined 19° 13' to

the axis of the earth. Hence the ultimate tendency of the tides

is, to reduce the earth and moon to a simple uniform rotation

with this resultant moment round this resultant axis, as if they
were two parts of one rigid body: in which condition the moon's

distance would be increased (approximately) in the ratio 1 : l
-

46,

being the ratio of the square of the present moment of momen-
tum of the centres of inertia to the square of the whole moment
of momentum

;
and the period of revolution in the ratio 1 : 1"77,

being that of the cubes of the same quantities. The distance

would therefore be increased to 347,100 miles, and the period

lengthened to 48'36 days. Were there no other body in

the universe but the earth and the moon, these two bodies

might go on moving thus for ever, in circular orbits round their

common centre of inertia, and the earth rotating about its axis in

the same period, so as always to turn the same lace to the moon,

and therefore to have all the liquids at its surface at rest rela-

tively to the solid. But the existence of the sun would pre-

vent any such state of things from being permanent. There

would be solar tides—twice high water and twice low water—in

the period of the earth's revolution relatively to the sun (that is
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to say, twice in the solar day, or, which would be the same Inevitable

thing, the month). This could not go on without loss of energy energy
of

by fluid friction. It is easy to trace the whole course of the ro°ti°n '< -

disturbance in the earth's and moon's motions which this cause friction,

would produce*: its first effect must be to bring the moon to

fall in to the earth, with compensation for loss of moment of

momentum of the two round their centre of inertia in increase of

its distance from the sun, and then to reduce the very rapid rota-

tion of the compound body, Earth-and-Moon, after the collision,

and farther increase its distance from the Sun till ultimately,

(corresponding action on liquid matter on the Sun having its

effect also, and it being for our illustration supposed that there are

no other planets,) the two bodies shall rotate round their common

centre of inertia, like parts of one rigid body. It is remarkable

that the whole frictional effect of the lunar and solar tides

should be, first to augment the moon's distance from the earth

to a maximum, and then to diminish it, till ultimately the

moon falls in to the earth : and first to diminish, after that to

increase, and lastly to diminish the earth's rotational velocity.

We hope to return to the subject laterf, and to consider the

general problem of the motion of any number of rigid bodies

or material points acting on one another with mutual forces,

under any actual physical law, and therefore, as we shall see,

necessarily subject to loss of energy as long as any of their

mutual distances vary; that is to say, until all subside into

a state of motion in circles round an axis passing through their

centre of inertia, like parts of one rigid body. It is probable
* The friction of these solar tides on the earth would cause the earth to

rotate still slower; and then the moon's influence, tending to keep the earth

rotating with always the same face towards herself, would resist this further

reduction in the speed of the rotation. Thus (as explained above with reference

to the moon) there would be from the sun a force opposing the earth's rotation,

and from the moon a force promoting it. Hence according to the preceding

explanation applied to the altered circumstances, the line of the earth's at-

traction on the moon passes now as before, not through the centre of inertia of

the earth, but now in a line slightly behind it (instead of before, as formerly).

It therefore now resists the moon's motion of revolution. The combined effect

of this resistance and of the earth's attraction on the moon is, like that of a

resisting medium, to causo the moon to fall in towards the earth in a spiral path

with gradually increasing velocity.

t [See ii. § 830 and Appendices Gr (a) and (b), where numerical values are

given differing slightly from those used here. G. H. D.]

VOL I. 17
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inevitable that the moon, in ancient times liquid or viscous in its outer
loss of

energy of layer if not throughout, was thus brought to turn always the
visible

° J

motions. same face to the earth.
Tidal
friction.

277. We have no data in the present state of science for

estimating the relative importance of tidal friction, and of the

resistance of the resisting medium through which the earth and

moon move
;
but whatever it may be, there can be but one

ultimate result for such a system as that of the sun and planets,
if continuing long enough under existing laws, and not dis-

o'ltimate turbed by meeting with other moving masses, in space. That
tendency .

r
of the solar result is the falling together of all into one mass, which, although
system. .

° ° ' °

rotating lor a time, must in the end come to rest relatively to

the surrounding medium.

Conserva- 278. The theory of energy cannot be completed until we

energy. are able to examine the physical influences which accompany
loss of energy in each of the classes of resistance mentioned

above, § 275. We shall then see that in every case in which

energy is lost by resistance, heat is generated; and we shall

learn from Joule's investigations that the quantity of heat so

generated is a perfectly definite equivalent for the energy

lost. Also that in no natural action is there ever a develop-

ment of energy which cannot be accounted for by the dis-

appearance of an equal amount elsewhere by means of

some known physical agency. Thus we shall conclude, that

if any limited portion of the material universe could be per-

fectly isolated, so as to be prevented from either giving

energy to, or taking energy from, matter external to it, the

sum of its potential and kinetic energies would be the same at

all times : in other words, that every material system subject

to no other forces than actions and reactions between its parts,

is a dynamically conservative system, as defined above, § 271.

But it is only when the inscrutably minute motions among
small parts, possibly the ultimate molecules of matter, which

constitute light, heat, and magnetism; and the intermolecular

forces of chemical affinity ;
are taken into account, along with

the palpable motions and measurable forces of which we
become cognizant by direct observation, that we can recognise
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the universally conservative character of all natural dynamic Conserva-

. . ... t«on ot

action, and perceive the bearing of the principle of reversibility energy.

on the whole class of natural actions involving resistance, which

seem to violate it. In the meantime, in our studies of abstract

dynamics, it will be sufficient to introduce a special reckoning
for energy lost in working against, or gained from work done

by, forces not belonging palpably to the conservative class.

279. As of great importance in farther developments, we

prove a few propositions intimately connected with energy.

280. The kinetic energy of any system is equal to the sum Kinetic
energy of

of the kinetic energies of a mass equal to the sum of the masses a system.

of the system, moving with a velocity equal to that of its centre

of inertia, and of the motions of the separate parts relatively to

the centre of inertia.

For if x, y, z be the co-ordinates of any particle, m, of the

system; |, -q, £ its co-ordinates relative to the centre of inertia;

and x, y, z, the co-ordiuates of the centre of inertia itself; we have

for the whole kinetic energy

^J(dx\\(dy\\(dz\^-^nA(d^h\ (*<y+v)\'.(*(*+Q^m
\{dt)

+
{dt) \dt) r* lv*~J +\~dr)

+
\~dr

But by the properties of the centre of inertia, we have

dx d£ dx d£Zm— — = — zm -- = 0, etc. etc.
dt dt dt dt

Hence the preceding is equal to

dx\
2

(dy\
2

(dz\
2

) i , ^m (Y°kr\
2

f^v\
2

(dt
dtH(SHfHf)>M(IHS)+-

which proves the proposition.

281. The kinetic energy of rotation of a rigid system about

any axis is (§ 95) expressed by ^2mr
2
o)

2

,
where m is the mass

of any part, r its distance from the axis, and to the angular

velocity of rotation. It may evidently be written in the form

|&)
22mr2

. The factor Xm7'
2

is of very great importance in

kinetic investigations, and has been called the Moment of Moment of

Inertia of the system about the axis in question. The moment
of inertia about any axis is therefore found by summing the

17-2
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Moment of products of the masses of all the particles each into the square

of its distance from the axis.

Moment of It is importaut to notice that the moment of momentum

S°BTOte"
m

of any rigid system about an axis, being Xmvr = 2mr2

tw, is the

bSfy?
gl

product of the angular velocity into the moment of inertia.

If we take a quantity k, such that

2k22m = ~2,mr

Radius of k is called the Radius of Gyration about the axis from which

r is measured. The radius of gyration about any axis is there-

fore the distance from that axis at which, if the whole mass

were placed, it would have the same moment of inertia as be-

Fiy-wheei. fore. In a fly-wheel, where it is desirable to have as great a

moment of inertia with as small a mass as possible, within

certain limits of dimensions, the greater part of the mass is

formed into a ring of the largest admissible diameter, and the

radius of this ring is then approximately the radius of gyration

of the whole.

Moment of A rigid body being referred to rectangular axes passing

about any through any point, it is required to find the moment of inertia

about an axis through the origin making given angles with the

co-ordinate axes.

Let X, /a, v be its direction-cosines. Then the distance (r) of

the point x, y, z from it is, by § 95,

r
2 =

(fx.z
- vyf + {vx

—
Xz)

2 + (Xy
—

fix)
2

,

and therefore

Mk2=2mr2=%m [X
2

(y
2+ z

2

)
+^(z*+x

2

)
+ v

2

(x
2+y

2

)- 2fxvyz- 2vXzx-2X[xxy]

which may be written

^A2 + Bfx
2 + Cv2 -

2a/xv
-

2f3vX
-

2yXfjL,

where A, B, G are the moments of inertia about the axes, and

a = 'S.myz, (3
= %mzx, y = ^mxy. From its derivation we see that

this quantity is essentially positive. Hence when, by a proper

linear transformation, it is deprived of the terms containing the

products of X, fx, v, it will be brought to the form

Mk2 = AX2 + Bfx
a + Cv2

^Q,

where A, B, are essentially positive. They are evidently the

moments of inertia about the new rectangular axes of co-ordinates,
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and X, /*, v the corresponding direction-cosines of the axis round Moment of

which the moment of inertia is to be found. about any

Let A> B> C, if they are unequal. Then

AX2 + BfS + Cv2=Q (A
2 + ll

2 + v
2

)

shows that Q cannot be greater than A, nor less than C. Also,

if A, B, G be equal, Q is equal to each.

If a, b, c be the radii of gyration about the new axes of x, y, z,

A=Ma2

,
B = Mb\ C = Mcs

,

and the above equation gives

k2 = a2X2 + bV + cV.

But if x, y, z be any point in the line whose direction-cosines are

A, lk, v, and r its distance from the origin, we have

25 *W Z
. = — = - = r. and therefore
A [x v

k2
r
2 = a2x2 +b2

y
2 + c

2
z
2

.

If, therefore, we consider the ellipsoid whose equation is

we see that it intercepts on the line whose direction-cosines are

X, /x,
v—and about which the radius of gyration is k, a length r

which is given by the equation

k2
r
2 = e*;

or the rectangle under auy radius-vector of this ellipsoid and

the radius of gyration about it is constant. Its semi-axes are
2 2 2

evidently
-

,
-

,

- where e may have any value we may assign.

Thus it is evident that

282. For every rigid body there may be described about Momenta!

any point as centre, an ellipsoid (called Poinsot's Moyiental

Ellipsoid*) which is such that the length of any radius-vector is

* The definition is not Poinsot's, but ours. The momental ellipsoid as we
define it is fairly called Poinsot's, because of the splendid use he has made
of it in his well-known kinematic representation of the solution of the problem—to find the motion of a rigid body with one point held fixed but otherwise

iniluenced by no forces—which, with Sylvester's beautiful theorem completing
it so as to give a purely kinematical mechanism to show the time which the

body takes to attain any particular position, we reluctantly keep back for our

Second Volume.
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Momentai inversely proportional to the radius of gyration of the body
about that radius-vector as axis.

Principal The axes of this ellipsoid are, and might be denned as, the

Pr-incipal Axes of inertia of the body for the point in question:

but the best definition of principal axes of inertia is given
below. First take two preliminary lemmas :

—
Equiiibra- (1) If a rigid body rotate round any axis, the centrifugal

Centrifugal forces are reducible to a single force perpendicular to the axis

of rotation, and to a couple (§ 234 above) having its axis parallel

to the line of this force.

(2) But in particular cases the couple may vanish, or both

couple and force may vanish and the centrifugal forces be in

equilibrium. The force vanishes if, and only if, the axis of

rotation passes through the body's centre of inertia.

Definition Def. (1). Any axis is called a principal axis of a bodv's
of Principal .

v
. ,

• •
i

• * , , i •« i i i i

Axes of mertia, or simply a principal axis ol the body, it when the body
rotates round it the centrifugal forces either balance or are re-

ducible to a single force.

Def. (2). A principal axis not through the centre of inertia

is called a principal axis of inertia for the point of itself through
which the resultant of centrifugal forces passes.

Def. (3). A principal axis which passes through the centre

of inertia is a principal axis for every point of itself.

The proofs of the lemmas may be safely left to the student as

exercises on § 559 below
;
and from the proof the identification

of the principal axes as now denned with the principal axes of

Poinsot's momental ellipsoid is seen immediately by aid of the

analysis of § 281.

283. The proposition of § 280 shows that the moment of

inertia of a rigid body about any axis is equal to that which

the mass, if collected at the centre of inertia, would have about

this axis, together with that of the body about a parallel axis

through its centre of inertia. It leads us naturally to in-

vestigate the relation between principal axes for any point and

principal axes for the centre of inertia. The following investi-

gation proves the remarkable theorem of § 284, which was first

given in 1811 by Binet in the Journal de VEcole Polytechnique.



axes.

283.] DYNAMICAL LAWS AND PRINCIPLES. 263

Let the origin, 0, be the centre of inertia, and the axes the Princip&l

principal axes at that point. Then, by §§ 280, 281, we have for

the moment of inertia about a line through the point P ($, rj, £),

whose direction-cosines are A, /x, v;

Q = A\2 + Bfj.
2 + GV + M {(f^

-
vrjf + (v£

-
A£)

2 + fa -
rf)

2

}

= {A + M (rf
+ O} *' + {B + M(? + ?)} fL* + {C+ M{e + rf))v

2

-2M(fjLvVZ + v\g+\hi&i).

Substituting for Q, A, B, G their values, and dividing by if,

we have

¥ =
(a

2 + v
2 +O A3 + (b

2 + 1* + 4"

3

) /x

2 + (c
8 + e + v

2

)
v
2

-2(ri£nv + £gv\ + gr}\fi).

Let it be required to find A, /x,
v so that the direction specified

by them may be a principal axis. Let s = A£ + jxr)
+ v£, i. e.

let s represent the projection of OP on the axis sought.

The axes of the ellipsoid

(a* + yf + ?)x*+ -2(vfyz + )
= H (a),

are found by means of the equations

(a
2 + rf + C

9

-p)\
-
gyp - ££v =

]

-£n\ + (b* + t* + ?-p)H.-tfv = 1 (b).

-g\- v& + (c* + ? + V'-p)v= |

If, now, we take /to denote OP, or (£* + rf + t?)%, these equations,

where p is clearly the square of the radius of gyration about

the axis to be found, may be written

(a*4.f»-p)\-£(£\ + Vix+ t
lv)
= 0,

etc. = etc.,

or (a
2

+f
2

-p)\-$s = 0,

etc. - etc.,

or (a
2

-K)\-£s =
)

(b
2

-K)fA.- vs = I
(c)

\c
2

-K) v -fr = Q
I

where K=p —f2
. Hence

\=-f-^ t
etc.

a —K
Multiply, in order, by $, rj, £, add, and divide by s, and we get

i
2

rf C^T +^Z + 7TT =1 {d) -
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Principal
axes.

Binet's
Theorem.

Central
ellipsoid.

Kinetic
symmetry
round a
point;

round an
axis.

By (c) we see that (\, /x, v) is the direction of the normal through

the point P, (£, rj, £) of the surface represented by the equation

af
-,+

f ^-1. (e),
a2 -K^ V-K c

2 -K

which is obviously a smface of the second degree confocal with

the ellipsoid

CA
a2

b
2

c
2

and passing through P in virtue of (d), which determines K accord-

ingly. The three roots of this cubic are clearly all real; one of

them is less than the least of a2

,
b
2

,
c
2

,
and positive or negative

according as P is within or without the ellipsoid {/). And if

a > b > c, the two others are between c
2 and b

2

,
and between b

2 and

a2

, respectively. The addition off 2
to each gives the square of the

radius of gyration round the corresponding principal axis. Hence

284. The principal axes for any point of a rigid body are

normals to the three surfaces of the second order through that

point, confocal with the ellipsoid, which has its centre at the

centre of inertia, and its three principal diameters co-incident

with the three principal axes for that point, and equal respec-

tively to the doubles of the radii of gyration round them.

This ellipsoid is called the Central Ellipsoid.

285. A rigid body is said to be kinetically symmetrical

about its centre of inertia when its moments of inertia about

three principal axes through that point are equal ;
and there-

fore necessarily the moments of inertia about all axes through
that point equal, §281, and all these axes principal axes. About

it uniform spheres, cubes, and in general any complete crys-

talline solid of the first system (see chapter on Properties of

Matter), are kinetically symmetrical.

A rigid body is kinetically symmetrical about an axis when

this axis is one of the principal axes through the centre of

inertia, and the moments of inertia about the other two, and

therefore about any line in their plane, are equal. A spheroid,

a square or equilateral triangular prism or plate, a circular ring,

disc, or cylinder, or any complete crystal of the second or

fourth system, is kinetically symmetrical about its axis.
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286 The only actions and reactions between the parts of a Energy in
•>

. . , abstract

system, not belonging palpably to the conservative class, which dynamics,

we shall consider in abstract dynamics, are those of friction

between solids sliding on solids, except in a few instances in

which we shall consider the general character and ultimate

results of effects produced by viscosity of fluids, imperfect

elasticity of solids, imperfect electric conduction, or imperfect

magnetic retentiveness. We shall also, in abstract dynamics,

consider forces as applied to parts of a limited system arbitrarily

from without. These we shall call, for brevity, the applied forces.

287. The law of energy may then, in abstract dynamics, be

expressed as follows :
—

The whole work done in any time, on any limited material

system, by applied forces, is equal to the whole effect in the

forms of potential and kinetic energy produced in the system,

together with the work lost in friction.

288. This principle may be regarded as comprehending the

whole of abstract dynamics, because, as we now proceed to

show, the conditions of equilibrium and of motion, in every

possible case, may be immediately derived from it.

289. A material system, whose relative motions are unre- EquM-
... .. ... .

brium.
sisted by friction, is m equilibrium in any particular configura-
tion if, and is not in equilibrium unless, the work done by
the applied forces is equal to the potential energy gained, in any

possible infinitely small displacement from that configuration.
This is the celebrated principle of "virtual velocities" which

Lagrange made the basis of his Mecanique Analytique. The ill-

chosen name "virtual velocities" is now falling into disuse.

290. To prove it, we have first to remark that the system Principle

cannot possibly move away from any particular configuration velocities,

except by work being done upon it by the forces to which it is

subject : it is therefore in equilibrium if the stated condition is

fulfilled. To ascertain that nothing less than this condition can

secure its equilibrium, let us first consider a system having

only one degree of freedom to move. Whatever forces act on

the whole system, we may always hold it in equilibrium by a

single force applied to any one point of the system in its line
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Principle of motion, opposite to the direction in which it tends to move,
of virtual . . _ .

velocities, and of such magnitude that, in any infinitely small motion in

either direction, it shall resist, or shall do, as much work as the

other forces, whether applied or internal, altogether do or resist.

Now, by the principle of superposition of forces in equilibrium,
we might, without altering their effect, apply to any one point
of the system such a force as we have just seen would hold the

system in equilibrium, and another force equal and opposite

to it. All the other forces being balanced by one of these two,

they and it might again, by the principle of superposition of

forces in equilibrium, be removed; and therefore the whole set

of given forces would produce the same effect, whether for

equilibrium or for motion, as the single force which is left

acting alone. This single force, since it is in a line in which

the point of its application is free to move, must move the

system. Hence the given forces, to which this single force has

been proved equivalent, cannot possibly be in equilibrium
unless their whole work for an infinitely small motion is

nothing, in which case the single equivalent force is reduced

to nothing. But whatever amount of freedom to move the

whole system may have, we may always, by the application of

frictionless constraint, limit it to one degree of freedom only ;—and this may be freedom to execute any particular motion

whatever, possible under the given conditions of the system.

If, therefore, in any such infinitely small motion, there is

variation of potential energy uncompensated by work of the

applied forces, constraint limiting the freedom of the system to

only this motion will bring us to the case in which we have

just demonstrated there cannot be equilibrium. But the appli-

cation of constraints limiting motion cannot possibly disturb

equilibrium, and therefore the given system under the actual

conditions cannot be in equilibrium in any particular con-

figuration if there is more work done than resisted in any

possible infinitely small motion from that configuration by all

the forces to which it is subject*.

291. If a material system, under the influence of internal

and applied forces, varying according to some definite law, is

*
[This attempt to deduce the principle of virtual velocities from the equation

of energy alone can hardly be regarded as satisfactory. H. L.]
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balanced by them in any position in which it may be placed, Neutral

its equilibrium is said to be neutral. This is the case with any brium.

spherical body of uniform material resting on a horizontal

plane. A right cylinder or cone, bounded by plane ends per-

pendicular to the axis, is also in neutral equilibrium on a

horizontal plane. Practically, any mass of moderate dimensions

is in neutral equilibrium when its centre of inertia only is

fixed, since, when its longest dimension is small in comparison

with the earth's radius, gravity is, as we shall see, approximately

equivalent to a single force through this point.

But if, when displaced infinitely little in any direction from stable

a particular position of equilibrium, and left to itself, it com- brium.

mences and continues vibrating, without ever experiencing

more than infinitely small deviation in any of its parts, from

the position of equilibrium, the equilibrium in this position is

said to be stable. A weight suspended by a string, a uniform

sphere in a hollow bowl, a loaded sphere resting on a horizontal

piano with the loaded side lowest, an oblate body resting with

one end of its shortest diameter on a horizontal plane, a plank,

whose thickness is small compared with its length and breadth,

floating on water, etc. etc., are all cases of stable equilibrium; if

we neglect the motions of rotation about a vertical axis in the

second, third, and fourth cases, and horizontal motion in general,

in the fifth, for all of which the equilibrium is neutral.

If, on the other hand, the system can be displaced in any unstable

way from a position of equilibrium, so that when left to itself brium.

it will not vibrate within infinitely small limits about the posi-

tion of equilibrium, but will move farther and farther away from

it, the equilibrium in this position is said to be unstable. Thus

a loaded sphere resting on a horizontal plane with its load as

high as possible, an egg-shaped body standing on one end, a

board floating edgeways in water, etc. etc., would present, if

they could be realised in practice, cases of unstable equili-

brium.

When, as in many cases, the nature of the equilibrium varies

with the direction of displacement, if unstable for any possible

displacement it is practically unstable on the whole. Thus a

coin standing on its edge, though in neutral equilibrium for

displacements in its plane, yet being in unstable equilibrium
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Unstable

equili-
brium.

Test of the
nature of

pquili-
brium.

Deduction
of the

equations
of motion of

iny system.

for those perpendicular to its plane, is practically unstable. A
sphere resting in equilibrium on a saddle presents a case in

which there is stable, neutral, or unstable equilibrium, accord-

ing to the direction in which it may be displaced by rolling,

but, practically, it would be unstable.

292. The theory of energy shows a very clear and simple
test for discriminating these characters, or determining whether

the equilibrium is neutral, stable, or unstable, in any case. If

there is just as much work resisted as performed by the applied

and internal forces in any possible displacement the equilibrium

is neutral, but not unless. If in every possible infinitely small

displacement from a position of equilibrium they do less work

among them than they resist, the equilibrium is thoroughly

stable, and not unless. If in any or in every infinitely small

displacement from a position of equilibrium they do more work

than they resist, the equilibrium is unstable. It follows that

if the system is influenced only by internal forces, or if the

applied forces follow the law of doing always the same amount

of work upon the system passing from one configuration to

another by all possible paths, the whole potential energy must

be constant, in all positions, for neutral equilibrium ;
must

be a minimum for positions of thoroughly stable equilibrium ;

must be either an absolute maximum, or a maximum for some

displacements and a minimum for others when there is unstable

equilibrium*.

293. We have seen that, according to D'Alembert's prin-

ciple, as explained above (§ 264), forces acting on the different

points of a material system, and their reactions against the

accelerations which they actually experience in any case of

motion, are in equilibrium with one another. Hence in any actual

case of motion, not only is the actual work done by the forces

equal to the kinetic energy produced in any infinitely small time,

in virtue of the actual accelerations; but so also is the work

which would be done by the forces, in any infinitely small time,

if the velocities of the points constituting the system, were at

any instant changed to any possible infinitely small velocities,

and the accelerations unchanged. This statement, when put in

*
[It will be observed that these criteria are stated rather than proved. See

§ 337 post. H. L.]
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the concise language of mathematical analysis, constitutes Deduction

Lagrange's application of the "
principle of virtual velocities

"
equations

i i- •
<• toii i j mm • i

of motion o

to express the conditions ot DAlemberts equilibrium between any system

the forces acting, and the resistances of the masses to accelera-

tion. It comprehends, as we have seen, every possible condi-

tion of every case of motion. The "
equations of motion" in

any particular case are, as Lagrange has shown, deduced from

it with great ease.

Let m be the mass of any one of the material points of the

system ; x, y, z its rectangular co-ordinates at time t, relatively

to axes fixed in direction (§ 249) through a point reckoned as

fixed (§ 245) ;
and X, Y, Z the components, parallel to the same

axes, of the whole force acting on it. Thus — m -r-V ,
- m —~

,' °
dt

2 ' df '

d2
z—

m-j 2̂
are the components of the reaction against acceleration.

(/ft

And these, with X, Y, Z, for the whole system, must fulfil the

conditions of equilibrium. Hence if Sx, 8y, 8z denote any arbi-

trary variations of x, y, z consistent with the conditions of the

system, we have

2 {(.r-„f>
+ (r-»t)% + (^ TO

5)
8s
}^o.,

1) , gST
motion of

where % denotes summation to include all the particles of the any a^ateK

system. This may be called the indeterminate, or the variational,

equation of motion. Lagrange used it as the foundation of his

whole kinetic system, deriving from it all the common equations of

motion, and his own remarkable equations in generalized co-ordi-

nates (presently to be given). We may write it otherwise as follows :

%m (x8x + y§y + zdz)
= 2 (X8x + Y8y + Zlz) (2),

where the first member denotes the work done by forces equal to

those required to produce the real accelerations, acting through
the spaces of the arbitrary displacements ;

and the second member
the work done by the actual forces through these imagined

spaces.

If the moving bodies constitute a conservative system, and if

V denote its potential energy in the configuration specified by

(x, y, z, etc.), we have of course (§§ 241, 273)

8V=-2(X8x+Y8y+Z8z) (3),
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and therefore the indeterminate equation of motion becomes

2/» (x8x + y8y + z8z)
= - 8 V (4),

where 8 V denotes the excess of the potential energy in the con-

figuration (x + 8x, y + 8y, z + 8z, etc.) above that in the configura-

tion
(a;, y, z, etc.).

One immediate particular result must of course be the common

equation of energy, which must be obtained by supposing 8x, 8y,

8z, etc., to be the actual variations of the co-ordinates in an

infinitely small time 8t. Thus if we take 8x = x8t, etc., and

divide both members by 8t, we have

2(Xx+ Yy + Zz) = 2m (xx + yy + zz) .'. (5).

Here the first member is composed of Newton's Actiones Agentium;
with his JReactiones Resistentium so far as friction, gravity, and

molecular forces are concerned, subtracted : and the second consists

of the portion of the Reactiones due to acceleration. As we have

seen above (§ 214), the second member is the rate of increase of

2|m (x~ + y
2

-i- z
2

) per unit of time. Hence, denoting by v the

velocity of one of the particles, and by W the integral of the

fii-st member multiplied by dt, that is to say, the integral work

done by the working and resisting forces in any time, we have

2±mv*=W + E (6),

E being the initial kinetic energy. This is the integral equa-

tion of energy. In the particular case of a conservative system,

W is a function of the co-ordinates, irrespectively of the time, or

of the paths which have been followed. According to the pre-

vious notation, with besides V to denote the potential energy of

the system in its initial configuration, we have W— V - V, and

the integral equation of energy becomes

2,±mv
3
^- T - V+ E

,

or, if E denote the sum of the potential and kinetic energies, a

constant, ^nw* = E - V (7).

The general indeterminate equation gives immediately, for the

motion of a system of free particles,

mft =
A',,

m
lyi

= F„ m
xz\

= Zv m
2
x
2
= X

2 ,
etc.

Of these equations the three for each particle may of course be

treated separately if there is no mutual influence between the

particles: but when they exert force on one another, Z,, F,, etc.,

will each in general be a function of all the co-ordinates.
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From the indeterminate equation (1) Lagrange, by his method Constraint

of multipliers, deduces the requisite number of equations for into the in-

,. . • ,. ,. ^•••111 r> i_ c determinate
determining tlie motion ol a rigid body, or or any system of con- equation.

nected particles or rigid bodies, thus :
—Let the number of the

particles be i, and let the connexions between them be expressed

by n equations,

F (*u 2/,> «iJ
*
f> ) =

|F
, (
x v Vm V xv •) z=0

J (8)
etc. etc.

being the kinematical equations of the system. By taking the

variations of these we find that every possible infinitely small dis-

placement Sajj, 8y t ,
8z

y)
hx

2 ,
... must satisfy the n linear equations

Multiplying the first of these by X, the second by \, etc.,

adding to the indeterminate equation, and then equating the co-

efficients of 8x
x , S?/

1 , etc., each to zero, we have

. dF dF, _ d\ . 1

A -7— + X,
-— + . . . +X - m, —r^ =dx

x
dx

x

' ' dt

dF
, dF, v dV .

-r- + X, -^ + ... + F - m, -nr =X .(10).

dy
'

dy x

' ' dt

etc. etc.

These are m all Si equations to determine the n unknown Determi-

quantities X, X,, ..., and the Si - n independent variables to tionsof

which xv y x
,
...are reduced by the kinematical equations (8). deduced.

The same equations may be found synthetically in the following

manner, by which also we are helped to understand the precise

meaning of the terms containing the multipliers A, X,, etc.

First let the particles be free from constraint, but acted on

both by the given forces X, Y
x , etc., and by forces depending

on mutual distances between the particles and upon their

positions relatively to fixed objects subject to the law of con-

servation, and having for their potential energy

- ±
(kF

2 + k,F,
2 + etc.),

so that components of the forces actually experienced by the

different particles shall be



272 PRELIMINARY. [293.

nate eaua- X, + kF -=- + kF, -,-' + etc. + | (i^ + ^ ^ + etC '

)
tions of ax uUJ \ ax u.c /
motion
deduced.

etc.
,

etc.

Hence the equations of motion are

d2
x.m

1 df

Vy
dt-

--^<^%^<*t:*^H]
™.^ = etc. KID-

etc., etc.

Now suppose &, A;,,
etc. to be infinitely great :

—in order that the

forces on the particles may not be infinitely great, we must have

^=0, i?=0, etc.,

that is to say, the equations of condition (8) must be fulfilled
;

and the last groups of terms in the second members of (11) now

disappear because they contain the squares of the infinitely small

quantities F, Ft ,
etc. Put now kF=\, kF^X,, etc., and we

have equations (10). This second mode of proving Lagrange's

equations of motion of a constrained system corresponds pre-

cisely to the imperfect approach to the ideal case which can be

made by real mechanism. The levers and bars and guide-

surfaces cannot be infinitely rigid. Suppose then k, k
t ,

etc. to

be finite but Ar

ery great quantities, and to be some functions of

the co-ordinates depending on the elastic qualities of the materials

of which the guiding mechanism is composed:
—

equations (11)

will express the motion, and by supposing k, k
t ,

etc. to be

greater and greater we approach more and more nearly to the

ideal case of absolutely rigid mechanism constraining the precise

fulfilment of equations (8).

The problem of finding the motion of a system subject to any

unvarying kinematical conditions whatever, under the action of

any given forces, is thus i-educed to a question of pure analysis.

In the still more general problem of determining the motion when

certain parts of the system are constrained to move in a specified

manner, the equations of condition (8) involve not only the

co-ordinates, but also t, the time. It is easily seen however that

the equations (10) still hold, and with (8) fully determine the

motion. For :
—consider the equations of equilibrium of the par-

ticles acted on by any forces X/, 7,', etc., and constrained by
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proper mechanism to fulfil the equations of condition (8) with Determi-

the actual values of the parameters for any particular value tions of

of t. The equations of equilibrium will be uninfluenced deduced.

by the fact that some of the parameters of the conditions

(8) have different values at different times. Hence, with

Cb'jc ct it

X
i

—m
l -j~i ,

Y
l
-m

} -jr ,
instead of X{, F,', etc., according

to D'Alembert's principle, the equations of motion will still be

(8), (9), and (10) quite independently of whether the parameters
of (8) are all constant, or have values varying in any arbitrary

manner with the time.

To find the equation of energy multiply the first of equations Equation of

energy.

(10) by x , the second by y^, etc., and add. Then remarking
that in virtue of (8) we have

dF
.

dF
.

/dF"
-,— x, + -

1
—

y, + etc. + -=- = 0,
dx

x

'

dy x

Jl \dtj

',
dF

, (dF\ n

;*'
+^ + etc - +Ur '

partial differential coefficients of F, Ft ,
etc. with reference to t

being denoted by (— ], (—,')> etc.; and denoting by T the

kinetic energy or ^ %m (x
2 + if + z

2

),
we find

f = 5 (X* +
r^)-x(f)_X,(f)-e

tc. = 0....(12).

When the kinematic conditions are "unvarying" that is to

say, when the equations of condition are equations among the

co-ordinates with constant parameters, we have

(§H (§)—:
and the equation of energy becomes

(ITa± = 2(Xx + Y$ + Zz) (13),

showing that in this case the fulfilment of the equations of

condition involves neither gain nor loss of energy. On the

other hand, equation (12) shows how to find the work performed

or consumed in the fulfilment of the kinematical conditions when

they are not unvarying.

VOL. I. 18
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Equation of

energy.

Gauss's

principle
of least
constraint.

Impact.

As a simple example of varying constraint, which will be very

easily worked out by equations (8) and (10), perfectly illustrating

the general principle, the student may take the case of a particle

acted on by any given forces and free to move anywhere in

a plane which is kept moving with any given uniform or varving

angular velocity round a fixed axis.

When there are connexions between any parts of a system, the

motion is in general not the same as if all were free. If we con-

sider any particle during any infinitely small time of the motion,
and call the product of its mass into the square of the distance

between its positions at the end of this time, on the two supposi-

tions, the constraint: the sum of the constraints is a minimum.
This follows easily from (1).

294. When two bodies, in relative motion, come into con-

tact, pressure begins to act between them to prevent any parts

of them from jointly occupying the same space. This force

commences from nothing at the first point of collision, and

gradually increases per unit of area on a gradually increasing

surface of contact. If, as is always the case in nature, each

body possesses some degree of elasticity, and if they are not kept

together after the impact b}
7 cohesion, or by some artificial

appliance, the mutual pressure between them will reach a

maximum, will begin to diminish, and in the end will come to

nothing, by gradually diminishing in amount per unit of area

on a gradually diminishing surface of contact. The whole pro-

cess would occupy not greatly more or less than an hour if

the bodies were of such dimensions as the earth, and such degrees

of rigidity as copper, steel, or glass. It is finished, probably,

within a thousandth of a second if they are globes of any of

these substances not exceeding a yard in diameter.

295. The whole amount, and the direction, of the "Impact"

experienced by either body in any such case, are reckoned

according to the "change of momentum" which it experiences.

The amount of the impact is measured by the amount, and its

direction by the direction, of the change of momentum which is

produced. The component of an impact in a direction parallel

to any fixed line is similarly reckoned according to the com-

ponent change of momentum in that direction.
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296. If we imagine the whole time of an impact divided impact,

into a very great number of equal intervals, each so short that

the force does not vary sensibly during it, the component

change of momentum in any direction during any one of these

intervals will (§ 220) be equal to the force multiplied by
the measure of the interval. Hence the component of the

impact is equal to the sum of the forces in all the intervals,

multiplied by the length of each interval.

Let P be the component force in any direction at any instant,

t, of the interval, and let / be the amount of the corresponding

component of the whole impact. Then

1= [Pdr.

297. Any force in a constant direction acting in any cir- Time-

cumstances, for any time great or small, may be reckoned on

the same principle ;
so that what we may call its whole amount

during any time, or its
"
time-integral," will measure, or be

measured by, the whole momentum which it generates in the

time in question. But this reckoning is not often convenient

or useful except when the whole operation considered is over

before the position of the body, or configuration of the system
of bodies, involved, has altered to such a degree as to bring any
other forces into play, or alter forces previously actiug, to such

an extent as to produce any sensible effect on the momentum
measured. Thus if a person presses gently with his hand,

during a few seconds, upon a mass suspended by a cord or

chain, he produces an effect which, if we know the degree of

the force at each instant, may be thorough \y calculated on

elementary principles. No approximation to a full determina-

tion of the motion, or to answering such a partial question as

''how great will be the whole deflection produced?" can be

founded on a knowledge of the "time-integral" alone. If, for

instance, the force be at first very great and gradually diminish,

the effect will be very different from what it would be if the

force were to increase very gradually and to cease suddenly,

even although the time-integral were the same in the two

cases. But if the same body is
" struck a blow," in a horizontal

direction, either by the hand, or by a mallet or other somewhat

18—2
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Time-
integral.

Ballistic

pendulum.

Direct im-
pact of

spheres

hard mass, the action of the force is finished before the suspend-

ing cord has experienced any sensible deflection from the ver-

tical. Neither gravity nor any other force sensibly alters the

effect of the blow. And therefore the whole momentum at the

end of the blow is sensibly equal to the " amount of the impact,"
which is, in this case, simply the time-integral.

298. Such is the case of Robins' Ballistic Pendulum, a

massive cylindrical block of wood cased in a cylindrical sheath

of iron closed at one end and moveable about a horizontal axis

at a considerable distance above it—employed to measure the

velocity of a cannon or musket-shot. The shot is fired into the

block in a horizontal direction along the axis of the block and

perpendicular to the axis of suspension. The impulsive

penetration is so nearly instantaneous, and the inertia of the

block so large compared with the momentum of the shot, that

the ball and pendulum are moving on as one mass before the

pendulum has been sensibly deflected from the vertical. This is

essential to the regular use of the apparatus. The iron sheath

with its fiat end must be strong enough to guard against splin-

ters of wood flying sidewise, and to keep in the bullet.

299. Other illustrations of the cases in which the time-

integral gives us the complete solution of the problem may be

given without limit. They include all cases in which the

direction of the force is always coincident with the direction

of motion of the moving body, and those special cases in which

the time of action of the force is so short that the body's motion

does not, during its lapse, sensibly alter its relation to the direc-

tion of the force, or the action of any other forces to which it

may be subject. Thus, in the vertical fall of a body, the time-

integral gives us at once the change of momentum
;
and the

same rule applies in most cases of forces of brief duration, as

in a "drive" in cricket or golf.

300. The simplest case which we can consider, and the one

usually treated as an introduction to the subject, is that of the

collision of two smooth spherical bodies whose centres before

collision were moving in the same straight line. The force

between them at each instant must be in this line, because of
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the symmetry of circumstances round it
;
and by the third Direct im-

law it must be equal in amount on the two bodies. Hence spheres.

(Lex ii.) they must experience changes of motion at equal rates

in contrary directions; and at any instant of the impact the

integral amounts of these changes of motion must be equal.

Let us suppose, to fix the ideas, the two bodies to be moving
both before and after impact in the same direction in one line :

one of them gaining on the other before impact, and either

following it at a less speed, or moving along with it, as the

case may be, after the impact is completed. Cases in which

the former is driven backwards by the force of the collision,

or in which the two moving in opposite directions meet in

collision, are easily reduced to dependence on the same formula

by the ordinary algebraic convention with regard to positive

and negative signs.

In the standard case, then, the quantity of motion lost, up
to any instant of the impact, by one of the bodies, is equal to

that gained by the other. Hence at the instant when their

velocities are equalized they move as one mass with a momen-
tum equal to the sum of the momenta of the two before impact.

That is to say, if v denote the common velocity at this instant,

we have

{M +M,

)v =MVfM,

V,

MV + lfV
or v =—W7 m— >

if M, M' denote the masses of the two bodies, and V, V their

velocities before impact.

During this first period of the impact the bodies have been,

on the whole, coming into closer contact with one another,

through a compression or deformation experienced by each,

and resulting, as remarked above, in a fitting together of the

two surfaces over a finite area. No body in nature is per-

fectly inelastic; and hence, at the instant of closest approxi-

mation, the mutual force called into action between the two

bodies continues, and tends to separate them. Unless pre-

vented by natural surface cohesion or welding (such as is

always found, as we shall see later in our chapter on Properties

of Matter, however hard and well polished the surfaces may
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Direct im-
pact of

spheres.

Effect of

elasticity.

Newton's
experi-
ments.

be), or by artificial appliances (such as a coating of wax, applied
in one of the common illustrative experiments; or the coupling

applied between two railway carriages when run together so as

to push in the springs, according to the usual practice at rail-

way stations), the two bodies are a.ctually separated by this

force, and move away from one another. Newton found that,

provided the impact is not so violent as to make any sensible

permanent indentation in either body, the relative velocity of

separation after the impact bears a proportion to their previous

relative velocity of approach, which is constant for the same

two bodies. This proportion, always less than unity, ap-

proaches more and more nearly to it the harder the bodies are.

Thus with balls of compressed wool he found it f, iron nearly

the same, glass \§. The results of more recent experiments on

the same subject have confirmed Newton's law. These will be

described later. In any case of the collision of two balls, let

e denote this proportion, to which we give the name Coefficient

of Restitution;* and, with previous notation, let in addition

U, IT denote the velocities of the two bodies after the conclusion

of the impact; in the standard case each being positive, but

V > U. Then we have

U'-U=e(V-V')

and, as before, since one has lost as much momentum as the

other has gained,

MU + M'U' = MV+M'V.

From these equations we find

(31+ M') U --= MV + M'V - eM'
(
V- V),

with a similar expression for IT.

Also we have, as above,

(M + M)v = MV+M'V.

Hence, by subtraction,

(M + M') (v-U) = eM' (V- V) = e {M'V~(M+ M') v + MV)

* In most modern treatises this is called a " coefficient of elasticity," which

is clearly a mistake; suggested, it may be, by Newton's words, but inconsistent

with his facts, and utterly at variance with modern language and modern know-

ledge regarding elasticity.
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and therefore v — U=e(V— v). Direct

impact of

Of course we have also U'—v = e(v—V). spheres.

These results may be put in words thus :
—The relative velocity

of either of the bodies with regard to the centre of inertia of

the two is, after the completion of the impact, reversed in

direction, and diminished in the ratio e : 1.

301. Hence the loss of kinetic energy, being, according to

§§ 267, 280, due only to change of kinetic energy relative to

the centre of inertia, is to this part of the whole as 1 — e'
2

: 1.

Thus

Initial kinetic energy = \(M + M') v2 + \M (
V - vf + \U

'

(v- Vf.
Final „ „ =

| (M + M') v
2 + \M (v

- Uf + \M' (
U' - vf.

Loss =
\ (1

- e
2

) {
M

(
V -

v)
2 + M '

(v
-
Vf).

302. When two elastic bodies, the two balls supposed above Distribu-

for instance, impinge, some portion of their previous kinetic energy after

energy will always remain in them as vibrations. A portion
of the loss of energy (miscalled the effect of imperfect elas-

ticity) is necessarily due to this cause in every real case.

Later, in our chapter on Properties of Matter, it will be

shown as a result of experiment, that forces of elasticity are,

to a very close degree of accuracy, simply proportional to the

strains (§ 154), within the limits of elasticity, in elastic solids

which, like metals, glass, etc., bear but small deformations with-

out permanent change. Hence when two such bodies come
into collision, sometimes with greater and sometimes with less

mutual velocity, but with all other circumstances similar, the

velocities of all particles of either body, at corresponding times

of the impacts, will be always in the same proportion. Hence
the velocity of separation of the centres of inertia after impact Newton's

mi . , ... experimen-
wiil bear a constant proportion to the previous velocity oftaiiawcon

i i
•

i 'iiTVT t * t • i
sistent with

approach; which agrees with the JNewtonian Law*
It is there- perfect

. . elasticity.

fore probable that a very sensible portion, if not the whole, of

the loss of energy in the visible motions of two elastic bodies,

after impact, experimented on by Newton, may have been due

*
[On the theory of impact propounded by Hertz the extent of the area of

contact will vary with the relative velocity before impact, and the argument from
dynamical similarity does not apply. H.L.]
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Distribu- to vibrations; but unless some other cause also was largely

energy after operative, it is difficult to see how the loss was so much greater
impact. .

with iron balls than with glass.

303. In certain definite extreme cases, imaginable although

not realizable, no energy will be spent in vibrations, and the

two bodies will separate, each moving simply as a rigid body,

and having in this simple motion the whole energy of work

done on it by elastic force during the collision. For instance,

let the two bodies be cylinders, or prismatic bars with flat ends,

of the same kind of substance, and of equal and similar trans-

verse sections; and let this substance have the property of

compressibility with perfect elasticity, in the direction of the

length of the bar, and of absolute resistance to change in every

transverse dimension. Before impact, let the two bodies be

placed with their lengths in one line, and their transverse sec-

tions (if not circular) similarly situated, and let one or both be

set in motion in this line. The result, as regards the motions

of the two bodies after the collision, will be sensibly the

same if they are of any real ordinary elastic solid material,

provided the greatest transverse diameter of each is very small

in comparison with its length. Then, if the lengths of the two

be equal, they will separate after impact with the same relative

velocity as that with which they approached, and neither will

retain any vibratory motion after the end of the collision.

304. If the two bars are of unequal length, the shorter will,

after the impact, be exactly in the same state as if it had

struck another of its own length, and it therefore will move as

a rigid body after the collision. But the other will, along with

a motion of its centre of gravity, calculable from the principle

that its whole momentum must (§ 267) be changed by an

amount equal exactly to the momentum gained or lost by the

first, have also a vibratory motion, of which the whole kinetic

and potential energy will make up the deficiency of energy

which we shall presently calculate in the motions of the centres

of inertia. For simplicity, let the longer body be supposed to

be at rest before the collision. Then the shorter on striking it

will be left at rest
;
this boing clearly the result in the case of
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e — 1 in the preceding formulae (§ 300) applied to the impact Distribu-

of one body striking another of equal mass previously at rest, energy after

The longer bar will move away with the same momentum, and

therefore with less velocity of its centre of inertia, and less

kinetic energy of this motion, than the other body had before

impact, in the ratio of the smaller to the greater mass. It will

also have a very remarkable vibratory motion, which, when its

length is more than double of that of the other, will consist of

a wave running backwards and forwards through its length, and

causing the motion of its ends, and, in fact, of every particle of

it, to take place by
"
fits and starts," not continuously. The

full analysis of these circumstances, though very simple, must

be reserved until we are especially occupied with waves, and

the kinetics of elastic solids. It is sufficient at present to

remark, that the motions of the centres of inertia of the two

bodies after impact, whatever they may have been previously,

are given by the preceding formulas with for e the value

M'
htf, where M and M are the smaller and the larger mass re-

spectively.

305. The mathematical theory of the vibrations of solid elastic

spheres has not yet been worked out; and its application to

the case of the vibrations produced by impact presents con-

siderable difficulty. Experiment, however, renders it certain,

that but a small part of the whole kinetic energy of the pre-
vious motions can remain in the form of vibrations after the

impact of two equal spheres of glass or of ivory. This is

proved, for instance, by the common observation, that one of

them remains nearly motionless after striking the other pre-

viously at rest; since, the velocity of the common centre of

inertia of the two being necessarily unchanged by the impact,
we infer that the second ball acquires a velocity nearly equal
to that which the first had before striking it. But it is to be

expected that unequal balls of the same substance coming into

collision will, by impact, convert a very sensible proportion of

the kinetic energy of their previous motions into energy of

vibrations
;
and generally, that the same will be the case when

equal or unequal masses of different substances come into colli-
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tkmof"" sion; although for one particular proportion of their diameters,

fmpart
after

depending on their densities and elastic qualities, this effect will

be a minimum, and possibly not much more sensible than it is

when the substances are the same and the diameters equal.

306. It need scarcely be said that in such cases of impact
as that of the tongue of a bell, or of a clock-hammer striking

its bell (or spiral spring as in the American clocks), or of piano-
forte hammers striking the strings, or of a drum struck with the

proper implement, a large part of the kinetic energy of the

blow is spent in generating vibrations.

Moment of
an impact
about an

.Ballistic

pendulum.

307. The Moment of an impact about any axis is derived

from the line and amount of the impact in the same way as the

moment of a velocity or force is determined from the line and

amount of the velocity or force, §§ 235, 236. If a body is

struck, the change of its moment of momentum about any axis

is equal to the moment of the impact round that axis. But,

without considering the measure of the impact, we see (§ 267)
that the moment .of momentum round any axis, lost by one

body in striking another, is, as in every case of mutual action,

equal to that gained by the other.

Thus, to recur to the ballistic pendulum—the line of motion

of the bullet at impact may be in any dh-ection whatever, but the

only part which is effective is the component in a plane perpen-

dicular to the axis. We may therefore, for simplicity, consider

the motion to be in a line perpendicular to the axis, though not

necessarily horizontal. Let m be the mass of the bullet, v its

velocity, and p the distance of its line of motion from the axis.

Let M be the mass of the pendulum with the bullet lodged in it,

and k its radius of gyration. Then if to be the angular velocity

of the pendulum when the impact is complete,

mvp = Mk2

w,

from which the solution of the question is easily determined.

For the kinetic energy after impact is changed (§ 241) into

its equivalent in potential energy when the pendulum reaches its

position of greatest deflection. Let this be given by the angle

8 : then the height to which the centre of inertia is raised is

h (1
- cos 0) if h be its distance from the axis. Thus
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„ , m2
v
2
p

2
Ballistic

Mgh (
1 - COS 6)

= \Mk
2
u? = \

-^ , pendulum.

„ . 6 mvp
or 2 sm- =

2 Mkjgh*
an expression for the chord of the angle of deflection. In

practice the chord of the angle 6 is measured by means of a

light tape or cord attached to a point of the pendulum, and

slipping with small friction through a clip fixed close to the posi-

tion occupied by that point when the pendulum hangs at rest.

308. Work done by an impact is, in general, the product ofw^^J
e

the impact into half the sum of the initial and final velocities

of the point at which it is applied, resolved in the direction of

the impact. In the case of direct impact, such as that treated

in § 300, the initial kinetic energy of the body is \MV*, the

final %MU'\ and therefore the gain, by the impact, is

\M(U
2 - V2

),

or, which is the same,

M{U- V) . §(C+ V).

But 31(U — V) is (§ 295) equal to the amount of the impact.

Hence the proposition : the extension of which to the most

general circumstances is easily seen.

Let i be the amount of the impulse up to time r, and / the

whole amount, up to the end, T. Thus,—
fT fT fit

- Pdr, 1= Pdr; also P =~ ,

Jo Jo o>t

Whatever may be the conditions to which the body struck is

subjected, the change of velocity in the point struck is propor-

tional to the amount of the impulse up to any part of its whole

time, so that, if £$K be a constant depending on the masses and

conditions of constraint involved, and if U, v, V denote the com-

ponent velocities of the point struck, in the direction of the

impulse, at the beginning, at the time t, and at the end, re-

spectively, we have

v=u+ m' v=u+w
Hence, for the rate of the doing of woi'k by the force P, at the

instant t, we have
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Work done Hence for the whole work
( W) done by it,

by impact.

w=f (pu+ ~Vt

= 07+ -L
\
uk= UI+h

r

= UI + \I(V-U) = I.\(U+7).

309. It is worthy of remark, that if any number of impacts
be applied to a body, their whole effect will be the same whether

they be applied together or successively (provided that the

whole time occupied by them be infinitely short), although
the work done by each particular impact is in general different

according to the order in which the several impacts are applied.

The whole amount of work is the sum of the products obtained

by multiplying each impact by half the sum of the components
of the initial and final velocities of the point to which it is

applied.

Equations 310. The effect of any stated impulses, applied to a rigid

motion!
lsive

body, or to a system of material points or rigid bodies con-

nected in any way, is to be found most readily by the aid of

D'Alembert's principle ; according to which the given impulses,

and the impulsive reaction against the generation of motion,

measured in amount by the momenta generated, are in equi-

librium
;
and are therefore to be dealt with mathematically by

applying to them the equations of equilibrium of the system.

Let 7, , Q x ,
P

x
be the component impulses on the first particle,

m
,
and let sb., yv z, be the components of the velocity in-

stantaneously acquired by this particle. Component forces equal

to (P l

— m
l
x

l ), (Qi-'in^i), ••• must equilibrate the system,

and therefore we have (§ 290)

Sl {(P-mx)8x + (Q-my) hy + (R-mz) hz)
=

(a)

where Sx
x , Sy (

,
... denote the components of any infinitely small

displacements of the particles possible under the conditions of

the system. Or, which amounts to the same thing, since any

possible infinitely small displacements are simply proportional to

any possible velocities in the same directions,

%{(P-7n£) u + (Q
- my)v + (Q - mz) w} = (6)
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where u , v , w denote any possible component velocities of the Equations
' » i ' i * *

of impulsive
first particle, etc. motion.

One particular case of this equation is of course had by suppos-

ing u
,
v

,
... to be equal to the velocities

a?,, y x ,
... actually

acquired ; and, by halving, etc., we find

2(P.hx + Q.%y + R.±I z)
= h'2m(x

2 + y
2 + z

2

) (c).

This agrees with S 308 above.o

311. Euler discovered that the kinetic energy acquired from Theorem of
. Euler, ex-

rest by a rigid body in virtue of an impulse fulfils a maximum- tended by
.. «, ill- •• Lagrange.

minimum condition. Lagrange* extended this proposition to

a system of bodies connected by any invariable kinematic re- Equation of

\ . . impulsive

lations, and struck with any impulses. Delaunay found that motion,

it is really always a maximum when the impulses are given,

and when different motions possible under the conditions of
the system, and fulfilling the law of energy [§310 (c)], are

considered. Farther, Bertrand shows that the energy actually

acquired is not merely a "
maximum," but exceeds the energy

of any other motion fulfilling these conditions; and that the

amount of the excess is equal to the energy of the motion which

must be compounded with either to produce the other.

Let a&
'

, y' ... be the component velocities of any motion what-

ever fulfilling the equation (c), which becomes

\ 2 (PA' + Qy' + Rz')
= \ 2m (x'

2 + y
2 + z

2

)
= T

(d).

If, then, we take x{
— x

x

= u
x , y{

- y x

= v
x

, etc., we have

T -T = \%m {(2x + u)u + (2y + v)v + (2z + w) w)
— 2m (xu +- yv + zw) + h2m (u

2 + v2 + vf) (e).

But, by (b),

2m (xu + yv + zw) = 2 (Pu + Qv + Rw) (f) ;

and, by (c) and (d),

%(Pu+Qv + Rw) = 2T -2T (g).

Hence (e)
becomes

T - T= 2(T -
T) + £2m(w

2 + v2 + w2

),

whence T- T = \%m (u
2 + v2 + w2

) (h)>

which is Bertrand 's result.

*
Mecanique Anahjtigue, 2nde partie, 3me section, § 37.
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Liquid set 312. The energy of the motion generated suddenly in a
in motion .,,...,. J

impulsively, mass of incompressible liquid given at rest completely filling

a vessel of any shape, when the vessel is suddenly set in

motion, or when it is suddenly bent out of shape in any way
whatever, subject to the condition of not changing its volume,

is less than the energy of any other motion it can have with the

same motion of its bounding surface. The consideration of this

theorem, which, so far as we know, was first published in

the Cambridge and Dublin Mathematical Journal [Feb. 18-49],

has led us to a general minimum property regarding motion

acquired by any system when any prescribed velocities are

generated suddenly in any of its parts; announced in the

Proceedings of the Royal Society of Edinburgh for April, 1863.

It is, that provided impulsive forces are applied to the system

only at places where the velocities to be produced are pre-

scribed, the kinetic energy is less in the actual motion than in

any other motion which the system can take, and which has

the same values for the prescribed velocities. The excess of

the energy of any possible motion above that of the actual

motion is (as in Bertrand's theorem) equal to the energy of the

motion which must be compounded with either to produce the

other. The proof is easy:
—here it is :

—
Equations (d), (e), and (/) hold as in § (311). But now each

velocity component, u
lt

v
x ,
w

,
u

2 ,
etc. vanishes for which the

component impulse P,, Q x ,
R

x ,
P

s ,
etc. does not vanish (because

x
l
+ u

x , y x

+ v
x ,

etc. fulfil the prescribed velocity conditions).

Hence every product P
l

u
l , Q x

v
x
,

etc. vanishes. Hence now
instead of (y) and (h) we have

2 (xu + y v + zw) =
(y'),

and T'-T=^m(u !i + v- + w2

) (/*').

We return to the subject in §§ 316, 317 as an illustration of

the use of Lagrange's generalized co-ordinates; to the introduc-

tion of which into Dynamics we now proceed.

313. The method of generalized co-ordinates explained
above (§ 204) is extremely useful in its application to the

co-wdd-
26

dynamics of a system; whether for expressing and working
out the details of any particular case in which there is any
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finite number of degrees of freedom, or for proving general impulsive

tii ip motion re-

principles applicable even to cases, such as that of a liquid, as ferredto
*

. , ... generalized

described in the preceding section, in which there may be an «wwdi-

infinite number of degrees of freedom. It leads us to generalize

the measure of inertia, and the resolution and composition of

forces, impulses, and momenta, on dynamical principles corre-

sponding with the kinematical principles explained in § 204,

which gave us generalized component velocities : and, as we
shall see later, the generalized equations of continuous motion

are not only very convenient for the solution of problems, but

most instructive as to the nature of relations, however compli-

cated, between the motions of different parts of a system. In

the meantime we shall consider the generalized expressions for

the impulsive generation of motion. We have seen above

(§ 308) that the kinetic energy acquired by a system given at

rest and struck with any given impulses, is equal to half the

sum of the products of the component forces multiplied each

into the corresponding component of the velocity acquired by
its point of application, when the ordinary system of rectangular
coordinates is used. Precisely the same statement holds on

the generalized system, and if stated as the convention agreed

upon, it suffices to define the generalized components of im- Generalized

pulse, those of velocity having been fixed on kinematical of hnpufse
s

principles (§ 204). Generalized components of momentum menturu.

of any specified motion are, of course, equal to the generalized

components of the impulse by which it could be generated from

rest.

(a) Let
if/, <f>, 6, ... be the generalized co-ordinates of a material

system at any time
;
and let

if/, <f>, 0, ... be the corresponding

generalized velocity-components, that is to say, the rates at

which
if/, <f>, 6, ... increase per unit of time, at any instant, in

the actual motion. If x
lf yv z

x
denote the common rectangular

co-ordinates of one particle of the system, and x
l , #, ,

z
}

its com-

ponent velocities, we have

dx, . dx, . "\

*-%*%** r
(1) -

etc. etc.



Generalized
expression
for kinetic

energy.

Generalized
compo-
nents of

force,

of impulse.

288 PRELIMINARY. [313.

Hence the kinetic energy, which is 2|m (x
2 + y

2 + z
2

),
in terms

of rectangular co-ordinates, becomes a quadratic function of

xp, <j>, etc., when expressed in terms of generalized co-ordinates,

so that if we denote it by T we have

r=${(fc*)^+(i*)^ + ..:+3-(fc*)^+...} (2),

where
(if/, \p), (<£, <£), (ij/, <f>), etc., denote various functions of the

co-ordinates, determinable according to the conditions of the

system. The only condition essentially fulfilled by these co-

efficients is, that they must give a finite positive value to T for

all values of the variables.

(b) Again let (Xx ,
Y

lt
Z

x ), (X„, Y ,
Z

2), etc., denote component
forces on the particles (xif y t , zj, (xa , y2 ,

z
2 ), etc., respectively;

and let (8*,, &/,, S^), etc., denote the components of any in-

finitely small motions possible without breaking the conditions of

the system. The work done by those forces, upon the system

when so displaced, will be

S(Z&b+ Y8y + Z8z) (3).

To transform this into an expression in terms of generalized co-

ordinates, we have

8x=^8f +^ty + etc.
]1

cixf/ d<p

sy,=%*+t^\
w'

etc. etc. j

and it becomes

*8^ + $S<£ + etc (5),

where

\ d\\i d\f/ dip/

-»(**'$**$
(6)'

etc. etc. J

These quantities, *, 3>, etc., are clearly the generalized com-

ponents of the force on the system.

Let ^, 4>, etc. denote component impulses, generalized on the

same principle ;
that is to say, let

* = I Vdt, <£= / <&dt, etc.,
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where ^, <t>,
... denote generalized components of the continuous

force acting at any instant of the infinitely short time t, within

which the impulse is completed.

If this impulse is applied to the system, previously in motion Impulsive

in the manner specified above, and if
Sif/, 8<fi,

... denote the re- of motion
, . „ . „ ,

referred to

suiting augmentations of the components 01 velocity, the means generalized

of the component velocities before and after the impulse will be nates.

j,+ m, cj>
+

%8<j>,

Hence, according to the general principle explained above for

calculating the work done by an impulse, the whole work done

in this case is

*(<A +|S^) + <£(</> + iSe£) + etc.

To avoid unnecessary complications, let us suppose Bij/, 8(j>, etc.,

to be each infinitely small. The preceding expression for the

work done becomes

tyif/
+ 4>0 + etc.

;

and, as the effect produced by this work is augmentation of

kinetic energy from T to T + 8T, we must have

SI^^ +
<!></»

+ etc.

Now let the impulses be such as to augment if/
to

if/
+

Sif/,
and to

leave the other component velocities unchanged. We shall have

(IT
*<i- -^

®<j> + etc. = — 8J/.
• T

d\ff

dT
Dividing both members by Si/',

and observing that
-y-.

is a linear

dip

• \& <E>

function of
if/, <£, etc., we see that -^ ,

--
,

etc.. must be equal
$lf/ St^

• • dT
to the coefficients of

if/, <£, . . . respectively in — .

dip

(c) From this we see, further, that the impulse required to pro-

duce the component velocity if/
from rest, or to generate it in

the system moving with any other possible velocity, has for its

components
(if,, iff) if/, {if;, </>) if/, (iff, 6) if/,

etc.

Hence we conclude that to generate the whole resultant velocity

(if), <£, ...)
from rest, requires an impulse, of which tho com-

ponents, if denoted by t, rj, £, . . .
,
are expressed as follows :

—
VOL. I. 19
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Momenta
in terms of

velocities.

Kinetic
energy in
terms of

momentum s

and veloci-

ties.

Velocities
in terms of
momen-
tums.

•(7),C=(fc *)£+(*, 6)<j> + (6, 6)6 + ...

I

etc. j

where it must be remembered that, as seen in the original ex-

pression for 1\ from which they are derived, ((f), vjj)
means the

same thing as
(ip, <£), and so on. The preceding expressions are

the differential coefficients of T with reference to the velocities
;

that is to say,

dT dT „ dT

T$ <8 >-

t —

d\jr

. 5 t

dcf>

(d) The second members of these equations being linear func-

tions of
if/, <j), ..., we may, by ordinary elimination, find

if/, <j>, etc.,

in terms of f, 17, etc., and the expressions so obtained are of

course linear functions of the last-named elements. And, since

T is a quadratic function of
if/, <f>, etc., we have

2T=ty +
ri<j>

+ £6 + ete (9).

From this, on the supposition that T, if/, <j>,
... are expressed in

terms of £, -q, ..., we have by differentiation

^dT ,
.ddf d<f> 9 d6

Now the algebraic process by which
if/, <j>, etc., are obtained in

terms of £, -q, etc., shows that, inasmuch as the coefficient of
<f>

in

the expression, (7), for £, is equal to the coefficient of
if/,

in the

expression for
r],

and so on
;
the coefficient of r

t
in the expres-

sion for
if/
must be equal to the coefficient of £ in the expression

for
cj>,

and so on
;
that is to say,

d\p d<j> dif/ _d6
^

=
d!' tct^ etc -

Hence the preceding expression becomes

n dT . .dih dib 9 dih

d£ d$ 'dv
*
di

= H,

and therefore

Similarly

. dT

= d_T
dv

'

I

r
etc.

J

.(10).
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These expressions solve the direct problem,
—to find the velo- Velocities

• •i> \i i
m terms of

city produced by a given impulse (£, rj, ...), when we have the momen-

kinetic energy, T, expressed as a quadratic function of the com-

ponents of the impulse.

(e)
If we consider the motion simply, without reference to the

impulse required to generate it from rest, or to stop it, the quanti-

ties £, rj,
... are clearly to be regarded as the components of the

momentum of the motion, according to the system of generalized

co-ordinates.

(f) The following algebraic relation will be useful :
—

Reciprocal
relation

£,J/ + 7)6 + to + etc. = Ed/, + 7)6 +£$, + etd (11), between
/Y ''^ *' Y ' ,lr' *

.'

V " momentums

where, £, -n, il/, d>, etc., having the same signification as before, aridveloei-
» =» ji t> TJ o o j ties in two

£ t t//? £/} etc., denote the impulse-components corresponding to motions,

any other values, \pn <j>t ,
6

t ,
etc.

,
of the velocity-components. It

is proved by observing that each member of the equation becomes

a symmetrical function of
ijr, \p/, (j>, <£,; etc.

;
when for £/5 77, etc.,

their values in terms of
ij/t , <£,, etc., and for £, rj, etc., their values

in terms of
iff, <j>, etc., are substituted.

314. A material system of any kind, given at rest, and Application

subjected to an impulse in any specified direction, and of any ized co-

given magnitude, moves off so as to take the greatest amount to theorems

of kinetic energy which the specified impulse can give it,

subject to § 308 or § 309 (c).

Let £, rj,
... be the components of the given impulse, and

\p, <j>,
... the components of the actual motion produced by it,

which are determined by the equations (10) above. Now let us

suppose the system be guided, by means of merely directive

constraint, to take, from rest, under the influence of the given

impulse, some motion
(jfrt , <£, ...) different from the actual

motion; and let £, 17,,
... be the impulse which, with this con

straint removed, would produce the motion
(tf/t , <£,, ...). We

shall have, for this case, as above,

*,
= *(#, + ?,*;+«•)

But it

-
£, 7i/

—
7j... are the components of the impulse ex-

perienced in virtue of the constraint we have supposed introduced.

They neither perform nor consume work on the system when

moving as directed by this constraint
;
that is to say,

(£-£)£ + (^_ 7)0/
+ (£/ -£)0/

+ etc.=,O (12);

19—2
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Application
of general-
ized co-
ordinates to

theorems of

$311.

Theorems
of §311 in
terms of

generalized
co-ordi-
nates.

Problems
whose data
involve im-

pulses and
velocities.

and therefore

2T=££ + i
?<k + (£ + etc (13).

Hence we have

= (!-£) 0£-£) + (i?-?,)(£-£)+etc.

+ £ (ifr
- £) + t

7/ («£
- £) + etc.

But, by (11) and (12) above, we have

i («£
-
A) + % («£

-
£) + etc- = tf

-
£) £ + fa

-
v) 4>,

+ etc - = °>

and therefore we have finally

2 (*- r )
= (£-Q (*-£) + (,

- v) (cj>- i) + etc. ...(14).

that is to say, T exceeds T
t by the amount of the kinetic energy

that would be generated by an impulse (£
—

£,, r\
-

t? /5 £— £„> etc.)

applied simply to the system, which is essentially positive.

In other words,

315. If the system is guided to take, under the action of a

given impulse, any motion ($> t
, <£,, ...) different from the natural

motion
(yjr, (j>, ...), it will have less kinetic energy than that of

the natural motion, by a difference equal to the kinetic energy

of the motion
(yjr

—
-ijr , <f>

—
$,, ...).

Cor. If a set of material points are struck independently

by impulses each given in amount, more kinetic energy is

generated if the points are perfectly free to move each in-

dependently of all the others, than if they are connected in any

way. And the deficiency of energy in the latter case is equal

to the amount of the kinetic energy of the motion which

geometrically compounded with the motion of either case would

give that of the other.

(a) Hitherto we have either supposed the motion to be fully given,
and the impulses required to produce them, to be to be found

;
or

the impulses to be given and the motions produced by them to be

to be found. A not less important class of problems is presented

by supposing as many linear equations of condition between the

impulses and components of motion to be given as there are de-

grees of freedom of the system to move (or independent co-ordi-

nates). These equations, and as many more supplied by (8)

or their equivalents (10), suffice for the complete solution of the

problem, to determine the impulses and the motion.
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(b) A very important case of this class is presented by prescrib- Problems

ing, among the velocities alone, a number of linear equations with involve im-

constant terms, and supposing the impulses to be so directed and velocities.

related as to do no work on any velocities satisfying another pre-

scribed set of linear equations with no constant terms
;
the whole

number of equations of course being equal to the number of inde-

pendent co-ordinates of the system. The equations for solving

this problem need not be written down, as they are obvious
;
but

the following reduction is useful, as affording the easiest proof of

the minimum property stated below.

(c)
The given equations among the velocities may be reduced

to a set, each homogeneous, except one equation with a constant

term. Those homogeneous equations diminish the number of de-

grees of freedom
;
and we may transform the co-ordinates so as

to have the number of independent co-ordinates diminished ac-

cordingly. Farther, we may choose the new co-ordinates, so

that the linear function of the velocities in the single equation

with a constant term may be one of the new velocity-components;

and the linear functions of the velocities appearing in the equation

connected with the prescribed conditions as to the impulses may
be the remaining velocity-components. Thus the impulse will

fulfil the condition of doing no work on any other component

velocity than the one which is given, and the general problem—

316. Given any material system at rest: let any parts of General

• t t i • i -n i i
• • problem

it be set m motion suddenly with any specified velocities, pos- (compare
§ 312).

sible according to the conditions of the system; and let its

other parts be influenced only by its connexions with the parts

set in motion
; required the motion :

takes the following very simple form :
—An impulse of the cha-

racter specified as a particular component, according to the

generalized method of co-ordinates, acts on a material system ;

its amount being such as to produce a given velocity-component

of the corresponding type. It is required to find the motion.

The solution of course is to be found from the equations

$ = A, v = 0, £=0 (15)

(which are the special equations of condition of the problem) and

the general kinetic equations (7), or (10). Choosing the latter,

and denoting by [£, £], [£, rf\, etc., the coefficients of ^£
2

, fy, etc.,



294 PRELIMINARY. [316.

General
problem
(compare
§ 312).

in T, we have

Kinetic
energy a
minimum
in this case.

i 6 A, etc. .(16)

for the result.

This result possesses the remarkable property, that the

kinetic energy of the motion expressed by it is less than that of

any other motion -which fulfils the prescribed condition as to

velocity. For, if £, 77, £, etc., denote the impulses required to

produce any other motion, i^, <j>/}
6

t , etc., and T
t
the correspond-

ing kinetic energy, we have, by (9),

But by (11),

£
»/-
+ r)<j>

+ £6 + etc. =
${f/t ,

since, by (15), we have
-q
= 0, £= 0, etc. Hence

Now let also this second case
(i/-,, <j>,,...)

of motion fulfil the pre-

scribed velocity-condition 1^
= A. We shall have

i{h-f)+vA<l>t -<i>)+i0-d) + -

since
\j/(

—
ij/
=

0, rj-0, £=0, .... Hence if C denote the kinetic

energy of the differential motion (t^— i^, <f> t

-
<£,...) we have

2T
i

= 2T+2Z (17);

but © is essentially positive and therefore T
,
the kinetic energy

of any motion fulfilling the prescribed velocity-condition, but

differing from the actual motion, is greater than T the kinetic

energy of the actual motion
;
and the amount, ^T, of the differ-

ence is given by the equation

2© =^,->) + £,(0,-0) + etc (18),

or in words,

317. The solution of the problem is this :
—The motion

actually taken by the system is the motion which has less

kinetic energy than any other fulfilling the prescribed velocity-

conditions. And the excess of the energy of any other such

motion, above that of the actual motion, is equal to the energy
of the motion which must be compounded with either to pro-
duce the other.
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In dealing with cases it may often happen that the use of the Kinetic

co-ordinate system required for the application of the solution minimum

(16) is not convenient; but in all cases, even in such as in

examples (2) and (3) below, which involve an infinite number

">f degrees of freedom, the minimum property now proved affords

an easy solution.

Example (1). Let a smooth plane, constrained to keep moving impact of

with a given normal velocity, q, come in contact with a free rigid plane

inelastic rigid body at rest : to find the motion produced. The mass on a

velocity-condition here is, that the motion shall consist of any body at

motion whatever giving to the point of the body which is struck
res

a stated velocity, q, perpendicular to the impinging plane, com-

pounded with any motion whatever giving to the same point

any velocity parallel to this plane. To express this condition, let

u, v, iv be rectangular component linear velocities of the centre

of gravity, and let or, p, a be component angular velocities round

axes through the centre of gravity parallel to the line of re-

ference. Thus, if x, y, z denote the co-ordinates of the point

struck relatively to these axes through the centre of gravity,

and if I, m, n be the direction cosines of the normal to the im-

pinging plane, the prescribed velocity-condition becomes

(u + pz
—
ay) I + (v + ax — wz) m + (w + my — px) n = — q [a),

the negative sign being placed before q on the understanding

that the motion of the impinging plane is obliquely, if not directly,

towards the centre of gravity, when I, m, n are each positive

If, now, we suppose the rectangular axes through the centre of

gravity to be principal axes of the body, and denote by Mf
2

, Mg
2

,

Mh2
the moments of inertia round them, we have

T=%M(u
2 + v

2 + w2

+f
2
zv

2 + g
2

p
2 + h2a2

) (b).

This must be made a minimum subject to the equation of con-

dition (a). Hence, by the ordinary method of indeterminate

multipliers,

Mu + XI=0, Mv + \m = 0, Mw + Xn = Q
\

. .

Mfvr + A {ny-mz) = 0, Mg
2

p+\(h-nx) = 0, Mh2a + X(mx-ly) = 0J
^'

These six equations give each of them explicitly the value of one

of the six unknown quantities u, v, w, w, p, a, in terms of X and

data. Using the values thus found in (a),
we have an equation

to determine X
;
and thus the solution is completed. The first

three of equations (c) show that X, which has entered as an
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Generation
of motion
by impulse
in an in-

extensible
cord or
chain.

indeterminate multiplier, is to be interpreted as the measure of

the amount of the impulse.

Example (2). A stated velocity in a stated direction is com-

municated impulsively to each end of a flexible inextensible cord

forming any curvilineal arc : it is required to find the initial

motion of the whole cord.

Let x, y, z be the co-ordinates of any point P in it, and x, y, z

the components of the required initial velocity. Let also s be

the length from one end to the point P.

If the cord were extensible, the rate per unit of time of the

stretching per unit of length which it would experience at P, in

virtue of the motion x, y, z, would be

dx dx

ds ds

dy dy dz dz

ds ds ds ds
'

Hence, as the cord is inextensible, by hypothesis.

dx dx dy dy dzdz

dsds ds ds dsds (a).

Subject to this, the kinematical condition of the system, and

x = u\

y = v\ when s = 0,

z-w\

when s = I,

I denoting the length of the cord, and (u, v, w), (u', v\ w'), the

components of the given velocities at its two ends : it is required

to find x, y, z at every point, so as to make

\ ^ {x
2 + y

2 + z
y
)
ds (b)

Jo

a minimum, /x denoting the mass of the string per unit of length,

at the point P, which need not be uniform from point to point ;

and of course

ds = (dx
2 + dy

2 + dz2

)'* (c).

Multiplying («) by X, an indeterminate multiplier, and proceeding

as usual according to the method of variations, we have

ri ( tJr rl$,<r dy d8y dz d8zs

ds
I <

(a (xM + y$y + zBz) + X
Jo {

(dx d8x

\ds ds

1

d8y dz d8z\
] , n

ds ds ds J j

in which we may regard x, y, z as known functions of s, and this

it is convenient we should make independent variable. Lite-
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grating "by parts" the portion of the first member which contains Generation

A, and attending to the terminal conditions, we find, according to byImpulse

the regular process, for the equations containing the solution extensible
cord or

d/.dx\ d /.dy\ . d/^dz\ /7 chain.

^ =
ds(

X
d;)>

W =
ds^Ts)> ^ds^ds) <<*>•

These three equations with (a) suffice to determine the four

unknown quantities, x, y, z, and A. Using (d) to eliminate as, y, z

from (a), we have

d-
fx(dx d (sdx\ \

1 {dx d2
/ dx\

)

ds \ds ds \ dsj
"
j p. \ds ds

2

\ dsj
' ' '

/
'

Taking now s for independent variable, and performing the

differentiation here indicated, with attention to the following

relations :
—

dx2
, dx d2x n— + ... = 1, ~r -j-i + ... = 0,

ds' ds ds

/d2

x\
2dx d x (dx\

-rr- -T2 + . . . + (
—-

) + . . . = 0,
ds ds

and the expression (§ 9) for p, the radius of curvatui'e, we find

I)
1 d2X \/xJ d\ A

ju.
ds

2
ds ds jxp~

"
^ '

'

a linear differential equation of the second order to determine

A, when /x
and p are given functions of s.

The interpretation of (d) is very obvious. It shows that A is

the impulsive tension at the point P of the string ;
and that the

velocity which this point acquires instantaneously is the resultant

of —=- tangential, and — towards the centi'e of curvature.
jx ds pfJL

The differential equation (e) therefore shows the law of trans-

mission of the instantaneous tension along the string, and proves
that it depends solely on the mass of the cord per unit of length
in each part, and the curvature from point to point, but not at

all on the plane of curvature, of the initial form. Thus, for

instance, it will be the same along a helix as along a circle of

the same curvature.
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"With reference to the fulfilling of the six terminal equations,

a difficulty occurs inasmuch as x, y, z are expressed by (d) imme-

diately, without the introduction of fresh arbitrary constants,

in terms of A, which, as the solution of a differential equation of

the second degree, involves only two arbitrary constants. The

explanation is, that at any point of the cord, at any instant, any

velocity in any direction perpendicular to the tangent may be

generated without at all altering the condition of the cord even

at points infinitely near it. This, which seems clear enough
without proof, may be demonstrated analytically by transforming

the kinematical equation (a) thus. Let /be the component tan-

gential velocity, q the component velocity towards the centre of

curvature, and p the component velocity perpendicular to the

osculating plane. Using the elementary formulas for the direc-

tion cosines of these lines (§ 9), and remembering that s is now

independent variable, we have

,dx pd
2x p (dzd*y

- dyd
2

z)
y = etc.

Substituting these in (a) and reducing, we find

ds P
(A

a form of the kinematical equation of a flexible line which will

be of much use to us later.

We see, therefore, that if the tangential components of the im-

pressed terminal velocities have any prescribed values, we may

give besides, to the ends, any velocities whatever perpendicular

to the tangents, without altering the motion acquired by any part

of the cord. From this it is clear also, that the directions of the

terminal impulses are necessarily tangential j or, in other words,

that an impulse inclined to the tangent at either end, would

generate an infinite transverse velocity.

To express, then, the terminal conditions, let F and F' be the

tangential velocities produced at the ends, which we suppose

known. We have, for any point, P, as seen above from (d),

1 dk

p.
ds

(.?)>
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and hence when Generation
of motion

1 d\ „ 1 by impulse
S = = F I

in an m-
'

u (Is ( extensible

/ (JA cord or

,
1 dk „,

{ h chain.

and when s = I,
- j-=£ I

(x.
as

which suffice to determine the constants of integration of (d).

Or if the data are the tangential impulses, /, /', required at the

ends to produce the motion, we have

when s - 0, A - /, )
...

and when s = l, k- i
'

)

Or if either end be free, we have k = at it, and any prescribed

condition as to impulse applied, or velocity generated, at the

other end.

The solution of this problem is very interesting, as showing

how rapidly the propagation of the impulse falls off with "change

of direction" along the cord. The reader will have no difficulty

in illustrating this by working it out in detail for the case of a

'-.
cord either uniform or such that /x -/- is constant, and given in

as

the form of a circle or helix. When /x
and p are constant,

for instance, the impulsive tension decreases in the proportion

of 1 to « per space along the curve equal to p. The results have

curious, and dynamically most interesting, bearings on the mo-

tions of a whip lash, and of the rope in harpooning a whale.

Example (3). Let a mass of incompressible liquid be given at impulsive

rest completely filling a closed vessel of any shape ;
and let, by incompns-

suddenly commencing to change the shape of this vessel, any

arbitrarily prescribed normal velocities be suddenly produced in

the liquid at all points of its bounding surface, subject to the

condition of not altering the volume : It is required to find the

instantaneous velocity of any interior point of the fluid.

Let x, y, z be the co-ordinates of any point P of the space

occupied by the fluid, and let u, v, w be the components of the

reqxiired velocity of the fluid at this point. Then p being the

density of the fluid, and J/J" denoting integration throughout the

space occupied by the fluid, we have

r=fjj±p(u
a + v

a + w2

)dxdydz (a),
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Impulsive which, subject to the kinematical condition (8 193),
motion of

J vo n

Sstol *a +
dv

+
dw

=
dx dy dz

'

* "

must be the least possible, with the given surface values of the

normal component velocity. By the method of variation we have

jjj[p(
u8u + v8v +*) + *

(j£
+

C

~^
+

df)}
dxdydz = ° • • • •

(
c
)-

But integrating by parts we have

I / / ( ~T~~
+ 1 *" ~J~ jdxdydz

= 1 1 A (Sudydz + Bvdzdx + Swdxdy)

hu
-j-

+ hv
-j-

+ 8w
-J-) dxdydz (d),

and if I, in, n denote the direction cosines of the normal at any

point of the surface, dS an element of the surface, and ff in-

tegration over the whole surface, we have

jf\ (Sudydz + Svdzdx + Swdxdy) — JjX (I8u + mZv + nSw) dS = 0,

since the normal component of the velocity is given, which

requires that IBu + m8v + n$w = 0. Using this in going back

with the result to
(c), (d), and equating to zero the coefficients of

8u, h), Bw, we find

dX dX dX . .

pU== dx>
pV =

dy->
Pl° =

dz W'

These, used to eliminate u, v, w from (b), give

d /l dX\
d_f\dX\ ^LfldX^

dx \p dx) dy \p dy) dz\p dz )

an equation for the determination of A, whence by (e)
the

solution is completed.

The condition to be fulfilled, besides the kinematical equation

(b), amounts to this merely,
—that p (udx + vdy + wdz) must be

a complete differential. If the fluid is homogeneous, p is con-

stant, and udx + vdy + wdz must be a complete differential
;
in

other words, the motion suddenly generated must be of the

"non-rotational" character
[§ 190, (t)] throughout the fluid mass.

The equation to determine A becomes, in this case,

d2X d2X d?X A

d^
+
dp

+
d^

= °
<*)'
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From the hydrodynamical principles explained later it will Impulsive

appear that A, the function of which p (udx + vdy + wdz) is inoompres-

the differential, is the impulsive pressure at the point (x, y, z)

of the fluid. Hence we may infer that the equation (/), with

the condition that A shall have a given value at every point
of a certain closed surface, has a possible and a determinate

solution for every point within that surface. This is precisely

the same problem as the determination of the permanent tempe-

rature at any point within a heterogeneous solid of which the

surface is kept permanently with any non-uniform distribution

of temperature over it, (f) being Fourier's equation for the

uniform conduction of heat through a solid of which the conduct-

ing power at the point (x, y, z) is -
. The possibility and the

determinateness of this problem (with an exception regarding

multiply continuous spaces, to be fully considered in Vol. II.)

were both proved above [Chap. I. App. A, (e)] by a demonstra-

tion, the comparison of which with the present is instructive.

The other case of superficial condition—that with which we
have commenced here—shows that the equation (/'), with

. dk d\ dX. . , . .. ,
I -=- + m-j- +n— given arbitrarily lor every point of the sur-

(Xdu tl/if fM/&£

face, has also (with like qualification respecting multiply con-

tinuous spaces) a possible and single solution for the whole

interior space. This, as we shall see in examining the mathe-

matical theory of magnetic induction, may also be inferred from

the general theorem
(e) of App. A above, by supposing a to be

zero for all points without the given surface, and to have the

value - for any internal point (x, y, z).
P

318. The equations of continued motion of a set of free Lagrange's

particles acted on by any forces, or of a system connected in motion hi

any manner and acted on by any forces, are readily obtained generalized

in terms of Lagrange's Generalized Co-ordinates by the regular

and direct process of analytical transformation, from the or-

dinary forms of the equations of motion in terms of Cartesian

(or rectilineal rectangular) co-ordinates. It is convenient first

to effect the transformation for a set of free particles acted

on by any forces. The case of any system with invariable

connexions, or with connexions varied in a given manner, is
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then to be dealt with by supposing one or more of the gene-

ralized co-ordinates to be constant : or to be given functions

of the time. Thus the generalized equations of motion are

merely those for the reduced number of the co-ordinates re-

maining un-given ; and their integration determines these

co-ordinates.

Let m„ m2 ,
etc. be the masses, xv y,, «,, x,, etc. be the co-

ordinates of the particles; and Z,, T"
1} iT,,

X
a ,

etc. the components

of the forces acting upon them. Let
if/, <£, etc. be other variables

equal in number to the Cartesian co-ordinates, and let there be

the same number of relations given between the two sets ot

variables
;

so that we may either regard \p, <f>,
etc. as known

functions of
a;,, y,, etc., or x

{
, y,, etc. as known functions of

\}/, <f>,
etc. Proceeding on the latter supposition we have the

equations (a), (1), of § 313; and we have equations (6), (6), of

the same section for the generalized components *, <£, etc. of the

force on the system.

For the Cartesian equations of motion we have

(I/OC CI t/

Multiplying the first by -=-±, the second by -jj,
and so on,

and adding all the products, we find by 313 (6)

/d2
x, dx, d*y, dyx d~z

x
dz\ .

,
. /OAV

H> = m ( -^? -5T + -£ -fr +-r* -rr)+ »», (etc.) + etc. ...(20).
'left

1

dxp dt
3

d<j/ dt
2

d\j/ J
* v ' v '

Now

d'x^ dx
x _ d /

.
dx\

.
d dx

x _ d /
%
dx\ _ . dx^

He
duj,

=
Jt\

Xl
<hf)

~
Xl

dt df
~
Jt\

Xl

dj,)

~
Xl #

d( d(x,')) d(x*)

-dtV~d4~)~ i~df (J1) -

Using this and similar expressions with reference to the other

co-ordinates in (20), and remarking that

^m1 (x* + y* + z*) + ^m2 (etc.) + etc. = T (22),

if, as before, we put T for the kinetic energy of the system; we

find

*-'?-.* (23).
dt d\p d(f/
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The substitutions of for and of -j-
1

dif/

r d dx, ,

tor — — used
dt dif/dip

'

dip

above, suppose x
l
to be a function of the co-ordinates, and of the

generalized velocity-components, as shown in equations (1) of

§ 313. It is on this supposition [which makes T a quadratic

function of the generalized velocity-components with functions

of the co-ordinates as coefficients as shown in § 313 (2)]
that the

differentiations -=-. and -±- in (23) are performed. Proceeding
d\p dip

similarly with reference to
</>, etc., we find expressions similar to

(23) for $, etc., and thus we have for the equations of motion in

terms of the generalized co-ordinates

Lagrange's
equations of
motion in

terms of

generalized
co-ordinates
deduced
direct by
transforma-
tion from
the equa-
tions of

motion in

terms of
Cartesian
co-ordi-
nates.

d dT dT T
. = iff

dt
d\j/ dip

dT
T7 - 3T = *,

ddT
dt d<f> dtp

etc.

(24).

It is to be remarked that there is nothing in the preceding

transformation which would be altered by supposing t to appear

in the relations between the Cartesian and the generalized co-

ordinates : thus if we suppose these relations to be

F
{
x

i> Vv zi, xa> «A> 4h #> t)=z0

^i(*i, 2/i> *i> <*v <A> ih 0>
= ° .(25),

etc.

we now, instead of § 313 (1),
have

fdx\ dx, . dx
x

1

x=[-r1

)
+ ~ ip + -yr 4>+ etc.

dVi\, dyx
. dyl

.

Tt)
+
d4*

+
d$*

+QiG

etc.

Vx
.(26),

/dx \
where

( -y-
1

)
denotes what the velocity-component x

x
would be

if
ip, <f>,

etc. were constant; being analytically the partial differ-

ential coefficient with reference to t of the formula derived from

(26j to express a^ as a function of t, ip, 4>, 6> e^°-

Using (26) in (22) we now find instead of a homogeneous

quadratic function of
if/, <j>, etc., as in (2) of § 313, a mixed
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Lagrange's
equations of
motion in
terms of

generalized
co-ordinates
deduced
direct by
transforma-
tion from
the equa-
tions of

motion in
terms of
Cartesian
co-ordi-
nates.

.(28);

function of zero degree and first and second degrees, for the

kinetic energy, as follows :
—

y= jr+(^)^+(^)^+ ... +i{(^^)^+(0,^)^+...2(^^)^...}.
:
(27),

where

.
, ,. _, fdx dx dy dy dz dz\

{*>v= -'H##
+ #^ +

#c^j'
etc -

etc.

iT, (^), (0), (i/^, i/'), (</^, </>),
etc. being thus in general each a known

function of t, \p, <f>,
etc.

Equations (24) above are Lagrange's celebrated equations of

motion in terms of generalized co-ordinates. It was first

pointed out by Vieille* that they are applicable not only when

yjr, (f>,
etc. are related to xv yv z

x ,
x

2 , etc. by invariable relations

as supposed in Lagrange's original demonstration, but also

when the relations involve t in the manner shown in equa-

tions (25). Lagrange's original demonstration, to be found

in the Fourth Section of the Second Part of his Micanique

Analytique, consisted of a transformation from Cartesian to

generalized co-ordinates of the indeterminate equation of

motion
;
and it is the same demonstration with unessential

variations that has been hitherto given, so far as we know,

by all subsequent writers including ourselves in our first edition

(§ 329). It seems however an unnecessary complication to

introduce the indeterminate variations 8x, Sy, etc.
;
and we find

it much simpler to deduce Lagrange's generalized equations

by direct transformation from the equations of motion (19)

of a free particle f.
* Sur les equations differentielles de la dynamique, Liouville's Journal,

1849, p. 201.

t [The proof by direct transformation was given by Sir W. R. Hamilton,
Phil. Trans., 1835, p. 96. H. L.]
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When the kinematic relations are invariable, that is to say Lagrange's

when t does not appear in the equations of condition (25), we form of the

find from (27) and (28), motion
expanded.

T = %{(t,+)+
s

+2tt,<f>)ict>+(<t>,<t>)cj>*+...} (29),

d_clT
dt dip

( dij/

T
d<j> 7

«A

{^). +<i(^._}

.

.(29'),

and

dip
"

( dip
r

dip
T

dip
(29").

Hence the ^-equation of motion expanded in this, the most

important class of cases, is as follows :

where

w*r^%Pf+**W>u+
dij/ dcj> d<f> dip

(29'").

Remark that Q^ (T) is a quadratic function of the velocity-com-

ponents derived from that which expresses the kinetic energy

(T) by the process indicated in the second of these equations,

in which
ip appears singularly, and the other co-ordinates sym-

metrically with one another.

Multiply the ^-equation by ip,
the (^-equation by <f>,

and so Equation of

on
;
and add. In what comes from Q^ (T) we find terms

energy.

4-i^0W.*--*$*V.f;
which together yield

dtp

With this, and the rest simply as shown in (29"'), we find

+ [(^)#+(<k<^+...]<£
+

VOL. I. 20
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Equation of

energy.

Hamilton's
form.

dT . dT .

defy

= Vip + <P<j> + <2n

or
dT = ** + ** + .(29

v
).

When the kinematical relations are invariable, that is to say,

when t does not appear in the equations of condition (25), the

equations of motion may be put under a slightly different form

first given by Hamilton, which is often convenient
;
thus :

—Let

T, \p, <£, ..., be expressed in terms of $, rj,..., the impulses re-

quired to produce the motion from rest at any instant [§313 (d)] ;

so that T will now be a homogeneous quadratic function, and

if/, <j>,
... each a linear function, of these elements, with coeffi-

cients—functions of
if/, <£, etc., depending on the kinematical

conditions of the system, but not on the particular motion.

Thus, denoting, as in § 322 (29), by 3, partial differentiation with

reference to £, t], ..., \f>, <£,•••> considered as independent vari-

ables, we have [§
313 (10)]

*-£. *-£ (30),df
and, allowing d to denote, as in what precedes, the partial dif-

ferentiations with reference to the system \p, <j>, ..., if/, <£, ..., we

have [§
313 (8) J

1 =
dT

d$

dT

rtc/>

.(31).

The two expressions for T being, as above, § 313,

the second of these is to be obtained from the first by substitu-

ting for
if/, <£...., their expressions in terms of £, rj,

... Hence

df dT dTdii, dTd<f> dT d dT d dT

dif/ dif/ dif/ dif/ d<f> d\f/ dif/

"

dif/ d£
'

dxf/ dq
+

(IT
d_(

dT dT \ dT n dT
+ 2-TT

dif/ dif/d\f/

'

dif/\

From this we conclude

dT dT . .. . dT dT
-,

= - t- : and, similarlv, 77= -
77 >

etc -

dif/ dip
' J

d<f> d<f>

Hence Lagrange's equations become

d£ oT

.(33).

dt dif/

= *, etc. .(34).
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In § 327 below a purely analytical proof will be given of Hamilton's

Lagrange's genei'alized equations of motion, establishing them

directly as a deduction from the principle of
" Least Action,"

independently of any expression either of this principle or of

the equations of motion in terms of Cartesian co-ordinates. In

their Hamiltonian form they are also deduced in § 330 (33) from

the principle of Least Action ultimately, but through the beau-

tiful
"
Characteristic Equation" of Hamilton.

319. Hamilton's form of Lagrange's equations of motion in

terms of generalized co-ordinates expresses that what is re-

quired to prevent any one of the components of momentum
from varying is a corresponding component force equal in

amount to the rate of change of the kinetic energy per unit

increase of the corresponding co-ordinate, with all components
of momentum constant : and that whatever is the amount of

the component force, its excess above this value measures the

rate of increase of the component momentum.

In the case of a conservative system, the same statement

takes the following form :
—The rate at which any component

momentum increases per unit of time is equal to the rate, per
unit increase of the corresponding co-ordinate, at which the

sum of the potential energy, and the kinetic energy for con-

stant momentums, diminishes. This is the celebrated "canonical

form" of the equations of motion of a system, though why it

has been so called it would- be hard to say.

Let V denote the potential energy, so that [§ 293 (3)1 "Canonical
form" of

*Si// + 4>Sc/> + . . .
= - S V, Hamilton's

T r
general

7 y ,iy equations of

nnrl tlipvpfnvp \& - __ <T> - motion of aana tneieioie y _ - —-
,

q>__—
,

... oonserva-
dx¥ a<P tive system.

Let now U denote the algebraic expression for the sum of the

potential energy, V, in terms of the co-ordinates, if/, <£..., and the

kinetic energy, T, in terms of the co-ordinates and the components
of momentum, £, 77,.... Then

d$ dU
~]

-r = — t- , etc.
dt

d\jf

'

. # dU
**» dt=W etc -

(35),

20—2
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Examples of

the use of

Lagrange's
generalized
equations of
motion

j
—

polar co-

ordinates.

the latter being equivalent to (30), since the potential energy does

not contain $, rj, etc.

In the following examples we shall adhere to Lagrange's form

(24), as the most convenient for such applications.

Example (A).
—Motion of a single point (m) referred to polar

co-ordinates (r, 6, <f>).
From the well-known geometry of this

case we see that 8r, r86, and r sin 68<j} are the amounts of linear

displacement corresponding to infinitely small increments, 8r, SO,

Scj>,
of the co-ordinates : also that these displacements are respec-

tively in the direction of r, of the arc rSO (of a great circle)

in the plane of r and the pole, and of the arc rsin0S<£ (of a

small circle in a plane perpendicular to the axis); and that they
are therefoi-e at right angles to one another. Hence if F, G, H
denote the components of the force experienced by the point, in

these three rectangular directions, we have

F = R, Gr = 0, and Hr sin 6 = 4>
;

R, 0, <£ being what the generalized components of force (§ 313)

become for this particular system of co-ordinates. We also see

that f, rO, and r sin 6cj> are three components of the velocity,

along the same rectangular directions. Hence

T = \m(r
2 + i*6

2 + r
2
sin

2

$<j>

2

).

From this we have

dT dT 9& dT
, . 2

. .— = mr, —.
= mr V,

—
;
= mr" sin*6><£ :

dr dd d<f>

dT • • dT dT
-r- = mr(6 2 + sin

2

$<j>
2

), -=•= = mr2
sin cos Odr,

— = 0.
dr v dO d<ji

Hence the equations of motion become

F,

m (d(r
2

d) , . „ „.,) r,

< —±-—- - r sui cos 6(f>
' - Gr,

d(r*shi
2

dcj>)

dt
= Hr sin

or, according to the ordinary notation of the differential calculus,

(d
2r fd6

2
. 2n dcf>

2

\) „
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\d ( a d9\ 2 . . -
r./<^»

a

| r Examples ofm
i T, r T, I

- r sin Q cos 0~7n*\= Gr> *« use of
I at \ at; at ) Lagrange's

. - generalized
a / „ . „ n (l<n\ TT . . equations ofm
-j-

I ?•" sm" H -j- )
= //r sin 0. motion ;

—
CW \ ft £ / polar co-

ordinates.

If the motion is confined to one plane, that of r, 9, we have

~ =
0, and therefore H =

0, and the two equations of motion

which remain are

/d*r cl6
2
\ „ d ( s

dd\ n

These equations might have been written down at once in terms

of the second law of motion from the kinematical investigation of

8 32, in which it was shown that -rs — T t«i and -— ( r2 —
)s df dtr

'

r dt \ dt)

are the components of acceleration along and perpendicular to

the radius-vector, when the motion of a point in a plane is ex-

pressed according to polar co-ordinates, r, 9.

The same equations, with
<f>

instead of 9, are obtained from the

polar equations in three dimensions by putting 9=\ir, which

implies that G = 0, and confines the motion to the plane (r, <£).

Example, (B).
—Two particles are connected by a string ;

one Dynamical

of them, 7/i,
moves in any way on a smooth horizontal plane, and

the string, passing through a smooth infinitely small aperture in

this plane, bears the other particle m', hanging vertically down-

wards, and only moving in this vertical line : (the string re-

maining always stretched in any practical illustration, but, in

the problem, being of course supposed capable of transmitting

negative tension with its two parts straight.) Let I be the whole

length of the string, r that of the part of it from m to the aperture
in the plane, and let 9 be the angle between the direction of r

and a fixed line in the plane. We have

T = ±{m(f
2
+ r

2
9

2

)
+ vif2

},

— =(m + m)r, —
: = mr 9,

dr d9

dT dT .— = mr6; -jn=°-dr d9

Also, there being no other external force than gm', the weight

of the second particle,

R=-gm', © = 0. •
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Examples of
the use of

Lagrange's
generalized
equations of

motion ;

dynamical
problem.

Case of
stable equi-
librium due
to motion.

Examples
continued ;

C (a), fold-

ing door.

Hence the equations of motion are

(m + m')r
— mr$2 - —

m'g, m d(r°-8)

dt
0.

The motion of m is of course that of a particle influenced only

by a force towards a fixed centre; but the law of this force, P

(the tension of the string), is remarkable. To find it we have

(§ 32), P- m(-r + r6
2

). Bat, by the equations of the motion,

-r0> = -
m

m + m , (a + rO
2

),
and 6

h

mr

where h (according to the usual notation) denotes the moment

of momentum of the motion, being an arbitrary constant of in-

tegration.

Villi

m +m
The particular case of projection which gives m a circular motion

and leaves m' at rest is interesting, inasmuch as (§ 350, below)

the motion of in is stable, and therefore ml is in stable equi-

librium.

Example (C).
—A rigid body m is supported on a fixed axis,

and another rigid body n is supported on the first, by another

axis
;
the motion round each axis being perfectly free.

Case (a).
—The second axis parallel to the first. At any time,

t, let <£ and \p
be the inclinations of a fixed plane through the

first axis to the plane of it and the second axis, and to a

plane through the second axis and the centre of inertia of the

second body. These two co-ordinates, <£, ip,
it is clear, completely

specify the configuration of the system. Now let a be the dis-

tance of the second axis from the first, and b that of the centre

of inertia of the second body from the second axis. The velocity

of the second axis will be a<j> ;
and the velocity of the centre

of inertia of the second body will be the resultant of two velocities

a<j>,
and

b\p,

in lines inclined to one another at an angle equal to
\p
—

cf>,
and

its square will therefore be equal to

«2

</>

2 + 2ab^ cos (xp-<j>) + b
2

ij/

2
.

Hence, if m and n denote the masses, j the radius of gyration
of the first body about the fixed axis, and k that of the second
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body about a parallel axis through its centre of inertia
;
we have,

according to S§ 280, 281, oTaTfold
ing door.

Hence we have,

T = h {mf <j>

2 + n [arft + Zab^ cos («/'-</>) + b
2

^
2 + k2

if

2

] \

dT • • dT— - mf<j> + na
2

cj>
+nab cos (

i/>

-
<£) \p ;

—- = nab cos
(\p

-
<£) <£ + n (b

2+ k2

) \j/ ;

d(j> dv//

dT dT

The most general supposition we can make as to the applied forces,

is equivalent to assuming a couple, <£, to act on the first body, and

a couple, *, on the second, each in a plane perpendicular to the

axes
;
and these are obviously what the generalized components of

stress become in this particular co-ordinate system, <j>, \\j.
Hence

the equations of motion are

(mf + na2

) <j>
+ nab —^-—-— - nab sin

(if/
-

<£) t^ = <$,
ctt

nab
d 1> cos (^

~
«£)] + n ^ + jij £ + nah sin ^-$)^ = iff.

Ctt

If there is no other applied force than gravity, and if, as we may

suppose without losing generality, the two axes are horizontal, the

potential energy of the system will be

gmh (1
- cos

<£)
+ gn {a [1

- cos
(<f>

+ A)] + b [1
- cos

(i//
+ -4)]},

the distance of the centre of inertia of the first body from the

fixed axis being denoted by h, the inclination of the plane

through the fixed axis and the centre of inertia of the first body,

to the plane of the two axes, being denoted by A, and the fixed

plane being so taken that
<f>
= when the former plane is vertical.

By differentiating this, with reference to <£ and
i{/,

we therefore

have

- 3> = gmh sin
<f>
+ gna sin

(<f>
+ A), -"if- gnb sin

(\j/
+ A).

We shall examine this case in some detail later, in connexion

with the interference of vibrations, a subject of much importance

in physical science.

When there are no applied or intrinsic working forces, wo

have <£ - and ^ = : or, if there are mutual forces between the

two bodies, but no forces applied from without, 3> + * = 0. In
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either of these cases we have the following first integral :
—

(mf + nor) <jt
+ m'ab cos

(if/
—

<£) (<£
+

iff)
+ n (b

2 + k2

) iff
= G ;

obtained by adding the two equations of motion and integrating.

This, which clearly expresses the constancy of the whole moment of

momentum, gives <f>
and

iff
in terms of

(iff
-

<j>)
and

(iff
—

<£). Using
these in the integral equation of energy, provided the mutual forces

are functions of
if/

-
<f>,

we have a single equation between

- -—
, (if/

—
</>),

and constants, and thus the full solution of
Cfft

the problem is reduced to quadratures. [It is worked out fully

below, as Sub-example Gr ]

Case (b).
—The second axis perpendicular to the first For

simplicity suppose the pivoted axis of the second body, n, to be

a principal axis relatively [§ 282 Def. (2)] to the point, N, in

which it is cut by a plane perpendicular to it through the fixed

axis of the first body, m. Let NE and NF be n's two other

principal axes. Denote now by

h the distance from N to m's fixed axis
;

k, e,f the radii of gyration of n round its three principal

axes through N ;

j the radius of gyration of m round its fixed axis
;

6 the inclination of NE to m's fixed axis ;

if/
the inclination of the plane parallel to re's pivoted axis

through m's fixed axis, to a fixed plane through the

latter.

Remarking that the component angular velocities of n round

NE and NF are
iff

cos $ and
iff

sin 0, we find immediately

T=\ {[mf + n (h
2 + e

2
cos

2
6 +f

2
sin

2

$)} if,

2 + nk2

6%

or, if Ave put

mf + n (h
2

+f
2

)
= G, n <V -f 2

)
= D •

T= \{(G +D cos
2

6) ip

2 + nk2
6
2

}.

The farther working out of this case we leave as a simple but

most interesting exercise for the student. We may return

to it later, as its application to the theory of centrifugal clirono-

metric regulators is very important.
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Example (C). Take the case C (6) and mount a third bodyM
upon an axis 00 fixed relatively to n in any position parallel to

NE. Suppose for simplicity to be the centre of inertia of M
and 00 one of its principal axes; and let OA, OB be its two

other principal axes relative to 0. The notation being in other

respects the same as in Example (b), denote now farther by
A, B, the moments of inertia of M round OA, OB, 00

; <p the

angle between the plane AOG and the plane through the fixed

axis of m perpendicular to the pivoted axis of w] vz, p, cr the

component angular velocities ofM round OA, OB, 00.

In the annexed diagram, taken from § 101 above, ZCZ' is a

Motion of
a rigid body
pivoted on
one of its

principal
axes mount-
ed on a
gim balled
bowl.

Letter at cen-

tre of sphere

concealed by
Y.

XI' =
</.
+

<£,

NB'=j>.

circle of unit radius having its centre at and its plane parallel

to the fixed axis of m and perpendicular to the pivoted axis

of n.

The component velocities of in the direction of the arc ZO
and perpendicular to it are 6 and ^ sin 6

;
and the component

angular velocity of the plane ZOZ' round 00 is
\j/
cos 6. Hence

vs = 6 sin 4>
—

ij/
sin 8 cos

(f>,

p = cos <£ + \j/
sin 6 sin <p,

and a- =
{f/
cos 6 +

</>.

[Compare § 101.]
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Motion of
a rigid body
pivoced on
one of its

principal
axes mount-
ed on a
gimballed
bowl.

Rigid body
rotating
freely; re-

ferred to
the i/>, 4>, e

co-ordinates

(§ 101).

Gyroscopes
and
gyrostats.

Gyroscopic
pendulum.

The kinetic energy of the motion of M relatively to 0, its

centre of inertia, is (§ 281)

h(Azz
2 + BP

2 + C<r
2

);

and (§ 280) its whole kinetic energy is obtained by adding the

kinetic energy of a material point equal to its mass moving with

the velocity of its centre of inertia. This latter part of the

kinetic energy of M is most simply taken into account by sup-

posing n to include a material point equal to M placed at
;

and using the previous notation k, e, f for radii of gyration of n

on the understanding that n now includes this addition. Hence

for the present example, with the preceding notation G, D, we

have

T = \ {(<? + D cos
2

6) ft + nk2
6

2

)

+ A ($'
sin

<f>
-

if/
sin 6 cos

<f>)

2 + B (9 cos
<f>
+

\j/
sin sin

<£)
2

-fC^COstf+e^)
2

}.

From this the three equations of motion are easily written down.

By putting G =
0, D =

0, and k = 0, we have the case of the

motion of a free rigid body relatively to its centre of inertia.

By putting B- A we fall on a case which includes gyroscopes

and gyrostats of every variety ;
and have the following much

simplified formula :

T= £ {[£ + A + (D - A) cos
2

0] ij,

2 + (nk
2 + A) 6

2 + C
(iff

cos + 0)
8

},

or

T= \ {{E ¥F cos
2

6) f + (nk
2 + A) 6

s + C (j,
cos 6 + <j>f\,

if we put E = G + A, and F= D- A.

Example (D).
—

Gyroscopic pendulum.
—A rigid body, P, is

attached to one axis of a universal flexure joint (§ 109), of which

the other is held fixed, and a second body, Q, is supported on P by
a fixed axis, in line with, or parallel to, the first-mentioned arm of

the joint. For simplicity, we shall suppose Q to be kineticallv

symmetrical about its bearing axis, and OB to be a principal

axis of an ideal rigid body, PQ, composed of P and a mass so

distributed along the bearing axis of the actual body Q as to

have the same centre of inertia and the same moments of inertia

round axes perpendicular to it. Let AO be the fixed ana, the

joint, OB the movable arm bearing the body P, and coinciding

with, or parallel to, the axis of Q. Let BOA' = 6
;

let <b be the
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angle which the plane AOB makes with a fixed plane of reference, Gyroscopic

through OA, chosen so as to contain a second

principal axis of the imagined rigid body, PQ,
A

I
when OB is placed in line with A

;
and let

{(/
be the angle between a plane of reference in

Q through its axis of symmetry and the plane

of the two principal axes of PQ already men-

tioned. These three co-ordinates (9, <j>, \J/)

clearly specify the configuration of the system at

any time, t. Let the moments of inertia of the

imagined rigid body PQ, round its principal

axis OB, the other principal axis referred to above, and the

remaining one, be denoted by 51, 33, (£ resj^ectively ;
and let

&' be the moment of inertia of Q round its bearing axis.

We have seen (§ 109) that, with the kind of joint we have sup-

posed at 0, every possible motion of a body rigidly connected with

OB, is resolvable into a rotation round 01, the line bisecting the

angle AOB, and a rotation round the line through perpen-

dicular to the plane AOB. The angular velocity of the latter

is 0, according to our present notation. The former would give

to any point in OB the same absolute velocity by rotation round

01, that it has by rotation with angular velocity <fr
round A A'

;

and is therefore equal to

sin. A'OB . sin 6 . _ . . ,
.

-.—^p <£
= t-, 4>

=
2<j> sin hv.

sin JOB cos hv

This may be resolved into 2</> sin
2
hd = </> (1

— cos 6) round OB,
and 2e/> sin hO cos h& = (j>

sin 9 round the perpendicular to OB, in

plane AOB. Again, in virtue of the symmetrical character of

the joint with reference to the line 01, the angle cf>,
as defined

above, will be equal to the angle between the plane of the two

first-mentioned principal axes of body P, and the plane AOB.
Hence the axis of the angular velocity <£ sin 0, is inclined to the

principal axis of moment iij at an angle equal to <£. Resolving
therefore this angular velocity, and 6, into comj^onents round the

axes of 33 and <£, we find, for the whole component angular
velocities of the imagined rigid body PQ, round these axes,

<£ sin 6 cos
<f)
+ 6 sin 0, and -

</>
sin 6 sin <£ + $ cos <£, respectively.

The whole kinetic energy, T, is composed of that of the imagined

rigid body PQ, and that of Q about axes through its centre of
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Gyroscopic
pendulum.

inertia : we therefore have

2T=%L(l -cos 0)
2

9
s+ 93 (9 sin cos 9-^ sin 9)' J- ©(9 sin 6 sin<£-0"cos0)

a

-»- S' {^-<£ (1
- cos 0)}

2
.

rlT dT
Hence

a± = &' {<£
-

(1
- cos 6)}, -77

- 0,

dT

d(j>

3(1 - cos 0)
2

# + 35 (<£ sin 6 cos 9 + 6 sin 9) sin 6 cos 9

and

+ @(9'sm0sin9-0cos9)sin0sin9-8'{^-0(l-cos0)}(l-cos0),

dT . • •— = - 93 (<£
sin 6 cos 9 + 6 sin 9) (</>

sin sin 9 — cos 9)
«9

+ ©((£sm#sm<£-^cos <£)(<£ sin0cos<£ + 0sin<£),

33 (<£sin0cos9 + 0sin 9) sin9— ©(9" sin sin 9 — cos 9) cos 9

: S (1
— cos 0) sin 0<j>

2 + 93 cos cos 9$ (<£ sin cos 9 + sin 9)

Example of

varying
relation
without
constraint

(rotating
axes).

dT

d$'

dT
~dO

''

+© cos0sin9</>(<£sin0 sin9-0cos9)-&'sin09{ti'-(l
—

cos0)<£}.

Now let a couple, G, act on the body Q, in a plane perpendi-

cular to its axis, and let L, M, X act on P, in the plane perpen-

dicular to OB, in the plane A'OB, and in the plane through OB

perpendicular to the diagram. If
\f;

is kept constant, and 9
varied, the couple G will do or resist work in simple addition

with L. Hence, resolving L + G and N into components round

01, and perpendicular to it, rejecting the latter, and remembering
that 2 sini$(£ is the angular velocity round Of, we have

&=2^6{-(L + G)&ml6 + Xcoak6}=[-(L + G)(l-co&6)+Nriji8}.

Also, obviously

* = G, OD = M.

Using these several expressions in Lagrange's general equations

(24), we have the equations of motion of the system. They will

be of great use to us later, when we shall consider several parti-

cular cases of remarkable interest and of very great importance.

Example (E).
—Motion of afree particle referred to rotating axes.

Let x, y, z be the co-ordinates of a moving particle referred to

axes rotating with a constant or varying angular velocity round

the axis OZ. Let
cc, , y , z, be its co-ordinates referred to the

same axis, OZ, and two axes OX,, OY ,
fixed in the plane per-
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pendicular to it. We have
Example of

varying
x — x cos a — y sin a, y = ccsina + y cos a; relation

, ,
without

X - X COS a — it sill a — (x sin a 4- y COS a) a, y, — etc. constraint
1 a x a i i a\

(rotating

where a, the angle Xf)X, must be considered as a given func-
axos) '

tion of £. Hence

T= \m {x
2 + tf + z

2 + 2 (xy
—
yx) d + (x

2 + y
2

)
a

2

},

t^r c/Z
7

c/Z
7

s -«(*-ya), ^=m <* + «*),
- -«*,

dZ' ... .- dZ7 ... .„, dT
Tx =m{ya + xa-),

- = m(- *a + ya ), g-O.

Also,

d dZ7
. .. ... d dT ... .. ...

-=--=- = m (x — ya — ya),
— -=- =m(y + xa + xa),

dtdx v J J h
dtdy

w "

and hence the equations of motion are

m (x
- 2ya

— xa2 —
yd) = X, m (y + 2xa — ya

2 + xa.)
= Y, mz — Z,

X, Y, Z denoting simply the components of the force on the

particle, parallel to the moving axes at any instant. In this

example t enters into the relation between fixed rectangular axes

and the co-ordinate system to which the motion is referred
;
but

there is no constraint. The next is given as an example of vary-

ing, or kinetic, constraint.

Example (¥).
—A particle, influenced by any forces, and a I- Example of

tached to one end of a string of which the other is moved with any relation

constant or varying velocity in a straight line. Let be the kiiietic

inclination of the string at time t, to the given straight line, and constramt -

(j>
the angle between two planes through this line, one containing

the string at any instant, and the other fixed. These two co-

ordinates (0, <f>) specify the position, P, of the particle at any

instant, the length of the string being a given constant, a, and

ths distance OE, of its other end E, from a fixed point, 0, of the

liae in which it is moved, being a given function of
t, which we

shall denote by u. Let x, y, z be the co-ordinates of the particle

referred to three fixed rectangular axes. Choosing OX as the given

straight line, and YOX the fixed plane from which
<f>

is measured,

we have

x — u + a cos 0, y = a sin cos
<f>,

z — a sin 6 sin
</>,

x—u- a sin 06
;
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and for y, z we have the same expressions as in Example (A).
Hence

T= Z + hn (it"
- 2u0a sin 6)

where Z denotes the same as the T of Example (A), with

v = 0, and r = a. Hence, denoting as there, by G and H the two

components of the force on the particle, perpendicular to EP,

respectively in the plane of 6 and perpendicular to it, we find, for

the two required equations of motion,

m {a (6
— sin 6 cos 0<f>

2

)
- sin 6

ii\
= G, and ma

d (sin
2

6cj>)

dt
= H.

These show that the motion is the same as if E were fixed, and

a force equal to — mil were applied to the particle in a direction

parallel to EX
;
a result that might have been arrived at at once

by superimposing on the whole system an acceleration equal and

opposite to that of E, to effect which on P the force - mil is

required.

Example (¥'). Any case of varying relations such that in

318 (27) the coefficients
(if/, if/), (if/, <f>)

•• are independent of t.

Let © denote the quadratic part, L the linear part, and K [as

in § 318 (27)] the constant part of T in respect to the velocity

components, so that

® = \\ ("A, «W <A

2 + 2 (<M)U +
(<t>, <t>) <£

2 + • • •

} )

L = ty) $+(<!>) <£ + ...
(«),

where
(if/, if/), (^,4>), (4>, 4>) denote functions of the co-ordi-

nates without t, and
(if/), (<f>), ..., (if/, tf>, 6, ...) functions of the

co-ordinates and, may be also, of t
;
and

We have

T =% + L

(IK

dij/

K
.(b).

0.

Hence the contribution from K to the first member of the
if/-

. • .
,

dK
equation of motion is simply

—
j-

. Again we have

dL
-Wi

hence

dip

d_dL_d(tfl . d(\j/)

dt dip dif/ d<f>

<j>
+ etc. +m-



310.] DYNAMICAL LAWS AND PRINCIPLES. 319

Farther we have Example of

dL d{ip) . d(tp) . relation

777
=

~7iT Y + ~JT V + due to

dip dip
T

dip kinetic.

Hence the whole contribution from L to the ^-equation of

motion is

(dty)
d

(<f>)\
,d (+) d(6)\, /d(+)\

Lastly, the contribution from '2T is the same as the whole from

T in § 318 (29'") ;
so that we have

d dZ d% ,. |X y ,, ,

••

-r -jj
-— = 0, <A) «A + (<A» <t>) <!>

+
at dip dif/

tJMl.v^diM)
^^jTr+2-W-^ + 2 d(^,^) d(cj>,4,y

3*
—

sr-j*
+
-4<<ft

and the completed i^-equation of motion is

dL dZ_dZ + /dty)
d(4)\^ + /d(ip) _ dJ6)\ j + ^

dt dip dip
\

cUf> dip
/ \ dO dip

'

d(xf/)\ dK
+ "^ = * W-dt J dip

It is important to remark that the coefficient of
<p>

in this
in-

equation is equal but of opposite sign to the coefficient of
ip

in

the ^-equation. [Compare Example G (19) below.]

Proceeding as in § 318 (29
iv

) (29
v

),
we have in respect to %> Equation of

precisely the same formulas as there in respect to T. The terms
e

involving fii*st powers of the velocities simply, balance in the

sum : and we find finally

tZ© /dL\ ^
(1i,a...)A' . • ...

* +Ur"*" ss ** + ** + (/)>

where
<:£(,/,,<£,...)

denotes differentiation on the supposition of

ipt<j>,
... variable

;
and t constant, where it appears explicitly.

Now with this notation we have

s-®* 4^* «*+<>*+••-

. dK fdK\ d^,^...)Kand __=() + w>v> ' _
,

dt \ dt J dt

Hence from {/) we have

dT dm + L + K) . . dm )L .,.-.,. ,,...

da.*.. \K /dK+ 3<%^ +Q ^
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Exercise for
student.

Ignoration
Offii-

ordinates.

Take, for illustration, Examples (E) and (F) from above ; in

which we have

[Example (E)] Z = % m (x
2 + f + z

2

),

L — ma. (xy
—

yx),

K = %ma
2

(x
2

+y*),

and [Example (F)] % = \ ma
2

(sin
2

dtf + 6
2

),

L = — mua sin 66,

K —
^ mu

2
.

Write out explicitly in each case equations (/) and (g), and

verify them by direct work from the equations of motion forming
the conclusions of the examples as treated above (remembering
that d and u are to be regarded as given explicit functions of

t).

Example (G).
—Preliminary to Gyrostatic connexions and to

Fluid Motion. Let there be one or more co-ordinates x, x, etc.

which do not appear in the coefficients of velocities in the

dT dT
expression for T

;
that is to say let — = 0, ^—,

=
0, etc. The

equations corresponding to these co-ordinates become

•d).

ddT ddT—
-77-

= X, —r -zrr,
= X

, etC
dt dx dt dx

Farther let us suppose that the force-components X, X', etc.

corresponding to the co-ordinates x> X> e^c - are eacn zero : we
shall have

dT dT

|-d£-(r.* (2);

or, expanded according to previous notation [318 (29)],

(&x)^ + (&x)«£+- + (x.x)x+(x.x)x' +••• =c 1

(+,x)4'+(<}>>x)<i> + --- + (x,x)x + (x,x)x + -- = C'i ...(3).

Hence, if we put

(^x^ + ^x) <£ + ••• =**
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we have

321

(x-x)x + (x,x')x + - =0-p

(x',x)x + (x',x')x
/+-=c/ -^'

Ignoration
of co-
ordinates.

(5).

Resolving these for ^, x', ... we find

(x>x)> (x'>x")>

(x"»x')»(x"»x")»

(C-P) + (x">x')> {x">x)>—

<V" V) (V" v")\X ' X h \A 'X /'

(C'-P') +

(x>x)> (X>x')> (x>x")> —

(x'>x)> (x'»x')> (x'>x")> •••

(x">x)> (x">x')> (x">x")> •••

(6),

and symmetrical expressions for
x', x"> > or

>
as we ma7 "write

them short,

x =(G) G)(G-P) + (G,G
e

)(G'-P')
+...j

x'
= (C",C)(C-P) + ((7

/

,C")(C"- JP') + ... (7),

where (C, C), (C, C), (C',C), ... denote functions of the retained

co-ordinates
\j/, <f>, 0, It is to be remembered that, because

(x, x) =
ti, X)> (X- X")

=
(x" X)> ™ see from (6) that

(C, C) = (C, C), (0, C")
=

(C", C), (C, G")
=

(C", C), and so on... (8).

The following formulas for x>x'> •> condensed in respect to

C, C, G" by aid of the notation (14) below, and expanded in

respect to
ij/, cj>, ..., by (4), will also be useful.

dK
~dC

dK

-
(Mif/ + JVcj> + ...)

x=dc>-(
M

'+
+ *'<f> +-)

I (9),

where
J

M = (C,C).tt,x)+(C\C').(t,x) +.«

.V=(C',C).(^ x)
+ (C,C").(^x') + --

M'= (G',0).(<l,,x) + (C
,

) G').(f,xr+-

(10).

The elimination of X) x'}
••- from ^ by these expressions for

VOL. I. 21
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Ignoration them is facilitated by remarking; that, as it is a quadratic func-
ofco- .-•••../ ,
ordinates. tion 01

ip, <p,
. . . x, X ' »

we have

_ A:dT .(IF .dT m ,dT )

Hence by (3),

_
,

( dT .dT _ .,_, )

so that we have now only first powers of x> x\ to eliminate.

Gleaning out x, x, • from the first group of terms, and denoting

by T the part of T not containing x> X> • • •
> ^e ^n^-

+ [(^x')^+(^x)0 + - + C"]x
+

},

or, according to the notation of (1),

T=T + l{(C + P)x + (C' + P')x'+-\-

Eliminating now x> X> ••• Dy CO we nnc^

T= T + 1 {(6', (7) (C
2 -

P») + 2 (C, C") (<7C"
- PP) + (C, C") (C

2 - P2

)

+ •} (11).

It is remarkable that only second powers, and products, not

first powers, of the velocity-components \p, cp,
... appear in this

expression. We may write it thus :
—

T = Z + K (12),

where © denotes a quadratic function of
ip, </>,

. . .
,
as follows :

—
«= r,-l{(°> c

)
pi + 2

(
c

>
c") PF + (^ 6") p' + -K-a3

)»

and iif a quantity independent of"
i^, <£, ..., as follows:—

/t = i
{(C, C) C

2 + 2(C, C) CC' + (C, C) C/2 + ...} (14).

Next, to eliminate x, x, ••• Irom the Lagrange's equations, we

have, in virtue of (12) and of the constitutions of T, 2T, and K,

dT dTdx dTdx' d%
—r + ^ + — -^ +etc. = —-

(15),
dij/ dx dip dx dip dip

where -^~
t
~

,
etc. are to be found by (7) or (9), and therefore

dip dip

are simply the coefficients of
ip

in (9) ;
so that we have

%=-M, 3L-JT (16),

dip d\p

where M, M '

are functions of
ip,<f>,

... explicitly expressed by

(10). Using (16) in (15) we find
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(IT fffl-
°± = aJ± + CM + CM' + etc. .(17).

d\p d\f/

Again remarking that % + K contains
i]/,

both as it appeared

originally in 1\ and as farther introduced in the expressions (7)

for x, x, ..., we see that

dTdx + dT^ +
dx d\p dx d\jj

Ignoration
of co-

ordinates.

d ._ „
x

dT

d~^
+ k^W
^+afl+c% +

d\j/ d\\i d\J/

And by (9) we have

^X dM dN

dij/~~y~d£
+(^

<fy

'

which, used in the preceding, gives

dT „f ..
dM . dN

d dK
dijf

dCi >

-V +K)~ c{i^+i~+-.)-c;[j ^
. dW . dN'

•)-
etc. + 2

dK ^ ri(.dM .dN
.(18),

Hence

dT_M
dij/ d{j/

where 2 denotes summation with regard to the constants G,

C, etc.

Using this and (1 7) in the Lagrange's ^-equation, we find finally

for the
{j/-equation of motion in terms of the non-ignored co-

ordinates alone, and conclude the symmetrical equations for
<£,

etc., as follows,

dL /<m\ _ dZ -pffdM _ dN\ . /dM _ d0\ •

dtKdtf,) # +
lU</> dx\,)^

+
\dd dxfr)

d /<ffl\ _ cm ~c ((dN_
dt\d+) # 1W
d_(d®\

d% ^„UdO dM\ .. (dO dN\

+. dK_^
d\p

de
+

dM
d$

dM

t +
dN dO
~dd d$

')'-H
dK

dK

$

^„UdO dM\ . fdO dN\ .

)
dK n

dK

dxp'

(19).

[Compare Example F' (e) above. It is important to remark

that in each equation of motion the first power of the related

velocity-component disappears ;
and the coefficient of each of the

other velocity-components in this equation is equal but of opposite

sign to the coefficient of the velocity-component corresponding to

this equation, in the equation corresponding to that other velocity-

component.]

21—2
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Equation of The equation of energy, found as above [§ 318 (29
1V

)
and

"""*
(29*)], is

K5+£L«*+•*+* (20).
at

The interpretation, considering (12), is obvious. The contrast

with Example F' (g) is most instructive.

Sub-Example (G,).
—Take, from above, Example C, case (a) :

and put <f>
=

ijy
+ 8; also, for brevity, mj

2 +na2

=B, n(b
2+k2

)
= A,

and nab = c. We have*

T = \ {Axj,
2 +

2cijf ($ + 8) cos 8 + B(iff + 8)
2

} ;

and from this find

— =
0,
~ =

Aiff + c(2f + 8)cos8 + B(i(f+8);
cty d\p

— = -
ciff (if/

+ 8) sin 8,
—

:
=

ciff
cos 8 + B

(if/
+ 8).

d8 d8

Here the co-ordinate 8 alone, and not the co-ordinate
if/, appears

in the coefficients. Suppose now * = [which is the case con-

dT
sidered at the end of C (a) above]. We have —

.
= G, and

dip

deduce
. C-(ccos8 + B)8
^ ~

A + B + 2ccos8
'

T= i(xi,

(W
+ $ —\ = hUO + 8 Uc cos8 + B)ijf + B8]\

V
dxff

d8J
"

* x
ty [c + (

c cos 8 + B) 8] + B8)

C* + (AB-c
2
cos

2

8) 8*<C2

-(ccos8 + B)
2
8
2

,2) ,
~ 5

1 A + B + 2ccos8 J
* A + B + 2c cos 8

_
,
^.B-c'cos8

^ ,.,

flence C " * A + B + 2ccos8
*>

V i
^

and A = £
.1 + B + 2c cos 8

* Remark that, according to the alteration from
\f/, \j/, <f>, (f>,

to
\f/, \j/, 6, &t

as independent variables,

dT _ fdT\ fdT\
dT /dT\

~dt~ \df)
+

\d</>)* dd \d4>J
,

and «_(«) + (*).
d

-?-(¥);
df \d\pJ \d<pJ dd \d<p/

where
( )

indicates the original notation of C (a).
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and the one equation of the motion becomes Equation^
Energy.

d / AB -c2
cos

2
6 A\_ l A2 d_(

AB -c1
cos

1 \ _^_dK
It \A+£ + 2ccos6 J

* dd\A + B + 2c cosflj

= "

dd
'

which is to be fully integrated first by multiplying by dd and

integrating once
;
and then solving for dt and integrating again

with respect to d. The first integral, being simply the equation

of energy integrated, is [Example G (20)]

Z = f®dd-K;
and the final integral is

KA AB- cos
2
8

(A + B + 2c cos 0) (]®dd
- K)

In the particular case in which the motion commences from I&noration
1

,
of co-

rest, or is such that it can be brought to rest by proper applica-
ordinates.

tions of force-components, ^, <3>, etc. without any of the force-

components X, X', etc., we have (7 = 0, C" = 0, etc.; and the

elimination of x, x> etc by (3) renders T a homogeneous quad-

ratic function of
\j/, <j>,

etc. without C, C ,
etc.

;
and the equations

of motion become

d dT dT
, )

:
= \IM

dt
dip- dij/

d dT dT _
dt d<j> d<ji

d dT dT n
:

= ®
dt dO dd

(21).

etc. etc.

We conclude that on the suppositions made, the elimination of

the velocity-components corresponding to the non-appearing co-

ordinates gives an expression for the kinetic energy in terms

of the remaining velocity-components and corresponding co-

ordinates which may be used in the generalised equations just

as if these were the sole co-ordinates. The reduced number of

equations of motion thus found suffices for the determination

of the co-ordinates which they involve without the necessity

for knowing or finding the other co-ordinates. If the farther

question be put,
—to determine the ignored co-ordinates, it is to

be answered by a simple integration of equations (7) with

(7=0, C =0, etc.

One obvious case of application for this example is a system in

which any number of fly wheels, that is to say, bodies which are
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of co'ordi? kinetically symmetrical round an axis (§ 285), are pivoted fric-

nates *

tionlessly on any moveable part of the system. In this case

with the particular supposition C-0, C" = 0, etc., the result is

simply that the motion is the same as if each fly wheel were

deprived of moment of inertia round its bearing axis, that is to

say reduced to a line of matter fixed in the position of this axis

and having unchanged moment of inertia round any axis per-

pendicular to it. But if C, C, etc. be not each zero we have a

case embracing a very interesting class of dynamical problems
in which the motion of a system having what we may call

gyrostatic links or connexions is the subject. Example (D)
above is an example, in which there is just one fly wheel and one

moveable body on which it is pivoted. The ignored co-ordinate

is
ij/ ;

and supposing now ^ to be zero, we have

{{,-<j>(l-cos6) = C (a).

If we suppose C-0 all the terms having ST for a factor vanish

and the motion is the same as if the fly wheel were deprived of

inertia round its bearing axis, and we had simply the motion of

the "ideal rigid body PQ" to consider. But when C does not

vanish we eliminate
xp

from the equations by means of (a). It

is important to remark that in every case of Example (G) in

which C —
0, C —

0, etc. the motion at each instant possesses the

property (§312 above) of having less kinetic energy than any
other motion for which the velocity-components of the non-ignored

co-ordinates have the same values.

Take for another example the final form of Example C above,

putting B for C, and A for nk2 + A . We have

T= \ \{E + i^cos
2

6) if/

2 + B
(<{,

cos 8+
cj>)

2 + A62

\ ...(22).

Here neither
\jj
nor

</> appears in the coefficients. Let us suppose
<t> = 0, and eliminate

<£, to let us ignore </>.
We have

dT— = £(4,cosO +
<i>)

= C.

d(j>

C
Hence

<f>^^-if/cos6 (23),

® = l\(E + F cos
2

6)i/* + A62

) (24),

and K=\ ^ (25).

The place of x in (9) above is now taken by c£, and comparing
with (23) we find

J/=cos0, iV=0, = 0.
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Hence, and as K is constant, the equations of motion (19)
tenoration

become ordinate*

d dZ dZ „ > aA TC sin 00 = *
dt dij/ dij/

d d® d® n a] nand — -
.

+ C sm
V\\>

= ®
dt dO dd

and, using (24) and expanding,

d{(E+F cos* 8)$} n aa t. 1—^
5

'-^ - C sin 00 = ty
;

dt I
(27).

A6 + Fsin cos
6ij/"

+ C sin 0^ = ® J

A most important case for the "
ignoration of co-ordinates" is

presented by a large class of problems regarding the motion of

frictionless incompressible fluid in which we can ignore the

infinite number of co-ordinates of individual portions of the fluid

and take into account only the co-ordinates which suffice to

specify the whole boundary of the fluid, including the bounding
surfaces of any rigid or flexible solids immersed in the fluid*.

The analytical working out of Example (G) shows in fact that when

the motion is such as could be produced from rest by merely

moving the boundary of the fluid without applying force to its

individual particles otherwise than by the transmitted fluid

pressure we have exactly the case of G = 0, C —
0, etc. : and

Lagrange's generalized equations with the kinetic energy expressed

in terms of velocity-components completely specifying the motion

of the boundary are available. Thus,

320. Problems in fluid motion of remarkable interest and Kinetics of

a perfect

importance, not hitherto attacked, are very readily solved by liquid,

the aid of Lagrange's generalized equations of motion. For

brevity we shall designate a mass which is absolutely incom-

pressible, and absolutely devoid of resistance to change of shape,

by the simple appellation of a liquid. We need scarcely say

that matter perfectly satisfying this definition does not exist

in nature : but we shall see (under properties of matter) how

nearly it is approached by water and other common real

liquids. And we shall find that much practical and interesting

information regarding their true motions is obtained by deduc-

*
[This bold transition to the case of a system including a continuous

medium, with an infinity of ignored coordinates, has been felt by some writers

to require verification. The necessary steps in the hydrodynamical application
have been supplied by Khchhoff and Boltzmann. H. L.]
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Kinetics of tions from the principles of abstract dynamics applied to the
a perfect .

* J c r

liquid. ideal perfect liquid of our definition. It follows from Example
(G) above (and several other proofs, some of them more

synthetical in character, will be given in our Second Volume,)
that the motion of a homogeneous liquid, whether of infinite

extent, or contained in a finite closed vessel of any form, with

any rigid or flexible bodies moving through it, if it has ever

been at rest, is the same at each instant as that determinate

motion (fulfilling, § 312, the condition of having the least

possible kinetic energy) which would be impulsively produced
from rest by giving instantaneously to every part of the

bounding surface, and of the surface of each of the solids

within it, its actual velocity at that instant. So that, for

example, however long it may have been moving, if all these

surfaces were suddenly or gradually brought to rest, the whole

fluid mass would come to rest at the same time. Hence, if

none of the surfaces is flexible, but we have one or more rigid

bodies moving in any way through the liquid, under the in-

fluence of any forces, the kinetic energy of the whole motion

at any instant will depend solely on the finite number of co-

ordinates and component velocities, specifying the position and

motion of those bodies, whatever may be the positions reached

by particles of the fluid (expressible only by an infinite number

of co-ordinates). And an expression for the whole kinetic

energy in terms of such elements, finite in number, is precisely

what is wanted, as we have seen, as the foundation of Lagrange's

equations in any particular case.

It will clearly, in the hydrodynarnical, as in all other cases,

be a homogeneous quadratic function of the components of velo-

city, if referred to an invariable co-ordinate system ;
and the

coefficients of the sevei-al terms will in general be functions of

the co-ordinates, the determination of which follows immediately
from the solution of the minimum problem of Example (3) § 317,
in each particular case.

Example (1).
—A ball set in motion through a mass of incom-

pressible fluid extending infinitely in all directions on one side of
an infinite plane, and originally at rest. Let x, y, z be the co-

ordinates of the centre of the ball at time t, with reference to

rectangular axes through a fixed point of the bounding plane,

with OX perpendicular to this plane. If at any instant either
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component y or z of the velocity be reversed, the kinetic energy Kinetics of

will clearly be unchanged, and hence no terms yz, zx, or xy can liquid,

appear in the expression for the kinetic energy : which, on this

account, and because of the symmetry of circumstances with

reference to y and z, is

T=^{P.lf + Q(f + ^)}.

Also, we see that P and Q are functions of x simply, since the

circumstances are similar for all values of y and z. Hence, by

differentiation,

dT dT dT
d*
=Px

>d$
= Qy>Tz =Qz>

d /dT\ n dP
.—

(
-—

)
= Px + -r x~ dfdT\ n .. dQ ..

dt\dx J dx
'

dt\dy J

dT . (dP ., dQ ,. a . 2,\
dT

^ndx X' +
dTc^

+ Z)
\' dy=°>

etG->

and the equations of motion are

(dP
. 2 dQ . ,, .J\Px+nTX x -dxW +^rx>

r, dQ . . v n- ,
dQ .. y

Oy +-yX =Y, Qz + ^zx^Z.

Principles sufficient for a practical solution of the problem of

determining P and Q will be given later. In the meantime, it

is obvious that each decreases as x increases. Hence the equa-

tions of motion show that

321. A ball projected through a liquid perpendicularly Effect of a

from an infinite plane boundary, and influenced by no other on the mo-
,/

, n n -j • n ,
tionofaball

forces than those ol nuid pressure, experiences a gradual ac- through a

celeration, quickly approximating to a limiting velocity which

it sensibly reaches when its distance from the plane is many
times its diameter. But if projected parallel to the plane, it

experiences, as the resultant of fluid pressure, a resultant attrac-

tion towards the plane. The former of these results is easily

proved by first considering projection toiuards the plane (in

which case the motion of the ball will obviously be retarded),

and by taking into account the general principle of reversibility

(§ 272) which has perfect application in the ideal case of a per-

fect liquid. The second result is less easily foreseen without
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the aid of Lagrange's analysis ;
but it is an obvious consequence

of the Hamiltonian form of his equations, as stated in words

Seeming in § 319 above. In the precisely equivalent case, of a
attraction °

i

t

ttw<
hi

n
s liquid extending infinitely in all directions, and given at rest

;

b °sidf in
de anc* tw0 e(lual balls projected through it with equal velocities

diction perpendicular to the line joining their centres—the result that

the two balls will seem to attract one another is most re-

markable, and very suggestive.

Hydro-
dynamical
examples
continued.

"
Centre of

reaction
"

denned.

Example (2).
—A solid symmetrical round an axis, moving

through a liquid so as to keep its axis always in one plane.

Let w be the angular velocity of the body at any instant about

any axis perpendicular to the fixed plane, and let u and q be the

component velocities along and perpendicular to the axis of

figure, of any chosen point, C, of the body in this line. By the

general principle stated in § 320 (since changing the sign of

u cannot alter the kinetic energy), we have

T - \ (Au
2 + Bq- + /A)

2 + 2Ewq) («),

where A, B, \xl,
and E are constants depending on the figure of

the body, its mass, and the density of the liquid. Now let v

denote the velocity, perpendicular to the axis, of a point which

we shall call the centre of reaction, being a point in the axis and

so that (§ 87) q = v--„o>. Then,
E

at a distance ^- from C,
JS

E2

denoting ll —^ by /*, we have T= \{Au
2

r,

Bv3

') («')•

Let x and y be the co-ordinates of the centre of reaction relatively

to any fixed rectangular axes in the plane of motion of the axis

of figure, and let 8 be the angle between this line and OX, at

any instant, so that

<jy = $, u = x cos 6 + y sin 6, v = - x sin 6 ±y cos 0. (b).

Substituting in T, differentiating, and retaining the notation

u, v where convenient for brevity, we have

—
,
— ti8, —r- = Au cos 6 — Bv sin 8, -=- = Au sin 8 -t-Bv cos 6,

d8 dx dV

dT dT dT
Tr (A-B)uv, -^

=
0,

-^
=

0,

(c)
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Hence the equations of motion are
domical

••
"\ examples

/x0
—
(A

—
B) UV

—
L, continued.

d (Au cos 6 -Bv sin 6) v d (Au sin 6 + BvcosO) _ \ (d),

~dt
"^ ~^T

-- Y
)

where X, Y are the component forces in lines through parallel

to OX and OY, and L the couple, applied to the body.

Denoting by A, £, rj
the impulsive couple, and the components

of impulsive force through 0, required to produce the motion at

any instant, we have of course [§313 (c)],

. dT , , dT dT
x
-a-^» «-*•'-« ^

and therefore by (c),
and (b),

u = -
(£ cos $ + 7}

sin 6), v = -= (- £ sin 6 + rj
cos

0),
= -

(/),

/cos
2
6 sin

2
0n

£C = (
—r- +

fo),
.

/l 1\ . „. /sin
2

cos
2
0\

y =
{A-B)

Sm6c0S °$+ {-A-
+
-lT) V

and the equations of motion become

"w -w i(
" r +^ sin 2e + 2i" oos 3 "

!
" L

- s z
- a"* (7t)

-

The simple case of X= 0, F= 0, Z = 0, is particularly intei'esting.

In it £ and 17
are each constant; and we may therefore choose the

axes OX, Y, so that 77
shall vanish. Thus we have, in

(g),
two

first integrals of the equations of motion; and they become

.
./cos

2
(9 sin

2
0\ .

A-B
A
=z\-r

+
-£-} y=-jiB ism26 <*> :

and the first of equations (h) becomes

*§ +w^ 2*= «
.4 — 5

In this let, for a moment, 2(9 =
</>,

and £
2=^ JF. It becomes

which is the equation of motion of a common pendulum, of

mass W, moment of inertia /x round its fixed axis, and length
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Hydro- h from axis to centre of gravity : if <£ be the angle from
dynamical . . . ... .

°

examples the position of equilibrium to the position at tune t. As we
continued. ,,.. . i^i-

shall see, under kinetics, the final integral of this equation

expresses <f>
in terms of t by means of an elliptic function.

By using the value thus found for 6 or i<£, in
(k), we have

equations giving x and y in terms of t by common integration ;

and thus the full solution of our present problem is reduced to

quadratures. The detailed working out to exhibit both the actual

curve described by the centre of reaction, and the position of

the axis of the body at any instant, is highly interesting. It is

very easily done approximately for the case of very small angular

vibrations; that is to say, when either A — B is positive, and

<t> always very small, or A — B negative, and
<f> very nearly

equal to
\tt.

But without attending at present to the final

integrals, rigorous or approximate, we see from (h) and
(I)

that

322. If a solid of revolution in an infinite liquid, be set in

motion round any axis perpendicular to its axis of figure, or

simply projected in any direction without rotation, it will move
with its axis always in one plane, and every point of it moving

only parallel to this plane ;
and the strange evolutions which

it will, in general, perform, are perfectly defined by comparison
with the common pendulum thus. First, for brevity, we shall

Quadrantai call by the name of quadrantal pendulum (which will be further

cleaned.
'

exemplified in various cases described later, under electricity

and magnetism ;
for instance, an elongated mass of soft iron

pivoted on a vertical axis, in a " uniform field of magnetic

force"), a body moving about an axis, according to the same

law with reference to a quadrant on each side of its position of

equilibrium, as the common pendulum with reference to a half

circle on each side.

Let now the body in question be set in motion by an im-

pulse, £, in any line through the centre of reaction, and an

impulsive couple X in the plane of that line and the axis. This

will (as will be proved later in the theory of statical couples)

have the same effect as a simple impulse £ (applied to a point,

if not of the real body, connected with it by an imaginary in-

finitely light framework) in a certain fixed line, which we shall

call the line of resultant impulse, or of resultant momentum,
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being parallel to the former line, and at a distance from it equal to Motion of° r n a solid of

X m r • • revolution

z The whole momentum of the motion generated is of course through a

£
°

liquid.

(§ 295) equal to £. The body will move ever afterwards

according to the following conditions :
—

(1.) The angular velo-

city follows the law of the quadrantal pendulum. (2.) The
distance of the centre of reaction from the line of resultant

impulse varies simply as the angular velocity. (3.) The

velocity of the centre of reaction parallel to the line of

impulse is found by dividing the excess of the whole con-

stant energy of the motion above the part of it due to the

angular velocity round the centre of reaction, by half the

momentum. (4.) If A, B, and /j, denote constants, depending
on the mass of the solid and its distribution, the density of the

liquid, and the form and dimensions of the solid, such that

£ £ A,

—ft n>
~ are the linear velocities, and the angular velocity,

respectively produced by an impulse £ along the axis, an im-

pulse | in a line through the centre of reaction perpendicular
to the axis, and an impulsive couple \ in a plane through the

axis
;
the length of the simple gravitation pendulum, whose

motion would keep time with the periodic motion in question,

is
sgy-j m> and> when the angular motion is vibratory, the

vibrations will, according as A > B, or A < B, be of the

axis, or of a line perpendicular to the axis, vibrating on

each side of the line of impulse. The angular motion will

in fact be vibratory if the distance of the line of resultant

impulse from the centre of reaction is anything less than

(A ~B)ijl cos 2a

J where a denotes the inclination of the im-

pulse to the initial position of the axis. In this case the path
of the centre of reaction will be a sinuous curve symmetrical on

the two sides of the line of impulse ; every time it cuts this line,

the angular motion will reverse, and the maximum inclination

will be attained
;
and every time the centre of reaction is at its

greatest distance on either side, the angular velocity will be at

its greatest, positive or negative, value, and the linear velocity of
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Motion of the centre of reaction will be at its least. If, on the other hand,
a solid of •

-i i v
revolution the line of the resultant impulse be at a greater distance than
through a * °

\ / /Tr from the centre of reaction, the angular motion

will be always in one direction, but will increase and diminish

periodically, and the centre of reaction will describe a sinuous

curve on one side of that line
; being at its greatest and least

deviations when the angular velocity is greatest and least. At

the same points the curvature of the path will be greatest and

least respectively, and the linear velocity of the describing

point will be least and greatest.

323. At any instant the component linear velocities along

and perpendicular to the axis of the solid will be —-.
— and

Ifsin 8

B respectively, if 6 be its inclination to the line of re-

sultant impulse ;
and the angular velocity will be — if y be the

distance of the centre of reaction from that line. The whole

kinetic energy of the motion will be

f cos
2

fl |W0 gy
2A + 2B +

ifi
'

and the last term is what we have referred to above as the

part due to rotation round the centre of reaction (defined in

§ 321). To stop the whole motion at any instant, a simple

impulse equal and opposite to £ in the fixed
"
line of resultant

impulse" will suffice (or an equal and parallel impulse in any
line through the body, with the proper impulsive couple, accord-

ing to the principle already referred to).

324. From Lagrange's equations applied as above to the case

of a solid of revolution moving through a liquid, the couple

which must be kept applied to it to prevent it from turning is

immediately found to be

uv (A - B),
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if u and v be the component velocities alonsf and perpendicular Motion of
a solid of

to the axis. Or [S 321 (f)] revolution
' L;> v ' a

through a
_ _ liquid.

f
.2 (A-B)sm2d

2AB >

if, as before, £ be the generating impulse, and 9 the angle be-

tween its line and the axis. The direction of this couple must
be such as to prevent 8 from diminishing or from increasing,

according as A or B is the greater. The former will clearly
be the case of a flat disc, or oblate spheroid ;

the latter that of

an elongated, or oval-shaped body. The actual values of A
and B we shall learn how to calculate (hydrodynamics) for

several cases, including a body bounded by two spherical sur-

faces cutting one another at any angle a submultiple of two

right angles ;
two complete spheres rigidly connected

;
and an

oblate or a prolate spheroid.

325. The tendency of a body to turn its flat side, or its Observed

length (as the case may be), across the direction of its motion

through a liquid, to which the accelerations and retardations of

rotatory motion described in § 322 are due, and of which we
have now obtained the statical measure, is a remarkable illus-

tration of the statement of § 319
;
and is closely connected

with the dynamical explanation of many curious observations

well known in practical mechanics, among which may be men-
tioned :

—
(1) That the course of a symmetrical square-rigged ship

sailing in the direction of the wind with rudder amidships is

unstable, and can only be kept by manipulating the rudder to

check infinitesimal deviations
;

—and that a child's toy-boat,

whether "square-rigged" or "fore-and-aft rigged*," cannot be

* "Fore-and-aft" rig is any rig in which (as in " cutters
" and " schooners ")

the chief sails come into the plane of mast or masts and keel, by the action of

the wind upon the sails when the vessel's head is to wind. This position

of the sails is unstable when the wind is right astern. Accordingly, in

"wearing" a fore-and-aft rigged vessel (that is to say turning her round
stern to wind, from sailing with the wind on one side to sailing with the

wind on the other side) the mainsail must be hauled in as closely as may be

towards the middle position before the wind is allowed to get on the other side

of the sail from that on which it had been pressing, so that when the wind
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Applications got to sail permanently before the wind by any permanent ad-

ynamics justment of rudder and sails, and that (without a wind vane, or

a weighted tiller, acting on the rudder to do the part of

steersman) it always, after running a few yards before the wind,

turns round till nearly in a direction perpendicular to the

wind (either "gibing" first, or "luffing" without gibing if it

is a cutter or schooner) :
—

(2) That the towing rope of a canal boat, when the rudder

is left straight, takes a position in a vertical plane cutting the

axis before its middle point :
—

(3) That a boat sculled rapidly across the direction of the

wind, always (unless it is extraordinarily unsymmetrical in

its draught of water, and in the amounts of surface exposed
to the wind, towards its two ends) requires the weather oar

to be worked hardest to prevent it from running up on the

wind, and that for the same reason a sailing vessel generally

"carries a weather helm*" or "gripes;" and that still more does

so a steamer with sail even if only in the forward half of her

length
—

griping so badly with any after canvass-f that it is often

impossible to steer :
—

(4) That in a heavy gale it is exceedingly difficult, and

often found impossible, to get a ship out of
" the trough of the

sea," and that it cannot be done at all without rapid motion

ahead, whether by steam or sails :
—

(5) That in a smooth sea with moderate wind blowing

parallel to the shore, a sailing vessel heading towards the shore

with not enough of sail set can only be saved from creeping

ashore by setting more sail, and sailing rapidly towards the

shore, or the danger that is to be avoided, so as to allow her to

be steered away from it. The risk of going ashore in fulfilment

does get on the other side, and when therefore the sail dashes across through

the mid-ship position to the other side, carrying massive boom and gaff with it,

the range of this sudden motion, -which is called "gibing," shall be as small

as may be.

* The weather side of any object is the side of it towards the -wind. A ship

is said to "carry a weather helm" when it is necessary to hold the "helm" or

"tiller" permanently on the weather side of its middle position (by which the

rudder is held towards the lee side) to keep the ship on her course.

f Hence mizen masts are altogether condemned in modern war-ships by

many competent nautical authorities.
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of Lagrange's equations is a frequent incident of "getting

under way
"

while lifting anchor, or even after slipping from

moorings :
—

(6) That an elongated rifle-bullet requires rapid rotation and gun-

about its axis to keep its point foremost.

(7) The curious motions of a flat disc, oyster-shell, or the

like, when dropped obliquely into water, resemble, no doubt, to

some extent those described in § 322. But it must be re-

membered that the real circumstances differ greatly, because

of fluid friction, from those of the abstract problem, of which

we take leave for the present.

326. Maupertuis' celebrated principle of Least Action has Lpast
• • action

been, even up to the present time, regarded rather as a curious

and somewhat perplexing property of motion, than as a useful

guide in kinetic investigations. We are strongly impressed
with the conviction that a much more profound importance
will be attached to it, not only in abstract dynamics, but in the

theory of the several branches of physical science now beginning
to receive dynamic explanations. As an extension of it, Sir

W. R. Hamilton* has evolved his method of Varying Action,

which undoubtedly must become a most valuable aid in future

generalizations.

What is meant by
" Action

"
in these expressions is, unfor- Action,

tunately, something very different from the Actio Agentis de-

fined by Newton"f*, and, it must be admitted, is a much less

judiciously chosen word. Taking it, however, as we find it,
Time aver-

now universally used by writers on dynamics, we define the energy.

Action of a Moving System as proportional to the average
kinetic energy, which the system has possessed during the time

from any convenient epoch of reckoning, multiplied by the time.

According to the unit generally adopted, the action of a system
which has not varied in its kinetic energy, is twice the amount

of the energy multiplied by the time from the epoch. Or if

the energy has been sometimes greater and sometimes less,

* Phil. Trans. 1834—1835.

t Which, however (§ 263), we have translated "
activity" to avoid confusion.

vol. I. 22
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the action at time t is the double of what we may call the

time-integral of the energy, that is to say, it is what is de-

noted in the integral calculus by

2
frdr,

•

where T denotes the kinetic energy at any time t. between

the epoch and t.

Let m be the mass, and v the velocity at time t, of any one of

the material points of which the system is composed. We have

T=%\rm?
'

(1),

and therefore, if A denote the action at time t,

A =
fzmofdT (2).

This may be put otherwise by taking ds to denote the space de-

scribed by a particle in time dr, so that vdr =
ds, and therefore

A = fSmvds (3),

or, if x, y, z be the rectangular co-ordinates of m at any time,

A = j 2m (xdx + ydy + zdz) (4).

Hence we might, as many writers in fact have virtually done,

define action thus :
—

The action of a system is equal to the sum of the average

momentums for the spaces described by the particles from any
era each multiplied by the length of its path.

327. The principle of Least Action is this :
—Of all the

different sets of paths along which a conservative system may
be guided to move from one configuration to another, with the

sum of its potential and kinetic energies equal to a given con-

stant, that one for which the action is the least is such that

the system will require only to be started with the proper

velocities, to move along it unguided. Consider the Problem :
—

Given the whole initial kinetic energy ;
find the initial velocities

through one given configuration, which shall send the system

unguided to another specified configuration. This problem is

essentially determinate, but generally has multiple solutions

(§ 363 below); (or only imaginary solutions.)
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If there are any real solutions, there is one of them for which Least

the action is less than for any other real solution, and less than
a '

for any constrainedly guided motion with proper sum of po-
tential and kinetic energies. Compare §§ 346—366 below.

Let x, y, z be the co-ordinates of a particle, m, of the system,

at time t, and V the potential energy of the system in its parti-

cular configuration at this instant
;
and let it be required to find

the way to pass from one given configuration to another with

velocities at each instant satisfying the condition

2 ^m(x
2 + y

2 + z
2

)
+ V= U, a constant

(5),

so that A, or

J2»i (xdx + ydy + zdz)

may be the least possible.

By the method of variations we must have 8^4 = 0, where

8A — J 2m (xd8x + yd8y + zd8z + oxdx + 8ydy + 8zdz) (6).

Taking in this dx-xdr, dy = ydr, dz = zdr, and remarking that

2m (x8x + y8y + z8z)
= 8T

(7 ),

we have

/2m (8xdx + 8ydy + Szdz)
= ( STdr

(8).
Jo

Also by integration by parts,

f%m(xd8x + ...)
= {%m(x8x + ...)}- [2m (&&> + ...)]-/2m(xSx+...)di-,

where
[...] and {...} denote the values of the quantities enclosed,

at the beginning and end of the motion considered, and where,

further, it must be remembered that dx = xdr, etc. Hence,
from above,

8A = {2m (x8x + y8y + z8z)}
- [2m (x8x + y8y + z8z)]

+
f
dr [8T-2m(x8x + y8y + z8z)] (9).

.'o

This, it may be observed, is a perfectly general kinematical expres-

sion, unrestricted by any terminal or kinetic conditions. Now
in the present problem we suppose the initial and final positions

to be invariable. Hence the terminal variations, 8x, etc., must

all vanish, and therefore the integrated expressions {•••}, [•••]
dis-

appear. Also, in the present problem 8T= — 8 V, by the equation

of energy (5). Hence, to make 8A = 0, since the intermediate

variations, 8x, etc., are quite arbitrary, subject only to the con-

22—2
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Least
action.

Principle of
Least Action
applied
to find

Lagrange's
generalized
equations
of motion.

ditions of the svstein, we must have

*Zm(x8x + y8y + z8z)+8V=0 (10),

which
[(4), § 293 above] is the general variational equation of

motion of a conservative system. This proves the proposition.

It is interesting and instructive as an illustration of the prin-

ciple of least action, to derive directly from it, without any use

of Cartesian co-ordinates, Lagrange's equations in generalized

co-ordinates, of the motion of a conservative system [§ 318 (24)1
We have

A=J2Tdt,
where T denotes the formula of § 313 (2). If now we put

so that

we have

Hence

2 df'

ds
2 =

(if/, i/.-) dij/

2
+ 2

(if/, <f>) dif/dcf)
+ etc.,

fds
[da
Jdt

ds.

8A
r

U(ds
2

)
/"/„ ds

^
ds8ds\ f ds . ds f~

J V di
6 +

dt J

_
J di di

+
J

=
fcU8T

+
J(ft

*)#+(*, *)<%+** g#

f(\j/, cf>) dij/
+

(<f>,<f>) d<f> + etc.

J* dt
8d<f> + etc. +/^%,^ etc.)2

7

,

where
§(,/,,</>, etc) denotes variation dependent on the explicit ap-

pearance of
if/, cj>,

etc. in the coefficients of the quadratic func-

tion T. The second chief term in the formula for 8A is clearly

fdT
equal to I

—-
d8if/,

and this, integrated by parts, becomes
J d\bdip

dT dT

^ty-Jd—fy,
or

,
d dT .

dt -. bib,

dtdxfr

*

where
[ ]

denotes the difference of the values of the bracketed

expression, at the beginning and end of the time Jdt. Thus we
have finally

8.4 = —
. oi/c

^ r o<£>
+ etc.

dij/ d<j>

/*f(lf
8* +I^8*+eto

)
+8:r+8'*^4-w
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So far we have a purely kineniatical formula,

the dynamical condition [§ 293 (7)]

T=C-V
From it we find

»-($*£* etc.

Again, we have

Hence (10)' becomes

8(*.*,etc.)
T=

j- 84, + --
S<f>

+ etc.

Now introduce Principle of

LeastAction
applied
to find

( 10)". Lagrange's"
' generalized

equations
of motion.

(10)'".

(10f.

dT. dT., .—
r b{j/

^—-
o(p+ etc.

_cl\j/ dcj>

ddT dT dV^

dif/

To make this a minimum we have

f, (7 ddT dT dV\«, , L ,»,
dtll - -r — + -7- + -T- M + (etc.) S<£ + etc.

J l\ dtdxb dxfr dip J
Y v ; T .(10)'

.(10)*,

d dT dT dV A—
5- h -j- + -r- = 0, etc
dt dii/ d\j/ dty

which are the required equations [§
318 (24)].

From the proposition that 8A = implies the equations of

motion, it follows that

328. In any unguided motion whatever, of a conservative why called

system, the Action from any one stated position to any other, actfon°" t>7

though not necessarily a minimum, fulfils the stationary condi-

tion, that is to say, the condition that the variation vanishes,

which secures either a minimum or maximum, or maximum-

minimum.

This can scarcely be made intelligible without mathematical stationary
action.

language. Let {xv yv zj, (x2 , y2 ,
z
2 ), etc., be the co-ordinates

of particles, m ,
m

2 , etc., composing the system ;
at any time t of

the actual motion. Let V be the potential energy of the system,

in this configuration ;
and let E denote the given value of the

sum of the potential and kinetic energies. The equation of

energy is—
| {m, (as,

2 + y; + z?) + m2 (x2
2 + y; + z;) + etc.} + V= E... (5) bis.

Choosing any part of the motion, for instance that from time

to time t,
we have, for the action during it,

A= f(E- Y)df
= Et- f Vdr (11).

Jd Jo
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Stationary
action.

Let now the system be guided to move in any other way possible

for it, with any other velocities, from the same initial to the same

final configuration as in the given motion, subject only to the

condition, that the sum of the kinetic and potential energies shall

still be E. Let
(.«/, y^, «,'), etc., be the co-ordinates, and V

the corresponding potential energy ;
aud let

(«,', ?//, »/), etc.,

be the component velocities, at time t in this arbitrary motion
;

equation (2) still holding, for the accented letters, with only E
unchanged. For the action we shall have

' = Et'-
\

V'dr '. (12),

where t' is the time occupied by this supposed motion. Let now

6 denote a small numerical quantity, and let £ s iy , etc., be finite

lines such that

'/. ~Vi _ z
i h _ g, -»„

f.
7
? 1

etc. = 6.

V'~Y
The "principle of stationary action" is, that —-— vanishes

when 6 is made infinitely small, for every possible deviation

(£j#, y\ x b, etc.) from the natural way and velocities, subject only
to the equation of energy and to the condition of passing through
the stated initial and final configurations : and conversely, that if

V- V— ,- vanishes with 6 for every possible such deviation from a
v

certain way and velocities, specified by (a;,, y , z), etc., as the

co-ordinates at t, this way and these velocities are such that the

system unguided will move accordingly if only started with

proper velocities from the initial configuration.

Varying
action.

329. From this principle of stationary action, founded, as

we have seen, on a comparison between a natural motion, and

any other motion, arbitrarily guided and subject only to the

law of energy, the initial and final configurations of the

system being the same in each case, Hamilton passes to the

consideration of the variation of the action in a natural or

unguided motion of the system produced by varying the initial

and final configurations, and the sum of the potential and

kinetic energies. The result is, that
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330. The rate of decrease of the action per unit of increase Varying

of any one of the free (generalized) co-ordinates (§ 204) speci-

fying the initial configuration, is equal to the correspond-

ing (generalized) component momentum [§ 313, (c)] of the

actual motion from that configuration : the rate of increase of

the action per unit increase of any one of the free co-ordi-

nates specifying the final configuration, is equal to the corre-

sponding component momentum of the actual motion towards

this second configuration : and the rate of increase of the action

per unit increase of the constant sum of the potential and kinetic

energies, is equal to the time occupied by the motion of which

the action is reckoned.

To prove this we must, in our previous expression (9) for 8A,

now suppose the terminal co-ordinates to vary ;
8T to become

8E - 8 V, in which 8E is a constant during the motion : and each Action
6Xpr6SSG(i

set of paths and velocities to belong to an unguided motion of as a func-

the system, which requires (10) to hold. Hence initial and
final co-

8A =
{
2m (x8x + y8y + z8z))

-
[%m (x8x + y8y + z8z)] + t8E . . .

(
1
3). £jffi"

energy;

If, now, in the first place, we suppose the particles constituting

the system to be all free from constraint, and therefore (x, y, z)

for each to be three independent variables, and if, for distinctness,

we denote by («,', y^, «/) and
(*,, yv zj the co-ordinates of m

in its initial and final positions, and by (x^, 3/,',
z

'), [x , y , z)
the components of the velocity it has at those points, we have,

from the preceding, according to the ordinary notation of partial

differential coefficients,

dA dA dA 1 its diftv
rential co-
efficients

equal re-
dxr~

m^ wr~m^
dz~r~

mA
'

,G{c -

dA . dA dA
-7- = m,x,, -r— = 7)1,1/,, -r— = m,z,, etc.

cfoj
l '

dy l

lJo dz
x

' "

. dA
and -=t.

(14).
spectively
to initial

and final

momen-
tutns, and
to the time
from be-

ginning to

In these equations we must suppose A to be expressed as a func- end -

tion of the initial and final co-ordinates, in all six times as many
independent variables as there are of particles ;

and E, one more

variable, the sum of the potential and kinetic energies.

If the system consist not of free particles, but of particles con-

nected in any way forming either one rigid body or any number
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Varying
action.

Same pro-
positions
for gene-
ralized co-

ordinates.

of rigid bodies connected with one another or not, we might, it is

true, be contented to regard it still as a system of free particles,

by taking into account among the impressed forces, the forces

necessary to compel the satisfaction of the conditions of con-

nexion. But although this method of dealing with a system of

connected particles is very simple, so far as the law of energy

merely is concerned, Lagrange's methods, whether that of "equa-

tions of condition," or, what for our present purposes is much

more convenient, his "generalized co-ordinates," relieve us from

very troublesome interpretations when we have to consider the

displacements of particles due to arbitrary variations in the con-

figuration of a system.

Let us suppose then, for any particular configuration (xv yv z)

(.._, 2/.,,
z
2)...,

the expression

m
} (x l

Bx
1
+ yl8yl

+ z,^,) + etc., to become £8if/
+ ??S<£ +(88 + etc. (15),

when transformed into terms of
if/, 4>, 0..., generalized co-ordi-

nates, as many in number as there are of degrees of freedom for

the system to move [$ 313, (c)].

The same transformation applied to the kinetic energy of the

system would obviously give

h m. (x; + y; + z;) + etc. =i(# +^ + tf+ etc.) (16),

and hence $, t], £, etc., are those linear functions of the generalized

velocities which, in § 313 (e), we have designated as "gene-

ralized components of momentum
;

"
and which, when T, the

kinetic energy, is expressed as a quadratic function of the velo-

cities (of course with, in general, functions of the co-ordinates

if/, <f>, 6, etc., for the coefficients) are derivable from it thus :

(17).
, dT dT „ dT
e=—Ti y =—r> C-—r, etc

dif/ d<p dd

Hence, taking as before non-accented letters for the second, and

accented letters for the initial, configurations of the system re-

spectively, we have

dA

dif/'

dA

dif/

and, as before,

dA

dA

^ =
7?'

<LA _
dE~

l
>

dA

dA
Te

= ^ etc - (18).
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These equations (18), including of course (14) as a particular case,

express in mathematical terms the proposition stated in words

above, as the Principle of Varying Action.

The values of the momentums, thus, (14) and (18), expressed

in terms of differential coefficients of A, must of course satisfy

the equation of energy. Hence, for the case of free particles,

. ^(g+v+v)-'*-" (19) '

4d£ +^ + ^)= 2 <*- r> <
2°>-

Or, in general, for a system of particles or rigid bodies connected

in any way, we have, (16) and (18),

*# +
*A»

+ S^ + etC - = 2(£ - F) (21) '

Varying
action.

Hamilton's
"
character-

istic equa-
tion

"
of

motion in
Cartesian
co-ordi-
nates.

-{r%+*3?+'T+'*)~w-
r,> <22) '

Hamilton's
character-
istic equa-
tion of
motion in

generalized
co-ordi-
nates.

where
xp, <j>, etc., are expressible as linear functions of

etc., by the solution of the equations

dA
(& $) i + ($, 4) i + ty, 0) 6 + etc. = £ =

j-

dA
(<f>, f)xjr+ (cf>, <f>)<j>+ (<f>, 6) 6 + etc. =

-q
=

-j-

dA dA

d^'d^'

etc. etc.

(23),

and
Jr', <£', etc., as similar functions of—=--.

,
— -=—

, , etc., by
d\p d(f>

W, <//) $ +
(«//, <!>') <}>'

+ (f , ff) 6' + etc. = ?
dA

dj'

dA
W, if) $ +

(</>', *') # + (#, 6') 6' + etc. = r{
» -~ ...(24),

etc. etc.

where it must be remembered that
(if/, ij/), (f, </>), etc., are func-

tions of the specifying elements, \f/, </>, 0, etc., depending on the

kinematical nature of the co-ordinate system alone, and quite

independent of the dynamical problem with which we are now
concerned

; being the coefficients of the half squares and the

products of the generalized velocities in the expression for the
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Varying
action.

Proof that
the charac-
teristic

equation
delines the

motion, for

free

particles.

kinetic energy of any motion of the system ;
and that ($', if/'),

(\J/\ (f>

r

), etc., are the same functions with
t//, <f>', etc., written for

if/, $, 0, etc.
; but, on the other hand, that A is a function of all the

elements^, <f>, etc., t//, c/>',
etc. Thus the first member of (21)

is a quadratic function of -"-
, -vr , etc., with coefficients,

known functions of i!/, <f>, etc., depending merely on the kine-

matical relations of the system, and the masses of its parts, but

not at all on the actual forces or motions
;

while the second

member is a function of the co-ordinates
\J/, 4>< etc., depending

on the forces in the dynamical problem, and a constant expressing

the particular value given to the sum of the potential and kinetic

energies in the actual motion
;
and so for (22), and

i//, <f>',
etc.

It is remarkable that the single linear partial differential equa-

tion (19) of the first order and second degree, for the case of

free particles, or its equivalent (21), is sufficient to determine a

function A, such that the equations (14) or (18) express the mo-

mentums in an actual motion of the system, subject to the given

forces. For, taking the case of free particles first, and differen-

tiating (19) still on the Hamiltonian understanding that A is

expressed merely as a function of initial and final co-ordinates,

and of E, the sum of the potential and kinetic energies, we have

22m̂
dA d*A_

dA d'A dA d 2A

dx dx^dx dy dx
xdy dz dx'dz/ dx.

But, by (14),

and therefore

1_(U
m. dx.

1 dA
-—=$, etc.,

drA

dx 9
m.

dx
t

d2A

dx. dx^dy

d2A

~m dy,

dx.

dx. d2A dz
= VI

'%, dx^dz

= m. -=-
i _

dx.
m.

d£
x

dz.

m

dx dx.
= m, -J--

= m -=-±
,

etc.

dx
1
dx

a

-

«a?i
dx

2

Using these properly in the preceding and taking half; and

writing out for two particles to avoid confusion as to the mean-

ins: of 2, we have

'

\
Xl dXl

+ y '

dy x

+ *>
dz,

+
* dx

+ y* dy2

* dz
a

J dx
t

v '

Now if we multiply the first member by dt, we have clearly the

change of the value of »»,£,
due to varying, still on the Hamil-
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tonian supposition, the co-ordinates of all the points, that is to say. Varying
, #..«.! c i • • action.
the configuration ot the svstem, trom what it is at any moment to ,, . ., ,° • J Proof that

what it becomes at a time dt later ; and it is therefore the actual tne eharac
'

_
tenstic

change in the value of inx„ in the natural motion, from the time, equation° "
.

' ' defines the

t,
when the configuration is (xlf y x ,

zv x.„ ..., -E), to the time motion, for

t + dt. It is therefore equal to mXjdt, and hence (25) becomes particles,

simply m l
x

1
= — -—

. Similarly we find
dx

l

dV .. dV dVm^ =
-dy; "*=-*,«

m
^=-^>

etc-

But these are
[§ 293, (4)] the elementary differential equations

of the motions of a conservative system composed of free mutually

influencing particles.

If next we regard x
]} yv z

1}
x

, etc., as constant, and go

through precisely the same process with reference to
a;,', y' z

t ',
x

2',

etc., we have exactly the same equations among the accented

letters, with only the difference that — A appears in place of A
;

1 Y'
and end with ?»

1
a

1

/ = -—
>, from which we infer that, if (20)dx

1

is satisfied, the motion represented by (14) is a natural motion

through the configuration (as,', y ',
a ', x3

f

, etc.).

Hence if both (19) and (20) are satisfied, and if when
x^

=
x^,

, , ,
dA dA

V\
=

U\i s
i
=2;ij x»

= oc >i etc
->

we have -— = --—
etc., the

ofeCj
ax

x

motion represented by (14) is a natural motion through the

two configurations (x^, y^, z
x ', xj, etc.), and (xx , yx ,

z
lf

x
3 ,

etc.). Although the signs in the preceding expressions have been

fixed on the supposition that the motion isfrom the former, to the

latter configuration, it may clearly be from either towards the

other, since whichever way it is, the reverse is also a natural

motion (§ 271), according to the general property of a conserva-

tive system.

To prove the same thing for a conservative system of particles game pro.

or rigid bodies connected in any war, we have, in the first place, |o°r

s

a
10"

from (18) Snfand
d1= dl d^ = dl «-£"»*
ekfr d<t>' dxf,

d0' [ h nate~

where, on the Hamiltonian principle, we suppose if/, <j>, etc., and

|, t), etc., to be expressed as functions of
ij/, </>, etc., i//, </>', etc.,
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Varying
action.

and the sum of the potential and kinetic energies. On the same

supposition, differentiating (21), we have

. d£ • drj i dt dip dj> 9 d0 n d} .„_.
^r- + -n -?- + t-r- + etc. = -2— ....(2/).
dip

'

d\\> dip tfy
v '

But, by (26), and by the considerations above, we have

. d£ . dv 6 dt . d£ . d£ , di ,
i

d6 .(28),

where $ denotes the rate of variation of | per unit of time in the

actual motion.

Again, we have

a± = diai + did1+eiiC +
m

df d£ dip dq dip

'

dip

dip d£ dip drj dip

'

dip
'

etc. etc.

(29),

if, as in Hamilton's system of canonical equations of motion, we

suppose ip, <j»
etc-> to be expressed as linear functions of £, 77, etc.,

with coefficients involving ip, (f>, 0, etc., and if we take 9 to denote

the partial differentiation of these functions with reference to the

system £, rj,...ip, <£,..., regarded as independent variables. Let

the coefficients be denoted by [\f/, ip], etc., according to the plan

followed above; so that, if the formula for the kinetic energy be

^=1 {[>, iff] $
2 +

[<f>, </>] r,* + ... + 2 0, <£] $v + etc.} (30),

we have
dT 1

d$

dT

etc. etc.

where of course
[if/, <j>],

and
[</>, ip],

mean the same.

Hence

(31),

g- 1* A !-[**•• i

dip dif/ dip dip dip

and therefore, by (29),

+ etc. +%% +^V + etc. +2%% + etc.

dip dip dip

;
d$ .dr, -dT

-iP -— + d>-r-^ •+• etc. + 2-=- jY
dip

r
d\p dxp
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whence, by (28), we see that Hamiiton-
ian form of

i; 71 in o'/r Lagrange's
.(iw U(p ^av • ol generalized^ +7?T7 + £77 + etc. =£+2 — (32). liquations
CUj/ df d\\r dij/ deduced

from

This, and (28), reduce the first member of (27) to 2^+2^- ,

istic
, .

x " V / *
rf

i '

equation.

and therefore, halving, we conclude

, dT dV . . dT dV . .__,
^ +#

=
-#'

and Similarly '
r
' +^ =

-^'
etc-(33)'

These, in all as many differential equations as there are of vari-

ables, \j/, <f>, etc., suffice for determining them in terms of I and

twice as many arbitrary constants. But every solution of the

dynamical problem, as has been demonstrated above, satisfies

(21) and (23); and therefore it must satisfy these (33), which we

have derived from them. These (33) are therefore the equations

of motion, of the system referred to generalized co-ordinates, as

many in number as it has of degrees of freedom. They are the

Hamiltonian explicit equations of motion, of which a direct de-

monstration was given in § 318 above. Just as above, it appears

therefore, that if (21) and (22) are satisfied, (18) expresses a

natural motion of the system from one to another of the two con-

figurations (\j/, <f>, #,...)(<//, <£', ff,...). Hence

331. The determination of the motion of any conservative Hence
~

proof con-

system from one to another of any two configurations, when the ni«ded.

sum of its potential and kinetic energies is given, depends on

the determination of a single function of the co-ordinates of

those configurations by solution of two quadratic partial differ-

ential equations of the first order, with reference to those two

sets of co-ordinates respectively, with the condition that the

corresponding terms of the two differential equations become

separately equal when the values of the two sets of co-ordinates

agree. The function thus determined and employed to express
the solution of the kinetic problem was called the Characteristic Character-

. . istic func-

Function by Sir "W. R. Hamilton, to whom the method is due. tion.

It is, as we have seen, the "action" from one of the configura-

tions to the other; but its peculiarity in Hamilton's system is,

that it is to be expressed as a function of the co-ordinates and

a constant, the whole energy, as explained above. It is evi-
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Character-
istic equa-
tion of
motion.

Complete
integral of
characteris'
tic equa-
tion.

dently symmetrical with respect to the two configurations,

changing only in sign if their co-ordinates are interchanged.

Since not only the complete solution of the problem of

motion gives a solution, A, of the partial differential equation

(19) or (21), but, as we have just seen
[§

330 (33), etc.],

every solution of this equation corresponds to an actual pro-

blem relative to the motion, it becomes an object of mathe-

matical analysis, which could not be satisfactorily avoided, to

find what character of completeness a solution or integral of

the differential equation must have in order that a complete in-

teo-ral of the dynamical equations may be derivable from it—a

question which seems to have been first noticed by Jacobi. What

is called a "complete integral" of the differential equation; that

is to say, an expression,

A = A
o
+ Fty,<l>,0,...a, ft...) (34),

for A satisfying it and involving the same number i, let us sup-

pose, of independent arbitrary constants, A
, a, (3,... as there are

of the independent variables, \j/, <j>.
etc.

; leads, as he found, to a

complete final integral of the equations of motion, expressed as

follows :
—

(35),

and, as above,

da

dF
dE

'

dp

t
- e. (36),

where e is the constant depending on the epoch, or era of reckon-

ing, chosen, and 51, £J,... are i— 1 other arbitrary constants, con-

stituting in all, with E, a, /?, . . .
,
the proper number, 2i, of arbi-

trary constants. This is proved by remarking that (35) are the

equations of the -'course" (or paths in the case of a system of

free particles), which is obvious. For they give

n d dF .
,

d dF n d dF

d\f/
da T

dcf> da dd da

. d dF .
,

d dF
7JL

d dF

=TtW
l* +

d^Tp
d+ +

-deTp
d6+ ---

etc. etc.

.(37),

in all i— 1 equations to determine the ratios dif/ : dcf> :dd\... From

these, and (21), we find

ety _ d<f> _ d6

«A

(38)
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[since (37) are the same as the equations which we obtain by Complete

differentiating (21) and (23) with reference to a, ft,... succes- eharacteris-

sively, only that they have
dij/, d<j>, d8,... in place of

i^, <£, 6,...]. tion/

A perfectly general solution of the partial differential equation, General

that is to say, an expression for A including every function of derived

if/, tj>, 6,... which can satisfy (21), may of course be found, by the piete

regular process, from the complete integral (34), by eliminating
'" cgra "

A
Q, a, /?,... from it by means of an arbitrary equation

f{A ,a,(3,...)
=

0,

and the (i
—

1) equations
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General
solution
derived
from com-
plete
integral.

Practical

interpre-
tation of
the com-
plete solu-
tion of the
character-
istic equa-
tion.

solution of (21). For we see immediately that (40) expresses
that the values of A are equal for all configurations satisfying

(39), that is to say, we have

when
if/'} eft', etc., satisfy (39) and (40). Hence when, by means

of these equations, if/', <f>', ..., are eliminated from the Hamiltonian

expression for A, the complete Hamiltonian differential

clA

becomes merely

dA\ . /dA\ , dA dA
(41)

*H% d<f> + •(42),

where
'dA\

, etc., denote the differential coefficients in the Hamil-

tonian expression. Hence, A being now a function of
if/, <£, etc.,

both as these appear in the Hamiltonian expression and as they
are introduced by the elimination of

if/', <f>', etc., we have

dA /dA\ dA fdA\ lin ^

# =
v#J' ^ =

WJ'
etc (43):

and therefore the new expression satisfies the partial differential

equation (21). That it is a completely general solution we see,

because it satisfies the condition that the action is equal for all

configurations fulfilling an absolutely arbitrary equation (39).

For the case of a single free particle, the interpretation of (39)

is that the point (x, y', z) is on an arbitrary surface, and of (40)

that each line of motion cuts this surface at right angles. Hence

332. The most general possible solution of the quadratic,

partial, differential equation of the first order, which Hamilton

showed to be satisfied by his Characteristic Function (either

terminal configuration alone varying), when interpreted for the

case of a single free particle, expresses the action up to any point

(x, y, z), from some point of a certain arbitrarily given surface,

from which the particle has been projected, in the direction of

the normal, and with the proper velocity to make the sum of

the potential and actual energies have a given value. In other
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words, the physical problem solved by the most general solu-

tion of that partial differential equation, is this :
—

Let free particles, not mutually influencing one another, be properties

]
'

j. 11 • n • i - -i
of surfaces

projected normally from all points of a certain arbitrarily given of equal

surface, each with the proper velocity to make the sum of its

potential and kinetic energies have a given value. To find, for

the particle which passes through a given point (x, y, z), the
"
action

"
in its course from the surface of projection to this

point. The Hamiltonian principles stated above, show that

the surfaces of equal action cut the paths of the particles at

right angles; and give also the following remarkable properties

of the motion :
—

If, from all points of an arbitrary surface, particles not

mutually influencing one another be projected with the proper
velocities in the directions of the normals

; points which they
reach with equal actions lie on a surface cutting the paths at

right angles. The infinitely small thickness of the space be-

tween any two such surfaces corresponding to amounts of

action differing by any infinitely small quantity, is inversely

proportional to the velocity of the particle traversing it
; being

equal to the infinitely small difference 6f action divided by the

whole momentum of the particle.

Let A, fi,
v be the direction cosines of the normal to the sur-

face of equal action through (x, y, z). We have

dA

X=
fdA

2 dA a
dA?\h

,et° (1) '

\dx
2
+
dy

2 + dz
2

)

dA
But

-j-
— mx, etc., and, if q denote the resultant velocity,

fdA
2 dA 2 dA 2

\l
mq

={dx-
2+

df
+ ^) (2) '

TT . x y z
Hence A = -, p.--, v = -

,

q q q

which proves the first proposition. Again, if 8A denote the in_

VOL. L 23
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Properties
of surfaces
of equal
action-

Examples
of varying
action.

finitely small difference of action from
(a;, y, z) to any oilier

point (x + bx, y + by, z + bz), we have

. . dA dA dA
bA = -r-bx + -f— by + —r- bz.

ax ay dz

Let the second point be at an infinitely small distance, e, from

the first, in the direction of the normal to the surface of equal
action

;
that is to say, let

8a; = e\, by = e/x.,
bz = ev.

Hence, by (1),

whence, by (2),

\dx
2

dy
2

dz2
,

e —
bA

mq

(»);

•(4),

which is the second proposition.

333. Irrespectively of methods for finding the "
character-

istic function" in kinetic problems, the fact that any case of

motion whatever can be represented by means of a single
function in the manner explained in § 331, is most remarkable,

and, when geometrically interpreted, leads to highly important
and interesting properties of motion, which have valuable

applications in various branches of Natural Philosophy. One
of the many applications of the general principle made by
Hamilton* led to a general theory of optical instruments, com-

prehending the whole in one expression.

Some of its most direct applications ;
to the motions of

planets, comets, etc., considered as free points, and to the cele-

brated problem of perturbations, known as the Problem of Three

Bodies, are worked out in considerable detail by Hamilton

(Phil. Trans., 1834-35), and in various memoirs by Jacobi,

Liouville, Bour, Donkin, Cayley, Boole, etc. The now aban-

doned, but still interesting, corpuscular theory of light furnishes

a good and exceedingly simple illustration. In this theory light

is supposed to consist of material particles not mutually influenc-

ing one another, but subject to molecular forces from the par-

ticles of bodies—not sensible at sensible distances, and therefore

not causing any deviation from uniform rectilinear motion in a

homogeneous medium, except within an indefinitely small dis-

* On the Theory of Systems of Rays. Trans. R. I. A. , 1824, 1830, 1832.
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tance from its boundary. The laws of reflection and of single Examples

refraction follow correctly from this hypothesis, which therefore action.

'

suffices for what is called geometrical optics.

We hope to return to this subject, with sufficient detail, Application

in treating of Optics. At present we limit ourselves to state optics,

a theorem comprehending the known rule for measuring the

magnifying power of a telescope or microscope (by comparing
the diameter of the object-glass with the diameter of pencil

of parallel rays emerging from the eye-piece, when a point of

light is placed at a great distance in front of the object-glass),

as a particular case.

334. Let any number of attracting or repelling masses, or r kinetics

perfectly smooth elastic objects, be fixed in space. Let two partich?
e

stations, and 0', be chosen. Let a shot be fired with a stated

velocity, V, from 0, in such a direction as to pass through 0'.

There may clearly be more than one natural path by which this

may be done
; but, generally speaking, when one such path is

chosen, no other, not considerably diverging from it, can be

found
;
and any infinitely small deviation in the line of fire from

0, will cause the bullet to pass infinitely near to, but not

through, 0'. Now let a circle, with infinitely small radius r, be

described round as centre, in a plane perpendicular to the

line of fire from this point, and let—all with infinitely nearly the

same velocity, but fulfilling the condition that the sum of the

potential and kinetic energies is the same as that of the shot

from —bullets be fired from all points of this circle, all directed

infinitely nearly parallel to the line of fire from 0, but each pre-

cisely so as to pass through 0'. Let a target be held at an

infinitely small distance, a , beyond 0', in a plane perpendicular
to the line of the shot reaching it from 0. The bullets fired

from the circumference of the circle round 0, will, after passing

through 0' , strike this target in the circumference of an exceed-

ingly small ellipse, each with a velocity (corresponding of course

to its position, under the law of energy) differing infinitely

little from V, the common velocity with which they pass

through 0'. Let now a circle, equal to the former, be described

round 0', in the plane perpendicular to the central path through
0', and let bullets be fired from points in its circumference, each

23-2
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Application with the proper velocity, and in such a direction infinitely
to common * * iii i i i

optics, nearly parallel to the central path as to make it pass through
or kinetics JL/ . , •iii • i
of a single 0, ihese bullets, it a target is held to receive them perpen-
particle __

dicularly at a distance a = a ~-,, beyond 0, will strike it along

the circumference of an ellipse equal to the former and placed
in a

"
corresponding" position ;

and the points struck by the in-

dividual bullets will correspond; according to the following law of

"correspondence":
—Let Pand P' be points of the first and second

circles, and Q and Q' the points on the first and second targets

which bullets from them strike
;
then if P' be in a plane con-

taining the central path through 0' and the position which Q
would take if its ellipse were made circular by a pure strain

f§ 183) ; Q and Q' are similarly situated on the two ellipses.

For, let XOY, XOY', be planes perpendicular to the central

path through and through 0'. Let A be the "action" from

to 0', and
cf>

the action from a point P (x, y, z), in the

neighboui'hood of 0, specified with reference to the former axes

of co-ordinates, to a point P (x\ y', z'),
in the neighbourhood of

0', specified with reference to the latter.

The function
<f>
— A vanishes, of course, when x = 0, y = 0,

z = Q, x' = 0, y'
=

0, z
1 = 0. Also, for the same values of the

co-ordinates, its differential coefficients — . -^-
, and -~

,

ax ay ax

-j-. ,
must vanish, and ~r ,

—
-f~,

must be respectively equal to

V and V, since, for any values whatever of the co-ordinates,

-?- and -~ are the component velocities parallel to the two lines
ax ay

OX, OY, of the particle passing through P, when it comes from

P', and — -J-,
and — —-, are the components parallel to OX', OY',

(toe Qy
of the velocity through P directed so as to reach P. Hence by

Taylor's (or Maclaurin's) theorem we have

<f>-A=- FV+ Vz

+ J {(X, X) x2 + (Y, Y)y° + (X,X)x
2 + (Y', Y')y'*+...

+ 2(Y,Z)yz+...+2(Y',Z')y'z' + ...

+ 2 (X, X) xx' + 2
( Y, T) yy' + 2 {Z, Z) zz'

+ 2 (X, Y') xy + 2 (X, Z) xz' + ... + 2 (Z, T) zy'} + P... (1),



334.] DYNAMICAL LAWS AND PRINCIPLES. 357

where (X, X), (X, Y), etc., denote constants, viz., the values of Application

Prk rl
2rk •

to common

the differential coefficients -rX . . T -« etc., when each of the or kinetics
dx dxdy of a single

six co-ordinates x, y, z, x'
', y', z vanishes

;
and R denotes the

remainder after the terms of the second degree. According to

Cauchy's principles regarding the convergence of Taylor's theorem,

we have a rigorous expression for <£
— A in the same form, with-

out R, if the coefficients (X, X), etc., denote the values of the

differential coefficients with some variable values intermediate

between and the actual values of x, y, etc., substituted for these

elements. Hence, provided the values of the differential co-

efficients are infinitely nearly the same for any infinitely small

values of the co-ordinates as for the vanishing values, R becomes

infinitely smaller than the terms preceding it, when x, y, etc.,

are each infinitely small. Hence when each of the variables

x, y, z, x', y', z' is infinitely small, we may omit R in the ex-

pression (1) for cf>—A. Now, as in the proposition to be proved,

let us suppose z and z each to be rigorously zero : and we have

(^ = (X,X)x + (X,Y)y + (X,X')x' + (X,Y)y';

^ = (Y,Y)y + (X,Y)x + (Y,X')x' + (Y,Y)y>.

These expressions, if in them we make x = 0, and y=§, be-

come the component velocities parallel to OX, OF, of a particle

passing through having been projected from P'. Hence, if

£, 7], £ denote its co-ordinates, an infinitely small time, -~
,

after

it passes through 0, we have £= a, and

{ = {(X,X')x' +
(X,Y')y'}^, v = {(Y,X')x' + (Y,Y')y'}^...(2).

Here £ and
-q
are the rectangular co-ordinates of the point Q' in

which, in the second case, the supposed target is struck. And

by hypothesis

x>* + y'*
= r

2

(3).

If we eliminate x', y' between these three equations, we have

clearly an ellipse ;
and the former two express the relation of the

"corresponding" points. Corresponding equations with x and

y for x' and y' ;
with £', •>/

for £, rj ;
and with —(X, X'),

-(Y, X'), -(X, F), -(Y, F), in place of (X, X'), (X, Y%
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Application (Y, X'), (Y, Y'), express the first case. Hence the proposition,

optics, as is most easily seen by choosing OX and OX' so that (X, Y')

of a single and (7, X') may each be zero.

particle.

Application 335. The most obvious optical application of this remarkable

optics. result is, that in the use of any optical apparatus whatever, if

the eye and the object be interchanged without altering the

position of the instrument, the magnifying power is unaltered.

This is easily understood when, as in an ordinary telescope,

microscope, or opera-glass (Galilean telescope), the instrument

is symmetrical about an axis, and is curiously contradictory of

the common idea that a telescope "diminishes" when looked

through the wrong way, which no doubt is true if the telescope

is simply reversed about the middle of its length, eye and

object remaining fixed. But if the telescope be removed from

the eye till its eye-piece is close to the object, the part of the

object seen will be seen enlarged to the same extent as when

viewed with the telescope held in the usual manner. This is

easily verified by looking from a distance of a few yards,

in through the object-glass of an opera-glass, at the eye of

another person holding it to his eye in the usual way.

The more general application may be illustrated thus :
—Let

the points, 0, 0' (the centres of the two circles described in

tiie preceding enunciation), be the optic centres of the eyes of

two persons looking at one another through any set of lenses,

prisms, or transparent media arranged in any way between

them. If their pupils are of equal sizes in reality, they will

be seen as similar ellipses of equal apparent dimensions by the

two observers. Here the imagined particles of light, projected

from the circumference of the pupil of either eye, are substituted

for the projectiles from the circumference of either circle, and

the retina of the other eye takes the place of the target receiv-

ing them, in the general kinetic statement.

Application 336. If instead of one free particle we have a conservative

free
y
mutu-° system of any number of mutually influencing free particles, the

fluencing same statement may be applied with reference to the initial

position of one of the particles and the final position of another,

or with reference to the initial positions or to the final positions
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of two of the particles. It serves to show how the influence of Application
. „ . . it* system of

an infinitely small change in one of those positions, on the di- freemutu-

. . «iiy 11-

rection of the other particle passing through the other position, iiuencing

is related to the influence on the direction of the former particle

passing through the former position produced by an infinitely

small change in the latter position. A corresponding statement, andtoge-lit f i i i
neralized

in terms of generalized co-ordinates, may of course be adapted system.

to a system of rigid bodies or particles connected in any way.

All such statements are included in the following very general

proposition :
—

The rate of increase of any one component momentum, corre-

sponding to any one of the co-ordinates, per unit of increase of

any other co-ordinate, is equal to the rate of increase of the com-

ponent momentum corresponding to the latter per unit increase

or diminution of the former co-ordinate, according as the two co-

ordinates chosen belong to one configuration of the system, or

one of them belongs to the initial configuration and the other to

the final.

Let
if/
and x he two ou^ °f the whole number of co-ordinates

constituting the argument of the Hamiltonian characteristic

function A
;
and £, rj

the corresponding momentums. We have

[§
330 (18)]

dA , dA

the upper or lower sign being used according as it is a final or

an initial co-ordinate that is concerned. Hence

dzA d$ dv= ±—^- = ±—-

d\j/dx <^x dty

and therefore -r =7-,
d% d\j/

if both co-ordinates belong to one configm-ation, or

di drj

dx'

==

~cty
,

if one belongs to the initial configuration, and the other to the

final, which is the second proposition. The geometrical inter-

pretation of this statement for the case of a free particle, and two

co-ordinates both belonging to one position, its final position, for
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Application instance, gives merely the proposition of § 332 above, for the
to system of » •

, . - . . ,

freemutu- case of particles projected from one point, with equal velocities

fluencing in all directions
; or, in other words, the case of the arbitrary

and to ge- surface of that enunciation, being reduced to a point. To corn-

system, plete the set of variational equations derived from § 330 we have

dt d-q

servative motion

=

-jjp
which expresses another remarkable property of con-

siightiy 337. By the help of Laerrange's form of the equations of
disturbed * r ° °

. . .
, • ,

equilibrium, motion, § 318, we may now, as a preliminary to the considera-

tion of stability of motion, investigate the motion of a system

infinitely little disturbed from a position of equilibrium, and

left free to move, the velocities of its parts being initially in-

finitely small. The resulting equations give the values of the

independent co-ordinates at any future time, provided the dis-

placements continue infinitely small
;
and the mathematical

expressions for their values must of course show the nature of

the equilibrium, giving at the same time an interesting example
of the coexistence of small motions

, § 89. The method con-

sists simply in finding what the equations of motion, and their

integrals, become for co-ordinates which differ infinitely little

from values corresponding to a configuration of equilibrium
—

and for an infinitely small initial kinetic energy. The solution

of these differential equations is always easy, as they are linear

and have constant coefficients. If the solution indicates that

these differences remain infinitely small, the position is one of

stable equilibrium ;
if it shows that one or more of them may

increase indefinitely, the result of an infinitely small displace-

ment from or infinitely small velocity through the position of

equilibrium may be a finite departure from it—and thus the

equilibrium is unstable.

Since there is a position of equilibrium, the kinematic relations

must be invariable. As before,

T =%{{*, *)tf + W>, <f>)4>
2 + 2

(«A, 4>)</^+ etc.. ..}... (1),

which cannot be negative for any values of the co-ordinates.

Now, though the values of the coefficients in this expression are

not generally constant, they are to be taken as constant in the

approximate investigation, since their variations, depending on
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the infinitely small variations of \lr. <6, etc., can only give rise to Slightly
J T

• • tt disturbed

terms of the third or higher orders of small quantities. Hence equilibrium.

Lagrange's equations become simply

dt\dfJ
'

dt\d^)
V "

and the first member of each of these equations is a linear func-

tion of
if, (j>, etc., with constant coefficients.

Now, since we may take what origin we please for the gene-

ralized co-ordinates, it will be convenient to assume that
if/, cf>, 6,

etc., are measured from the position of equilibrium considered
;

and that their values are therefore always infinitely small.

Hence, infinitely small quantities of higher orders being

neglected, and the forces being supposed to be independent of the

velocities, we shall have linear expressions for % <I>, etc., in

terms of
iff, <f>, etc., which we may write as follows :

—
* = a\j/

+ b<j>
+ c0 + . . . 1

$ = a'T/+&
,

T> + c'0+ ...I (3).

etc. etc. J

Equations (2) consequently become linear differential equations

of the second order, with constant coefficients; as many in

number as there are variables
if/, <f>, etc., to be determined.

The regular processes explained in elementary treatises on dif-

ferential equations, lead of course, independently of any particu-

lar relation between the coefficients, to a general form of solution

(§ 343 below). But this form has very remarkable characteristics

in the case of a conservative system; which we therefore

examine particularly in the first place. In this case we have

dV * dY
** =

-#'
* =
"4'

etC-

where V is, in our approximation, a homogeneous quadratic

function of
if/, <f>,

...if we take the origin, or configuration of

equilibrium, as the configuration from which (§ 273) the poten-

tial energy is reckoned. Now, it is obvious*, from the theory

ous trans-
formation

* For in the first place any such assumption as Simultane

\f/=A\f//
+ B<pl + ...

<t>
= A'\i/. + B'<p.+ ... of two

, . quadratic
etc., etc. functions

gives equations for T>, 0, etc., in terms of \pt , <£„ etc., with the same coefficients, SqUareg .

A, B, etc., if these are independent of t. Hence (the ca ordinates being i in
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Slightly
disturbed

equilibrium.

of the transformation of quadratic functions, that we may, bv a

determinate linear transformation of the co-ordinates, reduce the

Simultane-
ous trans-
formation
of two
quadratic
functions
to sums of

squares.

Generalized
orthogonal
transforma-
tion of co-

ordinates.

number) we have i2 quantities A, A', A", ... B, B', B", ... etc., to be determined

by i
2
equations expressing that in 2T the coefficients of ^,

2
, <pf, etc. are each

equal to unity, and of
\j/i<p i

etc. each vanish, and that in V the coefficients of

•$>$„ etc. each vanish. But, particularly in respect to our dynamical problem,
the following process in two steps is instructive:—

(1) Let the quadratic expression for T in terms of ^fi, <p
2

, \p<f>, etc., be

reduced to the form
\f/

2 + <f>

2 + ... by proper assignment of values to A, B, etc.

This may be done arbitrarily, in an infinite number of ways, without the

solution of any algebraic equation of degree higher than the first
;
as we may

easily see by working out a synthetical process algebraically according to the

analogy of finding first the conjugate diametral plane to any chosen diameter of

an ellipsoid, and then the diameter of its elliptic section, conjugate to any

chosen diameter of this ellipse. Thus, of the -±—— equations expressing that
a

the coefficients of the products xf/tf,, \pf),, tpfi^ etc. vanish in T, take first the

one expressing that the coefficient of
\plj>l vanishes, and by it find the value of

one of the .B's, supposing all the A's and all the B's but one to be known.

Then take the two equations expressing that the coefficients of \pl l
and

<j> l l

vanish, and by them find two of the C's supposing all the C's but two to be

known, as are now all the A's and all the B's: and so on. Thus, in terms of

all the A's, all the B's but one, all the C's but two, all the D's but three, and so

on, supposed known, we find by the solution of linear equations the remaining

B's, C's, D's, etc. Lastly, using the values thus found for the unassumed

quantities, B, C, D, etc., and equating to unity the coefficients of
\f/J, <p

2
,

2
,

etc. in the transformed expression for IT, we have i equations among the squares

and products of the -—=— assumed quantities, (i) A's, (i
—

1) B's, (i-2)C's,
a

etc., by which any one of the A's, any one of the B's, any one of the C's, and so

i (i
-

1)
on, are given immediately in terms of the -*-=— ratios of the others to them.

i (i - 1 )

Thus the thing is done, and -*-=— disposable ratios are left undetermined.
z

(2) These quantities may be determined by the ~^~— equations express-

ing that also in the transformed quadratic V the coefficients of $$,, tyfi,,

4>fit , etc. vanish.

Or, having made the first transformation as in (1) above, with assumed values

i (i — 1)
for -*-=—'

disposable ratios, make a second transformation determinately thus :

—Let

etc., etc.

where the i
2
quantities I, m, ..., V, m', ... satisfy the \i (i + 1) equations

IV+ mm' + . . .
= 0, IT + m'm" + . . . = 0, etc.,
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expression for 2T, which is essentially positive, to a sum of Simplifiedr
. . expressions

squares of generalized component velocities, and at the same for the
1 _ °

« i r--, .• i- kinetic and
time V to a sum of the squares or the corresponding co-ordi- potential

nates, each multiplied by a constant, which may be either positive

or negative, but is essentially real. [In the case of an equality

or of any number of equalities among the values of these con-

stants (a, ft, etc. in the notation below), roots as they are of a

determinantal equation, the linear transformation ceases to be

wholly determinate
;
but the degree or degrees of indeterminacy

which supervene is the reverse of embarrassing in respect to

either the process of obtaining the solution, or the interpretation

and use of it when obtained.] Hence
if/, </>,

... may be so chosen

that

T=m*+<j>
2 + etc.) (4),

and V= | {atf + fttf + etc.) (5),

a, ft, etc., being real positive or negative constants. Hence

Lagrange's equations become

f=-ml/, £= -/ty, etc (6).

The solutions of these equations are

ij/
= Acos(tJa-e), cji

= A' COS (tjft- e), etc (7), equations
of motion,

A, e, A', e', etc., being the arbitrary constants of integration. the
r

funda^

Hence we conclude the motion consists of a simple harmonic "odelfof

variation of each co-ordinate, provided that a, ft, etc., are all
vlbration-

positive. This condition is satisfied when V is a true minimum

at the configuration of equilibrium ; which, as we have seen

(§ 292), is necessarily the case when the equilibrium is stable.

If any one or more oi a, ft, ... vanishes, the equilibrium might

and l
2+ m? + ...=l, l'

2 + m"2 + ... = 1, etc., Simultane-
ous trans-

leaving £ i
(i
—

1) disposables. formation
. of two

We shall still have, obviously, the same form for 2T, that is :
—

quadratic
nrT, : „ • o functions

2T=i/v
! + 4>„

2 +... to sums of

And, according to the known theory of the transformation of quadratic functions, squares,

we may determine the %i (i-1) disposables of I, m, ..., V, m', ... so as to make

the {i{i-l) products of the co-ordinates f„, <f>„,
etc. disappear from the ex-

pression for V, and give

where a, /3, y, etc., are the roots, necessarily real, of an equation of the ith

degree of which the coefficients depend on the coefficients of the squares and

products in the expression for V in terms of
\f>„ </>„

etc. Later [(7'), (8) and (9)

of § 343/], a single process for carrying out this investigation will be worked out.
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Integrated
equations
of motion,
expressing
the funda-
mental
modes of
vibration ;

or of fulling
away from
configura-
tion of
unstable

equilibrium.

Infinitely
small dis-

turbance
from un-
stable equi-
librium.

be either stable or unstable, or neutral
;
but terms of higher

orders in the expansion of V in ascending powers and products
of the co-ordinates would have to be examined to test it

;
and if

it were stable, the period of an infinitely small oscillation in the

value of the corresponding co-ordinate or co-ordinates would be

infinitely great. If any or all of a, ft, y, ... are negative, V is

not a minimum, and the equilibrium is (§ 292) essentially un-

stable. The form (7) for the solution, for each co-ordinate for

which this is the case, becomes imaginary, and is to be changed
into the exponential form, thus; for instance, let — a=p, a positive

quantity. Thus

xJ
/ = Ce+UP + K€- t vP

(8),

which (unless the disturbance is so adjusted as to make the

arbitrary constant C vanish) indicates an unlimited increase

in the deviation. This form of solution expresses the approxi-

mate law of falling away from a configuration of unstable equili-

brium. In general, of course, the approximation becomes less

and less accurate as the deviation increases.

Potential
and Kinetic

energies
expressed as
functions of
time.

Example of
fundamen-
tal modes.

We have, by (5), (4), (7) and (8),

V= ±aA 2

[1 + cos 2 (^a - e)] + etc.

or V= -
\p [2CK + C&4P + Jf»€-«VP]

- etc.

and T= \aA
2

[
1 - cos 2 (^a -

e)]
+ etc.

or T= lp [- 2CK+ C'eWP +K\
-
^v>] + etc.

•(9).

.(10);

and, verifying the constancy of the sum of potential and kinetic

energies,

or

T + V = % (aA
2 + (3A'

2 + etc.)

T + V= - 2
(PGK+ qC'K' + etc.)

.(11).

One example for the present will suffice. Let a solid, im-

mersed in an infinite liquid (§ 320), be prevented from any

motion of rotation, and left only freedom to move parallel to a

certain fixed plane, and let it be influenced by forces subject to

the conservative law, which vanish in a particular position of

equilibrium. Taking any point of reference in the body, choosing
its position when the body is in equilibrium, as origin of rect-

angular co-ordinates OX. Y, and reckoning the potential energy
from it, we shall have, as in general,

2T=Ax2 + Bf+2C'xy; 2V= ax2 + by
2 + 2cxy,
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the principles stated in § 320 above, allowing us to regard the Example of

i r>n • n • • fundamen-
co-ordinates x and y as fully specifying the system, provided tal modes,

always, that if the body is given at rest, or is brought to rest,

the whole liquid is at rest (§ 320) at the same time. By solving

the obviously determinate problem of finding that pair of conju-

gate diameters which are in the same directions for the ellipse

Ax2 + By
2 + 2Cxy = const.,

and the ellipse or hyperbola,

ax2 + by
2 + 2cxy = const.,

and choosing these as oblique axes of co-ordinates (x1} y^), we

shall have

2T=A
i
x

1

2 + B
1y

2

,
and 2F=o

k
<B

l

,+ 6
1y1

1
.

And, as A
, Z?,

are essentially positive, we may, to shorten our

expressions, take x
ljA 1

=
ty, yl ,JBl =<f>; so that we shall have

2T=ip
2 +

<j>

2

, 2V=af +
(3<f>

2

,

the normal expressions, according to the general forms shown

above in (4) and (5).

The interpretation of the general solution is as follows :
—

338. If a conservative system is infinitely little displaced General

from a configuration of stable equilibrium, it will ever after fundamen-

, . „ . ...„., .tal modes of

vibrate about this configuration, remaining infinitely near it
;
infinitely

.
i • i • small

each particle of the system performing a motion which is com- motion
. ., . TJ? . , about a con-

POSed of simple harmonic vibrations. If there are ^ degrees of figuration

t \
equi-

freedom to move, and we consider any system (§ 202) of gene- librium.

ralized co-ordinates specifying its position at any time, the

deviation of any one of these co-ordinates from its value for the

configuration of equilibrium will vary according to a complex

harmonic function (§ 68), composed of i simple harmonics gene-

rally of incommensurable periods, and therefore (§ 67) the whole

motion of the system will not in general recur periodically

through the same series of configurations. There are, however,

i distinct displacements, generally quite determinate, which we

shall call the normal displacements, fulfilling the condition, that Normal dis-

if any one of them be produced alone, and the system then left from equi-
. i-ti mit'-i librium.

to itself for an instant at rest, this displacement will dimmish

and increase periodically according to a simple harmonic func-
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Fundamen- tion of the time, and consequently every particle of the system
tal modes of .„ , i • • . ,
vibration, will execute a simple harmonic movement m the same period.

This result, we shall see later (Vol. II.), includes cases in which

there are an infinite number of degrees of freedom
;
as for in-

stance a stretched cord
;
a mass of air in a closed vessel

;
waves

in water, or oscillations of water in a vessel of limited extent, or

of an elastic solid
;
and in these applications it gives the theory

of the so-called
" fundamental vibration," and successive " har-

monics
"
of a cord or organ-pipe, and of all the different possible

simple modes of vibration in the other cases. ,
In all these cases

it is convenient to give the name " fundamental mode "
to any

one of the possible simple harmonic vibrations, and not to

restrict it to the gravest simple harmonic mode, as has been

hitherto usual in respect to vibrating cords and organ-pipes.

Theorem of The whole kinetic energy of any complex motion of the sys-

energy; tern is [§ 337 (4)] equal to the sum of the kinetic energies of

of potential the fundamental constituents; and [§ 337 (5)] the potential

energy of any displacement is equal to the sum of the potential

energies of its normal components,

infmitesi- Corresponding theorems of normal constituents and funda-

in ne?gh-°

ns
mental modes of motion, and the summation of their kinetic

configura- and potential energies in complex motions and displacements,

stable equi- hold for motion in the neighbourhood of a configuration of un-

stable equilibrium. In this case, some or all of the constituent

motions are fallings away from the position of equilibrium

(according as the potential energies of the constituent normal

vibrations are negative).

Case or 339. If, as may be in particular cases, the periods of the

among
y

vibrations for two or more of the normal displacements are equal,

any displacement compounded of them will also fulfil the condi-

tion of being a normal displacement. And if the system be dis-

placed according to any one such normal displacement, and

projected with velocity corresponding to another, it will execute

a movement, the resultant of two simple harmonic movements

Graphic in equal periods. The graphic representation of the variation

represent*- ^ t^ e corresponding co-ordinates of the system, laid down as

two rectangular co-ordinates in a plane diagram, will conse-

quently (§ 65) be a circle or an ellipse ;
which will therefore,
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of course, be the form of the orbit of any particle of the system Graphic

which has a distinct direction of motion, for two of the displace- tion.

ments in question. But it must be remembered that some of

the principal parts [as for instance the body supported on the

fixed axis, in the illustration of § 319, Example (C)] may have

only one degree of freedom
;

or even that each part of the

system may have only one degree of freedom, as for instance if

the system is composed of a set of particles each constrained to

remain on a given line, or of rigid bodies on fixed axes, mutually

influencing one another by elastic cords or otherwise. In such

a case as the last, no particle of the system can move otherwise

than in one line; and the ellipse, circle, or other graphical re-

presentation of the composition of the harmonic motions of the

system, is merely an aid to comprehension, and is not the orbit

of a motion actually taking place in any part of the system.

340. In nature, as has been said above (§ 278), every system
uninfluenced by matter external to it is conservative, when

the ultimate molecular motions constituting heat, light, and

magnetism, and the potential energy of chemical affinities,

are taken into account along with the palpable motions and

measurable forces. But (§ 275) practically we are obliged to Dissinative

admit forces of friction, and resistances of the other classes

there enumerated, as causing losses of energy, to be reckoned,

in abstract dynamics, without regard to the equivalents of heat

or other molecular actions which they generate. Hence when

such resistances are to be taken into account, forces opposed
to the motions of various parts of a system must be introduced

into the equations. According to the approximate knowledge
which we have from experiment, these forces are independent
of the velocities when due to the friction of solids : but are

simply proportional to the velocities when due to fluid viscosity

directly, or to electric or magnetic influences
;
with corrections

depending on varying temperature, and on the varying con-

figuration of the system. In consequence of the last-mentioned

cause, the resistance of a real liquid (which is always more or

less viscous) against a body moving rapidly enough through it,

to leave a great deal of irregular motion, in the shape of
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views of
"
eddies," in its wake, seems, when the motion of the solid has

Stokes on . . .

resistance been kept long enough uniform, to be nearly in proportion to

moving the square of the velocity ; although, as Stokes has shown, at
through a ^ ..,,,..
liquid. the lowest speeds the resistance is probably in simple proportion

to the velocity, and for all speeds, after long enough time of

one speed, may, it is probable, be approximately expressed as

stokes' pro- the sum of two terms, one simply as the velocity, and the
bablelaw.

i
• -rr ,- .

other as the square of the velocity. If a solid is started from

rest in an incompressible fluid, the initial law of resistance is

no doubt simple proportionality to velocity, (however great, if

suddenly enough given;) until by the gradual growth of eddies

the resistance is increased gradually till it comes to fulfil

Stokes' law.

Friction of 341. The effect of friction of solids rubbing against one

another is simply to render impossible the infinitely small

vibrations with which we are now particularly concerned
;
and

to allow any system in which it is present, to rest balanced

when displaced, within certain finite limits, from a configuration

of frictionless equilibrium. In mechanics it is easy to estimate

its effects with sufficient accuracy when any practical case of

finite oscillations is in question. But the other classes of dis-

sipative agencies give rise to resistances simply as the velocities,

Resistances without the corrections referred to, when the motions are in-

veiocities. finitely small; and can never balance the system in a con-

figuration deviating to any extent, however small, from a

configuration of equilibrium. In the theory of infinitely small

vibrations, they are to be taken into account by adding to the

expressions for the generalized components of force, proper

(§ 343 a, below) linear functions of the generalized velocities,

which gives us equations still remarkably amenable to rigorous

mathematical treatment.

The result of the integration for the case of a single degree

of freedom is very simple; and it is of extreme importance,

both for the explanation of many natural phenomena, and for

use in a large variety of experimental investigations in Natural

Philosophy. Partial conclusions from it are as follows :
—

If the resistance per unit velocity is less than a certain

critical value, in any particular case, the motion is a simple
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harmonic oscillation, with amplitude decreasing in the same Resistances

i
• > m. * e j.- t> -r xi varying as

ratio in equal successive intervals ot time. r5ut it the re- velocities,

sistance equals or exceeds the critical value, the system when

displaced from its position of equilibrium, and left to itself,

returns gradually towards its position of equilibrium, never os-

cillating through it to the other side, and only reaching it after

an infinite time.

In the unresisted motion, let n2 be the rate of acceleration,

when the displacement is unity ;
so that (§ 57) we have

T = —
: and let the rate of retardation due to the resistance

n

corresponding to unit velocity be k. Then the motion is of the

oscillatory or non-oscillatory class according as F < (2n)
2

or Effect of

yfc
8 > (2n)

2
. In the first case, the period of the oscillation is varying as

velocity in

increased bv the resistance from T to T -
r ,

and the rate motion.

at which the Napierian logarithm of the amplitude diminishes

per unit of time is \k. If a negative value be given to k, the

case represented will be one in which the motion is assisted,

instead of resisted, by force proportional to the velocity : but

this case is purely ideal.

The differential equation of motion for the case of one degree

of motion is

\f + kij/
+ n2

i[/
=

;

of which the complete integral is

\p
= {A sin n't + B cos n't}e~

iht
,
where n' = J(n

2 —
\kr),

or, which is the same,

xf,
= (C«-»/ + c7W)rJ« where n,

= J{\k
2 - n%

A and B in one case, or G and C in the other, being the arbitrary

constants of integration. Hence the propositions above. In the Case of

case of k2 =
{In)* the general solution is if/= (G + G't) e~ ikt

.

342. The general solution [§ 343 a (2) and § 345 1

]
of the infinitely

problem, to find the motion of a system having any number, i, of motion of a

•r>-iTiT i i p • • dissipative

degrees of freedom, when infinitely little disturbed irom a position system,

of stable equilibrium, and left to move subject to resistances

proportional to velocities, shows that the whole motion may be

resolved, in general determinately, into 2i different motions each

vol. i. 24
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infinitely either simple harmonic with amplitude diminishing according
Kin 8,11

*

motion of a to the law stated above, or non-oscillatory and consisting of
dissipative . ... .

system. equi-proportionate diminutions of the components of displace-

ment in equal successive intervals of time.

343. It is now convenient to cease limiting our ideas to

infinitely small motions of an absolutely general system through

configurations infinitely little different from a configuration of

equilibrium, and to consider any motions large or small of a

Cycioidai svstem so constituted that the positional* forces are proportional
system

v

defined. to displacements and the motional* to velocities, and that the

kinetic energy is a quadratic function of the velocities with

constant coefficients. Such a system we shall call a cycioidaif
Easy and system ;

and we shall call its motions cycioidai motions. A good
lecture ii- and instructive illustration is presented in the motion of one

two or more weights in a vertical line, hung one from another,

and the highest from a fixed point, by spiral springs.

343 a. If now instead of
\]/, </>,...

we denote by i/^, ifra,.;.
the

generalized co-ordinates, and if we take 11, 12, 21, 22..., n, 12,

21, 22,... to signify constant coefficients (not numbers as in the

ordinary notation of arithmetic), the most general equations of

motions of a cycioidai system may be written thus :

Positional
* Much trouble and verbiage is to be avoided by the introduction of these

andMotion-
adjectives, which will henceforth be in frequent use. They tell their own

meanings as clearly as any definition could.

t A single adjective is needed to avoid a sea of troubles here. The adjective

'cycioidai' is already classical in respect to any motion with one degree of

freedom, curvilineal or rectilineal, lineal or angular (Coulomb-torsional, for ex-

ample), following the same law as the cycioidai pendulum, that is to say:—the

displacement a simple harmonic function of the time. The motion of a particle

on a cycloid with vertex up may as properly be called cycioidai ;
and in it the

displacement is an imaginary simple harmonic, or a real exponential, or the

sum of two real exponentials of the time

[Ce^i+Ce '**)•

In cycioidai motion as defined in the text, each component of displacement is

proved to be a sum of exponentials ((7e -f-C'e +etc.) real or imaginary,

reducible to a sum of products of real exponentials and real simple harmonics

[<7e
ffi

'cos (nt -e) + C'e'
1'*

cos {n't
-

e') + etc.].
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h Hi/'. + l2\f/ + ... =

371

+
Differential

equations of

complex
cycloidal
motion.

d fdT\ ... ...
-=-(—) + 11*1', + 12^,
dt V^, J

^ r:

5(^)
+ *1* + J>*. + - +«^ + "^+-- 0? (1) '

etc. etc.

Positional forces of the non-conservative class are included by
not assuming 12 = 21, 13 = 31, 23 = 32, etc.

The theory of simultaneous linear differential equations with

constant coefficients shows that the general solution for each

co-ordinate is the sum of particular solutions, and that every

particular solution is of the form

ft =«»,•**, fc
= a,€* (2).

Assuming, then, this to be a solution, and substituting in the Their solu-

differential equations, we have

X2 ^— + X(lla + 12a„ + ...) + iia, + 12a, + ... =0
da

1

1 - ' 2

A.
2

-^—
+ X(21a 1

+ 22a
2
+

...)
+ 21a, + 22»

2
+ ... -0

dan

etc. etc.

(3),

where % denotes the same homogeneous quadratic function of

a
lt
a

2 ..., that jPis of ^, tj/a ,,...
These equations, i in number,

determine X by the determinantal equation

(ii)X
2 + 11X+ii, (i 2)X

2

+12X+i2,...

(2l)X
2 +21X + 2I, (22)X

2

+22X+22,... =
(4),

where (11), (22), (12), (21), etc. denote the coefficients of squares
and doubled products in the quadratic, 2T

;
with identities

(12)= (21), (i3)
=

(3i),etc (5).

The equation (4) is of the degree 2i, in X
;
and if any one of its

roots be used for X in the * linear equations (3), these become

harmonized and give the i - 1 ratios a
2 / a x ,

a
3 j a x

, etc. ; and we
have then, in

(2),
a particular solution with one arbitrary con-

stant, a
x

. Thus, from the 2i roots, when unequal, we have 2i

distinct particular solutions, each with an arbitrary constant;
and the addition of these solutions, as explained above, gives the

general solution.

24—2
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Solution of
differential

equations
of complex
cycloidal
motion.

Algebra of
linear equa-
tions.

Minor
determi-
nants.

343 b. To show explicitly the determination of the ratios

a
3 / alf

a
3 / «, ,

etc. put for brevity

(ii)X*+11A + ii = i*i, (12) A
2 + 12X+I2 = 1 *2, etc.,

(3 2)X
2 +32X + 3 2 = 3-2, etc (5)';

and generally let j-k denote the coefficient of ak in the j^ equa-
tion of (3), or the kth term of the j

th line of the determinant (to

be called D for brevity) constituting the first member of (4).

Let M (j -k) denote the factor of j-k in D so that j-k . M (j-k)

is the sum of all the terms of D which contain j-k, and

we have

^-i^O"*-*^*) <
5 >"'

because in the sum 22 each term of D clearly occurs i times :

and taking different groupings of terms, but each one only once,

we have

D= i-i J/(i-i) + i-2 M (i'2) + 1 -3 M (i\3) + etc.
J

= 2-1 J/ (2-1) + 2-2 M (2-2) + 2-3M (2'$) + etc.

=
3-1 M (3-1) + 3-2 M (3-2) + 3-3 M (3-3) + etc.

.(5)'= ril(n) + 2'i M (2-1) + 3-1 M (3
-

i) + etc.
j

= i'2 M (\'2) + 2-2 M (2-2) + 3*2 M ($-2) + etc. I

-
1-3 M(i'$)+ 2 -3 M (2 -3) + 3-3M (3 -3) + etc.

j

J

in all 2i different expressions for D.

Farther, by the elementary law of formation of determinants

we see that

M(j-i-I^i)=(-iy-
lWk) j% j-(k+i), j-(k+2), .j-i, j-i, j-2, ..., j'(k-2)

(j+2)-k,

i'k,

l'k,

2'k,

(j-2)-k, (j-2)-(k-2)

(5)".
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or

or

The quantities M(i'i), M (1*2), M(j'k), thus defined Minorsof

are what are commonly called the first minors of the determi- nant.

nant D, with just this variation from ordinary usage that the

proper signs are given to them by the factor

/_ I y<-i)u+*)

in 5 iv so that in the formation of D the ordinary complication of

alternate positive and negative signs when * is even and all

signs positive when i is odd is avoided. In terms of the nota-

tion (5)' the linear equations (3) become

i
, i«

1
+ \'2a

%
+ + i'«ii

= 0"

2
, ia

1
+2*2«

2
+ + 2-ia

t
=

i'la +i'2a2 + +i'ia
t
=0

•(•5)
T
,

and when D - 0, which is required to harmonize them, they

may be put under any of the following i different but equivalent

forms,

a, «o a„

M(i-i) M(i-2) M(i-s)
= etc.

a, a„ a„

3/(2-1) 31(2-2) M (2-3)

etc.

a. «, = etc.

M(yi) M(y 2
) M(y3 )

from which we find

M(i-2) _ M (2^) 1/(3-2) _
M(i'ij~M(2-x) M(3 'i)

Jf(r3) M(2
-

3) _ M(y3)

M(i-j) M(2-i) M(yi)

•(•5)
vi

,

«»

a.

a,

ipr.

The remarkable relations here shown among the minors, due Relations

to the evanescence of the major determinant D, are well known minors of

in algebra. They are all included in the following formula, cent deter*

M (j-k) . M (hi)
- M(j-n) . M (Ik)

=
(S)
m

t

mmant "

which is given in Salmon's Higher Algebra (§ 33 Ex. 1), as a

consequence of the formula

M (j-k) . M (In)
-
M(j-n) . M (l-k)

=D.M (j, lie, n)... (5)
u

,

where M (j, l'k, n) denotes the second minor formed by sup-

pressing the j
01 and I

th columns and the kth and 11
th

lines.
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Relations

among the
minors of

an evanes-
cent deter-
minant.

343 c. When there are equalities among the roots the

problem has generally solutions of the form

^=fe*+W«Mi ^(V+^^i etc
(
6

)-

To prove this let X, X' be two unequal roots which become

equal with some slight change of the values of some or all of the

given constants (n), 11, n, (12), 12, 12, etc.; and let

^ = Al&t - A^t, ty
= A 2'^'t

- A^t, etc (6)'

be a particular solution of (1) corresponding to these roots.

Now let

c1=A1

,

{\
f

-k), c
2
= ^

2'(A'-X),
etc.j

and b
x
— A

x
— A

x ,
b
%
= A

2
— A

2 , etc. )'

Using these in
(6)'

we find

.(6)".

fc C——- + b
l
eKt

, <A2
= c

a

c\t ekt

+ 6,6^, etc... (6)'

Case of

souai roots.

"» X'-X
' "l" ' T2 a X'-X

To find proper equations for th e relations among b
x ,

b2 ,
. . . c

x ,
c2 ,

. . .

in order that (6)"' may be a solution of (1), proceed thus :
—first

write down equations (3) for the X' solution, with constants A
x ,A 2f

etc.: then subtract from these the corresponding equations for

the X solution: thus, and introducing the notation (6)", we find

{(1 1) X'
2 + 11X' + 1 1} c, + {(i2)X'

2 + 12X' + 1 2} c
2
+ etc. -

{(2i)X'
2 + 21X'+2i}c1

+ {(22)X'
2 +22X' + 22}c2 +etc. =0 ;...(6)-,

etc. etc.

and

{(11) X'
S +11X'+ n}61

+ {(i2)X'
2 + 12X'+ i 2 }62

+ etc.

= -[*,-&, <A'-A)]{(ii)(X + X'>+11}
-

[c,
- b

2 (X'
-

X)] {(12) (X + X') + 12}
- etc.

{(21) X'
2 + 21X' + 21} b

x
+ {(22) A'

9 + 22X' + 22} b
2
+ etc. \ ...(6)

T
.

^-[c1
-6

1 (X'-X)]{(2i)(X + X') + 21}
- h - K (

x> - A
)] U22

) (
x + x

') + 22
1
+ etc-

etc. etc.

Equations (6)
iv

require that X' be a root of the determinant, and

i—\ of them determine i — 1 of the quantities c
1} c

2 ,
etc. in terms

of one of them assumed arbitrarily. Supposing now c
x ,

c2 ,
etc.

to be thus all known, the i equations (6)
v
fail to determine the i

quantities b
x ,

b.
2 ,

etc. in terms of the right-hand members

because X' is a root of the determinant. The two sets of

equations (6)
iv and (6)

T
require that X be also a root of the de-

terminant: and i — 1 of the equations (6)
v determine i- 1 of the
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quantities bu b„, etc. in terms of
c^,

c2 ,
etc. (supposed already Case of

known as above) and a properly assumed value of one of the b'a.

343 d. When A' is infinitely nearly equal to X, (6)'" becomes

infinitely nearly the same as (6),
and (6)

iv and (6)
v become in

terms of the notation (5)'

nc + i*2 Cg+etc. =
J

2-i
c,
+ 2*2 c

2
+ etc. = > (6)

Ti
,

etc. etc.

•(6)'

dvi di'2
ri &!+ i-2 6

2
+ etc. = -

c^-rr-
— c

2-yj.
--etc.

d2'l d2'2
2-i &!+ 2*2 b

2
+ etc. = - c

i~j)~~
c
a~jj;
— etc -

etc. etc. J

These, (6)^, (6) ,
are clearly the equations which we find

simply by trying if (6) is a solution of (1). (6)* requires that A

be a root of the determinant D ;
and they give by (5)" with c

substituted for a the values of i— 1 of the quantities cu c
2 ,

etc.

in terms of one of them assumed ai'bitrarily. And by the way
we have found them we know that (6)™ superadded to (6)"

shows that A must be a dual root of the determinant. To verify

this multiply the first of them by If(i-i), the second by

M(2'i), etc., and add. The coefficients of b.
2 ,

6
3 ,

etc. in the sum

are each identically zero in virtue of the elementary constitution

of determinants, and the coefficient of ^is the major determinant

D. Thus irrespectively of the value of A we find in the first place,

-J
{
M(i-i)

*2 + 3/( 2 -i)^+etcj-
etc (6)'

Now in virtue of (6)
vi and (5)

v we have

c

*=3, Si i. 5, eta
c, «, c

i «i

Using successively the several expressions given by (5)™ for

these ratios, in (6)™, and putting D = 0, we find

iHlri ,„,, J . drk rt dD

which with D = shows that A is a double root.

Suppose now that one of the c's has been assumed, and the

others found by (6)* : let one of the 6's be assumed : the other
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Case of i - 1 6's are to be calculated by i — 1 of the equations (6)™. Thus
eoual roots.

for example take ^ = q. In the first place use all except the

first of equations (6)™ to determine b,, b
3 ,

etc. : we thus

find

J/(ri)62
=-|i/(i,2-i,2)-^+i¥(i

)

2-i,3)^+etc.jc
1

-|.¥(i,2-i,2)-^-
+
i¥(i,2'i,3)-|x

-
+etc.|c

2
- etc.

i/(i-i)i3
=etc. i/"(i-i)64=etc. etc etc.

Secondly, use all except the second of (6)™ to find b
2 ,

b
a ,

etc. :

we thus find

M (2-i)6a
=

etc., J/(2-i)63 -etc, Jf(2-i)64 = etc (6)
x
.

Thirdly, by using all of (6)™ except the third, fourthly, all

except the fourth, and so on, we find

M(3-i)bs
= etc t M(yi)b3

= etc, M(yi) 5
4
= etc (Gf.

343 e. In certain cases of equality among the roots (343 m)
it is found that values of the coefficients (u), 11, n, etc.

differing infinitely little from particular values which give the

equality give values of a
x
and

a,',
a

t
and a

2

'

, etc., which are

not infinitely nearly equal. In such cases we see by (6)" that

blf b2 ,
etc. are finite, and c

t ,
c
2 ,

etc. vanish : and so the solution

does not contain terms of the form Uu : but the requisite number

of arbitrary constants is made up by a proper degree of inde-

terminateness in the residuary equations for the ratios b^jb^

b
3 /bu etc.

Now when c
x =0, c

2
= 0, etc. the second members of equa-

tions (6)
u

, (6)*, (ft)*,
etc. all vanish, and as b

2 ,
b
3 ,

b
t ,

etc. do not all

vanish, it follows that we have

Jf(n) = 0, Jf(2'i)
= 0, M(yi) =

0, etc (6)*".

Case of Hence by (5)™ or (5)^ we infer that all the first minors are

and evanes- zero for any value of X which is doubly a root, and which yet

does not give terms of the form Uu in the solution. This

important proposition is due to Routh*, who, escaping the errors

of previous writers (§ 343 m below), first gave the complete

theory of equal roots of the determinant in cycloidal motion.

*
Stability of Motion (Adams Prize Essay for 1877), chap. i. § 5.

cent minors:
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He also remarked that the factor t does not necessarily imply Routh's
, .,. fin —nr -„t i \ i

theorem.

instability, as terms of the form tc^
,
or U pt cos (nt

-
e),

when p
is positive, do not give instability, but on the contrary corre-

spond to non-oscillatory or oscillatory subsidence to equilibrium.

343 f. We fall back on the case of no motional forces by Case of no

taking 11 = 0, 12 = 0, etc., which reduces the equations (3) for forces,

determining the ratios a
2 / alf

a
3 / at ,

etc. to

x » d'E A
A -j h i ia. + 1 2« + etc. = 0,
da

A2
-= t-2ia, + 22a. + etc. = 0, etc. (7),da

2

12 v />

or, expanded,

[(n)A
2

+ii]a 1
+ [(i2)A

2

+i2;K + etc. =
0!

[(2i)A
2 + 2i]a I +[(2 2)A

2 + 22]a8
+ etc. = )'

"
{ h

The determinantal equation (4) to harmonize these simplified

equations (7) or (7') becomes

= 0. .(8).(u) a2 + ii, (12) A2 + 12, ...

(2l) X2 + 21, (22)\
2 + 22, ...

This is of degree i, in A2
: therefore A has i pairs of oppositely

signed equal values, which we may now denote by

±
A,

=
A',

± A", ...;

and for each of these pairs the series of ratio-equations (7')
are

the same. Hence the complete solution of the differential equa-

tions of motion may be written as follows, to show its arbitraries

explicitly :
—

<^= (A€M + Be-u)+ (A'St+B'c-
Kt
)+ (A"t

K
"
t + B"e-*'t) + etcA

/ ft

il 2 =-*(A*u + Be-") + % (AW + £ ,

€-M) + %(A"f*>"t+B"t-x't) + ebc.
a. a. a.

^3
= -*(Az" + Be-") + ^B, (AW + B'e~M) +% (A"e^ + B"€-*"*) + etc.

a a. a.
1 -] "1

etc. etc. etc.

where A, B; A', B'

; A", B"
; etc. denote 2i arbitrary constants,

and

a,' a
'

< <
etc

"3 a
i

are i sets of i — 1 ratios each, the values of which, when all the

i roots of the determinantal equation in A2 have different values,

are fully determined by giving successively these i values to A8

in
(7').



Case of no
motional
forces.

Cycloidal
motion.
Conserva-
tive posi-
tional, and
no motion-
al, forces.
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343 g. When there are equal roots, the solution is to be

completed according to § 343 d or e, as the case may be. The

case of aconservative system (343 h) necessarily falls under § 343 e,

as is proved in § 343 m. The same form, (9), still represents the

complete solutions when there are equalities among the roots, but

with changed conditions as to arbitrariness of the elements appear-

ing in it. Suppose X2 = X'
2
for example. In this case any value

may be chosen arbitrarily for a
2 / a, ,

and the remainder of the

set a
3 /a t

,
a
4 /a x

... are then fully determined by (7'); again

another value may be chosen for aj / a[ ,
and with it a,' / a/,

a' /a', ... are determined by a fresh application of (7')
with

the same value for A2
: and the arbitraries now are A + A',

B + B',

tiA+^A', ^B + ^B', A", B", A'", B'", ...A^\ and £(*-«,
a

i
a

i
a

i
a

\

numbering still 2i in all. Similarly we see how, beginning

with the form (9), convenient for the general case of i different

roots, we have in it also the complete solution when X2
is triply,

or quadruply, or any number of times a root, and when any

other root or roots also are double or multiple.

343 h. For the case of a conservative system, that is to say,

the case in which

12 = 21, 13 =31, 23 = 32, etc., etc (10),

the differential equations of motion, (1), become

dt\d$) df
'

dt\d<t>) d<f>

and the solving linear algebraic equations, (3),
become

d% dV A M ,

dV
f nn„,

-5— + -j— =0, -j— + -j— =0 (iu ;,
da

x
da

x

da
3

da
2

where

F=H II^2+2 • I2^ ,A2
+etc•)'

ancllJ=^ IIa
l
2+2 • I2a^ +etc)••(10

',

')•

In this case the i roots, \2

,
of the determinantal equation are the

negatives of the values of a, /3, ... of our first investigation; and

thus in (10"), (8),
and (9) we have the promised solution by one

completely expressed process. From § 337 and its footnote we

infer that in the present case the roots X2
are all real, whether

negative or positive.
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In 8 337 it was expressly assumed that T (as it must be in Cycioidai...... motion.

the dynamical problem) is essentially positive; but the mvestiga- Conserva-

tion was equally valid for any case in which either of the quad- tional, and

ratics T or V is incapable of changing sign for real values of the a i. forces.

variables
(i^,, \j/2 ,

etc. for T, or fa, \\rai
etc. for V). Thus we

see that the roots X2 are all real when the relations (5) and (9)

are satisfied, and when the magnitudes of the residual indepen-

dent coefficients (n), (22), (12), ... and 11, 22, 12, ... are such

that of the resulting quadratics, ©, 17, one or other is essen-

tially positive or essentially negative. This property of the

determinantal equation (7')
is very remarkable. A more direct

algebraic proof is to be desired. Here is one :
—

343 k. Writing out (7')
for A2

,
and for A'

2

, multiplying the

first for A2

by Aa
',

the second by \a2 ,
and so on, and adding;

and again multiplying the first for A'
2

by £alt
the second by \a2 ,

and so on, and adding, we find

A2© (a, a') + 17 (a, a) = 0) (U]
and \'

2

®(a, a') + 37 (a, a')
= 0)

( ''

where

Z (a, a) = A, {(11) «,< + (i2)(a x<+ «
2<) +

etc.})

and V (a, a') -\ {
11 «,»/ +12 faaj + «/*,')

+ etc.}/

'

Remark that according to this (12) notation % (a, a) means

the same thing as % simply, according to the notation, of (3) etc.

above, and % Ofr, iff)
the same thing as T. Remark farther that

© (a, a') is a linear function of a
lf

a
2 ,

... with coefficients each

involving a', a
2

'

,
... linearly; and that it is symmetrical with

reference to a
, a,',

and a
2 ,

a
2 ', etc.; and that we therefore

have

% (mp, p')
= mZ {p, p')

= Z(p, mp') and \ ,^
Z(mp + nq,m'p+nq) = mm"E(p, p) + (ran' + m'n)Z(p, q) + nn'Z(q, q)j

Precisely similar statements and formulas hold for 17 (a, a').

From (11) we infer that if A2 and A'
2 be unequal we must

have

Z(a, a')
=

0, and 17 (a, a')
= Q (14).

Now if there can be imaginary roots, A2

,
let A2 = p + crJ- 1

and A'
2 = p — cr J— 1 be a pah' of them, p and cr being real. And,

ft > 7i > Pa > 72 >
etc. being all real, let ft + ?,>/- 1, ft

-
?, J- 1, be

arbitrarily chosen values of a
l , a/, and let

Pi + laJ-iiPx + lzJ- 1
, •••,/>,- 7,V"1

. P*-%J-"\ir»
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Cycloidal
motion.
Conserva-
tive posi-
tional, and
no motion-
al, forces.

a
-2

»
a
a '

•*•

Case of

equal roots.

.(14').

be the determinately deduced values* of a
2 ,

a
3 ,

.

according to (7'); we have, by (13), with

m = m' — l, n=J—], n' = -J—l,

®(a, a')
= W(pi p) + ^(qi q))

and V(a,a')=V(p,p)+Yr(q,q)f
Now by hypothesis either *& (x, x), or TrJ (x, x) is essentially of

one sign for all real values of x
Y ,

x
2 ,

etc. Hence the second

member of one or other of equations (
1
4') cannot be zero, because

p f p2 ,...,
and qv q2T- are all real. But by (14) the first

member of each of the equations (14') is zero if A2 and A'
2
are

unequal: hence they are equal: hence either ^ = 0,^ = 0, etc.,

or
<7j
=

0, q2
= 0, etc., that is to say the roots A2

are all necessarily

real, whether negative or positive.

343 I. Farther we now see by going back to (11) :
—

(a) if for all real values of x,, x
2 ,...

the values of SC (x, x)

and V (x, x) have the same unchanging sign, the roots A* are all

negative ;

(b) if for different real values of x
,
x

, etc., one of the two

% (x, x), TP (x, x) has different signs (the other by hypothesis

having always one sign), some of the roots A2 are negative and

some positive;

(c)
if the values of tC and V have essentially opposite signs

(and each therefore according to hypothesis unchangeable in

sign), the roots A2
are all positive.

The («) and (c) of this tripartite conclusion we see by taking

A'
2 = X2

in (11), which reduces them to

\*Z(a, a) + V(a, a)
=

(15),

and remarking that a
,
a3 ,

etc. are now all real if we please to

give a real value to a
x
. The (b) is proved in § 343 o below.

343 m. From (14) we see that when two roots A*, A'
2

,
are

infinitely nearly equal there is no approach to equality between

«! and a/, a
a
and a

2 ,
and therefore, when there are no motional

forces, and when the positional forces are conservative, equality

of roots essentially falls under the case of § 343 e above. This

may be proved explicitly as follows :
—let

<A,
=
(<V + K) «*i t,

=
(«,<

+ K) *xt
>
etc

(
15

)'

* Cases of equalities among the roots are disregarded for the moment merely

to avoid circumlocutions, but they obviously form no exception to the reasoning

and conclusion.
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be the complete solution corresponding to the root A supposed to keloidal

be a dual root. Using this in equations (1) and equating to zero Oonserva-
°

, . .
tlve p°81 "

in each equation so found the coefficients of U^ and of eA<
,
with tionai, and

„ , „ noicotion-

the notation of (12) we find al, forces

xS dZ(a, a)
|

dV(a,a) _^ ^ dZ(a,a)
|

dV(a,a) = Q ^
da

x
da

x

da
2

da
2

' ^ ' '

x3
d®(b,b) + 2X dZ(a,a) |

dV(b,b)_
db

x

da
x

db
x

x2
dz (b,b) + 2X <m(a,a) + w_y= 0; etc<

db„ da
2

db
2

Multiplying the first, second, third, etc. of (15)" by 6,,
b

2,
b
3 , etc.

and adding we find

\2Z (a, b) + YT (a, b)
= (15)

iv

;

and similarly from (15)'" with multipliers av a
2 , etc.

X2Z {a, b) + V (a, b) + 2XZ (a, a)
=

(15)'.

Subtracting (15)
iv from (15)

v we see that Z(a, a)
= 0. Hence we

must have a
x

=
0, a

2
=

0, etc., that is to say there are no terms of

the form Uu in the solution. It is to be remarked that the in-

ference of «j
=

0, a =
0, etc. from Z (a, a)

=
0, is not limited to

real roots A because X'
2
in the present case is essentially real, and

whether it be positive or negative the ratios ajav ctjalt etc., are

essentially real.

It is remarkable that both Lagrange and Laplace fell into

the error of supposing that equality among roots necessarily

implies terms in the solution of the form te
xt

(or t cos pt), and

therefore that for stability the roots must be all unequal. This

we find in the Mecanique Analytique, Seconde Partie, section vi.

Art. 7 of the second edition of 1811 published three years before

Lagrange's death, and repeated without change in the posthu-

mous edition of 1853. It occurs in the course of a general
solution of the problem of the infinitely small oscillations of a

system of bodies about their positions of equilibrium, with

conservative forces of position and no motional forces, which

from the " Avertissement" (p. vi.) prefixed to the 1811 edition

seems to have been first published in the 1811 edition, and not

to have appeared in the original edition of 1788*. It would be

* Since this statement was put in type, the first edition of the Mecanique

Analytique (which had heen inquired for in vain in the University libraries of

Cambridge and Glasgow) has been found in the University library of Edinburgh,
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Cycioidai curious if such an error had remained for twenty-three years in

conserva- Lagrange's mind. It could scarcely have existed even during
tive posi- . . ...
tionai, and the writing and printing of the Article for his last edition if he
no motion- ° x °

, . i- • c
ai, forces, had been in the habit of considering particular applications ot

his splendid analytical work : if he had he would have seen that

a proposition which asserted that the equilibrium of a particle

in the bottom of a frictionless bowl is unstable if the bowl be

a figure of revolution with its axis vertical, cannot be true.

No such obvious illustration presents itself to suggest or prove

the error as Laplace has it in the Mecanique Celeste (Premiere

Partie, Livre II. Art. 57) in the course of an investigation of the

secular inequalities of the planetary system. But as [by a

peculiarly simple case of the process of § 345*" (54)] he has

reduced his analysis of this problem virtually to the same as

that of conservative oscillations about a configuration of equili-

brium, the physical illustrations which abound for this case

suffice to prove the error in Laplace's statement, different and

comparatively recondite as its dynamical subject is. An error

the converse of that of Laplace and Lagrange occurred in page

278 of our First Edition where it was said that
"
Cases in which

" there are equal roots leave a corresponding number of degrees

"of indeterminateness in the ratios I : m, I : n, etc., and so allow

"
the requisite number of arbitrary constants to be made up,"

without limiting this statement to the case of conservative

positional and no motional forces, for which its truth is obvious

from the nature of the problem, and for which alone it is obvious

at first sight ; although for the cases of adynamic oscillations,

and of stable precessions, § 345 xxiv

,
it is also essentially true.

The correct theory of equal roots in the generalized problem

of cycioidai motion has been so far as we know first given by

Pvouth in his investigation referred to above (§ 343 e)*.

343 n. Returning to § 343 I, to make more of (b), and to

understand the efficiency of the oppositely signed roots, A2

,
as-

serted in it, let o-
2=-A2 in any case in which A.

2
is negative, and let

fl
= r

J
cos (at -e), \j/t

= r
2
cos (ut

-
e),

etc...... (16),

be the corresponding particular solution in fully realized terms,

and it does contain the problem of infinitely small oscillations, with the

remarkable error referred to in the text.
*
[The error of Lagrange and Laplace was pointed out and corrected by

Weierstrass in 1858. H. L.]
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as in § 337 (6) above but with somewhat different notation. Cycloidai

By substituting in (1) and multiplying the first of the resulting Conserva-

equations by r
,
the second by r

,
and so on and adding, virtually tional, and

r i /i r\ ^i no motion-
as we found (15), we now find al, forces.

- a2 % (r, r) + IT (r, r)
=

(17).

Adopting now the notation of (9) for the real positive ones of

the roots X2

,
but taking, for brevity, a

x

=
1, a^'

-
1. a" =

1, etc.,

we have for the complete solution when there are both negative

and positive roots of the determinantal equation (7');

\p= (Ae
Kt+Be~M)+ (A'e

yt+B'e~x
'
t

)+etc.+r 1cos(at-e)+r 1'cos(a't-e')+etc.\

\ff8
=a

a(A ^t+Be-
M
)+a/(A'eM+B'rM)+etc. +r2cos(at-e)+r2'cos(a't-e')+etc.

> ... (18).

i/'g
=

etc., i]r
- etc. etc. etc. /

343 o. Using this in the general expressions for T and V,

with the notation (12), and remarking that the products ek* x «Vf
,

etc. and eKt x sin (at
-

e), etc., and sin (at—e) x sin (a't
—

e'), etc.,

disappear from the terms in virtue of (11), we find

T= \2

%(a, a) (A& -
B<l-M)

2 + A'
2® («', a')(A'^'t

-
B'z~*ty + etc."*

+ a3® (r, r) sin
2

(at
-

e) + a"-Z (/, r')
sin

2

(a't
-

e')
+ etc. J

( ''

and

+ V (r, r) cos
2

(at -e) + YT (/, /) cos
2

(a't
-

e') + etc. j
( )-

The factors which appear with

% (a, a), % (a', a), ...Z(r, r), Z (r, r')

in this expression (19) for T are all essentially positive; and the

same is true of F in (20) for V. Now for every set of real

co-ordinates and velocity-components the potential and kinetic

energies are expressible by the formulas (20) and (19) because

(18) is the complete solution with 2i arbitraries. Hence if the

value of V can change sign with real values of the co-ordinates,

the quantities W (a, a), U (a, a'), etc., and HT
(r, r), W (/, r'),

etc., for the several roots must be some of them positive and

some of them negative ;
and if the value of T could change sign

with real values of the velocity-components, some of the quan-

tities % (a, a), *& (a', a'), etc., and % (r, r), *& (r' } r), etc. would

need to be positive and some negative. So much being learned

from (20) and (19) we must now recal to mind that according

to hypothesis one only of the two quadratics T and V can change

sign, to conclude from (15) and (17) that there are both positive

and negative roots A2 when either T or V can change sign. Thus

(b) of the tripartite conclusion above is rigorously proved.
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Cycloidal
motion.
Conserva-
tive posi-
tional, and
no motion-
al, forces.

Equation of

energy in

realized

general
solution.

Artificial or
ideal ac-

cumulative
system.

343 p. A short algebraic proof of (b) could no doubt be easily

given ;
but our somewhat elaborate discussion of the subject is im-

portant as showing in (15). ..(20) the whole relation between

the previous short algebraic investigation, conducted in terms

involving quantities which are essentially imaginary for the

case of oscillations about a configuration of stable equilibrium,

and the fully realized solution, with formulas for the potential

and kinetic energies realized both for oscillations and for

fallings away from unstable equilibrium.

We now see definitively by (15) and (17) that, in real dynamics

(that is to say T essentially positive) the factors V (a, a),

¥f («', a), etc., are all negative, and $7 (r, r), V (r, /), etc., all

positive in the expression (20) for the potential energy. Adding

(20) to (19) and using (15) and (17) in the sum, we find

T + V= - 4AB\SZ (a, a)
- 4A'B'\'

2Z (a, a), etc.
)

+ a2Z (r, r) + <r'
2Z (r, r) + etc. /

—W'
It is interesting to see in this formula how the constancy of

the sum of the potential and kinetic energies is attained in any

solution of the form Atxt +Be~ Kt
[which, with A = cr A/-l,

includes the form r cos (at
—

e)],
and to remark that for any single

solution atM,
or solution compounded of single solutions depend-

ing on unequal values of X2

(whether real or imaginary), the sum
of the potential and kinetic energies is essentially zero.

344. When the positional forces of a system violate the law

of conservatism, we have seen (§ 272) that energy without limit

may be drawn from it by guiding it perpetually through a

returning cycle of configurations, and we have inferred that in

every real system, not supplied with energy from without, the

positional forces fulfil the conservative law. But it is easy to ar-

range a system artificially, in connexion with a source of energy,

so that its positional forces shall be non-conservative
;
and the

consideration of the kinetic effects of such an arrangement, es-

pecially of its oscillations about or motions round a configura-

tion of equilibrium, is most instructive, by the contrasts which it

presents to the phenomena of a natural system. The preceding

formulas, (7).. -(9) of § 343/ and § 343 ^express the general
solution of the problem— to find the infinitely small motion of a

cycloidal system, when, without motional forces, there is devia-

tion from conservatism by the character of the positional forces.
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Iii this case 1710) not fulfilled,] just as in the case of motional Artificial
LV '

.
or ^eal ac-

forces fulfilling the conservative law (10), the character of the cumulative

. .... system

equilibrium as to stability or instability is discriminated accord- Criterion of

ing to the character of the roots of an algebraic equation of
s

degree equal to the number of degrees of freedom of the system.

If the roots (A
2

)
of the determinantal equation § 343 (8) are

all real and negative, the equilibrium is stable : in every other

case it is unstable.

345. But although, when the equilibrium is stable, no

possible infinitely small displacement and velocity given to

the system can cause it, when left to itself, to go on moving
farther and farther away till either a finite displacement is

reached, or a finite velocity acquired ;
it is very remarkable

that stability should be possible, considering that even in the

case of stability an endless increase of velocity may, as is easily

seen from § 272, be obtained merely by constraining the system
to a particular closed course, or circuit of configurations, no-

where deviating by more than an infinitely small amount from

the configuration of equilibrium, and leaving it at rest anywhere
in a certain part of this circuit. This result, and the distinct

peculiarities of the cases of stability and instability, will be

sufficiently illustrated by the simplest possible example, that of

a material particle moving in a plane.

Let the mass be unity, and the components of force parallel

to two rectangular axes be ax + by, and a'x + b'y, when the

position of the particle is (x, y). The equations of motion

will be

x — ax + by, y - a'x + b'y (1).

Let |- (a' + b)
=

c, and ^ (a'
-

b)
= e :

the components of the force become

ax + cy— ey, and ex + b'y + ex,

dV . dV
or —-—

ey, and -—h ex,
dx J '

dy
'

where V= -
\ (ax

3 + b'y
2 + 2cxy).

The terms -
ey and + ex are clearly the components of a force

e (x
2 + y

2

)'
2

, perpendicular to the radius-vector of the particle.

Hence if we turn the axes of co-ordinates through any angle, the

vol. i. 25
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Artificial

or ideal ac-
cumulative
^stem.

corresponding terms in the transformed components are still

—
ey and + ex. If, therefore, we choose the axes so that

V=$(ax* + (3y
2

) (2),

the equations of motion become, without loss of generality,

x = — ax — ey, y = -
(3y + ex.

To integrate these, assume, as in general [§
343 (2)],

x = leKt
, y = me.M.

Then, as before
[§
343

(7)],

(X
2 + a) I + em = 0, and ~el+ (\

2 + fijm = 0.

Whence (X
2 + a) (X

2 +
/?)

= - e
2

(3),

which gives

y = -l(a + (3)±{l(a-(3y-e*}k

This shows that the equilibrium is stable if both a/3 + e* and

a + (i are positive and e
2

<\(<x
—

(3)
2 but unstable in every other

case.

But let the particle be constrained to remain on a circle, of

radius r. Denoting by its angle-vector from OX, and trans-

forming (§ 27) the equations of motion, we have

= -
(y3

-
a) sin cos0 + e = -!(£- a) sin 20 +e (4).

If we had e = (a conservative system of force) the positions of

equilibrium would be at 6 = 0,
=

^ir,
6 = ir, and =

|^r; and

the motion would be that of the quadrantal pendulum. But

when e has any finite value less than h (/?
—

a) which, for conve-

nience, we may suppose positive, there are positions of equili-

brium at

IT 3tt

h, 6 = --b, 6 = tt + 5, and =— -$,
Z —

2e
: the first andwhei'e •& is half the acute angle whose sine is

third being positions of stable, and the second and fourth of un-

stable, equilibrium. Thus it appears that the effect of the con-

stant tangential force is to displace the positions of stable and

unstable equilibrium forwards and backwards on the circle

through angles each equal to .&. And, by multiplying (4) by
20dt and integrating, we have as the integral equation of energy

0*=C + £(/3-a)cos20 + 2e0 (5).
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From this we see that the value of 0, to make the particle Artificial oi
A ideal ac-

iust reach the position of unstable equilibrium, is cumulative.
•» * -1

system.

G = - |(/3
-

a) cos
(tp

-
2S)

- e (tt
-

23),

'(£-«)

2

"'"•(*-
8hl

" l

jrrO

and by equating to zero the expi*ession (5) for 6
2

,
with this value

of C substituted, we have a transcendental equation in 6, of

which the least negative root, 6
t , gives the limit of vibrations on

the side reckoned backwards from a position of stable equilibrium.

If the particle be placed at rest on the circle at any distance less

7T

than - - 23 before a position of stable equilibrium, or less than
A

§ — 6 behind it, it will vibrate. But if placed anywhere beyond
those limits and left either at rest or moving with any velocity

in either direction, it will end by flying round and round

forwards with a periodically increasing and diminishing velocity,

but increasing every half turn by equal additions to its squares.

If on the other hand e > \ (/?
—

a), the positions both of stable

and unstable equilibrium are imaginary ;
the tangential force

predominating in every position. If the particle be left at

rest in any part of the circle it will fly round with continually

increasing velocity, but periodically increasing and diminishing

accelei'ation.

345 1

. Leaving now the ideal case of positional forces violat-

ing the law of conservatism, interestingly curious as it is, and

instructive in respect to the contrast it presents with the

positional forces of nature which are essentially conservative, let

us henceforth suppose the positional forces of our system to be

conservative and let us admit infringement of conservatism only

as in nature through motional forces. We shall soon see (§ 345™

and "") that we may have motional forces which do not violate

the law of conservatism. At present we make no restriction Cycioidai
. , ,. n

. .
,

.
,

, . system with

upon the motional iorces and no other restriction on the posi- conserva-

i p i i ! •
*ive Pos '"

tional forces than that they are conservative. tionai forces
d and un-

restricted

The differential equations of motion, taken from (1) of 343a 'motional

above, with the relations (10), and with V to denote the potential

energy, are,

25 2
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1

.

Cycloidal
system with
conserva-
tive posi-
tional forces
and unre-
stricted
motional
forces.

.(1).

_(__) + 21^ + 22^ + ..+—--0

etc. etc. j

Multiplying the first of these by i/^,
tlie second by if/2 , adding

and transposing, we find

«£B~« <*
where

£ = ll^
3 + (12 + 21)^ +22^/ + (13 +31)^3

+ etc
(3).

Dissipa-
tivity de-

fined.

Lord
Rayleigh's
theorem of

Dissipa-
tivity.

Integral
equation of

energy.

345". The quadratic function of the velocities here denoted

by Q has been called by Lord Rayleigh* the Dissipation Func-

tion. We prefer to call it Dissipativity. It expresses the rate

at which the palpable energy of our supposed cycloidal system is

lost, not, as we now know, annihilated but (§§ 278, 340, 341,

342) dissipated away into other forms of energy. It is essentially

positive when ike assumed motional forces are such as can exist

in nature. That it is equal to a quadratic function of the velo-

cities is an interesting and important theorem.

Multiplying (2) by dt, and integrating, we find

T + V =Z -l
t

Qdt.
Jo

•(4),

where E is a constant denoting the sum of the kinetic and

potential energies at the instant t = 0. Now T and Q are each

of them essentially positive except when the system is at rest,

and then each of them is zero. Therefore I Qdt must increase

to infinity unless the system comes more and more nearly to rest

as time advances. Hence either this must be the case, or V
must diminish to — oo . It follows that when V is positive for all

real values of the co-ordinates the system must as time advances

come more and more nearly to rest in its zero-configuration,

whatever may have been the initial values of the co-ordinates

and velocities. Even if V is negative for some or for all values

of the co-ordinates, the system may be projected from some given

*
Proceedings of the London Mathematical Society, May, 1873; Theory of

Sound, Vol. i. § 81.
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configurations with such velocities that when t = v> it shall be
^cioUtai.^

at rest in its zero configuration : this we see by taking, as a j^f"™"

particular solution, the terms of (9) § 345
iv

below, for which m is *^
a
u
1

n
f

^.
ces

negative. But this equilibrium is essentially unstable, unless V stri

^?? 1

is positive for all real values of the co-ordinates. To prove this forces,

imagine the system placed in any configuration in which V is

negative, and left there either at rest or with any motion of

kinetic energy less than or at the most equal to — V: thus E
will be negative or zero; T+ V will therefore have increasing

negative value as time advances; therefore V must always re-

main negative; and therefore the system can never reach its

zero configuration. It is clear that - V and T must each on the

whole increase though there may be fluctuations, of T diminish-

ing for a time, during which - V must also diminish so as to

make the excess (-V)-T increase at the rate equal to Q per

unit of time according to formula (2).

345 !ii

. To illustrate the circumstances of the several cases let

\=m +nj— 1 be a root of the determinantal equation, m and n

being both real. The corresponding realized solution of the

dynamical problem is

ft
- Tjf cos (nt

- e
x ), ft

= r
2
e
mt

cos (nt
- e

2),
etc (5),

where the differences of epochs e
2
— e

if
e
3
— e

l}
etc. and the ratios

r 1 r , etc., in all 2% - 2 numerics *, are determined by the

2i simultaneous linear equations (3) of § 343 harmonized by

taking for \ =m + nj—l, and again \ = m — nj — 1. Using
these expressions for

ft, ft, etc. in the expressions for V, Q, T,

we find,
—
V= €

2""

(0 + A cos 2nt + B sin 2nt) \

Q =
<r""(C'+ si.' cos 2nt + B' sin 2nt)

[•
(6),

T = imt

(C" + A" cos 2nt + B" sin 2nt)
)

* The term numeric lias been recently introduced by Professor James Thorn

son to denote a number, or a proper fraction, or an improper fraction, or an

incommensurable ratio (such as ir or e). It must also to be useful in mathe-

matical analysis include imaginary expressions such as m+ n *J -1, where

m and n are real numerics. "Numeric" maybe regarded as an abbreviation

for "numerical expression." It lets us avoid the intolerable verbiage of integer

or proper or improper fraction which mathematical writers hitherto are so often

compelled to use
;
and is more appropriate for mere number or ratio than the

designation "quantity," which rather implies quantity of something than the

mere numerical expression by which quantities of any measurable things are

reckoned in terms of the unit of quantity.
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Cycloidal
system with
conserva-
tive posi-
tional forces
and unre-
stricted
motional
forces.

Real part
of every
root proved
negative
when V
positive
for all real

co-ordi-
nates

;

positive for

some roots
when V has
negative
values ;

but always
negative for

some roots.

where G, A, B, C", A', B', C", A", B", are determinate constants :

and in order that Q and T may be positive we have

C> + J(A'
3 + B' 2

),
and C" > + J(A"

2 + B'n
) (7).

Substituting these in (2), and equating coefficients of corre-

sponding terms, we find

2m(C + C")=-C\
2 {m (A + A") +n(B + B")\=-A'l (8).

2 {m (B + B") -n(A+ A")} = - B)

The first of these shows that G + G" and m must be of contrary

signs. Hence if V be essentially positive [which requires that G
be greater than + J(A

2+B2

)~\, every value of in must be negative.

345 iv
. If V have negative values for some or all real values

of the co-ordinates, m must clearly be positive for some roots, but

there must still, and always, be roots for which m is negative.

To prove this last clause let us instead of (5) take sums of par-

ticular solutions corresponding to different roots

A = m ± n J— 1, A' = rri ± n' J- 1, etc.,

m and n denoting real numerics. Thus we have

if/ i

= r^
mt cos (nt

- e
x )
+ t,^l

n '
t cos (n't

-
e\) + etc.)

fa
= r

2
€m * cos (nt

- e
2)
+ r'^™'* cos (n't

-
e\) + etcV (9).

etc. )

Suppose now m, m, etc. to be all positive : then for t = — oo
,
we

should have
1/^
=
0, ^=0, \h

x-0, ^=0, etc., and therefore V=0, T=0.

Hence, for finite values of t, T would in virtue of (4) be less

than — V (which in this case is essentially positive): but we

may place the system in any configuration and project it with

any velocity we please, and therefore the amount of kinetic

energy we may give it is unlimited. Hence, if (9) be the com-

plete solution, it must include some negative value or values of

m, and therefore of all the roots A, A', etc. there must be some of

which the real part is negative. This conclusion is also obvious

on purely algebraic grounds, because the coefficient of A2' -1 in

the determinant is obviously 11 + 22 + 33 + ..., which is essentially

positive when Q is positive for all real values of the co-ordinates.

345 v
. It is an important subject for investigation, interesting

both in mere Algebra and in Dynamics, to find how many roots

there are with m positive, or how many with m negative in any

particular case or class of cases; also to find under what con-
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ditions n disappears [or the motion non-oscillatory (compare jvon-oscil-

§ 341)]. We hope to return to it in our second volume, and sidenceto"

should be very glad to find it taken up and worked out fully by nbVuiu?or"

mathematicians in the mean time. At present it is obvious that from un-
Vay

if Vbe negative for all real values of d/,, d/,, etc., the motion must *tab
|?

-

° TV T"
Oscillatory

be non-oscillatory for every mode (or every value of A must be subsidence

real) if be but largre enough : but as we shall see immediately equili-
y

. -Hi brium, or
with Q not too large, n may appear m some or in all the roots, falling away

even though V be negative for all real co-ordinates, when there stable.

are forces of the gyroscopic class
[§ 319, Examp. (G) above and

fwayft-om

§ 345 x

below). When the motional forces are wholly of the S&JSi.
viscous class it is easily seen that n can only appear if V is

eMe'utSiifv

positive for some or all real values of the co-ordinates : n must "
r

n'°

f

s

^
lla "

disappear if V is negative for all real values of the co-ordinates tionai forces

(again compare § 341).
viscous.

345". A chief part of the substance of §§ 345 ii

...345
v

above may be expressed shortly without symbols thus :
—When

there is any dissipativity the equilibrium in the zero position is

stable or unstable according as the same system with no motional stability of

forces, but with the same positional forces, is stable or unstable, system.

v

The gyroscopic forces which we now proceed to consider may
convert instability into stability, as in the gyrostat § 345* below,

when there is no dissipativity :
—but when there is any dissi-

pativity gyroscopic forces may convert rapid falling away from an

unstable configuration into falling by (as it were) exceedingly

gradual spirals, but they cannot convert instability into stability

if there be any dissipativity.

The theorem of Dissipativity [§ 345', (2) and (3)] suggests the

following notation,—
£(12 + 21) =[12] or [21], J (13 + 31) = [13] or [31], etc.

and £ (12 -21) = 12] or -21], J (13 -31) =13] or- 31], etc. J

'
'

so that the symbols [12], [21], [13], etc., and 12], 21], 13], etc.

denote quantities which respectively fulfil the following mutual

relations,

[12] = [2 1], [13] = [31], [23] = [32], etc.

i2]=-2i], i3]
= -3i], 23]= -32], etc. J

"

Thus (3) of § 345 1 becomes

^=H l
/; i

2 + 2[i2]^.2 +22^
2 + 2[i3]^3 + etc (12),
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and going back to (1), with (10) and (12) we have

ddT dQ .. .
, dV n ~]

•7. -tt + -p- + 1 2]
ijrs + 13] dr + etc. +— =

dl dT dQ .. . .
. ^F .

d dT dQ ,
,

,
. dF A- —

r +—f +31] ^ + 32] ^ + etc.+ —- =
at

dij/3 d\\iz d{j/3

[345".

(13).

In these equations the terms 12] yjr2 , 21] 1^, 13] i^s , 31]^,
etc. represent what we may call gyroscopic forces, because, as we
have seen in § 319, Ex. G, they occur when fly-wheels each given
in a state of rapid rotation form part of the system by being
mounted on frictionless bearings connected through framework

with other parts of the system ;
and because, as we have seen

in § 319, Ex. F, they occur when the motion considered is

motion of the given system relatively to a rigid body revolving
with a constrainedly constant angular velocity round a fixed

axis This last reason is especially interesting on account of

Laplace's dynamical theory of the tides at the foundation of

which it lies, and in which it is answerable for some of the most

curious and instructive results, such as the beautiful vortex

problem presented by what Laplace calls
"
Oscillations of the

First Species*."

energy.

345™. The gyrostatic terms disappear from the equation of

energy as we see by § 345', (2) and (3), and as we saw pre-

viously by § 319, Example G (19), and in § 319, Ex. F (/).

Equation of Comparing § 319 (/) and (g), we see that in the case of motion

relatively to a body revolving uniformly round a fixed axis it is

not the equation of total absolute energy but the equation of

energy of the relative motion that the gyroscopic terms disappear

from, as (/) of § 319
;
and (2) and (3) of § 345 1 when the

subject of their application is to such relative motion.

* The integrated equation for this species of tidal motions, in an ideal ocean

equally deep over the whole solid rotating spheroid, is given in a form ready for

numerical computation in " Note on the ' Oscillations of the First Species' in

Laplace's Theory of the Tides" (W. Thomson), Phil. Mag. Oct. 1875.
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345 viii
. To discover something of the character of the gyro- Gyrostatic°

. conserva-

scopic influence on the motion of a system, suppose there to be tivesystem:

no resistances (or viscous influences), that is to say let the

dissipativity, Q, be zero. The determinantal equation (4) becomes

(11)A
2

+11, (12)A
2
+i2]A+12,...

(21) A
2 +2 1] A + 21, (22) A2

+22,... = (H).

Now by the relations (12)
=

(21), etc., 12 =21, etc., and 12] = - 21],

we see that if A be changed into — A the determinant becomes

altered merely by interchange of terms between columns and

rows, and hence the value of the determinant remains unchanged.

Hence the first member of (14) cannot contain odd powers of A,

and therefore its roots must be in pairs of oppositely signed

equals. The condition for stability of equilibrium in the zero

configuration is therefore that the roots A3
of the determinantal

equation be each real and negative.

345 ix
. The equations are simplified by transforming the co- simpiifica-

. . . . tion of its

ordinates (§ 337) so as to reduce T to a sum or squares with equations,

positive coefficients and V to a sum of squares with positive or

negative coefficients as the case may be, or which is the same

thing to adopt for co-ordinates those displacements which would

correspond to "fundamental modes" (§ 338), if the positional

forces were as they are and there were no motional forces*.

Suppose farther the unit values of the co-ordinates to be so

chosen that the coefficients of the squares of the velocities in

2T shall be each unity ;
and let us put nrlt isz ,

-nr3 ,
etc. instead of

the coefficients 11, 22, 33, etc., remaining in 2 V. Thus we have

T=
|- (ij/f + ty* + etc.), and V= h (sr^

2 + &$? + etc.). . .(15).

If now we omit the half brackets
]
as no longer needed to avoid

ambiguity, and understand that 1 2 = — 2 1, 13 = — 31, 23 = — 32,

etc., the equations of motion are

i//!
+ 1 2i^2 + 1 3^3 + + ar^ = '

^2+211^+ 23^3 + + Zu.2 {j/2
=

tfrs + 3I\if1 + 32ifr2 + +rars^3 =0
.(16),

*
[The function V includes what is called the "kinetic potential" of the

gyrostatic system, and the determination of the quasi normal coordinates in the

text will therefore depend on, and vary with, the magnitudes of the various

gyrostatic momenta. This has a bearing on subsequent results. H. L.]
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progression thus: Begin with a single factor and single term 12. Square

Then apply to it the factor 34, and permute to suit 24 instead skew sym-

of 34, and permute the result to suit 14 instead of 24. Thirdly,

apply to the sum thus found the factor 56, and permute suc-

cessively from 56 to 46, from 46 to 36, from 36 to 26, and

from 26 to 16. Fourthly, introduce the factor 78; and so on.

J

J

J

Thus we
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Gyrostatic
system with
two free-

doms.

Gyrostatic
influence
dominant.

Gyrostatic
stability.

.(23),

equations (20) and the detei'iuinantal equation become

I + yr;
+ zs£ =

V
-
yi + £v =

and (A
2 +

cr) (A
2 + £) + y

2A2 =
(24).

The solution of this quadratic in X2

may be put under the

following forms,—

_ f...(25).
-\2

=i(y
2 +^+ 0^|{[y

2

-(x/-^+v/-O
8

][y
2

-(v/-^-V-O
2

]}M

To make both values of — X2
real and positive ra- and £ must

be of the same sign. If they are both positive no farther condi-

tion is necessary. If they are both negative we must have

y> J-^-,J—t (26).

These are the conditions that the zero configuration may be stable.

Remark that when (as practically in all the gyrostatic illustra-

tions) y
2
is very great in comparison with n/(ot£), the greater

value of — A2
is approximately equal to y

2
,
and therefore (as the

product of the two roots is exactly ot£), the less is approximately

equal to w£/y
2

. Remark also that 2tt J J-uj and 2tt / J£, are the

periods of the two fundamental vibrations of a system otherwise

the same as the given system, but with y = 0. Hence, using the

word irrotational to refer to the system with g = 0, and gyroscopic,

or gyrostatic, or gyrostat, to refer to the actual system ;

From the preceding analysis we have the curious and in-

teresting result that, in a system with two freedoms, two

irrotational instabilities are converted into complete gyrostatic

stability (each freedom stable) by sufficiently rapid rotation
;

but that with one irrotational stability the gyrostat is essentially

unstable, with one of its freedoms unstable and the other

stable, if there be one irrotational instability. Various good
illustrations of gyrostatic systems with two, three, and four free-

doms (§§ 345x
,

* and ™) are afforded by the several different

modes of mounting shown in the accompanying sketches, ap-

plied to the ordinary gyrostat* (a rapidly rotating fly-wheel

pivoted as finely as possible within a rigid case, having a convex

curvilinear polygonal border, in the plane perpendicular to the

axis through the centre of gravity of the whole).

*
Nature, No. 379, Vol. 15 (February 1, 1877), page 297.
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Gyrostats

on gimbals ;

on universal-

flexure-j oint

(§ 109) in

place of gim-
bals ; consti-

tuting an
inverted

gyroscopic
pendulum
(I 319, Ex. D).

Gyrostat on knife-edge gimbals with its axis vertical. Two freedoms; each unstable without

rotation of the fly-wheel ; each stable when it is rotating rapidly. Neglecting inertia of the knife-

edges and gimbal-ring we have /=/ in (20), and supposing the levels of the knife-edges to be the

same, we have E = F. Thus its determinantal equation is (/A
2 + E)2 + <7

2A2 = 0. A similar result,

expressed by the same equations of motion, is obtained by supporting the gyrostat on a little clastic

universal flexure-joint of, for example, thin steel pianoforte-wire one or two centimetres long

between end clamps or soldcrings. A drawing is unnecessary.

on stilts
;

Two freedoms, < ne azimuthal the other inclinationai, both unstable without, both stable with,

rapid rotation of the fly-wheel.
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bifilarly

slung in foui

ways.

No. 1. No. 2. No. 3. No. 4.

Four freedoms, reducible to three if desired by a third thread iu each case, diagonal in the first

and second, lateral in the third and fourth, the freedom thus annulled being in each case stable and

independent of the rotation of the fly-wheel. Three modes essentially involved in the gyrostatic

system in each case, two inclinational and one azimuthal.

No. 1.—Azimuthally stable without rotation ; with rotation all three modes stable.

No. 2.—Azimuthally stable, one inclinational mode unstable the other stable without rotation ;

with rotation two unstable, one stable.

No. 3.—The azimuthal mode unstable, two inclinational modes stable the other unstable, without

rotation ; with rotation one azimuthal mode and one inclinational mode unstable, and one inclina-

tional mode stable.

No. i.—Azimuthally and one inclinational mode unstable, one inclinational mode stable, without

rotation ;
with rotation all three stable.

345". Take for another example a system having three Gyrostatic

freedoms (that is to say

"Ai» ^ •As)' (16) become

system with
three independent co-ordmates three free-

doms.

<£,
+ 9^-91^ + ^3^= °

(27),

where g , g2 , g3
denote the values of the three pairs of equals

23 or -32, 31 or -
13, 12 or —21. Imagine i/^, \f/2 , ij/3

to be

rectangular co-ordinates of a material point, and let the co-

ordinates be transformed to other axes OX, OF, OZ, so chosen

that OZ coincides with the line whose direction cosines rela-

tively to the
</<,-, if/2-, \}/3

- axes are proportional to g x , g2 , g3
. The

equations become

x — 2u>y
= X \

y + 2wx= Y
[ (28),

e =Z
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Gyrostatic
system with
three free-

doms:

reduced to
a mere
rotating
system.

where w = J(g* +
ffa

2 + g3

2

),
and the force-components parallel

dV
to the fresh axes are denoted by X, Y, Z (instead of —=-

,

——
,

——
, because the present transformation is clearly in-

dependent of the assumption we have been making latterly that

the positional forces are conservative). These (28) are simply

the equations [§ 319, Ex. (E)] of the motion of a particle rela-

tively to co-ordinates revolving with angular velocity to round

the axis OZ, if we suppose X, Y, Z to include the components
of the centrifugal force due to this rotation. .

Hence the influence of the gyroscopic terms however ori-

ginating in any system with three freedoms (and therefore also

in any system with only two freedoms) may be represented by
the motion of a material particle supported by massless springs

attached to a rigid body revolving uniformly round a fixed axis.

It is an interesting and instructive exercise to imagine or to

actually construct mechanical arrangements for the motion of a

material particle to illustrate the experiments described in

§ 345 x
.

345"". Consider next the case of a system with four free-

doms. The equations are

^+12^+13^+14^+^^ =
'

. 4f3 +21xi/ i
+ 23^3+ 24^4 + ^VAo

=
\

*t3
+ 3 1& + 32&.+ 3404 + w

a^3=0
J

«A« + 4I& + 42<A2 + 43*^8 + WA = ° J

(29).

Denoting by D the determinant we have, by (18),

D= (X
2+ ^0 (X

2 +O (X
2 +O (X

2 + vx
t )

I

+ V
{ 34

2

(X
2+w

1)(X
2

+^) + i2
2

(X
3+ OT3)(X

2+tZr
4)+42

2

(A
2
+t<r

1 )(X
2
+z<7

3)

+ i3
2

(X
2^

4)(X
2

+^)+23
2

(A
2+

OTl)(X
2

+^)+i4
2

(A
2

4-^)(A
2+

CT3)}
[

+ X4

(l2 34 +13 42+ 14 23)
2

J

..(30).

If
ct-j,

nr
2 ,

sr
3 , -us^

be each zero, D becomes

X8

+(i2
2+ i3

2

+i4
2+ 23

2

+42
2

+34
2

)X
6

+(i2 34+13 42 + 14 23)* X\

This equated to zero and viewed as an equation for X2
has two
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roots each equal to 0, and two others given by the residual Quadrupiy
free gyro-

quadratic static

system

A4 + (i2
2

+i3
2

+i4
2

+23
;j

+24
2 + 34

2

)A
2 + (12 34+13 42 + 14 23)

2

=0...(31). twJ?

Now remarking that the solution of z
2 + pz + q

2 = may be

written

- » = * {W(P + 2?) (P
- 2(l)\

=
1 1 %/(/» + 2?) * %/<P

- W.
we have from (31)

- A 2 =
|- (i2

2 + i3
2 + 14*+ 23

2 + 2 4
2 + 34

9 ± Js)

-iM ' (32)'

where r = ^{(12 + 34)
2 + (13 + 42)

2 + ('t 4 + 23)
2

}
I

and s = v/{(r2-34)
2
+ (i3-42)" + (i4-23)

2

}
I

'"

As 12, 34, 13, etc. are essentially real, r and s are real, and

(unless 12 43 + 13 42 + 14 23 =
0, wheu one of the values of A2

is Excepted
m _

<
CJ1S6 01 lS.Il"

zero, a case which must be considered specially, but is excluded ingpyro-
1 tt 1 i

static pre-
for the present,) they are unequal. Hence the two values of dominance.

— A2

given by (32) are real and positive. Hence two of the

four freedoms are stable. The other two (corresponding to

— A2 =
0) are neutral.

345 xiU
. Now suppose nx

i ,
rs

2 ,
tb

3 ,
sst to be not zero, but each Quadrupiy

very small. The determinantal equation will be a biquadratic aLsystera!

in A2

,
of which two roots (the two which vanish when

or,, etc. caTtydonii-

vanish) are approximately equal to the roots of the quadratic
nated-

(12 34 + 13 42 + 14 23)* A
4 + (i2X«r4

+ 13X^4+ r4V3

+ 2 3
2

-ur,ZEr4
+ 24

2
ot

1
ot

3
+ 34^^) A2 + ar

l
OT

>
ar

s
or

4
= 0. . . (34),

and the other two roots are approximately equal to those of the

previous residual quadratic (31).

To solve equation (34), first write it thus :
—

^iy+(i2'
;

'+i3'
2

+i4'
2

+23'
2

+24'
2

+34
/2

) X3
+ (i2'34'+i 3 '42'+i4'23')

2 =

(35),

where

I2'=—j^- ., 13'= //—-^ ) 23' =—7;^—r, etc (36).
>/K*0 VKO slk*Fs)

'

vol. i. 20
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Quadruply
fref cycloid-
al system,
gyrostnti-
rall.y domi-
nated.

Four irro-

tational
stabilities

confirmed,
four irro-

tation:il

instabilities
rendered
stable, by
gyrostatic
links.

Combined
dynamic
and gyro-
sUitu; sta-

Thus, taken as a quadratic for X 2

,
it has the same form as (31)

for A2

,
and so, as before in (32) and (33),

we find

-F
= 1 V * s'f (37)

.(38).
where r'= V{(™'+34

/

)

i

+(i3
,+ 42? + (m'+ 23')'}

and S'= N/[(i2'-34r+(i3'-42T+(i4'-23T}

Now if -a
, -m. ,

-ut
,
sr

4
be all four positive or all four negative,

12', 34', 13', etc. are all real, and therefore both the values of

given by (37) are real and positive (the excluded case
A"

referred to at the end of § 345
xU

,
which makes

i2'34'+ 1342'+ I4'23'=0,

and therefore the smaller value of --r-2
=

Q, being still excluded).
A"

Hence the corresponding freedoms are stable. But it is not

necessary for stability that ts^ nr
a ,

ar
3 ,
m

4
he all four of one

sign: it is necessary that their product be positive: since if it

were negative the values of A2

given by (34) would both be

real, but one only negative and the other positive. Suppose two

of them, zzr
,
w

i
for example, be negative, and the other two,

or
,

ztra , positive : this makes w,sr3 ,
tb

xtb^ or
2
sr

3 ,
and ts^s^ negative,

and therefore 13', 14', 23', and 24' imaginary. Instead of four

of the six equations (36), put therefore

13
14

14
23"=

23
24 = 24

(39).

Thus 13" etc. are real, and 13'= 13" J- 1 etc., and (38) become

'•Wi(i2' + 347-('3" + 42T-(i4"+2 3'm ,,m
s'=j\(i2'-34r-^3"-42"r-(i4"-23"r\i

{W)-

Hence for stability it is necessary and sufficient that

and
(i 2

'

+ 34')
2

>(i3" + 42T + (i4" + 23Tl
(i2'- 347>(i3

/

'-42y+(*4
,/

-23")-r
(41).

If these inequalities are reversed, the stabilities due to -us
,
-m

and 34' are undone by the gyrostatic connexions 13", 42", 14"
and 23".
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(42);

345 xlv
. Going back to (29) we see that for the particular bility pyro-

solution
i/r,

=
»,€**, \j/2

= a
2
eKt

, etc., given by the first pair of roots coui'ite"r-

y

of (32), they become approximately

Art,
+ 1 2 a

2
+ 13 a

3
+ 14 a

4
= "

\a
3
+ 2 1 a,

+ 23 a
3
+ 24 a

4
=

\a
3
+ 3i «

l

+ 32a2
+ 34«4

=
j

A«
4
+ 41 a,

+ 42 a
2
+ 43 «

3
= J

being in fact the linear algebraic equations for the solution in Completed

the form exi of the simple simultaneous differential equations

(53) below. And if we take

b

\j/ i
=
-yi-

ext
, iJ/2

=
-y

2- ext
,
etc. (43),

(44).

W T2
J™,

for either particular approximate solution of (29) corresponding

to (37), we find from (29) approximately

X-'6, + i2'6„+ i3'6 +i4'6 =0"|
A- 1

6, + 2i'6
1

+ 23
,

6
3 +24'64

=

X- ,

6
4
+ 4 i'6

l

+ 42^ + 43^3
= J

Remark that in (42) the coefficients of the first terms are

imaginary and those of all the others real. Hence the ratios

aja2 ,
a

t/a3 , etc., are imaginary. To realize the equations put

\=nj^l, a
x =pl +ql J^l i % = P2

+ 92 J~ h etc.... (45),

and let p , q t , p2 ,
etc. be real

;
we find, as equivalent to (42),

j-
nql

+ 12 pa
+ 13 pa

+ i4Pt
= "

I np^ 12 q a
+ 13 qa

+ 14 qt
=

|-wg
,

8 +2ip l
+ 23^3+24^ = •

1 ^+21^ + 23^ + 24^ =

etc. etc.

Eliminating q {
, q2 ,

etc. from the seconds by the firsts of these

pairs, we find

(n
8 + n)p 1

+ 12;?.,+ 13 p3
+ u p4

= 0^

2ip i
+ (n

2 + 22)p2
+ 23 p3

+
^24p4

-0l
31 p, + 32 pg +(n

2

+as)pa +
'

3i p4
=

41
£>,

+ 42 j92 + 43 ^3
+ (rt

2 +
44)j04

- -

and by eliminating p t p,, etc. similarly we find similar equations

2G—2

Realization
of complet-
ed solution.

(46).
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Realization
nf com]ili't-
ed solution.

Resultant
motion re-

duced to
motion of a
conserva-
tive, system
with four
fundamen-
tal periods
equal two
and two.

Algebraic
theorem.

Details of
realized
solution

for the q's; with the same coefficients
11, 12, etc., given by the

following formulas :
—
11= 12 21 + 13 31 + 14 41

12=13 3 2 + x 4 42

13=12 23+I443 V

21 = 2331 + 2441
etc. etc. J

(48).

Remember now that

12=- 21, 13 =

and we see in (48) that

31, 32=- 23, etc. (49),

12 = 21, 13 = 31, 23 = 31, etc. .(50);

and farther, that u, 12, etc. are the negatives of the coefficients

of I
a 2

, «)«2 >
etc. in the quadratic

l{(i2 a
2
+ I3«3

+ 14 a
4)

2 + (21 ^ + 23^+ 24a4)

2 + etc.}...(51)

expanded. Hence if G(aa) denote this quadratic, and G (pp),

G (qq) the same of the p's and the q's, we may write (47) and

the corresponding equations for the q's as follows :™ = 0,etc.
dp,

etc.

-nfc +^SLo,
dp x

dq x

np,+

=0, -«^=o,
(52).

These equations are harmonized by, and as is easily seen, only

by, assigning to n2 one or other of the two values of — A2

given

in (32), above. Hence their determinantal equation, a bi-

quadratic in ?i
2

,
has two pairs of equal real positive roots. We

readily verify this by verifying that the square of the deter-

minant of (42), with A2

replaced by - n2

}
is equal to the deter-

minant of (47) with ii, 12, etc. replaced by their values (48).

Hence (§ 343
r/)

there is for each root an indeterminacy in the

ratios pjp 3 , PjPz i VjP*i according to which one of them may be

assumed arbitrarily and the two others then determined by two

of the equations (47); so that with two of the ^'s assumed

arbitrarily the four are known: then the corresponding set of

four q's is determined explicitly by the firsts of the pairs (46).

Similarly the other root, n'
2

,
of the determinantal equation gives

another solution with two fresh arbitraries. Thus we have the

complete solution of the four equations
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d\p in] Details or

-j-
+ I 2

i/r9
+ 13 xp3

+ 14 (/r4
=

I realized
eft

dt
+21 ,

/'i
+ 2 3 ,

/
/
3
+2

4'/',
= U

etc. etc.

solution

(53),

with its four arbitraries. The formulas (46).. .(52) are clearly
the same as we should have found if we had commenced with

assuming

"Ai
=
P\ s ^n ni +

1\
cos nt

> 'As ~Pi s^n ?l^ + 9'2
cos ra

^>
e*c - • • -(54),

as a particular solution of (53).

345 xv
. Important properties of the solution of (53) are found Ortho^o-

,1
_

nalities
tUUS :

—
proved

(a) Multiply the firsts of (46) by p,, p 2 , p3 , p 4
and add:

or the seconds by q lf q2 , qb , q4
and add : either way we find twoTom-

ponents of

p&+p&+p&+p&=o (55). s£,£fj:

(b) Multiply the firsts of (46) by q lt q2 , q3 , q4
and add :

°'

multiply the seconds by p :) p2 , p3 , p4
and add : and compare the

results : we find

ri%p
2 =

ri%q
2 = '2t l2 (p^-pfl,) (56),

and equality

where 2 of the last member denotes a sum of such double
e

terms as the sample without repetition of their equals, such as

21 (P&-P&)-

(c) Let n2

,
n'

2 denote the two values of — A2

given in (32), Orthoso-

and let (54) and proved
between

f\ -Pi sm nt +
Q'i

cos n
't> $2

~
P'a sm n>t + l'2 cos ni>

e^°- • • • (57)
different

be the two corresponding solutions of (53). Imagine (46) to be tions.

written out for n'
2 and call them (46') : multiply the firsts of (46)

b
.
v P'v P* P'# P\ aud add : multiply the firsts of (46') by pv p2,p3 , p4

and add. Proceed correspondingly with the seconds. Proceed

similarly with multipliers q for the firsts and p for the seconds.

By comparisons of the sums we find that when n' is not equal
to n we must have

2,p'q
=

0, 2 1 2 (p\p2 -p'2p x )
=

2<7> = 0, $12 (q\q2 -q'2qJ =0

^J~_l\ ^2(q\p2 -q'2p^0, %I*VA -j/A)-0
(58).
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Case of

equal
periods.

345 x
". The case of n=ri is interesting. The equations

%q'q = 0, "Xp'p
=

0, %p'q = 0, "%qp = 0, when n differs however

little from n', show (as we saw in a corresponding case in § 343m)
that equality of n to n! does not bring into the solution terms

of the form Ct count, and it must therefore come under § 343 e.

The condition to be fulfilled for the equality of the roots is seen

from (32) and (33) to be

12=34, 13=4^, and 14 = 23 (59):
and to give

w2 = i2
2 + i 3

2 + 14
2

(60)

for the common value of the roots. It is easy to verify that

these relations reduce to zero each of the first minors of (42), as

they must according to Eouth's theorem (§ 343
e),

because each

root, A, of (42) is a double root. According to the same theorem

all the first, second and third minors of (47) must vanish for

each root, because each root, n 2

,
of (47) is a quadruple root :

for this, as there are just four equations, it is necessary and

sufficient that

11 = 22 = 33 = 4* and 12 = 0, 13 = 0, u=0, 23 = 0, etc.... (60'),

which we see at once by (48) is the case when (59) are fulfilled.

In fact, these relations immediately reduce (51) to

G(aa) = l(i2*+i3*+i4°)(a> + a
2
*+a

a

> + a
4>) (61).

In this case one particular solution is readily seen from (52) and

(46) to be

Pi

9i

1,

=

0,

p2
= o,

?,
= " 12

n

P3
=

0,

&=-—n

P*=0

14
n

12 1 x 14
ifr
— sin nt, \frg

= cos nt, \j/3
= cos nt, \frt

= cos nt
n n n

(62).

Completed
solution for
..vise of

equal
periods.

Hence th 3 general solution, with four arbitraries/?,,/^, ps ,pt ,
is

^ =p l
sinnt + -(i 2])2

+ 1 sp3
+ 1 4p4)

cos nt
n

.(63).

i(rt=pt
sin nt + -

(- 1 2p x
+ i4p3

- 1 $p4 )
cos nt

lb

t3
=
Pi sin nt + -(-isp l

-i 4P2
+ 1 V\) cos nt

lb

^i=pi
sin nt + - (- i4Pj + i$p2

— 1 2pa)
cos nt

lb

It is easy to verify that this satisfies the four differential

equations (53).
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345 xvil
. Quite as we have dealt with (42), (45), (53), (54) in Two higher,

§ 345
xiv

,
we may deal with (4:4)

and the simple simultaneous equa-

tions for the solution of which they serve, which are

£ + .3$*h£~.*-*11 2
dt

+ ' 3 «" 4 ~^ lWl
=

' mA tW°

# . .^»x»,^u«,,, _n [ (
G4 )5

lower, <jf the
four fuucla-

ot —U + ?7 - - 4- 2 A -— + ZU- \b ~
'

meutal os-21 ^ + 3
«ft

4
dt 2^2 '

|

dilations,

etc. etc.

and all the formulas which we meet in so doing are real when similarly

. j dealt with

m . & . zu„. vs are all of one sign, and therefore 12 ,
n. etc., all by solution

i» ' •' « ° '
. , . . of two

real. In the case of some or the ot s negative and some positive similar

there is no difficulty in realizing the formulas, but the con-

sideration of the simultaneous reduction. of the two quadratics,

I (i2 0,+ i3«,+ i4a4 )

a

(2ia2
+ 2 3 a3

+2 4 aj
2

+^ ||
2
I «, **

2
'/[

(65),

and IK< + vpf + ^
3
a
3
s + W4«/) J

to which we are led when we go back from the notation 1 2', etc.

of (36), is not completely instructive in respect to stability, as

was our previous explicit working out of the two roots of the

determinantal equation in (37), (38), and (40).

345 XTiii
. The conditions to be fulfilled that the system may be provided

dominated by gyrostatic influence are that the smaller value of static iu-

— A2 found from (31) and the greater found from (34) be re- futty domi-

spectively very great in comparison with the greatest and very

small in comparison with the smallest, of the four quantities

as
,

•zzr8 ,
crs ,

as
i irrespectively of their signs. Supposing vs

x
to be

the greatest and as
i

the smallest, these conditions are easily

proved to be fulfilled when, and only when,

(12 . 34 + 13. 42 + 14. 23)
2

(66),
\2

2 + it,

2 + 14* + 34* + 42* + 23
2

and

.

(I* -34 +13 -42 + 14 -23)'
>>±srr

.

(G7)j
1 2

2
ra

3
'or

4
+ 13 ra-

4
-s;

2
+ 14 ra

2
ra-

3
+ 34^^+ 42 sr,cr3

+ 23 -as^

where » denotes "
very great in comparison with." When these

conditions are fulfilled, let 12, 13, 23, etc., be each increased in

the ratio of N to 1. The two greater values of n (or A J- 1)

will be increased in the same ratio, N to 1
;
and the two smaller
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will be diminished each in the inverse ratio, 1 to iV. Ao-ain© J

let J±vrlf V ±ra
2> \/±sr3 » «

± sr
4
be each diminished in the

ratio M to 1
;

the two larger values of n will be sensibly-

unaltered
;
and the two smaller will be diminished in the ratio

IP to 1.

Limits of
smallest
and second
smallest
of the four

periods.

345 xii
. Remark that

(a) "When (66) is satisfied the two greater values of n are

each

aT1 j 12.34 + 13.42+14.23 1 (68);

N/(i2
2

+i3
2

+i4
2

+34
3 + 42

2 +2 3
s

) j

and that when they are very unequal the greater is approxi-

mately equal to the former limit and the less to the latter.

(b) "When (67) is satisfied, and when the equilibrium is stable,

the two smaller values of n are each

V(l2V3
to

4
+ I3

2
CT

4
OT

2
+ I4

2
CT

2
CT

3+34
g
CT

|

CT
2
+ 4 2

g
OT

|

CT
3
-f 23

g

CT,CT4) ~]

and

12 . 34+ 13.42+ 14. 23

^(ct^to^ct,)

'

(69),

Limits of
the next

greatest and
greatest of
the four

periods.

Quadruply
free cycloi-
dal system
with non-
dominant
gyrostatic
influences.

n/{(i2V3
ot

4
+ i3

2
z<7

4
ra-

2
+ i4

2
ot

2
ot

3+34
2
ot

1

ot
2
+ 42

2
ot

1
ot

3
+ 23

2
ot

1
ot

4)} _

and that when they are very unequal the greater of the two is

approximately equal to the former limit, and the less to the

latter.

345°. Both (66) and (67) must be satisfied in order that the

four periods may be found approximately by the solution of the

two quadratics (31), (34). If (66) is satisfied but not (67), the

biquadratic determinant still splits into two quadratics, of which

one is approximately (31) but the other is not approximately

(34). Similarly, if (67) is satisfied but not (66), the biquad-

ratic splits into two quadratics of which one is approximately

(34) but the other not approximately (31).

345**. When neither (66) nor (67) is fulfilled there is not

generally any splitting of the biquadratic into two rational quad-

ratics; and the conditions of stability, the determination of the

fundamental periods, and the working out of the complete so-

lution depend essentially on the roots of a biquadratic equation.

When
or,,

ar
2 ,
w

3 , za^
are all positive it is clear from the equation
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of energy [345", (4), with Q =
0] that the motion is stable what-

Quadruply
ever be the values of the gyrostatic coefficients 12, xa, it., etc. dal systembJ ' °^ °' with luin-

and therefore in this case each of the four roots A2
of the biquad- dominant

. pyrostatio
ratic is real and negative, a proposition included m the general influences.

theorem of § 345 xxvi
below. To illustrate the interesting questions

which occur when the za'a are not all positive put

I2 = i#, 34 = 345', 13
=

'aft etc (70),

where 12, 34, 13, etc. denote any numerics whatever subject only

to the condition that they do not make zero of

12 . 34 + 13 . 42 + 14 . 23.

When -nr , w , or, ra\, are all negative each root A2
of the bi-

quadratic is as we have seen in § 345"" real and negative when

the gyrostatic influences dominate. It becomes an interesting

question to be answered by treatment of the biquadratic, how

small may g be to keep all the roots A2
real and negative, and

how large may g be to render them other than real and positive

as they are when g = Q1 Similar questions occur in connexion

with the case of two of the ra-'s negative and two positive,

when the gyrostatic influences are so proportioned as to fulfil

345 xiU

(41), so that when g is infinitely great there is complete

gyrostatic stability, though when g — there are two instabilities

and two stabilities.

345xxU
. Eeturning now to 345* and 345 vii

, 345^, and 345 ix

,
Gyrostatio
system

for a gyrostatic system with any number of freedoms, we see by with any

345" that the roots A2
of the determinantal equation (14) or (17) freedoms.

are necessarily real and negative when
eTj,

vr
3 ,

&r
3 ,

vr
4 ,

etc. are

all positive. This conclusion is founded on the reasoning of

§ 345" regarding the equation of energy (4) applied to the case

$ = 0, for which it becomes T + V = E
,
or the same as for the

case of no motional forces. It is easy of course to eliminate

dynamical considerations from the reasoning and to give a purely

algebraic proof that the roots A2
of the determinantal equation

(14) of 345 viii are necessarily real and negative, provided both of

the two quadratic functions (11) a^ + 2 (12) a x

a
2
+ etc., and

lla
]

2+2 12a aa + etc. are positive for all real values of ap aa , etc.

But the equations (14) of § 343
(&),

wdiich we obtained and used

in the course of the corresponding demonstration for the case of

no motional forces, do not hold in our present case of gyrostatic

motional forces. Still for this present case we have the con-



410 PRELIMINARY. [345"".

elusion of § 343 (to) that equality among the roots falls essentially

Case of under the case of §343 (<?)
above. For we know from the con-

wlth sta- sideration of energy, as in § 345", that no particular solution

can be of the form Uxt or t sin at, when the potential energy is

positive for all displacements: yet [though there cannot be

equal roots for the gyrostatic system of two freedoms (§ 345 x

)

as we see from the solution (25) of the determinantal equation
for this case] there obviously may be equality of roots* in a

quadruply free gyrostatic system, or in one with more than four

Application freedoms. Hence, if both the quadratic functions Lave the

theorem. same sign for all real values of a
l}

ct
2 , etc., all the first minors

*
Examples of this may be invented ad libitum by commencing with pairs of

equations such as (23) and altering the variables by (generalized) orthogonal

transformations. For one very simple example put ^=-57 and take (23) as one

pair of equations of motion, and as a second pair take

v'
~ 7f + " V= 0.

The second of (23) and the first of these multiplied respectively by cos a and

sin o, and again by sin a and cos a, and added and subtracted, give

\p.2
— y cos a£ + 7 sin arf + C7i/'2

= 0,

and ^s + 7 sin ai + 7COsa^' + OTi/'3=0,

where ^2
=

|' sina+ ?;
cos a,

and ^3 — £'cos a- rj
sin o.

Eliminating £' and rj by these last equations, from the first and fourth of

the equations of motion, and for symmetry putting \px
instead of £, and \pi

instead of t/, and for simplicity putting 7 cos a = g, and 7 sin a= h, and collecting

the equations of motion in order, we have the following,—

ft-Hi-yh + '&ii^ '

for the equations of motion of a quadruply free gyrostatic system having two

equalities among its four fundamental periods. The two different periods are

the two values of the expression

2ir/{V(i?
9+ i/i

2
)±V(l»

s+ Jft
s
+w)}.

When these two values are unequal the equalities among the roots do not

give rise to terms of the form U^ or t cos at in the solution. But if

-07= _
(£g- + ±li

2
), which makes these two values equal, and therefore all four

roots equal, terms of the form t cos <rt do appear in the solution, and the equili-

brium is unstable in the transitional case though it is stable if -m be less than

l (f + i'j2 uv ever so small a difference.
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of the determinautal equation (14), §345 viii

,
must vanish for each Application

„ , -n . ,,f Houth's

double, triple, or multiple root of the equation, if it has any theorem.

such roots.

It will be interesting to find a purely algebraic proof of this

theorem, and we leave it as an exercise to the student; remarking

only that, when the quadratic functions have contrary signs for

some real values of a
lf
a

2 , etc., there may be equality among the

roots without the evanescence of all the first minors; or, in Equal roots

dynamical language, there may be terms of the form UKt
,
or bilifry in

t sin at, in the solution expressing the motion of a gyrostatic Cas'es be-

system, in transitional cases between stability and instability, bijity a

S

nd"

It is easy to invent examples of such cases, taking for instance
ms ' ' y '

the quadruply free gyrostatic system, whether gyrostatically

dominated as in § 345 xiii

,
but in this case with some of the four

quantities negative, and some positive ; or, as in § 345 xxi

,
not

gyrostatically dominated, with either some or all of the quantities

cTj,
ar

a , ..., us
i negative. All this we recommend to the student

as interesting and instructive exercise.o

345 xxiU
. When all the quantities or, , ra

-

,, ..., tut. are of the Conditions
. . .

of gyro-
same sign it is easy to find the conditions that must be fulfilled static do-

, . i T-i initiation.m order that the system may be gyrostatically dominated, hor

if p , p2 , ..., p n
are the roots of the equation

cnz" + c
l
z"~

i + ... +c ,z + c =
0,1 n— 1 n '

we have

c„-i
-(p1

+ Pa + ... +PJ^,and-(i
+ I + ... +

l)

Hence if—p lS -p 2 , ...-p„be each positive, cjnc is their arithmetic

mean, and nc
n /cn _ 1

is their harmonic mean. Hence c^jnc, is

greater than nc
n /cn _ l ,

and the greatest of — p ,

—
p„,...,

— p is

greater than c, /wc„, and the least of them is less than nc I c ,.o 1/0' n I n—1

Take now the two following equations :

\' + X<-B 2 I22 +^"4

2(2i2.34)
8 + A.

i- 6

2(Si2.34.56)
S!

+etc. =
(71),

(x)
<+

(x)'

_S

^2 I2
'

2+
(x)

l
" 4

2(2i2^34T+(x)'~

6

2(2i2'.34'.56T+etc. = 0(72),

where

VM V(ot,^) VK^) Vw-w
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Gyrostatic
links ex-

plained.

Gyrostati-
cally do-
minated
system:

[345"".

Cycloidal
motion.

Conditions
of pyro-
shitic do-
mination.

Suppose for simplicity i to be even. All the roots X2
of (71)

are (§ 345 xxvi

below) essentially real and negative. So are those of

(72) provided nr
)

,
sr

8 ,...,
zr

t
are all of one sign as we now suppose

thetn to be. Hence the smallest root -A2
of (71) is less than

1*2 ( I2 - 34- 56,.-., *-i, i)
2

2(2i2. 34. 56,...,i-3, i- 2
)

s

and the greatest root —A2
of (72) is greater than

•(74),

2(- 12 34'. 56',..., i-3,i- 2'f

&?:{i2'.34-56',--,i-i>i')
.(75).

Hence the conditions for gyrostatic domination are that (74) must

be much greater than the greatest of the positive quantities ±m ,

±bt
8 ,...,

±
sr,, and that (75) must be very much less than the

least of these positive quantities. When these conditions are

fulfilled the i roots of (18) § 345 ix

equated to zero are separable

into two groups of \i roots which are infinitely nearly equal to

the roots of equations (71) and (72) respectively, conditions

of reality of which are investigated in § 345 xxvi
below. The

interpretation leads to the following interesting conclusions:—

345 xxiv
. Consider a cycloidal system provided with non-

rotating flywheels mounted on frames so connected with the

moving parts as to give infinitesimal angular motions to the

axes of the flywheels proportional to the motions of the system.

Let the number of freedoms of the system exclusive of the

ignored co-ordinates [§ 319, Ex. (G)] of the flywheels relatively

to their frames be even. Let the forces of the system be such

that when the flywheels are given at rest, when the system is

at rest, the equilibrium is either stable for all the freedoms, or

unstable for all the freedoms. Let the number and connexions

of the gyrostatic links be such as to permit gyrostatic domina-

tion (§ 345
xxi

)
when each of the flywheels is set into sufficiently

rapid rotation. Now let the flywheels be set each into suf-

ficiently rapid rotation to fulfil the conditions of gyrostatic

domination (§ 345 XX1

)
: the equilibrium of the system becomes

stable : with half the whole number i of its modes of vibration

exceedingly rapid, with frequencies equal to the roots of a cer-

tain algebraic equation of the degree \i\ and the other half of
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its modes of vibration very slow, with frequencies i^iven by the Gyrostat!-

roots of another algebraic equation of degree \i. The first class minated

of fundamental modes may be called adynamic because they
are the same as if no forces were applied to the system, or

acted between its moving parts, except actions and reactions in itsadyna-

the normals between mutually pressing parts (depending on the lationsivery

inertias of the moving parts). The second class of fundamental

modes may be called precessional because the precession of the andpre-

equinoxes, and the slow precession of a rapidly spinning top oscuia'tfcns

t r>
•

. r .,- n • (very slow).

supported on a very fine point, are familiar instances of it.

Remark however that the obliquity of the ecliptic should be

infinitely small to bring the precession of the equinoxes pre-

cisely within the scope of the equations of our "cycloidal

system."

345xxv
. If the angular velocities of all the flywheels be

altered in the same proportion the frequencies of the adynamic
oscillations will be altered in the same proportion directly, and

those of the precessional modes in the same proportion in-

versely. Now suppose there to be either no inertia in the

system except that of the flywheels round their pivoted axes

and round their equatorial diameters, or suppose the effective

inertia of the connecting parts to be comparable with that of

the flywheels when given without rotation. The period of each Comparison
i • i- -ii between

of the adynamic modes is comparable with the periods of the adynamic
^

,

x
frequencies,

flywheels. And the periods of the precessional modes are com- rotational

. . frequencies

parable with a third proportional to a mean of the periods of of&efly-

the flywheels and a mean of the irrotational periods of the sys- processionalJ l J fr< quencies

tern, if the system be stable when the flywheels are deprived
of

!£
e

of rotation. For the last mentioned term of the proportion we a,ld
''''.'"

l r queiicn s

may, in the case of irrotational instability, substitute the time of
°t

r

ie?
P
fthe

increasing a displacement a thousandfold, supposing the system ^i'ui n'v-

to be falling away from its configuration of equilibrium Zr^eAot

according to one of its fundamental modes of motion (e^).
rotatloa -

The reciprocal of this time we shall call, for brevity, the

rapidity of the system, for convenience of comparison with the

frequency of a vibrator or of a rotator, which is the name com-

monly given to the reciprocal of its period.
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.

Proof of 345" vi
. It remains to prove that the roots X2

of (71), and of

adynamic (72) also when
cr, ,

nr
s ,...j iit,

are all of one sign, are essentially

c<-ssional real arid negative. (71) is the determinantal equation of

wh.'-n

b

§ 345*iv

(42) with any even number of equations instead of only

mutational four. The treatment of §§ 345 xiv and 345xv
is all directly ap-

eTtherau
re

plicable without change to this extension; and it proves that the

Ciia^'nary.
roots X2

are real and negative by bringing the problem to that of

the orthogonal reduction of the essentially positive quadratic

function

C(aa)=|{(i2a2+i3a3+etc.)
2

+(2i« 1+23ff3+etc.)
2

+(3ift l +32jffl2+etc.)
2

+etc.} (76):

it proves also the equalities of energies of (56), § 345", and the

orthogonalities of (55), (58) § 345": also the curious algebraic

Algebraic theorem that the determinantal roots of the quadratic function
theorem. .

consist of i
} i pairs of equals.

Inasmuch as (72) is the same as (71) with A.
-1

put for X and

12', 13', 23', etc. for 12, 13, 23, etc., all the formulas and propo-

sitions which we have pi-oved for (71) hold correspondingly for

(72) when 12', 13', 23', etc. are all real, as they are when

ra-j,
u;

2 ,...wi
are all of one sign.

345 xxvii
. Going back now to § 345

viii

,
and taking advantage of

what we Lave learned in § 345
u and the consequent treatment of

the problem, particularly that in § 345 X1V

,
we see now how to

simplify equations (14) of § 345"" otherwise than was done in

§ 345 ix

, by a new method which has the advantage of being

applicable also to materially simplify the general equations (13)

of § 345 ri
. Apply orthogonal transformation of the co-ordinates

to reduce to a sum of squares of simple co-ordinates, the quad-

ratic function (76). Thus denoting by G
(if/ip)

what G (aa)

becomes when
1/^, if/2 ,

etc. are substituted for
«, ,

a
2 , etc.; and

denoting by n*, n*,...,n* the values of the pairs of roots of the

determinantal equation of degree ?',
which are simply the negative

of the roots X2
of equation (71) of degree \i in X2

;
and denoting

by £,, r] x
,
£
2 , >?,,... £j»>7ji,

the fresh co-ordinates, we have

^(^)=HV(^+^a

) + <(C+V)+-.-+V(^
9

+V)}---(77).

It is easy to see that the general equations of cycloidal motion

(13) of § 345 vi transformed to the £-co-ordinates come out in \i

pairs as follows:
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r d dT

dt di
l
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Kinptic 346. There is scarcely any question in dynamics more im-

portant for Natural Philosophy than the stability or instability of

motion. We therefore, before concluding this chapter, propose to

give somegeneral explanations and leading principles regarding it.

A "conservative disturbance of motion" is a disturbance in

the motion or configuration of a conservative system, not altering

Consrrva- the sum of the potential and kinetic energies. A conservative

turbance. disturbance of the motion through any particular configuration is

a change in velocities, or component velocities, not altering the

whole kinetic energy. Thus, for example, a conservative disturb-

ance of the motion of a particle through any point is a change
in the direction of its motion, unaccompanied by change of speed.

Kinetic sta- 347. The actual motion of a system, from any particular
bilityand , . .

instability configuration, is said to be stable if every possible infinitely
discrinii- °

_ .

nated. small conservative disturbance of its motion through that con-

figuration may be compounded of conservative disturbances,

any one of which would give rise to an alteration of motion

which would bring the system again to some configuration

belonging to the undisturbed path, in a finite time, and without

more than an infinitely small digression. If this condition is

not fulfilled, the motion is said to be unstable*.

Examples. 348. For example, if a body, A, be supported on a fixed

vertical axis
;

if a second, B, be sujiported on a parallel axis

belonging to the first; a third, C, similarly supported on B, and

so on
;
and if B, C, etc., be so placed as to have each its centre

of inertia as far as possible from the fixed axis, and the whole

set in motion with a common angular velocity about this axis,

the motion will be stable, from every configuration, as is evi-

dent from the principles regarding the resultant centrifugal

force on a rigid body, to be proved later. If, for instance, each

of the bodies is a flat rectangular board hinged on one edge, it

is obvious that the whole system will be kept stable by centri-

fugal force, when all are in one plane and as far out from the

axis as possible. But if A consist partly of a shaft and crank,

as a common spinning-wheel, or the fly-wheel and crank of a

*
[This definition is somewhat narrow

; according to it the vertical fall of a

particle under gravity would lie characterized as unstable. It does not appear
to he easy to frame a perfectly general mid natural definition of dynamical
stability. Iu § 778" post the term is used in a different sense. H. L.]
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steam-engine, and if B be supported on the crank-pin as axis, Exampii

and turned inwards (towards the fixed axis, or across the fixed

axis), then, even although the centres of inertia of G, D, etc.,

are placed as far from the fixed axis as possible, consistent with

this position of B, the motion of the system will be unstable.

349. The rectilinear motion of an elongated body lengthwise,

or of a flat disc edgewise, through a fluid is unstable. But the

motion of either body, with its length or its broadside perpen-
dicular to the direction of motion, is stable. This is demon-

strated for the ideal case of a perfect liquid (§ 320), in § 321,

Example (2) ;
and the results explained in § 322 show, for a Kinetic sta-

solid of revolution, the precise character of the motion con- drodynamfr

sequent upon an infinitely small disturbance in the direction
e

of the motion from being exactly along or exactly perpendicular
to the axis of figure ;

whether the infinitely small oscillation,

in a definite period of time, when the rectilineal motion is

stable, or the swing round to an infinitely nearly inverted po-

sition when the rectilineal motion is unstable. Observation

proves the assertion we have just made, for real fluids, air and

water, and for a great variety of circumstances affecting the

motion. Several illustrations have been referred to in § 325
;

and it is probable we shall return to the subject later, as being

not only of great practical importance, but profoundly interest-

ing although very difficult in theory.

350. The motion of a single particle affords simpler and

not less instructive illustrations of stability and instability.

Thus if a weight, hung from a fixed point by a light inexten- circular

sible cord, be set in motion so as to describe a circle about a pendulum.

vertical line through its position of equilibrium, its motion is

stable. For, as we shall see later, if distui'bed infinitely little

in direction without gain or loss of energy, it will describe a

sinuous path, cutting the undisturbed circle at points succes-

sively distant from one another by definite fractions of the cir-

cumference, depending upon the angle of inclination of the

string to the vertical. When this angle is very small, the

motion is sensibly the same as that of a particle confined to

one plane and moving under the influence of an attractive

VOL. I. 27
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force towards a fixed point, simpty proportional to the distance
;

and the disturbed path cuts the undisturbed circle four times

Circular in a revolution. Or if a particle confined to one plane, move
under the influence of a centre in this plane, attracting with a

force inversely as the square of the distance, a path infinitely

little disturbed from a circle will cut the circle twice in a re-

volution. Or if the law of central force be the nth power
of the distance, and if n + 3 be positive, the disturbed path will

cut the undisturbed circular orbit at successive angular in-

tervals, each equal to ir/Jn + 3. But the motion will be

unstable if n be negative, and — n > 3

Kinetic sta- The criteriou of stability is easily investigated for circular

motion round a centre o

the general orbit (§ 36),

:uiar orbit* motion round a centre of force from the differential equation of

+ u = 2'dd2
' ~ "

h'u

Let the value of h be such that motion in a circle of radius «-1

satisfies this equation. That is to say, let P/h
2
ic

2 — u, when u = a.

Let now u = a + p, p being infinitely small. We shall have

if a denotes the value of -p- (
it - -nr-z) when u = a: and therefore

du \ hru J

the differential equation for motion infinitely nearly circular is

dT°
+ ap = -

The integral of this is most conveniently written

p = A sin (6 Ja +
/?)

when a is positive, and

p = Ce(*/
~
a +C'e- es/

'

ra

when a is negative.

Hence we see that the circular motion is stable in the former

case, and unstable in the latter.
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For instance, if P —
/xr"

—
nu~", we have Kinetic sta-

Dility in cir-

,7 / p \ p cular orbit.

7s '}

p
and putting tj-j = u=a, in this we find a=n+3

;
whence the

result stated above.

Or, taking Example (B) of § 319, and putting mP for P, and

wiA for h,

m'

(9 -2u 2 + u
h2u2 m + rri \h

2

2m'g
f P \

m +
h'u*

h2

ii?) m + m'du \ h2u2
,

Hence, putting u = a, and making h2 =gm/ma
3
so that motion

in a circle of radius a~ l

may be possible, we find

3m
a = ; .m + m

Hence the circular motion is always stable
;
and the period of

the variation produced by an infinitely small disturbance from

it is

lm + m
V 3m

351. The case of a particle moving on a smooth fixed surface Kinetic so-

under the influence of no other force than that of the con-
partfcfe

a

straint, and therefore always moving along a geodetic line of HmMth"
the surface, affords extremely simple illustrations of stability

sur M

and instability. For instance, a particle placed on the inner

circle of the surface of an anchor-ring, and projected in the

plane of the ring, would move perpetually in that circle, but

unstably, as the smallest disturbance would clearly send it

away from this path, never to return until after a digression

round the outer edge. (We suppose of course that the particle

is held to the surface, as if it were placed in the infinitely

narrow space between a solid ring and a hollow one enclosing

it.) But if a particle is placed on the outermost, or greatest,

27—2
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Kinetic
stability of

a particle
moving on
a smooth
surface.

circle of the ring, and projected in its plane, an infinitely small

disturbance will cause it to describe a sinuous path cutting the

circle at points round it successively distant by angles each equal

to trjbja, or intervals of time, -n-jb/wja, where a denotes

the radius of that circle, w the angular velocity in it, and b the

radius of the circular cross section of the ring. This is proved

by remarking that an infinitely narrow band from the outer-

most part of the ring has, at each point, a and b for its principal

radii of curvature, and therefore (§ 150) has for its geodetic

lines the great circles of a sphere of radius \/ab, upon which

(§ 152) it may be bent.

352. In all these cases the undisturbed motion has been

circular or rectilineal, and, when the motion has been stable, the

effect of a disturbance has been periodic, or recurring with the

same phases in equal successive intervals of time. An illus-

tration of thoroughly stable motion in which the effect of a

disturbance is not "
periodic," is presented by a particle sliding

down an inclined groove under the action of gravity. To take

the simplest case, we may consider a particle sliding down

along the lowest straight line of an inclined hollow cylinder.

If slightly disturbed from this straight line, it will oscillate

on each side of it perpetually in its descent, but not with a

uniform periodic motion, though the durations of its excursions

to each side of the straight line are all equal.

Kinetic sta- 353. A very curious case of stable motion is presented by
<ommensu- a particle constrained to remain on the surface of an anchor-
rable oscil- r
tations. T[ng fixed in a vertical plane, and projected along the great

circle from any point of it, with any velocity. An infinitely

small disturbance will give rise to a disturbed motion of which

the path will cut the vertical circle over and over again for

ever, at unequal intervals of time, and unequal angles of the

circle
;
and obviously not recurring periodically in any cycle,

except with definite particular values for the whole energy,

some of which are less and an infinite number are greater than

that which just suffices to bring the particle to the highest

point of the ring. The full mathematical investigation of these
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circumstances would afford an excellent exercise in the theory
of differential equations, but it is not necessary for our present
illustrations.

354. In this case, as in all of stable motion with only two Oscillatory

^ c f i i'i • -iii kinetic sta-

degrees ot freedom, which we have just considered, there has bility-

been stability throughout the motion
;
and an infinitely small

disturbance from any point of the motion has given a disturbed

path which intersects the undisturbed path over and over again
at finite intervals of time. But, for the sake of simplicity at

present confining our attention to two degrees of freedom, we
have a limited stability in the motion of an unresisted pro- Limited

•
i -i

• i . n . .,. kinetic sta-

jectile, which satishes the criterion of stability only at points
bility-

of its upward, not of its downward, path. Thus if MOPQ be

the path of a projectile, and if at it be disturbed by an infi- Kinetic
•

i i> • , t • stability of

nitely small force either way perpendicular to its instantaneous a projectile,

direction of motion, the disturbed path will cut the undisturbed

infinitely near the point P where the direction of motion is per-

pendicular to that at : as we easily see by considering that

the line joining two particles projected from one point at the

same instant with equal velocities in the directions of any two

lines, will always remain perpendicular to the line bisecting the

angle between these two lines.
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General
criterion.

Examples.

Motion on
an anticlaS'

tic surface

proved un-
stable.

Motion of a

particle on
an anticlas-
tic surface,
unstable ;

355. The principle of varying action gives a mathematical,

criterion for stability or instability in every case of motion

Thus in the first place it is obvious, and it will be proved below

(§§ 358, 361), that if the action is a true minimum in the motion

of a system from any one configuration to the configuration

reached at any other time, however much later, the motion is

thoroughly unstable. For instance, in the motion of a particle

constrained to remain on a smooth fixed surface, and unin-

fluenced by gravity, the action is simply the length of the path,

multiplied by the constant velocity. Hence in the particular

case of a particle uninfluenced by gravity, moving round the

inner circle in the plane of an anchor-ring considered above, the

action, or length of path, is clearly a minimum from any one

point to the point reached at any subsequent time. (The action

is not merely a minimum, but is the smaller of two minimums,
when the course is from any point of the circular path to any
other, through less than half a circumference of the circle.)

On the other hand, although the path from any point in the

greatest circle of the ring to any other at a distance from it

along the circle, less than Tr^ab, is clearly least possible if along
the circumference ;

the path of absolutely least length is not

along the circumference between two points at a greater circular

distance than ir^Jab from one another, nor is the path along the

circumference between them a minimum at all in this latter

case. On any surface whatever which is everywhere anticlastic,

or along a geodetic of any surface which passes altogether

through an anticlastic region, the motion is thoroughly un-

stable. For if it were stable from any point 0, we should have

the given undisturbed path, and the disturbed path from

cutting it at some point Q ;

—two different geodetic lines join-

ing two points ;
which is impossible on an anticlastic surface,

inasmuch as the sum of the exterior angles of any closed

figure of geodetic lines exceeds four right angles (§ 136)

when the integral curvature of the enclosed area is negative,

which (§§ 138, 128) is the case for every portion of surface

thoroughly anticlastic. But, on the other hand, it is easily

proved that if we have an endless rigid band of curved surface

everywhere synclastic, with a geodetic line running through its
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middle, the motion of a particle projected along this line will on a syn-

i e> • i t v. L i\> i -ii Mastic sur-

be stable throughout, and an infinitely slight disturbance will face, stable.

give a disturbed path catting the given undisturbed path again

and again for ever at successive distances differing according to

the different specific curvatures of the intermediate portions of

the surface. If from any

point, N, of the undis- J /
turbed path, a perpen- /.

dicular be drawn to cut yq
the infinitely near dis- ^K ../
turbed path in E, the X^- E "

\^r

angles OUN a,nd NOE ^^L~ZZ—^^
must (§ 138) be toge-

ther greater than a right angle by an amount equal to the in- Differential
eauation of

teoral curvature of the area EON. From this the differential disturbed

. . ... path.

equation of the disturbed path may be obtained immediately.

Let *.EON = a, ON =
s, and NE = u; and let $, a known

function of s, be the specific curvature (§ 136) of the surface in

the neighbourhood of JY. Let also, for a moment, </>
denote the

complement of the angle OEJY. We have

a — <f}=l Suds.
Jo

Hence -J-
= - §u.

as

But, obviously, <£
= -=-

;

hence -^ + §u = 0.
as"

When $r is constant (as in the case of the equator of a surface of

revolution considered above, § 351), this gives

u = A cos (s J§ + E),

agreeing with the result (§ 351) which we obtained by develop-

ment into a spherical surface.

The case of two or more bodies supported on parallel axes

in the manner explained above in § 348, and rotating with the

centre of inertia of the whole at the least possible distance from

the fixed axis, affords a very good illustration also of this pro-

position which may be safely left as an exercise to the student.
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General in- 356. To investigate the effect of an infinitely small con-
?estigation ,

. . .

of disturbed servative disturbance produced at any instant in the motion

of any conservative system, may be reduced to a practicable

problem (however complicated the required work may be) of

mathematical analysis, provided the undisturbed motion is

thoroughly known.

General (a) First, for a system having but two degrees of freedom to

equation of move, let
motion free '

2T =
Fij,

2 + Qtf + 2fy<j> (1),

where P, Q, R are functions of the co-ordinates not depending
on the actual motion. Then

£-.*+*, %-*+** 1

d dT _.. _ v dP ., /dP dR\ . . dR .„ f

"

^ =^ +^ + #*H^ +
#J**

+^* J

and the Lagrangian equations of motion [§318 (24)] are

•• _-
,
(dP .. a dP.. (^dR dQ\ ..) T ")

dV nl ,(/fl^ dP\ ,, n dQ .. dQ .,)
I"

We shall suppose the system of co-ordinates so chosen that

none of the functions P, Q, R, nor their differential coefficients

—
, etc., can ever become infinite.

cup

(b) To investigate the effects of an infinitely small disturbance,

we may consider a motion in which, at any time t, the co-ordi-

nates are \p +p and <p + q, p and q being bifinitely small
; and, by

simply taking the variations of equations (3) in the usual manner,
we arrive at two simultaneous differential equations of the second

degree, linear with respect to

P, ?> P> 9> P, ii

but having variable coefficients which, when the undisturbed

motion
if/, (f>

is fully known, may be supposed to be known

functions of t. In these equations obviously none of the coeffi-

cients can at any time become infinite if the data correspond to

a real dynamical problem, provided the system of co-ordinates is

properly chosen («); and the coefficients of p and q are the

.(3).
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values, at the time t, of P, R, and R, Q, respectively, in the General in-
' * ' ' '

m

*
m vestigatnon

order in which they appear in (3), P, Q, R being the coefficients of disturbed

of a homogeneous quadratic function (1) which is essentially

positive. These properties being taken into account, it may be

shown that in no case can an infinitely small interval of time be

the solution of the problem presented (§ 347) by the question of

kinetic stability or instability, which is as follows :
—

(c) The component velocities
\p, <j>

are at any instant changed

to \j/+a, <j>
+ @, subject to the condition of not changing the

value of T. Then, a and (3 being infinitely small, it is required

to find the interval of time until q/p first becomes equal to
0/i£.

(d) The differential equations in p and q reduce this problem,

and in fact the full problem of finding the disturbance in the

motion when the undisturbed motion is given, to a practicable

form. But, merely to prove the proposition that the disturbed

course cannot meet the undisturbed course until after some finite

time, and to estimate a limit which this time must exceed in any

particular case, it may be simpler to proceed thus :
—

(e)
To eliminate t from the general equations (3), let them

first be transformed so as not to have t independent variable.

"We must put

•• dtdrxb - dxbdH dtd
2
d> - dd>d

2
t^ df

' += df <*>

And by the equation of energy we have

, (Pdf + Qdcf>
2 + IRctydQfi ._.

dt = \ (o),

{2(E- F)}*

it being assumed that the system is conservative. Eliminating

dt and d2
t between this and the two equations (3), we find a

differential equation of the second degree between \1/ and 0,

which is the differential equation of the course. For simplicity,

let us suppose one of the co-ordinates, <£ for instance, to be inde-

pendent variable; that is, let d2

(f>= 0. We have, by (4),

*—*%•
and therefore \j/dt

2 =
d*\p +

-~
4>dt

2

,

d<p
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General in- and the result of the elimination becomes
vestigation
of disturbed

(6),

W -y- ) denoting a function of ^7 of the third degree, with vari-

able coefficients, none of which can become infinite as long as

E -
V, the kinetic energy, is finite.

(f) Taking the variation of this equation on the supposition

that \p
becomes f + p, where p is infinitely small, we have

&-*>%+?%+*-* <7 >>

where L and M denote known functions of <£, neither of which

has any infinitely great value. This determines the deviation, p,

of the course. Inasmuch as the quadratic (1) is essentially

always positive, PQ — R~ must be always positive. Hence, if

dj)
for a particular value of

<f>, p vanishes, and
-j-

has a given value

which defines the disturbance we suppose made at any instant,

cf>
must increase by a finite amount (and therefore a finite time

must elapse) before the value of p can be again zero; that is to

say, before the disturbed course can again cut the undisturbed

course.

{g) The same proposition consequently holds for a system

having any number of degrees of freedom. For the preceding

proof shows it to hold for the system subjected to any frictionless

constraint, leaving it only two degrees of freedom
; including

that particular frictionless constraint which would not alter either

the undisturbed or the disturbed course. The full general inves-

tigation of the disturbed motion, with more than two degrees of

freedom, takes a necessarily complicated form, but the principles

on which it is to be carried out are sufficiently indicated by
what we have done.

(h) If for LjPQ — R2 we substitute a constant 2a, less than

its least value, irrespectively of sign, and for MjPQ - R2

,
a
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constant /3 greater algebraically than its greatest value, we General in

have an equation
of disturbed

%+*%+'-° <
8

>-

*"'

Here the value of p vanishes for values of <p successively ex-

ceeding one another by -k fJfi
—

or, which is clearly less than

the increase that <£ must have in the actual problem before p
vanishes a second time. Also, we see from this that if a2 > /3

the actual motion is unstable. It might of course be unstable

even if a2

</3; and the proper analytical methods for finding

either the rigorous solution of (7), or a sufficiently near practical

solution, would have to be used to close the criterion of stability

or instability, and to thoroughly determine the disturbance of

the course.

(i)
When the system is only a single particle, confined to a Differential

plane, the differential equation of the deviation may be put disturbed

under a remarkably simple form, useful for many practical single par-

problems. Let N be the normal component of the force, per pfane"

unit of the mass, at any instant, v the velocity, and p the radius

of curvature of the path. We have (§ 259)

N= V
-.
P

Let, in the diagram, ON be the undisturbed, and OE the

disturbed path. Let

EN, cutting ON at

right angles, be de-

noted by u, and ON sn

by s. If further we X.

denote by p the
^^sl*---. E

radius of curvature

inthe disturbed path,

remembering that u is infinitely small, we easily find

1 1 d2u u- = -+—+ —
(9).

p p as
2

p-
v ;

Hence, using S to denote variations from N to E, we have

m.^tjm +Ad^ + ^\
( io).

p p \ds- p J
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Differential

equation of

disturbed

path of

single par-
ticle in a

plane.

Kinetic
foci.

Theorem of

minimum
action.

Action
never a
minimum
in a course

including
kinetic foci.

2v*

But, by the equation of energy,

v
2

=2(E-V),
and therefore

8

<

(v
a
)
=-28V=2Nu =

P

Hence (10) becomes

d2u 3w SiV . ., -v

-j-,
+— g =0 (11),

as- p v v

or, if we denote by £ the rate of variation of N, per unit of dis-

tance from the point N in the normal direction, so that SiV" = £,u,

£*£-$)—•••• <
12

>-

This includes, as a particular case, the equation of deviation

from a circular orbit, investigated above (§ 350).

357. If, from any one configuration, two courses differing

infinitely little from one another have again a configuration in

common, this second configuration will be called a kinetic focus

relatively to the first : or (because of the reversibility of the

motion) these two configurations will be called conjugate kinetic

foci. Optic foci, if for a moment we adopt the corpuscular

theory of light, are included as a particular case of kinetic foci

in general. By § 356 (g) we see that there must be finite in-

tervals of space and time between two conjugate foci in every

motion of every kind of system, only provided the kinetic

energy does not vanish.

358. Now it is obvious that, provided only a sufficiently

short course is considered, the action, in any natural motion of

a system, is less than for any other course between its terminal

configurations. It will be proved presently (§ 361) that the first

configuration up to which the action, reckoned from a given

initial configuration, ceases to be a minimum, is the first kinetic

focus; and conversely, that when the first kinetic focus is

passed, the action, reckoned from the initial configuration, ceases

to be a minimum
;
and therefore of course can never again be a

minimum, because a course of shorter action, deviating infi-

nitely little from it, can be found for a part, without altering the

remainder of the whole, natural course.
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359. In such statements as this it will frequently be con- Notation
* J for con-

venient to indicate particular configurations of the system by figurations,
1 ° j j courses, and

single letters, as 0, P, Q, R; and any particular course, in action -

which it moves through configurations thus indicated, will be

called the course O...P...Q...R. The action m any natural

course will be denoted simply by the terminal letters, taken in

the order of the motion. Thus OR will denote the action from

to R
;
and therefore OR = — RO. When there are more

real natural courses from to R than one, the analytical

expression for OR will have more than one real value
;
and it

may be necessary to specify for which of these courses the

action is reckoned. Thus we may have

OR for O...E...R,

OR for O...E'...R,

OR for O...JE"...R,

three different values of one algebraic irrational expression.

360. In terms of this notation the preceding statement Theorem of

/p __ . , ,,, T r> n • minimum
(§ doo) may be expressed thus :

—
11, lor a conservative system, action.

moving on a certain course 0...P...0' ...P', the first kinetic

focus conjugate to be 0', the action OP', in this course, will

be less than the action along any other course deviating in-

finitely little from it: but, on the other hand, OP is greater than

the actions in some courses from to P' deviating infinitely

little from the specified natural course O...P...O...P'.

361. It must not be supposed that the action along OP is Twoormm-e

necessarily the least possible from to P. There are, in fact, minim-can

cases in which the action ceases to be least of all possible, before possible
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Two or more
courses of

minimum
action

possible.

Case of two
minimum,
and one not
minimum,
geodetic
lines be-
tween two
points.

Difference
between two
sides and
the third of
a kinetic

triangle.

a kinetic focus is reached. Thus if OEAPO'E'A' be a sinuous

geodetic line cutting the outer circle of an anchor-ring, or

the equator of an oblate spheroid, in successive points 0,

A, A', it is easily seen that 0', the first kinetic focus

conjugate to 0, must lie somewhat beyond A. But the

length OEAP, although a minimum (a stable position for a

stretched string), is not the shortest distance on the surface

from to P, as this must obviously be a line lying entirely on

one side of the great circle. From 0, to any point, Q, short of

A, the distance along the geodetic OEQA is clearly the least

possible : but if Q be near enough to A (that is to say, between

A and the point in which the envelope of the geodetics drawn

from 0, cuts OEA), there will also be two other geodetics from

to Q. The length of one of these will be a minimum, and

that of the other not a minimum. If Q is moved forward to A,

the former becomes OEA, equal and similar to OEA, but on the

other side of the great circle : and the latter becomes the great

circle from to A. If now Q be moved on, to P, beyond A,

the minimum geodetic OEAP ceases to be the less of the two

minimums, and the geodetic OFP lying altogether on the other

side of the great circle becomes the least possible line from to P.

But until P is advanced beyond the point, 0', in which it is cut

by another geodetic from lying infinitely nearly along it, the

length OEAP remains a minimum, according to the general

proposition of § 358, which we now proceed to prove.

(a) Referring to the notation of § 360, let P
t
be any configura-

tion differing infinitely little from P, but not on the course

O...P...O' ...P' ;
and let £ be a configuration on this course,

reached at some finite time after P is passed. Let
\{/, 0, ... be

the co-ordinates of P, and
\\rit <£,,... those of Pn and let

<A,
-

<A
=

<ty, <£,-<£
=

&£....

Thus, by Taylor's theorem,

+ etc.

}
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But if |, i],
. . . denote the components of momentum at P in the Difference

• r> • betweentwo
course O...P, which are the same as those at 1 in the continua- sides and

tion, P...S, of this course, we have [§330 (18)1 akinetic
triangle.

t_dOP__dPS dOP _ dPS

dip

~
dip

' V ~
d<j> d<f>

'
'"

Hence the coefficients of the terms of the first degree of 8ij/, $<f>,

in the preceding expression vanish, and we have

+ etc. /

(b) Now, assuming
x

}

=
afiip

+
y3jS<^

+ . . . \

x
2
= a

2^+(328cj>+...l (2),

etc. etc. )

according to the known method of linear transformations, let

a
J} y8j,... aa , /?„,... be so chosen that the preceding quadratic

function be reduced to the form

A
1
x* + A

g
x
B
!L+... + A

i
ot;

i

2
,

the whole number of degrees of freedom being i.

This may be done in an infinite variety of ways ; and, towards

fixing upon one particular way, we may take a
t
=

\p, fii
=

<£, etc.
;

and subject the others to the conditions

d/a
l
+ <j>l3 l

+ ... = 0, ij/a2
+

<j>/3z
+ ... = 0, etc.

This will make A
(
= Q: for if for a moment we suppose P to be

on the course O...P...O', we have

and therefore

Xi
=U^ +^2+

)>
x
i-i

=
°> x

2
= °> x

i

= °-

But in this case OP
t
+ P/S = OS; and therefore the value of the

quadratic must be zero; that is to say, we must have -4^
= 0.

Hence we have

0P
j
+ P,S-0S=±(A l

x* + A
2
x
2

s + ... + A
i_ l
x

i_ 1

2

)>

+ R J

where R denotes a remainder consisting of terms of the third

and higher degrees in
Si//, 8^>, etc., or in x

: ,
x

e ,
etc.
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Difference
between two
sides and
the third of

a kinetic

triangle.

(c) Another form, which will be used below, may be given to

the same expression thus :
—Let (£/? rj^ £,,>•) aT1(^

(%, '» V,'^ £/>•••)

be the components of momentum at P
,
in the courses OP

t
and

P,S respectively. By § 330 (18) we have

dOP'
E =

#,
and therefore by Taylor's theorem

dOP
e,=-

d\p dij/

d'OP., d2

0P„,
d\f/d<f>

Similarly,

-if
dPS d2PS .

,

and therefore, as

d\\i diff

dOP

d2PS

d\f/d^>
8<f>-

+ etc.

+ etc.;

dPS

$'-£,=-

dvj/

d*(OP + PS)
8^

d 2

(OP + PS)
S<£ + ... v+etc...(4:),

•(5),

dx}/

2
"r

d\f/d<f>

and so for
-i)',—t\

etc. Hence (1) is the same as

op
t +pjs-os=-${(£;-?)fy+(v;-v,)H+-}}

+ E J

where P denotes a remainder consisting of terms of the third and

higher degrees. Also the transformation from
8\j/, &<f>,

...

., gives clearly

rl;-ii=-(A&xl
+A

tfaa
+...+Ai_lfSi_ l

x
i &.. (6)

to

X
\>
X
2f

etc.

. +A
t

etc.

(d) Now for any infinitely small time the velocities remain

sensibly constant; as also do the coefficients
(i/r, if/), (\[/, <f>), etc.,

in the expression [§313 (2)] for T: and therefore for the action

we have

J2Tdt
= j2Tjj2Tdt

=JW {($, f) (f
- ^)

a + 2 (f, 4>) ty
-

ft,) (*
-

<t> ) + etc - r

where
(\j/ , <f> , ...) are the co-ordinates of the configuration from

which the action is reckoned. Hence, if P, P, P" be any three

configurations infinitely near one another, and if Q, with the

proper differences of co-ordinates written after it, be used to

denote square roots of quadratic functions such as that in the

preceding expression, we have
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PP' = J2T . Q <(*
- f ), (+ -f ),

...

}] ££»
P'F"= J2T.Q{(>I/ -f), W-40* -} (

7
>- KUStoi

In the particular case of a single free particle, these expressions

become simply proportional to the distances PP, P'P", P"P;
and by Euclid we have

PP + PP" < PP"

unless P is in the straight line PP" .

The verification of this proposition by the preceding expressions

(7) is merely its proof by co-ordinate geometry with an oblique

rectilineal system of co-ordinates, and is necessarily somewhat

complicated. If
(if/, <f>)

—
(<£, 0)

=
(8, xp)

— 0, the co-ordinates be-

come rectangular and the algebraic proof is easy. There is no

difficulty, by following the analogies of these known processes, to

prove that, for any number of co-ordinates, \j/, <f>, etc., we have

P'P + PP" > P'P",

unless

^-f <£-<£' 6-6'

i
j
/"- l

j
/'~^r^'-e

7r^6? ~---

(expressing that P is on the course from P to P"), in which case

PP+PP" = PP",

P'P, etc., being given by (7). And further, by the aid of (1),

it is easy to find the proper expression for P'P + PP" — P'P",

when P is infinitely little off the course from P' to P" : but it is

quite unnecessary for us here to enter on such purely algebraic

investigations.

(e) It is obvious indeed, as has been already said (§ 358), that

the action along any natural course is the least possible between

its terminal configurations if only a sufficiently short course is

included. Hence for all cases in which the time from to S is

less than some particular amount, the quadratic term in the ex-

pression (3) for OP
t
+ P,S - OS is necessarily positive, for all

values of x
x

,
xa , etc.; and therefore A

x ,
A

2 ,...Ai} must each be

positive.

(_/*)
Let now S be removed further and further from 0, along Actions on

the definite course 0...P...0', until it becomes 0'. When it is courses in-

0', let P
t
be taken on a natural course through and 0', de- ne atiothe,

VOL. I. 28
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viating infinitely little from the course OPU'. Then, as OPfi'
is a natural course,

and therefore (5) becomes

OP, + P,0'-00' = P,

which proves that the chief, or quadratic, term in the other ex-

pression (3) for the same, vanishes. Hence one at least of the

coefficients -i,,
A

2 ,... must vanish, and if one only, At_.
= for

instance, we must have

a-
1
=

0, a;
2*-0,...a:i_ 2

= 0.

These equations express the condition that P
/
lies on a natural

course from to 0'.

(g) Conversely if one or more of the coefficients A
x ,
A

2 , etc.,

vanishes, if for instance A
j_ l

— 0,S must be a kinetic focus. For

if we take P so that

^ = 0, a;
2
=

0,...a-,_ 2
=

0,

we have, by (6),

e;-$i

= v;- v
' = ... = o.

(h) Thus we have proved that at a kinetic focus conjugate to

the action from is not a minimum of the first order*, and

that the last configuration, up to which the action from is a

minimum of the first order, is a kinetic focus conjugate to 0.

(i)
It remains to be proved that the action from ceases to

be a minimum when the first kinetic focus conjugate to is

passed. Let, as above (§ 3G0), 0...P...0' ...P'he a natural course

extending beyond 0', the first kinetic focus conjugate to 0. Let

P and P' be so near one another that there is no focus conjugate

to either, between them; and let O...P
t
...O' be a natural course

from to 0' deviating infinitely little from O...P...O'. By what

we have just proved (e), the action 00' along O...Pr ..O' differs

only by B, an infinitely small quantity of the third order, from

the action 00' along 0...P...0', and therefore

Ac.(O...P...O'...F) = Ac.{O...P/ ...0') + 0'P' + R

=op,+pi
o'+o'p'+r.

* A maximum or minimum "of the first order
1 '

of any function of one or

more variables, is one in ^vhick the differential of the first degree vanishes, but

not that of the second decree.
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But, by a proper application of (e) we see that Natural
course

p
t
O' + (yp

f=p
iF+Q RSlS

minimum
where Q denotes an infinitely small quantity of the second order, action,

. . . . beyond a
which is essentially positive. Hence kinetic

J l
focus.

Ac(O...P...O'...P) = OPl
+ PP' + Q + B,

and therefore, as R is infinitely small in comparison with Q,

Ac(O...P...O'...P')>OP, + PP'.

Hence the broken course 0...P,, Pt
...P' has less action than

the natural course 0...P...0' ...P', and therefore, as the two

are infinitely near one another, the latter is not a minimum.

362. As it has been proved that the action from any con- a course

. . ,, . . .
which in-

figuration ceases to be a minimum at the first conmgate kinetic eludes no
°

„ , 7 focus con -

focus, we see immediately that if 0' be the first kinetic focus i
ugate to

J either ex-

conjugate to 0, reached after passing 0, no two configurations tremity

on this course from to 0' can be kinetic foci to one another. »o pair of

conjugate

For, the action from just ceasing to be a minimum when 0' foci -

is reached, the action between any two intermediate configura-

tions of the same course is necessarily a minimum.

363. When there are i degrees of freedom to move there How many
. . „

,
. , kinetic foci

are m general, on any natural course trom any particular con- in any case.

figuration, 0, at least i— 1 kinetic foci conjugate to 0. Thus,

for example, on the course of a ray of light emanating from

a luminous point 0, and passing through the centre of a con-

vex lens held obliquely to its path, there are two kinetic foci

conjugate to 0, as defined above, being the points in which the

line of the central ray is cut by the so-called "focal lines"* of

a pencil of rays diverging from and made convergent after

passing through the lens. But some or all of these kinetic foci

may be on the course previous to
;
as for instance in the

case of a common projectile when its course passes obliquety
downwards through 0. Or some or all may be lost

;
as when,

in the optical illustration just referred to, the lens is only

strong enough to produce convergence in one of the principal

planes, or too weak to produce convergence in either. Thus

* In our second volume we hope to give all necessary elementary explanations
on this subject.

28—2
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How many also in the case of the undisturbed rectilineal motion of a
kinetic foci . . „ . .

,
in any case, point, or in the motion of a point uninfluenced by force, on

an anticlastic surface (§ 355), there are no real kinetic foci.

In the motion of a projectile (not confined to one vertical plane)

there can only be one kinetic focus on each path, conjugate

to one given point; though there are three degrees of freedom.

Again, there may be any number more than i— 1, of foci in

one course, all conjugate to one configuration, as for instance

on the course of a particle uninfluenced by force, moving round

the surface of an anchor-ring, along either the outer great

circle, or along a sinuous geodetic such as we have considered

in § 361, in which clearly there are an infinite number of foci

each conjugate to any one point of the path, at equal successive

distances from one another.

Referring to the notation of § 361 (/), let S be gradually

moved on until first one of the coefficients, A
t

for instance,

vanishes; then another, A
{_ 2 , etc.; and so on. We have seen

that each of these positions of £ is a kinetic focus : and thus by
the successive vanishing of the i — 1 coefficients we have i—\
foci. If none of the coefficients can ever vanish, there are no

kinetic foci. If one or more of them, after vanishing, comes to

a minimum, and again vanishes, as S is moved on, there may be

any number more than i— 1 of foci each conjugate to the same

configuration, 0.

Theorem of 364. If % — 1 distinct* courses from a configuration 0, each

action. differing infinitely little from a certain natural course

O...E...0
1
...0

2
...O

i_v ..Q,

cut it in configurations 0,, 2 , 3 ,...0 i_ l ,
and if. besides these,

there are not on it any other kinetic foci conjugate to 0, between

and Q, and no focus at all, conjugate to E, between E and Q,

the action in this natural course from to Q is the maximum
for all courses O...P

t ,
P

t...Q\ P, being a configuration infinitely

nearly agreeing with some configuration between E and
t
of

the standard course 0...E...0
1
...0

2
... 0^. . . Q, and 0. . .P, P . . .Q

* Two courses are not called distinct if they differ from one another only in

the absolute magnitude, not in the proportions of the components, of the

deviations by winch they differ from the standard course.
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denoting the natural courses between and P, and P
t
and Q, Theorem of

which deviate infinitely little from this standard course. action.

In § 361 (i),
let 0' be any one, 0,, of the foci 0,, 2 ,

... 0_,,
and let P

t
be called P, in this case. The demonstration there

given shows that

OQ>OP l
+ P

1 Q.

Hence there are i—\ different broken courses

0...P,, P, ...<?; ...P
2 , P....Q; etc.,

in each of which the action is less than in the standard course

from to Q. But whatever be the deviation of P
t ,

it may
clearly be compounded of deviations P to P

,
P to P

g ,
P to P

3 ,

..., P to P
4_ , corresponding to these i— 1 cases respectively;

and it is easily seen from the analysis that

0P
l
+ P

tQ-0Q=(0P1
+P

iQ-0Q) + (0P2
+P

BQ-0Q) + ...

Hence OP + P
tQ < OQ, which was to be proved.

365. Considering now, for simplicity, only cases in which Appiica-

there are but two degrees (§§ 195, 204) of freedom to move, degrees of

we see that after any infinitely small conservative disturbance

of a system in passing through a certain configuration, the

system will first again pass through a configuration of the

undisturbed course, at the first configuration of the latter at

which the action in the undisturbed motion ceases to be a

minimum. For instance, in the case of a particle, confined to

a surface, and subject to any conservative system of force, an

infinitely small conservative disturbance of its motion through

any point, 0, produces a disturbed path, which cuts the un-

disturbed path at the first point, 0', at which the action in the

undisturbed path from ceases to be a minimum. Or, if

projectiles, under the influence of gravity alone, be thrown from

one point, 0, in all directions with equal velocities, in one

vertical plane, their paths, as is easily proved, intersect one

another consecutively in a parabola, of which the focus is 0,

and the vertex the point reached by the particle projected

directly upwards. The actual course of each particle from

is the course of least possible action to any point, P, reached

before the enveloping parabola, but is not a course of minimum

action to any point, Q, in its path after the envelope is passed.
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Appiica- 366. Or again, if a particle slides round along the greatest
tions to t ffo .

°
.

s V
degrees of circle of the smooth inner surface of a hollow anchor-ring, the
freedom.

. . ."
action," or simply the length of path, from point to point, will

be least possible for lengths (§ 351) less than it siah. Thus, if

a string be tied round outside on the greatest circle of a

perfectly smooth anchor-ring, it will slip off unless held in

position by staples, or checks of some kind, at distances of not

less than ir Va6 from one another in succession round the circle.

With reference to this example, see also § 361, above.

Or, of a particle sliding down an inclined cylindrical groove,

the action from any point will be the least possible along the

straight path to any other point reached in a time less than

that of the vibration one way of a simple pendulum of length

equal to the radius of the groove, and influenced by a force

equal g cos i, instead of g the whole force of gravity. But the

action will not be a minimum from any point, along the straight

path, to any other point reached in a longer time than this.

The case in which the groove is horizontal (i
—

0) and the par-

ticle is projected along it, is particularly simple and instructive,

and may be worked out in detail with great ease, without as-

suming any of the general theorems regarding action.

Hamilton's 367. In the preceding account of the Hamiltonian principle,
form. and of developments and applications which it has received, we

have adhered to the system (§§ 328, 330) in which the initial

and final co-ordinates and the constant sum of potential and

kinetic energies are the elements of which the action is supposed
to be a function. Another system was also given by Hamilton,

according to which the action is expressed in terms of the initial

and final co-ordinates and the time prescribed for the motion;

and a set of expressions quite analogous to those with which

we have worked, are established. For practical applications

this method is generally less convenient than the other
;
and

the analytical relations between the two are so obvious that we

need not devote any space to them here.

Liouviiie's 368. We conclude by calling attention to a very novel

theorem, analytical investigation of the motion of a conservative system,

by Liouville (Comptes Rendus, June 16, 1856), which leads im-
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mediately to the principle of least action, and the Hamiltonian LiouviUe'

principle with the developments by Jacobi and others
;
but theorem.

which also establishes a very remarkable and absolutely new

theorem regarding the amount of the action along any con-

strained course. For brevity we shall content ourselves with

giving it for a single free particle, referring the reader to the

original article for Liouville's complete investigation in terms

of generalized co-ordinates, applicable to any conservative

system whatever.

Let (x, y, z) be the co-ordinates of any point through, which

the particle may move : V its potential energy in this position :

E the sum of the potential and kinetic energies of the motion in

question : A the action, from any position (x , y ,
z

)
to (x, y, z)

along any course arbitrarily chosen (supposing, for instance, the

particle to be guided along it by a Motionless guiding tube).

Then (§ 326), the mass of the particle being taken as unity,

A =
jvds = jJ'2{E- V) J{dx

2 + dif+ dz").

Now let § be a function of x, y, z, which satisfies the partial

differential equation

clV d¥ d& _._ „.

Then

=
JV

/
l^

dX+
dy

d^dz
dV \Tz dy

-dy
Ch

) \dx
dz
-dz

dX

fd§ , d$ . \
+ , dx—r-dy
\dy dx J

j

_, ,
d$ , d$ j dh .

j.But — dx + -j-dy + -r;dz
= dz,

clx ciy (&%

and, if x, y, z denote the actual component velocities along the

arbitrary path, and § the rate at which S- increases per unit of

time in this motion,

dx = xdt, dy = ydt, dz = zdt, d$ = Sdt.

Hence the preceding becomes

A = fd$

( d$ .d$\' /.«» .d$\
2 /d$ .d$\>)

0.2 )



CHAPTER III.

EXPERIENCE.

Observation
and experi-
ment.

Observa-
tion.

369. By the term Experience, in physical science, we desig-

nate, according to a suggestion of Herschel's, our means of

becoming acquainted with the material universe and the laws

which regulate it. In general the actions which we see ever

taking place around us are complex, or due to the simultaneous

action of many causes. When, as in astronomy, we endeavour

to ascertain these causes by simply watching their effects, we

observe; when, as in our laboratories, we interfere arbitrarily

with the causes or circumstances of a phenomenon, we are said

to experiment.

370. For instance, supposing that we are possessed of instru-

mental means of measuring time and angles, we may trace out

by successive observations the relative position of the sun and

earth at different instants; and (the method is not susceptible

of any accuracy, but is alluded to here only for the sake

of illustration) from the variations in the apparent diameter

of the former we may calculate the ratios of our distances from

it at those instants. We have thus a set of observations in-

volving time, angular position with reference to the sun, and

ratios of distances from it: sufficient (if numerous enough) to

enable us to discover the laws which connect the variations

of these co-ordinates.

Similar methods may be imagined as applicable to the

motion of any planet about the sun, of a satellite about its

primary, or of one star about another in a binary group.

371. In general all the data of Astronomy are determined

in this way, and the same may be said of such subjects as
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Tides and Meteorology. Isothermal Lines, Lines of Equal Dip, Obaerva-

Lines of Equal Intensity, Lines of Equal "Variation" (or "Decli-

nation" as it has still less happily been sometimes called),

the Connexion of Solar Spots with Terrestrial Magnetism,

and a host of other data and phenomena, to be explained

under the proper heads in the course of the work, are thus

deducible from Observation merely. In these cases the apparatus

for the gigantic experiments is found ready arranged in Nature,

and all that the philosopher has to do is to watch and measure

their progress to its last details.

372. Even in the instance we have chosen above, that of

the planetary motions, the observed effects are complex; because,

unless possibly in the case of a double star, we have no instance

of the undisturbed action of one heavenly body on another;

but to a first approximation the motion of a planet about the

sun is found to be the same as if no other bodies than these

two existed; and the approximation is sufficient to indicate

the probable law of mutual action, whose full confirmation is

obtained when, its truth being assumed, the disturbing effects

thus calculated are allowed for, and found to account com-

pletely for the observed deviations from the consequences of

the first supposition. This may serve to give an idea of the

mode of obtaining the laws of phenomena, which can only be

observed in a complex form—and the method can always be

directly applied when one cause is known to be pre-eminent.

373. Let us take cases of the other kind—in which the effects Experi-
ment.

are so complex that we cannot deduce the causes from the

observation of combinations arranged in Nature, but must en-

deavour to form for ourselves other combinations which may
enable us to study the effects of each cause separately, or at

least with only slight modification from the interference of

other causes.

374. A stone, when dropped, falls to the ground; a brick

and a boulder, if dropped from the top of a cliff at the same

moment, fall side by side, and reach the ground together. But

a brick and a slate do not; and while the former falls in a

nearly vertical direction, the latter describes a most complex
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Experi- path. A sheet of paper or a fragment of gold leaf presents even

greater irregularities than the slate. But by a slight modifica-

tion of the circumstances, we gain a considerable insight into

the nature of the question. The paper and gold leaf, if rolled

into balls, fall nearly in a vertical line. Here, then, there are

evidently at least two causes at work, one which tends to make
all bodies fall, and fall vertically; and another which depends
on the form and substance of the body, and tends to retard

its fall and alter its course from the vertical direction. How
can we study the effects of the former on all bodies without

sensible complication from the latter? The effects of Wind,

etc., at once point out what the latter cause is, the air (whose
existence we may indeed suppose to have been discovered by
such effects) ;

and to study the nature of the action of the former

it is necessary to get rid of the complications arising from the

presence of air. Hence the necessity for Experiment. By means

of an apparatus to be afterwards described, we remove the

greater part of the air from the interior of a vessel, and in that

we try again our experiments on the fall of bodies; and now a

general law, simple in the extreme, though most important in

its consequences, is at once apparent
—

viz., that all bodies, of

whatever size, shape, or material, if dropped side by side at the

same instant, fall side by side in a space void of air. Before

experiment had thus separated the phenomena, hasty philo-

sophers had rushed to the conclusion that some bodies possess

the quality of heaviness, others that of lightness, etc. Had this

state of confusion remained, the law of gravitation, vigorous

though its action be throughout the universe, could never have

been recognised as a general principle by the human mind.

Mere observation of lightning and its effects could never have

led to the discovery of their relation to the phenomena pre-

sented by rubbed amber. A modification of the course of

nature, such as the collecting of atmospheric electricity in

our laboratories, was necessary. Without experiment we could

never even have learned the existence of terrestrial magnetism.

Rules for 375. When a particular agent or cause is to be studied,

of experi- experiments should be arranged in such a way as to lead if

possible to results depending on it alone; or, if this cannot be
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done, they should be arranged so as to show differences pro- Rules for

, , t
... the oondue

duced by varying it. of experi-
ments.

376. Thus to determine the resistance of a wire against the

conduction of electricity through it, we may measure the wholo

strength of current produced in it by electromotive force between

its ends when the amount of this electromotive force is given,

or can be ascertained. But when the wire is that of a submarine

telegraph cable there is always an unknown and ever varying

electromotive force between its ends, due to the earth (produc-

ing what is commonly called the "earth-current"), and to deter-

mine its resistance, the difference in the strength of the current

produced by suddenly adding to or subtracting from the terres-

trial electromotive force the electromotive force of a given
voltaic battery, is to be very quickly measured

;
and this is to be

done over and over again, to eliminate the effect of variation of

the earth-current during the few seconds of time which must

elapse before the electrostatic induction permits the current

due to the battery to reach nearly enough its full strength to

practically annul error on this score.

377. Endless patience and perseverance in designing and

trying different methods for investigation are necessary for

the advancement of science: and indeed, in discovery, he

is the most likely to succeed who, not allowing himself to be

disheartened by the non-success of one form of experiment,

judiciously varies his methods, and thus interrogates in every

conceivably useful manner the subject of his investigations.

378. A most important remark, due to Herschel, regards Residual

what are called residual phenomena. When, in an experiment,

all known causes being allowed for, there remain certain un-

explained effects (excessively slight it may be), these must

be carefully investigated, and every conceivable variation of

arrangement of apparatus, etc., tried; until, if possible, we

manage so to isolate the residual phenomenon as to be able

to detect its cause. It is here, perhaps, that in the present

state of science we may most reasonably look for extensions

of our knowledge; at all events we are warranted by the recent

history of Natural Philosophy in so doing. Thus, to take only



444 PRELIMINARY. [378.

Residual a very few instances, and to say nothing of the discovery of
phenomena. . . . . .

electricity and magnetism by the ancients, the peculiar smell

observed in a room in which an electrical machine is kept in

action, was long ago observed, but called the "
smell of elec-

tricity," and thus left unexplained. The sagacity of Schonbein

led to the discovery that this is due to the formation of Ozone,

a most extraordinary body, of great chemical activity; whose

nature is still uncertain, though the attention of chemists has

for years been directed to it.

379. Slight anomalies in the motion of Uranus led Adams

and Le Verrier to the discovery of a new planet; and the fact

that the oscillations of a magnetized needle about its position

of equilibrium are "damped" by placing a plate of copper below

it, led Arago to his beautiful experiment showing a resistance to

relative motion between a magnet and a piece of copper; which

was first supposed to be due to magnetism in motion, but which

soon received its correct explanation from Faraday, and has since

been immensely extended, and applied to most important pur-

poses. In fact, from this accidental remark about the oscillation

of a needle was evolved the grand discovery of the Induction of

Electrical Currents by magnets or by other currents.

We need not enlarge upon this point, as in the following

pages the proofs of the truth and usefulness of the principle will

continually recur. Our object has been not so much to give

applications as principles, and to show how to attack a new com-

bination, with the view of separating and studying in detail the

various causes which generally conspire to produce observed

phenomena, even those which are apparently the simplest.

Unexpected 380. If on repetition several times, an experiment con-

oTIfscOT-
4

tinually gives different results, it must either have been very

results of carelessly performed, or there must be some disturbing cause

trials not taken account of. And, on the other hand, in cases where

no very great coincidence is likely on repeated trials, an unex-

pected degree of agreement between the results of various trials

should be regarded with the utmost suspicion, as probably due

to some unnoticed peculiarity of the apparatus employed. In
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either of these cases, however, careful observation cannot fail Unexpected
agreement

to detect the cause of the discrepancies or of the unexpected dis-
agreement, and may possibly lead to discoveries in a totally^^
unthought-of quarter. Instances of this kind may be given trials,

without limit
;
one or two must suffice.

381. Thus, with a very good achromatic telescope a star

appears to have a sensible disc. But, as it is observed that

the discs of all stars appear to be of equal angular diameter,

we of course suspect some common error. Limiting the aper-

ture of the object-glass increases the appearance in question,

which, on full investigation, is found to have nothing to do with

discs at all. It is, in fact, a diffraction phenomenon, and will

be explained in our chapters on Light.

382. Again, in measuring the velocity of Sound by experi-

ments conducted at night with cannon, the results at one station

were never found to agree exactly with those at the other;

sometimes, indeed, the differences were very considerable. But

a little consideration led to the remark, that on those nights in

which the discordance was greatest a strong wind was blowing

nearly from one station to the other. Allowing for the obvious

effect of this, or rather eliminating it altogether, the mean velo-

cities on different evenings were found to agree very closely.

383. It may perhaps be advisable to say a few words here Hypotheses

about the use of hypotheses, and especially those of very

different gradations of value which are promulgated in the

form of Mathematical Theories of different branches of Natural

Philosophy.

384. Where, as in the case of the planetary motions and

disturbances, the forces concerned are thoroughly known, the

mathematical theory is absolutely true, and requires only ana-

lysis to work out its remotest details. It is thus, in general, far

ahead of observation, and is competent to predict effects not yet

even observed—as, for instance, Lunar Inequalities due to the

action of Venus upon the Earth, etc. etc., to which no amount

of observation, unaided by theory, could ever have enabled us

to assign the true cause. It may also, in such subjects as Geo-

metrical Optics, be carried to developments far beyond the reach
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Hypotheses, of experiment ;
but in this science the assumed bases of the

theory are only approximate ;
and it fails to explain in all their

peculiarities even such comparatively simple phenomena as

Halos and Rainbows—though it is perfectly successful for the

practical purposes of the maker of microscopes and telescopes,

and has enabled really scientific instrument-makers to carry the

construction of optical apparatus to a degree of perfection which

merely tentative processes never could have reached.

385. Another class of mathematical theories, based to some

extent on experiment, is at present useful, and has even in

certain cases pointed to new and important results, which ex-

periment has subsequently verified. Such are the Dynamical

Theory of Heat, the Undulatory Theory of Light, etc. etc. In

the former, which is based upon the conclusion from experi-

ment that heat is a form of energy, many formulae are at pre-

sent obscure and uninterpretable, because we do not know the

mechanism of the motions or distortions of the particles of

bodies. Results of the theory in which these are not involved,

are of course experimentally verified. The same difficulties exist

in the Theory of Light. But before this obscurity can be per-

fectly cleared up, we must know something of the ultimate, or

molecular, constitution of the bodies, or groups of molecules,

at present known to us only iu the aggregate.

Deduction 386. A third class is well represented by the Mathematical

b
f

aoie resiii°t Theories of Heat (Conduction), Electricity (Statical), and Mag-

£tf
a
obi
m"

netisni (Permanent). Although we do not know how Heat is

serrations.

propagate(j in bodies, nor what Statical Electricity or Perma-

nent Magnetism are—the laws of their fluxes and forces are as

certainly known as that of Gravitation, and can therefore like

it be developed to their consequences, by the application of

Mathematical Analysis. The works of Fourier* Greenf, and

PoissonJ areremarkable instances of such development. An-

other good example is Ampere's Theory of Electro-dynamics.

* Theorie analytique de la Chaleur. Paris, 1822.

t Essay on the Application of Mathematical Analysis to the Theories of

Electricity and Magnetism. Nottingham, 1828. Reprinted in Crelle's Journal.

J Memoires sur le Magnetisme. Mem. de l'Acad. des Sciences, 1811.
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387. When the most probable result is required from a Deduction
. °f 1T10st Pro"

number of observations of the same quantity which do not babie result
1 J

.
from a num-

exactly agree, we must appeal to the mathematical theory of berofoh-
•> o ' "

_

-> servations.

jarobabilities to guide us to a method of combining the results

of experience, so as to eliminate from them, as far as possible,

the inaccuracies of observation. Of course it is to be under-

stood that we do not here class as inaccuracies of observation

any errors which may affect alike every one of a series of

observations, such as the inexact determination of a zero point,

or of the essential units of time and space, the personal equa-

tion of the observer, etc. The process, whatever it may be,

which is to be employed in the elimination of errors, is ap-

plicable even to these, but only when several distinct series of

observations have been made, with a change of instrument, or

of observer, or of both.

388. We understand as inaccuracies of observation the

whole class of errors which are as likely to lie in one

direction as in another in successive trials, and which we may
fairly presume would, on the average of an infinite number of

repetitions, exactly balance each other in excess and defect.

Moreover, we consider only
• errors of such a kind that their

probability is the less the greater they are
;
so that such errors

as an accidental reading of a wrong number of whole de-

grees on a divided circle (which, by the way, can in general be
"
probably

"
corrected by comparison with other observations)

are not to be included.

389. Mathematically considered, the subject is by no means

an easy one, and many high authorities have asserted that the

reasoning employed by Laplace, Gauss, and others, is not well

founded
; although the results of their analysis have been

generally accepted. As an excellent treatise on the subject has

recently been published by Airy, it is not necessary for us to

do' more than to sketch in the most cursory manner a simple and

apparently satisfactory method of arriving at what is called the

Method of Least Squares.

390. Supposing the zero-point and the graduation of an

instrument (micrometer, mural circle, thermometer, electrometer,
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Dedm-tion galvanometer, etc.) to be absolutely accurate, successive readings
of most pro- „ .,,.,. .

°
babie result of the value of a quantity (linear distance, altitude of a star,
from a nun:-

,

berofpb- temperature, potential, strength 01 an electric current, etc.) ma}
r

,

and in general do, continually differ. What is most probably
the true value of the observed quantity ?

The most probable value, in all such cases, if the observa-

tions are all equally trustworthy, will evidently be the simple

mean; or if they are not equally trustworthy, the mean found by

attributing weights to the several observations in proportion to

their presumed exactness. But if several such means have

been taken, or several single observations, and if these several

means or observations have been differently qualified for the

determination of the sought quantity (some of them being

likely to give a more exact value than others), we must assign

theoretically the best practical method of combining them.

391. Inaccuracies of observation are, in general, as likely to

be in excess as in defect. They are also (as before observed) more

likely to be small than great ;
and (practically) large errors are

not to be expected at all, as such would come under the class

of avoidable mistakes. It follows that in any one of a series of

observations of the same quantity the probability of an error

of magnitude x must depend upon x'\ and must be expressed

by some function whose value diminishes very rapidly as x

increases. The probability that the error lies between x and

x + Bx, where Bx is very small, must also be proportional to Sx.

Hence we may assume the probability of an error of any

magnitude included in the range of x to x + 8x to be

4> (x
2

)
hx.

Now the error must be included between + go and — go .

Hence, as a first condition,

+OC

<f>(af)dx=l (1).
/.

The consideration of a very simple case gives us the means of

determining the form of the function <£ involved in the preceding

expression*.

Compare Boole, Trans. R.S.E., 1857. See also Tait, Trans. R.S.E., 1864
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Suppose a stone to be let fall with the object of hitting a mark Deduction

on the ground. Let two horizontal lines be drawn through the bable result*

mark at right angles to one another, and take them as axes of a; berof ob-
'

and y respectively. The chance of the stone falling at a distance

between x and x + 8x from the axis of y is
<f> (x

2

)
8x.

Of its falling between y and y + Sy from the axis of x the

chance is
<f> (y

2
) by.

The chance of its falling on the elementary area SxSy, whose co-

ordinates are x, y, is therefore (since these are independent events,

and it is to be observed that this is the assumption on which the

whole investigation depends*)

cf>(x
2

)<f>(y
2

)8x8y,ovacf>(x
2

)<t>(f),

if a denote the indefinitely small area about the point xy.

Had we taken any other set of rectangular axes with the same

origin, we should have found for the same probability the ex-

pression acf> (a/
2

) cf> (y
2

),

x', y being the new co-ordinates of a. Hence we must have

</> (x
2

) <£ (y
2

)
= 4 (x'

2

) <f> (y
2

),
if x2 + y

2 = x'
2 + y'\

From this functional equation we have at once

tf> (x
2

)
= As»>*

2

,

where A and m, are constants. We see at once that m must be

negative (as the chance of a large error is very small), and we

may write for it - j2 ,
so that h will indicate the degree of de-

licacy or coarseness of the system of measurement employed.

Substituting in (1) we have

A I e~Vdx=l,
J —00

whence A = 7—7- ,
and the law of error is

hj-rr

1 ~ X^X Law of
~T e T~ • eiror.

Jit h

Tho law of error, as regards distance from the mark, without

reference to the direction of error, is evidently

// 4> (»
2

) (f) dxdy,

taken through the space between concentric circles whose radii

2 - r-
are r and r + Sr, and is therefore t- « hi

rSr,
h2

*
[The investigation is due to Sir John Herschel (1850). The assumption in

question was adversely criticised by R. L. Ellis, and has been rejected by most
subsequent writers. H. L.]

VOL. I. 29
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Law of
error.

Probable
error.

which is of the same form as the law of error to the l'ight or left

of a line, with the additional factor r for the greater space for

error at greater distances from the centre. As a verification, we
see at once that

2 [™ Jl~ e ft
2 rdr = 1

h2

Jo

as was to be expected.

392. The Probable Error of an observation is a numerical

quantity such that the error of the observation is as likely to

exceed as to fall short of it in magnitude.

If we assume the law of error just found, and call P the

probable error in one trial,

rP _x* /-
00

_x2

I € h°- dx =
/

e ft
3 dx.

Jo Jp

The solution of this equation by trial and error leads to the

approximate result

P= 0-477 h.

Probable 393. The probable error of any given multiple of the value

suXdfffer- of an observed quantity is evidently the same multiple of the

multiple, probable error of the quantity itself.

The probable error of the sum or difference of two quantities,

affected by independent errors, is the square root of the sum of

the squares of their separate probable errors.

To prove this, let us investigate the law of error of

where the laws of error of X and Y are

1 _x2dx . 1 _yldii

-j-z
€ a 2—

,
and

-j= € 62

b
'

respectively. The chance of an error in Z, of a magnitude in-

cluded between the limits z, z + 8z, is evidently

r € a2 dx \ e
"
&2
dy.

For, whatever value is assigned to x, the value of y is given by
the limits z-x and z+Sz-x [or z + x, z + 8z + x; but the

chances of ± x are the same, and both are included in the limits

(± ao
)
of integration with respect to x\
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The value of the above integral becomes, by effecting the in- Probable

tegration with respect to y, sum
,
difier-

xo ence, or

8z [
+ °° _*2 J±^P multiple.

e a; £ fc
2 ax.

8z r

irabj-

and this is easily reduced to

1 __*2
8z—— € a 2+ 6« --. .> Ja*+b*

Thus the probable error is 0'i77ja
2+b2

,
whence the proposition.

And the same theorem is evidently true for any number of quan-

tities.

394. As above remarked, the principal use of this theory is Practical

in the deduction, from a large series of observations, of the

values of the quantities sought in such a form as to be liable

to the smallest probable error. As an instance—by the prin-

ciples of physical astronomy, the place of a planet is calculated

from assumed values of the elements of its orbit, and tabulated

in the Nautical Almanac. The observed places do not exactly

agree with the predicted places, for two reasons—first, the data

for calculation are not exact (and in fact the main object of the

observation is to correct their assumed values) ; second, each

observation is in error to some unknown amount. Now the

difference between the observed, and the calculated, places

depends on the errors of assumed elements and of observation.

The methods are applied to eliminate as far as possible the

second of these, and the resulting equations give the required
corrections of the elements.

Thus if 6 be the calculated R.A. of a planet : 8a, 8e, 8-m, etc.,

the corrections required for the assumed elements—the true

It.A. is + A8a + E8e + Tl8m + etc., Method of

where A, E, IT, etc., are approximately known. Suppose the
square

observed R.A. to be ®, then

+ A8a + E8e + U8^ + ... -®
or A8a + E8e+n8^ + ...=®-6,
a known quantity, subject to error of observation. Every obser-

vation made gives us an equation of the same form as this, and

in general the number of observations greatly exceeds that of the

quantities 8a, 8e, 8-ui, etc., to be found. But it will be sufficient to

consider the simple case where only one quantity is to be found.

29—2
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Method of Suppose a number of observations, of the same quantity x, lead
least ..

squares. to the following equations :
—

as = 2?,,
x = B„, etc.,

and let the probable errors be Ev E2 ,
... Multiply the terms of

each equation by numbers inversely proportional to E
l}
E

2 ,
...

This will make the probable errors of the second members of all

the equations the same, e suppose. The equations have now the

general form ax = b,

and it is required to find a system of linear factors, by which

these equations, being multiplied in order and added, shall lead

to a final equation giving the value of x with the probable error a

minimum. Let them be/,,/2 ,
etc. Then the final equation is

r$af)x= %(bf)

and therefore P2

(2a/)
2 = e

22 (f
2

)

by the theorems of § 393, if P denote the probable error of a;.

2(/
2
)Hence .^ ,.. is a minimum, and its differential coefficients

with respect to each separate factory must vanish.

This gives a series of equations, whose general form is

/2 («/)
- a% (/')

=
0,

which give evidently/, =a,, fa= <*
a)

etc.

Hence the following rule, which may easily be seen to hold for

any number of linear equations containing a smaller number of

unknown quantities,

Make the probable error of the second member the same in each

equation, by the employment of a proper factor ; multiply each

equation by the coefficient of x in it and add all, for one of the

final equations ; and so, with reference to y, z, etc., for the others.

The probable errors of the values of x, y, etc., found from these

final equations will be less than those of the values derived

from any other linear method of combining the equations.

This process has been called the method of Least Squares,

because the values of the unknown quantities found by it are

such as to render the sum of the squares of the errors of the

original equations a minimum.

That is, in the simple case taken above,

2 (ax
—

b)
2 — minimum.
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For it is evident that this gives, on differentiating with respect Method of

to X, 5« ((IX
—

b)
=

0, squares.

which is the law above laid down for the formation of the single

equation.

395. When a series of observations of the same quantity Methods of
l J representing

has been made at different times, or under different circum-
^results"

stances, the law connecting the value of the quantity with the

time, or some other variable, may be derived from the results

in several ways—all more or less approximate. Two of these

methods, however, are so much more extensively used than the

others, that we shall devote a page or two here to a preliminary
notice of them, leaving detailed instances of their application

till we come to Heat, Electricity, etc. They consist in (1) a

Curve, giving a graphic representation of the relation between

the ordinate and abscissa, and (2) an Empirical Formula con-

necting the variables.'&

396. Thus if the abscissae represent intervals of time, and Curves,

the ordinates the corresponding height of the barometer, we

may construct curves which show at a glance the dependence
of barometric pressure upon the time of day; and so on. Such

curves may be accurately drawn by photographic processes on a

sheet of sensitive paper placed behind the mercurial column,

and made to move past it with a uniform horizontal velocity

by clockwork. A similar process is applied to the Temperature
and Electrification of the atmosphere, and to the components
of terrestrial magnetism."a 1

397. When the observations are not, as in the last section,

continuous, they give us only a series of points in the curve,

from which, however, we may in general approximate very

closely to the result of continuous observation by drawing,
libera manu, a curve passing through these points. This pro-

cess, however, must be employed with great caution
; because,

unless the observations are sufficiently close to each other,

most important fluctuations in the curve may escape notice. It

is applicable, with abundant accuracy, to all cases where the

quantity observed changes very slowly. Thus, for instance,

weekly observations of the temperature at depths of from 6 to
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interpola-
tion and
empirical
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24 feet underground were found by Forbes sufficient for a very-

accurate approximation to the law of the phenomenon.

398. As an instance of the processes employed for obtaining

an empirical formula, we may mention methods of Interpo-

lation, to which the problem can always be reduced. Thus from

sextant observations, at known intervals, of the altitude of the

sun, it is a common problem of astronomy to determine at what

instant the altitude is greatest, and what is that greatest alti-

tude. The first enables us to find the true solar time at the

place; and the second, by the help of the- Nautical Almanac,

gives the latitude. The differential calculus, and the calculus

of finite differences, give us formulae for any required data
;

and Lagrange has shown how to obtain a very useful one by

elementary algebra.

By Taylor's Theorem, if y=f(x), we have

(x
— x y .„

y =/(x + x-x ) =f(x )
+ (x

-
«„)/' (x ) + ^-Jt /" fo) + . . .

i . — . . . i *

where 6 is a proper fraction, and x is any quantity whatever.

This formula is useful only when the successive derived values

of/(ic )
diminish very rapidly.

In finite differences we have

/(« + h)
= !)*/(«) =(l+A)»/(a>)

•(2);=f(x) + hAf(x) +W^ )

Ay(x)+

a very useful formula when the higher differences are small.

(1) suggests the proper form for the required expression, but it

is only in rare cases th&tf (x ), f" (xg), etc., are derivable directly

from observation. But (2) is useful, inasmuch as the successive

differences, &f(x), A*f(x), etc., are easily calculated from the

tabulated results of observation, provided these have been taken

for equal successive increments of x.

If for values x
,
x

,
... x^& function takes the values y , yt ,

y3 ,
... yn , Lagrauge gives for it the obvious expression

+
ss-as, («!

-x^ - x3 ) . . .
(.«,

- xj x- x
2 (x2

- xjfo
r

- + ... I(x -x
1)(x-x2)...(x-x„).

,-x3)...(s2 -xJ J
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Here it is of course assumed that the function required is a Interpola-

rational and integral one in x of the n — 1
th

degree ; and, in empirical

general, a similar limitation is in practice applied to the other

formulae above; for in order to find the complete expression for

f (x) in either, it is necessary to determine the values off (x),

f" (x ),
... in the first, or of A/ (x), A

2

/(x), ... in the second. If

n of the coefficients be required, so as to give the n chief terms

of the general value of f(x), we must have n observed simul-

taneous values of a? and f(x), and the expressions become deter-

minate and of the n — 1
th

degree in x — x
Q
and h respectively.

In practice it is usually sufficient to employ at most three terms

of either of the first two series. Thus to express the length I

of a rod of metal as depending on its temperature t, we may
assume from (1)

i=i + A(t-to)
+ B(t-toy,

/ being the measured length at any temperature t
n

.

398'. These formulae are practically useful for calculating

the probable values of any observed element, for values of the

independent variable lying within the range for which observa-

tion has given values of the element. But except for values of

the independent variable either actually within this range, or

not far beyond it in either direction, these formulae express

functions which, in general, will differ more and more widely
from the truth the further their application is pushed beyond
the range of observation.

In a large class of investigations the observed element is in Periodic

its nature a periodic function of the independent variable. The

harmonic analysis (§ 77) is suitable for all such. When the

values of the independent variable for which the element has

been observed are not equidifferent the coefficients, determined

according to the method of least squares, are found by a process

which is necessarily very laborious
;
but when they are equi-

different, and especially when the difference is a submultiple
of the period, the equation derived from the method of least

squares becomes greatly simplified. Thus, if 6 denote an angle

increasing in proportion to t, the time, through four right angles
in the period, T, of the phenomenon ;

so that

27rt
-
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Periodic let f(O) = A o+A 1
cos0 + A

a con20+...
functions.

+ B
1
smd + B2

sm26 + ...

where A
Q>
Av A% , ... B

lt
B

2 ,
... are unknown coefficients, to be

determined so that f(ff) may express the most probable value

of the element, not merely at times between observations, but

through all time as long as the phenomenon is strictly periodic.

By taking as many of these coefficients as there are of distinct

data by observation, the formula is made to agree precisely with

these data. But in most applications of the method, the peri-

odically recurring part of the phenomenon is expressible by a

small number of terms of the harmonic series, and the higher

terms, calculated from a great number of data, express either

irregularities of the phenomenon not likely to recur, or errors of

observation. Thus a comparatively small number of terms may
give values of the element even for the very times of observa-

tion, more probable than the values actually recorded as having
been observed, if the observations are numerous but not mi-

nutely accurate.

The student may exercise himself in writing out the equa-

tions to determine five, or seven, or more of the coefficients

according to the method of least squares; and reducing them

by proper formulae of analytical trigonometry to their simplest

and most easily calculated forms where the values of 6 for which

f(6) is given are equidifferent. He will thus see that when the

difference is ——
, i being any integer, and when the number

%

of the data is i or any multiple of it, the equations contain each

of them only one of the unknown quantities : so that the

method of least squares affords the most probable values of

the coefficients, by the easiest and most direct elimination.



CHAPTER IV.

MEASURES AND INSTRUMENTS.

399. Having seen in the preceding chapter that for the Necessity
fit" H.PP 11 rfl t ft

investigation of the laws of nature we must carefully watch measure-
., .-,

. . 1-11- ments.

experiments, either those gigantic ones which the universe

furnishes, or others devised and executed by man for specia

objects
—and having seen that in all such observations accurate

measurements of Time, Space, Force, etc., are absolutely neces-

sary, we may now appropriately describe a few of the more

useful of the instruments employed for these purposes, and the

various standards or units which are employed in them.

400. Before going into detail we may give a rapid resume

of the principal Standards and Instruments to be described in

this chapter. As most, if not all, of them depend on physical

principles to be detailed in the course of this work— we shall

assume in anticipation the establishment of such principles,

giving references to the future division or chapter in which the

experimental demonstrations are more particularly explained.
This course will entail a slight, but unavoidable, confusion—
slight, because Clocks, Balances, Screws, etc., are familiar even

to those who know nothing of Natural Philosophy; unavoid-

able, because it is in the very nature of our subject that no one

part can grow alone, each requiring for its full development the

utmost resources of all the others. But if one of our depart-
ments thus borrows from others, it is satisfactory to find that it

more than repays by the power which its improvement affords

them.
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classes of 401. We may divide our more important and fundamental
instru- . „ ,

ments. instruments into lour classes—
Those for measuring Time

;

„ „ Space, linear or angular ;

Force
;

„ „ Mass.

Other instruments, adapted for special purposes such as the

measurement of Temperature, Light, Electric Currents, etc., will

come more naturally under the head of the particular physical

energies to whose measurement they are applicable. Descrip-

tions of self-recording instruments such as tide-gauges, and

barometers, thermometers, electrometers, recording photograph-

ically or otherwise the continuously varying pressure, tempe-

rature, moisture, electric potential of the atmosphere, and

magnetometers recording photographically the continuously

varying direction and magnitude of the terrestrial magnetic

force, must likewise be kept for their proper places in our

work.

calculating Calculating Machines have also important uses in assisting

physical research in a great variety of ways. They belong to

t wo classes :
—

I. Purely Arithmetical, dealing with integral numbers of

units. All of this class are evolved from the primitive use

of calculuses or little stones for counters (from which we

derived the very names calculation and " The Calculus "),

through such mechanism as that of the Chinese Abacus, still

serving its original purpose well in infant schools, up to the

Arithmometer of Thomas of Colmar and the grand but partially

realized conceptions of calculating machines by Babbage.

II. Continuous Calculating Machines. As these are not

only useful as auxiliaries for physical research but also involve

dynamical and kinematical principles belonging properly to

our subject, some of them have been described in the Appendix
to this Chapter, from which dynamical illustrations will be

taken in our chapters on Statics and Kinetics.
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402. We shall consider in order the more prominent funda- classes of

i •
instru-

mental instruments of the four classes, ana some of their most ments.

important applications :
—

Clock, Chronometer, Chronoscope, Applications to Obser-

vation and to self-registering Instruments.

Vernier and Screw-Micrometer, Cathetometer, Sphero-

meter, Dividing Engine, Theodolite, Sextant or Circle.

Common Balance, Bifilar Balance, Torsion Balance, Pen-

dulum, Ergometer.

Among Standards we may mention—
1. Time.—Day, Hour, Minute, Second, sidereal and solar.

2. Space.
—Yard and Metre: Radian, Degree, Minute, Second.

3. Force.—Weight of a Pound or Kilogramme, etc., in any

particular locality (gravitation unit) ; poundal, or dyne

(kinetic unit).

4. Mass. Pound, Kilogramme, etc.

403. Although without instruments it is impossible to pro-

cure or apply any standard, yet, as without the standards no

instrument could give us absolute measure, we may consider the

standards first—referring to the instruments as if we already

knew their principles and applications.

404. First we may notice the standards or units of angular Angular
measure.

measure :

Radian, or angle whose arc is equal to radius
;

Degree, or ninetieth part of a right angle, and its successive

subdivisions into sixtieths called Minutes, Seconds, Thirds, etc.

The division of the right angle into 90 degrees is convenient

because it makes the half- angle of an equilateral triangle

(sin
-1

\) an integral number (30) of degrees. It has long been

universally adopted by all Europe. The decimal division of the

right angle, decreed by the French Republic when it success-

fully introduced other more sweeping changes, utterly and

deservedlv failed.

The division of the degree into 60 minutes and of the

minute into 60 seconds is not convenient; and tables of the
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Angular
measure.

Measure
of time.

circular functions for degrees and hundredths of the degree are

much to be desired. Meantime, when reckoning to tenths of a

degree suffices for the accuracy desired, in any case the ordinary

tables suffice, as 6' is ^ of a degree.

The decimal system is exclusively followed in reckoning by
radians. The value of two right angles in this reckoning is

314159..., or it. Thus -n radians is equal to 180°. Hence

180° -ttt is 57° -29578..., or 57° 17' 44"-8 is equal to one

radian. In mathematical analysis, angles are uniformly reck-

oned in terms of the radian.

405. The practical standard of time is the Sidereal Day,

being the period, nearly constant*, of the earth's rotation about

its axis (§ 247). From it is easily derived the Mean Solar Day,
or the mean interval which elapses between successive passages

of the sun across the meridian of any place. This is not so

nearly as the Sidereal Day, an absolute or invariable unit :

* In our first edition it was stated in this section that Laplace had calculated

from ancient observations of eclipses that the period of the earth's rotation about

its axis had not altered by iooo^ooo of itself since 72° B - c - In § 83° xi was

pointed out that this conclusion is overthrown by farther information from

Physical Astronomy acquired in the interval between the printing of the two

sections, in virtue of a correction which Adams had made as early as 1863 upon

Laplace's dynamical investigation of an acceleration of the moon's mean motion,

produced by the sun's attraction, showing that only about half of the observed

acceleration of the moon's mean motion relatively to the angular velocity of the

earth's rotation was accounted for by this cause. [Quoting from the first edition,

§ 830] "In 1859 Adams communicated to Delaunay his final result:—that at

" the end of a century the moon is 5"7 before the position she would have,
' '

relatively to a meridian of the earth, according to the angular velocities of the

"two motions, at the beginning of the century, and the acceleration of the

"moon's motion truly calculated from the various disturbing causes then recog-

"nized. Delaunay soon after verified this result: and about the beginning of

"1866 suggested that the true explanation may be a retardation of the earth's

" rotation by tidal friction. Using this hypothesis, and allowing for the conse-

"
quent retardation of the moon's mean motion by tidal reaction (§ 276), Adams,

"in an estimate which he has communicated to us, founded on the rough as-

"
sumption that the parts of the earth's retardation due to solar and lunar tides

" are as the squares of the respective tide-generating forces, finds 22 s as the

" error by which the earth would in a century get behind a perfect clock rated

" at the beginning of the century. If the retardation of rate giving this integral
" effect were uniform (§ 35, b), the earth, as a timekeeper, would be going slower

"
by -22 of a second per year in the middle, or -44 of a second per year at the

"
end, than at the beginning of a century."
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secular changes in the period of the earth's revolution about the Measure of

. ... tune.

sun affect it, though very slightly. It is divided into 24 hours,

and the hour, like the degree, is subdivided into successive

sixtieths, called minutes and seconds. The usual subdivision

of seconds is decimal.

It is well to observe that seconds and minutes of time

are distinguished from those of angular measure by notation.

Thus we have for time 13h 43m 27S

'5S, but for angular measure

13° 43' 27"*58.

When long periods of time are to be measured, the mean solar

year, consisting of 360*242203 sidereal days, or 305242242 mean

solar days, or the century consisting of 100 such years, may be

conveniently employed as the unit*.

406. The ultimate standard of accurate chronometry must Necessity

(if the human race live on the earth, for a few million years) be perennial

it • • tip standard.

founded on the physical properties of some body of more con- a spring

t , , „ . suggested.
stant character than the earth: for instance, a carefully arranged
metallic spring, hermetically sealed in an exhausted glass vessel.

The time of vibration of such a spring would be necessarily more

constant from day to day than that of the balance-spring of the

best possible chronometer, disturbed as this is by the train of

mechanism with which it is connected : and it would almost

certainly be more constant from age to age than the time of

rotation of the earth (cooling and shrinking, as it certainly is, to

an extent that must be very considerable in fifty million years).

407. The British standard of length is the Imperial Yard, Measure of

defined as the distance between two marks on a certain metallic founded on

bar, preserved in the Tower of London, when the whole has a metallic
st 3.T1 (l 3 vrl SI

temperature of 60° Fahrenheit. It was not directly derived from

any fixed quantity in nature, although some important relations

with such have been measured with great accuracy. It has been
*

[In Houzeau's Vade Mecum, p. 482 will be found a statement that in the

year 1900 the length of the interval of time between two successive passages of
the sun through the vernal equinox is 365-2421933 days of mean solar time, or
3662421933 days of sidereal time. It would seem as if the second of the two
numbers in the text is intended to be the same as the first of the two numbers
just quoted. In the first of the numbers in the text the rotation of the earth
and its revolution round the sun are presumably given by reference to a fixed

star. The difference between the numbers in the text appears to be the pre-
cession of the equinox ; but it will be noticed that no epoch is given to which
the results are applicable. G. H. D.]
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Earth's
dimensions
not con-
stant,

nor easily
measured
with great
accuracy.

carefully compared with the length of a seconds pendulum vibrat-

ing at a certain station in the neighbourhood of London, so that

if it should again be destroyed, as it was at the burning of the

Houses of Parliament in 1834, and should all exact copies of it,

of which several are preserved in various places, be also lost, it

can be restored by pendulum observations. A less accurate,

but still (except in the event of earthquake disturbance) a

very good, means of reproducing it exists in the measured base-

lines of the Ordnance Survey, and the thence calculated distances

between definite stations in the British Islands, which have been

ascertained in terms of it with a degree of accuracy sometimes

within an inch per mile, that is to say, within about eo<Joo-

408. In scientific investigations, we endeavour as much as

possible to keep to one unit at a time, and the foot, which is

defined to be one-third part of the yard, is, for British measure-

ment, generally the most convenient. Unfortunately the inch,

or one-twelfth of a foot, must sometimes be used. The statute

mile, or 1760 yards, is most unhappily often used when great

lengths are considered. The British measurements of area and

volume are infinitely inconvenient and wasteful of brain-energy,

and of plodding labour. Their contrast with the simple, uni-

form, metrical system of France, Germany, and Italy, is but

little creditable to English intelligence.

409. In the French metrical system the decimal division is ex-

clusively employed. The standard, (unhappily) called the Metre,

was defined originally as the ten-millionth part of the length

of the quadrant of the earth's meridian from the pole to the

equator; but it is now defined practically by the accurate standard

metres laid up in various natioual repositories in Europe. It is

somewhat longer than the yard, as the following Table shows :

Measure of

length.

Measure of

surface.

Inch = 25-39977 millimetres.

Foot = 3-047972 decimetres.

British statute mile

= 1609-329 metres.

Centimetre = -3937043 inch.

Metre = 3-280869 feet.

Kilometre = -6213767 British

statute mile.

410. The unit of superficial measure is in Britain the square

yard, in France the metre carre. Of course we may use square

inches, feet, or miles, as also square millimetres, kilometres, etc.,

or the Hectare = 10,000 square metres.
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Square inch = 6*451483 square centimetres. Measure of
surface.

,,
foot= 9-290135 ,, decimetres.

,, yard = 83-61121 „ decimetres.

Acre = -4046792 of a hectare.

Square British statute mile = 258 -9 946 hectares.

Hectare = 2*471093 acres.

411. Similar remarks apply to the cubic measure in the two Measure of

countries, and we have the following Table :
—

Cubic inch = 16-38661 cubic centimetres.

„ foot = 28*31606 ,, decimetres or Litres.

Gallon = 4-543808 litres.

„ =277*274 cubic inches, by Act of Parliament

now repealed.

Litre = *035315 cubic feet.

412. The British unit of mass is the Pound (denned by Measure of

standards only); the French is the Kilogramme, defined origi-

nally as a litre of water at its temperature of maximum density ;

but now practically defined by existing standards.

Grain = 64*79896 milligrammes. Gramme = 15*43235 grains.

Pound= 453*5927 grammes. Kilogramme = 2*20462125 lbs.

Professor W. H. Miller finds {Phil. Trans. 1857) that the

''kilogramme des Archives" is equal in mass to 15432*84874

grains; and the "kilogramme type laiton," deposited in the

Ministere de lTnterieure in Paris, as standard for French com-

merce, is 15432*344 grains.

413. The measurement of force, whether in terms of the Measure of

weight of a stated mass in a stated locality, or in terms of the

absolute or kinetic unit, has been explained in Chap. II. (See

§§ 220—226). From the measures of force and length, we
derive at once the measure of work or mechanical effect. That

practically employed by engineers is founded on the gravita-

tion measure of force. Neglecting the difference of gravity at

London and Paris, we see from the above tables that the follow-

ing relations exist between the London and the Parisian reckon-

ing of work :
—

Foot-pound =0*13825 kilogramme-metre.

Kilograrume-nietre = 7*2331 foot-pounds.
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ciocv. 414. A Clock is primarily an instrument which, by means

of a train of wheels, records the number of vibrations executed

by a pendulum ;
a Chronometer or Watch performs the same duty

for the oscillations of a flat spiral spring
—

-just as the train of

wheel-work in a gas-metre counts the number of revolutions of

the main shaft caused by the passage of the gas through the

machine. As, however, it is impossible to avoid friction, re-

sistance of air, etc., a pendulum or spring, left to itself, would

not long continue its oscillations, and, while its motion con-

tinued, would perform each oscillation in less and less time as

the arc of vibration diminished : a continuous supply of energy
is furnished by the descent of a weight, or the uncoiling of

a powerful spring. This is so applied, through the train of

wheels, to the pendulum or balance-wheel by means of a

mechanical contrivance called an Escapement, that the oscilla-

tions are maintained of nearly uniform extent, and therefore

of nearly uniform duration. The construction of escapements,
as well as of trains of clock-wheels, is a matter of Mechanics,

with the details of which we are not concerned, although it may

easily be made the subject of mathematical investigation. The

means of avoiding errors introduced by changes of temperature,

which have been carried out in Compensation pendulums and

balances, will be more properly described in our chapters on

Heat. It is to be observed that there is little inconvenience

if a clock lose or gain regularly; that can be easily and ac-

curately allowed for: irregular rate is fatal.

Electrically 415. By means of a recent application of electricity to be

clocks. afterwards described, one good clock, carefully regulated from

time to time to agree with astronomical observations, may be

made (without injury to its own performance) to control any
number of other less-perfectly constructed clocks, so as to com-

pel their pendulums to vibrate, beat for beat, with its own.

Chrono- 416. In astronomical observations, time is estimated to

tenths of a second by a practised observer, who, while watching

the phenomena, counts the beats of the clock. But for the very

accurate measurement of short intervals, many instruments have

been devised. Thus if a small orifice be opened in a large and
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deep vessel full of mercury, and if we know by trial the weight Chrono-
. . . . scop©.

of metal that escapes say in five minutes, a simple proportion

gives the interval which elapses during the escape of any given

weight. It is easy to contrive an adjustment by which a vessel

may be placed under, and withdrawn from, the issuing stream

at the time of occurrence of any two successive phenomena.

417. Other contrivances, called Stop-watches, Chronoscopes,

etc., which can be read off at rest, started on the occurrence of

any phenomenon, and stopped at the occurrence of a second,

then again read off; or which allow of the makiug (by pressing

a stud) a slight mark, on a dial revolving at a given rate,

at the instant of the occurrence of each phenomenon to be

noted, are common enough. But, of late, these have almost

entirely given place to the Electric Chronoscope, an instrument

which will be fully described later, when we shall have oc-

casion to refer to experiments in which it has been usefully

employed.

418. We now come to the measurement of space, and of

angles, and for these purposes the most important instruments

are the Vernier and the Screw.

419. Elementary geometry, indeed, gives us the means of Diagonal

dividing any straight line into any assignable number of equal

parts ;
but in practice this is by no

means an accurate or reliable method.

It was formerly used in the so-called

Diagonal Scale, of which the con-

struction is evident from the diagram.
The reading is effected by a sliding-

piece whose edge is perpendicular to

the length of the scale. Suppose
that it is PQ whose position on the

scale is required. This can evidently
cut only one of the transverse lines. Its number gives the number
of tenths of an inch [4 in the figure], and the horizontal line

next above the point of intersection gives evidently the number
of hundredths [in the present case 4]. Hence the reading is

7*44. As an idea of the comparative uselessness of this

vol. i. 30
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Diagonal
scale.

Yernier.

method, we may mention that a quadrant of 3 feet radius

which belonged to Napier of Merchiston, and is divided on

the limb by this method, reads to minutes of a degree ;
no

higher accuracy than is now attainable by the pocket sextants

made by Troughton and Simms, the radius of whose arc is

virtually little more than an inch. The latter instrument is

read by the help of a Vernier.

420. The Vernier is commonly employed for such instru-

ments as the Barometer, Sextant, and Cathetometer, while the

Screw is micrometrically applied to the more delicate instru-

ments, such as Astronomical Circles, and Micrometers, and the

Spherometer.

421. The vernier consists of a slip of metal which slides

along a divided scale, the edges of the two being coincident.

Hence, when it is applied co a divided circle, its edge is circular,

and it moves about an axis passing through the centre of the

divided limb.

In the sketch let 0, 1, 2,... 10 be the divisions on the vernier,

o, i, 2, etc., any set of consecutive divisions on the limb or scale

K\avw/vV1 along whose edge it slides. If, when and o coin-

cide, 10 and n coincide also, then 10 divisions of

-Q-,
the vernier are equal in length to 11 on the limb;

and therefore each division on the vernier is Joths

or 1^ of a division on the limb. If, then, the ver-

nier be moved till 1 coincides with i, will be ^th
of a division of the limb beyond o

;
if 2 coincide

with 2, will be T
2
oths beyond o; and so on.

Hence to read the vernier in any position, note

first the division next to 0, and behind it on

the limb. This is the integral number of divi-

sions to be read. For the fractional part, see

which division of the vernier is in a line with

one on the limb
;

if it be the 4th (as in the

figure), that indicates an addition to the reading of y^ths of a

division of the limb; and so on. Thus, if the figure represent

a barometer scale divided into inches and tenths, the reading
hi

is 3034, the zero line of the vernier being adjusted to the level

of the mercury.

29
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422. If the limb of a sextant be divided, as it usually is, to Vernier,

third parts of a degree, and the vernier be formed by dividing

21 of these into 20 equal parts, the instrument can be read to

twentieths of divisions on the limb, that is, to minutes of arc.

If no line on the vernier coincide with one on the limb, then

since the divisions of the former are the longer there will be

one of the latter included between the two lines of the vernier,

and it is usual in practice to take the mean of the readings

which would be given by a coincidence of either pair of bound-

ing lines.

423. In the above sketch and description, the numbers on

the scale and vernier have been supposed to run opposite ways.
This is generally the case with British instruments. In some

foreign ones the divisions run in the same direction on vernier

and limb, and in that case it is easy to see that to read to

tenths of a scale division we must have ten divisions of the

vernier equal to nine of the scale.

In general, to read to the %th part of a scale division, n divi-

sions of the vernier must equal n + 1 or n — 1 divisions on the

limb, according as these run in opposite or similar directions.

424. The principle of the Screw has been already noticed Screw.

(§ 102). It may be used in either of two ways, i.e., the nut

may be fixed, and the screw advance through it, or the screw

may be prevented from moving longitudinally by a fixed collar,

in which case the nut, if prevented by fixed guides from rotat-

ing, will move in the direction of the common axis. The
advance in either case is evidently proportional to the angle

through which the screw has turned about its axis, and this

may be measured by means of a divided head fixed perpendi-

cularly to the screw at one end, the divisions being read off by
a pointer or vernier attached to the frame of the instrument.

The nut carries with it either a tracing point (as in the divid-

ing engine) or a wire, thread, or half the object-glass of a tele-

scope (as in micrometers), the thread or wire, or the play of the

tracing point, being at right angles to the axis of the screw.

425. Suppose it be required to divide a line into any
number of equal parts. The line is placed parallel to the axis

30—2
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Screw.

Screw- Mi-
croui^tfr.

[425.

of the screw with one end exactly under the tracing point, or

under the fixed wire of a microscope carried by the nut, and

the screw-head is read off. By turning the head, the tracing

point or microscope wire is brought to the other extremity of

the line
;
and the number of turns and fractions of a turn re-

quired for the whole line is thus ascertained. Dividing this by
the number of equal parts required, we find at once the number
of turns and fractional parts corresponding to one of the

required divisions, and by giving that amount of rotation to

the screw over and over again, drawing a line after each rota-

tion, the required division is effected.

426. In the Micrometer, the movable wire carried by the

nut is parallel to a fixed wire. By bringing them into optical

contact the zero reading of the head is known
;
hence when

another reading has been obtained, we have by subtraction the

number of turns corresponding to the length of the object to

be measured. The absolute value of a turn of the screw is de-

termined by calculation from the number of threads in an inch,

or by actually applying the micrometer to an object of known
dimensions.

Sphero-
meter.

427. For the measurement of the thickness of a plate, or

the curvature of a lens, the Spherometer is used. It consists of a

screw nut rigidly fixed in the middle of a very rigid three-legged

table, with its axis perpendicular to the plane of the three feet

(or finely rounded ends of the legs), and an accurately cut screw

working in this nut. The lower extremity of the screw is also

finely rounded. The number of turns, whole or fractional, of

the screw, is read off by a divided head and a pointer fixed to

the stem. Suppose it be required to measure the thickness of

a plate of glass. The three feet of the instrument are placed

upon a nearly enough fiat surface of a hard body, and the screw

is gradually turned until its point touches and presses the sur-

face. The muscular sense of touch perceives resistance to the

turning of the screw when, after touching the hard body, it

presses on it with a force somewhat exceeding the weight of

the screw. The first effect of the contact is a diminution of

resistance to the turning, due to the weight of the screw coming
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to be borne on its fine pointed end instead of on the thread of Sphero-

the nut. The sudden increase of resistance at the instant when
the screw commences to bear part of the weight of the nut finds

the sense prepared to perceive it with remarkable delicacy on

account of its contrast with the immediately preceding diminu-

tion of resistance. The screw-head is now read off, and the screw

turned backwards until room is left for the insertion, beneath

its point, of the plate whose thickness is to be measured. The

screw is again turned until increase of resistance is again per-

ceived; and the screw-head is again read off. The difference of

the readings of the head is equal to the thickness of the plate,

reckoned in the proper unit of the screw and the division of its

head.

428. If the curvature of a lens is to be measured, the in-

strument is first placed, as before, on a plane surface, and the

reading for the contact is taken. The same operation is repeated
on the spherical surface. The difference of the screw readings
is evidently the greatest thickness of the glass which would be

cut off by a plane passing through the three feet. This enables

us to calculate the radius of the spherical surface (the distance

from foot to foot of the instrument being known).
Let a be the distance from foot to foot, I the length of screw

corresponding to the difference of the two readings, R the radius

a2

of the spherical surface
;
we have at once 2E = — +

1, or, as I

is generally very small compared with a, the diameter is, very
o

approximately, —.
oL

429. The Cathetometer is used for the accurate determina- Oatheto-

tion of differences of level—for instance, in measuring the

height to which a fluid rises in a capillary tube above the ex-

terior free surface. It consists of a long divided metallic stem,

turning round an axis as nearly as may be parallel to its length,

on a fixed tripod stand : and, attached to the stem, a spirit-level.

Upon the stem slides a metallic piece bearing a telescope of

which the length is approximately enough perpendicular to the

axis. The telescope tube is as nearly as may be perpendicular
to the length of the stem. By levelling screws in two feet of the
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Catheto- tripod the bubble of the spirit-level is brought to one position
meter. ^ .^ ^agg ^en t^e stem is turned all round its axis. This

secures that the axis is vertical. In using the instrument the

telescope is directed in succession to the two objects whose

difference of level is to be found, and in each case moved (gene-

rally by a delicate screw) up or down the stem, until a horizontal

wire in the focus of its eye-piece coincides with the image of

the object. The difference of readings on the vertical stem

(each taken generally by aid of a vernier sliding-piece) corre-

sponding to the two positions of the telescope- gives the required

difference of level.

Balance. 430. The common Gravity Balance is an instrument for

testing the equality of the gravity of the masses placed in the

two pans. We may note here a few of the precautions adopted

in the best balances to guard against the various defects to

which the instrument is liable; and the chief points to be at-

tended to in its construction to secure delicacy, and rapidity of

weighing.

The balance-beam should be very stiff, and as light as possible

consistently with the requisite stiffness. For this purpose it is

generally formed either of tubes, or of a sort of lattice-framework.

To avoid friction, the axle consists of a knife-edge, as it is called
;

that is, a wedge of hard steel, which, when the balance is in use,

rests on horizontal plates of polished agate. A similar contri-

vance is applied in very delicate balances at the points of the

beam from which the scale-pans are suspended. When not in

use, and just before use, the beam with its knife-edge is lifted

by a lever arrangement from the agate plates. While thus

secured it is loaded with weights as nearly as possible equal

(this can be attained by previous trial with a coarser instru-

ment), and the accurate determination is then readily effected.

The last fraction of the required weight is determined by a rider,

a very small weight, generally formed of wire, which can be

worked (by a lever) from the outside of the glass case in which

the balance is enclosed, and which may be placed in different

positions upon one arm of the beam. This arm is graduated to

tenths, etc., and thus shows at once the value of the rider in

any case as depending on its moment or leverage, § 232.
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431. Qualities of a balance : Balance.

1. Stability.
—For stability of the beam alone without pans

and weights, its centre of gravity must be below its bearing

knife-edge. For stability with the heaviest weights the line

joining the points at the ends of the beam from which the pans
are hung must be below the knife-edge bearing the whole.

2. Sensibility.
—The beam should be sensibly deflected from

a horizontal position by the smallest difference between the

weights in the scale-pans. The definite measure of the sensi-

bility is the angle through which the beam is deflected by a

stated difference between the loads in the pans.

3. Quickness.
—This means rapidity of oscillation, and con-

sequently speed in the performance of a weighing. It depends

mainly upon the depth of the centre of gravity of the whole

below the knife-edge and the length of the beam.

In our Chapter on Statics we shall give the investigation.

The sensibility and quickness will there be calculated for any

given form and dimensions of the instrument.

A fine balance should turn with about a 500,000th of the

greatest load which can safely be placed in either pan. In

fact few measurements of any kind are correct to more than

six significant figures.

The process of Double Weighing, which consists in counter-

poising a mass by shot, or sand, or pieces of fine wire, and then

substituting weights for it in the same pan till equilibrium is

attained, is more laborious, but more accurate, than single

weighing; as it eliminates all errors arising from unequal length
of the arms, etc.

Correction is required for the weights of air displaced by the

two bodies weighed against one another when their difference

is too large to be negligible.

432. In the Torsion-balance, invented and used with great Torsion-
° balance.

effect by Coulomb, a force is measured by the torsion of

a glass fibre, or of a metallic wire. The fibre or wire is

fixed at its upper end, or at both ends, according to circum-

stances. In general it carries a very light horizontal rod or

needle, to the extremities of which are attached the body on
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Torsion- which is exerted the force to be measured, and a counterpoise.
balance.

m

' r

The upper extremity of the torsion fibre is fixed to an index

passing through the centre of a divided disc, so that the angle

through which that extremity moves is directly measured. If,

at the same time, the angle through which the needle has

turned be measured, or, more simply, if the index be always
turned till the needle assumes a definite position determined

by marks or sights attached to the case of the instrument—
we have the amount of torsion of the fibre, and it becomes a

simple statical problem to determine from the latter the force

to be measured
;

its direction, and point of application, and

the dimensions of the apparatus, being known. The force of

torsion as depending on the angle of torsion was found by Cou-

lomb to follow the law of simple proportion up to the limits of

perfect elasticity
—as might have been expected from Hooke's

Law (see Properties of Matter), and it only remains that we de-

termine the amount for a particular angle in absolute measure.

This determination is in general simple enough in theory; but

in practice requires considerable care and nicety. The torsion-

balance, however, being chiefly used for comparative, not

absolute, measure, this determination is often unnecessary.

More will be said about it when we come to its applications.

433. The ordinary spiral spring-balances used for roughly

comparing either small or large weights or forces, are, properly

speaking, only a modified form of torsion-balance*, as they act

almost entirely by the torsion of the wire, and not by longi-

tudinal extension or by flexure. Spring-balances we believe

to be capable, if carefully constructed, of rivalling the ordinary

balance in accuracy, while, for some applications, they far sur-

pass it in sensibility and convenience. They measure directly

force, not mass; and therefore if used for determining masses

in different parts of the earth, a correction must be applied for

the varying force of gravity. The correction for temperature
must not be overlooked. These corrections may be avoided

by the method of double weighing.

*
Binet, Journal de VEcole Polytechnique, x. 1815 : and J. Thomson, Can-

bridge and Dublin Math. Journal (1848).
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434. Perhaps the must delicate of all instruments for the Pendulum,

measurement of force is the Pendulum. It is proved in kinetics

(see Div. II.) that for any pendulum, whether oscillating about

a mean vertical position under the action of gravity, or in a

horizontal plane, under the action of magnetic force, or force

of torsion, the square of the number of small oscillations in a

given time is proportional to the magnitude of the force under

which these oscillations take place.

For the estimation of the relative amounts of gravity at

different places, this is by far the most perfect instrument.

The method of coincidences by which this process has been

rendered so excessively delicate will be described later.

435. The Bijilar Suspension, an arrangement for measur- Bifliar

ing small horizontal forces, or couples in horizontal planes, in

terms of the weight of the suspended body, is due originally to

Sir William Snow Harris, who used it in one of his electro-

meters, as a substitute for the simple torsion-balance of Coulomb.

It was used also by Gauss in his bifilar magnetometer for mea- Bifliar Mag-

suring the horizontal component of the terrestrial magnetic
force*. In this instrument the bifilar suspension is adjusted to

keep a bar-magnet in a position approximately perpendicular

to the magnetic meridian. The small natural augmentations
and diminutions of the horizontal component are shown by
small azimuthal motions of the bar. On account of some

obvious mechanical and dynamical difficulties this instrument

was not found very convenient for absolute determinations, but

from the time of its first practical introduction by Gauss and

Weber it has been in use in all Magnetic Observatories for

measuring the natural variations of the horizontal magnetic

component. It is now made with a much smaller magnet than

the great bar weighing twenty-five pounds originally given with

it by Gauss
;
but the bars in actual use at the present day are

still enormously too large "f for their duty. The weight of the

*
Gauss, Resultate aus den Beobachtungen des magnetischen Vereins im

Jahre 1837. Translated in Taylor's Scientific Memoirs, Vol. II., Article vi.

t The suspended magnets used for determining the direction and the in-

tensity of the horizontal magnetic force in the Dublin Magnetic Observatory,
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Bifilar Mag- bar with, attached mirror ought not to exceed eight grammes,
netometer.

,

° °
#

° *

so that two single silk fibres may suffice for the bearing threads.

The only substantial alteration, besides the diminution of its

magnitude, which has been made in the instrument since Gauss

and Weber's time is the addition of photographic apparatus and

clockwork for automatic record of its motions. For absolute

determinations of the horizontal component force, Gauss's method

of deflecting a freely suspended magnet by a magnetic bar brought
into proper positions in its neighbourhood, and again making
an independent set of observations to determine the period of

oscillation of the same deflecting bar when suspended by a fine

fibre and set to vibrate through a small horizontal angle on

each side of the magnetic meridian, is the method which has

been uniformly in use both in magnetic observatories and in

travellers' observations with small portable apparatus since it

was first invented by Gauss*.

In the bifilar balance the two threads may be of unequal

lengths, the line joining their upper fixed ends need not be hori-

zontal, and their other ends may be attached to any two points of

the suspended body: but for most purposes, and particularly for

regular instruments such as electrometers and magnetometers
with bifilar suspension, it is convenient to have, as nearly as may
be, the two threads of equal length, their fixed ends at the same

level, and their other ends attached to the suspended body sym-

metrically with reference to its centre of gravity (as illustrated

in the last set of drawings of § 345 x

). Supposing the instrument-

maker to have fulfilled these conditions of symmetry as nearly

as he can with reference to the four points of attachment of the

threads, we have still to adjust properly the lengths of the

threads. For this purpose remark that a small difference in the

lengths will throw the suspended body into an unsymmetrical

Absolute
measure-
ment of
Terrestrial

Magnetic
Force.

Bifilar

Balance.

as described by Dr Lloyd in his Treatise on Magnetism (London, 1874), are each

of them 15 inches long, -|
of an inch broad, and \ of an inch in thickness, and

must therefore weigh abont a pound each. The corresponding magnets used at

the Kew Observatory are much smaller. They are each 5 4 inches long, 08
inch broad, and Ol inch thick, and therefore the weight of each is about 0012

pound, or nearly 55 grammes.
*

Intensitas Vis Magneticae Terrestris ad Mensuram Absolutam revocuta,

Commentationes Societatis Gottingensis, 1832.
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position, in which, particularly if its centre of gravity be very Bifliar

low (as it is in Sir W. Thomson s Quadrant Electrometer), much
more of its weight will be borne by one thread than by the

other. This will diminish very much the amount of the hori-

zontal couple required to produce a stated azimuthal deflection

in the regular use of the instrument, in other words will in-

crease its sensibility above its proper amount, that is to say,

the amount which it would have if the conditions of symmetry
were fully realized. Hence the proper adjustment for equaliz-

ing the lengths of the threads in a symmetrical bifilar balance,

or for giving them their right difference in an unsymmetrical

arrangement, in order to make the instrument as accurate as it

can be, is to alter the length of one or both of the threads, until

we attain to the condition of minimum sensibility, that is to

say minimum angle of deflection under the influence of a given
amount of couple.

The great merit of the bifilar balance over the simple torsion-

balance of Coulomb for such applications as that to the hori-

zontal magnetometer in the continuous work of an observatory,
is the comparative smallness of the influence it experiences
from changes of temperature. The torsional rigidity of iron,

copper, and brass wires is diminished about \ per cent, with 10°

elevation of temperature, while the linear expansions of the

same metals are each less than ^ per cent, with the same

elevation of temperature. Hence in the unifilar torsion-

balance, if iron, copper, or brass (the only metals for which the

change of torsional rigidity with change of temperature has

hitherto been measured) is used for the material of the bearing

fibre, the sensibility is augmented \ per cent, by 10° elevation

of temperature.

On the other hand, in the bifilar balance, if torsional rigidity

does not contribute any sensible proportion to the whole direc-

tive couple (and this condition may be realized as nearly as we

please by making the bearing wires long enough and making
the distance between them great enough to give the requisite

amount of directive couple), the sensibility of the balance is

affected only by the linear expansions of the substances con-

cerned. If the equal distances between the two pairs of points
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I^m'e
°^ attacliment;

>
m tne normal form of bifilar balance (or that in

which the two threads are vertical when the suspended body is

uninfluenced by horizontal force or couple), remained constant,
the sensibility would be augmented with elevation of tempera-
ture in simple proportion to the linear expansions of the bearing

wires; and this small influence might, if it were worth while

to make the requisite mechanical arrangements, be perfectly

compensated by choosing materials for the frames or bars bear-

ing the attachments of the wires so that the proportionate

augmentation of the distance between them should be just
half the elongation of either wire, because the sensibility, as

shown by the mathematical formula below, is simply propor-
tional to the length of the wires and inversely proportional to

the square of the distance between them. But, even without any
such compensation, the temperature-error due to linear expansions
of the materials of the bifilar balance is so small that in the most

accurate regular use of the instrument in magnetic observatories

it may be almost neglected ;
and at most it is less than ^U of

the error of the unitilar torsion-balance, at all events if, as is

probably the case, the changes of rigidity with changes of tempe-
rature in other metals are of similar amounts to those for the

three metals on which experiments have been made. In reality

the chief temperature-error of the bifilar magnetometer depends
on the change of the magnetic moment of the suspended magnet
with change of temperature. It seems that the magnetism of

a steel magnet diminishes with rise of temperature and aug-
ments with fall of temperature, but experimental information is

much wanted on this subject.

The amount of the effect is very different in different bars,

and it must be experimentally determined for each bar serving
in a bifilar magnetometer. The amount of the change of mag-
netic moment in the bar which had been most used in the

Dublin Magnetic Observatory was found to be "000029 per de-

gree Fahrenheit or at the rate of '000052 per degree Centigrade,

being about the same amount as that of the change of torsional

rigidity with temperature of the three metals referred to above.

Let a be the half length of the bar between the points of

attachment of the wires, the angle through whioh the bar has
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been turned (in a horizontal plane) from its position of equi- Bifilar

librium, I the length of one of the wires, i its inclination to the

vertical.

Then I cos i is the difference of levels between the ends of each

wire, and evidently, by the geometry of the case,

^ I sin i = a sin | 6.

Now if Q be the couple tending to turn the bar, and W its weight,
the principle of mechanical effect gives

Qd8 =-Wd (I cost)
= Wl sin tdi.

But, by the geometrical condition above,

P sin i cos idi = a2
sin Odd.

Q W
Hence

or Q =

a2
sin 8 I cos t

'

Wa2
sinfl

V/l_ T-
sm

2

which gives the couple in terms of the deflection 8.

If the torsion of the wires be taken into account, it is

sensibly equal to 6 (since the greatest inclination to the vertical

is small), and therefore the couple resulting from it will be Ed.

This must be added to the value of Q just found in order to get

the whole deflecting couple.

436. Ergometers are instruments for measuring energy. Ergometera.

Whites friction brake measures the amount of work actually

performed in any time by an engine or other "prime mover,"

by allowing it during the time of trial to waste all its work on

friction. Moriris ergometer measures work without wasting

any of it, in the course of its transmission from the prime
mover to machines in which it is usefully employed. It con-

sists of a simple arrangement of springs, measuring at every

instant the couple with which the prime mover turns the shaft

that transmits its work, and an integrating machine from which

the work done by this couple during any time can be read off.

Let L be the couple at any instant, and
</>

the whole angle

through which the shaft has turned from the moment at which

the reckoning commences. The integrating machine shows at

any moment the value of JLd<f>, which (§ 240) is the whole work

done.
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Ergometers. 437. White's friction brake consists of a lever clamped to

the shaft, but not allowed to turn with it. The moment of the

force required to prevent the lever from going round with the

shaft, multiplied by the whole angle through which the shaft

turns, measures the whole work done against the friction of the

clamp. The same result is much more easily obtained by

wrapping a roj^e or chain several times round the shaft, or

round a cylinder or drum carried round by the shaft, and

applying measured forces to its two ends in proper directions

to keep it nearly steady while the shaft turns round without it.

The difference of the moments of these two forces round the

axis, multiplied by the angle through which the shaft turns,

measures the whole work spent on friction against the rope.

If we remove all other resistance to the shaft, and apply the

proper amount of force at each end of the dynamimetric rope
or chain (which is very easily done in practice), the prime
mover is kept running at the proper speed for the test, and

having its whole work thus wasted for the time and measured.
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CONTINUOUS CALCULATING MACHINES.

I. Tide-predicting Machine.

The object is to predict the tides for any port for which the Tide-pr©.

tidal constituents have been found from the harmonic analysis Machine,

from tide-gauge observations
;
not merely to predict the times

and heights of high water, but the depths of water at any and

every instant, showing them by a continuous curve, for a year, or

for any number of years in advance.

This object requires the summation of the simple harmonic

functions representing the several constituents * to be taken into

account, which is performed by the machine in the following
manner :

—For each tidal constituent to be taken into account

the machine has a shaft with an overhanging crank, which

carries a pulley pivoted on a parallel axis adjustable to a greater
or less distance from the shaft's axis, according to the greater or

less range of the particular tidal constituent for the different

ports for which the machine is to be used. The several shafts,

with their axes all parallel, are geared together so that their

periods are to a sufficient degree of approximation proportional
to the periods of the tidal constituents. The crank on each

shaft can be turned round on the shaft and clamped in any po-
sition : thus it is set to the proper position for the epoch of the

particular tide which it is to produce. The axes of the several

shafts are horizontal, and their vertical planes are at successive

distances one from another, each equal to the diameter of one of

the pulleys (the diameters of these being equal). The shafts are

in two rows, an upper and a lower, and the grooves of the pulleys
are all in one plane perpendicular to their axes.

Suppose, now, the axes of the pulleys to be set each at zero

distance from the axis of its shaft, and let a fine wire or chain

* See Eeport for 1876 of the Committee of the British Association appointed
for the purpose of promoting the Extension, Improvement, and Harmonic
Analysis of Tidal Observations.
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d/ctliiK*"
with one end hanging down and carrying a weight, pass alter-

Machine.
nately over and under the pulleys in order, and vertically up-
wards or downwards (according as the number of pulleys is even

or odd) from the last pulley to a fixed point. The weight is

to be properly guided for vertical motion by a geometrical slide.

Turn the machine now, and the wire will remain undisturbed

with all its free parts vertical and the hanging weight unmoved.
But now set the axis of any one of the pulleys to a distance ^ T
from its shaft's axis and turn the machine. If the distance of

this pulley from the two on each side of it in the other row is a

considerable multiple of \ T, the hanging weight will now (if the

machine is turned uniformly) move up and down with a simple

harmonic motion of amplitude (or semi-range) equal to T in the

period of its shaft. If, next, a second pulley is displaced to a

distance \ T', a third to a distance \ T", and so on, the hanging

weight will now perform a complex harmonic motion equal to

the sum of the several harmonic motions, each in its proper

period, which would be produced separately by the displace-

ments T, T', T". Thus, if the machine was made on a large

scale, with T, T', . . . equal respectively to the actual semi-ranges

of the several constituent tides, and if it was turned round

slowly (by clockwork, for example), each shaft going once round

in the actual period of the tide which it represents, the hanging

weight would rise and fall exactly with the water-level as

affected by the whole tidal action. This, of course, could be of

no use, and is only suggested by way of illustration. The actual

machine is made of such magnitude, that it can be set to give a

motion to the hanging weight equal to the actual motion of the

water-level reduced to auy convenient scale : and provided the

whole range does not exceed about 30 centimetres, the geo-

metrical error due to the deviation from perfect parallelism in

the successive free parts of the wire is not so great as to be

practically objectionable. The proper order for the shafts is the

order of magnitude of the constituent tides which they produce,

the greatest next the hanging weight, and the least next the

fixed end of the wire : this so that the greatest constituent may
have only one pulley to move, the second in magnitude only two

pulleys, and so on.

One machine of this kind has already been constructed for the

British Association, and another (with a greater number of shafts

to include a greater number of tidal constituents) is being con-
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structecl for the Indian Government. The British Association Tide-pre-

machine, which is kept available for general use, under charge Machir*.

of the Science and Art Department in South Kensington, lias

ten shafts, which taken in order, from the hanging weight, give

respectively the following tidal constituents*:

1. The mean lunar semi-diurnal.

2. The mean solar semi-diurnal.

3. The larger elliptic semi-diurnal.

4. The luni-solar diurnal declinational.

5. The lunar diurnal declinational.

6. The luni-solar semi-diurnal declinational.

7. The smaller elliptic semi-diurnal.

8. The solar diurnal declinational.

9. The lunar quarter-diurnal, or first shallow-water tide of

mean lunar semi-diurnal.

10. The luni-solar quarter-diurnal, shallow-water tide.

The hanging weight consists of an ink-bottle with a glass

tubular pen, which marks the tide level in a continuous curve

on a long band of paper, moved horizontally across the line of

motion of the pen, by a vertical cylinder geared to the revolving-

shafts of the machine. One of the five sliding points of the

geometrical slide is the point of the pen sliding on the paper
stretched on the cylinder, and the couple formed by the normal

pressure on this point, and on another of the five, which is about

four centimetres above its level and one and a half centimetres

from the paper, balances the couple due to gravity of the ink-

bottle and the vertical component of the pull of the bearing wire,

which is in a line about a millimetre or two farther from the

paper than that in which the centre of gravity moves. Thus is

ensured, notwithstanding small inequalities on the paper, a

pressure of the pen on the paper very approximately constant

and as small as is desired.

Hour marks are made on the curve by a small horizontal

movement of the ink-bottle's lateral guides, made once an hour
;

a somewhat greater movement, giving a deeper notch, serves to

mark the noon of every day.

The machine may be turned so rapidly as to run off a year's

tides for any port in about four hours.

Each crank should carry an adjustable counterpoise, to be

* See Report for 1876 of the British Association's Tidal Committee.

VOL. I. 31
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Tide-pre- adiustid so that when the crank is not vertical the pulls of the

Machine. approximately vertical portions of wire acting on it through the

pulley which it carries shall, as exactly as may be, balance on

the axis of the shaft, and the motion of the shaft should be

resisted by a slight weight hanging on a thread wrapped once

round it and attached at its other end to a fixed point. This

part of the design, planned to secure against "lost time" or

"back lash" in the gearings, and to preserve uniformity of

pressure between teeth and teeth, teeth and screws, and ends of

axles and "end-plates," was not carried out in the British

Association machine.

II. Machine for the Solution of Simultaneous

Linear Equations*.

srh-er
011" "^e^

"^i' ^i'"A be n bodies each supported on a fixed axis

(in practice each is to be supported on knife-edges like the beam

of a balance).

Let Pn ,
P

2] ,
PM , ... P„, be n pulleys each pivoted on B

l
;

p p v p E •

1
\V 22'

-1
32'

•" X
n2 " " 2>

p P P P B •

1
13'

L
23'

X
33'

"••
"3 " '' 3»

„ Cj, o, C3,
... C

n ,
be n cords passing over the pulleys;

" A> ^n' ]\« Pl# ••• P
„,' ^' be the C0U1'Se 0f C\-

n p p p P F C •

" AJ
i>

A
21' 22' 23'

' *

2n' 2' " " 2»

" A' Ex>
D

*>
E# ~ Do Em be fixed points;

,,
l

t
l
2 ,

l
3,

... l
n
be the lengths of the cords between D

x
,
E

lt

and D , E , . . . and D ,
E , alonsr the courses stated above, when

B
,
B

2, . . . B
n,

are in particular positions which will be called

their zero positions;

,, L +e,, L + e„, ... I + e be their lenarths between the same" 1 1" 2 2' un o

fixed points, when B
x
,
B

2 ,
... B

n
are turned through angles x

} ,

x
2 ,

... x
u
from their zero positions ;

(11), (12), (13),. ..(In),

(21), (22), (23), ...(2*),

(31), (32), (33),... (3w),

SirW. Thomson, Proceedings of the Royal Society, Vol. xsvin., 1878.
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quantities such that
sower™

(ll)aJ1
+ (12)aja +...+(lw)a;B

= e
1 ]

(2l)xl
+ (22)xa +... + (2n)xn = e

a

(31) a; + (32) x2
+ . .. + (3ra)

x
n
= e

8 (I).

(ill) a:,
+ (»2) cc

s
+ . . . + (nil)

x
n
= e

n __

We shall suppose x
x ,
«

2 ,
...x

n
to be each so small that (11),

(12), ...(21), etc., do not vary sensibly from the values which

they have when x, xa,...xu ,
are each infinitely small. In

practice it will be convenient to so place the axes of 2?p B2 ,
... B

n ,

and the mountings of the pulleys on B
t
,
B

,
... B

n ,
and the fixed

points D ,
E

,
D

, etc., that when x
t , x„, ... x

n
are infinitely small,

the straight parts of each cord and the lines of infinitesimal mo-

tion of the centres of the pulleys round which it passes shall be

all parallel. Then J (11), h (21), ... h (nl) will be simply equal to

the distances of the centres of the pulleys Pu ,
P

ai , ... P
a ,
from the

axis of £
t ; | (12), \ (22) ... \ (w2) the distances" of pJP.i2 , ...Pn2

from the axis of 2?„; and so on.

In practice the mountings of the pulleys are to be adjustable

by proper geometrical slides, to allow any prescribed positive or

negative value to be given to each of the quantities (11),

(12), ...(21), etc.

Suppose this to be done, and each of the bodies £
lf B2 ,

... B
n

to be placed in its zero position and held there. Attach now

the cords firmly to the fixed points JD
1 ,
U

2 ,
... D

n respectively;

and, passing them round their proper pulleys, bring them to the

other fixed points E ,
E

,
... E

n ,
and pass them through infinitely

small smooth rings fixed at these points. Now hold the bodies

B
, B„, ... each fixed, and (in practice by weights hung on their

ends, outside E
} ,
E

2 , ... Ej pull the cords through E {
,
Eoi ... E

n

with any given tensions* T
x ,
T

2 ,
... T

u
. Let G

x ,
G

2 ,
... Gn be

moments round the fixed axes of B
l}
B

a ,
... B

n
of the forces re-

quired to hold the bodies fixed when acted on by the cords thus

* The idea of force here first introduced is not essential, indeed is not

technically admissible to the purely kinematic and algebraic part of the subject

proposed. But it is not merely an ideal kinematic construction of the algebraic

problem that is intended
;
and the design of a kinematic machine, for success in

practice, essentially involves dynamical considerations. In the present case

some of the most important of the purely algebraic questions concerned are very

interestingly illustrated by these dynamical considerations.

31—2
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aquation- stretched. The principle of "virtual velocities," just as it came
S( )1 VPT*

from Lagrange (or the principle of "work"), gives immediately,
in virtue of

(I),

G
1

= (ll)T1
+ (21)T2+ ... + (nl)Tn ]

G
2
= (12)T1

+ (22)Ta+ ... + (n2)Ta

G
n
= (ln)Tl

+ (2n)T3+ ... + (nn)Tn .

(II).

Apply and keep applied to each of the bodies, 2^, B3 ,
... B

n

(in practice by the weights of the pulleys, and by counter-pulling

springs), such forces as shall have for their moments the values

G
it
G

2
... G

n ,
calculated from equations (II) with whatever values

seem desirable for the tensions T
lt 1\, ... T

3
. (In practice, the

straight parts of the cords are to be approximately vertical, and

the bodies
2?,, 2?„, are to be each balanced on its axis when the

pulleys belonging to it are removed, and it is advisable to make
the tensions each equal to half the weight of one of the pulleys

with its adjustable frame.) The machine is now ready for use.

To use it, pull the cords simultaneously or successively till

lengths equal to e
x ,

e ,...en are passed through the rings Ev
E,,, ... E

n , respectively.

The pulls required to do this may be positive or negative; in

practice, they will be infinitesimal downward or upward pressures

applied by hand to the stretching weights which remain per-

manently hanging on the cords.

Observe the angles through which the bodies 2?,,
B

2 ,
... B

n
are

turned by this given movement of the cords. These angles are

the required values of the unknown x x
2 ,

..-x
n , satisfying the

simultaneous equations (I).

The actual construction of a practically useful machine for

calculating as many as eight or ten or more of unknowns from

the same number of linear equations does not promise to be either

difficult or over-elaborate. A fair approximation having been

found by a first application of the machine, a very moderate

amount of straightforward arithmetical work (aided very ad-

vantageously by Crelle's multiplication tables) suffices to calculate

the residual errors, and allow the machines (with the setting of

the pulleys unchanged) to be re-applied to calculate the corrections

(which may be treated decimally, for convenience) : thus, 100

times the amount of the correction on each of the original un-

knowns may be made the new unknowns, if the magnitudes thus
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falling to be dealt with are convenient for the machine. There so1v«r'
0n"

is, of course, no limit to the accuracy thus obtainable by succes-

sive approximations. The exceeding easiness of each application
of the machine promises well for its real usefulness, whether for

cases in which a single application suffices, or for others in which

the requisite accuracy is reached after two, three, or more, of

successive approximations.

The accompanying drawings represent a machine for finding

six* unknowns from six equations. Fig. 1 represents in eleva-

tion and plan one of the six bodies JB
,
B etc. Fig. 2 shows in

elevation and plan one of the thirty-six pulleys P, with its

cradle on geometrical slide (§ 198). Fig. 3 shows in front-ele-

vation the general disposition of the instrument.

Fig. 1. One of the six moveable bodies, B.

Elevation.

Plan

* This number has been chosen for the first practical machine to be con-

structed, because a chief application of the machine may be to the calculation

of the corrections on approximate values already found of the six elements of

the orbit of a comet or asteroid.
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Equation
Solver.

Front ele-

vation.

Pku.

i?iG. 2. One of the thirty-six pulleys, P, with its sliding cradle.

Full Size.

In Fig, 3 only one of the six cords, and the six pulleys over

which it passes, is shown, not any of the other thirty. The three

pulleys seen at the top of the sketch are three out of eighteen

pivoted on immoveable bearings above the machine, for the pur-

pose of counterpoising the weights of the pulleys P, with their

sliding cradles. Each of the counterpoises is equal to twice the

weight of one of the pulleys P with its sliding cradle. Thus if

the bodies B are balanced on their knife-edges with each sliding

cradle in its central position, they remain balanced when one

or all of the cradles are shifted to either side; and the tension

of each of the thirty-six essential cords is exactly equal to half

the weight of one of the pulleys with its adjustable frame, as

specified above (the deviations from exact verticality of all the

free portions of the thirty-six essential cords and the eighteen

counterpoising cords being neglected).
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Fig. 3. General disposition of machine. Equation-
Solver.
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III. An Integrating Machine having a New Kine-

matic Principle*.

Disk- The kinematic principle for integrating ydx, which is used in

Cylinder- the instruments well known as Morin's Dynamometer t and

Machine"
3

Sang's Planiineter
:£,

admirable as it is in many respects, involves

one element of imperfection which cannot but prevent our con-

templating it with full satisfaction. This imperfection consists

in the sliding action which the edge wheel or roller is required

to take in conjunction with its rolling action, which alone is

desirable for exact communication of motion from the disk or

cone to the edge roller.

The very ingenious, simple, and practically useful instrument

well known as Amsler's Polar Planimeter, although different in

its main features of principle and mode of action from the instru-

ments just referred to, ranks along with them in involving the

like imperfection of requiring to have a sidewise sliding action

of its edge rolling wheel, besides the desirable rolling action on

the surface which imparts to it its revolving motion—a surface

* Professor James Thomson, Proceedings of the Royal Society, Vol. xxiv., 1876,

p. 262.

t Instruments of this kind, and any others for measuring mechanical work,

may better in future be called Ergometers than Dynamometers. The name

"dynamometer" has been and continues to be in common use for signifying

a spring instrument for measuring force; but an instrument for measuring

tcork, being distinct in its nature and object, ought to have a different and more

suitable designation. The name "dynamometer," besides, appears to be badly

formed from the Greek; and for designating an instrument for measurement of

force, I would suggest that the name may with advantage be changed to

dynamimeter. In respect to the mode of forming words in such cases, reference

may be made to Curtius's Grammar, Dr Smith's English edition, § 354, p. 220.—
J. T., 26th February, 1876.

J Sang's Planimeter is very clearly described and figured in a paper by its

inventor, in the Transactions of the Royal Scottish Society of Arts, Vol. iv.

January 12, 1852.
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which in this case is not a disk or cone, but is the surface of the Disk-,

i'ii Globe-, and

paper, or any other plane lace, on which the map or other plane Cylinder-
,. , , , , . . , Integrating

diagram to be evaluated in area is drawn. .Machine.

Professor J. Clerk Maxwell, having seen Sang's Planimeter

in the Great Exhibition of 1851, and having become convinced

that the combination of slipping and rolling was a drawback on

the perfection of the instrument, began to search for some ar-

rangement by which the motion should be that of perfect rolling

in every action of the instrument, corresponding to that of com-

bined slipping and rolling in previous instruments. He suc-

ceeded in devising a new form of planimeter or integrating

machine with a quite new and very beautiful principle of kine-

matic action depending on the mutual rolling of two equal

spheres, each on the other. He described this in a paper sub-

mitted to the Royal Scottish Society of Arts in January 1855,

which is published in Yol. iv. of the Transactions of that Society.

In that paper he also offered a suggestion, which appears to be

both interesting and important, proposing the attainment of the

desired conditions of action bv the mutual rolling of a cone and

cylinder with their axes at right angles.

The idea of using pure rolling instead of combined rolling

and slipping was communicated to me by Prof. Maxwell, when

I had the pleasui-e of learning from himself some particulars as

to the nature of his contrivance. Afterwards (some time be-

tween the years 1861 and 1864), while endeavouring to contrive

means for the attainment in meteorological observatories of

certain integrations in respect to the motions of the wind, and

also in endeavouring to devise a planimeter more satisfactory in

principle than either Sang's or Amsler's planimeter (even though,

on grounds of practical simplicity and convenience, unlikely to

turn out preferable to Amsler's in ordinary cases of taking-

areas from maps or other diagrams, but something that I hoped

might possibly be attainable which, while having the merit of

working by pure rolling contact, might be simpler than the

instrument of Prof. Maxwell and preferable to it in mechanism),
I succeeded in devising for the desired object a new kinematic

method, which has ever since appeared to me likely sometime

to prove valuable when occasion for its employment might be

found. Now, within the last few days, this principle, on being

suggested to my brother as perhaps capable of being usefully

employed towards the development of tide-calculating machines



490 APPENDIX B'. [III.

Disk-, which he had been devising, has been found bv him to be capable
Globe-, and . , . . , , . , . , ,

Cylinder- of being introduced and combined in several ways to produce
Integrator. .

-i /-\ 1 • i • i /» -r rr 1

important results. On his advice, therefore, I now oner to the

Royal Society a brief description of the new principle as devised

by me.

The new principle consists primarily in the transmission of

motion from a disk or cone to a cylinder by the intervention of

a loose ball, which presses by its gravity on the disk and cylinder,

or on the cone and cylinder, as the case may be, the pressure

being sufficient to give the necessary frictional coherence at

each point of rolling contact; and the axis of the disk or cone

and that of the cylinder being both held fixed in position by

bearings in stationary framework, and the arrangement of these

axes being such that when the disk or the cone and the cylinder

are kept steady, or, in other words, without rotation on their

axes, the ball can roll along them in contact with both, so that

the point of rolling contact between the ball and the cylinder

shall traverse a straight line on the cylindric surface parallel

necessarily to the axis of the cylinder
—and so that, in the case

of a disk being used, the point of rolling contact of the ball

with the disk shall traverse a straight line passing through the

centre of the disk—or that, in case of a cone being used, the

line of rolling contact of the ball on the cone shall traverse a

straight line on the conical surface, directed necessarily towards

the vertex of the cone. It will thus readily be seen that,

whether the cylinder and the disk or cone be at rest or revolving

on their axes, the two lines of rolling contact of the ball, one

on the cylindric surface and the other on the disk or cone, when

both considered as lines traced out in space fixed relatively to

the framing of the whole instrument, will be two parallel straight

lines, and that the line of motion of the ball's centre will be

straight and parallel to them. For facilitating explanations,

the motion of the centre of the ball along its path parallel to

the axis of the cylinder may be called the ball's longitudinal

motion.

Now for the integration of ydx: the distance of the point of

contact of the ball with the disk or cone from the centre of the

disk or vertex of the cone in the ball's longitudinal motion is

to represent y, while the angular space turned by the disk or

cone from any initial position represents as;
and then the angular

space turned by the cylinder will, when multiplied by a suitable
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constant numerical coefficient, express the integral in terms of Di>k-,

t •, n ., i ,
• Globe-, and

any required unit tor its evaluation. Cylinder-

The longitudinal motion may be imparted to the ball by-

having the framing of the whole instrument so placed that the

lines of longitudinal motion of the two points of contact and

of the ball's centre, which are three straight lines mutually

parallel, shall be inclined to the horizontal sufficiently to make
the ball tend decidedly to descend along the line of its longitu-

dinal motion, and then regulating its motion by an abutting

controller, which may have at its point of contact, where it

presses on the ball, a plane face perpendicular to the line of the

ball's motion. Otherwise the longitudinal motion may, for some

cases, preferably be imparted to the ball by having the direction

of that motion horizontal, and having two controlling flat faces

acting in close contact without tightness at opposite extremities

of the ball's diameter, which at any moment is in the line of

the ball's motion or is parallel to the axis of the cylinder.

It is worthy of notice that, in the case of the disk-, ball-, and

cylinder-integrator, no theoretical nor important practical fault

in the action of the instrument would be involved in any

deficiency of perfect exactitude in the practical accomplishment

of the desired condition that the line of motion of the ball's

point of contact with the disk should pass through the centre of

the disk. The reason of this will be obvious enough on a little

consideration.

The plane of the disk may suitably be placed inclined to the

horizontal at some such angle as 45°; and the accompanying

sketch, together with the model, which will be submitted to the

Society by my brother, will aid towards the clear understanding

of the explanations which have been given.

My brother has pointed out to me that an additional opera-

tion, important for some purposes, may be effected by arranging

that the machine shall give a continuous record of the growth
of the integral by introducing additional mechanisms suitable

for continually describing a curve such that for each point of it

the abscissa shall represent the value of x, and the ordinate

shall represent the integral attained from x = forward to that

value of x. This, he has pointed out, may be effected in practice

by having a cylinder axised on the axis of the disk, a roll of

paper covering this cylinder's surface, and a straight bar situated

parallel to this cylinder's axis and resting with enough of pres-
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Disk-.
Globe-, and
Cylinder-
Integrator.

sure on the surface of the primary registering or the indicating

cylinder (the one, namely, "which is actuated by its contact with

the ball) to make it have sufficient frictional coherence with that

5!DE ELEVATION.

PLAN.

surface, and by having this bar made to carry a pencil or other

tracing point which will mark the desired curve on the secondary

registering or the recording cylinder. As, from the nature of

the apparatus, the axis of the disk and of the secondary register-

ing or recording cylinder ought to be steeply inclined to the

horizontal, and as, therefore, this bar, carrying the pencil, would

have the line of its length and of its motion alike steeply in-

clined with that axis, it seems that, to carry out this idea, it

may be advisable to have a thread attached to the bar and

extending otf in the line of the bar to a pulley, passing over the

pulley, and having suspended at its other end a weight which

will be just sufficient to counteract the tendency of the rod, in

virtue of gravity, to glide down along the line of its own slope,

so as to leave it perfectly free to be moved up or down by the

frictional coherence between itself and the moving surface of the

indicating cylinder worked directly by the ball.
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IV. An Instrument for calculating
(

I
<f> (%) ^ (x) dx )

,

the Integral of the Product of two given Functions*.

In consequence of the recent meeting of the British Association Machine to

at Bristol, I resumed an attempt to find an instrument which integral of

should supersede the heavy arithmetical labour of calculating two Func-
f

the integrals inquired to analyze a function into its simple har-
ons'

monic constituents according to the method of Fourier. During

many years previously it had appeared to me that the object

ought to be accomplished by some simple mechanical means
;

but it was not until recently that I succeeded in devising an

instrument approaching sufficiently to simplicity to promise

practically useful results. Having arrived at this stage, I de-

scribed my proposed machine a few days ago to my brother

Professor James Thomson, and he described to me in return a

kind of mechanical integrator which had occurred to him many
years ago, but of which he had never published any description.

I instantly saw that it gave me a much simpler means of attain-

ing my special object than anything I had been able to think of

previously. An account of his integrator is communicated to

the Royal Society along with the present paper.

To calculate l<f>(x) ij/(x)dx, the rotating disk is to be displaced

from a zei'O or initial position through an angle equal to

<f> (x) dx,
/o

while the rolling globe is moved so as always to be at a distance

from its zero position equal toif/(x). This being done, the cylinder

obviously turns through an angle equal to /
<f>(x) \f/(x)dx, and

Jo

thus solves the problem.

One way of giving the required motions to the rotating disk

and rollinsr olobe is as follows :
—

'O £>"

Sir W. Thomson, Proceedings of the Boyal Society, Vol. xxiv. , 1876, p. 266.
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Machine to

calculate

Integral of

Product of
two Func-
tions.

On two pieces of paper draw the curves

rx
-\ d>(x)dx, and y = ij/(x).
Jo

y

Attach these pieces of paper to the circumference of two cir-

cular cylinders, or to different parts of the circumference of one

cylinder, with the axis of x in each in the direction perpendicular

to the axis of the cylinder. Let the two cylinders (if there are

two) be geared together so as that their circumferences shall

move with equal velocities. Attached to the framework let

there be, close to the circumference of each cylinder, a slide or

guide-rod to guide a moveable point, moved by the hand of an

operator, so as always to touch the curve on the surface of the

cylinder, while the two cylinders are moved round.

Two operators will be required, as one operator could not

move the two points so as to fulfil this condition—at all events

unless the motion were very slow. One of these points, by

proper mechanism, gives an angular motion to the rotating disk

equal to its own linear motion, the other gives a linear motion

equal to its own to the centre of the rolling globe.

The machine thus described is immediately applicable to

calculate the values //,, H„, H3 , etc. of the harmonic constituents

of a function \p (.>)
in the splendid generalization of Fourier's

simple harmonic analysis, which he initiated himself in his

solutions for the conduction of heat in the sphere and the

cylinder, and which was worked out so ably and beautifully by

Poisson*, and by Sturm and Liouville in their memorable

papers on this subject published in the first volume of Liouville's

Journal des Mathematiques. Thus if

<A (*)
=

#,</>, (*) +#A (*) + HA (x) + etc.

be the expression for an arbitrary function
\j/x,

in terms of the

generalized harmonic functions
<j> 1 (x), <j> (x), <f>3 {x), etc., these

functions being such that

I <r>i (*) </>2 (») dx = 0, I
</>, (x) <f>3 (x) dx = 0, /

<j> (x) <j>3 (x)
=

0, etc.,
Jo Jo Jo

* His general demonstration of the reality of the roots of transcendental

equations essential to this analysis (an exceedingly important step in advance

from Fourier's position), which he first gave in the Bulletin de la Societe

FJiilomathique for 1828, is reproduced in his Theorie Mathematique de la

Chaleur, § 90.
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we have

/ j / \ i I \ i Integral of
I 9, K

x
) Y {

xj dx Product of
.'0 two Pnnr-

Jo

/ <j> (x) y (x) dx
Jo

Machine to
calculate

jr JO two Func-
-''

i

~
r i

"^™^^~
> tions.

{<f>a (x)}*dx

etc.

In the physical applications of this theory the integrals

which constitute the denominators of the formulas for H'

, ff„, etc.

are always to be evaluated in finite terms by an extension of

F
Foxirier's formula for the / xti? dx of his problem of the cylinder*

Jo

made by Sturm in equation (10), § iv. of his Memoire sur une

Classe d'Equations a differences partielles in Liouville's Journal,

Vol. i. (1836). The integrals in the numerators are calculated

with great ease by aid of the machine worked in the manner

described above

The great practical use of this machine will be to perform
the simple harmonic Fourier-analysis for tidal, meteorological,
and perhaps even astronomical, observations. It is the case in

which

jl / \
sin

/ \

x
cos

'

2iTT
and the integration is performed through a range equal to —
(i any integer) that gives this application. In this case the

addition of a simple crank mechanism, to give a simple harmonic

angular motion to the rotating disk in the proper period
—
n

when the cylinder bearing the curve y = y(x) moves uniformly,

supersedes the necessity for a cylinder with the curve y=(j>{x)
traced on it, and an operator keeping a point always on this

curve in the manner described above. Thus one operator will be

enough to carry on the process ;
and I believe that in the appli-

cation of it to the tidal harmonic analysis he will be able in an

* Fourier's Theorie Analytique de la Chaleur, § 319, p. 391 (Paris, 1822).
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Machine to

calculate

Integral of

Product of

two Func-
tions.

hour or two to find by aid of the machine any one of the simple
harmonic elements of a year's tides recorded in curves in the

usual manner by an ordinary tide-gauge
—a result which hitherto

has inquired not less than twenty hours of calculation by skilled

arithmeticians. I believe this instrument will be of sreat value

also in determining the diurnal, semi-diurnal, ter-diurnal, and

quarter-diurnal constituents of the daily variations of temperature,

barometric pressure, east and west components of the velocity of

the wind, north and south components of the same
;
also of the

three components of the terrestrial magnetic force
;
also of the

electric potential of the air at the point where the stream of

water breaks into drops in atmospheric electrometers, and of

other subjects of ordinary meteorological or magnetic observa-

tions
;

also to estimate precisely the variation of terrestrial

magnetism in the eleven years sun-spot period, and of sun-spots

themselves in this period ;
also to disprove (or prove, as the case

may be) supposed relations between sun-spots and planetary

positions and conjunctions ;
also to investigate lunar influence

on the height of the barometer, and on the components of the

terrestrial magnetic force, and to find if lunar influence is

sensible on any other meteorological phenomena—and if so, to

determine precisely its character and amount.

From the description given above it will be seen that the

mechanism required for the instrument is exceedingly simple and

easy. Its accuracy will depend essentially on the accuracy of the

circular cylinder, of the globe, and of the plane of the rotating

disk used in it. For each of the three surfaces a much less

elaborate application of the method of scraping than that by

which Sir Joseph Whitworth has given a true plane with such

marvellous accuracy will no doubt suffice for the practical re-

quirements of the instrument now proposed.
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V. Mechanical Integration of Linear Differen-

tial Equations of the Second Order with Variable

Coefficients*.

Every linear differential equation of the second order may, as Mechanical

is known, be reduced to the form of Linear
Differentia

d (\ du\ ... E
f
q£

at^of Second
Order.dx\p-dxr

u (1) >

where P is any given function of x.

On account of the great importance of this equation in

mathematical physics (vibrations of a non-uniform sti-etched

cord, of a hanging chain, of water in a canal of non-uniform

breadth and depth, of air in a pipe of non-uniform sectional area,

conduction of heat along a bar of non-uniform section or non-

uniform conductivity, Laplace's differential equation of the tides,

etc. etc.), I have long endeavoured to obtain a means of facilitat-

ing its practical solution.

Methods of calculation such as those used by Laplace him-

self are exceedingly valuable, but are very laborious, too

laborious unless a serious object is to be attained by calculating

out results with minute accuracy. A ready means of obtaining

approximate results which shall show the general character of

the solutions, such as those so well woi'ked out by Sturm t, has

always seemed to me a desideratum. Therefore I have made

many attempts to plan a mechanical integrator which should

give solutions by successive approximations. This is clearly done

now, when we have the instrument for calculating /</> (x) \p (x) dx,

founded on my brother's disk-, globe-, and cylinder-integrator,

and described in a previous communication to the Royal Society ;

for it is easily proved | that if

*
Sir W. Thomson, Proceedings of the Royal Society, Vol. xxiv., 1876, p. 269.

t Memoire stir les equations differentielles lineaires du second ordre, Liouville's

Journal, Vol. i. 1836.

X Cambridge Senate-House Examination, Thursday afternoon, January 22nd,

1874.

vol. i. 32
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Mechanical
Integration
of Linear
Differential

Equations
of Second
Order.

U.

v

=
j
P (C -

I u
x
dx\ dx,

= I P ( C —
j

u
7
dx) dx,

(2)

etc., J

where u is any function of x, to begin with, as for example

u = x
;
then «.,, u

A ,
etc. are successive approximations converg-

ing to that oue of the solutions of (1) which vanishes when x = 0.

Now iet my brother's integrator be applied to find G -
I u

{
dx,

Jo

and let its result feed, as it were, continuously a second machine,

which shall find the integral of the product of its result into

Pdx. The second machine will give out continuously the value

of u,. Use again the same process with u
2
instead of uv and

then u ,
and so on.

After thus altering, as it were, «, into u
2 by passing it through

the machine, then u
a
into u

3 by a second passage through the

machine, and so on, the thing will, as it were, become refined

into a solution which will be more and more nearly rigorously

correct the oftener we pass it through the machine. If ui+l does

not sensibly differ from u
i}
then each is sensibly a solution.

So far I had gone and was satisfied, feeling I had done what

I wished to do for many years. But then came a pleasing

surprise. Compel agreement between the function fed into the

double machine and that given out by it. This is to be done by

establishing a connexion which shall cause the motion of the

centre of the globe of the first integrator of the double machine

to be the same as that of the surface of the second integrator's

cylinder. The motion of each will thus be necessarily a solution

of (1).
Thus I was led to a conclusion which was quite unex-

pected ;
and it seems to me very remarkable that the general

differential equation of the second order with variable coefficients

may be rigorously, continuously, and in a single process solved

by a machine.

Take up the whole matter ab initio : here it is. Take two of

my brother's disk-, globe-, and cylinder-integrators, and connect

the fork which guides the motion of the globe of each of the

integrators, by proper mechanical means, with the circumference

of the other integrator's cylinder. Then move one integrator's

disk through an angle = x, and simultaneously move the other
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r* Mechanics

integrator's disk through an angle always —
\ Pdx, a given Integrate&
/« of Linear

. Differentis

function of x. The circumference of the second integrator's Equations

cylinder and the centre of the first integrator's globe move each Order.

of them through a space which satisfies the differential equa-

tion (1).

To prove this, let at any time g lf g2
be the displacements of

the centres of the two globes from the axial lines of the disks
;

and let dx, Pdx be infinitesimal angles turned through by the two

disks. The infinitesimal motions produced in the circumferences

of two cylinders will be

g x

dx and g2
Pdx.

But the connexions pull the second and hrst globes through spaces

respectively equal to those moved through by the circumferences

of the first and second cylinders. Hence

g i

dx = dg2 ,
and g2

Pdx = dg }
;

and eliminating gn ,

d / 1 dg ]

'

dx \P dx )
9v

which shows that g l put for u satisfies the differential equa-

tion (1).

The machine gives the complete integral of the equation with

its two arbitrary constants. For, for any particular value of x,

give arbitrary values Gv G
2

. [That is to say mechanically; dis-

connect the forks from the cylinders, shift the forks till the globes'

centres are at distances G G
2
from the axial lines, then connect,

and move the machine.]

We have for this value of x,

that is, we secure arbitrary values for g i

and -y-
5 by the arbitrari-

ness of the two initial positions G v G
2
of the globes.

32—2
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VI. Mechanical Integration of the general Linear

Differential Equation of any Order with Variable

Coefficients*.

Mechanical
Integration
of General
Linear
Differential

Equation of

Any Order

Take any number i of my brother's disk-, globe-, and cylinder-

integrators, and make an integrating chain of them thus :
—

Connect the cylinder of the first so as to give a motion equal to

its ownt to the fork of the second. Similarly connect the

cylinder of the second with the fork of the third, and so on.

Let #,, g2
, g.6, up to git

be the positions % of the globes at any time.

Let infinitesimal motions P^dx, P2dx, P3 dx, ... be given simul-

taneously to all the disks (dx denoting an infinitesimal motion of

some part of the mechanism whose displacement it is convenient

to take as independent variable). The motions
(cfo,, c/*c„ ... cIk

( )

of the cylinders thus produced are

^
t
= 9i^ dx

>
dK

3
= 92

P
i
dx

>
••• dK

i
= gi

P
idx (1).

But, by the connexions between the cylinders and forks which

move the globes, d«
l

= dg2, dK
2 ~dg3 ,

... dK
t_l

= dgi \
and there-

fore

d9^9,P,dx, dg3
= g2

P
2 dx, ... dg.

= gi_ x P._^dx\
and dK

i =g i

P
1 dx, dx

2
= g2

P
2 dx, ... dx

{

= gi
P

i
dx.

Hence
1 d 1 d

y> p ,i*

1 d 1 dKs

.(2).

(3).P
l
dx P

2
dx

""

P.^ dx P
i
dx

Suppose, now, for the moment that we couple the last cylinder

with the first fork, so that their motions shall be equal
—that is

to say, k
4
= gx

. Then, putting u to denote the common value of

these variables, we have

1 d 1 d 1 d 1 du
u =

P
x

dx P
2
dx P

t_ t

dx Pi dx

*
Sir W. Thomson, Proceedings of the Royal Society, Vol. xxiv., 1876, p. 271.

t For brevity, the motion of the circumference of the cylinder is called the

cylinder's motion.

J For brevity, the term "
position" of any one of the globes is used to denote

its distance, positive or negative, from the axial line of the rotating disk on

which it presses.
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Thus an endless chain or cycle of integrators with disKs moved Mechanica

as specified above gives to each fork a motion fulfilling a dif- of Genera!

ferential equation, which for the case of the fork of the ith inte- Differential

grator is equation (4). The differential equations of the displace- AnyVrdor

ments of the second fork, third fork, ... (i-l)th fork may of

course be written out by inspection from equation (4).

This seems to me an exceedingly interesting result; but

though Pv P2 ,
P

3,
... jP

4 may be any given functions whatever of

x, the differential equations so solved by the simple cycle of inte-

grators cannot, except for the case of i = 2, be regarded as the

geueral linear equation of the order i, because, so far as I know,
it has not been proved for any value of i greater than 2 that the

general equation, which in its usual form is as follows,

cVu <£~
xu du

/tc
.

««5?
+ «-5^r i" ft3E-

f,a-° (5) '

can be reduced to the form (4). The general equation of the

form (5), where Q x , Q„, ... Q{
are any given forms of x, may be

integrated mechanically by a chain of connected integrators

thus :
—

First take an open chain of i simple integrators as described

above, and simplify the movement by taking

so that the speeds of all the disks are equal, and dx denotes an

infinitesimal angular motion of each. Then by (2) we have

dn
t

d2
K

t
d''

1

^ dl

K
t

9i= fa' 9i-*
=
dtf'

•••' 9*
=
dir" 9>= dxi ( }

-

Now establish connexions between the i forks and the ith

cylinder, so that

Putting in this for g x , gs,
etc. their values by (6), we find an

equation the same as (5), except that k
{ appears instead of u.

Hence the mechanism, when moved so as to fulfil the condition

(7), performs by the motion of its last cylinder an integration of

the equation (5).
This mechanical solution is complete ;

for we

may give arbitrarily any initial values to /c, g„ gt_v ... g3 , g% ;

that is to say, to

du d2u d*~
lu

u,
dx' dx2i

'"
dx*~
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Mechanical
Integration
of General
Linear
Differential

Equation of

Any Order.

Until it is desired actually to construct a machine for thus

integrating differential equations of the third or any higher

order, it is not necessary to go into details as to plans for the

mechanical fulfilment of condition (7); it is enough to know

that it can be fulfilled by pure mechanism working continuously

in connexion with the rotating disks of the train of integrators.

Mechanical
Integration
of any
Differential

Equation of

Any Order.

Addendum.

The integrator may be applied to integrate any differential

equation of any order. Let there be i simple integrators; let

x
, g , k,

be the displacements of disk, globe, and cylinder of the

first, and so for the others. We have

<1k„

9^dx y y^ix
1

,
etc.

Now by proper mechanism establish such relations between

x
i> 9i> Kn x

a > ff2 >
etc-

that

fW (
xi>9i> *,>

x
a ,...)

= 0,

(2t
— 1 relations).

This will leaA-e just one degree of freedom; and thus we have

2i-\ simultaneous equations solved. As one particular case

of relations take

x
i

= x
2
= ...(i—1 relations),

and i/2
= K

i» 9a
= K

2>
etc. (i- 1 relations);

so that

^'
= ^' 9>

=
dx^>

etC -

Thus one relation is still available. Let it be

Ax> 9i> 9a>—9» *i)=°-

Thus the machine solves the differential equation

d*u d'^u du

/(.
,
u ) = (putting u for k.).

'dx{ ' dx i~11 '"dx i

Or again, take 2t double integrators. Let the disks of all be

connected so as to move with the same speed, and let t be the
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displacement of any one of them from any particular position. Mechanic

T Integrati
-Let of any

i t n i, r,_ii «_!) Different
x

, >/,
x

, V ,
X

, y ,...X
U » / "

Equation
Any OnU

be tlie displacements of the second cylinders of the several

double integrators. Then (the second globe-frame of each being
connected to its first cylinder) the displacements of the first

globe-frames will be

d2x d*y d2x d2

y'W W W W etc -

Let now X, Y, X', Y', etc. be each a given function of

r i tt i

x* ij . '.
j y . >'j . etc.

By proper mechanism make the first globe of the first double

integrator-frame move so that its displacement shall be equal to

X, and so on. The machine then solves the equations

Cl5-X **-Y f^- Y' etc
df *> d?'

1
' df~

A
'
etc -

For example, let

X=(x'~x)/{(x'-xy+(y'-yy}

Y=W-y)f{{x'-*)
2 + {y-y)

2

}

+ (y-2/)/{K-^ + (2/"-2/)
2

}

X' — etc., Y' = etc.,

wheref denotes any function.

Construct in (frictionless) steel the surface whose equation is

(and repetitions of it, for practical convenience, though one

theoretically suffices). By aid of it (used as if it were a cam, but

for two independent variables) arrange that one moving auxiliary

piece (an .r-auxiliary I shall call it), capable of moving to and

fro in a straight line, shall have displacement always equal to

(
x'- x)f{{x'- xy + (2J

'- yf},

that another (a .^-auxiliary) shall have displacement always

equal to

(y'-y)f{(x'-xy+W-yn
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Mechanical
Integration
of any
Differential

Equation of

Any Order.

that another (an as-auxiliary) shall have displacement equal to

(x"-x)f{(x"-xy- + (y"-yn
and so on.

Then connect the first globe-frame of the first double integra-

tor, so that its displacement shall be equal to the sum of the

displacements of the ^-auxiliaries; that is to say, to

(x' -x)f{{x'-xf + (y'-yy}

+
(
x"- x)f{(x"-xy + (y"- yy-}

+ etc.

This may be done by a cord passing over pulleys attached to

the .^-auxiliaries, with one end of it fixed and the other attached

to the globe-frame (as in my tide-predicting machine, or in

Wheatstone's alphabetic telegraph-sending instrument).

Then, to begin with, adjust the second globe-frames and the

second cylinders to have their displacements equal to the initial

velocity-components and initial co-ordinates of i particles free

to move in one plane. Turn the machine, and the positions of

the particles at time t are shown by the second cylinders of the

several double integrators, supposing them to be free particles

attracting or repelling one another with forces varying according

to any function of the distance.

The same may clearly be done for particles moving in three

dimensions of space, since the components of force on each may
be mechanically constructed by aid of a cam-surface whose equa-

tion is

and taking t]
for the distance between any two particles, and

$ = x' — x

or =y-y
or = x" - x, etc.

Thus we have a complete mechanical integration of the pro-

blem of finding the free motions of any number of mutually

influencing particles, not restricted by any of the approximate

suppositions which the analytical treatment of the lunar and

planetary theories requires.
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VII. Harmonic Analyzer*.

This is a realization of an instrument designed rudiinentarily Harmonic
\nsl vzcr.

in the author's communication to the Royal Society (" Proceed-
'

ings," February 3rd, 1876), entitled "On an Instrument for

Calculating (/</> (x) \p (x) dx), the Integral of the Product of two

given Functions."

It consists of five disk-, globe-, and cylinder integrators of the

kind described in Professor James Thomson's paper "On an

Integrating Machine having a new Kinematic Principle," of the

same date, and represented in the woodcuts of Appendix B', ill.

The five disks are all in one plane, and their centres in one

line. The axes of the cylinders are all in a line parallel to it.

The diameters of the five cylinders are all equal, so are those of

the globes ;
hence the centres of the globes are in a line parallel

to the line of the centres of the disks, and to the line of the axes

of the cylinders.

One long wooden rod, properly supported and guided, and

worked by a rack and pinion, carries five forks to move the five

globes and a pointer to trace the curve on the paper cylinder.

The shaft of the paper cylinder carries at its two ends cranks at

right angles to one another
;
and a toothed wheel which turns a

parallel shaft, and a third shaft in line with the first, by means

of three other toothed wheels. This third shaft carries at its

two ends two cranks at right angles to one another.

Another toothed wheel on the shaft of the paper drum turns

another parallel shaft, which, by a slightly oblique toothed wheel

working on a crown wheel with slightly oblique teeth, turns

one of the five disks uniformly (supposing to avoid circumlocu-

tion the paper drum to be turning uniformly). The cylinder of

the integrator, of which this one is the disk, gives the continu-

ously growing value of §ydx.

Each of the four cranks gives a simple harmonic angular

motion to one of the other four disks by means of a slide and

crosshead, carrying a rack which works a sector attached to the

disk. Hence, the cylinders moved by the disks, driven by the

•
Sir W. Thomson, Proceedings of the Royal Society, Vol. xxvn., 1878, p.371.
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Harmonic
Analyzer.

Tidal
Harmonic
Analyzer.

first mentioned pair of cranks, give the continuously growing
values of

f 2ttx , , f 2irx
\y cos dx, ana

jy
sin dx

;

where c denotes the circumference of the paper drum : and the

two remaining cylinders give

2irwX

jy
cos dx, and

Jy sin - -
dx;>

where w denotes the angular velocity of the shaft carrying the

second pair of shafts, that of the first being unity.

The machine, with the toothed wheels actually mounted on it

when shown to the Royal Society, gave a> = 2, and was therefore

adopted for the meteorological application. By removal of two

of the wheels and substitution of two others, which were laid on

39 x 109
the table of the Roval Society, the value of to becomes -m——— *

"" 40x110

(according to factors found by Mr E. Roberts, and supplied by
him to the author, for the ratio of the mean lunar to the mean
solar periods relatively to the earth's rotation). Thus, the same

machine can serve for analyzing out simultaneously the mean
lunar and mean solar semi-diurnal tides from a tide-gauge curve.

But the dimensions of the actual machine do not allow range

enough of motion for the majority of tide-gauge curves, and they
are perfectly sufficient and suitable for meteox-ological work. The

machine, with the train giving w = 2, is therefore handed over to

the Meteorological Office to be brought immediately into prac-

tical work by Mr Scott (as soon as a brass cylinder of proper

diameter to suit the 24/i length of his curves is substituted for

the wooden model cylinder in the machine as shown to the

Royal Society) : and the construction of a new machine for the

tidal analysis, to have eleven disk-, globe-, and cylinder-integrators

in line, and four crank shafts having their axes in line with the

paper drum, according to the preceding description, in proper

periods to analyse a tide curve by one process for mean level, and

for the two components of each of the five chief tidal con-

stituents—that is to say,

* The actual numbers of the teeth in the two pairs of wheels constituting the

irain are 78 : 80 and 109 : 110.



VII.] CONTINUOUS CALCULATING MACHINES. 507

(1) The mean solar semi-diurnal
;

Tidal
Harmonic

(2) ,, „ lunar „ Analyzer.

(3) ,, ,,
lunar quarter-diurnal, shallow-water tide

;

(4) ,, ,,
lunar declinational diurnal

;

(5) ,, ,,
luni-solar declinational diurnal

;

is to be immediately commenced. It is hoped that it may be

completed without need to apply for any addition to the grant

already made by the Royal Society for harmonic analyzers.

Counterpoises are applied to the crank shafts to fulfil the con-

dition that gravity on cranks, and sliding pieces, and sectors, is

in equilibrium. Error from "back lash" or "lost time" is thus

prevented simply by frictional resistance against the rotation of

the uniformly rotating disk and of the tertiary shafts, and by
the weights of the sectors attached to the oscillating disks.o

Addition, April, 1879. The machine promised in the pre-

ceding paper has now been completed with one important modi-

fication :
—Two of the eleven constituent integrators, instead of

being devoted, as proposed in No. 3 of the preceding schedule,

to evaluate the lunar quarter-diurnal shallow-water tide, are

arranged to evaluate the solar declinational diurnal tide, this

being a constituent of great practical importance in all other

seas than the North Atlantic, and of very great scientific interest.

For the evaluation of quarter-diurnal tides, whether lunar or

solar, and of semi-diurnal tides of periods the halves of those of

the diurnal tides, that is to say of all tidal constituents whose

periods are the halves of those of the five main constituents for

which the machine is primarily designed, an extra paper-cylinder,

of half the diameter of the one used in the primary application

of the machine, is constructed. By putting in this secondary Secondareiii i_.
•

i

'

tertiary,

cvlinder and repassing the tidal curve through the machine the quatemar
-,

•
-, , • / i- ,, ~ . tl etc. tides,

secondary tidal constituents (corresponding to the farst
" over- due to iufl

tones" or secondary harmonic constituents of musical sounds) shallow

are to be evaluated. Similarly tertiary, quaternary, etc. tides

(corresponding to the second and higher overtones in musical analogou-
v

. to musica

sounds) may be evaluated by passmg the curve over cylinders of overtone*

one-third and of smaller sub-multiples of the diameter of the

primary cylinder. These secondary and tertiary tidal consti-

tuents are only perceptible at places where the rise and fall is

influenced by a large area of sea, or a considerable length of
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Tidai channel through which the whole amount of the rise and fall is

AnaiySS? notable in proportion to the mean depth. They are very percep-

tible at almost all commercial ports, except in the Mediterranean,

and to them are due such curious and practically important

tidal characteristics as the double high waters at Southampton

and in the Solent and on the south coast of England from the

Isle of Wight to Portland, and the protracted duration of high

water at Havre. [The instrument has been deposited in the

South Kensington Museum.]

END OF PART I.
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