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 Prologue      Historiography and history of 
mathematical proof:     a research programme    

   Karine     Cheml a    

  Pour Oriane, ces raisonnements sur les raisonnements    

 I     Introduction: a standard view 

 Th e standard history of mathematical proof in ancient traditions at the 
present day is disturbingly simple. 

 Th is perspective can be represented by the following assertions. 
(1) Mathematical proof emerged in ancient Greece and achieved a mature 
form in the geometrical works of Euclid, Archimedes and Apollonius. 
(2) Th e full-fl edged theory underpinning mathematical proof was formu-
lated in Aristotle’s  Posterior Analytics , which describes the model of dem-
onstration from which any piece of knowledge adequately known should 
derive. (3) Before these developments took place in classical Greece, there 
was no evidence of proof worth mentioning, a fact which has contributed 
to the promotion of the concept of ‘Greek miracle’. Th is account also implies 
that mathematical proof is distinctive of Europe, for it would appear that 
no other mathematical tradition has ever shown interest in establishing the 
truth of statements.  1    Finally, it is assumed that mathematical proof, as it is 
practised today, is inherited exclusively from these Greek ancestors. 

 Are things so simple? Th is book argues that they are not. But we shall 
see that some preliminary analysis is required to avoid falling into the 
old, familiar pitfalls. Powerful rhetorical devices have been constructed 
which perpetuate this simple view, and they need to be identifi ed before 
any meaningful discussion can take place. Th is should not surprise us. As 
Geoff rey Lloyd has repeatedly stressed, some of these devices were shaped 
in the context of fi erce debates among competing ‘masters of truth’ in 
ancient Greece, and these devices continue to have eff ective force.  2    

     1      See, for example, M. Kline’s crude evaluation of what a procedure was in Mesopotamia and how 
it was derived, quoted in J. Høyrup’s chapter, p. 363. Th e fi rst lay sinologist to work on ancient 
Chinese texts related to mathematics, Edouard Biot, does not formulate a higher assessment – 
see the statement quoted in A. Volkov’s chapter, p. 512. On Biot’s special emphasis on the lack 
of proofs in Chinese mathematical texts, compare Martija-Ochoa  2001 –2: 61. 

     2      See  chapter 3  in Lloyd  1990 : 73–97, Lloyd  1996a . Lloyd has also regularly emphasized how 
‘Th e concentration on the model of demonstration in the  Organon  and in Euclid, the one that 1
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 Studies of mathematical proof as an aspect of the intellectual history of 
the ancient world have echoed the beliefs summarized above – in part, by 
concentrating mainly on Euclid’s  Elements  and Archimedes’ writings, the 
subtleties of which seem to be infi nite. Th e practice of proof to which these 
writings bear witness has impressed many minds, well beyond the strict 
domain of mathematics. Since antiquity, versions of Euclid’s  Elements , in 
Greek, in Arabic, in Latin, in Hebrew and later in the various vernacular 
languages of Europe, have regularly constituted a central piece of math-
ematical education, even though they were by no means the only element of 
mathematical education. Th e proofs in these editions were widely emulated 
by those interested in the value of incontrovertibility attached to them and 
they inspired the discussions of many philosophers. However, some ver-
sions of Euclid’s  Elements  have also been used since early modern times – 
in Europe and elsewhere – in ways that show how mathematical proof has 
been enrolled for unexpected purposes. 

 One stunning example will suffi  ce to illustrate this point. At the end of 
the sixteenth century, European missionaries arrived at the southern door 
of China. As a result of the diffi  culties encountered in entering China and 
capturing the interest of Chinese literati, the Jesuit Matteo Ricci devised 
a strategy of evangelism in which the science and technology available 
in Europe would play a key part. One of the fi rst steps taken in this pro-
gramme was the publication of a Chinese version of Euclid’s  Elements  in 
1607. Prepared by Ricci himself in collaboration with the Chinese convert 
and high offi  cial Xu Guangqi, this translation was based on Clavius’ edition 
of the  Elements , which Ricci had studied in Rome, while he was a student 
at the Collegio Romano. Th e purpose of the translation was manifold. 
Two aspects are important for us here. First, the purportedly superior 
value of the type of geometrical knowledge introduced, when compared 
to the mathematical knowledge available to Chinese literati at that time, 
was expected to plead in favour of those who possessed that knowledge, 
namely, European missionaries. Additionally, the kind of certainty such a 
type of proof was prized for securing in mathematics could also be claimed 
for the theological teachings which the missionaries introduced simultane-
ously and which made use of reasoning similar to the proof of Euclidean 
geometry.  3    Th us, in the fi rst large-scale intellectual contact between Europe 

proceeds via valid deductive argument from premises that are themselves indemonstrable but 
necessary and self-evident, that concentration is liable to distort the  Greek  materials already – 
let alone the interpretation of Chinese texts.’ (Lloyd  1992 : 196.) 

     3      On Ricci’s background and evangelization strategy, see Martzloff   1984 . Martzloff   1995  is 
devoted more generally to the translations of Clavius’s textbooks on the mathematical sciences 
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and China mediated by the missionaries, mathematical proof played a role 
having little to do with mathematics  stricto sensu . It is diffi  cult to imagine 
that such a use and such a context had no impact on its reception in China.  4    
Th is topic will be revisited later. 

 Th e example outlined is far from unique in showing the role of math-
ematical proof outside mathematics. In an article signifi cantly titled ‘What 
mathematics has done to some and only some philosophers’, Ian Hacking 
( 2000 ) stresses the strange uses that mathematical proof inspired in phi-
losophy as well as in theological arguments. In it, he diagnoses how math-
ematics, that is, in fact, the experience of mathematical proof, has ‘infected’ 

into Chinese at the time. Engelfriet  1993  discusses the relationship between Euclid’s  Elements  
and teachings on Christianity in Ricci’s European context. More generally, this article outlines 
the role which Clavius allotted to mathematical sciences in Jesuit schools and in the wider 
Jesuit strategy for Europe. For a general and excellent introduction to the circumstances of 
the translation of Euclid’s  Elements  into Chinese, an analysis and a complete bibliography, 
see Engelfriet  1998 . Xu Guangqi’s biography and main scholarly works were the object of 
a collective endeavour: Jami, Engelfriet and Blue  2001 . Martzloff   1981 , Martzloff   1993  are 
devoted to the reception of this type of geometry in China, showing the variety of reactions 
that the translation of the  Elements  aroused among Chinese literati. On the other hand, the 
process of introduction of Clavius’ textbook for arithmetic was strikingly diff erent. See Chemla 
 1996 , Chemla  1997a . 

     4      Leibniz appears to have been the fi rst scholar in Europe who, one century aft er the Jesuits 
had arrived in China, became interested in the question of knowing whether ‘the Chinese’ 
ever developed mathematical proofs in their past. In his letter to Joachim Bouvet sent from 
Braunschweig on 15 February 1701, Leibniz asked whether the Jesuit, who was in evangelistic 
mission in China, could give him any information about geometrical proofs in China: ‘J’ay 
souhaité aussi de sçavoir si ce que les Chinois ont eu anciennement de Geometrie,  a esté 
accompagné de quelques demonstrations , et particulièrement s’ils ont sçû il y a long temps 
l’égalité du quarré de l’hypotenuse aux deux quarrés des costés, ou quelque autre telle 
proposition de la Geometrie non populaire.’ (Widmaier  2006 : 320; my emphasis.) In fact, 
Leibniz had already expressed this interest few years earlier, in a letter written in Hanover on 
2 December 1697, to the same correspondent: ‘Outre l’Histoire des dynasties chinoises . . ., il 
faudroit avoir soin de l’Histoire des inventions [,] des arts, des loix, des religions, et d’autres 
établissements[.] Je voudrois bien sçavoir par exemple s’il[s] n’ont eu il y a long temps quelque 
chose d’approchant de nostre Geometrie, et si l’egalité du quarré de l’Hypotenuse à ceux des 
costés du triangle rectangle leur a esté connue, et  s’ils ont eu cette proposition par tradition ou 
commerce des autres peuples, ou par l’experience, ou enfi n par demonstration, soit trouvée chez 
eux ou apportée d’ailleurs .’ (Widmaier  2006 : 142–4, my emphasis.) To this, Bouvet replied on 
28 February 1698: ‘Le point au quel on pretend s’appliquer davantage comme le plus important 
est leur chronologie . . . Apres quoy on travaillera sur leur histoire naturelle et civile[,] sur 
leur physique, leur morale, leurs loix, leur politique, leurs Arts, leurs mathematiques et leur 
medecine, qui est une des matieres sur quoy je suis persuadé que la Chine peut nous fournir 
de[s] plus belles connaissances.’ (Widmaier  2006 : 168.) In his letter from 1697 (Widmaier  2006 : 
144–6), Leibniz expressed the conviction that, even though ‘their speculative mathematics’ 
could not hold the comparison with what he called ‘our mathematics’, one could still learn 
from them. To this, in a sequel to the preceding letter, Bouvet expressed a strong agreement 
(Widmaier  2006 : 232). Mathematics, especially proof, was already a ‘measure’ used for 
comparative purposes. 



4 karine chemla

‘some central parts of [the] philosophy [of some philosophers], parts that 
have nothing intrinsically to do with mathematics’ (p. 98). 

 What is important for us to note for the moment is that through such 
non-mathematical uses of mathematical proof the actors’ perception of 
proof has been colored by implications that were foreign to mathematics 
itself. Th is observation may help to account for the astonishing emotion that 
oft en permeates debates on mathematical proof – ordinary ones as well as 
more academic ones – while other mathematical issues meet with indiff er-
ence.  5    On the other hand, these historical uses of proof in non-mathematical 
domains, as well as uses still oft en found in contemporary societies, led to 
overvaluation of some values attached to proof (most importantly the incon-
trovertibility of its conclusion and hence the rigour of its conduct) and the 
undervaluing and overshadowing of other values that persist to the present. 
In this sense, these uses contributed to biases in the historical and philo-
sophical discussion about mathematical proof, in that the values on which 
the discussion mainly focused were brought to the fore by agendas most 
meaningful outside the fi eld of mathematics. Th e resulting distortion is, in 
my view and as I shall argue in greater detail below, one of the main reasons 
why the historical analysis of mathematical proof has become mired down 
and has failed to accommodate new evidence discovered in the last decades.  6    
Moreover, it also imposed restrictions on the philosophical inquiry into 
proof. Accordingly, the challenge confronting us is to reinstate some 
autonomy in our thinking about mathematical proof. To meet this challenge 
eff ectively, a critical awareness derived from a historical outlook is essential.   

 II     Remarks on the historiography of mathematical proof 

 Th e historical episode just invoked illustrates how the type of mathemati-
cal proof epitomized by Euclid’s  Elements  (notwithstanding the diff erences 
between the various forms the book has taken) has been used by some 
(European) practitioners to claim superiority of their learning over that of 
other practitioners. In the practice of mathematics as such, proof became 
a means of distinction among practices and consequently among social 
groups. In the nineteenth century, the same divide was projected back into 
history. In parallel with the professionalization of science and the shaping of 

     5      Th e same argument holds with respect to ‘science’. For example, the social and political uses of 
the discourses on ‘methodology’ within the milieus of practitioners, as well as vis-à-vis wider 
circles, were at the focus of Schuster and Yeo  1986 . However, previous attempts paid little 
attention to the uses of these discourses outside Europe. 

     6      I was led to the same diagnosis through a diff erent approach in Chemla  1997b . 
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a scientifi c community, history and philosophy of science emerged during 
that century as domains of inquiry in their own right.  7    Euclid’s  Elements  
thus became an object of the past, to be studied as such, along with other 
Greek, Arabic, Indian, Chinese and soon Babylonian and Egyptian sources 
that were progressively discovered.  8    By the end of the nineteenth century, 
as François Charette shows in his contribution, mathematical proof had 
again become the weapon with which some Greek sources were evaluated 
and found superior to all the others: a pattern similar to the one outlined 
above was in place, but had now been projected back in history. Th e stand-
ard history of mathematical proof, the outline of which was recalled at the 
beginning of this introduction, had taken shape. In this respect, the dis-
missive assertion formulated in 1841 by Jean-Baptiste Biot – Edouard Biot’s 
father – was characteristic and premonitory, when he exposed 

 this peculiar habit of mind, following which the Arabs, as the Chinese and Hindus, 
limited their scientifi c writings to the statement of a series of rules, which, once 
given, ought only to be verifi ed by their applications, without requiring any logical 
demonstration or connections between them: this gives those Oriental nations a 
remarkable character of dissimilarity, I would even add of intellectual inferiority, 
comparatively to the Greeks, with whom any proposition is established by reason-
ing, and generates logically deduced consequences.  9      

 Th is book challenges the historical validity of this thesis. Th e issue at 
hand is not merely to determine whether this representation of a worldwide 
history of mathematical proof holds true or not. We shall also question 
whether the idea that this quotation conveys is relevant with respect to 

     7      See for example Laudan  1968 , Yeo  1981 , Yeo  1993 , especially  chapter 6 . 
     8      Between 1814 and 1818, Peyrard, who had been librarian at the Ecole Polytechnique, 

translated Euclid’s  Elements  as well as his other writings on the basis of a manuscript in 
Greek that Napoleon had brought back from the Vatican. He had also published a translation 
of Archimedes’ books (Langins  1989 .) Many of those active in developing history and 
philosophy of science in France (Carnot, Brianchon, Poncelet, Comte, Chasles), especially 
mathematics, had connections to the Ecole Polytechnique. More generally, on the history of 
the historiography of mathematics, including the account of Greek texts, compare Dauben and 
Scriba  2002 . 

     9      Th is is a quotation with which F. Charette begins his chapter (p. 274). See the original 
formulation on p. 274. At roughly the same time, we fi nd under William Whewell’s 
pen the following assessment: ‘Th e Arabs are in the habit of giving conclusions without 
demonstrations, precepts without the investigations by which they are obtained; as if their 
main object were practical rather than speculative, – the calculation of results rather than the 
exposition of theory. Delambre [here, Whewell adds a footnote with the reference] has been 
obliged to exercise great ingenuity, in order to discover the method in which Ibn Iounis proved 
his solution of certain diffi  cult problems.’ (Whewell  1837 : 249.) Compare Yeo  1993 : 157. Th e 
distinction which ‘science’ enables Whewell to draw between Europe and the rest of the world 
in his  History of the Inductive Sciences  would be worth analysing further but falls outside the 
scope of this book. 
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proof. As we shall see, comparable debates on the practice of proof have 
developed within the fi eld of mathematics at the present day too.  

 First lessons from historiography, or:     how sources have disappeared 
from the historical account of proof 

 Several reasons suggest that we should be wary regarding the standard 
 narrative. 

 To begin with, some historiographical refl ection is helpful here. As some 
of the contributions in this volume indicate, the end of the eighteenth 
century and the fi rst three-quarters of the nineteenth century by no means 
witnessed a consensus in the historical discourse about proof comparable 
to the one that was to become so pervasive later. In the chapter devoted 
to the development of British interest in the Indian mathematical tradi-
tion, Dhruv Raina shows how in the fi rst half of the nineteenth century, 
Colebrooke, the fi rst translator of Sanskrit mathematical writings into a 
European language, interpreted these texts as containing a kind of algebraic 
analysis forming a well arranged science with a method aided by devices, 
among which symbols and literal signs are conspicuous. Two facts are 
worth stressing here. 

 On the one hand, Colebrooke compared what he translated to D’Alembert’s 
conception of analysis. Th is comparison indicates that he positioned the 
Indian algebra he discovered with respect to the mathematics developed 
slightly before him and, let me emphasize, specifi cally with respect to ‘analy-
sis’. When Colebrooke wrote, analysis was a fi eld in which rigour had not yet 
become a central concern. Half a century later in his biography of his father, 
Colebrooke’s son would assess the same facts in an entirely diff erent way, 
stressing the practical character of the mathematics written in Sanskrit and 
its lack of rigour. As Raina emphasizes, a general evolution can be perceived 
here. We shall come back to this evolution shortly. 

 On the other hand, Colebrooke read in the Sanskrit texts the use of ‘alge-
braic methods’, the rules of which were proved in turn by geometric means. 
In fact, Colebrooke discussed ‘geometrical and algebraic demonstrations’ 
of algebraic rules, using these expressions to translate Sanskrit terms. He 
showed how the geometrical demonstrations ‘illustrated’ the rules with 
diagrams having particular dimensions. We shall also come back later to 
this detail. Later in the century, as Charette indicates, the visual character of 
these demonstrations was opposed to Greek proofs and assessed positively 
or negatively according to the historian. As for ‘algebraic proofs’, Colebrooke 
compared some of the proofs developed by Indian authors to those of Wallis, 
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for example, thereby leaving little doubt as to Colebrooke’s estimation of 
these sources: namely, that Indian scholars had carried out genuine algebraic 
proofs. If we recapitulate the previous argument, we see that Colebrooke 
read in the Sanskrit texts a rather elaborate system of proof in which the 
algebraic rules used in the application of algebra were themselves proved. 
Moreover, he pointed resolutely to the use in these writings of ‘algebraic 
proofs’. It is striking that these remarks were not taken up in later histori-
ography. Why did this evidence disappear from subsequent accounts?  10    
Th is fi rst observation raises doubts about the completeness of the record on 
which the standard narrative examined is based. But there is more. 

 Reading Colebrooke’s account leads us to a much more general observa-
tion: algebraic proof as a  kind  of proof essential to mathematical practice 
today is, in fact, absent from the standard account of the early history of 
mathematical proof. Th e early processes by which algebraic proof was 
 constituted are still  terra incognita  today. In fact, there appears to be a corre-
lation between the evidence that vanished from the standard historical nar-
rative and segments missing in the early history of proof. We can interpret 
this state of the historiography as a symptom of the bias in the historical 
approach to proof that I described above. Various chapters in this book will 
have a contribution to make to this page in the early history of mathemati-
cal proof. 

 Let us for now return to our critical examination of the standard view 
from a historiographical perspective. Charette’s chapter, which sketches 
the evolution of the appreciation of Indian, Chinese, Egyptian and Arabic 
source material during the nineteenth century with respect to mathemati-
cal proof, also provides ample evidence that many historians of that time 
discussed what they considered proofs in writings which they qualifi ed as 
‘Oriental’. For some, these proofs were inferior to those found in Euclid’s 
 Elements . For others, these proofs represented alternatives to Greek ones, 
the rigour characteristic of the latter being regularly assessed as a burden or 
even verging on rigidity. Th e defi cit in rigour of Indian proofs was thus not 
systematically deemed an impediment to their consideration as proofs, even 
interesting ones. It is true that historians had not yet lost their awareness 
that this distinctive feature made them comparable to early modern proofs. 

 One characteristic of these early historical works is even more telling 
when we contrast it with attitudes towards ‘non-Western’ texts today: 
when confronted with Indian writings in which assertions were not 

  10      Th e same question is raised in Srinivas  2005 : 213–14. Th e author also emphasizes that 
Colebrooke and his contemporary C. M. Whish both noted that there were proofs in ancient 
mathematical writings in Sanskrit. 
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accompanied by proofs, we fi nd more than one historian in the nineteenth 
century expressing his conviction that the assertion had once been derived 
on the basis of a proof. As late as the 1870s, this characteristic held true 
of, for instance, G. F. W. Th ibaut in his approach to the geometry of the 
 Sulbasutras , described below by Agathe Keller. It is true that Th ibaut criti-
cized the dogmatic attitude he attributed to Sanskrit writings dealing with 
science, in which he saw opinions diff erent from those expounded by the 
author treated with contempt – a fact that he related to how proofs were 
presented. It is also true that the practical religious motivations driving 
the Indian developments in geometry he studied diminished their value 
to him. In his view, these motivations betrayed the lack of free inquiry that 
should characterize scientifi c endeavour. Note here how these judgements 
projected the values attached to science in Th ibaut’s scholarly circles back 
into history.  11    Yet he never doubted that proofs were at the basis of the state-
ments contained in the ancient texts. For example, for the general case of 
‘Pythagorean theorem’, he was convinced that the authors used some means 
to ‘satisfy themselves of the general truth’ of the proposition. And he judged 
it a necessary task for the historian to restore these reasonings. Th is is how, 
for the specifi c case when the two sides of the right-angled triangle have 
equal length, Th ibaut unhesitatingly attributed the reasoning recorded in 
Plato’s  Meno  to the authors of the  Sulbasutras . As the reader will fi nd out 
in the historiographical chapters of this book, he was not the only one to 
hold such views. On the other hand, it is revealing that while he was looking 
for geometrical proofs from which the statements of the  Sulbasutras  were 
derived, Th ibaut discarded evidence of arithmetical reasoning contained 
in ancient commentaries on these texts. He preferred to attribute to the 
authors from antiquity a geometrical proof that he would freely restore. In 
other words, he did not consider commentators of the past worth attending 
to and, in particular, did not describe how they proceeded in their proofs. 

 To sum up the preceding remarks, even if, in the nineteenth century, ‘the 
Greeks’ were thought to have carried out proofs that were quite specifi c, 
there were historians who recognized that other types of proofs could be 
found in other kinds of sources. Even when proofs were not recorded, 
historians might grant that the achievements recorded in the writings 
had been obtained by proofs that they thus strove to restore. However, as 
Charette concludes with respect to the once-known ‘non-Western’ source 
material, ‘much of the twentieth-century historiography simply disre-

  11      Th e moral, political and religious dimensions of the discourse on methodology have begun to 
be explored. See, for example, the introduction and various chapters in Schuster and Yeo  1986 . 
More remains to be done. 
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garded the evidence already available’. One could add that the assumption 
that outside the few Greek geometrical texts listed above, there were no 
proofs at all in ancient mathematical sources has become predominant 
today. It is clearly a central issue for our project to understand the processes 
which marginalized some of the known sources to such an extent that they 
were eventually erased from the early history of mathematical proof. In 
any event, the elements just recalled again suggest caution regarding the 
standard narrative.   

 Other lessons from historiography, or:     nineteenth-century 
ideas on computing 

 Raina and Charette highlight another process that gained momentum 
in the nineteenth century and that will prove quite meaningful for our 
purpose. Th ey show how mathematics provided a venue for progressive 
development of an opposition between styles soon understood to charac-
terize distinct ‘civilizations’. In fact, as a result of this development, by the 
end of the century ‘the Greeks’ were more generally contrasted with all the 
other ‘Orientals’, because they privileged geometry over any other branch 
of mathematics, while ‘the others’ were thought of as having stressed com-
putations and rules, that is, algorithms, arithmetic and algebra, instead.  12    
Charette discusses the various means by which historians accommodated 
the somewhat abundant evidence that challenged this division. 

 Th is remark simultaneously reveals and explains a wide lacuna in the 
standard account of the early history of proof: this account is mute with 
respect to proofs relating to arithmetical statements or addressing the cor-
rectness of algorithms. From this perspective, Colebrooke’s remarks on 
‘algebraic analysis’ take on a new signifi cance, since they pertain precisely 
to proofs of that kind. In addition, the absence of algebraic proof from the 
standard early history, noted above, appears to be one aspect of a systematic 
gap. If we exclude the quite peculiar kind of number theory to be found in 
the ‘arithmetic books’ of Euclid’s  Elements , or in Diophantus’  Arithmetics , 
the standard history has little to say about how practitioners developed 
proofs for statements related to numbers and computations. Yet there is 
no doubt that all societies had number systems and developed means of 

  12      From the statement by J. B. Biot in 1841 (quoted by F. Charette) to the statement by M. Kline in 
1972 (quoted by Høyrup) – both cited above – there is a remarkable stability in the arguments 
by which algorithms are trivialized: they are interpreted as verbal instructions to be followed 
without any concern for justifi cation. An analysis of the historiography of computation would 
certainly be quite helpful in situating such approaches within a broader context. Th is point will 
be taken up later. 
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computing with them. Can we believe that proving the correctness of these 
algorithms was not a key issue for Athenian public accounts or for the 
Chinese bureaucracy?  13    Could these rely on checks left  to trial and error? 
Clearly, there is a whole section missing in the early history of proof as it 
took shape in the last centuries.  14    

 In fact, there appear two correlated absences in the narrative we are 
analysing: on the one hand, most traditions are missing,  15    while on the 
other hand, proofs of a certain type are lacking. Is it because we have no 
evidence for this kind of proof? Such is not the case, and it will come as no 
surprise to discover that most of the chapters on proof that follow address 
precisely those theorems dealing with numbers or algorithms. From a his-
toriographic perspective, again, it would be quite interesting to understand 
better the historical circumstances that account for this lacuna.   

 Creating the standard history 

 As Charette recalls in the conclusion of his chapter, the standard early 
history of mathematical proof took shape and became dominant in relation 
to the political context of the European imperialist enterprise. As was the 
case with the European missionaries in China a few centuries earlier, math-
ematical proof played a key role in the process of shaping ‘European civili-
zation’ as superior to the others – a process to which not only science, but 
also history of science, more generally contributed at that time. Th e analysis 
developed above still holds, and I shall not repeat it. Th e role that was allot-
ted to proof in this framework tied it to issues that extended far beyond the 
domain of mathematics. Th ese ties explain, in my view, why mathematical 
proof has meant so much to so many people – a point that still holds true 
today. Th ese uses of proof have also badly constrained its historical and 
philosophical analysis, placing emphasis on some values rather than others 
for reasons that lay outside mathematics. 

  13      What is at stake today in the trustworthiness of computing is discussed in MacKenzie  2001 . 
  14      Th e failure that results from not having yet systematically developed the portion of the 

history of mathematical proof has unfortunate consequences in how some philosophers of 
mathematics deal with ‘calculations’, as opposed to ‘proofs’. To take an example among those 
to whom I refer in this introduction, however insightful Hacking  2000  may be, the paragraph 
entitled ‘Th e unpuzzling character of calculation’ (pp. 101–3) records some common 
misconceptions about computing that call for rethinking. See fn. 45. 

  15      As is oft en the case, when ‘non-Western traditions’ – as they are sometimes called – are 
missing, other traditions in the West have been marginalized in, or even left  out from, the 
historiography. Lloyd directly addresses this fact in his own contribution to this volume. 
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 Understanding what other elements played a part in the shaping of our nar-
rative is another way of developing our critical awareness of the  narrative. 

 As R. Yeo has argued regarding the case of early Victorian Britain in 
the publications mentioned above, the professionalization of science and 
the development of the sense of a ‘scientifi c community’, as well as the 
need of the practitioners to reinforce the unity of ‘science’ for themselves 
and its value in the eyes of the public, can be correlated with an increase 
in the size and number of publications devoted to the ‘scientifi c method’. 
Th e distinctive features of the method enabled it to maintain the cohesion 
of the community and enhance the value of the social group in the eyes of 
the public. It shaped the social and professional status of those who were 
soon to be called ‘scientists’. Philosophy of science and history of science 
emerged and developed as disciplines through this historical process and 
were instrumental in the pursuit of the question of method. How were the 
understanding and discussion of mathematical proof infl uenced by this 
global trend? In my view, this is a key issue for our topic, to which we shall 
come back below but which awaits further research.  16    

 A consideration of the mainstream development of academic mathemat-
ics during the nineteenth century casts more light on our narrative from 
yet another perspective. It also allows the perception of other elements that 
may have played a part in constructing the narrative. Indeed, the approach 
to proofs of the past at diff erent time periods correlates with more general 
trends in the mathematics of the time. On the one hand, as we saw, in the 
fi rst decades of the nineteenth century, Colebrooke was reading his Indian 

  16      Clearly, proof was a topic of explicit discussion within disciplinary writings, as the fi rst edition 
of George Peacock’s  Treatise of Algebra  (1830) shows. Th e pages starting from paragraph 
142, on p. 109, were devoted to the question: ‘What constitutes a demonstration?’ Further, 
John Stuart Mill’s discussion of methodology, in his  A System of Logic, Ratiocinative and 
Inductive , fi rst published in 1843, encompassed an analysis of mathematical proof and led 
him to off er an interpretation of Euclidean proofs as reliant on an inductive foundation and 
their certainty as an illusion (p. 296). Th is example shows how refl ections of mathematical 
proofs were infl uenced by wider discussion of methodology. By comparison, Auguste Comte’s 
considerations on demonstrations were less systematic. Conversely, another question is worth 
exploring: what role did ideas about and practices of mathematical proofs play in shaping the 
various discourses about methodology? Even though considerations about demonstration 
are pervasive in the methodological books of that period, it seems to me that this feature has 
received little attention. An exception is the discussion of Whewell’s ideas regarding the various 
practices of proof in the context of his wider concern for the teaching of mathematics and 
physics in Yeo  1993 : 218–22. In this case, questions of method relate to pedagogic effi  ciency 
and tie mathematics to natural science. Hacking  1980  (reprinted as  chapter 13  in Hacking 
 2002 : 200–13) sheds interesting light on the question of the emergence of methodology in 
the seventeenth century. On the issue of mathematical proof as such, this article is updated in 
Hacking  2000 . 
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sources with mathematical analysis in mind. His comparisons were with 
Wallis or D’Alembert. On the other hand, at the end of the nineteenth 
century, when Greek geometry overshadowed all other evidence for the 
early history of proof, the value of rigour had been growing in signifi cance 
for some decades, and academic mathematics was witnessing the begin-
ning of a new practice of axiomatic systems which would soon become the 
dominant trend in the twentieth century.  17    

 Th ese arguments suggest that diff erent factors brought about the shift  
in historiography outlined above and could account for the outline of the 
now-standard narrative of the early history of proof. Some of these factors 
clearly relate to the state of mathematics at a given time, both institutionally 
and intellectually, but others are not directly related to it. Th e infl uence of 
some of these factors may be felt at the present day and could explain the 
lingering belief in this narrative as well as the signifi cance widely attached 
to it. However, the same arguments invite us to look at this narrative with 
critical eyes: the narrative belongs to its time and the time may have come 
that we need to replace it.   

 Dissatisfactions:     overemphasizing certainty 

 For more than three decades now, some historians of mathematics have pub-
lished articles and books arguing that the Chinese, Babylonian and Indian 
sources on which they were working contained mathematical proofs.  18    

  17      It would be interesting to document these correlations in greater detail. See e.g. I. Toth’s 
work on the history of axiomatization. Other changes in the mathematics of the nineteenth 
century also probably had an impact on the historiography in exactly the same way such 
as the increasing marginalization of computing and the division between pure and applied 
mathematics, which were soon perceived as two distinct pursuits and to be carried out in 
separate institutions. Th ibaut’s critical remarks, mentioned above, on the practical orientation 
of the mathematics in the  Sulbasutras  are probably an echo of the latter trend and illustrate 
a typical motif of nineteenth- and twentieth-century historical publications. Regarding the 
marginalization of computing and its impact on historiography, I refer to the forthcoming joint 
publication by Marie-José Durand-Richard, Agathe Keller and Dhruv Raina. 

  18      For the Chinese case, let us mention the fi rst research works on the topic published in 
English: Wagner  1975 , Wagner  1978 , Wagner  1979 . One must also mention the fi rst works 
in Chinese systematically addressing the issue: the 8th issue of the journal  Kejishi wenji  
(Collection of papers on the history of science and technology), in 1982; the 11th issue of the 
journal  Kexueshi jikan  (Collected papers in history of science); Wu Wenjun  1982 . Since then, 
the publications are too numerous to be listed here. Th e reader can fi nd a more complete 
bibliography in CG2004. Th e fi rst publication on the topic of proofs that could be read in the 
Mesopotamian sources is Høyrup  1990 . Since then, Høyrup has continued exploring this issue, 
and other specialists of the fi eld have joined him to support and develop this thesis. A synthesis 
of the outcomes of this research programme, the results of which were widely adopted by the 
narrow circle of specialists of Mesopotamian mathematics, was published: H2002. As for the 
Indian case, we can refer the reader to H1995: 75–7, Jain  1995 . Th ese were followed more 
recently by Patte  2004 , Srinivas  2005 , Keller  2006 , among others. 
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Th ey worked independently of each other and the proofs they  discussed 
were quite diff erent in nature. Moreover, their interpretation of the facts 
 confronting them was not uniform. However, they brought forward exten-
sive evidence, partly new, partly old, which challenged the received view of 
the early history of mathematical proof. It is interesting to note that, in a way, 
they were partly returning to a past historiography. 

 A puzzling fact is that, beyond the strict circle of specialists in the same 
domain, these results were at best ignored, but, more frequently, were 
rejected outright. Clearly, these publications have so far not managed to 
bring about any change in the view of the early history of mathematical 
proof held by historians and philosophers of science at large, or the wider 
population. 

 Th is sustained failed reception needed to be analysed. Th us, this book is 
not only devoted to the history but also contains a section on the histori-
ography of mathematical proof. Needless to say, much more remains to be 
done in this domain. Th ese circumstances also explain why I chose to begin 
this introduction with historiographical remarks. Some further factors are 
at play in how mathematical proof is approached in our societies at large, 
and we need to recognize these factors in order to restore some freedom to 
the discussion and come to grips with the new evidence. 

 On the basis of the analysis outlined above, we see two types of obstacles 
which could hinder the development of the discussion. Firstly, the whole 
question of mathematical proof is entangled with extrascholarly uses in 
which it plays an important part – among these uses are those of the issues 
addressed earlier which are related to claims of identity.  19    Additionally, and 
in relation to this point, an image of what a mathematical proof  endeavours 
has crystallized and blurs the analysis. My claim is that this image is biased 
and that dealing with the new evidence mentioned above presents an 
 opportunity for us to locate this distortion and to think about mathematical 
proof anew. 

 We have reached the crux of the argument. Let me explain in greater 
detail. Th e essential value usually attached to mathematical proof – topmost 
for its wide cultivation and esteem outside the sphere of mathematics – is 
that, as the word ‘proof ’ itself indicates, it yields certainty: the conclusion 
which has been proved can (hopefully) be accepted as true.  20    Securing the 

  19      How social groups construct identity through science or history of science is more generally a 
key issue, on which much more research ought to be done. 

  20      Grabiner  1988  argues that certainty and applicability were the two features through which 
mathematics was most infl uential to ‘Western thought’. Certainly, these two features occupy 
a prominent position in Xu Guangqi’s preface to the Chinese translation of Euclid’s  Elements  
(Engelfriet  1998 : 291–7). Grabiner’s analysis of how the certainty yielded by proof was 
infl uential, especially in theology, reveals dimensions of the importance regularly attached 
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truth of a piece of knowledge and convincing an opponent of the incontro-
vertibility of an assertion seem to be what mathematical proof off ers and 
the ideal it embodies. 

 Clearly, if we adopt this view of proof, we are immediately forced to admit 
that starting points (defi nitions, axioms) are mandatory for the activity of 
proof, if we are to achieve these goals. Moreover, the validity of these start-
ing points must be agreed upon, regardless of how this agreement is reached. 
In his chapter, Geoff rey Lloyd treats at length the variety of terms used to 
designate these starting points in ancient Greece and the intensity of interest 
in, and debate about, them that this variety refl ects. On this basis, and this is 
where requirements such as rigour appear to come in, valid arguments are 
required to derive assertions from the starting points in a trustworthy way, 
and new assertions depend on the fi rst ones or the starting points, and so on. 

 In other words, as soon as one has granted the premise that the goal of 
mathematical proof is to prove in an indisputable way, then the conclu-
sion follows unavoidably that this aim can be only achieved within the 
framework of an axiomatic–deductive system of one sort or another. In the 
context of this assumption, Euclid’s  Elements  is the fi rst known mathemati-
cal writing that contains proofs, and any claim that a given source contains 
proofs has to be judged accordingly. And such claims have actually been 
judged by that very standard. 

 Th is is, in my view, the simple device by which Greek geometrical writings 
have become so central to the discussion of proof that they cannot possibly 
be challenged, and this position lies at the core of the recent rejection of the 
claim that Babylonian, Chinese or Indian sources contained proofs by some 
part of the community of history and philosophy of science (among others). 
Th e reasoning will look simplistic to many. However, I claim that this is pre-
cisely the core of the matter.  21    If I am right, this is the point on which critical 
analysis must be exercised for us to open our historical inquiry into proof 
wider. Th e feature of mathematical proof just examined is certainly quite 
meaningful, and was indeed deemed so outside mathematics. However, on 
what basis do we grant ‘incontrovertibility’ as  the  essential value and goal of 
mathematical proof within mathematics itself? 

  21      I formulated the reasoning relying on present-day perception of what yields certainty. 
Although certainty, starting points and modes of reasonings based on the latter to secure 
the former remained a stable constellation of elements in the history of discussions about 
mathematical proof, the meanings and contents attached to them displayed variation in 
history. As Orna Harari shows in her chapter in this book, earlier views were quite diff erent 
from present-day ones. Compare Mancosu  1996 , especially  chapter 1 . 

to this value. Hacking  2000  is a bright analysis of what certainty and its cognate values have 
meant for some philosophers. 
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 To examine this question, let us restrict the discussion to mathemati-
cal proof as such, as carried out within the context of mathematics. Th e 
 recollection of a simple fact will prove useful here: many mathematical 
proofs produced throughout history by duly acknowledged scholars were 
not presented within axiomatic–deductive systems.  22    In fact, the periods 
during which advanced mathematical writings were predominantly 
 composed in such a way are much shorter than the periods when they 
were not. In tandem with the lack of interest in an axiomatic–deductive 
 organization of mathematical knowledge, the authors oft en did not place 
much emphasis on rigour. Yet they referred to what they wrote as proofs.  23    
One may argue that these practitioners of mathematics overlooked 
some  diffi  culties and made errors. But these objections cannot possibly 
obliterate the innumerable theories proposed and results obtained with 
precisely such types of proof. Th ese remarks have an inescapable conse-
quence: it reveals that for a fair number of practitioners of mathematics 
the goals of proof cannot have been  only  ascertaining incontrovertibility 
and assuring certainty through achieving conviction, if such was ever their 
goal at all. Nevertheless, they considered it worthwhile to look for proofs, 
and their practice of proof was no less productive from a mathematical 
point of view. 

 In my view, this perception of proof still holds true today. Even though, 
in their discourse on the contemporary practices of proof, mathemati-
cians may stress the axiomatic–deductive framework within which they 
work and emphasize the certainty yielded by proofs as well as the rigour 
necessary in their production,  24    the functions they ascribe to proof in their 

  22      Ironically enough, the proof that lies at the core of Plato’s  Meno  and that has exerted a huge 
infl uence in the history of philosophy (Hacking  2000 ) is not formulated within an axiomatic–
deductive system. Philosophers of the present day such as Lakatos  1970  held ‘a no-foundation 
view of mathematics’ (Hacking  2000 : 124). Unfortunately such views have not yet shown any 
clear impact on the history of ancient mathematics. Rav  1999 : 15–19 lists several examples of 
major domains of mathematics of the present day, for which axioms have not been proposed 
and that are nevertheless felt to be rigorous. He further emphasizes the various meanings of 
‘axioms’ as used in modern practice. 

  23      I am not aware of any historical publication which denies that Leibniz, Euler, Poncelet, 
Poincaré or others of their ilk wrote down actual proofs and suggests that these men should 
be erased from the history of mathematical proof: whatever the evaluation may be, it is 
without contest that they contributed to shaping practices of proof. More revealing examples 
are discussed in Jaff e and Quinn  1993 : 7–8. Th e fact that Jaff e and Quinn refer to cases of 
‘weak standards of proof ’ and suggest that, in some cases, ‘expressions such as “motivation” 
or “supporting argument” should replace “proof ”’ in actors’ language indicates that in the 
contemporary mathematical literature the label ‘proof ’ refers to a great variety of types of 
arguments (Jaff e and Quinn  1993 : 7, 10). Th is topic recurs below. 

  24      See the very diff erent and lucid account in Th urston  1994 : 10–11. Among other refreshing 
insights into the activity of proof, Th urston rejects the ‘hidden assumption that there is 
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actual work seem quite diff erent and multifaceted, in fact. Some insight on 
this point can be gained from the contributions to a debate that broke out 
in the pages of the  Bulletin of the American Mathematical Society  about a 
decade ago.  25    Th e paper by Jaff e and Quinn that launched the discussion 
recognized the importance of ‘speculating’ – which they called ‘theoretical 
mathematics’ – for the development of mathematics, in addition to proofs 
which secure certainty. However, the authors expressed concerns regarding 
the confusion that could arise from confounding rigorous proofs (ones that 
bring certainty), insights, arguments and so on. As a consequence, they 
suggested norms of publication that would distinguish explicitly between, 
on the one hand, ‘theorem’, ‘show’, ‘construct’, ‘proof ’ and, on the other 
hand, ‘conjecture’, ‘predict’, ‘motivation’, and ‘supporting argument’.  26    One 
may venture to recognize in this opposition a divide of the type we are 
examining with respect to history. 

 It is impossible to review the debate in detail here. However, for our 
purposes, it is interesting to observe the intensity of reaction that this sug-
gestion elicited in the mathematical community. From the responses pub-
lished in the  Bulletin , a much more complex image of the activity of proof 
emerges, in which rigorous proofs appear to arouse mixed feelings and 
cohabit with all kinds of other modalities of proof.  27    Moreover, the relation 
of proof to other aspects of mathematical activity appears to be quite intri-
cate and calls for further analysis. In relation to our topic, I interpret the fact 
that, ironically, many mathematicians do not fi nd it diffi  cult to recognize 
as proofs arguments from Chinese or Indian texts although other scholars 
deny them this quality as an additional sign of this coexistence of motley 
practices of proof in the mathematical community. Were further evidence 
still necessary, these facts indicate that there are confl icting ideas among 
mathematicians about what a proof is or should be. Why, in such circum-
stances, should historians or philosophers opt for one idea as the correct 
one and civilize the past, let alone the present, on this basis? 

  25      Some of the pieces written for this debate were already mentioned above. Here are the 
references to the entire core exchange: Jaff e and Quinn  1993 , Atiyah, Borel, Chaitin, Friedan, 
Glimm, Gray, Hirsch, Lane, Mandelbrot, Ruelle, Schwarz, Uhlenbeck, Th om, Witten and 
Zeeman  1994 , Jaff e and Quinn  1994 , Th urston  1994 . 

  26      Jaff e and Quinn  1993 : 10. 
  27      Th e relationship between the written text of the proof and the collective oral activity related to 

proof that emerges from these testimonies presents a potentially worrying complexity to the 
historian, whose only sources are written vestiges with a faint relation to real processes of proof 
production. 

uniform, objective and fi rmly established theory and practice of proof ’ (p. 1.) A comparable, 
yet diff erent, account of proof, which is quite critical of standard views, is provided by 
Rav  1999 . 
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 In connection with this issue, and to return to the question whether cer-
tainty is the main motivation for looking for proofs today, it is interesting to 
note that many responses to the original paper by Jaff e and Quinn manifest 
a concern that too strict a control in order to assure certainty could entail 
losses for the discipline. By contrast, the debate also allows one to observe 
how many diff erent functions and expectations mathematicians attach to 
proof: bringing ‘clarity and reliability’; providing ‘feedback and corrections’, 
‘new insights and unexpected new data’ (Jaff e  et al . 1993), ‘clues to new and 
unexpected phenomena’ (Jaff e  et al . 1994), ‘ideas and techniques’ (Atiyah 
 et al .  1994 ), ‘understanding’,  28    ‘mathematical concepts which are quite inter-
esting in themselves, and lead to further mathematics’; ‘helping support of 
certain vision for the structure of ’ a mathematical object (Th urston  1994) .  29    
Only with this variety of objectives in mind can we account for some oth-
erwise mysterious practices. For instance, how else could we explain why 
rewriting a proof for already well-established statements can be fruitful?  30    
Restricting ourselves to consideration of proof in the more limited domain 
of mathematics brought to light a wealth of reasons which motivated the 
writing of proofs for mathematicians.  31    Moreover, it suggests the great loss 
for the historical inquiry on mathematical proof if these proofs, the values 
attached to them, and the motivations to formulate them and write them 
down were not considered.   

  28      A comment by Martin Davis on the four-colour theorem nicely illustrates this point: the 
problem with the computer proof, in his view, is not so much the lack of certainty it entails, 
but the fact that it does not put us in a position to understand where the ‘4’ comes from, and 
whether it is accidental or not (Martin Davis, 2 October 2007, personal communication). 

  29      As I alluded to it above, rigour is a contested value in these pages (see the contributions by 
Mandelbrot, Th om). What is more, it must be stressed that in contemporary mathematics, 
as it may have been the case for the Aristotle of the  Posterior Analytics , the value attached to 
rigour is perhaps linked more to the understanding and additional insights it provides than 
to the increased certainty it yields. Hilbert  1900 , for example, testifi es to the idea that rigour 
yields fruitfulness and provides a guide to determine the importance of a problem (in the 
English translation: Hilbert  1902 : 441). However, as Rav  1999  stresses, even when proofs are 
wrong or inadequate, they remain the main source from which new concepts emerge and 
new theories are developed. He further suggests that it is in proofs, rather than in theorems, 
that mathematicians look for mathematical knowledge and understanding: ‘Conceptual and 
methodological innovations are inextricably bound to the search for and the discovery of 
proofs, thereby establishing links between theories, systematizing knowledge and spurring 
further developments.’ (Rav  1999 : 6). 

  30      Th is point was stressed in Chemla  1992 , which relies on how Rota  1990  had discussed the 
issue. 

  31      Some historians have attempted to widen the history of proof by suggesting that the 
actors of the past used various means to convince their peers of the truth of a statement. 
In this vein attention has been paid to the rhetorical means that the actors employed. 
Th e preceding remarks show why this does not help frame a wide enough perspective 
on the activity of proof. 
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 New perspectives, or:     the project of the book 

 From this vantage point, two conclusions can be discerned. 
 Firstly, we see how a history of proof limited to inquiry into how practi-

tioners devised the means of establishing a statement in an incontrovertible 
way runs the risk of being truncated. Th is, in my view, is what happens 
when the Babylonian, Chinese and Indian evidence is left  out. 

 Secondly, and conversely, the outline sketched above suggests another 
kind of programme for a history of mathematical proof, one likely to be 
more open and allow us to derive benefi ts from the multiplicity of our 
sources. We may be interested in understanding the aims pursued by 
diff erent collectives of practitioners in the past when they manifested 
an interest in the reasons why a statement was true or an algorithm was 
correct. We may also wonder how they shaped the practices of proof in 
relation to the aims they pursued and how they left  written evidence of 
these practices.  32    

 In fact, some of these other functions associated with proof were explic-
itly identifi ed in the past and they were at times perceived as more impor-
tant than assuring certainty. In relation to this, epistemological values 
distinct from that of incontrovertibility have been used to assess proofs. In 
this respect, one can recall the seventeenth-century debates about how to 
secure increased clarity through mathematical proofs, thereby achieving 
conviction and understanding. Seen in this light, the versions of Euclid’s 
 Elements  of the past were not much prized, and new kinds of  Elements  were 
composed to fulfi l more adequately the new requirements demanded from 
mathematical proof.  33    Th is example illustrates how diff erent types of proof 
were created in relation to diff erent agendas for proving. 

 How would such a programme translate with respect to ancient tradi-
tions? Th is is the inquiry of the present book, as one step towards opening 
a wider space for a historical and epistemological investigation into math-
ematical proof. 

 Th e book is mainly – we shall see why ‘mainly’ shortly – devoted to the 
earliest known proofs in mathematics. By the term ‘proof ’, it should be now 
clear why we simply mean texts in which the ambition of accounting for the 
truth of an assertion or the correctness of an algorithm can be identifi ed as 
one of the actors’ intentions. In other words, we do not restrict our corpus 

  32      Th is analysis and this programme develop the suggestion I formulated in Chemla  1997b : 
229–31. 

  33      On this question, see  chapter 4 , ‘L’interprétation d’Euclide chez Pascal et Arnauld’, in Gardies 
 1984 : 85–108. 
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 a priori  by reference to norms and values that would appear to us as charac-
terizing proofs in an essential way. 

 From this basis, the various chapters aim at identifying the variety of 
goals and functions that were assigned to proof in diff erent times and places 
as well as the variety of practices that were constructed accordingly. In brief, 
the authors seek to analyse  why  and  how  practitioners of the past chose to 
execute proofs. Moreover, they attempt to understand how the activity of 
proving was tied to other dimensions of mathematical activity and, when 
possible, to determine the social or professional environments within 
which these developments took place. 

 Beyond such an agenda, several more general questions remain on our 
horizon. 

 From a historical point of view, we need to question whether the history 
of mathematical proof presents the linear pattern which today seems to be 
implicitly assumed. How did the various practices of proof clearly distin-
guished in present day mathematical practice inherit from and draw on 
earlier equally distinct practices? In more concrete terms, we seek to under-
stand how the various practices of proof identifi ed in ancient traditions 
or their components (like ways of proceeding or motivations), developed, 
circulated and interacted with one another. Th ese are some of the questions 
that arise when attempting to account for the construction of proof as a 
central but multifaceted mathematical endeavour that unfolded in history 
in a less straightforward way than it was once believed. 

 From an epistemological point of view, on the other hand, we are inter-
ested in the understanding about mathematical proof in general that can be 
derived from studying these early sources from this perspective.   

 Further lessons from historiography, or:     the historical analysis 
of critical editions 

 Th e analysis developed so far was needed to raise an awareness of the 
various meanings that have overloaded – and still overload – the term 
‘proof ’ in the historiography of mathematics. We brought to light how 
agendas involved in this issue fettered the development of a broader 
 programme which would consider proof as a practice and analyse it in all 
its dimensions. Before we outline how the present book contributes to this 
larger programme, further preliminary remarks of another type are still 
needed. 

 Our approach to proofs from the past is mediated by written texts. In 
his contribution to the debate evoked above, wherein he described the 
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 collective work involved in the making of a proof eventually produced and 
written down by an individual, W. Th urston makes us fully aware of the 
bias that such an approach represents. In fact, there are further diffi  culties 
linked to the nature of the sources with which the historian works. 

 Some of these sources, like Babylonian tablets, were discovered in 
archaeological excavations, on a spot where they were used by actors. 
Others came down to us through the written tradition. In most cases, the 
physical medium has travelled.  34    In the end of the best-case scenario, those 
that can be read are available to us through critical editions. Th rough the 
various processes of transmission and reshaping of the primary sources, the 
agendas related to proof described earlier may have left  an imprint. In such 
cases, our analysis of the source material would be biased at its root. 

 We shall illustrate this problem with a fundamental example, which 
will bring us back to nineteenth-century historiography of proof and a 
dimension of its formation that we have not yet contemplated. Above, we 
outlined the contribution that this book makes to analysing the evolution 
of European historiography of science with respect to ‘non-Western’ proofs. 
As a complementary account, the  fi rst section  of  Part I  in the book focuses 
on the approach to Greek geometrical texts that developed in the late nine-
teenth century and the beginning of the twentieth century. Th ree chapters 
examine how the critical editions of Euclid’s  Elements  and Archimedes’ 
writings produced by the philologist Johann Heiberg, on which we still 
depend for our access to these texts, refl ect, and hence convey, his own 
vision of the mathematics of ancient Greece. Th ese chapters illustrate a 
new element involved in the historiographic turn described above: the pro-
duction of critical editions. Let us sketch why they invite us to maintain a 
critical distance from the way sources have come down to us, lest we uncon-
sciously absorb the agendas that shaped these editions. 

 Th e problem aff ecting these critical editions was fi rst exposed by Wilbur 
Knorr, in an article published in 1996, the title of which was quite explicit: 
‘Th e wrong text of Euclid: on Heiberg’s text and its alternatives’.  35    In it, 
Knorr explained why in his view, Heiberg shaped Euclid’s text on the basis 
of his own assumptions regarding the practice of axiomatic–deductive 
systems in ancient Greece. Knorr’s article began with a critical examination 
of a debate which at the end of the nineteenth century opposed Heiberg to 

  34      Th e research programme entitled ‘Looking at it from Asia and Africa: a critical analysis of the 
processes that shaped the sources of history of science’, led by Florence Bretelle-Establet and 
to which A. Bréard, C. Jami, A. Keller, C. Proust and myself contributed helped me clarify my 
views on these questions. 

  35      Knorr  1996 . A paper that appeared posthumously took up this issue once again: Knorr  2001 . 
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Klamroth, a historian who specialized in Arabic mathematics. Th e debate 
concerned the role ascribed to the editions and translations into Arabic 
and Latin carried out between the eighth and the thirteenth centuries – the 
so-called ‘indirect tradition’ – in the making of the critical edition of the 
 Elements . Heiberg’s position was that the Greek manuscripts dating from 
the ninth century onwards – the ‘direct tradition’ – were closer to Euclid’s 
original text. In contrast, Klamroth argued that the Arabic and Latin wit-
nesses, less complete from a logical point of view, bore testimony to earlier 
states of the text, whereas the Greek documents had already been contami-
nated by the various uses to which the text had been put in the centuries 
between its composition by Euclid and the transliteration into minuscule 
that took place in Byzantium. In brief, Heiberg was committed to the view 
that Euclid’s  Elements  contained a minimum of logical gaps in the math-
ematical composition which it delineated. Th is supposition dictated the 
choice of sources on which he based his edition and motivated his rejection 
of other documents as derivative. Th is is how his selective treatment of the 
written evidence contributed to reshaping Euclid closer to his own vision. 
Taking up Klamroth’s thesis, Knorr held the opposite view: for him, the 
Arabic and Latin witnesses were closer to the original Euclid, and the addi-
tions of logical steps were carried out by later editors of the  Elements . Th e 
consequence of the resurgence of the debate was clear: some textual doubts 
were thereby raised regarding Euclid’s original formulation of his proofs. 

 In articulating a critical analysis of this kind regarding the nineteenth-
century edition of the  Elements  still widely used today for the fi rst time 
since the publication of Heiberg’s volumes, Knorr launched a research 
programme of tremendous importance to our topic. How much does our 
perception of the practice of proof in the  Elements  depend on the choices 
carried out by Heiberg? In other words, how far is his vision of Euclidean 
proof, formed at the end of the nineteenth century, conveyed through the 
text of his critical edition? Such are the fundamental questions raised. Th e 
example illustrates clearly, I believe, a much more general problem, which 
can be formulated as follows: how do critical editions aff ect the theses held 
by historians of science and the transmission of this inheritance to the next 
generations of scholars? 

 Th is general issue is to be kept in mind with respect to all the sources 
mentioned in this volume. However, beyond providing the illustration of a 
general diffi  culty, the example of the  Elements  is in itself of specifi c impor-
tance for our topic. In fact, the problem it raises extends beyond the case of 
the  Elements , since soon aft er the publication of Knorr’s fi rst paper, a dif-
fi culty of the same kind became manifest with respect to Heiberg’s  critical 
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edition of Archimedes’ writings.  36    What can we learn about the issue of 
proof by examining the philologist’s impact on our present-day vision of 
Euclid and Archimedes? 

 Th e three chapters of this book that are devoted to the analysis of the 
nineteenth-century editions of Greek geometrical texts from antiquity – 
the fi rst one dealing with the  Elements , the second one with the general 
issue of the critical edition of diagrams and the third one with Archimedes’ 
texts – represent three critical approaches to Heiberg’s philological choices 
and their impact on the editing of the proofs. Th eir argumentation benefi ts 
from the wealth of twentieth-century publications on the Arabic and Latin 
translations and editions of the Greek geometrical texts. Let us outline 
here briefl y the distinct textual problems on which these chapters focus. 
Each chapter represents one way in which our understanding of the proofs 
preserved in the geometrical writings of ancient Greece is aff ected by their 
representation developed in the editions commonly employed. 

 In his contribution to the volume, Bernard Vitrac examines diff erent 
 types  of divergences between proofs, to which the various manuscripts that 
bear witness to Euclid’s  Elements  testify. More specifi cally, Vitrac focuses on 
a corpus of diff erences that were caused by deliberate intervention. Since 
these transformations were most certainly carried out by an author in the 
past who wanted to manipulate the logical or mathematical nature of the 
text, they indicate clearly the points at which we are in danger of attributing 
to Euclid reworking of the  Elements  undertaken aft er him. 

 Th ree types of divergences are examined. Th e fi rst one, about which 
the debate described above broke out, relates to the terseness of the text 
of proofs: some proofs are found to be more complete from a logical point 
of view in some manuscripts than in others. Vitrac brings to light that the 
interpretation made by the two opponents in the debate relied on divergent 
views of the possible evolution of such a book as the  Elements . Klamroth’s 
thesis presupposed that the evolution of the text could only be a progressive 
expansion, motivated by the desire to make the deductive system more and 
more complete from a logical or a mathematical point of view. In contrast, 
Heiberg suggested that the Arabic and Latin versions were based on an 
epitome of the Euclidean text, on which account he could marginalize their 
use in restoring the  Elements . Vitrac provides an analysis of the various 
logical gaps and concludes that the later additions to the Greek text that 
the indirect tradition allows us to perceive in the Greek manuscripts are 
linked to a logical concern regarding the mathematical content of the text. 

  36      Chemla  1999 . 
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Th is also holds true for most of the material added (propositions, lemmas, 
porisms). Th ese remarks seem to support Klamroth’s view. In this respect, 
Vitrac considers the indirect tradition as more authentic, a fact which calls 
for a re-examination of proofs in the various versions of Euclid’s  Elements . 
Vitrac suggests, however, that the enlargement and ‘improvement’ of the 
 Elements  could have started in Greek and continued in Arabic and Latin. 
Th e extant versions all seem to bear signs of corruption by such activity. 

 Th e second type of divergence between the sources Vitrac examines 
relates to the order in which propositions are arranged. Th is order con-
stitutes a key ingredient in an axiomatic–deductive structure. In fact, the 
order does vary according to the version of the text. Th e decisions imple-
mented by any critical edition hence represent an interpretation of Euclid’s 
original deductive structure. However, on this count, Vitrac suggests the 
provisional conclusion that the indirect tradition more frequently bears 
witness to modifi cations of this type. 

 Th e third kind of divergence which he analyses has perhaps the greatest 
impact on our perception of Euclid’s proofs, since it relates to major dif-
ferences between the sources: substitution of proofs, integration of these 
substitutions in a set of related proofs, addition or subtraction of cases, and 
double proofs, of which Heiberg kept only one according to criteria that 
need to be examined. Such cases indicate that proofs and their modifi cation 
were the subject of a continuous eff ort, part of which was integrated into the 
editions of the  Elements  available to us today. 

 In conclusion, before we consult the critical editions of Arabic, Arabo-
Hebrew or Arabo-Latin versions of Euclid’s  Elements , it may be diffi  cult to 
go substantially further in the analysis of the proofs or the deductive system 
attributed to Euclid. Most probably, this goal may remain forever out of 
reach. However, we can already appreciate the extent to which the textual 
decisions made by the philologist aff ect the discourse on the practice of 
proof in ancient Greece. Th is remark shows that the discourse on the prac-
tice of proof in ancient Greece may not be as solidly founded as was previ-
ously thought. As Vitrac suggests in his conclusion, rather than holding 
to the romantic ideal of some day retrieving the original  Elements , it may 
be far more reasonable and interesting to consider the various versions of 
Euclid’s  Elements  for which we have evidence. Th is new perspective would 
provide us with a better grasp of the various forms that the text took in 
history – namely, the forms through which diff erent generations of scholars 
read and used the  Elements . 

 Ken Saito and Nathan Sidoli critically examine the work of the philolo-
gist from an entirely diff erent perspective. Th e purpose of their chapter is 
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to draw attention to the fact that the diagrams inserted by Heiberg in his 
edition of Euclid’s  Elements , among others, are quite diff erent from those 
actually and stably contained in the manuscripts. Th e sources indicate 
that the diagrams were more oft en than not quite particular, represent-
ing the general case not by means of a generic fi gure, but rather by means 
of a remarkable and singular confi guration. By contrast, Saito and Sidoli 
show how Heiberg tacitly altered the diagrams, modernizing them and 
thereby conspicuously making them look more faithful to the situation 
under study and more generic than they actually were. Th ese operations 
inserted diagrams in the nineteenth-century edition of the  Elements  which 
displayed an artifi cial continuity between past practices and mathemati-
cal practices at the time, not only with respect to their appearance, but 
also with respect to their way of expressing the general. Furthermore, the 
Greek diagrams were thereby shown as being demonstrably more diff erent 
from the diagrams having specifi c dimensions contained in the Sanskrit or 
Chinese sources than the manuscripts actually indicated. Such issues may 
look minor, but they are not. In fact, Saito ( 2006 ) discusses a case in which 
the option chosen by the philologist in the restoration of the fi gure has 
had a crucial impact on the restored text. His conclusion is that, on both 
counts, Heiberg’s choice seems to admit the results of a later intervention 
as genuine.  37    It is important to notice that, in modernizing the diagrams in 
this way, Heiberg removed any hint of the actors’ ways of drawing and using 
fi gures, thereby impeding through his edition any study of the ancient prac-
tices with geometrical fi gures. 

 Saito’s and Sidoli’s critical analysis of the fi gures that Heiberg included in 
his editions such as the  Elements  is in full agreement with what Reviel Netz 
shows in the following chapter about Heiberg’s edition of Archimedes’ writ-
ings. In this chapter, Netz analyses more generally by which kinds of opera-
tion Heiberg’s philological interventions left  a lingering imprint on Greek 
mathematical texts of antiquity as we read them today. However, concen-
trating on the Danish philologist’s critical edition of Archimedes’ writings, 
particularly the second edition published between 1910 and 1915, Netz 
demonstrates further the specifi cs of Heiberg’s editorial operations with 
respect to the Syracusan’s  Opera Omnia . Netz’s analysis distinguishes three 
types of intervention that, in his words ‘produce[d] an Archimedes who 
was textually explicit, consistent, rigorous and yet opaque’. In particular, 
Netz’s overall broader argument reveals how Heiberg shaped Archimedes’ 

  37      Saito  2006 : 97–144 compares Heiberg’s diagrams in Book  i  of the  Elements  with those of the 
Greek manuscripts which formed the basis of his critical edition. 
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proofs according to his vision. In conclusion, we understand better  how  we 
were mistaken, when we took Heiberg’s words for Archimedes’ writings as 
the manuscripts bear witness to them. 

 To start with, Netz examines the diagrams of the critical edition. Clearly, 
like cases analysed by Saito and Sidoli, the diagrams used by Heiberg diff er 
markedly from the evidence contained in the manuscripts, and Heiberg 
drew the diagrams according to his own understanding of what the original 
diagrams might have looked like. Yet Netz argues that the manuscripts rep-
resent a coherent and perfectly valid practice with diagrams. Further, three 
criteria allow him to discern how the ancient diagrams, drawn within the 
context of this practice, systematically diff er from those which Heiberg sub-
stituted. Note that one of Netz’s criteria relates to a feature already discussed 
by Saito and Sidoli: Heiberg tended to picture elements of the diagram as 
unequal that the manuscripts, in contrast to the discourse, drew as equal. 
Interestingly, the two chapters suggest slightly diff erent interpretations of 
this ancient element of practice. Th e broader analysis developed by Netz 
further leads him to restore an ancient and consistent regime of conceiving 
and using diagrams which Heiberg’s critical edition concealed and replaced 
with another more modern usage, for which there exists no ancient evidence. 
In addition, Netz argues that, in relation to this transformation, the role of 
the diagrams in the text underwent a dramatic shift : although the ancient 
evidence preserves diagrams that were an integral component of the argu-
mentative text, Heiberg turned the diagrams into mere ‘aids’, dispensable ele-
ments for reading a discursive text that was ‘logically self enclosed’. Th is fi rst 
conclusion thus identifi es one way in which the critical edition distorted the 
texts of Archimedes’ proofs with respect to the extant manuscripts. 

 Th e second systematic intervention by Heiberg which Netz analyses is 
the bracketing of words, sentences and passages in Archimedes’ writings, 
despite the fact that the manuscripts all agree on the wording of these pas-
sages. In other words, by rejecting portions as belonging to the original text, 
Heiberg modifi ed the received text of Archimedes’ writings in conformity 
with the representation that he had formed for Archimedes as a sharp con-
trast to Euclid. While, for Heiberg, Euclid was characterized by the careful 
expression of the full-fl edged argument, Archimedes’ style was, in his 
view, to focus on the main line of the proof, leaving aside ‘obvious’ details. 
Accordingly, Heiberg designated many passages of the received text as pos-
sible interpolations. Heiberg thus made Archimedes’ style more coherent 
than what the manuscript evidence shows. Netz brings to light Heiberg’s 
uneven pattern of bracketing and suggests factors which account for it. 
What is important for us here are the conclusions that Netz’s analysis allows 
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him to derive with respect to the text of proofs: Heiberg’s bracketing occurs 
mainly in the texts for proofs, at precisely those points which suggest that 
Heiberg felt that overly simple arguments in the course of a proof could not 
be due to Archimedes. Th e more elementary the treatises, the more brack-
eting Heiberg carried out. In conclusion, Heiberg imposed on the text of 
the proof his expectation regarding Archimedes’ way of proof. 

 Lastly, Netz brings to light the subtle ways at the global level of the corpus 
of texts in which Heiberg established Archimedes as a mathematician who 
adopted a uniform style and wrote down his treatises according to the same 
systematic pattern. By contrast, Netz suggests that Archimedes’ writings 
manifested variety in several ways and at diff erent levels. What matters 
most for us, again, is how the philologist’s operations have a bearing on 
our perception of proofs and the sequence of them in ‘axiomatic–deductive 
organizations’. And, here, the description of the editorial situation that Netz 
off ers us is quite striking. He reveals how Heiberg forced divisions between 
propositions, types of propositions and components of propositions onto 
texts that did not lend themselves equally well to the operations and thus 
artifi cially created the sense of a standardized mathematical text, in con-
formity to modern expectations. In addition, Netz reveals Heiberg himself 
decided to give some propositions the status of postulate and others that of 
defi nition, with the manuscripts containing nothing of the sort. In that way, 
beyond the Archimedean corpus, the whole corpus of Greek geometrical 
texts acquired more coherence than what the written evidence records. 

 Together, these three chapters bring to light various respects by which 
the critical editions tacitly convey nineteenth-century or early-twentieth- 
century representations in place of Greek mathematical proofs to inat-
tentive readers. Still more will be developed on this point in relation to 
Diophantus below. Th ese conclusions provide impetus for developing 
further research on these topics, in order to understand how representa-
tions of ancient mathematics were formed in the nineteenth century and 
how they adhered to other representations and uses of Greek antiquity. 
Another chapter of the book inquires further in this direction of research. It 
complements our critical analysis of the historical formation of our under-
standing of Greek ideas of proof and shows how fruitful further research of 
that kind could be for sharpening our critical awareness. 

 In this chapter, Orna Harari draws on the hindsight of history and ques-
tions the conviction widely shared today that Aristotle’s theory of dem-
onstration in the  Posterior Analytics  can be interpreted in reference to its 
presumptive illustration, that is, Euclid’s  Elements . In fact, she establishes 
that this use of these two pieces of evidence in relation to each other became 
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commonplace only in modern times. Th is brings us back to the issue of the 
part played in our story by the philosophy of science as it took shape as a 
discipline in the nineteenth century. 

 To make this point, Harari digs into the history of the discussions that 
bore on the question of the conformity of mathematical proofs – particu-
larly, those contained in Euclid’s  Elements  – to Aristotle’s theory of demon-
stration. Her historical inquiry highlights that the present-day discussions 
of the issue are at odds with how the question was understood and tackled 
from late antiquity until the Renaissance. In contrast to the discussions by 
John Philoponus and Proclus which took Aristotle’s theory as their founda-
tion and inquired into whether and how mathematical proofs, and which 
mathematical proofs conformed to the Aristotelian theory, the contem-
porary view reversed the perspective. It took Euclid’s  Elements  as a basis 
on which Aristotle’s theory of demonstration had to be interpreted and 
understood. Th is repositioning reveals a fundamental shift  in the interpre-
tation of Aristotle’s  Posterior Analytics . By analysing how Philoponus and 
Proclus discussed the issue, she emphasizes that, despite essential diff er-
ences between their approaches, they both understood the key problems to 
be whether proofs established mathematical attributes that belong to their 
subjects essentially and whether the middle term of a syllogism could serve 
as the cause of the conclusion. Th us, for these authors, the problem of the 
applicability of Aristotle’s theory of demonstration related to the  non-formal  
requirements of the theory. Th e same criterion holds true for the discus-
sion until the Renaissance. By contrast, whatever conclusions they reach, 
contemporary interpretations of the question only consider the  formal  
requirements. Th e main point of the discussion has hence become whether 
an interpretation of the syllogism could be off ered that could accommodate 
what is to be found in, say, Euclid’s  Elements . Harari’s contribution thereby 
exposes the anachronism underpinning the common, present-day reading 
of the relationship of Euclid and Aristotle to each other and highlights how 
much stranger they might become – both to us and to each other – if we 
attempted to restore them back to the context of the discussions and prob-
lems from which they emerged, so far as this is possible. Can we establish 
a correlation between the modern readings of Euclid and Aristotle and the 
way in which the critical editions discussed above were carried out? Such 
questions are interesting to keep in mind generally when analysing the 
various editions of Euclid’s  Elements  produced throughout history. 

 Th ese remarks conclude our analysis of past historiographies of proof 
and our identifi cation of the factors at play in shaping and maintaining 
them. Among these factors, we identifi ed elements of the contexts in which 
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historiographic ideas were formed, the values which past historians had 
deemed central, the agendas they adopted and the critical editions they 
produced. We are now brought back to the new agenda we suggested above: 
what can be gained by widening our perspective on the practices of proof 
while considering a richer collection of sources?    

 III     Broader perspectives on the history of proof  

 Widening our perspective on Greek texts:     epistemological values 
and goals attached to proof 

 Th e biases in the history of proof on which the foregoing analysis 
shed light fi rst coloured the treatment of the source material written 
in Greek. Historical approaches to proof in ancient Greece have so far 
concentrated mainly on a restricted corpus of texts and have limited the 
issues addressed. Th e ensuing account was accordingly confi ned in its 
scope and left  wide ranges of evidence overlooked. Some of the chapters 
in this book deal precisely with part of this evidence. To begin with, 
Geoff rey Lloyd’s chapter indicates some of the benefi ts that could be 
derived from a radical broadening of the corpus of Greek proofs under 
consideration. In particular, he discusses some of the new questions that 
emerge from this extended context, with regard to the practices of proof 
in ancient Greece. 

 Lloyd fi rst reminds us of the fact that, despite the importance histo-
riography granted to Euclid’s  Elements  and cognate geometrical texts, 
mathematical arguments in ancient Greece were by no means restricted 
to proofs of the type that this corpus embodies. As Lloyd illustrates by 
means of examples, Greek sources on mathematical sciences provide 
ample evidence of other forms of argument as well as discussions on the 
relative value of proofs.  38    Enlarging the set of sources under consideration 
thus opens a space in which the various practices of proof and the values 
attached to them become an object of historical inquiry. Some of these 
sources bear witness to the fact that some authors found it important to 
use various modes of reasoning. Lloyd recalls the case of Archimedes, who 
expounds in  Th e Method  why it is fruitful to consider a fi gure as composed 
of indivisibles and to interpret it in a mechanical way in order to yield the 
result sought for. However, as Lloyd insists, although Archimedes deemed 
such reasoning essential to the discovery of the result to be proved, in 

  38      Lloyd has made this point on other domains of inquiry; compare for instance Lloyd  1996b . 
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Archimedes’ view, this type of argument could not be conclusive and had 
to be followed by another purely geometrical proof. Our explorations into 
matters of proof will allow us to come back to this example below, from a 
new perspective. Let us stress for now that diff erent kinds of reasoning have 
diff erent kinds of value. 

 Furthermore, Lloyd stresses that in numerous domains of inquiry in 
ancient Greece, there were debates about the value of their starting points 
or the proper methods to follow, and securing conviction was a key issue. 
Keeping too narrow a focus on mathematics in this respect conceals impor-
tant phenomena. Here two points are worth emphasizing. 

 Firstly, within this extended framework, it appears that proofs carried 
out according to an axiomatic–deductive pattern were developed in several 
areas and were by no means confi ned to mathematics, although even in 
antiquity, geometry came to be perceived as a singular fi eld in this respect. 
Th e recurring use of such a practice of proof echoes the variety of terms 
used throughout the sources to demand ‘irrefutable’ arguments. One is 
hence led to wonder how far, as regards ancient Greece, the history of an 
axiomatic–deductive practice can be conducted while remaining within the 
history of mathematics, or to what extent the interpretation of this practice 
can be based only on mathematical sources. Here too, we encounter the 
impact of a form of anachronism. Since this kind of proof is at the present 
day deemed to be essential to, and even characteristic of, mathematics, 
historiography has approached the question of axiomatic–deductive proof 
mainly from within the fi eld of mathematics, disregarding the fact that it 
was employed much more widely in antiquity. What greater understanding 
of such a practice of proof would a broad historical inquiry of proof  more 
geometrico  yield? Th is is the issue at stake here. 

 Secondly, such an importance granted to one type of method and organi-
zation of knowledge cannot hide a much wider phenomenon which Lloyd 
wants to emphasize: the numerous debates on the correct way of conduct-
ing an inquiry. We seem to have here an idiosyncrasy of ancient Greek writ-
ings, or at least among the writings that have been handed down to us. Th e 
unique multiplicity of ‘second-order disputes’ evidenced in ‘most areas of 
inquiry’ leads Lloyd to suggest a third expansion. 

 Lloyd grants that disputes between practitioners of mathematics or 
other domains of inquiry are a widespread phenomenon worldwide in the 
ancient world. However, his comparison of such debates, in ancient Greece 
and elsewhere, leads him to an important observation, namely, that the 
modes of settling debates in various collectives appear to diff er. Lloyd thus 
invites us to consider engaging in a discussion on the standards of proof in 
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order to conclusively resolve debates as a  social  phenomenon. Th e new and 
important research programme which he proposes intends to account for 
the development of such attempts to adjudicate debates in social terms. In 
other words, Lloyd calls for developing a social account of the emergence of 
second-order discussions on proof. 

 Th ese suggestions show how, by concentrating on a set of texts wider than 
the usual geometrical writings, one can defi ne new horizons for research on 
proof in Greek sources. In recent years, though, new approaches to proofs 
in the writings that provided the standard historiography with its basis have 
taken shape. Th ese approaches are interesting for us, since they have brought 
to the fore epistemological values other than being conducive to truth which, 
as far as our sources can tell, may have been attached to proof, thereby side-
lining the issue of certainty that has dominated the discussion on ancient 
proofs. To mention but one example, I shall show how, in my view, Ken Saito 
has advocated a new way of interpreting proofs in the core corpus. 

 Saito takes as his starting point the thesis that, when one considers 
this collection of texts  as a whole , there emerges from the corpus a set of 
‘elementary techniques’ that form a ‘tool-box’ on which Greek geometers 
relied.  39    Moreover, he argues that the practitioners developed knowledge of 
how to combine the elements in the tool-box in  standard  and  locally valid  
methods – combinations which he also calls ‘techniques’, or ‘patterns of 
argument’. In Saito’s view, the ‘method of exhaustion’, which was named and 
discussed as such only in the seventeenth century, constitutes an example 
of such a method. His approach not only yields an analysis of the method as 
a specifi c sequence of elements taken from the tool-box, but it also embeds 
a technique that has been long recognized into a larger set of similar tech-
niques which recur in proofs. What is worth stressing is his remark that, for 
reasons yet unknown, these methods do not seem to have been described 
at a meta-mathematical level or even named at the time. Nevertheless, the 
sources bear witness to patterns of proof which circulate between proofs 
and to the stabilization of a form of knowledge about them. 

 An initial hypothesis can be formulated with respect to these methods: 
it is by reading the text of a proof  per se  and  not  merely as establishing the 

  39      Th e insight about the ‘tool-box’ was introduced and worked out by Saito from 1994 on (see 
Saito and Tassora  1998  and  www.greekmath.org/diagram/ ). It was further developed in 
N1999: 216–35. Th e latter book fi gures prominently among the publications that opened new 
perspectives in the approach to deduction in the Greek mathematical texts of what I called the 
‘core corpus’. I develop here refl ections on a tiny part of the new ideas that were introduced 
in this wider context. Saito’s project on the Greek mathematical tool-box has not yet come to 
completion. To present his ideas here, I rely on personal communication and on draft s that he 
sent me in 2005 and which contain abstracts of part of his project. 

http://www.greekmath.org/diagram/


 Mathematical proof: a research programme 31

truth of a proposition that such techniques could be grasped. Th e hypothe-
sis accounts for how the techniques brought to light took shape. It may also 
account for one of the motivations at play in making proofs explicit and 
writing them down. One can go one step further and speculate about why, 
as far as we know, in ancient Greece the methods in question were neither 
named, nor analysed in any second-order discussion. Th is point leads me 
to a second hypothesis with respect to the text of a proof: were not some of 
the proofs written down with the purpose of displaying a given technique 
which they put into play? In that case, general techniques would have been 
expressed through the proofs of  particular  propositions and thereby also 
motivated the expression of these proofs in writing. In other words, some 
proofs were to be read as a kind of  paradigm , making a statement of more 
general validity than a fi rst reading would indicate. Th e interpretation of the 
texts of these proofs would be comparable in that respect to how a problem 
and the procedure for solving it made sense in the Babylonian or Chinese 
writings.  40    Whatever the case, the essential point here is that the text of a 
proof was not read only as establishing a proposition, but also as a possible 
source for working techniques. Moreover, the generality and importance of 
a textual unit in these books would not lie only in the proposition itself, but 
also in the technique brought into play in its proof. 

 Let us consider these various points one by one to grasp what is more 
generally at stake here. 

 To begin with, the fi rst hypothesis formulated above suggests that readers 
were likely to read a proof  for itself  and not merely for its capacity to estab-
lish the statement proved. Th ere is nothing surprising about this assump-
tion. Th e recent debate on which we commented in  Section  ii   bore witness 
to such uses of the text of proofs: some of these mathematicians testifi ed to 
the fact that they read proofs, seeking, among other things, techniques and 
also concepts. Th is constitutes a challenge for us: how are we, as historians, 
to gather evidence in order to take this dimension of the interest in proof 
into account more generally and rigorously? Interestingly enough, the 
hypothesis on the practice of proof prompted by Saito’s suggestion echoes 
with how, as we shall see, proofs of the correctness of algorithms were 
conducted in the earliest extant Chinese sources attesting to practices of 
proof.  41    In all these contexts, the proofs appear not to have been only means 

  40      On the latter, a discussion and bibliography can be found in Chemla  2009 . Note that I 
use paradigm in the sense that grammarians use this word. Also note that the text of a proof 
could either state a general technique or document its existence by the fact of bringing it into 
play. 

  41      See below and Chemla  1992 , Chemla  1997b . 
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for an end, but their texts were also read as conveying other meanings. Th e 
‘techniques’ read in the proofs do not have the same nature in diff erent con-
texts. However, what is important to note here is that in all these cases the 
epistemological value of the proof cannot be exhausted by the question of 
determining whether it duly establishes the statement to be proved. 

 According to the fi rst hypothesis too, the reader looked for something 
 general  in a proof – a method, the use of which could extend beyond the 
limits of a proposition. Th e fact that, as Saito showed, some techniques of 
somewhat general validity were actually composed indicates the possible 
outcome of such a search. A straightforward interpretation of the text of 
each proof taken separately would miss this feature of the practice of proof. 
Th e virtue of the techniques thereby identifi ed was their potential useful-
ness in other contexts: if we follow this interpretation, a certain  fruitfulness  
was recognized in it. Th ese concerns indicate epistemological values that 
actors may have attached to proofs and that too narrow a focus on certainty 
could hide from our view. 

 Th e preceding remarks illustrate what kind of benefi ts could be derived 
from re-examining standard texts with wider expectations in mind. Th ey 
also bring to light an issue that will prove essential in what follows. Th e 
way in which actors have read proofs or have written them down, the 
 motivation  driving the composition of explicit proofs, cannot be taken for 
granted. As I have indicated, reading meanings into proofs is apparently 
a widely shared practice. However, this does not mean that practitioners 
belonging to diff erent scholarly cultures read the meanings in texts in the 
same way or that the texts intended the meanings to be read in the same 
way. Whether one accepts only the fi rst hypothesis or both hypotheses as 
formulated, the perception of the various dimensions of the Greek texts to 
which I have just alluded requires an unusual and specifi c reading of the 
text. If one admits the second hypothesis, texts of proofs were to be read as 
paradigms. Interestingly enough, as we saw in  Section  ii   of this introduc-
tion, the diagrams in Greek texts seem to have required the same kind of 
reading, at least if we agree on the fact that the original fi gures resembled 
those in the manuscripts and not those which Heiberg drew. Interpretation 
of the sources appears more generally to be a delicate procedure, on which 
our ability to perceive the various dimensions of the proofs examined will 
depend. As I shall argue below, this problem is intrinsic to our endeavour: 
it is, in my view, tied to the fact that shaping a practice of proof has always 
involved designing a kind of text to work out and deliver the proofs. Th e 
task of interpreting the texts thus cannot be separated from the job of 
describing the practice of proof to which they adhere. 
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 Th e lines of inquiry just outlined illustrate some of the issues that more 
generally have imposed themselves as central issues in the following chap-
ters of the book. To begin with, these issues are taken up from diff erent 
perspectives in the next two chapters of the book, both also devoted to 
Greek sources. 

 Th e issue of generality in relation to proof directs Ian Mueller’s analysis 
of marginalized Greek writings dealing with numbers, albeit from a diff er-
ent perspective. Because they have been overshadowed by the treatment of 
arithmetic in Books  vii  to  ix  of Euclid’s  Elements , the techniques of proof 
used by Nicomachus in his  Introduction to Arithmetic  and by Diophantus 
in  On Polygonal Numbers  have not yet been the object of detailed analysis. 
Ian Mueller chooses to focus on them because they deal with numbers – 
polygonal numbers – in a singular way, approaching them through the 
prism of confi guration and procedure of generation. Th ese features raise 
the problem of defi ning the polygonal numbers as general objects, making 
general statements about them, and proving such statements in a general 
way. Th e challenge is to reach generality not only with respect to all polygo-
nal numbers of a specifi c type, such as triangular or square numbers, but 
also to defi ne and work with  n -agonal numbers. 

 Both Nicomachus and Diophantus attempted to meet with this chal-
lenge, by composing treatments of these numbers in general, stating propo-
sitions about them, and accounting for the validity of these statements. In 
particular, both authors set themselves the task of establishing the value of 
the  n th  j -agonal number. Th e conclusion of Mueller’s analysis is that both 
attempts equally fail to establish the conclusion aimed at with full general-
ity. Nonetheless, the diff erences between the ways the two authors shape 
textual elements to approach polygonal numbers, formulate statements 
about them and design modes of proving to deal with the topic raise con-
siderable interest. Th is is what emerges from Mueller’s detailed description 
of the diff erent techniques of reasoning by which both authors address 
these numbers and try to establish their properties. 

 Nicomachus makes use of specifi c diagrams that iconically represent the 
numbers as confi gurations of units. In addition, Nicomachus introduces 
a key tool – sequences of numbers – in a way that will be characteristic of 
his approach. To begin with, he constructs arithmetical ways of generating 
these sequences. He then strives to establish relationships between these 
sequences and the fi rst sequences of polygonal numbers (triangular, square, 
pentagonal and so on). It is for this task that Nicomachus’ diagrams are 
brought into play. Because of their features, these diagrams can be used 
to indicate the reason of the correctness of the relationship only for the 



34 karine chemla

fi rst terms of the sequences. However, this is how Nicomachus argues in 
favour of the general statement, whereby his establishment of this general 
statement diff ers from modern standards. In the second step, Nicomachus 
further brings to light patterns in the modes of generation of the fi rst 
sequences, thereby indicating the general structure of the set of sequences 
of polygonal numbers and pointing to further relationships between these 
sequences. Again, Nicomachus indicates the general pattern and argues for 
it by highlighting the pattern for the fi rst sequences. And again this is where 
his approach falls short of modern standards. Th e most general statement 
by which Nicomachus summarizes his procedure of proof consists of a  table  
of numbers. It collects in its rows the sequences introduced and more. Since 
it displays the pattern of relationship between the lines, the table allows 
Nicomachus to generate subsequent lines by deploying the same pattern 
further and thereby determining the value of any polygonal number. 

 Th e textual elements brought into play (diagrams, sequences and table 
of numbers) and the ways of using and articulating them by modes of rea-
soning contrast sharply with how Diophantus approaches the same topic. 
Th e core of Diophantus’ treatise  On Polygonal Numbers  consists of purely 
arithmetical and general propositions. Th ese propositions state arith-
metical properties in the form of relationships holding between numbers. 
Diophantus proves these relationships through representations of numbers 
as lines, using the representations in a way that is specifi c to this branch 
of inquiry. Diophantus attempts to formulate the value of the  n th  j -agonal 
number as a  proposition  of this kind. Th e diagrams used and the proposi-
tions stated thus exhibit a style completely diff erent from Nicomachus’. 
However, their kind of generality is precisely what constitutes the problem 
for concluding the proof. It is in Diophantus’ attempt to connect these 
general statements to polygonal numbers with full generality that Mueller 
identifi es the gap in Diophantus’ proof. Th e tools Diophantus uses here are 
too general to allow him to recapture the details of the general objects that 
polygonal numbers represent. He manages to establish the link only for the 
fi rst  n -agonal numbers. 

 Th ese two texts devoted to the same topic illustrate quite vividly the 
plurality of practices in Greek mathematics, the study of which Lloyd advo-
cated. Mueller highlights diff erences in the ways of making diagrams and 
relating them to the mathematical objects being studied. He shows the dis-
tinct ways in which diagrams are employed in the arguments being devel-
oped, thereby bringing to light two distinct kinds of arithmetical methods. 
Additional interest in this case study derives from what is revealed when the 
proofs are considered from the viewpoint of generality. Clearly, both texts 
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betray an ambition to reach a high level of generality. Mueller’s contrastive 
analysis discloses how distinct means are constructed and combined for the 
proofs to fulfi l this ambition. Despite their failure in modern eyes to achieve 
their goal, the two sets of proofs in the texts appear to form two strikingly 
diff erent, but carefully designed, architectures of arguments inspired by the 
task that the authors had set for themselves. Taking the value of general-
ity into account in his interpretation allows Mueller to use fi ner tools and 
describe with greater accuracy the argumentative structures and the diff er-
ences between them. Mueller thus highlights  how  the conduct of proofs can 
bear the hallmark of epistemological values prized by the actors. 

 More generally, Mueller’s analysis indicates how much more there can 
be to the study of a practice of proof than simply assessing whether proofs 
adequately establish their conclusions or not. Th e kinds of elements the 
practitioners design for their proofs, the ways in which they use them, 
and other questions, all essential for a historical inquiry into the activity 
of proof, will appear quite fruitful in the following chapters. In particular, 
the question of how a kind of text has been designed for a certain practice 
of proof – a question that the multiplicity of the proofs examined brings to 
the fore – appears relevant again for the further analysis of the sources. Its 
fundamental character will soon become even clearer.   

 Further widening:     the text of a proof 

 In his  Arithmetics , Diophantus opts for a completely diff erent style of 
composition and presents solutions for hundreds of problems relating to 
integers. Each problem is followed by the reasoning that leads to the deter-
mination of a solution. To formulate the problems and the kind of proof 
following them, both of which involve statements relating to numbers and 
unknowns, Diophantus regularly makes use of symbols. In his chapter, 
Reviel Netz focuses on the question of determining the role played by this 
symbolism in the development of the reasonings Diophantus proposed to 
establish the solutions to the problems. 

 Th e fact that the symbols introduced are essential to Diophantus’ project 
is made clear by the fact that they are the main topic of the introduction to 
his book. On the other hand, Diophantus stands in contrast to his known 
predecessors in that he makes explicit the reasoning by which he establishes 
the solutions to problems. Th erefore, the question of how the former are 
linked to the latter is not only natural, but also essential to an analysis of 
Diophantus’ activity of proving. Such is the main question of the chapter. It 
pertains, as one can see, to the text with which an argument is conducted. 
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 Aware that the symbols of Diophantus must be distinguished from those 
of Vieta, Netz fi rst studies the specifi c historical context in which they were 
designed and describes them in detail, on which basis he examines how 
the editors of the nineteenth century transcribed them in their critical edi-
tions and translations. His conclusions are twofold. On the one hand, Netz 
shows that the symbols are located at the level of noun-phrases, but are not 
used for either the relations or the structural terms specifi c to a problem. 
Moreover, he establishes their nature of being ‘allographs’ of the words 
they stand for, that is, they write these words in another way. On the other 
hand, Netz reveals that the use of these symbols is nowhere as systematic 
in the manuscripts as Paul Tannery presented them in his 1893–5 edition.  42    
Tannery designed the proofs, rather than the statement of problems, as 
the locus for the use of symbols, a fact which does not correspond to what 
is found in the manuscripts. Moreover, Tannery introduced a distinction 
between some terms which he systematically rendered as symbols and 
other terms which he always wrote down in full, thereby establishing two 
diff erent kinds of terms, in contrast to the manuscripts which use abbrevia-
tions for both kinds in comparable ways. We meet again with the necessity 
of a critical awareness regarding the critical editions carried out in the 
nineteenth century. 

 Th is preliminary analysis provides a sound basis on which Netz can 
address the main question raised by his chapter: what is the correlation 
between Diophantus’ use of such symbols and the specifi c kind of proof he 
systematically presented? In Netz’s view, Diophantus undertook to gather 
problems he had received and complete their collection in a systematic way. 
Moreover, his ambition was to present them for a literate, elite readership. 
In relation to this goal, Diophantus opted for a solution of each problem 
in the form of ‘analysis’. Hence Netz also addresses a part of the history of 
proof that falls outside the scope of Euclid’s  Elements . Th is holds true not 
only because these proofs proceed through analysis. In addition, the point 
in Diophantus’  Arithmetics  is not to establish the truth of a statement, but 
rather to fulfi l a task correctly. In a context in which the procedure of the 
solution provided for problems was also a topic for debate, Netz argues, 
writing down the reasoning which establishes how the task was correctly 
fulfi lled contributed to showing the suitability of the mode of solution 
adopted. In other words, for Netz, the proof here intended to highlight 
the natural and rational character of the method chosen to solve a given 

  42      Compare T1893/5. Th e 1974 reprint of the book is freely available on Gallica: 
 http://gallica.bnf.fr/ . 

http://gallica.bnf.fr/
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problem. To this end, Diophantus shaped, primarily thanks to his symbols, 
a kind of text that would enable the reader to survey in the best way pos-
sible the method followed. Th is is how Netz argues in support of his thesis 
that the expressions formed with the specifi c symbols introduced are con-
substantial with the project and the kind of proof specifi c to Diophantus’ 
 Arithmetics . 

 Note that here again, as in Mueller’s chapter, the examined proofs 
proceed through operating with statements of equality between numbers. 
However, in the  Arithmetics , the symbols developed helped carry out such 
operations in a specifi c way, linked to the peculiar features of Diophantus’ 
reasonings. Since they were allographs, they allowed the reader to keep 
the meaning of the computations in mind. On that count, these symbols 
diff er from modern symbolism. Th is diff erence in nature possibly echoes a 
diff erence in use: Diophantus’ symbols do not seem to have been used for 
proving through blind computations, as is the case with modern symbol-
ism. Instead, they helped form a kind of writing transparent with respect 
to the meaning of the statement. Since the symbols were abbreviations, 
they enhanced the  surveyability  of the expressions, in the same way as 
the technical writing of a number helps understand the structure of the 
number.  43    Th is conclusion raises a general question. Th e surveyability of 
a procedure or a proof depends on the kind of text constructed to write 
down and work with the proof or procedure. Which resources did various 
groups of practitioners create, or borrow, to this end? Netz’s contribution 
can be viewed as a step towards a systematic inquiry in that direction. We 
shall soon meet with further evidence that can be fruitfully analysed from 
the same perspective. 

 To create this form of writing, Diophantus made use of possibilities 
available in the written culture of his time, but used them in a way specifi c 
to his project. As Netz stresses, Euclid’s  Elements  also exhibits evidence of 
creating a specifi c language, characterized by distinctive formulaic expres-
sions. Th us we meet with the same phenomenon already emphasized on 
several occasions above from yet another perspective: the kind of text used 
is correlated to the type of proof developed. Given the fact that the kinds of 
proof and the project embodied by the  Elements  diff er from the objectives 
of Diophantus, the kind of writing employed in the  Elements  diff ers from 
those used by Diophantus. 

  43      Neugebauer also interpreted some features of Mesopotamian ways of writing mathematics as 
making statements surveyable. Høyrup  2006  quotes at length the passages by Neugebauer on 
this point and discusses them, with respect to Mesopotamian, Greek, Latin, Arabic and Indian 
sources as well as sources written in vernacular European languages. 
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 From another viewpoint, Diophantus’ text can be contrasted with other 
types of problem texts, which also attest to mathematical work on and with 
operations or computations. Several of the following chapters consider 
types of writing of the latter kind. Both the use of operations on statements 
of equality and the introduction of symbols to carry out these operations 
found in the  Arithmetics  contrast with what other traditions formatted 
as algorithmic solutions to problems, for which the correctness needed 
to be, and was, established. Even if these other writings bear witness to 
other means of proof, via other techniques and in pursuit of other goals, 
many parallels can be drawn between the  Arithmetics  and these other texts. 
Th ese texts all deal with operations and operations on operations, illustrat-
ing how diff erent modes of manipulating mathematical operations were 
devised in history. Most of these texts reveal an ideal of writing sequences 
and combinations of operations in such a way that the meaning becomes 
transparent. However, despite the fact that they shared a common feature, 
in what follows we shall see that how this ideal was achieved depended on 
the context and the type of text constructed. Lastly, these writings all raise 
the question of what was meant by a problem and the procedure attached to 
it. Was a particular problem representative only of itself, or was it read more 
generally as a paradigm for all problems in the same class? Netz develops 
an interpretation of the way in which Diophantus conceived of general-
ity. Whether or not this interpretation is accepted, it stresses an essential 
point: the symbols used by Diophantus were not abstract. Th is feature 
sheds an additional light on how these symbols diff ered from modern ones. 
Moreover, it implies that if they had a general meaning, it was conveyed in 
a specifi c way, requiring again a specifi c reading. 

 Th is chapter thus leads to two general conclusions, essential for our 
 purposes. Firstly, Netz’s article analyses how diff erent groups of mathemati-
cians created diff erent kinds of text in relation to the practice of proof they 
adopted. Note that this approach off ers one of the ways in which one could 
systematically develop the programme suggested by Lloyd and account 
for the variety of practices of proof in ancient Greece. More generally, 
Netz foregrounds the fact that proofs have been conducted in history with 
various kinds of texts, each being shaped in relation to the operations spe-
cifi c to a given kind of proof. Th e text of the proof is correlated to the act 
of proving. Th e general question raised by Netz in his approach to Greek 
sources may be phrased as ‘What types of text were shaped for the conduct 
of which kind of proofs?’ and has already proved relevant above. Clearly, 
this question opens a fi eld of inquiry into proof that could be – and will 
prove so below – extremely fruitful. In particular, we can expect that the 
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development of this inquiry provides means for interpreting these texts 
more accurately. 

 In conjunction with the fi rst point, Netz’s treatment yields insight into 
how diff erent the purposes for developing proofs may have been. Th is 
brings us back to the programme suggested above for our historical inquiry 
into proof, namely, the restoration of the motivations behind the develop-
ment of proofs and the description of the diversity in their conduct accord-
ingly. However, before we go further in widening the set of sources to be 
considered with these issues in mind, a last point must be emphasized. 

 Netz’s discussion illustrates how the resources Diophantus introduced 
for a given type of proof were adopted to design the text of another kind of 
proof, i.e. algebraic proofs, in modern times. More precisely, Netz’s analysis 
highlights why Diophantus’ proofs are not algebraic in nature. Nonetheless, 
the shaping of the modern algebraic proof made use, for the conduct of 
a reasoning, of symbolic resources similar to those designed within the 
framework of the  Arithmetics . Th is conclusion off ers our fi rst insight into 
the history of algebraic proofs. What are its other components and how did 
they take shape? Th ese are some of the questions to which we shall come 
back below.   

 Proving the correctness of algorithms 

 Th e ideal of transparency, which Netz interprets as informing the symbol-
ism used by Diophantus, is also the main force driving the way Babylonian 
practitioners of mathematics composed the text of algorithms, according 
to the interpretation of Jens Høyrup. Before explaining this point further, 
let us fi rst recall some basic features of the writings to which we now turn. 
Th ese documents are, for the most part, composed of problems followed by 
algorithms which solve them. Th e fact that the algorithm correctly solves 
the problem is the statement to be proved, in contrast to what we fi nd in 
Euclid’s  Elements , where proofs mainly deal with the truth of theorems.  44    
In such contexts, proving means establishing that the procedure carries 

  44      Th e claim here takes into account the fact that the statement of a problem in the  Elements  does 
not include the statement of how to carry out a task. Interestingly enough, except for some 
specifi c cases, the scholarship devoted to Euclid’s  Elements  has paid much less attention to 
problems than to theorems. Th ere are exceptions like Harari  2003 . However, the problems still 
await further study  qua  problems. How was the solution written down as text and how did the 
proof relate to the formulation of the solution as such? Th ese are questions that seem to me to 
be promising for future research. It may well be that aft er these problems have been studied 
more in depth, the statement contrasting proofs in Euclid’s  Elements  with those of algorithms 
may have to be made more precise. 
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out correctly the task for which it is given, that is, that the algorithm yields 
the desired result. In this framework, the ideal of transparency that the 
Mesopotamian tablets embody consists of the fact established by Høyrup 
that the texts for procedures were  simultaneously  prescribing computations 
and indicating the reasons underlying their correctness.  45    Since we have no 
second-order comments by Babylonians explaining how these texts should 
be interpreted, it took some time before this property was recognized. 

 Once again, like the previous examples, this case shows how given collec-
tives of practitioners shaped specifi c kinds of text to work with operations 
and establish their correctness. It also highlights how this formation and 
standardization of texts invited problems of interpretation. Th e technical 
character of the texts hindered their interpretation by historians, who failed 
to identify how proofs were expressed and hence drew derogatory conclu-
sions, such as M. Kline’s. 

 In this case, however, recognizing the proof in the text required 
 understanding something with respect to proof as well, that is, that the 
rationale of a procedure can, at times, be given in the description of the 
procedure itself and not as a separate text – this is precisely the manifesta-
tion of the ideal of transparency in this context, which demonstrates that 
the same ideal can appear in various ways. More accurately, when we 
examine Mesopotamian texts such as those with which Høyrup establishes 
his point from this perspective, we observe that the texts of algorithms do 
not only contain specifi c prescriptions for operations that achieve transpar-
ency, but also contain elements of the reasoning that develops along the 
statement of the algorithm. Again, widening the corpus of proofs under con-
sideration leads us to deeper insights into how a proof can be formulated. 

 Th is expansion of the corpus also broadens our understanding of the 
motivations for writing down proofs in the ancient traditions. In Høyrup’s 

  45      One speaks of the ‘correctness’ of the algorithm. On this theme, it may be helpful to clarify two 
points about which I oft en read misleading comments. Firstly, the text of an algorithm is the 
statement to be proved and  not  its proof. It is on the basis of this distinction that one can make 
the point that in Mesopotamian tablets, the two texts (the statement of the algorithm and the 
formulation of its proof) merged with each other. Moreover, to perceive this requires a specifi c 
reading, whereby two layers of meaning are discerned in the statement of the algorithm. 
Secondly, the aim in proving the correctness of an algorithm is  not only  to show that the 
algorithm yields an exact  value  – or to establish how accurate or inaccurate the value is – but 
 also  to establish that the sequence of operations prescribed yields the desired  magnitude . So 
the depiction of algorithms only in association to approximations is doubly misleading. Th ese 
basic misconceptions lie at the root of what most commentators who have been discounting 
computation have claimed. Th e section entitled ‘Th e unpuzzling character of calculation’ in 
Hacking  2000 : 101–3 comments on the text of an algorithm, overlooking the fact that this 
is the statement to be proved and not the proof. Th e same pages make other claims that are 
contradicted by the conclusions reached here. 
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view, the proofs he reads in the formulation of the procedure intend to 
guarantee an  understanding  of the reasons why the operations should 
be carried out. He even suggests they are proofs precisely because they 
have this goal. We see how the exclusive focus on the function of proof as 
yielding certainty would leave out these sources as irrelevant for a history 
of proof. However, these texts demonstrate that one motivating interest 
in proofs and their transcription in one way or another may have been 
not only – or perhaps not at all – to  convince  someone of the truth of a 
statement but to make one  understand  the statement. Th is is still a strong 
motivation for mathematicians today, as is evidenced, for example, by the 
debate analysed in  Section  ii   and it has been so all through the history of 
mathematics. 

 Let us pause for a while to consider the goal of ‘understanding’ within 
the context of a practice of proof intended to establish the correctness of 
algorithms. Far from being the fi nal point of the analysis, it is in fact only 
its beginning. Th e possibility that some proofs aim at providing an ‘under-
standing’ raises an essential question, for which the Babylonian case allows 
further inquiry: what techniques or  dispositifs  were devised to provide an 
‘understanding’ of the algorithms in the milieus of scribes? By Høyrup’s 
restoration, geometrical diagrams seem to have supported the procedure. 
Moreover, these diagrams were made in a way which allowed material 
transformations of their shape. Th e specifi c terms which prescribed the 
operations designated such material transformations which helped make 
sense of the computations. Th e arguments supporting this hypothesis 
come from a close analysis of the terms used to write down the algorithm. 
However, this conclusion would have remained only speculation, had not 
Høyrup discovered some texts from Susa that make explicit the kind of 
training required by such a mode of understanding. 

 Th ese texts are revealing for several reasons. Th e explanations in them 
that produce the ‘understanding’ are developed very specifi cally within 
the framework of paradigmatic situations similar to those described in 
the outline of some geometrical problems. We hold that these explana-
tions reveal how the context of geometrical problems may have provided 
situations as well as numerical values with which the understanding of 
the eff ect of operations could be grasped. Th e texts from Susa also reveal 
how diagrams with highly particular dimensions were used in the same 
way. Th is parallel between geometrical fi gures and problems, as well as this 
way of using geometrical problems, compellingly evokes the case of some 
Chinese mathematical sources, about which two points can be established. 
Firstly, the problems were not only a question to be addressed, but, as the 
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 paradigms that they were, they also provided a semantic fi eld for interpret-
ing the operations of the algorithm or the operations required for the proof 
of correctness. Secondly, just as problems provided particular numerical 
data, geometrical fi gures displayed simple dimensions, and they were used 
in the same way to make explicit the meaning of operations.  46    In a moment, 
we shall come back to this comparison, but note that exactly the same situ-
ation holds true for Sanskrit sources analysed by Colebrooke.  47    

 In addition, the Susa texts that Høyrup analyses formulate the explana-
tions by describing the result of each operation in two ways: on the one 
hand, a numerical value is provided and, on the other hand, an interpre-
tation of the magnitude which is determined is made explicit in the geo-
metrical terms of the fi eld of interpretation. Such a kind of ‘meaning’ for 
the eff ect of operations recalls what is found in Chinese texts. In the latter 
sources, a specifi c concept ( yi ) is reserved to designate that ‘meaning’, and 
the meaning is made explicit by reference to the situations introduced in 
the statements of problem. In my own chapter on early China, I discuss the 
interpretation of this concept and provide cases where it is used in Chinese 
sources. In correlation with this parallel, in early Chinese mathematical 
writings we also fi nd algorithms that are transparent regarding the reasons 
of their correctness: the successive operations are prescribed in such a 
way as to  simultaneously  indicate their ‘meaning’, which can be exhibited 
directly in the context of the situation described by the problem.  48    

 Th is parallel shows that the early mathematical cultures which worked 
with algorithms developed partially similar techniques for ‘understand-
ing’, even though they did so in diff erent ways, as we shall make clearer 
below. More broadly, these remarks raise a general issue. Th ey invite us 
to study systematically the devices, or  dispositifs , that various human col-
lectives constructed for ‘understanding’ and interpreting the ‘meaning’ 
of operations, or conversely, the kind of ‘interpretation’ that was rejected. 
Interestingly enough, this question enables a perspective from which we 
may cast a new light on the ‘Method’ described by Archimedes in the text 
devoted to this topic, which Lloyd discusses in his chapter. Indeed, what 
Archimedes off ers with his ‘mechanical method’ is a way of ‘interpreting a 
fi gure’ in terms of weight – specifi cally, an interpretation from which he can 

  46      See chapter A, in CG2004: 28–38 and Chemla  2009 , which presents a fully developed analysis 
of these issues. 

  47      See p. 6. 
  48      Chemla  1991 . Chemla  2010  analyses more generally the two fundamental ways in which the 

text of an algorithm can refer to the reasons for its correctness. Both can be recognized in the 
way in which texts for algorithms were recorded in the tablets discussed by Høyrup. 
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derive a result. Even though he discards this method as inappropriate for a 
proof, as did a tradition of scholars who developed comparable proofs, the 
question remains open for us to understand  what this kind of interpretation 
actually achieved for him .  49    

 Getting back to our Mesopotamian documents, I am aware that some 
historians may question whether such modes of establishing the correct-
ness of algorithms ought to be considered proofs. Th e Babylonian source 
material allows us to shed light on the diffi  culty that this division would 
entail in the history of mathematics. In fact, the techniques that the scribes 
used to provide an ‘understanding’ of the type discussed above could be, 
and appear to have been later on, taken up in other practices of proof – 
where the qualifi cation as ‘proof ’ is less disputed. As Høyrup has suggested 
in previous publications, there is a strong historical continuity between 
the modes of argumentation alluded to above, which appear to have 
been developed in Babylonian scribal milieus on the one hand and what 
are explicitly recorded as proofs in Arabic algebraic texts from the ninth 
century onwards on the other hand.  50    If only for this reason, these tech-
niques of ‘understanding’ do belong, in my view, to the history of mathe-
matical proof. Th e continuity evoked is of the same kind as that mentioned 
above with respect to the textual techniques devised by Diophantus to 
develop his arguments. 

 As a provisional conclusion, one may suggest that the text of a proof is 
a technical text, the shaping of which may have benefi ted from all kinds of 
resources available. Conversely, in some cases, the formation of a techni-
cal text for working out a kind of proof led to developing techniques that 
could be brought to bear in other mathematical activities. In the case of 
Babylonian tablets, not only the operations used in a procedure, but – as 
is clearly shown by the Susa texts – also the transformations of algorithms, 

  49      In the same way, Krob  1991  has developed a proof of a combinatorial theorem based on an 
interpretation involving a plate, beads and pebbles. Such features are unusual in mathematical 
publications. Th ey occur more frequently in some fi elds, like combinatorics, than in others. 
Th e reasons why it is so are worth exploring, since they shed light on social aspects of proving. 
It is clear that precisely because of these features, not all mathematicians of the present day will 
accept the proof Krob  1991  gives as a proof. Th is approach to the question, however, leaves 
unanswered the questions which I fi nd quite fascinating: what does the interpretation do for 
the reasoning? And why do practitioners fi nd it appealing to make use of such devices or 
 dispositifs  of interpretation within proofs? Approaching the problem through the controversies 
among mathematicians would yield interesting results. 

  50      See, for instance, Høyrup  1986 . In his recent edition and translation into French of 
al-Khwarizmi’s book on algebra, Rashed  2007  puts forward a diff erent hypothesis for the 
history of these proofs, interpreting them rather as composed within the framework of 
Euclidean geometry. 
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such as embedding them into other algorithms or modifying their lists of 
operations, could be established on the basis of problems and/or fi gures. In 
the case of Diophantus, equalities were transformed  qua  equalities. Both 
techniques were adopted in Arabic algebraic texts. 

 In addition to providing insights into how actors carried out interpreta-
tion for the algorithms recorded on Babylonian tablets, Høyrup suggests 
that the need for understanding perhaps developed in relation to teach-
ing. In other words, he links the professional context of training scribes in 
Mesopotamia to the development of certain kinds of proof. Interestingly 
enough, as we shall see below, such a hypothesis nicely fi ts with A. Volkov’s 
thesis regarding the use of proofs for a teaching context in East Asia. 

 Christine Proust’s chapter suggests capturing an interest in the correct-
ness of algorithms in another kind of Mesopotamian tablet, which contain 
texts consisting of only numbers. Note that, here, the work of the exegete is 
particularly challenging, since she has to argue for an interpretation of texts 
that contain no words, only numbers. Th e method Proust uses to read these 
traces is deeply subtle but of particular interest for us. 

 At fi rst sight, the tablets at the focus of Proust’s attention appear merely 
to betray an interest in ‘checking’ the numerical results yielded by an algo-
rithm. Seen in that light, they recall some of the texts discussed by Høyrup, 
in which a similar concern can be identifi ed. However, as we shall see, the 
two types of text call for diff erent modes of interpretation. 

 Th e tablet VAT 8390, discussed by Høyrup, contains a ‘verifi cation’ 
part, comparable in some sense to the ‘synthesis’ following the ‘analysis’ in 
Diophantus’  Arithmetics . Th is part of the text relies on the values produced 
by the algorithm as well as on the procedure described by the statement 
of the problem to show that the values obtained satisfy the relationships 
stated in the problem. However, the actual function of this section in the 
text should not be interpreted too hastily: as Høyrup emphasizes, it does 
not merely yield a ‘numerical control’ of the solution, since the way in 
which the ‘verifi cation’ procedure is written down requires the same kind 
of ‘understanding’ from the reader as that attached to the text of the direct 
algorithm. Th e nature and practice of the ‘verifi cation’ must thus be consid-
ered somewhat further, without being taken for granted  a priori . 

 Textual structures of this type are characteristic of other tablets, in 
which, once an algorithm has yielded a result, this result is then subjected 
to another procedure, immediately appended to the original one and 
which has oft en been interpreted as a verifi cation of it. Th e tablets on 
which  Proust focuses in her chapter display such a structure. Th e main 
algorithm she examines is the one used to compute reciprocals of regular 
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numbers.  51    Once the computation of a reciprocal has been recorded on 
the tablet, the same algorithm is applied to the result and shows that 
one thereby returns to the starting point of the original algorithm. In 
fact, more accurately, this structure is typical of only one type of tablet 
devoted to the algorithm computing reciprocals, precisely those tablets 
that contain only numbers. Th ese tablets record successive numbers pro-
duced through the fl ow of computations according to a determined and 
highly specifi c layout until the result is yielded, and then record numbers 
obtained through applying the algorithm to the result. However, as Proust 
emphasizes, another type of text also refers to the same algorithm. In these 
other tablets, the algorithm is expressed in words and the text prescribes 
the operations to be carried out in succession. Among all the tablets con-
taining either formulation (the two never occur on the same tablet), Proust 
chooses to concentrate on two tablets (Tablet A and Tablet B), one for each 
kind of expression. In fact, she selects the two texts that repeat the same 
pattern in a signifi cant number of sections. 

 Th e verbal expression of the algorithm had been essential for Sachs to 
interpret the purely numerical expression for it. However, once he had 
established that the two tablets relate to the same algorithm, a key question 
remained, which Proust addresses: why do we have two expressions of the 
same algorithm? What are the specifi c meanings conveyed by each of them? 
And, especially in her case, what does the numerical tablet say? 

 To answer these questions, Proust combines several methods. She restores 
the practices of computation to which both tablets adhere, bringing to 
light that they relate to the fl ow of computations in diff erent ways. She also 
compares the tablets to other parallel specimens. Lastly, she examines every 
detail of the numerical tablet (Tablet A): the layout, the numbers chosen, the 
way of conducting the algorithm in the direct and the reverse computations. 
Th rough sophisticated reasoning, Proust can establish that the second part 
of each section – the one containing the computations in the reverse direc-
tion – did most probably  not  play the part of checking the results of the direct 
algorithm. She further demonstrates that the layout designed to record the 
numbers, as evidenced in Tablet A, was created for such kind of texts and 
introduces a way of managing the space of the tablet that was  artifi cial . 
Th is conclusion leads her to suggest that the spatial elements of the layout, 
like columns, are precisely those which convey the meanings expressed by 
Tablet A. We see here at its closest how the composition of a kind of text 
relates to the work carried out with a text. In her view, the columns may be 

  51      For greater technical detail, I refer the reader to Proust’s chapter. 
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interpreted as related to the statement of rules which ground the correct-
ness of the algorithm. Proust thereby accounts for the meaning behind the 
numerical display as found in Tablet A, suggesting that it made sense for its 
readers in a way comparable to how an algebraic formula makes sense for us 
today. For her, the numerical text enjoys a kind of transparency in regard to 
the algorithm treated, making the operation of the procedure explicit. Th e 
reader could thereby see why and how the algorithm worked. Th is is how 
Proust argues that the numerical text bears witness to an interest in the cor-
rectness of the algorithm for computing reciprocals. Note that Proust’s argu-
ment is in agreement with what Høyrup has shown. Although they operate 
in diff erent ways, they both highlight that a specifi c kind of inscription has 
been designed to note down an algorithm while pointing out the reasons for 
its correctness. In some sense, Proust’s thesis with respect to these tablets 
concurs with Netz’s conclusions on the  Arithmetics . In her view, Tablet A 
bears witness to the development of an artifi cial kind of text designed to 
make the algorithm surveyable. Yet, in both cases, diff erent aspects of the 
working of the computations are made surveyable. Note further that, once 
more, the fact that actors constructed a specifi c kind of text to make specifi c 
statements with respect to algorithms means that historians have to design 
sophisticated methods to argue how such texts should be interpreted and 
what they mean. Here an interest in the correctness of the procedure can 
only be perceived through lengthy consideration of the text itself. 

 Let us pause here for a while and consider what we have accomplished in 
this subsection so far. We have entered the world of proving the correctness 
of algorithms. As was stressed in  Section  ii   of this Introduction, this was 
precisely a part missing from the standard account of the history of proof 
in the ancient world. By enlarging the set of sources and the issues about 
proofs considered, we began to see the emergence of a new continent. But 
there is more. 

 We saw above that an operation – take multiplication, for example – 
computes two things: a number and a meaning. A multiplication can 
produce the value which is claimed to be the product of two numbers. Or 
it can be interpreted as computing the area of a rectangle. On this basis, we 
see that Proust analyses texts addressing the former feature of the opera-
tion, whereas Høyrup considers texts that deal with the latter feature. In 
what follows, we shall proceed in the development of this segment of the 
history of proof, showing how various groups of actors have established the 
correctness of algorithms. 

 Proust’s fi nal point about Tablet A relates to its specifi c structure, namely, 
the display of an application of the algorithm followed by the display of its 
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application to the result. On that count, her conclusion is that the overall 
structure of the text makes a statement regarding the fact that the algorithm 
for computing reciprocals is its own reverse algorithm. Similar tablets can 
be found for square-root extractions, displaying that squaring and square-
root extraction are in the same way the reverse of one another. A similar 
interest in algorithms that are the reverse of one another – where one algo-
rithm cancels the eff ect of the other – emerges as central to a type of proof 
to which Chinese early mathematical sources bear witness.  52    It is to this 
type of proof that my own chapter is devoted.   

 Algebraic proofs in an algorithmic context 

 Like some of the Babylonian tablets analysed above, the earliest Chinese 
writings attesting to mathematical activity  stricto sensu  are composed of 
problems and algorithms solving them. Th e practice of proof to which they 
bear witness also aims at establishing the correctness of algorithms. 

 Among these writings, those that were handed down through the 
written tradition are of a type quite diff erent from that of the Babylonian 
tablets just examined.  53    Th e most important one for our purpose,  Th e Nine 
Chapters on Mathematical Procedures  ( Jiuzhang suanshu ), was probably 
completed in the fi rst century  ce  and considered a ‘classic’ soon thereaft er. 
In correlation with this adoption, commentaries on it were composed, 
some of which were felt to be so essential to the reading of  Th e Nine 
Chapters  that they were handed down with it. Th ese are the commentary 
composed by Liu Hui and completed in 263 as well as the one written 
under the supervision of Li Chunfeng and presented to the throne in 656. 
Two key facts regarding the commentaries prove essential for us in relation 
to mathematical proof. 

 First of all, the commentaries attest to how ancient readers approached 
the classic as such. Th is highlights why, as historians, when we interpret 
 Th e Nine Chapters , we are in quite a diff erent situation from that confront-
ing historians who deal with sources for which no ancient commentary 

  53      In addition to the source material handed down through the written tradition, we now 
have recourse to writings that archaeologists excavated from tombs. Th e most important 
of them, the  Book of Mathematical Procedures  ( Suanshushu ), found in a tomb sealed in  c . 
186  bce , is useful for, but not central to, our purpose. Such sources can be compared to the 
Babylonian tablets with respect to the way in which they were found and the conditions in 
which we can interpret them. However, it is not yet clear within which milieus and how they 
were used. 

  52      Chemla  1997 –8. 
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exists.  54    As alluded to above,  Th e Nine Chapters , like Babylonian tablets, 
describes some of the algorithms in such a way that they are transparent in 
regard to the reasons accounting for the correctness of the computations 
they prescribe. At this stage in the reasoning, ‘transparency’ is an observer’s 
category. However, it is crucial that, with respect to this Chinese document, 
the commentators did read the text of the algorithm as transparent and 
made precisely these reasons explicit in their exegesis. ‘Transparency’ can 
thus also be shown to correspond to an actor’s category. 

 It is in this context that the commentators bring to light exactly the 
same type of ‘meaning’ that Høyrup suggests reading in the transparent 
algorithms found in Babylonian tablets. In the Chinese case, we can thus 
demonstrate that this is the way in which the earliest observable readers 
actually did ‘interpret’ the texts. Such evidence supports the hypothesis 
that the practitioners of mathematics in ancient China designed a kind 
of text to formulate algorithms, similar to that shaped in Mesopotamia to 
express algorithms transparent about the reasons of their correctness. Th e 
proof expressed in this way was read as such by ancient readers.  55    From the 
point of view of the reception, aft er all, the historical continuity between 
Babylonian and Arabic sources also indicates that Babylonian proofs were 
read in this way by subsequent practitioners. On the other hand, from the 
point of view of the text itself, it is remarkable that in diff erent contexts, the 
mode of expression chosen for indicating the reasons of the correctness was 
the same. In my view, this remark indirectly reinforces Høyrup’s argument, 
in that it shows the usefulness of this property of the statements for practi-
tioners. Th e important point here is that for the Chinese commentators, in 
my interpretation, such a reading was a way of making the ‘meaning’ of the 
classic explicit. It is in order to designate that ‘meaning’ that they used the 
concept of  yi , which I introduced above.  56    

 Th is brings us back to the question, for which we now have plenty of 
evidence, of how the commentators made use of the context of a problem, 
or the geometrical analysis of a body, to formulate the ‘meaning’ they read 

  54      Using ancient commentaries to interpret an ancient text does not mean that we attribute 
anything found in the commentaries to the text commented upon without caution. Chemla 
 1997 –8 constitutes an example of how the two kinds of sources are treated separately and only 
thereaft er articulated with each other. 

  55      Th e commentators read the expression of the reasons for the correctness in various elements of 
the classic. Th e structure of the text is one of them; compare Chemla  1991 . Th e terms used in 
 Th e Nine Chapters  to prescribe an operation is another one – see, for instance, Chemla  1997 –8. 
Chemla  2010  attempts to give a systematic treatment of this question and to highlight elements 
of a history of these kinds of text. 

  56      On the fact that commentators assumed that the classic indicated the ‘meaning’ or ‘reasoning’, 
see Chemla  2003 , Chemla  2008a , Chemla  2008b . 
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in the classic. Further analysis reveals that, beyond the similarity which we 
suggested above with the Babylonian case as interpreted by Høyrup, the 
understanding made explicit in the Chinese commentaries was not only 
provided by ‘geometrical’ interpretations, but could also be achieved, more 
generally, by recourse to the situation described in the statement of any 
kind of problem.  57    In this sense, the way of generating a semantic analysis 
of operations diff ered. A landscape of similarities and diff erences starts 
emerging in our world history of mathematical proof in ancient traditions. 

 Secondly, the fact that the commentators made explicit the reasons 
underlying the correctness of the algorithms in such cases is one aspect of 
a much more general phenomenon. In eff ect, the commentaries  system-
atically  established the correctness of the algorithms contained in  Th e Nine 
Chapters , thereby bearing witness to a considered practice of proof for such 
kinds of statements. 

 My own chapter focuses on one dimension of this practice, which, as far 
as I know, appears to be specifi c to ancient China. Th is dimension, which 
reveals another fundamental operation used to establish the correctness of 
procedures, sheds light on why the texts of algorithms are not all transpar-
ent about the reasons for their correctness. 

 As I show, in some cases, to establish that an algorithm correctly ful-
fi lled the task for which it was given, the commentators, on the one hand, 
established another algorithm fulfi lling the same task and, on the other 
hand, carried out operations on the text of this algorithm to transform it 
into the proper algorithm, the correctness of which was to be established. 
Moreover, in such cases the commentary usually made explicit the reasons 
they adduced for explaining why, although the former algorithm was trans-
parent, the classic substituted the latter algorithm for it. 

 My chapter mainly focuses on the section of such a proof in which the 
algorithm is reworked by means of transformations carried out on the list of 
operations directly. My claim is that, within a context in which mathematics 
was worked out on the basis of algorithms, this section of the proof repre-
sents a practice of algebraic proof. 

 By algebraic proof, I mean, in this context, a proof that starts from a 
statement of equality, fi rst established in a given way that is not of interest 
here and then transforms this original equality  as such and in a valid way  
into other equalities, until the desired equality is obtained. Th e fi rst part 
of my claim is thus that the commentaries record proofs of precisely this 
kind, with the only diff erence being that algorithms, and not equalities, are 

  57      Compare chapter A in CG2004, Chemla  2009 . 
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transformed. We would then have a form of algebraic proof in an algorith-
mic format. 

 Th e second part of my claim relates to the concern for the validity of such 
a method of proof. In fact, an analysis of the commentaries reveals that the 
exegetes considered the question of the validity of the operations applied to 
an algorithm as such. 

 A close inspection shows that the exegetes linked the validity of their 
operations to the set of numbers introduced in  Th e Nine Chapters , which 
includes not only integers but also fractions and quadratic irrationals. Th e 
key point, in their eyes, was that these quantities allowed the expression 
of the results of divisions and root extraction exactly, thereby allowing the 
inverse operation of multiplication to cancel the eff ect of these operations 
and restore the original number. Th is point recalls the Mesopotamian 
tablets described by Proust, which demonstrate the same concern. Why 
was this fact important for practitioners of mathematics in Mesopotamia? 
Further inquiry into that question could prove interesting for our topic. 

 At the same time, I argue that it is when the commentators establish the 
correctness of algorithms for carrying out the arithmetic with fractions 
that they address the validity of applying some of the operations to lists of 
operations. Several points must be stressed here. 

 Firstly, the analysis of this dimension of the practice of proof preserved 
from ancient China brings to light an essential point, which allows us to 
capture a key feature of algebraic proof: the validity of such kinds of proof 
is essentially linked to the set of numbers with which one operates and how 
one operates with them. Th is point, I argue, was understood in ancient 
China, but it is a point of general validity regarding algebraic proof. 

 Secondly, the question arises whether dimensions of algebraic proofs as 
we practise them today may have historically taken shape within practices 
of proving the correctness of algorithms. 

 Th is brings me back to a point raised at the beginning of this introduction. 
I insisted on the fact that the standard account of the history of mathematical 
proof had nothing to say about the history of how the correctness of algo-
rithms was established in the past. At this point, I am in a position to sum-
marize our fi ndings on this question. We now see even more clearly that this 
was a lacuna which contributed to the marginalization of sources that were 
‘non-Western’ and sources that bore witness to practices of proof related to 
computations. In addition, we also see that this lacuna may also prevent us 
from providing a historical account of the emergence of algebraic proof. 

 Last, but not least, if the answer to the previous question proves positive, 
a new historical question presents itself quite naturally: one may further 
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wonder whether the algebraic proof in an algorithmic context as demon-
strated in ancient China could not have played a part in the actual emer-
gence of the algebraic proof as we practise it today. 

 Th is set of issues demonstrates the ways in which the broadening of our 
corpus leads to the formulation of new directions of research in the early 
history of mathematical proof.   

 Proving as an element of the interpretation of a classic 

 Th e Chinese case just examined is not the only historical instance in which 
the formulation of mathematical proofs took place within the framework of 
commentaries on a classic. Agathe Keller’s chapter is devoted to the earliest 
known Indian source in which an interest for mathematical proof can be 
identifi ed: it turns out to be the seventh-century commentary by Bhaskara 
I on the mathematical chapter of the fi ft h-century astronomical treatise 
 Aryabhatiya . As in the Chinese case, Keller shows how the development of 
arguments to establish the correctness of procedures is part of the activity 
of an exegete who comments on a classic.  58    

 Th e proof is part of Bhaskara’s way of justifying the classic, unless it 
justifi es his own interpretation of the classic. A Sanskrit classic is com-
posed of  sutras , the interpretation of which requires skills. It is within this 
context that, when the classic deals with mathematics, proof – together 
with grammar – seems to be a means for a commentator to inquire into 
the meaning of the classic and to advance his interpretation. Despite the 
fact that commenting on a classic provided the impetus for making proofs 
explicit in both Sanskrit and Chinese, the way in which proofs relate to the 
interpretation seems to present diff erences between the two contexts. 

 In the case discussed by Keller, the classic, i.e. the  Aryabhatiya , indi-
cates algorithms. Th e commentator Bhaskara states them fully, showing by 
means of Paninian grammar  how  the  sutras  mean the suggested algorithms 
and then accounting for why the suggested algorithms are correct. Bhaskara 
manifests his expectation that the classic does not provide explanations. 
By contrast, he introduces a set of terms (explaining, verifying, proving) 
that indicate how he understands the epistemological status of parts of his 
commentary. 

 Keller provides evidence to support an interpretation of what ‘explain-
ing’, ‘verifying’ and ‘proving’ meant for him, in terms of actual intellectual 

  58      Srinivas  2005  insists more generally on the fact that in Indian writings proofs occur in 
commentaries, and in Appendix A he provides a list of these commentaries. 
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acts. Moreover, she delineates the techniques used by the commentator to 
account for an algorithm. 

 Here, similarities with the Chinese sources appear. One of the key 
techniques Bhaskara uses is to highlight how a given procedure is in fact 
supported by a fundamental, general procedure, in the terms of which 
the original procedure can be rewritten. Such a technique also appears 
in Chinese commentaries, where a technical term ‘meaning ( yi′ )’ is used 
exclusively to refer to the kind of meaning of the procedure that a proof 
brings to light in this way.  59    Th is similarity between the two contexts pos-
sibly derives from the fact that the activity of interpreting a classic inspired 
similar conceptions of the ‘higher meaning’ of an algorithm. 

 Showing that diff erent procedures can in fact be explained in the terms 
of the same fundamental, general procedure is one way in which proofs 
highlight relationships between algorithms which at fi rst glance might 
appear unrelated. In such cases, something circulates among the proofs, 
and thanks to the proofs, in a way that can be compared to the techniques 
brought to light by Saito in the core corpus of Greek geometrical texts. Th is 
circulation again requires a reading of the proof in and of itself, and not 
merely as a means to prove the correctness of a procedure. Moreover, what 
circulates between the proofs diff ers depending on the context. In Sanskrit 
and Chinese sources, a procedure circulates, that is, a statement of the same 
kind as the proposition to be proved. In other terms, the technique of proof 
is at the same time a new statement. Again, this echoes present-day math-
ematicians’ claim that proofs are a source of knowledge for them. However, 
the procedure in question is not ordinary, since the mere fact that it can be 
put to such uses indicates that it is more fundamental and more general 
than others. One may hypothesize that the identifi cation of procedures of 
this kind formed one of the goals that motivated the interest in proving in 
these contexts.  60    In this case, the historian would miss one of the epistemo-
logical expectations with respect to proving, were he to analyse it only from 
the viewpoint of its ability to establish the statement to be proved. 

 It is also interesting that, in the context of Bhaskara’s commentary as 
well as in the Chinese commentaries, fi gures were introduced for types of 

  59      On this ‘meaning’  yi′ , see the glossary I compiled, CG2004: 1022–3. 
  60      For Chinese sources, there is evidence supporting the claim. Compare Chemla  1992 , Chemla 

 1997b . We reach a conclusion that was already an outcome of Lakatos’ analysis of the activity of 
proving in Lakatos  1970 . Th is convergence is not surprising: we share with Lakatos’ enterprise 
a starting point, that is, that there is more to proof than mere deduction. However, the nature 
of the statements produced in the contexts Lakatos studied and those we studied diff ers, 
showing that one could go deeper in the analysis of how proofs yield mathematical knowledge 
(concepts, statements and techniques). 
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‘explanation’ which are referenced with specifi c terms. Once the ‘explana-
tion’ is given in the form of such a diagram, it comes to a close. Is it that 
the argument is left  for the reader to develop or is it that it was developed 
orally? It is diffi  cult to tell. However, we recognize a feature of proofs that 
was frequently mentioned in nineteenth-century accounts of ‘Indian’ math-
ematical reasoning but was subject to divergent assessments, as Charette’s 
chapter shows. Seen from another angle, we may note that the written for-
mulation of a proof carried out in relation to a diagram took quite diff erent 
forms in history. Further development of a comparative analysis of such 
texts arises as a possible venue for future research. 

 On the other hand, the commentator used the term ‘explanation’ 
  (pratipadita)  to refer specifi cally to another component that he intro-
duced: problems solved by means of the algorithm described. In which 
ways did the problems contribute to providing an explanation of the 
algorithms? Here too, the source material calls for a comparative analysis 
of the part allotted by diff erent traditions to problems for establishing 
an algorithm. 

 Th e evidence discussed so far illustrates the variety of contexts that may 
have prompted an interest in writing down proofs. Th e sources analysed 
by Keller and myself show how commenting upon a canonical text has 
been an activity by which proofs were made explicit. In addition Høyrup 
suggests the hypothesis that teaching could have motivated an interest in 
formulating proofs. In fact, the two explanations are not mutually exclusive, 
if we embrace Volkov’s hypothesis that Chinese commentaries were com-
posed within the context of mathematical education. We come back to this 
hypothesis below. In addition, the evidence discussed so far also shows the 
variety of motivations that led to the formulation of proofs in the ancient 
traditions. What they contribute to our historical approach and under-
standing of mathematical proof is an issue to be taken up in the conclusion. 
Before we can address our conclusions, however, one more dimension of 
our world history is worth considering.    

 Th e persistence of traditions of proof in Asia 

 One may be tempted to believe that it is relevant to adopt the perspective 
of a world history to deal with mathematical proof in ancient traditions, 
but that aft er the seventeenth century, the story to be told is that of the 
‘Western’ practices and their adoption worldwide. Th e fi nal two chapters of 
the book illustrate two ways in which such a view must be qualifi ed. Th ey 
constitute the only incursions of this book into later traditions of proof. Th e 
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main reason for including them in the book is that they reveal historically 
interesting modes of continuity with what was analysed above. 

 Alexei Volkov devotes his chapter to an apparently discrete topic: 
mathematical examinations in China and the sphere of Chinese infl uence 
in East Asia. However, the link to our questions appears immediately. 
Th e issue at hand for him is that of the relation between the practices of 
examination in mathematics and mathematical proof as evidenced by the 
commentaries on Chinese classics. Th is question leads him to focus on 
the extant evidence regarding the teaching of mathematics in this part of 
the world. 

 Among all the channels through which mathematical knowledge was 
taught throughout Chinese history, the channel of state institutions is the 
least poorly documented. Relying on the extant Chinese administrative 
sources, Volkov describes the textbooks used for mathematics in the state 
educational system from the seventh century onwards and the way in 
which they were used. It is important for us that among these textbooks, 
one fi nds precisely  Th e Nine Chapters on Mathematical Procedures  along 
with the commentaries by Liu Hui and Li Chunfeng introduced above.  61    
Moreover, Volkov discusses in great detail how the terse description of the 
kind of examinations the students had to take by the administrative sources 
can be interpreted concretely. 

 Th e interpretation of the extant administrative sources would have 
remained a matter of speculation, had not Volkov discovered a piece 
of evidence in nineteenth-century Vietnamese sources. Some elements 
of context are needed to understand this point better. As in Japan and 
Korea, Vietnamese state institutions had a history closely linked to that of 
their parallel institutions in China. In particular, from the Tang dynasty 
onwards, Chinese state institutions for teaching were imitated in East 
Asia and the textbooks used by these institutions were transmitted in this 
process. Moreover, state examinations in mathematics were held in all 
other contexts, including in Vietnam, as Volkov shows. Th is explains how 
Vietnamese sources clarify practices carried out in China: the margins 
oft en keep alive traditions that are modifi ed in the centre. 

 In Vietnam, an additional factor played a decisive role: at the beginning 
of the nineteenth century, Western books had not yet become infl uential 
there. Th e extant mathematical writings composed in Vietnam until that 
time consequently appear to belong mainly to a tradition on which Chinese 

  61      Please note that Volkov opts for another interpretation of the title of the Chinese book, 
translating it in a diff erent way. Appendix 2 in his chapter presents various transcriptions and 
translations for the title of Chinese mathematical texts. 
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books exerted a strong infl uence. It is in such a Vietnamese source that 
Volkov found a model for mathematical examination which he translates 
and analyses in his chapter. 

 Th is piece of evidence leads him to put forward the hypothesis that 
the shape taken in China by the mathematical classics and the seventh-
century commentaries may refl ect precisely the requirements of the 
teaching institution. On this basis, one can shed light on the connection 
between these texts and the examination system from another angle. It is 
quite striking, indeed, that the administrative texts analysed by Volkov 
describe the tasks to be carried out by students in the seventh-century 
Chinese state institutions with technical terms that can be found  inter alia  
in  Th e Nine Chapters  and the commentaries on the mathematical classics 
that were mentioned above. Th is holds true, as Volkov stresses, for words 
like  wen  ‘problem’, or  da  ‘answer’, which refer to components of texts like 
 Th e Nine Chapters . However, most importantly, this also holds true for 
terms like  yi’  ‘meaning’, which is the second type of meaning given above 
for a procedure, a meaning that is intimately connected to the activity of 
proving. Such a link between the two types of sources supports Volkov’s 
thesis that commentaries played a key part in the training of students, 
since terms like  yi′  are not to be found in the texts of the mathematical 
classics themselves, but only in commentaries.  62    In conclusion, Volkov 
suggests a social context for the interest in the proofs of the correctness of 
algorithms in ancient China. 

 Two points are worth emphasizing for our main argument here. Firstly, 
let me stress again what was said above: if Volkov’s hypothesis holds true, 
we would have at least two cases – East Asia and Babylon – in which the 
professional context of teaching was instrumental for composing proofs, 
even though the proofs actually written down diff ered in the two contexts. 
Secondly, it is worth noting that this piece of evidence confi rms the longev-
ity of practices of proof in East Asia. Th is is but one example which shows 

  62      One may even go a step further. We mentioned above two commentaries on  Th e Nine Chapters : 
the one completed by Liu Hui in 263, and the one presented to the throne by Li Chunfeng 
in 656. In fact, several scholars have produced clues which indicate that the text of the two 
commentaries may have been commingled during the process of transmission (in CG2004: 
472–3, I have summarized the current contributions treating this diffi  cult issue which awaits 
further research). For the question discussed here, it may be relevant to note that many clues 
suggest that the concept of  yi’ , when used in relation to procedures, may belong to the layer 
of commentary from the seventh century. If this is confi rmed, the connection between the 
administrative sources and the seventh-century commentary would be even more striking. Th e 
correlation between the terms used in both types of documents should invite us, in my view, 
to take the occurrence of the terms in the commentaries on the classics into account when 
interpreting the administrative prescriptions. 
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that the late history of practices of proof bears witness to circulations and 
preservations that challenge the standard account sketched above.  63    

 At the beginning of his chapter, Volkov recalls how the sinologist 
Edouard Biot, in his 1847  Essai sur l’histoire de l’instruction publique en 
Chine , dismissively belittled the format of problems in Chinese mathemati-
cal texts, their absence of proof and the elementary level of state education. 
With respect to what was discussed above, the additional denigration of 
everything classed as educational in the historiography of mathematics may 
be partly responsible for the lack of discernment regarding sources that 
could have modifi ed Biot’s assessment at least to a certain extent. 

 In China, the approach to mathematics of the past was strikingly diff er-
ent, if we judge it on the basis of Li Rui’s  Detailed Outline of Mathematical 
Procedures for the Right-Angled Triangle  completed in 1806, which Tian 
Miao analyses in her chapter. Th is text illustrates a second form of pro-
longed relevance of ancient practices of proof, which reveals several inter-
esting features. 

 To be more precise, Li Rui’s practice of proof exemplifi es a revival of past 
Chinese practices of proof and shows how they were at that time trans-
formed mathematically while simultaneously reshaped under the infl uence 
of – or rather as an alternative to – practices of proof identifi ed as ‘Western’. 

 Th e topic on which Li Rui chose to write his book, the right-angled tri-
angle, was one in which, as he knew, an interest was documented in both 
Chinese and Greek antiquity. Th e ninth of  Th e Nine Chapters  is devoted 
to the right-angled triangle and it is the subject of theorems in the part of 
Clavius’ edition of Euclid’s  Elements  that Ricci and Xu Guangqi translated 
into Chinese in 1607. 

 Li Rui approached the right-angled triangle as was done in the tradition 
which descends from  Th e Nine Chapters . Among the various identifi able 
traces of this approach, one notes that his book takes the form of problems 
for which solutions are provided in the form of algorithms. In addition, 
Li Rui makes use of the traditional terminology developed throughout 
Chinese history and completed in the Song dynasty to designate the quanti-
ties attached to a triangle. 

 On the other hand, Tian argues, the infl uence of the  Elements  can be 
perceived in the fact that Li Rui provided a systematic set of solutions to 
all the problems that can be encountered. Moreover, he organized this set 
according to the dependencies of its elements. In the system produced, the 

  63      A similar kind of continuity in the practice of proof is described by François Patte, in his work 
on sixteenth-century Sanskrit commentaries; see Patte  2004 . 
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solution to any problem depended only on those before it. Th e proofs of the 
correctness of the algorithms were thus a key element for deciding over the 
structure of the system. 

 Tian highlights several mathematical innovations in the book. To 
begin with, Li Rui invoked combinatorial methods to state and solve any 
problem that could be asked about a right-angled triangle. Moreover, Li 
Rui innovatively employed the ancient ‘heavenly unknown ( tianyuan )’  64    
method to establish the correctness of the algorithms which solve each 
of the problems in the most uniform way possible. Th e earliest surviving 
evidence for this method, which is equivalent to the modern practice of 
using polynomial algebra to set up an equation which solves a problem, 
dates to 1248, the year that Li Ye completed his  Sea-Mirror of the Circle 
Measurements  ( Ceyuan haijing ). Aft er having been forgotten in China, 
the method had been recovered by Mei Juecheng in the fi rst half of the 
eighteenth century, thanks to the understanding Mei gained through his 
acquaintance with European books of algebra.  65    In particular, Mei deci-
phered the meaning of the algebraic symbolisms for writing down poly-
nomials and equations that had been developed in China a few centuries 
earlier and had since been lost. 

 Li Rui could thus rely on the method and its related symbolisms that had 
been rescued from oblivion only a few decades before he wrote his book. 
When using the symbolism to establish algebraically the correctness of the 
algorithms he stated, Li Rui was using symbols that diff ered in form from 
those of Diophantus, but which had played a similar part in the past. Like 
Li Ye, Li Rui used these symbolic notations to account for the correctness 
of the equation – the ‘procedure’ – yielded to solve a general problem. 
However, the way in which Li Rui was now using them modifi ed the status 
of the proofs carried out with them. Th e main point that Tian highlights in 
this respect is that, when considering given quantities attached to a triangle 
as data, Li Rui discriminated among the diff erent categories of triangles 
according to the relative size of the data in them. More precisely, in contrast 
to Li Ye before him, Li Rui formulated as many problems as there were 
distinguishable cases so that he could prove the correctness of the general 
equation in a way that would be valid for each case and that would establish 

  64      Th e literal interpretation of the expression  tianyuan  is ‘celestial origin’. Th is interpretation 
permits the identifi cation of occurrences of the concept before the thirteenth century in the set 
of mathematical classics gathered in the seventh century; see above. I shall come back to this 
point in a future publication. 

  65      On this episode, compare Needham and Wang Ling  1959 : 53, Horng Wann-sheng  1993 : 175–6, 
Yabuuti Kiyosi  2000 : 141–3. 
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the equation with full generality. Th is distinction between cases relates to a 
concern about the validity of the operations in the proof and the generality 
of the proven statement. Li Rui distinguished cases in such a way that the 
proof carried out through polynomial computations would be valid for all 
triangles of the same case. Th is step ensured the correctness of the kind of 
algebraic proof which he conducted in a way that Li Ye’s proofs before him 
did not. 

 As a consequence, Li Rui established  general  equations through poly-
nomial computations – the proof of their correctness – that were valid for 
the particular category of triangles delineated and he probably developed 
this structure of proof intentionally. Otherwise, there would be no reason 
for him to diff erentiate diff erent cases of a given type. Yet, even though this 
feature reveals that Li Rui was interested in the generality of procedures, 
like the ancient Chinese mathematical texts, he expressed this property for 
each case within the context of a particular problem, which he thus used as 
a paradigm. We see here again that the search for generality and the ways 
in which generality is expressed both account for specifi c features of the 
practice of proof that was constructed. 

 Several other elements manifest how, through his mathematical practice, 
Li Rui simultaneously presented himself as continuing the tradition of his 
Chinese predecessors of the past and yet changed it. His deployment of 
geometrical diagrams to provide yet another (geometric) proof of the cor-
rectness of the equation is one of these elements. However, although the 
diagrams clearly call to mind Li Ye’s own diagrams in his  Yigu yanduan , 
completed in 1259, or Yang Hui’s 1261 commentary on  Th e Nine Chapters , 
they betray diff erences, due not least of all to an infl uence of Western 
practices with geometrical fi gures. Further, like Xu Guangqi before him, Li 
Rui seems to be using the concept of ‘meaning ( yi ′)’ in a way that displays 
affi  nity with how the commentators on  Th e Nine Chapters  used the same 
term. Th is reveals a continuity of mathematical theory that has not yet been 
addressed adequately. 

 In addition, Tian surmises that Li Rui was also interested in showing 
the power of the ‘procedure of the right-angled triangle ( gougushu )’ – the 
ancient name and formulation for Pythagoras’ theorem – to solve any 
problem in a uniform way. Li’s book can be interpreted as having explicitly 
developed the system covered by this older procedure, even if it had been 
presented in the past in relation to a particular problem. 

 In conclusion, the  Detailed Outline of Mathematical Procedures for the 
Right-Angled Triangle  demonstrates a synthesis of goals for and techniques 
of proof, which take their origins from both East and West. Th e book 
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 composes a new type of text with which to carry out proofs, one that inte-
grates diff erent agendas. Most importantly, however, if we follow Tian’s 
interpretation of it, we can read Li Rui’s discourse and practice as illustrat-
ing the politics of the proof, in that they attempt to embody the ideal of 
proving in the ‘Chinese way’, and  not  in the ‘Western’ way. Some decades 
later, the politics of the historiography of mathematical proof would 
become by far more visible.   

 IV     Conclusion:     a research programme 
on mathematical proofs 

 It is time to gather the various threads that we have followed and conclude, 
by considering our fi ndings with respect to ancient mathematics and the 
research programme that they open for us. 

 Let us begin with facts. What we have seen emerging in  Section  iii   is the 
outline of a history of proving the correctness of algorithms in the ancient 
world. Mesopotamian, Chinese and Indian sources bear witness to the fact 
that practitioners have attended to the correctness of the algorithms with 
which they have practised mathematics. An analysis of their attempts helps 
us identify some of the fundamental operations involved in such proofs. 
We have seen that these practitioners have striven to establish how an 
algorithm correctly yields the desired magnitude and the value that can be 
attached to it. To do so, they have designed devices or  dispositifs  that have 
allowed them to formulate the ‘meaning’ of operations. Th e proofs they 
constructed share common features. Th ey also demonstrate specifi cities in 
the way in which proof was practised. 

 Among the specifi cities noted in the way of approaching the correctness 
of algorithms, one fact proved of special relevance for a history of proving. 
Chinese sources demonstrate the fact that operations – meta-operations, 
if one wishes – were sometimes applied to the sequence of operations that 
an algorithm constitutes. Th ese meta-operations were used to transform 
an algorithm known to be true,  qua  algorithm, into another algorithm, the 
correctness of which was to be established. Moreover, these sources bear 
witness to the fact that a connection was established between the validity 
of these meta-operations and the numbers with which one worked. I sug-
gested the conclusion that we have here a kind of ‘algebraic proof within an 
algorithmic context’. 

 Th is remark leads to several questions. What kind of understanding can 
practices developed specifi cally to prove the correctness of algorithms yield 
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into the nature of algebraic proofs, on the one hand, and the process of their 
emergence, on the other? If a historical link can be established between the 
two, what evidence can we fi nd regarding the historical process by which 
both kinds of proof were connected? Th is question opens onto another one, 
much more general: through what concrete historical processes did alge-
braic proof take shape and develop? 

 Th e analyses developed in this introduction have brought to light several 
elements inherent to that kind of proof as we experience it: textual tech-
niques, refl ections on numbers and problems of generality. What other 
elements constitute algebraic proof and how did this cluster crystallize? 
What type of historicity is attached to it? Th is book off ers a contribution to 
this agenda by identifying elements essential to algebraic proof and hypoth-
esizing a historical scenario regarding the kinds of practice in which these 
 elements took shape. Clearly, much more remains to be done. 

 Th ese fi rst results show the benefi ts that broadening of the scope of 
sources taken into consideration can produce through the change of 
perspective we advocated in the approach to proofs and their history. A 
scarcely considered branch of the history of proof thus emerges: namely, 
the history of proving the correctness of algorithms. And as it takes shape, it 
elucidates parts of the history of proof that still await better understanding. 
In correlation with opening new pages in the history of proof, we have been 
naturally led to approach the topic of proof more comprehensively. From 
this global perspective, we understand more clearly the link between the 
devaluation of computation as a mathematical activity, which was and still 
is quite widespread, and the exclusive focus on only some proofs, written 
in ancient Greece, that has dominated the history of mathematics. Now, 
what changes will this outline of the history of proving the correctness of 
algorithms bring in the history of proof? How far will these tools of analysis 
allow historians to examine anew other proofs, for instance proofs written 
in Greek? Th ese remain open questions. 

 Our exploration of ancient practices of proof has met with another 
important issue, which is worth pondering further. As suggested by Lloyd, 
Høyrup, Keller and Volkov among others, the interest in proof and, more 
specifi cally, in writing proofs down has been stimulated by distinct activi-
ties and social contexts. Among those activities and contexts we have seen, 
let us mention the rivalry between competing schools of thought or the 
development and promotion of one tradition as opposed to another, 
teaching mathematics or interpreting a classic, all activities that need not 
have been exclusive of each other. Th e list is by no means exhaustive. Still, 
this remark brings to the fore two points that are important much more 
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 generally. On the one hand, proving is an activity that takes place in specifi c 
social and professional groups which have specifi c agendas. On the other 
hand, as we saw, the practices of proof betray a variety of modalities which 
one can attempt to correlate to the social groups which sustain them. Th is 
leaves us with two tasks: fi nding the means to describe the practices in their 
variety and identifying the social and professional contexts that are relevant 
to account for their formation and relative stability. 

 Such a research programme is quite meaningful to inquire into the 
history of proof in the ancient world. Indeed, only along these lines can 
we hope to bring to light and accommodate the variety of practices in a 
way more satisfactory than the old model of competing civilizations which 
has been pre-eminent from the nineteenth century onwards. However, 
the research programme is laden with diffi  culties. Th e evidence available 
with respect to ancient time periods is in general so scanty that rigorously 
reconstructing the social environment in which proofs were actually com-
posed is an ideal for the most part out of reach. One can only put forward 
hypotheses. In that context, concentrating on the description of the varying 
practices appears to be an initial means of overcoming the diffi  culties and 
perhaps discerning from mathematical sources diff erent social groups that 
carried out the practice of proof. 

 Th is is the project on which we focus in the book and what our explo-
rations into matters of proof open to refl ections of wider relevance. Th e 
conclusions which we propose bring forth some suggestions for the task of 
describing practices of proof whose value appears to me to exceed the scope 
of the ancient world to which we have restricted ourselves. Let me comment 
on some of these suggestions by way of conclusion. 

 Among the various sets of sources which they treat, the chapters in this 
book identify diff erent goals ascribed to proof, diff erent values attached to 
proving and diff erent qualities required from a proof. In this Introduction, I 
have outlined some of them. We have seen that some proofs seem to be con-
ducted in order to understand the statement proved or the text which states 
it. In other cases, proofs have appeared to have had as one of their goals the 
identifi cation of fundamental operations or the display of a technique. We 
have also seen that in some contexts, proofs were expected to be general or 
to comply with an ideal of generality. In others, they should bring clarity, 
yield fruitfulness or manifest simplicity. Much more remains to be done in 
identifying goals and values practitioners have attached – and still attach 
today – to proof and the constraints they imposed on themselves. 

 What is important is that in each of these cases the identifi cation of 
these elements, far from being the end of the inquiry, constitutes only its 
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 beginning. Indeed, the main question then raised is to identify  how  the 
way in which the proof is conducted or written down helps practitioners 
to reach the goals, achieve the values or implement the qualities they value. 
Th is is where the issue of the practices of proof is inextricably linked to the 
issue of the expectations actors have with respect to proofs. In relation to 
this issue, I introduced the notion of devices or  dispositifs  that actors have 
created in various contexts to carry out key operations with respect to 
the proof. We have seen that the  dispositifs  constructed by Mesopotamian 
scribes or Chinese scholars to make explicit the ‘meaning’ of operations in 
an algorithm had commonalities as well as specifi c diff erences. Th e diff er-
ences between the two Greek texts dealing with polygonal numbers that 
Mueller described can also be approached in these terms: the  dispositifs  
used by the authors to treat their topic show two distinct attempts at achiev-
ing generality. Seen in this light, axiomatic–deductive systems appear to be 
a  dispositif  designed to yield certainty. Describing these  dispositifs  appears 
to me as a method to attend more closely to diff erences between the various 
practices of proof, thereby breaking down what is all too oft en presented 
collectively as ‘the mathematical practice’. 

 Can we spot transformations in the modalities of proof that demonstrate 
a change of values or a combination of a larger set of values? Which of these 
goals, of these values, of these qualities were held together? Which combi-
nations can we identify and how have these various constraints been held 
together? Which of them seem to have been in tension with each other, 
because they were diffi  cult to fulfi l simultaneously? Archimedes’ practices 
of proof off er a case study that can be approached from this perspective. 
All the questions that arise in this context now explain, I hope, how an 
overly strict focus on the value of certainty would yield an essentially trun-
cated account of mathematical proof. Clearly, such an approach does not 
do justice to the variety of agendas that were ascribed to proof and to the 
variety of practices that were developed accordingly. 

 When describing the diverse practices of proof exhibited in ancient 
sources, the various chapters of the book collectively bring to the fore 
another fact that is, in my view, both important and of general relevance. 
Th ey converge on the conclusion that various types of technical texts have 
been designed for the conduct of proofs, depending on the context in which 
these proofs have been written down and the constraints bearing on them. 
Let me gather various hints that support this conclusion. 

 Th e texts of proofs we have mentioned consist of distinct basic com-
ponents. Among them, one can list equalities, proportions or lists of 
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 operations. Moreover, within the context of distinct practices of proof, 
these basic components appear to have been composed in various ways 
and to have been combined in distinct kinds of technical texts. Among the 
kinds of texts and inscriptions we encountered, let me recall a few: texts 
for algorithms transparent with respect to the reasons of their correctness; 
the material  dispositifs  by means of which their meaning was made explicit; 
symbolic inscriptions of diff erent sorts (including those of Diophantus, 
those which Colebrooke fi rst described in the Sanskrit texts, and those of 
the Chinese past revivifi ed by Li Rui); and texts composed with formulaic 
languages. In addition, it regularly appeared that paradigms in the form of 
particular fi gures or mathematical problems were used to formulate general 
proofs. 

 Th is variety of texts developed for proofs merely refl ects the variety of 
contexts within which proofs were carried out. Th is means that the design 
of texts is, in an important sense, an indicator of the context in which they 
were composed. Moreover, the shaping of kinds of texts to carry out proofs 
is an aspect of the practice of proof as such which has been little studied so 
far. Th is shaping demands study, even if only as a limited component of the 
practice of proof. However, there is another equally fundamental reason to 
study this range of phenomena. 

 Th e examples just summarized remind us of the fact that the interpreta-
tion of the text of a proof is a thorny issue, and it is so  in relation  to the eff ort 
involved in the construction of a kind of text adequate for the execution of 
proofs of a certain type. In other words, it is  because  each human collec-
tive which carried out mathematical proofs deliberately designed texts for 
this activity that these texts cannot be interpreted straightforwardly.  66    Th is 
claim can be illustrated easily with the example of the recently mentioned 
transparent algorithms. In order to read a proof in the statement of the 
algorithm itself, the historian has to establish the way in which the texts 
made sense. Th e interpretation of paradigms as paradigms would constitute 
another example. 

 Th ese remarks explain why the relation between the type of text used 
and the kind of proof developed is an essential topic for future research. It 
is essential not only because the shaping of texts to carry out proofs is an 
aspect of the practice of proof in itself, but also because inquiring into this 
issue yields better tools to interpret the texts in question. 

  66      In this respect, we return to the conclusions that emerged from the collective eff ort published 
in Chemla  2004 . 
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 Such are some of the general issues that emerged from our histori-
cal analysis of ancient practices of proofs. As such, they appear to me to 
provide useful directions of research if we are to develop more generally a 
genuinely historical approach to the activity of proving and understand the 
motley practices of mathematical proofs as such. What results can these 
issues yield for the study of modern proofs? Let this task constitute our 
future endeavour.                                                                         
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 1     Th e Euclidean ideal of proof in  Th e Elements  
and philological uncertainties of Heiberg’s 
edition of the text    

   Bernard     Vitrac,  Transl ation micah ross      

 Introduction 

 One of the last literary successors of Euclid, Nicolas Bourbaki, wrote at the 
beginning of his  Éléments d’histoire des mathématiques : 

 L’originalité essentielle des Grecs consiste précisément en un eff ort conscient pour 
ranger les démonstrations mathématiques en une succession telle que le passage 
d’un chaînon au suivant ne laisse aucune place au doute et contraigne l’assentiment 
universel … Mais, dès les premiers textes détaillés qui nous soient connus (et qui 
datent du milieu du  v  e  siècle), le « canon » idéal d’un texte mathématique est bien 
fi xé. Il trouvera sa réalisation la plus achevée chez les grands classiques, Euclide, 
Archimède, Apollonius; la notion de démonstration, chez ces auteurs, ne diff ère en 
rien de la nôtre.  1      

 I am unsure what was intended by the last possessive, whether it acts as 
the royal or editorial  we  designating the ‘author’, or if it ought to be under-
stood in a more general way: ‘la nôtre’ could mean that of the Modernists, 
of the twentieth-century mathematicians, of the French, or formalists. All 
jokes aside, the affi  rmation supposes a well-defi ned and universally accepted 
conception of what constitutes a mathematical proof. Th e aforementioned 
conception, the citation for which is found in a chapter titled ‘Fondements 
des mathématiques, Logique, Th éorie des ensembles’, is at once logical, 
psychological (through a rejection of doubt), and ‘sociological’ (based on 
universal consensus). Perhaps this assertion ought to be considered nothing 
more than a distant echo of the Aristotelian affi  rmation that all scientifi c 
assertions (not just mathematical statements) are necessary and universal. 

 Th e following list of Greek geometers is also interesting. It contains the 
classics, and the triumvirate was probably intended to follow chronological 
order. Here, then,  Euclid  is not simply a convenient label, sometimes used to 
designate one or several of the many adaptations of Euclid’s famous work, 
as when one speaks about the Euclid of Campanus ( c . 1260–70), the Arab 

 1 Bourbaki 1974: 10.
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Euclid or the Euclid of the sixteenth century. Rather, this  Euclid  indicates 
the third-century Hellenistic geometer and author of the  Elements . To speak 
about the Hellenistic Euclid, to describe the contents of his composition with 
precision – which certainly implies the fact that it qualifi es as a ‘classic’ – 
and to adopt or reject its approach towards proof presumes a reasonably 
certain knowledge of the text of the  Elements . Precisely this knowledge, 
however, is in doubt. 

 To examine these assumptions, in the  fi rst part  I revisit some informa-
tion (or hypotheses) concerning the transmission of ancient Greek texts, 
particularly the text of the  Elements . I emphasize there the indirect char-
acter of our knowledge about this subject, and I review the history of the 
text proposed by the Danish philologist J. L. Heiberg, at the time when he 
produced, in the 1880s, the critical edition of the Greek text to which the 
majority of modern studies on Euclid still refer.  2    I raise some uncertainties 
and mention the recent criticism of W. Knorr.  3    In the  second part , I give 
examples of diff erences between preserved versions of the text, illustrating 
the uncertainties which dismantle our knowledge about the Euclidean text, 
notably the texts of certain proofs.   

 Refl ections on the History of the Text of the   Elements    

 A brief history of the ancient Greek texts 

 Lest the present study become too complicated,  4    let us admit that there 
existed in thirteen books a Hellenistic edition (ἔκδοσις) of the  Elements  
(τὰ Στοικεῖα), corresponding, at least in rough outline, to that which has 
come down to us and  produced  by Euclid or one of his closest students.  5    In 

 2 Heiberg and Menge, 1883–1916. It has been partially re-edited and (seemingly) revised by E. S. 
Stamatis: Heiberg and Stamatis, 1969–77. In the following, I will designate these editions by 
the EHM and EHS respectively.

 3 Knorr 1996.
 4 Th e literature on this subject is immense. I have consulted Pasquali 1952, Dain 1975, Reynolds 

and Wilson 1988, Dorandi 2000 (which contains extensive information about papyri) 
and Irigoin 2003 (a collection of articles published between 1954 and 2001, plus several 
unpublished studies).

 5 At least two other possibilities are conceivable, by analogy with some known cases of ancient 
scholarly editions:

•  Euclid had produced two versions of his text: the fi rst, a provisional copy, for a restricted 
circle of students, correspondents or friends; the other, revised and authorized. Th is 
corresponds with the composition of the Conics of Apollonius, as described by the author 
himself in the introduction of Book i (of his revised version). Consequently, this hypothesis 
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Greek antiquity, when there existed neither printing press nor any form 
of copyright,  edition  signifi ed ‘the introduction of a text into circulation 
among a circle of readers larger than the school, friends and students of 
the author’ – in other words, a ‘publication’ in the minimal sense of having 
been ‘rendered public’ and of having been reproduced from a manuscript 
revised and corrected by the author (or a collaborator).  6    Th e books of the 
Hellenistic era (third to fi rst century before our era) were written in majus-
cule and, in theory, on only one side of papyrus scrolls of a modest and 
relatively standardized size. Th us, they were rather limited in contents.  7    In 
the case of the  Elements , this tradition implies a likely division into fi ft een 
rolls, each containing one book, with the exception of the lengthy Book  x .  8    

 Of course, like practically any other text from Greek antiquity, the ‘origi-
nal’ (which was not necessarily an autograph copy)  9    has not come down to us.
Th e rather limited lifespan of such papyrus scrolls required that they be 
periodically recopied, with each copy capable of introducing new faults 
and, even more importantly, alterations. Certainly chance played a role in 
the preservation of particular papyri, but, in the long run, because of the 
fragility of the writing material, a text could come to us only if certain com-
munities found enough interest in it to reproduce it frequently. 

 In the course of these recopyings, two particularly important technical 
operations occurred in the history of the ancient Greek book: 

•     the change from papyrus scrolls ( volumina ) fi rst to papyrus codices but 
later to parchment codices, and  

•     the Byzantine transliteration.    

 6 Th e most famous case is that of the edition of the works of Plotinus by Porphyry.

allows the possibility of variations by the author from the beginning of the textual tradition. 
Nonetheless, there is no evidence of this process for the Elements.

•  Euclid had not gone to the trouble of producing an ἔκδοσις in the technical sense of the term. 
His writings had been circulated in his ‘school’ (in a form that we evidently do not know), 
and the edition was made some time later, such as at the beginning of the Roman era in the 
circle of Heron of Alexandria. Th is scenario is traced in the history of the body of ‘scholarly’ 
works of Aristotle, offi  cially edited only aft er the fi rst century before our era, by Andronicos 
of Rhodes, among others.

   In order to be able to dismiss such a (completely speculative) hypothesis, fully detailed 
testaments about the role of the Elements in the course of the three centuries before our era 
must be in evidence, and this is not the case. On the contrary, we are nearly certain that Heron 
had made an important contribution to the Elements – in particular from a textual point of 
view – but the epoch in which he lived (traditionally, aft er the work of Neugebauer, the second 
half of the fi rst century is named) is not free from dispute. Th is second hypothesis has been 
suggested to me by A. Jones. I thank him for it.

 7 See Reynolds and Wilson 1988: 2–3.
 8 Dorandi 1986.
 9 See Dorandi 2000: 51–75.
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 Th e fi rst operation, apparently begun in Rome at the beginning of our 
era, is nothing more than the adoption of the book with pages, written on 
both sides and with contents defi nitely more important than the  volumen . 
Th is shift  allows the composition of textual collections and the develop-
ment of marginal commentaries which previously appeared in a separate 
scroll. Writings that were not converted into this format had a relatively 
small chance of being transmitted down to us. Th e texts known only 
through papyrus scrolls are small in number and frequently nothing more 
than fragments. In other words, in the case of the  Elements , the creation 
of (at least one) archetypal codex must be postulated. We know nothing 
of when this fabrication occurred or who (whether a mathematician or an 
institution similar to a library with a centre for copying) undertook this 
labour. However, the adoption of the codex was a rather slow operation 
which spanned from the fi rst through to the fourth centuries of our era, 
and beyond. Th e fact that this adoption was applied in wholesale to the 
texts from previous eras probably ought to be attributed to the revival of the 
study of classical texts under the Antonines (second century).  10    

 Th e other operation, the Byzantine transliteration, was more limited 
than the change from scrolls to codices. It was done in the Byzantine empire 
from the end of the eighth century. Th e Byzantine transliteration consisted 
of using a form of cursive minuscule for the edition of texts in place of the 
majuscule writing termed  uncial . Previously, cursive minuscule had been 
limited to the draft ing of administrative documents, but uncial had proven 
too large and thus ‘costly’ for use with parchment. Here, too, the success 
and systematization of the process were certainly linked with a renewed 
interest in ancient texts during the course of the ‘Byzantine Renaissance’, 
which began in the 850s and was associated with individuals like Leo the 
Wise (or the Philosopher), the patriarch Photius and Arethas of Cesarea. 
Such transliteration was a rather delicate technical operation composed of 
two phases – the fi rst (and the largest) of which fell in the ninth and tenth 
centuries, the second in the years 1150–1300.  11    Here, again, translation 
acted as a fi lter. Non-transliterated texts progressively ceased to be read. 
Save for some fortunate circumstances, they disappeared. 

 For the ancient writings which survived these two transformations, we 
may, if we are reasonably optimistic, emphasize on the one hand the fact 
that on occasions in these two situations, the editors intervened in impor-
tant ways, and the specimens were produced according to particularly 

10 On the change from scroll to codex, see the accessible summary by Reynolds and Wilson 1988: 
23–6. Cf. also Blanchard 1989.

11 Cf. Irigoin 2003: 6–7.
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‘authorized’ manners which played a decisive role in the transmission. 
Th ese two circumstances produced the archetypal codex (or codices) of the 
Roman era and the transliterated example or examples in minuscule begin-
ning in the ninth century. On the other hand, on these occasions there was 
the risk and opportunity that the substance or presentation of these texts 
would be radically modifi ed. 

 Th e oldest preserved complete examples of the  Elements  in thirteen 
books were produced immediately aft er the transliteration into minuscule 
which has just been called into question. 

 Th ey are: 

•     one manuscript from the Vatican Library,  Vaticanus gr . 190, assigned to 
the years 830–50 according to palaeographic and codicological consid-
erations;  12     

•     one manuscript from the Bodleian Library at Oxford,  D’Orville  301, 
which, other than its exceptional state of conservation, has the advan-
tage of having been explicitly dated, since its copying, ordered from the 
cleric Stephanos by Arethas, who was then deacon, was completed in 
September 888.    

 Two remarks are in order: 

  (1)     Th ese pieces of evidence are from more than a thousand years aft er the 
hypothetical original of Euclid.  

  (2)     Th e case of the  Elements  is, however, one of the most favourable 
(or,  perhaps, least unfavourable?) in the collection of profane Greek 
texts.    

 Other than these two precious copies, about eighty manuscripts contain-
ing the text (either complete or in part) are known; of these roughly thirty 
predate the fi ft eenth century. Likewise, a palimpsest, dated to the end of 
the seventh or the beginning of the eighth century and written in uncial, 
contains extracts from Books  x  and  xiii .  13    It thus seems assured that the 
study of the  Elements  had not completely ceased during the so-called Dark 
Ages of Byzantine history (650–850). Also known are several papyrus frag-
ments,  14    the oldest of which are ascribed to the fi rst century and the most 

12 Cf. Irigoin 2003: 215 (original publication, 1962). Cf. Follieri 1977, particularly 144; Mogenet 
and Tihon 1985, 23–4 (Vatican fr. 190 = ms probably from the fi rst half of the ninth century) 
and 80–1. At the time of Heiberg, this copy was assigned to the tenth century, and the 
manuscript in the Bodleian was considered the oldest. One sometimes still fi nds this debatable 
assertion.

13 See Heiberg 1885.
14 Cf. EHS: I: 187–9 and Fowler 1987: 204–14 and Plates 1–3.
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recent to the third century. In contrast to the manuscripts, the papyri have 
the privileged position of being documents from Antiquity. An author 
represented among the papyri is likely to have been used in teaching. In the 
mathematical realm, the bulk of papyri preserved for us represent two cat-
egories: (1) very elementary school documents, and (2) astronomical texts. 
It is therefore signifi cant that Euclid is the only geometer of the ‘scholarly’ 
tradition who appears in this type of text.   

 Direct and indirect traditions 

 Nicolas Bourbaki probably did not consult the manuscripts of the  Elements  
to determine his opinion about the subject of the Euclidean ideal of proof, 
and it is the same for the majority of Euclid’s modern readers. Generally, 
they rely on a translation, or if they know ancient Greek, on a critical 
edition produced by a modern philologist. In the case of the Greek texts of 
the  Elements , the critical edition was produced by J. L. Heiberg. If he reads 
the work in Greek, the reader labours under the illusion that he has read 
what Euclid has written. In this respect, the philological terminology and 
its label ‘direct tradition’ can be misleading. Th e ‘direct’ tradition designates 
the set of Greek manuscripts and papyri which contain the text either in its 
totality or in part. Despite this label, we must not forget the considerable 
number of intermediaries that came between us and the author, even in the 
direct tradition. Th ese intermediaries include not only the copyists, who we 
would like to believe did nothing more than passively reproduce the text, 
but also, more importantly, those who took an active part in the transmis-
sion of the text – in particular ancient and medieval re-editors and, last 
of all, the philologists who, beginning with the collection of the available 
information, have constructed the critical edition that we read today. I have 
thus reported, too briefl y, the several elements of the history of the preced-
ing ancient Greek texts to make the point that our knowledge about the 
text of the  Elements , like that of the majority of other ancient Greek texts, 
is essentially indirect. 

 Classical philology is not without resources. It has developed methods to 
‘reverse’ the course of time. Th ese methods make it possible to trace the rela-
tionships between manuscripts, to detect the mistakes of the copyists, and 
in the ‘good’ cases to reconstitute an ancestor of the tradition, oft en imme-
diately before the transliteration, sometimes an ancient prototype from late 
antiquity or from the Roman era. In the case of a Hellenistic author, this 
result is still rather removed from the ‘original’ and thus  necessitates appeals 
to other sources. Th ese sources constitute the so-called indirect tradition 
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(see Figure 1.1). Generally, it is used to decide between variant manuscripts 
or as confi rmation in the testing of conjectures about the state of the text 
before the production of the oldest preserved manuscripts. 

 In brief, the work of the editor comprises two dimensions: (1) the estab-
lishment of the text, and (2) the reconstruction of what philologists call 
the ‘textual history’, that is to follow the avatars of the manuscripts, but 
also the commentaries and translations through which we have access to 
the text, to review the evidence about the use of the work in education, in 
controversies, or its presence in libraries. Although the one dimension is 
certainly articulated with respect to the other, it is nonetheless convenient 
to distinguish between them. 

 For the reconstruction of the textual history, all information ought to be 
taken into account. Because the collected sources will probably be contra-
dictory (variants among manuscripts, incompatible quotations, etc.), it is 
necessary to classify the information and search for plausible explanations 
(accidents in copying, editorial action by a re-editor, infl uence of a com-
mentary through marginal notations, decisions of the translator, infl uence 
of pedagogical, philosophical or mathematical context) in order to provide 
an account of the development of the manuscript. Since the history of the 
text serves to justify the choices made in its establishment (see the fl ow-
chart, in  Figure 1.1  above), it must be understood how the two aspects of 
the philological work are articulated.  

 Figure 1.1      Textual history: the philological approach.    
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 In the case of the  Elements , the group of sources which constitutes the indi-
rect tradition is rich. First of all, in the case of citations by ancient authors, 
the  Elements  received commentaries on several occasions (namely, by Heron 
of Alexandria, Pappus of Alexandria, Proclus of Lycia, Simplicius (?)).  15    Th e 
 Elements  were also used abundantly by the authors of late antiquity. Some 
extracts of several of these commentaries are found in the thousands of 
marginal annotations contained in the manuscripts of the text. Moreover, 
tracing the indirect tradition of the translations, quotations and commen-
taries in languages other than Greek is practically unmanageable, even 
when the task is limited to ancient and medieval periods. Consequently, it is 
impossible to imagine an exhaustive textual history undertaken by a single 
individual. 

 Th e fi rst task for whoever wants to edit the text will be to limit the 
pertinent information, in a way that is not only selective enough to be 
operational, but also wide-ranging enough that no essential elements are 
left  behind. In the matter of editing a Greek text, in Greek, it is  reasonable 
that the philologists privilege the direct tradition of manuscripts and papyri 
for the establishment of the text. Th ey also emphasize the obvious limits of 
the diff erent elements of the indirect tradition. Whether the quotations are 
in Greek or not, philologists note that the citations were sometimes made 
from memory. As for the translations, they introduce into the process of 
transmission not only the passage from one language to another in which 
the linguistic structures may be somewhat diff erent, but also the prelimi-
nary operation of the comprehension of the text, which is not necessarily 
implied for a professional copy. Indeed, there is even something about 
which to be happy when the Greek text no longer exists. Hellenists are 
generally grateful to the Latin, Syriac, Arabic, Persian, Armenian and 
Hebrew translators for having preserved whole fi elds of ancient literature. 
In the case of mathematics, the medieval Arabic translations have had great 
importance for our knowledge of Apollonius, Diocles, Heron, Menelaus, 
Ptolemy and Diophantus, to mention only the best-known cases. Th ese 
examples suggest not only that the savants of the Arab world had assidu-
ously sought out Greek manuscripts – indeed, they have borne frequent 
witness to this subject – but also that they had some skill in fi nding them 
in formerly Hellenized areas. Th e decline of Greek as a scientifi c language 
and the ascendancy of Syriac and then Arabic made translation necessary. 

 Th e possibility is thus foreseen that, in so doing, these translations 
had preserved an earlier state of the text than that transmitted by the 

15 Th e fi rst and last are accessible indirectly, thanks to the Persian commentator an-Nayrîzî. 
Heron is also cited several times by Proclus.
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manuscripts elaborated in the Byzantine world. Consequently, important 
 decisions must be made about instances in which the medieval translations 
show important textual divergences from the version of the same work pre-
served in Greek. As we will see, it is exactly this situation which occurs in 
the case of the  Elements  of Euclid. 

 In the case of such divergences, at least two explanations may be 
 imagined: 

  (1)     Th e medieval translators took great liberties with the text, and they did 
not hesitate to adapt it to their own ends.  

  (2)     Th eir versions were based on Greek models appreciably diff erent from 
those which we know. Th us, we can imagine that these models were 
(i) more authentic, or, (ii) on the contrary, more corrupt, than our 
manuscripts.    

 In either case, it will be necessary to make an account of the history of the 
text, to establish the innovative informality or rigorous fi delity of the trans-
lators, to account for the methods and the context of the transmission. It is 
clear that, within the framework of hypotheses 1 or 2(ii), trans lations will 
not be taken into account in the establishment of the text. But if we prove 
that the translators scrupulously respected their models (non 1), which 
were less corrupted (2(i)) – let us remain realistic, though – what then?   

 Th e textual inventory in the case of the  Elements  

 In order to produce his critical edition (1883–8), Heiberg had (partially) 
collated about twenty manuscripts. He continued this task for fi ft een years 
aft er the publication of the aforementioned edition, extending the scope 
to nearly thirty other manuscripts. He compared his edition with papyrus 
fragments, as they were discovered.  16    In order to establish his text, he 
used seven of the eight manuscripts from before the thirteenth century. 
He systematically explored the indirect tradition of quotations by Greek 
authors and the tradition of fragments of ancient Latin translation. As for 
the medieval versions, they were not particularly well known. Heiberg used 
several previous works and, as far as the phase of Arabic translations of the 
ninth century was concerned, he accepted the description published by 
M. Klamroth in 1881,  17    at which time he inventoried the materials useful 

16 See Heiberg 1885 and Heiberg 1903.
17 At the time when he edited the chapter devoted to the medieval Arabic history of the text of 

the Elements in Heiberg 1882, he seems not to know Klamroth 1881, which he later criticized 
in his 1884 article.
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for the  establishment of his edition. A debate – but not to say a polemic  18    – 
between the two scholars followed on the subject of the obligation of 
 recognizing the value of the indirect tradition from the medieval era. 

 At any rate, Heiberg knew that there had been at least two Arabic 
 translations, that of al-Hajjâj (produced before 805 and modifi ed by the 
author for the Kalif al-Ma’mun between 813 and 833), then that of Ishâq ibn 
Hunayn (†910–11) revised by Th âbit ibn Qurra (†901). Klamroth believed 
himself to have the al-Hajjâj version for Books  i – vi  and  xi – xiii  and that 
of Ishâq for Books  i – x . Th e Hebrew and Arabo-Latin translations likewise 
began to be studied. Heiberg also knew (especially) about several recensions 
(falsely) attributed to Nâsir ad-Dîn at-Tûsî (1201–73) and that of Campanus 
(†1296).  19    

 From the comparison of Greek manuscripts produced by Heiberg and 
from the statement that Klamroth had furnished concerning the Arabic 
Euclid emerges an assessment of the situation which I will describe roughly 
in the following way: 

•     For the ‘direct’ Greek tradition, it is necessary to distinguish two  versions 
of the text in the collection of the thirteen Books of the  Elements , and 
even three for  xi .36– xii .17. A simple structural comparison of the 
 manuscripts is suffi  cient to establish this point. Th e two divergent ver-
sions of the complete text  20    are represented on the one hand by the man-
uscript  Vaticanus gr . 190 ( P ) – the oldest complete manuscript – and, on 
the other, by the strongly connected  BFVpqS  manuscripts,  21    as well as 
the Bologna manuscript (denoted as  b  )  , 22    for the whole of the text, save 
the section  xi .36– xii .17. In these twenty-one Propositions, the Bologna 
manuscript presents a structure completely diff erent from that of  P  and 
 BFVpqS , which on the whole are less divergent from each other than 
they are with respect to  b .  

•     For the indirect tradition of the Arabic translations, the report of 
Klamroth was that there was a considerable diff erence between the Greek 
and Arabic traditions. Th is diff erence went beyond the scope of the 

18 I allow myself to recall the fi rst part of Rommevaux, Djebbar and Vitrac 2001: 227–33 and 
235–44, in which I analyse the arguments of the two parties.

19 For a synthesized presentation of the Arabic, Arabo-Latin and Arabo-Hebrew traditions as 
they are known today, see Brentjes 2001a: 39–51 and De Young 2004: 313–23.

20 Th is is what I have termed ‘dichotomy 3’ (see Appendix, Table 3).
21 Codex Bodleianus, D’Orville, 301 (B), Codex Florentinus, Bibl. Laurentienne, xxviii, 3 (F), 

Codex Vindobonensis, philos. Gr. 103 (V); Codex Parisinus gr. 2466 (p); Codex Parisinus gr. 
2344 (q); Codex Scolariensis gr. 221, F, iii, 5 (S). Th e sigla used here are the same as those used 
by Heiberg.

22 Codex Bononiensis, Bibl. communale, n°. 18–19.
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 unavoidable variations between manuscripts. Klamroth further declared 
that the Arabic tradition was characterized by a particular ‘thinness’ and 
several structural alterations in presentation (specifi cally, in modifi cation 
of order, division or regrouping).  23         

 Th e history of the text of the  Elements  in antiquity 

 Let us consider now the history of the text of the  Elements . Starting with 
these inventories, let us examine the interpretation of the diff erent pieces of 
evidence which our two scholars proposed. Th e interpretation of Klamroth 
is simple: the ‘thinness’ of the Arabic (and Arabo-Latin) tradition is an 
indication of its greater purity. Th e textual destiny of the  Elements  has been 
the amplifi cation of its contents, particularly for pedagogical reasons. Th e 
medieval evidence about the translators’ methods and the context in which 
they worked shows that the medieval translators had a real concern about 
the completeness of translated texts. Th e gaps (with respect to the Greek 
text) cannot be ascribed to negligence on the part of these translators. 
Th e additions are interpolations in the Greek tradition. Consequently, for 
Klamroth, it is necessary to take the indirect tradition into account, not 
only for the history of the text, but also in the establishment of the text.  24    

 Th e history of the text proposed by Heiberg is completely diff erent. Th is 
history is clearly dependent on the way in which the transmission of the 
 Elements  was conceptualized by Hellenists since the Renaissance, particu-
larly since the Latin translation produced by Zamberti, taken directly from 
the Greek and published at Venice in 1505.  25    Th e presentation of this last 
work raised two essential questions: 

  (1)     For Zamberti, the ‘return’ to the Greek text was a remedy for the 
abuses to which the text had been subjected in medieval editions. Th e 
focus of his concern was the then highly renowned Latin recension of 
Campanus. Th is edition had just been printed at Venice in 1482 and 
was itself composed from an Arabo-Latin translation. A debate arose 
about the (linguistic and mathematical) competence of the translators 
and the quality of the models which would establish for quite some 
time the idea that the indirect medieval tradition could be discarded.  

  (2)     Zamberti presented his  Elements  as if the defi nitions and the state-
ments of the propositions were due to Euclid, while the proofs were 

23 He thus identifi ed a well-established line of demarcation between the direct tradition and the 
indirect tradition. I have named this distinction ‘dichotomy 1’ (see Appendix, Table 1).

24 Generally, this position has been taken up by Knorr in his powerful 1996 study.
25 See Weissenborn 1882.
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attributable to Th eon of Alexandria. In fact, we have a (single) example of 
this authorial division. Th eon indicates explicitly, in his  Commentary to 
the Almagest , that he had been given an edition of the  Elements  and that 
he had modifi ed the last Proposition of Book  vi  ( vi .33 Heib.) in order 
to append an assertion concerning proportionality of sectors and arcs 
upon which they stand in equal circles. Zamberti’s attribution of proofs 
to Th eon was undoubtedly inferred from the glosses ‘of the edition of 
Th eon (ἐκ τῆς Θέωνος ἐκδοσεως)’ marked on the Greek manuscripts 
used by him. Consequently, since it was understood that Th eon had 
re-edited the  Elements  in the second half of the fourth century of our 
era, the question arose of what ought to be ascribed to Euclid and what 
ought to ascribed to the editorial actions of Th eon. For someone like 
R. Simson (1756), the answers were particularly clear. All that was 
worthy of admiration originated with Euclid; all the defi ciencies were 
due to the incompetence of the re-editor.    

 Th us, the debate on the subject was open. When F. Peyrard, around 
1808, undertook to check the Greek text for his new French translation 
of  Elements  which was based on the Oxford edition of 1703, he discov-
ered among the manuscripts which had been brought back from Italy by 
Gaspard Monge (aft er the Napoleonic campaigns) a copy belonging to the 
Vatican Library ( Vaticanus gr . 190), which contained neither mention ‘of 
the edition of Th eon’ nor the additional portion at  vi .33 and which dif-
fered considerably from the twenty-two other manuscripts known to him. 
From this divergence, he deduced that this manuscript, unlike the others, 
preceded the re-edition of Th eon and that it moreover contained the text of 
Euclid!  26    He at once decided to make a new edition of the Greek text. 

 Heiberg accepted (with some reworking) the interpretations of Peyrard, 
particularly the idea that all the manuscripts with the exception of  Vaticanus 
gr . 190 were derived from Th eon’s edition. He called these the ‘Th eonine’.  27    
As for the Vatican copy, he was more careful. Heiberg noted that the copyist 
admits in the margins of Proposition  xi .38  vulgo   28    and Proposition  xiii .6 to 
have consulted two editions, one ‘ancient’ and the other ‘new’. Proposition 
 xiii .6 existed in the fi rst but was missing in the other. Exactly the oppo-

26 Peyrard 1814: xiii, xxv.
27 Consequently, in the following, I will use the abbreviation Th  to designate the aforementioned 

family of manuscripts.
28 Several Propositions appearing in the editio princeps (and reproduced in the following 

editions) were discarded by Heiberg who designated them in this way lest there be some 
confusion in numbering. xi.38 vulgo was No. 38 in the preceding editions. It was rejected by 
Heiberg in the Appendix. His Proposition 38 was thus No. 39 in the previous editions.
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site was the case for Proposition  xi .38  vulgo . Heiberg considered that the 
 manuscript – which he would call  P  in homage to Peyrard – had been pro-
duced beginning with at least two models, one of which was pre-Th eonian, 
and the other was Th eonian. His edition was thus founded on the compari-
son of  P  with  Th   and on an examination of the total or partial agreement 
or disagreement between the two families.  29    From there, he claimed he 
had determined the editorial actions of Th eon of Alexandria, and passed 
severe judgement on the changes. Th eon’s re-edition of the  Elements  did not 
compare favourably with the editions of the great poetical texts produced 
by the Alexandrian philologists of the second and third centuries before the 
modern era.  30    

 If we return to the terms of our previous line of reasoning and if 
we accept this history of the text, we ought to distinguish two textual 
 archetypal manuscripts: the fi rst representing the re-edition of Th eon and 
realized in the 370s, and the second corresponding to the pre-Th eonine 
model called  P . However, the alterations which Th eon is supposed to have 
eff ected on the text, as deduced by a comparison with the manuscript  P , are 
so limited that with a few exceptions (which are listed in the Appendices), 
Heiberg believed he could combine the two versions in one text with a 
single  apparatus criticus . 

 For the divergent Greek text ( b   xi .36– xii .17), his solution was somewhat 
diff erent. It seems that the discovery of this manuscript must be attributed 
to Heiberg in the context of the previously mentioned debate. In an 1884 
article, he presented this new Greek evidence, taking the opportunity 
to respond to the arguments presented by Klamroth. Th e reason for his 
approach was that this ‘dissenting’ Greek text and the Arabic translations 
are incontestably related in this portion of the text. Precisely this incom-
plete but incontestable structural agreement in opposition to the tradition 
in  P  +  Th   constitutes the principal argument in the article by W. Knorr. 
However, noting that the text of  b , copied in the eleventh century and 
also Th eonine, is particularly defi cient in section  xi .36– xii .17, Heiberg 
introduced into the history of the text a Byzantine redactor, the author 
of an abridged version of the  Elements , in order to explain the diff erence. 
From this abbreviated work was derived  b   xi .36– xii .17 and the models 
used by the Arabic translators. Th e consequences for the edition of the text 
were clear. Aside from some specifi c references to the Latin recension of 
Campanus, the indirect  medieval tradition which had been connected from 

29 See EHS: v, 1, xxv–xxxvi.
30 lviii. Th e comparison is irrelevant: see Rommevaux, Djebbar and Vitrac 2001: 246–7.
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the beginning to a lower-quality model was not taken into account by the 
Danish editor. Th e portion  b   xi .36– xii .17 was relegated to Appendix II of 
Volume 4 of the edition, together with portions of the text which Heiberg 
deemed inauthentic. 

 In other words, his decisions (or rather his non-decisions) resulted in 
a critical edition that can be described as ‘conservative’. In order to clarify 
the meaning of this term, let us recall that the Greek text had undergone 
fi ve editions in recent times: the  editio princeps  by S. Grynée (Bâle, 1533), 
the edition by D. Gregory (Oxford, 1703), the edition by F. Peyrard (Paris, 
 1814 –18), that of E. F. August (Berlin, 1826–29) and fi nally Heiberg’s own 
edition. I do not intend to examine in detail their respective merits, but 
two or three facts are clear. Th e fi rst two editions were produced from 
manuscripts belonging to the family later characterized as ‘Th eonine’. 
Despite the many discussions of the sixteenth century, 170 years had 
passed before the appearance of a new edition, which Peyrard judged to be 
no better than the preceding! 

 At any rate, Peyrard’s edition scarcely agrees with his history of the text. 
Aft er he affi  rmed that the Vatican manuscript contained the text of Euclid, 
he continued to follow the text of the  editio princeps  of 1533 (and thus 
the Th eonine family of texts) in several passages where the divergences 
are especially well-marked. Th e quest for authenticity was not of primary 
importance. It was more important to present a mathematically correct 
Euclid. We may suppose that it is for this reason that Peyrard continued to 
follow the Th eonine family which is more correct in the case of  ix .19 and 
more general in the case of  xi .38, but privileged  P  which is (apparently) less 
faulty in the case of  iii .24 and more complete in the case of  xiii .6. Peyrard 
also wanted his edition to be easy to use. Quite bluntly, Peyrard admits to 
having retained what is now designated as Proposition  x .13  vulgo  lest he 
introduce a shift  in the enumeration of the Propositions of the book with 
respect to the previous editions – even though this proposition is omitted 
in  P  and is clearly an interpolation! More generally, he preserves most of 
the additional material (various additions, lemmas, alternate proofs) which 
 P  would have been able to dismiss as inauthentic had it been taken into 
account. 

 It was not until the edition of Heiberg that the primacy of manuscript  P  
was truly assumed. A large part (but not all!) of the material thereaft er con-
sidered additional was added to the Appendices inserted at the end of each 
of the four volumes. Whenever the textual divergence is marked and the 
result (in  Th  ) is identifi ed as the product of a voluntary modifi cation, the 
reading of  P  is retained, even if this destroys the mathematical coherence, 
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as in the previously mentioned example of  ix .19.  31    Contrary to Peyrard, 
Heiberg does not admit that Euclid could have provided several proofs for 
the same result, which would constitute what I have called above an ‘autho-
rial variation’. We will return to this important topic later. For now, let us say 
simply that the criteria of Heiberg are simple. In the case of double proofs, 
he retains as the sole, authentic proof that which occurs fi rst in  P , whether 
it is better than the other or not. 

 Th e limitations of this edition thus result from the adopted history of the 
text and the resulting principles of selection, while the merits of the edition 
derive from a more coherent observation of these choices than Peyrard 
managed. Another (and not the least) of its merits is that the text as pub-
lished corresponds rather well with something which had existed, namely 
manuscript  P  of the Vatican,  32    whereas the archetypal texts reconstituted 
by the modern editors of ancient texts are sometimes nothing more than 
fi ctions or philological monsters. What it represents with respect to the 
ancient text is more uncertain. Th e incidental remarks of the copyist of  P  
already suggest a certain contamination between (at least) two branches of 
the tradition. 

 Until the 1970s it was believed that the manuscripts resulting from the 
transliteration were faithful copies of ancient models, with the only change 
being the replacement of one type of writing with another. Nowadays belief 
in this practice is not so sure, and there are even a number of cases in which 
it may be frankly doubted.  33    We will see an argument (see below, p. 111) 
which casts doubts on the two oldest witnesses of the  Elements  ( P  and  B ). 
Let us assume that the copyist of  P  followed what was termed the ‘ancient 
edition’, and that he compared the ‘ancient edition’ with the ‘new edition’ 
only aft er the copying. (Indeed, there is a good probability that this was the 
case.) Even so, our faith in the antiquity of the text produced in this way 
depends entirely on the confi dence accorded to the history of the text pro-
posed by Heiberg. In particular, the strength of the argument rests on the 
validity of the interpretation he proposes for the distinction between  P  and  
 Th   in connection with the re-edition by Th eon of Alexandria, around 370. 

 Th is history was accepted by T. L. Heath and J. Murdoch – who have 
signifi cantly contributed to its diff usion – and thus by the majority of 
 specialists. Disconnectedly and periodically challenged, this history was 

31 See Vitrac 2004: 10–12.
32 In a certain number of passages, and more generally for minor variants, Heiberg preserved the 

text of the Th eonian family. Cf. the list that he gives in EHS: v, 1, xxxiv–xxxv.
33 See Irigoin 2003: 37–53. Th e (very illuminating) example from the Hippocratic corpus is the 

object of the article reproduced on pp. 251–69 (original publication 1975).
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thoroughly called into question by W. Knorr in his article of 1996. In 
particular, our late colleague there affi  rms that all the preserved Greek 
manuscripts depend on the edition of Th eon, that the diff erences between 
the Vatican manuscript and the  Th   family are microscopic, and that these 
diff erences are not characteristic of a re-edition. Stated diff erently, if the 
opinion of Knorr is adopted, the Euclid edited by Heiberg ought to corre-
spond, at best, to the text in circulation at Alexandria in the second half of 
the fourth century of our era. 

 Th e arguments of Knorr are not all of the same value – far from it.  34    Th e 
diff erence between  P  and  Th   is real. It is not a question only of divergences 
attributable to errors by the copyist which philologists try to dismiss. Th e 
reader can convince himself of the extent of diff erences between  P  and  Th   
by consulting the list which I give in Table 3 of the Appendix. However, 
it should also be emphasized that there is not, in this internal dichotomy 
in the Greek, any substitution of proofs (!), any change in the order of the 
Propositions, or any Lemma which exists in one of the two versions but not 
in the other. When there are double proofs, the order is always the same as 
in  P  and in  Th  . 

 At the present stage of my work, I see only two solutions: (i) to adopt 
Knorr’s opinion, or (ii) to conclude that the goal of Th eon’s re-edition was 
not a large-scale alteration. About Th eon’s motivations, we know next to 
nothing. He presents us with a single indication relating to the contents (the 
addition at  vi .33). It is possible, for example, to conceive of the hypothesis 
that Th eon’s re-edition was in fact the transcription of the edition(s) written 
on scrolls into a version in the form of a codex or codices. If the text of the 
previous  vulgata  appeared satisfactory to him, the goal would not have 
been to propose a diff erent mathematical composition, but to revitalize 
the treatise by adopting a new format for the old book. Th e second half of 
the fourth century represents a relatively late date, but it is known that the 
pagan circles sometimes resisted innovations which seemed to meet with 
their fi rst successes in Christian quarters.  35    And, what is known, if not 
about Th eon himself, then at least about his daughter Hypatia, suggests that 
he was connected with pagan, neo-Platonic intellectual circles. Moreover, 
even if this explanation is adopted, nothing guarantees that he was the 
fi rst to unfold this way, nor that he was the only one. On the other hand, 
it is certain that this version played an important role in the transmission 
of the  Elements , as is proven by the statements contained in the family of 
 manuscripts titled  Th  . 

34 See Rommevaux, Djebbar and Vitrac 2001: 233–5 and 244–50.
35 See van Haelst 1989: 14, 26–35.
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 Th e second scenario which might account for the limited but real varia-
tion shown between  P  and  Th   satisfi es me more than Knorr’s reconstruction. 
We have only two criteria external to the text by which we can understand 
the aforementioned re-edition: the glosses ‘of the edition of Th eon (ἐκ τῆς 
Θέωνος ἐκδοσεως)’ and the presence or absence of the addition at  vi .33. We 
have so little information about the history of the text  36    that it is a little too 
daring to throw out some part of our information without external support 
for the decision. As for the problem discussed here, I do not believe that my 
hypotheses change anything regarding the state of the texts that the Greek 
manuscripts enable us to establish. It is probably approximately the text as 
it circulated around the turn of the third and fourth centuries of our era. Is 
it possible to advance from here? With regard to the edition of a minimally 
coherent Greek text, I am not sure. However, other sources clarifying the 
history of the text are provided to us, thanks to the indirect tradition and, 
in this arena, our situation is a little more favourable than the time-frame of 
the Klamroth–Heiberg debate.   

 New contributions to the textual inventory 

 With regard to the indirect tradition of the quotations by Greek authors, we 
have two more valuable sources: 

•     Th e Persian commentator an-Nayrîzî has transmitted to us a certain 
number of testimonies about the commentaries of Heron and Simplicius, 
whose original Greek texts are now lost. Some of them provide interesting 
information about the history of the text.  37    Heiberg had taken note of this 
evidence. He had even taken part in the edition of  Codex Leidensis  399 
through which the commentary was fi rst known, although this edition 
was produced aft er Heiberg’s edition of the  Elements . He gives an analysis 
of these new materials, among other things, in an important 1903 article.  

•     In the same vein, he had nothing except a very fragmentary knowledge 
about the commentary on Book  x , attributed to Pappus and preserved 
in an Arabic translation by al-Dimashqî, from which Woepcke, around 

36 In this regard, the indirect medieval tradition, so rich in new textual variants, teaches us 
nothing about the history of the text during antiquity, particularly about the existence or not 
of several editions of the Elements.

37 In the case of Heron, see Brentjes 1997–8: 71–7; in this article Brentjes suggests that other 
Arabic authors knew about the commentary by Heron independently of an-Nayrîzî, in 
particular Ibn al-Haytham. In Brentjes 2000: 44–7, she shows that it is probably true for 
al-Karâbîsî, also. Heron proposed a number of textual emendations, among other things. See 
Vitrac 2004: 30–4.
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1855, published only extracts. Th enceforth, the text was edited and trans-
lated into multiple languages.  38       

 In the course of the two decades during which Heiberg worked on the 
tradition of the text of Euclid, new information, accessible thanks to the 
indirect tradition,  39    could have led him to alter certain editorial decisions 
made in the years 1883–6 at the time when he argued with Klamroth. 
Th ese alterations might have stemmed notably from taking into account 
manuscript  b  (in the portion where it diverges) and the indirect medi-
eval tradition. Th e works which he published in the years 1888–1903 are 
indispensable to those who use his critical edition. Regrettably, Heiberg 
did not produce a second revised edition, as he did for Archimedes, aft er 
the discovery of the so-called Archimedes Palimpsest.  40    Th is text gave 
access to the previously unavailable Greek texts of  On Floating Bodies  and 
 Th e Method of Mechanical Th eorems . To his eyes, the necessity of a revised 
edition was probably much smaller in the case of the  Elements  of Euclid, 
but the resumption of such a work would perhaps have led him to revise his 
position concerning the indirect medieval tradition. 

 We know this tradition somewhat better than Klamroth or Heiberg, 
thanks to a more developed textual inventory. At least a score of manu-
scripts of the version called Ishâq–Th âbit have been identifi ed today,  41    
whereas Klamroth knew only two! Multiple works on the methods and 
contexts of medieval translations from Greek into Syriac or Arabic, or from 
Arabic into Latin or Hebrew, either in general or more directed toward 
mathematical texts, including the  Elements , have been undertaken. Busard 
has published seven Arabo-Latin versions from the twelft h and thirteenth 
centuries  42    as well as a Greco-Latin version from the twelft h century dis-
covered by J. Murdoch.  43    We even have partial editions of the Books  v  and 
38 See notably Th omson and Junge 1930. It might be argued that this partial knowledge led 

Heiberg to some debatable conclusions concerning the collection of the ‘Vatican’ scholia (see 
Vitrac 2003: 288–92) and the pre-Th eonine state of the text of Book x (see Euclid/Vitrac, 1998: 
iii 381–99). Let us add that the integrity of the text attributed to Pappus and the uniqueness of 
the author (pace Th omson and Junge 1930) are not at all certain (see Euclid/Vitrac, 1998:iii: 
418–19).

39 It ought to include the new information contained by the scholia found in the margins of the 
Greek manuscripts and we once again know about these sources thanks to the monumental 
work of Heiberg. See EHS, v, 1–2 and Heiberg 1888, to which should be added Heiberg 1903.

40 Regrettably, in his ‘revision’ (EHS), Stamatis did not supplement ‘Heiberg with Heiberg’.
41 See Folkerts 1989 (with the corrections of Brentjes 2001: 52, n. 13). Some of these manuscripts 

contain fragments attributed to the translation by al-Hajjâj.
42 Respectively Busard 1967–1972–1977 (HC), 1983 (Ad. I), 1984 (GC); Busard and Folkerts 

1992 (RC); Busard 1996, 2001 (JT), 2005 (Campanus). Complete references are provided in the 
bibliography.

43 Busard 1987.
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 vii – ix  from the so-called Ishâq–Th âbit version.  44    A second manuscript of 
the commentary by an-Nayrîzî made it possible to complete the evidence 
from the (mutilated)  Codex Leidensis  regarding the principles in Book  i .  45    
Several other commentaries (al-Mahânî,  46    al-Farâbî,  47    Ibn al-Haytham,  48    
al-Jayyâni,  49    ‘Umar al-Khayyâm  50   ) have also been edited, translated and 
analysed. Th e wealth of materials since made available is exceptional. It 
is obvious that the history of the text of the  Elements  during the Middle 
Ages and perhaps even from the beginning of the Renaissance ought to be 
entirely rewritten. 

 Th is is clearly not what I propose to do in the remainder of this chapter, 
as this task surpasses my competence. I will adopt a more limited perspec-
tive and focus on more modest aims. What does this renewed knowledge 
about the indirect tradition teach us about the history of the text in an-
tiquity, more particularly about the redaction of mathematical proofs? 
What are the limits? 

 In so doing, I attempt to explore the consequences of the hypotheses 
put forth by Knorr. In his striking 1996 study, knowing that I was in the 
process of carrying out an annotated French translation (which was then 
partially published), he suggested that I compare the Greek text established 
by Heiberg with that of two Arabo-Latin translations, the fi rst attributed to 
Adelard of Bath and the second ascribed to Gerard of Cremona, the former 
composed around 1140, and the latter about 1180. 

 Knorr was convinced that these versions transmitted to us a text less 
altered than the one contained in the Greek manuscripts. He believed that it 
was possible to reconstitute a Greek archetype from the group of medieval 

44 Engroff  1980; De Young 1981.
45 See Arnzen 2002. See also the new partial edition of the Latin translation by Gerard of Cremona, 

initially published as vol. ix of EHM: Tummers 1994. Th e preserved Arab and Latin versions of 
the text of an-Nayrîzî may be described as passably divergent. See Brentjes 2001b: 17–55.

46 Risâla li-al-Mâhânî fî al-mushkil min amr al-nisba (Épitre d’al-Mâhânî sur la diffi  culté relative 
à la question du rapport). Edition and French translation in Vahabzadeh 1997. Reprinted, with 
English translation, in Vahabzadeh 2002: 31–52; Tafsîr al-maqâla al-‘âshira min kitâb Uqlîdis 
(Explication du Dixième Livre de l’ouvrage d’Euclide). Edition and French translation in Ben 
Miled 2005: 286–92.

47 Sharh al-mustaglaq min musâdarât al-maqâla al-ûlâ wa-l-hâmisa min Uqlîdis. Th e text was 
translated into Hebrew by Moses ibn Tibbon. See Freudenthal 1988: 104–219.

48 Sharh musâdarât Uqlîdis. Partial edition, English translation and commentaries in Sude 1974.
49 Maqâla fi  sharh al-nisba (Commentaire sur le rapport). Facsimile of manuscript Algier 

1466/3, fos.  74r–82r and English translation in Plooij 1950. Edition and French translation in 
Vahabzadeh 1997.

50 Risâla fî sharh mâ ashkala min musâdarât Kitâb Uqlîdis (Épitre sur les problèmes posés par 
certaines prémisses problématiques du Livre d’Euclide). French translation in Djebbar 1997 and 
2002: 79–136. Edition of Arabic text with French translation in Rashed and Vahabzadeh 1999: 
271–390.
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translations. Th is hypothetical archetype represented the state of the text 
prior to the re-edition of Th eon, a re-edition from which he believed any 
of the preserved Greek manuscripts stemmed. Th e adoption of this point, 
one suspects, would overturn the entire ancient history of the text and 
have grave consequences for the establishment of the text, not only at the 
structural level, but also for the redaction of each proof as is shown in the 
example of  xii .17 analysed in detail by Knorr. 

 In order to present my results (and my doubts), I must fi rst give the 
reader some idea of the size and nature of the collection of textual diver-
gences found by the comparison of the direct Greek tradition with the 
indirect medieval tradition.    

 Extent and nature of the textual divergences between versions 
of the  Elements   

 Typology of deliberate structural alterations 

 It is obviously not possible either to give an exhaustive list of deliberate 
alterations which the text of the  Elements  has undergone or to detail the 
relatively complex methods of detection and identifi cation of specifi c 
divergences. I am not interested in the variants that the philologists use: 
variant spellings, small additions and/or microlacunae,  saut du même au 
même , and dittographies (that is, reduplications of lines of text). Th e errors 
shared between copies of the same text make it possible to establish the 
genealogy of manuscripts. Th ey constitute textual markers, all the more 
interesting because they are reproduced by generations of copyists who did 
not notice them because they could not understand the text or did not try 
to  understand it. 

 I have tried to determine the variants which are connected with the 
deliberate modifi cations made by those responsible for the re-edition of 
the Greek text or the possible revisers of the Arabic translations, such 
as Th âbit ibn Qurra, not those related to the ‘mechanical’ errors directly 
associated with the process of copying. Th is concern goes particularly for 
the global modifi cations of proofs.  51    When such variations existed among 
the Greek manuscripts, they had a good chance of surviving the process 
of  translation. Even the structure of the text of the  Elements , composed 

51 For the local variants of the Greek text, another phenomenon must be taken into account: the 
multiple uses of the margins of manuscripts aft er the adoption of the codex. See Euclid/Vitrac 
2001: iv 44–5.
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of rather easily identifi able textual units, facilitates this work. In the same 
way, the formulaic character of Greek geometrical language has been main-
tained in the translations and permits the identifi cation of local variants 
which would probably be more diffi  cult in a philosophical or medical text. 

 My sample size is suffi  ciently large to propose a typology, although the 
qualitative considerations are provisional and clearly depend on the given 
range of the analysed corpus.  52    In the absence of critical editions of the 
Arabic versions and in accounting for the multitude of recensions, epito-
mes and annotated versions inspired by Euclid’s work, we cannot pretend 
to determine with any degree of certainty the extent of the corpus to be 
taken into consideration. For the present purposes, I use the various com-
ponents of the direct tradition, the so-called Greco-Latin version  53    and 
the available information concerning the Arabic translation attributed to 
Ishâq ibn Hunayn and revised by Th âbit ibn Qurra, as well as the fragments 
attributed to al-Hajjâj in the manuscripts of the Ishâq–Th âbit version, the 
Arabo-Latin translations attributed respectively to Adelard of Bath and 
Gerard of Cremona. Th is group corresponds to what the specialists of the 
Arabic Euclid call the ‘primary transmission’, in order to distinguish it from 
the secondary elaborations (recensions, epitomes, …).  54    

 I currently work with a list of about 220 structural alterations of which 
the principal genres and species appear in  Figure 1.2 . Th ey relate to well-
defi ned textual units: Defi nition, Postulate, Common Notion, Proposition, 
Case, Lemma, Porism, even a collection of such units, particularly when 
there is a change in the order of presentation. Th e debate which divided 
Klamroth and Heiberg in the 1880s concerned a corpus of this genre, itself 
strongly determined by the indications provided in the medieval recen-
sions such as those of Nasîr at-Din at-Tûsî and of the author known as 
 pseudo-Tûsî.  55     

 Th e ‘global/local’ distinction is necessary because of the question of the 
proofs. It is easy to identify the phenomenon of double proofs. Generally 
the second proofs are introduced by an indicator ‘ἄλλως’ (‘in another way’) 

52 I add that the information which I have gleaned about the medieval Arabic (and Hebrew) 
tradition is second-hand and depends on the accessibility of the publication or the goodwill 
with which my friends and colleagues have responded to my requests. Particular thanks are 
due to S. Brentjes, T. Lévy and A. Djebbar.

53 A very literal version, directly translated from Greek into Latin in southern Italy during the 
thirteenth century, discovered and studied by J. Murdoch in 1966 and edited by H. L. L. Busard 
in 1987.

54 See Brentjes 2001: 39–41 and De Young 2004: 313–19. Other information is likewise accessible, 
thanks to the Greek or Arabic commentators, as well as through the scholia in Greek and 
Arabic manuscripts.

55 See Rommevaux, Djebbar and Vitrac 2001: 235–8 and 284–5.
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or ‘ἤ καὶ οὕτως . . . ’ (‘Or, also thus …’).  56    In the same way, in the Arabo-
Latin translation of Gerard of Cremona, the great majority of the second 
proofs are explicitly presented as such, thanks to indications of the type ‘ in 
alio libro … invenitur ’ (‘in another book is found …’). On the other hand 
the identifi cation of proofs as distinct is much more delicate when it is a 
question of comparing two solitary proofs appearing in diff erent versions – 
for example, when one compares a proof from a Greek manuscript and its 
corresponding proof in the Arabic translation, or one from Adelard of Bath 
and the other from Gerard of Cremona. Th e intricacies of the manuscript 
transmission prevent two proofs which have only minimal variations from 
being considered as  truly diff erent . If this were not so, there would be as 
many proofs of a Proposition as there are versions or, even, manuscripts! 

 Th is is why it has proven necessary to introduce the division between 
local and global. Ideally, it ought to be possible to identify the ‘core argu-
ment’ which characterizes a proof and to distinguish it from the type 
of ‘packaging’ which is stylistically or didactically relevant but which is 
neither mathematically nor logically essential. Th e expression ‘substitution 
of proof ’ (global modifi cation) will be reserved for those cases where there 
is a replacement of one core argument by another. Th e distinction between 
‘core’ and ‘packaging’ is not always easy to establish, but it may be thought 
that the distinction will be better understood if the diff erent methods of 
‘packaging’ have been previously delineated. In other words, in order that 

 Figure 1.2      Euclid’s  Elements . Typology of deliberate structural alterations.    

Addition/Suppression of Material Modification of Presentation

DELIBERATE ALTERATIONS 

Local

Logical
Interventions

Abridged Construction
or Shortened Proof

Global

Stylistic
Interventions

Substitution of Proof

Addition/Suppression
of Cases

Double Proofs (Existence of Alternative Proof)

Alteration of Proofs

Change of StatusChange in Order

Fusion of 2 Propositions into 1
Division of 1 Proposition into 2

Different
Formulations

56 Nonetheless, there are confusions. Th us, the addition at vi.27 is introduced as if it were an 
alternative proof (ἄλλως). See EHS: ii 231.2.
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the category of  global  diff erences – that is, substitution of proof – be well 
defi ned, it is necessary also to propose a typology  57    of changes for which I 
will reserve the qualifi er  local  (see the  fi gure 1.1  above). 

 Let us also give a few explanations or examples for the variations for 
which the designation is perhaps not immediately apparent: 

•     Th ere is a doubling when a Proposition concerning two Cases is replaced 
by two distinct, consecutive Propositions. Th is expansion is observed in 
the indirect medieval tradition for  x .31 and 32,  xi .31 and 34. Th e inverse 
operation is fusion. Of course, these alterations are not the same as the 
substitution of a proof. Th us, the  doubling  might correspond to a logical 
or (in the case of very long proofs) pedagogical concern. Even stylistic 
concerns might be represented, but they would not alter the mathemati-
cal content of the proofs.  

•     Th e change of status may, for example, aff ect a Porism (corollary). Th is 
is the case of the Porism to Heib.  x .72, transformed into an independ-
ent Proposition in the indirect medieval tradition. According to another 
example, the (apocryphal) principle that ‘two lines do not contain an area’ 
is presented as Postulate No. 6 in some of the Greek manuscripts ( PF ), in 
the translation by al-Hajjâj  58    and in the work of Adelard, but as Common 
Notion No. 9 in another part ( BVb ) of the direct tradition, in the transla-
tion of Ishâq–Th âbit, and in the work by Gerard of Cremona.  

•     Th ere is, for example, a diff erent formulation in Proposition  ii .14. Th e 
translations of al-Hajjâj and the Adelardian tradition propose to present 
the quadrature of a triangle, while the Greek manuscripts, the Ishâq–
Th âbit and Gerard of Cremona translations undertake the quadrature 
of an unspecifi ed rectilinear fi gure. Th is is related to another category 
of variations represented by the absence of Proposition  i .45 in the fi rst 
group of witnesses just mentioned. In the same way, the Porism to  vi .19 
is formulated diff erently in the manuscript  P  (for a fi gure) and in the 
manuscript  Th   (for a triangle). Here, too, the variant is connected with 
the existence of the Porism to  vi .20, No. 2 (for a fi gure), found in only the 
so-called Th eonine manuscripts. Th e divergences may thus be correlated 
at long range.  

•     As for the local variants with some possible logical and pedagogical 
purpose, we will see some examples in what follows. Let us specify only 
those which approach the category ‘abridged demonstrations’. Th is cat-
egory concerns the use of proofs described as analogical proofs (AP) and 

57 See this point introduced in Euclid/Vitrac 2001: iv 41–69, in particular the chart on p. 55.
58 See De Young 2002–3: 134.
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potential proofs (PP) introduced by the formulae: ‘So also for the same 
reasons …’ (= ‘διὰ τὰ αὐτὰ δὴ καὶ …’) (AP), ‘Similarly we will prove 
(alternatively, it will be shown) that …’ (= ‘ὁμοίως δὴ δείξομεν (alter-
natively, δειχθήσεται) ὅτι…’) (PP). Th ese phrases refer to the desire to 
shorten the text. Th e fi rst is the equivalent of our  mutatis mutandis ; it 
allows the omission of a completely similar argument with a particular 
fi gure or elements from a diff erent fi gure. Th e second is a false ‘prophecy’. 
It is invoked precisely not to have to prove in detail what it introduces.    

 Th e ‘abbreviated’ proofs are not uncommon in the  Elements  (they 
number about 250), but in certain cases, it is easy to imagine that a later 
editor has used this Euclidean stylistic convention to abridge his text. It is 
rather striking that the Arabo-Latin versions are on the whole much more 
concise than the Greek text and sometimes have complete proofs, where the 
latter uses one of the formulae just cited. In Proposition  xii .6, the version 
carried by manuscript  P  uses a potential proof (‘δειχθήσεται’), whereas that 
of the so-called Th eonine manuscripts advances an analogical proof (‘διὰ 
τὰ αὐτὰ δὴ’). Th e appearance of these formulae is therefore not independ-
ent of the transmission of the text.  59      

 Quantitative aspect 

 Th e 220 structural modifi cations in my database include: more than 60 
Defi nitions out of about 130, 8 of 11 Common Notions, 29 of 35 Porisms, 
41 of 42 Lemmas and additions, 173 Propositions of 474 (actually, 465 in 
the Greek tradition) which is a little more than a third of the total.  60    Th ese 
modifi cations are very unequally distributed through the Books, depend-
ing on the type of textual units. Taking a cue from medieval scholars, I have 
grouped together the principal global variations according to three (not 
completely, but almost) independent criteria: 

  (a)     Th e presence or absence of certain portions of the text (35 Defi nitions, 
8 Common Notions, 27 Porisms, 41 Lemmas and additions, 25 
Propositions).  

  (b)     A change in the order of presentation. Th ere are roughly 30 which 
relate to about 30 Defi nitions and more than 60 Propositions.  

  (c)     Th e (structural) alteration of proofs. For now, I have listed about 80 
which concern a little fewer than 100 Propositions.  61       

59 For other examples, see the references given in Euclid/Vitrac 2001: iv 46–7, n. 51, 53.
60 Some relate to a group of Propositions, for a total greater than 220.
61 See Vitrac 2004: 40–2.
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 In comparing Heiberg’s text with the text of the Arabo-Latin translations 
by Adelard of Bath and by Gerard of Cremona, I have noted (at least) three 
textual dichotomies (in decreasing order of importance):  62    

  Dichotomy 1: Edition Heiberg (υ  P  )  versus  medieval tradition 
 (existence of 18 Defi nitions, 12 Propositions, 19 Porisms, all the 
additional material (!), numerous changes in order, the majority of 
substitutions of proofs)  

  Dichotomy 2 (in Books  i – x ): Adelardian tradition  versus  Gerard of 
Cremona translation   (al-Hajjâj / Ishâq–Th âbit?)  63    
 (existence of 16 Defi nitions, 10 Propositions, 2 Porisms, some 
changes in order, double proofs in GC)  

  Dichotomy 3:  P   versus   Th   
 (existence of 3 Propositions, 2 Porisms, 3 additions, 2 inversions of 
Defi nitions, several modifi cations)    

 To return to certain elements from our  fi rst part , the Heiberg edition 
is founded on Dichotomy 3. Th e Danish editor refused to account for 
Dichotomy 1 demonstrated by Klamroth. Knorr fi nally proposed an inter-
pretation somewhat similar to that of Heiberg. His interpretation was linear 
and consisted of two terms (pre-Th eonine/Th eonine), simply replacing  P  
with the hypothetical Greek archetype which he believed possible to recon-
struct for the medieval tradition. Taking into account the information at 
his disposal, Heiberg was not able to identify Dichotomy 2. Knorr appears 
to have ignored it, which is at the very least surprising, as he declared 
that the Arabo-Latin versions which he used (Adelard and Gerard) were 
neither divergent, nor contaminated. Th is break in the indirect tradition 
in Books  i – x  dashes hopes of reconstructing a common archetype for the 
indirect medieval tradition.  64    As for the local variants, they number in 
the hundreds, probably amounting to 1000–1500 and concerning about 
 80 per cent of the Propositions in the Greek text. It might be thought that 
a single instance of an analogical proof or a simple stylistic intervention in 
a Proposition is hardly signifi cant. If examples of this type are disregarded, 
70 per cent of the Propositions from the Euclidean treatise nonetheless 

62 For details, see the three tables given in the Appendix.
63 Accounting for the Arabo-Latin versions adds a supplementary diffi  culty from my point 

of view (to return to the Greek) since it is a doubly indirect tradition. But the structural 
divergences which we observe between Adelard of Bath and Gerard of Cremona nearly 
always fi nd an explanation in their Arabic precursors, in particular in the diff erences between 
al-Hajjâj and Th âbit, as they are described – for right or wrong – by the copyists, commentators 
and authors of the recension (for example at-Tûsî).

64 It is particularly clear in Book x; see Rommevaux, Djebbar and Vitrac 2001: 252–70.
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remain, the  diff erence being especially apparent in the arithmetical Books 
 vii – viii , as a matter of fact more ‘salvaged’ by these variants than the geo-
metric portions, in particular Book  x  and the stereometric Books.   

 An example of a local variant 

 Th e rather simple example which I propose is that of Proposition  xi .1. It 
shows how accounting for the indirect medieval tradition allows us to go 
beyond the confrontation between  P  and  Th   to which Heiberg was con-
fi ned. Th e codicological primacy which he accords to the Vatican manu-
script is not inevitable because all Greek manuscripts, including  P , have 
been subjected to various late enrichments. It also probably indicates the 
intention of these specifi c additions. 

 As with several other initial proofs in the stereometric books, in  xi .1 
Euclid tries to demonstrate a property he probably would have been better 
off  accepting (i.e. as a postulate) – namely, the fact that a line which has some 
part in a plane is contained in the plane.  65    Here, the philological aspect inter-
ests me, even though the changes in the text were probably the result of the 
perception of an insuffi  ciency in the proof. Th e text is as follows: 

  (a)        

  Εὐθείας γραμμῆς μέρος μέν τι οὐκ ἒστιν ἐν τῷ 
ὑποκειμένῳ ἐπιπέδῳ, μέρος δέ ἐν μετεωροτέρῳ.  

  Some part of a straight line is not 
in a subjacent plane and another 
part is in a higher plane.  

        

D

C

B

A

      Εἰ γὰρ δυνατόν, εὐθείας 
γραμμῆς τῆς ΑΒΓ μέρος 
μέν τι τὸ ΑΒ ἒστω ἐν τῷ 
ὑποκειμένῳ ἐπιπέδῳ, 
μέρος δέ τι τὸ ΒΓ ἐν 
μετεωροτέρῳ. 
 Ἔσται δέ τις τῇ ΑΒ 
συνεχὴς εὐθεῖα ἐπ’ 
εὐθείας ἐν τῶν 
ὑποκειμένῳ ἐπιπέδῳ. 
 ἒστω ἡ ΒΔ˙ δύο ἄρα 
εὐθειῶν τῶν ΑΒΓ, ΑΒΔ 
κοινὸν τμῆμά ἐστιν ἡ ΑΒ˙ 
ὅπερ ἐστὶν ἀδύνατόν,  

  For, if possible, let some part AB 
of the straight line ABC be in 
the subjacent plane, another 
part, BC, in a higher plane. 
 Th ere will then exist in the 
subjacent plane some straight 
line continuous with AB in a 
straight line. 
 Let it be BD; therefore, of the 
two straight lines ABC and ABD, 
the common part is AB; which is 
impossible,  

65 On the weaknesses of the foundations of the Euclidean stereometry, see Euclid/Vitrac, 4, 2001: 
31 and my commentary to Prop. xi.1, 2, 3, 7.



 Th e Elements and uncertainties in Heiberg’s edition 95

  (b)     Th en the two textual families distinguished by Heiberg diverge:   

   P     ἐπειδήπερ ἐὰν κέντρῳ τῷ Β καὶ 
διαστήματι τῷ ΑΒ κύκλον γράψωμεν, 
αἱ διάμετροι ἀνίσους ἀπολήψονται 
τοῦ κύκλου περιφερείας.  

  Because, if we describe a circle with the 
centre B and distance AB, the 
diameters will cut unequal arcs of the 
circle  

   BF    Vb     εὐθεῖα γαρ εὐθεῖᾳ οὐ συμβάλλει κατὰ 
πλείομα σημεῖα ἢ καθ' ἕν· εἰ δὲ μή, 
ἐφαρμόσουσιν αλλήλαις αἱ εὐθεῖαι.  

  for a straight line does not meet a 
straight line in more points than one; 
otherwise the lines will coincide.  

  (c)     Th e general conclusion follows, then the closing of the theorem:   

  Εὐθείας ἄρα γραμμῆς μέρος μέν τι οὐκ 
ἒστιν ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ, μέρος 
δέ ἐν μετεωροτέρῳ·  

  Th erefore, it is not the case that some part 
of a straight line is in a subjacent plane and 
another part is in a higher plane.  

ὅπερ ἔδει δεῖξαι  .  66       Which is what was to be proved.  

 Conforming to the general rule which he follows, Heiberg has retained 
the reading of  P  in his text, and he consigns the reading of the Th eonine 
manuscripts in his  apparatus criticus .  67    From the stylistic point of view, one 
can see that: 

•     Th e two variants are what I call  post-factum  explanations because they 
have the form ‘ q , because  p ’, rather than ‘if  p , then  q ’. Th e ‘cause’ ( p ) is 
stated aft er the fact ( q ) of which it is supposed to be the cause.  68     

•     Th e variant  P  is introduced by the conjunction ‘ἐπειδήπερ’, which is suf-
fi cient to arouse suspicions about its authenticity.  69    Moreover, I call what 
appears here an ‘active, personal, conjugated form’ (‘γράψωμεν’) since 
the normal Euclidean form of conjugation in the portion of the deduc-
tive argument is the middle voice,  70    which reinforces the suspicion of 
 inauthenticity.    

66 See EHS: iv: 4.8–5.3.
67 Th is same variant appears in the margin of P, but by a later hand, followed by the addition: 

‘οὕτως ἐν ἄλλοις εὕρηται, ἔπειτα τὸ˙ εὐθείας ἄρα γραμμῆς’ (alternatively, this is found in 
other [copies]: ‘Of a straight line …’).

68 See Euclid/Vitrac 2001: iv 50, 56, 67–9.
69 Th ere exist, in the text of Book xii as edited by Heiberg, about fi ft een passages introduced 

by the conjunction ‘ἐπειδήπερ’, all of which contain elementary explanations found neither 
in manuscript b, nor in the Arabo-Latin translations by Adelard of Bath and by Gerard of 
Cremona. In the whole of the Elements, 38 instances occur. As already indicated by Knorr 1996: 
241–2, we know that there are relatively late interpolations in manuscripts used by Heiberg. A 
posteriori, we can see that Heiberg considered seven of these passages interpolations on the basis 
of criteria other than their absence in manuscript b and the indirect tradition.

70 See Euclid/Vitrac, 2001: iv 47.
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 Let us now consult the indirect medieval tradition, for example the 
Arabo-Latin translation by Gerard of Cremona,  71    compared to parts (a) 
and (c) of the text edited by Heiberg:   

  Parts (a) and (c) of Heiberg’s text    Gerard of Cremona’s version  

  Εὐθείας γραμμῆς μέρος μέν τι οὐκ ἒστιν 
ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ, μέρος δέ τι 
ἐν μετεωροτέρῳ.  

  Recte linee pars non est una in superfi cie et 
pars alia in alto.  

              

    Quoniam non est possibile ut ita sit, quod 
in exemplo declarabo.  

  Εἰ γὰρ δυνατόν, εὐθείας γραμμῆς τῆς 
ΑΒΓ μέρος μέν τι τὸ ΑΒ ἒστω ἐν τῷ 
ὑποκειμένῳ ἐπιπέδῳ, μέρος δέ τι τὸ ΒΓ 
ἐν μετεωροτέρῳ.  

  Si ergo possibile fuerit, sit pars linee ABG 
que est AB in superfi cie posita et sit alia 
pars que est BG in alto.  

  Ἔσται δέ τις τῇ ΑΒ συνεχὴς εὐθεῖα ἐπ᾿ 
εὐθείας ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ.  

  Protaham ergo a linea AB in data superfi cie 
lineam coniunctam linee AB  

  ἒστω ἡ ΒΔ: δύο ἄρα εὐθειῶν τῶν ΑΒΓ, 
ΑΒΔ κοινὸν τμῆμά ἐστιν ἡ ΑΒ˙  

  que sit BD. Linea ergo ABG est linea recta 
et linea ABD est linea recta, ergo linea AB 
duabus lineis BG et BD secundum 
rectitudinem coniungitur.  

  ὅπερ ἐστὶν ἀδύνατόν.    Quod est omnino contrarium.  

  Εὐθείας ἄρα γραμμῆς μέρος μέν τι οὐκ 
ἒστιν ἐν τῷ ὑποκειμένῳ ἐπιπέδῳ, μέρος 
δέ ἐν μετεωροτέρῳ˙  

  Non est ergo linee recte pars in superfi cie et 
pars in alto.  

  ὅπερ ἔδει δεῖξαι.    Et illus est quod demonstrare voluimus.  

 Despite the Arabic intermediary, the reader will easily recognize the 
faithfulness of this Latin translation to the Greek, with two exceptions: 

•     the Latin adds a clause intended to introduce an indirect reasoning 
 (a systematic characteristic shared with several manuscripts of the Ishâq–
Th âbit translation)  

•     it has neither of the  post-factum  explanations of the Greek (part b).    

71 Busard 1984: 338–9.
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 It is possible to imagine (at least) two scenarios: either these post- factum 
explanations are inauthentic, or the translator (or the editor Th âbit), noting 
the divergence among the Greek manuscripts and the defi ciency of the 
 proposed explanations, refrained from retaining one or the other. In other 
words, he has ‘cleaned up’ the text. 

 Th e mathematical defi ciency of the explanation in  P  is obvious. It allows 
the points ABCD to be co-planar. In order to prove the co-planarity of 
lines ABC and ABD starting from the fact that they are secant (they even 
have a segment in common), one would have to use  xi .2 – which in turn 
invokes  xi .1! Th us, and this is Heiberg’s reading, an argument akin to  lectio 
 diffi  cilior  may be implemented and the text of the Th eonine manuscripts 
may be declared an improvement. Hence, his editorial decision. Th is 
 scenario is hardly likely. 

 In fact, in certain manuscripts of the  Th   family, particularly  V , there exists 
a scholium proposing a proof of the impossibility of two straight lines having 
a common segment, that is the concluding point of our indirect proof:   72    

 For two straight lines, there is no common segment. Th us, for the two straight 
lines ABC and ABD, let AB be a common segment, and on the straight line ABC, 
let B be taken as the centre and let BA be the radius and let circle AEZ be drawn. 
Th en, since B is the centre of the circle AEZ and since a straight line ABC has been 
drawn through the point B, line ABC is thus a diameter of the circle AEZ. Now, the 
diameter cuts the circle in two. Th us AEC is a semi-circle. Th en, since point B is the 
centre of circle AEZ and since straight line ABD passes through point B, line ABD 
is thus a diameter of circle AEZ. However, ABC has also been demonstrated to be 
a diameter of the same AEZ. Now semi-circles of the same circle are equal to each 
other. Th erefore, the semi-circle AEC is equal to semi-circle AED, the smallest to 
the largest. Th is is impossible. Th us, for the two straight lines, there is no common 
segment. Th erefore, [they are completely] distinct. From that starting point, it is 
no longer possible to continuously prolong the lines by any given line, but [only] 
a [given] line and, that because, as has been shown, [namely] that for two straight 
lines, there is no common segment.  

Th is scholium does not exist in  P , but its absence may be explained if it 
is the origin of the  post-factum  explanation, albeit in severely abbreviated 
form, inserted in the text of the manuscript. Th us, there was no longer 
need to recopy the  aforementioned scholium. It is likely that the explana-
tions appearing in the Th eonine manuscripts come from the insertion of an 
abridgment of some (another) scholium into the text. Th ere is even a chance 
that we know the source of these marginal annotations. In his commentary 
to Proposition  i .1, Proclus reports an objection by the Epicurean Zenon of 

72 Cf. EHS: v, 2, 243.27–244.22.
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Sidon. Th e Euclidean proof of  i .1 presupposes that there is not a common 
segment for two distinct straight lines,  73    precisely what is here declared to be 
impossible. Th e commentator denies the objection, using three  arguments, 
the fi rst and last of which are close to the contents of the two  post-factum  
explanations (in  Th   and  P  respectively), as well as to the scholia.  74    

 In this example, there is every reason to believe that the fi rst scenario was 
the better one, that the ‘Euclidean’ proof of  xi .1 was similar to that of the 
indirect tradition. Heiberg could not have known the Gerard of Cremona 
translation (discovered by A. A. Björnbo at the beginning of the twenti-
eth century), but he could have consulted Campanus’s edition, which has 
neither of the  post-factum  explanations. 

 It goes without saying that the diff erence, from a mathematical point of 
view, is minuscule. However, from the point of view of the history and use 
of the text, it is the number of alterations of this type – in the hundreds  75    – 
which is signifi cant. Additions like those which we have just seen regarding 
 xi .1 have been introduced on diff erent occasions, undoubtedly indepen-
dently of each other, since each version – including the Arabo-Latin trans-
lations which escape nearly uncorrupted by this phenomenon – has some 
which are proper to it.  76    Th is work of improvement undoubtedly owes much 
to the marginal annotations eventually integrated into the text itself. Yet it 
partially blurs the distinction between ‘text’ and ‘commentary’. 

 For the majority of them, these additions ensure the ‘saturation’ of the 
text. Th e interpretation of the  Elements  which the annotators presuppose is 
more logical than mathematical. Indeed, for them, Euclid’s text represents 
the very apprenticeship of deduction more than a means for the acquisition 
of the fundamental results of geometry. Even if the role of the marginal 
annotations has probably been less eff ective in the case of structural diver-
gences, we will see that the purpose which they pursue – when it can be 
determined – is frequently the same. 

 From the point of view of the history of the text, the abundance of these 
sometimes independent improvements implies that for the  Elements  and for 
certain other mathematical texts the methods of transmission were much 
more fl exible than those postulated by philologists whose model rests on the 
tradition of poetic texts. It is not possible either to put the diff erent examples 
of a text in a linearly ordered schema ( stemma ) or even to admit the simple 
primacy accorded to a manuscript, such as Heiberg accorded to  P . Clearly, 

  75      For example, about 600 sentences are intended to point out a hypothesis or what was the object 
of a previous proof. About twenty terminological explanations, mostly in Book  x , may be added. 

  76      See Euclid/Vitrac 2001:  iv  63. 

  74      See Friedlein  1873 : 215. 17–216. 9. 
  73      See Friedlein  1873 : 215.11–13, 215.15–16. 
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in the discussion of problematic places, variant readings of the indirect 
medieval tradition ought to be accounted for. Th is was exactly what Knorr 
recommended. He even thought that it was possible to reconstruct a Greek 
archetype for the whole of the medieval tradition. 

 In other words, by comparing the diff erent states of the text for each 
attested divergence, we ought to be able to identify the least inauthentic 
version (or versions). Taking into account the three principal types of struc-
tural variants that we have recognized, this amounts to: 

•     solving the question of authenticity for each contested textual unit (the 
determination of the ‘materiel’ contained there)  

•     selecting a method of presentation (in particular, an order) when several 
are known; and  

•     knowing, for the cases of substitution or double proofs, which of the two 
is older.    

 To pronounce such judgements supposes criteria. Th ere are essentially 
two of them: 

  (i)     the fi rst concerns the ‘quantity’ of material transmitted by various ver-
sions, and  

  (ii)     the second bears on the form of this material (order of presentation, 
modifi cation of proofs).    

 Th ese criteria rest on the presuppositions that the historians accept regard-
ing the nature of the text of the  Elements  and on the hypotheses that they 
imagine regarding its transmission. According to Klamroth (and Knorr), 
the textual history has essentially been an amplifi cation. Th us, for example, 
except by accident, a Proposition missing from a ‘thin’ version (contain-
ing less material than another or even several others) will be judged 
inauthentic. 

 As for the transformations of form, if it is not an accident of transmission 
but a deliberate alteration of the structure of the text (supposing that it is 
possible to discriminate between the two), the criterion, as stated explicitly 
by W. Knorr, will be improvement – that is, whether it met with success or 
failure, whether it was really justifi ed or invalid, the deliberate modifi ca-
tion of the form (order, proof) of the text sought to better the composition. 
Obviously, this is an optimistic vision of the history of mathematics. 

 To see how to apply these principles and to understand the nature of 
the structural modifi cations that we have called up, it is easiest to produce 
some examples. Th e limitations of the aforementioned criteria will appear 
more clearly when we examine their application to the proofs (see below, 
pp. 111–13).   
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 Questions of authenticity and the logical architecture of the  Elements  

 If the diff erent versions are considered from the point of view of the ‘mate-
rial contents’, the question of authenticity is perhaps the least complex of the 
three, at least as far as the fi rst dichotomy is concerned. Th ere exists in the 
Greek manuscripts material which I describe as ‘additional’. Th is additional 
material includes cases, some portions identifi ed as additions, the double 
proofs, and the Lemmas.  77    Th e critical edition of Heiberg, completed in 
1888, four years aft er the debate with Klamroth, condemns the lot of this 
material as inauthentic. In this regard, the (rather relative) thinness of  P  
compared with the other Greek manuscripts is one of the criteria which jus-
tifi es its greater antiquity.  78    Now this additional material, to nearly a single 
exception,  79    is absent from the medieval Arabic and Arabo-Latin tradition. 
However, Heiberg did not alter his position and did not accept this conclu-
sion about the ‘thinness’ of the indirect tradition as a gauge of its purity. 
According to Heiberg – and this too is a hypothesis about the nature of the 
treatise – the  Elements  could not be so thin that it suff ered from deductive 
lacunae, but such thinness is the case with the medieval versions. 

 I do not believe that anyone (and certainly not Klamroth or Knorr) 
contested the global deductive structure of the  Elements . If the  Elements  is 
compared with the geometric treatises of Archimedes or Apollonius, the 
local ‘texture’ may not be so diff erent, but the principal variation resides 
in the fact that the  Elements  was edited as if it supposed no previous geo-
metric knowledge. Th e identifi cation of what would be a deductive lacuna 
in Euclid is thus a crucial point, but not always a simple one. Indeed, all 
the exegetical history of the Euclidean treatise, from antiquity until David 
Hilbert, has shown that the logical progression of the  Elements , probably 
like any geometric text composed in natural language, rests on implicit 
presuppositions.  80    Th e identifi cation of the deductive lacunae supposes 
that consciously permitted ‘previous knowledge’ is always capable of clearly 
being distinguished from ‘implicit presumption’. 

 Let us take the example of Proposition  xii .15. Here it is established that: 

 Th e bases of equal cones and cylinders are inversely [proportional] to the heights; 
and among the cones and cylinders, those in which the bases are inversely [propor-
tional] to the heights are equal,  

  77      For details, see Table 1 of the Appendix. 
  78      See Table 3 of the Appendix. 
  79      Th e addition of special cases in Prop.  iii .35, 36 and 37. 
  80      See the beautiful study by Mueller 1981. 
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a property likewise shown for the parallelepipeds ( xi .34) and pyramids 
( xii .9). 

 In the  fi rst part  of the proof, let us suppose the cones or cylinders on 
bases ABCD and EFGH, with heights KL and MN, are equal. If KL is not 
equal to MN, NP equal to KL is introduced and the cone (or cylinder) on 
base EFGH with height NP is considered (see  Figure 1.3) .  

 Schematically, in abbreviated notation, we have (by  v .7) a trivial 
 proportion:

   cylinder AQ = cylinder EO ⇒ cylinder AQ: cylinder ES:: cylinder EO: 
cylinder ES   

in which a substitution is made for each of the two ratios:

   cylinder AQ: cylinder ES:: base ABCD: base EFGH  (which is justifi ed 
by xii.11)

cylinder EO: cylinder ES:: height MN: height PN (S). 
From which: base ABCD: base EFGH:: height MN: height PN (CQFD)    

 However, the proportion ( S ) is an ‘implicit presumption’ in the Arabo-
Latin versions. Admittedly, it may be easily deduced by those who under-
stand Propositions  vi .1 and 33, as well as  xi .25, that is the way one employs 
the celebrated Defi nition  v .5. In the Greek manuscripts, though, the 
situation is diff erent. Proportion ( S ) is justifi ed on the basis of previous 
knowledge:  xii .13 in  P  and  Th  ,  xii .14 in  b .  81    Th ese Propositions  xii .13–14 
do not exist in the indirect medieval tradition and thus it may be inferred 

 Figure 1.3      Euclid’s  Elements , Proposition xii.15.    
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  81      Here, the indirect medieval tradition is not in accord with ms  b  which presents the most 
satisfying textual state from the deductive point of view! For details, see Euclid/Vitrac 2001:  iv  
334–44. 
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from their absence, as Heiberg has done, that there is a deductive ‘lacuna’ 
in the proof of  xii .15. However, from the point of view of the history of the 
text, the question immediately arises about whether or not the insertion 
of Propositions  xii .13–14 represents an addition aimed at fi lling a lacuna 
perceived in the original proof of  xii .15. Let us add that the assertions of 
Heiberg on this subject are oft en a little hasty because the status of authen-
ticity cannot be judged independently of the status of the proofs. 

 For example, the indirect tradition does not contain Proposition  x .13 (‘If 
two magnitudes be commensurable and one of them be incommensurable 
with any magnitude, the remaining one will also be incommensurable with 
the same’). Heiberg suggests that the absence of this Proposition introduces 
deductive lacunae in several Propositions which exist in the Arabic transla-
tions. In these Propositions, the Greek text explicitly uses  x .13. However, 
in fact, when the proofs in the aforementioned translations are examined, 
they are formulated a little diff erently than in Greek and  x .12 (‘Magnitudes 
commensurable with the same magnitude are commensurable with one 
another too’) is employed in place of  x .13. Consequently, there is not a 
deductive lacuna!  82    By consulting the indirect tradition of Greek citations 
in Pappus, the idea may be supported that  x .13 did not exist in his version 
of the  Elements .  83    Th us, the most natural conclusion is that  x .13 is eff ec-
tively an inauthentic addition and its addition has allowed reconsideration 
of the proofs of the other Propositions. 

 Th rough a simple comparison of the diff erent versions, I have examined 
each of the Propositions whose authenticity has been called into question. 
My conclusion regarding this point – the details would exceed the scope 
of this essay – is that the real deductive lacunae, proper to the indirect 
 tradition, are, so far as can be judged, far from numerous: 

•     Two in Book  xii ,  84    with the provision that in any event the stereometric 
Books constitute a particular case in the transmission of the  Elements  
(see below).  

  82      See Vitrac  2004 : 25–6. 
  83      See Euclid/Vitrac 1998:  iii  384–5. 
  84      Th e second is due to the absence, this time in  b  as well as in the indirect medieval tradition, 

of Proposition  xii .6 and the Porisms to  xii .7–8 which generalize the results established for 
pyramids on a triangular base to pyramids on an unspecifi ed polygonal base, respectively 
in Propositions  xii .5, 7 and 8. Th ere also, Euclid may have considered this generalization 
as intuitively obvious given the decomposition of all polygons into triangles and the rule 
concerning proportions established in (Heib.)  v .12: ‘If any number of magnitudes be 
proportional, as one of the antecedents is to one of the consequents, so will all the antecedents 
be to all the consequents.’ Th e non-thematization of pyramids on an unspecifi ed polygonal 
base is comparable to what we have seen above regarding  ii .14 (triangle unspecifi ed rectilinear 
fi gure) in only the Adelardo-Hajjajian tradition. Th e diff erence is that it introduces a deductive 
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•     One in Proposition  iv .10 of the Adelardo-Hajjajian tradition, connected 
to the absence of  iii .37, probably due to an accident in transmission, 
namely, the mutilation of the end of a Greek (or possibly Syriac?) scroll 
containing Book  iii .    

 Books  i – x , perhaps the only ones to have been both translated by Ishâq 
and reworked by Th âbit,  85    contain no supplementary deductive lacunae. 
In other words, the deductive lacunae which appear there already existed 
in the Greek text which served as their model. Th e most striking case is 
that of the Lemmas designed to fi ll what can be regarded as a ‘deductive 
leap’, especially in Book  x .  86    In fact, there are in (some manuscripts of) the 
Ishâq–Th âbit and Gerard of Cremona translations a number of additions 
that fulfi l the same role of completion.  87    When compared with the direct 
tradition, they are presented as additions, mathematically useful, but well 
distinguished from the Euclidean text. Th ose who composed our Greek 
manuscripts had no such scruples. 

 Th e addition of the so-called missing propositions and part of the addi-
tional material (Lemmas of deductive completion, some of the Porisms) 
serve with a certain fl uidity the obvious intention of improving the proofs 
and reinforcing the deductive structure. Th e  second part  of the Porism 
to  x .6 allows the resolution of the same problem as the lemma { x .29/30}. 
Th e Proposition  xi .38  vulgo  is clearly a lemma to  xii .17. Th e Proposition 
was probably inspired by a marginal scholium and then moved to the 
end of Book  xi .  88    Th e textual variants of  xii .6 suggest that perhaps it was 
initially introduced as a Porism to  xii .5 and eventually transformed into a 
Proposition. For the other additional Porisms, it would certainly be exces-
sive to speak about a deductive lacuna to be fi lled. However,  v .7 Por. and 
 v .19 Por explicitly justify the use of inversion and conversion of ratios. Th e 
Porisms to  vi .20,  ix .11,  xi .35 serve to  make explicit  a deductive  dependence 
on the Propositions  x .6 Por.,  ix .12 and  xi .36, respectively. Our examples, 
found in Books  x – xii , show that this work of enrichment began in the 
Greek tradition, but the Arabic and Arabo-Latin versions tell us that the 

  85      See below, pp. 116–19 .
  86      I have called them the ‘lemmas of deductive completion’ in order to distinguish them from 

lemmas with only a pedagogical use. See the list given in Euclid/Vitrac 1998: iii  391. To these 
might be added Lemma  xii .4/5. 

  87      See Euclid/Vitrac 1998:  iii  392–4. 
  88      See Euclid/Vitrac 2001:  iv  229–30. 

lacuna in the proofs of Propositions  xii .10–11. Here the properties established previously for 
pyramids and prisms are shown for cones and cylinders, by using the method of exhaustion. 
To do this, the pyramids are considered as having polygonal bases with an arbitrary number of 
sides, inscribed in the circular bases of the cones and cylinders. 
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enrichment was not confi ned to the fi nal, more complicated portion of the 
text in question. 

 It is even probable that the entire treatise has been subjected to such treat-
ment. For example, the arithmetic books of the Ishâq–Th âbit and Gerard of 
Cremona versions possess four supplementary Propositions with respect to 
the Greek. Ishâq–Th âbit ix.30–31 are added to improve (Heib.)  ix .30–31, 
and Ishâq–Th âbit  viii .24–25 are the converses of (Heib.)  viii .26–27. 
In fact, the proof of (Ishâq–Th âbit)  viii .24 (plane numbers) is nothing more 
than the  second part  of (Heib.)  ix .2! Hence the idea, again suggested by 
Heron, to remove this portion in order to introduce it as a Proposition in 
its own right and to do the same for the converse of  viii .27 (solid numbers) 
to simplify the proof of  ix .2.  89    

 Insofar as the Euclidean approach is deductive, the work just described 
represents a real improvement of the text as much from a logical perspec-
tive as from a mathematical point of view. A number of implicit presump-
tions which might be described as harmless but real deductive lacunae have 
been identifi ed and eliminated. However, the logical concerns have been 
sometimes pushed beyond what is reasonable. For example, in the desire 
to make the contrapositives appear in the text, Propositions  viii .24–27 
in the Ishâq–Th âbit version expect the reader to know that two numbers 
are similar plane numbers if and only if they have the ratio that a square 
number has to a square number to one another. Th e Lemma x.9/10 – an 
addition probably connected to Ishâq–Th âbit  viii .24–25 – thence deduces 
that non-similar plane numbers do not have the ratio that a square number 
has to a square number to one another. 

 Likewise, the (important) Propositions  x .5–6 establish that the ‘com-
mensurable magnitudes have to one another the ratio which a number has 
to a number’ (5) and the inverse (6). In the Greek manuscripts, but not in 
the primary indirect tradition, two other Propositions (Heib.)  x .7–8 have 
been inserted: ‘Incommensurable magnitudes have not to one another 
the ratio which a number has to a number’ (7, contrapositive of 6) and its 
inverse (8, contrapositive of 5)! 

 Propositions  viii .14–15 show that ‘if a square (resp. cube) [number] 
measures a square (resp. cube) [number], the side will also measure 
the side; and, if the side measures the side, the square (resp. cube) will 
also measure the square (resp. cube)’. In the Greek manuscripts these 
Propositions are followed by their contrapositives (Heib.  viii .16–17, for 
example): ‘If a square number does not measure a square number, neither 

  89      See Vitrac  2004 : 25. 
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will the side measure the side; and, if the side does not measure the side, 
neither will the square measure the square.’ If the indirect tradition is con-
sulted, an interesting division is observed: 

•     In the translation of Ishâq–Th âbit the contrapositives do not exist, 
but each of the Propositions  viii .14–15 is followed by a Porism which 
expresses the same thing.  90     

•     In the translation of al-Hajjâj  91    and in the Adelardian tradition  92    is found 
a single Proposition combining the equivalent of Heib.  viii .16–17. Th e 
assertion about cube numbers is simply left  as a potential proof.  

•     Gerard of Cremona transmits the two version successively.  93       

 I think there is hardly any doubt in this case. Th e Propositions  viii .16–17 
of the Greek manuscripts are inauthentic and all the versions, including 
those of the indirect tradition, contain augmentations or additions which 
proceed along diff erent modalities and which are probably of Greek origin. 
Logical concerns have certainly played a role in the transmission of the text.  94      

 Th e change in the order of  vi .9–13 

 Th e examples that we have examined until now are rather simple in the 
sense that their motivations appear rather clearly to be the improvement of 
a defective proof (cf.  xi .1), or fi lling a gap or explaining a deductive connec-
tion (supplementary material and Propositions). In a signifi cant number 
of cases we have seen the advantages of taking into account the Arabic and 
Arabo-Latin indirect tradition. However, it ought not to be believed that 
this simplicity is always the case or that the indirect tradition systematically 
presents us with the state of the text least removed from the original. As we 
have already seen regarding the supplementary Propositions, the altera-
tion of Books  x – xiii  is especially clear in the Greek, although among the 

  91      Th is we know thanks to Nâsir ad-Dîn at-Tûsî. See Lévy  1997 : 233. 
  92      See Busard  1983  (Prop.  viii . 15  Ad. I ): 239.359–240.371. 
  93      See Busard  1984 , respectively, 201.11–16 (=  viii . 14 Por.  GC ), 202. 11–16 (=  viii .15 Por  GC ) 

and 202.19–40 (=  viii .16  GC ). 
  94      One might add here the supplementary Porism to Prop.  ix .5 found in the Ishâq–Th âbit and 

Gerard of Cremona translations.  ix .4 establishes that a cube, multiplied by a cube, yields a 
cube, and  ix .5 states that if a cube, multiplied by a number, yields a cube, the multiplier was a 
cube. Th e Porism to  ix .5 affi  rms that a cube, multiplied by a non-cube, yields a non-cube and 
that if a cube, multiplied by a number, yields a non-cube, the multiplier was a non-cube. In a 
subfamily of Ishâq–Th âbit manuscripts, this Porism has been moved aft er  ix .4. In Gerard of 
Cremona, there is a Porism aft er  ix .4 and one aft er  ix .5! See De Young  1981 : 201,  n. 7 , 202–3, 
480–1 and Busard  1984  213.29–31 and 213.51–6. 

  90      See De Young  1981 : 151, 154–5, 431, 435. 
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 arithmetical books, the Ishâq–Th âbit version (itself inspired by Heron) is the 
best evidence of this ‘betterment’. Th e consideration of changes in order con-
fi rms the complexity of the phenomenon. In Book  vi , Propositions  vi .9–13 
(according to the numbers of the Heiberg edition), resolve the fi ve problems 
listed in the table above.  

 In the indirect tradition, the order of presentation runs 13–11–12–9–10. 
Th e solutions of the problems are independent of each other. Th us the 
inversion has no infl uence on the deductive structure, but  vi .13 uses (part 
of)  vi .8 Por.: 

 From this it is clear that, if in a right-angled triangle a perpendicular be drawn 
from the right angle to the base, the straight line so drawn is a mean proportional 
between segments of the base.  95     

Th e Proposition has thus been moved in order to place it in contact with 
the used result. Since there are clearly two groups – one concerning pro-
portionality, the other about sections – the coherence of the two themes has 
been maintained by also moving  vi .11–12 (or, in the case of Adelard’s trans-
lation, only  vi .11 because it lacks  vi .12 as a result of a ‘Hajjajian’ lacuna).  96    
Th is order of the indirect tradition appears to be an improvement over the 
Greek. 

  Greek order    Medieval order  

   9:  From a given straight line to cut off  
a prescribed part. 

 10:  To cut a given uncut straight line 
similarly to a given cut straight line.  

  13:  To two given straight lines to fi nd 
a mean proportional.  

 11:  To two given straight lines to fi nd 
a third proportional. 

  11:  To two given straight lines to fi nd 
a third proportional.  

   12:  To three given straight lines to fi nd 
a fourth proportional. 

  12:  To three given straight lines to fi nd 
a fourth proportional.  

    9:  From a given straight line to cut off  
a prescribed part. 

  13:  To two given straight lines to fi nd 
a mean proportional.  

  10:  To cut a given uncut straight line 
similarly to a given cut straight line.  

  95      In the majority of Greek manuscripts, a second assertion declares that each side of a right angle 
is also the mean proportional between the entire base and one of the segments of it (which has 
a common extremity with the aforementioned side). It is absent in  V , for example. Heiberg 
considered it inauthentic and bracketed it (see  EHS   ii : 57.1–3). Both parts exist in the Ishâq–
Th âbit version and Adelard of Bath and Gerard of Cremona, but the complete Porism does not 
fi gure in the Leiden Codex (the an-Nayrîzî version). Moreover a scholium, attributed to Th âbit, 
explains that the Porism had not been found among the Greek manuscripts. Without a doubt, 
this is in error. In (at least) two mss of the Ishâq–Th âbit version, a gloss indicates that Th âbit 
had not found what corresponds to only the  second part  of the Porism (excised by Heiberg). 
See Engroff   1980 : 28–9. 

  96      Th is we know thanks to the recension of pseudo-Tûsî. See Lévy  1997 : 222–3. 
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 When the various versions are considered,  97    the inversions are not the 
result of happenstance in binding or in later inexpert replacement of lost 
pages. As in our example, they leave practically all the deductive structure 
intact and they even improve it. Of course, not all the examples are equally 
simple, and the same principle clearly cannot be applied to the inversions 
in the Defi nitions, for which it seems that a criterion, which I call ‘aesthetic’ 
for lack of anything better, has prevailed. Th e evidence is divided but at this 
stage in my work, it seems to me that the preliminary conclusions about the 
orders confl ict with what can be determined about the content.  98    Namely, 
for problems regarding order, notably in Books  v – x , the indirect tradition 
received the greatest number of improvements! 

 Although changes in order may be limited, they are interesting because 
they have an advantage with respect to the authenticity or alteration of 
proofs. Such changes are hardly conducive to contamination. Admittedly, 
we have several remarks by Th âbit ibn Qurra affi  rming that he had found a 
diff erent order of presentation in another manuscript,  99    but no one saw fi t 
to reproduce the Propositions twice in each of the orders. In contrast, for 
the problems of authenticity, the contamination between textual families 
concerns the whole text, beginning particularly with the margins of the 
manuscripts. As for the substitutions of proofs, we will see that they are the 
cause, at least in part, of the phenomenon of double proofs.   

 From the substitution of proof to the phenomenon of double proofs: 
the example of  x .105 

 Th e Propositions (Heib.)  x .66–70 and 103–107 establish that the twelve types 
of irrational lines obtained through addition and subtraction  distinguished 
by Euclid are stable with respect to commensurability. In the Greek version, 

  97      Th ings are a little diff erent at the level of individual manuscripts which have not been 
preserved though the accidents of transmission. 

  98      For example, in the Greek, the order of the Propositions (Heib.)  vii .21–22 (each the converse 
of the other) runs opposite to the order in medieval indirect tradition. Th e inversion has no 
infl uence on the deductive structure, but the proof of (Heib.)  vii .21 uses  vii . 20. It is probable 
this time that the inversion was made in the direct tradition, in order to make the two 
connected deductive theorems consecutive. 

  99      For example, in Book  vi  which was just discussed. In (at least) three mss of the Ishâq–Th âbit 
version, the following gloss appears aft er (Ishâq–Th âbit)  vi .9 = (Heib.)  vi .13. ‘Th âbit says: we 
have found, in certain Greek manuscripts, in the place of this Proposition, that which we have 
made the thirteenth.’ Undoubtedly, the existence of  two  distinct orders ought to be understood 
as having been observed by the Editor among the Greek manuscripts which he consulted. 
(Th us, the change is Greek in origin.) Th e editor retained the better order (which was that 
already in al-Hajjâj). See Engroff   1980 : 29, who mentions two mss. Th e gloss also exists in ms 
Tehran Malik 3586 (the oldest preserved copy of the Ishâq–Th âbit version), fo.75a. I thank 
 A. Djebbar for this information. 
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two alternative proofs for Propositions  x .105–106 are inserted at diff erent 
places in the manuscripts.  100    Called here ‘superfi cial’ as opposed to the origi-
nal ‘linear’ Greek proofs, they apply to and argue about rectangular areas. 
Let us explain this diff erence by an example, Proposition (Heib.)  x .105: 

 A [straight line] commensurable with a minor straight line is a minor.   

   First proof in Greek   101     
   Aliter in Greek = fi rst proof in 

medieval tradition   

  Let AB be a minor straight line and CD 
commensurable with AB; I say that CD 
is also minor.            

  Let A be a minor straight line and B 
[be] commensurable with A; I say 
that B is minor.            

A
B

E

D
FC

C

D

A B

GE

F H

  We will consider the two components 
(AE, EB) of AB and let DF be constructed 
so that (AB, BE, CD, DF) are in 
proportion. By  vi .22, their squares 
will also be in proportion and, thence by 
 x .11,  x .23 Por. it will be shown (CD, DF) 
have the same properties as (AB, BE). 
Th us, by defi nition, CD will be a minor.  

  Let CD be a commensurate straight line. 
Let the rectangles be constructed: 
CE = square on A, width: CF, 
 FG = square on B, width: FH. 
 CE is the square on minor A   so CE is 
the fourth apotome ( x .100). 
 We have Comm. (A, B). 
 Th us: Comm. (CE, FG) and Comm. 
(CF, FH). 
 FH is the fourth apotome ( x .103). 
 Th e square on B = Rect. (EF, FH),   thus B 
is a minor ( x .94)  

•     In each of the linear proofs, the argument concerns the two parts of an 
irrational straight line. Th e same type of argument is repeated ten times. 
Th ough repetitive, the approach has the advantage of not employing 
anything other than the Defi nitions of diff erent types and the theory of 

  100      In the Greek manuscripts the proof  aliter  to  x .105–106 is inserted at the end of Book  x , aft er 
the alternative proof to  x .115, which without a doubt implies that they had been compiled in 
this place, aft er the transcription of Book  x , in a limited space. Th us, they are in the margins 
of manuscripts  B  and  b . In one of the prototypes of the tradition,  x .107  aliter  has been lost or 
omitted, probably for reasons of length, or because it was confused with  x .117  vulgo  which 
follows immediately (but which is mathematically unrelated). 

  101      My diagrams are derived from those found in the edition of Heiberg ( EHS :  iii  191 and 229, 
respectively). Th ose of the manuscripts are less general. Th e segments AE, CF are very nearly 
equal (the same goes for A, B in  aliter ) and divided similarly. 
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proportions. Deductively, the linear proofs may be characterized as mini-
malist.  

•     Th e superfi cial proofs introduce areas, which, from the point of view of 
the linguistic style used, might seem more geometric than the proofs 
using the theory of proportions, which is a second-order language. But, 
in fact, they strengthen the deductive structure because they establish 
new connections by using Propositions (Heib.)  x .57–59 + 63–65 + 66 
(resp. 94–96 + 100–102 + 103). In addition, these superfi cial proofs – 
like the linear ones – present results expressed for commensurability in 
length but the former proofs may be immediately generalized to com-
mensurability in power.    

 Th e fi rst anomaly occurs in  x .107. No alternative proof exists, although 
this Proposition, along with two others, constitutes a triad of quite similar 
Propositions. Alternative proofs are no longer known for the parallel triad 
of  x .68–70, which concerns the irrationals produced by addition, whereas 
the other triad  x .105–107 treats the corresponding irrationals produced by 
subtraction.  102    However, in the indirect Arabic and Arabo-Latin tradition, 
there is a textual family in which these two triads of Propositions have (only) 
superfi cial proofs. Th is is the case in Arabic, with the recension of Avicenna, 
and in Latin, with the translation of Adelard I. Evidence from the copyist 
of the manuscript Esc. 907 establishes a link between the superfi cial proofs 
and the translation of al-Hajjâj.  103    Th e Ishâq–Th âbit version is less coher-
ent. It contains the linear proofs of the Greek tradition in the triad  x .68–70 
and the superfi cial proofs for the triad  x .105–107. In the manuscript from 
the Escorial and the translation of Gerard of Cremona, which agree on this 
point, the situation is nearly the inverse to the Greek translation. Th ere are 
only the superfi cial proofs for  x .105–107 (like the indirect tradition), but 
they present proofs of this type as  aliter  for the fi rst triad, whereas the Greek 
texts includes them only for (two Propositions of) the second triad! 

 Let us add that the same type of substitution (and thus, generaliza-
tion) is possible in Propositions (Heib.)  x .67 + 104 which concern the two 
corresponding types of bimedials and apotomes of a bimedial.  104    Such 
 substitution is precisely what is found in the recensions of at-Tûsî and 
pseudo-Tûsî, but not in the Arabic or Arabo-Latin translations. 

  102      On the plan of Book  x , see Euclid/Vitrac 1998:  iii  63–8. 
  103      See De Young  1991 : 659. 
  104      However, this is not possible for Prop. Heib.  x .66 (binomials) and 103 (apotomes) because, 

in this case, it is required to show that the order (from one to six) of the straight lines 
commensurable in length is the same. Th is crucial point is required for the superfi cial proofs 
concerning the other ten types of irrationals. 
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 If the principle of improvement advanced by Knorr is applied, we are led 
to think that the linear proofs of the Greek are authentic, with the superfi -
cial proofs clearly being ameliorations from a mathematical point of view. 
Th is attempt at strengthening the deductive structure and generalizing 
was begun in Greek, as demonstrated by the proofs  aliter  to  x .105–106. It 
is likely that there was also a proof  aliter  to  x .107 which has disappeared. 
Th e opposite hardly makes any sense. Its disappearance is probably due to 
codicological reasons. 

 However, the question of knowing who produced the alternative proofs 
for the Propositions of the fi rst triad remains unanswered. A likely hypoth-
esis is that the same editor is responsible for the parallel modifi cation of the 
two triads and he happened to be a Greek. But it could also be imagined that 
it was a contribution from the indirect tradition, occurring as the result of an 
initiative by al-Hajjâj. Th is latter explanation is the interpretation of Gregg 
De Young.  105    Th e examples of at-Tûsî and pseudo-Tûsî show that improve-
ments continued into the medieval tradition, but it should not be forgotten 
that these were authors of recensions, not translators. As for the structure 
for the Ishâq–Th âbit version, it may be explained in diff erent ways – either 
by the existence of a Greek model combining the two approaches or by an 
attempt at compromise on the part of the editor Th âbit. In the fi rst case, there 
would have been at least three diff erent states of the text. In the second case, 
Th âbit would have combined the fi rst (linear) triad from the translation of 
Ishâq (considered closer to the Greek) and the second (superfi cial) triad pre-
sented in the earlier translation! In neither of these scenarios does recourse 
to the indirect tradition simplify the identifi cation of the oldest proofs. 

 Whatever scenario is chosen, it must be admitted that there was a sub-
stitution of proofs in one branch of the tradition. Th e substitution occurred 
in the model(s) of al-Hajjâj, if the superfi cial proofs are considered later 
improvements, but in the Greek, if the opposite explanation is adopted. 
Th is fact is not surprising.  106    In the situations in which the Greek tradition 
contains double proofs, the medieval versions contain only one of them. 
(Th is is confi rmed by the remarks of Th âbit and Gerard when they make 
such comments as ‘in another copy, we have found …’ and thus, probably, 
in Greek models of which we have no evidence.) 

 It is possible to take a lesson from this example. Th e existence of double 
proofs in the Byzantine manuscripts could be explained, for the majority of 

  105      See De Young  1991 : 660–1. 
  106      It is noted for  i .44p;  ii .14;  iii .7p, 8p, 25, 31, 33p, 35, 36;  iv .5;  v .5, 18;  vi .9p, 20p, 31;  viii .11p-

12p; 22–23;  x .1, 6, 14, 26p, 27–28, 29–30, 68–70, 105–107, 115;  xi .30,  xiii .5. Th e note ‘p’ 
signifi es that the variant pertains only to a portion of the proof. 
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cases, by the fact that the aforementioned manuscripts have compiled the 
proofs from diff erent versions which contained these proofs in isolation. If 
what we have seen about Propositions  x .107 and  x .68–70 is recalled, the 
process of transliteration and the desire to safeguard a fl ourishing tradi-
tion seems to us to constitute a propitious occasion for compiling proofs, 
however incomplete. 

 Returning to discussions concerning the history of the text, we ought to 
fi rst note that the double proofs do not fall within what is called authorial 
variants. Euclid did not propose several proofs with the same results. Th us 
the Greek manuscripts closest to the operation of transliteration ( P  and  B ) 
are most likely the results of a compilation of the tradition, rather than of 
simple reproduction – changing only the writing – of a venerably aged 
model.  107      

 Th e limits of Knorr’s criteria 

 It is oft en possible to perceive one or more reasons for the other types of 
structural changes that I described earlier (additions, modifi cations of the 
order). Th us Knorr thought it possible to order the diff erent states of the 
text, if not according to authenticity, then at least relative to the degree of 
alteration. We have already noted that this criterion of improvement applies 
locally, and the example of changes in the order suggested to us that it does 
not seem always to have been exercised for the benefi t of the one and the 
same version. Th e phenomenon of the substitution of proofs evidences 
another diffi  culty. 

 Th e criterion of improvement works well enough as long as there is only 
a single parameter (or even more,  108    but all acting in the same direction) 
which governs the replacement of a proof or the modifi cation of a presen-
tation. But, when there are at least two acting in opposite directions, the 
change which is more  sophisticated  from a certain point of view may be 
less desirable from another point of view. Let us reconsider our example of 
Proposition  x .105. Admittedly, from a mathematical point of view, there is 
an improvement (generalization), but from the logical, or metamathemati-
cal, point of view – and it is no doubt one of the points of view adopted by 

  107      See  n. 33 . 
  108      Th e most frequent parameters governing the replacement of proofs are the reinforcement of 

the deductive structure, the substitution of a direct proof with an indirect proof (a criterion 
notably explained by Heron – see Vitrac  2004 : 17–18 (regarding  iii .9  aliter ) – and Menelaus), 
the addition of the case of a fi gure and the level of discourse used (geometric objects  versus  
proportions; a criterion clearly noted by Pappus). 
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those who deliberately changed the text of the  Elements  – diff erent criteria 
could be used. From the logical, or metamathematical, point of view, the 
criteria are: 

•     Render the deductive structure more dense, as the superfi cial proofs have 
done, or conversely minimize the structure in order not to introduce 
what would eventually become accidental ‘causalities’, that is, links of 
dependence, as found among the linear proofs.  

•     Prefer either a type of object language over a second-order language – 
that is, a relational terminology, like the theory of proportions – or, on 
the contrary, privilege a concise but more general second-order language. 
A choice of this kind explains the  aliter  family of proofs conceived for 
Propositions  vi .20, 22, 31,  x .9,  xi .37.  109    Th e same choice exists also in our 
families of proofs, but in these instances it acts in the opposite direction 
with respect to reinforcing the deductive structure.    

 It would then be welcome to be able to organize these criteria hierarchi-
cally. Th e deductively minimalist attitude seems well represented in the 
 Elements . For example, deductive minimalism may safely be assumed to 
underpin the decision to postpone as long as possible the intervention of 
the parallel postulate in Book  i . It appears again in the decision to establish 
a number of results from plane geometry before the theory of proportions 
is introduced at the beginning of Book  v , even though this theory would 
have allowed considerable abbreviation. Th e idea that geometry ought to 
restrict itself to a minimal number of principles had already been explained 
by Aristotle.  110    Deduction is not neglected, but emphasis is placed on the 
‘fertility’ of the initial principles, rather than on the possible interaction of 
the resultants which are deduced from them. 

 Th ere are thus diff erent ways to put emphasis on the deductive structure. 
Th e case of our proofs from Book  x  is not unique. Th e ten Propositions 
from Book  ii  and the fi rst fi ve from Book  xiii  are successively set out in a 
quasi-independent manner based on the least number of principles, even if 
this means reproducing several times certain portions of the arguments.  111    
Remarkably, we know that for the sequences  ii .2–10 and  xiii .1–5  alternative 
proofs had been elaborated, annulling this deductive mutual independence 
in order to construct a chain in the case of  ii .2–10 or to deduce  xiii .1–5 from 
certain results from Books  ii  and  v . Even better, thanks to the  testimony of 

  109      See Vitrac  2004 : 18–20. 
  110       De cælo ,  iii , 4, 302 b26–30. 
  111      Similarly in the group  El .  iii .1, 3, 9, 10 (considering the fi rst proofs of  iii .9–10). 
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the Persian commentator an-Nayrîzî, we know that the author of the fi rst 
suggestion was Heron of Alexandria. It is thus tempting, as Heiberg did 
in his  Paralipomena  of 1903, to attribute to him the other alteration (in 
 xiii ) that shares the same spirit.  112    If, in order to strengthen the deductive 
structure, it is appropriate to argue about segments rather than the surfaces 
described thereon as in the case of Books  ii  and  xiii ,  113    it will be noted that 
the opposite is the case in the example from Book  x  which has just been dis-
cussed. Reinforcement of the aforementioned structure is realized through 
the introduction of surfaces. For us to attribute it to Heron, it is necessary 
to be sure that the parameter most important to him was indeed the den-
sifi cation of the deductive structure. Without any external confi rmation or 
other historical information, as in the case of Books  ii  and  iii , this scenario 
remains a stimulating hypothesis, but only a hypothesis!  114       

 Conclusions:     contributions and limitations of the 
indirect tradition 

 From the study of a better-known indirect tradition, several lessons may 
be drawn. Newly available information confi rms certain results of the 
Klamroth–Heiberg debate. Consideration of a greater number of versions 
of the  Elements  than Heiberg or Klamroth could have used reinforces the 
existence of a dichotomy between the direct and indirect traditions. 

  (1)     Although they agree (albeit with opposite interpretations of the fact), 
the ‘thinness’ of the indirect tradition is not so marked as Klamroth 
and Heiberg would have us believe, especially in Books  i – x . Th e most 
complete inventory of variants, probably Greek in origin, which we 
have now (by induction or thanks to information transmitted by Arab 
scholars or copyists), has several consequences: 

•     It puts into perspective the diff erent textual dichotomies. For example, 
No. 3 ( P  /  Th  ), within the Greek direct tradition, is quite modest with 

  112      See Heiberg  1903 : 59. I have espoused the same hypothesis in Euclid/Vitrac 2001:  iv  399–400. 
  113      Th e insertion of  iii .10  aliter , explicitly attributed to Heron by an-Nayrîzî, has the same eff ect of 

strengthening the deductive structure. 
  114      A single thing seems likely. Th e version of Euclid which Pappus had – if he is indeed the 

author of the second table of contents of Book  x  contained in the fi rst Book of Commentary to 
the aforementioned book transmitted under his name – contained the linear proofs. In eff ect, 
Propositions  x .60–65 and  x .66–70 were inverted (similarly for  x .97–102/103–107) and this 
fact precludes the existence of superfi cial proofs for  x .68–70. 
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respect to No. 1 (direct tradition/indirect medieval tradition) or even 
to No. 2, within the Arabic and Arabo-Latin translations.  115     

•     It convinces us that some part of what exists in Greek, and preserved 
by Heiberg in his edition, is very probably inauthentic.  

•     It gives a possible interpretation to some ‘isolated’ variants in Greek 
by integrating them into a broader picture which makes sense. For 
example, it makes sense of families of alternative proofs created by 
the same editorial principles.  116        

  (2)     However, because of the number of variants, the homogeneity of the 
entire indirect tradition, which Klamroth believed existed, no longer 
exists in Books  i – x . I have called this dichotomy 2, within the Arabic, 
Arabo-Latin and, it seems, the Hebraic traditions. For certain portions, 
notably Books  iii ,  viii  and  x , it seems that (at least) two rather struc-
turally diff erent editions existed and they contaminated each other sig-
nifi cantly. Consequently, it will be impossible to reconstitute a unique 
Greek prototype for this portion of the whole of the medieval tradition 
as Knorr had wanted.  117    

 If the study of the material contents, order, presentation, and proofs 
of the preserved versions of the thirteen books is resumed, it is not to 
be expected to fi nd that among the preserved versions, one of them, 
for instance Adelard I or Ishâq–Th âbit, may be declared closer to the 
original in all its dimensions than all the other versions. Th e ‘local’ 
criteria used by Klamroth, Heiberg and Knorr, either focusing on the 
material contents (according to the principle of expansion) or on the 
improvement of the form, do not converge upon a global criterion 
which applies to the entirety of the collection of the thirteen books. 
Th e result is thus that the indirect tradition appears more authentic in 
regard to the material contents but not for the order of presentation. 
For the problems of order and of presentation,  conversely, the indirect 

  115      See Tables 1–3 of the Appendix. 
  116      We have seen an example of this with the superfi cial proofs of  x .105–106. Another family 

of double proofs may be reconstituted for Propositions  vi . 20p, 22, 31,  x .9,  xi .37. See Vitrac 
 2004 : 18–20. 

  117      It should be emphasized that Knorr had not considered the problem at its full scale: 

  •    He considered at most a group of 21 Propositions and proceeded by induction.  
  •    He did not take into account more than one single criterion of structural divergence – that 

of material contents – with one exception: the proof of  xii .17, poorly handled in the indirect 
tradition and interpreted not as an accident of transmission but in terms of development.  

  •    He took into account neither changes in order nor the rich collection of double proofs.  
  •    He did not ask himself the question of whether the two Arabo-Latin translations that he 

used, Adelard and Gerard, were representative of the whole of the indirect tradition. Whether 
these translations are representative is not at all certain in the stereometric books (cf. below, 
pp. 118–19).    
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tradition has the benefi t of many more improvements, and the Greek 
tradition seems to have been very conservative in this area.  

  (3)     Furthermore, the conclusions drawn from the results of the compari-
son of versions change according to the book or group of books being 
studied. For example, interaction between Euclid and the Nicomachean 
tradition has had an impact on the text of the arithmetical Books. 
If  x .68–70 and 105–107 and  xiii .1–5 are judged by the criteria of 
improvement, the medieval versions (particular Adelard’s) are more 
sophisticated than the Greek text, at least as far as the contents are 
concerned. At the end of Book  iii  (and perhaps also in response to an 
initiative by Heron), the medieval versions are also more sophisticated 
with regard to the material contents,  118    although the opposite is much 
more frequent. 

 Along the same lines, the mathematically insuffi  cient proofs (accord-
ing to the criteria of the ancients) in the  Elements  are four in number if 
the direct and indirect traditions are combined:  viii .22–23,  ix .19 and 
 xii .17. If, as Knorr argues, we assume the errors are from Euclid and 
not textual corruptions, we arrive then, by applying his criteria, at the 
following conclusions: 

•     For  viii .22–23, the original proofs are those common to both the 
Greek and to the Hajjajian tradition; the proofs presented by the 
Ishâq–Th âbit version are improvements.  119     

•     For  ix .19, the original proof is that of manuscript  P  ;  those of  Th   and 
of the indirect tradition are improvements.  

•     For  xii .17, the original proof is that of the indirect tradition; those of 
 b  as well as of  P  and  Th   are improvements.  120       

 Th e type of statements must also be taken into account. Th e 
Defi nitions occupy a privileged place in philosophical exegesis. Th e 
Porisms are particularly prone to the vagaries of transmission because 
they may easily be confused with additions.   121     

  118      Th ere is the addition of the case of fi gures in the Propositions (Heib.)  iii .25, 33, 35, 36; 
 iv .5. Th e copyists ascribe them to the version of al-Hajjâj, and even to his  second  version if 
al-Karâbîsî is to be believed. See Brentjes  2000 : 48, 50. Other cases are also added in  iii .37 
without al-Hajjâj being mentioned. 

  119      See De Young  1991 : 657–9. 
  120      For my part, contrary to Knorr, I believe that the criterion of improvement does not apply for 

 ix .19 or  xii .17. I also believe that the proofs of  P  in one case and the proofs of the indirect 
tradition in the other are corrupt. For  ix .19, see Vitrac  2004 : 10–12. For  xii .17, see Euclid/
Vitrac 2001:  iv  369–71. 

  121      Heiberg  1884 : 20 observed that with the Defi nitions and Corollaries (Porisms) ‘die Araber … 
sehr frei verfahren haben’. In fact, it is not even simple to say exactly how many Porisms 
there are in the Greek text. Heiberg identifi es 30 of them as such but makes a second Porism 
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  (4)     To explain this state of aff airs, I see at least two explanations, that 
perhaps work in tandem: 

•     Either our diff erent witnesses of the text refl ect a general contamina-
tion  122    and a global criterion – at the scale of the complete treatise 
– cannot be reached.  

•     Or the principles that underpin the local criteria are inadequate.   
If certain branches of the tradition have epitomized the  Elements , 
then the principle used by Klamroth and Knorr that the text of the 
 Elements  grew increasingly amplifi ed proves inadequate. Th ese prin-
ciples may also miss their goals if it is not possible to identify the 
motivations of the ancient re-editors when they sought to improve 
the form of a mathematical text. We have seen that the criterion of 
mathematical refi nement is sometimes diffi  cult to use.     

  (5)     Certain characteristics of the preserved versions and diff erent external 
confi rmations have convinced us that there has been both contamina-
tion and epitomization. Th us, not only is the text of the version by 
Ishâq, as revised by Th âbit, without any additional deductive lacuna 
in Books  i – x , but the medieval evidence teaches us that the revision 
of Th âbit implied the consultation of other manuscripts and, con-
sequently, the collation of alternative proofs.  123    In so doing, various 
versions of the Greek or Arabic texts, if not contaminated by, were at 

from what, in the manuscripts, is nothing more than an addition to the Porism to  vi .20 and 
an insertion of a heading [Porism] before the large recapitulation following  x .111, although 
he did not do this for the summary following  x .72! For fi ft een Porisms, there is one or more 
Greek manuscripts in which the heading <Porism> is missing. Fift een Porisms are placed 
before the standard clause (‘what ought to be proved’), particularly true for  P . Eleven are 
inserted aft er the clause. Normally, a Porism begins with the expression, ‘From this, it is clear 
that’ (‘ἐκ δὴ τούτου φανερὸν ὅτι …’), but in seven cases ( iv .5,  vi .20,  ix .11,  x .9,  x .111,  x .114 
and  xii .17), the formulation is not canonical. Th e possibility of confusion appears in the fact 
that ten Porisms retained by Heiberg were amplifi ed by inauthentic additions. If the indirect 
tradition is consulted, it ought not to be forgotten that two Porisms from the Greek are related 
to substitutions of proof ( iii .31,  iv .5) and to an addition ( x .114) which do not exist in this 
tradition. Th us, it is not at all surprising that these Porisms did not exist in it. By holding to 
comparable cases, the indirect tradition counts eleven Porisms from the Greek, but two exist 
in a diff erent form. Th e Porism to  x .111 exists as a Proposition and the one to  xii .17 appears 
as part of a proof (as is also the case in certain Greek manuscripts). Th is ‘πόρισμα’ exists only 
in the margin of  P  and not in the other manuscripts! It may be remarked that neither has 
the standard formulation and that the indirect tradition has none of the other fi ve Porisms 
‘heterodox’ to the Greek text. For the others, their number decreases (to seven from nine in 
 i – ix  to which could be added three supplementary Porisms from the Ishâq–Th âbit version (to 
 viii .14, 15;  ix .5), to one from four in  x , to nil from six in  xi – xiii ). 

  122      Th is is the opinion of Brentjes, at least as concerns the Arabic and Arabo-Latin traditions. See 
Brentjes  1996 : 205. 

  123      See Engroff   1980 : 20–39. 
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least compared with each other in order to produce Th âbit’s revision of 
Ishâq’s translation. Th ere is no reason for astonishment: these scholars 
were not working to provide guidance to modern philologists who 
want to establish the history of the text of the  Elements . Th ey sought to 
procure a complete and stimulating mathematical text. Knowing the 
hazards of manuscript transmission, they compared diff erent copies, 
and I believe that Th âbit ibn Qurra used other Arabic translations, 
probably that of al-Hajjâj, and even some Greek commentaries, in 
particular that of Heron of Alexandria, which has some consequences 
for the structure of the revised text. At some points, it is more sophis-
ticated than the Greek text of Heiberg.  124    In the Arabo-Latin domain, 
the Gerard of Cremona version also proceeds by juxtaposition of dif-
ferent texts, some of which Th âbit had already combined, but also the 
alternate proofs that the tradition attributes to al-Hajjâj and which 
oft en appears in the Latin of Adelard of Bath.  

  (6)     Th e case of the translation (or translations) of al-Hajjâj is much more 
diffi  cult to judge because we know it only very incompletely and 
indirectly through several citations by copyists of manuscripts of the 
Ishâq–Th âbit versions and through the evidence of Tûsî and pseudo-
Tûsî.  125    Virtually all the characteristics that distinguish it – primarily 
its thinness and the structure of several families of proofs – appear 
in the Arabo-Latin version of Adelard of Bath.  126    Its antiquity and its 
thinness make it tempting to ascribe to it a privileged role. Nonetheless, 
the evidence from the preface of the Leiden Codex introducing the 
commentary of an-Nayrîzî is troubling.  127    Th e principle of amplifi ca-
tion, to which Klamroth (and Knorr) subscribe concerning the textual 
development, suppose that no deliberately abridged version has played 
a role in the transmission of the text. It is to precisely this phenomenon 
of abbreviation that the preface to the second translation (or revision) 
of al-Hajjâj makes reference. Th us, I am not sure that this principle, 

  124      Th is is particularly clear in Books  viii – ix , fi rst of all for the alternative proofs proposed 
for  viii .22–23, then the insertion of the converses to Prop. (Heib.)  viii .24–25 and the 
simplifi cation of the proof of  ix .2, fi nally the addition of the Propositions (Ishâq–Th âbit) 
 ix .30–31 to simplify the proofs of  ix .32–33 (= Heib.  ix .30–31), without forgetting the addition 
of Porisms (cf.  n. 121 ). 

  125      See Engroff   1980 : 20–39. Recently Gregg de Young has discovered an anonymous commentary 
relatively rich in references to divergences between the versions of Ishâq–Th âbit and al-Hajjâj. 
See de Young,  2002 /2003. 

  126      Twenty structural divergences are supposed to characterize the version of al-Hajjâj. Of these, 
sixteen appear in Adelard. Th e other four from Book  ix  and the  fi rst part  of Book  x  – the lost 
portion in Adelard’s translation – appear in the related Latin versions by Herman of Carinthia 
and Robert of Chester. 

  127      See the text and French translation in Djebbar  1996 : 97, 113, partially cited below as  n. 142 . 
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which functions rather well in the case of dichotomy 1, also applies to 
dichotomy 2.  128     

  (7)     Moreover, the case of the stereometric books, on which Knorr founded 
his argument, seems problematic to me. Th e Arabo-Latin translations 
are particularly close to each other in these books. Knorr relied on 
this point to deduce that the same thing would happen to their Arabic 
models and thus also the versions of al-Hajjâj and Ishâq–Th âbit.  129    What 
I have called dichotomy 2 hardly occurs there at all.  130    However, there 
are, in two manuscripts of this last version (Copenhagen, Mehrens 81; 
Istanbul, Fâtih 3439), glosses indicating that Book  x  is the last which 
Ishâq has translated and that what follows is ‘Hajjajian’. Th e author 
of the gloss to the manuscript in Copenhagen specifi es exactly that it 
‘comes from the second translation of al-Hajjâj’, i.e., the abridgement.  131    
From this reference, Klamroth deduced that Ishâq had translated only 
Books  i – x  and that Th âbit had taken  xi – xiii  from the translation of 
al-Hajjâj. Th is thesis has been challenged by Engroff  and I obviously 
have no expertise on this point, but it seems to me that the stereomet-
ric books undeniably constitute a particular case.  132    Even then, at-Tûsî 
had remarked that there is no structural divergence between what he 
believed to be the two versions of the stereometric books.  133    I would 
add that there is not, to my knowledge, any mention of the sort ‘Th âbit 
says  …’ beyond Book  x .  134    

 A fi nal element must be taken into account. In Proposition  xiii .11 
it is established that the side of a pentagon inscribed in a circle with 
a rational diameter is irrational, of the ‘minor’ type. Th us, in Book 
 x , ‘ἄλογος’ is translated as ‘asamm’ (‘deaf ’) by al-Hajjâj and ‘ghayr 
muntaq’ (‘un-expressible’) by Ishâq–Th âbit. Th e divergence appears, 
for example, between Avicenna and the manuscript Petersburg 2145 
on the one hand and the other Ishâq–Th âbit manuscripts on the other 

  128      It seems to me that Brentjes equally admits the idea that the so-called al-Hajjâj version No. 2 
represents an improved and abridged re-edition. See Brentjes  1996 : 221–2. 

  129      See Knorr  1996 : 259–60. 
  130      See Table 2 of the Appendix. 
  131      See Engroff   1980 : 9. 
  132      See Engroff   1980 : 9–10, 12–13. Let us add that at the end of Book  xi  in the manuscript Tehran 

Malik 3586, a gloss indicates that Th âbit ibn Qurra had revised only Books  i – x  and that Books 
 xi ,  xii  and  xiii  are Hajjajian! See Brentjes  2000 : 53. 

  133      See Rommevaux, Djebbar and Vitrac  2001 : 275, n. 184. 
  134      In the anonymous commentary cited above at  n. 125 , the references relative to the divergences 

between the versions of Ishâq–Th âbit and al-Hajjâj stop aft er the fi rst third of Book  x . Th is 
observation is well explained in the line of the gloss inserted in the manuscript Tehran Malik 
3586 (cf. above,  n. 132 ). 
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hand.  135    It is interesting to note that in Proposition (Heib.)  xiii .11 
(= IsTh  14), the manuscript Petersb. 2145, as well as Tehran Malik 3586 
and Rabat 1101, record ‘asamm!’  136    Th is does not necessarily mean that 
Ishâq did not translate Books  xi – xiii ,  137    but it at least suggests that at 
some moment of transmission, the stereometric books existed only in 
a single version.  138    Th is homogeneity, recorded by Tûsî, might even be 
the cause of the glosses inserted in the three manuscripts of the Ishâq–
Th âbit version that I just mentioned.  139     

  (8)     Two consequences may be drawn from the preceding considerations. 
First, Knorr’s hypothesis that the indirect tradition derived from a 
single Greek archetype, based only on the stereometric books – in fact 
only on the portion  xi .36– xii .17 – is challenged. Second, I have said 
that there are, in the versions of al-Hajjâj and Ishâq–Th âbit, three and 
two deductive lacunae respectively. Th ose of Ishâq–Th âbit occur in 
Book  xii . But, if the hypothesis of Klamroth or one of his variations is 
adopted, we know the translation of Ishâq–Th âbit only for Books  i – x . 
Th e translation here is without deductive lacunae, which, considering 
the work of the Reviser, is to be expected. As for the translation of al-
Hajjâj, the evidence of the preface in the Leiden manuscript suggests 
that it could scarcely be other than an epitome!  

  (9)     Th ese consequences being noted, it ought not to be forgotten that 
it is thanks to the indirect tradition itself that we have been able to 
determine some of its limitations. Th e medieval versions, notably 
those of Ishâq–Th âbit and Gerard of Cremona, are more attentive to 
problems of textual origin than the Greek manuscripts and thereby 
more informative about the divergences between versions observed 
by their authors. Th e contamination is clearly not the doing of medi-
eval scholars only. Th e subject of double proofs demonstrates this. 
Th e abundance of  additional material and local alterations of the 

  135      See Rommevaux, Djebbar and Vitrac  2001 : 259, 288–9. 
  136      I thank A. Djebbar for this information. 
  137      It is possible to doubt such an abstention by Ishâq given that there are two series of defi nitions 

for Book  xi  in Tehran Malik 3586, the latter being attributed to Hunayn ibn Ishâq and, 
probably, there was some confusion here between the father and the son (see Brentjes  2000 : 
54). However, Ishâq may well have brought his translation to an end with the Defi nitions for 
Book  xi , which have been (piously) conserved, though he did not translate what followed. 
Th us, one again arrives at the thesis of Klamroth. 

  138      Although she disagrees with the thesis of Klamroth, Brentjes pointed out that in regard to 
Defi nition  xi , the fi rst version of Tehran Malik 3586 (the Ishâq–Th âbit version) and the version 
given by al-Karâbîsî, who, (according to Brentjes), follows Hajjajian version, have minuscule 
diff erences. See Brentjes  2000 : 53. Th is seems to me to concur with the preceding remark. 

  139      See above,  nn. 131 – 132 . 
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  sort of  post-factum   explanations in Byzantine Greek manuscripts (cf. 
above the example of  xi .1) shows that the Greek text is itself enriched 
through recourse to the relevant elements of the commentary, prob-
ably through the intermediacy of marginal annotations by simple 
readers or by scholars.  

  (10)     Th e intervention of the epitomes in the indirect tradition is quite prob-
able. Th ere are, however, diff erent ways of abridging a text like that of 
the  Elements . An editor could eliminate portions considered inauthen-
tic or some theorems dealing with a theme judged too particular. 
Regroupings could be made. Abbreviated proofs could be substituted, 
using in particular the previously discussed formulae for potential 
and analogical proofs or by removing the uninstantiated general state-
ments, which are oft en less comprehensible than the example (set out 
in  ecthesis  and  diorism ) accompanied by a diagram and labelled with 
letters. More radically, all the proofs could be removed, and only what 
Bourbaki called a ‘fascicule de résultats’ might be retained, or some 
number of books no longer considered indispensable might be cut 
out. In this case, the very structure of the treatise and its plan, which 
have oft en been criticized, would be changed. Such recensions are 
not at all rare beginning from the sixteenth century, but in the major-
ity of ancient and medieval versions, even in a recension like that of 
Campanus which introduces numerous local changes, the Euclidean 
progression through thirteen books is maintained, even if at some 
stage supplementary books ( xiv, xv, xvi , …) were added. 

      Alternatively, the other operations of abbreviations listed above are 
all mentioned in the medieval prefaces, such as those of al-Maghribî,  140    
the recension now called pseudo-Tûsî  141    or the Leiden Codex, wherein 
the authors described recensions or epitomes. Moreover, as we have 
noted above, according to the preface of the Leiden Codex, al-Hajjâj, 
in order to win the favour of the new Khalif al-Ma’mûn, improved his 
fi rst translation ‘by rendering it more concise and shortening it. He 
did not fi nd an addition without removing it, nor a lacuna without 
fi lling it, nor a fault without repairing and correcting it, until he had 
purged, improved, summarized and shortened it all.’  142    It is possible 

  140      One can read a Latin translation in Heiberg  1884 : 16–17, with several errors of identifi cation 
about the cited Arabic authors (and even about the author of the preface! See Rommevaux, 
Djebbar and Vitrac  2001 : 230, 239). It allows us however to have some idea of the liberties 
taken by the authors of recensions. Completed by Sabra  1969 : 14–5 who corrects the 
identifi cations and Murdoch  1971 : 440 (col. b). 

  141      It is taken up again by Murdoch in the article cited in the preceding note. 
  142      Translation in Djebbar  1996 : 97. 
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that this passage contains some rhetorical exaggerations or stock 
phrases about the improvement of a text. If the quest for conciseness 
seems hardly debatable, the preface indicates neither the motivations 
for the suppressions nor the criteria used to identify the ‘additions’. 
It is conceivable that al-Hajjâj knew of other Greek versions, more 
concise than the text or texts initially translated, to which the phe-
nomenon of the epitomization had itself already been applied.  

  (11)     We know that at least one abridged version of the  Elements  had been 
produced in antiquity by Aigeias of Hierapolis. Mentioned by Proclus, 
he wrote therefore no later than the fi ft h century of the modern era. 
Th e diff erence with the second version of al-Hajjâj is that there is no 
evidence that it played a role in the transmission of the text. However, 
besides the obvious textual enrichment, it is not possible to completely 
exclude the intervention of one or several abridged Greek versions. 

      Th e relative ‘thinness’ of the al-Hajjâj version, as far as can be 
known, can indeed be explained in diff erent ways depending on 
the portion of text considered. Proposition  ii .14, which treats the 
quadrature of the triangle (with the associated absence of  i .45), and 
Propositions  xii .5, 7 and 8, which treat pyramids on a triangular base, 
proceed from the same attitude, and, in these cases, there are good 
reasons to think that the origin of this minimalist treatment has a 
Greek origin.  143    For the absence of Proposition  iii .37 I have noted that 
it was probably an accident of transmission. Th e absence of the bulk 
of the additional material, of several Defi nitions in Books  v ,  vi ,  vii  
and  xi  and of the Porisms in the stereometric books may perhaps be 
explained because al-Hajjâj had identifi ed them as additions. Similarly, 
several other Propositions missing from his version ( vi .12,  viii .11a–
12a,  x .16,  x .27–28), but present in the Ishâq–Th âbit translation, might 
be the result of additions lacking from the Greek or Syriac manuscripts 
consulted by al-Hajjâj, or they might have possessed these assertions, 
but he judged them to be useless, as they very nearly are.  

  (12)     Th e existence of abridged versions in Greek also made up part of the 
hypothesis of Heiberg, and he described the model of manuscript 
 b  in this way for its divergent part ( xi .36– xii .17).  144    Manuscript  b  
is, however, very fl awed. It contains problems in the lettering of the 

  143      Let us recall that Proposition  xii .6 and the Porisms to  xii .7 and 8 are missing in manuscript 
 b . For  ii .14, Simplicius seemingly knew two versions of the theorem: the ‘rectangular’ version 
in his commentary to the  Physics  of Aristotle ( CAG , 62. 8 Diels) and the ‘triangular’ version in 
his commentary to  De cælo : ( CAG , ed. 414.1 Heiberg). 

  144      See above, pp. 81–2. 



122 bernard vitrac

diagrams,  saut du même au même , and even, as it seems to me, faults 
in reading the uncial script. Manuscript  b  could thus be the result of 
a new transliteration, being more faulty since it was further removed 
from the ninth century, and produced (for reasons which elude us) at 
the same time as the copy, in the eleventh century, of the Bologna man-
uscript from a model which was either truly ancient (the hypothesis 
of Knorr) or proceeding from another archetype, such as an abridged 
version of the ‘Aigeias’ type. Here, I call upon the possibility of an 
ancient model, whereas Heiberg imagined a Byzantine  recension.    

 Whatever the case may have been, I do not believe that this really changes 
the attitude that the editor of the Greek text may have adopted toward it. Th e 
appeal to  b   xi .36– xii .17 may prove useful for removing some cases of textual 
divergences between  P  and  Th  , in the aforementioned portion. However, 
adopting these readings would probably create a philological monster which 
never existed. Perhaps it can yet be used to improve the edition of a similar 
Arabic version. Knorr wanted to adopt the text of  b , rather than what he 
called ‘the wrong text’ of Heiberg, because he hoped that a comparison of 
the primary Arabic translations would permit the reconstitution of a Greek 
archetype of comparable antiquity for the remainder of the treatise. Th is 
reconstitution is impossible, at least for the present state of our knowledge. 

 Th erefore, the conception of a new critical edition of the Greek text 
seems useless to me for the moment. Th e critical editions of the various 
identifi ed Arabic, Arabo-Latin and Arabo-Hebrew versions would be pref-
erable. It would be necessary to produce an ‘instruction manual’ for the 
reader to navigate these versions according to the problem, the time period, 
the language of culture, even the Euclid available to (another) interested 
author. Such a manual would be especially necessary in the cases of double 
proofs or substitutions of proofs, cases which the indirect tradition has 
considerably enriched. 

 Th is necessity has long been perceived by the historians of the medieval 
and modern periods. Undoubtedly, the Hellenist would also admit the same 
necessity. Th e movement to ‘return’ to the original which inspired the work 
of the philologists of the nineteenth century seems to need a break. A less 
partial knowledge of the indirect tradition provides us not only with much 
richer information at a local level, but also with more uncertainty about its 
ancient components. Th us stripped of our (false) certainties, we may feel a 
little frustrated, but the hope remains that new discoveries of ancient papyri, 
manuscripts of medieval translations of Euclid or of its commentators 
will allow us to move forward.     
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 Appendix 

 Th e appendix contains three tables (each describing one of the breaks 
observed in the textual tradition of Euclid’s  Elements ). I have used the fol-
lowing abbreviations: 

 Df., Defi nition; Post., Postulates; CN, Common Notion; Prop. proposition; 
Por. Porism (= corollary); Th e notation  N / N  + 1 designates the lemma between 
Propositions  N  and  N  + 1. Brackets indicate portions considered inauthentic by 
Heiberg, but which exist in Greek manuscripts. 

 (+) or (−) signify the presence or absence of a textual element, respectively; 
 (÷2): fusion of two elements into one; 
 (× 2): subdivision of an element into two. 
  aliter  marks the existence of a second proof, possibly partial (indicated by ‘p’) or the 
existence of a second defi nition. 

 Ad., version called Adelard I (Busard  1983 ); GC, version attributed to Gerard 
of Cremona (Busard  1984 ); gr.-lat., Greco-Latin version (Busard  1987 ); Heib., 
Heiberg’s edition; IsTh , Ishâq–Th âbit version;  P , manuscript Vatic. Gr. 190;  Th  , 
Greek manuscripts called Th eonians (on  P  /  Th  , see above, pp.  82–5); mg., 
 marginalia.                                                                                 
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 2     Diagrams and arguments in ancient Greek 
mathematics:   lessons drawn from comparisons 
of the manuscript diagrams with those in 
modern critical editions    

   Ken     Saito     and     Nathan     Sid oli      

 Introduction 

 In some ways, the works of ancient Greek geometry can be regarded as 
arguments about diagrams. Anyone who has ever looked at a medieval 
manuscript containing a copy of an ancient geometrical text knows that 
the most conspicuous characteristic of these works is the constant presence 
of diagrams.  1    Anyone who has ever read a Greek mathematical text, in any 
language, knows that the most prevalent feature of Greek mathematical 
prose is the constant use of letter names, which refer the reader’s attention 
to the accompanying diagrams. 

 In recent years, particularly due to a chapter in Netz’s  Th e Shaping of 
Deduction in Greek Mathematics  entitled ‘Th e lettered diagram’, historians of 
Greek mathematics have had a renewed interest in the relationship between 
the argument in the text and the fi gure that accompanies it.  2    Research pro-
jects that were motivated by this interest, however, quickly had to come to 
grips with the fact that the edited texts of canonical works of Greek geom-
etry, although they contained a wealth of information about the manuscript 
evidence for the text itself, oft en said nothing at all about the diagrams. For 
years, the classical works of Apollonius, Archimedes and, most importantly, 
the  Elements  of Euclid have been read in edited Greek texts and modern 
translations that contain diagrams having little or no relation to the dia-
grams in the manuscript sources. Because they are essentially mathematical 
reconstructions, the diagrams in modern editions are oft en mathematically 
more intelligible than those in the manuscripts, but they are oft en histori-
cally misleading and occasionally even mathematically misleading.  3    

 1 In some cases, the diagrams were never actually drawn, but even their absence is immediately 
evident from the rectangular boxes that were left  for them.

 2 N1999: 12–67.

135
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mathematically consistent with our understanding of the argument and a few that may have 
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 In fact, a few scholars of the ancient mathematical sciences have for 
many years made critical studies of the manuscript fi gures, and Neugebauer 
oft en called for the critical and conceptual study of ancient and medieval 
diagrams.  4    Th ese scholars, however, were mostly working on the exact 
sciences, particularly astronomy and, perhaps due to the tendency of his-
torians of science to divide their research along contemporary disciplinary 
lines that would have made little sense to ancient mathematicians, these 
works have generally formed a minority interest for historians of ancient 
mathematics. Indeed, in his later editions, Heiberg paid more attention 
to the manuscript fi gures than he did in his earlier work, but by this time 
his editions of the canonical works were already complete. In fact, for his 
edition of Euclid’s  Elements , it appears that the diagrams were adopted from 
the tradition of printed texts without consulting the manuscript sources. 

 In this chapter, aft er briefl y sketching the rise of scholarly interest in pro-
ducing critical diagrams, we investigate the characteristics of manuscript 
diagrams in contrast to modern reconstructions. To the extent that the 
evidence will allow, we distinguish between those features of the manu-
script diagrams that can be attributed to ancient practice and those that are 
probably the result of the medieval manuscript tradition, through which 
we have received the ancient texts. We close with some speculations about 
what this implies for the conceptual relationship between the fi gure and the 
text in ancient Greek mathematical works.   

 Heiberg’s edition of Euclid’s  Elements  

 Heiberg ( 1883 –8), on the basis of a study of manuscripts held in European 
libraries, prepared his edition of the  Elements  from seven manuscripts and 
the critical apparatus accompanying his text makes constant reference to 
these sources.  5    Nevertheless, there is usually no apparatus for the diagrams 
and hence no mention of their source.  6    An examination of the previous 

 4 For example see the section iv D, 2, ‘Figures in Texts’ in his A History of Ancient Mathematical 
Astronomy. Neugebauer 1975: 751–5.

 5 Heiberg 1903 later published a more detailed account of the manuscript sources and the reasons 
for his editorial choices. For a more extended discussion of Heiberg’s work on the Elements and 
a discussion of the overall history of the text see Vitrac’s contribution in this volume.

 6 While this is largely the case there are some exceptions. For example, the diagrams for Elem. 
xi.39 and xiii.15 are accompanied with apparatus. Heiberg and Stamatis 1969–77: iv, 73 
and 166.

led to historical misunderstandings for this reason. Mathematically misleading modern 
diagrams, on the other hand, are relatively rare; Neugebauer discusses one example from 
the edition of Th eodosius’  On Days and Nights  prepared by Fecht. Neugebauer  1975 : 752; Fecht 
 1927 . 
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printed editions of the text, however, makes it clear that the diagrams 
accompanying Heiberg’s edition were drawn entirely, or for the most part, 
by copying those in the edition of August ( 1826 –9).  7    Th e August edition 
would have been particularly convenient for copying the diagrams, since, 
as was typical for a German technical publication of its time, the diagrams 
were printed together in fold-out pages at the end of the volumes. 

 Although nearly all the diagrams appear to have been so copied, a single 
example may be used to demonstrate this point. For  Elem .  xi .12, concerning 
the construction of a perpendicular to a given plane, the diagrams in all the 
manuscripts consist simply of two equal lines, ΔA and BΓ, placed side by 
side and labelled such that points Δ and B mark the top of the two lines. In 
 Figure 2.1 , we compare the diagram for  Elem .  xi .12 in  Vatican 190 , as rep-
resentative of all the manuscripts, with that in both the August and Heiberg 
editions.  8    While  Vatican 190  is typical of the manuscript diagrams, that in 
Heiberg’s text is clearly copied from the August diagram. Although the given 
plane is not shown in the manuscript fi gures, it appears in both the printed 
editions and it is used with the techniques of linear perspective to make the 
two lines appear to be in diff erent planes from the plane of the drawing. 
Most signifi cantly, however, there is a labelling error in the line BΓ. Point 
Γ is supposed to be in the given plane, and hence must be at the bottom of 
line BΓ, as in  Vatican 190 . Th is error was transmitted when the diagram was 

 7 Th e diagrams to the arithmetical books are a clear exception. Th e August diagrams are 
dotted lines, whereas Heiberg’s edition returns to the lines we fi nd in the manuscripts. Th ere 
also other, individual cases where the diagrams were redrawn, presumably because those in 
the August edition were considered to be mathematically unsatisfactory. For example, the 
diagram to Elem. xi.38 has been redrawn for Heiberg’s edition, whereas all the surrounding 
diagrams are clearly copied. See also the diagram for Elem. xii.17. Compare Heiberg and 
Stamatis 1969–77: iv 75 and 128 with August 1826–9: Tab. ix and Tab. x.

 8 In this chapter, we refer to manuscripts by an abbreviated name in italics. Full library shelf 
marks are given in the references. For the Euclidian manuscripts see also Vitrac’s chapter in 
this volume.

 Figure 2.1      Diagrams for Euclid’s  Elements , Book xi, Proposition 12.    
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copied, despite the fact that it could have been easily corrected from consid-
erations of the orientation required by the text.  

 Indeed, whereas through the course of the modern period, following the 
general trends of classical scholarship, the editors of successive publications 
of the  Elements  tended to consult a wider and wider range of manuscripts 
and give their readers more and more information about these manu-
scripts, the diagrams that accompanied these editions were generally made 
on the basis of the diagrams in the previous editions. 

 As an example of this practice, we may take  Elem .  i .13, which con-
cerns the sum of the angles on either side of a straight line that falls on 
another straight line. Th e manuscripts all agree in depicting angle ABΓ as 
opening to the left , as shown in  Figure 2.2  by the example of  Vatican 190 .  9    
Nevertheless, all printed editions, following the  editio princeps  of Grynée 
( 1533 ), print angle ABΓ opening to the right.  

 In some sense, this may have been a result of the division of labour of 
the publishers themselves. Whereas the editions were prepared by classical 
scholars and typeset by printers who were knowledgeable in the classical 
languages and generally had some sensitivity to the historical issues involved 
in producing a printed text from manuscript sources, the diagrams were 
almost certainly draft ed by professional illustrators, who would have been 
skilled in the techniques of visual reproduction but perhaps uninterested in 
the historical issues at hand. Nevertheless, the fact that the scholars who pre-
pared these editions and the editors who printed them were content to use 
the diagrams of the previous editions as their primary sources says a great 
deal about their views of the relative importance of the historical sanctity of 
the text and of the diagrams in Greek mathematical works. 

 Already, during the course of Heiberg’s career, the attitudes of scholars 
towards the importance of the manuscript diagrams began to change. In 
the late 1890s, in the edition he prepared with Besthorn of al-Nayrīzī’s 

 9 See Saito 2006: 110 for further images of the manuscript fi gures.

 Figure 2.2      Diagrams for Euclid’s  Elements , Book i, Proposition 13.    

Vatican 190 Grynée AugustGregory

A E

ΔB BB ΓΔ

A
E

Fig.B.

E A

ΓΔΓ



 Diagrams and arguments in Greek mathematics 139

 commentaries to the  Elements , the diagrams were taken directly from  Leiden 
399 , and hence oft en quite diff erent from those printed in his edition of the 
Greek.  10    By the time he edited Th eodosius’  Spherics , he must have become 
convinced of the importance of giving the diagrams critical attention, 
because the fi nished work includes diagrams based on the  manuscripts, 
generally accompanied with a critical note beginning ‘In fi g.’  11      

 Editions of manuscript diagrams 

 Because the manuscript diagrams for spherical geometry are so strikingly 
diff erent from what we have grown to expect since the advent of the con-
sistent application of techniques of linear perspective in the early modern 
period, the editions of ancient Greek works in spherical astronomy were 
some of the fi rst in which the editors began to apply critical techniques to the 
fi gures. For example in the eighth, and last, volume of the complete works of 
Euclid, for his edition of the  Phenomena , Menge ( 1916 ) provided diagrams 
based on the manuscript sources and in some cases included critical notes. 

 One of the most infl uential editions with regard to the critical treatment 
of diagrams was that made by Rome ( 1931 –43) of the commentaries by 
Pappus and Th eon to Ptolemy’s  Almagest . Th e diagrams in this long work 
were taken from the manuscript sources and their variants are discussed 
in critical notes placed directly below the fi gures themselves.  12    Rome’s 
practices infl uenced other scholars working in French and the editions by 
Mogenet ( 1950 ), of Autolycus’ works in spherical astronomy, and Lejeune 
( 1956 ), of the Latin translation of Ptolemy’s  Optics , both contain manu-
script fi gures with critical notes. 

 More recently, the majority tendency has been to provide manuscript 
diagrams with critical assessment. For example, the editions by Jones 
( 1986 ) and Czinczenheim ( 2000 ) of Book  vii  of Pappus’  Collection  and 

11 Heiberg 1927. In fact, these critical notes are diffi  cult to notice, since they are found among 
the notes for the Greek text. Th e notes for the Greek text, however, are prefaced by numbers 
referring to the lines of the text, whereas the diagrams are always located in the Latin 
translation, which has no line numbers. Neugebauer 1975: 751–5 seems to have missed them, 
since he makes no mention of them in his criticism of the failure of classical scholars to pay 
suffi  cient attention to the manuscript diagrams of the works of spherical astronomy.

10 Besthorn et al. 1897–1932.

12 In connection with the early interest that Rome and Neugebauer showed in manuscript fi gures, 
we should mention the papers they wrote on Heron’s Dioptra, the interpretation of which 
depends in vital ways on understanding the diagram. Rome 1923; Neugebauer 1938–9; Sidoli 
2005.
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Th eodosius’  Spherics , respectively, both contain critical diagrams, and a 
recent translation of Archimedes’  Sphere and Cylinder  also includes a criti-
cal assessment of the manuscript fi gures.  13    

 Nevertheless, although there are critically edited diagrams for many 
works, especially those of the exact sciences, the most canonical works – 
the works of Archimedes and Apollonius, the  Elements  of Euclid and the 
 Almagest  of Ptolemy – because they were edited by Heiberg early in his 
career, are accompanied by modern, redrawn diagrams. Hence, because a 
study of Greek mathematics almost always begins with the  Elements , and 
because the manuscript diagrams of this work contain many distinctive 
and unexpected features, it is essential that we reassess the manuscript 
evidence.   

 Characteristics of manuscript diagrams 

 In this section, focusing largely on the  Elements , we examine some of the 
characteristic features of the manuscript diagrams as material objects that 
distinguish them from their modern counterparts. Manuscript diagrams 
are historically contingent objects which were read and copied and redrawn 
many times over the centuries. In some cases, they may tell us about ancient 
practice, in other cases, about medieval interpretations of ancient practice, 
and in some few cases, they simply tell us about the idiosyncratic reading 
of a single scribe. In the following sections, we begin with broad general 
tendencies that can almost certainly be ascribed to the whole history of 
the transmission, and then move into more individual cases where the 
tradition shows modifi cation and interpretation. In this chapter, we present 
summary overviews, not systematic studies.  

 Overspecifi cation 

 One of the most pervasive features of the manuscript fi gures is the ten-
dency to represent more regularity among the geometric objects than is 
demanded by the argument. For example, we fi nd rectangles represent-
ing parallelograms, isosceles triangles representing arbitrary triangles, 

13 Netz 2004. In fact, however, the fi gures printed by Czinczenheim contain some peculiar 
features. Although she claims to have based her diagrams on those of Vatican 204, they 
oft en contain curved lines of a sort almost never seen in Greek mathematical manuscripts 
and certainly not in Vatican 204. Th us, although her critical notes are useful, the visual 
representation of the fi gures is oft en misleading.
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squares representing rectangles, and symmetry in the fi gure where none is 
required by the text.  14    Th is tendency towards greater regularity, which we 
call ‘overspecifi cation’, is so prevalent in the Greek, Arabic and Latin trans-
missions of the  Elements  that it almost certainly refl ects ancient practice. 

 We begin with an example of a manuscript diagram portraying more 
symmetry than is required by the text.  Elem .  i .7 demonstrates that two 
given straight lines constructed from the extremities of a given line, on the 
same side of it, will meet in one and only one point. In  Figure 2.3 , where 
the given lines are AΓ and BΓ, the proof proceeds indirectly by assuming 
some lines equal to these, say AΔ and BΔ, meet at some other point, Δ, and 
then showing this to be impossible. As long as they are on the same side of 
line AB, points Γ and Δ may be assumed to be anywhere and the proof is 
still valid. Heiberg, following the modern tradition, depicts this as shown 
in  Figure 2.3 . All of the manuscripts used by Heiberg agree, however, in 
placing points Γ and Δ on a line parallel to line AB and arranged such that 
triangle ABΔ and triangle ABΓ appear to be equal.  15    In this way, the fi gure 
becomes perfectly symmetrical and, to our modern taste, fails to convey the 
arbitrariness that the text allows in the relative positions of points Γ and Δ.  

 We turn now to a case of the tendency of arbitrary angles to be rep-
resented as orthogonal.  Elem .  i .35 shows that parallelograms that stand 
on the same base between the same parallels are equal to each other. In 
 Figure 2.4 , the proof that parallelogram ABΓΔ equals parallelogram EBΓZ 
follows from the addition and subtraction of areas represented in the fi gure 
and would make no sense without an appeal to the fi gure in order to under-
stand these operations. In the modern fi gures that culminate in Heiberg’s 
edition, the parallelograms are both depicted with oblique angles, whereas 

 Figure 2.3      Diagrams for Euclid’s  Elements , Book i, Proposition 7.    
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14 In this chapter, we give only a few select examples. Many more examples, however, can be seen 
by consulting the manuscript diagrams themselves. For Book i of the Elements, see Saito 2006. 
For Books ii–vi of the Elements, as well as Euclid’s Phenomena and Optics, see the report of a 
three-year research project on manuscript diagrams, carried out by Saito, available online at 
www.hs.osakafu-u.ac.jp/~ken.saito/.

15 See Saito 2006: 103 for further images of the manuscript fi gures.

http://www.hs.osakafu-u.ac.jp/~ken.saito/
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in the manuscripts the base parallelogram ABΓΔ is always depicted as a 
rectangle, as seen in  Bodleian 301 , and oft en even as a square, as seen in 
 Vatican 190 .  16    Once again, to our modern sensibility, the diagrams appear 
to convey more regularity than is required by the proof. Th at is, the angles 
need not be right and the sides need not be the same size, and yet they are 
so depicted in the manuscripts.  

 We close with one rather extreme example of overspecifi cation.  Elem . 
 vi .20 shows that similar polygons are divided into an equal number of 
triangles, of which corresponding triangles in each polygon are similar, 
and that the ratio of the polygons to one another is equal to the ratio of 
corresponding triangles to one another, and that the ratio of the polygons 
to one another is the duplicate of the ratio of a pair of corresponding sides. 
Although the enunciation is given in such general terms, following the 
usual practice of Greek geometers, the enunciation and proof is made for 
a particular instantiation of these objects; in this case, a pair of pentagons. 
In  Figure 2.5 , the modern diagram printed by Heiberg depicts two similar, 
but unequal, irregular pentagons. In  Bodleian 301 , on the other hand, we 
fi nd two pentagons that are both regular and equal. Th is diagram strikes 
the modern eye as inappropriate for this situation because the proposi-
tion is not about equal, regular pentagons, but rather similar polygons of 

16 See Saito 2006: 131 for further images of the manuscript fi gures.

 Figure 2.4      Diagrams for Euclid’s  Elements , Book i, Proposition 35.    
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 Figure 2.5      Diagrams for Euclid’s  Elements , Book vi, Proposition 20.    
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any shape.  17    In the modern fi gure, because the pentagons are irregular, we 
somehow imagine that they could represent any pair of polygons, although, 
in fact a certain specifi c pair of irregular pentagons are depicted.  

 Th e presence of overspecifi cation is so prevalent in the diagrams of 
the medieval transmission of geometric texts that we believe it must be 
representative of ancient practice. Moreover, there is no mathematical 
reason why the use of overspecifi ed diagrams should not have been part of 
the ancient tradition. For us, the lack of regularity in the modern fi gures 
is  suggestive of greater generality. Th e ancient and medieval scholars, 
however, apparently did not have this association between irregularity and 
greater generality, and, except perhaps from a statistical standpoint, there 
is no reason why these concepts should be so linked. Th e drawing printed 
by Heiberg is not a drawing of ‘any’ pair of polygons, it is a drawing of two 
particular irregular pentagons. Since the text states that the two polygons 
are similar, they could be represented by any two similar polygons, as say 
those in  Bodleian 301  which also happen to be equal and regular. Of course 
statistically, an arbitrarily chosen pair of similar polygons is more likely to 
be irregular and unequal, but statistical considerations, aside from being 
anachronistic, are hardly relevant. Th e diagram is simply a representation 
of the objects under discussion. For us, an irregular triangle is somehow a 
more satisfying representation of ‘any’ triangle, whereas for the ancient and 
medieval mathematical scholars an arbitrary triangle might be just as well, 
if not better, depicted by a regular triangle.   

 Indiff erence to visual accuracy 

 Another widespread tendency that we fi nd in the manuscripts is the use of 
diagrams that are not graphically accurate depictions of the mathematical 
objects discussed in the text. For example, unequal lines may be depicted as 
equal, equal angles may be depicted as unequal, the bisection of a line may 
look more like a quadrature, an arc of a parabola may be represented with 
the arc of a circle, or straight lines may be depicted as curved. Th ese tenden-
cies show a certain indiff erence to graphical accuracy and can be divided 
into two types, which we call ‘indiff erence to metrical accuracy’ and ‘indif-
ference to geometric shape’. 

 We begin with an example that exhibits both overspecifi cation and indif-
ference to metrical accuracy.  Elem .  i .44 is a problem that shows how to 

17 In fact, the proof given in the proposition is also about a more specifi c polygon in that it 
has fi ve sides and is divided into three similar triangles, but it achieves generality by being 
generally applicable for any given pair of rectilinear fi gures. Th is proof is an example of the 
type of proof that Freudenthal 1953 called quasi-general.
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construct, on a given line, a parallelogram that contains a given angle and 
is equal to a given triangle. As exemplifi ed by  Vatican 190  in  Figure 2.6 , in 
all the manuscripts, the parallelogram is represented by a rectangle, and in 
the majority of the manuscripts that Heiberg used for his edition there is 
no correlation between the magnitudes of the given angle and triangle and 
those of the constructed angle and parallelogram.  18    In the modern fi gure, 
printed by Heiberg and seen in  Figure 2.6 , however, not only is the con-
structed fi gure depicted as an oblique parallelogram, but the magnitudes of 
the given and constructed objects have been set out as equal.  

 We turn now to an occurrence of metrical indiff erence that is, in a sense, 
the opposite of overspecifi cation. In  Elem .  ii .7, Euclid demonstrates a 
proposition asserting the metrical relationship obtaining between squares 
and rectangles constructed on a given line cut at random. Th e overall geo-
metric object is stated to be a square and it contains two internal squares. 
Nevertheless, as seen in the examples of  Vatican 190  and  Bodleian 301  in 
 Figure 2.7 , the majority of Heiberg’s manuscripts show these squares as 
rectangles.  19    We should note also the extreme overspecifi cation of  Bodleian 
301 , in which all of the internal rectangles appear to be equal. In general, 
there seems to be a basic indiff erence as to whether or not the diagram 
should visually represent the most essential metrical properties of the 
 geometric objects it depicts.  

 Figure 2.6      Diagrams for Euclid’s  Elements , Book i, Proposition 44.    
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18 In this chapter, when we speak of the majority of the manuscripts, we mean the majority of 
the manuscripts selected by the text editor as independent witnesses for the establishment 
of the text. We should be wary of assuming, however, that the majority reading is the best, 
or most pristine. See Saito 2006: 140, for further images of the manuscript fi gures. In Vienna 
31, as is oft en the case with this manuscript, we fi nd the magnitudes have been drawn so as 
to accurately represent the stipulations of the text (see the discussion of this manuscript in 
‘Correcting the diagram’, below).

19 See Saito 2008 for further images of the manuscript diagrams. In Vienna 31 and Bologna 
18–19, the squares, indeed, look like squares.
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 As well as metrical indiff erence, the manuscript diagrams oft en seem to 
reveal an indiff erence toward the geometric shape of the objects as speci-
fi ed by the text. Th e most prevalent example of this is the use of circular 
arcs to portray all curved lines. As an example, we may take the diagram 
for Apollonius  Con .  i .16. As seen in  Figure 2.8 , the diagram in  Vatican 206  
shows the two branches of an hyperbola as two semicircles. Indeed, all 
the diagrams in this manuscript portray conic sections with circular arcs. 
Heiberg’s diagram, on the other hand, depicts the hyperbolas with hyper-
bolas.  

 Th is diagram, however, is also interesting because it includes a case 
of overspecifi cation, despite the fact that Eutocius, already in the sixth 
century, noticed this overspecifi cation and suggested that it be avoided.  20    
In  Figure 2.8 , the line AB appears to be drawn as the axis of the hyperbola, 
such that HK and ΘΛ are shown as orthogonal ordinates, whereas the 
theorem treats the properties of any diameter, such that HK and ΘΛ could 
also be oblique ordinates. Eutocius suggested that they be so drawn in 
order to make it clear that the proposition is about diameters, not the axis. 
Nevertheless, despite Eutocius’ remarks, the overspecifi cation of this fi gure 
was preserved into the medieval period, and indeed was maintained by 
Heiberg in his edition of the text.  21    Th is episode indicates that overspecifi -
cation was indeed in eff ect in the ancient period and that although Eutocius 
objected to this particular instance of it, he was not generally opposed, and 
even here his objection was ignored. 

 As well as being used to represent the more complicated curves of the 
conics sections, circular arcs are also used to represent straight lines. As 
Netz has shown,  22    this practice was consistently applied in the diagrams for 

 Figure 2.7      Diagrams for Euclid’s  Elements , Book ii, Proposition 7.    
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20 Heiberg 1891–3: 224; Decorps-Foulquier 1999: 74–5.
21 A more general fi gure, which would no doubt have pleased Eutocius, is given in Taliaferro, 

Densmore and Donahue 1998: 34.
22 Netz 2004.



146 ken saito and nathan sidoli

Archimedes’  Sphere and Cylinder  for a polygon with short sides that might 
be visually confused with the arcs of the circumscribed circle.  23    

 In the manuscript diagrams of  Elem .  iv .16, however, we have good 
evidence that the curved lines are the result of later intervention by the 
scribes.  Elem .  iv .16 is a problem that shows how to construct a regular 
15-gon in a circle ( Figure 2.9 ). Th e manuscript evidence for this fi gure is 
rather involved and, in fact, none of the manuscripts that Heiberg used 
contain the same diagram in the place of the primary diagram, although 
there is some obvious cross-contamination in the secondary, marginal dia-
grams.  24    Nevertheless, it is most likely that the archetype was a metrically 
inexact representation of the sides of the auxiliary equilateral triangle and 
regular pentagon depicted with straight lines, as found in  Bologna 18–19  

 Figure 2.8      Diagrams for Apollonius’  Conica , Book i, Proposition 16.    
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23 In the present state of the evidence, it is diffi  cult to determine with certainty whether or not 
the curved lines in the Archimedes tradition go back to antiquity, but there is no good reason 
to assert that they do not. All of our extant Greek manuscripts for the complete treatise of 
Sphere and Cylinder are based on a single Byzantine manuscript, which is now lost. Th is is 
supported by the fragmentary evidence of the oldest manuscript, the so-called Archimedes 
Palimpsest, whose fi gures also contain curved lines. Th e diagrams in an autograph of William 
of Moerbeke’s Latin translation, Vatican Ottob. 1850, however, made on the basis of a diff erent 
Greek codex, also now lost, have straight lines, but this does not prove anything. Th e source 
manuscript may have had straight lines or Moerbeke may have changed them. Whatever 
the case, we now have three witnesses, two of which agree on curved lines and one of which 
contains straight lines.

24 See Saito 2008: 171–3 for a full discussion. Th is previous report, however, was written before 
the manuscripts could be consulted in person. Since Saito has now examined most of the 
relevant manuscripts, it is clear from the colour of the lines, the pattern of erasures and so on, 
that the curved lines are part of the later tradition. See www.hs.osakafu-u.ac.jp/~ken.saito/
diagram/ for further updates.

http://www.hs.osakafu-u.ac.jp/~ken.saito/diagram/
http://www.hs.osakafu-u.ac.jp/~ken.saito/diagram/
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and in the erased part of  Florence 28 .  25    In  Bodleian 301  and  Paris 2466  we 
see examples in which the scribe has made an eff ort to draw lines AB and 
AΓ so as to portray more accurately the sides of a regular pentagon and an 
equilateral triangle, respectively. In  Bodleian 301 , the external sides of the 
fi gures are clearly curved, while in  Paris 2466  this curvature is slight. In 
 Vienna 31 , the original four lines were straight and metrically accurate, as 
is usual for this manuscript, and a later hand added further curved lines. In 
 Vatican 190 , it appears that all the sides of the auxiliary triangle and pen-
tagon were drawn in at some point and then later erased, presumably so as 
to bring the fi gure into conformity with the evidence of some other source.  

 Not only were circles used for straight lines, but we also have at least one 
example of straight lines being used to represent a curved line. Th is rather 
interesting example of indiff erence to visual accuracy comes from one 
of the most fascinating manuscripts of Greek mathematics, the so-called 
Archimedes Palimpsest, a tenth-century manuscript containing various 
Hellenistic treatises including technical works by Archimedes that was 

 Figure 2.9      Diagrams for Euclid’s  Elements , Book iv, Proposition 16. Dashed lines were 
drawn in and later erased. Grey lines were drawn in a diff erent ink or with a diff erent 
instrument.    
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25 In Florence 28, the metrically inaccurate fi gure with straight lines was erased and drawn over 
with a metrically accurate fi gure with curved lines. Th e colour of the ink makes it clear that the 
rectilinear lines that remain from the original are AΓ and the short part of AB that coincides 
with the new curved line AB.
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palimpsested as a prayer book some centuries later.  26    In the section of the 
treatise that Heiberg called  Method  14, Archimedes discusses the metrical 
relationships that obtain between a prism, a cylinder and a parabolic solid 
that are constructed within the same square base.  27    In  Figure 2.10 , the base 
of the prism is rectangle EΔΓH, that of the cylinder is semicircle EZH, 
while that of the parabolic solid is triangle EZH. Th us, in this diagram, 
a parabola is represented by an isosceles triangle. Since the parabola is 
defi ned in the text by the relationship between the ordinates and abscissa, 
and since the triangle intersects and meets the same lines as the parabola, 
this was apparently seen as a perfectly acceptable representation. In this 
way, the triangle functions as a purely schematic representation of the 
parabola. Indeed, without the text we would have no way to know that the 
diagram represents a parabola.    

 Diagrams in solid geometry 

 Th e schematic nature of ancient and medieval diagrams becomes most 
obvious when we consider the fi gures of solid geometry. Although there are 
some diagrams in the manuscripts of solid geometry that attempt to give 
a pictorial representation of the geometric objects, for the most part, they 
forego linear perspective in favour of schematic representation. Th is means 
that they do not serve to convey a sense of the overall spacial relationships 

26 Th e circuitous story of this manuscript is told by Netz and Noel 2007.
27 Th is section of the Method is discussed by Netz, Saito and Tchernetska 2001–2. Th e diagram 

found in the palimpsest is diffi  cult to see in the original. Here, we include two images developed 
by researchers in the Archimedes Palimpsest Project. Th e diagram is in the left -hand column 
of the text spanning pages 159v–158r. Th ese images, licensed under the Creative Commons 
Attribution 3.0 Unported Access Rights, are available online at www.archimedespalimpsest.org.

 Figure 2.10      Diagrams for Archimedes’  Method , Proposition 12.    
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obtaining among the objects, but rather to convey specifi c mathematical 
relationships that are essential to the argument. 

 Some conspicuous exceptions to this general tendency should be men-
tioned. For example, the diagrams for the rectilinear solids treated in  Elem . 
 xi  and  xii  and the early derivations of the conic sections in the cone, in 
 Con .  i , appear to use techniques of linear perspective to convey a sense 
of the three-dimensionality of the objects. In  Figure 2.11 , we reproduce 
the diagram for  Elem .  xi .33 from  Vatican 190  and that for  Con .  i .13 from 
 Vatican 206 .  

 In all of these cases, however, it is possible to represent the three-
dimensionality of the objects simply and without introducing any object 
not explicitly named in the proof merely for the sake of the diagram. For 
example, in  Figure 2.1  above, the plane upon which the perpendicular is 
to be constructed does not appear in the manuscript fi gure. Hence, even 
in these three-dimensional diagrams, techniques of linear perspective are 
used only to the extent that they do not confl ict with the schematic nature 
of the diagram. Auxiliary, purely graphical elements are not used, nor is 
there any attempt to convey the visual impression of the mathematical 
objects through graphical techniques. An example of this is the case of 
circles seen at an angle. Although it is not clear that there was a consist-
ent theory of linear perspective in antiquity, ancient artists regularly drew 
circles as ovals and Ptolemy, in his  Geography , describes the depiction of 
circles seen from an angle as represented by ovals,  28    nevertheless, in the 
medieval manuscripts such oblique circles are always drawn with two 

28 Knorr 1992: 280–91; Berggren and Jones 2000: 116.

 Figure 2.11      Diagrams for Euclid’s  Elements , Book xi, Proposition 33 and Apollonius’ 
 Conica , Book i, Proposition 13.    

Vatican 190 Vatican 206



150 ken saito and nathan sidoli

 circular arcs that meet at cusps, as seen in  Figure 2.11 .  29    Th is confi rms that 
the diagrams were not meant to be a visual depiction of the objects, but 
rather a representation of certain essential mathematical properties. 

 Likewise, in the fi gures of spherical geometry, if the sphere itself is not 
named or required by the proof, we will oft en see the objects themselves 
simply drawn free-fl oating in the plane, to all appearances as though they 
were actually located in the plane of the fi gure. Th eodosius’  Spher .  ii .6 
shows that if, in a sphere, a great circle is tangent to a lesser circle, then it is 
also tangent to another lesser circle that is equal and parallel to the fi rst. In 
 Figure 2.12 , we fi nd the great circle in the sphere, ABΓ, and the two equal 
and parallel lesser circles that are tangent to it, ΓΔ and BH, all lying fl at in 
the same plane, with no attempt to portray their spacial relationships to 
each other or the sphere in which they are located.  

 Th e diagram for  Spher .  ii .6 thus highlights the schematic nature of dia-
grams in the works of spherical geometry. Th e theorem is about the type of 
tangency that obtains between a great circle and two equal lesser circles and 
this tangency is essentially the only thing conveyed by the fi gure. Th e actual 
spacial arrangement of the circles on the sphere must either be imagined by 
the reader or drawn out on some real globe.  30    

29 With respect to linear perspective, there is still a debate as to whether or not the concept of 
the vanishing point was consistently applied in antiquity. See Andersen 1987 and Knorr 1991. 
As Jones 2000: 55–6 has pointed out, Pappus’ commentary to Euclid’s Optics 35 includes 
a vanishing point, but it is not located in accordance with the modern principles of linear 
perspective.

30 We argue elsewhere that Th eodosius was, indeed, concerned with the practical aspects of 
drawing fi gures on solid globes, but that this practice was not explicitly discussed in the 
Spherics; Sidoli and Saito 2009.

 Figure 2.12      Diagrams for Th eodosius’  Spherics , Book ii, Proposition 6.    

Vatican 204

Z
H

B

A

E

Δ

Γ



 Diagrams and arguments in Greek mathematics 151

 Th e schematic role of diagrams in spherical geometry becomes unmis-
takable when we compare the diagram of one of the more involved propo-
sitions as found in the manuscripts with one intended to portray the same 
objects using principles of linear perspective.  Spher .  ii .15 is a problem that 
demonstrates the construction of a great circle passing through a given 
point and tangent to a given lesser circle. As can be seen in  Figure 2.13 , 
merely by looking at the manuscript diagram, without any discussion of the 
objects and their arrangement, it is rather diffi  cult to get an overall sense of 
what the diagram is meant to represent. Nevertheless, certain essential fea-
tures are conveyed, such as the conpolarity of parallel circles, the tangency 
and intersection of key circles, and so on. It is clear that the manuscript 
diagram is meant to be read in conjunction with the text as referring to 
some other object, either an imagined sphere or more likely a real sphere 
on which the lines and circles were actually drawn. It tells the reader how to 
understand the labelling and arrangement of the objects under discussion, 
so that the text can then be read as referring to these objects. Th e modern 
fi gure, on the other hand, by selecting a particular vantage point as most 
opportune and then allowing the reader to see the objects from this point, 
does a better job of conveying the overall spacial relationships that obtain 
among the objects.  31       

 Figure 2.13      Diagrams for Th eodosius’  Spherics , Book ii, Proposition 15.    
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31 We should point out, however, that the modern diagram in Figure 2.13, as well as being in 
linear perspective, employes a number of graphical techniques that we do not fi nd in the 
manuscript sources, such as the use of non-circular curves, dotted lines, highlighted points, 
and so on.
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 One diagram for multiple cases 

 In the foregoing three sections, we have discussed characteristics of the 
medieval diagrams that are so prevalent that they almost certainly refl ect 
ancient practice. We turn now to characteristics that are more individual 
but which, nevertheless, form an essential part of the material transmission 
through which we must understand the ancient texts. 

 For a few propositions that are divided into multiple cases, we fi nd, nev-
ertheless, the use of a single diagram to represent the cases. Th ere is some 
question about the originality of most of these, and in fact it appears that, in 
general, Euclid did not include multiple cases and that those propositions 
that do have cases were altered in late antiquity.  32    Nevertheless, even if the 
cases are all due to late ancient authors, they are historically interesting and 
the manuscript tradition shows considerable variety in the diagrams. Th is 
indicates that single diagrams for multiple cases were probably in the text 
at least by late antiquity and that the medieval scribes had diffi  culty under-
standing them and hence introduced the variety that we now fi nd. 

 As an example, we consider  Elem .  iii .36. Th e proposition shows that if, 
from a point outside a circle, a line is drawn cutting the circle, it will be 
cut by the circle such that the rectangle contained by its parts will be equal 
to the square drawn on the tangent from the point to the circle. Th at is, in 
 Figure 2.14 , the rectangle contained by AΔ and ΔΓ is equal to the square 
on  ΔB. In the text, as we now have it, this is proved in two cases, fi rst 
where line AΔ passes through the centre of the circle and second where it 

 Figure 2.14      Diagrams for Euclid’s  Elements , Book iii, Proposition 36.    
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32 See Saito 2006: 85–90 for the case of a single fi gure containing two cases in Elem. iii.25, in 
which the division into cases was almost certainly not due to Euclid. Th e Arabic transmission 
of the Elements gives further evidence for the elaboration of a single fi gure into multiple 
fi gures. In the eastern Arabic tradition, we fi nd a single fi gure for both Elem. iii.31 and iv.5 
(see for example, Uppsala 20: 42v and 38v), while in the Andalusian Arabic tradition, which 
was also transmitted into Latin, we fi nd multiple fi gures for these propositions (compare 
Rabāt. 53: 126–8 and 145–6 with Busard 1984: 83–5 and 102–5).
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does not. In Heiberg’s edition, and  Vienna 31  (which oft en has  corrected 
diagrams), there is an individual fi gure for each case. In the majority 
of  Heiberg’s manuscripts, however, there is only a single fi gure and it 
 contains two diff erent points that represent the centre, one for each case. 
In  Figure 2.14 , we reproduce the two diagrams from Heiberg’s edition, 
which are mathematically the same as those in  Vienna 31 , and an example 
of the single fi gure taken from  Bodleian 301 . In the single diagram, as 
found in  Bodleian 301 , there are two centres, points E and Z, and neither 
of them lies at the centre of the circle. Nevertheless, if we suppose that they 
are indeed centres, the proof can be read and understood on the basis of 
this fi gure.  

 Despite these peculiarities, there are a number of reasons for thinking 
that this fi gure is close to the original on which the others were based. It 
appears in the majority of Heiberg’s manuscripts, and the other diagrams 
contain minor problems, such as missing or misplaced lines, or are obvi-
ously corrected.  33    Moreover, the single fi gure appears to have caused wide-
spread confusion in the manuscript tradition. In most of the manuscripts, 
there are also marginal fi gures which either correct the primary fi gure or 
provide a fi gure that is clearly meant for a single case. 

 Hence, although we cannot, at present, be certain of the history of this 
theorem and its fi gure, the characteristics and variety of the fi gures should 
be used in any analysis of the text that seeks to establish its authenticity 
or authorship. Th is holds true for nearly all of the propositions that were 
clearly subject to modifi cation in the tradition.   

 Correcting the diagrams 

 Medieval scribes also made what they, no doubt, considered to be correc-
tions to the diagrams both by redrawing the fi gures according to their own 
interpretation of the mathematics involved and by checking the diagrams 
against those in other versions of the same treatise and, if they were dif-
ferent, correcting on this basis. We will call the fi rst practice ‘redrawing’ 
and the latter ‘cross-contamination’. We have already seen the example of 
 Elem .  iv .16, on the construction of the regular 15-gon (see  Figure 2.9 ), in 
which the scribes corrected for metrical indiff erence and drew the lines of 
the polygon as curved lines to distinguish them better from the arcs of the 
circumscribing circle. 

33 See Saito 2008: 78–9 for a discussion of variants of this diagram in the manuscripts of the 
Elements.
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 In a number of cases, the tendencies toward overspecifi cation and 
graphical indiff erence resulted in a fi gure that was diffi  cult to interpret as a 
graphical object. For example, we may refer again to  Figure 2.14  in which 
two diff erent centres of the circle are depicted, neither of which appears to 
lie at the centre of the circle. In such cases, the scribes oft en tried to correct 
the fi gure so that it could be more readily interpreted without ambiguity. 

 As an example of a redrawn diagram, we take  Elem .  iii .21, which proves 
that, in a circle, angles that subtend the same arc are equal to one another. 
As seen in  Figure 2.15 ,  Vatican 190  portrays the situation by showing the 
two angles BAΔ and BEΔ as clearly separated from the angle at the centre, 
angle BZΔ, which is twice both of them. In the majority of Heiberg’s manu-
scripts, however, as seen in  Bodleian 301  and  Vienna 31 , through over-
specifi cation the lines BA and EΔ have been drawn parallel to each other 
and at right angles to BΔ, so that the lines AΔ and BE appear to intersect 
at the centre of the circle. In the course of the proposition, however, centre 
Z is found and lines BZ and ZΔ are joined. In order to depict centre Z as 
distinct from the intersection of lines AΔ and BE, centre Z has been placed 
off  centre, oft en by later hands, as seen in the examples of  Bodleian 301  and 
 Vienna 31 .  34    Because of the variety of the manuscript fi gures, it does not 
seem possible to be certain of the archetype, but it probably either had point 
Z as the intersection of AΔ and BE, as in the example of  Vienna 31 , or it had 
a second centre called Z but not located at the centre of the circle, as in the 
example of  Bodleian 301 .  35    Later readers, then, found this situation confus-
ing and corrected the diagrams accordingly. In this case, the redrawing was 
done directly on top of the original fi gure.  

34 See Saito 2008: 67 for further discussion of this diagram.
35 In Bodleian 301, a later hand appears to have crossed out this original second centre, Z, and 

moved it closer to the centre of the circle.

 Figure 2.15      Diagrams for Euclid’s  Elements , Book iii, Proposition 21.    
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 Th e redrawing, however, might also be done at the time when the text 
was copied and the fi gures draft ed. In this case, the source diagram is lost in 
this part of the tradition. Of the manuscripts used by Heiberg, the  diagrams 
in  Vienna 31  are oft en redrawn for metrical accuracy, but less oft en for 
overspecifi cation.  36    For the diagram accompanying  Elem .  i .44, the fi gure in 
 Vienna 31  (see  Figure 2.16 ) should be compared with that in  Vatican 190  
(see  Figure 2.6 ). As can be seen, the given area Γ is indeed the size of the 
parallelogram constructed on line AB, but the parallelogram is depicted as 
a rectangle and this is refl ected in the fact that the given angle, Δ, is depicted 
as right. In this case, the diagram is metrically accurate but it still represents 
any parallelogram with a rectangle.  

 For an example in which the diagram in  Vienna 31  has been corrected 
both for metrical accuracy and overspecifi cation, we consider  Elem .  i .22, 
which demonstrates the construction of a triangle with three given sides. 
As seen in  Figure 2.17 , the older tradition, here exemplifi ed by  Vatican 190 , 
represents the constructed triangle with the isosceles triangle ZKH, and 
the given lines with the equal lines A, B and Γ. In some of the manuscripts, 
however, the constructed triangle ZKH is drawn as an irregular acute 
triangle.  37    In  Figure 2.17  we see the example of  Vienna 31 , in which the 

36 As we saw in the foregoing example, in the case of Elem. iii.21, however, the original scribe of 
Vienna 31 did not correct the diagram, but a correction was added by a later hand.

 Figure 2.16      Diagrams for Euclid’s  Elements , Book i, Proposition 44.    
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37 See Saito 2006: 118 for a larger selection of the manuscript fi gures. Th e fact that Vatican 190 
belongs to the older tradition is confi rmed by the Arabic transmission.

 Figure 2.17      Diagrams for Euclid’s  Elements , Book i, Proposition 22.    
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constructed triangle is depicted as an irregular, acute triangle and all of its 
sides are depicted as the same length as the sides that have been given for 
the construction. Indeed, here we have a fi gure that is fully in accord with 
modern tastes.  

 For  Elem .  i .22, of the manuscripts used by Heiberg in his edition,  Bodleian 
301  also depicts the constructed triangle as an irregular, acute triangle, 
similar to that in  Vienna 31 . Th e fact that  Vienna 31  and  Bodleian 301  have 
a similar irregular, acute triangle could either indicate that scribes in both 
traditions independently had the idea to draw an irregular, acute  triangle 
and randomly drew one of the same shape or, more likely, a scribe in one 
tradition saw the fi gure in the other and copied it. Th ere is  considerable 
evidence that this kind of cross-contamination took place. As another 
example that we have already seen, we may mention  Elem .  iii .21 in which 
both  Vienna 31  and  Bodleian 301  show a second centre drawn in freehand 
at some time aft er the original drawing was complete. Moreover, in the 
case of  Elem .  iii .21, in  Florence 28 , which has the same primary diagram 
as  Bodleian 301 , we fi nd a marginal diagram like that in  Vatican 190 , while 
in  Bologna 18–19 , which has the same primary diagram as  Vatican 190 , we 
fi nd a marginal diagram like that in  Florence 28 . 

 Hence, as well as being used as a cross-reference for the primary 
diagram, the fi gures of a second or third manuscript were oft en drawn into 
the margin as a secondary diagram. Although we are now only at the begin-
ning stages of such studies, this process of cross-contamination suggests 
the possibility of analysing the transmission dependencies of the diagrams 
themselves without necessarily relying on those of the text. Indeed, there is 
now increasing evidence that the fi gures, like the scholia, were sometimes 
transmitted independently of the text.  38    Th e process of cross-contamination 
has left  important clues in the manuscript sources that should be exploited 
to help us understand how the manuscript diagrams were used and read.    

 Ancient and medieval manuscript diagrams 

 Since the ancient and medieval diagrams are material objects that were 
transmitted along with the text, we should consider the ways they were 
copied, read and understood with respect to the transmission of the text. 

38 For examples of the independent transmission of the scholia of Aristarchus’ On the Sizes and 
Distances of the Sun and Moon and Th eodosius’ Spherics see Noack 1992 and Czinczenheim 
2000. Th e independent transmission of the manuscript fi gures for Calcidius’ Latin translation 
of Plato’s Timaeus has been shown by Tak 1972.
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Although, for the most part, the text and diagrams appear to have been 
copied as faithfully as possible, at various times in the Greek transmission, 
and perhaps more oft en in the Arabic tradition, mathematically minded 
individuals re-edited the texts and redrew the diagrams. 

 For the most part, in Greek manuscripts the diagrams are drawn into 
boxes that were left  blank when the text was copied, whereas in the Arabic 
and Latin manuscripts the diagrams were oft en drawn by the same scribe 
as copied the text, as is evident from the fact that the text wraps around 
the diagram. Nevertheless, except during periods of cultural transmission 
and appropriation, the diagrams appear to have been generally transmitted 
by scribes who based their drawings on those in their source manuscripts, 
despite the fact that the diagrams can largely be redrawn on the basis of a 
knowledge of the mathematics contained in the text. Hence, the diagrams 
in the medieval manuscripts give evidence for two, in some sense confl ict-
ing, tendencies: (1) the scribal transmission of ancient treatises based on 
a concept of the sanctity of the text and (2) the use of the ancient works 
in the mathematical sciences for teaching and developing those sciences 
and the consequent criticism of the received text from the perspective of a 
mathematical reading. 

 For these reasons, when we use the medieval diagrams as evidence for 
ancient practices, when we base our understanding of the intended uses of 
the diagrams on these sources, we should look for general tendencies and 
not become overly distracted by the evidence of idiosyncratic sources.   

 Diagrams and generality 

 Th e two most prevalent characteristics of the manuscript diagrams are what 
we have called overspecifi cation and indiff erence to visual accuracy. Th e 
consistent use of overspecifi cation implies that the diagram was not meant 
to convey an idea of the level of generality discussed in the text. Th e diagram 
simply depicts some representative example of the objects under discussion 
and the fact that this example is more regular than is required was appar-
ently not considered to be a problem. In the case of research, discussion 
or presentation, a speaker could of course refer to the level of generality 
addressed by the text, or, in fact, could simply redraw the diagram. Th e indif-
ference to visual accuracy implies that the diagram was not meant to be a 
visual depiction of the objects under discussion but rather to use visual cues 
to communicate the important mathematical relationships. In this sense, 
the diagrams are schematic representations. Th ey help the reader navigate 
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the thicket of letter names in the text, they relate the letter names to specifi c 
objects and they convey the most relevant mathematical characteristics of 
those objects. Again, in the course of research, discussion or presentation, 
a speaker could draw attention to other aspects of the objects that are not 
depicted, or again could simply redraw the diagrams. 

 We have referred to the fact that the diagrams could have been redrawn 
in the regular course of mathematical work, and, in fact, the evidence of 
the medieval transmission of scientifi c works shows that mathematically 
minded readers had a tendency to redraw the diagrams in the manuscripts 
they were transmitting.  39    Th is brings us to another essential fact of the manu-
script diagrams. Th ey were conceived, and hence designed, to be objects 
of transmission, that is, as a component of the literary transmission of the 
text. Nevertheless, the extent to which mathematics was a literary activity 
was changing throughout the ancient and medieval periods and indeed 
the extent to which individual practitioners would have used books in the 
course of their study or research is an open question. Th is much, however, 
is virtually certain: the total number of people studying the mathematical 
sciences at any time was much greater than the number of them who owned 
copies of the canonical texts. Hence, in the process of learning about and 
discussing mathematics the most usual practice would have been to draw 
some temporary fi gure and then to reason about it. 

 In fact, there is evidence that, contrary to the impression of the diagrams 
in the manuscript tradition, ancient mathematicians were indeed interested 
in making drawings that were accurate graphic images of the objects under 
discussion. We argue elsewhere that the diagrams in spherical geometry, 
as represented by Th eodosius’  Spherics , were meant to be drawn on real 
globes and that the problems in the  Spherics  were structured so as to facili-
tate this process.  40    As is clear from Eutocius’ commentary to Archimedes’ 
 Sphere and Cylinder , Greek mathematicians sometimes designed mechani-
cal devices in order to solve geometric problems and to draw diagrams 
accurately.  41    In contrast to the triangular parabola we saw in  Method  14, 
Diocles, in  On Burning Mirrors , discusses the use of a horn ruler to draw a 
graphically accurate parabola through a set of points.  42    Hence, we must dis-
tinguish between the diagram as an object of transmission and the diagram 
as an instrument of mathematical learning and investigation. 

39 See Sidoli 2007 for some examples of mathematically minded readers who redrew the fi gures 
in the treatises they were transmitting.

40 Sidoli and Saito 2009.
41 Netz 2004: 275–6 and 294–306.
42 Toomer 1976: 63–7.
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 In fact, we will probably never know much with certainty about the 
parabolas that were drawn by mathematicians investigating conic theory 
or the circles that were drawn on globes by teachers discussing spherical 
geometry. Nevertheless, insofar as mathematical teaching and research are 
human activities, we should not doubt that the real learning and research 
was done by drawing diagrams and reasoning about them, not simply by 
reading books or copying them out. Hence, the diagrams in the manuscripts 
were meant to serve as signposts indicating how to draw these fi gures and 
mediating the reader’s understanding of the propositions about them. 

 We may think of the manuscript diagrams as schematic guides for 
drawing fi gures and for navigating their geometric properties. In some 
cases, and for individuals with a highly developed geometric imagination, 
these secondary diagrams might simply be imagined, but for the most part 
they would actually have been drawn out. Th e diagrams achieve their gen-
erality in a similar way as the text, by presenting a particular instantiation 
of the geometric objects, which shows the readers how they are laid out 
and labelled so that the readers can themselves draw other fi gures in such a 
way that the proposition still holds. Hence, just as the words of the text refer 
to any geometric objects which have the same conditions, so the diagrams 
of the text refer to any diagrams that have the same confi gurations. 

 We may think of the way we use the diagram of a diffi  cult proposition, 
such as that of the manuscript diagram for  Spher .  ii .15 in  Figure 2.13 , in 
the same way that we think of the way we use the subway map of the Tokyo 
Metro.  43    We may look at the manuscript diagram in  Figure 2.13  before we 
have worked through the proposition to get a sense of how things are laid 
out, just as we may look at the Tokyo subway map before we set out for a 
new place, to see where we will transfer and so forth. Although this may 
help orientate our thinking, in neither case does it fully prepare us for the 
actual experience. Th e schematic representation of the sphere in  Figure 
2.13  tells us nothing of its orientation in space, an intuition of which we will 
need to develop in order to actually understand the proposition. Th e Tokyo 
subway map tells us nothing about trains, platforms and tickets, all of which 
we will need to negotiate to actually go anywhere in Tokyo. In both cases, 
the image is a schematic that conveys only information essential to an activ-
ity that the reader is assumed to be undertaking. 

 Th ere is, however, also an important distinction. Th e Tokyo subway map 
points towards a very specifi c object – or rather a system of objects that are 

43 Th e Tokyo subway map, in a number of diff erent languages, can be downloaded from www.
tokyometro.jp/e/.

http://www.tokyometro.jp/e/
http://www.tokyometro.jp/e/
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always in fl ux, and probably not nearly as determinate as we would like to 
believe – nevertheless, a system of objects with a very specifi c locality and 
temporality. A Tokyo subway map is useless for Paris. If it was drawn this 
year, it will contain stations and lines that did not exist ten years ago and 
ten years from now it will again be out of date. Th e manuscript diagram 
in  Figure 2.13 , however, has no such specifi city. It can refer to any sphere 
and does. Anyone who wants to draw a great circle on a sphere tangent to 
a given line and through a given point can use this diagram in conjunction 
with its proposition to do so. In the centuries since this proposition was 
written, a great many readers must have drawn fi gures of this construction 
– on the plane, on the sphere, in their mind’s eye – and this diagram, strange 
and awkward as it is, somehow referred to all of them. It is in such a way 
that the overspecifi ed, graphically inaccurate diagrams that we fi nd in the 
manuscript tradition achieve the generality for which they were intended.     
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 3     Th e texture of Archimedes’ writings:     through 
Heiberg’s veil    

   Reviel     Netz     

 Th e reading of Archimedes will always be inextricably intertwined with 
the reading of Heiberg. Th e great Danish philologer, involved with so 
many other projects in Greek science and elsewhere,  1    had Archimedes 
become his life project: the subject of his original dissertation,  Quaestiones 
Archimedeae  ( 1879 ), which formed the basis for his fi rst Teubner edition 
of Archimedes’  Opera Omnia  ( 1880 ) and then, following upon the discov-
ery of codices B and C, the second Teubner edition of the  Opera Omnia  
( 1910 –15). Th e second edition appears to have settled the main questions 
of the relationship between the manuscripts, and has established the read-
ings with great authority and clarity (it is this second and defi nitive edition 
which I study here). Th is is especially impressive, given how few technical 
resources Heiberg had for the reading of codex C – the famous Palimpsest. 
Even if today we can go further than Heiberg did, this is to a large extent 
thanks to the framework produced by Heiberg himself: so that, even if his 
edition is superseded, his legacy shall remain. Let this article not be read 
as a criticism of Heiberg – the most acute reader Archimedes has ever had. 

 Th e historical signifi cance of Heiberg’s publication is due not only to his 
scholarly stature, but also to his precise position in the modern reception of 
Archimedes. Classical scholarship is a tightly defi ned network of texts and 
readers, organized by a strict topology. Th e ‘standard edition’ has a special 
position. Its very pagination comes to defi ne how quotations are to be made. 
Indeed, even more can be said for Archimedes specifi cally. First, the rise of 
modern editions inspired by German philological methods, in the late nine-
teenth century, coincided with an early phase of an interest in the history of 
science. Th us Heath’s work of translating and popularizing Greek mathemat-
ics in the English-speaking world took place in the same decades that Heiberg 
was producing his edition of Archimedes. Th e version of Archimedes still 
in use by most English readers – Heath 1897 – depends, paradoxically, on 
Heiberg’s fi rst (and defi cient) edition. Czwalina’s German translation ( 1922 –
5) was based on the second edition, as was Ver Eecke’s French translation 
( 1921 ). Perhaps the most useful version among those widely available today, 

     1      For Heiberg’s somewhat incredible bibliography, see Spang-Hanssen  1929 . 
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Mugler’s Budé’s text ( 1970 –2) goes further: it not merely translates the text 
of the second edition of Archimedes, but also  provides a facing Greek text – 
which directly reproduces the original edition by Heiberg! Mugler’s decision 
to avoid any attempt to revise Heiberg may well have been due to another 
curious twist of fate: by the 1970s, the Palimpsest had gone missing so that 
a new edition appeared impossible. Stamatis’ version ( 1970 –4) repeats the 
same procedure, with modern Greek instead of French. 

 An edition is ontologically distinct from its sources. It is a synthesis of 
various manuscripts into a single printed text. Th e editor, aiming to pre-
serve a past legacy, inevitably transforms it. It is a truism that Heiberg’s 
version of Archimedes is not the same as the manuscript tradition – let 
alone the same as Archimedes’ original ‘publication’ (whatever this term 
may mean). Once again: the point is not to criticize Heiberg. Th e point is to 
try to understand the distinguishing features of his edition, which may even 
form part of the image of Archimedes in the twenty-fi rst century. In this 
chapter I survey a number of transformations introduced by Heiberg into 
his text. Th ese fall into three parts, very diff erent in character. First, Heiberg 
ignored the manuscript evidence for the diagrams, producing instead his 
own diagrams (this, indeed, may be the only point for which his philology 
may be faulted; I return to discuss Heiberg’s possible justifi cations below). 
Second, at the local textual level, Heiberg marked passages he considered to 
be late glosses and thus not coming from the pen of Archimedes. Th ird, at 
the global textual level, through various choices of modern format as well 
as textual extrapolation, Heiberg introduced a certain homogeneity of pres-
entation to the Archimedean text. Th e net result of all those transforma-
tions was to produce an Archimedes who was textually explicit, consistent, 
 rigorous and yet opaque. I move on to show this in detail.  

 Th e texture of Archimedes’ diagrams 

 Th is is not the place to discuss the complex philological question of the 
origins of the diagrams as extant in our manuscripts. I sum up, instead, 
the main facts. Of the three known early Byzantine manuscripts, one – the 
Palimpsest or codex C – is extant. Th e two others are represented by copies: a 
plethora of independent copies of codex A, allowing a very confi dent recon-
struction of the original; and Moerbeke’s Latin translation based in part on 
codex B (and in part based also on codex A). For most works we can recon-
struct two early Byzantine traditions (codices A and C for SC  i , SC  ii , SL, 
DC; codices A and B for PE  i ; codices B and C for FB  i , FB  ii . For PE  ii  alone 
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we have some evidence from all three traditions).  2    Th e agreement between A 
and C is striking. We can also see that Moerbeke’s Latin translation involved 
a considerable transformation of the diagrams he had available to him from 
codex A. Th is may serve to explain why, when we don’t have the separate evi-
dence of A and just compare codices B and C, the two appear diff erent: this 
is likely to be the infl uence of Moerbeke’s transformation. In short, the evi-
dence suggests that the various early Byzantine manuscripts were  probably  
identical in their diagrams. Th is is  certainly  the case for the two independent 
early Byzantine manuscripts A and C, for the works SC  i , SC  ii , SL and DC – 
representing the bulk of Archimedes’ extant work in pure geometry. 

 In all likelihood, such resemblance stems from a close dependence on a 
Late Ancient archetype. Whether or not this archetype can be pushed back 
to the original publication by Archimedes – whatever  that  could mean – is 
an open question. To the extent that the manuscript evidence displays strik-
ing, original practices, a kind of  lectio diffi  cilior  makes it more likely that it 
is an original practice. Th e argument could never be very strong and it is 
probably for this cogent reason that Heiberg avoided off ering an edition 
of the manuscripts’ diagrams. However, even if the following need not 
represent the original form of Archimedes’ works, it certainly represents 
one important way in which Archimedes was read for at least some part of 
antiquity. In understanding Archimedes’ modern reception, it is helpful to 
compare this with the ancient reception to which the manuscripts testify. 
In what follows, then, I compare Heiberg’s diagrams with the Late Ancient 
archetype reconstructed for the two books on  Sphere and Cylinder  (con-
centrating on these two books for the reason that I have already completed 
their edition). I arrange my comments as three comparisons – three ways in 
which Heiberg transformed the original found in the manuscripts.  

 Heiberg goes metrical 

 I put side by side the two diagrams for SC  i .16 (see  Figure 3.1 ). Th e diff er-
ences as regards the triangle – in fact, a ‘fl at’ view of a cone – are immaterial. 
Neither do I emphasize at the moment the diff erences in overall layout (it is 
clear that Heiberg saves more on space, aiming at a more economic produc-
tion; this may have been imposed by the press). Th e major diff erence has to 
do with the nature of the circles Λ, Θ and K. Heiberg has them  concentric, 

     2      Here and in what follows I use a system of abbreviation of the titles of works by Archimedes, as 
follows: SC ( Sphere and Cylinder ), DC ( Measurement of the Circle ), CS ( Conoids and Spheroids ), 
SL ( Spiral Lines ), PE ( Planes in Equilibrium ), Aren. ( Arenarius ), QP ( Quadrature of Parabola ), 
FB ( Floating Bodies ), Meth. ( Method ), Stom. ( Stomachion ), Bov. ( Cattle Problem ). 
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in a descending order of size. Th e manuscripts have them arranged side by 
side, all of equal size.  

 Th e proposition constructs the circles in a complex way which is then 
shown to determine that the circle Λ equals the surface of the cone BAΓ, 
circle K equals the surface of the cone BΔE, and Θ the diff erence between 
the surfaces, that is the surface of the truncated cone at the lines AΔEΓ. 
It is therefore geometrically required that Λ > K, Λ > Θ (the relationship 
between K, Θ, though, is not determined by the proposition). 

 It is clear that Heiberg’s diagram provides more metrical information 
than the manuscript diagrams do. In this particular case, indeed, Heiberg 
provides  more  metrical information than is determined by the proposition; 
while the manuscripts provide  less  than is determined by the proposition. 
Th is immediately suggests why the manuscripts’ practice is in fact rational. 
Let us suppose that the manuscripts would set out to diagram the precise 
metrical relations determined by the proposition. It would make sense, 
then, to have both Θ and K smaller than Λ. However, how to represent the 
relationship between Θ and K? Once Λ appears bigger than both Θ and K, 
this is already taken to suggest that diagrams are metrically informative; 
and so the reader would look for the diagram relationship between Θ and 
K so as to provide him or her with the intended metrical relation. Th us, 
a diagram where, say, Λ is greater than both Θ and K, the two, say, equal 
to each other, falsely suggests that the intended metrical properties are: 
Λ > Θ = K. Th e diffi  culty of representing indeterminate metrical relations 
inside a metrical diagram is obvious. 

 Figure 3.1    Heiberg’s diagrams for  Sphere and Cylinder  i.16 and the reconstruction of 
Archimedes’ diagrams.    
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 Th e manuscripts’ diagram avoids this diffi  culty altogether. Th e three 
equal circles – in fl agrant violation of the textual requirement that Λ > Θ, 
Λ > K – imply that the diagram carries no metrical consequences (at least 
so far as these three circles are concerned) and therefore the diagram itself 
leaves the metrical relationship between K and Θ indeterminate. 

 Th is is a systematic feature of the manuscripts’ diagrams. Th ere are 
twenty-four cases where a system of homogeneous, unequal magnitudes 
(typically all circles, or all lines) is represented by equal magnitudes set side 
by side, as well as fi ve cases where a system of homogeneous unequal mag-
nitudes is represented by magnitudes some of which (in contradiction to 
the text) are represented equally. Th ere are only four cases where a system 
of unequal magnitudes is allowed to be represented by a diagram where all 
traces are appropriately unequal. 

 Th e consequence of this convention is clear: the ancient diagrams are not 
read off  as metrical. As a corollary, they are read more for their confi gura-
tional information. Th is is obvious from the comparison with Heiberg: in 
the latter’s diagram of  i .16, the readers’ expectation clearly is not that the 
three circles should indeed all be concentric. Indeed, the reader must under-
stand that such fi gures are pure magnitudes and do not stand to each other 
in any spatial, confi gurational sense. While the conical surface ABΓ does 
indeed envelope the smaller surfaces ΔBE, AΔEΓ, no such envelopment is 
understood between the three circles K, Λ and Θ that merely represent three 
magnitudes manipulated in the course of the proposition. Now, this does not 
make Heiberg’s diagram  false . It simply highlights what Heiberg’s reader – in 
direct opposition to the reader of the ancient diagrams  – is supposed to edit 
away in his reading of the diagram. Heiberg’s reader is supposed to edit away 
a certain piece of confi gurational information (the circles  merely appear  to 
envelop each other), whereas the ancient reader was supposed to edit away 
a certain piece of metrical information (the circles  merely appear  equal). 
One can say that both representational systems foreground one dimension 
of information, overruling the other dimension: Th e metrical dimension of 
information is foregrounded in Heiberg and overrules the confi gurational 
dimension; the confi gurational dimension of information is foregrounded 
in the ancient diagram and overrules the metrical dimension. 

 Th is may serve to elucidate the following. Interestingly, the fi ve cases 
where the ancient diagrams represent unequals by unequals – proposi-
tions SC  i .15, 33, 34, 44 – all involve  lines . Consider the typical case of  i .15 
(see  Figure 3.2 ). B is the radius of the circle A, Γ – the side of a cone set 
up on that circle, E – a mean proportional between the two. Th e metrical 
relationship B < E < Γ is indeed determined. Further, the circle Δ is drawn 
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around the radius E. It thus follows also that A < Δ. Th e diagram displays 
the inequality between the lines B < E < Γ but not the equally determined 
inequality between the circles A < Δ. Th ere are six other cases, however, 
where unequal lines are represented by equal diagram traces. Th e rule then 
appears to be that the manuscripts’ diagrams have a very strong prefer-
ence to mark unequal plane fi gures as equal, but only a tendency to mark 
unequal line segments as unequal. Why should that be the case? Clearly, 
lines are less confi gurationally charged than plane fi gures are. Th e represen-
tation of a system of line traces does not suggest so powerfully a confi gura-
tion made of those lines in spatial arrangement, and it is easier to read as a 
purely quantitative representation (indeed, such lines form the principle of 
representation used by Greek mathematicians when dealing with numbers 
or with general magnitudes, whose signifi cance is purely quantitative, as in 
Euclid’s  Elements   v ,  vii – ix ). Th e principle is clear, then: the more the dia-
grams are taken to convey confi gurational meaning, the less metrical they 
are made. Lines – whose non-confi gurational character is easy to establish – 
may sometimes take metrical characteristics; but with plane fi gures, metri-
cal characteristics are altogether avoided.

      Th e upshot of this is obvious: diagrams which mostly carry confi gura-
tional information, to the exclusion of the metrical, can also be rigorous. As 
Poincaré pointed out long ago, diagrams may be geometrically correct, to 
the extent that they are taken to be purely topological.  3    Of course, Poincaré 

     3      Poincaré  1913 : 60. Needless to say, topology or ‘analysis situs’ (as Poincaré would say) meant 
something diff erent a century ago: in particular, this to Poincaré had absolutely nothing to do 
with Set Th eory and instead had everything to do with a study of spatial relations abstracted 
away from any metrical conditions – which of course makes ‘topology’ even more obviously 
relevant to the study of schematic diagrams. 

 Figure 3.2    A reconstruction of Archimedes’ diagram for  Sphere and Cylinder  i.15.    
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himself knew Greek mathematics only via editions such as Heiberg’s. Little 
could he guess that the ancient manuscripts for Archimedes had just the 
kind of diagrams he considered logically viable!   

 Heiberg goes three-dimensional 

 A group of propositions early in  Sphere and Cylinder    i  involves the com-
parison of cones or cylinders with the pyramids or prisms they enclose: 
propositions 7–12. Proposition 12 selects a diagram focused on the base 
alone, but the diagrams of propositions 7–11 require that we look at the 
entire solid construction. Th e manuscripts’ diagrams (with a single excep-
tion, on which more below) produce a representation with a markedly ‘fl at’ 
eff ect, whereas Heiberg produces several times a partly perspectival image 
with a three-dimensional eff ect. 

 Th e fi gure for  i .9 (see  Figure 3.3 ) may be taken as an example. What is 
the view selected by the manuscripts’ diagram? Perhaps we may think of it 
as a view from above, slightly slanted so as to make the vertex Δ appear to 
fall not on the centre of the circle but somewhat below. Th e view selected 
by Heiberg’s diagram is much ‘lower’, so that the point Δ appears higher 
above the plane of the base circle, allowing the pyramid to emerge out and 
produce an illusionistic three-dimensional eff ect. Th e net result is that 
Heiberg’s fi gure impresses the eye with the picture of an external object; the 
manuscripts’ diagram is reduced to a mere schema of interconnected lines.  

 Th is defi nitely should not be understood as a mark of poor draughts-
manship on the part of the manuscripts. Indeed, the one exception is 
telling:  i .11 has a clear three-dimensional representation of a cylinder, 
and here the motivation is clear: since the proposition refers in detail to 
both the top and bottom bases of the cylinder, a view from ‘above’, where 
the bases coincide or nearly coincide, would have been useless. It turns 
out, therefore, that once the view from above was excluded, the manu-
scripts were capable of producing a lower view, with its consequent three-
dimensional illusionistic eff ect. Strikingly and decisively, we note that 
the manuscripts’ diagrams for  i .11 represent the bases by almond-shapes 
(standardly used elsewhere for the representation of conic sections).  4    Th is 
is a deliberate foreshortening eff ect – which Heiberg himself eschews 
in his own diagram. Clearly, Heiberg has established a certain compro-
mise between three-dimensional representation and geometric fi delity, to 

     4      Th is practice is commented upon, for the Arabic tradition, in Toomer  1990 : lxxxv, and it is 
indeed widespread in the various manuscript traditions of Greek mathematics. 
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which he is consistent. Th e manuscripts, on the other hand, insist on the 
preference, where possible, of a more schematic representation, even while 
they mark their ability to produce a full three-dimensional representation. 

 Th e manuscripts’ decision clearly is not motivated by simple considera-
tions of space. As we have seen in the preceding section, the manuscripts 
tend to have much bigger fi gures. No one invests in an Archimedes’ manu-
script for considerations of practical utility, so that these manuscripts should 
all be seen as luxury items,  5    so that one is allowed more space.  A printed 
book, of course, is not typically based on a patronage economy and its cal-
culations are diff erent. I do think that a certain consideration of layout is 
relevant, however: what we do see in the manuscripts’ diagrams is a certain 
preference for the horizontal arrangement, perhaps refl ecting the origins of 
such diagrams within the spaces of papyrus columns.  6    Th is would in itself 
make a three-dimensional representation less preferable. But note that this is 
a mere tendency in the manuscripts’ diagrams: as we will see with  i .12 below, 

     5      Th e main proof for the lack of practical purpose in Byzantine Archimedes manuscripts is 
in their plethora of uncorrected, trivial errors. Th e extant Palimpsest shows not a single 
correction by a later hand (indeed, it was consigned to become a palimpsest!). We have 
a credible report from one of the scribes copying codex A that this, too, was replete with 
uncorrected errors (a reported supported by the pattern of errors in the extant copies of A): see 
Heiberg  1915 : x. 
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     6      On the tendency of papyrus illustrations to orient horizontally, see Weitzmann  1947 . 

 Figure 3.3      Heiberg’s diagram for  Sphere and Cylinder  i.9 and the reconstruction of Archimedes’ 
diagram.    
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some diagrams in the manuscripts take a vertical arrangement (even though 
this arrangement is not determined by the geometrical situation). I do think 
the manuscripts avoid the three-dimensional representation, among other 
things, because of their preference for the horizontal over the vertical; what 
I wish to stress is that this shows how little weight they allow the pictorial 
quality of the diagram – so that the minor consideration of a preferred ori-
entation trumps over that of the three-dimensional representation. 

 Note now that our discussion touches on a small stretch of text, but 
this is in fact in itself meaningful. Th e Archimedean corpus is sometimes 
dedicated to purely plane fi gures ( Spiral Lines ,  Planes in Equilibrium , 
 Measurement of Circle ,  Stomachion ,  Quadrature of Parabola ) but, even 
in the several cases where Archimedes studies solid objects, these are 
studied essentially via some plane section passing through them ( Floating 
Bodies   ii ,  Method ,  Conoids and Spheroids ,  Sphere and Cylinder   ii ).  Sphere 
and Cylinder   i  forms an exception because of its mathematical theme of the 
comparison of curved, concave surfaces – one which calls for a direct three-
dimensional treatment.  7    Now consider  i .12, where Archimedes’ treatment 
of the three-dimensional cone is mediated via the plane base (where 
two lines form tangents to the circle of the base). Such is the standard 
Archimedean diagram. In the manuscripts, the diagrams of  i .12 and of 
 i .9 are closely aligned together, displaying a similar confi guration of criss-
crossing lines; whereas Heiberg’s diagrams open up a chasm between the 
two situations, the solid picture of  i .9 marked against the planar view of  i .12 
(see  Figure 3.4 ). I would venture to say as much: that by making  i .9 appear 
more  solid , Heiberg simultaneously makes  i .12 appear more  planar . If  i .9 
is designed to bring to mind a picture of what a pyramid looks like, then 
 i .12 should be seen to be designed so as to bring to mind a picture of what 
a circle looks like. But if  i .9 is a mere schematic representation of lines in 
confi guration, then the same must be said of  i .12 as well: it is not a  picture  of 
a two-dimensional fi gure. It is, instead, a geometrically valid way of provid-
ing information, visually, about such a fi gure.     

 Th is, of course, is an interpretation that goes beyond the evidence. Th e 
facts on three-dimensional representation are simple: such representation 
is avoided as far as possible by the manuscripts, but is produced, wherever 

     7      Among the lost works by Archimedes, the  Centres of Weights of Solids  may well have been 
based on planar sectional treatment – which Archimedes invariably pursues in the closely 
related  Method  (where various spheres, conoids and prisms are represented by planar cuts). 
One wonders how Archimedes’ treatment of semi-regular solids was handled: the account 
in Pappus (Hultsch 1876: 350–8) carries no diagrams and is based on a purely numerical 
characterization of the fi gures. 
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applicable (which is rare), by Heiberg. My interpretation of this evidence is 
based on the facts shown above – the non-metrical character of the manu-
scripts’ diagrams – as well as those to which I now turn: their non-iconic 
character.   

 Heiberg goes iconic 

 I have suggested that Heiberg goes beyond the manuscripts, in making the 
two-dimensional fi gures more of a ‘picture’ of the object they are designed 
to represent. So far, my argument has been based purely on the contrast of 
such two-dimensional diagrams to their three-dimensional counterparts. 
What we require, then, is to see whether there are cases where Heiberg’s 
representation of two-dimensional fi gures inserts into them a visual ‘cor-
rectness’ absent in the manuscripts. We have to a certain extent seen this 
already with the quantitative, metrical character of Heiberg’s diagrams. 
Even more striking, however, is a certain systematic way by which Heiberg’s 
two-dimensional diagrams are qualitatively more ‘correct’ than those of the 
manuscripts. 

 I turn now to SC  i .33 (see  Figure 3.5 ). I note quickly the metrical facts. 
Th e fi gure by Heiberg has A much bigger than the main circle, which is 
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 Figure 3.4      Heiberg’s diagram for  Sphere and Cylinder  i.12 and the reconstruction of Archimedes’ 
diagram.    
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indeed ‘correct’; the manuscripts’ smaller A is in a sense ‘false’.  8    Th e manu-
scripts agree with Heiberg, however, in the arrangement of the line seg-
ments, all in keeping with the practice described above (pp. 167–8). 

 Qualitatively, Heiberg represents the propositions’ requirement – of a 
4 n -sided regular polygon circumscribed and inscribed about a circle – by 
two octagons. Th e manuscripts, instead, have a system made of two nested 
sequences of curved lines, 12 outside and 12 inside. Th e visual eff ect could 
not have been more diff erent and here we see the manuscripts’ diagrams 
becoming markedly non-iconic. A sequence of 12 curved lines, each nearly 
a semicircle, does not make the visual impression of a polygon. 

 Th e manuscripts, in this case, have a very good reason to choose their 
non-iconic system of representation. As we can see from Heiberg’s diagram, 
it is diffi  cult to make the visual resolution between such a polygon and a 
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 Figure 3.5      Heiberg’s diagram for  Sphere and Cylinder  i.33 and the reconstruction of
Archimedes’ diagram.    

     8      Incidentally, note that I did not count such false planar inequalities in my treatment of 
the non-metrical character of the manuscripts’ diagrams. My survey focused on the (very 
common) case where  homogeneous  objects are put side by side – typically unmarked circles 
or lines. I did not look into the case of heterogeneous objects, such as the simple circle A 
alongside the more complex main circle in  i .33. 
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circle. A square perhaps could still do, but this off ers a very special case 
of the 4 n -sided regular polygon: considered as a division of the sphere, it 
reduces to a system of two cones, without any truncated cones. Th e octagon 
already brings in a truncated cone, but this is the limiting truncated cone 
lying directly on the diameter of the sphere. Only with the dodecagon do 
we begin to see the general case of a division of the sphere based on 4 n -
sided regular polygons, with a limiting truncated cone lying directly on the 
diameter, another truncated cone next to it, and fi nally a non-truncated 
cone away from the diameter ( Figure 3.6 ). Of course, a regular dodecagon 
is nearly impossible to distinguish, visually, from a circle, but the entire 
point of avoiding a limiting case for the diagram is the desire to limit the 
extent to which the visual impression of the diagram creates false expecta-
tions. Th e same desire, then, accounts for the radical, non-iconic represen-
tation itself: no one is going to base an argument concerning polygons on 
the visual impression made by the curved arcs. Indeed, the visual impres-
sion as such does not play into the argument. What matters, for the argu-
ment, is the similarity of the polygons and the purely topological structure 
they determine – a circle nested precisely between two polygons, triggering 
Archimedes’ results on concave surfaces.  

 Th is diagrammatic practice is not isolated: it defi nes the character of 
Archimedes’ SC  i . As soon as the structure of a polygon inscribed inside 
the circle is introduced, in proposition 21, and right through the ensuing 
argument, the manuscripts systematically deploy such representations 
based on curved lines – in fi ft een propositions altogether ( i .21, 23–6, 28, 30, 

 Figure 3.6    Th e general case of a division of the sphere.    
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32–3, 37–42). I fi nd it hard to see how a scribe, asked to copy a manuscript 
where polygons are represented by polygons, would produce a manuscript 
where polygons are represented by a system of curved lines. Th is  lectio dif-
fi cilior  argument is the best I have for showing that, if not introduced by a 
scribe, such diagrammatic practice is likely authorial. Perhaps our simplest 
hypothesis is that the diagrams as a whole derive, largely speaking, from 
Archimedes himself.   

 Th e texture of Archimedes’ diagrams:    summary 

 Whether by Archimedes or not, the non-iconic character of the repre-
sentation of polygons in SC  i  is a striking example of how schematic the 
manuscripts’ diagrams are – and how Heiberg has turned such schematic 
representations into  pictures . Th is is of course consistent with the manu-
scripts’ preference for a ‘fl at’ representation as against Heiberg’s pictorial 
pyramids, as well as with the much wider manuscript practice of metrical 
simplifi cation, typically that of representing unequal magnitudes by equal 
fi gures. 

 Heiberg has clearly transformed the manuscripts’ schematic diagrams into 
pictorially ‘correct’ ones. By so doing, however, he has also constructed dia-
grams of a diff erent logical character. If diagrams are expected to be pictori-
ally correct, then one is expected to read them for some metrical  information; 
and if so, the information one gathers from the diagrams is potentially false 
(since no metrical drawing can answer the infi nite precision demanded 
by mathematics) as well as potentially overdetermined (since a particular 
metrical confi guration may introduce constraints that are less general than 
the case required by the proposition). Th e schematic and more ‘topologic-
al’ character of the manuscripts’ diagrams, on the other hand, makes them 
logically useful. One can rely on the manuscripts’ diagrams as part of the 
argument, without thereby compromising the logical validity of the proof. 

 A major claim of my book (N1999) was that diagrams play a role in Greek 
mathematical reasoning.  9    I have suggested there – following Poincaré – that 
the diagrams may have been used  as if  they were merely topological. My 
consequent study of the palaeography of Greek diagrams has revealed a 
striking and more powerful result: the diagrams, at least as preserved by 
early Byzantine manuscripts, simply  were  topological. Heiberg’s choice to 
obscure this character of the diagrams was not only philologically but also 
philosophically motivated. Clearly, he did not perceive diagrams to form 

     9      N1999, especially chapters 1, 2, 5. 
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part of the logic of the text and for that reason, on the one hand, did not 
value them enough to care for their proper edition and, on the other hand, 
preferred to produce them as mere ‘illustrations’ – as visual aids revealing 
to the mind a  picture  of the object under discussion. Th e implication – false 
for Archimedes as for Greek mathematics more generally – would be that 
the text is logically self-enclosed, that all claims are textually explicit. Th is, 
then, was the fi rst transformation introduced by Heiberg into the texture of 
Archimedes’ reasoning.    

 Th e texture of Archimedes’ text:     the local level  

 An overview of Heiberg’s practice of excision 

 A characteristic feature of Heiberg’s edition is his use of square brackets 
in the sense of text present in the manuscripts, which however is to be 
excluded as non-authorial. Th is, incidentally, is not the current practice 
among classical philologers, where the ‘{}’ are used for the same purpose, 
whereas square brackets are used to signal text restored by the editor – for 
which Heiberg himself used the ‘<>’ brackets.  10    Th is practice should be 
compared with two other options Heiberg had available to him. 

  (1)     One was to omit excluded text from his printed text altogether, relegat-
ing it into the critical apparatus alone. Such, indeed, is Heiberg’s prac-
tice whenever  already any of the manuscripts exclude the passage . For 
instance, SL 68.15–16 has the printed text συμπεσειται δε αυτα τα TZ, 
‘Th is will meet TZ’, which Heiberg has on the authority of codices BG. 
Heiberg’s apparatus has the comment: ‘αυτα] G, τα αυτα A(C), ipsi B’ 
(G is the siglum used for one of the Renaissance copies of codex A), that 
is: the reconstructed manuscript A certainly read  ta auta ta  (as this is the 
text read in all copies save the relatively mathematically sophisticated G), 
and so probably (Heiberg was unsure, but he was right) codex C; in codex 
B, Moerbeke translated the relevant words as if they were  auta ta  alone – 
though once again, Moerbeke is relatively mathematically sophisticated. 

      Heiberg could in principle have printed ‘[τα] αυτα τα’, commenting 
in the apparatus ‘τα] del. prae. BG’. Th is he did not do: his practice was 
to relegate such excluded words to the apparatus alone. On the other 
hand, in such cases where there was unanimous textual authority for a 
particular passage which Heiberg preferred to omit, his practice was to 
print that passage in the main text, surrounded by square  brackets.  

  10      See e.g.  http://odur.let.rug.nl/~vannijf/epigraphy1.htm . 

http://odur.let.rug.nl/~vannijf/epigraphy1.htm
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  (2)     Another option was to avoid the square brackets altogether, leaving his 
doubts to footnotes. He does so occasionally – particularly, it seems, 
when the exclusion involves both an excision as well as an addition to 
the text. So, for instance, footnote 2 in PE  i ,  ii .149, where the text is 
printed simply as πεποιησθω: 

 ‘πεποιησθω lin. 19 fortasse vestigium recensionis posterioris est. u. Quaest. 
Arch. p. 70. γεγονετω scripsit  Torellius  cum  Basil .’ , that is ‘ let it be made  in 
line 19 may be due to a late re-edition; see Quaest. Arch. p. 70  [Heiberg’s PhD]. 
Torelli [Th e Oxford 1792 edition] as well as Basil [the fi rst edition from 1544] 
have  let it come to be ’.  

  Heiberg could have instead printed [πεποιησθω] γεγονετω, with a 
note in the apparatus ‘γεγονετω] πεποιησθω ABC, scripsi prae. Tor., 
Basil.’ By printing, simply, πεποιησθω, Heiberg shows in this case more 
respect to the manuscripts’ authority and allows a smoother reading of 
the main printed text.    

 Heiberg’s strategy is well balanced. It is designed to help the reader navigate 
the main text as readable prose, without encumbering the apparatus (a nec-
essary consequence of (1) above) or the footnotes (a necessary consequence 
of (2) above). Th e square brackets are a helpful feature of the text. Th ey 
allow the reader to consider two possible ways of reading the text – with or 
without the excluded passage – and to see for herself which she likes best. 

 We should contrast Heiberg’s treatment of the text with his treatment of 
the diagrams. He made sure as much of the manuscript evidence as possible 
remained visible as regards the text, even taking pains to print text in whose 
inauthenticity he was certain – all of this, while removing the evidence for 
the manuscripts’ diagrams nearly in its entirety! 

 However respectful Heiberg’s practice may have been towards the 
manuscripts’ textual evidence, its outcome was to defi ne a certain set of 
expectations concerning the local texture of Archimedes’ writing. Heiberg 
eff ectively shares with us his view: ‘Archimedes could not write like this’, 
and readers would take notice of views with such authority. Let us consider, 
then, Heiberg’s judgements. 

 I move on to describe the pattern of Heiberg’s square brackets. Th e fi rst 
point to note is their unequal distribution among the treatises. I have gone 
through the corpus, counting all square brackets and classifying them as 
‘single words’ (with the possible addition of the defi nite article), ‘phrases’ 
(i.e. no more than a single claim or construction), ‘passages’ (consisting of 
several phrases) and ‘long passages’ (the border between these and ‘pas-
sages’ is diffi  cult to defi ne, but I mean an entire train of thought, going 
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beyond a single argument or so). In  Table 3.1 , I list for each treatise its 
length in Teubner Greek pages, as well as its square- bracketed passages. I 
believe that a good way of quantifying the impact of such square brackets is 
not by mere word-count – excising fi ve times a single-word passage is more 
signifi cant than excising a single fi ve-word passage – and instead I develop 
an ad-hoc ‘logarithmic’ count, with each ‘single word’ counting for one 
unit, each ‘phrase’ counting for three units, each ‘passage’ for nine and each 
‘long passage’ for twenty-seven. I then sum up this logarithmic value as 
the ‘Bracketing Equivalent’. I then  calculate the ‘Bracketing Equivalent per 
Page’ or BEPP, which is the Bracketing Equivalent divided by the number 
of Teubner pages. Th is entire exercise is of course somewhat absurd, but it 
does arrange the data in a useful way. 

 Table 3.1     Heiberg’s use of square brackets   

  Treatise  
  Length (Teubner 
pages of Greek)  

  Bracketed by 
Heiberg (~BEPP)  

  Notes 
(discussed below)  

   Floating Bodies   i     13    1 word (~0.05)    Doric, Palimpsest  
   Arenarius     22    3 words (~0.15)    Doric, discursive  

   Method     41    4 words, 2 phrases 
(~0.25)  

  Koine, Palimpsest  

   Spiral Lines     60    5 words, 2 phrases, 1 
passage (~0.35)  

  Doric  

   Floating Bodies   ii     ~26    8 words (~0.35)    Doric, Palimpsest  

   Quadrature of 
Parabola   

  27    6 words, 3 phrases 
(~0.55)  

  Doric  

   Conoids and 
Spheroids   

  100    10 words, 10 phrases, 2 
long passages (~0.95)  

  Doric  

   Planes in 
Equilibrium   ii   

  25    3 words, 5 phrases, 
2 passages (~1.4)  

  Doric, Eutocius 
extant  

   Planes in 
Equilibrium   i   

  20    7 words, 12 phrases, 2 
passages (~2.6)  

  Doric, Eutocius 
extant  

   Measurement 
of the Circle   

  6    7 words, 1 phrase, 
1 passage (~3.1)  

  Koine, Eutocius 
extant  

   Sphere and 
Cylinder   ii   

  31    12 words, 20 phrases, 12 
passages, 3 long passages 
(~8.7)  

  Koine, Eutocius 
extant  

   Sphere and 
Cylinder   i   

  83    11 words, 48 phrases, 29 
passages, 12 long 
passages (~9)  

  Koine, Eutocius 
extant  

  Note: Th e table is arranged by ascending BEPP (Stom. and Bov. are not included in this 
survey).  
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 Several factors emerge. Heiberg’s tendency was to introduce brackets 
much more into those texts for which we have an extant commentary 
by Eutocius (PE, DC, SC). Second, he introduced brackets into Koine 
treatises (DC, SC  i – ii , Meth.) more than to Doric treatises (thus, of the 
treatises for which we have a commentary by Eutocius, PE in Doric has far 
fewer brackets than DC, let alone SC). On the other hand, he was reluctant 
to introduce brackets into texts for which he had textual authority from the 
Palimpsest (thus, he introduced few brackets into the text of the  Method , 
even though it is extant in Koine). Finally, he practically did not intervene 
in the more discursive text of the  Arenarius . I move on to comment on 
those factors.  

 Eutocius 

 A common source of square brackets (especially at the level of words) is 
the comparison of the manuscripts’ text to that of Eutocius’ quotation. 
Heiberg’s judgement here may be faulted on philological grounds: it is now 
widely understood that many ancient quotations did not aim at precision,  11    
and the transformations introduced by Eutocius (e.g. a diff erent particle) 
can be explained by the new grammatical context into which the quotation 
is inset by Eutocius. Furthermore, the texts for which there is a commentary 
by Eutocius are the more elementary, and it appears that Heiberg suspected 
that such texts were more heavily retouched by their readers: a reasonable 
assumption, seeing that the more advanced works by necessity had much 
fewer readers. Th e net result is to make the advanced works the benchmark 
against which all the treatises are judged.   

 Dialect 

 Archimedes the Syracusan may have written at least some of his works in 
Doric – even when addressing Koine readers in Alexandria. Th e manu-
scripts present a variety of positions, between stretches of text written 
in what appears like pure Doric, through more mixed passages and all 
the way to texts in normal Hellenistic Koine. Heiberg’s edition turns this 
variety into just two options: treatises that Heiberg considered to have been 
transmitted in the Doric throughout antiquity (which we may call ‘Doric 
treatises’), and those he considered to have been turned into Koine at some 
point in antiquity (which we may call ‘Koine treatises’). Th us, the presence 

  11      A case studied in great detail is the quotations of Plato by his epitomizer Alcinous: Whittaker 
 1990 : xvii–xxx. 
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of Koine anywhere in the manuscript tradition of ‘Doric treatises’ – a pres-
ence which is oft en considerable, even preponderant – is taken by Heiberg 
to represent no more than the failure of scribes whose Doric may not have 
not have been up to Archimedes’ text. I shall return to discuss all of this in 
considering the global texture of Archimedes. What is clear, however,  is 
that Heiberg’s initial decision – whether or not to treat a treatise as ‘Doric’ – 
had consequences at the local level. Understandably enough, Heiberg felt 
less compelled to preserve the text of the ‘Koine treatises’, considering them 
the product of some late re-edition, as opposed to Archimedes’ pristine 
words preserved in the Doric. Th us the ‘Doric works’ come to serve as the 
benchmark against which the verbal texture of Archimedes as a whole is 
to be judged. Th is is comparable to the ‘Eutocius’ eff ect and indeed may 
be related to it. (Was the transition to Koine related to the presence of 
Eutocius’ commentaries?)   

 Palimpsest 

 Since the text of the  Method  is printed by Heiberg in its original Koine, we 
would expect him to bracket its text more extensively. As I will point out in 
the next section, the  Method  provides enough textual diffi  culties to allow 
for such editorial intervention. In fact, Heiberg leaves the text of the  Method  
almost as it is. Th e reason must be, I believe, what we may call a purely 
sociological or even psychological factor. Th e text of the  Method  is recov-
ered from the Palimpsest, through Heiberg’s major palaeographic tour de 
force. In sociological terms, Heiberg has already displayed his professional 
skill by his very recovery of the text and is therefore less under pressure to 
scrutinize it so as to display his professionalism. In psychological terms, I 
suspect Heiberg must have become attached to the words he did manage to 
read – it would be a pity to go through all the trouble just so as to discover 
some late gloss! (A reader of the Palimpsest myself, I am all too familiar 
with this urge.) For whatever reason, the fact is that the texts recovered 
from the Palimpsest are among those Heiberg trusts the most. Since these 
also happen to be among the more advanced works by Archimedes (in par-
ticular FB  ii  as well as the  Method ) this has the tendency of confi rming the 
role of the advanced works as paradigmatic.   

 Arenarius 

 Th e  Arenarius  is an outsider in the Archimedean corpus: written mostly in 
discursive prose rather than in the style of proofs and diagrams, it presents 
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many verbal and stylistic variations on the norm elsewhere.  12    Th e same 
goes for Heiberg’s interventions in this text. In  ii .236.24, Heiberg brackets 
the particle  men  which is unanswered by the obligatory  de ; in  ii .258.11 he 
brackets the particle  eti  which seems to be a mere scribal error anticipating 
the following preposition  epi . Th e case of 222.31, with the words  tou kulin-
drou  bracketed, is more complex. Th e text as it stands in the manuscript 
does not make any sense, as Greek grammar or as mathematics. Heiberg 
not only brackets  tou kulindrou  but also adds in a particle  oun  and changes 
the gender of a relative pronoun. In short, Heiberg’s interventions are philo-
logical rather than mathematical in character; that they are so few is a mark 
of Heiberg’s tact as an editor. Of course, Heiberg’s apparatus records many 
more variations that Heiberg introduced into the main text and indeed all 
three brackets could equally have been relegated to the apparatus alone. 
Needless to say, the  Arenarius  does not thereby obtain a canonical position 
for Heiberg’s reading of Archimedes: here, the lack of intervention signals, 
paradoxically, a marginal status. What the  Arenarius  reminds us is that 
Heiberg’s exclusions are so closely focused on the proofs-and-diagrams 
style. Indeed, there are, I believe, no words bracketed inside the  introductions  
to Archimedes’ works. 

 To sum up: Heiberg intervened in Archimedes’ text mostly to exclude 
words and passages that, in his view, do not square with what should have 
been Archimedes’ style of proof, as judged mostly by the advanced works 
extant in Doric.    

 Heiberg’s practice of excision: close-up on  Sphere and Cylinder  

 Th e mathematics of Archimedes, especially in the more advanced works, 
is very diffi  cult. Generally speaking, Heiberg’s brackets tend to keep it that  
way. Many of the excluded passages take the form of brief explanations 
to relatively simple arguments. Th e excluded passages make the text of 
Archimedes locally  transparent , and this is what Heiberg avoids – in this 
way also introducing a certain consistency which is absent from the manu-
scripts’ evidence. 

 Consider SC  i .4. Archimedes constructs a triangle ΘKΛ, with KΘ given 
and the angle at Θ right. It is also required that KΛ be equal to a certain line 
H. At this point the text comments ( i  16.25): ‘For this is possible, since H is 
greater than ΘK.’ Th is comment is bracketed by Heiberg. Th ere seem to be 
three reasons for Heiberg’s bracketing. 

  12      N1999: 199. 
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 First, this is an argument headed by the particle  gar , usually translated 
‘for’: having established a claim, the text moves on to off er further grounds 
for it. Heiberg’s tendency, especially in the books on  Sphere and Cylinder , 
was to excise a great proportion of  gar  statements. Th ere are altogether 155 
occurrences of the particle in the text of SC  i ,  ii  outside of the introductions, 
but of these 58 occur not in the context of a backwards-looking argument 
but in the context of some meta-mathematical formulaic expression using 
a  gar , such as the heading of the  reductio  mode of reasoning: ‘for if pos-
sible’,  ei gar dunaton . Remaining are 95 occurrences. Of these 54 are inside 
Heiberg’s brackets; only 41 are considered genuine. Th e 54 excised  gar s 
represent fewer than 50 excisions (a few long passages excised by Heiberg 
include more than a single  gar ), all of them constituting at least a phrase 
(Heiberg never excises a  gar  alone – which of course would have produced 
an asyndeton). Heiberg excised altogether 124 phrases and passages from 
the text of SC  i ,  ii , and so we see that about 40 per cent of these excisions are 
claimed by  gar s. Note however that many of the remaining excisions have a 
similar logical character, even while using a connector other than  gar : e.g. a 
 dēlon , ‘clearly’ phrase in SC  i .34 130.20–1, or even an  ara , ‘therefore’ phrase 
in SC  i .32 120.8. In most cases, the excision is motivated by the elementary 
character of the claim made. 

 Th is can be seen from the distribution of excisions of  gar  between the 
two treatises. Of the 68  gar s in SC  i , Heiberg excises 45 or about two-thirds; 
of the 27  gar s in SC  ii , Heiberg excises 9, that is a third. Th e major diff erence 
between the two treatises is that SC  ii  is usually much more complex than 
most of SC i.  13    Th e rule then begins to emerge: Heiberg excises  gar s in the 
context of relatively simple mathematics. 

 Going back fi nally to our example from SC  i .4, we can now see one 
reason why Heiberg chose to bracket it: in this example, the text looks back 
to explain why a certain construction is possible. Th is condition, however, 
is relatively simple: in constructing a right-angled triangle, the hypotenuse 
must be greater than the side. Heiberg’s view was that Archimedes could 
well have just taken such a condition for granted. 

 For this, Heiberg had something of a corroboration. Here I pass to the 
second ground for Heiberg’s excision: his search for  consistency . In the 
 preceding proposition 3, Archimedes requires an analogous construc-
tion, and there the text does not provide an explicit backwards-looking 
argument, merely stating ( i  14.8) ‘for this is possible’ (this is bracketed by 

  13      As a comparison: in the advanced treatise  Spiral Lines , Heiberg brackets 2 out of 33  gar s – 
which forms, however, a large part of his overall editorial intervention in that treatise. 
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Heiberg, for reasons that will be made clear immediately). Why should the 
text be fuller here than in the preceding proposition? Consistency, there-
fore, requires an excision. 

 I now move to the third reason for Heiberg’s bracketing. To understand 
it, let us note the following: the received text for Archimedes’ proposi-
tions 3 and 4 seems to open a strange gap between propositions 3 and 4. 
Why would Archimedes off er no more than a brief ‘this is possible’ claim 
in proposition 3, expanding it in proposition 4? If anything, the opposite 
– going from a more spelled-out expression to a briefer one – would be 
more natural. On the other hand, the entire picture makes perfect sense if 
we pursue the following hypothesis. Now, the text of Eutocius contains a 
commentary to proposition 3, starting with the following words: ‘And let 
[the construction be made]. For this is possible, with KL being produced 
 etc .’ ( iii  18.24–5). Let us assume that Archimedes’ text had none of the 
backwards-looking argument, and that some late reader has taken Eutocius’ 
commentary, fi rst inserting the words ‘for this is possible’ from Eutocius’ 
commentary into the text of proposition 3, then using Eutocius as a kind 
of crib from which to insert a very brief backwards-looking argument into 
proposition 4 (for which there is no commentary by Eutocius). 

 We see how the various factors – the presence of Eutocius’ commentary, 
the elementary nature of the claims made, the use of a backwards-looking 
argument, textual inconsistency – all come together to inform Heiberg’s 
considerations. 

 Was Heiberg right? I tend to believe he was, at least in part. Th is, for the 
following reason. Either we take the words ‘for this is possible’ in proposition 
3 to represent Eutocius’ original words, inserted into the text of Archimedes; 
or we take them as Archimedes’ original words, quoted by Eutocius as part 
of his commentary. Now, the word order of those words is  dunaton gar touto . 
Th is word order is natural as an anticipation of the  genitive absolute used 
by Eutocius in his commentary; inside Archimedes’ full phrase, the word 
order expected would more likely be  touto gar dunaton . Th e excision in 
proposition 3 therefore seems likely. And if so, it becomes somewhat more 
likely that the words in proposition 4, too, are due to some late reader. But 
then again, perhaps Archimedes’ text was strangely inconsistent, off ering no 
argument in proposition 3 but some minimal argument in proposition 4? 
Obviously, such questions can be answered only based on some overarching 
argument concerning Archimedes’ style, an argument which would have to 
be derived – circularly – from the established text of Archimedes. 

 In some cases, and in particular in the longer passages, Heiberg’s exci-
sions seem very reasonable. One of the clearest cases is SC  i .13 ( i  56.10–24). 
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Th is should be read in full to get a sense of the manuscript evidence Heiberg 
had to contend with (I quote together with my numbering of claims in the 
argument. It should be clear that this is something of an extreme case, 
though not at all a unique one): 

 (16) But that ratio which T Δ has to H in square – T Δ has this ratio to PZ in length [(17) 
for H is a mean proportional between TΔ, PZ (18) through <its being a mean propor-
tional> between Γ Δ, EZ, too; how is this? (19) For since ΔT is equal to TΓ, (20) while 
PE <is equal> to EZ, (21) therefore Γ T is twice T Δ, (22) and PZ <is twice> PE; (23) 
therefore it is: as ΔΓ to ΔT, so PZ to ZE. (24) Th erefore the <rectangle  contained> 
by Γ  Δ, EZ is equal to the <rectangle contained> by T  Δ PZ. (25) But the <rectangle 
contained> by Γ Δ, EZ is equal to the <square> on H; (26) therefore the <rectangle 
contained> by T Δ, PZ, too, is equal to the <square> on H; (27) therefore it is: as T Δ to 
H, so H to PZ; (28) therefore it is: as T Δ to PZ, the <square> on T Δ to the <square> 
on H; (29) for if three lines are proportional, it is: as the fi rst to the third, the fi gure 
on the fi rst to the fi gure on the second which is similar and similarly set up]   

 Th e expression ‘how is this?’ inside claim 18 is without parallel in the 
corpus, and seems like a didactic order to a pupil (or, perhaps, an autodi-
dact’s  cri de coeur ?). Th e passage from 19 to 21 is indeed extraordinarily 
simple (from A = B to A + B being twice A). Th e fi nal explicit quotation from 
Euclid’s  Elements  is natural coming from a didactic context. And overall the 
argument is very simple, strikingly so given its length. It is therefore quite 
likely that the entire passage from ‘how is this?’ in the end of claim 18 down 
to the end of claim 29 is a scholion inserted into the manuscript tradition. 
Heiberg’s choice, however, was to bracket starting from step 17 itself – this, 
apparently, merely because step 17 begins with a  gar . 

 It would be easy for us to condemn Heiberg’s use of square brackets as 
disrespectful to the manuscripts’ evidence, or as involving massive circular 
reasoning. But Heiberg’s practice is not unreasonable and is likely to be 
correct at least in part. I doubt any editor could have come up with a single 
system better than Heiberg – short, that is, of the confession of editorial 
ignorance which might have been best of all (and which Heiberg, in a 
sense, did fi nally follow – by allowing the bracketed words to be printed 
inside the main text). I stand by my judgement of Heiberg as a superb, and 
superbly tactful, philologer. Having said that, however, the fact remains that 
we cannot really say how correct he was. Th ere are three texts at play here: 

  (A)     Heiberg’s text with the bracketed segments inserted, i.e. the manu-
scripts’ reading.  

  (B)     Heiberg’s text with the bracketed segments removed.  
  (C)     Archimedes’ original text.    
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 Heiberg’s intention was of course to take A and, by transforming it into 
B, to make it come as close to C as possible. It is indeed certain that A and 
C are not identical. However, it is impossible to judge how close B is in fact 
to C. Th e only judgement we can make with confi dence has to do with the 
relationship between A and B. Th e transformation introduced by Heiberg 
into the manuscripts’ text is motivated by two main considerations: the 
avoidance of explicit argument in the context of relatively simple math-
ematics; and the avoidance of textual inconsistencies. Th is determines the 
image of Archimedes as projected by Heiberg’s method of excision: neither 
transparent nor inconsistent. I do not address right now the question 
whether this image is, or is not, correct. I merely point out the presence 
of this image, before moving on to consider the infl uence of this image in 
Heiberg’s treatment of the texture of Archimedes at the global level.    

 Th e texture of Archimedes’ text:   the global level 

 As usual, my point is not to criticize Heiberg. In some ways, any edition 
involves a transformation at the global level. Th e ‘feel’ of an  Opera Omnia  
in its Teubner print is very distinct from that of codices A or C which, in 
turn, would have felt, possibly, even more diff erent from their antecedent 
of a basket of rolls in ancient Alexandria. Some of Heiberg’s decisions were 
of this inevitable character: so, for instance, an  Opera Omnia  must proceed 
in some order, and the fact that this calls for editorial decision does not 
thereby make the editor unfaithful to his author. On the other hand, in 
some other forms Heiberg made choices for presentation that went beyond 
the manuscripts’ evidence, mostly informed by a sense of overall math-
ematical consistency.  

 Th e order of Archimedes’ works 

 Knorr was upset over that issue:  14    

 Following the start made by Torelli in 1792, Heiberg had in 1879 attempted to 
determine the relative chronology of the treatises then known to him. But in 
setting them out in his ensuing editions of Archimedes he chose to retain the 
traditional order in the principal manuscripts, based on the prototype A, and then 
tacked on the few remaining works and fragments preserved in other sources. 

  14      Knorr  1978 : 212–13. 
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Heiberg’s ordering has been adopted in all subsequent editions and translations, 
notably those by T. L. Heath, P. Ver Eecke, E. J. Dijksterhuis and C. Mugler. Indeed, 
Ver Eecke pronounced it to be of all possible orderings “le plus rationnel”. What 
began as merely a philological concern to keep strictly to the sequence of the 
manuscript sources has thus given rise to the astonishing view that this ordering 
has intrinsic rational merit, despite such patent incongruities as the placing of 
the  Sand Reckoner  and the  Quadrature of the Parabola  and others to be discussed 
below.   

 Th is may, fi rst of all, serve as a nice reminder of the pre-eminent position 
of Heiberg in our contemporary reading of Archimedes. Further, I am not 
quite clear as to what ‘patent incongruities’ Knorr meant. Clearly his inter-
est lay with the chronological sequence, and as such the order of the  Opera 
Omnia  makes no sense. It is not a random order, though, and its signifi -
cance should be pondered. 

 Here is the order of Heiberg’s second edition: 

 SC  i  – SC  ii  – DC – CS – SL – PE  i  – PE  ii  – Aren. – QP – FB  i  – FB  ii  – Stom. – 
Meth. – Book of Lemmas – Bov. – Fragments (in reality, Testimonia).   

 Up to QP, inclusive, this follows (as explained by Knorr) the order of 
codex A (which was the only order available to Heiberg, on manuscript 
authority, for his fi rst edition). Th e works extant on the Palimpsest follow 
in the order FB – Stom. – Meth. (perhaps designed to keep the  Method  
till later?), and then follow several works from diverse sources: the Book 
of Lemmas from the Arabic, the  Cattle Problem  from a diff erent line of 
transmission altogether, and then of course the Testimonia from sources 
other than Archimedes himself. One should note the outcome, that Heiberg 
foregrounded the works in which he detected most interpolations. Th is is 
not a paradox: the works foregrounded by Heiberg were the elementary 
works in pure geometry, and the detection of many interpolations could 
have meant to Heiberg an indication of the signifi cance such works had for 
Archimedes’ ancient and medieval readers. 

 While Heiberg’s principle was purely philological, he followed manu-
scripts that, themselves, made rational choices (so that Ver Eecke’s judge-
ment is not  necessarily  false). Th e system underlying A is quite clear. 
 A  sequence of fi ve works in pure geometry (SC  i , SC  ii , DC, CS, SL) is 
followed by a sequence of four works that refer in some way or another to 
the physical order (PE  i  – PE  ii  – Aren. – QP; this is followed in codex A 
by Eutocius’ commentaries, and then by a treatise by Hero on Measures). 
Such an arrangement is suggestive of a previous ‘canonical’ selection of 
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‘top fi ve Archimedean geometrical rolls’, ‘top four Archimedean physical 
rolls’, perhaps representing a previous arrangement of rolls by baskets, 
perhaps of some majuscule codices with only four to fi ve works each.  15    In 
each sequence, the internal order is roughly from the simpler to the more 
complex. 

 It so happens that the works preserved via traditions other than codex 
A tend to be less focused on pure geometry.  Th ree of the works pre-
served via C – FB  i , FB  ii , Meth. – have a marked ‘physical’ character. Th e 
 Stomachion , also preserved via C, may be a unique study in geometrical 
combinatorics.  16    And while the Book of Lemmas does touch on pure 
geometry, the  Cattle Problem  is an arithmetical work. Th e fragments, 
fi nally, refer to such diverse topics as astronomy, optics or the arithmetico-
geometrical study of semi-regular solids reported by Pappus  .17    In short, 
the emphasis on pure geometry – very natural based on codex A alone – is 
less faithful to the corpus as a whole as recognized today. Or indeed as 
recognized by some other past traditions. For the order of codex C was 
distinct: 

 PE  i  (?)  18    – PE  ii  – FB  i  – FB  ii  – Meth. – SL – SC  i  – SC  ii  – DC – Stom.   

 Th is has fi ve works referring to the physical world (PE  i – ii , FB  i – ii , 
 Method ) followed by fi ve works of a non-physical character (SL, SC  i – ii , 
DC,  Stomachion ). Once again, the origin in some earlier arrangement 
is likely, and the main classifi catory principle is the same – referring, or 
failing to refer, to an outside physical reality. Th e striking diff erence is that 
codex C chose to position the physical works prior to the non-physical 
ones. 

 At issue is a fundamental question regarding Archimedes’ scientifi c 
character. Was he primarily a pure geometer, who indulged in some 
exercises of a more physical or non-geometrical character? Or was he 
primarily an author of ‘mixed’ works, so that the more purely geometrical 
works – such as  Sphere and Cylinder  – should be seen as no more than 
one further option in the spectrum of possible Archimedean variations? 
A very diff erent Archimedes would emerge if we were to order his works, 
say, as follows: 

  15      Th ese two options, of course, do not rule each other out. See Blanchard  1989  for some 
suggestive comparisons. 

  16      Netz  et al .  2004 . 
  17      Hultsch  1876 : 350–8. 
  18      Th e beginning of the Archimedes portion of the Palimpsest appears to be lost. Th e text begins 

towards the end of PE  ii . Th ere could be works prior to PE  i , or the manuscript could start with 
PE  ii  only. Either option, however, is less likely than that the manuscript started with PE  i . 
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   Semi-Regular Solids   19     
   Stomachion   
   Book of Lemmas   
   Measurement of the Circle   
   Method   
   Conoids and Spheroids   
   Sphere and Cylinder   i   
   Sphere and Cylinder   ii   
   Cattle Problem   
   Planes in Equilibrium   i   
   Planes in Equilibrium   ii   
   Spiral Lines   
   Arenarius   
   Quadrature of Parabola   
   Floating Bodies   i   
   Floating Bodies   ii     

 What would such a counterfactual order suggest? Above all, a certain 
lack of order, and the sense of an author who reveled in variety. Th is, 
indeed, may not be too far of the mark. But notice how diff erent this is from 
the impression made by Heiberg’s order chosen for the  Opera Omnia ! For 
his sober-minded Teubner edition, based on the authority of the sober-
minded scribe of A, Heiberg has produced a sober-minded Archimedes – 
one who was above all a pure geometer. Th is, once again, may possibly be 
historically correct. But then again, perhaps it is not. Th e one thing clear is 
that the order forms  an editorial decision : a diff erent ordering of the works 
would have given us perhaps a less sober, perhaps even a less geometrical 
Archimedes.   

 Th e dialect of Archimedes’ works 

 Th e very language in which Archimedes’ works should be read forms a 
genuine philological puzzle. I do not think we are ready to solve this puzzle, 
yet, and so I merely outline here the problem, expanding somewhat the 
discussion of this problem from pp. 179–80 above and focusing on the sig-
nifi cance of Heiberg’s approach to it. 

  19      While not extant, Archimedes’ work on semi-regular solids is known through a report in Book 
 v  of Pappus’  Collection . I am envisaging how Archimedes’ works would have looked had a 
work such as this appeared fi rst. 
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 Some of the manuscripts that give evidence for Archimedes’ works 
contain a signifi cant presence of Doric dialect forms, in particular ποτι 
for Koine προς, ειμεν for Koine ειναι, εσσειται for εσται as well as certain 
phonological variations, predominantly the use of long α for Koine η. Such 
dialect forms are very common in the manuscript evidence for PE   i , CS, QP, 
 Arenarius  (A alone), FB  i  (C alone) and SL (both A and C). Th e dialect forms 
are much less common, or totally missing, in SC  i , SC  ii , DC, PE  ii  (both A 
and C), FB  ii ,  Stomachion  and  Method  (C alone). Heiberg’s comment on this 
last work ( ii .xviii) is telling: ‘And even though I do not doubt that this work, 
too, was written in Doric by Archimedes, I dare not reinstate the dialect that 
was so diligently removed by the interpolator.’  20    In other words, Heiberg 
sees the Koine dialect as a kind of interpolation, inserted into the text of SC 
 i , SC  ii  and DC (works that Heiberg would anyway consider heavily medi-
ated by their readers) as well as some other works. 

 While SC  i , SC  ii  and DC are completely free of Doric dialect, all the 
other works display a certain mixture of Doric and Koine, more Doric in 
such works as SL, much more Koine in works such as  Method . Heiberg’s 
edition removes this sense of gradation, introducing instead a clear bifur-
cation. SC  i , SC  ii , DC and  Method  are printed mostly in pure Koine,  no 
mention made  in the critical apparatus for the (rather few) cases where 
Doric forms are present. PE  i , PE  ii , CS, QP,  Arenarius , FB  i , FB  ii  and SL 
are printed in pure Doric,  no mention made  in the critical apparatus for the 
(rather many) cases where Koine forms are present.  21    Notice that Heiberg 
imposed Doric on PE  ii  and FB  ii ,  against  the manuscripts – which he 
avoided doing for  Method  – presumably because of a desire to preserve 
their continuity with PE  i  and FB  i , respectively. Underlying this simple 
bifurcation is an even simpler monolithic image of Archimedes’ language. 
As Heiberg said plainly, his position was that Archimedes wrote in Doric 
and in Doric alone. 

 Heiberg, ever the philologer, did produce an explicit survey of the dialect 
variation. Th is however he did not in the critical apparatus itself, but inside 
a dedicated index of manuscript variations, positioned as the major com-
ponent of the introduction to the second volume. Th is doubly marginal-
izes the importance of the dialect variations. First, by taking them away 
from the critical apparatus, and second, by positioning them in the second 

  20      ‘et quamquam non dubito, quin hoc quoque opus Dorice scripserit Archimedes, dialectum de 
industria ab interpolatore remotam restituere ausus non sum.’ 

  21      Th e  Stomachion  – preserved in fragmentary form and therefore more tactfully handled – is the 
only work for which Heiberg simply prints, without comments, the form of the manuscript 
(according to Heiberg’s readings), allowing a ‘mixed’ dialect. 
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volume, rather than in the third and fi nal volume (which is where critical 
editions typically present their major philological observations). 

 In this case as in the case of excisions (to which the question of dialect 
is aft er all closely related, as Heiberg’s excisions, as we saw, centred on 
what he defi ned as Koine-only treatises) Heiberg could well be right. We 
could never tell for sure whether Heiberg was indeed right on dialect, but 
his position is indeed plausible. What Heiberg did achieve however is to 
obscure the very question which, to my knowledge, has not been addressed 
at all to date. Which dialect(s) did Archimedes write in, and what was the 
signifi cance of such choice? I do not have the expertise required to solve 
such questions, but I wish to emphasize that these questions have yet even 
to be posed. Would a choice to write in Doric, or in Koine, carry specifi c 
cultural meanings? It is very intriguing that a late source tells us that 
Archytas is the model for Doric prose.  22    Archytas of course was primarily 
a scientifi c author, indeed known for his contribution to the exact sciences. 
Was there a cultural value attached to Doric as a marker of scientifi c prose? 
(Eudoxus, from the Doric-speaking island of Cnidus, could have written 
in Doric as well; for certain, he did not write in Koine which was not yet 
available in his time.)  23    Clearly, dialectal choice was, in Archimedes’ time, 
a charged generic marker. Hellenistic authors were keenly aware of their 
position as heirs to a rich literary tradition, varied by genre and by dialect – 
the two oft en going hand in hand. Elegy would be written in (a specifi c 
variety of) Ionic, epic poetry in the Homeric dialect (which in itself was a 
 Kunstsprache , an ad-hoc amalgamation of several layers of Greek that never 
served together in any actually spoken Greek).  24    

 Heiberg’s implicit claim was that the question of dialect was minor, 
because it was unmarked: what would Archimedes write in, if not his 
native language? Even deeper lies the assumption that a mathematician’s 
language does not matter. Archimedes would write in Doric, the unmarked 

  22      Gregory of Corinth,  On Dialects . (A6g in Huff man 2005: 279–80). Th is – Byzantine – source 
mentions Archytas and Th eocritus as the models of Doric, Archytas clearly intended therefore 
as the model of Doric  prose . While late, it is diffi  cult to see how such a statement could emerge 
based on anything other than solid ancient testimony from the time that Archytas’ works were 
still widespread. 

  23      Nor should we think in terms of a monolithic ‘Doric’ opposed to a monolithic ‘Koine’. It is 
completely unclear to me, for instance, whether the Doric prose of Archimedes’ usage could 
not have allowed των, instead of ταν, more oft en than Heiberg assumes (there are about 
twenty cases of such variation in each of SL and  Arenarius , where Heiberg always prints ταν). 

  24      Th e locus classicus for an interpretation of this traditional observation is an essay by Parry 
from 1932, ‘Studies in the epic technique of oral verse-making.  ii . Th e Homeric language as the 
language of an oral poetry’, most conveniently available as  chapter 6  of Parry  1971 . 
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form he would speak anyway, since he would not even think about which 
language to use: the contents matter, and not their verbal form. Such is the 
image projected by Heiberg’s editorial choice to minimize the question 
of dialect and to assume a purely Doric Archimedes. I am not sure this 
is true, and so I suspect that there is an open question as to the cultural 
signifi cance of Archimedes’ choice of dialect. Th is question is elided by 
Heiberg’s editorial choices.  25    

 Once again: I do not condemn Heiberg. I point, instead, to the sig-
nifi cance of Heiberg’s move away from the manuscripts, regardless of how 
close this may or may not have brought him to the ‘original text’. Th e main 
consequence of Heiberg’s move was to make the verbal texture of the text 
appear much more consistent than it was in the manuscript evidence. Th e 
main implication of that would be to minimize the very signifi cance of 
verbal texture: to make Archimedes, once again, into a pure geometer – one 
who cares about his mathematics and not at all about his style.   

 Th e format of Archimedes’ works 

 If Heiberg’s Archimedes ignores questions of verbal shape, this Archimedes 
certainly pays attention to mathematical shape or format. In the criti-
cal edition, the text is articulated throughout by a systematic arrange-
ment based on two dualities: that of the introductory text as against the 
sequence of propositions; and, inside the propositions, that of the general 
statement as against the particular proof. Both are determined by the 
major feature of the format, namely the sequence of numbers of proposi-
tions inside each work. Th e fi rst numeral, preceding the fi rst proposition, 
marks the transition from introduction to the sequence of propositions; 
from then onwards, each numeral is followed by a single paragraph written 
out without diagrammatic labels, which is the general statement preceding 
the main proof. 

 Th is format has basis in the manuscripts’ authority and may to some 
extent refl ect Archimedes himself. In some ways, however, Heiberg tends 
to emphasize the regularity of this format and even to insert it against the 
manuscripts’ authority. 

 Th e layout itself is signifi cant. Heiberg has the proposition numerals 
written inside the block of printed text with clear spaces preceding and 

  25      All of this is closely parallel to the question of dialect in Th eocritus – another third-century 
Syracusan extant, mostly, in some form of Doric, poetic in this case – and even though the 
analogous problem has been researched for the case of Th eocritus, scholars are far from 
consensus (see Abbenes  1996 ). 
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following them, serving in this way to articulate the writing in a highly 
marked form. Following that, Heiberg writes out his text in accordance 
with the clear paragraph arrangement dictated by modern conventions, 
with the general statement always occupying a separate paragraph. Th e 
Byzantine manuscripts followed a somewhat diff erent layout. Numerals 
for propositions – where present – are marginal notes that do not break 
the sequence of the writing (this articulation is provided, however, by the 
diagrams, as a rule positioned at the end of their respective propositions). 
Division into paragraphs is less common in Byzantine manuscripts (where 
it is performed by spacing inside the line of writing, where the break 
is to take place, together with an optional bigger initial in the  following  
line, positioned outside the main column of writing). Typically, general 
 statements do not form in this sense a paragraph apart, such division into 
paragraphs being reserved for more major divisions in the text – typically 
for the very beginning of a proposition or, occasionally, in such major tran-
sitions as the passage from the ‘greater’ to the ‘smaller’ cases in the Method 
of Exhaustion (so, for instance, codex C in SL 25,  i  96.30). It is likely that 
Archimedes’ original papyrus’ rolls were, if anything, less articulated than 
that.  26    Not that this impugns Heiberg’s use of paragraphs: modern editions 
universally ignore such questions of layout, imposing modern conven-
tions, and even though the layout of the manuscripts, as of Archimedes 
himself, did not possess Heiberg’s visible articulation, it is fair to say that 
the two divisions – of introduction from main propositions, and of general 
statements from proofs – are genuinely part of Archimedes’ style. 

 However, because Heiberg is committed to a  visible  layout, he is also 
forced to set clear-cut divisions where the original may be less clearly 
defi ned. 

 First, even though the Archimedean text does operate between the 
polarities of discursive prose and mathematical proposition, it is not as if 
the transition between the two is typically handled as a break in the text. 
Rather, Archimedes negotiates the transition in varied ways that make it 
much smoother. To take a few examples: following the main introduc-
tory sequence in CS ( i  246–258.18), Archimedes moves on to a passage 
( i  258.19–260.24) where several simple claims are either asserted without 
argument, or are accompanied by a minimal argument without diagram-
matic labels (e.g. Archimedes explains that when a plane cuts both sides 
of a cone, it produces either a circle or an ellipse). Only following that, 
at  i  260.25, Archimedes moves on to a longer and more complicated 

  26      On early papyrus practices of articulation of text, see Johnson  2000 . 
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 proposition that also calls for a diagram. Codex A also marked this propo-
sition with the marginal numeral A. Heiberg prints the entire sequence  i  
246–260.24 preceding ‘proposition 1’ as a single paragraphed block of text, 
that is the ‘introduction’, followed by the sequence of ‘propositions’ starting 
at   i  260.25. But clearly Archimedes’ intention was to create a smooth tran-
sition mediated by the passage  i  258.19–260.24, which does not fall easily 
under either ‘introduction’ or ‘propositions’. 

 Very similar transitions are seen in SC  i , SC  ii , QP and PE  i , with Heiberg 
making diff erent choices: in SC  i  and SC  ii  the transitional material is 
incorporated into the ‘introduction’; in QP and PE  i  it is incorporated into 
the ‘propositions’. Further, while the fi rst proposition of the  Method  has a 
complex argument that calls for a diagram, Archimedes rounds it off  with 
a second-order comment that makes it appear rather like part of the ‘intro-
duction’ ( ii  438.16–21). Heiberg, very misleadingly, prints this comment as 
if it formed part of proposition 2: clearly Archimedes’ point was to smooth, 
once again, the transition from introduction to propositions. If we bear in 
mind that the complex interplay of introduction and propositions is typical 
of the  Arenarius , and that FB  ii , PE  ii  and DC do not possess an intro-
duction at all, we discover that Heiberg’s neat dichotomy of introduction 
divided from text is found in SL alone! 

 Heiberg’s clear articulation of the text into ‘propositions’ falling into 
paragraphs tends to obscure, once again, the variety of formats found in 
the corpus. Quite oft en, the text relapses into briefer arguments set in a 
general language that does not call for a diagram. Heiberg marks such 
passages off  and heads them as ‘corollaries’ or  porisma , but this is done 
against the manuscripts’ evidence where, instead, such passages form part 
of the unbroken fl ow of the text. Th is happens twenty times in the corpus. 
Heiberg systematically introduces the title  porisma  into the printed text, 
noting in the apparatus that the manuscripts ‘omit’ this title! For instance 
PE  i : Heiberg prints πορισμα α in  ii  130.22 and πορισμα β in  ii  132.4, 
with the following apparatus: 130.22  om . AB Πο D, 132.4  om . AB. Th at is: 
one copy of A introduced, in the fi rst case, a marginal mark anticipating 
Heiberg’s own intrusion. But the original text had no such headings. Th e 
important consequence is that the original text allowed stretches of text, 
inside the main fl ow of ‘propositions’, where no detailed, diagrammatic 
argument was required – and without segregating such passages by a title 
such as  ‘corollary’. 

 Th e variety of the original is wider than that. Th us, for instance, some 
propositions have a complex internal structure not neatly captured by the 
simple division into general statement and particular proof (such as the 



194 reviel netz

analysis-and-synthesis pairs typical of SC  ii , as well as the extraordinar-
ily complex internal structures – punctuated by several diagrams – of FB 
 ii .8–10). Other propositions do not even display this simple division: for 
instance, several key propositions of SC  i , starting with 23, take the form 
of a ‘thought experiment’ where a certain operation is carried out followed 
by an observation. Such propositions do not call for a general statement. 
Further, many of the propositions of QP do not have a general statement 
and start instead directly with diagrammatic labels. Now, Heiberg does 
report correctly the contents of such deviant propositions, but his overall 
system of articulating the text by explicit numerals tends to force the read-
ings of all propositions into a single mould. More, indeed, can be said for 
the case of QP. Th e manuscripts do mark numerals for the fi rst four propo-
sitions (the fi rst three of which, however, defy easy counting, as they form 
the transitional material from introduction to propositions). Th en, from 
proposition 5 onwards, no numerals are present. Heiberg dutifully notes 
this fact but in a misleading fashion (analogous to his treatment of the title 
‘corollary’): he goes on printing the numerals, noting in the critical appara-
tus to proposition 5 that from this point onwards the numerals are ‘omitted’ 
by the manuscripts. 

 Th is is not a unique case: the manuscripts for DC and  Method  never 
contain numerals for proposition numbering; Heiberg introduces the num-
bering and then makes the apparatus report their ‘omission’. 

 A similar pattern can be seen inside the introductory material. Th ere, 
Archimedes oft en includes material of substantive axiomatic import – 
certain assumptions, or defi nitions, that he requires later on for his argu-
ment. Typically, Heiberg introduces titles to head such passages (that, in the 
original, belong directly to the fl ow of the introduction), and then numbers 
the individual claims made in such passages. Th us, Heiberg’s introduction 
of SC  i  is divided (following Torelli) into three parts: a general discussion 
proper ( i  2–4), αξιωματα or ‘defi nitions’, so headed and numbered 1–6 ( i  
6), λαμβανομενα or ‘postulates’, so headed and numbered 1–5 ( i  8). Titles 
and numbers are not in the original. Similar systematizations of the axio-
matic material take place in  Method , SL (inside the later axiomatic passage, 
 ii  44.16–46.21) and PE  i . 

 Heiberg’s position must have been that all such titles and numerals were 
required and so would have been lost only through some textual corrup-
tion. Otherwise, he could at the very least have marked off  such editions 
by, say, pointed brackets, or, at the very least, commenting in the apparatus 
 add . for ‘I added’ instead of  om . for ‘the manuscripts omitted…’ Th is posi-
tion blinded Heiberg to the serious textual question regarding the origins 
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of such numerals in general. While the manuscripts do usually possess 
numerals for proposition numbers, there seems to be some occasional dis-
agreement between the manuscripts as to  which  numerals to attach. Th is 
disagreement is typically between the various copies of codex A, and so 
carries little signifi cance (aside from signalling to us that the scribes may 
have felt a certain freedom changing those numbers). In the few cases (SL, 
SC  i , SC  ii ) where Heiberg could compare the numbering reconstructed 
for codex A with that reconstructed for codex C, the numbers were 
indeed the same. However, it is interesting to observe that codex C has the 
number 11 for what Heiberg titles (based on codex A) PE  ii .10.  27    Heiberg 
almost certainly was unable to read this number but, once this evidence is 
considered, we fi nd a remarkable fact: the two early Byzantine manuscripts 
for PE  ii  numbered their propositions diff erently. Th is of course raises 
the possibility that such numbers are indeed not part of the original text 
but are rather (as their marginal position suggests) a late edition by Late 
Ancient or Byzantine readers. Here, remarkably, Heiberg may have failed 
to be critical enough. Th e possibility that the numbering was not authorial 
apparently did not even cross his mind. 

 Th is phenomenon of systematization by titles and numerals is quite out 
of keeping with Heiberg’s overall character as an editor. Th ere must have 
been a major reason for Heiberg to intervene in the text so radically, and so 
blindly. Th is fact complements the evidence we have seen for Heiberg’s treat-
ment of Archimedes’ verbal style. Just as Heiberg considered Archimedes 
indiff erent to his verbal style, so we see Heiberg imputing to Archimedes 
meticulous attention to mathematical style. And this, even though such 
an imputation fl ies in the face of the evidence. Whereas Archimedes’ text 
shows a great variety of forms of presentation, a gradation between more 
or less formal, more or less general, and a merely discursive arrangement, 
Heiberg produces a text marked by the dichotomies of introductory and 
formal, general and particular, throughout producing a neatly signposted 
text. Th is is a consistent Archimedes – and a consistently formal one.   

 A close-up on the  Method  

 Archimedes’  Method  forms a special case. First, Heiberg faced here a task 
somewhat diff erent from elsewhere: he needed not only to judge a text, 
but also, to a certain extent, to formulate it himself. Much of the text of the 
Palimpsest was illegible to him and so much had to be supplied. Second, 

  27      Th e Archimedes Palimpsest 14r col. 1, margins of line 11. 
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here we can test Heiberg’s judgement. Heiberg’s decisions elsewhere – that 
this or that was by Archimedes himself, this or that was by an interpola-
tor – will probably never be verifi ed or refuted. But whenever we can now 
read passages of the Palimpsest that were illegible to Heiberg, we thereby 
test a conjecture. Th e issue of course is not to see how good Heiberg was 
as a philologer. He was a superb one and, indeed, the new readings of the 
Palimpsest oft en corroborate Heiberg’s guesses to the letter. I shall now con-
centrate, however, on three false guesses – which together form a systematic 
whole, characteristic of Heiberg’s overall approach to the text of Archimedes. 

 Th is is also a good example of the enormous sway Heiberg’s edition had 
over Archimedes’ destiny through the twentieth century. Heiberg’s edition 
was careful and prudent: pointed brackets surrounding passages that he 
fully guessed, dots to mark lacunae that he could not read at all (oft en 
with remarks in the apparatus asserting the length of such lacunae), dots 
underneath doubtful characters. It is true that today we fi nd that a number 
of characters Heiberg printed with confi dence were wrong, but this is a 
natural phenomenon in a palimpsest where the overlaying text occasion-
ally creates the illusion of false characters. All of this was accompanied by 
a Latin translation – as was Heiberg’s practice elsewhere – where doubtful 
passages were carefully marked by being printed in italics. In short, any 
careful reader could tell which part of the text was Heiberg’s, and which 
was Archimedes’. And yet, Heiberg’s infl uence was such that all later editors, 
translators and readers operated, as it were, on the basis of Heiberg’s Latin 
translation, largely speaking ignoring the diff erence between the Latin 
printed in Roman characters (which Heiberg read confi dently) and the 
Latin printed in italics (which Heiberg merely guessed or supplied). Here, 
more than anywhere else, Heiberg’s text supplanted that of Archimedes. 
Th is had real consequences, subtle but consistent – so as to change the 
overall texture of the treatise. 

  (1)     Th e fi rst case is the most clear-cut. We now recognize  Method  propo-
sition 14 (to follow Heiberg’s misleading numerals) as one of the 
most important proofs ever written by Archimedes, but this is on the 
strength of a new reading, illegible to Heiberg. As read by Heiberg, this 
proposition is a mere variation on themes developed elsewhere in the 
 Method , of little deep value. 

      Th e  Method  typically operates by the combination of two principles: 
a method of indivisibles (conceiving an  n +1-dimensional object as 
constituted by a continuity of  n -dimensional objects), and the appli-
cation of results from geometrical mechanics for the derivation of 
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results in pure geometry. Th is is oft en done by obtaining a common 
centre of gravity to all pairs, suitably defi ned, of the  n -dimensional 
objects; assuming that the centre of gravity is then inherited by a pair 
of  n +1-dimensional objects constituted by the  n -dimensional objects; 
and fi nally applying the results that follow from the geometrical 
proportions inherent in the Law of the Balance. Th is is illustrated by 
Archimedes through a variety of results arranged by Heiberg as propo-
sitions 1–11. As Archimedes clarifi es in the introduction, his intent 
is to provide also ‘classical’ or purely geometrical proofs for a couple 
of new results, measuring the volumes of (a) the intersection of a cyl-
inder and a triangular prism, (b) the intersection of two orthogonally 
inclined cylinders. Nothing survives of the proofs for (b), but we have 
considerable evidence for no fewer than three proofs for (a). Th e fi rst, 
arranged by Heiberg as the two propositions 12–13, is a proof based 
on both a method of indivisibles as well as geometrical mechanics. Th e 
second is proposition 14, on which more below; the third – called by 
Heiberg ‘proposition 15’ – survives in fragmentary form, but it is clear 
beyond reasonable doubt that this forms, indeed, a ‘classical’ proof 
based on standard geometrical principles applied elsewhere. Th is is in 
fact a proof based on the method of exhaustion. 

      Proposition 14 therefore occupies a middle ground between the 
special procedures of the  Method , and the standard geometrical princi-
ples applied elsewhere. Indeed, it uses only one part of the procedures 
of the  Method . It makes no use of geometrical mechanics, based instead 
on indivisibles alone. Archimedes considers a certain proportion 
obtained for any arbitrary slice in the solid fi gures – so that a certain 
triangle A is to another triangle B as a certain line segment C is to 
another line segment D. Th e set of all triangles A constitutes the trian-
gular prism; the set of all triangles B constitutes the intersection of cyl-
inder and triangular prism that Archimedes sets out to measure; the set 
of all line segments C constitutes a certain rectangle; the set of all line 
segments D constitutes a parabolic segment enclosed by that rectangle. 

      Heiberg’s readings reached this point, and then Heiberg hit what 
was, for him, a lacuna in his readings. He picked up the thread of 
the argument as follows. It is assumed that, since the proportion 
holds between all  n -dimensional fi gures, it will also hold between all  
 n +1-dimensional fi gures. We therefore have the proportion: a trian-
gular prism to the intersection of a cylinder and a triangular prism, 
as rectangle to parabolic segment. Since the ratio of a rectangle to the 
parabolic segment it contains is known, and since the triangular prism 
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is measurable, the intersection of the triangular prism and the cylinder 
is measured as well. 

      All this makes sense and we can therefore even understand why 
Heiberg was content: his reading, though lacunose, was mathemati-
cally sound. He did remark on the lacuna ‘Quid in tanta lacuna fuerit 
dictum, non exputo’  28    – ‘I do not guess what were to be written in such 
a long lacuna’. Th is comment may be prudent, but it accompanies a text 
that, otherwise, is meant to be read as mathematically meaningful. In 
other words, the implication would be that the missing lacuna was no 
more than ornament that does not impinge on the mathematical con-
tents of proposition 14, and it was certainly in this way that proposition 
14 was read through the twentieth century.  29    

    Th e upshot of this reading is indeed to make the proposition less 
important, because it contains nothing new. It applies the method of 
indivisibles – previously applied in the  Method  – by assuming that a 
certain property obtained for  n -dimensional objects is inherited by the 
 n +1-dimensional objects they constitute. It diff ers from the previous 
propositions in a merely negative way – it does not apply geometrical 
mechanics – and therefore it makes no contribution to our understand-
ing of Archimedes’ mathematical procedures. 

      Th is understanding of proposition 14 was revolutionized by the 
readings of Netz  et al . ( 2001 –2), where the lacuna was fi nally read. It is 
clear that this lacuna adds much more than ornament. Indeed, it forms 
the mathematical heart of the proof. Archimedes applies certain results 
concerning the summation of sets of proportions developed elsewhere, 
results that call for counting the number of objects in the sets involved, 
with the number of objects in this set equal to the number of objects 
in that set. And this – even though the sets involved are infi nite! Th us, 
Archimedes does no less than count (by the statement of numeri-
cal equality) infi nite sets. Th e proof is therefore not a mere negative 
variation on the previous proofs; to the contrary, it opens up a unique 
avenue, completely unlike anything else extant from Greek math-
ematics. Heiberg’s minimal interpretation of the text is thus refuted. 
Th ough, of course, this is not to blame Heiberg: what else could he do?  

  (2)     Th e next example comes from the fi nal, fragmentary proposition  15. 
Th e fi rst page of this proposition survives on fos. 158–9 of the 

  28      Heiberg 1913: 499,  n. 1 . 
  29      See in particular Sato  1986 , Knorr  1996 , texts rare for paying any attention to proposition 

14, both assuming that the text extant in Heiberg can be taken to represent Archimedes’ own 
reasoning. 
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Palimpsest, in a form which was mostly illegible to Heiberg. Th ere 
follows a gap in the text extant in the Palimpsest, followed by four 
considerable fragments extant on fo. 165 of the Palimpsest. Two of 
those fragments were nearly fully read by Heiberg, and they formed 
a basis for an interpretation of the proof as a whole, one which the 
much fuller reading we possess today corroborates on the whole. 
Its main feature is the following. In this, purely geometrical proof, 
Heiberg makes Archimedes follow a route comparable to that used in 
the measurement of conoids of revolution in CS. A sequence of prisms 
is inscribed inside the curvilinear object; the diff erence between the 
sequence of prisms and the curvilinear object is made smaller than 
any stated magnitude; and the assumption that the curvilinear fi gure is 
 not  of the volume stated then leads to contradiction. All of this is well 
known from elsewhere in Archimedes and Heiberg had many patterns 
to follow – especially from CS itself – in his reconstruction of the text 
of fos. 158–9 beginning the proof. 

      In contrast to proposition 14, where the lacuna unread by Heiberg  – 
no more than about half a column of writing – proved to be much 
richer in mathematical meaning than Heiberg imagined, here, fos. 
158–9 contain three and a half columns of writing, mostly unread by 
Heiberg, and they contain practically no mathematical signifi cance. 
Here the  surprise is the opposite to that of proposition 14. Heiberg in his 
reconstruction rather quickly establishes the geometrical construction 
required for inscribing prisms inside the curvilinear object. Archimedes 
himself, however, went through what may have been the most detailed 
construction in his entire corpus. Th e construction is much slower 
than that of the analogous proofs in CS. At the end of these three and 
a half columns of writing, Archimedes had not yet reached the explicit 
conclusion that the diff erence between the curvilinear object and the 
inscribed prisms is smaller than any given magnitude. It appears that 
in making the transition from the unorthodox procedures of proposi-
tions 1–14, to the ‘classical’ procedure of proposition 15, Archimedes 
made a deliberate eff ort to make proposition 15 as ‘classical’ as possi-
ble – as explicit and precise as possible. (One of course is reminded of 
how Heiberg tends, elsewhere, to doubt passages where Archimedes is 
especially explicit and transparent. Would he have excised a good deal 
of proposition 15, had he been able to read more of it?) 

      Archimedes’ motives are diffi  cult to judge but the eff ect most cer-
tainly was to emphasize the gap between the two parts of the treatise, 
the unorthodox and the orthodox. Th is gap was somewhat smoothed 
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over in Heiberg’s reconstruction though, once again, let this not be 
construed as a criticism of Heiberg: for, once again, there was no way 
for him to guess how diff erent Archimedes’ construction here was from 
that of Heiberg’s models in CS.  

  (3)     A fi nal example is from proposition 6. Here Archimedes determines 
the centre of gravity of a hemisphere – as it appears from the beginning 
of the proposition, the relatively legible verso side of fo. 163. Heiberg 
thus knew what this proposition was about. Th e text then moves on to 
the recto side of fo. 163, which was barely legible to Heiberg, fo. 170 – 
mostly illegible in 1906 and one of the three leaves to have disappeared 
since – and the recto of 157, completely unread by Heiberg. As men-
tioned, we have meanwhile lost fo. 170 but, at the same time, through 
modern technologies, we have recovered practically the entire text of 
fos. 163 (recto) and 157 (recto) As a result, we now know that Heiberg’s 
reconstruction of the parts he could not read was wrong. 

      Heiberg’s modus operandi here was straightforward. While propos-
ition 6 was mostly illegible, proposition 9 was mostly easy to read, 
especially in the well preserved (then) fos. 166–7 and 48–41. Th is 
proposition 9 dealt with fi nding the centre of gravity of  any  segment of 
the sphere, i.e. proposition 6 can be seen as a special case of proposi-
tion 9. What Heiberg did, then, was to reconstruct proposition 6 on 
the basis of proposition 9. In proposition 9, Archimedes constructs 
an auxiliary cylinder MN, whose various centres of gravity balance 
with certain cones related to the segments of the sphere. Th is cylinder 
is then imported by Heiberg into proposition 6 itself. But there is no 
need of such an auxiliary construction in proposition 6. Indeed, the 
fi nding of the centre of gravity of a hemisphere is much simpler than 
that of fi nding the centre of gravity of a general segment (which is not 
all that surprising as this happens oft en: a special case may have prop-
erties that make it easier to accomplish). Th e position of the centre of 
gravity along the axis is found, in an elegant manner, by considering 
just the cone which is already contained by the hemisphere. Heiberg’s 
reconstruction of proposition 6 made it appear as if it were a precise 
copy of proposition 9, merely plugging in the special properties of the 
hemisphere. But it appears that Archimedes took two diff erent routes, 
a more direct and elegant one for fi nding the centre of gravity of the 
hemisphere, and an indirect one for fi nding the centre of gravity of a 
general segment. 

      Once again, we can hardly blame Heiberg. He played it safe, 
reconstructing a passage diffi  cult to read on the basis of a closely 
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related passage that was easier to read – just as he reconstructed 
proposition 15 on the basis of CS, and proposition 14 on the basis 
of  propositions 1–11. How else would you reconstruct, if not on the 
basis of what you have  available ? But this immediately suggests that 
the act of reconstruction has, automatically, a signifi cant consequence: 
if  reconstruction is necessarily based on what one has available, 
 reconstruction necessarily tends to  homogenize  the text. Hence 14 
appears like 1–11; 15 appears like CS; 6 appears like 9. Th e  Method  as a 
whole loses  something of its internal variety and of its diff erence from 
other parts of the corpus. 

      In truth, of course, the  Method  is all about diff erence. It is diff erent 
from the rest of the corpus; it highlights internal variety, where the 
original procedure contrasts with ‘classical’, geometrical approaches. 
Aft er all, what is the point of supplying three separate proofs of the 
same result (propositions 12–13, proposition 14, proposition 15) if not 
to highlight the diff erence between all of them? Th is can be seen at all 
levels. I have concentrated on the global forms of marking diff erence, 
but one can fi nd such forms at a more local level. We may return to 
proposition 14 to take a closer look at its unfolding. Th e proposition 
falls into three parts: (a) a geometrical passage showing that a certain 
proportion holds, (b) a proportion theory passage showing that this 
proportion may be summed up for sets of infi nite multitude and (c) 
an arithmetical passage calculating the numerical value of the segment 
of the cylinder measured. Heiberg did not read (b) at all, and had to 
reconstruct large parts of (a). Th e only part he could read in full was (c), 
which is indeed surprisingly careful and detailed. Heiberg’s reconstruc-
tion ignored (b), and produced a careful and detailed development of 
(a). In Heiberg’s reading, therefore, the proposition unfolded in an 
uninterrupted progression of careful geometrical argument, followed 
by a transition based directly on the method of indivisibles (and thus 
merely reduplicating propositions 1–11) leading to another careful, 
arithmetical argument. 

      Following Netz  et al . ( 2001 –2), we now know that the structure 
of the proof is much more unwieldy. Remarkably, passage (a) hardly 
 possesses any argument. Th e diffi  cult and remarkable geometrical con-
clusion required by Archimedes is thrust upon the reader as a given. 
Th is is then followed by the subtle and diffi  cult argument of (b), leading 
fi nally to the much simpler passage (c) which now, in context, is truly 
startling in its slow development of such an obvious claim. Archimedes 
fi rst states a diffi  cult result as obvious, then outlines the most diffi  cult 
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claim imaginable, and then fi nally develops in full a sequence of mere 
arithmetical equivalences. Th is proposition 14 forms a microcosm of 
the  Method  as a whole: its fundamental principle of composition is 
 sharp diff erence . Heiberg could hardly have guessed this, staring as he 
did at the nearly illegible pages of the Palimpsest. Perhaps he should 
have been more forthcoming in revealing his ignorance. Perhaps it 
would have been best to avoid all those passages translated in Latin 
printed in italics, so as to broadcast in all clarity the lacunose nature of 
Heiberg’s own reading. But then again, the temptation to reproduce, in 
full, the mathematical contents of the  Method  was irresistible and the 
remarkable fact, aft er all, is that Heiberg came so close to achieving this 
reproduction. Where he erred, that was in the spirit of the text more 
than in its mathematical contents. And so he did reconstruct, mostly, 
the mathematical contents of the  Method  – transforming along the way 
the texture of Archimedes’ writings.       

 Th e texture of Archimedes’ writings:   summary 

 We have seen several ways in which Heiberg manipulated the evidence of 
the manuscripts, transforming it to produce his text of Archimedes and, 
through that transformation, projecting his image of Archimedes. Th e 
manuscripts’ diagrams were ignored, producing an image of Archimedes 
whose arguments were  textually explicit . Th e bracketing of suspected inter-
polations produced an image of Archimedes whose arguments were  less 
immediately accessible . As for Heiberg’s overall conventions of presentation, 
these would serve to make the argument appear  more consistent  than it 
really was – visible most clearly in Heiberg’s reconstruction of the  Method . 
Th ere, obviously, Archimedes used a wide variety of approaches – which 
Heiberg tended to narrow down. Th is drive towards consistency marked 
Heiberg’s project as a whole. 

 All in all, then, Heiberg’s interventions make Archimedes to be textually 
explicit, non-accessible and consistent. Now, it is not as if Heiberg, through-
out, adopted this editorial policy. Th e practices adopted for the edition 
of Archimedes display Heiberg’s assumptions concerning Archimedes 
himself. Th us, Vitrac shows, in his analysis of Heiberg’s edition of Euclid, 
that, with the latter, Heiberg’s policies were quite diff erent, emphasizing 
transparency – nearly the opposite of those of Archimedes. 

 Very likely, this editorial policy reveals, therefore, a certain image of 
mathematical  genius . Heiberg could well make his Euclid transparent and 
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accessible; Archimedes had to be diffi  cult. While perfectly explicit and 
consistent, the mathematical genius is also remote and diffi  cult. Th is, of 
course, is no more than guesswork, ascribing to Heiberg motives he may 
never have formulated explicitly for himself. I shall not linger on such 
possibilities. And, indeed, let us not forget: Heiberg could well be  right . 
Th ere are probably grounds for saying that Euclid was easier to read than 
Archimedes, that on the whole Euclid took more pains to make his text 
accessible. 

 Th e one point I would like to stress, fi nally – and the one which Heiberg 
almost inevitably would tend to obscure – is the  variety  of Archimedes’ 
writings. Heiberg’s editorial policy is in itself consistent, and it can’t help 
refl ecting a single image Heiberg entertained of the texture of Archimedes’ 
writings. But in truth, the major feature of the corpus is that so many 
of its constituent works are unlike the others. Some are extant in Doric, 
some in Koine. Is this an artefact of the transmission alone? Perhaps. But 
the argument for that is yet to be made. Th e  Arenarius  stands apart: it is 
written in discursive prose. Th e  Cattle Problem  stands apart – it is written 
in poetic form. Th e  Method  stands apart – it deals with questions of pro-
cedure, putting side by side various approaches. Even  Sphere and Cylinder  
 ii  stands apart – it is the only work dedicated to problems alone. Many 
works diverge from the imaginary norm of pure geometry. Some works 
are heavily invested in numerical values – not only the  Measurement 
of the Circle , but also the  Arenarius  and (in part)  Spiral Lines ,  Planes in 
Equilibrium   i  and  Quadrature of Parabola  (as well as the no longer extant 
treatise on semi- regular solids and, likely, the  Stomachion ). Some works are 
heavily invested in physical considerations, such as  Planes in Equilibrium  
 i – ii ,  Floating Bodies   i – ii  and  Quadrature of Parabola . Even a book with 
the straightforward theme and methods of  Sphere and Cylinder   i  becomes 
marked by the very striking format of presentation, with the polygons rep-
resented by series of curved lines (surely one of the most striking features 
to arrest the attention of the original treatise – if indeed this convention is 
due to Archimedes himself). Which work by Archimedes remains ‘typical’? 
Perhaps  Conoids and Spheroids … 

 Inside many works, again, Archimedes plays throughout with variety: 
with putting side by side the physical and the geometrical, twice, in 
 Quadrature of Parabola  as well as  Method ; with putting side by side the 
numerical and the geometrical, in  Spiral Lines, Planes in Equilibrium, 
Quadrature of Parabola, Semi-Regular Solids  and  Stomachion . 

 And so, is it so unlikely, fi nally, that Archimedes should, on occasion, 
be more explicit, on occasion, more opaque? If the answer is positive, then 



204 reviel netz

much of the argument for Heiberg’s excisions – his major editorial inter-
vention in the text of Archimedes – disappears. 

 Perhaps the answer should be negative; perhaps Heiberg was right in 
his reconfi guration of the Archimedean text. But this article serves as a 
note of caution: authors possess complex individual styles, and it is always 
hazardous to revise them on the basis of any single editorial policy. Which, 
once again, reminds us that we should not blame Heiberg: is it fair to ask 
anyone to make himself, deliberately, inconsistent? Such is the editor’s 
plight: forever limping upon his crutches of a single method – gasping, out 
of breath, as he tries to catch up with an author who fl ies upon the wings of 
a creative mind.                                    
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 4     John Philoponus and the conformity 
of mathematical proofs to Aristotelian 
demonstrations    

   Orna     Harari     

 One of the central issues in contemporary studies of Aristotle’s  Posterior 
Analytics  is the conformity of mathematical proofs to Aristotle’s theory of 
demonstration. Th e question, it seems, immediately arises when one com-
pares Aristotle’s demonstrative proofs with the proofs in Euclid’s  Elements . 
According to Aristotle, demonstrative proofs are syllogistic inferences of the 
form ‘All A is B, all B is C, therefore all A is C’, whereas Euclid’s mathemati-
cal proofs do not have this logical form. Although the discrepancy between 
mathematical proofs and Aristotelian demonstrations seems evident, it is 
only during the Renaissance that the conformity of mathematical proofs 
to Aristotelian demonstrations emerges as a controversial issue.  1    Th e 
absence of explicit discussions of the conformity of mathematical proofs 
to Aristotelian demonstrations in the earlier tradition seems puzzling from 
the perspective of contemporary studies of Aristotle’s theory of demonstra-
tion. Th e formal discrepancies between Aristotelian demonstrations and 
mathematical proofs seem so obvious to us that it is diffi  cult to understand 
how the conformity between mathematical proofs and Aristotelian dem-
onstrations was ever taken for granted. In this chapter I attempt to bring to 
light the presuppositions that led ancient thinkers to regard the conformity 
of mathematical proofs to Aristotelian demonstrations as self-evident. 

 Neither an outright rejection nor an explicit approval of the conform-
ity of mathematical proofs to Aristotelian demonstrations is found in 
the extant sources from late antiquity; however, two approaches to this 
issue can be detected. According to one approach, found in Proclus’ 
commentary on the fi rst book of Euclid’s  Elements , the conformity of 

     1      Th e fi rst Renaissance thinker to reject the conformity of mathematical proofs to Aristotelian 
demonstrations is Alessandro Piccolomini. His treatise  Commentarium de certitudine 
mathematicarum disciplinarum , published in 1547, initiated the debate known as the  Quaestio 
de certitudine mathematicarum , in which other Renaissance thinkers, such as Catena and 
Pereyra, sided with Piccolomini in stressing the incompatibility between mathematical proofs 
and Aristotelian demonstrations, whereas other thinkers, such as Barozzi, Biancani, and 
Tomitano, attempted to reinstate mathematics in the Aristotelian model. I discuss this debate 
and its ancient origins in the conclusions. 
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 certain   mathematical proofs to Aristotelian demonstrations is questioned.  2    
According to the other approach, found in Philoponus’ commentary on 
Aristotle’s  Posterior Analytics , the conformity of mathematical proofs 
to Aristotelian demonstrations is taken for granted.  3    Nevertheless, these 
thinkers did not address the same question that Aristotle’s contemporary 
interpreters discuss. Whereas contemporary studies focus on the discrep-
ancy between the formal requirements of Aristotelian demonstrations 
and mathematical proofs, the ancient thinkers focused on the non-formal 
requirements of the theory of demonstration – namely, the requirements 
that demonstrations should establish essential relations and ground their 
conclusions in the cause. 

 In view of this account, I attempt to explain why the question whether 
mathematical proofs meet these non-formal requirements does not arise 
within the context of Philoponus’ interpretation of Aristotle’s theory of dem-
onstration. Regarding the requirement that demonstrative proofs should 
establish essential relations, I show that Philoponus considers it non-
problematic in the case of all immaterial entities including mathematical 
objects. I show further that Philoponus’ assumption that mathematical 
objects are immaterial renders the requirement that the middle term should 
serve as a cause irrelevant for mathematical demonstrations, since accord-
ing to Philoponus causes are required only to explain the realization of 
form in matter. Accordingly, the dependence of mathematical proofs on 
defi nitions is suffi  cient, in Philoponus’ view, to guarantee their conformity 
to Aristotelian demonstrations. In substantiating this conclusion, I then 
discuss Proclus’ argument to the eff ect that certain mathematical proofs do 
not conform to Aristotelian demonstrations. I show that within the context 
of Proclus’ philosophy of mathematics, in which geometrical objects are con-
ceived of as realized in matter, consideration of the question whether math-
ematical proofs meet the two non-formal requirements – a question which 
Philoponus ignores with regard to mathematical demonstrations – led 
Proclus to argue for the non-conformity of certain mathematical proofs to 

     2      Proclus’ commentary on the fi rst book of Euclid’s  Elements  was translated into Latin in 1560 by 
Barozzi and it played an instrumental role in the debate over the certainty of mathematics. For 
the reception of Proclus’ commentary on the  Elements  in the Renaissance, see Helbing  2000 : 
177–93. 

     3      Philoponus’ commentary on the  Posterior Analytics  has been hardly studied; hence it is 
diffi  cult to assess its direct or indirect infl uence on the later tradition. Nevertheless, it seems 
that the several traits of Philoponus’ interpretation of the  Posterior Analytics  are found in the 
medieval interpretations of Aristotle’s theory of demonstrations, such as the association of 
demonstrations of the fact with demonstrations from signs which is found in Averroes (see 
 n. 38 ) and the identifi cation of the middle term of demonstration with real causes (see  n. 27 ). 
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Aristotelian demonstrations. As a corollary to this discussion, I conclude my 
chapter with an attempt to trace the origins of contemporary discussions of 
the conformity of mathematical proofs to Aristotelian demonstrations to the 
presuppositions underlying Philoponus’ and Proclus’ accounts of this issue. 
I thereby outline a possible explanation for how concerns regarding the 
ontological status of mathematical objects and the applicability of Aristotle’s 
non-formal requirements to mathematical proofs evolved into concerns 
regarding the logical form of mathematical and demonstrative proofs.  

 Philoponus on mathematical demonstrations 

 In the  Posterior Analytics   i .9, Aristotle states that if the conclusion of a dem-
onstration ‘All A is C’ is an essential predication, it is necessary that the middle 
term B from which the conclusion is derived will belong to the same family 
( sungeneia ) as the extreme terms A and C (76a4–9). Th is  requirement is 
tantamount to the requirement that the two propositions ‘All A is B’ and ‘All 
B is C’, from which the conclusion ‘All A is C’ is derived, will also be essential 
predications. Th e example that Aristotle presents in this passage for an essen-
tial predication is ‘Th e sum of the interior angles of a triangle is equal to two 
right angles’. In his comments on this discussion Philoponus tries to show 
that the attribute ‘having the sum of its interior angles equal to two right 
angles’ is indeed an essential attribute of triangles. He does so by arguing 
that Euclid’s proof meets the requirements of Aristotelian demonstrations: 

 For having [its angles] equal to two right angles holds for a triangle in itself ( kath’ 
auto ). And [Euclid] proves this [theorem] not from certain common principles, but 
from the proper principles of the knowable subject matter. For instance, he proves 
that the three angles of a triangle are equal to two right angles, by producing one 
of the sides and showing that the two right angles, the interior one and its adjacent 
exterior angle, are equal to the three interior angles,  4    so that such a syllogism is 
produced: the three angles of a triangle, given that one of its sides is produced, are 
equal to the two adjacent angles. Th e two adjacent angles are equal to two right 
angles. Th erefore the angles of a triangle are equal to two right angles. And that 
the two adjacent angles are equal to two right angles is proved from the [theorem] 
that two adjacent angles are either equal to two right angles or are two right angles. 
Whence [do we know] that adjacent angles are either equal to two right angles or 

     4      Th e proof that Philoponus describes is not identical to Euclid’s proof. Philoponus’ reference 
to ‘two right angles’ implies that he envisages a right-angled triangle, whose base is extended 
so as to create two adjacent right angles. Euclid’s proof refers to an arbitrary triangle. Th is 
discrepancy does not aff ect Philoponus’ reasoning, as he states in the sequel that two adjacent 
angles are either equal to two right angles or are two right angles. 
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are two right angles? We know it from the defi nition of right angles, [stating] that 
when a straight line set up on a straight line makes the adjacent angles equal to each 
other, the two equal angles are right. Well, having brought [the conclusion] back to 
the defi nition and the principles of geometry, we no longer inquire further, but we 
have the triangle proved from geometrical principles.  5     

In showing that Euclid’s proof conforms to the Aristotelian model of dem-
onstration, Philoponus focuses on two issues: (1) he presents Euclid’s proofs 
in a syllogistic form, and (2) he grounds the proved proposition in the 
defi nition of right angle. Th e notion of fi rst principles, on which Philoponus’ 
account is based, includes only one of the characteristics of Aristotelian fi rst 
principles – namely, their being proper to the discipline. In Philoponus’ 
view, the dependence of Euclid’s geometrical proof on geometrical fi rst 
principles, rather than on principles common to or proper to other disci-
plines, is suffi  cient to establish that this proof conforms to the Aristotelian 
model. Two other characteristics of Aristotelian fi rst principles are not taken 
into account in this passage. First, Philoponus does not raise the question 
whether the middle term employed in this proof is related essentially to the 
subject of this proof; that is, he does not consider the question whether a 
proposition regarding an essential attribute of adjacent angles can by any 
means serve to establish the conclusion that this attribute holds essentially 
for triangles.  6    Nor does he express any reservations concerning the auxiliary 
construction, in which the base is extended and two adjacent angles are 
produced. Second, Philoponus does not mention Aristotle’s requirement 
that the fi rst principles should be explanatory or causal; he does not raise 
the question whether the middle term in his syllogistic reformulation of 
Euclid’s proof has a causal or explanatory relation to the conclusion. Th us 
Philoponus’ account of the conformity of Euclid’s proofs to Aristotelian 
demonstrations raises two questions: (1) why Philoponus ignores the ques-
tion whether mathematical propositions state essential relations; and (2) 
why the causal role of the principles of demonstration is not taken into 
account. Th e following two sections answer these questions  respectively.   

 Essential predications 

 Philoponus addresses the question whether mathematical proofs establish 
essential predications in his comments on the  Posterior Analytics   i .22. He 

     5      116. 7–22, Wallies. All translations are mine. 
     6      For Philoponus’ syllogistic reformulation to be a genuine Aristotelian demonstration, one has 

to assume that adjacent angles and triangles are related to each other as genera and species. 
Th is assumption is patently false. 
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formulates this question in response to Aristotle’s contention that sentences 
whose subject is an attribute, such as ‘the white ( to leukon ) is walking’ or 
‘the white is a log’ cannot feature in demonstrations, because they are not 
predicative in the strict sense ( Posterior Analytics  83a1–21). Th is conten-
tion jeopardizes, in Philoponus’ view, the status of geometrical proofs. Th e 
subject matter of geometry, according to Philoponus, is shapes and their 
attributes. Hence, Aristotle’s narrow conception of predication may imply 
that proofs that establish that certain attributes belong to shapes are not 
demonstrative because they prove that certain attributes, such as having the 
sum of the interior angles equal to two right angles, belong to other attrib-
utes, such as triangles (239.11–14).  7    Philoponus dismisses this implication 
saying: 

 Even if these [attributes] belong to shapes accidentally, they are completive [attrib-
utes] of their being ( symplērōtika tēs ousias ) and like  diff erentiae  that make up the 
species they are [the attributes] by which [shapes] are distinguished from other 
things.  8    … Just as ‘being capable of intellect and knowledge’ or ‘mortal’ or any of the 
[components] in its defi nition do not belong to ‘man’ as one thing in another, but 
[man] is completed from them, so the circle is also contemplated ( theōreitai ) from 
 all  the attributes which are observed in it. Similarly, also the triangle would not be 
something for which ‘having three angles equal to two right angles’ or ‘having the 
sum of two sides greater than the third’ do not hold, but if one of these [attributes] 
should be separated, immediately the being of a triangle would be abolished too.  9     

Th is account does not answer Philoponus’ original query; it does not tackle 
the question whether proofs that establish predicative relations between 
two attributes are demonstrative. Instead, Philoponus focuses here on the 
question whether the attributes that geometry proves to hold for shapes 
are essential, arguing that mathematical attributes like  diff erentiae  are 
parts of the defi nitions of mathematical entities. However, the analogy 
between the  diff erentiae  of man and mathematical propositions is not as 
obvious as Philoponus formulates it. Th e attributes ‘capable of knowledge’ 
and ‘mortal’ distinguish men from other living creatures; the former dis-
tinguishes human beings from other animals and the latter distinguishes 

     7      Philoponus presupposes here Aristotle’s categorical scheme, in which terms belonging to the 
nine non-substance categories are attributes of terms belonging to the category of substance. 
According to Aristotle’s  Categories  the term ‘shape’ belongs to the category of quality. Hence, 
Philoponus claims that geometry studies attributes of attributes. 

     8      Th e term ‘completive attributes’ ( symplērōtikos ) refers in the neo-Platonic tradition to 
attributes without which a certain subject cannot exist. On these attributes and their relation to 
 diff erentiae , see De Haas  1997 : 201 and Lloyd  1990 : 86–8. 

     9      239.14–25, Wallies. 
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them from divine entities, which are also capable of knowledge but are not 
mortal. By contrast, the geometrical attributes that Philoponus mentions 
in this passage do not distinguish triangles or circles from other shapes. 
Admittedly, the attribute ‘having the sum of the interior angles equal to 
two right angles’ holds only for triangles, yet, unlike ‘having three sides’, it 
is not the feature that distinguishes triangles from other shapes. It seems, 
then, that in accounting for the essentiality of mathematical attributes, 
Philoponus expands the notion of  diff erentia , so as to include all the attrib-
utes of mathematical entities. He does not distinguish between attributes 
that enter into the defi nition of an entity and necessary attributes; he con-
cludes from the statement that a triangle will cease to be a triangle if one 
of its attributes were separated from it that these attributes are essential. 
Th us, rather than explaining why mathematical attributes are essential in 
Philoponus’ view, this passage refl ects his assumption that the essentiality 
of mathematical attributes is evident. Th is assumption, I surmise, can be 
understood in light of Philoponus’ interpretation of the principles of 
 demonstration. 

 In his comments on the  Posterior Analytics   ii .2,  10    Philoponus accounts 
for the distinction between indemonstrable premises and demonstrable 
conclusions in terms of the distinction between composite and incomposite 
entities. Incomposite entities, according to this discussion, are simple or 
intelligible substances such as the intellect or the soul, which are considered 
( theōroumenon ) without matter.  11    In the case of such entities, Philoponus 
argues, the defi ning attribute is not diff erent from the defi nable object 
and therefore propositions concerning such entities are indemonstrable 
or immediate. Another characterization of indemonstrable premises is 
found in Philoponus’ interpretation of Aristotle’s discussion of the relation-
ship between defi nitions and demonstrations in the  Posterior Analytics  
 ii .2–10. In addressing the question whether it is possible to demonstrate a 
defi nition, Philoponus draws a distinction between two types of defi nition: 
formal and material. Formal defi nitions are the indemonstrable principles 
of demonstration that defi ne incomposite entities; they include, accord-
ing to Philoponus, the essential attributes ( ousiodōs ) of the defi ned object. 
Material defi nitions, by contrast, serve as demonstrative conclusions and 

  10      Th e editor of Philoponus’ commentary on the  Posterior Analytics , M. Wallies, doubted the 
attribution of the commentary on the second book of the  Posterior Analytics  to Philoponus 
(v–vi). Th e authenticity of the commentary on the second book does not aff ect my argument, 
because all the references I make here to the commentary on the second book accord with 
views expressed in Philoponus’ other commentaries. 

  11      339. 6–7, Wallies. 
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include the attributes that are present in matter.  12    In this interpretation, 
then, the ontological distinction between incomposite and composite 
entities accounts for two characteristics of the principles of demonstra-
tion: their indemonstrability and their essentiality. Th e question whether 
certain propositions meet Aristotle’s requirements is not answered by an 
 examination of their logical characteristics, but by the ontological status of 
their subjects. 

 It follows from this discussion that from Philoponus’ viewpoint the 
immateriality of the subject of predication is suffi  cient to guarantee the 
essential relation between a subject and its attributes.  13    Th is assumption 
may explain Philoponus’ approach to the issue of the essentiality of math-
ematical propositions. Mathematical objects, according to Philoponus, are 
abstractions from matter  14    – that is, they belong to the class of incomposite 
objects that serve as the subjects of formal defi nitions. Th us, in light of 
Philoponus’ characterization of these defi nitions, it plausible to regard all 
attributes of mathematical objects as essential, because the immateriality of 
these objects seems to entail, in Philoponus’ view, the essentiality of their 
attributes. In what follows, I show that the ontological distinction between 
incomposite and composite entities also explains why the causal role of 
the middle term is not taken into account in Philoponus’ discussion of the 
 conformity of Euclid’s proofs to Aristotelian demonstrations.   

 Causal demonstrations 

 In his commentary on Aristotle’s  Physics   ii .2, Philoponus examines the 
tenability of Aristotle’s criticism of the theory of Forms, which involves, 
according to Aristotle, separation from matter of the objects of physics, 
although they are less separable than mathematical objects. In so doing, 
Philoponus draws a distinction between separability in thought and sepa-
rability in existence, claiming that he agrees with Aristotle that the forms 

  13      Two reasons may explain why Philoponus does not consider the possibility that immaterial 
entities have accidental attributes. First, it is commonly held in the ancient tradition that only 
individuals have accidental attributes, which belong to their matter. Second, Philoponus’ 
notion of essential predication is more formal than Aristotle’s. In characterizing essential 
predications Philoponus appeals to extensional, rather than intensional, considerations. In his 
view, attributes that belong to all members of a species and only to them are essential (e.g.,  In 
An. Post.  63.14–20, Wallies;  In DA  29.13–30.1, Hayduck;  In Cat . 64.9, Busse). 

  14      For Philoponus’ conception of mathematical objects, see (e.g.)  In Phys . 219.10;  In DA , 3.7–11. 
For a discussion of this view, see Mueller  1990 : 465–7. 

  12      364.16–18, Wallies. 
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of natural things cannot be separated in existence from matter, but he disa-
grees with Aristotle’s view if it implies that these forms cannot be separated 
by reason and in thought.  15    Although Philoponus’ account of the indemon-
strability of the principles of demonstration presupposes the possibility 
of separating the defi nitions of both mathematical and physical entities, 
the ontological diff erence between these classes of objects is nevertheless 
maintained. In his commentary on Aristotle’s  De anima , Philoponus draws 
a distinction between physical and mathematical defi nitions, arguing that 
physical defi nitions should refer to the matter of physical substance, their 
form and the cause by virtue of which the form is realized in matter.  16    
Mathematical defi nitions, by contrast, refer only to the form: 

 Th e mathematician gives the defi nitions of abstracted forms in themselves, without 
taking matter into account, but he gives these [defi nitions] in themselves. For this 
reason he does not mention the cause in the defi nition; for if he defi ned the cause, 
clearly he would also have taken the matter into account. Th us, since he does not 
discuss the matter he does not mention the cause. For example, what is a triangle? 
A shape contained by three lines; what is a circle? A shape contained by one line. 
In these [defi nitions] the matter is not mentioned and hence neither is the cause 
through which this form is in this matter. Unless perhaps he gives the cause of those 
characteristics holding in themselves for shapes, for instance, why a triangle has its 
angles equal to two right angles.  17     

Philoponus’ distinction between physical and mathematical defi nitions 
has two related consequences for the methods employed in physics and 
mathematics. First, although both physical and mathematical demonstra-
tions are based on indemonstrable formal defi nitions, these defi nitions 
adequately capture the nature of mathematical objects but they fail to 
exhaust the nature of physical objects. In the case of physical demonstra-
tions, the formal defi nition captures only one aspect of the object: its 
form. Full-fl edged knowledge of physical objects requires reference also 
to the matter of this object and the cause of the realization of the form 
in matter. Indeed, in both the commentary on Aristotle’s  De anima  and 
the commentary on the  Posterior Analytics , Philoponus considers formal 
defi nitions of physical objects defi cient. In the commentary on  De anima , 
Philoponus argues that defi nitions that do not include all the attributes 

  15      225.4–11, Vitelli. For the relationship between Philoponus’ discussion of separability in 
thought of physical defi nitions and his analysis of demonstrations in the natural sciences, see 
De Groot  1991 : 95–111. 

  16      55.31–56.2, Hayduck. 
  17      57.35–58.6, Hayduck. 
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of an object are not  physical defi nitions, but are dialectical or empty. His 
example of such an empty defi nition is the formal defi nition of anger: 
‘anger is a desire for revenge’. Th e adequate defi nition of anger, according 
to Philoponus, is ‘anger is boiling of the blood around the heart caused by 
a desire for revenge’.  18    Th is defi nition refers to the form, the matter and the 
cause. Similarly, in the commentary on the  Posterior Analytics , Philoponus 
claims that neither the formal nor the material defi nition is a defi nition in 
the strict sense; only the combination of these two yields an adequate defi -
nition.  19    Th is conception of defi nition is evidently inapplicable to math-
ematics. Mathematical objects are defi ned without reference to matter or 
to their cause, hence formal defi nitions provide an exhaustive account of 
these objects. 

 Th e second consequence of Philoponus’ distinction between physical 
and mathematical defi nitions concerns the explanatory or causal rela-
tions in demonstrative proofs. Although in the above-quoted passage 
Philoponus contends that the cause is also studied in mathematics when a 
relation between a mathematical object and its attributes is proved, it seems 
that this cause is diff erent from the one studied in physics. According to 
the above passage, physics studies the cause of the realization of form in 
matter, but since mathematics does not deal with the matter of its objects, 
its explanations do not seem to be based on this type of cause. Furthermore, 
Philoponus’ analysis of physical demonstrations in terms of the distinction 
between formal and material defi nitions gives rise to a problem that has 
no relevance for mathematical demonstrations. Th is interpretation gives 
rise to the question of how the material aspect of a physical entity, which is 
a composite of form and matter, can be demonstratively derived from the 
formal defi nition, given that this defi nition does not exhaust the nature of 
the composite entity. Stating this question diff erently, how, in Philoponus’ 
view, can a proposition regarding a substance taken with matter be 
demonstratively derived from a proposition regarding its form, which is 
considered in separation from matter? Evidently this question does not 
arise in the mathematical context. Mathematical defi nitions do not refer to 
matter; hence, they give an exhaustive account of mathematical objects. In 
what follows, I show that Philoponus answers this question by appealing to 
extra-logical considerations. More specifi cally, I show that the causal role 
of the middle term in demonstrations provides Philoponus with the means 
of bridging the gap between formal defi nitions and material defi nitions. 

  18      43.28–44.8, Hayduck. 
  19      365.1–13, Wallies. 
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 In his comments on the  Posterior Analytics   ii .2, Philoponus presents the 
following explanation for Aristotle’s remark that the questions ‘what it is’ 
 ( ti esti ) and ‘why it is’ ( dia ti ) are the same: 

 For if the ‘what it is’ and the ‘why it is’ are diff erent, it is insofar as the former is 
sought with regard to simple [entities] and the latter with regard to composite [enti-
ties]. Yet these [questions] are the same in substrate, but diff erent in their mode of 
employment. Both the ‘what it is’ and the ‘why it is’ are studied in the case of the 
eclipse being an aff ection of the moon. And we use these, the ‘what it is’ and the 
‘why it is’, diff erently. But if we take an eclipse itself by itself, we seek what is the 
cause of an eclipse, and we say that it is a privation of the moon’s light due to screen-
ing by the earth. But if we seek whether an eclipse exists ( hyparkhei ) in the moon, 
namely why it exists, we take the ‘what it is’ as a middle term, namely privation of 
the moon’s light coming about as a result of screening by the earth.  20     

Although this passage is presented to account for the identity between the 
questions ‘what it is’ and ‘why it is’, Philoponus dissociates these two ques-
tions. Th e distinction he draws here is based on the ontological distinction 
between simple and composite entities. Th e question ‘what it is’ is asked 
with regard to simple entities, whereas the question ‘why it is’ is asked with 
regard to composite entities. In the case of composite entities, Philoponus 
argues, ‘what it is’ and ‘why it is’ are diff erent questions. Th e defi nition 
of an eclipse and the cause of its occurrence are not identical. Th e exact 
 signifi cance of Philoponus’ distinction between these questions is not clear 
from this passage. Th e examples presented by Philoponus seem to blur his 
distinction between an eclipse considered in the moon and an eclipse con-
sidered in separation from the moon, as the accounts given for both cases 
are identical – ‘privation of the moon’s light due to screening by the earth’. 
Th is diffi  culty in understanding Philoponus’ distinction between ‘what 
it is’ and ‘why it is’ may stem from his attempt to accommodate his view, 
which dissociates these questions, with Aristotle’s claim that these ques-
tions are identical. As a result, Philoponus follows Aristotle in exemplify-
ing the answers to these questions by one and the same account. However, 
 according to Philoponus’ other discussions of the defi nitions of entities, 
which are considered in separation from matter, the account for the eclipse 
taken in separation from the moon should be the formal defi nition ‘screen-
ing by the earth’, whereas ‘privation of the moon’s light due to screening by 
the earth’ is the full defi nition, resulting from a demonstration that relates 
the formal defi nition to the material defi nition.  21    Despite the diffi  culty in 

  20      339.20–9, Wallies. 
  21      371.19–25, Wallies. 
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understanding the distinction made in this passage, Philoponus clearly 
does not follow Aristotle here in assimilating defi nitions with explanations. 
Th is conclusion fi nds further support in Philoponus’ comments on the 
 Posterior Analytics   i .4. 

 In the  Posterior Analytics   i .4, Aristotle presents four senses in which 
one thing is said to hold for another ‘in itself ’. Th e fi rst two senses are 
predicative and they constitute Aristotle’s account for the predicative 
relations that the premises of demonstration should express. According 
to the fi rst sense, a predicate holds for a subject in itself if it is a part of 
the defi nition of the subject. According to the second sense, a predicate 
holds for a subject in itself if the subject is a part of the defi nition of the 
predicate. Th e third sense distinguishes substances that exist in themselves 
from attributes, which depend on substances, by virtue of their being 
said of them. Th e fourth sense distinguishes a causal relation between 
events from an incidental relation between events. In his comments on 
this fourfold distinction Philoponus argues that only the fi rst two senses 
of ‘in itself ’ contribute to the demonstrative method,  22    yet he also regards 
the fourth sense (i.e. the causal sense) as relevant to the theory of demon-
stration. According to Philoponus, the causal sense of ‘in itself ’, though it 
does not contribute to the formation of the premises of demonstration, 
contributes to the ‘production of the whole syllogism’.  23    More precisely, 
Philoponus argues that the causal sense of ‘in itself ’ expresses the rela-
tion between the cause, taken as the middle term of demonstration, and 
the conclusion. Th e example Philoponus presents of this contention is 
the following syllogism: Th e moon is screened by the earth. Th e screened 
thing is eclipsed. Th erefore, the moon is eclipsed. Commenting on this 
syllogism, Philoponus remarks that the fact that screening by the earth 
is the cause of the eclipse of the moon is not expressed in the premises 
of this demonstration, but its causal force becomes evident from its role 
as a middle term.  24    In this discussion, then, Philoponus employs two dif-
ferent senses of ‘in itself ’ in accounting for the relations expressed in the 
premises of demonstration and the relation between the middle term and 
the conclusion. Th e premises of demonstration, according to Philoponus, 
are ‘in itself ’ in one of the two fi rst senses delineated by Aristotle. Th at 
is, their predicate is either a part of the defi nition of the subject or their 
subject is a part of the defi nition of the predicate. By contrast, the middle 

  22      65.10–11, Wallies. 
  23      65.15, Wallies. 
  24      65.16–19, 65.20–3, Wallies. 
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term and the conclusion of a  demonstration are related according to the 
fourth sense of ‘in itself ’ – that is, they are related as cause and eff ect.  25    So, 
according to Philoponus, the derivation of the demonstrative conclusion 
is not solely based on the transitivity of the predicative relation stated in 
the premises. In addition to the transitivity of the predicative relation, the 
demonstrative derivation is based on causal relations between the middle 
term and the conclusion. Such a distinction between logical relations and 
extra-logical or causal relations is explicitly drawn at the beginning of 
Philoponus’ introduction to his commentary on the second book of the 
 Posterior Analytics : 

 In the fi rst book of the  Apodeiktike  (i.e. the  Posterior Analytics ), he showed how 
there is a demonstration and what is a demonstration and through what premises it 
has come about, and he showed further how a demonstrative syllogism diff ers from 
other syllogisms and that in other syllogisms the middle term is the cause of the 
conclusion and not of the thing and in demonstrative syllogism the middle term is 
the cause both of the conclusion and of the thing.  26     

It follows from this discussion that Philoponus’ ontological distinction 
between physical and mathematical entities yields diff erent accounts for 
physical and mathematical demonstrations. Th e distinction between the 
three facets of physical entities – i.e. the form, the matter and the cause for 
the realization of form in matter – is refl ected in Philoponus’ interpreta-
tion of the theory of demonstration. In this interpretation, demonstrations, 
like physical entities, have three components: indemonstrable premises, 
regarded as formal defi nitions, demonstrative conclusions, which are 
material defi nitions, and the middle term, which serves as the cause that 
relates the formal defi nition to the material defi nition. Philoponus’ distinc-
tion between the form of a physical entity and the cause of the realization 
of form in matter fi nds expression in the distinction he draws between 
the formal defi nition considered in itself and that formal defi nition in its 
role as the middle term in demonstration. Th is distinction implies that 

  25      Th e analysis of demonstrative derivation in causal terms is widespread in Philoponus’ 
commentary on the  Posterior Analytics  (e.g., 24.22–4; 26.9–13; 119.19–21; 173.14–20; 
371. 4– 19). Th e causal analysis of demonstrative derivation underlies Philoponus’ introduction 
of a second type of demonstration, called ‘tekmeriodic demonstration’, in which causes are 
deduced from eff ects ( In An. Post.  33.11; 49.12; 169.8; 424.13, Wallies;  In Phys.  9.9–10.21, 
Vitelli). On Philoponus’ notion of tekmeriodic proofs and its reception in the Renaissance, see 
Morrison  1997 : 1–22. 

  26      334.1–8, Wallies. Th e distinction between the middle term as the cause of the thing and the 
middle term as the cause of the conclusion is also found in the Latin medieval tradition of 
interpreting the  Posterior Analytics . See De Rijk  1990 . 
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 demonstrative derivation rests on two relations: the transitivity of the pre-
dicative relation that the premises state and the causal relation between the 
middle term and the conclusion. Th is distinction is applicable to physical 
demonstrations, for which the cause of the realization of form in matter is 
sought. Th e demonstrative derivation in these demonstrations is based not 
only on logical relations but also on causal relations. Mathematical enti-
ties, by contrast, have only one facet: the form. Accordingly, Philoponus’ 
account of the conformity of mathematical demonstrations to Aristotelian 
demonstrations focuses only on the formal requirements of the theory 
of demonstration. Th e conformity of mathematical demonstrations to 
Aristotelian demonstrations is guaranteed if the conclusions can be shown 
to depend on the defi nitions of mathematical entities. Since mathematical 
objects have no matter, mathematical demonstrations can be based only 
on logical derivation; the question whether the middle term is the cause of 
the conclusion does not arise in this context, as the separation from matter 
renders superfl uous questions concerning causes.  27    

 Th e analysis of Philoponus’ interpretation of Aristotle’s theory of dem-
onstration reveals the importance of the ontological distinction between 
simple and composite entities for his account of conformity of mathemati-
cal proofs to Aristotelian demonstrations. Th e assumption that mathemati-
cal objects are analogous to simple entities by being separated in thought 
from matter does not give rise to two questions that may undermine the 
conformity of mathematical proofs to Aristotelian demonstrations. Th e 
fi rst question is whether mathematical predications are essential; the 
second is whether the middle term in mathematical proofs is the cause of 
the conclusion. Th e fi rst question does not arise because the separation 
from matter implies that only the essential attributes of entities are taken 
into consideration. Th e second does not arise because causal considerations 
are relevant only with regard to composite entities, as it is only in their case 
that the cause of the realization of form in matter can be sought. Hence, 
given the assumption that mathematical entities are separated in thought 
from matter, the question whether mathematical proofs conform to the 
non-formal requirements of Aristotle’s theory of demonstration does not 
arise. Th is conclusion gains further support from Proclus’ discussion of the 
conformity of mathematical proofs to Aristotelian demonstrations.   

  27      Th is conclusion may explain Proclus’ otherwise curious remark that the view in which 
geometry does not investigate causes is originated in Aristotle ( In Eucl . 202.11, Friedlein). If 
this explanation is correct, Philoponus’ conception of mathematical demonstrations seems to 
refl ect a widespread view in late antiquity. 
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 Proclus on the conformity between mathematical 
proofs and Aristotelian demonstrations 

 Proclus’ philosophy of geometry is formulated as an alternative to a con-
ception whereby mathematical objects are abstractions from material or 
sensible objects.  28    According to Proclus, mathematical objects do not diff er 
from sensible objects in their being immaterial, but in their matter. Sensible 
objects, in Proclus’ view, are realized in sensible matter, whereas math-
ematical objects are realized in imagined matter. In Proclus’ philosophy of 
geometry, then, mathematical objects are analogous to Philoponus’ physi-
cal objects; they are composites of form and matter. Proclus’ philosophy 
of mathematics is at variance not only with Philoponus’ views regarding 
the ontological status of geometrical objects but also with Philoponus’ 
views regarding the conformity of Euclid’s proofs to Aristotelian demon-
strations.  29    In his discussion of the fi rst proof of Euclid’s  Elements  in the 
commentary on the fi rst book of Euclid’s  Elements , Proclus questions the 
conformity of  certain  mathematical proofs to the Aristotelian model: 

 We shall fi nd sometimes that what is called ‘proof ’ has the properties of demon-
stration, in proving the sought through defi nitions as middle terms – and this is a 
perfect demonstration – but sometimes it attempts to prove from signs. Th is should 
not be overlooked. For, although geometrical arguments always have their necessity 
through the underlying matter, they do not always draw their conclusions through 
demonstrative methods. For when it is proved that the interior angles of a triangle 
are equal to two right angles from the fact that the exterior angle of a triangle is 
equal to the two opposite interior angles, how can this demonstration be from the 
cause? How can the middle term be other than a sign? For the interior angles are 
equal to two right angles even if there are no exterior angles, for there is a triangle 
even if its side is not extended.  30     

In this passage, Proclus claims that Euclid’s proof that the sum of the inte-
rior angles of a triangle is equal to two right angles ( Elements   i .32) does 
not conform to Aristotle’s model of demonstrative proofs. In so doing, 
he focuses on the causal role of the middle term in Aristotelian dem-
onstrations. Proclus argues that Euclid’s proof does not conform to the 
Aristotelian model because it grounds the equality of the sum of the inte-
rior angles of a triangle to two right angles in a sign rather than in a cause. 

  28       In Eucl . 50.16–56.22, Friedlein. 
  29      A discussion of the relationship between Proclus’ philosophy of geometry and his analysis of 

mathematical proofs is beyond the scope of this paper. For this issue, see Harari  2006 . 
  30      206.12–26, Friedlein. 
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Proclus’ reason for regarding this Euclidean proof as based on signs rather 
than on causes concerns the relationship between the auxiliary construc-
tion employed in this proof and the triangle. According to Proclus, the 
extension of the triangle’s base is merely a sign and not a cause of the equal-
ity of the triangle’s angles to two right angles because ‘there is a triangle 
even if its side is not extended’. Th e exact force of this statement is clarifi ed 
in Proclus’ discussion of the employment of this auxiliary construction in 
another Euclidean proof – the proof that the sum of any two interior angles 
of a triangle is less than two right angles ( Elements   i .17). In this discussion, 
Proclus claims that the extension of the triangle’s base cannot be considered 
the cause of the conclusion since it is contingent: the base of a triangle may 
be extended or not, whereas the conclusion that the sum of any two inte-
rior angles of a triangle is less than two right angles is necessary.  31    Hence, 
in questioning the conformity of certain Euclidean proofs to Aristotelian 
demonstrations, Proclus raises the two questions that Philoponus ignores 
in the case of mathematical demonstrations. Unlike Philoponus, Proclus 
asks whether the middle term in Euclid’s proofs is the cause of the conclu-
sion and whether it is essentially related to the triangle. 

 Furthermore, Proclus’ attempt to accommodate Euclid’s proofs of the 
equality of the sum of the interior angle of a triangle to two right angles 
with Aristotle’s requirement that demonstrations should establish essential 
relations indicates that he shares with Philoponus the assumption that 
demonstrations regarding material entities require an appeal to causal con-
siderations. In concluding his lengthy discussion of Euclid’s proof that the 
sum of the interior angles of a triangle is equal to two right angles, Proclus 
says: 

 We should also say with regard to this proof that the attribute of having its interior 
angles equal to two right angles holds for a triangle as such and in itself. For this 
reason, Aristotle in his treatise on demonstration uses it as an example in discuss-
ing essential attributes … For if we think of a straight line and of lines standing in 
right angles at its extremities, then if they incline so that they generate a triangle we 
would see that in proportion to their inclination, so they reduce the right angles, 
which they made with the straight line; the same amount that they subtracted from 
these [angles] is added through the inclination to the angle at the vertex, so of 
necessity they make the three angles equal to two right angles.  32     

Th e procedure described in the passage, in which a triangle is generated 
from two perpendiculars to a straight line that rotate towards each other 

  31      311.15–21, Friedlein. 
  32      384.5–21, Friedlein. 
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up to their intersection point, is also presented by Proclus in his comments 
on propositions  i .16 and  i .17 of the  Elements . In both cases, he regards this 
procedure – and not Euclid’s auxiliary construction in which the triangle’s 
base is extended – as the true cause of the conclusion.  33    Proclus’ appeal to 
this procedure in searching for the true cause of these conclusions indicates 
that in attempting to accommodate Euclid’s proofs with Aristotle’s require-
ment that demonstrations should establish essential relations, he grounds 
mathematical conclusions in causal relations rather than in logical rela-
tions. Proclus considers the proposition that the sum of the interior angles 
of a triangle is equal to two right angles essential not because it is derived 
from the defi nition of a triangle, as Aristotle’s theory of demonstration 
requires, but because the proposition is derived from the triangle’s mode 
of generation. Viewed in light of Philoponus’ interpretation of Aristotle’s 
theory of demonstration, Proclus’ attempt to accommodate Euclid’s proof 
with Aristotelian demonstrations seems analogous to Philoponus’ account 
of physical demonstrations. In both cases, causal considerations are 
employed in rendering proofs concerning material objects compatible with 
Aristotelian demonstrations. 

 Th is examination of the presupposition underlying Philoponus’ and 
Proclus’ views regarding the conformity of mathematical proofs to 
Aristotelian demonstrations has led to the following conclusions. 

  (1)     Th e pre-modern formulation of the question of the conformity of 
mathematical proofs to Aristotelian demonstrations concerns the 
applicability of the non-formal requirements of the theory of dem-
onstration to mathematical proofs. More specifi cally, this formulation 
concerns the questions whether mathematical attributes are proved 
to belong essentially to their subjects and whether the middle term in 
mathematical proofs serves as the cause of the conclusion.  

  (2)     Th e emergence or non-emergence of the question of the conformity 
of mathematical proofs to Aristotelian demonstration is related to 
assumptions concerning the ontological status of mathematical objects. 
Th is question does not arise in a philosophical context in which math-
ematical objects are conceived of as separated in thought from matter, 
whereas it does arise when mathematical objects are conceived of as 
realized in matter.  

  (3)     Demonstrations concerning composites of form and matter were 
understood in late antiquity as based on causal relations, viewed as 
additional to the logical necessitation of conclusions by premises. 

  33      310.5–8, 315.15, Friedlein. 
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Causal considerations are employed with regard to mathematical dem-
onstrations, when mathematical objects are considered material; they 
are not employed when mathematical objects are considered separated 
in thought from matter.      

 Conclusions 

 In concluding this chapter, I examine the relationship between the modern 
formulation of the question of the conformity of mathematical proofs 
to Aristotelian demonstrations and its formulation in late antiquity. Th e 
modern discussions of the relationship between Aristotle’s theory of dem-
onstration and mathematical proofs focus on Aristotle’s formal requirement 
that demonstrations should be syllogistic inferences from two universal 
predicative propositions, which relate the subject and predicate of the con-
clusion to a third term, called the ‘middle term’. 

 Th e disagreement among Aristotle’s modern commentators concerns 
whether mathematical proofs can be cast in this logical form. For instance, 
Ian Mueller, who says they cannot, argues that in a syllogistic reformulation 
of Euclidean proofs the requirement that the inference should have only 
three terms is not always met, because the mathematical proofs depend 
on the relations between mathematical entities and not on their properties 
taken in isolation from other entities.  34    Th e possibility of expressing mathe-
matical relations in syllogistic inferences is also central in modern attempts 
to render Aristotle’s theory of demonstration compatible with mathemati-
cal proofs. Henry Mendell, for instance, shows that Aristotle’s theory of 
syllogism does have the formal means that make possible syllogistic for-
mulations of mathematical proofs. In so doing, he argues that the relation 
of predication, which is formulated by Aristotle as ‘ x  belongs to  y ’, can be 
read fl exibly so that it also accommodates two-place predicates, such as ‘ x  
equals  y ’, or ‘ x  is parallel to  y ’.  35    Mendell’s argument, like Mueller’s, focuses 
on the possibility of expressing relations within the formal constraints of 
the theory of syllogism. Th e extra-logical consequences of the expansion 
of the theory of syllogism to relational terms and their compatibility with 
Aristotle’s theory of demonstration are not at the centre of either Mendell’s 
or Mueller’s argument. More specifi cally, they do not address the question 
of whether relational terms or mathematical properties can be proved to 

  34      Mueller  1975 : 42. 
  35      Mendell  1998 . 



 Philoponus and Aristotelian demonstrations 223

be essential predicates of their subjects.  36    Th is question, as I showed, was 
central in the discussions of the conformity of mathematical proofs to 
Aristotelian demonstrations in late antiquity. 

 Th e non-formal requirements of the theory of demonstration were also 
central in the Renaissance debate over the certainty of mathematics.  37    
Piccolomini’s objective in his  Commentarium de certitudine mathemati-
carum disciplinarum  was to refute what he presents as a long-standing 
conviction that mathematical proofs conform to the most perfect type 
of Aristotelian demonstration, called in the Renaissance  demonstratio 
potissima . Th e classifi cation of types of demonstrations that underlies 
Piccolomini’s argument is based on Aristotle’s distinction between dem-
onstrations of the fact ( hoti ) and explanatory demonstrations or dem-
onstration of the reasoned fact ( dioti ). Th is distinction has been further 
elaborated by Aristotle’s medieval commentators and it appears in the 
Proemium of Averroes’ commentary on Aristotle’s  Physics  as a tripartite 
classifi cation of demonstrations into  demonstratio simpliciter ,  demon-
stratio propter quid  and  demonstratio quid est . It is in this context that 
Averroes claims that mathematical proofs conform to the perfect type of 
demonstration, in his terminology  demonstratio simpliciter .  38    According to 
this classifi cation, the diff erent types of demonstration diff er in the epis-
temic characteristics of their premises, hence in the epistemic worth of the 
knowledge attained through them. Following this tradition, Piccolomini’s 
argument for the inconformity of mathematical proofs to Aristotelian 
demonstrations focuses on these characteristics. According to Piccolomini 
 potissima  demonstrations are demonstrations in which knowledge of the 
cause and of its eff ects is attained simultaneously; the premises of such 
demonstrations are prior and better known than the conclusion; their 
middle term is a defi nition, it is unique and it serves as the proximate 
cause of the conclusion. Mathematical demonstrations, so Piccolomini 
and his followers argue, fail to meet these requirements. Th e importance 
of the non-formal requirements of the theory of demonstration for the 
Renaissance debate over the certainty of mathematics comes to the fore 
in the following passage from Pereyra’s  De communibus omnium rerum 
naturalium principiis et aff ectionibus : 

  36      Th is question is not utterly ignored in modern interpretations of the  Posterior Analytics . See 
McKirahan  1992 ; Goldin  1996 ; Harari  2004 . 

  37      For a general discussion of the  Quaestio de certitudine mathematicarum , see Jardine  1998 . For 
the infl uence of this debate on seventeenth-century mathematics, see Mancosu  1992  and  1996 . 

  38       Aristotelis opera cum Averrois commentariis , vol.  iv , 4. 
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 Demonstration (I speak of the most perfect type of demonstration) must depend 
upon those things which are  per se  and proper to that which is demonstrated; 
indeed, those things which are accidental and in common are excluded from 
perfect demonstrations … Th e geometer proves that the triangle has three angles 
equal to two right ones on account of the fact that the external angle which results 
from extending the side of that triangle is equal to two angles of the same triangle 
which are opposed to it. Who does not see that this medium is not the cause of the 
property which is demonstrated? . . . Besides, such a medium is related in an alto-
gether accidental way to that property. Indeed, whether the side is produced and 
the external angle is formed or not, or rather even if we imagine that the production 
of the one side and the bringing about of the external angle is impossible, nonethe-
less that property will belong to the triangle; but what else is the defi nition of an 
accident than what may belong or not belong to the thing without its corruption?  39     

Pereyra’s argument for the inconformity of mathematical proofs to 
Aristotelian demonstrations is similar to Proclus’ argument. Like Proclus, 
Pereyra focuses on the question whether mathematical proofs meet the 
non-formal requirements of the theory of demonstration. More  specifi cally, 
he raises the two questions that were at the centre of Proclus’ discussion of 
this issue: (1) Do the premises of mathematical proofs state essential or 
accidental relations? (2) Are Euclid’s proofs, which are based on auxiliary 
constructions, explanatory? Th ese questions are viewed in this passage as 
interrelated; real explanations are provided when the relation between a 
mathematical entity and its property is proved to be essential. Th is require-
ment is met if the premises on which the mathematical proof is based state 
essential relations. Th e only allusion to the syllogistic form of inference 
made in this passage is to the middle term in syllogistic demonstrations. 
However, like Proclus, Pereyra considers the middle term only in its role 
as the cause of the conclusion. Its formal characteristics, such as its posi-
tion, are not discussed here. Th us, pre-modern and modern discussions 
of the conformity of mathematical proofs to Aristotelian demonstrations 
concern diff erent facets of the theory of demonstration. Whereas the 
modern  discussions focus on the formal structure of Aristotelian demon-
strations, pre-modern discussions concern its non-formal requirements. 
Accordingly, the questions asked in these discussions are diff erent. Th e 
modern question is whether syllogistic inferences can accommodate rela-
tional terms whereas the pre-modern question is whether mathematical 
proofs establish essential relations. 

  39      Th e translation is based on Mancosu  1996 : 13. Th e complete Latin text appears on p. 214,  n. 12  
of Mancosu’s book. 
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 Nevertheless, when the pre-modern discussion of the conformity of 
mathematical proofs to Aristotelian demonstrations is viewed in light of its 
underlying ontological presuppositions, a conceptual development leading 
to the modern formulation of this question may be traced. Discussions of 
the conformity of mathematical proofs to Aristotelian demonstrations in 
late antiquity were associated with discussions of whether mathematical 
objects are immaterial or material;  40    that is, whether they are conceptual or 
real entities. Th is ontological distinction is refl ected in diff erent accounts 
of the relation of derivation, on which demonstrations are based. Whereas 
demonstrations concerning immaterial objects are based on defi nitions 
and rules of inference alone, demonstrations concerning material objects 
require the introduction of extra-logical considerations, such as the causal 
relations between form and matter. Th us, the question of the ontologi-
cal status of mathematical objects refl ects the epistemological question: 
whether extra-logical considerations have to be taken into account in 
mathematics. When discussions of the conformity of mathematical proofs 
to Aristotelian demonstrations in late antiquity are viewed in isolation 
from ontological commitments, they seem to be conceptually related to 
modern discussions of the nature of mathematical knowledge. Th e need to 
take into account extra-logical considerations when mathematical objects 
are considered material is equivalent to Kant’s statement that mathematical 
propositions are synthetic  a priori  judgements. Developments in modern 
logic led to a reformulation of Kant’s statement in terms of logical forms. 
Kant’s contention that mathematical knowledge cannot be based on defi -
nitions and rules of inference alone was regarded by Bertrand Russell as 
true for Kant’s time. According to Russell, had Kant known other forms 
of logical inference than the syllogistic form, he would not have claimed 
that mathematical propositions cannot be deduced from defi nitions and 
rules of inference alone.  41    In light of this account, the modern discussions 
of the conformity of mathematical proofs to Aristotelian demonstrations, 
which focus on whether syllogistic inferences can accommodate relational 
terms, may be understood as evolving from the pre-modern discussions 
of whether mathematical proofs establish essential relations, and to estab-
lish this conclusion, two conceptual developments have to be traced: the 
process by which the question whether mathematical propositions are 

  40      Th is assumption seems to underlie the Renaissance discussions of this issue as well. In the 
eleventh chapter of his treatise Piccolomini attempts to reinstate the status of mathematics 
as a science by claiming that mathematical objects are conceptual entities, existing in the 
human mind. 

  41      Russell  1992 : 4–5. 
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essential has become dissociated from questions concerning the ontologi-
cal status of mathematical objects, and the process leading to the develop-
ment of modern logic.                                                
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 5     Contextualizing Playfair and Colebrooke 
on proof and demonstration in the Indian 
mathematical tradition (1780–1820)    

   Dhruv     Raina     

 Th e social shaping of representations of so called non-Western astronomy 
and mathematics in eighteenth- and nineteenth-century European scholar-
ship has been of recent scholarly interest from the perspective of the politics 
of knowledge.  1    A principal concern has been the changing estimation of 
non-Western mathematical traditions by European mathematicians and 
historians of mathematics between the end of the last decades of the eight-
eenth century and the early decades of the nineteenth century; that is from 
the heyday of the Enlightenment to the post-Enlightenment period. While 
these studies have been informed by Said’s  Orientalism ,  2    they have sought 
to examine the question whether the history of mathematics (the least likely 
case) is also inscribed within the frame of European colonial adventure and 
enterprise, as happened in the arts, literature and social sciences.  3    

 It has been suggested that the European scholarship on the sciences of 
India reveals fractures along national lines, which in turn refl ected the 
diversity of educational and institutional contexts of the world of learn-
ing.  4    Th is chapter examines the relationship between the histories of Indian 
astronomy and mathematics produced by French astronomers and the 
translation from the Sanskrit of works on Indian algebra undertaken by a 
colonial administrator and British Indologist, Henry Th omas Colebrooke. 
Th e contrast revealed the divergent disciplinary orientations of the inter-
preters themselves. Second, in elaborating upon the canonization of a very 
important translation of Indian mathematical works by Colebrooke,  5    I shall 
argue that the standard European depiction of the Indian  mathematical 

     1      Charette  1995 ; Raina  1999 . 
     2      Said  1978 . 
     3      Assayag  et al .  1997 . 
     4      Raina  1999 . 
     5      Sir Henry Th omas Colebrooke was the son of the Chairman of the East India Company 

Directors, and arrived in India as an offi  cial of the Company in 1782–3. In India he acquired 
a profi ciency in Sanskrit literature and commenced writing on Hindu law, the origins of 
caste, etc. As a result he was appointed Professor of Hindu Law and Sanskrit at the College 
of Fort William, Calcutta (Buckland  1908 : 87–8). His translation of texts of Bhaskara and 
Brahmagupta became classics of nineteenth-century history of Indian mathematics. 
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 tradition as devoid of proof went contrary to the spirit of Colebrooke’s 
translation and the large number of proofs and demonstrations therein 
contained. In other words, this chapter elaborates upon how the Indian 
tradition of mathematics came to be constructed as one that was devoid 
of the idea of proof. While this characterization acquired stability in the 
nineteenth century, the construction itself was prefi gured in the eight-
eenth century. However, in the second half of the nineteenth century there 
were historians of mathematics who held that specifi c kinds of proof were 
encountered in Indian mathematical texts. 

 It could be suggested that the concerns possibly giving the several con-
tributions in the present volume a thematic unity is the focus upon the 
empirical reality of mathematical practices, which perhaps suggests that 
mathematical traditions the world over, in the past as in the present, were 
and are characterized by several cultures of proof. Furthermore, studies on 
the culture(s) of proving among contemporary mathematicians, pure and 
applied, appear to indicate that rather than there being a unique criterion of 
what constitutes a proof there exist several mathematical subcultures.  6    Th is 
view pushes in the direction of a sociological view of proof, amounting to 
a consensus theory of proof. Clearly this runs contrary to the formal verifi -
cationist idea that proofs are pinioned on their ‘intrinsic epistemic quality’.  7    
Th is naturally raises the question as to how and when will these issues 
surface in the eff orts of historians of mathematics. For if, as is suggested, it 
was not until the middle of the nineteenth century that proof became the 
sole criterion of validating mathematical statements,  8    then its refl ection is 
to be found in the constructions of histories of mathematics as well. 

 In order to look at the more technical mathematical writing it is fi rst 
necessary to briefl y describe the optic through which Europeans turned 
their gaze on India during this period and the tropes that defi ned their liter-
ary production on India during these decades. Th e eighteenth century has 
been considered the formative period for the emergence of the discourse 
on colonialism, but this discourse was not yet ‘monolithic or univocal’. 
European writing on India comprised a network of intersecting and con-
tending representations.  9    Th e representations of India in this writing are 
naturally very ‘diverse, shift ing, historically contingent, complex and com-
petitive’. Th e texts themselves are shaped oft en by ‘national and religious 
rivalries, domestic concerns’, and the cognitive or intellectual cultures of 

     6      Heinz  2000 ; MacKenzie  2001 ; Heinz  2003 . 
     7      Heinz  2003 : 234–5. 
     8      Heinz  2003 : 938. 
     9      Teltscher  1995 : 2. 
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the respective interlocutors.  10    Critical studies on oriental scholarship have 
sought to situate these texts in national and religious contexts and to iden-
tify the elements they share.  11    It has been argued that until the eighteenth 
century it was possible to speak of a European tradition of writing about 
India that diff erentiated into several national traditions by the middle of 
the eighteenth century. Th e birth of a specifi cally British tradition is put 
around 1765 when the East India Company was granted rights to collect 
land revenues and administer civil justice in Bengal.  12    With the founding 
of the Asiatic Society, British writing on India especially from the 1780s 
onwards was marked by the impulse of British writers to ‘foreground the 
textual nature of their activity’, in other words to anchor their writings on 
India in the specifi c study of classical texts produced in India.  13    

 Th e French missionaries who came to India in the late seventeenth 
century were the fi rst to have spoken of India’s scientifi c past. French 
Indology, according to Jean Filliozat, emerged in the early decades of the 
eighteenth century, when the King’s librarian requested Etienne Fourmont, 
of the Collège Royal, to draw up a list of works of note from India and 
Indo-China, to be purchased for the King’s library. By 1739, a catalogue of 
Sanskrit works had been prepared, and copies of Vedas, epics, philosophical 
and linguistic texts and dictionaries had been procured.  14    Curiously enough 
there were very few, if any, scientifi c texts that were included in the cargo to 
the King’s library.  15    The Jesuit astronomers were the fi rst to study the Indian 
astronomical systems that Filliozat considers ‘the fi rst scientifi c or even cul-
tural achievements of India studied by Europeans’.  16    Kejariwal goes so far as 
to suggest that the ‘history of French Orientalism is also the history of the 
rediscovery of ancient Indian astronomy in the modern period’.  17    

 A fruitful approach into this archive of scientifi c texts and not just liter-
ary or religious texts is to pay attention to moments where the standard 
cultural descriptions characterizing the early European writing on India are 
challenged or unsettled through the textual analysis of similar and diff erent 
forms of reasoning.  18    In examining these mathematical texts, it is thereby 
essential for our purpose to be alert to those moments and descriptions of 

  10      Teltscher  1995 : 2; Raina  1999 ; Jami  1995 . 
  11      Inden  1990 ; Zupanov  1993 . 
  12      Teltscher  1995 : 3. 
  13      Teltscher  1995 : 6. 
  14      Filliozat  1955 : 1–3. 
  15      Raina  1999 . 
  16      Filliozat  1957 . 
  17      Kejariwal  1988 : 17. 
  18      Teltscher  1995 : 14. 
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mathematical results and procedures encountered within Sanskrit texts that 
were not accompanied by demonstrations or proof or exegesis. Th e British 
mathematician and geologist John Playfair (1748–1819) in introducing the 
Indian astronomy broadly speaking to an English speaking audience was 
to write: 

 Th e astronomy of India is confi ned to one branch of the science. It gives no theory, 
nor even any description of the celestial phenomena, but satisfi es itself with the 
calculation of certain changes in the heavens . . . Th e Brahmin . . . obtains his result 
with wonderful certainty and expedition; but having little knowledge of the prin-
ciples on which his rules are founded, and no anxiety to be better informed, he is 
perfectly satisfi ed, if, as it usually happens, the commencement and duration of the 
eclipse answer, within a few minutes, to his prediction.  19      

 Th ere are four ideas that are evident in this passage, and that run con-
stantly throughout the construction of Indian astronomy and mathematics. 
Inasmuch as Indian astronomy is a science it diff ers from modern astron-
omy in that (a) it lacks a theoretical basis, (b) it does not provide a descrip-
tion of celestial phenomena, and (c) it is not methodologically refl ective 
(‘little knowledge of the principles on which his rules are founded’), which 
in turn amounts to the idea that (d) the Indian astronomer computes but 
does so blindly. In other words these computations were performed blindly 
by the Indian astronomers. On account of the predictive accuracy of the 
astronomy it merited the stature of a science, and the Indian astronomers 
were concerned no more with it than in this instrumental context.  

 Th e origins of British Indology:     diff erent starting points, 
diff erent concerns 

 British studies on Indian astronomy and mathematics may be said to lie 
at the conjuncture of two diff erent historiographies: French and British. 
One of the earliest British Indologists to speak of the distinctive tradition 
of Indian algebra was Reuben Burrow (1747–92), a mathematician and 
a one-time assistant to Maskelyne, the Astronomer Royal in Greenwich. 
Th e prior French tradition of the history of science had been preoccupied 
with the origins of Indian astronomy. Burrow centred the question about 
the origins of Indian mathematics. Th is will become evident further ahead. 
Th at Burrow had a diff erent optic from the French is evident in his ‘Hints 
concerning the Observatory at Benaras’: 

  19      Playfair  1790  (1971): 51. 
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 Notwithstanding the prejudices of the Europeans of the last century in favour of 
their own abilities, some of the fi rst members of the royal society were suffi  ciently 
enlightened to consider the East Indies and China & c, as new worlds of science that 
remained undiscovered . . . had they not too hastily concluded that to be lost, which 
nothing but the prejudice of ignorance and obstinacy, had prevented being found, 
we might at this time [be] in possession of the most fi nished productions of Asia 
as well as Europe; the sciences might, in consequence, have been carried to a much 
higher degree of perfection with us than they are at present; and the elegance and 
superiority of the Asiatic models might have prevented the neglect and depravity 
of geometry, and that inundation of Algebraic barbarism which has ever since the 
time of Descartes, both vitiated taste, and overrun the publications, of most of the 
philosophical societies in Europe.  20     

Th e encounter with other non-European scientifi c traditions was encour-
aged by the ideological impulse to advance the frontiers of knowledge. 
In that sense Burrow’s philosophy of science resonated with that of the 
Enlightenment thinkers. Th e most striking feature of the above passage is 
that the Indian tradition for Burrow is still not characterized as algebraic 
or geometric. In fact, at this point the characterization is the very reverse 
of the late nineteenth century where Indian mathematics is constituted as 
one that is algebraic in spirit at the expense of geometry. Th is nineteenth-
century portraiture of Indian mathematics depicted the traditions as alge-
braic or algorithmic, and as one where the geometric side of mathematics 
was underdeveloped. Modern European mathematics since Descartes, in 
Burrow’s words, had been overwhelmed by  ‘algebraic barbarism’ . An expo-
sure to Asiatic models would then have prevented the neglect of geometry 
that marked contemporary sciences. I do not know if one could interpose 
the suggestion that there may have been some Anglo-French rivalry at 
stake. But then that is not immediately germane to the construction. Th e 
relevant concern here is that  until the end of the eighteenth century some 
British Indologists still entertained the hope that they would discover Indian 
geometrical texts that would unveil to them the foundations of an Indian 
geometrical tradition . Th us Playfair would in 1792 pose six questions to 
the researchers of the Asiatic Society, the fi rst of which was: ‘Are any books 
to be found among the Hindus, which treat professedly of Geometry?’  21    
Playfair was thus asking if it were possible to identify elements of a corpus 
of knowledge albeit in a diff erent disguise that could be considered geom-
etry in the sense in which it was conceived in Europe. For one it could be 

  20      Burrow  1783  (1971): 94–5. 
  21      Playfair  1792 : 151. 
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said that the question that the geometry of the Hindus could have a diff er-
ent basis from the Greek ones is implied by the ‘professedly’ in the question. 
Th at this is what Playfair meant might be inferred from his elaboration 
upon the question he posed: 

 I am led to propose this question, by having observed, not only that the whole of the 
Indian Astronomy is a system constructed with great geometrical skill, but that the 
trigonometrical rules given in the translation from the  Surya Siddhanta , with which 
Mr. Davis  22    has obliged the world, point out some very curious theorems, which 
must have been known to the author of that ancient book.  23     

According to Playfair, as he engages with Davis’ translation of the  Surya  
 Siddhanta  the ‘trigonometrical canon’ of Indian astronomy is constructed 
on the basis of a theorem. Th e theorem is stated as: 

 If there be three arches  24    of a circle in arithmetical progression, the sum of the sines 
of the two extremes arches is to twice the sine of the middle arch as the cosine of 
common diff erence of the arches to the radius of the circle.  25     

Th ough the theorem was not known to Europe before Viete, Playfair 
continues, the method was employed by the Indian astronomers for con-
structing trigonometrical tables, and was based on the simpler procedure 
of calculating sines and arcs than through the use of methods that were 
based on extracting square roots.  26    Th e immediate task for Playfair appears 
to have been to identify those mathematical works where the theorem on 
which the trigonometrical rule employed in astronomy is fi rst laid out. 
Th is brings us back to Burrow’s concern with the origins of Indian math-
ematics.   

 Contrasting approaches:     sift ing the mathematical from the 
astronomical rexts 

 In the late eighteenth century it would have been possible to diff eren-
tiate between the eff orts of the British Indologists and those of their 
French counterparts studying Indian astronomy and mathematics on two 
counts. Methodologically speaking, while the British Indologists were busy 

  22      Samuel Davis (1760–1819) was a judge in Bengal and produced one of the fi rst translations of 
the  Surya Siddhanta . 

  23      Playfair  1792 : 151. 
  24      An ‘arc of a circle’ is what is meant here. I have kept the original spelling. 
  25      Playfair  1792 : 152. 
  26      Playfair  1792 : 152. 
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 underlining the textual nature of their enterprise, the French astronomer-
savants relied a great deal on proto-ethnographic descriptions of the 
mathematical and astronomical practices of India. Secondly, the histories 
of Indian astronomy of Bailly and Le Gentil are preoccupied with the 
astronomy of India and the origins of Indian astronomy.  27    Even Montucla’s 
history of mathematics relies extensively upon the proto-ethnographic 
sources employed by Le Gentil and Bailly and draws inferences concerning 
Indian mathematics from them.  28    Th e British Indological tradition, on the 
other hand, engaged with specifi c texts and from the astronomical rules 
presented there made a claim that these rules must be based on a math-
ematical system, and proceeded to discover mathematical texts. Th eir focus 
thus shift s from the origins of astronomy to the origins of Indian math-
ematics, in particular Indian algebra and arithmetic. What were the rules 
encountered and what were the claims made? Th e shift  was precipitated by 
the desire to craft  a history of mathematics independently of the history 
of astronomy. As scholars approached the corpus of Indian astronomical 
texts, they encountered a corpus of knowledge recognizable to them as 
algebra and arithmetic. Consequently, John Playfair was later to insist upon 
the need to search for a geometrical tradition. 

 Reuben Burrow was probably amongst the earliest of the British 
Indologists to engage with the textual tradition of Indian mathematics, 
although this search was prompted through his exposure to and study of 
astronomy, including Indian astronomy. Th is does not mean that these 
texts did not relate in any way to the histories of Le Gentil and Bailly. 
Actually, the texts of the former provided an initial frame for approaching 
the diff erences between the Indian and Modern traditions. For Burrow 
the study of the procedures employed by Indian astronomers in calculat-
ing eclipses would advance the progress of modern astronomy as well: 
‘and the more so as our methods of calculation are excessively tedious 
and intricate’.  29    Th e sentiment echoes that of Le Gentil and Bailly; and it 
is certain that he was acquainted with the work of Le Gentil,  30    though it 
is not possible to say the same of Bailly’s  Traité de l’astronomie indienne et 
orientale . Th is fascination with the computational procedures employed 
in astronomy led Burrow to infer in 1783 the existence of an advanced 
algebraic tradition: 

  27      Bailly  1775 ; Le Gentil  1781 . 
  28      Montucla  1799 . 
  29      Burrow  1783  (1971): 101. 
  30      Burrow  1783  (1971): 116. 
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 It is also generally reported that the Brahmins calculate their eclipses, not by astro-
nomical tables as we do, but by rules . . . If they (the rules) be as exact as ours, . . . it 
is a proof that they must have carried algebraic computation to a very extraordinary 
pitch, and have well understood the doctrine of ‘continued fractions’, in order to 
have found those periodical approximations . . .  31     

Th e rules for computing eclipses employed by the Brahmins were not only 
diff erent, but their complexity varied with the requisite degree of exactness: 

 . . . which entirely agrees with the approximation deduced from algebraic formulae 
and implies an intimate acquaintance with the Newtonian doctrine of series . . . and 
therefore it is not impossible for the Brahmins to have understood Algebra better 
than we do.  32     

Th is was to become the central point from which in subsequent papers 
Burrow would build his argument for the existence of an advanced algebra 
among the Indians. Th e problem was taken up again by Colebrooke dis-
cussed below, and in a paper published slightly later by Edward Strachey, 
‘On the early history of algebra’.  33    Th e paper emphasized the originality 
and importance of algebra among the Hindus and contained extracts that 
were translated from the  Bija-Ganita  and  Lilavati .  34    Th ese extracts were 
translations into English from Persian translations of the original Sanskrit 
texts.  35    But Burrow admits that these extracts were translated in 1784, but 
he deferred publishing them till a full text was obtained.  36    But he prizes 
the moment: ‘when no European but myself . . . even suspected that the 
Hindoos had any algebra’.  37    Th e rationale provided for the existence of 
treatises on algebra in India in Burrow’s 1790 paper on the knowledge of 
the binomial theorem among the Indians is the same as that suggested in 
the earlier one ( 1783 ). Many of the approximations used in astronomy were 
‘deduced from infi nite series; or at least have the appearance of it’.  38    Th ese 
included fi nding the sine from the arc and determining the angles of a 

  31      Burrow  1783  (1971): 101. 
  32      Burrow  1783  (1971): 101. 
  33      Strachey  1818 . 
  34      Th ese works were authored by the twelft h-century mathematician Bhaskara II, and while the 

fi rst of these deals with problems in algebra and the solution of equations, the latter focuses 
more on arithmetic. 

  35      Strachey’s paper will not be discussed here, since the focus will be on the translation of versions 
of Sanskrit texts into English and not the manner in which these Sanskrit texts were reported 
in translations of Persian and Arab mathematical works. 

  36      Burrow 1790. 
  37      Burrow 1790: 115. 
  38        Ibid  . 
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right-angled triangle given the hypotenuse and sides without recourse to a 
table of sines, etc. 

 Th e urgency of the moment was then to discover those texts before they 
perished. Burrow thus emphasized the need for the collection of  available 
astronomical and mathematical texts that till then had not been the 
focus of attention of the French Académiciens. Th e idea that the existing 
 tradition was probably algebraic was being insinuated: ‘Th at many of their 
books are depraved and lost is evident, because there is now not a single 
book of geometrical elements to be met and yet that they had elements not 
long ago, and apparently more extensive than those of Euclid is obvious 
from some of their works of no great antiquity.’  39    At this liminal moment it 
appears as if the issue whether the geometric tradition prevailed over the 
algebraic or vice versa in India had not been settled. It cannot be decisively 
be said that Burrow had a fi xed view on the subject. But certainly the texts 
he encountered were not of a ‘geometric’ nature. But the trigonometrical 
calculations gave cause for belief that the semblance of such a system 
was in existence. And while Burrow promised to publish translations 
of  Lilavati  and the  Bija-Ganita , the promise was not fulfi lled during his 
life. Inspired by Burrow‘s research, Colebrooke embarked on a study of 
Sanskrit in order to probe some of the issues raised by Burrow more 
deeply. 

 It was left  to Samuel Davis to publish the fi rst translation and analysis of 
an Indian scientifi c work from the Sanskrit into a European language, this 
being a translation of the  Surya Siddhanta .  40    Th is translation was based 
on the reading of an original version of the text procured by Sir Robert 
Chambers in 1788. Davis encountered a number of obscure technical 
terms and had to rely upon a  teeka  or commentary procured by Jonathan 
Duncan.  41    In fact, if you examine the structure of Davis’ paper, it appears as 
a  teeka  on the  Surya Siddhanta , with passages translated from the text and 
Davis’ explanation intercalated between the translated passages. 

 Davis begins by contesting the portrait of Indian astronomy and astrono-
mers projected by Le Gentil and Bailly,  42    without naming either of them. 

  39        Ibid  . 
  40      Davis 1789. 
  41        Ibid  . 
  42      More than Bailly and Le Gentil, Davis was refuting Sonnerat’s constructions of Indian 

astronomy: 

 . . . my present intention, which is to give a general account only of the method by which 
the Hindus compute eclipses, and thereby to show, that a late French author was too hasty 
in asserting generally that they determine by set forms couched in enigmatical verses &c. So 
far are they from deserving the reproach of ignorance, which Mons. Sonnerat has implied, 
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Th e fi rst idea that he rejected was that this astronomical tradition was dis-
fi gured over the years by idolatry and that the gems of Indian astronomy 
had been irretrievably lost over the centuries, in the absence of a textual 
tradition. Th e second idea was that the Brahmins had shrouded their 
astronomy in mystery such that it was impossible to arrive at a cogent 
account of it. Further, they loathed sharing their ideas with others. Davis 
set out to show that: 

 . . . numerous treatises in Sanskrit on astronomy are procurable, and that the 
Brahmins are willing to explain them . . . I can farther venture to declare, from the 
experience I have had, that Sanskrit books in this science are more easily translated 
than almost any others, when once the technical terms are understood: the subject 
of them  admitting neither of metaphysical reasoning nor of metaphor , but being 
delivered in plain terms  and generally illustrated with examples in practice , . . .  43     

Th e British Indologists were departing from the reading of Académiciens 
grounded in Jesuit proto-ethnography, by textually locating their work. 
Th is textual grounding would revise the portrait of the French savants. 
A hundred years later in a review of the history of the history of Indian 
astronomy Burgess was to write: ‘Mr. Davis’ paper, however, was the fi rst 
analysis of an original Hindu astronomical treatise, and was a model of 
what such an essay ought to be.’  44    It appears then, as has been argued else-
where, that the French savants in India were unable to establish trust with 
their Indian interlocutors, in total contrast to the fi rst generation of British 
Indologists such as William Jones,  45    and if one takes Davis’ account liter-
ally then Davis himself. Two papers of William Jones followed closely on 
the heels of Davis’ papers and a cursory glance at them reveals that they 
mutually respected and supported each other’s enterprise.  46    And yet they 
both were in agreement with Bailly’s thesis of the independent origins of the 
Indian zodiac, diff ering very strongly with Montucla on this count: 

that on inquiry, I believe the Hindu science of astronomy will be found as well known 
now as it ever was among them, although perhaps, not so generally, by reason of the little 
encouragement men of science at present meet with . . .     (Davis 1789: 177).  

   Evidently, Sonnerat unlike Davis could not enter the world of the Hindu astronomers on 
account of his inability to abandon a hermeneutic of suspicion. Pierre Sonnerat was a French 
naval offi  cial who travelled to India towards the last decades of the eighteenth century and 
published a book  Voyages aux Indes Orientales et à la Chine  in 1782 which discussed the 
history, religion, languages, manners, arts and science of the regions he visited. 

  43      Davis  1790 : 175 (emphasis added). 
  44      Burgess  1893 : 730–1. 
  45      Raj  2001 . 
  46      An eighteenth-century Indian scholar who worked closely both with Jones and along with his 

associates with Colebrooke was Radhakanta Tarkavagisa (Rocher  1989 ). 



238 dhruv raina

 I engage to support an opinion (which the learned and industrious M Montucla 
seems to treat with extreme contempt) that the Indian division of the zodiac was 
not borrowed from the Greeks or Arabs, but having been known in this country 
from time immemorial and being the same in part with other nations of the old 
Hindu race . . .  47      

 But then they were also gradually transforming and refi ning the portrait 
Bailly had left  behind. Th us Jones recognized that in Davis’ translation 
resided the hope that it would ‘convince M. Bailly that it is very possible for 
an European to translate and explain the  Surya Siddhanta .’  48      

 Playfair’s programme and Colebrooke’s recovery 
of Indian algebraic texts 

 In order to recapitulate a point made earlier, the French Jesuits of the seven-
teenth and eighteenth centuries were the inaugurators of a tradition, which 
was to inspire the histories of Le Gentil and Jean-Sylvain Bailly.  49    Bailly’s 
history inspired the work of the British mathematician John Playfair and 
provided a stimulus to subsequent generations of British Indologists writing 
on Indian mathematics; though they were to disagree with the details of 
Bailly’s  Histoire , adding some nuance here and digressing from it in another 
context.  50    Th e antediluvian hypothesis proposed by Bailly was the source 
of both fascination and controversy, and was the outcome of his attempt 
to juxtapose observations of ancient Indian astronomy with astronomi-
cal theory of his day;  51    from which he went on to draw the inference that 
ancient Indian astronomy was the source of Greek astronomy.  52    However, 
this reading was located within Jesuit historiography which sought to 
accommodate Indian history within the Christian conception of time.  53    

 Bailly’s work was introduced to English-speaking readers through an 
article authored by John Playfair entitled ‘Remarks on the Astronomy of the 
Brahmins’ published in the  Transactions of the Royal Society of Edinburgh .  54    

  47      Jones  1790a . 
  48      Jones  1790b . 
  49      Raina  1999 . 
  50      Raina  2001a . 
  51      According to this hypothesis astronomy originated among the Indians, but the Indians in turn 

had received it from an even more ancient people. Th e traces of this exchange had been lost in 
antiquity. 

  52      Bailly  1775 . 
  53      Raina  2003 . 
  54      Playfair  1790 . 
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Th e article draws extensively, need I say almost exclusively, upon the 
 Mémoirs  of Le Gentil published by the Académie des Sciences, Paris and 
Bailly’s  Astronomie Indienne .  55    Th is article of Playfair’s was of prime impor-
tance for Indologists working on the history of Indian astronomy for the 
next four decades. 

 Playfair’s central contribution resided in re-appropriating Bailly’s  Traité  
in the light of the contributions of Davis and Burrow and proposing a 
set of tasks that could well be considered a research programme for the 
Asiatic Society. Th ese included: (a) to search for and publish works on 
Hindu geometry, (b) to procure any books on arithmetic and to ascertain 
those arithmetical concerns whose trace is not to be found among the 
Greeks, (c) to complete the translation of the  Surya Siddhanta  as initi-
ated by Samuel Davis, (d) to compile a  catalogue raisonné , with a scholarly 
account of books on Indian astronomy, (e) to examine the heavens with 
a Hindu astronomer in order to determine their stars and constellations, 
(f) to obtain descriptions and drawings of astronomical buildings and 
instruments found in India.  56    

 If Bailly had stirred a hornet’s nest in his time by suggesting that the 
origins of astronomy were in India, albeit that this astronomy was inher-
ited by the Indians from an even more ancient people, Burrow’s paper did 
the same with the origins of algebra. It is at this time diffi  cult to separate 
the discussion on the history of astronomy from the history of algebra; 
for both the Académiciens and the Indologists oft en turn to the history of 
astronomy to evoke computational procedures that were analysed math-
ematically. Th is programme of the recovery of the mathematical literature 
from the astronomical literature was taken up by Colebrooke, who may be 
seen as providing translations from the Sanskrit into English of the fi rst 
texts supposedly dedicated solely to algebra and arithmetic. I say suppos-
edly because portions of some of the texts Colebrooke discovered for the 
English-speaking world were essentially the mathematical sections of larger 
astronomical canons of the Indian tradition. 

 We come now to Colebrooke’s translation practices. In order to describe 
them we need to understand how Colebrooke identifi ed an authenticated 
version of the texts that he set out to translate. It needs to be pointed out 
that at the very outset no fi nal version of the three texts, from which only 
portions were translated, was readily available to him. Consequently, 
he worked with his Brahmin interlocutors and collected and collated 

  55      Le Gentil 1789; Bailly  1787 . 
  56      Playfair  1792 : 152–5. 
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 fragments of the works of Bhaskara and Brahmagupta before proceeding to 
fi nalize versions of the three texts translated. But the enormous task was to 
fi nalize and authenticate a version as the version of these texts. Th e central 
question then was: how were the fragments of the texts to be ordered into 
a sequence or other fragments spliced into appropriate sections of the 
sequence of fragments in order to complete the collation of the text. His 
native interlocutors were thus assigned the task of providing him with an 
exhaustive commentary(ies) on these texts and most certainly worked with 
him through the process of translation. Th e larger the set of commentaries 
available on a given text, say the  Lilavati , the greater the importance of the 
text within the canon. Th e commentaries themselves served two exceed-
ingly important functions. In the fi rst instance the commentaries were 
employed to identify the missing portions of the fragments available, and 
to fi x the sequence of chapters. In other words it is through the commen-
taries that the text was fi nalized. Second, the commentaries were employed 
to illustrate and explain semantically and technically obscure portions and 
procedures expounded in the main text. 

 A typical page of Colebrooke’s translation thus comprises an upper half 
or two-thirds that are translations from the Sanskrit of fi nalized versions 
of the texts of Bhaskara and Brahmagupta, while the lower half or third 
comprises: (1) Colebrooke’s explication of the text when need be, with ref-
erences to other texts, which is done with footnotes, (2) translations from 
one or several commentaries that clarify the meaning of a term or terms 
or procedures mentioned in the portion of the text on the upper portion 
of the page, but at no point in Colebrooke’s text is the entire commentary 
translated. In fact the text comprises translations from portions of several 
commentaries, and it is Colebrooke who decided which part of one of 
several commentaries or portions of several commentaries best elaborates 
or clarifi es a portion of the master text being translated. But the com-
mentaries are internally paired off  against each other in order to arrange 
chronologically the commentaries and thus provide a diachronic relation 
between them. 

 Colebrooke drew upon a rich commentarial tradition while working 
on his translation of the  Lilavati . Th e fi rst of these was a commentary by 
Gangādhara dated  ad  1420. Th e commentary was limited to the  Lilavati , 
but as Colebrooke informs us, it authenticated an important chapter from 
the  Bija-Ganita .  57    Further, Suryadasa’s  Ganitámrita  dated  ad  1538 was 
a commentary on the  Lilavati  and the  Surya-pracāsa  was a commentary 

  57      C1817: xxv. 
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on the  Bija-Ganita  that contained a clear interpretation of the text with a 
concise explication of the arithmetical rules.  58    Th e other important com-
position was Ganesa’s  Buddhivilasini  ( c .  ad  1545), comprising a copious 
exposition of the text with demonstration of the rules. However, Ganesa 
had not written a commentary on the  Bija-Ganita  and Colebrooke drew on 
the work of Krishna which explained the rules with a number of demon-
strations. In addition to which two other commentaries were used, namely 
that of Ramakrishna Deva entitled  Manoranjana , a text of uncertain date, 
and fi nally the  Ganitakaumud , which was known through the works of 
Suryadasa and Ranganatha.  59    

 A brief recapitulation is required before we proceed to the translations 
of Colebrooke, for his work certainly marks a departure in the study of the 
history of Indian mathematics. Two main historiographic currents in the 
eighteenth century oriented the study of the history of the mathematics 
and astronomy of India. Th e fi rst approach was that pursued by the Jesuit 
savants in India, who were observing the astronomical and computational 
procedures circulating among Indian astronomers. Th eir audience did not 
merely comprise the devout back in France, but the Académiciens and 
astronomers, two of whom transcribed these proto-ethnographic accounts 
into a history of Indian astronomy. Administrator–scholars, who studied 
texts, collated fragments of texts and published translations with critical 
editions and commentaries, while indebted to the fi rst, pursued another 
approach. In the late eighteenth century, Sanskrit commentaries and can-
onized astronomical or mathematical works were considered the key to 
obscure technical terms and texts. What needs to be examined is whether 
by the late nineteenth century commentaries shared the same destiny as 
some of the Vedic texts. For it has been pointed out that by the second half 
of the nineteenth century some Sanskritists belittled, marginalized and 
removed ‘explicit references to the intermediary process of transmission 
and exegesis of texts without which they would not have had access to 
them’.  60    Th e status of proofs in the Indian tradition is related to how these 
commentaries on mathematical texts were read. 

  58      C1817: xxvi. Th e term explication involves two diff erent tasks when applied to literary texts 
and scientifi c texts. In the case of literary texts explication means to unfold; or to off er a 
detailed explanation of a story. In the case of a scientifi c text or procedure, explication involves 
the transformation of the explicandum by the explicatum. However, explication in Colebrooke 
does not possibly conform to the notion that the explicandum is pre-scientifi c and inexact, 
while the explicatum is exact. Th e explicandum and explicatum are related to each other in 
their diff erence and not in a hierarchy of exact/inexact. 

  59      C1817: xxvii–xxviii. 
  60      Vidal  1997 : 25. 
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 Th e point needs some reaffi  rmation since both Colebrooke and Davis, 
who worked with commentaries of canonized astronomical and math-
ematical texts respectively, do mention the existence of demonstrations, 
and rules in the texts they discuss. In Colebrooke’s introduction to his 
 Algebra with Arithmetic and Mensuration, from the Sanscrit of Brahmegupta 
and Bhascara , there are four terms of concern to us here, namely demon-
stration, rule, proof and analysis, that come up oft en, but it is only the last 
of these that Colebrooke clarifi es. Further, as will be noticed in the  next 
section  the terms demonstration and proof are used interchangeably by 
Colebrooke. Noted by its absence in the title is the term ‘geometry’, as a 
systematized science; on the contrary, the translation does allude to men-
suration as discussed in the books he translates. Th e crucial problematic for 
Colebrooke was, as with Burrow before him, to determine the origins of 
Indian algebra. Inspired, as it were, by the textual exemplars of Davis and 
Burrow, and guided by the research programme John Playfair had drawn 
up for the researchers of the Asiatic Society, Colebrooke highlighted the 
pathway to his own work: 

 In the history of mathematical science, it has long been a question to whom the 
invention of algebraic analysis is due, among what people, in what region was 
it devised, by whom was it cultivated and promoted, or by whose labours was it 
reduced  to form and system .  61     

Th e subsequent narrative focuses upon establishing that ‘the imperfect 
algebra of the Greeks’, that had through the eff orts of Diophantus advanced 
no further than solving equations with one unknown, was transmitted 
to India. Th e Indian algebraists, through their ingenuity, advanced this 
‘slender idea’ to the state of a ‘well arranged science’.  62    In his reading, 
Colebrooke shares a fundamental historiographic principle, disputed by 
current scholarship, with Burrow, one that enjoyed currency among his-
torians of mathematics into the twentieth century. In this historiographic 
frame: ‘. . . the Arabs themselves scarcely pretend to the discovery of 
Algebra.  Th ey were not in general inventors but scholars , during the short 
period of their successful culture of the sciences.’  63    

 Th e science of ‘algebraic analysis’, a term Colebrooke would later 
expand upon, existed in India before the Arabs transmitted it to modern 
Europe.  64    Th e evidence for these claims resided in the translations of 

  61      C1817: ii (emphasis added). 
  62      C1817: xxiv. 
  63      C1817: ii (emphasis added). 
  64        Ibid  . 
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the  Bija-Ganita  and  Lilavati  of Bhaskara,  65    as well as Brahmagupta’s 
(Colebrooke: ‘Brahmegupta’)  Ganitadhyaya  and  Kuttakadhyaya  (the 
chapter entitled ‘Th e pulveriser’) (Colebrooke:  Cuttacadhyaya ), the last two 
as their name suggests being the mathematical sections of Brahmagupta’s 
 Brahmasphutasiddhanta . Without focusing too much on the antiquity of 
these texts, Colebrooke saw his oeuvre as disclosing that the: 

  modes of analysis , and in particular,  general methods for the solution of indetermi-
nate problems  both of the fi rst and second degrees, are taught in the Vija-Ganita, 
and those for the fi rst degree repeated in the Lilavati, which were unknown to the 
mathematicians of the west until invented anew in the last two centuries by algebra-
ists of France and England.  66      

 Th e terrain of historical studies on Indian mathematics was being trans-
formed into a polemical one, with Colebrooke surreptitiously introducing 
categories that the French Indologists had denied the Indian tradition: 
typically for the fi rst time he speaks of ‘modes of analysis’, or the ‘general 
methods for the solution of indeterminate problems’. Th e historians of 
astronomy had previously advanced the idea that the Indians had no idea 
of the generalizability of the methods they employed. In the absence of 
such generalizability, how could it have been possible to extend the idea 
of generalized methods dedicated to solving classes of problems in order 
to extract the diff erent ‘modes of analysis’? Th e intention here is not to 
paint Colebrooke’s construction as the diametrical opposite of that of the 
French historians of science that provided a context to his eff ort. On the 
contrary, Colebrooke’s project is naturally marked by a deep ambivalence. 
Th e ambivalence arises from the fact that he attempted to draw the char-
acterization of Indian mathematics away from the binary typologies of 
the history of science that were already set in place. According to these 
typologies Indian mathematics was characterized as algebraic and prag-
matic while European mathematics was geometric and theoretical (deduc-
tive). Since the British Indologists were not mathematicians by profession 
they lacked mathematical legitimacy amongst the network of historians 
of mathematics and deterred his ability to create a new vocabulary. Th is 
also explains why Playfair was so important to the Indological enterprise. 
He was a mathematician of repute who endowed the Indological accounts 
with authority. 

  65      I have given here the contemporary English spellings of the names of Sanskrit books and 
scholars and removed the diacritics. Colebrooke himself spelled the  Bija-Ganita  as  Vija-Ganita  
and  Bhaskaracharya  as  Bhascara Acharya . 

  66      C1817: iv (emphasis added). 
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 Colebrooke begins by pointing out that Aryabhata was the fi rst of the 
Indian authors known to have treated of algebra. As he was possibly a con-
temporary of Diophantus, the issue was important for drawing an arrow of 
transmission from Alexandria to India or vice versa. Colebrooke leaves the 
issue of the invention of algebra open by suggesting that it was Aryabhata 
who developed it to the high level that it attained in India;  67    this science he 
called an ‘analysis’.  68    It is here for the fi rst time that a portion of the Indian 
mathematical tradition is referred to as analysis, and it is important to get 
to the sense in which he employs the term. 

 It is noticed that the use of a notation and algorithms is crucial to this 
algebraic practice; which Colebrooke then proceeds to elaborate upon, sub-
sequently stating the procedures not merely for denoting positive or negative 
quantities, or the unknowns but of manipulating the symbols employed.  69    
An important feature of this algebra is that all the terms of an equation do 
not have to be set up as positive quantities, there being no rule requiring that 
all the negative quantities be restored to the positive state. Th e procedure 
is to operate an equal subtraction ( samasodhana ) ‘for the diff erence of like 
terms’. Th is operation is compared with the  muqabalah  employed by the 
Arab algebraists.  70    Th e presence of this ‘analytic art’ among the Indians was 
apparent from the mathematical procedures evident in the variety of math-
ematical texts that were becoming available to the Indologists. 

 Th e analytic art comprised procedures that included, according to 
Colebrooke, the arithmetic of surd roots, the cognizance that when a fi nite 
quantity was divided by zero the quotient was infi nite, an acquaintance 
with the procedure for solving second degree equations and ‘touching 
upon’ higher orders, solving some of these equations by reducing them 
to the quadratic form, of possessing a general solution of indetermi-
nate equations in the fi rst degree. And fi nally, Colebrooke fi nds in the 
 Brahmasphutasiddhanta  (§18:29–49) and  Bija-Ganita  (§75–99) a method 
for obtaining a ‘multitude’ of integral solutions to indeterminate second-
degree equations starting from a single solution that is plugged in. It was 
left  to Lagrange to show that problems of this class would have solutions 
that are whole numbers.  71    Th e analytic art of the Indians or algebraic 

  67      Th e high level of attainment was ascribed to the ability of the Indian algebraists to solve 
equations involving several unknowns; and of possessing a general method of solving 
indeterminate equations of the fi rst degree (C1817: x). 

  68      C1817: ix. 
  69      C1817: x–xi. 
  70      C1817: xiv. 
  71      C1817: xiv–xv. 
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analysis is then for Colebrooke: ‘ calculation attended with the manifestation 
of its principles ’. Th is is manifest in the Indian mathematical texts being 
discussed since they intimate to the reader a ‘ method aided by devices , 
among which symbols and literal signs are conspicuous’.  72    In this sense 
Indian algebra bears an affi  nity with D’Alembert’s conception of analysis 
as the ‘method of resolving mathematical problems by reducing them to 
equations’.  73    Delambre and Biot would subject these views of Colebrooke 
to trenchant criticism, but that is another subject.  74    Th e issue at stake here 
is that Colebrooke had insinuated the idea that Indian mathematics was 
not lacking in methodological refl ection or generality, a feature that had 
hitherto been denied. 

 Did Colebrooke’s view of algebraic analysis provide for demonstra-
tions or proofs of its rules or procedures? Citing specifi c sutras from the 
 Brahmasphutasiddhanta , the  Bija-Ganita  and the  Lilavati , Colebrooke 
moves to a characterization of Indian algebra, just as Diophantus is evoked 
to characterize early Greek algebra. Th us, we are informed that these Indian 
algebraists applied algebraic methods both in astronomy and geometry, and 
in turn, geometric methods were applied to ‘ the demonstration of algebraic 
rules ’. Obviously, Colebrooke was construing the visual demonstrative 
procedures employed by Bhaskara to which we come as exemplifying geo-
metrical demonstration. Further, he goes on to state that: 

 In short, they cultivated Algebra much more, and with greater success than geom-
etry; as is evident in the comparatively low state of their knowledge in the one, and 
the high pitch of their attainments in the other.  75     

Th is passage came to be quoted ever so oft en in subsequent histories of 
science, and in the writings of mathematicians as evidence of the algebraic 
nature of Indian mathematics.  76    Th e power of its imagery resides in its 
ability to draw the boundary between diff erent civilizational styles of math-
ematics. In this contrast between Western and Indian mathematics it could 
be suggested that Colebrooke’s qualifi cation concerning the ‘comparatively 

  72      C1817: xix–xx. 
  73        Ibid  . 
  74      Raina  1999 . 
  75      C1817: xv. 
  76      Th e nineteenth-century British mathematician Augustus De Morgan, a self-proclaimed 

afi cionado of Indian mathematics, wrote a preface to the book of an Indian mathematician 
punctuated with aperçus from Colebrooke’s introduction. Th e introduction in fact provides 
him the ground to legitimate the work of the Indian mathematician for a British readership 
(Raina and Habib  1990 ). 
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low’ state of one and ‘high pitch’ of the other was lost sight of and the con-
trast between the two traditions came to be subsequently accentuated. 

 Th is leads me to conjecture that Colebrooke’s translation is a watershed 
in the occidental understanding of the history of Indian mathematics on a 
second count as well, this being that it inadvertently certifi ed the bound-
ary line drawn between Indian algebra and Greek geometry. Th is was not 
Colebrooke’s intention at all, but a consequence of the comparative method 
he had adopted. Colebrooke’s particular comparative method consisted in 
displaying where India’s specifi c contributions to mathematics resided, and 
he always contrasted these contributions with the Greek and Arab tradi-
tions of mathematics.  77    Th is attempt to accentuate the contrast certainly 
revealed the diff erences, but with the loss of the context of the contrast, it 
was fi rst transformed into a caricature and then stabilized as a characteriza-
tion. Th e boundary lines had however been marked out before Colebrooke’s 
time. Th is passage is crucial because it is followed by a discussion of some 
procedures of demonstration in Indian algebra that I shall briefl y lay out. 

 Th us the specifi c areas in which ‘Hindu Algebra appears particularly 
distinguished from the Greek’ are four.  78    Some of these have been men-
tioned above. Th e additional one that has not been mentioned concerns 
the application of algebra to ‘astronomical investigation and geometrical 
demonstration’, in other words algebra is applied to the resolution of geo-
metrical questions. In the process the Indian algebraists, Colebrooke sug-
gests, developed portions of mathematics that were reinvented recently. 
Th is last statement of his prompted a very severe reaction. He then takes up 
three instances, which he considers ‘anticipations of modern discoveries’ 
from the texts he discusses and lays out their procedures of demonstration. 
Th ere is nothing in the subsequent portion of the introduction to suggest 
that he did not consider these as demonstrations.   

 Proofs and demonstrations in Colebrooke’s translations 
of Indian algebraic work 

 Colebrooke’s  Algebra with Arithmetic and Mensuration  was completed 
shortly aft er his departure from India for England in 1814. Th e volume 
comprises the translation of four Sanskrit mathematical texts, namely 
the  Bija-Ganita  and  Lilavati  of Bhaskara, and the  Ganitadhyaya  and 
 Kuttakadhyaya  of Brahmagupta. Th ese translations were undertaken during 
  77      Going by his text alone, he appears to have been totally oblivious of Chinese mathematics. 
  78      C1817: xvi. 
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his homeward voyage – we are informed of this through the biography of 
Colebrooke written by his son.  79    Further, Colebrooke’s interest, as pointed 
out earlier, in the subject was aroused by Reuben Burrow’s paper that 
appeared in the second volume of the  Asiatic Researches . Colebrooke’s son, 
Sir T. E. Colebrooke, writes: 

 It must be admitted that the utmost learning which may be employed on this 
abstruse subject leaves the question open to some doubt, and resembles in this 
respect, one of those indeterminate problems which admit a variety of solutions. 
Th e treatises which have come down to us are variants of arithmetical and algebrai-
cal science, of whose antiquity few would venture to suggest a doubt. Th ey exhibit 
the science in a state of advance which European nations did not attain till a com-
paratively recent epoch.  But they contain mere rules for practice, and not a work on 
the path by which they are arrived at . Th ere is nothing of the rigour . . .  80     

Th is biography of Colebrooke was published more than half a century aft er 
Colebrooke’s work had appeared, by which time the standard representation 
of Indian mathematics was more or less in place as evident from the empha-
sis in the quotation.  81    However, as I shall argue below, this understanding 
was quite at variance with the spirit and content of Colebrooke’s translation, 
which, not without ambivalence, made a strong case for the idea of analysis 
and demonstration in the Indian mathematical tradition. A point to be noted 
here is that when Colebrooke the son comments on the Indian mathematical 
tradition in the 1870s the historiographical context has totally changed and 
he writes about Indian mathematics and the absence of proof in a spirit quite 
at variance with his father who wrote in the early decades of the nineteenth 
century. Th e change in the historiographical context is evident in Haran 
Chandra Banerji’s publication of the fi rst edition of Colebrooke’s translation 
of the  Lilavati  in 1892 and in the second edition that appeared in 1927.  82    

  79      Colebrooke, T. E.  1873 : 303. 
  80      Colebrooke, T. E.  1873 : 309. 
  81      Colebrooke’s son also raises the question of the reception of Colebrooke’s  Algebra with 

Arithmetic and Mensuration  by Delambre. In his work on the history of astronomy of the 
middle ages Delambre based his remarks on Colebrooke based on a review of the work by 
Playfair (Colebrooke, T. E.  1873 : 310). Delambre’s critique of Colebrooke’s work has been 
discussed in Raina  2001b . Re J. S. Mill who wrote the manual of imperial history of India, 
Colebrooke the son notes, ‘. . . in his laboured pleading against the claims of the Hindus to 
be regarded as a civilized race, devotes some space to an examination of Mr. Colebrooke’s 
work, and then does little more than repeat the doubts of Delambre whose criticisms on the 
weakness of the external proof he repeats almost verbatim’ (Colebrooke, T. E.  1873 : 311). 
Evidently Colebrooke the son wishes to disabuse his readers of the prejudiced criticism of 
Colebrooke the father’s work. 

  82      Banerji  1927 . 
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 Th e really interesting feature is the convergence in the reading of 
Colebrooke the son and Banerji concerning the mathematical style of 
Bhaskara. In the introduction to this translation Banerji was to write about 
Bhaskara: ‘Th e author does not state the reasons for the various rules given 
by him. I have tried to supply the reasons as simply and shortly as they 
occurred to me; but still some cases . . . and shorter demonstrations may 
possibly be given.’  83    Banerji proceeded to edit Colebrooke’s translation of 
these mathematical works by keeping those demonstrations given chiefl y 
by Ganesa and Suryadasa ‘which are satisfactory and instructive’ and omit-
ting those which ‘are obscure and unsatisfactory’.  84    In other words Banerji 
exercises his editorial prerogative and omits some proofs or demonstra-
tions, insisting that the omitted geometrical proofs for these formulas were 
given in Euclid  ii .5 and 9. Th e reason he off ers for omitting the ‘proofs’ of 
Ganesa is because Banerji clarifi ed that he had introduced these proofs to 
facilitate calculations required in §134 of the  Lilavati .  85    Whatever may be 
the reason, it is obvious that Banerji’s reading of these texts is located within 
the ‘historiography of the absence of proof ’.  86    

 Colebrooke’s magnum opus was published in 1817 and the introduc-
tion to the work is hereaft er referred to as the ‘dissertation’, which is what 
it is titled in any case. Very briefl y, I shall just mention the chapterization 
of this work. Th e  fi rst chapter  consists of the defi nitions of technical terms. 
Drawing upon these defi nitions the  second chapter  deals with numeration 
and the eight operations of arithmetic, which included rules of addition and 
subtraction, multiplication, division, obtaining the square of a quantity and 
its square root, the cube and the cube root. Th e discussion up to  Chapter 6 
comprises the statement and exemplifi cation of arithmetical rules for 
manipulating integers, and fractions. Th e examples provided illustrate 
the diff erent operations. It is in  Chapter 6  that we come to the plane 
fi gures and it is here that §134 states the equivalent of the Pythagorean 
Th eorem.  87    

 Th e discussion below will centre around rule §135 of the  Lilavati  in 
Colebrooke’s translation, where Colebrooke suggests that Ganesa had 

  83      Banerji  1927 : vi. 
  84      Banerji  1927 : xv. 
  85      Banerji  1927 : xvi. 
  86      An equally insightful exercise would be to see how and where Banerji’s text diff ers from 

that of Colebrooke; on which portions of the text does Banerji fi nd it necessary to comment 
upon Colebrooke’s translation and interpretation; and at what points does he insert his own 
commentary and replace that of Colebrooke. Th is would be a separate project, suffi  cient 
though it be to point out that Banerji is more of a practising mathematician than Colebrooke. 

  87      C1817: 59. 
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off ered both algebraic and geometrical proofs. In a contemporary idiom 
these rules are stated as:

    2ab + (a − b)2 = a2 + b2 i   
    (a + b) (a − b) = a2 − b2 ii    

 §134 of the  Lilavati  is translated from Sanskrit as: 

 Th e square root of the sum of the squares of those legs is the diagonal. Th e square 
root, extracted from the diff erence of the squares of the diagonal and side is the 
upright; and that extracted from the diff erence of the squares of the diagonal and 
upright, is the side.  88     

§135 that follows is translated as: 

 Twice the product of two quantities, added to the square of their diff erence, will 
be the sum of their squares. Th e product of their sum and diff erence will be the 
diff erence of their squares: as must be everywhere understood by the intelligent 
calculator.  89     

And this theorem came in for much discussion from the 1790s when 
Playfair fi rst wrote about it in his discussion of Davis’ translation of the 
 Surya-Siddhanta . 

 Now §135 is marked with two footnotes: the one indicates that §135 is a 
stanza of six verses in the anustubh metre and the next importantly indi-
cates that Ganesa the commentator on Bhaskara’s  Lilavati  provides both 
an ‘algebraic and geometrical proof ’ of the latter rule, the one marked as  ii  
above (my labelling), and an algebraic demonstration of the fi rst marked as 
 i  above (my labelling). Colebrooke is not just translating from Bhaskara  II ’s 
 Lilavati : in the footnotes he intercalates a translation of Ganesa’s commen-
tary. Th e latter demonstration is taken from the  Bija-Ganita  §148; and it is 
in §147 that the fi rst of the rules is given and demonstrated.  90    Colebrooke 
renders the term  Cshetragatopapatti  as geometrical demonstration and 
 Upapatti avyucta-criyaya  as proof by algebra.  91    We come to one of the geo-
metrical demonstrations of rule labelled  ii  as given in the  Bija-Ganita  §148 
and §149 of Bhaskara to which Colebrooke refers as such. 

 §148: Example: Tell me friend, the side, upright and hypotenuse in a [triangular] 
plane fi gure, in which the square-root of three less than the side, being lessened by 
one, is the diff erence between the upright and the hypotenuse.  92      

  88        Ibid  . 
  89        Ibid  . 
  90      C1817: 222–3. 
  91      C1817: 59. 
  92      C1817: 223. 
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 In modern language this could be translated as   a -3 − 1 = c − b  , where 
Bhaskara immediately suggests taking  c  −  b  as 2. In this demonstration 
the diff erence between one of the sides (upright) and the hypotenuse is 
assumed as 2. 

 (a) Th e square of that added to one to which 3 is added: (2 + 1) 2  + 3 = 12 – this is the 
side. 
 (b) 12 2  = 144 – this is the diff erence between the squares of the hypotenuse and side 
(upright). 
 By the rule the diff erence of the squares is equal to the product of the sum and 
 diff erence 
 Which means  a  2  −  b  2  = ( a  +  b )( a  −  b ).   

 It is in this context that here Bhaskara includes a proof of the rule, to 
which Colebrooke refers. Th is proof as is evident is based on a form of rea-
soning that draws upon fi gures with particular dimensions. Th e text then 
gives the square of 7 as 49 represented as below ( Figure 5.1 ):  

 Figure 5.1      Th e square  a  2 .    

 From this square of 7 × 7 subtract a square of 5, which is 25. 
 Th is gives the following ( Figure 5.2 )  .
 We are left  with a remainder of 24. 
  a  −  b  = 2 and  a  +  b  =12 and the product consists of 24 equal cells 

( Figure 5.3 ).  
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 Th e text reads: ‘thus it is demonstrated that the diff erence of the squares 
is equal to the product of the sum and the diff erence’.  93    Th e text then pro-
ceeds on the basis of this example to construct other Pythagorean triples. 

 Similarly, another visual demonstration follows for §149. 

 §149 Rule: Th e diff erence between the sum of the squares of two quantities what-
soever, and the square of their sum, is equal to twice their product; as in the case of 
two unknown quantities.  94     

Th e demonstration is worked out on the basis of a particular case, and pro-
vides a procedure thus for any two sets of numbers. Colebrooke’s transla-
tion of Bhaskara’s demonstration reads: ‘For instance, let the quantities be 
3 and 5. Th eir squares are 9 and 25. Th e square of their sum is 64. From this 
taking away the sum of the squares the remainder is 30.’  95    And then in the 

 Figure 5.2      Th e square  a  2  minus the square  b  2 .    

5 × 5

 Figure 5.3      Th e rectangle of sides  a  +  b  and  b  −  a .    

  93      C1817: 223. 
  94      C1817: 224. 
  95      C1817: 30. 
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translation Bhaskara exhorts his reader to ‘See’ the illustration that follows 
(see  Figures 5.4 – 5.6 ). Th us (3 + 5) 2  = 64 . . ., ( a  + b) 2  

 From this subtract 3 2  + 5 2  . . .  a  2  +  b  2  
 Which makes 64 – 34 = 30 . . . ( a  +  b ) 2  – ( a  2  +  b  2 )    

 Figure 5.4      Th e square  a  2 .    

3 × 3

 Figure 5.5      Th e square  b  2 .    

5 × 5

  96      C1817: 224. 

 Th e left -over square cells are seen to be equal to twice the product 
( Figure 5.7 ). Aft er which Bhaskara concludes: ‘Here square compartments, 
equal to twice the product are apparent, and (the proposition) is proved.’  96     

 We have here two cases of visual demonstration (Colebrooke calls 
them geometrical demonstrations) though in his translations he vacil-
lates between the terms proofs and demonstrations. But clearly both are 
demonstrations from particular cases formulated within the framework of 
particular cases treated in a general way. 

 Furthermore, Colebrooke briefl y discusses two diff erent demonstrations 
of the Pythagorean theorem in Bhaskara’s  Bija-Ganita  (§146). Th e fi rst of 
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 Figure 5.6      Th e square ( a  +  b ) 2 .    

8 × 8

 Figure 5.7      Th e area ( a  +  b ) 2  minus the squares  a  2  and  b  2  equals twice the product  ab .    

3

5 

5 × 3

3 × 5

 In other words, from Figure 5.6, delete the sum of the squares: which is 
3 × 3 and 5 × 5. 
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these demonstrations, we are reminded, is similar to Wallis’ demonstration 
that appeared in the treatise on angular sections. Colebrooke sets Wallis’ 
and Bhaskara’s demonstrations side by side, such that Bhaskara’s method is 
apprehended in Wallis’ idiom ( Figure 5.8 ).  97         

  Wallis    Bhaskara  
  In a rectangular triangle, C and D 
designate the sides and B the hypotenuse. 
Th e segments are χ and δ.  

  Using the same symbols for the sides and 
segments, Bhaskara’s demonstration  

  B : C :: C : χ    B : C :: C : χ  
  B : D : D : δ    B : D : D : δ  
  Th erefore    Th erefore  
  C 2  = Bχ    χ = C 2 /B  
  D 2  = Bδ    δ = D 2 /B  
  Th erefore    Th erefore  
  C 2  + D 2 =(Bχ + Bδ) = B(χ + δ) = B 2     B = χ + δ = C 2 /B + D 2 /B  
    B 2  = C 2  + D 2   

   We shall now try to illustrate Bhaskara’s procedure above as it appears 
in Colebrooke’s translation, but I shall adopt a contemporary form of the 
argument. Th e problem that Bhaskara poses in §146 of the  Bija-Ganita  is: 
‘Say what is the hypotenuse in a plane fi gure, in which the side and upright 
are equal to 15 and 20? And show the demonstration of the received mode 
of composition’.  98    So consider a right-angled triangle ABC whose sides are 
15 and 20 and rotate the fi gure as above. Drop a perpendicular to the side 
AC and let AD = χ and DA = δ. Now AC is the hypotenuse of the triangle 
ABC and BC and AD of triangles BCD and DBA respectively. 

 Figure 5.8    A right-angled triangle ABC and its height BD.    

C
D

B

20
15

A

  97      C1817: xvi–xvii. 
  98      C1817: 220. 
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   99      C1817: 220–1. 
  100      C1817: xviii. 
  101      A contemporary mathematical review of the solution of Pell’s equation indicates that the 

‘Indian or English method of solving the Pell equation is found in Euler’s Algebra’. However, 
it is subsequently clarifi ed that Euler, and his Indian or English predecessors, assumed that 
the method always produced a solution, whereas the contemporary understanding is that if a 
solution existed the method would fi nd one. Further, Fermat had probably proved that there 
was a solution for each value of  a , and the fi rst published proof was that of Lagrange (Lenstra 
 2002 : 182). 

 Bhaskara then posits the ratios: 

   AC = BC    and    AC = AB 
  BC CD    AB      AD    

   χ = (BC)2   and   δ = (AB)2   
   AC                      AC 

 Now  ( χ + δ) =
 (BC)2 

+
 (AB)2   

  AC          AC 
 Or   (AC)2 = (BC)2 + (AB)2   

And thus the value of AC is computed, and from this the value of BD.  99    
 Th us the procedure is reasoned again for a particular case with the sides 

of 15 and 20, but clearly the procedure is applicable for any set of numbers 
that constitute the sides of a right-angled triangle. It needs to be pointed out 
here that Colebrooke highlights the fact that Bhaskara ‘gives both modes of 
proof ’ when discussing the solution of indeterminate problems involving 
two unknown quantities. 

 Th e instances Colebrooke has selected in his dissertation are ‘conspicu-
ous’ as he says, for as pointed out earlier his method is to accentuate the 
contrast to destabilize as it were the then received picture within the binary 
typologies of the history of mathematics mentioned earlier.  100    But the 
task is undertaken with a great deal of caution. Th e next example chosen 
is that of indeterminate equations of the second degree, wherein, accord-
ing to Colebrooke, Brahmagupta provided a general method, in addition 
to which he proposes rules to resolve special cases. It is well known that 
Bhaskara solved the equation   ax2 + 1 = y2   for specifi c values of the variable  a .
But Colebrooke went on to suggest that Bhaskara proposed a method to 
solve all indeterminate equations of the second degree that were ‘exactly 
the same’ as the method developed by Brouncker. In eff ect, Colebrooke 
appeared to be suggesting that Bhaskara’s method was generalizable, that he 
was aware of the problem and its ‘general use’, a feature for whose discovery 
modern Europe had to await the arrival of Euler on the stage of European 
mathematics.  101    
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 On reading of the early responses from a French savant to the work of 
Colebrooke, it is possible to discern that Delambre for one uses a very fi ne 
comb in rebutting several of the points taken up by Colebrooke. While 
Colebrooke himself does not draw a very fi ne distinction between the use 
of the terms ‘proof ’ and ‘demonstration’ in his reading, he does distinguish 
between algebra and analysis; and as mentioned earlier he specifi es wherein 
the Indian tradition could be characterized as an algebraic analysis. A study 
of the reception of Colebrooke’s translations of the works on Indian arith-
metic and algebra is a matter for a separate study. Th e curious question to 
be examined by such a study is that despite its canonical status in Western 
scholarship on the history of Indian mathematics and algebra, neither 
Colebrooke nor Davis ever insinuated that it was a tradition devoid of 
proof or demonstration. And yet, as the nineteenth-century historiography 
of Oriental mathematics evolved, a theory of the absence of proof would 
become one of its salient elements. Th e strong criticism of Colebrooke’s 
work at the time was possibly provoked by Colebrooke’s method of taking 
up those demonstrations from Indian mathematics for which equivalents 
existed in eighteenth-century European mathematics. Th is would have viti-
ated both the claims of novelty and originality, both very important features 
of the new sciences. Second, up to the end of the eighteenth century British 
Indologists still believed that they could discover the origins of an Indian 
geometry and the later work of the Indologist G. Th ibaut may be seen to be 
in continuity with that tradition. But by the end of the nineteenth century 
the binary typologies of the history of mathematics, that portrayed the West 
as geometric and the East as algebraic, were well in place in the standard 
picture.     
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 6     Overlooking mathematical justifi cations 
in the Sanskrit tradition:     the nuanced case 
of G. F. W. Th ibaut    

   Agathe     Keller      

 Introduction 

 Until the 1990s, the historiography of Indian mathematics largely held that 
Indians did not use ‘proofs’ in their mathematical texts.  1    Dhruv Raina has 
shown that this interpretation arose partly from the fact that during the 
second half of the nineteenth century, the French mathematicians who 
analysed Indian astronomical and mathematical texts considered geometry 
to be the measure of mathematical activity  .2    Th e French mathematicians 
relied on the work of the English philologers of the previous generation, 
who considered the computational reasonings and algorithmic verifi ca-
tions merely ‘practical’ and devoid of the rigour and prestige of a real logical 
and geometrical demonstration. Against this historiographical backdrop, 
the German philologer Georg Friedrich Wilhelm Th ibaut (1848–1914) 
published the oldest known mathematical texts in Sanskrit, which are 
devoted only to geometry. 

 Th ese texts,  śulbasūtra s (sometimes called the  sulvasūtra s) contain 
treatises by diff erent authors (Baudhāyana, Āpastamba, Kātyāyana and 
Mānava) and consider the geometry of the Vedic altar.  3    Th ese texts were 
written in the style typical of aphoristic  sūtra s between 600 and 200  bce . 
Th ey were sometimes accompanied by later commentaries, the earliest 
of which may be assigned to roughly the thirteenth century. In order 
to understand the methods that he openly employed for this corpus of 
texts, Th ibaut must be situated as a scholar. Th is analysis will focus on 
Th ibaut’s historiography of mathematics, especially on his perception 
of mathematical justifi cations.   

     1      Srinivas  1990 ; H1995. 
     2      See Raina  1999 :  chapter  vi  . 
     3      I will adopt the usual transliteration of Sanskrit words, which will be marked in italics, except 

for the word Veda, which is found in English dictionaries. 260
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 Th ibaut’s intellectual background 

 Th ibaut’s approach to the  śulbasūtras  combines what half a century before 
him had been two confl icting traditions. As described by Raina and by 
Charette, Th ibaut was equal parts acute philologer and scientist investigat-
ing the history of mathematics.  

 A philologer 

 Th ibaut trained according to the German model of a Sanskritist.  4    Born in 
1848 in Heidelberg, he studied Indology in Germany. His European career 
culminated when he left  for England in 1870 to work as an assistant for Max 
Müller’s edition of the Vedas. In 1875, he became Professor of Sanskrit at 
Benares Sanskrit College. At this time, he produced his edition and studies 
of the  śulbasūtra s, the focus of the present article.  5    Aft erwards, Th ibaut 
spent the following twenty years in India, teaching Sanskrit, publishing 
translations and editing numerous texts. With P. Griffi  th, he was respon-
sible for the  Benares Sanskrit Series , from 1880 onwards. As a specialist 
in the study of the ritualistic  mimām. sa  school of philosophy and Sanskrit 
scholarly grammar, Th ibaut made regular incursions into the history of 
mathematics and astronomy. 

 Th ibaut’s interest in mathematics and astronomy in part derives from his 
interest in  mimām. sa . Th e authors of this school commented upon the ancil-
lary parts of the Vedas ( vedāṅga ) devoted to ritual. Th e  śulbasūtra s can be 
found in this auxiliary literature on the Vedas. As a result of having studied 
these texts, between 1875 and 1878,  6    Th ibaut published several articles 
on Vedic mathematics and astronomy. Th ese studies sparked his curios-
ity about the later traditions of astronomy and mathematics in the Indian 
subcontinent and the fi rst volume of the  Benares Sanskrit Series , of which 
Th ibaut was the general scientifi c editor, was the  Siddhāntatattvaviveka  of 
Bhat.t.a Kamalākara. Th is astronomical treatise written in the seventeenth 
century in Benares attempts to synthesize the reworkings of theoretical 
astronomy made by the astronomers under the patronage of Ulug Begh 
with the traditional Hindu  siddhānta s.  7    

 Th ibaut’s next direct contribution to the history of mathematics and 
astronomy in India was a study on the medieval astronomical treatise the 

   4      Th e following paragraph rests mainly on Stache-Rosen  1990 . 
     5      See Th ibaut  1874 , Th ibaut  1875 , Th ibaut  1877a , Th ibaut  1877b . 
     6      Th e last being a study of the  jyoti

˙
savedāṅga , in Th ibaut 1878. 

   7      See Minkowski  2001  and  CESS , vol. 2: 21. 
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 Pañcasiddhānta  of Varāhamihira. In 1888, he also edited and translated this 
treatise with S. Dvivedi and consequently entered into a heated debate with 
H. Jacobi on the latter’s attempt to date the Veda on the basis of descriptions 
of heavenly bodies in ancient texts. At the end of his life, Th ibaut published 
several syntheses of ancient Indian mathematics and astronomy.  8    His main 
oeuvre, was not in the fi eld of history of science but a three-volume transla-
tion of one of the main  mimām. sa  texts:  Śaṅkarācārya ’s commentary on the 
 Vedāntasūtras , published in the  Sacred Books of the East , the series initiated 
by his teacher Max Müller.  9    Th ibaut died in Berlin at the beginning of the 
First World War, in October 1914. 

 Among the  śulbasūtra s, Th ibaut focused on Baudhāyana ( c . 600  bce ) 10  
and Āpastamba’s texts, occasionally examining Kātyāyana’s  śulbapariśis. t.a .    
Th ibaut noted the existence of the  Mānavasulbasūtra  but seems not to have 
had access to it.  11    For his discussion of the text, Th ibaut used Dvārakānātha 
Yajvan’s commentary on the Baudhāyana  sulbasūtra  and Rāma’s ( f l . 1447/9) 
commentary on Kātyāyana’s text.  12    Th ibaut also occasionally quotes 
Kapardisvāmin’s ( f l . before 1250) commentary of Āpastamba.  13    Th ibaut’s 
introductory study of these texts shows that he was familiar with the extant 
philological and historical literature on the subject of Indian mathematics 
and astronomy. However, Th ibaut does not refer directly to any other schol-
ars. Th e only work he acknowledges directly is A. C. Burnell’s catalogue of 
manuscripts.  14    For instance, Th ibaut quotes Colebrooke’s translation of 
 Līlāvatī  but does not refer to the work explicitly.  15    Th ibaut also reveals some 
general reading on the history of mathematics. For example, he implicitly 
refers to a large history of attempts to square the circle, but his sources are 
unknown. 

 His approach to the texts shows the importance he ascribed to acute 
philological studies.  16    Th ibaut oft en emphasizes how important com-
mentaries are for reading the treatises: ‘the  sūtra -s themselves are of an 

   8      Th ibaut  1899 , Th ibaut  1907 . 
     9      Th ibaut  1904 . 
  10      Unless stated otherwise, all dates refer to the  CESS . When no date is given, the  CESS  likewise 

gives no date. 
  11      For general comments on these texts, see Bag and Sen 1983, in  CESS , vol 1: 50; vol 2: 30; 

vol 4: 252. For the portions of Dvārakānātha’s and Venkateśvara’s commentaries on 
Baudhāyana’s treatise, see Delire  2002 . 

  12      Th ibaut  1875 : 3. 
  13      Th ibaut 1877: 75. 
  14      Th ibaut  1875 : 3. 
  15      Th ibaut  1875 : 61. 
  16      See for instance Th ibaut  1874 : 75–6 and his long discussions on the translations of  vr. ddha . 
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enigmatical shortness . . . but the commentaries leave no doubt about the 
real meaning’.  17    

 Th e importance of the commentary is also underlined in his introduc-
tion of the  Pañcasiddhānta : ‘Commentaries can be hardly done without in 
the case of any Sanskrit astronomical work . . .’  18    

 However, Th ibaut also remarks that because they were composed much 
later than the treatises, such commentaries should be taken with critical 
distance: 

 Trustworthy guides as they are in the greater number of cases, their tendency of 
sacrifi cing geometrical constructions to numerical calculation, their excessive 
fondness, as it might be styled, of doing sums renders them sometimes entirely 
misleading.  19      

 Indeed, Th ibaut illustrated some of the commentaries’ ‘mis-readings’ 
and devoted an entire paragraph of his 1875 article to this topic. Th ibaut 
explained that he had focused on commentaries to read the treatises but 
disregarded what was evidently their own input into the texts. Th ibaut’s 
method of openly discarding the specifi c mathematical contents of com-
mentaries is crucial here. Indeed, according to the best evidence, the 
tradition of ‘discussions on the validity of procedures’ appears in only the 
medieval and modern commentaries.  20    True, the commentaries described 
mathematics of a period different than the texts upon which they 
commented. However, Th ibaut valued his own reconstructions of the 
 śulbasūtra s proofs more than the ones given by commentaries. 

 Th e quote given above shows how Th ibaut implicitly values geometrical 
reasoning over arithmetical arguments, a fact to which we will return later. 
It is also possible that the omission of mathematical justifi cations from the 
narrative of the history of mathematics in India concerns not only the con-
ception of what counts as proof but also concerns the conception of what 
counts as a mathematical text. For Th ibaut, the only real mathematical text 
was the treatise, and consequently commentaries were read for clarifi cation 
but not considered for the mathematics they put forward. 

 In contradiction to what has been underlined here, the same 1875 
article sometimes included commentators’ procedures, precisely because 
the method they give is ‘purely geometrical and perfectly satisfactory’.  21    

  17      Th ibaut  1874 : 18. 
  18      Th ibaut  1888 : v. 
  19      Th ibaut  1875 : 61–2. 
  20      Th ese are discussed, in a specifi c case, in the other chapter in this volume I have written; see 

 Chapter 14 . 
  21      Th is concludes a description of how to transform a square into a rectangle as described by 

Dvārakan. tha in Th ibaut  1875 : 27–8. 
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Th us there was a discrepancy between Th ibaut’s statements concerning his 
methodology and his philological practice. 

 Th ibaut’s conception of the Sanskrit scholarly tradition and texts is also 
contradictory. He alternates between a vision of a homogeneous and a 
historical Indian society and culture and the subtleties demanded by the 
philological study of Sanskrit texts. 

 In 1884, as Principal of Benares Sanskrit College (a position to which he 
had been appointed in 1879), Th ibaut entered a heated debate with Bapu 
Pramadadas Mitra, one of the Sanskrit tutors of the college, on the ques-
tion of the methodology of scholarly Sanskrit pandits. Always respectful to 
the pandits who helped him in his work, Th ibaut always mentioned their 
contributions in his publications. Nonetheless, Th ibaut openly advocated a 
‘Europeanization’ of Sanskrit studies in Benares and sparked a controversy 
about the need for pandits to learn English and the history of linguistics 
and literature. Th ibaut despaired of an absence of historical perspective in 
pandits’ reasonings – an absence which led them oft en to be too reverent 
towards the past.  22    Indeed, he oft en criticized commentators for reading 
their own methods and practices into the text, regardless of the treatises’ 
original intentions. His concern for history then ought to have led him to 
consider the different mathematical and astronomical texts as evidence of 
an evolution. 

 However, although he was a promoter of history, this did not prevent him 
from making his own sweeping generalizations on all the texts of the Hindu 
tradition in astronomy and mathematics. He writes in the introduction of 
the  Pañcasiddhānta : 

 these works [astronomical treatises by Brahmagupta and Bhāskarācarya] claim 
for themselves direct or derived infallibility, propound their doctrines in a calmly 
dogmatic tone, and either pay no attention whatever to views diverging from their 
own or else refer to such only occasionally, and mostly in the tone of contemptuous 
depreciation.  23      

 Th rough his belief in a contemptuous arrogance on the part of the 
writers, Th ibaut implicitly denies the treatises any claim for reasonable 
mathematical justifi cations, as we will see later. Th ibaut attributed part of 
the clumsiness which he criticized to their old age: 

  22      See Dalmia  1996 : 328–30. 
  23      Th ibaut  1888 : vii. I am setting aside here the fact that he argues in this introduction for a Greek 

origin of Indian astronomy. Th e square brackets indicate the present author’s addenda for the 
sake of clarity. 
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 Besides the quaint and clumsy terminology oft en employed for the expression of 
very simple operations (. . .) is another proof for the high antiquity of these rules 
of the cord, and separates them by a wide gulf from the products of later Indian 
science with their abstract and refi ned terms.  24      

 Aft er claiming that the treatises had a dogmatic nature, Th ibaut extends 
this to the whole of ‘Hindu literature’: 

 Th e astronomical writers . . . therein only exemplify a general mental tendency 
which displays itself in almost every department of Hindu Literature; but mere 
dogmatic assertion appears more than ordinarily misplaced in an exact science like 
astronomy . . .  25      

 Th ibaut does not seem to struggle with defi nitions of science, mathemat-
ics or astronomy, nor does he discuss his competency as a philologer in 
undertaking such a study. In fact, Th ibaut clearly states that subtle philo-
logy is not required for mathematical texts. He thus writes at the beginning 
of the  Pañcasiddhānta : 

 texts of purely mathematical or astronomical contents may, without great dis-
advantages, be submitted to a much rougher and bolder treatment than texts of 
other kinds. What interests us in these works, is almost exclusively their matter, 
not either their general style or the particular words employed, and the peculiar 
nature of the subject oft en enables us to restore with nearly absolute certainty 
the general meaning of passages the single words of which are past trustworthy 
emendation.  26      

 Th is ‘rougher and bolder treatment’ is evident, for instance, in his philo-
logically accurate but somewhat clumsy translation of technical vocabulary. 
He thus translates  dīrghacaturaśra  (literally ‘oblong quadrilateral’) vari-
ously; it is at some times a ‘rectangular oblong’, and at others an ‘oblong’.  27    
Th e expression ‘rectangular oblong’ is quite strange. Indeed, if the purpose 
is to underline the fact that it is elongated, then why repeat the idea? Th e 
fi rst of Th ibaut’s translations seems to aim at expressing the fact that a 
 dīrghacaturaśra  has right angles, but the idea of orthogonality is never 
explicit in the Sanskrit works used here, or even in later literature. Th ibaut’s 
translation, then, is not literal but coloured by his own idea of what a 
 dīrghacaturaśra  is. Similarly, he calls the rules and verses of the treatises, the 
Sanskrit  sūtras , ‘proposition(s)’, which gives a clue to what he expects of a 

  24      Th ibaut  1875 : 60. 
  25      Th ibaut  1888 : vii. 
  26      Th ibaut  1888 : v. 
  27      See for instance Th ibaut  1875 : 6. 
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scientifi c text, and thus also an inkling about what kind of scientifi c text he 
suspected spawned the  śulbasūtras .   

 Th ibaut’s historiography of science 

 For Th ibaut, ‘true science’ did not have a practical bent. In this sense, the 
science embodied in the  śulbas , which he considered motivated by a practi-
cal religious purpose, is ‘primitive’: 

 Th e way in which the  sūtrakāra- s [those who compose treatises] found the cases 
enumerated above, must of course be imagined as a very primitive one. Nothing 
in the  sūtra -s [the aphorisms with which treatises are composed] would justify the 
assumption that they were expert in long calculations.  28      

 However, he considered the knowledge worthwhile especially because it 
was geometrical: 

 It certainly is a matter of some interest to see the old  ācārya -s [masters] attempting 
to solve this problem [squaring of the circle], which has since haunted so m[an]y 
unquiet minds. It is true the motives leading them to the investigation were vastly 
different from those of their followers in this arduous task.  Th eirs was not the disin-
terested love of research which distinguishes true science , nor the inordinate craving 
of undisciplined minds for the solution of riddles which reason tells us cannot be 
solved; theirs was simply the earnest desire to render their sacrifi ce in all its par-
ticulars acceptable to the gods, and to deserve the boons which the gods confer in 
return upon the faithful and conscientious worshipper.  29      

 Or again: 

 . . . we must remember that they were interested in geometrical truths only as far as 
they were of practical use, and that they accordingly gave to them the most practical 
expression.  30      

 Conversely, the practical aspect of these primitive mathematics explains 
why the methods they used were geometrical: 

 It is true that the exclusively practical purpose of the  Śulvasūtra -s necessitated 
in some way the employment of practical, that means in this case, geometrical 
terms, . . .  31      

  28      Th ibaut  1875 : 17. 
  29      Th ibaut  1875 : 33. Th e emphasis is mine. 
  30      Th ibaut  1875 : 9. 
  31      Th ibaut  1875 : 61. 
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 Th is geometrical basis distinguished the  śulbasūtra s from medieval or 
classical Indian mathematical treatises. Once again, Th ibaut took this occa-
sion to show his preference for geometry over arithmetic: 

 Clumsy and ungainly as these old  sūtra -s undoubtedly are, they have at least the 
advantage of dealing with geometrical operations in really geometrical terms, and 
are in this point superior to the treatment of geometrical questions which we fi nd 
in the  Līlāvatī  and similar works.  32      

 As is made clear from the above quotation, Th ibaut was a presentist his-
torian of science who possessed a set of criteria which enabled him to judge 
the contents and the form of ancient texts. In another striking instance, 
Th ibaut gives us a clue that Euclid is one of his references. Commenting on 
rules to make a new square of which the area is the sum or the difference of 
two known squares, Th ibaut states in the middle of his own translation of 
Baudhāyana’s  śulbasūtra s: 

 Concerning the methods, which the  Śulvasūtras  teach for  caturasrasamāsa  (sum of 
squares) and  caturasranirhāra  (subtraction of squares), I will only remark that they 
are perfectly legitimate; they are at the bottom the same which Euclid employs.  33     

Contemptuous as he may be of the state of Indian mathematics, Th ibaut did 
not believe that the  śulbasūtra s were infl uenced by Greek geometry.  34    

 For Th ibaut, history of mathematics ought to reconstruct the entire 
deductive process from the origin of an idea to the way it was justifi ed. 
Although later commentaries may include some useful information, they 
do not give us the key to understanding how these ideas were developed 
at the time when the treatises were composed. Th is lack of information 
 provoked Th ibaut to complain about Indian astronomical and mathe-
matical texts. 

 Th ibaut clearly considered the texts to have been arranged haphazardly 
because the order of the rules do not obey generative logic. He thus defi ned 
his task: ‘I shall extract and fully explain the most important  sūtra -s (. . .) 
and so try to exhibit in some systematic order the knowledge embodied in 
these ancient sacrifi cial tracts.’  35    Here, Th ibaut assumed that these works –
not treatises but ‘tracts’ (presumably with derogatory connotations) – are 
not clear and systematic. Further, Th ibaut felt the need to disentangle 
(‘extract’) the knowledge they contain. 

  32      Th ibaut  1875 : 60. 
  33      Th ibaut 1877: 76. Translations within brackets are mine. 
  34      Th ibaut  1875 : 4. Th is however was still being discussed as late as Staal  1999 . 
  35      Th ibaut  1875 : 5. 
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 In his view, this knowledge might be quite remarkable but it was ill pre-
sented. Th us commenting a couple years later on the  Vedān. gajyotis. a , he 
remarked: 

 Th e first obstacle in our way is of course the style of the treatise itself with its enig-
matical shortness of expression, its strange archaic forms and  its utter want of con-
nection between the single verses .  36     

He thus sometimes remarked where the rules should have been placed 
according to his logic. All the various texts of the  śulbasūtra s start by 
describing how to construct a square, particularly how to make a square 
from a rectangle. 

 However, Th ibaut objected: ‘their [the rules for making a square from a 
rectangle] right place is here, aft er the general propositions about the diago-
nal of squares and oblongs, upon which they are founded’.  37    Consequently, 
Th ibaut considered the  śulbasūtra s as a single general body of text and 
selected the scattered pieces of the process he hoped to reconstruct from 
among all the  sūtra s composed by various authors. At the same time, he dis-
tinguished the different authors of the  śulbasūtra s and repeatedly insisted 
that Āpastamba is more ‘practical’ than Baudhāyana, whom he preferred. 
For instance, an example of his method: 

 Baudhāyana does not give the numbers expressing the length of the diagonals of 
his oblongs or the hypotenuses of the rectangular triangles, and I subjoin therefore 
some rules from Āpastamba, which supply this want, while they show at the same 
time the practical use, to which the knowledge embodied in Baudhāyana’s  sūtra  
could be turned.  38     

When alternating among several authors was insuffi  cient for his purposes, 
Th ibaut supplied his own presuppositions. 

 Indeed, Th ibaut peppered his text with such reconstructions: 

 Th e authors of the  sūtra -s do not give us any hint as to the way in which they found 
their proposition regarding the diagonal of a square; but we may suppose . . . Th e 
question arises: how did Baudhāyana or Āpastamba or whoever may have the merit 
of the fi rst investigation, fi nd this value? . . . I suppose that they arrived at their 
result by the following method which accounts for the exact degree of accuracy they 
reached . . . Baudhāyana does not state at the outset what the shape of his wheel will 
be, but from the result of his rules we may conclude his intention . . .  39      

  36      Th ibaut 1877: 411; the emphasis is mine. 
  37      Th ibaut  1875 : 28. 
  38      Th ibaut  1875 : 12. 
  39      Th ibaut  1875 : 11, 18, 49. 
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 Because he had an acute idea of what was logically necessary, Th ibaut thus 
had a clear idea of what was suffi cient and insuffi cient for reconstructing 
the processes. As a result, Th ibaut did not deem the arithmetical reasoning 
of Dvārakānātha adequate evidence of mathematical reasoning. 

 Th e misunderstandings on which Th ibaut’s judgements rest are evident. 
For him, astronomical and mathematical texts should be constructed 
logically and clearly, with all propositions regularly demonstrated. Th is 
presumption compelled him to overlook what he surely must have known 
from his familiarity with Sanskrit scholarly texts: the elaborate character 
of a  sūtra  – marked by the diverse readings that one can extract from it –
enjoyed a long Sanskrit philological tradition. In other words, when a 
commentator extracts a new reading from one or several  sūtra s, he dem-
onstrates the fruitfulness of the  sūtra s. Th e commentator does not aim to 
retrieve a univocal singular meaning but on the contrary underline the 
multiple readings the  sūtra  can generate. Additionally, as Th ibaut rightly 
underlined, geometrical reasoning represented no special landmark of 
 correctness in reasoning to medieval Indian authors. 

 Because of these expectations and misunderstandings Th ibaut was 
unable to fi nd the mathematical justifi cations that maybe were in these 
texts. Let us thus look more closely at the type of reconstruction that 
Th ibaut employed, particularly in the case of proofs    .

 Practices and readings in the history of science 

 It is telling that the word ‘proof ’ is used more oft en by Th ibaut in relation 
to philological reasonings than in relation to mathematics. Th us, as we have 
seen above, the word is used to indicate that the clumsiness of the vocab-
ulary establishes the  śulbasūtra s’ antiquity.  

 No mathematical justifi cations in the  śulbasūtra s 

 However, for Th ibaut, Baudhāyana and probably other ‘abstractly bent’ 
treatise writers doubtlessly wanted to justify their procedures. More oft en 
than not, these authors did not disclose their modes of justifi cation. Th us, 
when the authors are silent, Th ibaut developed fi ctional historical proce-
dures. For instance: 

 Th e authors of the  sūtra -s do not give us any hint as to the way in which they 
found their proposition regarding the diagonal of a square [e.g. the Pythagorean 
proposition in a square]; but we may suppose that they, too, were observant of 
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the fact that the square on the diagonal is divided by its own diagonals into four 
triangles, one of which is equal to half the fi rst square. Th is is at the same time an 
immediately convincing proof of the Pythagorean proposition as far as squares 
or equilateral rectangular triangles are concerned . . . But how did the  sūtrakāra -s 
[composers of treatises] satisfy themselves of the general truth of their second 
proposition regarding the diagonal of rectangular oblongs? Here there was no such 
simple diagram as that which demonstrates the truth of the proposition regarding 
the diagonal of the square, and other means of proof had to be devised.  40      

 Th ibaut thus implied that diagrams were used to ‘show’ the reasoning 
literally and thus ‘prove’ it. Th is method seems to hint that authors of the 
medieval period of Sanskrit mathematics could have had some sort of geo-
metrical justifi cation.  41    Concerning Āpastamba’s methods of constructing 
fi re altars, which was based on known Pythagorean triplets, Th ibaut stated: 

 In this manner Āpastamba turns the Pythagorean triangles known to him to practi-
cal use . . . but aft er all Baudhāyana’s way of mentioning these triangles as proving 
his proposition about the diagonal of an oblong is more judicious. It was no practi-
cal want which could have given the impulse to such a research [on how to measure 
and construct the sides and diagonals of rectangles] – for right angles could be 
drawn as soon as one of the  vijñeya  [determined] oblongs (for instance that of 3, 
4, 5) was known – but the want of some mathematical justifi cations which might 
establish a fi rm conviction of the truth of the proposition.  42      

 So, in both cases, Th ibaut represented the existence and knowledge of 
several Pythagorean triplets as the result of not having any mathematical 
justifi cation for the Pythagorean Th eorem. Th ibaut proceeded to use this 
fact as a criterion by which to judge both Āpastamba’s and Baudhāyana’s 
use of Pythagorean triplets. Th ibaut’s search for an appropriate geometrical 
mathematical justifi cation in the  śulbasūtra s may have made him overlook 
a striking phenomenon.   

 Two diff erent rules for the same result 

 Indeed, Th ibaut underlined that several algorithms are occasionally given 
in order to obtain the same result. Th is redundancy puzzled him at times. 

  40      Th ibaut  1875 : 11–12. 
  41      See Keller 2005. Bhāskara’s commentary on the  Āryabhat. īya  was not published during 

Th ibaut’s lifetime, but I sometimes suspect that either he or a pandit with whom he worked had 
read it. Th e discussion on  vis. amacaturaśra  and  samacaturaśra , in Th ibaut  1875 : 10, thus echoes 
Bhāskara I’s discussion on verse 3 of  Chapter 2  of the  Āryabhat. īya . Th ibaut’s conception of 
geometrical proof is similar to Bhāskara’s as well. 

  42      Th ibaut  1875 : 17. 
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For instance, Th ibaut examined the many various  caturaśrakaran. a  – 
methods to construct a square – given by diff erent authors.  43    Āpastamba, 
Baudhāyana and Kātyāyana each gave two methods to accomplish this 
task. I will not expound these methods here; they have been explained 
amply and clearly elsewhere.  44    Th ibaut also remarked that in some cases, 
Baudhāyana gives a rule and its reverse, although the reverse cannot be 
grounded in geometry. Such is the case with the procedure to turn a circle 
into a square: 

 Considering this rule closer, we fi nd that it is nothing but the reverse of the rule 
for turning a square into a circle. It is clear, however, that the steps taken according 
to this latter rule could not be traced back by means of a geometrical construction, 
for if we have a circle given to us, nothing indicates what part of the diameter is to 
be taken as the  atiśayat. r. tīya  (i.e. the segment of the diameter which is outside of 
the square).  45      

 I am no specialist in  śulba  geometry and do not know if we should see the 
doubling of procedures and inverting of procedures as some sort of ‘proofs’, 
but at the very least they can be considered efforts to convince the reader 
that the procedures were correct. Th e necessity within the  śulbasūtra s to 
convince and to verify has oft en been noted in the secondary literature, but 
has never fully or precisely studied.  46    Th ibaut, although puzzled by the fact, 
never addressed this topic. Similarly, later historians of mathematics have 
noted that commentators on the  śulbasūtra s sought to verify the procedures 
while setting aside the idea of a regular demonstration in these texts. Th us 
Delire notes that Dvārakānātha used arithmetical computations as an easy 
method of verifi cation (in this case of the Pythagorean Th eorem).  47    Th e use 
of two separate procedures to arrive at the same result, as argued in another 
chapter in this volume,  48    could have been a way of mathematically verifying 
the correctness of an algorithm – an interpretation that did not occur to 
Th ibaut.    

  43      Th ibaut  1875 : 28–30. 
  44      Th ibaut  1875 : 28–30; Bag and Sen 1983 in  CESS , vol. 1; Datta  1993 : 55–62; and fi nally Delire 

 2002 : 75–7. 
  45      Th ibaut  1875 : 35. 
  46      See for instance Datta  1993 : 50–1. 
  47      Delire  2002 : 129. 
  48      See Keller,  Chapter 14 , this volume. 
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 Conclusion 

 Th ibaut, as we have thus seen, embodied contradictions. On the one hand, 
he swept aside the Sanskrit literary tradition and criticized its concise 
 sūtra s as obscure, dogmatic and following no logic whatsoever. On the 
other hand, as an acute philologer, he produced nuanced studies on the 
differences among the approaches of different authors. Th rough his naive 
assumption of a practical mind of the ‘Hindu astronomers’, his fruitless 
search for proper visual demonstrations in an algorithmic tradition, and 
a disregard of commentaries in favour of the treatises, Th ibaut envisioned 
a tradition of mathematics in India blind to the logic that could have been 
used to justify the algorithms which he studied. Such arguments could 
have been perceived through the case of the ‘doubled’ procedures in the 
 śulbasūtra s, and maybe even through the arithmetical readings of these 
geometrical texts found in later commentaries.     
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 7     Th e logical Greek versus the imaginative 
Oriental:     on the historiography of ‘non-Western’ 
mathematics during the period 1820–1920    

   François      Charet te      

 What makes Greek mathematics distinctive? 

 In 1841, in an essay–review of Jean Jacques Sédillot’s (1777–1832) partial 
translation of a comprehensive thirteenth-century Arabic treatise on spher-
ical astronomy and instrumentation written for the use of practical astron-
omers, and published posthumously by his son Louis Amélie (1808–75) in 
1834–5 under the title  Traité des instruments astronomiques des Arabes , the 
French physicist Jean-Baptiste Biot (1774–1862) made the following bold-
sounding statement: 

 One fi nds [in this book] renewed evidence for this peculiar habit of mind, following 
which the Arabs, as the Chinese and Hindus, limited their scientifi c writings to the 
statement of a series of rules, which, once given, ought only to be verifi ed by their 
applications, without requiring any logical demonstration or connections between 
them: this gives those Oriental nations a remarkable character of dissimilarity, 
I would even add of intellectual inferiority, comparatively to the Greeks, with 
whom any proposition is established by reasoning, and generates logically deduced 
consequences.  1     

Apart from the very ill-founded nature of Biot’s judgement – which, inci-
dentally, is contradicted on the very next page when he concedes that the 
book under review is not a representative work of Arabic astronomy, but 
rather a practical treatise for ‘vulgar’ use – this is nonetheless a clear for-
mulation of the idea that is at the core of the present investigation. For sure, 
such an opinion was not new. But the undeviating boldness and precision of 
Biot’s statement is really remarkable. I will thus take it as the starting point 
of my inquiry into the historiography of the mathematical demonstration 

     1      ‘. . . on y trouve une nouvelle preuve de cette singulière habitude de l’esprit, en vertu de laquelle 
les Arabes, comme les Chinois et les Hindous, bornaient leurs compositions scientifi ques à 
l’exposition d’une suite de règles, qui, une fois posées, devaient se vérifi er par leurs applications 
mêmes, sans besoin de démonstration logique, ni de connexion entre elles: ce qui donne à 
ces nations orientales un caractère remarquable de dissemblance, et j’ajouterai d’infériorité 
intellectuelle, comparativement aux Grecs, chez lesquels toute proposition s’établit par 
raisonnement, et engendre des conséquences logiquement déduites.’ Biot  1841 : 674–5. 
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by labelling it the ‘forthright formulation’ of the ideology under scrutiny. 
But a few words on Biot are in order here to put his essay–review in context. 
Already in 1834, L. A. Sédillot had stridently claimed the originality of 
Arabic science, basing his argument on his alleged fi nding that a tenth-
century Arab astronomer had discovered the third inequality of the moon, 
600 years before Tycho Brahe. Biot soon became a passionate opponent of 
Sédillot in an unending debate that occupied the Paris Academy of Science 
for more than 40 years. Biot, who in his polemic pieces against Sédillot 
revealed a profoundly anti-Arab ideology, was more candid with regard 
to Chinese and Indian science, about which he wrote numerous essays 
collected at the end of his life in his  Études sur l’astronomie indienne et sur 
l’astronomie chinoise  (Paris, 1862). His son Edouard (1803–50), who had 
abandoned a liberal career for the study of sinology, was probably the fi rst 
European who, aft er the Jesuits, made available new sources on Chinese 
mathematics; he published three papers on this topic between 1835 and 
1841. Together with K. L. Biernatzki’s famous paper on Chinese arithmetic 
and algebra printed in Crelle’s  Journal für reine und angewandte Mathematik  
in 1856 (and based entirely on various newspaper articles by the Protestant 
missionary in China Alexander Wylie), E. Biot’s contributions constituted 
the very few fragments of Chinese mathematics available to European histo-
rians until the beginning of the twentieth century.  2    For Indian mathematics,
Biot senior could rely on the widely available publications of British 
Sanskritists such as Henry Th omas Colebrooke (1765–1837), as well as on 
an increasing secondary literature based on them. Th is, of course, put J. B. 
Biot in a position of authority to judge Oriental science. 

 Before examining in more details the contexts and the evolution of the 
idea so precisely enunciated by Biot, let us contrast it with the view of a 
German historian of mathematics, Siegmund Günther (1848–1923), who, 
in 1908, nicely summarized the researches of the second half of the nine-
teenth century on the matter. In a chapter devoted to Indian mathematics, 
Günther wrote the following: 

 But this [Indian] mathematics has such a peculiar character, that a study thereof is 
assured to guarantee the highest lure. In particular, one can only be fascinated by 
the fundamental opposition between the Indian and Greek ways of thinking and 
of looking at things. Th e Greek is – with a few exceptions confi rming the rule – 
a rigid synthetician, whose emphasis lies fully on rigorous demonstrations and who 
lives so much in spatial considerations that he will almost invariably attempt to 
cloth even arithmetical things into geometrical garments. Conversely, the Indian, 
being  exceptionally gift ed for everything computational, has very little appeal to 

     2      Martzloff   1997 : 4–5. 
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demonstrations: ‘look at the fi gure’ he says, allowing nothing but illustrative 
demon strations [ Anschauungsbeweise ], whereas he could not have any feeling for 
the impressive but oft en awkward eff orts of a Euclid or an Archimedes to really 
impose on reluctant [readers] the conviction of the validity of a theorem.  3     

Günther’s judgement is obviously more respectful and nuanced than that of 
Biot. I shall analyse the genealogy of the ideas expressed by Günther in the 
second half of this chapter. 

 First it is necessary to proceed towards the source of Europe’s knowledge 
of Indian mathematics. Th e eff orts of Strachey (1813) and Taylor (1816) 
for making Bhāskara’s mathematical works available in English translation 
were very soon rendered obsolete by Colebrooke’s authoritative anno-
tated translation of the mathematical parts of the works of Bhāskara and 
Brahmagupta in 1817. Th e same year, the Scottish mathematician John 
Playfair (1748–1819), who had been noted for his interest in the history 
of Indian astronomy, contributed an essay–review of Colebrooke to the 
 Edinburgh Review . Playfair noted the absence of demonstrations in the 
 Lilavati  and the  Bīja-Gan. ita , but acknowledged that Bhāskara’s fi ft eenth- 
and sixteenth-century commentators, such as Ganeśa, supplied demonstra-
tions of the rules in several instances. He had to concede, however, that 
those occasional demonstrations were ‘oft en obscure, from the want of 
reference to a fi gure; for, though the fi gure be constructed on the margin, 
there is no reference to it by letters’.  4    Aft er having presented a survey of the 
most important results achieved by Bhāskara, Playfair made the following 
observation: 

 But in the midst of these curious results, there is a subject of regret that almost 
continually presents itself. When such rules are laid down as the preceding, they are 
usually given without any analysis whatever, and even without any synthetic dem-
onstration, so that the means by which the knowledge was obtained, remains quite 
unknown . . . In consequence of this, a mystery still hangs over the mathematical 

     3      ‘Und doch ist diese Mathematik von so auszeichnender Eigenart, daß die Beschäft igung mit 
ihr den höchsten Reiz gewähren muß. Insonderheit fesselt den Beschauer der grundsätzliche 
Gegensatz zwischen indischer und griechischer Denk- und Betrachtungsweise. Der Grieche 
ist – und die wenigen Ausnahmen bestätigen nur die Regel – strenger Synthetiker, der auf 
rigorose Beweisführung das größte Gewicht legt und so durchaus in räumlichen Vorstellungen 
lebt, daß er selbst arithmetische Dinge fast ausschließlich in ein geometrisches Gewand zu 
kleiden bestrebt ist. Umgekehrt liegt dem für alles Rechnerische ausnehmend befähigten 
Inder sehr wenig an der Demonstration; “siehe die Figur” sagt er und läßt keine anderen 
als Anschauungsbeweise zu, während er für die imponierenden, aber oft  unbehilfl ichen 
Anstrengungen eines Euclides und Archimedes, die Überzeugung von der Richtigkeit eines 
Satzes förmlich einem Widerstrebenden aufzuzwingen, gar keinen Sinn haben konnte.’ 
Günther  1908 : 178. 

     4      Playfair  1817 : 158. 
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knowledge of the East; and it is much to be feared that the means of removing it no 
longer exist.  5     

Playfair regretted the absence of demonstrations, because he mainly 
expected them to illuminate the mechanisms of mathematical discovery 
among ancient authors. 

 His interest in the innate heuristic patterns of mathematical creation 
thus stands in remarkable contrast to the usual strict concern for  results , 
which is characteristic of most nineteenth-century writings on history 
of mathematics (however naive it might be to hope that demonstrations 
would necessarily provide clues for understanding the underlying patterns 
of discovery). 

 Concerning a particular geometrical theorem, he further remarks that it 
‘is demonstrated in a very ingenious and palpable manner, not altogether 
according to the rigour of the Greek geometry, but abundantly satisfactory 
to those who are pleased with an argument when it is sound, though it be 
not dressed in the  costume  of science’.  6    Another proof he sees as revealing 
‘ingenious and simple’ reasoning that must stem from ‘a system of geo-
metrical demonstration that was not very refi ned, or very scrupulous about 
introducing mechanical considerations’.  7    But even in those cases when dem-
onstration was wanting, Playfair nevertheless believed that there existed an 
original procedure of demonstration, no longer extant.  8    In passing we must 
note the belief expressed by Playfair that science, as for every other civiliza-
tional aspect of India, was ‘immoveable’ and deprived of progress.   

 Th ree comparative views on Greek and Oriental mathematics:   
Hankel, Cantor and Zeuthen 

 I now come to the major part of my inquiry, in which I off er a detailed anal-
ysis of the comparative views of three eminent historians of mathematics, 
Hankel, Cantor and Zeuthen, on Greek versus ‘Oriental’ (Indian, Chinese, 
Islamic) mathematics.  

     5      Playfair  1817 : 151. 
     6      Playfair  1817 : 159–60. 
     7      Playfair  1817 : 160. 
     8      See on p. 159 the remarks on the theorem that in a circumscribed [this condition is not 

specifi ed in the Sanskrit text] quadrilateral with sides  a ,  b ,  c ,  d  and diagonals  g ,  h  we have 
 ac  +  bd  =  gh , a theorem ‘by no means very easy to be demonstrated’ and which ‘argues for a very 
extensive knowledge of elementary trigonometry, and such as is by no means easily acquired’. 
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 Contexts and predecessors 

 In France, the geometer Michel Chasles (1793–1880) and the exiled Italian 
mathematician Guglielmo Libri (1803–69) stirred interest in the history of 
mathematics among fellow mathematicians. Th e fi rst published in 1837 a 
remarkable book entitled  Aperçu historique sur l’origine et le développement 
des méthodes en Géométrie, particulièrement de celles qui se rapportent à 
la Géométrie moderne , in which historical studies sought to inform and 
inspire the renewal of modern geometry. Th e second, whose scientifi c con-
tributions are today completely forgotten, united patriotic feelings with a 
liberal and enlightened historical erudition that found its expression in his 
four-volume  Histoire des sciences mathématiques en Italie . Th ese two works 
certainly represent the fi nest pieces of scholarship in mathematical histori-
ography from the fi rst half of the nineteenth century. 

 In Germany, some men combined a command of science and of classical 
and orientalist philology which helped them produce remarkable works 
of historical erudition. We can mention Ludwig Ideler (1766–1846) in 
Berlin (astronomy and mathematical chronology) or, more importantly for 
us, Georg Heinrich Nesselmann in Königsberg (1811–81) who may have 
been the fi rst to off er lectures on the history of mathematics on a regular 
basis, which resulted in a much-praised history of Greek algebra ( 1842 ). 
Another important fi gure for our present concerns is the Heidelberg pro-
fessor of mathematics Arthur Arneth (1802–58), author of a now forgotten 
 Geschichte der reinen Mathematik in ihrer Beziehung zur Entwicklung des 
menschlichen Geistes  (Stuttgart,  1852 ), in which he clearly enunciated the 
fundamental opposition between the Greek and Indian styles of practising 
mathematics. We shall return to his ideas below. 

 Th e works of Libri, Arneth, Nesselmann and Chasles impressed the three 
most important writers on history of ancient and medieval mathematics 
in the late nineteenth century mentioned above. Th e distinguished Danish 
geometer and historian of mathematics Hieronymus Georg Zeuthen 
(1839–1920) was a pupil of Chasles in Paris and he himself conceded 
how Chasles’s infl uence had been decisive for his historical works. Moritz 
Cantor (1829–1920) also went to Paris where he met Chasles, whose his-
torico-mathematical studies inspired an equally strong fascination in him. 

 But another mathematician produced a very infl uential book some years 
before Cantor and Zeuthen would publish their major works. Hermann 
Hankel was born in 1839, the same year as Cantor. His essay on ancient and 
medieval mathematics originated from the lectures he gave at the University 
of Tübingen from the year of his appointment in 1869 until his premature 
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death in 1873. It was published posthumously the next year by his father, 
who was Professor of Physics in Leipzig. In spite of its being unfi nished, 
this book can be rightly qualifi ed as the most original and refreshing view 
on the topic to have been off ered in print up to its day. Hankel was notable 
for including an up-to-date summary – the only one available to date, espe-
cially for Arabic mathematics – of the fi ndings of Colebrooke, Woepcke and 
other orientalists on the mathematics of the Hindus and Muslims. With his 
numerous thought-provoking interpretations, Hankel’s history represented 
a compelling source of inspiration for the forthcoming generation of ‘pro-
fessional’ historians of mathematics, among whom we mention the names 
of Cantor, Bretschneider, Zeuthen, Tannery, Heiberg, Eneström, Allman, 
von Braunmühl, Günther, Loria, Hultsch, Curtze, Suter, etc.  9    

 Th e  éminence grise  among them was undoubtedly Moritz Cantor, who 
enjoyed the privilege of studying mathematics in Göttingen with Carl Gauss 
and others. But another Göttingen professor, Moritz Stern, instilled in him 
the taste for historical studies. Arneth’s lectures on the history of mathemat-
ics in Heidelberg, which Cantor heard in 1848, are also said to have exerted 
a strong infl uence on him.  10    Cantor’s ‘antiquarian’ style of scholarship – with 
its erudite, detailed and comprehensive narrative of every single episode 
of mathematical history within its own specifi c context – is evident in his 
monumental  Vorlesungen über Geschichte der Mathematik , whose fi rst 
volume appeared in 1880. Th is style is oft en contrasted with the ‘presentist’ 
and Platonic approach of H. G. Zeuthen, who insisted on the necessity to 
select the most signifi cant episodes of the history of mathematics in order 
to illuminate our understanding of the development of mathematics from 
a modern perspective, a vision embodied in his highly original and infl u-
ential historical essay on the theory of the conics in antiquity (published in 
Copenhagen in 1885 and in German translation the next year). His intro-
ductory  Geschichte der Mathematik im Altertum und Mittelalter  ( 1896 ) of 
didactic intent (the intended readership were the future teachers of math-
ematics in Denmark) had nevertheless a scope and depth similar to Hankel’s 
history, and remained for several decades the best work of its genre.   

 India’s illogical lure 

 Playfair’s essay on Indian mathematics provided the inspiration for Arthur 
Arneth’s ‘cultural’ history of mathematics, in which we fi nd the fi rst 

      9      On those historians of mathematics, see the biographical notices in  Part  ii   of Dauben and 
Scriba  2002 . 

  10      See Hofmann  2008 ; Folkerts in Dauben and Scriba  2002 : 387–91, on 387. 
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precise formulation of the idea opposing the apodictic rationality of Greek 
mathematical practice to the more intuitive one of the Indians. He con-
tended that whereas the Greeks were trying to recognize that which is 
given ( das Gegebene ) and has a form ( das Gestaltete ), the Indians were 
 creating  forms ( Gestaltungen ) through active research, satisfying them-
selves to know that something exists, without concern for knowing  how  it 
is so.  11    Both styles were one-sided, but necessary. Th e rapid development of 
modern mathematics, according to Arneth, owed much to the mingling of 
these two contrasting styles of mathematical practice. 

 Let us turn our attention to Hankel, Cantor and Zeuthen’s writings. 
Hankel’s original views on mathematical demonstration contrast with the 
coarse dogmatism of Biot, on the one side, and the more sophisticated 
conservatism of Cantor, on the other.  12    Hankel devoted thirteen pages to 
the Greek concepts and practice of analysis and synthesis, presenting a 
competent and inspiring survey of the topic.  13    For him, the painstaking 
care associated with analysis and synthesis and the ‘dry dogmatic syllogism’ 
so peculiar to Greek mathematicians was not a ‘useless burden’ to them; in 
fact, he says, ‘for their mental strength, this form, so annoying to us, was 
the appropriate one’.  14    

 Hankel’s account of Indian mathematics is still permeated with the 
German romantic fascination for India and its philosophy. Like Playfair, he 
noted the occasional and partial use of certain forms of demonstration in 
Indian mathematical texts: ‘Th ere is also little to fi nd among the Indians of . . .
a practice of proof. Only here and there does a commentator add some 
remarks to the rules and theorems, which can pave the way to their deriva-
tion.’  15    Indian geometry, radically diff erent from that of the Greeks, was also 
characterized by the absence of demonstration in the traditional (Greek) 
sense; there is simply a reference to a fi gure accompanied by the exclamation 
‘Look!’ Th is kind of ‘illustrative demonstration’ ( Anschauungsbeweis ), as we 
have seen in our previous quotation of Günther, strongly fascinated histori-
ans of mathematics. Cantor saw this as a typically Indian mode of thought: 
‘Th is form of demonstration, which does not appear in Brahmagupta, must 
certainly be considered as (typically) Indian. Combined with the algebraic 

  11      Arneth  1852 : 141. 
  12      Cantor’s views are analysed further below. 
  13      Hankel  1874 : 137–50. 
  14      Hankel  1874 : 208. 
  15      ‘Von solcher Entwickelung und Beweisführung ist nun auch bei den Indern nicht eben 

so viel zu fi nden. Nur hie und da fügt ein Commentator zu den Regeln und Sätzen einige 
Bemerkungen, welche den Weg zu deren Ableitung geben können.’ Hankel  1874 : 182–3. 
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form of demonstration, it is tremendously characteristic for the mental 
capacity of those geometers. To compute with almost endless possibilities, 
they never go beyond that.’  16    Compare Zeuthen: ‘In all cases they do not 
give such justifi cations in words, but satisfy themselves to make a drawing 
and, with the word “look!”, refer to the fi gure, which, for the Greeks, forms 
the starting point of the actual demonstration.’  17    However, in a commen-
tary on the geometry of Brahmagupta, Hankel found a more promising 
kind of demonstration: ‘If we except the strange form of the expression, we 
do fi nd in this passage the idea of the demonstration, briefl y it is true, but 
hinted at with absolute clarity . . . But how diff erent is this derivation from 
a Euclidean one!’  18    

 But why was Indian mathematical practice so diff erent from the Greek 
one? Hankel was convinced that the reasons lay in Indian philosophy: 
‘Th e Brahmans [have] an essentially diff erent way of thinking than the 
Greeks; for them the reasons are less important than the results, the why 
less important than the how; they operate more with ideas and imagina-
tions than with concepts. Th e sharpness and certainty they thereby lose 
is compensated by increased depth and breadth.’  19    And he then off ered as 
an explanatory example the case of grammar: whereas the Greeks have a 
 logical  and  syntactical  grammatical system, Indian grammar – epitomized 
by Pān. ini – is  empirical  and  etymological .  20    But these aspects of Pān. ini’s 
system he considered fruitful, for we are dealing with a ‘unique and abso-
lutely scientifi c grammar’. Th e formal constraints imposed on scientifi c 
writings, however, namely the use of compact versifi ed rules, he sees as an 
obvious obstacle to the formulation of theorems and their logical proofs. 
Th is negative remark notwithstanding, Hankel did not consider the Indian 

  16      ‘Diese Beweisform, welche bei Brahmagupta nirgend auft ritt, muss wohl als indisch betrachtet 
werden. Sie ist mit der algebraischen Beweisform verbunden ungemein charakteristisch für 
die Fassungskraft  jener Geometer. Rechnen in nahezu unbegrenzter Möglichkeit, darüber 
kommen sie nicht hinaus.’ Cantor  1894 : 614. In the third edition (1914: 656), the word 
‘Fassungskraft ’ is replaced by ‘Darstellungsweise’ (mode of representation). 

  17      ‘Jedenfalls geben sie solche Begründungen nicht in Worten wieder, sondern sie begnügen sich 
damit zu zeichnen und durch das Wort ‘Siehe! ’ auf die Figur hinzuweisen, die der wirklichen 
Beweisführung der Griechen zu Grunde lag.’ Zeuthen  1896 : 261. 

  18      ‘Sehen wir von der fremdartigen Form des Ausdruckes ab, so fi nden wir in dieser Stelle die 
Idee des Beweises zwar kurz, doch völlig klar angedeutet. . . . Wie verschieden aber ist diese 
Ableitung von einer nach Art des Euklid!’ Hankel  1874 : 208. 

  19      ‘Die Brahmanen [haben] eine von den Griechen wesentlich verschiedene Art zu denken; sie 
legen weniger Werth auf die Begründung, als auf das Resultat, weniger auf das Warum als 
das Wie; sie operieren mehr mit Ideen und Vorstellungen, als mit Begriff en. Was sie dadurch 
an Schärfe und Bestimmtheit verlieren, gewinnen sie wieder durch größere Tiefe und Weite.’ 
Hankel  1874 : 173. 

  20      Pān. ini ( c . fi ft h century  bce ) is the author of the fundamental grammar of classical Sanskrit. 
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style as being intrinsically an impediment to mathematical progress, for he 
went as far as declaring that a combination of Indian ideas (imagination!) 
and Greek principles (logic!) would improve the contemporary teaching of 
geometry, by giving students a sharper mathematical intuition. Such a com-
bination, he maintained, could also have helped to advance mathematical 
progress, but  logic , in the end,  was wanting amongst the Indians . 

 A very pervasive dogma among nineteenth-century historians of mathe-
matics proclaimed the essentially geometrical character of the Greek mind, 
in contrast to that of the Orientals (Indian and Chinese), more akin to com-
putational and algebraical operations. One consequence of this ideological 
assumption led Cantor to assume rigidly that all geometrical notions attested 
in India are necessarily infl uenced by the Greeks, because ‘we should not and 
cannot expect a non-geometrical nation to have made essential progresses 
[in geometry]’.  21    For the  śulbasūtra s, Cantor had fi rst postulated an infl uence 
through Hero of Alexandria,  22    but he had to retract his opinion in view of 
the evidence, put forward by Indologists, for the chronological impossibil-
ity of such a transmission.  23    He later postulated a possible infl uence from 
Mesopotamia.  24    Th e Greek infl uence on the geometry of Brahmagupta, for 
example, he considered certain, and again he had less a ‘rigorous Euclid’ 
in mind than a ‘calculator’ like Hero.  25    Cantor’s mostly anti-Indian and 
Hellenocentrist attitude is evident in a letter to Paul Tannery dated 6 June 
1880. Concerning an arithmetical method employed by Āryabhat. a, which, 
although similar, diff ers from that of the Greek Th ymaridas, he wrote: ‘the 
matter is that Āryabhat. a uses the method “epanthem of Th ymaridas”, which 
proves indeed that those scientifi c bandits of India did not content them-
selves with Greek geometry, but also appropriated Greek algebra, to which, 
it is true, they have added much’.  26    

 Zeuthen’s interpretation of Indian mathematical history stood closer 
to Hankel’s views than those of Cantor. He agreed with both of them that 
it was only through Greek infl uence that the Indian computing skills 
(Rechenfertigkeit) could lead to real mathematical progress. What they 

  21      ‘Wesentliche Fortschritte dürfen und können wir von einem nicht geometrisch angelegten 
Volksgeiste nicht erwarten.’ Cantor  1894 : 612. 

  22      Cantor  1894 : 603–4. 
  23      See  Chapter 6  by Agathe Keller in this volume on the work of Th ibault. 
  24      ‘Erinnern wir uns, wie vieles an Babylon mahnt!’ Cantor  1907 : 645 [3rd edn of Cantor  1894 ]. 
  25      Cantor  1894 : 615;  1907 : 657. 
  26      ‘C’est qu’ Āryabhat. a emploie la méthode dite «épanthème de Th ymaridas», ce qui prouve bien 

que ces bandits scientifi ques de l’Inde ne se contentaient guère de la géométrie grecque, mais 
qu’ils s’emparèrent encore de l’algèbre grecque, à laquelle, il est vrai, ils ajoutèrent beaucoup.’ 
Tannery  1950 :  xiii  314; cf. Cantor  1894 : 583–4. 
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inherited from the Greeks they developed in this direction without being 
burdened by the logical circumspection that characterizes the Greeks. In 
this manner, they could appropriate new rules and methods without neces-
sarily understanding the underlying reason for their validity. Th e Indians 
could also go beyond Diophantus especially ‘because of their less sensitive 
( feinfühlig ) logic’,  27    which made the transfer of existing rules from rational 
to irrational numbers easier than it would have been to a Greek. 

 Another example of Indian improvement over the Greeks is their use 
of negative numbers. In contrast to the limitations a ‘cautious Greek’ had 
to deal with, the ‘calculating Indian’ could take calculations ‘just as they 
present themselves’, as Zeuthen writes, without caring as to whether or 
not a quantity was positive or not; the Indians ‘arranged themselves’ with 
such negative quantities, simply qualifying them as ‘debts’.  28    One sees here 
a notable example of the Hellenocentrist tendency to systematically distort 
the interpretation of non-Greek mathematical thought by reducing the 
associated cognitive processes to irrational fortuities.   

 Excursus:     Hero and Diophantus – two ‘orientalized’ Greeks? 

 Another problematic aspect encountered by historians of mathematics was 
related to their interpretation of two ‘anomalous’ Greek mathematicians, 
Hero and Diophantus, whose styles, methods and preoccupations pro-
foundly diverged from those of classical Greek mathematics. 

 Th e tone is set very clearly by Hankel when he writes about Diophantus 
that ‘if his works were not written in Greek, it would occur to nobody to 
think that he sprang from Greek culture; his mind and spirit is too far away 
from that which revealed itself during the classical period of Greek math-
ematics.’  29    Hankel sees Diophantus’  Arithmetica , from a historical point of 
view, as counting among the most signifi cant mathematical works of Greek 
antiquity; he even added the surprising (over)statement that, in terms of 
originality and independence, his contributions stand perhaps higher than 
those of any other Greek mathematician!  30    Hankel enthusiastically argued 
for the dependence of Diophantus on Indian sources which would have 

  27      Zeuthen  1896 : 279. 
  28      Zeuthen  1896 : 180. 
  29      ‘Wären seine Schrift en nicht in griechischer Sprache geschrieben, niemand würde auf den 

Gedanken kommen, dass sie aus griechischer Cultur entsprossen wären; so weit ist sein 
Sinn und Geist von dem entfernt, der sich in der klassischen Zeit griechischer Mathematik 
geoff enbart hatte.’ Hankel  1874 : 157. 

  30      Hankel  1874 : 170. 
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been circulating in Alexandria before his lifetime.  31    With the decline of 
Hellenism, the rigidly systematical spirit of classical geometry was sup-
planted by a defi nitely  orientalized  form of mathematics exemplifi ed by 
Diophantus’  Arithmetica . 

 Siegmund Günther, whom we mentioned above, saw in Diophantus a 
‘double nature’. In his earlier works, such as the  Porismata , it was possible 
to detect purely Hellenistic demonstration practices which had obliged 
him to employ laborious roundabouts. But by the time of composing the 
 Arithmetica , Diophantus had experienced a true  emancipation  from his 
predecessors, notably in his use of symbolism and by his use of ‘clever 
tricks’, his ‘boldness’ and his ‘skilfulness’.  32    

 Zeuthen implicitly followed Hankel by refusing to exclude an Indian 
infl uence on Diophantus. Conversely, he wrote, later Indian authors may 
also have been infl uenced by the Greek algebraist. For this statement 
Zeuthen harvested the criticism of his friend Tannery: 

 Mr. Zeuthen shows a strong tendency to go back to Hankel’s thesis: the Greeks, 
wonderfully gift ed in geometry, had no talent whatsoever for arithmetic. Th e com-
position of a work such as that of Diophantus can only be explained by supposing 
the infl uence, in Hellenized Egypt, of a race particularly apt to numerical computa-
tions, such as that of the Hindus.  33     

Tannery, in this case, shared the opinion of Cantor, to whom he wrote in 
1885: ‘As for the sources I assume for Diophantus, I would not want you to 
think that I am close to Hankel; I have always believed that Diophantus was 
exclusively Greek.’  34    

 Compare Cantor: ‘He belonged to his own time and to his own nation.’  35    
Note that Nesselmann in 1842 had expressed views similar to those of 
Cantor and Tannery, and rejected Bombelli’s (1579) earlier assumption of an 
Indian infl uence, to which he was led by mistaking a scholion of Maximus 
Planudes in a Vatican manuscript for a part of Diophantus’ work.  36    It was 

  31      Hankel  1874 : 204–5. 
  32      Günther  1908 : 163–8. 
  33      ‘M. Zeuthen accuse une propension assez marquée à revenir à la thèse de Hankel: les Grecs, 

merveilleusement doués pour la Géométrie, ne l’étaient nullement pour l’Arithmétique; 
la rédaction d’un ouvrage comme celui de Diophante ne peut s’expliquer qu’en supposant 
l’infl uence, dans l’Egypte hellénisée, d’une race particulièrement apte aux calculs numériques, 
comme celle des Hindous.’ Tannery  1950 :  xii  219. 

  34      ‘Quant aux sources où je crois que puisait Diophante, je ne voudrais pas un seul instant 
que vous pensiez que je me rapproche de Hankel; j’ai toujours cru que Diophante était 
exclusivement grec.’ Tannery  1950 :  xiii  328. 

  35      ‘Er stand . . . innerhalb seiner Zeit, innerhalb seines Volkes.’ Cantor  1894 : 450. 
  36      Nesselmann  1842 : 284–5. 
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the Indologist Edward Strachey (1813, 1818) who fi rst positively formu-
lated the thesis that Hindu algebra had infl uenced Diophantus, a conten-
tion repeated, albeit in a much more nuanced fashion, by Colebrooke.  37    

 Th e case of Hero of Alexandria – with his imaginative and practical 
problem-solving approach without emphasis on demonstrations – was less 
problematic.  38    Cantor had argued for Old Egyptian infl uence, a hypothesis 
– already insinuated by Hankel  39    – that nobody took the trouble to chal-
lenge.  40    In any case, there was a certain uneasiness in interpreting Hero and 
Diophantus. Th e reason for our excursus is connected with the following: if 
Greek mathematics can be essentially opposed to an Oriental style, how can 
it be that two important Greek authors are basically ‘oriental’ in style? Th is 
observation could not really undermine the main thesis: both authors were 
simply given a status of exceptions . . .   

 Excursus 2:     Cantor on inductive demonstrations in Ancient Egypt 

 A similar pattern is discernible in Cantor’s speculations about the geo-
metrical knowledge supposedly acquired by Th ales in Ancient Egypt, 
and the peculiar deductive shaping he, as a Greek, immediately conferred 
on the primitive rules and demonstrations of the Egyptians. Cantor had 
collaborated with Eisenlohr in his eff orts to decipher the Rhind Papyrus, 
a translation of which was published in Leipzig in 1877. 

 In the geometrical problems of Ahmes, formulae are given as such, 
without derivation. But we are dealing with a book of exercises, Cantor 
says, so we should not ask for something which cannot be contained in 
it, namely derivations ( Ableitungsverfahren ) of the formulae. Ahmes must 
have taken these derivations from another, now lost, theoretical textbook.  41    
Th is hypothetical ‘theoretical’ textbook on geometry Cantor imagines to 
have contained primitive inductive demonstrations or even illustrative 
demonstrations ( Beweisführung durch Anschauung ), as with the Indians.  42    
But to assume strict geometrical demonstrations is not necessary in the 
context of Egyptian mathematics.  43    

  37      C1817. 
  38      Günther  1908 : 217. 
  39      Hankel  1874 : 85. Hankel, who only had access to a summary description of the Rhind Papyrus 

by Birch (1868), recognized the similarities with Hero but was not sure whether the papyrus 
was older than the Alexandrian’s lifetime or not. 

  40      Cantor  1894 : 365–7. 
  41      Cantor  1894 : 53;  1907 : 91, 113. 
  42      Cantor  1907 : 113. 
  43      Cantor  1907 : 106. 
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 Th us Egyptian theory is inductive, and Greek theory is deductive. Th ales, 
when he obtained his geometrical knowledge in Egypt, must have off ered 
diff erent kinds of demonstration than the Egyptians did (for example, the 
theorem stating that the diameter divides the circle in two equal parts), for 
the simple reason that he had a Greek mind! Cantor puts it as follows: 

 As a Greek he generalized, as a pupil of Egypt he grasped through the senses 
what he then made comprehensible to the Greeks. It was an ethnic characteristic 
[ Stammeseigentümlichkeit ] of the Greeks to get to the bottom of all things, and, 
starting from practical needs, to reach speculative explanations. Nothing of the sort 
with the Egyptians.  44     

With the Egyptians, Cantor speculates, either the fi gure suffi  ced for the 
proof, or it was done through computation of the areas of both semicircles 
according to the same, possibly uncomprehended, rule.   

 Th e problematic status of Islamic mathematics 

 Th e confrontation with Arabic mathematical writings and the bibliographi-
cal information about it forced historians of mathematics to adopt a diff erent 
approach than with Indian mathematics. First it became increasingly obvious 
that a large number of Greek mathematical works, including virtually all major 
ones, had been not only translated into Arabic but also studied, commented 
upon, adapted and transformed. Greek mathematics had been thoroughly 
assimilated within Islamic culture. On the other hand, Indian infl uences 
were obvious in several works, such as the arithmetic of al-Khwārizmī, or (it 
was presumed) in the treatise on practical geometrical constructions by Abū 
al-Wafāʾ. How was it possible, then, to treat Islamic mathematics within the 
category ‘Oriental’? Which status did historians of mathematics grant to Arabic 
mathematics? Another, related problem was of course the question of its origi-
nality. In this respect late nineteenth-century historians of mathematics proved 
surprisingly severe, in spite of the excellent works of Franz Woepcke.  

 Th e question of originality 

 Although he presented an excellent summary of the available evidence 
(mostly thanks to Woepcke’s works), Hankel claimed at the outset that the 
Arabs had added little to what they had received from the Greeks and the 

  44      ‘Als Grieche hat er verallgemeinert, als Schüler Aegyptens sinnlich erfasst, was er dann den 
Griechen wieder fassbarer gemacht hat. Es war eine griechische Stammeseigentümlichkeit, 
den Dingen auf den Grund zu gehen, vom praktischen Bedürfnisse zu speculativen 
Erörterungen zu gelangen. Nicht so den Aegyptern.’ Cantor  1894 : 140. 
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Indians. Of course, it was no longer possible, at the end of the nineteenth 
century, to maintain the old myth of preservation. But this myth was 
replaced by another version that was as economical as possible: Cantor 
formulated it this way: ‘[Th e Arabs] have been capable not only to preserve, 
but also to expand the treasures entrusted to them.’  45    Th ese intellectual 
treasures, however, were regarded by Cantor as  fundamentally foreign  ele-
ments, which could only live in the artifi cial milieu of the princely courts.  46    

 Symptomatically, Hankel, Cantor and Zeuthen found only few exam-
ples of original and independent contributions by the Arabs. Zeuthen, 
indeed, introduced his chapter on Arabic mathematics by mentioning 
that he ‘would have liked to emphasize the full extent and value of the 
mathematical works of the Arabs, in order to avoid negative conclusions 
from the relatively few positive results achieved beyond those known to 
the Greeks’.  47    Th is fact, he says, provides the very reason for restricting his 
presentation to a few selected examples of the kinds of works the Arabs 
did. In this connection we should mention that, in 1888, Zeuthen had 
off ered to the readers of  Bibliotheca Mathematica  a question that implicitly 
sought  to  undermine Woepcke’s view of the originality of Islamic con-
tributions to algebra (especially the application of conic sections to the 
resolution of algebraic equations).  48    Zeuthen suspected that the Greeks had 
already applied these techniques to the same algebraic problems, thereby 
raising serious doubts as to whether the Arabs had really been innovative 
in this regard.   

 Th e obsessive search for infl uences 

 Otherwise, Hankel and especially Cantor were animated by a desire to iden-
tify in Islamic mathematics as many foreign infl uences they could, even on 
the basis of tenuous similarities. Th us Hankel did not hesitate to assign to 
the Indians a proof of a certain identity involving geometric series recorded 
by al-Karajī, even though Woepcke had been unable to detect any Indian 
infl uence on al-Karajī in general.  49    In the same manner, he saw nothing 
in the indeterminate analysis of al-Karajī that went beyond Diophantus.  50    

  45      ‘[Die Araber] haben das Ihnen anvertraute Gut nicht nur zu bewahren, auch zu vermehren 
gewusst.’ Cantor  1894 : 771. 

  46      Cantor  1894 : 741–2;  1907 : 786–7. 
  47      Zeuthen  1896 : 297. 
  48      Zeuthen  1888 . 
  49      Woepcke 1853: 61–2; Hankel  1874 : 42. 
  50      Hankel  1874 : 270. 
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Identifying the origin of al-Khwārizmī’s algebra presented more serious 
diffi  culties, since it diff ered from both the Greek and Indian algebraic 
traditions. But for Cantor, Islamic algebra could under no circumstances 
be autochthonous: it could only feature Greek and Indian elements, so he 
assumed an amalgam of both traditions. In general, however, Cantor was 
convinced that there existed two separate schools in Islamic mathematics, 
bringing about a fundamental opposition between the disciples of Indian 
methods and those, more numerous, who strictly adhered to the Greek 
tradition.  51    Cantor’s entire section on Islamic mathematics shows precisely 
his constant concern for associating every single mathematician or result 
within one of the two groups.   

 How did the Arabs handle the Greek axiomatic–deductive methods? 

 Now we come to the more crucial question: were the ‘Arabs’ up to dealing 
with Greek thought? How did ‘Oriental’ mathematicians come to terms 
with the Euclidean axiomatic–deductive method? Hankel described the 
nature of Euclid’s infl uence on Islamic mathematical practice with the 
 following words: 

 In the same way, one zealously occupied himself with the logical analysis of 
his  (Euclid’s) method, his defi nitions and axioms, and one used his demonstra-
tions  for the exemplifi cation of the rules of formal logic in a similarly pedan-
tic  manner as what our German logicians still liked to do almost until our 
century.  52      

 Th us the ‘Greek oversubtlety’, as Hankel says ( griechische Spitzfi ndigkeit ), 
was a level too high for the Arabs. Its perversion he exemplifi ed with 
[pseudo-]T. ūsī’s vain attempt to prove Euclid’s postulate of parallels.  53    To 
this observation Hankel adds the following statement concerning the status 
and use of demonstrations in Arabic treatises: 

 Despite their even doctrinary acquaintance with the demonstrative method [of the 
Greeks], the Arabs, most of the time, have refrained from providing the demonstra-
tions, and have dogmatically strung the theorems and rules together, exactly as the 

  51      Cantor  1894 : 718–19. 
  52      Hankel  1874 : 272. 
  53      Th e Arabic text of a recension of Euclid’s  Elements  wrongly attributed to Nas. īr al-Dīn al-T. ūsī 

had been printed in Rome in 1586 and was available through Wallis’ analysis thereof in his 
history of algebra, his interpretation being possible thanks to the collaboration of orientalist 
Pococke. See Molland  1994  and Stedall  2001 . 
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Indians used to do in their siddhantas. Were they motivated by a concern for the 
shortness and corresponding cheapness of their books?  54     

Cantor’s judgement was not as severe as Hankel’s, but he was neverthe-
less convinced that the practice of demonstration had almost a character 
of exception among Muslim mathematicians.  55    Confronted with a highly 
original treatise of practical geometry by Abū al-Wafāʾ (then known only 
through a mutilated Persian version which Woepcke had summarized), 
Cantor had no recourse to contextualization to explain the absence of 
demonstrations – as he did in the case of the geometrical part of the Rhind 
Papyrus, where he accepted it precisely because of the practical nature of 
the work. For him Abū al-Wafāʾ’s treatise recalled Indian geometry, so that 
‘one would almost expect as a proof [of the validity of a particular construc-
tion] the request “look!”, with which Indian geometers are satisfi ed to con-
clude their construction procedures’.  56    Th us for him there was no doubt that 
this work was an example of  Anschauungsgeometrie , so thoroughly Indian 
in style that no deductive demonstrations, even on the part of one of the 
best Muslim mathematicians, could be possibly assumed.    

 Epilogue 

 For Zeuthen, the breakthrough in the history of mathematics occurred 
with the resolution of third-degree equations by means of roots (Cardano 
and Tartaglia), an achievement that closes the medieval periodization of 
mathematics and announces the rapid advances made thereaft er, modelled 
on and inspired by a close study of Greek mathematics. Zeuthen’s periodi-
zation explains why nearly three-quarters of his book (245 pages out of 332 
in the fi rst German edition) is devoted to Greek mathematics. 

 In view of this, it is probably erroneous to assume that Zeuthen and his 
colleagues saw the practice of mathematical demonstration as the key to 
mathematical progress. Th e Muslims had been competent and  respectful 

  54      ‘Trotz dieser selbst doktrinären Bekannschaft  mit der demonstrativen Methode haben 
die Araber sich meistens aller Beweise enthalten und Lehrsätze wie Regeln dogmatisch 
aneinandergereiht, nicht anders als es die Inder in ihren Siddhanten zu thun pfl egen. Hat sie 
dazu die Rücksicht auf Kürze und entsprechend grössere Wohlfeilheit ihrer Bücher bewogen?’ 
Hankel  1874 : 273. 

  55      Commenting on an original geometrical problem solved by al-Kūhī in which the latter inserted 
a rigorous proof with diorismos, Cantor noted that ‘in general the imitators of the Greeks – 
Arabs not excluded – considered [this practice] by no means with the same regularity’ [‘. . . was 
die Nachahmner der Griechen im allgemeinen – die Araber nicht ausgeschlossen – keineswegs 
mit gleicher Regelmässigkeit zu beachten pfl egten’]. Cantor  1894 : 705. 

  56      Cantor  1894 : 700; cf. 709–10. 
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students of the Greeks, and, although relatively very little was known 
around 1900, their works revealed – even to the least interested historians 
such as Tannery – a sophisticated mathematical practice within which 
demonstration, closely following the Greek model, played an important 
role. Yet, it was thought, this assimilation of Greek mathematical thinking 
and practice did not instil much progress among them; the Arabs’ contri-
butions, however extensive and honest they may have been, did not bring 
about any major breakthrough, nothing comparable to what would happen 
in sixteenth- and seventeenth-century Europe. For the ‘Arabs’ were implic-
itly considered as immature custodians of a higher knowledge, who could 
not properly deal with it; being mere imitators of a foreign tradition, they 
were unable to reach the critical level beyond which real progress could 
have been initiated. For Zeuthen, the Eastern Arabs had been unable to 
emancipate themselves from the rigid geometrical approach of the Greek; 
and the Western Arabs, who supposedly did liberate themselves from this 
approach, still remained ‘too reverential’ toward the Greeks.  57    

 On the other hand, the Indians, in spite of the supposed laxness and 
lack of rigour of their mathematical practice and the primitiveness of the 
few demonstrations revealed in their works, had indeed achieved results 
superior to those of the Arabs in arithmetic and algebra. Some authors even 
went as far as comparing this ‘Indian’ style of mathematical practice with 
the intuitive works of certain modern mathematicians, probably because it 
was realized that absolute rigour had not played a fundamental role in early 
modern Europe.  58    Few believed that a stringent axiomatic–deductive system 
was a necessary condition for mathematical discovery. Nevertheless, histo-
rians of mathematics unanimously insisted that it was precisely  the lack of 
a logical, rigorous system  of mathematical thought similar to the Greek one 
that prohibited any further progress in India. Imagination alone could at 
best generate haphazard discoveries. Th e refusal of systematic rationality to 
the Orientals was saved whenever one encountered anything ingenious in 
their mathematics by explaining it through their having recourse to ‘tricks, 
dodges’ ( Kunstgriff e ), as in the case of al-Bīrūnī’s solution of the chessboard 
problem.  59      For Tannery, theory provided with demonstration was the 

  57      Zeuthen  1896 : 314. 
  58      Günther ( 1908 : 127) says of Hero that he is a sort of ‘antique Euler’. Hankel ( 1874 : 202–3) 

compares Bhāskara’s numerical methods, especially in his solution of the so-called Pell 
equation, with those of modern mathematicians. On the relatively unimportant role of 
mathematical proofs (compared to the concern for ‘exactness of contructions’) in early 
modern Europe, see Bos  2001 : 8. 

  59      Cantor  1894 : 713–14. 
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distinguishing  feature  between pre-scientifi c and scientifi c mathemat-
ics;  60    but  Indian mathematics, although categorized under the ‘scientifi c’ 
genus by all   historians of mathematics, featured only primitive, indeed 
pre-scientifi c, kinds of proofs. Th is is an apparent paradox. Had ‘Oriental’ 
mathematics a special status? Tannery certainly perceived it this way. In 
fact, he and his colleagues were convinced that no civilization other than 
the Greek ever attained the scientifi c level autonomously. Th us, the pre-
scientifi c mathematics of India only became scientifi c aft er it had been 
nurtured by Greek infl uence. Indian mathematics, however, remained 
stigmatized with a special and incomplete status of scientifi city, because it 
had only imperfectly assimilated the Greek model.    

 Concluding remarks 

 Nineteenth-century historians of mathematics did not claim the practice 
of demonstration only for the Greeks, but they insisted on its character of 
exception in ‘Oriental’ mathematics. (Consequently, much of twentieth-
century historiography simply disregarded the evidence already available, 
and returned to the simplifi ed view that a concern for proof and rigour 
never existed outside of ancient Greece and modern Europe – perhaps 
with the exception of medieval Islam.) Th e criterion that really allowed a 
separation of ‘Western’ from ‘non-Western’ science was one of  style : sys-
tematic and axiomatic–deductive in one case, intuitive (at best inductive), 
illustrative and unrefl ected in the other.  61    Th e ideology associated with this 
fundamental separation, even though its roots could be traced back to the 
Renaissance, did not crystallize until late in the nineteenth century. I will 
now conclude with a short sketch of the ideological landscape that favoured 
its dogmatic formulation. 

 With the accomplishment of the imperialist enterprise and the general 
confi dence that space, people and nature could be successfully domi-
nated, Western Europeans acquired the ultimate certainty of their supe-
riority over the rest of the world. It is no wonder, then, that the Romantic 
and Orientalist enthusiasm, omnipresent in the fi rst half of the century, 
was quickly annihilated. Dismissing previous attempts to proclaim the 
 originality of ‘Oriental’ science and consolidating the integrity of ‘Western’ 

  60      Tannery  1950 :  x  25. 
  61      Th is idea is still common today; a massive argumentation in favour of the distinctiveness of 

the Western scientifi c style can be found in Crombie  1994 . For a critical view, see Hart  1999 . 
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science was, indeed, a major characteristic of scholarship in the history of 
science during the last quarter of the nineteenth century. Th e views became 
increasingly and consensually Helleno- and Eurocentrist, not in the ingen-
uous and instinctive manner of previous generations, but in systematic and 
dogmatic ways. In this context we can mention the infl uence of Comtian 
positivism, and the rise, in some milieus, of racist and antisemitic theories. 
Th e famous lecture ‘L’Islam et la science’ delivered by Ernest Renan at the 
Sorbonne in 1883 proclaimed the scientifi c inferiority of Semitic races as 
opposed to Indo-Aryan ones, and emphasized the essentially antagonistic 
nature of the Islamic faith toward science.  62    Th e works of Pierre Duhem 
on ancient Greek and medieval Latin cosmology promulgated the relative 
insignifi cance of extra-European science.  63    Even the Arabist Bernard Carra 
de Vaux, a close collaborator of Tannery, found recognition mainly for his 
work on Greek technological works preserved only in Arabic, and con-
tributed an appendix to Tannery’s  Recherches sur l’histoire de l’astronomie 
ancienne  in which he misinterpreted one of the most interesting chapters of 
Islamic planetary theory by reducing it to an example of the way in which, 
when it attempted to be original, Islamic science revealed only ‘weakness’ 
and ‘pettiness’.  64    Such was indeed the dominant perspective in Europe 
around 1900 when the discipline of history of science was established as an 
international network of scholars under the aegis of Paul Tannery. History 
of science sought to and succeeded in promoting and defending the values 
and uniqueness of Western civilization.  65                                                                           
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   8     Th e pluralism of Greek ‘mathematics’    

   G .  E .  R .      Lloyd     

 Greek  mathēmatikē , as has oft en been pointed out, is far from being an 
exact equivalent to our term ‘mathematics’. Th e noun  mathēma  comes from 
the verb  manthanein  that has the entirely general meaning of ‘to learn’. 
A  mathēma  can then be any branch of learning, or anything learnt, as when 
in Herodotus (1 207) Croesus refers to the  mathēmata  – what he has learnt –
from his own bitter experiences. So the  mathēmatikos  is, strictly speak-
ing, the person who is fond of learning in general, as indeed it is used in 
Plato’s  Timaeus  at 88c where the point at issue is the need to strike a balance 
between the cultivation of the intellect and that of the body, the principle 
that later became encapsulated in the dictum ‘ mens sana in corpore sano ’. 
Yet Plato also recognizes certain special branches of the  mathēmata , as 
when in the  Laws  at 817e the Athenian Stranger speaks of those that are 
appropriate for free citizens as those that relate to numbers, to the measure-
ment of lengths, breadths and depths, and to the study of the stars, in other 
words, very roughly, arithmetic, geometry and astronomy. In Hellenistic 
Greek  mathēmatikos  is used more oft en of the student of the heavens in 
particular (whether what we should call the astronomer or the astrologer) 
than of the mathematician in general in our sense. 

 Whether we should think of either what we call mathematics or what 
we call philosophy as well-defi ned disciplines before Plato is doubtful. 
I have previously discussed the problems so far as philosophy is con-
cerned.  1    Th ose whom modern scholars conventionally group together as 
‘the Presocratic philosophers’ are a highly heterogeneous set of individuals, 
most of whom would not have recognized most of the others as engaged in 
the same inquiry as themselves. Th eir interests spanned in some, but not all, 
cases what we call natural philosophy (the inquiry into nature), cosmology, 
ontology, epistemology, philosophy of language and ethics, but the ways 
in which those interests were distributed among the diff erent individuals 
concerned varied considerably. 

 It is true that we have one good fi ft h-century  bce  example of a thinker 
most of whose work (to judge from the very limited information we have 

     1      Lloyd  2006b . 
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about that) related to, or used, one or other branch of mathematics, namely 
Hippocrates of Chios. He was responsible not just for important particular 
geometrical studies, on the quadrature of lunules, but also, maybe, for a fi rst 
attempt at systematizing geometrical knowledge, though whether he can 
be credited with a book entitled (like Euclid’s)  Elements  is more  doubtful. 
Furthermore in his other investigations, such as his account of comets, 
reported by Aristotle in the  Meteorology , he used geometrical arguments to 
explain the comet’s tail as a refl ection. 

 Yet most of those to whom both ancient and modern histories of pre-
Euclidean Greek mathematics devote most attention were far from just 
‘mathematicians’ in either the Greek or the English sense. Philolaus, 
Archytas, Democritus and Eudoxus all made notable contributions to one 
or other branches of  mathēmatikē , but all also had developed interests in 
one or more of the studies we should call epistemology, physics, cosmol-
ogy and ethics. A similar diversity of interests is also present in what we are 
told of the work of such more shadowy fi gures as Th ales or Pythagoras. Th e 
evidence for Th ales’ geometrical theorems is doubtful, but Aristotle (who 
underlines the limitations of his own knowledge about Th ales) treats him as 
interested in what he, Aristotle, termed the material cause of things, as well 
as in soul or life. Pythagoras’ own involvement in geometry and in harmon-
ics has again been contested,  2    and the more reliably attested of his interests 
relate to the organization of entities in opposite pairs, and, again, to soul. 

 Th ese remarks have a bearing on the controversy on the question of 
whether deductive argument, in Greece, originated in ‘philosophy’ and 
was then exported to ‘mathematics’,  3    or whether within mathematics it was 
an original development internal to that discipline.  4    Clearly when neither 
‘philosophy’ nor ‘mathematics’ were well-defi ned disciplines, it is hard to 
resolve that issue in the terms in which it was originally posed, although, to 
be sure, the question remains as to whether the Eleatic use of reductio argu-
ments did or did not infl uence the deployment of arguments of a similar 
type by such fi gures as Eudoxus. 

 If we consider the evidence for the investigation of what Knorr, in other 
studies,  5    called the three ‘traditional’ mathematical problems, of squaring 
the circle, the duplication of the cube and the trisection of an angle, those 
who fi gure in our sources exhibit very varied profi les. Among the ten or so 
individuals who are said to have tackled the problem of squaring the circle 

     2      Burkert  1972 . 
     3      Szabó  1978 . 
     4      Knorr  1981 . 
     5      Knorr  1986 . 
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it is clear that ideas about what counts as a good, or even a proper, method 
of doing so diff ered.  6    At  Physics  185a16–17 Aristotle distinguishes between 
fallacious quadratures that are the business of the geometer to refute, and 
those where that is not the case. In the former category comes a quadrature 
‘by way of segments’ which the commentators interpret as lunules and 
forthwith associate with the most famous investigator of lunules, whom 
I have already mentioned, namely Hippocrates of Chios. Yet even though 
there is another text in Aristotle that accuses Hippocrates of some mistake 
in quadratures ( On Sophistical Refutations  171b14–16), it may be doubted 
whether Hippocrates committed any fallacy in this area.  7    In the detailed 
account that Simplicius gives us of his successful quadrature of four specifi c 
types of lunules, the reasoning is throughout impeccable. Quite what fallacy 
Aristotle detected then remains somewhat of a mystery. 

 But two other attempts are also referred to by Aristotle and dismissed 
either as ‘sophistic’ or as not the job of the geometer to disprove. Bryson 
is named at  On Sophistical Refutations  171b16–18 as having produced an 
argument that falls in the former category: according to the commentators, 
it appealed to a principle about what could be counted as equals that was 
quite general, and thus far it would fi t Aristotle’s criticism that the reasoning 
was not proper to the subject-matter. 

 Antiphon’s quadrature by contrast is said not to be for the geometer to 
refute ( Physics  185a16–17) on the grounds that it breached the geometri-
cal principle of infi nite divisibility. It appears that Antiphon proceeded by 
inscribing increasingly many-sided regular polygons in a circle until – so 
he claimed – the polygon coincided with the circle (which had then been 
squared). Th e particular interest of this procedure lies in its obvious simi-
larity to the so-called but misnamed method of exhaustion introduced by 
Eudoxus in the fourth century. Th is too uses inscribed polygons and claims 
that the diff erence between the polygon and the circle can be made as small 
as one likes. It precisely does  not  exhaust the circle. If Antiphon did indeed 
claim that aft er a  fi nite  number of steps the polygon coincided with the 
circle, then that indeed breached the continuum assumption. But of course 
later mathematicians were to claim that the circle could nevertheless be 
treated as identical with the infi nitely-sided inscribed rectilinear fi gure. 
Other solutions were proposed by other fi gures, by a certain Hippias for 
instance and by Dinostratus. Whether the Hippias in question is the famous 
sophist of that name has been doubted, precisely on the grounds that the 

     6      Mueller  1982  gives a measured account. 
     7      Lloyd  2006a  reviews the question. 
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device attributed to him, the so-called quadratrix, is too sophisticated for 
the fi ft h century. 

 Although much remains obscure about the precise claims made in diff er-
ent attempts at quadrature, it is abundantly clear fi rst that diff erent inves-
tigators adopted diff erent assumptions about the legitimacy of diff erent 
methods, and second that those investigators were a heterogeneous group. 
Some were not otherwise engaged in mathematical studies at all, at least to 
judge from the evidence available to us. An allusion in Aristophanes ( Birds  
1001–5) suggests that the topic of squaring the circle had by the end of the 
fi ft h century become a matter of general interest, or at least the possible 
subject of anti-intellectual jokes in comedy. 

 Among those I have mentioned in relation to quadratures several are 
generally labelled ‘sophists’, this too a notoriously indeterminate category 
and one that evidently cannot be seen as an alternative to ‘mathematician’. 
As is well known Plato does not always use the term pejoratively, even 
though he certainly has severe criticisms to off er, both intellectual and 
moral, of several of the principal fi gures he calls ‘sophists’. Yet Plato himself 
provides plenty of evidence of the range of interests, both mathematical 
and non-mathematical, of some of those he names as such. As regards the 
Hippias he calls a sophist, those interests included astronomy, geometry, 
arithmetic, but also, for instance, linguistics: however, whether the music 
he also taught related to the mathematical analysis of harmonics or was 
a matter of the more general aesthetic evaluation of diff erent modes is 
unclear. Again, the fragments that are extant from Antiphon’s treatise  Truth  
deal with questions in cosmology, meteorology, geology and biology.  8    
Protagoras, who is said by Plato to have been the fi rst to have taught for a 
fee, famously claimed, according to Aristotle  Metaphysics  998a2–4, that the 
tangent does not touch the circle at a point, a meta-mathematical objection 
that he raised against the geometers. 

 Th us far I have suggested some of the variety within what the Greeks 
themselves thought of as encompassed by  mathēmatikē  together with 
some of the heterogeneity of those who were described as engaged in 
‘mathematical’ inquiries. But in view of some persistent stereotypes of 
Greek mathematics it is important to underline the further fundamental 
disagreements (1) about the classifi cation of the mathematical sciences and 
the hierarchy within them, (2) about the question of their usefulness, and 

     8      Th e identifi cation of the author of this treatise with the Antiphon whose quadrature is 
criticized by Aristotle is less disputed than the question of whether the sophist is identical with 
the author called Antiphon whose  Tetralogies  are extant. 
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especially (3) on what counts as proper, valid, arguments and methods. Let 
me deal briefl y with the fi rst two questions before exemplifying the third a 
little more fully. 

 (1) Already in the late fi ft h and early fourth centuries  bce  a divergence 
of opinion is reported as between Philolaus and Archytas. According to 
Plutarch ( Table Talk  8 2 1, 718e) Philolaus insisted that geometry is the 
primary mathematical study (its ‘metropolis’). But Archytas privileged 
arithmetic under the rubric of  logistikē  (reckoning, calculation, Fr. 4). Th e 
point is not trivial, since how precisely geometry and arithmetic could 
be considered to form a unity was problematic. According to the normal 
Greek conception, ‘number’ is defi ned as an integer greater than 1. In this 
view, arithmetic dealt with discrete entities. But geometry treated of an 
infi nitely divisible continuum. Nevertheless both were regularly included 
as branches of ‘mathematics’, sister branches, indeed, as Archytas called 
them (Fr. 1). Th e question of the status of other studies was more con-
tested. For Aristotle, who had, as we shall see, a distinctive philosophy 
of mathematics, such disciplines as optics, harmonics and astronomy 
were ‘the more physical of the  mathēmata ’ ( Physics  194a7–8). Th e issue of 
‘mechanics’ was particularly controversial. According to the view of Hero, 
as reported by Pappus ( Collection  Book 8 1–2), mechanics had two parts, 
the theoretical which consisted of geometry, arithmetic, astronomy and 
physics, and the practical that dealt with such matters as the construction 
of pulleys, war machines and the like. However, a somewhat diff erent view 
was propounded by Proclus ( Commentary on Euclid’s Elements  41.3 – 42.8) 
when he included what we should call statics, as well as pneumatics, under 
‘mechanics’. 

 (2) Th at takes me to my next topic, the issue of the usefulness of math-
ematics, howsoever construed. Already in the classical period there was a 
clear division between those who sought to argue that mathematics should 
be studied for its practical utility, and those who saw it rather as an intel-
lectual, theoretical discipline. In Xenophon’s  Memorabilia  4 7 2–5 Socrates 
is made to insist that geometry is useful for land measurement, astronomy 
for calendar regulation and navigation, and so on, and he there dismissed 
the more theoretical or abstract aspects of those subjects. Similarly Isocrates 
too distinguished the practical and the theoretical sides of mathematical 
studies and in certain circumstances favoured the former (11 22–3, 12 26–8, 
15 261–5). Yet Plato of course took precisely the opposite view. It is not for 
practical, mundane, reasons that mathematics is worth studying, but rather 
as a training for the soul in abstract thought. But even some who empha-
sized practical utility sometimes defi ned that very broadly. It is striking that 
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in the passage just quoted from Pappus he included both the construction 
of models of planetary motion and that of the marvellous gadgets of the 
‘wonder-workers’ among ‘the most  necessary  of the mechanical arts from the 
point of view of the needs of life’. Meanwhile the most ambitious claims for 
the all-encompassing importance of ‘mathematics’ were made by the neo-
Pythagorean Iamblichus at the turn of the third and fourth centuries  ce . He 
argued in  On the Common Mathematical Science  (ch. 32: 93.11–94.21) that 
mathematics was the source of understanding in  every  mode of knowledge, 
including in the study of nature and of change. 

 (3) From among the many examples that illustrate how the question of 
the proper method in mathematics was disputed let me select just fi ve. 

 (3.1) In a famous and infl uential passage in his  Life of Marcellus  
( ch. 14 , cf.  Table Talk  8 2 1, 718ef) Plutarch interprets Plato as having 
banned mechanical methods from geometry on the grounds that these 
corrupted and destroyed the pure excellence of that subject, and it is true 
that Plato had protested that to treat mathematical objects as subject to 
movement was absurd. Th e fi rst to introduce such degenerate methods, 
according to Plutarch, were Eudoxus and Archytas. Indeed we know from 
a report in Eutocius ( Commentary on Archimedes Sphere and Cylinder  2, 3 
84.12–88.2) that Archytas solved the problem of fi nding two mean propor-
tionals on which the duplication of a cube depended by means of a complex 
three-dimensional kinematic construction involving the intersection of 
three surfaces of revolution, a right cone, a cylinder and a tore. Plutarch 
even goes on to suggest that Archimedes himself agreed with the Platonic 
view (as Plutarch represents it) that the work of an ‘engineer’ was ignoble 
and vulgar. Most scholars are agreed fi rst that that most probably misrepre-
sents Archimedes, and secondly that few practising mathematicians would 
have shared Plutarch’s expressed opinion as to the illegitimacy of mechani-
cal methods in geometry. 

 (3.2) My second example comes from Archimedes himself and concerns 
precisely how he endorsed the usefulness of mechanics, as a method of 
discovery at least. In his  Method  (2 428.18–430.18) he sets out what he 
describes as his ‘mechanical’ method which depends fi rst on an assump-
tion of indivisibles and then on imagining geometrical fi gures as balanced 
against one another about a fulcrum. Th e method is then applied to get 
the area of a segment of a parabola, but while Archimedes accepts the 
method as a method of discovery, he puts it that the results have thereaft er 
to be demonstrated rigorously using the method of exhaustion standard 
throughout Greek geometry. At the same time the method  is  useful ‘even 
for the proofs of the theorems themselves’ in a way he explains ( Method  
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428.29–430.1): ‘it is of course easier, when we have previously acquired, by 
the method, some knowledge of the questions, to supply the proof, than it 
is to fi nd it without any previous knowledge’. We should note that what is at 
stake is not just the question of admissible methods, but that of what counts 
as a proper demonstration. 

 (3.3) For my third example I turn to Hero of Alexandria.  9    Although he 
frequently refers to Archimedes as if he provided a model for demonstra-
tion, his own procedures sharply diverge, on occasion, from his. In the 
 Metrica , for instance, he sometimes gives an arithmetized demonstration 
of geometrical propositions, that is he includes concrete numbers in his 
exposition. Moreover in the  Pneumatica  especially he allows exhibiting a 
result to count as a proof. Th us at 1 16.16–26 and at 26.25–28 he gives what 
we would call an empirical demonstration of propositions in pneumatics, 
expressing his own clear preference for such by contrast with the merely 
plausible reasoning used by the more theoretically inclined investigators. 
In both respects his procedures breach the rules laid down by Aristotle in 
the  Posterior Analytics , both in that he permits ‘perceptible’ proofs and does 
not base his arguments on indemonstrable starting points and in that he 
moves from one genus of mathematics to another. If we think of precedents 
for his procedures, then they have more in common with the suggestion 
that Socrates makes to the slave-boy in Plato’s  Meno  (84a), namely that if 
he cannot give an account of the solution to the problem of doubling the 
square, he can point to the relevant line. 

 (3.4) Fourthly there is Ptolemy’s redeployment of the old dichotomy 
between demonstration and conjecture in two contexts in the opening 
books of the  Syntaxis  and of the  Tetrabiblos . In the former ( Syntaxis  1 1, 
1 6.11–7.4) he discusses the diff erence between  mathēmatikē , ‘physics’ and 
‘theology’. Th e last two studies are conjectural, ‘physics’ because of the insta-
bility of what it deals with, ‘theology’ because of the obscurity of its subject. 
 Mathēmatikē , by contrast, which here certainly includes the mathemati-
cal astronomy that he is about to expound in the  Syntaxis , alone of these 
three is demonstrative, since it is based on the incontrovertible methods 
of geometry and arithmetic. Whatever we may think about the diffi  culties 
that Ptolemy himself registers, in practice, in living up to this ideal when 
it comes, for instance, to his account of the movements of the planets 
in latitude, it is clear what his ideal is. Moreover when in the  Tetrabiblos  
(1 1, 3.5–25, 1 2, 8.1–20) he speaks of the other branch of the study of the 
heavens, that which engages not in the prediction of the movements of the 

     9      Cf. Tybjerg  2000 :  ch. 3 . 
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heavenly bodies, but in that of events on earth on their basis – astrology, 
in other words, on our terms – that study is downgraded precisely on the 
grounds that it cannot deliver demonstration. It is conjectural, though he 
would claim that it is based on tried and tested assumptions. 

 (3.5) Fifthly and finally there are Pappus’ critical remarks, in the opening 
chapters (1–23) of Book 3 of his  Collection , on certain procedures based on 
approximations that had been used in tackling the problem of fi nding two 
mean proportionals in order to solve the Delian problem, of doubling the 
cube.  10    Although certain stepwise approximations can yield a result that is 
correct, they fall short, in Pappus’ view, in rigour. Pappus himself distin-
guishes between planar, solid and linear problems in geometry and insists that
each has its own procedures appropriate for the subject matter in question. 

 What we fi nd in all of the cases I have taken is a sensitivity not just to the 
correctness of results or the truth of conclusions, but to the appropriateness 
or otherwise of the methods used to obtain them. It is not enough just to 
know the truth of a theorem: nor is it enough to have  some  means of justify-
ing the claim to such knowledge. No: what is required is that the method of 
justifi cation be the correct one for the fi eld of inquiry concerned according 
to the particular standards of correctness of the author in question. Th at is 
the recurrent demand: yet it is clearly not the case that all Greek investiga-
tors who would have considered themselves  mathēmatikoi  agreed on what 
is appropriate in each type of case or had uniform views on what counts as 
a demonstration. 

 Similar second-order disputes recur in most other areas of inquiry that 
the Greeks engaged in, and this too is worth illustrating since it suggests 
that the phenomenon we have described in mathematics is symptomatic of 
more general tendencies in Greek thought. Sometimes we fi nd such disa-
greements  within  what is broadly the same discipline, sometimes  across  dif-
ferent disciplines. In medicine the Hippocratic treatise  On Ancient Medicine  
provides examples of both kinds. Th e author fi rst castigates other doctors 
who try to base medical practice on what he calls ‘hypotheses’, arbitrary 
postulates such as ‘the hot’, ‘the cold’, ‘the wet’, ‘the dry’ and anything else 
they fancy ( CMG  1 1, 36.2–21). In this author’s view, that is wrong-headed 
since medicine is and has long been based on experience. Th e investigation 
of what happens under the earth or in the sky may be forced to rely on such 
postulates, but they are a disaster in medicine, where they have the result of 
narrowing down the causal principles of diseases. While that drives a wedge 
between medicine and ‘meteorology’, he goes on in chapter 20 (51.6–18) 

  10      I may refer to the detailed analysis in Cuomo  2000 :  ch. 4 . 
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specifi cally to attack the importation into medicine of methods and ideas 
that he associates with ‘philosophy’, by which he here means speculative 
theories about such topics as the constitution of the human body. For good 
measure he insists that if one were to engage in that study, the proper way 
of doing so would be to start from medicine. 

 Medicine provides particularly striking examples of second-order 
debates parallel to those in mathematics: indeed in the Hellenistic period 
the disagreements among the medical sects were as much about methods 
and epistemology as they were about medical practice. But other fi elds too 
exhibit similar fundamental divisions between competing approaches. In 
music theory, Barker has explored the analogous disputes fi rst between 
practitioners on the one hand, and theoretical analysts on the other, and 
then, among the latter, between those who treated musical sound in geo-
metrical terms, as an infi nitely divisible continuum, and those who adopted 
an analysis based rather on arithmetic.  11    Further afi eld I may simply remark 
that the methods and aims of historiography are the subject of explicit 
comment from Herodotus onwards. His views were criticized, implicitly, 
by his immediate successor Th ucydides, who contrasts history as enter-
tainment with his own ambition to provide what he calls a ‘memorial for 
eternity’ (1 21). But to achieve that end depended, of course, on the critical 
evaluation of eyewitness accounts, as well as an assumption that certain 
patterns of behaviour repeat themselves thanks to the constancy of human 
nature. 

 With the development of both the practice and the teaching of rhetoric – 
the art of public speaking – goes a new sense of what it takes to persuade an 
audience of the strength of your case – and of the weakness of your rivals’ 
position. Both the orators and the statesmen deployed a rich vocabulary of 
terms, such as  apodeiknumi ,  epideiknumi  and cognates, to express the claim 
that they have proved their point, as to the facts of the matter in question, as 
to the guilt or innocence of the parties concerned, or as to the benefi ts that 
would accrue from the policies they advocated. 

 Yet that very same vocabulary was taken over fi rst by Plato and then 
by Aristotle to  contrast  what they claimed to be strict demonstrations on 
the one hand with the arguments that they now downgraded as merely 
plausible or persuasive, such as were used in the law courts and political 
assemblies – and this takes us back to mathematics, since it provides the 
essential background to the claims that some, but not all, mathematicians 
made about the strictest mode of demonstration that they could deliver. 

  11      Barker  1989 ,  2000 . 
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Aristotle was, of course, the fi rst to propose an explicit defi nition of rigor-
ous demonstration, which must proceed by way of valid deductive argu-
ment from premisses that are not just true, but also necessary, primary, 
immediate, better known than, prior to and explanatory of the conclusions. 
Furthermore Aristotle draws up a more elaborate taxonomy of arguments 
than Plato had done, distinguishing demonstrative, dialectical, rhetorical, 
sophistic and eristic reasoning according fi rst to the aims of the reasoner 
(which might be the truth, or victory, or reputation) and secondly to the 
nature of the premisses used (necessary, probable, or indeed contentious). 
Yet while the ideal that Aristotle sets for philosophy and for mathematics 
is rigorous, axiomatic–deductive, demonstration, he not only allows that 
the rhetorician will rely on what he calls rhetorical demonstration, but 
concedes that in philosophy itself there may be stricter and looser modes, 
appropriate to diff erent subject matter.  12    

 Th e goal the philosophers set themselves was certainty – where the con-
clusions reached were, supposedly, immune to the types of challenges that 
always occurred in the law courts and assemblies. Yet from some points 
of view the best area to exemplify this was not philosophy itself (ontology, 
epistemology or ethics) but, of course, mathematics. However, the attitudes 
of both Plato and Aristotle themselves towards mathematics were distinctly 
ambivalent – not that they agreed on the status of that study. For Plato, 
the inquiries the mathematician engages in are inferior to dialectic itself: 
they are part of the prior training for the philosopher, but do not belong to 
philosophy itself. Th e grounds for this that he puts forward in the  Republic  
are twofold, that the mathematician uses diagrams and that he takes his 
‘hypotheses’ for granted, as ‘clear to all’.  13    So although mathematics studies 
intelligible objects and so is superior to any study devoted to perceptible 
ones, it is inferior to dialectic which is purportedly based ultimately on an 
‘unhypothesised starting point’, the idea of the Good. 

 Aristotle, by contrast, clearly accepts that mathematical arguments can 
meet the requirements of the strictest mode of demonstration, since he 
privileges mathematical examples to illustrate that mode in the  Posterior 

  12      Lloyd  1996 :  ch. 1 . 
  13      Th e interpretation of the expression ‘as clear to all’,  hōs panti phanerōn , in the  Republic  

510d1, is disputed. My own view is that Plato is unlikely not to have been aware that many 
of the hypotheses adopted by the mathematicians were contested (including for example the 
defi nitions of straight line and point). When Socrates says that the mathematicians give no 
account to themselves or anyone else about their starting-points, it would seem that this is 
their  claim , rather than (as it has generally been taken) their  warrant . Burnyeat ( 2000 : 37), 
however, has argued that there is no criticism of mathematics in this text, but simply an 
observation of an inevitable feature of their methods. 
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Analytics . But mathematics suff ers from a diff erent shortcoming, in his 
view, which relates to the ontological status of the subject matter it deals 
with. Unlike Plato, who suggested that mathematics studies separate intelli-
gible objects that are intermediate between the Forms and sensible particu-
lars, Aristotle argued that mathematics is concerned with the mathematical 
properties of physical objects.  14    While physical objects meet the require-
ments of substance-hood, what mathematics studies belongs rather to the 
category of quantity than to that of substance. 

 While Plato and Aristotle disagreed about the highest mode of phil-
osophizing, ‘dialectic’ in Plato’s case, ‘fi rst philosophy’ in Aristotle’s, they 
both considered philosophy to be supreme and mathematics to be sub-
ordinate to it. Yet mathematics obviously delivered demonstrations, and 
exemplifi ed the goal of the certainty and incontrovertibility of arguments, 
far more eff ectively than metaphysics, let alone than ethics. Once Euclid’s 
 Elements  had shown how virtually the whole of mathematical knowledge 
could be represented as a single, comprehensive system, derived from a 
limited number of indemonstrable starting points, that model exerted very 
considerable infl uence as an ideal, not just within the mathematical disci-
plines, but well beyond them.  15    Euclid’s own  Optics , like many treatises in 
harmonics, statics and astronomy, proceeded on an axiomatic–deductive 
basis, even though the actual axioms Euclid invoked in that work are prob-
lematic.  16    More remarkably Galen sought to turn parts of medicine into an 
axiomatic–deductive system just as Proclus did for theology in his  Elements 
of Th eology .  17    Th e prestige of proof ‘in the geometrical manner’,  more 
geometrico , made it the ideal for many investigations despite the apparent 
diffi  culties of implementing it. 

 Th e chief problem lay not with deductive argument itself, but with its 
premisses. Aristotle had shown that strict demonstration must proceed 

  14      Lear  1982 . 
  15      As noted, the question of whether Hippocrates of Chios had a clear notion of ultimate 

starting-points or axioms in his geometrical studies is disputed. In his quadratures of 
lunes he takes a starting-point that is itself proved, and so not a primary premiss. Ancient 
historians of mathematics mention the contributions of Archytas, Eudoxus, Th eodorus and 
Th eaetetus leading up to Euclid’s own  Elements , but while the commentators on that work 
identify particular results as having been anticipated by those and other mathematicians, the 
issue of how systematic their overall presentation of mathematical knowledge was remains 
problematic. 

  16      Th us one of Euclid’s defi nitions in the  Optics  (def. 3, 2.7–9: cf. Proposition 1, 2.21–4.8) states 
that those things are seen on which visual rays fall, while those are not seen on which they do 
not. Th at seems to suggest that visual rays are not dense, a conception that confl icts with the 
assumption of the infi nite divisibility of the geometrical continuum. See Brownson  1981 ; Smith 
 1981 ; Jones  1994 . 

  17      Lloyd  2006c . 
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from premisses that are themselves indemonstrable – to avoid the twin 
fl aws of circular argument and an infi nite regress. If the premisses could 
be proved, then they should be, and that in turn meant that they could 
not be considered ultimate, or primary, premisses. Th e latter had to be 
self-evident,  autopista , or  ex heautōn pista . Yet the actual premisses we fi nd 
used in diff erent investigations are very varied. To start with, the kinds 
or categories of starting points needed were the subject of considerable 
terminological instability. Aristotle distinguished three types, defi nitions, 
hypotheses and axioms, the latter being subdivided into those specifi c to 
a particular study, such as the equality axiom, and general principles that 
had to be presupposed for intelligible communication, such as the laws of 
non-contradiction and excluded middle. Euclid’s triad consisted of defi ni-
tions, common opinions (including the equality axiom) and postulates. 
Archimedes in turn begins his inquiries into statics and hydrostatics by 
setting out, for example, the postulates,  aitēmata , and the propositions that 
are to be granted,  lambanomena , and elsewhere the primary premisses are 
just called starting points or principles,  archai . 

 As regards the actual principles that fi gure in diff erent investigations, they 
were far from confi ned to what Aristotle or Euclid would have accepted as 
axioms. In Aristarchus’ exploration of the heliocentric hypothesis, he set out 
among his premisses that the fi xed stars and the sun remain unmoved and 
that the earth is borne round the sun on a circle, where that circle bears the 
same proportion to the distance of the fi xed stars as the centre of a sphere to 
its surface. Archimedes, who reports those hypotheses in the  Sand-Reckoner  
2 218.7–31, remarks that strictly speaking that would place the fi xed stars 
at infi nite distance. Th e assumption involves, then, what we would call an 
idealization, where the error introduced can be discounted. But in his only 
extant treatise,  On the Sizes and Distances of the Sun and Moon , Aristarchus’ 
assumptions include a value for the angular diameter of the moon as 2°, a 
fi gure that is far more likely, in my view, to have been hypothetical in the 
sense of adopted purely for the sake of argument, than axiomatic in the 
sense of accepted as true. Meanwhile outside mathematics, we fi nd Galen, 
for example, taking the principles that nature does nothing in vain, and 
that nothing happens without a cause, as indemonstrable starting points 
for certain deductions in medicine. In Proclus, the physical principles that 
natural motion is from, to, or around the centre, are similarly treated as 
indemonstrable truths on which natural philosophy can be based. 

 Th e disputable character of many of the principles adopted as axiomatic 
is clear. Euclid’s own parallel postulate was attacked on the grounds that 
it should be a theorem proved within the system, not a postulate at all, 
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although attempts to provide a proof all turned out to be circular. Yet the 
controversial character of many primary premisses in no way deterred 
investigators from claiming their soundness. Th e demand for arguments 
that are unshakeable or immovable, unerring or infallible, infl exible in the 
sense of not open to persuasion, indisputable, irrefutable or incontrovert-
ible is expressed by diff erent authors with an extraordinary variety of terms. 
Among the most common are  akinēton  (immovable), used for example by 
Plato at  Timaeus  51e,  ametapeiston  or  ametapiston  (not subject to persua-
sion), in Aristotle’s  Posterior Analytics  72b3 and Ptolemy’s  Syntaxis  1 1 
6.17–21,  anamartēton  (unerring), in Plato’s  Republic  339c,  ametaptōton  
(unchanging) and  ametaptaiston  (infallible), the fi rst in Plato’s  Timaeus  29b 
and Aristotle’s  Topics  139b33, and the second in Galen, K 17(1) 863.3, and 
especially the terms  anamphisbētēton , incontestable (already in Diogenes of 
Apollonia Fr. 1 and subsequently in prominent passages in Hero,  Metrica  
3 142.1, and in Ptolemy,  Syntaxis  1 1 6.20 among many others) and  anel-
egkton , irrefutable (Plato,  Apology  22a,  Timaeus  29b, all the way down to 
Proclus in his  Commentary on Euclid’s Elements  68.10).  18    

 Th e pluralism of Greek mathematics thus itself has many facets. Th e 
actual practices of those who in diff erent disciplines laid claim to the title of 
 mathēmatikos  varied appreciably. Th ey range from the astrologer working 
out planetary positions for a horoscope, to the arithmetical proofs and use 
of symbolism discussed by Mueller and Netz in their chapters, to the proof 
of the infi nity of primes in Euclid or that of the area of a parabolic segment 
in Archimedes. Th ere was as much disagreement on the nature of the 
claims that ‘mathematics’ could make as on their justifi cation. One group 
asserted the pre-eminence of mathematics on the grounds that it achieved 
certainty, that its arguments were incontrovertible. Many philosophers and 
quite a few mathematicians themselves joined together in seeing this as the 
great pride of mathematics and the source of its prestige. But the disput-
able nature of the claims to indisputability kept breaking surface, either 
in general or in relation to particular results. Moreover while there was 
much deadly serious searching aft er certainty, there was also much playful-
ness, the ‘ludic’ quality that Netz has associated with other aspects of the 

  18      It is striking that the term  anamphisbētēton  may mean indisputable or undisputed, just as 
in Th ucydides (1 21) the term  anexelegkton  means beyond refutation (and so also beyond 
verifi cation). In neither case is there any doubt, in context, as to how the word is to be 
understood. Th at is less clear in the case of the chief term for ‘indemonstrable’,  anapodeikton , 
which Galen has been seen as using of what has not been demonstrated (though capable 
of demonstration) although in Aristotle it applies purely to what is incapable of being 
demonstrated (see Hankinson  1991 ). 
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 aesthetics that began to be cultivated in the Hellenistic period.  19    In the case 
of mathematics, there were occasions when its practitioners delighted in 
complexity and puzzlement for their own sakes. 

 From a comparative perspective what are the important lessons to be 
learnt from the material I have thus cursorily surveyed in this discussion? 
Th e points made in my last paragraph provide the basis for an argument 
that tends to turn a common assumption about Greek mathematics on its 
head. While one image of mathematics that many ancients as well as quite 
a few modern commentators promoted has it that mathematics is the realm 
of the indisputable, it is precisely the disputes about both fi rst-order prac-
tices and second-order analysis that mark out the ancient Greek experience 
in this fi eld. Divergent views were entertained not just about what ‘math-
ematics’ covered, but on what its proper aims and methods should be. Th e 
very fl uidity and indeterminacy of the boundaries between diff erent intel-
lectual disciplines may be thought to have contributed to the construction 
of that image of mathematics as the realm of the incontrovertible – con-
tested as that image was. But we may remark that that idea owed as much to 
the ruminations of the philosophers – who used it to propose an ideal of a 
‘philosophy’ that could equal and indeed surpass mathematics – as it did to 
the actual practices of the mathematicians themselves. 

 It may once have been assumed that the development of the axiomatic–
deductive mode of demonstration was an essential feature of the develop-
ment of mathematics itself. But as other studies in this volume amply show, 
there are plenty of ancient traditions of mathematical inquiry that got on 
perfectly well, grew and fl ourished, without any idea of the need to defi ne 
their axiomatic foundations. In Greece itself, as we have seen, it is far from 
being the case that all those who considered themselves, or were considered 
by others, to be mathematicians thought that axiomatics was obligatory. 

 Th is raises, then, two key questions with important implications for 
comparativist studies. First how can we begin to account for the particular 
heterogeneity of the Greek mathematical experience and for the way in 
which the axiomatic–deductive model became dominant in some quarters? 
Second what were the consequences of the hierarchization we fi nd in some 
writers on the development and practice of mathematics itself? 

 In relation to the fi rst question, my argument is that there was a crucial 
input from the side of philosophy, in that it was the philosopher Aristotle 
who fi rst explicitly defi ned rigorous demonstration in terms of valid 
 deductive argument from indemonstrable primary premisses – an ideal 

  19      Netz  2009 . 
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that he promoted in part to create a gap between demonstrative reasoning 
and the merely plausible arguments of orators and others. Whether or how 
far Aristotle was infl uenced by already existing mathematical practice is a 
question we are in no position to answer defi nitively. But certainly his was 
the fi rst explicit defi nition of such a style of demonstration, and equally 
clearly soon aft erwards Euclid’s  Elements  exemplifi ed that style in a more 
comprehensive manner than any previously attempted. 

 From this it would appear that it was the particular combination of 
cross-disciplinary and interdisciplinary rivalries in Greece that provided 
an important stimulus to the developments we have been discussing. 
Elsewhere in other mathematical traditions there was certainly competi-
tion between rival practitioners. It is for the comparativist to explore how 
far the rivalries that undoubtedly existed in those traditions conformed to 
or departed from the patterns we have found in Greece. 

 Th en on the second question I posed of the consequences of the proposal 
by certain Greeks themselves of a hierarchy in which axiomatic–deductive 
demonstration provided the ideal, we must be even-handed. On the one 
hand we can say that with the development of axiomatics there was a gain 
in explicitness and clarity on the issue of what assumptions needed to be 
made for conclusions that could claim certainty. On the other there was evi-
dently also a loss, in that the demand for incontrovertibility could detract 
attention from heuristics, from the business of expanding the subject and 
obtaining new knowledge. Th is is particularly evident when Archimedes 
remarks that conclusions obtained by the use of his Method had thereaft er 
to be proved rigorously using the standard procedures of the method of 
exhaustion. If we can recognize – with one Greek point of view – that there 
was good sense in the search for axioms insofar as that identifi ed and made 
explicit the foundations on which the deductive structure was based, we 
should also be conscious – with another Greek opinion indeed – of a pos-
sible confl ict between that demand for incontrovertibility and the need to 
get on with the business of discovery.                         
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 9     Generalizing about polygonal numbers 
in ancient Greek mathematics    

   Ian     Mueller      

 Introduction 

 Th e main source for our information about the Greek handling of what are 
called polygonal numbers is the  Introduction to Arithmetic  of Nicomachus 
of Gerasa ( c . 100  ce ).  1   Heath says of the  Introduction  that “Little or nothing 
in the book is original, and, except for certain defi nitions and refi ne-
ments of classifi cation, the essence of it evidently goes back to the early 
Pythagoreans.”  2   I am not interested in this historical claim, the evidence 
for which is very slight; indeed I am not interested in chronology at all but 
only in certain features of Nicomachus’ treatment of polygonals, which I 
discuss in  Section 1 , and in the general argumentative structure of a short 
treatise by Diophantus called  On Polygonal Numbers ,  3   which I discuss in 
 Section 2 .   

 1.     Nicomachus of Gerasa 

 In the  Introduction  Nicomachus makes a contrast between the standard 
Greek way of writing numbers, in which, e.g., 222 is written σκβ, where σ 
represents 200, κ 20, and β 2, and what he says is a more natural way: 

  ii .6.2 First one should recognize that each letter with which we refer to a number . . .
signifi es it by human convention and agreement and not in a natural way; the 
natural, direct ( amethodos ), and consequently simplest way to signify numbers 
would be the setting out of the units in each number in a line side by side . . . : 

     1      Greek text: Hoche  1866 ; English translation: D’Ooge  1926 ; French translation: Bertier  1978 . 
Th ere is material parallel to Nicomachus’ presentation in Th eon of Smyrna (Hiller  1878 ). For 
dates of individuals I use Toomer’s articles in  Th e Oxford Classical Dictionary  (Hornblower and 
Spawforth  1996 ). 

     2      Heath  1921 :  i  99. 
     3      Greek text: T1893: 450,1–476,3; French translation: Ver Eecke  1926 . I do not discuss the fi nal 

part of the treatise (476,4–480,2), a broken-off  and inconclusive attempt to show how to fi nd 
how many kinds of polygonal a given number is.  Th e Oxford Classical Dictionary  locates 
Diophantus in the interval between 150  bce  and 280  ce . Heath  1921 :  ii  448 says that “he 
probably fl ourished A.D. 250 or not much later.” 
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 unit     α, 
 two     αα, 
 three     ααα, 
 four     αααα, 
 fi ve     ααααα,  

and so on. 

 Nicomachus’ “natural” representation of numbers would seem to break 
down the customary Greek contrast between the numbers and the unit, but 
Nicomachus insists that it does not: 

  ii .6.3 Since the unit has the place and character of a point, it will be a principle 
( arkhê ) . . . of numbers . . . and not in itself ( oupô ) . . . a number, just as the point is 
a principle of line or distance and not in itself a line or distance.   

 We fi nd a close analog of Nicomachus’ “natural” representation of 
numbers in the account of fi nitary number theory in Hilbert and Bernays’ 
great work  Grundlagen der Mathematik , except that in the  Grundlagen  the 
alphas are replaced by strokes. As that work makes clear, this representa-
tion provides a basis for developing all of elementary arithmetic, including 
everything known to the Greeks. Much the most important feature of the 
representation in this regard is the treatment of the numbers as formed 
from an initial object (the unit or one) by an indefi nitely repeatable succes-
sor operation which always produces a new number. Th is treatment vali-
dates defi nition and proof by mathematical induction, the core of modern 
number theory. Th e fi nitary arithmetic of Hilbert and Bernays rests essen-
tially on the intuitive manipulation of sequences of strokes (units) together 
with elementary inductive reasoning.  4   It is diffi  cult for me to see any sub-
stantial diff erence between the manipulation of sequences of strokes or 
alphas and the manipulation of lines and fi gures in what is frequently called 
cut-and-paste geometry; the objects are diff erent, but the reasoning seems 
to me to be in an important sense the same. 

 I mention this modern form of elementary arithmetic only to provide a 
contrast with its ancient forebears. Nicomachus relies heavily on the notion 
of numbers as multiplicities of units and the representation of them as col-
lections of alphas, but, aft er he has introduced his natural representation, it 
by and large vanishes in favor of a much more clearly geometric or confi gu-
rational representation in which three is a triangular number, four a square 
number, and fi ve a pentagonal number ( Figure 9.1 ).  

     4      In this paper I use words like “inductive” and “induction” only in connection with 
mathematical induction. 
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 Nicomachus also mentions hexagonal, heptagonal, and octagonal 
numbers, and there is no question that he has the idea of an  n -agonal 
number, for any  n , but he only expresses this with words like “and so on 
forever in the direction of increase” ( aei kata parauxêsin houtôs ;  ii .11.4). It 
is clear that Nicomachus intends to make some kind of generalization, but 
it is not at all clear what, if any, theoretical or mathematical ideas underlie 
it. Any connection between what he says and the natural representation 
of numbers is at best indirect. Nicomachus is relying on the idea that the 
numbers go on forever, but much more central to his account of polygonal 
numbers is the geometric fact that an  n -agon is determined by the  n  points 
which are its vertices. If induction lies behind the reasoning, it is not made 
at all explicit. 

 I turn now to some further features of what Nicomachus says. Th e fi rst 
sentence of his description of triangular numbers is quite opaque, but it is 
clearly intended to bring out their confi gurational aspect. I quote it in the 
translation of d’Ooge: 

 II.8.1 A triangular number is one which, when it is analyzed into units, shapes into 
triangular form the equilateral placement of its parts in a plane. Examples are 3, 6, 
10, 15, 21, 28, and so on in order. For their graphic representations ( skhêmatograph-
iai ) will be well-ordered and equilateral triangles . . . .   

 Here again we have the thought of continuing indefi nitely. Nicomachus 
now indicates the arithmetical procedure for generating these triangular 
numbers, again insisting on the distinction between the unit and a number 
even though leaving it aside would simplify his description. 

 And, proceeding as far as you wish, you will fi nd triangularization of this kind, 
making the thing which consists of a unit fi rst of all most elementary, so that 
the unit may also appear as  potentially  a triangular number, with 3 being  actually  
the fi rst. 

  ii .8.2 Th e sides <of these numbers> will increase by consecutive number, the side 
of the potentially fi rst being one, that of the actually fi rst (i.e., 3) two, that of the 
actually second (i.e., 6) three, that of the third four, of the fourth fi ve, of the fi ft h six, 
and so on forever.   

 Figure 9.1      Geometric representation of polygonal numbers.    
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 If we ignore the distinction between a unit and a number,  5   we may express 
Nicomachus’ claim here as: 

 Th e side of the  n th (actual or potential) triangular number is  n .   

 Nicomachus now turns to deal more explicitly with the question of the 
relationship between the sequence of triangular numbers and the “natural” 
numbers: 

  ii .8.3 Triangular numbers are generated when natural number is set out in 
sequence ( stoikhêdon ) and successive ones are always added one at a time 
starting from the beginning, since the well-ordered triangular numbers are 
brought to completion with each addition and combination. For example, 
from this natural sequence

  1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 

if I take the very fi rst item I get the potentially fi rst triangular number, 1:

  α 

then, if I add to it the next term, I get the actually fi rst triangular number, 
since 3 is 2 and 1, and in its graphic representation it is put together as 
follows: two units are placed side by side under one unit and the number is 
made a triangle:

  α

 α      α 

And then, following this, if the next number, 3, is combined with this and 
spread out into units and added, it gives and also graphically represents 6, 
which is the actually second triangular number:

  α

 α       α

 α      α       α    

 Nicomachus continues in this vein for the fi rst seven (potential and actual) 
triangular numbers, essentially showing that: 

 Th e  n th triangular number is the sum of the fi rst  n  “natural” numbers.   

     5      As I shall sometimes do, without – I hope – introducing any confusion or uncertainty. 
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 He proceeds to show in the same way that: 

 Th e  n th square number is the sum of the fi rst  n  odd numbers and its side is  n .   

 but in this case the odd numbers are added so as to preserve the square 
shape ( Figure 9.2 ).  

 Th e formulation corresponding to the presentation of the pentagonal 
numbers is: 

 Th e  n th pentagonal number is the sum of the fi rst  n  numbers  x 1,  x 2, . . . ,  x   n   which 
are such that  x   i +1  =  x   i   + 3, and its side is  n .   

 Th e fi rst three are represented below ( Figure 9.3 ).  

 We are not given a graphic representation of the the next pentagonal num-
ber 22, but its representation would certainly be the following ( Figure 9.4 ):  

 Figure 9.3      Th e generation of the fi rst three pentagonal numbers.    

α α α 

1 α α α α 

α α α α α 

1 + 4 α α α 

α α α 

1 + 4 + 7 

 Figure 9.2      Th e generation of square numbers.    
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1 + 3 + 5 + 7. 
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 Nicomachus proceeds through the octagonal numbers without fi gures, 
making clear that: 

 [Nic*]. Th e sum of the fi rst  n  numbers  x  1 ,  x  2 , . . . ,  x  n  which are such that  x   i +1  =  x  i  +  j  
is the  n th  j +2-agonal number and its side is  n .   

 He then turns to showing that his presentation of polygonal numbers is in 
harmony with geometry (<hê>  grammikê  < didaskalia >), something which 
he says is clear both from the graphic representation and from the following 
considerations: 

  ii .12.1 Every square fi gure divided diagonally is resolved into two triangles and 
every square number is resolved into two consecutive triangulars and therefore is 
composed of two consecutive triangulars. For example, the triangulars are:

  1, 3, 6, 10, 15, 21, 28, 36, 45, 55, etc., 

and the squares are:

  1, 4, 9, 16, 25, 36, 49, 64, 81, 100. 

If you add any two consecutive triangulars whatsoever you will always produce 
a square, so that in resolving any square you will be able to make two triangulars 

 Figure 9.4      Th e graphic representation of the fourth pentagonal number.    
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from them. And again if any triangle is joined to any square fi gure  6   it produces 
a pentagon, for example if the triangular 1 is joined to the square 4, it makes the 
pentagonal 5, and if the next <triangular>, that is 3, is added to the next <square> 
9 it makes the pentagonal 12, and if the following <triangular> 6 is added onto the 
following <square> 16, it gives the following <pentagonal> 22, and 25 added to 10 
gives 35, and so on forever.   

 Nicomachus states similar results for adding triangulars to pentagonals to 
get hexagonals, to hexagonals to get heptagonals, and to heptagonals to get 
octagonals, “and so on  ad infi nitum .” He introduces a table ( Table 9.1 ) as an 
aid to memory: 

and describes some of the relevant sums, results which we might formulate 
as:  

 Th e  n +1th square number is the  n th triangular number plus the  n +1th triangular 
number; 
 Th e  n +1th pentagonal number is the  n th triangular number plus the  n +1th square 
number,   

 or, generally, 

 Th e  n +1th  k +1-agonal number is the  n th triangular number plus the  n +1th  k -agonal 
number.   

 At this point I would like to introduce some of Heath’s remarks about 
Nicomachus’  Introduction : 

 It is a very far cry from Euclid to Nicomachus. Numbers are represented in Euclid 
by straight lines with letters attached, a system which has the advantage that, as in 
algebraical notation, we can work with numbers in general without the necessity of 
giving them specifi c values . . . . Further, there are no longer any proofs in the proper 
sense of the word; when a general proposition has been enunciated, Nicomachus 
regards it as suffi  cient to show that it is true in particular instances; sometimes we 
are left  to infer the proposition by induction from particular cases which are alone 
given. . . . probably Nicomachus, who was not really a mathematician, intended his 

 Table 9.1:      

  Triangles    1    3     6    10    15    21     28     36     45     54  
  Squares    1    4     9    16    25    36     49     64     81    100  
  Pentagons    1    5    12    22    35    51     70     92    117    145  
  Hexagons    1    6    15    28    45    66     91    120    153    190  
  Heptagons    1    7    18    34    55    81    112    148    189    235  7    

     6      Here some exaggeration, since the triangle and the square have to “fi t together.” 
     7      Apparently the octagons are missing. 
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 Introduction  to be, not a scientifi c treatise, but a popular treatment of the subject 
calculated to awaken in a beginner an interest in the theory of numbers . . . . Its 
success is diffi  cult to explain except on the hypothesis that it was at fi rst read by 
philosophers rather than mathematicians . . . , and aft erwards became generally 
popular at a time when there were no mathematicians left , but only philosophers 
who incidentally took an interest in mathematics.  8     

 Heath’s remarks here are aimed at the whole of the  Introduction , but I 
wish only to consider them in relation to Nicomachus’ treatment of polygo-
nal numbers. Th ere is no question that, as Heath also notes, Nicomachus’ 
fl owery and imprecise language is a “far cry” from Euclid’s sparse, formal 
formulations. But the representation of polygonal numbers by straight lines 
would obliterate their confi gurational nature. Nicomachus shows how tri-
angular confi gurations of units can be generated as the series 1, 1+2, 1+2+3, 
etc. But I do not see what he could do to “prove” this fact and, therefore, 
how he could “prove” any fact about polygonal numbers as confi gurations. 
Of course, we know how to prove things about polygonal numbers, namely 
by eliminating all geometric content and transforming Nic*, which for 
Nicomachus expresses an arithmetical fact about confi gurations, into an 
arithmetical defi nition in which the geometrical terminology is at most a 
convenience, perhaps as follows: 

 [Def geo/arith ].  p  is the  n th  j  + 2-agonal number with side  n  if and only if  p  =  x  1  +  x  2  + 
  ⋅⋅⋅   +  x   n  , where  x   i +1  =  x  i  +  j  and  x  1  = 1.   

 I assume that Fowler had something of this kind in mind when he 
advanced the hypothesis that lying behind Nicomachus’ presentation 
were ancient proofs using mathematical induction.  9   I doubt this very 
much, but the more important point for me is that, unless something like 
Def geo/arith  is used to eliminate the confi gurational aspect of polygonal 
numbers, anything like a Euclidean foundation for the theory of them lies 
well beyond the scope of Greek mathematics.   

 2.     Th e argument of Diophantus’  On Polygonal Numbers  

 In Tannery’s edition of  On Polygonal Numbers  there are four propositions. 
Th e propositions are purely arithmetical and in none of them is there a 
mention of polygonals.  10   I quote them and give algebraic representations 

      8      Heath  1921 :  i  97–9. 
      9      Fowler  1994 : 258. 
  10      When I say that these propositions are purely arithmetical, I only mean to point out the 

absence of the notion of polygonality from the formulations and proofs of the propositions. 
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of their content; in footnotes I give simple algebraic proofs of the results 
in order to show that the results are correct. Diophantus’ arguments are 
 cumbersome and roundabout. 

 [452,2] [Dioph 1] If three numbers exceed one another by an equal amount, then 
eight times the product of the greatest and the middle one plus the square on the 
least produces a square the side of which is equal to the sum of the greatest and 
twice the middle one.  

  if x = y + k and y = z + k, then 8xy + z2 = (x + 2y)2.     11   

 [454,6] [Dioph 2] If there are numbers in any multitude in equal excess, <the 
excess> of the greatest over the least is their excess multiplied by one less than the 
multitude of numbers set out.  

  if x1, x2, . . . xn+1 are such that xi+1 = xi + j then xn+1 − x1 = nj.     12   

 [456,2] [Dioph 3] If there are numbers in any multitude in equal excess, the sum 
of the greatest and least multiplied by their multitude makes a number which is 
double of the sum of the numbers set out.  

  if x1, x2, . . . xn are such that xi+1 = xi + j then
 (xn + x1)n = 2(x1 + x2 + . . . + xn).     13   

 [460,5] [Dioph 4] If there are numbers in any multitude in equal excess starting 
from the unit, then the sum multiplied by eight times their excess plus the square of 
two less than their excess is a square of which the side minus 2 will be their excess 

I do not mean to suggest, nor do I believe, that Diophantus’ reasoning does not include 
geometric elements of the kind we fi nd in the so-called geometric algebra of Book 2 of Euclid’s 
 Elements . But discussion of that issue would require a detailed examination of Diophantus’ 
proofs, a task which I cannot undertake here. 

  11      Proof: Let  x  =  z  + 2 k  and  y  =  z  +  k . Th en we should prove that:  

  8(z + 2k)(z + k) + z2 = ((z + 2k) + 2(z + k))2.   

 But  

  8 ( z + 2k ) ( z + k ) + z 2 = 8 ( z2 + 3zk + 2k2 ) + z2  = 9z2 + 24zk + 16k2 = 
 ( 3z + 4k) 2 = ( ( z + 2k ) + 2z + 2k ) 2 =  ( ( z + 2k ) + 2 (z + k ) ) 2.    

  12      Dioph 2 is suffi  ciently obvious that there is really nothing to prove, the basic idea being that 
  x2 = x1 + j, x3 = x2 + j = x1 + 2j, x4 = x3 + j = x1 + 3j  , and so on. 

  13      We give an inductive proof of Dioph 3. For  n  = 1 the theorem says that   x2 − x1 = 1 . j  . Suppose 
  (x1 + xn)n = 2(x1 + x2 + . . . + xn)  . We wish to show that:  

  (x1 + xn+1)(n + 1) = 2(x1 + x2+ . . . + xn+1).   

 But:  

  (x1 + xn+1)(n + 1) = (x1 + xn + j)(n + 1)
  = (x1 + xn)n + x1 + xn + (n + 1)j = 2(x1 + x2+ . . . + xn) + x1 + nj + xn + j
  = 2(x1 + x2 + . . . + xn) + xn+1 + xn+1 = 2(x1 + x2 + . . . + xn+1).   

 (Th at   xn+1 = x1 + nj   is a trivial reformulation of Dioph 2.) 
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multiplied by a certain number which, when a unit is added to it, is double of the 
multitude of all the numbers set out with the unit.  

  if p = x1 + x2 + . . . + xn, where xi + 1 = xi + j and x1 = 1, then
 p8j + (j − 2)2 = ((2n − 1)j + 2)2 [= ((n + n − 1)j + 2)2].      

 It is easy to prove Dioph 4 using Dioph 2 and 3,  14   as Diophantus does, 
although his argument is cumbersome. Here I wish only to present the 
very beginning of his argument and a diagram, provided by me, represent-
ing it. 

 [460,13] For let AB, CD, EF be numbers in equal excess starting from the unit.  15   
I say that the proposition results. For let there be as many units in GH as the 
numbers set out with the unit. And since the excess by which EF exceeds a unit 
is the excess by which AB exceeds a unit multiplied by GH minus 1,  16   if we set 
out each unit, AK, EL, GM, we will have that LF is KB multiplied by MH. So LF 
is equal to the product of KB, MH. And if we set out KN as 2, we will investigate 
whether, if the sum is multiplied by 8 KB (which is their excess) and the square of 
NB (which is less than their excess by 2) is added, the result is a square of which the 
side minus 2 produces a number which is their excess (KB) multiplied by GH,HM 
together ( Figure 9.5 ).   

Figure 9.5 Diophantus’ diagram, Polygonal Numbers, Proposition 4.

A K N B x2

1 2 j − 2

K B   j 

E L F  xn

1 xn − 1

G M H   n 

1   n − 1

  14      Since:  

  ((2n −1)j + 2)2 − ( j −2)2  
 = 4n2j2 − 4nj2 + j2 + 8nj − 4j + 4 − j2 + 4j − 4  
 = 4n2j2 − 4j2n + 8nj = 4j(n2j − jn + 2n),   

 to prove Dioph 4 we need only prove:  

  2(x1 + x2 + . . . + xn) = n2j − jn + 2n,   

 or, by Dioph 3:  

  (xn + x1)n = n2j − jn + 2n, that is xn+ x1 = nj − j + 2.    

  15      Note that AB, CD, and EF are numbers, not the unit. 
  16      Cf. Dioph 2. 
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 As I have said, the material described thus far in this section is purely arith-
metical. However, if one accepts Def geo/arith , what Diophantus has shown is 
that: 

 [Dioph 4 geo/arith ] if  p  is the  n th  j  + 2-agonal number, then  
 p8j + (j − 2)2 = ((2n − 1)j + 2)2.      

 It is clear from Diophantus’ initial less specifi c statement of what he will 
show that he does think that he can establish this : 

 [450,11] Here it is established ( edokimasthê ) that if any polygonal is multiplied by a 
certain number (which is a function ( kata tên analogian ) of the multitude of angles 
in the polygonal) and a certain square number (again a function of the multitude of 
angles in it) is added, the result is a square.  

  if p is a j + 2-agonal number, there are functions f and c such that 
 f( j + 2)p + c( j + 2) is a square number.      

 Aft er announcing this result Diophantus states the goal of the treatise: 

 [450,16] We will establish this and indicate how one can fi nd a prescribed polygonal 
with a given side and how the side of a given polygonal can be taken.   

 Th at is, 

 how to fi nd (1) the  j  + 2-agonal  p  with side  n  and (2) the side of a  j  + 2-agonal  p .   

 Th is last subject is the concern of the fi nal part of the treatise (472,21–
476,3). Nic* allows one to solve these in a slightly cumbersome mechanical 
way, but what Diophantus proves enables him to give what amounts to 
formulae for the solutions: 

  (1)       p =
((2 1) 2)

2
( 2)

2

8
n j j

j
− + − −

  ,  

  (2)       n p j
j

=
1

2
� 8j ( 2)

2
2

1�–+ −
+   .   

Th is last material is quite mundane, and I shall not discuss it. My major 
concern will be with the material immediately following the presentation 
of the arithmetical results Dioph 1 to 4. For those four propositions are 
purely arithmetical; they do not say anything about polygonal numbers and 
certainly do not establish anything about spatial confi gurations of units. 
It is in the remainder of the treatise that Diophantus tries to establish a 
general truth corresponding to Nic*, but as I have indicated, I believe that it 
is impossible to prove this truth within the confi nes of Greek mathematics. 
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What I will try to explain is the specifi c reason why Diophantus’ attempt 
to do so fails, emphasizing that, although his reasoning is mathematically 
much more elaborate than Nicomachus’, his handling of generalization is 
essentially the same, namely the presentation of examples which make the 
general truth “obvious.” 

 Before turning to that material I want to signal the very fi rst statement in 
 On Polygonal Numbers , which concerns the fi rst (actual) polygonal number 
of each kind: 

 [450,1] Each of the numbers starting from three which increase by one is a fi rst 
polygonal aft er the unit. And it has as many angles as the multitude of units in it. 
Its side is the number aft er the unit, i.e., 2. 3 is triangular, 4 square, 5 pentagonal, 
and so on.   

 Th is is, I think, the only application of Def geo/arith  that Diophantus takes for 
granted, i.e., he takes for granted that: 

 the fi rst  j +2-agonal (aft er 1) has side 2 and is  j  + 2.   

 Aft er making a remark about the ordinary conception of square 
numbers,  17   Diophantus gives (450,11 and 16) the announcement of what 
he is going to prove, which I have already quoted, and proves his four arith-
metical propositions. It is at this point that he fi rst reintroduces the notion 
of a polygonal number in his announcement of what he intends to prove 
next, which is tantamount to Def geo/arith : 

 [468,14] Th ese things being the case, we say that if there are numbers starting from 
the unit in any multitude and in any excess, the whole is polygonal. For it has as 
many angles as the number which is greater than the excess by 2, and the number 
of its sides is the multitude of the numbers set out with the unit.   

 He now invokes Dioph 4: 

 [470,1] For we have shown that the sum of all the numbers set out multiplied by 8 
KB plus the square of NB produces the square of PK.   

 Here Diophantus is working with a fi gure in which the line AKNB of Figure 6
for Dioph 4 is extended to the right so that PK is a representation of 
(2 n  − 1) j  + 2.  18   But to get a representation of  j  + 2 he also extends AKNB to 
the left  ( Figure 9.6 ): 

 [470,4] But also if we posit AO as another unit, we will have KO as two, and KN is 
similarly two.    

  17      [450,9] “It is immediately clear that squares have arisen because they come to be from some 
number being multiplied by itself.” 

  18      Th is specifi cation of PK occurs at 466,1–2. 
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 But now Diophantus is only interested in OB ( j  + 2 = 1 + (1 +  j )), KB ( j ), and 
BN ( j  − 2), and, in his only application of Dioph 1, he says: 

 [470,6] Th erefore OB, BK, BN will exceed one another by an equal amount. 
Th erefore, 8 times the product of the greatest OB and the middle BK plus the square 
of the least BN makes a square the side of which is the sum of the greatest OB and 
2 of the middle BK. Th erefore OB multiplied by 8 KB plus the square of NB is equal 
to the square of OB and 2KB together.  

  (j + 2)8j + (j − 2)2 = (j + 2 + 2j)2.      

 Th is is, of course, just the special case of Dioph 4 in which  n  = 2. To make 
this point clear Diophantus argues that  j  + 2 + 2 j  = (2·2 − 1) j  + 2: 

 [470,13] And the side minus two (OK) leaves 3 KB, which is KB multiplied by three. 
But three plus one is 2 multiplied by 2.   

 Diophantus underlines the analogy with Dioph 4 and then points out that 
OB ( j  + 2) is the fi rst  j  + 2-agonal number: 

 [470,17] . . . the sum of the numbers set out with the unit produces ( poiei ) the same 
problem as OB, but OB is a chance number and is the fi rst polygon {of its kind} 
aft er the unit (since AO is a unit and the second number is AB), and {OB} has two 
as side.   

 So, in addition to proving Dioph 4, Diophantus has proved a special case 
of it in which  n  = 2, a case for which he has asserted that  p  is the fi rst 
 j  + 2-agonal number. Th ese two propositions by themselves do not imply 
that whenever the conditions of Dioph 4 hold,  p  is a  j  + 2-agonal number 
with side  n . But this is precisely what Diophantus asserts:  19   

 [470,21] Th erefore also the sum of all the numbers set out is a polygon with as many 
angles as OB and having as many angles as it is greater by 2 (i.e., by OK) than the 
excess, KB; and it has as side GH, which is the number of the numbers set out with 
the unit.   

  19      Commentators have standardly approved this “reasoning,” or at least not raised any doubts 
about it. See Poselger  1810 : 34–5; Schulz  1822 : 618; Nesselmann  1842 : 475; Heath  1885 : 252; 
Wertheim  1890 : 309; Massoutié  1911 : 26; and Ver Eecke  1926 : 288. 

 Figure 9.6      Diophantus’ diagram,  Polygonal Numbers .    

O A K N B P (2n − 1)j + 2 + 2
1 1 2 j − 2 

O A K N B j + 2

K N B       j       
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 Th ere is no more basis for this generalization than for the generalizations 
we have seen in Nicomachus; indeed, in a sense there is even less since 
Diophantus has considered only fi rst polygonals and shown that they 
satisfy Dioph 4. Like Nicomachus, he clearly could show the same thing for 
any particular example, but that hardly proves his claim or the next one: 

 [470,27] And what is said by Hypsicles in a defi nition  20   has been demonstrated, 
namely: 

 If there are numbers in equal excess in any multitude starting from the unit, 
then, when the excess is one the whole is triangular, when it is two, square, 
three, pentagonal. Th e number of angles is said to be greater than the excess 
by two, and its sides are the multitude of numbers set out with the unit.     

 It is not clear exactly what the defi nition of Hypsicles was.  21   In Diophantus’ 
representation he said something about the fi rst three polygonals, but it 
seems reasonable to suppose that he at least intended a generalization and 
so can be credited with Def geo/arith .  22   But we have no information about how 
he used it – if he did. In any case Diophantus would have been on fi rmer 
footing had he made the defi nition the basis of his treatise rather than pur-
porting to do the impossible, namely demonstrate it. Had he done this he 
would not have had to worry about Dioph 1 and the special case of it which 
he invokes to deal with fi rst  j  + 2-agonal numbers. 

 Diophantus now applies Hypsicles’ defi nition and his own results to tri-
angular numbers. 

 [472,5] Hence, since triangulars result when the excess is one and their sides are the 
greatest of the numbers set out, the product of the greatest of the numbers set out 
and the number which is greater by one than it is double the triangular indicated.  

  If p = x1 + x2 + . . . + xn with xi+1 = xi + 1 and x1 = 1, then p is a triangular 
 with side xn and xn(xn + 1) = 2p.     23     

 Diophantus returns again to fi rst polygonal numbers. He recalls the appli-
cation of Dioph 1 at 470,6. 

 [472,9] And since OB has as many angles as there are units in it, if it is multiplied 
by 8 multiplied by what is less than it by two (that is by the excess; that will be 

  20      D’Ooge  1926 : 246 endorses Gow’s ( 1884 : 87) suggestion that  en horôi  might mean “in a book 
called  Defi nition .” In itself this suggestion seems to me unlikely, but the recurrences of the 
word  horos  in 472,14 and especially 472,20 seem to me to rule it out completely. 

  21      Standard  fl oruit :  c . 150  bce . 
  22      Contrast Nesselmann  1842 : 463. 
  23      Proof: It follows from Hypsicles’ defi nition that   x1 + x2 + . . . + xn   is a triangular number  p  with 

side  n . But by Dioph   2 xn = (n − 1) . 1 + 1 = n  . And by Dioph 3   2(x1 + x2 + . . . + xn) = 
n(xn + x1) = xn(xn + 1)  . 
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8 × KB) <and> the square of what is less than it by 4 is added (that is NB), it pro-
duces a square.  

  j + 2 is a j + 2-agonal and (j + 2)8j + (j − 2)2 is a square.      

 Th is, too, is immediately generalized with no justifi cation. 

 [472,14] And this will be a defi nition ( horos ) of polygonals: 

 Every polygonal multiplied by 8 multiplied by what is less by two than the 
multitude of its angles plus the square of what is less than the multitude of 
angles by 4 makes a square. 

  If  p  is  j  + 2-agonal,  p 8 j  + ( j  − 2) 2  is a square.   

 [472,20] In this way we have demonstrated simultaneously this defi nition of polyg-
onals and that of Hypsicles.   

 In this case the truth which Diophantus purports to establish as a defi ni-
tion is not a defi nition in the standard sense at all, since  n 8 j  + ( j  − 2) 2  can be 
a square even when  n  is not a  j  + 2-agonal; 2·8·3 + (3 − 2) 2  = 7 2 , but 2 is not 
pentagonal.  24   And his claim to have demonstrated it is just as weak as his 
claim to have established Def geo/arith .   

 Conclusion 

 It is certainly not surprising that Diophantus’ treatise on polygonal numbers 
shows great mathematical skill. And it is perhaps also not surprising that its 
sense of logical rigor is at times not superior to that of Nicomachus. Within 
the limits of Greek mathematics there can be no mathematical demonstra-
tion of an arithmetical characterization of confi gurationally conceived 
polygonal numbers. Within those limits Aristotle ( Posterior Analytics  1.6 
(Ross)) was correct to insist that the generic diff erence between arithmetic 
and geometry cannot be breached.                                      

  24      Th is shortcoming is already pointed out in the  editio princeps  of the Greek text of Diophantus 
(Bachet  1621 : 21 of the edition of  On Polygonal Numbers ). What Diophantus says at 472,14 
could serve as a defi nition for triangulars and squares. For, ignoring complications that would 
arise if one tried to avoid “numbers” less than 1, it is easy to prove that: 

   p = 1 + 2 + . . . + n   (i.e.,  p  is a triangular) if and only if  p 8·1 + (3 – 4) 2  is a square (i.e., if and only 
if 8 p  + 1 is a square); 
   p = 1 +3 + . . . + 2n − 1   (i.e.,  p  is a square) if and only if  p 8·2 + (4 – 4) 2  is a square (i.e., if and 
only if 16 p  is a square, i.e., if and only if  p  is a square).   

  It is tempting to think, although it cannot be proved, that Diophantus was misled by the 
truth of these biconditionals to the false notion that Dioph 4 was the basis of a defi nition of 
polygonality in general. 
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 10     Reasoning and symbolism in Diophantus:   
  preliminary observations    

   Reviel     Netz      

 In memoriam D. H. F. Fowler   

 1. Introducing the problem 

 Th is chapter raises two separate questions, one dealing with the role of rea-
soning in Diophantus, the other with the role of symbolism.  1   Needless to 
say, this discussion of symbolism and reasoning in Diophantus is of philo-
sophical interest, as the nature of symbolic reasoning is central to modern 
philosophy of mathematics. My main interest, for this philosophical ques-
tion, is to underline our need to consider the demonstrative function of 
symbolism  cognitively  and  historically . Th e promise of symbolic reasoning 
was oft en seen as a transition into a mode of reasoning where the subjec-
tive mind is excluded, and an impersonal machine-like calculation takes 
its place.  2   But in reality, of course, the turn into symbolic proof must have 
involved the transition from one kind of subjective operation to another, 
from one set of cognitive tools to another. Th e abstract question, concern-
ing the role of formalism as such in mathematics, may blind us to the actual 
cognitive functions served by various formal tools in diff erent historical 
constellations. Th is chapter, then, may serve as an example for this kind of 
cognitive and historical investigation. 

 Th e specifi c question concerning symbolism and reasoning in Diophantus 
is especially diffi  cult and interesting. Ever since the work of Nesselmann 

     1      Th e central idea of this article – that Diophantine symbolism should be primarily understood 
against the wider pattern of scribal practices – was fi rst suggested to me in a conversation with 
David Fowler. I will forever remember, forever miss, his voice. 

     2      Th e locus classicus for that is Wittgenstein’s  Tractatus  (Wittgenstein  1922 ) e.g. 6.126: ‘Whether 
a proposition belongs to logic can be calculated by calculating the logical properties of the 
 symbol  . . . ’ (italics in the original); 6.1262: ‘Proof in logic is only a mechanical expedient to 
facilitate the recognition of tautology, where it is complicated.’ Probably, though, even the 
Wittgenstein of the  Tractatus  would not have denied the possibility of studying the cognitive 
and historical conditions under which a certain ‘mechanical expedient’ in fact ‘facilitates 
the recognition of tautology’. But the thrust of the philosophy of mathematics suggested by 
Wittgenstein’s  Tractatus  was to turn attention away from the proving mind and hand and on to 
the proof ’s symbols. 
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( 1842 ), it has been widely recognized that Diophantus’ symbols are not 
the same as those of modern algebra: his was a  syncopated , not a  symbolic  
algebra, the so-called symbols being essentially abbreviations (for a fuller 
account of what that means, see Section 2 below). Building on this under-
standing, we need to avoid the Scylla and Charybdis of Diophantus studies. 
One, which may be called the great-divide-history-of-algebra, stresses that 
abbreviations are not symbols: Diophantus is not Vieta, and Diophantus’ 
symbols have no role in his reasoning.  3   Th e other, which may be called the 
algebra-is-algebra-history-of-algebra, stresses that symbols (even when 
abbreviations in character) are symbols: Diophantus is a symbolic author 
and his writings directly prepare the way for modern algebra (this is 
assumed with diff erent degrees of sophistication in many general histo-
ries of mathematics).  4   In this chapter, I shall try to show how Diophantus’ 
symbols derive from his specifi c historical context, and how they serve 
a specifi c function in his own type of reasoning: the symbols are neither 
purely ornamental, nor modern. 

 So I do believe that Diophantus’ use of symbolism has a functional role 
in his reasoning. But, even apart from any such function, it is interesting 
to consider the two together. Th is combination may serve to characterize 
Diophantus’ work. First, the work stands out from its predecessors in the 
Greek mathematical tradition, indeed in the Greek literary tradition, by its 
foregrounding of a special set of symbols. Th is foregrounding is apparent 
not only in that the work in its entirety makes use of the symbols, but also 
in that the introduction to the work – uniquely in Greek mathematics – is 
almost entirely dedicated to the presentation of the symbolism.  5   Second, 
the work stands out from its predecessors in the Mediterranean tradition 
of numerical problems in its foregrounding of demonstration (in a sense 
that we shall try to clarify below). Th e text takes the form of a set of argu-
ments leading to clearly demarcated conclusions, throughout  organized 

     3      For this, see especially Klein  1934 –6, a monograph that makes this claim to be the starting 
point of an entire philosophy of the history of mathematics. 

     4      See e.g. Bourbaki  1991 : 48; Boyer  1989 : 204; besides of course being a theme of Bashmakova 
1977). Bourbaki is laconic and straightforward (Bourbaki  1991 : 48): ‘Diophantus uses, for 
the fi rst time, a literal symbol to represent an unknown in an equation.’ Boyer is balanced 
and careful. Noting Nesselmann’s classifi cation, and stating that Diophantus was ‘syncopated’, 
he goes on to add that (Boyer  1989 : 204) ‘with such a notation Diophantus was in a position 
to write polynomials in a single unknown almost as concisely as we do today’, however, ‘the 
chief diff erence between the Diophantine syncopation and the modern algebraic notation 
is in the lack of special symbols for operations and relations, as well as of the exponential 
notation’. 

     5      Th e introduction is in Tannery I.2–16, of which  i .4.6–12.21 is organized around the 
presentation of the symbolism. 
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by such connectors as ‘since’, ‘therefore’, etc. Since the text is at the inter-
section of the Greek mathematical tradition with the Mediterranean 
tradition of numerical problems, it follows that these two characteristics 
– foregrounding symbolism and foregrounding reasoning – may be taken 
to defi ne it. 

 Th is chapter follows on some of my past work in the cognitive and 
semiotic practices of Greek mathematics. I bring to bear, in particular, 
three strands of research. I extend the theoretical concepts of deuteronomy 
(Netz  2004 ) and analysis as a tool of presentation (Netz  2000 ), arguing that 
Diophantus was primarily a deuteronomic author – intent on rearranging, 
homogenizing and extending past results – employing the format of analy-
sis as a tool of presentation that highlights certain aspects of his practice. I 
further contrast Diophantus’ use of symbolism with the geometrical prac-
tice of formulaic expressions (N1999,  ch. 4 ), arguing that Diophantus’ use 
of symbolism is designed to display the rationality of transitions inside the 
proof and that this display is better supported, in the case of Diophantus’ 
structures, by symbols as opposed to verbal formulae. In short: because 
Diophantus is deuteronomic, he uses analysis; because he uses analysis, he 
needs to display the rationality of transitions; because he needs to display 
the rationality of transitions, he uses symbols.  6   

 Further, Diophantus needs to display rationality in a precise way: both 
allowing quick calculation of the relationship between symbols, as well 
as allowing a synoptic – as well as semantic – grasp of the contents of 
the terms involved. To do this, he uses symbols in a precise way, which 
I call bimodal. Th e symbols are simultaneously verbal and visual, and in 
this way they provide both quick calculation and a semantic grasp. What 
fi nally makes Diophantus’ symbols have this property? Th is, I argue, 
derives from the nature of the symbolism as used in scribal practice in 
pre-print Greek civilizations. Th is involves the one main piece of empirical 
research underlying this chapter. I have studied systematically a group of 
Diophantine manuscripts, and consulted others, to show a result which is 
mainly negative: it must be assumed that, in the manuscript tradition, the 
decision whether to employ a full word or its abbreviation was left  to the 

     6      By ‘Diophantus’ I mean – as we typically do – ‘the author of the  Arithmetica ’. I have no fi rm 
views on the authorship of  On Polygonal Numbers , a work closer to the mainstream of Greek 
geometrical style. If indeed the two works had the same author (as the manuscripts suggest) we 
will fi nd that, for diff erent purposes, Diophantus could deploy diff erent genres – not a trivial 
result – but neither one to change our understanding of the genre of the  Arithmetica . But we 
are not in a position to make even this modest statement so that it is best to concentrate on the 
 Arithmetica  alone. 
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scribe’s  discretion, and no pattern was assumed at the outset. Th e two – 
full word and its abbreviation – acted as  allographs . Th is may be seen as a 
consequence of the scribal culture within which Diophantus operated. Th e 
upshot of this chapter, then, is to situate Diophantus historically in terms of 
a precise deuteronomic, scribal culture, and within the context of practices 
available to him from elite Greek mathematics.   

   2. Notes on symbolism in  D iophantus 

 We recall Nesselmann’s observation: Diophantus belongs to the category 
of ‘syncopated algebra’, where the text is primarily arranged as discursive, 
natural language (if of course in the rigid style typical of so much Greek 
mathematics), with certain expressions systematically abbreviated.  7   In this, 
it is generally understood to constitute a stepping stone leading from the 
rhetorical algebra of, say (if we allow ourselves such heresy),  Elements  Book 
 ii , to the fully symbolic algebra of the moderns. 

 As a fi rst approximation, let us take a couple of sentences printed in 
Tannery’s edition (prop. I.10, T1893,  i . 28.13–15): 

 (1) Τετάχθω ὁ προστιθέμενος καὶ ἀϕαιρούμενος ἑκατέρῳ ἀριθμῷ ςΑ. κἂν μὲν τῷ Κ 
προστεθῇ, γίνεται ςΑ Μ ο Κ.   
 Let the <number> which is added and taken away from each number <sc. of the 
two other given numbers> be set down, <namely> ςΑ <:Number 1>. And if it is 
added to 20, result: ςΑ Μ ο Κ <:number 1 Monads 20>. 

 We see here the most important element in Diophantus’ symbolism: 
a special symbol for ‘number’, ς. We also see a transparent abbreviation 
for ‘monads’, Μ ο . To these should be added especially: two transparent 
abbreviations, for ‘dunamis’ (eff ectively, ‘square’), Δ υ , and for ‘cube’, Κ υ . 
Symbols for higher powers exist and are made by combining symbols for 
the low powers, e.g. ΔΚ υ , dunamis–cube, or the fi ft h power. An appended 
 χ  turns such a power into its related unit fraction: a dunamis, Δ υ , can 
become a dunamiston, Δ υχ , or the unit fraction correlated with a dunamis. 
(Th e symbol itself is reminiscent in form especially of the standard scribal 
symbols for case endings.) Finally we should mention a special symbol for 

     7      For a previous, brief characterization of Diophantus’ symbolism in practice, see Rashed  1984 : 
lxxxi–lxxxii, whose position I follow here. Heath  1885 : 57–82 may still be read with profi t. In 
general, many of the claims made in this section were made by past scholars already, and my 
apology for going through this section in detail is that the point is worth repeating – and should 
be seen in detail as an introduction to the following and much more speculative discussion. 
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‘lacking’, roughly an upside-down Ψ (I shall indeed represent it in what 
follows by Ψ, for lack of better fonts. Note that this is to be understood as a 
‘minus’ sign followed by the entirety of the remaining expression – as if it 
came equipped with a set of following parentheses.) Together with Greek 
alphabetic numerals (Α, Β, Ι, Κ, Ρ, Σ for 1, 2, 10, 20, 100, 200 . . .) one has the 
main system with which complex phrases can be formed of the type, e.g. 

 (2) Κ υ ΒΔ υ Α ςΒ Μ ο Γ Ψ Κ υ  Α Δ υ Γ ςΔ Μ ο Α   

 Most of all, Diophantine reasoning has to do with manipulation of such 
phrases. 

 Syntactically, note that such phrases have a fi xed order: one goes through 
the powers in a fi xed sequence (although in terms of Greek syntax, any 
order could be natural). Th e numeral, also, always follows the unit to which 
it refers (this, however, can be explained as natural Greek syntax). Finally, 
there is a fi xed order relative to the ‘lacking’ symbol: the subtrahend is 
always to the right of the symbol. Th is of course follows from the very 
meaning of ‘lacking’. 

 Semantically, we may say that the ‘number’ functions rather like an 
‘unknown’, on which the ‘dunamis’ or the ‘cube’ depend as well (a single 
‘number’ multiplied by itself results in a single ‘dunamis’ which, once again 
multiplied by a ‘number’, yields a ‘cube’). Th e monads, on the other hand, 
are independent of the ‘number’. 

 Let us consider the wider context. When we discuss symbolism in 
Diophantus, we need to describe it at three levels. First, there is the symbol-
ism which Diophantus had explicitly introduced in the preface to his trea-
tise. Second, Diophantus has a number of fairly specialized symbols which 
he did not explicitly set out. Th ird, we should have a sense of the entire 
symbolic regime of the Diophantine page, bringing everything together – 
the markedly Diophantine, and the standard symbolism of Greek scribal 
practice. 

 Th e symbols explicitly introduced by Diophantus are those mentioned 
above (in the order in which Diophantus introduces them): Δ υ , Κ υ , Δ υ Δ, 
ΔΚ υ , Κ υ  Κ, ς, Μ ο ,  χ , Ψ. Th ese then unmistakably belong to the phrases such 
as those of example (2), serving further to underline the importance of this 
type of expression. 

 Beyond that, the manuscripts display a variety of further symbols. 
Tannery systematically represents symbolically in his edition such symbols 
as he feels, apparently, to be markedly Diophantine (on the other hand, he 
always resolves standard scribal abbreviations; more on this below). Th e 
following especially are noticeable among the markedly Diophantine: 
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  Th e alphabetic numerals themselves. While Greek numbers are very 
oft en written out by alphabetic numerals, they are more frequently 
spelled out in Greek writing as the appropriate number words – just 
as we have to decide between ‘5’ and ‘fi ve’. Th e avoidance of number 
words and the use of alphabetical numerals, instead, is therefore a 
decision involving a numerical code.  

  �, for ‘square’ (used here in the meaning of ‘a square number’).  
  �, for ‘the right sides’, in a right-angled triangle. Here they are studied 

as fulfi lling Pythagoras’ theorem and therefore off ering an arena for 
equalities for square numbers. Strangely, Tannery does not print this 
symbol.  

  Αʹ, Βʹ, Γʹ, etc. for ‘fi rst’, ‘second’, ‘third’, etc. Th is is used in the important 
context where several numbers are involved in the problem, e.g. what 
we represent by ‘ n  1 + n  2 =3 n  3 ’ which, for Diophantus, would be ‘the 
fi rst and the second are three times the third’, with ‘fi rst’, ‘second’, etc. 
used later on systematically to refer to the same object. Of course, 
such symbols are not to be confused with their respective numerals 
and they are diff erently written out.  

  Β πλ , Γ πλ , for ‘two times’, ‘three times’, etc. Th is symbolism is based on the 
alphabetic numerals, tucking on to them a transparent abbreviation 
of the Greek form of ‘times’.  

  Ε ΙΓ : this is an especially dramatic notation whereby Diophantus refrains 
from resolving the results of divisions into unit fractions, and instead 
writes out, like in the example above, ‘fi ve thirteenths’ in a kind of 
superscript notation. Tannery further transforms this notation into 
a sort of upside-down modern notation. As long as we do not mean 
anything technical by the word, we may refer to this as Diophantus’ 
‘fraction symbolism’.    

 Th e last few mentioned symbols (with the possible exception of the frac-
tion symbolism) are not unique to Diophantus, but for obvious reasons the 
text has much more recourse to such symbols than ordinary Greek texts so 
that, indeed, they can be said to be markedly Diophantine. 

 One ought to mention immediately that many words, typical to 
Diophantus, are not abbreviated. Th ese fall into two types. First, several 
central relations and concepts – ‘multiply’, ‘add’, ‘given’, etc. – are written 
in fully spelled out forms. In other words, Diophantus’ abbreviations are 
located within the level of the noun-phrase, and do not touch the structure 
of the sentence interrelating the noun-phrases. ‘Lacking’ is the exception to 
the rule that relations are not abbreviated, but it serves to confi rm the rule 
that abbreviations are located at the level of the noun-phrase. Th e ‘lacking’ 
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abbreviation is used inside the noun-phrase of the specifi c form of example 
(2) above, when a quantitative value is set out statically. Th e relation of 
subtraction holding dynamically  between  such noun-phrases – when one 
engages in the  act  of subtracting a value from a quantitative term – this 
operation is referred to by a diff erent verb, ‘take away’ ( aphairein ), which is 
not abbreviated. 

 Further, the logical signposts marking the very rigid form of the 
problem, such as ‘let it be set down’, ‘to the positions’, etc., are fully written 
out. In other words, just as symbolism does not reach the level of the sen-
tence, so it does not reach the level of the paragraph. Th e rule is confi rmed: 
abbreviations are confi ned to the level of the noun-phrase. I shall return to 
discuss the signifi cance of this limitation in Section 4 below. For the time 
being, I note the conclusion, that Diophantus’ marked use of symbolism is 
not co-extensive with Diophantus’ marked use of language. 

 Over and above Diophantus’ marked use of symbolism, it should be 
mentioned that Greek manuscripts, certainly from late antiquity onwards, 
used many abbreviations for common words such as prepositions, con-
nectors, etc.: our own ‘&’, for instance, ultimately derives from such scribal 
practices. Th ere are also many abbreviations of grammatical forms, espe-
cially case markings, so that the Greek nominal root is written, followed 
by the abbreviation for ‘ον’, ‘οις’, etc. as appropriate. Such abbreviations are 
of course in common use in the manuscripts of Diophantus. Most (but not 
all) of such symbols were transparent abbreviations and in general they 
could be considered as a mere aid to swift  writing. Th eir use is as could be 
predicted: the more expensive a manuscript was, the less such abbreviations 
would be used; they are more common in technical treatises than in literary 
works; humanists, proud of their mastery of Greek forms, would tend to 
resolve abbreviations, while Byzantine scribes – oft en scrambling to get as 
much into the page as possible – would also oft en tend to abbreviate. 

 We should mention one scribal abbreviation, which is not at all specifi c 
to Diophantus, but which is especially valuable to him: the one for the 
sound-sequence /is/. It so happens that this common sound-sequence is the 
lexical root for ‘equal’ in Greek. Since it is a very common sound-sequence, 
it naturally has a standard abbreviation, so that Diophantus has ‘for free’ 
a symbol for this important relation. 

 How are such symbols understood? Th at is, what is the relationship 
between Diophantus’ symbols, and the alphabetically written words that 
they replace? Th e fi rst thing to notice, as already suggested above, is that the 
symbols are most oft en a transparent abbreviation of the alphabetical form. 
Diophantus’ own strategy of choice in the symbols he had himself coined 
was to clip the word into its fi rst syllable (especially when this is a simple, 
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consonant–vowel syllable), which he then turned into a symbol by placing 
the vowel as a superscript on the consonant: Κ υ , Δ υ , Μ ο . Th e symbols result 
from two reductions – a word into its initial syllable, a syllable into its con-
sonant. All of this makes sense in terms of natural language phonology so 
that, in such cases, Diophantus’ symbolism may be tied to the heard sound 
and not just to the visible trace. (It may be relevant that in all three words – 
monas, dunamis, kubos – the stress falls indeed on the fi rst syllable.) With 
arithm- and leipsei this simple strategy fails. Th e symbols, in both cases, are 
more complex: perhaps some combination of the alpha and the rho of the 
arithmos (but this is a well-known palaeographic puzzle), certainly some 
reference to the psi of the leipsei. Th is is in line with the standard symbol-
ism, e.g. for prepositions: these are oft en rendered by a combination of their 
consonants (‘pros’, e.g., becoming a ligature of the pi and the rho). 

 Note also that while alphabetical numerals do not directly represent the 
sounds of the number-words they stand for, the system as a whole is iso-
morphic to spoken numerals (two-number words, ‘two and thirty’ become 
two number-symbols, ΛΒ). In this, the alphabetical numeral system diff ers 
from its main alternative in Greek antiquity, the acrophonic system where 
each symbol had, directly, a sound meaning (Π for pente, fi ve, Δ for deka, 
ten, etc.: the only exception is the use of a stroke for the unit), but the acro-
phonic number symbolism as a whole was equivalent to the Roman system 
with which we are familiar and was no longer isomorphic to spoken numer-
als: not ΛΒ, but ΔΔΔΙΙ. Th e latter clearly is not meant to be pronounced as 
‘deka-deka-deka-click-click’. In fact, it is no longer a pronounced symbol: 
the trace has become free of the sound. In the alphabetical system, every-
thing can be understood as symbols standing for sounds in natural Greek: 
I believe this may be the reason why this system was fi nally preferred for 
most ordinary writing. 

 With this in mind, we can see that Diophantus’ marked symbols are 
at least potentially spoken: the numbers, as explained above, as well as 
the symbols based upon them. A stroke turns a numeral into its depend-
ent ordinal or unit-fraction (identical in sound, as in symbol: compare 
English ‘third’, ‘fourth’, etc.). Further, ordinals are sometimes rendered in an 
even more direct phonological system, e.g. Δ ευ , abbreviating δευτερος, for 
‘second’. (Th us the system for ordinals has three separate forms: the fully 
written-out word, the phonologically abbreviated form and the alphabetic 
numeral-based form. Th is is important, given the role of ordinals as a kind 
of unknown-mark in expressions such as ‘the fi rst number’.) Th e ×-times 
symbolism, too, merely adds the onset consonants of the abbreviated 
words: Β πλ  for ‘double’. 
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 Th e symbols for square, and for sides in a right-angled triangle, are the 
exception, then. Th ere the trace, and not the sound, becomes the vehicle 
of meaning. Th e reason for this is clear, as the trace here has indeed such 
an obvious connotation. Th e sign and the signifi ed are isomorphic. Even 
so, note that the understanding is that � stands not just for the concept 
‘square’ but also and perhaps primarily for the sequence ‘tetragon’, as wit-
nessed by the fact that the symbol is oft en followed by case marking: � οις  
for ‘tetragonois’, ‘by the squares’. Th e most interesting exception is the form 
� �, sometimes used to represent ‘squares’, the plural marked not by the 
sound of the case ending, but by the tracing of duplication (compare our 
use of ‘pp.’, for instance, for ‘pages’; notice also that the same also happens 
occasionally with the ‘number’ symbol). 

 Speaking generally for Greek writing in manuscripts, the phonological 
nature of abbreviation symbolism becomes most apparent through the 
rebus principle. To provide an example: there is a standard scribal abbrevia-
tion for the Greek word ‘ara’, ‘therefore’. Th ere is also an important prepo-
sition, ‘para’, meaning, roughly, ‘alongside’. Th e letter pi, followed by the 
symbol for ‘ara’, may be used to represent the preposition ‘para’. Such rebus 
writing is common in Greek manuscripts and shows that the symbol for 
‘ara’ stands not merely for the concept ‘therefore’ but, perhaps more funda-
mentally, for the sound-sequence ‘ara’. 

 Obviously, Diophantus’ symbolism does not lend itself to such rebus 
combinations. One can mention, however, an important close analogue. 
We recall Diophantus’ symbol for ‘number’, meaning, eff ectively, the 
‘unknown’. Th is may be said to be the cornerstone of Diophantus’ symbol-
ism: on it ride the higher powers; it is the starting point for investigation 
in each problem. It is thus, perhaps, not inappropriate that this symbol 
is the least transparently phonological. It is, so to speak, Diophantus’ 
cipher. Crucially, it is also clearly defi ned by Diophantus in his introduc-
tion: ‘Th at which possesses none of these properties [such as dunamis, 
cube, etc.] and has in it an indeterminate number of monads, is called a 
number and its symbol is ς’ (Tannery 6.3–5). Th us the symbol is, strictly 
speaking, only to be used for the indeterminate, or unknown, goal of 
the problem. It should be used in such contexts as ‘Let the <number> 
which is added and taken away from each number <sc. of the two other 
given numbers> be set down, <namely> ςΑ <:Number 1>.’ Notice the 
two occurrences of ‘number’ in this phrase. Th e fi rst is ‘number’ in its 
standard Greek meaning (which therefore, one would think, should not 
be abbreviable into the symbol ς). In the phrase ‘from each number’, 
the word ‘number’ does not stand for an unknown number, but just for 
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‘number’. It is only the second number – the one counted as ‘1’ - which 
serves as an unknown in this problem. Only this, then, by Diophantus’ 
explicit defi nition, counts as a ς; appropriately, then, Tannery prints the 
fi rst ‘number’ as a fully spelled-out word and the second as a symbol. But 
as the reader may guess by now, there are many cases in the manuscripts 
where ‘number’ of the fi rst type is abbreviated, as well, using Diophantus’ 
symbol ς.  8   Th us the symbol is understood, at least by Diophantus’ scribes, 
to range not across a semantic range (the unknown number), but across a 
phonological or orthographic range (the representation of the sound, or 
trace, ‘arithm-’). It would indeed be surprising if it were otherwise, given 
that scribal symbolism, as a system, was understood in such phonological 
or orthographic terms. 

 Th e text in example (1) above followed closely (with some variation of 
orthography) Tannery’s edition. It is clearly punctuated and spaced (as it 
is not in the manuscripts, not even the Renaissance ones). It has accents 
and aspiration marks (like the Renaissance manuscripts, but most probably 
unlike Diophantus’ text in late antiquity). It also sharply demarcates the 
two kinds of writing: explicit and markedly Diophantine symbols, which, 
in the proof itself, Tannery systematically presents in abbreviated form, on 
the one hand; and standard scribal abbreviations, which Tannery systemati-
cally resolves (as, indeed, philologers invariably do). 

 As Tannery himself recognized, his systematization of the symbolism 
was not based on manuscript evidence. I shall not say anything more on 
the unmarked symbolism, such as the case markings, whose usage indeed 
diff ers (as one expects) from one manuscript to another. Th ey should 
be mentioned, so that we keep in mind the full context of Diophantus’ 
symbols. But even more important is that Diophantus’ own marked 
symbolism is not systematically used in the manuscripts. Th e symbols 
described above are oft en interchanged with fully written words. Th is is 
as much as can be expected. Both Δ υ  and Δυναμις stand for exactly the 
same thing – the sound pattern or trace /dunamis/ – and so there is no 
 essential reason to use one and not the other. Th us a free interchangeability 
is predicted. 

 Notice fi rst the form of example (1) in  all  the Paris manuscripts, 
 comparing the (translated) form of Tannery’s text to that of the  manuscripts: 

     8      Th is was pointed out already by Nesselmann  1842 : 300–1. Indeed, my impression is that 
awareness of such quirks of Diophantus’ text was more widespread prior to Tannery: following 
the acceptance of his edition, knowledge of the manuscripts (as well as of the early printed 
editions – whose practices, I note in passing, are comparable to those of the manuscripts) 
became less common among scholars of Diophantus’ mathematics. 
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 Tannery: Let the <number> which is added and taken away from each number <sc. 
of the two other given numbers> be set down, <namely> ςΑ <:Number 1>. And if it 
is added to 20, result: ςΑ Μ ο Κ <:number 1 Monads 20>. 

 Manuscripts: Let the <number> which is added and taken away from each number 
<sc. of the two other given numbers> be set down, <namely> One number. And if 
it is added to 20, result: One number, 20 Monads.   

 Here we see Tannery’s most typical treatment of the manuscripts: abbreviat-
ing expressions which, in the manuscripts, are resolved, within the problem 
itself. Note the opposite, inside enunciations. For example, the enunciation 
to  iii .10 which, in Tannery’s form, may be translated: 

 Tannery: To fi nd three numbers so that the <multiplication> by any two, taken with 
a given number, makes a square.   

 Compare this with, e.g., Par. Gr. 2379: 

 Manuscript: To fi nd three numbers so that the <multiplication> by any two, taken 
with a given ς, makes a �.   

 Tannery, we recall, followed a rational system: inside the proof, all mark-
edly Diophantine symbols were presented in abbreviated form, while in the 
enunciation no symbolism was used. We fi nd that the manuscripts some-
times have abbreviated forms where Tannery has fully written words, and 
sometimes have fully written words where Tannery has abbreviations. In 
other words, Tannery’s rational system does not work. I had systematically 
studied the marked Diophantine symbols through the propositions whose 
number divide by ten, in Books  i  to  iii , in all the Paris manuscripts. Th ese 
are only eight propositions, but the labour, even so, was considerable: 
essentially, I was busy recording noise. As a consequence of this, I gave 
up on further systematic studies, merely confi rming the overall picture 
described here, with other manuscripts. 

 One notices perhaps a gradual tendency to introduce more and more 
abbreviated forms as the treatise progresses (do the scribes become tired, 
in time?): Par. Gr. 2378, for instance, has no symbolism in my Book  i  speci-
mens at all, while they are frequent in Book  iii . Th e ordinal numbers, with 
their three separate forms (fully spelled out, phonologically abbreviated, 
alphabetical numeral based), are especially bewildering. Consider once 
again  iii .10, once again in Par. Gr. 2378. I plot the sequence of ordinals, 
using N for the alphabetic numeral, P for phonological abbreviation and F 
for the full version: 

 NNNNPPFFFFFFFNFFFFPFNNFFFPF.   
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 Tannery has all as alphabetical numerals. Th e most we can say is that, in 
the manuscripts, there is an overall tendency to prefer using the same form 
within a single phrase, though exceptions to this are found as well. Here we 
see Tannery homogenizing, turning numbers into numerals. But we may 
also fi nd the opposite, e.g. in  i .20, an expression we may translate as 

 Tannery: Let the two <numbers> be set down as ς3 
 τετάχθωσαν οἱ δύο ς3 
 Par. Gr. 2485: Let the 2 <numbers> be set down as Numbers, Th ree. 
 τετάχθωσαν οἱ Β ἀριθμοὶ τρεῖς   

 Tannery has spelled out the word ‘two’, to signal that it functions here in 
a syntactic, not an arithmetical way. But it is neither syntactic nor arith-
metical, it is phonological/orthographic. In the manuscripts, we have the 
phonological/orthographic object /duo/ which may be represented, as far 
as the scribes are concerned, by either B or δύο: both would do equally well. 

 Signifi cantly, it is diffi  cult to discern a system even in the symbols intro-
duced by Diophantus himself. Consider Par. Gr. 2380, inside  ii .10: ς ενος 
μοναδων Γ, that is ‘ς one, monads 3’ (I quote this as an elegant example 
where both Diophantus’ special symbols, as well as numerals, are inter-
changed with fully spelled out words). Very typical are expressions such 
as Par. Gr. 2378,  ii .20: Δ υ  Δ αριθμους Ε Μ ο , that is ‘Δ υ  4, numbers 5, Μ ο 1’. 
Th e ‘numbers’ – alone in the phrase – are spelled out. In general, one can 
say that monads appear to be abbreviated more oft en than anything else in 
Diophantus’ symbolism: this may be because they are so common there. 
But the main fact is not quantitative, but qualitative: one fi nds, in all manu-
scripts, the full range from Diophantine phrases fully spelled out in natural 
Greek, through all kinds of combinations of symbols and full words, to fully 
abbreviated phrases. 

 My conclusion is that symbols in Diophantus are  allographs : ways of 
expressing precisely the same things as their fully spelled out equivalents. 
And once this allography is understood, the chaos of the manuscripts 
becomes natural. For why should you decide in advance when to use this or 
that, when the two are fully equivalent? 

 One should now understand Tannery’s plight. Th at he systematized his 
printed edition is natural: what else should he have done? I am not even 
sure we should criticize him for failing to provide a critical apparatus on 
the symbols. Th e task is immense and its fruits dubious. In particular, given 
Tannery’s goal – of reconstructing, to the best of his ability, Diophantus’ 
original text – a critical study of the abbreviations seems indeed hopeless. 
Th e interrelationships between manuscripts, in terms of their choice of 
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abbreviation as against a fully spelled out word, are tenuous. Sometimes 
one discerns affi  nities: the same sequence of symbols is sometimes used in 
a group of manuscripts, suggesting a common origin (and why shouldn’t a 
scribe be infl uenced by what he has in his source?). But such cases are rare 
while, on the whole, patterns are more oft en found  inside  a single manu-
script: a tendency to avoid abbreviations for a stretch of writing, then a 
tendency to put them in . . . 

 However, Tannery did not make appeal to this argument – which would 
have put his edition in the uncomfortable position of being, in a central 
way, Tannery’s rather than Diophantus’. So he made appeal to another 
argument. When criticized by Hultsch ( 1894 ) for his failure to note scribal 
variation for symbolism in his apparatus, Tannery replied that he had 
found that tedious,  9   because – so he had implied – Diophantus had purely 
abbreviated forms, that is in line with Tannery’s edition – which then were 
corrupted by the manuscript tradition. Th is question merits consideration. 

 In the handful of thirteenth-century manuscripts we possess (the earli-
est), symbolism is more frequent. Th us the tendency of scribes,  during the 
historical stretch for which we have direct evidence , was to resolve abbrevia-
tions into words. Th e simplest hypothesis, then, would be that of a simple 
extrapolation: throughout,  scribes tend to resolve abbreviations –  hence, 
Diophantus himself must have produced a strict abbreviated text. 

 Th is is false, I think, for the following reasons. First, the relevant con-
sideration is not that of Diophantus’ manuscript tradition alone, but that 
of scribal practice in general. We may then witness a peak in the use of 
abbreviations in Byzantine technical manuscripts of the relevant period of 
the twelft h and thirteenth centuries – which are in general characterized 
by minute writing aiming to pack as much as possible into the page. Early 
minuscule manuscripts, and of course majuscule texts, oft en are more of 
luxury objects and have fewer abbreviations; humanist manuscripts, again, 
for similar reasons, tend to have fewer abbreviations. Th us the evidence of 
the process of resolution of abbreviations, from the thirteenth to the six-
teenth centuries, may not be extended into the past, as an hypothetical series 
of resolution stretching all the way from as far back as the fourth century  ce . 

 Second, I fi nd it striking that the Arabic tradition knows nothing of 
Diophantus’ symbols. Th ere are of course good linguistic reasons why 
Arabic (as well as Syriac and Hebrew) would not rely as much on the 
kind of abbreviation typical to the Greek and Latin tradition. Indeed, to 
continue with the linguistic typology, symbolism is also independently 

     9      T1893/5: xxxiv–xlii. 
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used in Sanskrit mathematics.  10   Indo-European words are a concatena-
tion of prefi xes, roots and suffi  xes. Each component is phonologically 
autonomous, so that it is always possible to substitute some by alternative 
symbols. A written word can thus naturally become a sequence concatenat-
ing symbols, or alphabetic representations, for prefi xes, roots and suffi  xes. 
Semitic words, on the other hand, are consonantal roots inside which are 
inserted patterns of vocalic infi xes. Th e components cannot be taken apart 
in the stream of speech, so that it is no longer feasible to substitute a word 
by a concatenation of symbols, each standing for a root or a grammatical 
element. Quite simply, the language does not function in terms of such con-
catenations. Arab translators, then, had naturally resolved standard Greek 
abbreviations into their fully spelled out forms. But they did respect some 
symbols: for instance, magical symbols, similar in character to those known 
from Greek-era Papyri (though not derived from the Greek), are attested in 
the Arabic tradition;  11   most famously, the Arabs had gradually appropri-
ated Indian numeral symbols. In such cases, the symbols were understood 
primarily not as phonological units, but as written traces. I suggest that, 
had Diophantus’ use of symbolism been as consistent as Tannery makes it, 
an astute mathematical reader would recognize in it the use of symbolism 
which goes beyond scribal expediency, and which is based on the written 
trace – especially, given Diophantus’ own, explicit introduction of the 
symbols. Th e Arab suppression of the symbolism in Diophantus suggests, 
then, that they saw in it no more than the standard scribal abbreviation they 
were familiar with from elsewhere in Greek writing. 

 I conclude with two comments, one historical, and the other cognitive. 
Historically, we see that Diophantus’ symbols are rooted in a certain scribal 
practice. Th is should be seen in the context of the long duration of Greek 
writing. In antiquity, Greek writing was among the simplest systems in use 
anywhere in human history: a single set of characters (roughly speaking, 
our upper case), used with few abbreviations. Th rough late antiquity to the 
early Middle Ages, the system becomes much more complex: the use of 
abbreviations becomes much more common, and a new set of characters 
(roughly speaking, our lower case) is introduced while the old set remains 
in use in many contexts. In other words, the period is characterized by an 
explosion in allography.  12   Th is may be related to the introduction of the 

  10      See the lucid discussion in H1995: 87–90. 
  11      Canaan  1937 –8/2004, especially 2004: 167–75. 
  12      It is diffi  cult to fi nd precise references for such claims that are rather the common stock of 

knowledge acquired by palaeographers in their practice. Th e best introduction to the practices 
of Greek manuscripts probably remains Groningen  1955 . For abbreviations in early Greek 
script, see McNamee 1982. 
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codex, and with the overall tenor of the culture with which it is associated: a 
culture where writing as such becomes the centre of cultural life, with much 
greater attention to its material setting. It is in this context that Diophantus 
introduces his symbols: they are the product of the same culture that gave 
rise to the codex. 

 Cognitively, we see that those symbols introduced by Diophantus are 
indeed allographs. Th at is: they do not suppress the verbal reading of the 
sign, but refer to it in a diff erent, visual way. It was impossible for a Greek 
reader to come across the symbol Μ ο  and not to have suggested to his mind 
the verbal sound-shape ‘monad’. But at the same time, the symbol itself 
would be striking: it would be a very common shape seen over and over 
again in the text of Diophantus and nowhere else. It would also be a very 
simple shape, immediately read off  the page as a single visual object. Th us, 
alongside the verbal reading of the object, there would also be a visual rec-
ognition of it, both obligatory and instantaneous. I thus suggest that what is 
involved here is a  systematic bimodality . One systematically reads the sign 
both verbally and visually. One reads out the word; but is also aware of the 
sign. 

 To sum up, then, Diophantus’ symbolism gives rise to a bimodal (verbal 
and visual) parsing of the text (at the level of the noun-phrase). I shall 
return to analyse the signifi cance of this in Section 4 below, where I shall 
argue that this bimodality explains the function of Diophantus’ symbols 
within his reasoning. Before that, then, let us acquaint ourselves with this 
mode of reasoning.   

 3. Notes on reasoning in Diophantus  

 A sample of Diophantus 

 Th e following is a literal translation of Diophantus’  i .10. I follow Tannery’s 
text, with the diff erence that, for each case where a symbol is available 
(including alphabetical numerals which, when symbolic, I render by our 
own Arabic numerals), I toss a couple of coins to decide whether I print it 
as symbol or as resolved word. (25% I make to be full words, which is what 
I postulate, for the sake of the exercise, might have been the original ratio.) 
Th e translation follows my conventions from the translation of Greek 
geometry,  13   including the introduction of Latin numerals to count steps of 
construction and Arabic numerals to count steps of reasoning. 

  13      See Netz  2004.  
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 To two given ςς: to add to the smaller of them, and to take away from the greater, 
and to make the resulting <number> have a given ratio to the remainder. 

 Let it be set forth to add to 20, and to take away from 100 the same ς, and to 
make the greater 4-times the smaller. 
  (a) Let the <number> which is added and taken away from each ς <sc. of 
the two given numbers> be set down, <namely> number, one. (1) And if it is 
added to twenty, results: ς1 Μ ο 20. (2) And if it is taken away from 100, results: 
Μ ο 100 lacking number 1. (3) And it shall be required that the greater be 4- tms  
the smaller. (4) Th erefore four- tms  the smaller is equal to the greater; (5) but 
four- tms  the smaller results: Μ ο 400 Ψ ς4; (6) these equal ς1 Μ ο 20 
  (7) Let the subtraction be added <as> common, (8) and let similar 
<terms> be taken away from similar <terms>. (9) Remaining: numbers, 5, 
equal Μ ο 380. (10) And the ς results: monads, 76. 
  To the positions. I put the added and the taken away on each ς, ς 1; it shall 
be Μ ο 76. And if Μ ο 76 is added to 20, result: monads, 96; and if it is taken 
away from 100, remaining: monads, 24. And the greater shall stand being 
4- tms  the smaller.     

 Diophantus the deuteronomist: systematization and the general 

 To understand the function of the text above, I move on to compare it 
with  three other, hypothetical texts. I argue that all were possible in the 
late  ancient Mediterranean. However, only the fi rst two had existed, 
while the third remained as a mere logical possibility, never actualized in 
writing. 

 Text 1: 
 A: I have a hundred and a twenty. I take away a number from the greater and add it 
to the smaller. Now the smaller has become four times that which was greater. How 
much did I take away and add? 
 B: ? 
 A: Seventy six! Check for yourself. 

 Text 2: 
 Hundred and twenty. I took away from the greater and added the same to the 
smaller, and the smaller became four times that which had been greater. 
 Take the greater, a hundred. Its four times is four hundred. Take away the 
smaller,  twenty. Left  is three hundred eighty. Four plus one is fi ve. Divide three 
hundred eighty by fi ve: seventy six. Seventy six is the number taken away and 
added.   
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 Text 3: 
 Given two numbers, the fi rst greater than the second, and given the ratio of a third 
number to unity, to fi nd a fourth number so that, added to the second and removed 
from the fi rst, it makes the ratio of the second to the fi rst equal to the given ratio of 
the third number to unity  .   

  Let the fourth have been found. Since the second number together with the 
fourth has to the fi rst lacking the fourth the ratio of the third to unity, make a fi ft h 
number which is the third multiplied by the fi rst lacking the third multiplied by 
the fourth. Th is fi  fth number is equal to the second together with the fourth. So 
the third multiplied by the fi rst lacking the third multiplied by the fourth is equal 
to the second with the fourth.So the third multiplied by the fi rst is equal to the 
second with the fourth with the third multiplied by the fourth, or to the second with 
the fourth taken the third and one times. Th at is, the third multiplied by the fi rst, 
lacking the second, is equal to the fourth taken the third and one times. Multiply 
all by the third and one fraction. Th us the third multiplied by the fi rst, multiplied 
by the third and one fraction, lacking the second multiplied by the third and one 
fraction, is equal to the fourth taken the third and one times, multiplied by the third 
and one fraction, which is the fourth. So the third multiplied by the fi rst, multiplied 
by the third and one fraction, lacking the second multiplied by the third and one 
fraction, is equal to the fourth. 

  So it shall be constructed as follows. Let one be added to the third to make 
the sixth. Let the seventh be made to be the fraction of the sixth. Let the third be 
 multiplied by the fi rst and by the seventh to make the eighth. 
  Again, let the second be multiplied by the seventh to make the ninth. 
  Now let the ninth be taken away from the eighth, to make the fourth. I say that 
the fourth produces the task. 
 [Here it is straightforward to add an explicit synthesis, showing that the ratio 
obtains; for brevity’s sake, I omit this part.] 

 I suggest that we see Diophantus’ text with reference to texts 1 and 2 – of 
which it must have been aware – and with reference to text 3 – which it 
deliberately avoided.  14   Based on Høyrup’s work,  15   I assume that texts such 
as text 1 were widespread in Mediterranean cultures from as far back as 

  14      Text 3 is my invention; perhaps not the most elegant one possible. All I did was to try to 
write, in an idiom as close as possible to that of Diophantus, a general analysis of the problem, 
following a line of reasoning hewing closely to the steps of the solution in Diophantus’ 
own solution. (Th is is not a mechanical translation: obviously, a particular solution such 
as Diophantus’ underdetermines the general analysis from which it may be derived, since 
any particular term may be understood as the result of more than one kind of general 
confi guration.) 

  15      See, for instance, H2002: 362–7. It is fair to say that my summary is based not so much on this 
reference from the book, as on numerous discussions, conference papers and preprints from 
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the third millennium  bce  (if not earlier), surviving, arguably, into our own 
time. Th ey persisted almost exclusively as an oral tradition (sometimes, 
perhaps, taking a ride for a couple of centuries on the back of written tra-
ditions of the type of text 2, and then proceeding along in the oral mode). 
Such texts are called by Høyrup ‘lay algebra’. 

 Occasionally, lay algebra gets written and systematized (to a certain 
extent) in an educational context. It then typically gets transformed into 
texts such as text 2: the mere question-and-answer format of text 1 is trans-
formed into a set of indicative and imperative sentences put forward in 
the rigid, authoritarian style typical of most written education prior to the 
twentieth century. Th is is school algebra which has appeared several times 
in Mediterranean cultures. One can mention especially its Babylonian 
(early second millennium  bce ), Greek (around the year zero) and Italian 
(early second millennium  ce ) forms. Th e Babylonian layer is important as 
the fi rst school algebra of which we are aware; the Greek layer is important, 
for our purposes, as providing, possibly, a context for Diophantus’ work; the 
Italian layer is important, for our purposes, as providing a context for the 
interest in Diophantus in the Renaissance. 

 Th e historical relationship between various school algebras is not clear 
and it may be that they depend on the persistence of lay algebra no less than 
on previous school algebras. It should be said that, while essentially based on 
the written mode, this is a use of writing fundamentally diff erent from that 
of elite literary culture. Writing is understood as a local, ad-hoc aff air. Th e 
diff erence between the literacy of school algebra and the oralcy of lay algebra 
is huge, in terms of their  archaeology : clay tablets, papyri and  libri d’abbaco  
oft en survive, spoken words never do. But the clay tablets, papyri and  libri 
d’abbaco  of school algebra do not belong to the world of Gilgamesh, Homer 
or Dante. Th ey are not faithfully copied and maintained, and the assump-
tions we have for the stability of written culture need not hold for them. 

 What would happen when such materials become part of elite literate 
culture itself? One hypothetical example is text 3: a reworking of the same 
material, keeping as closely as possible to the features of elite literate Greek 
mathematics (which was developed especially for the treatment of geom-
etry). Th is may be called, then – just so that we have a term – Euclidean 
algebra.  16   When transforming the materials of lay and school algebra into 

the author, and that as such summaries go it is likely to deviate in some ways from the way in 
which Høyrup himself would have summed up his own position. 

  16      I use the term ‘Euclidean’ to refer to elite, literate mathematical practices. It is true that Euclid – 
especially Books  i  and  ii  – could have been occasionally part of ancient education (the three 
papyrus as fragments P. Mich. 3. 143, P. Berol. Inv 17469 and P. Oxy. 1.29, with defi nitions 
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elite-educated, literate form, Diophantus chose to produce not Euclidean 
algebra, but Diophantine algebra. 

 I note in passing that the character of Diophantus – as intended for elite 
literate culture – is in my view not in serious doubt. Th e material does not 
conform to elementary school procedures; it is ultimately of great complex-
ity, suitable only for a specialized readership. It had survived only inside 
elite literate tradition; and, as is well known, it quickly obtained the primary 
mark of elite literate work – having a commentary dedicated to it (that of 
Hypatia).  17   

 In other words, I suggest that Diophantus is engaged primarily in the 
rearrangement of previously available material into a certain given format, 
of course then massively extending it to cover new grounds that were not 
surveyed by school algebra itself. Th is is very much the standard view of 
Diophantus, and I merely wish to point out here what seem to me to be its 
consequences. Let us agree that Diophantus is engaged in the refi tting of 
previous traditions into the formats of elite writing sanctioned by tradition. 
Th en it becomes open to suggest that he belongs to the overall practice of 
late antiquity and the Middle Ages which I have elsewhere called deutero-
nomic: the production of texts which are primarily dependent upon some 
previous texts . 18   Typically, deuteronomic texts emphasize consistency, sys-
tematicity and completion. Th ere is an attention to the manner of writing 
of the text. Th is means that they bring together various elements that 
might have been originally disparate. Th e act of trying to bring disparate 

  17      Th e evidence is the fl imsiest imaginable – a mere statement in the Suidas (Adler IV:644.1–4: 
Yπατια . . . εγραψεν υπομνημα εις Διοφαντον) which, however, if not proving beyond doubt 
that  Hypatia  wrote a commentary on Diophantus, makes it at least very likely that  someone  did. 

  18      Virtually everyone, from Tannery to Neugebauer onwards, has agreed that Diophantus was 
acquainted with many arithmetical problems deriving from earlier Mediterranean traditions 
and was therefore at least to some extent a systematizer. Some, such as Heath, had thought 
that Diophantus’ systematization of earlier problems may not have been the fi rst in the Greek 
world, making comparison with Euclid as the culmination of a tradition of writing  Elements  
(I doubt this for Euclid and fi nd it very unlikely for Diophantus). Th e dates are fi xed, based on 
internal evidence, as –150 to +350. What else is argued concerning Diophantus’ dates is based 
on scattered, late Byzantine comments which are best ignored. Th e  e silentio , together with 
Diophantus’ very survival, suggest – no more – a late date. (Th e silence is not meaningless, 
as it encompasses authors from Hero to the neo-Platonist authors writing on number.) A late 
date was always the favourite among scholars (not surprisingly, then, the thesis of an early 

of Book I, Propositions  i .8–10 and  ii .5, respectively – most likely derive from a classroom 
context). However, the bulk of papyri fi nds with mathematical educational contents are 
diff erent in character, involving basic numeracy and measuring skills or, in more sophisticated 
examples, coming closer to Hero’s version of geometry. Th e impression is that, in antiquity 
itself, Euclid was fundamentally a cultural icon, which occasionally got inducted into the 
educational process. 
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components into some kind of coherent unity then would lead to a certain 
transformation. 

 Th e way this applies to Diophantus is obvious. He brings together pre-
viously available problems. He arranges them in a relatively clear order, 
ranging from the simple to the complex. He classifi es, creating clear units 
of text, for instance the Greek Book  vi , all dedicated to right-angled 
 triangle problems. In the introduction he discusses his way of writing 
down the problems, and introduces a special manner of writing for the 
purpose. 

 Th e structuring involves large-scale and small-scale transformations. Th e 
large-scale transformation is a product of the arrangement of the disparate 
problems in a rational structure. Th e problems oft en become combinatorial 
variations on each other, e.g.  ii .11–13: 

 11. To add the same number to two given numbers, and to make each a square. 
 12.  To take away the same number from two given numbers, and to make each of 

the remainders a square. 
 13.  To take away from the same number two given numbers, and to make each of 

the remainders a square.   

 In such cases, it seems clear that Diophantus had used the rational structure 
as a guide, actively searching for more problems, bringing completion to 
his much more fragmentary sources. Th e huge structure – thirteen books, 
of which, in some form or another, ten survive, with perhaps four hundred 
problems solved – was built on the basis of such rational, combinatorial 
completion. 

 Th e small-scale transformation involves each and every problem, which 
is presented, always, in the form above. It is immediately obvious that, in 
this respect, Diophantus consciously strove to imitate elite literate Greek 
mathematics though (as suggested by the examples above) this in itself 
would not determine the form of his text. Quite simply, there was more 
than a single way of producing numerical problems in elite literate Greek 

date was defended by Knorr  1993 ). I shall assume such a late date, while realizing of course 
the hypothetical nature of the argument: the dating of Diophantus is the fi rst brick 
of speculation in the following, speculative edifi ce. I would like to question, though, the very 
habit of treating the post quem and the ante quem as defi ning a homogeneous chronological 
segment. One’s attitude ought to be much more probabilistic – and should appreciate the fact 
that not all centuries are alike. Here are two probabilistic claims: 
(1) the fi rst century  bce , and the fi rst century  ce , both saw less in activity in the exact 
sciences; the second century  ce , as well as the fi rst half of the fourth century  ce , saw more. 
(2) Th e  e silentio  is more and more powerful, the further back in time we go. I think it is 
therefore correct to say that Diophantus most likely was active either in the second century 
 ce  or the fi rst half of the fourth century  ce . 
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format - not a single monolith to start with. In fi tting his text into the 
established elite Greek mathematical format, Diophantus had a certain 
freedom. 

 Th e fi rst decision made by Diophantus was to keep the basic dichotomy 
of presentation from standard Greek mathematics, with an arrangement 
of a general statement followed by a particular proof. Th is indeed would 
appear as one of the most striking features of the Greek mathematical 
style. But most important, this arrangement is essential to the large-scale 
transformation introduced by Diophantus. To produce a structure based 
on rational completion, Diophantus needed to have something to complete 
rationally: a set of general statements referring to each problem in terms 
transcending the particular parameters of the problem at hand. 

 I therefore argue that Diophantus’ general statements can be under-
stood, at two levels, as a function of his deuteronomic project. He needs 
the general statements so as to conform to the elite form of presentation 
he sets out to emulate. Even more important, he needs them to provide 
building blocks for his main project of systematization. Th e upshot of this 
is that Diophantus does  not  need the general statements for the logical fl ow 
of the individual problem. Th is is indeed obvious from an inspection of the 
problems, where the general statements play no role at all. 

 Th is observation may shed some light on the major  mathematical  ques-
tion regarding Diophantus, that is, did he see his project in terms of provid-
ing  general solutions ? In some ways he clearly did. Th e clearest evidence is 
in the course of the propositions (extant in Arabic only)  vii .13–14. We are 
given a square number N which is to be divided into any three numbers (i.e. 
N= a + b + c ) so that either N+ a , N+ b , N+ c  are all squares ( vii .13), or N− a , 
N− b , N− c  are all squares ( vii .14). It is not surprising that, in both cases, we 
reach a point in the argument where we are asked to take a given square 
number and divide it into two square numbers  19   – the famous Fermatian 
problem  ii .8. Now, Diophantus (or his Arabic text) explicitly says that this 
is possible for ‘It has been seen earlier in this treatise of ours how to divide 
any square number into square parts.’  20   Th ere, of course, the divided square 
is a particular number, 16. (Th e particular number chosen as example in 
 vii .13–14 is 25.) Th is reference is hardly a late gloss, as the very approach 
taken to the problem is predicated upon the reduction into  ii .8. Indeed, 
the natural assumption on the part of any reader familiar with elite Greek 

  19      By iteration, this allows us to divide a square number into any number of square numbers; 
Diophantus, in fact, requires a division into three parts. Note however that even the basic 
operation of iteration itself calls for a generalization of the operation of  ii .8. 

  20      Sesiano  1982 : 166. 
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geometry would be that results should be transferable from one set of 
numerical values to any other soluble set, on the analogue of the transfer-
ability of geometrical results from one diagram to another: this would be 
the implication of picking a mode of presentation which is so suggestive of 
that of elite geometry. 

 It is also likely that the very exposure to certain quasi-algebraic prac-
tices (basically those of additions or subtractions of terms until one gets 
a simple equation of species) as well as the choice of simple parameters 
would instil the skills required for the fi nding of solutions with diff erent 
numerical values from those found by Diophantus himself, so that the text 
of Diophantus, taken as a whole, does teach one how to fi nd solutions in 
terms more general than those of the particular numerical terms chosen 
for an individual Diophantine solution.  21   Having said that, however, the 
fundamental point remains that Diophantus allows his generality, such as 
it is, to emerge  implicitly  and from  the totality of his practice . Th ere is no 
eff ort made to make the generality of an individual claim  explicit  and visible 
 locally . He does not solve the problem of dividing a square number into two 
square numbers in terms that are in and of themselves general – which he 
could have done by pursuing such problems  in general terms . 

 Why doesn’t he do that? Th ere are three ways of approaching this. First, 
readers’ expectations on how generality is to be sustained would have been 
informed with their experience in elite Greek geometry. Th ere, generality 
is not so much explicitly asserted, as it is implicitly suggested.  22   It is true 
that the nature of Greek geometrical practice – based on the survey of a 
fi nite range of diagrammatic confi gurations – does not map precisely into 
Diophantus’ practice. Greek geometry allows a rigorous, even if an implicit, 
form of generality, which Diophantus’ technique does not support. Th is 
mismatch, in fact, may serve as partial explanation for the emerging gap in 
Diophantus’ generality. 

 Second, if indeed I am right and Diophantus’ goals were primarily 
completion and homogeneity, and that the general statement may have 
been introduced in the service of such goals, than our problem is to a large 
extent diff used. Diophantus did not provide explicit grounds for his gen-
erality, but this is because he was not exactly looking for them. He did not 
introduce general statements for the reason that he was looking for general 
solutions. Rather, he introduced general statements because he perceived 
such statements to be an obligatory feature of a systematic arrangement 

  22      As argued in N1999:  ch. 6  (a comparison also made by Th omaidis  2005 ). 
  21      Th is, if I understand him correctly, is the claim of Th omaidis  2005 . 
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of mathematical contents. Of course, I imagine that he would still prefer a 
general proof to a particular one – but only as long as other, no less impor-
tant characteristics of the proof were respected as well. But this, I suggest, 
was not the case. I will try to show why in the next section. 

 Even before that, let us mention the third and most obvious account for 
why Diophantus did not present a more general approach. An argument 
that comes to mind immediately is that Diophantus did not produce more 
general arguments because he did not possess the required symbolism. 
Fundamentally, what we then do is to put side by side our symbolism and 
that of Diophantus so as to observe the diff erences and then to pronounce 
those diff erences as essential for a full-fl edged argument producing a 
general algebraical conclusion. Of course, the diff erences are there. In par-
ticular, Diophantus has explicit symbols for a single value in each power: a 
single ‘number’ (a single  x ), a single ‘dunamis’ (a single  x  2 ), a single ‘cube’ 
(a single  x  3 ), etc. Th ere is thus no obvious way of referring even to, say, 
two unknowns such as  x  and  y . Th is is a major limitation, and of course it 
does curtail Diophantus’ expressive power. Some scholars come close to 
suggesting that this, fi nally, is why Diophantus does not produce explicit 
general arguments.  23   But by now we can see how weak this argument is, and 
this for two reasons. 

 First, it is perfectly possible to express a general argument without 
the typographic symbolism expressing several unknowns, by the simple 
method of using natural language (over whose expressive power, aft er all, 
typographic symbols have no advantage). Th is is the upshot of text 3 above. 
Of course, even though a text such as text 3 does prove a general claim, it 
does so in an opaque form that does not display the rationality of the argu-
ment. But this helps to locate the problem more precisely: it is not that, with 
Diophantus’ symbolism, it was impossible to prove general claims; rather, it 
was impossible to prove general claims  in a manner that makes the rational-
ity of the argument transparent . 

 Second, and crucially, note that it was perfectly possible for Diophantus 
to make the rather minimal extensions to his system so as to encompass 
multiple variables. Indeed, since the most natural way for him of speaking 
of several unknowns was to speak of ‘the fi rst number’, ‘the second number’, 
etc., he eff ectively had the symbolism required – all he needed was to make 
the choice to put together the less common symbol for ‘number’ together 
with the standard abbreviation for numerals: αʹ ʹ ς would be ‘the fi rst number’, 
β´ ς would be ‘the second number’, etc. A bit more  cumbersome than 

  23      See e.g. Heath  1885 : 80–2. 
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 x  and  y , for sure, a confusing symbolism, as well (one would need to develop 
procedures to diff erentiate ‘two numbers’ from ‘the second number’) – but 
an eff ective symbolism nonetheless. Why did Diophantus not use it? 
 Because he had no use for it . Th e task Diophantus set himself did not call 
for multiple symbols for multiple unknowns. He did not set out to produce 
general proofs but rather to solve problems, where (with few exceptions) a 
 single  unknown was to be found. Diophantus’ project aimed not to obtain 
the generality of Euclidean theorems, but rather to solve problems, in a 
manner expressing the rationality of the solution. Th is task defi ned, for 
Diophantus, his choice of symbolism. 

 So let us then reframe accordingly our interpretation of Diophantus’ 
symbolism: not as a second-rate tool for the task of modern algebra, but, 
instead, as the perfect tool for the task Diophantus set himself. I proceed to 
discuss this task.   

 Diophantus the analyst:     choosing a mode of persuasion 

 Over and above the rigid structure of general enunciation followed by 
particular problem, Diophantus follows a rigid form for each of the prob-
lems. We should now explain Diophantus’ motivations in choosing this 
particular form (that he chose some rigid form – instead of allowing freely 
varying forms for setting out problems – is of course natural given his deu-
teronomic project). 

 Th e basic structure of the Diophantine proposition, as is well known, is 
that of analysis: that is, Diophantus assumes, for each proposition, that it 
has already been solved. Typically, he then terms the hypothetically found 
element ‘number’ (the ς with which we are familiar) and notes the conse-
quences of the assumption that the conditions of the problem are met (in 
the case quoted above: 20, together with the number, is four times 100, 
lacking the number). Th is is then manipulated by various ‘algebraic’ opera-
tions (roughly, indeed, those later used by al-Khwarizmi, in his algebra) 
until the number comes to be defi ned as monads. Th is then is quickly 
verifi ed in a fi nal statement where the terms are put ‘in the positions’. In 
the Arabic Diophantus, besides the quick verifi cation one also has a formal 
synthesis, repeating the argumentation of the analysis  backwards  so that 
one sees that, given the solution, the terms of the problem cannot fail to 
hold. Sesiano believes this may be due to Hypatia; alternatively, this could 
be due to some Arabic commentator. In any case, the systematic addition 
of the synthesis may serve as another example of how deuteronomic texts 
seek the goal of  completion . 
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 It is natural that, among the models available to him from elite literate 
Greek mathematics, Diophantus would choose that of analysis. While not 
the most common form of presenting propositions, it is very markedly 
associated with problems rather than with theorems – i.e. with those situa-
tions where one is faced not with a statement, whose truth is to be corrobo-
rated, but with a task which is to be fulfi lled.  24   Th is is of course the nature 
of the material Diophantus had available to him. And, since he set out to 
produce a systematic, monolithic work, it is natural that he would use the 
same form of presentation throughout – resulting in a unique text among 
the extant Greek works, consisting of analysis and nothing else. 

 Th e choice of the analytic form has important consequence for the 
nature of the reasoning. Now, it is oft en suggested that analysis is a method 
of discovery: that is, it is a way by which Greek mathematicians came to 
know how to solve problems. I have written on this question before, in an 
article called ‘Why did Greek mathematicians publish their analyses?’ I 
shall not repeat in detail what I had to say there, but the title itself suggests 
the main argument . 25   Whatever heuristic contribution the analytic move – 
of assuming the task fulfi lled – may have had, this cannot account for 
 writing the analysis down . Th e written-down analysis most certainly is not a 
 protocol  of the discovery of the solution. It must serve some other purpose 
in the context of presentation, which is what I was trying to explain in my 
article. Like most authors on Greek geometry, I had completely ignored 
Diophantus in that previous article of mine, but in fact here is a clear case 
for my claim: no doubt, Diophantus in general knew the values solving his 
tasks, as part of his tradition. Th e analysis, for him, was not a way of fi nding 
those values, but of presenting them. 

 What is the contribution of analysis in the context of presentation? I have 
suggested the following: when producing solutions to problems (unlike the 
case where one sets out proofs of theorems) one faces a special burden of 
showing the preferability of the off ered solution to other, alternative solu-
tions. Th is, indeed, was a standard arena of polemic in Greek mathematics: 

  25      Th e selective discussion in that article may be supplemented by my comments on a few 
analyses by Archimedes, in Netz  2004 : 207, 217–18. 

  24      Th is is the main theme of Knorr  1986 . In general, for the nature of ancient analysis, the best 
starting-point today is the  Stanford Encyclopedia of Philosophy  entry, with its rich but well-
chosen bibliography:  http://plato.stanford.edu/entries/analysis/ , by M. Beaney. Otte and 
Panza  1997  are the best starting point in print. I will state immediately my position, that 
much of the discussion of ancient analysis is vitiated by paying too much attention to Pappus’ 
pronouncements on the topic ( Collectio   vii .1–2): while Pappus was not an unintelligent reader 
of his sources, it is most likely that he presents not so much any earlier theory but rather his 
own interpretation, so that his authority on the subject is that of a  secondary  source. 

http://plato.stanford.edu/entries/analysis/
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are problems solved in the most appropriate way? Th e task, then, is to show 
how the off ered solution to the problem comes out naturally, given the 
terms themselves. Th is is what the analysis does: it reaches the solution to 
the problem, as a demonstrative consequence of the terms that the problem 
had set out. Th us analysis need not discover a solution, nor prove its truth 
(though this is a by-product of a successful analysis). Its aim may simply be 
to display how the solution emerges naturally out of the conditions set out 
by the problem. Th e aim of the proof in an analysis is not in its conclusion, 
but in the process itself: it lays down a rational bridge leading from the 
terms of the problem, to the solution off ered. 

 If this is true, then Diophantus should have similar expectations from 
his own analyses. But in fact this goal of the analyses emerges from his 
choice of the form itself. He avoided schoolroom algebraical presentations 
with their take-it-or-leave-it approach: probably, within the overall expec-
tations of elite literate Greek mathematics, this could not do. Such texts 
were driven by a culture whose central mode was persuasion, and the text 
therefore had to display a rational, persuasive structure. But neither did 
Diophantus aim primarily to show  the reason why . He could easily have 
chosen to adopt a strictly theoretical approach to numerical problems, 
as, one may perhaps say, certain Arabic mathematicians did much later; 
his fl uency in extending numerical problems and solving quite complex 
ones suggest that, in sheer terms of mathematical intelligence, he was 
quite capable of such a theoretical approach. But he did not aim at such. 
He understood his task in a more limited way – not so much to open up a 
new fi eld of theoretical inquiry, but rather to arrange a fi eld inherited from 
the past. Th e only constraint was that this fi eld should display a rational, 
persuasive structure: Diophantus’ analyses served just that. Instead of 
the take-it-or-leave-it of lay and school algebra, Diophantus would have 
rational bridges leading from the terms of the problems to their solutions. 
Th us he would show that the solutions are not arbitrary, but arise naturally 
given the terms set out by the problems.  26   

  26      It is interesting to notice in this context the cases where Diophantus departs from the strict 
analytic presentation. Th is happens, in particular, where he has to make some arbitrary choices 
of numerical values. Th en he sometimes takes us into his confi dence, explaining the rational 
basis for his next move. For example in  v .2: ‘but 16 monads are not some arbitrary number, 
but are a square which, added to 20 monads, makes a square as well. So I am brought to 
investigate: which square has a fourth bigger than 20 monads, and taken together with twenty 
monads makes a square. So the square results to be bigger than 80. But 81 is a square bigger 
than 80. . . ’ – this entire discussion is there to explain why, in an arbitrary move, Diophantus 
picks the numerical value 9 and none else. Th e choice is arbitrary; but Diophantus shows that it 
is not irrational, and is somehow suggested by the values at hand. 
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 My interpretation of Diophantus thus relies on two theoretical contexts 
I developed elsewhere:  deuteronomy , and  analysis as a tool of presentation . 
What is Diophantus’ project? I interpret this within the theoretical context 
of what I call deuteronomy: it is to systematize and complete previously 
given materials, making them all conform with some ideal standard. Th is 
systematic structure is two-dimensional. Horizontally, all units should 
conform to each other. Vertically, all units should conform to the ideals of 
Greek elite mathematics. How does Diophantus then fulfi l his project? I 
interpret this within the theoretical context of analysis as a tool of presenta-
tion. If all the units are to be the same, then the most natural format to take 
is that of a problem. And to make those problems conform to the ideals of 
Greek elite mathematics, the method of analysis is deployed, so as to display 
the rationality of each of the moves made through the text. 

 Th is, fi nally, I suggest, is the function of reasoning in Diophantus: to 
build a rational bridge leading from the terms of the problem, to the solu-
tion. I now need to show how Diophantus’ symbols may serve this function.   

 Diophantus’ symbolism and the display of rationality 

 My basic thesis is that the reasoning in Diophantus is designed, primarily, 
to display a rational bridge leading from the terms of the problem to the 
solution. Two questions arise: (1) How does symbolism such as that used 
by Diophantus help with this goal? (2) Why would it help with such a goal 
here, and not elsewhere in Greek mathematics? 

 Let me fi rst discuss the appropriateness of Diophantus’ symbolism for 
his goal. 

 Diophantus’ goal, as I reconstruct, is in one sense limited, in another 
sense ambitious. Th e goal is limited, because he does not aim at powerful, 
general theoretical insight into numerical problems. He merely aims at 
classifying and completing them as a system. Th e goal is ambitious, because 
each solution, at each step, has to clear a high cognitive hurdle. It has to 
display, step by step, its rationality. 

 Both the limit and the ambition explain why a general, theoretical 
approach such as text 3 above would not be appropriate. It is not called 
for, because of the limited ambition; and it is undesirable because, with 
the prolix phrases and the diffi  culty of fi xing the identity of the entities 
involved, it becomes impossible to survey, step by step, the rationality of 
the argument as it unfolds. Note that in a text with theoretical goals, local 
obscurity can be tolerated: the reader is then expected to  work  his or her 
way through the text. It is quite feasible to have valid arguments expressed 
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in roundabout, extremely subtle, or even paradoxical fashion, so that it is 
only by reading them several times over – eff ectively, producing a com-
mentary – that one comes to see their validity. Indeed, such writing is 
very typical of the Western  philosophical  tradition. Diophantus’ world had 
also people reading, say, Stoic metaphysics, which is as opaque (and as 
precise) as text 3 above. But Stoic metaphysics is the product of a profes-
sional community of specialists who pride themselves in their fl uency in a 
complex language. Its subject matter is perceived to have enormous inner 
signifi cance. Th us readers prefer the theoretical power of an argument to 
its apparent rationality: it is more important to derive a truth than to show 
that that truth arises naturally (indeed, there is a premium in a diffi  cult-to-
parse argument, in whose production and parsing both author and reader 
may take pride). On the other hand, because the author off ers  solutions  he is 
under a special obligation, as argued above, to display the rationality of the 
solution as it unfolds, to show that it is not a contrived solution but instead 
derives naturally from the terms of the problem.  27   

 Th is immediately suggests a function for Diophantus’ symbolism. 
Obviously, it makes the parsing easier: it abbreviates overall, and it brings 
about clear visual signposts with which the text is structured and its entities 
identifi ed. 

 But let us be more precise: just what is being more easily parsed, and 
how? To repeat the conclusion of  Section 2  above: we see that Diophantus’ 
symbolism gives rise to a systematic bimodal reading, visual and verbal, 
at the level of the noun-phrase. Th is, I argue, directly serves the goal of 
constructing a rational bridge leading from the terms of the problem to its 
solution. 

 For what is a rational bridge like? It is a structure where everything is 
meaningfully present to the mind, and is also under the mind’s control. 
Th e relationships are all calculated and verifi ed, but they are perceived as 
meaningful relationships and not as mere symbolic structures lacking in 
meaning. In modern terms, we may say that Diophantus needs to have a 
semantic derivation; it also ought to be cognitively computable. 

 Since the derivation must be semantic, a bimodal reading is preferable to 
a strictly visual one. For Diophantus, it appears important that the deriva-
tion refers directly to numbers and monads, and does not make use of some 
opaque symbols. Th e derivation should be conducted throughout at the 
level of the meanings: the signifi ed – and not only the signs – should never 

  27      I follow an explanatory mode comparable to that of Chemla  2003 . Considering the closely 
analogous case of the use of particular examples in Chinese mathematics, Chemla argues that 
these were used because the authors were seeking  generality above abstraction . My analogous 
argument is that Diophantus sought  transparency above generality . 
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be lost out of sight, for otherwise the derivation would appear as a con-
jurer’s trick out of which the solution happened to have emerged – precisely 
the opposite eff ect of the rational bridge Diophantus aims to construct. 

 At the same time, the visual component of the bimodal reading serves in 
the computation of the expression. Th e eye glances quickly to the correct 
spot in the phrase, fi nding the correct value. Even more important, perhaps: 
the mind is trained to look for the expressions, so that a visual–spatial 
arrangement for the phrase comes to aid the purely verbal computation. 
Th is is a speculative statement: I believe it to be true. Let me explain. First 
of all, independently of how a particular phrase may be spelled out, through 
abbreviations or through fully written-out words, it is certainly read by a 
mind that is already acquainted with the fi xed structure of the phrase on 
the page, and with its limited arsenal of symbols. Th us the reader would 
have triggered in him or her not only the verbal response, but also the visual 
response. In other words, it appears to me that, just as the mind involun-
tarily creates a verbal representation of a Diophantine abbreviation, so it 
involuntarily creates a visual representation of a Diophantine spelled-out 
word. Th us the reader has three resources available: (1) the actual trace of 
the page, (2) the verbal representation of the contents, kept by the mind’s 
working memory of phonological representations, (3) the visual repre-
sentation of the contents, kept by the mind’s working memory of visual 
representations. Resource (1) would then serve to stabilize and keep in 
place both resources (2) and (3). It is obvious that the presence of a visual 
resource, over and above the verbal resource, helps in the computation of 
the expression: I shall return to explain this in more detail below. 

 What is involved in the computation? Th e reader, above all, verifi es that a 
certain relation holds, in the rational bridge, leading from one statement to 
the next. In other words, what we need is to have a tool for operating upon 
phrases expressing arithmetical values. We need to verify that the product 
of an operation on the expression X is indeed the expression Y. So we can 
see why the operations themselves do not call for symbolism: they may be 
fully spelled out, instead. What we need is symbolism for the arithmetical 
values on which the operations operate. We can thus see why Diophantine 
symbolism stops at the level of the noun-phrase and does not reach the 
level of the sentence. 

 Th e computation is thus local to the level of the noun-phrase. Indeed, it 
is clear that the resources (2) and (3) – the verbal and visual representation 
of expressions in the reader’s working memory – are limited in capacity and 
duration. In fact, all that they allow is the verifi cation of the relation in a 
single stage of the argument – the rational bridge is built one link at a time. 
We can now return to  i .10 and consider the verifi cation in action: 
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 (1) And if it is added to twenty, results: ς1 Μ ο 20. (2) And if it is taken away from 
100, results: Μ ο 100 lacking number 1. (3) And it shall be required that the greater 
be 4- tms  the smaller. (4) Th erefore four- tms  the smaller is equal to the greater; (5) but 
four-  tms  the smaller results: Μ ο 400 Ψ ς 4; (6) these equal ς1 Μ ο 20 
  (7) Let the subtraction be added <as> common, (8) and let similar <terms> be 
taken away from similar <terms>. (9) Remaining: numbers, 5, equal Μ ο 380. (10) 
And the ς results: monads, 76.   

 Th is – the entirety of the argumentative part of the proposition – all 
revolves around a single verifi cation, the one connecting the statement of 
steps 5–6 taken as a whole, and the statement of step 9. Th e operation to 
be verifi ed is contained in steps 7–8; steps 1–5 (which are very simple, but 
somewhat convoluted) make sense as soon as their purpose becomes clear: 
to bring the two expressions of steps 5–6 into close proximity, in prepara-
tion for the verifi cation of the operation. Finally, step 10 is a very simple 
consequence of step 9 and calls for no cognitive eff ort. 

 Note, then, that steps 7–8 are fully spelled out: they do not include any 
of Diophantus’ symbolic terms. Th e operation itself is fully verbal and 
semantic: the meaning of the operation is directly told to the reader. On the 
other hand, the substratum for the operation – the phrases of steps 5, 6 and 
9 – is presented in the bimodal form of abbreviations. One knows through-
out what one talks about: these are not abstract symbols, but ‘numbers’ 
and ‘monads’. On the other hand, the computations can relatively easily 
be carried out: a ‘lacking’ in the one can be translated into an addition to 
the other, which easily leads to 5; 400 with 20 taken away easily leads to 
380; each result is attached to the correct rubric, ‘number’ in the fi rst case, 
‘monads’ in the second. In all of this, the simplifi cation introduced by a fi xed 
visual structure to which objects can be added or removed is of obvious help. 

 Th is, then, is my suggestion for the role of symbolism in Diophantus’ rea-
soning. As Diophantus transformed the lay and school algebra material at 
his disposal, into the argumentative form of Greek mathematical analysis, 
he added in a tool which served in this analytic form – making the argu-
ment display the rationality of the passage from the terms of the problem 
to the terms of its solution.  28   We can see why the transition from lay and 
school algebras, to elite literate algebra, would encourage Diophantus to 
introduce the type of symbolism he uses. But we should also consider the 
second transition leading to Diophantus’ text. His text diff ers not only from 

  28      An analogous account can perhaps be provided for Diophantus’ fraction symbolism. With 
fractions, as well, Diophantus does not develop a symbolic operation that allows him to 
calculate directly on fractions (e.g. from  a / b * c / d  to get  a * b / c * d ). Th us the validity of the 
operations is left  for the reader to verify explicitly. However, the symbolism – whose essence 
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previous lay and school algebras, but also from the established elite literate 
Greek mathematics Diophantus was familiar with. Th is mathematics had 
included no such symbolism as Diophantus’. Why would Diophantus intro-
duce such a symbolism, then? In other words, what is the function served 
by symbolism, in the case of the problems studied by Diophantus – but 
which is not required in the case of the problems studied by previous elite 
literate Greek mathematicians? 

 Th e question can be put precisely: why are Greek geometrical relations 
easily computable without symbolism, while Diophantus’ numerical rela-
tions are not? Th e question is cognitive, and so we should look for a cogni-
tive divide between the character of geometrical and numerical relations. 
To begin with, then, let us remind ourselves of how Greek geometrical 
relations are expressed. 

 As described in  Chapter 4  of N1999, Greek geometrical texts are written 
in a system of formulaic expressions, the most important of which is the 
family of ratio-expressions, e.g. ‘the ratio of A to B is the same as the ratio of 
C to D’ (typically, the slots A, B, C and D are fi lled by spelled-out formulae 
for geometrical objects, e.g. ‘the [two letters]’, the standard formulaic rep-
resentation of a line). One may then bring in further information, always 
expressed within the same system of formulaic expressions, e.g. that ‘C is 
equal to E’, or that ‘the ratio of C to D is the same as the ratio of G to H’. 
Extra information of the fi rst kind would license a conclusion such as ‘the 
ratio of A to B is the same as the ratio of E to D’, while extra information of 
the second kind would license a conclusion such as ‘the ratio of A to B is the 
same as the ratio of G to H’. 

 To repeat, the system is based on formulaic expressions – all within 
natural Greek grammar. No special symbolism is involved and the text is 
spelled out in ordinary alphabetical writing, so that the mind doubtless fi rst 
translates the written traces into verbal representation and then computes 
the validity of the argument on the basis of such verbal representations. 

 Note now that the formulaic expressions of Greek geometry are 
characterized by a hierarchical, generative structure. Typically, a formulaic 
expression has, as constituent elements subordinate to its own structure, 
several smaller formulaic expressions, all ultimately governing the charac-
ters of the alphabet indicating diagrammatic objects. Th us in ‘the ratio of A 

is that divisions are not represented as unit fractions but are left  ‘in the raw’ – makes such 
a verifi cation possible. It is one thing to be told that 6 divided by 8 is 4 3  (where you directly 
verify that 8 6  is the same as 4 3 ); another, to be told that 6 divided by 8 is 2′4′ (where the 
verifi cation depends on a relatively complex, separate calculation – usually, much more 
complex than in this simple example). 
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to B is the same as the ratio of C to D’ one can detect three levels: the level 
of the proportion statement, which is in turn a structure of two ratio state-
ments, each of which in turn is a structure of two object descriptions (which, 
in the Greek original form, would refer through characters of the alphabet 
indicating diagrammatic objects). Th e structure is hierarchical in that its 
constituents are related to each other in relations of syntactic subordination; 
it is generative in that such constituents can be added and substituted at will. 

 Th is substitution is in fact one of the two bases of the computation of 
the validity of the geometrical argument in Greek mathematics – the other 
being the diagram, which we may ignore here. It is feasible precisely because 
the formulaic expression is hierarchical and generative. Mathematical 
computation here is parasitic upon syntactic computation. Th e mind is 
equipped with a tool for computing substitutions on hierarchic, generative 
syntactic structures. It is thus a matter of immediate inspection that, from 
the two expressions ‘the ratio of A to B is the same as the ratio of C to D’ and 
‘C is equal to E’, the expression ‘the ratio of A to B is the same as the ratio of 
E to D’: one unfailingly knows where to affi  x the correct substitution, based 
on one’s structural grasp of the expression ‘the ratio of A to B is the same as 
the ratio of C to D’. Since natural language syntax is the mental tool brought 
to bear when computing the validity of such arguments, it is only natural 
that they are represented verbally and not visually. 

 We see then that, to the extent that expressions possess a hierarchic 
structure, they may be eff ectively computed through natural language tools. 
And it is important to notice that Greek geometrical formulae are indeed 
characterized by such hierarchic structures, with proportion as the central 
operation in this type of mathematics. 

 Not all expressions in natural language, however, have this hierarchic 
structure based on subordination. Alongside subordinate structure, natural 
language uses another structural principle, that of paratactic arrangement, 
i.e. the concatenation of phrases to create larger phrases without introduc-
ing an internal structure of dependency. Th is is the diff erence between 
expressions of the type ‘Th e A of the B of the C’ and expressions such as 
‘A and B and C’. Expressions of the fi rst kind contain, in their syntactic 
representation, internal structure, which the mind can use in manipulating 
them. Expressions of the second kind are syntactically represented as mere 
concatenation lacking internal structure, so that there is nothing syntactic 
computation can latch onto. 

 My suggestion, then, is obvious: the central Diophantine expression – 
the phrase representing the sums of, e.g., dunamis, number and monads – 
is paratactic and not subordinate in structure. It thus essentially diff ers 
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from expressions such as ‘the ratio of A to B is the same as the ratio of C to 
D’. For this reason, purely verbal representations of the Diophantine phrase 
are of limited value, and Diophantus naturally was led to look for further 
tools for easing computation, in the principle of allography present in his 
scribal culture. 

 I fi nd it striking that the same seems to be true of numerical expres-
sions in natural language as a whole. It seems that numerical expressions 
tend to be paratactic, rather than subordinate: this may be because they 
are essentially open-ended in character, ‘A and B and C and D’. Th us they 
always off er incentives for non-verbal representation in which their com-
putation is aided by more than natural language syntax. Number symbol-
ism itself is the primary example. For aft er all the earliest and most central 
case of symbolic argument is precisely that – the algorithm, manipulating 
number-symbolism via a translation of numbers from natural language 
into a visual code.  29      

 4. Summary 

 Th e suggestion of this article can now be put forward as follows. Involved 
in the deuteronomic project of fi tting in previously available texts within 
established forms, Diophantus set himself the task of presenting lay and 
school algebra within the format – and expectations – of Greek geometrical 
analysis. Th is entailed the task of constructing a rational bridge leading 
from the setting of the problems to their solutions. Since the expressions 
involved were numerical in character (rather than standing for qualitative 
relations), their structure was not subordinate, but paratactic. As a con-
sequence, the syntax of natural language no longer helped in their com-
putation and could not support the task of constructing a rational bridge. 
Instead, Diophantus reached for the tool available to him in his culture – 
allography – to construct expressions whose visual structure could support 
the same task. Th ese two features of Diophantus’ context – deuteronomy 
and allography – both may have to do, ultimately, with the material history 
of writing in late antiquity. And so, the relationship between reasoning and 
symbolism in Diophantus is found to be dependent upon the very specifi c 
historical conditions of late antiquity. 

 Th e complex, many-dimensional nature of the account sketched here is 
in itself signifi cant. Why does Diophantus use his particular  symbolism? 

  29      Allard  1992 . 
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Because he has a particular task, and particular tools, all refl ecting a 
complex historical setting. Everything argued here is tentative but of one 
thing I am certain: the history of mathematical symbolism is not linear. Let 
us discard the notion of a single linear trajectory from ‘natural language’ 
to ‘symbolic algebra’, a gradual transition from the concrete to the abstract, 
from the less expressive to the more expressive, a simple teleological route 
leading to an ever more perfect science. In truth, mathematics never did rely 
on natural language: from its very inception it expressed itself, in its various 
cultural traditions, through diff erent complicated formulaic languages, 
using various specialized traces for numerical values or for diagrams. 
History then takes off  in a non-linear fashion. Symbolism is invented and 
discarded, employing this or that set of cognitive tools, inventing this or 
that form of writing, in the service of changing goals: nothing is predeter-
mined. Symbolism – just as mathematics itself – is contingent. Th e same, 
fi nally, must be true of our own (various uses of) symbolism: they should 
be seen not as the ‘natural’ achievement of precise abstraction but as a 
historical artefact. We should therefore study the precise cognitive tools 
our symbolism employs, the precise tasks that such symbols are made to 
achieve, and the precise historical route that brought us to the use of such 
symbols. Th e modern equation is not the ‘natural’ outcome of a mathemati-
cal history destined to reach its culmination in the nineteenth century; it 
is a culturally specifi c form. Th is article, sketching a speculative account 
of Diophantus’ symbolism, off ered one chapter from the historical route 
leading to that equation.                                    
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 11     Mathematical justifi cation as non-conceptualized 
practice:     the Babylonian example    

   Jens     Høyrup      

 Speaking about and doing – doing without speaking about it 

 Greek philosophy, at least its Platonic and Aristotelian branches, spoke 
much about demonstrated knowledge as something fundamentally diff er-
ent from opinion; oft en, it took mathematical knowledge as the archetype 
for demonstrated and hence certain knowledge – in its scepticist period, the 
Academy went so far as to regard mathematical knowledge as  the only  kind 
of knowledge that could really be based on demonstrated certainty.  1   

 Not least in quarters close to Neopythagoreanism, the notion of math-
ematical demonstration may seem not to correspond to our understanding 
of the matter; applying our own standards we may judge the homage to 
demonstration to be little more than lip service. 

 Aristotle, however, discusses the problem of fi nding principles and 
proving mathematical propositions from these in a way that comes fairly 
close to the actual practice of Euclid and his kin. Even though Euclid 
himself only practises demonstration and does not discuss it we can there-
fore be sure that he was not only making demonstrations but also explicitly 
aware of doing so in agreement with established standards. Th e preface to 
Archimedes’  Method  is direct evidence that its author knew demonstration 
according to established norms to be a cardinal virtue – the alleged or real 
heterodoxy consisting solely in his claim that discovery without strict proof 
was also valuable. Philosophical commentators like Proclus, fi nally, show 
beyond doubt that they too saw the mathematicians’ demonstrations in the 
perspective of the philosophers’ discussions. 

 As to Diophantus and Hero we may fi nd that their actual practice is 
not  quite in agreement with the philosophical prescriptions, but there 
is no  doubt that even  their  presentation of mathematical matters was 

    A preprint version of this article appeared in  HPM 2004: History and Pedagogy of Mathematics , 
Fourth Summer University History and Epistemology of Mathematics, ICME 10 Satellite 
Meeting, Uppsala 12–17 July 2004. Proceedings Uppsala: Universitetstryckeriet, 2004. I thank 
Karine Chemla for questions and commentaries which made me clarify the fi nal text on 
various points. 

     1      See, e.g., Cicero,  Academica   ii .116–17 (ed. Rackham  1933 ). 
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meant to agree with such norms as are refl ected in the philosophical 
 prescriptions.   

 Justifi cation unproclaimed – or absent 

 But is it not likely that mathematical demonstration has developed as a 
practice in the same process as created the norms, and thus before such 
norms crystallized and were hypostasized by philosophers? And is it not 
possible that mathematical demonstration – or, to use a word which is less 
loaded by our reading of Aristotle and Euclid,  justifi cation  – developed in 
other mathematical cultures without being hypostasized? 

 A good starting point for the search for a mathematical culture of this 
kind might be that of the Babylonian scribes – if only for the polemical 
reason that ‘hellenophile’ historians of mathematics tend to deny the exist-
ence of mathematical demonstration in this area. In Morris Kline’s (rela-
tively moderate) words,  2   written at a moment when non-specialists tended 
to rely on selective or not too attentive reading of popularizations like 
Neugebauer’s  Science in Antiquity  ( 1957 ) and  Vorgriechische Mathematik  
( 1934 ) or van der Waerden’s  Erwachende Wissenschaft   ( 1956 ): 

 Mathematics as an organized, independent, and reasoned discipline did not exist 
before the classical Greeks of the period from 600 to 300  b.c . entered upon the 
scene. Th ere were, however, prior civilizations in which the beginnings or rudi-
ments of mathematics were created 

 . . . 

 Th e question arises as to what extent the Babylonians employed mathematical 
proof. Th ey did solve by correct systematic procedures rather complicated equa-
tions involving unknowns. However, they gave verbal instructions only on the steps 
to be made and off ered no justifi cation of the steps. Almost surely, the arithmetic 
and algebraic processes and the geometrical rules were the end result of physical 
evidence, trial and error, and insight.   

 Th e only opening toward any kind of demonstration beyond the observa-
tion that a sequence of operations gives the right result is the word ‘insight’, 
which is not discussed any further. Given the vicinity of ‘physical evidence’ 
and ‘trial and error’ we may suppose that Kline refers to the kind of insight 
which makes us understand in a glimpse that the area of a  right-angled 
triangle must be the half of that of the corresponding rectangle.   

     2      Kline  1972 : 3, 14. 
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     3      I use the translations from H2002 with minor corrections, leaving out the interlinear 
transliterated text and explaining key operations and concepts in notes at their fi rst occurrence 
– drawing for this latter purpose on the results described in the same book. In order to 
facilitate checks I have not straightened the very literal (‘conformal’) translations. Th e fi rst text 
(VAT 8390 #1) is translated and discussed on pp. 61–4. 

     4      Th e Old Babylonian period covers the centuries from 2000  bce  to 1600  bce  (according to the 
‘middle chronology’). Th e mathematical texts belong to the second half of the period. 

     5      To make the lines  a  and  b  ‘hold’ or ‘hold each other’ (with further variations of the phrase 
in the present text) means to construct (‘build’) the rectangular surface  ( a , b ) which they 
contain. If only one line  s  is involved, the square � ( s ) is built. 

     6      I follow Th ureau-Dangin’s system for the transliteration of sexagesimal place value numbers, 
where `, ``, . . . indicate increasing and ´, ´´, . . . decreasing sexagesimal order of magnitude, 

 Evident validity 

 In order to see how much must be put into the notion of ‘insight’ if Kline’s 
characterization is to be defended we may look at some texts.  3   I shall start 
by problem 1 from the Old Babylonian tablet VAT 8390 (see  Figure 11.1 ) 
(as also in following examples, an explanatory commentary follows the 
translation):   4   

  Obv.  i   

     1.     [Length and width] I have made hold:  5   10` the surface.  6    
     2.     [Th e length t]o itself I have made hold:  

 Figure 11.1      Th e confi guration of VAT 8390 #1.    

2

3

3
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     3.     [a surface] I have built.  
     4.     [So] much as the length over the width went beyond   7    
     5.     I have made hold, to 9 I have repeated:   8    
     6.     as much as that surface which the length by itself  
     7.     was [ma]de hold.  
     8.     Th e length and the width what?  
     9.     10` the surface posit,  9    
  10.     and 9 (to) which he has repeated posit:  
  11.     Th e equalside  10   of 9 (to) which he has repeated what? 3.  
  12.     3 to the length posit  
  13.     3 t[o the w]idth posit.  
  14.     Since ‘so [much as the length] over the width went beyond  
  15.     I have made hold’, he has said  
  16.     1 from   |  3 which t]o the width you have posited  
  17.     tea[r out:] 2 you leave.  
  18.     2 which yo[u have l]eft  to the width posit.  
  19.     3 which to the length you have posited  
  20.     to 2 which 〈to〉 the width you have posited raise,  11   6.  

and where ‘order zero’ when needed is marked ° (I omit it when a number of ‘order zero’ 
stands alone, thus writing 7 instead of 7°). 5`2°10´ thus stands for 5·60 1  + 2·60 0  + 10·60 –1 . It 
should be kept in mind that absolute order of magnitude is not indicated in the text, and that 
`, ´ and ° correspond to the merely mental awareness of order of magnitude without which 
the calculators could not have made as few errors as actually found in the texts. Th e present 
problem is homogeneous, and therefore does not enforce a particular order of magnitude. 
I have chosen the one which allows us to distinguish the area of the surface (10`) from the 
number   1/6   (10´). 

      7      Th e text makes use of two diff erent ‘subtractive’ operations. One, ‘by excess’, observes how 
much one quantity  A  goes beyond another quantity  B ; the other, ‘by removal’, fi nds how much 
remains when a quantity  a  is ‘torn out’ (in other texts sometimes ‘cut off ’, etc.) from a quantity 
 A . As suggested by the terminology, the latter operation can only be used if  a  is 
part of  A . 

      8      ‘Repetition to/until  n ’ is concrete, and produces  n  copies of the object of the operation.  n  is 
always small enough to make the process transparent, 1 <  n  < 10. 

      9      ‘Positing’ a number means to take note of it by some material means, perhaps in isolation on a 
clay pad, perhaps in the adequate place in a diagram made outside the tablet. ‘Positing  n  to’ a 
line (obv.  i  12, etc.) is likely to correspond to the latter possibility. 

  10      Th e ‘equalside’  s  of an area  Q  is the side of this area when it is laid out as a square (the ‘squaring 
side’ of Greek mathematics). Other texts tell that  s  ‘is equal by’  Q . 

  11      ‘Raising’ is a multiplication that corresponds to a consideration of proportionality; its 
etymological origin is in volume determination, where a prismatic volume with height  h  cubits 
is found by ‘raising’ the base from the implicit ‘default thickness’ of 1 cubit to the real height  h . 
It also serves to determine the areas of rectangles which were constructed previously (lines  i  20 
and  ii  7), in which case, e.g., the ‘default breadth’ (1 ‘rod’,  c . 6 m) of the length is ‘raised’ to the 
real width. In the case where a rectangular area is constructed (‘made hold’), the arithmetical 
determination of the area is normally regarded as implicit in the operation, and the value is 
stated immediately without any intervening ‘raising’ (thus lines  ii  7 and 10). 
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  21.     Igi 6  12   detach: 10´.  
  22.     10´ to 10` the surface raise, 1`40.  
  23.     Th e equalside of 1`40 what? 10.   

 Obv.  ii   
     1.     10 to 3 wh[ich to the length you have posited]  
     2.     raise, 30 the length.  
     3.     10 to 2 which to the width you have po[sited]  
     4.     raise, 20 the width.  
     5.     If 30 the length, 20 the width,  
     6.     the surface what?  
     7.     30 the length to 20 the width raise, 10` the surface.  
     8.     30 the length together with 30 make hold: 15`.  
     9.     30 the length over 20 the width what goes beyond? 10 it goes beyond.  
  10.     10 together with [10 ma]ke hold: 1`40.  
  11.     1`40 to 9 repeat: 15` the surface.  
  12.     15` the surface, as much as 15` the surface which the length  
  13.     by itself was made hold.      

 Th is problem about a rectangle exemplifi es a characteristic of numerous 
Old Babylonian mathematical texts, namely that the description of the pro-
cedure already makes its adequacy evident. In Obv.  i  4–5 we are told to con-
struct the square on the excess of the length of the rectangle over its width 
and to take 9 copies of it, in lines  i  6–7 that these can fi ll out the square on 
the length. Th erefore, these small squares must be arranged in square, as in 
 Figure 11.1 , in a 3×3 pattern (lines  i  11–13). But since the side of the small 
square was defi ned in the statement to be the excess of length over width 
( i  14–15, an explicit quotation), removal of one of three rows will leave 
the original rectangle, whose width will be 2 small squares.  13   In this unit, 
the area of the rectangle is 2·3 = 6 ( i  18–20); since the rectangle is already 
there, there is no need for a ‘holding’ operation. Because the area meas-
ured in standard units (square ‘rods’) was 10`, each small square must be 
1⁄6 . 10` = 1`40 and its side √1`40 = √100 = 10 ( i  21–23). From this it follows 
that the length must be 3·10 = 30 and the width 2·10 = 20 ( ii  1–3).  

  12      ‘Igi  n ’ designates the reciprocal of  n . To ‘detach igi  n ’, that is, to fi nd it, probably refers to the 
splitting out of one of  n  parts of unity. ‘Raising  a  to igi  n ’ means fi nding   a ⋅ 1/n  , that is, to 
divide  a  by  n . 

  13      In our understanding, 2 times the side of the small square. However, the Babylonian term 
for a square confi guration ( mith

ˇ
artum , literally ‘[situation characterized by a] confrontation 

[between equals]’), was numerically identifi ed by and hence with its side – a Babylonian 
square (primarily thought of as a square frame) ‘was’ its side and ‘had’ an area, whereas ours 
(primarily thought of as a square-shaped area) ‘has’ a side and ‘is’ an area. 
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 Th e one who follows the procedure on the diagram and keeps the exact 
(geometrical) meaning and use of all terms in mind will feel no more need 
for an explicit demonstration than when confronted with a modern step-
by-step solution of an algebraic equation,  14   in particular because numbers 
are always concretely identifi ed by their role (‘3 which to the length you 
have posited’, etc.). Th e only place where doubts might arise is why 1 has to 
be subtracted in  i  16–17, but the meaning of this step is then duly explained 
by a quotation from the statement (a routine device). Th ere should be no 
doubt that the solution  must be  correct. 

 None the less a check follows, showing that the solution is valid ( ii  5 
onwards). Th is check is very detailed, no mere numerical control but an 
appeal to the same kind of understanding as the preceding procedure: 
as we see, the rectangle is supposed to be already present, its area being 
found by ‘raising’; the large and small squares, however, are derived entities 
and therefore have to be constructed (the tablet contains a strictly parallel 
problem that follows the same pattern, for which reason we may be confi -
dent that the choice of operations is not accidental). 

 A similar instance of evident validity is off ered by problem 1 of the text 
BM 13901 ( Figure 11.2 ),  15   the simplest of all mixed second-degree prob-
lems (and by numerous other texts, which however present us with the 
inconvenience that they are longer): 

  Obv.  i   
     1.     Th e surfa[ce] and my confrontation  16   I have accu[mulated]:  17   45´ is it. 1, the 

projection,  18    
     2.     you posit. Th e moiety  19   of 1 you break, [3]0´ and 30´ you make hold.  

  14      For instance,  

  3x + 2 =17 
 ⇒ 3x = 17 − 2 = 15 
 ⇒ x = 1⁄3 ⋅ 15 = 5.    
  15      Translation and discussion in H2002: 50–2. 
  16      Th e  mith

ˇ
artum  or ‘[situation characterized by the] confrontation [of equals]’, as we remember 

from n. 13, is the square confi guration parametrized by its side. 
  17      ‘To accumulate’ is an additive operation which concerns or may concern the measuring 

numbers of the quantities to be added. It thus allows the addition of lengths and areas, as here, 
in line 1, and of areas and volumes or of bricks, men and working days in other texts. Another 
addition (‘appending’) is concrete. It serves when a quantity  a  is joined to another quantity  A , 
augmenting thereby the measure of the latter without changing its identity (as when interest, 
Babylonian ‘the appended’, is joined to  my  bank account while leaving it as mine). 

  18      Th e ‘projection’ ( wās. ītum , literally something which protrudes or sticks out) designates a line 
of length 1 which, when applied orthogonally to another line  L  as width, transforms it into a 
rectangle  ( L ,1) without changing its measure. 

  19      Th e ‘moiety’ of an entity is its ‘necessary’ or ‘natural’ half, a half that could be no other fraction – 
as the circular radius is by necessity the exact half of the diameter, and the area of a triangle is 
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 Figure 11.2      Th e procedure of BM 13901 #1, in slightly distorted proportions.    
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  20      Actually, both Neugebauer and Th ureau-Dangin knew that this was not the whole truth: none 
of them ever uses a wrong operation when reconstructing a damaged text. On one occasion 
Neugebauer ( 1935 –7:  i  180) even observes that the scribe uses a wrong multiplication. However, 

     3.     15´ to 45´ you append:   |  by] 1, 1 is equal. 30´ which you have made hold  
     4.     in the inside of 1 you tear out: 30´ the confrontation.      

 Th e problem deals with a ‘confrontation’, a square confi guration identifi ed 
by its side  s  and possessing an area. Th e sum of (the measures of) these is 
told to be 45´. Th e procedure can be followed in  Figure 11.2 : the left  side 
 s  of the shaded square is provided with a ‘projection’ ( i  1). Th ereby a rec-
tangle  ( s ,1) is produced, whose area equals the length of the side  s ; this 
rectangle, together with the shaded square area, must therefore also equal 
45´. ‘Breaking’ the ‘projection 1’ (together with the adjacent rectangle) and 
moving the outer ‘moiety’ so as to make the two parts ‘hold’ a small square 
�(30´) does not change the area ( i  2), but completing the resulting gnomon 
by ‘appending’ the small square results in a large square, whose area must 
be 45´ + 15´ = 1 ( i  3). Th erefore, the side of the large square must also be 
1 ( i  3). ‘Tearing out’ that part of the rectangle which was moved so as to 
make it ‘hold’ leaves 1–30´ for the ‘confrontation’, [the side of] the square 
confi guration.  

 As in the previous case, once the meaning of the terms and the nature of 
the operations is understood, no explanation beyond the description of the 
steps seems to be needed. 

 In order to understand  why  we may compare to the analogous solution of 
a second-degree equation:  
  x2 + 1⋅x = ¾
 ⇔ x2 + 1⋅x + (½)2 = ¾ + (½)2

 ⇔ x2 + 1⋅x + (½)2 = ¾ + ¼ = 1
 ⇔ (x + ½)2 = 1
 ⇔ x + ½ = √1 = 1
 ⇔ x = 1–½ = ½    
 We notice that the numerical steps are the same as those of the Babylonian 
text, and this kind of correspondence was indeed what led to the discovery 
that the Babylonians possessed an ‘algebra’. At the same time, the termi-
nology was interpreted from the numbers – for instance, since ‘making   ½   
and   ½   hold’ produces   ¼  , this operation was identifi ed with a numerical 
 multiplication; since ‘raising’ and ‘repeating’ were interpreted in the same 
way, it was impossible to distinguish them.  20   Similarly, the two additive 

found by raising exactly the half of the base to the height. It is found by ‘breaking’, a term which 
is used in no other function in the mathematical texts. 
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operations were confl ated, etc. All in all, the text was thus interpreted as a 
numerical algorithm: 

 Halve 1:   ½  . 
 Multiply   ½   and   ½  :   ¼  . 
 Add   ¼   to   ½  : 1. 
 Take the square root of 1: 1. 
 Subtract   ½   from 1:   ½  .   

 A similar interpretation as a mere algorithm results from a reading of the 
symbolic solution if the left -hand side of all equations is eliminated. It is 
indeed this left -hand side which establishes the identity of the numbers 
appearing to the right, and thereby makes it obvious that the operations 
are justifi ed and lead to the solution. In the same way, the geometric 
reference of the operational terms in the Babylonian text is what establishes 
the meaning of the numbers and thereby the pertinence of the steps.   

 Didactical explanations 

 Kline wrote at a moment when the meaning of the terms and the nature 
of the operations was  not  yet understood and where the text was therefore 
usually read as a mere prescription of a numerical algorithm; his opinion 
is therefore explainable (we shall return to the fact that this opinion of his 
also refl ects deeply rooted post-Renaissance scientifi c ideology). How this 
understanding developed concerns the history of modern historical schol-
arship.  21   But how did Old Babylonian students come to understand these 
matters? (Even we needed some explanations and some training before we 
came to consider algebraic transformations as self-explanatory.) 

 Neugebauer, fully aware that the complexity of many of the problems 
solved in the Old Babylonian texts presupposes deep understanding and 
not mere glimpses of insight, supposed that the explanations were given 
in oral teaching. In general this will certainly have been the case, but aft er 
Neugebauer’s work on Babylonian mathematics (which stopped in the late 
1940s) a few texts have been published which turn out to contain exactly 
the kind of explanations we are looking for. 

  21      See Høyrup  1996  for what evidently cannot avoid being a partisan view. 

they never made this insight explicit, for which reason less brilliant successors did not get the 
point. For instance, Bruins and Rutten  1961  abounds in wrong choices (even when Sumerian 
word signs are translated into Akkadian). 
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 Most explicit are some texts from late Old Babylonian Susa: TMS  vii , 
TMS  ix , TMS  xvi .  22   Since TMS  ix  is closely related to the problem we have 
just dealt with, whereas TMS  vii  investigates non-determinate linear prob-
lems and TMS  xvi  the transformation of linear equations, we shall begin 
by discussing TMS  ix  ( Figures 11.3  and  11.4 ). It falls in three sections, of 
which the fi rst two run as follows: 

  #1  
     1.     Th e surface and 1 length accumulated, 4[0´.  ¿ 30, the length, ?  20´ the width.]  23    
     2.     As 1 length to 10´   |  the surface, has been appended,]  
     3.     or 1 (as) base to 20´, [the width, has been appended,]  
     4.     or 1°20´ [ ¿ is posited ? ] to the width which together   [  with the length  ¿ holds ? ] 40´  
     5.     or 1°20´ toge〈ther〉 with 30´ the length hol[ds], 40´ (is) [its] name.  
     6.     Since so, to 20´ the width, which is said to you,  
     7.     1 is appended: 1°20´ you see. Out from here  
     8.     you ask. 40´ the surface, 1°20´ the width, the length what?  
     9.     [30´ the length. T]hus the procedure.   

 #2  
  10.     [Surface, length, and width accu]mulated, 1. By the Akkadian (method).  
  11.     [1 to the length append.] 1 to the width append. Since 1 to the length is 

appended,  
  12.     [1 to the width is app]ended, 1 and 1 make hold, 1 you see.  
  13.     [1 to the accumulation of length,] width and surface append, 2 you see.  
  14.     [To 20´ the width, 1 appe]nd, 1°20´. To 30´ the length, 1 append, 1°30´.  24    
  15.     [ ¿ Since ?  a surf]ace, that of 1°20´ the width, that of 1°30´ the length,  
  16.     [ ¿ the length together with ?  the wi]dth, are made hold, what is its name?  
  17.     2 the surface.  
  18.     Th us the Akkadian (method).      

  Section 1  explains how to deal with an equation stating that the sum of a 
rectangular area  ( l , w ) and the length  l  is given, referring to the situation 
that the length is 30´ and the width 20´. Th ese numbers are used as identi-
fi ers, fulfi lling thus the same role as our letters  l  and  w . Line 2 repeats the 

  22      All were fi rst published by Bruins and Rutten  1961  who, however, did not understand their 
character. Revised transliterations and translations as well as analyses can be found in H2002: 
181–8, 89–95 and 85–9 (only  part 1 ), respectively. A full treatment of TMS  xvi  is found in 
Høyrup  1990 : 299–302. 

  23      As elsewhere, passages in plain square brackets are reconstructions of damaged passages that 
can be considered certain; superscript and subscript square brackets indicate that only the 
lower or upper part respectively of the signs close to that bracket is missing. Passages within 
 ¿  . . .  ?  are reasonable reconstructions which however may not correspond to the exact 
formulation that was once on the tablet. 

 24     My restitutions of lines 14–16 are somewhat tentative, even though the mathematical substance 
is fairly well established by a parallel passage in lines 28–31. 
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 Figure 11.3      Th e confi guration discussed in TMS  ix  #1.    
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 Figure 11.4      Th e confi guration of TMS  ix  #2.    
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statement but identifying the area as 10´. In line 3, this is told to be equiva-
lent to adding ‘a base’ 1 to the width, as shown in  Figure 11.3  – in symbols, 

 ( l , w ) +  l  =  ( l , w ) +  ( l ,1) =  ( l , w  + 1); the ‘base’ evidently fulfi ls 
the same role as the ‘projection’ of BM 13901. Line 4 tells us that this means 
that we get a (new) width 1°20´, and line 5 checks that the rectangle con-
tained by this new width and the original length 30´ is indeed 40´, as it 
should be. Lines 6–9 sum up.   

  Section 2  again refers to a rectangle with known dimensions – once 
more  l  = 30´,  w  = 20´. Th is time the situation is that both sides are added to 
the area, the sum being 1. Th e trick to be applied in the transformation is 
identifi ed as the ‘Akkadian method’. Th is time, both length and width are 
augmented by 1 (line 11); however, the resulting rectangle  ( l  + 1, w  + 1) 
contains more than it should (cf.  Figure 11.4 ), namely beyond a quasi-gno-
mon representing the given sum (consisting of the original area  ( l , w ), 
a rectangle  ( l ,1) whose measure is the same as that of  l , and a rectangle 

(1, w ) =  w ), also a quadratic completion (1,1) = 1 (line 12). Th erefore, 
the area of the new rectangle should be 1 + 1 = 2 (line 13). And so it is: the 
new length will be 1°30´, the new width will be 1°20´, and the area which 
they contain will be 1°30´·1°20´ = 2 (lines 15–17). 

 Since extension also occurs in  section 1 , the ‘Akkadian method’ is likely 
to refer to the quadratic completion (this conclusion is supported by further 
arguments which do not belong within the present context). 

 Aft er these two didactical explanations follows a problem in the proper 
sense. In symbolic form it can be expressed as follows:  

  (l,w) + l + w = 1 ,   1⁄17(3l + 4w) + w = 30′    

 Th e fi rst equation is the one whose transformation into  

  (λ,ω) = 2    

 (λ =  l  + 1, ω =  w  + 1) was just explained in  Section 2 . Th e second is multiplied 
by 17, thus becoming  

  3l + 21w = 8°30′.    

 and further transformed into  

  3λ + 21ω = 32°30,    

 whereas the area equation is transformed into  

  (3λ,21ω) = 2′6.    
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 Th ereby, the problem has been reduced to a standard rectangle problem 
(known area and sum of sides), and it is solved accordingly (by a method 
similar to that of BM 13901 #1). 

 Th e present text does not explain the transformation of the equation   1/17 
(3l + 4w) + w = 30′  , but a similar transformation is the object of  Section 1  of 
TMS  xvi  ( Figure 11.5 ): 

       1.     [Th e 4th of the width, from] the length and the width to tear out, 45´. You, 45´  
     2.     [to 4 raise, 3 you] see. 3, what is that? 4 and 1 posit,  
     3.     [50´ and] 5´, to tear out,   |  posit  |  . 5´ to 4 raise, 1 width. 20´ to 4 raise,  
     4.     1°20´ you 〈see〉, 4 widths. 30´ to 4 raise, 2 you 〈see〉, 4 lengths. 20´, 1 width, to 

tear out,  
     5.     from 1°20´, 4 widths, tear out, 1 you see. 2, the lengths, and 1, 3 widths, accu-

mulate, 3 you see.  
     6.     Igi 4 de[ta]ch, 15´ you see. 15´ to 2, the lengths, raise, [3]0´ you 〈see〉, 30´ the 

length.  
     7.     15´ to 1 raise, [1]5´ the contribution of the width. 30´ and 15´ hold.  25    
     8.     Since ‘Th e 4th of the width, to tear out’, it is said to you, from 4, 1 tear out, 3 

you see.  
     9.     Igi 4 de〈tach〉, 15´ you see, 15´ to 3 raise, 45´ you 〈see〉, 45´ as much as (there 

is) of [widths].  
  10.     1 as much as (there is) of lengths posit. 20, the true width take, 20 to 1´ raise, 

20´ you see.  
  11.     20´ to 45´ raise, 15´ you see. 15´ from 3015´ [tear out],  
  12.     30´ you see, 30´ the length.      

 Even this explanation deals formally with the sides  l  and  w  of a rectangle, 
although the rectangle itself is wholly immaterial to the discussion. In sym-
bolic translation we are told that

    (l + w) − ¼w = 45′.    

 Figure 11.5      Th e situation of TMS  xvi  #1.    
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  25      Th is ‘hold’ is an ellipsis for ‘make your head hold’, the standard phrase for retaining in memory. 
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 Th e dimensions of the rectangle are not stated directly, but from the numbers 
in line 3 we see that they are presupposed to be known and to be the same as 
before, 50´ being the value of  l  +  w , 5´ that of  1 ⁄ 4  w  – cf.  Figure 11.6 .   

 Th e fi rst operation to perform is a multiplication by 4. 4 times 45´ gives 
3, and the text then asks for an explanation of this number (line 2). Th e 
subsequent explanation can be followed on  Figure 11.6 , which certainly is 
a modern reconstruction but which is likely to correspond in some way to 
what is meant by the explanation. Th e proportionals 1 and 4 are taken note 
of (‘posited’), 1 corresponding of course to the original equation, 4 to the 
outcome of the multiplication. Next 50´ (the total of length plus width) and 
5´ (the fourth of the width that is to be ‘torn out’) are taken note of (line 3), 
and the multiplied counterparts of the components of the original equa-
tion (the part to be torn out, the width, and the length) are calculated and 
described in terms of lengths and widths (lines 3–4); fi nally it is shown that 
the outcome (consisting of the components 1 = 4 w –1 w  and 2 = 4 l ) explains 
the number 3 that resulted from the original multiplication (lines 4–5). 

 Now the text reverses the move and multiplies the multiplied equation 
that was just analysed by   ¼  . Multiplication of 2 (= 4 l ) gives 30´, the length; 
multiplication of 1 gives 15´, which is explained to be the ‘contribution of 
the width’; both contributions are to be retained in memory (lines 6–7). 
Next the contributions are to be explained; using an argument of false posi-
tion (‘if one fourth of 4 was torn out, 3 would remain; now, since it is torn 
out of 1, the remainder is   3 ⋅ ¼  ’), the coeffi  cient of the width (‘as much as 
(there is) of widths’) is found to be 45´. Th e coeffi  cient of the length is seen 
immediately to be 1 (lines 1–10). 

 Next (line 10) follows a step whose meaning is not certain; the text distin-
guishes between the ‘true length’ and the ‘length’  simpliciter , writing however 
the value of both in identical ways. One possible explanation (in my opinion 
quite plausible, and hence used in the translation) is that the ‘true width’ 

 Figure 11.6      Th e transformations of TMS  xvi  #1.    
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is the width of an imagined ‘real’ fi eld, which could be 20 rods (120  m), 
whereas the width  simpliciter  is that of a model fi eld that can be drawn in the 
school yard (2 m); indeed, the normal dimensions of the fi elds dealt with in 
second-degree problems (which are school problems without any practical 
use) are 30´ and 20´ rods, 3 and 2 m, much too small for real fi elds but quite 
convenient in school. In any case, multiplication of the value of the width by 
its coeffi  cient gives us the corresponding contribution once more (line 11), 
which indeed has the value that was assigned to memory. Subtracting it from 
the total (which is written in an unconventional way that already shows the 
splitting) leaves the length, as indeed it should (lines 11–12). 

 Detailed didactical explanations such as these have only been found in 
Susa; once they have been understood, however, we may recognize in other 
texts rudiments of similar explanations, which must have been given in 
their full form orally,  26   as once supposed by Neugebauer. 

 Th ese explanations are certainly meant to impart  understanding , and in 
this sense they are demonstrations. But their character diff ers fundamen-
tally from that of Euclidean demonstrations (which, indeed, were oft en 
reproached for their opacity during the centuries where the  Elements  were 
used as a school book). Euclidean demonstrations proceed in a linear way, 
and end up with a conclusion which readers must acknowledge to be una-
voidable (unless they fi nd an error) but which may leave them wondering 
where the rabbit came from. Th e Old Babylonian didactical texts, in con-
trast, aim at building up a tightly knit conceptual network in the mind of 
the student. 

 However, conceptual connections can be of diff erent kinds. Pierre de la 
Ramée when rewriting Euclid replaced the ‘superfl uous’ demonstrations 
by explanations of the practical uses of the propositions. Numerology (in a 
general sense including also analogous approaches to geometry) links math-
ematical concepts to non-mathematical notions and doctrines; to this genre 
belong not only writings like the ps-Iamblichean  Th eologoumena arithmeti-
cae  but also for some of their aspects, Liu Hui’s commentaries to  Th e Nine 
Chapters on Mathematical Procedures , which cannot be understood in isola-
tion from the  Book of Changes .  27   Within this spectrum, the Old Babylonian 
expositions belong in the vicinity of Euclid, far away from Ramism as well 
as numerology: the connections that they establish all belong strictly within 
the same mathematical domain as the object they discuss.   

  26      Worth mentioning are the unpublished text IM 43993, which I know about through Jöran 
Friberg and Farouk al-Rawi (personal communication), and YBC 8633, analysed from this 
perspective in H2002: 254–7. 

  27      According to Chemla  1997 . 
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 Justifi ability and critique 

 Whoever has tried regularly to give didactical explanations of mathemati-
cal procedures is likely to have encountered the situation where a fi rst 
explanation turns out on second thoughts – maybe provoked by questions 
or lacking success of the explanation – not to be justifi able without adjust-
ment. While didactical explanation is no doubt one of the sources of math-
ematical demonstration, the scrutiny of the  conditions under which  and 
the  reasons for which  the explanations given hold true is certainly another 
source. Th e latter undertaking is what Kant termed  critique , and its central 
role in Greek mathematical demonstration is obvious. 

 In Old Babylonian mathematics, critique is less important. If read as 
demonstrations, explanations oriented toward the establishment of concep-
tual networks tend to produce circular reasoning, in the likeness of those 
persons referred to by Aristotle ‘who . . . think that they are drawing paral-
lel lines; for they do not realize that they are making assumptions which 
cannot be proved unless the parallel lines exist’.  28   In their case, Aristotle told 
the way out – namely to ‘take as an axiom’ (ἀξιόω) that which is proposed. 
Th is is indeed what is done in the  Elements , whose fi ft h postulate can thus 
be seen to answer metatheoretical critique. 

 However, though less important than in Greek geometry, critique is not 
absent from Babylonian mathematics. One instance is illustrated by the text 
YBC 6967,  29   a problem dealing with two numbers  igûm  and  igibûm , ‘the 
reciprocal and its reciprocal’, the product of which, however, is supposed to 
be 1` (that is, 60), not 1: 

  Obv . 
     1.     [Th e  igib ] ûm  over the  igûm , 7 it goes beyond  
     2.     [ igûm ] and  igibûm  what?  
     3.     Yo[u], 7 which the  igibûm   
     4.     over the  igûm  goes beyond  
     5.     to two break: 3°30´;  
     6.     3°30´ together with 3°30´  
     7.     make hold: 12°15´.  
     8.     To 12°15´ which comes up for you  
     9.     [1` the surf]ace append: 1`12°15´.  
  10.     [Th e equalside of 1`]12°15´ what? 8°30´.  
  11.     [8°30´ and] 8°30´, its counterpart,  30   lay down.  31     

  28       Prior Analytics   ii , 64 b 34–65 a 9, trans. Tredennick  1938 : 485–7. 
  29      Transliterated, translated and analysed in H2002: 55–8. 
  30      Th e ‘counterpart’ of an equalside is ‘the other side’ meeting it in a common corner. 
  31      Namely, lay down in writing or drawing. 
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 Rev . 
     1.     3°30´, the made-hold,  
     2.     from one tear out,  
     3.     to one append.  
     4.     Th e fi rst is 12, the second is 5.  
     5.     12 is the  igibûm , 5 is the  igûm .       

 Th e procedure can be followed in  Figure 11.7 ; the text is another 
instance of self-evident validity, and only diff ers from those discussed 
under this perspective in having the sides and the area of the rectan-
gle  represent  numbers and not just themselves. Th e interesting point is 
found in Rev. 2–3. In cases where there is no constraint on the order, the 
Babylonians always speak of addition before subtraction. Here, however, 
the 3°30´ that is to be added to the left  of the gnomon (that is, to be put 

 Figure 11.7      Th e procedure of YBC 6967.    
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back in its original  position) must fi rst be at disposition, that is, it must 
already have been torn out below. 

 Th is compliance with a request of concrete meaningfulness should not 
be read as evidence of some ‘primitive mode of thought still bound to the 
concrete and unfi t for abstraction’; this is clear from the way early Old 
Babylonian texts present the same step in analogous problems, oft en in a 
shortened phrase ‘append and tear out’ and indicating the two resulting 
numbers immediately aft erwards, in any case never respecting the norm of 
concreteness. Th is norm thus appears to have been introduced precisely in 
order to make the procedure justifi able – corresponding to the introduction 
in Greek theoretical arithmetic of the norm that fractions and unity could 
be no numbers in consequence of the explanation of number as a ‘collection 
of units’.  32   

 But the norm of concreteness is not the only evidence of Old Babylonian 
mathematical critique. Above, we have encountered the ‘projection’ and 
the ‘base’, devices that allow the addition of lines and surfaces in a way that 
does not violate homogeneity, and the related distinction between ‘accu-
mulation’ and ‘appending’. Even these stratagems turn out to be secondary 
developments. A text like AO 8862 (probably from the early phase of Old 
Babylonian mathematics, at least within Larsa, its local area) does not make 
use of them. Its fi rst problem starts thus: 

       1.     Length, width.  33   Length and width I have made hold:  
     2.     A surface have I built.  
     3.     I turned around (it). As much as length over width  
     4.     went beyond,  
     5.     to inside the surface I have appended:  
     6.     3`3. I turned back. Length and width  
     7.     I have accumulated: 27. Length, width, and surface w[h]at?      

 As we see, a line (the excess of length over width) is ‘appended’ to the 
area; ‘accumulation’ also occurs, but the reason for this is that ‘appending’ 
for example the length to the width would produce an irrelevant increased 
width and no symmetrical sum (cf. the beginning of TMS  xvi , above, 
which fi rst creates a symmetrical sum and next removes part of it). 

 Th is ‘appending’ of a line to an area does not mean that the text is absurd. 
In order to see that we must understand that it operates with a notion of 
‘broad lines’, lines that carry an inherent virtual breadth. Th ough not made 

  32      See Høyrup  2004 : 148f. 
  33      Th at is, the object of problem is told to be the simplest confi guration determined solely by a 

length and a width – namely, according to Babylonian habits, a rectangle. 
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explicit, this notion underlies the determination of areas by ‘raising’;  34   it 
is widespread in pre-modern practical mensuration, in which ‘everybody’ 
(locally) would measure in the same unit, for which reason it could be 
presupposed tacitly  35   – land being bought and sold in consequence just 
as we are used to buying and selling cloth, by the yard and not the square 
yard. However, once didactical explanation in school has taken its begin-
ning (and once it is no longer obvious which of several metrological units 
should serve as standard breadth), a line which at the same time is ‘with 
breadth’ and ‘without breadth’ becomes awkward. In consequence, critique 
appears to have outlawed the ‘appending’ of lines to areas and to have intro-
duced devices like the ‘projection’ – the latter in close parallel to the way 
Viète established homogeneity and circumvented the use of broad lines of 
Renaissance algebra.  36   

 All in all, mathematical demonstration was thus not absent from Old 
Babylonian mathematics. Procedures were described in a way which, once 
the terminology and its use have been decoded, turns out to be as transpar-
ent as the self-evident transformations of modern equation algebra and in 
no need of further explicit arguing in order to convince; teaching involved 
didactical explanations which aimed at providing students with a corre-
sponding understanding of the terminology and the operations; and math-
ematical concepts and procedures were transformed critically so as to allow 
coherent explanation of points that may initially have seemed problematic 
or paradoxical. No surviving texts suggest, however, that all this was ever 
part of an explicitly formulated programme, nor do the texts we know point 
to any thinking about  demonstration as a particular activity . All seems to 
have come as naturally as speaking in prose to Molière’s Monsieur Jourdain, 
as consequences of the situations and environments in which mathematics 
was practised.   

 Mathematical Taylorism:     practically dubious but an 
eff ective ideology 

 Teachers, in the Bronze Age just as in modern times, may have gone beyond 
what was needed in the ‘real’ practice of their future students, blinded by 
the fact that the practice they themselves knew best was that of their own 

  34      Cf  n. 11  above. 
  35      See Høyrup  1995 . 
  36      Namely the ‘roots’, explained by Nuñez  1567 : fos. 6r, 232r to be rectangles whose breadth is ‘la 

unidad lineal’. 
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trade, the teaching of mathematics. None the less, the social  raison d’être  of 
Old Babylonian mathematics was the training of future scribes in practical 
computation, and not deeper insight into the principles and metaphysics 
of mathematics. Why should this involve demonstration? Would it not be 
enough to teach precisely those  rules  or algorithms which earlier workers 
have found in the texts and which (in the shape of paradigmatic cases) 
also constitute the bulk of so many other pre-modern mathematical hand-
books? And would it not be better to teach them precisely as rules to be 
obeyed without distracting refl ection on problems of validity? 

 Th at ‘the hand’ should be governed in the interest of effi  ciency by a ‘brain’ 
located in a diff erent person but should in itself behave like a mindless 
machine is the central idea of Frederick Taylor’s ‘scientifi c management’ – 
‘hand’ and ‘brain’ being, respectively, the worker and the planning engineer. 
In the pre-modern world, where craft  knowledge tended to constitute 
an autonomous body, and where (with rare exceptions) practice was not 
derived from theory, Taylorist ideas could never fl ourish.  37   In many though 
not all fi elds, autonomous practical knowledge survived well into the nine-
teenth, sometimes the twentieth century; however, the  idea  that practice 
should be governed by theory (and the ideology that practice is derived 
from the insights of theory) can be traced back to the early modern epoch. 
Already before its appearance in Francis Bacon’s  New Atlantis  we fi nd 
something very similar forcefully expressed in Vesalius’  De humani corpo-
ris fabrica , according to which the art of healing had suff ered immensely 
from being split into three independent practices: that of the theoretically 
schooled physicians, that of the pharmacists, and that of vulgar barbers 
supposed to possess no instruction at all; instead, Vesalius argues, all three 
bodies of knowledge should be carried by the same person, and that person 
should be the theoretically schooled physician. 

 In many fi elds, the suggestion that material practice should be the task 
of the theoretically schooled would seem inane; even in surveying, a fi eld 
which was totally reshaped by theoreticians in the eighteenth century, the 
scholars of the  Académie des Sciences  (and later Wessel and Gauss), even 
when working in the fi eld, would mostly instruct others in how to perform 
the actual work and control they did well. Such circumstances favoured the 
development of views close to those of Taylorism – why should those who 
merely made the single observations or straightened the chains be bothered 

  37      Aristotle certainly thought that master artisans had insight into ‘principles’ and common 
workers not ( Metaphysics  i , 981b1–5), and that slaves were living instruments ( Politics   i .4); but 
reading of the context of these famous passages will reveal that they do not add up to anything 
like Taylorism. 
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by explanations of the reasons for what they were asked to do? If the rules 
used by practitioners were regarded in this perspective, it also lay close at 
hand to view these as ‘merely empirical’ if not recognizably derived from 
the insights of theoreticians. 

 Such opinions, and their failing in situations where practitioners have 
to work on their own, are discussed in Christian Wolff ’s  Mathematisches 
Lexikon : 

 It is true that performing mathematics can be learned without reasoning math-
ematics; but then one remains blind in all aff airs, achieves nothing with suitable 
precision and in the best way, at times it may occur that one does not fi nd one’s way 
at all. Not to mention that it is easy to forget what one has learned, and that that 
which one has forgotten is not so easily retrieved, because everything depends only 
on memory.  38     

 Wolff  certainly identifi ed ‘reasoning mathematics’ (also called ‘ Mathesis 
theorica ’ or ‘ speculativa ’) with established theoretical mathematics, but 
none the less he probably hit the point not only in his own context but also 
if we look at the conditions of pre-modern mathematical practitioners: 
without insight into the reasons why their procedures worked they were 
likely to err except in the execution of tasks that recurred so oft en that their 
details could not be forgotten.  39   Even the teaching of practitioners’ math-
ematics through paradigmatic cases exemplifying rules that were or were 
not stated explicitly will always have involved some level of explanation 
and thus of demonstration – and certainly, as in the Babylonian case, inter-
nal mathematical rather than philosophical or otherwise ‘numerological’ 
explanation. Whether critique would also be involved probably depended 
on the level of professionalization of the teaching institution itself. 

 But those mathematicians and historians who were not themselves 
involved in the teaching of practitioners were not forced to discover such 
subtleties. For them, it was all too convenient to accept Taylorist ideologies 
(whether  ante litteram  or  post ) and to magnify their own intellectual stand-
ing by identifying the appearance of explicit or implicit rules with mind-
less rote learning (if derived from supposedly  real  mathematics) or blind 

  38      Wolff   1716 : 867 (my translation). 
  39      Th e ‘rule of three’, with its intermediate product deprived of concrete meaning, only turns up in 

environments where the problems to which it applies were really the routine of every working 
day – notwithstanding the obvious computational advantage of letting multiplication precede 
division. Its extensions into ‘rule of fi ve’ and ‘rule of seven’ never gained similar currency.   A 
more recent example, directly inspired by Adam Smith’s theory of the division of labour, is 
Prony’s use of ‘several hundred men who knew only the elementary rules of arithmetic’ in the 
calculation of logarithmic and trigonometric tables (McKeon  1975 ). 
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experimentation (if not to be linked to recognizable theory). Such ideolo-
gies did not make opinions such as Kline’s necessary and did not engender 
them directly, but they shaped the intellectual climate within which he and 
his mental kin grew up as mathematicians and as historians.                                                  
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 12     Interpretation of reverse algorithms in several 
Mesopotamian texts    

   Christine     Proust    ,  transl ation     Micah     Ross     

 Is it possible to discuss proofs in texts which contain only numbers and no 
verbal element? I propose to analyse a Mesopotamian tablet containing a 
long series of reciprocal calculations, written as numeric data in sexagesi-
mal place value notation. Th e provenance of this tablet, which today is con-
served at the University Museum in Philadelphia under the number CBS 
1215, is not documented, but there are numerous parallels from the scribal 
schools of southern Mesopotamia, notably Nippur and Ur, all from  the 
Old Babylonian period (beginning two millennia before the Christian era). 
Th us, one might suppose that it shares in the scribal tradition inherited 
from the southern Sumero-Akkadian culture.  1    Th e text is composed of 
only two graphemes: vertical wedges (ones) and  Winkelhaken  (tens).  2    Th e 
limited number of graphemes is clearly not due to the limited knowledge 
of writing possessed by the author of the text. Th e tablet was composed 
at the time when ‘the scribal art’ ( nam-dub-sar , in Sumerian) achieved its 
most refi ned developments, not only in the domains of mathematics and 
Sumerian or Akkadian literature, but also in the consideration of writing, 
language and grammar.  3    Hence, my hypothesis is that this text contains an 
original mathematical contemplation and that a close analysis of the tablet 
and its context yields the keys to understanding the text.  4    

 Purely numeric texts are not rare among cuneiform documentation, but, 
with the exception of the famous tablet Plimpton 322 which has inspired an 
abundant literature, such texts have drawn relatively little attention from his-
torians.  5    Indeed, the numeric tablets do not contain information written in 

     1      According to A. Sachs who published it, the tablet CBS 1215 is part of a collection called 
‘Khabaza 2’, purchased at Baghdad in 1889. He thought it hardly possible that it came from 
Nippur, making reference to the intervening disputes among the team of archaeologists at 
Nippur (Sachs  1947 : 230 and n. 14). 

     2      See the copy by Robson  2000 : 23, and an extract of this copy in  Table 12.3  below. 
     3      Cavigneaux  1989 . 
     4      I thank all those who, in the course of seminars or through critical readings, have participated 

in the collective work of which this article is the result, beginning with Karine Chemla, whose 
remarks have truly improved the present version of the text. 

     5      On the subject of Plimpton 322, a tablet probably from the Old Babylonian period perhaps 
from Larsa, which presents a list of fi ft een Pythagorean triplets in the form of a table, see 
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verbal style (in Sumerian or in Akkadian language) and then numeric tablets 
are less explicit than other types of tablets in the intentions and the methods 
of their authors. It is generally admitted that numeric tablets are some sort 
of collection of exercises destined for pedagogical purposes. However, the 
content and context of the tablets show that the purposes of a text such as 
that of tablet CBS 1215 were greater than simple pedagogy. In particular, 
I would like to show in this chapter that the text is organized in order to 
stress the operation of the reciprocal algorithm and to show why the series of 
steps on which it is founded leads eff ectively to the desired reciprocal. 

 Before I go too far into the analysis, let me give a brief description of 
the tablet. Th e text is composed of 21 sections. (See the transcription in 
 Appendix 1 .) Th e entries of the sections are successively 2.5, 4.10, 8.20, …, 
10.6.48.53.20, namely the fi rst 21 terms of a geometric progression for an 
initial number 2.5 with a common ratio of 2. (Details on the cuneiform 
notation of numbers and their transcription appear later.) Other than the 
absence of any verbal element in its writing, the text possesses some obvi-
ously remarkable properties (see  Table 12.3  and  Appendix 1).  

  (1)     In each section, the numbers are set out in two or three columns. Th us, 
the spatial arrangement of the numeric data is an important element of 
the text.  

  (2)     Th e sections are increasingly long and, as will be seen, the result 
appears to be the application of iterations.  

  (3)     In each section, the last number is identical to the fi rst. Th e procedure 
progresses in such a fashion that its point of arrival corresponds exactly 
with its point of departure. Th e text, therefore, reveals the phenomena 
of reciprocity.   

What do these three properties (spatial arrangement, iteration and reci-
procity) reveal to us? Do they disclose the thoughts of the ancient scribes 
about the mathematical methods which constitute the reciprocal algorithm, 
particularly about the topic of its validity? In order to respond to these 
questions, it will be necessary not only to analyse the text in detail, but also 
to compare and contrast it with other texts. 

 Reciprocal algorithms are not known only by their numeric form. In par-
ticular, a related tablet, VAT 6505, contains a list of instructions composed 

notably Robson  2001a ; Friberg  2007 : Appendix 7; Britton et al. 2011. Among the other analyses 
of numeric texts, outside that which bears upon the tablet studied here, one may cite those 
which concern the tables from the fi rst millennium, such as the large table of reciprocals from 
the Seleucid period AO 6456 – for example Bruins  1969  and Friberg  1983 , and several other 
tables from the same period (Britton  1991 –3; Friberg  2007 : Appendix 8). 
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in Akkadian. Sachs has shown that these instructions refer to calculations 
found in the numeric tablet CBS 1215.  6    Th us, we have both a numeric text 
and a verbal text related to the same algorithm. Th ese two texts both refer to 
the reciprocal algorithm in widely diff erent manners. Th ey neither employ 
the same means of expression, nor do they deliver exactly the same type of 
information. Th us there is a shift  between the diff erent texts and the prac-
tices of calculation to which they refer. 

 In addition, some properties of the tablet CBS 1215, notably those 
which concern spatial arrangement and reciprocity, are likewise mani-
fested in calculations of square roots. Such is notably the case for the tablet 
UET 6/2 222, which is an Old Babylonian school exercise from Ur (see 
 Table 12.1 ). Also, in the case of the square root algorithm just as for the 
reciprocal algorithm, both numeric and verbal texts are attested. In fact, J. 
Friberg has shown that tablet IM 54472, composed in Akkadian, contains 
instructions which relate to calculations found in the numeric tablet UET 
6/2 222.  7     

 In order to facilitate the reading of the following sections, which alter-
nate between diff erent tablets, I have designated the tablets by the letters A 
to D. Th e concordance between these letters, their museum numbers and 
provenance is presented in  Table 12.1 .  8    

 In addition, many other parallels to Tablet A exist. In some cases, entire 
sections of the text are identically reproduced. Such reproductions and cita-
tions occur principally in the texts from the scribal schools which operated 

     6      Sachs  1947 . 
     7      Friberg  2000 : 108–12. 
     8      Th e tablets of  Table 12.1  have been published in the following articles and works. A = CBS 1215 

in Sachs  1947  for the transliteration and interpretation; Robson  2000 : 14, 23–4 for the hand 
copy and several joins ; B = VAT 6505 in Neugebauer  1935 –7:  i  270,  ii  pl. 14, 43; C = UET 6/2 
222 in Gadd and Kramer  1966 : 248; D = IM 54472 in Bruins  1954 . Other than the tablet from 
Ur, the tablets come from illicit excavations. VAT 6505 may come from the north because of its 
orthographic and grammatical properties (H2002: 331, n. 383); according to Friberg  2000 : 106, 
159–60, it may come from Sippar. IM 54472 likewise may come from the north, perhaps from 
Shaduppum (Friberg  2000 : 110). 

 Table 12.1     Principal texts studied here   

    Museum number    Provenance    Contents    Style  

  A    CBS 1215    Unknown    Reciprocal    Numeric  
  B    VAT 6505    Unknown    Reciprocal    Verbal  
  C    UET 6/2 222    Ur    Square Root    Numeric  
  D    IM 54472    Unknown    Square Root    Verbal  
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in Nippur, Ur and elsewhere.  9    Th e school texts yield precious information 
about the context of the use of the reciprocal algorithm and will be used on 
a case-by-case basis to supplement the small, essential body of texts pre-
sented in  Table 12.1 .  10    

 Th e historical problem posed by relationships that may have existed 
between the authors of diff erent texts is diffi  cult to resolve because the 
provenance is usually unknown and the dating is uncertain. Some available 
information seem to indicate that the numeric texts and their pedagogical 
parallels may pertain to the southern tradition (Ur, Uruk, Nippur), and the 
verbal texts, notably Tablet B which may come from Sippar, belong to the 
northern tradition of Old Babylonian Mesopotamia.  11    Th e possible historic 
opposition between the north and the south, however, did not exclude 
certain forms of communication, since the two traditions were not iso-
lated and the scribes from diff erent regions had contact with one another 
through numerous exchanges, notably circulating schoolmasters.  12    Even 
though uncertainty about the sources does not permit the establishment of 
a clear geographic distribution, it is entirely possible that the two types of 
texts existed in the same contexts. Regardless of the relationship between 
the authors of these diff erent styles of texts, it is possible to hypothesize two 
points of view about the same algorithm. Th e important point, whether 
or not these two points of view emanate from the same scribal context, 
is that they clearly have diff erent objectives. Th e verbal texts are series of 
instructions, which appear to have been intended to help someone execute 
the algorithm. Some portion of the numeric tables are school exercises 
intended for the training of student scribes. Th e function of Tablet A seems 
to have been of a diff erent nature. 

 Tablet A does not conform to the typology of a school tablet, even though 
it was used in an educational context, as was probably the case with all the 
mathematical texts of the Old Babylonian period. Th rough a comparison of 
Tablet A with parallel or similar texts, I would like to provide more detailed 

     9      What are called ‘school tablets’ in Assyriology are the products of students in scribal schools. 
Th ese tablets generally have a standardized appearance and contents, and because of this fact 
are easily recognizable, at least in the case of those that date from the Old Babylonian period. 

  10      Th is documentation may be specifi ed further: the list of parallels with A is presented in  Table 
12.6 ; the other tablets containing reciprocals are assembled in  Table 12.7 ; those which contain 
calculations of square and cubic roots are in  Table 12.8 . 

  11      Th e provenances of diff erent tablets and their parallels are detailed in the notes relative to 
 Tables 12.1 ,  12.6 ,  12.7  and  12.8 . In the case of Mari, it is interesting to note that the tablets from 
this northerly site seem more akin to the tablets of the south than those of the north. Th us, if 
diff erent scribal traditions were confi rmed, they would clearly reveal complex trans-regional 
phenomena of communication, and not only local peculiarities. 

  12      Charpin  1992 ; Charpin and Joannès  1992 . 
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responses to the questions concerning its function. Is Tablet A only a collec-
tion of exercises, from which the school exercises were extracted? What is 
the tablet‘s relationship to pedagogical practice? How does the information 
diff er from the information presented in the verbal texts? What specifi c 
signifi cance may be determined from its structure or its layout? Th ese ques-
tions, as will be seen, are connected in the way that Tablet A corresponds 
with the operation of the reciprocal algorithm and with its justifi cation.  

 Place-value notation and reciprocals 

 Since numeric texts are constructed of numbers written in the sexagesimal 
place value notation characteristic of Mesopotamian mathematical texts, let 
us review the key principals of this notation. With the base being 60, there 
are 59 ‘digits’. (Zero is not found in the Old Babylonian period.) Th ese 59 
digits are represented by the repetition of the signs 1 (a vertical wedge) and 
10 (the  Winkelhaken ) as many times as necessary.  13    

 Examples:    (2)    (13)     (20)  
According to the positional principle, each unit in a given place repre-
sents 60 units of the preceding place (at its right). For the transcription of 
numbers, I have followed the modern notation proposed by F. Th ureau-
Dangin, wherein the sexagesimal digits are separated by dots.  14    

 Example:    is rendered as 2.13.20   
 In cuneiform texts, no place is marked as being that of the units, thus 

the numbers have no value; they are determined to a factor 60 n  (where  n  is 
some whole positive or negative number), which, aft er a fashion, resembles 
‘fl oating decimal’ notation. For example, the numbers 1, 60, 60 2  and 1/60 are 
all written in the same way, with a vertical wedge: the scribes did not make 
use of any special signs such as commas or zeros in the fi nal places similar 
to those we use in modern Indo-Arabic numerals. In the texts studied 
here, the operations performed on the numbers are multiplications and the 
determination of reciprocals and square roots, namely operations which do 
not require that the magnitudes of the numbers be fi xed. In the transcrip-
tions, translations and interpretations presented here, I have therefore not 

  13      Th e word ‘digit’ here indicates each sexagesimal place. Th ese ‘digits’ are written in additive 
decimal notation. 

  14      Other authors prefer to separate the sexagesimal places by a blank space or a comma (such is 
the case of Sachs, as will be seen later). 
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restored the orders of magnitude, in keeping with the indeterminacy of the 
value in the cuneiform writing. However, in these circumstances, might it 
be possible to establish ‘equalities’ between numbers, although their values 
are not specifi ed? Even though the sign ‘=’ might be considered an abuse 
of language (and an anachronism), I use it in the commentary. Th is con-
venience seems acceptable to me insofar as we bear in mind that the sign 
‘=’ denotes not a relationship of equality between quantities, but rather an 
equivalence between notations. For example, 2 × 30 = 1 signifi es that the 
product of 2 and 30 is noted as 1. 

 How were these sexagesimal numbers used in calculations? Th e great 
number of school tablets discovered in the refuse heaps of the scribal 
schools present relatively accurate information about both the way in which 
place-value notation was introduced in education in the Old Babylonian 
period and also its use. Th e course of the scribes’ mathematical education 
is particularly well documented at Nippur, the principal centre of teaching 
in Mesopotamia.  15    At Nippur, and undoubtedly in the other schools, the 
fi rst stage of mathematical apprenticeship consisted of memorizing many 
lists and tables: metrological lists (enumerations of measures of capacities, 
weights, areas and lengths), metrological tables (tables of correspondence 
between diff erent measures and numbers in place-value notation) and 
numerical tables (reciprocals, multiplications and squares).  16    Aft er having 
memorized these lists, the apprentice scribes used these tables in calcula-
tion exercises which chiefl y concerned multiplication, the determination of 
reciprocals and the calculation of areas. Documentation shows that place-
value notation came at precise moments in the educational curriculum. 
Place-value notation does not occur among the expression of measure-
ments which appeal to other numerations, based on the additive principle. 
Th ey appear in the metrological tables, where each measure (a value written 
in additive numeration followed by a unit of measure) is placed in relation 
to an abstract number (a number in place-value notation, not followed by 
a unit of measure). Moreover, the abstract numbers are found exclusively 
in the numeric tables and in exercises for multiplication and advanced cal-
culations of reciprocals.  17    Th e calculation of areas necessitates the transfor-
mation of measures into abstract numbers and back again, transformations 
assured by the metrological tables.  18    

  15      Robson  2001b ; Robson  2002 ; Proust  2007 . 
  16      Th ese tables are described in detail in Neugebauer  1935 –7:  i   ch. I . 
  17      In the following pages, ‘abstract numbers’ will refer to the numbers written in sexagesimal 

place value notation. 
  18      For more details about these mechanisms, see Proust  2008 . 
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 Let us return to the topic of the determination of reciprocals, which is the 
subject of Tablet A. A small list of reciprocal pairs was memorized by the 
apprentice scribes in the course of their elementary education. Th ese pairs 
form a standard table, found in numerous sources at Nippur and also in 
the majority of Mesopotamian educational centres. Th at table is as shown 
in  Table 12.2 . Obviously, the entries of the standard reciprocal table are the 
reciprocals of regular sexagesimal single-place numbers, plus two recipro-
cals for numbers in two places (1.4 and 1.21).  19     

 Th e determination of a reciprocal is an important operation for the 
scribes because the operation that corresponds with our division was 
eff ected through multiplication by the reciprocal. Two consequences result 
from this conceptualization of ‘division’. First, it privileges the regular 
numbers, which, in fact, are omnipresent in the school texts. Next, division 
is not properly identifi ed as an operation. In order to eff ect a division, fi rst a 
reciprocal is found, then a multiplication is made.  20    In this way, division has 

 Table 12.2     Standard reciprocal table   

   N     inv( N )     N     inv( N )     N     inv( N )  

   2    30    15    4    36     1.40  
   3    20    16    3.45    40     1.30  
   4    15    18    3.20    45     1.20  
   5    12    20    3    48     1.15  
   6    10    24    2.30    50     1.12  
   8     7.30    25    2.24    54     1.6.40  
   9     6.40    27    2.13.20     1.4    56.15  
  10     6    30    2     1.21    44.26.40  
  12     5    32    1.52.30      

  19      Two numbers form a reciprocal pair if their product is written as 1. A regular number in 
base-60 is a number for which the reciprocal permits a fi nite sexagesimal expression (numbers 
which may be decomposed into the product of factors 2, 3 or 5, the prime divisors of the base). 
Th e oldest reciprocal tables contain not only the regular numbers, but also the complete series 
of numbers in single place (1 to 59). In these tables, the irregular numbers are followed by 
a negation: ‘ igi  7  nu ’, meaning ‘7 has no reciprocal’; see for example the two Neo-Sumerian 
reciprocal tables known from Nippur, HS 201 in Oelsner  2001  and Ni 374 in Proust  2007 : 
§ 5.2.2. It may be said that although the Sumerian language contains no specifi c term to indicate 
the regular numbers, it nonetheless contains an expression for the irregular numbers: ‘ igi  …  nu ’. 

  20      Th e concept of division presented here is that which was taught in the scribal schools and the 
one used most oft en in mathematical texts, particularly in those texts discussed in the present 
chapter. However, this is not the only extant conceptualization. For example, divisions by 
irregular numbers occur sometimes, but they are formulated as problems: fi nd the number, 
which, when multiplied by some number, returns some other number (H2002: 29). Likewise, 
among the mathematical texts, there exist slightly diff erent usages of ‘reciprocals’, somewhat 
closer to our concept of fractions. In certain texts, the goal is to take the fraction 1/7 or 1/11 
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no name in Sumerian, contrary to the determination of a reciprocal ( igi , in 
Sumerian) and multiplication ( a - ra  2 , in Sumerian). 

 Th e determination of the reciprocal of a regular number is thus a funda-
mental objective of Babylonian positional calculation. Th e standard tables 
furnish the reciprocals of the ordinary regular numbers. In what follows, 
I call the numbers that appear in  Table 12.2  ‘elementary regular factors’. 
For the other regular numbers which do not appear in the standard table, 
the scribes had recourse to a reciprocal algorithm, which is precisely what 
Tablet A addresses. 

 Sachs identifi ed the reciprocal algorithm thanks to the verbal text of 
Tablet B (VAT 6505).  21    First, I present the way in which Sachs understood 
this algorithm and described it in an algebraic formula. Th en, I will analyse 
the way in which Tablets A and B both refer to the same algorithm and the 
ways in which they diff er. Th is contrast will indirectly permit some of the 
particular objectives pursued in Tablet A to be clarifi ed.   

 Sachs’ formula 

 Th e colophon of Tablet B indicates that the text is composed of twelve sec-
tions. Th e entries are the fi rst twelve terms of a geometric progression for an 
initial number 2.5 with a common ratio of 2 – the same terms which consti-
tute the beginning of Tablet A. In fact, only fi ve sections are even partially 
preserved but these remains allowed Sachs to reconstitute the entirety of 
the original text. Th e well-preserved entry of the seventh section is 2.13.20, 
that is 2.5 aft er six doublings. Th e text may be translated as follows:  22    

    1.     2,[13],20 is the  igûm .[What is the  igibûm ?]  
  2.     [As for you, when you] perform (the operations),  
  3.     take the reciprocal of 3,20; [you will fi nd 18]  
  4.     Multiply 18 by 2,10; [you will fi nd 39]  
  5.     Add 1; you will fi nd 40.  
  6.     Take the reciprocal of 40; [you will fi nd] 1,30.  
  7.     Multiply 1,30 by 18,  
  8.     you will fi nd 27. Th e  igibûm  is 27.  
  9.     Such is the procedure.     

of a number (see, for example, the series of problems such as A 24194). Finally, in rare cases, 
approximations for the reciprocals of irregular numbers are found (H2002: 29, n. 50). 

  21      Sachs  1947 . 
  22      B Section 7, translation by Sachs  1947 : 226. Damaged portions of text are placed in square 

brackets.  igûm  and  igibûm  are Akkadian words for pairs of reciprocals. 
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According to Sachs, whose notations I have reproduced,  23    the algorithm 
is based on the decomposition of the initial number  c  as the sum  a  +  b , 
this decomposition is summarized by the following formula (in which the 
reciprocal of a number  n  is denoted by    n̄    ):

    c a b a ba= + = ⋅ +( )1    

Applied to the data in B Section 7, this formula leads to the following 
 reconstruction:  24   

    

c

c a

a

ab

ab

=

= =

= × =

+ = +

2,13;20

b= + = +3;20 2,10 

3;20 0;18

0;18 2,10 39

1 1 399 40

1 40 0;1, 30

1 0;18 0;1,30 0;0,27

=

+ = =

= × + = × =

ab

c a ab

   

On the one hand, the ‘Sachs formula’ allows us to follow the sequence of 
calculations by the scribe and on the other hand it establishes for us the 
validity of the algorithm according to modern algebra. Moreover, it pro-
vides historians with a key to understanding Tablet A and its numerous 
parallels. In fact, as indicated above, the fi rst twelve sections of Tablet A 
contain the same numeric data as their analogues in Tablet B. For example, 
the transcription of Section 7 of Tablet A is as follows: 

 [2.]13.20   18 
 40   1.30 
 [27]   2.13.20  

In Tablet A  Section 7  are found, in the same order, the numbers which 
appear in the corresponding section of Tablet B. Clearly, the numeric Tablet 
A refers to the same algorithm as the verbal text of Tablet B. Until now, the 
‘Sachs formula’ has provided a suitable explanation of the reciprocal algo-
rithm. Th is formula is generally reproduced by specialists in order to explain 
texts referring to this algorithm in numeric versions (Tablet A and its school 

  23      In  translations , like Neugebauer, Sachs used commas to separate sexagesimal digits, but unlike 
Neugebauer, he did not use ‘zeros’ and semicolons to indicate the order of magnitude of the 
numbers. He used these marks only in the mathematical commentaries and interpretations of 
the sources. 

  24      Sachs  1947 : 227. 
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parallels) as well as in verbal version (Tablet B) (see  Tables 12.6 ,  12.7  and 
 12.8  below). However, in my estimation, this formula does not permit us to 
explain the diff erences between the Tablets A and B, nor to grasp specifi c 
objectives pursued by them in referring to the algorithm. Th e principal 
shift s that I note between the ‘Sachs formula’ and the texts that it supposedly 
describes are the following: 

  (1)     Th e tools employed by Sachs in his interpretation (algebraic notation, 
using semicolons and zeros) are not those used by the Old Babylonian 
scribes. Th e ‘Sachs formula’ leaves unclear the actual practices of calcu-
lation to which the texts of Tablets A and B make reference.  

  (2)     Th e text of Tablet B, just like the remains of Tablet A, does not refer to 
the algorithm in an abstract manner but in a precise manner, with a 
series of particular numbers, namely 2.5 and its successive doublings. 
Th e algebraic formula does not explain the choice of these particular 
numbers.  

  (3)     None of the properties of Tablet A (spatial arrangement, iteration and 
reciprocity) are found in Tablet B. Th e ‘Sachs formula’ does not allow 
the stylistic diff erences that separate Tablets A and B to be described or 
interpreted.   

I would like to draw attention to the fact that Tablet A tells us much more 
than an algebraic formula in modern language can convey. What informa-
tion is conveyed by the text of Tablet A but not contained by the ‘Sachs 
formula?’ Answering this question will help us understand the original 
process of the ancient scribes and their methods of reasoning. In that 
attempt, I will concentrate for now on the particular properties of the text 
of Tablet A, then on the particular numbers found therein.   

 Spatial arrangement 

 Using Sachs’ interpretation as a starting point, I am ready to detail the 
algorithm of determining a reciprocal to which Tablet A refers. I rely on 
the numeric data in Tablet A Section 7, which are presented above and in 
 Appendix 1 : 

  –     the number 2.13.20 terminates with 3.20, which appears in the 
reciprocal table, thus 3.20 is an elementary regular factor  25    of 2.13.20;  

  –     the reciprocal of 3.20 is 18; 18 is set out on the right;  

  25      As indicated above, I call any factor which appears in the standard reciprocal table (that is, 
 Table 12.2 ) an ‘elementary regular factor’. 
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  –     the product of 2.13.20 by 18 is 40; 40 is therefore a second factor and 
it is regular; 40 is set out on the left  and its reciprocal 1.30 is set out on 
the right;  

  –     the number 2.13.20 is therefore factored into the product of two 
elementary regular factors: 3.20 and 40;  

  –     the reciprocal of 2.13.20 is the product of the reciprocals of these two 
factors, namely the numbers set out on the right: 1.30 and 18;  

  –     the product of 1.30 by 18 is 27  
  –     27 is the desired reciprocal.   

Th en, the reciprocal of this result is found, leading back to 2.13.20, the same 
number as the initial data. For the time being, let us put aside this last step 
in order to comment on the reciprocal algorithm, as I have reconstituted it 
in the steps above. 

 Essentially, the algorithm is based on two rules. On the one hand, a 
regular number can always be decomposed into the product of elemen-
tary regular factors – that is, into the product of numbers appearing in the 
standard reciprocal table.  26    On the other hand, the reciprocal of a product 
is the product of reciprocals. Th ese rules correspond to the spatial arrange-
ment of the numbers into two columns. 

 Th e factorization of 2.13.20 appears in the left  column: 
 2.13.20 = 3.20 × 40 
 Th e factorization of the reciprocal appears in the right column: 
 18 × 1.30 = 27  

Let us note an interesting diff erence between Tablets A and B in their 
manner of executing the procedure. No addition appears in Tablet A, but 
one instance appears in Tablet B (line 5). Th is addition may be interpreted 
as being a step in the multiplication of 2.13.20 by 18. Th e number 2.13.20 is 
decomposed into the summation of 2.10 and 3.20. Th en each term is mul-
tiplied separately by 18, and fi nally the two partial products are added. Th is 
method of multiplication is economical. With one of the partial products 
being obvious (3.20 × 18 is equal to 1 by construction), the multiplication is 
reduced to 2.10 × 18. Th is decomposition of multiplication may draw on the 
practices of mental calculation or the use of an abacus. It therefore seems 
that the instructions of text B refer not only to the steps of the algorithm, 
but also to the execution of multiplications. Text A, on the contrary, makes 
reference only to the steps of the algorithm. Th e execution of multiplication 

  26      Naturally, this decomposition is not unique. Th e choices made by the scribes will be analysed 
later. 
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seems to be outside the domain of text A. I will return later to this external 
aspect of multiplication in relation to the analysis of errors. 

 Finally, let us underscore that the spatial arrangement of the text on 
Tablet A does not correspond to the normal rules of formatting tablets 
in the scribal tradition. When the scribes wrote on tablets, they were 
 accustomed to starting the line as far left  as possible and ending it as far 
right as possible, even if it meant introducing large spaces into the line 
itself. Th is method of managing the space on the tablet is found in all genres 
of texts –  administrative, literary and mathematical. Th e example on the 
obverse of tablet Ni 10241 (see the copy in  Appendix 2 ) is a good illustra-
tion of this. In this tablet, the last digit of the number contained in each 
line is displaced to the right and a large space separates the digits 26 and 
40 in the number 4.26.40. Th e same happens with the digits 13 and 30 in 
the number 13.30. Th is space has no mathematical value. It corresponds to 
nothing save the rules of formatting. Th e management of spaces in Tablet 
A, and likewise the reverse of Tablet Ni 10241, is diff erent. Th e spaces there 
have a mathematical meaning, since they allow columns of numbers to 
appear. Th e areas of writing to the left , centre and right have a function with 
respect to the algorithm. 

 Th us in Tablet A appear the principles of the spatial arrangement of 
numbers which have a precise meaning in relation to the execution of the 
reciprocal algorithm. In each section, certain numbers (the factors of the 
number for which the reciprocal is sought) are placed to the left ; others 
(the factors of the reciprocal) are set out on the right; and still others 
(the products of the factors) are located in the central position. A simple 
description of these principles of spatial arrangement suffi  ces to account 
for the basic rules on which it is based. Every regular number may be 
decomposed into products of elementary regular factors, and the recipro-
cal of a product is the product of the reciprocals. More than an algebraic 
formula, this explanation of the principles of spatial arrangement allows us 
to understand the working of the algorithm and to reveal some elements of 
what might have been the actual practices of calculation. 

 Th e calculations to which the diff erent results appearing in the columns 
correspond are multiplications. Th ere is, in this text, a close relationship 
between the fl oating place-value notation and multiplication, just as in the 
body of school documentation. However, if the text records the results of 
multiplications, it bears no trace of the actual execution of these operations, 
whereas such traces seem detectable in the verbal text of Tablet B as said 
above. In Tablet A, in contrast, the steps of the algorithm and the execution 
of multiplication are dissociated. 
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 Even though the texts of the Tablets A and B refer to the same algorithm, 
some features distinguish them. In the fi rst case, the text is two-dimensional: 
the spatial arrangement of the numbers plays a critical role, referring to the 
steps of calculation but not to the manner of carrying out the multiplica-
tions. In the second case, the text concerns a linear continuation of the 
instructions, which refer not only to the algorithm, but also to the execution 
of the multiplications. Another diff erence appears in Section 5. When the 
numbers for which the reciprocal is determined reach a certain size, the 
phenomenon of iteration appears in Tablet A, but not in Tablet B (so far as 
the preserved portion allows us to judge).   

 Iteration 

 Let us consider Section 20, of which the transcription and the copy are 
given in  Table 12.3 . (Th e bold type and underscoring have been added.) 
First, I will explain the  fi rst part  of the section, concerning the reciprocal of 
5.3.24.26.40 (lines 1 to 9).  

 Th e idea of determining the reciprocal through factorization is used 
with more force here. Th e number for which the reciprocal is sought is 

 Table 12.3     Transcription and copy of Section 20   

  Line    Transcription    Copy Robson  2000 : 23  

   1    5.3.24.2 6.40      [9]              
   2    45.30. 40      1.30  
   3    1.8. 16      3.45  
   4    4. 16      3.45  
   5     16      3.45  
   6    14.3.45  
   7    5[2.44].3.45  
   8    1.19.6.5.37.30  
   9     11.51.54.50.37 .  30       2  
  10    23.43.49.41. 15      4  
  11    1.34.55.18. 45*      16  
  12    25.18. 45 *     16  
  13     6.45      1.20  
  14     9      6.[40]  
  15    8.53.20  
  16    2.22.13. 20  
  17    37.55.33.20  
  18    2.31.42.13.20  
  19     5.3.24.26.40   
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5.3.24.26.40. Th e fi rst factor chosen is 6.40, the  last part  of the number. Its 
reciprocal is 9 (written to the right). Th e product of 5.3.24.26.40 and 9 is 
45.30.40 (written to the left ). Th e reciprocal of this number is not given 
in the standard reciprocal tables, thus once again the same sub-routine 
is applied. Th e process continues until an elementary regular number is 
obtained. In the fourth iteration, 16 is fi nally obtained. With the reciprocals 
having been written down in the right-hand column at each step, it suffi  ces 
to multiply these numbers to arrive at the desired reciprocal. Th e multipli-
cation is carried out term by term,  27    in the order of the group of intermedi-
ate products in the central column. In other words, 3.45 is multiplied by 
3.45. Th e result (14.3.45) is multiplied by 3.45. Th en that result is multiplied 
by 1.30; and that result is multiplied by 9. Th us for 11.51.54.50.37.30 the 
desired reciprocal is obtained. 

 In modern terms, the algorithm may be explained by two products: 

 Th e factorization of 5.3.24.26.40 appears in the left -hand column (or, more pre-
cisely, in the  last part  of the numbers in the left -hand column): 
 5.3.24.26.40 = 6.40 × 40 × 16 × 16 × 16. 
 Likewise, the factorization of the reciprocal appears in the right-hand column: 
 9 × 1.30 × 3.45 × 3.45 × 3.45 = 11.51.54.50.37.30.  

Since the sub-routine is repeated, the usefulness of the rules for spatial 
arrangement of the text becomes clear. Th e factors of a number for which 
the reciprocal is sought are on the left . Th e factors of the reciprocal are on 
the right and the partial products are in the centre. Th e spatial arrangement 
of the text probably corresponds with a practice allowing an automatic 
execution of the sequence of operations. Such an arrangement displays the 
power of the algorithm and demonstrates possibilities of the spatial organi-
zation of the writing – possibilities that the linear arrangement of a verbal 
text like Tablet B does not include.   

 Reverse algorithms 

 Now let us consider the entirety of Section 20 of Tablet A ( Table 12.3  
above). Lines 1–9 show step by step that the reciprocal of 5.3.24.26.40 is 
11.51.54.50.37.30. Th is number, in turn, is set out on the left  and subjected 
to the same algorithm: 11.51.54.50.37.30 ends with 30; the reciprocal of 30, 
which is 2, is set out on the right, etc. As in the other examples, the number 

  27      In the cuneiform mathematical texts, multiplication is an operation which has no more than 
two arguments. 
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11.51.54.50.37.30 is decomposed into the product of elementary regular 
factors. Th e reciprocals of these factors are set out on the right, and fi nally 
the reciprocal is obtained by multiplying term by term the factors set out 
on the right. Th e result is, naturally, the initial number, 5.3.24.26.40. It is 
the same in all the sections: aft er having ‘released’  28    the reciprocal in terms 
of a quite long calculation, the scribe undertakes the determination of the 
reciprocal of the reciprocal by the same method and returns to the point of 
origin. Each section is thus composed of two sequences: the fi rst sequence, 
which I will call the direct sequence, and the second sequence, the reverse 
of the fi rst (in the sense that it returns to the point of departure). In what 
way did this scribe execute the algorithm in the reverse sequence? What 
interest did he have in systematically undoing what he had done? 

 To execute the reverse sequence, the scribe would have been able to use 
the results of the direct sequence, which provided him with decomposi-
tion into elementary regular factors. It was enough for him to consider the 
factors set out on the right in the  fi rst part  of the algorithm. For example in 
Section 20, to fi nd the reciprocal of 11.51.54.50.37.30, he was able to select 
the factors 3.45, 3.45, 3.45, 1.30 and 9 which appeared in the  fi rst part , but 
this simple repetition of factors was not what he did. He applied the algo-
rithm in its entirety, and as in the direct sequence, the factors were provided 
by the  fi nal part  of the number. (In 11.51.54.50.37.30, the fi rst elementary 
factor is 30, then 15, etc.) Th is same algorithmic method is applied in the 
direct sequence and in the reverse sequence of each section. I will elaborate 
on this point later, particularly when analysing the selection of factors in the 
whole text. Already this remark suggests a fi rst response to the question of 
the function of the reverse sequence. It might be supposed that the reverse 
sequence is intended to verify the results of the direct sequence, but if such 
were the case, it would be expected that the scribe would choose the most 
expedient method, and the most economic in terms of calculations. Clearly, 
he did not search for a short cut. He did not use the results provided from 
his previous calculations, which could have been done in several ways. As 
has just been seen, he could have used the factors already identifi ed in the 
direct sequence. It would also have been simple for him to use the recipro-
cal pairs calculated in the preceding section. Section 19 establishes that the 
reciprocal of 2.31.42.13.20 is 23.43.49.41.15. However, several texts attest to 
the fact that the scribes knew perfectly well that when doubling a number, 
the reciprocal is divided by 2 (or, more exactly, its reciprocal is multiplied 

  28      Th e Sumerian verb which designates the act of calculating a reciprocal is  du  8  (release) and the 
corresponding Akkadian verb is  pat. ārum ; F. Th ureau-Dangin translates this verb as ‘ dénouer ,’ 
and J. Høyrup as ‘to detach’. 
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by 30).  29    In verifying the result of Section 20, it was therefore suffi  cient to 
multiply 23.43.49.41.15 by 30. Proceeding in another way, the scribe could 
have multiplied together the initial number and its reciprocal in order to 
verify the fact that the product was equal to 1. Th ese simple methods show 
that it was unnecessary to reapply the reciprocal algorithm. In fact, the 
reverse sequence does not seem to have had the verifi cation of the result of 
the direct sequence as a primary purpose. Th e fact that, in the  second part , 
the algorithm was used in its entirety provokes speculation that if it were 
a verifi cation, it concerns the algorithmic method itself and not merely the 
results that it produced. 

 Another important aspect of the algorithm is the selection of particular 
numbers. Th is aspect appears in comparison between Tablets A and B. 
Both use the same geometric progression. Th e particular role of this series, 
omnipresent in all Mesopotamian school exercises of the Old Babylonian 
period, is one of the fi rst points that ought to be made clearer. A second 
point is connected to the algorithm itself. Given that the decomposition 
into the product of elementary regular factors is not unique, one wonders 
if some rule governed the scribes’ choice of one factor over another. Th is 
question invokes another question, even more interesting in light of the 
questions discussed in this article: did the scribes apply diff erent rules to 
select factors in the direct and reverse sequences? Does this selection clarify 
the function of the reverse sequences?   

 Numeric repertory 

 As has been seen, the entries in the sections of Tablet A, as with those of B, 
are the terms of the geometric progression for an initial number 2.5 with a 
common ratio of 2. What information did the scribe obtain in each of these 
sections? Aft er the reciprocal of 2.5 has been obtained by factorization, it is 
possible to fi nd all the other reciprocals by more direct means, as has been 
explained above. For example, in each section, the reverse sequence could 
repeat the calculations of the direct sequence, since it leads back to the point 
of departure, but this is not the case. Th e repeated application of the recip-
rocal algorithm does not produce any new result (other than the reciprocal 
of 2.5). From the perspective of an extension of the list of  reciprocal pairs, 

  29      Some texts containing lists of reciprocal pairs founded on this principle are known: beginning 
with a number and its reciprocal, they give the following doublings and halvings. For example 
the tablet from Nippur N 3958 gives the series of doublings/halvings of 2.5 / 28.48 (Sachs  1947 : 
228). 
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this text is useless. Th us, what is the function of the repetition of the same 
algorithm forty-two times (in 21 sections, each one containing a direct 
sequence and a reverse sequence), since it returns results already seen? 

 First of all, why has the scribe chosen the number 2.5, the cube of 5, 
as the initial number of the text? Th is selection undoubtedly has some 
importance, because the entry 2.5 and the terms of the dyadic series which 
result provide the majority of numeric data in exercises found in the school 
archives of Mesopotamia. An initial explanation could be drawn from the 
arithmetic properties of this number. It has been seen previously that the 
list of entries in the standard reciprocal table ( Table 12.2 ) is composed of 
regular numbers in a single place, followed by two more numbers in two 
places, 1.4 and 1.21. However, we note that 1.4, 1.21 and 2.5 are respectively 
powers of 2, of 3 and of 5 (1.4 = 2 6 ; 1.21 = 3 4 ; 2.5 = 5 3 ). Better yet, if the list 
of all the regular numbers in two places is set in the lexicographic order,  30    
the fi rst number is the fi rst power of 2, that is, 1.4; the fi rst power of 3, that 
is, 1.21, comes next, and the fi rst power of 5, 2.5, comes thereaft er. Th us, 
in some ways, 2.5 is the logical successor in the series 1.4, 1.21. Even if this 
explanation is thought too speculative, one must admit the privileged place 
accorded to the numbers 1.4, 1.21 and 2.5. Th e importance of the powers 
of 2, of 3 and of 5 perhaps indicates the manner by which the list of regular 
numbers (and their reciprocals) were obtained. Beginning with the fi rst 
reciprocal pairs, the other pairs can be generated by multiplications by 2, by 
3 and by 5 (and their reciprocals by multiplication by 30, 20 and 12 respec-
tively). Th is process theoretically would allow the entire list of regular 
numbers in base-60 and their reciprocals to be obtained.  31    Th e importance 
of the series of doublings of 2.5 in the school documentation could also be 
explained by its pedagogical advantages. I will return to this point later. 

 For now, let us try to draw some conclusions by analysing the selection 
of factors in the factorization procedure. Th e execution of the factorization 
depends, at each step, on the determination of the factors for the number 
for which the reciprocal is sought. Does the selection of these factors cor-
respond to fi xed rules? First of all, let us note that in all of Tablet A, the 
same choices of the factors correspond to identical numbers. For example, 
the number 1.34.55.18.45 appears several times, and in each case, the factor 
chosen is 3.45. Let us now examine these selections, by  distinguishing 
between the case of the direct sequences ( Table 12.4 ) and the reverse 
  30      Th e numbers cannot be arranged according to magnitude, since this is not defi ned. Th e school 

documentation shows that in some cases the scribes used a lexicographical order. See for 
example the list of multiplication tables. Here, reference is made to this lexicographical order. 
Th e numbers are set out in increasing order by the left -most digit, then following, etc. 

  31      I think that reciprocal tables such as the one found in the large Seleucid tablet AO 6456 were 
constructed in this way. A similar idea is developed by Bruins  1969 . 
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sequences ( Table 12.5 ). Th e factorizations that present irregularities (in a 
meaning to be specifi ed later) are shown in grey and numbered at the right 
of the tables. Th e factorizations are ordered according to column 3, which 
contains the factors chosen in the diff erent decompositions. Column 5 
gives the largest elementary regular factor if it is diff erent from the factor 
chosen by the scribe. Column 2 specifi es the section to which the appropri-
ate decomposition belongs (I considered only sections well enough pre-
served to permit a safe reconstitution of the text).   

  Tables 12.4  and  12.5  show that the chosen factor is determined by the 
last digits of the number to be factored. In so doing, the scribes made use 
of an arithmetical property of the base-60 place value notation – that is, 
the numbers to be factorized are all regular and thus they always end with 

 Table 12.4     Selection of factors in the direct sequences   

  Number 
to factor    Section  

  Factor 
chosen  

  Reciprocal 
of factor  

  Largest 
elementary 
regular factor  

  

  2. 5     1    5    12      
  4. 10     2    10    6      
  4. 16     18, 20, 21    16    3.45      
  1.8. 16     20, 21    16    3.45      
  8. 20     3    20    3      
  10. 40     11, 12    40    1.30      
  2.50. 40     15    40    1.30      
  45.30. 40     20    40    1.30      
  4 2.40     13, 14    2.40    22.30    40    
  11.2 2 . 40     18    2.40    22.30    40    (1)  
  3.2. 2 . 40     21    2.40    22.30    40    
  3 3.20     5    3.20    18      
  2.1 3.20     7    3.20    18      
  8.5 3.20     9    3.20    18      
  35.3 3.20     11    3.20    18      
  2.22.1 3.20     13    3.20    18      
  9.28.5 3.20     15    3.20    18      
  10.6.48.5 3.20     21    3.20    18      
  1 6.40     4    6.40    9      
  1. 6.40     6    6.40    9      
  4.2 6.40     8    6.40    9      
  17.4 6.40     10    6.40    9      
  1.11. 6.40     12    6.40    9      
  4.44.2 6.40     14    6.40    9      
  18.57.4 6.40     16    6.40    9      
  1.15.51. 6.40     18    6.40    9      
  5.3.24.2 6.40     20    6.40    9      



402 Christine proust

  32      Th is property is the result of a more general rule: for a given base, the divisibility of an integer by 
the divisors of the base is seen in the last digits of the number. For a discussion of the particular 
problems resulting from divisibility in ‘fl oating’ base-60 cuneiform notation, a system in which 
there is no diff erence between whole numbers and sexagesimal fractions, see Proust  2007 : §6.2. 

  33      Th e word ‘large’ has nothing to do with the  magnitude  of the abstract numbers, since 
magnitude is not defi ned, but with their  size . A two-place number is ‘larger’ than a single-
place number; for numbers with the same number of digits, the ‘larger’ number is the last 
in the lexicographical order. Th e speed of the algorithm depends on the size of the numbers 
thus defi ned: the ‘larger’ the factors are, the fewer factors there will be and thus fewer 
iterations. Let us specify that the order according to the size of the numbers is diff erent from 
the lexicographical order mentioned above. Th e two orders appear in cuneiform sources. 
Th e order according to the size appears in the Old Babylonian reciprocal tables, and the 
lexicographical order occurs in the Seleucid reciprocal tables such as AO 6456, as well as in the 
arrangement of the multiplication tables in the Old Babylonian numerical tables. 

a sequence of digits which form a regular number.  32    All that is needed is to 
adjust for a suitable sequence. (In the case of 2.13.20, we may take 20, or 
3.20, or even 13.20.) In practice, the  fi nal part , insofar as it is an elementary 
regular number, is likely to be a factor. (For 2.13.20, the factor might be 20, 
or 3.20.) In the majority of cases, the scribe chose, from among the pos-
sible factors, the ‘largest’ (3.20 rather than 20), in order to render the algo-
rithm faster.  33    Th us, in general, the selected factor is the largest elementary 

 Table 12.5     Selection of factors in the reverse sequences   

  Number 
to factor    Section  

  Factor 
chosen  

  Reciprocal 
of factor  

  Largest 
elementary 
regular factor  

  

  7. 12     3    12    5      
  1.41. 15     11    15    4    1.15    (2)  
  23.43.49.41. 15     19    15    4    1.15    
  2. 15     5    15    4      (2′)  
  14. 24     2    24    2.30      
  3.22. 30     10    30    2    2.30    
  12.39.22. 30     14    30    2    2.30    
  47.27.39.22 .30     18    30    2    2.30    (3)  
  50.37. 30     12    30    2    7.30    
  11.51.54.50.37. 30     20    30    2    7.30    
  13. 30     8    30    2      (3′)  
  3. 36     4    36    1.40      
  6. 45     9    45    1.20      
  1. 48     5    48    1.15      
  28. 48     1    48    1.15      
  25.18. 45     13    3.45    16    45    
  1.34.55.18. 45     17    3.45    16    45    (4)  
  5.55.57.25.18. 45     21    3.45    16    45    
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regular number formed by the terminal part of the number.  34    Nevertheless, 
this rule allows four exceptions (cases numbered in the last column of 
 Tables 12.4  and  12.5 ), that need to be considered. 

  (1)     Th e selected factor, 2.40, does not appear in the standard recipro-
cal tables, and it is the factor 40 which ought to have been chosen. 
Nonetheless let us note that the reciprocal of 2.40 is 22.30, which 
is a common number that fi gures among the principal numbers 
of the standard multiplication tables. (Th e table of 22.30 is one of 
those learned by heart in the primary level of education, especially 
at Nippur.) Th us, 2.40 is ‘nearly’ elementary, and its reciprocal was 
undoubtedly committed to memory – so case (1) does not truly consti-
tute an irregularity.  

  (2) and (3)     In case (2), the largest elementary factor is 1.15, but the factor 
15, the entry of (2′), is used instead. In case (3), the selected factor could 
be either 2.30 or 7.30, but the factor 30, the entry of (3′), is used instead. 
Th is choice occurred as if the scribe sought to restrict the factors used in 
the calculation. Th e general rule of the ‘largest elementary regular factor’, 
regularly applied in the direct sequences, is, in the reverse sequences,  
opposed by another rule restricting the numeric repertory.  

  (4)     In this case, the factor might have been 45, but the scribe has obviously 
tried to use a larger factor. However, the numbers derived from the 
last two sexagesimal places (18.45 or 8.45) are not regular. Th us, 8 is 
decomposed into the summation 5+3, and the  fi nal part  of the number 
selected as a factor is 3.45.    

 Several general conclusions may be drawn from these observations. First, 
the number of factors occurring in the decompositions is limited. Th ey are 
principally 3.20 and 6.40 (less frequently 10, 16, 25, 40 and 22.30) for the 
direct sequences and principally 30 (less frequently 12, 15, 24, 36 and 45, 
48 and 3.45) for the reverse sequences. Th is limited number of factors is 
explained by the way in which the list of entries was constructed – namely, 
2.5, a power of 5, is multiplied by 2 repeatedly, giving rise to a series of 
numbers for which the fi nal sequences describe regular cycles. However, 
the scribes’ choices intervene. On the one hand, the direct sequences obey 
the ‘greatest elementary regular factor’ rule. On the other hand, the reverse 
sequences present numerous irregularities in regard to this rule. Th e 
number of factors used in the calculations is reduced. Finally, an interest-
ing point to emphasize is that although the direct and reverse sequences 

  34      For this reason, Friberg  2000 : 103–5 designates this procedure the ‘trailing part algorithm’. 
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refer to the same algorithm, they do not seem to share in the same way 
the liberty permitted by the fact that the decomposition of numbers into 
regular factors is not unique. How do these two diff erent ways of choosing 
the decomposition clarify the function of the reverse algorithm for us? Part 
of the answer is found in the school documentation. I will return to this 
question aft er analysing the parallels with Tablet A. 

 Th e observation of errors appearing in this tablet brings something else 
to light. Th e fact that these errors are not numerous shows the high degree 
of erudition of the author of the text. Appearing in the transcription of A. 
Sachs and the copy of E. Robson, these errors are as follows: 

  Section 4: the scribe has written 15.40 in place of 16.40.  
  Section 5: the scribe has written 9 in place of 8.  
  Section 11: the scribe has written 3 5.3 3.20 in place of 3 6.2 3.20.  
  Section 19: the scribe has written 19 in place of 18.   

Th e errors are all of the same type: forgotten or superfl uous signs. Th e 
absence of a vertical wedge in certain instances, for example in Section 4, 
may be the result of the deterioration of the surface of the tablet, not an 
error. In fact, in clay documents, signs are frequently hidden by particles 
of dirt or salt crystals, or fl akes of clay have been broken off  due to both 
ancient and modern handling.  35    Whatever the case may be, if the errors 
exist, they are not the result of errors in calculation, but simple faults in 
writing. Moreover, and this detail has great signifi cance, the errors are 
not propagated in the following sequence of calculations.  36    Th e arithmetic 
operations themselves, namely the multiplications, are then carried out in 
another medium in which the error had not occurred. Th e text proceeds as 
if it does nothing but receive and organize the results of calculations com-
puted in this external medium. For example, the fact that, in the number 
36.23.20 of Section 11, the scribe has transformed one ten in the middle 
place into a unit in the left -hand place may be explained as an error in 
transferring a result from some sort of abacus. Quite probably, some of the 
multiplications, particularly those which appear in the last sections and 
involve big numbers, required outside assistance, probably in the form of a 
physical instrument (such as an abacus).   

  35      See the description of the state of this tablet by Sachs  1947 : 230. 
  36      It is not always the case in this genre of text. For example, in the tablet MLC 651, a school 

tablet in which the reciprocal is determined of 1.20.54.31.6.40 (a term from the series of 
doublings of 2.5; see  Table 12.4 ), an error appears in the beginning of the algorithm and 
propagates throughout the following text. Th e error is a real error in calculation, which arose 
in the course of the execution of one of the multiplications. 
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 Computing reciprocals in school texts 

 Tablet A possesses numerous parallels, nearly all of which appear in the 
characteristic form of tablets called Type  iv  by Assyriologists. Scribes 
used these Type  iv  tablets to train in numeric calculation. Th e copy pre-
sented in  Appendix 2  is typical of these small lenticular or square tablets. 
Consideration of these parallels allows us to establish our tablet in the 
context of the scribal schools. Th is corpus in particular will allow us to 
determine the elements that relate directly to the school education to be 
detected, as well as those which do not seem to be connected to purely 
pedagogical purposes. From these comparisons, hypotheses about the 
function of the tablet, the reciprocal algorithm, and most notably the direct 
and reverse sequences may be put forth. 

 Let us consider all the known Old Babylonian tablets containing non-
elementary reciprocal pairs (other than those which fi gure in the  standard 
tables). To my knowledge, this set comprises a small group of about thirty 
tablets, listed in  Tables 12.6  and  12.7  below.  37    In the fi rst table, I have  gathered 
the parallels of Tablet A. In the second table are found the other texts; they 
also contain reciprocal pairs extracted from geometric  progression. Th e dif-
ferent columns of the tables provide information about the following points: 

  (1)     Th e inventory number and type of school tablet.  
  (2)     Th e provenance.  
  (3)     Reciprocal pairs contained in the tablet; when there are several pairs, the 

entries are always the terms of a geometric progression with a common 
ratio of 2; I have indicated only the number of pairs and the fi rst pair.  

  (4)     Th e format of the text, indicated by numbers: (1) if the text appears as 
a simple list of reciprocal pairs; (2) if the presence of a factorization 
algorithm is noted; (3) if the presence of direct and reverse sequences 
of the factorization algorithm is noted.  38     

  (5)     In  Table 12.6 , a supplementary column indicates the corresponding 
section of Tablet A. Sections which have more than twenty doublings 

  37      Th e tablets cited in the  Tables 12.4  and  12.5  have been published in the following articles and 
works. CBS 10201 in Hilprecht  1906 : no. 25; N 3891 in Sachs  1947 : 234; 2N-T 500 in Robson 
 2000 : 20; 3N-T 362 in Robson  2000 : 22; Ni 10241 in Proust  2007 : §6.3.2; UET 6/2 295 in 
Friberg  2000 : 101; MLC 651 in Sachs  1947 : 233; YBC 1839 in Sachs  1947 : 232; VAT 5457 in 
Sachs  1947 : 234; TH99-T192, TH99-T196, TH99-T584, TH99-T304a are unedited tablets, 
soon to be published by A. Cavigneaux  et al .; MS 2730, MS 2793, MS 2732, MS 2799 in Friberg 
 2007 : $1.4. (Note: among the tablets of the Schøyen Collection published in this last work are 
found other reciprocal pairs, but their reading presents some uncertainty.) 

  38      For example, format (1) is found on the obverse of the tablet Ni 10241, and format (2) on its 
reverse (see the Appendix). 
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of 2.5 are called ‘extrapolations’. Since Tablet A is limited to twenty dou-
blings, these sections do not appear there.      

  Tables 12.6  and  12.7  show that a strong relation exists between Tablet A 
and the school texts. Nearly all the direct parallels ( Table 12.6 ) or indirect 
parallels ( Table 12.7 ) are Type  iv  school tablets. Each concerns a single 
reciprocal calculation. Th e tablets that are not of Type  iv  contain lists of 
reciprocals, all like Tablet A. Th ese tablets are UM 29–13–021 and CBS 
10201, from Nippur, as well as BM 80150, of unknown origin. 

 Th e majority of school exercises use the data found in Tablet A. Two 
exercises from Nippur are reproductions identical to Sections 9 and 10 of 
Tablet A, including the reverse sequence. When the factorization method is 
employed in the exercises, it uses the factors chosen in Tablet A, except in 
one case.  39    Th e tablets in  Table 12.7  that do not use the geometric progres-
sion with a common ratio of 2 and an initial number 2.5 still have links with 
Tablet A. Specifi cally, they use a geometric progression with a common 
ratio of 2, but with an initial term of 1.4 (and in one case 4.3), as found for 
example in the tablet UM 29–13–021 from Nippur. 

 Th ese observations could indicate that the tablets such as Tablet A and 
the other tablets which are not Type  iv  school exercises (CBS 10201, UM 
29–13–021, BM 80150) were the work of schoolmasters and that one of the 
purposes of their authors was the collection of exercises for the education 
of scribes. Th e link between Tablet A and teaching is incontestable, but does 
this signify that Tablet A is a ‘teacher’s textbook’ from which the exercises 
were drawn? Several arguments fi t with this hypothesis, but it also raises 
serious objections. Beginning with what is now known about the school 
context and proceeding more specifi cally to Tablet A and its parallels I will 
present arguments for and against this text‘s being a ‘teacher’s textbook’. 

 Th e structure of school documents of an elementary level speaks in favour 
of the hypothesis. Lists of exercises can be considered a ‘teacher’s textbook’ 
if we consider them only on this level. Exercises from the elementary level 
are extracts of texts written on tablets of a particular type, called Type  i  by 
Assyriologists.  40    Th is relationship between a ‘teacher’s textbook’ and peda-
gogical extracts appears both for the mathematical texts and also for the 
lexical texts. However, as far as the advanced school texts are  concerned, 

  39      In tablet CBS 1020, the factorization of 16.40 uses the factor 40 in place of 6.40. It is not, 
however, a Type  iv  school text, but a tablet containing a list of eight reciprocals, the function of 
which is closer to the function of Tablet A. 

  40      Some authors think that the Type  i  tablets from Nippur are perhaps the product of students 
who have fi nished their elementary education, undergoing some type of examination (Veldhuis 
 1997 : 29–31). 
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whether they are lexical or mathematical like the reciprocal exercises, the 
situation is diff erent and far from simple. Th e exercises are not formulaic 
like those of an elementary level. If the documentation regarding the ele-
mentary level is composed of numerous duplicata, the documentation at an 
advanced level is composed only of unique instances, and this is true for the 
lexical texts and for the mathematical texts. Duplicata occur neither among 
the advanced school exercises nor among the most erudite texts to which 
they are connected. Th e school documentation at an advanced level thus 
does not present as clear and regular a structure as that at an elementary 
level, and it cannot be relied on to identify the nature of the relationship 
that connects Tablet A with the school exercises. 

 Nevertheless, the important fact remains that Tablet A has a large number 
of pedagogical parallels. Moreover, the known school exercises about recip-
rocal calculations all bear upon a number connected with the data in Tablet 
A, whether directly (one of the terms of the series of doublings of 2.5), or 
indirectly (one of the terms of the series of doublings of another number 
such as 1.4 or 4.3). Th ese instances have a unique relationship with the 
direct sequences on Tablet A. On the other hand, reverse sequences are 
rarely found in the school exercises. Th ey appear only in two tablets from 
Nippur, which reproduce exactly Sections 9 and 10 of Tablet A, and in a 
tablet from Mari (TH99-T196). Again, in the two cases from Nippur, the 
reverse sequences are not isolated, but associated with the direct sequences. 
Th us, it is not the data from the reverse sequences that provide the mate-
rial for the school exercises, but rather the data from the direct sequences. 
In general, the reverse sequences provide a very small contribution to the 
prospective ‘collection of exercises’ for teaching, and yet they constitute half 
the text of tablet A. 

 Th e pedagogical interest in the series of doublings of 2.5 must also be 
considered because this series allows the repetition of the same algorithm 
many times, under conditions where it provides only results known in 
advance, with a gradually increasing level of diffi  culty. In fact, this argu-
ment relates to the educational value of the geometric progression with a 
common ratio of 2 and an initial term of 2.5, not to Tablet A in its entirety. 
Tablet A is constructed around the idea of reciprocity, a notion clearly fun-
damental to its author and hardly present in the ordinary exercises about 
reciprocal calculations. 

 Th ese considerations lead to the notion that it is possible that the rela-
tionship between Tablet A and the school exercises is exactly the opposite of 
what is usually believed. Tablet A does not seem to be the source of school 
exercises: rather it seems derived from the school materials with which the 
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scribes of the Old Babylonian period were familiar. In this case, the material 
was developed, systematized and reorganized with diff erent objectives than 
the construction of a set of exercises.  41    

 Th e function of the reverse sequence seems to be the key to understand-
ing the whole text. It has been suggested above that the reverse sequence 
might play a role in relation to the functional verifi cation of the algorithm. 
Th e question that arises concerns, more precisely, the nature of the rela-
tionship between the direct sequence and the reverse sequence. In order to 
advance this inquiry, we turn to other cases in the cuneiform documenta-
tion which present direct and reverse sequences. As emphasized in the 
introduction, these cases appear in several tablets containing calculations 
of square roots. Th us let us examine these calculations.   

 Square roots 

 Sources presently known to contain calculations of square roots are not so 
numerous as those concerning reciprocals. Nonetheless, they present inter-
esting analogies with what we have just considered. First of all, texts in both 
a numeric and verbal style are found for the same algorithm. Additionally, 
the fundamental elements of the reciprocal algorithm – factorization, 
spatial arrangement in columns (in the case of the numeric texts) and the 
presence of reciprocity – appear in these texts. Th is small collection of 
texts allows us to consider some of the problems raised above from other 
angles: the nature of the reciprocal algorithm, the connections between the 
direct and reverse sequences, the specifi city of numeric texts with respect to 
verbal texts and the nature of the links that the diff erent types of texts have 
with education. 

  Table 12.8  gives the list of tablets containing the calculations of square 
roots (I recall in column 1 the letters indicated in  Table 12.1 ).  42    I have 
 likewise included those which contain calculations of cube roots, though 

  41      Th is process may be compared to that described by Friberg for the various Mesopotamian and 
Egyptian texts under the name of ‘recombination texts’. For him, this type of compilation is 
tightly connected with educational activity (Friberg  2005 : 94). 

  42      Th e tablets of  Table 12.8  have been published in the following articles and works: C = UET 
6/2 222 in Gadd and Kramer  1966 : no. 222 – see  Table 12.1 ; YBC 6295 in Neugebauer and 
Sachs  1945 : 42; VAT 8547 in Sachs  1952 : 153; D = IM 54472 in Bruins  1954 : 56 – see  Table 
12.1 ; TH99-T3 is an unedited tablet, soon to be published by A. Cavigneaux  et al .; Si 428 in 
Neugebauer  1935 –7:  i  80; HS 231 in Friberg  1983 : 83; 3N-T 611 in Robson  2002 : 354; YBC 
6295 in Neugebauer and Sachs  1945 : text Aa, this tablet is believed to have come from Uruk, in 
the south of Mesopotamia according to Neugebauer  1935 –7:  i  149 and to H2002: 333–7; VAT 
8547 in Sachs  1952 : 153. 
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no numeric version occurs with cube root calculations. Th is absence poses 
an interesting question: is this the result of chance in preservation or a 
 signifi cant fact?  

 Tablet D, of unknown origin, contains a text composed in Akkadian 
which concerns the procedure of calculating the square root of 26.0.15. 
For a detailed analysis, see the various publications on the subject of this 
text.  43    Two interesting points should be highlighted here. Th e fi rst is the 
presence of the factorization algorithm, in the form of instructions wherein 
the terms are quite similar to those in Tablet B regarding reciprocals. Th e 
second is the last phrase: ‘39.30 is the side of your square. 26.0.15 is the 
result (of the product of 39.30 by 39.30).’ Th e tablet thus ends with a verifi -
cation of the result. 

 Tablet C is a small lenticular school tablet, the transcription and copy of 
which are shown in  Table 12.9 .  44    Th e process of calculation by  factorization 
occurs in the case of Tablet C, as Friberg has remarked. Th e number 
1.7.44.3.45 ends with 3.45, which is selected as an elementary regular factor. 

  43      Chemla  1994 : 21; Muroi  1999 : 127; Friberg  2000 : 110. Because no copy of the text has yet 
been published, it is not known if the presence of zero in the middle place is indicated on the 
tablet by a blank space, as sometimes happens in cuneiform texts, particularly those of the fi rst 
millennium. 

  44      Copy: Gadd and Kramer  1966 ; transcription: Friberg  2000 : 108. See also Robson  1999 : 252. 

 Table 12.8     Calculations of square and cube roots   

  Tablet   Number, type    Provenance    Calculation    Style  

  C    UET 6/2 222,  iv     Ur    Square root of 1.7.44.3.45 
(result: 1.3.45)  

  Numeric  

    3N-T 611,  iv     Nippur    Square root of 4.37.46.40 
(result: 16.40)  

  Numeric  

    HS 231,  iv     Nippur    Square root of 1.46.40 
(result: 1.20) (uncertain 
reading)  

  Numeric  

    TH99-T3,  iv     Mari    Square root of 2.6.33.45 
(result: 11.15)  

  Numeric  

    Si 428,  iv     Sippar    Square root of 2.2.2.2.5.5.4 
(result: 1.25.34.8)  

  Numeric  

  D    IM 54472    Unknown    Square root of 26.0.15 
(result: 39.30)  

  Verbal  

    YBC 6295    Unknown    Cube root of 3.22.30 
(result: 1.30)  

  Verbal  

    VAT 8547    Unknown    Cube roots of 27, 1.4, 2.5 
and 3.36 (results: 3, 4, 5, 
6 respectively)  

  Verbal  
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Th e number 16, its reciprocal, is set out on the right; on the same line, the 
number 15, its square root, is set out on the left ; the product of 1.7.44.3.45 
by 16 (which gives a second factor) is placed on the centre of the follow-
ing line. Th e process is repeated until a number for which the square root 
is given by the standard tables is found.  45    Th e desired square root is the 
product of the numbers recorded on the left .  

 It should be noted that this small text, like those found in the sections 
of Tablet A, begins and ends with the same number, and as before, the cal-
culation forms a loop. It starts with an arithmetical operation (the square 
of 1.3.45), then it proceeds by a sequence which carries out the reverse 
operation (the square root of the resulting number, 1.7.44.3.45). Here, the 
direct sequence and the reverse sequence rely on algorithms of a diff erent 
nature, even though in the cases involving reciprocals, they rely on the same 
algorithm. Could it be said that the calculation of the square of 1.3.45 is a 
simple verifi cation of the result of the calculation of the square root? In this 
case, it would be logical that the verifi cation should come at the end of the 
calculation (as is the case in the verbal Tablet D) and not at the beginning. 
Th e text thus illustrates something else, which seems to relate to the fact 
that the square and the square root are reciprocal operations. Th is ‘some-
thing else’ is perhaps akin to what the author of Tablet A illustrated with the 
reverse sequences. 

 Th e algorithm for calculating square roots is based on the same mecha-
nism of factorization as that for determining the reciprocal. In the numeric 
versions, the rules concerning the layout are analogous: the factors are 

 Table 12.9     Tablet C   

  Transcription    Calculations    Copy  

    1.3.45    1.3.45 × 1.3.45 = 1.7.44.3.45              
    1.3.45    
  15     1.7.44.3.45      16    inv(3.45) = 16; sq.rt.(3.45) = 15  
  15     18.3.45          16    inv(3.45) = 16; sq.rt.(3.45) = 15  
  17     4.49    sq.rt.(4.49) = 17  
    3.45    15 × 15 = 3.45  
    1.3.45    3.45 × 17 = 1.3.45  

  45      As in the case of the reciprocals, the calculations of the squares and square roots rely on a small 
stock of basic results memorized by the scribes during their elementary education. Th e tables 
of squares and square roots are largely found in the school archives. See, notably, Neugebauer 
 1935 –7:  i  ch. I. 
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placed in the central column; the reciprocals of these are placed to the right; 
a supplementary column appears on the left , in which are placed the square 
roots of the factors. Th is supplementary column shows us that the algo-
rithm in fact has two components: a factorization (right-hand column) and 
square root (left -hand column). In the case of the reciprocal’s algorithm, 
the right-hand column provides the factors which serve all at once as the 
factorization and the determination of the reciprocals. Th us the two com-
ponents merge. However, the method of application of the factorizations 
presents a particular mathematical problem for the square roots. In eff ect, 
the algorithm for fi nding a reciprocal is, by defi nition, applied to the regular 
numbers. Th e factorizations are always possible, and lead mechanically to 
the result. Alternately, perfect squares can quite easily be the product of 
irregular numbers, and in this case, factorization by the standard method is 
impossible. Th e important point to note is that, even though the algorithms 
for the determination of the reciprocal and the extraction of a square root 
diverge from one another in their components and even though they 
present diff erent mathematical problems as their topic, they are presented 
in the texts in a parallel fashion. 

 Th e specifi city of the numeric texts with regard to the verbal texts thus 
appears more clearly. For the square roots, the layout of the numeric texts 
observes the same rules regarding arrangement in columns as for the 
determination of reciprocals. Th is spatial arrangement facilitates control 
of the calculation. In fact, it is enough, when fi nding the desired number, 
to multiply all those that are set out on the right in the case of reciprocals, 
and those on the left  in the case of roots. It is notable that, in the case of 
reciprocals as well as square and cube roots, the verbal versions contain 
only numbers of a small size, which do not demand recourse to iteration. 
Th e numeric versions contain numbers of large size, and the arrangement 
in columns shows that it is possible to develop the iterations without limit, 
which confers power on the process. Th e verbal and numeric versions of 
the calculations of square roots refer nonetheless to the same algorithms. In 
fact, the verbal texts contain instructions which detail how to ‘place’ certain 
numbers ‘beneath’ others, in a way which corresponds with the spatial 
arrangement of the numeric texts. 

 What is the place of square roots in the education of the scribes? Th e 
format of the tablets containing the calculation of square roots, which are 
all of Type  iv  for the numeric versions, shows that they were school exer-
cises. However, in this case the exercises are much less standardized than 
the calculation of reciprocals. For square roots, the numeric repertory off ers 
no regularity, whereas for the reciprocals, the repertory is homogeneous (as 
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seen above, it is based principally on the doublings of 2.5). Moreover, the 
group of tablets containing the calculations of square roots is small, whereas 
the group of exercises of the calculation of reciprocals is numerically impor-
tant. Th e great frequency of calculations of reciprocals is undoubtedly 
explained by the importance of this technique in calculation, but another 
reason may be postulated. In the reciprocal, the two components (factoriza-
tion and the determination of reciprocals) are superimposed. Th e algorithm 
for the determination of a reciprocal by factorization puts the mechanism 
of factorization fi rst. Th e determination of a reciprocal by factorization is 
thus a fundamental procedure,  46    essential to other algorithms, even though 
it is applied in a less general way for the roots than for the reciprocals. 
Consequently, the reciprocal exercises probably occupy a more elementary 
educational level than those that contain square roots. Th e calculations of 
square roots may be situated between the work of beginning scribes and 
works of scholars, in a grey area that has left  us few traces. 

 What, then, of the cube roots? Th ey appear in two verbal texts, wherein 
they are treated in a manner identical to the square roots, except for the 
verifi cations, which do not appear in either case.  47    No numeric version is 
known for these calculations. It cannot be excluded that the absence of a 
numeric version of the calculation of a cube root is due to the chances of 
 preservation but other explanations are possible. Indeed, tables of squares, 
square roots and cube roots are known to us from the preserved numeric 
tablets, but tables of cubes are unknown. Th e absence of a table of cubes is 
undoubtedly linked to the fact already mentioned that multiplication is an 
operation with two arguments. Consequently, the cube root has no reverse 
operation in  the Mesopotamian mathematical tradition. Th is fact would 
explain why it has not been found in a numeric format, which is founded 
on the notion of reciprocity. 

 Th is analysis of the calculation of square roots also emphasizes by 
 contrast the fact that the reciprocal algorithm is a combination of two 
 diff erent components (factorization and the determination of a reciprocal). 
In addition, it may be seen that the numeric texts have an approach 

  46      Th e Akkadian term  maks. arum  probably has some link with the process of factorization. It 
appears in two texts, in slightly diff erent senses: it appears in the  incipit  of tablet YBC 6295 
cited in  Table 12.6  ([ ma ] -ak-s. a-ru-um ša ba-si = the  maks. arum  of the cube root); it designates 
an enlargement in tablet YBC 8633. 

  47      Note also the following curious detail: in VAT 8547, all the entries appear in the standard 
tables of cube roots, and the application of the reciprocal algorithm to these numbers leads 
to a complication of the situation. Th us, 27 is decomposed according to a somewhat artifi cial 
manner as the product of 7.30 and 3.36. It is clear that in this case, as in that of Tablet A, the 
purpose is not to obtain a new result. 
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 relatively unifi ed with that of the reciprocal algorithm. Th e function of the 
reverse algorithm seems the same in all cases. It does not enact a verifi ca-
tion of the result, or even a verifi cation of the algorithm itself in the case 
of the square roots, since the direct and reverse sequences do not rely on 
the same algorithm. Th eir presence seems to indicate something else with 
respect to the nature of the operations themselves. It stresses the fact that 
the reverse operation of a square is the square root, and the reverse opera-
tion of the reciprocal is the reciprocal itself.   

 Conclusion 

 I can now reconsider several questions left  aside from the preceding dis-
cussion. Th e function of the tablet is at the heart of these questions, and I 
will treat these questions before returning to the ways of reasoning we can 
detect in the text. 

 It has been seen that the content of Tablet A is connected with the context 
of teaching but that it cannot be interpreted as a simple collection of data 
intended to provide exercises for the education of young scribes. I have 
suggested that its relationship with the school exercises could be the reverse 
of what is generally supposed. It might not be a ‘teacher’s textbook’ from 
which the school exercises were taken but rather a text constructed and 
developed from existing school material. Indeed the relationships between 
school exercises and scholarly texts were probably not so unidirectional and 
the two relations could well be combined. However, the point which inter-
ests us here is that Tablet A appears in the form of an original inquiry and 
its purpose seems to have been communication between erudite scribes. 
Seen from this perspective, the same piece of text takes on another dimen-
sion. Th e way in which the text is organized and arranged, and the reper-
tory of numeric data on which it is built, are essential components of the 
text. In a certain way, these components constitute the means of expression 
by which Tablet A refers to the reciprocal algorithm. 

 But what is the relationship between Tablet A and the algorithm for recip-
rocals? Is it a practical text in the sense that the text executes concretely the 
operations necessary for the determination of a reciprocal? It is not certain 
that the writing of a text was essential to the execution of the algorithm, 
since the known texts obviously record only part of the series of actions that 
allow the result to be obtained. On the one hand, the multiplications are 
probably executed elsewhere. On the other hand, by the standards of school 
practices, the written traces are incomplete. Th ey oft en state only the fi rst 
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step of the process of factorization, as is notably the case in the tablets of 
the Schøyen Collection published by Friberg listed in  Table 12.7 . Th e tablet 
does not refer to all the steps necessary to execute the algorithm. Tablet A 
is not a simple set of instructions for execution of the reciprocal algorithm. 

 What does tablet A say about this algorithm and how? First of all, the 
author of Tablet A expresses himself by means of numbers arranged in a 
precise way, not by means of a linear continuation of the instructions, as is 
done in the verbal texts. Th e numeric texts refer to the same algorithms as 
the verbal texts, but they do it in a diff erent way. Th e spatial arrangement 
of the writing has its own properties and emphasizes certain functions of 
the algorithm. Th e arrangement into columns renders the process of deter-
mining a reciprocal transparent. Indeed, to fi nd the desired number, it is 
enough to multiply the numbers on the right in the case of the reciprocals 
and the numbers on the left  in the case of the roots. Th e arrangement into 
columns certainly recalls the practices of calculation external to the text, 
but the fact that this arrangement was set in writing clearly emphasizes the 
principles of the function of the algorithm – that is, the fact that it is pos-
sible to factorize the regular numbers into the product of regular numbers 
and the fact that the reciprocal of a product is the product of the reciprocals. 
Moreover, the spatial arrangement of the text underscores the power of the 
procedure of developing the iterations without limitation. On this topic, let 
us recall the striking fact that the recourse to iteration does not appear in 
the verbal texts, which limit themselves to numbers of a small size, whereas 
the iteration expands in a rather spectacular way in Tablet A, and in a more 
modest way in the numeric versions of the calculations of the square roots. 
For the ancient reader, the spatial arrangement of the numbers in Tablet 
A serves the functions that Sachs’ formula does for the modern reader: it 
shows why the algorithm works. Th e layout says more than the formula in 
showing not only why, but also  how  it operates and what its power is. 

 Tablet A is constructed on the repetition of the doublings of 2.5. Th e edu-
cational value of this series in the instruction of the factorization algorithm 
has been underscored above, but perhaps the essence lies elsewhere. Th e 
fact that the scribes limited themselves to the geometric progression with 
an initial number 2.5 and a common factor of 2 guarantees the regularity 
of the entries. Th is series assures the calculator that the result remains in 
the domain of regular sexagesimal numbers, a condition necessary for the 
existence of a sexagesimal reciprocal (with fi nite expression) and for the 
operation of the algorithm. It undoubtedly did not escape the scribes that 
it was possible to choose other series (in tablet UM 29–13–021 are found 
series based on other initial terms, such as 2.40, 1.40, 4.3). However, the 
series of doublings of 2.5 is a typical example which allows the scribes to 
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refer to the algorithm by specifi c numeric data. In other words, this series 
plays the role of a paradigm. It is possible that the choice of 2.5 comes from 
the previously noted fact that this number is a logical continuation of the 
standard reciprocal tables in which the last entries are 1.4 and 1.21. 

 Fundamentally, Tablet A is built on reciprocity. What expresses the 
systematic presence of the reverse sequences? It has been shown that the 
purpose was not the verifi cation of the results because such a matter could 
have taken a much simpler form. It could have had a role in the verifi ca-
tion of the algorithm itself and thus ensured the validity of the mechanism. 
However, as suggested above, the signifi cance of the reverse sequences 
could have been above all to express a mathematical rule: ‘Th e reverse of 
the reverse is itself.’ Whatever the case may be, it is clear that in the reverse 
sequences, the author abandons the stereotypical patterns found in the direct 
sequences of the text (and found also in the school exercises) and plays with 
the freedom remaining to him in the choice of factors for the decomposi-
tion into elementary regular factors. Th e reverse sequences thus highlight 
another important mathematical aspect: the multiplicity of decompositions. 

 Th e purpose of the text on Tablet A is thus clearly the algorithm itself, 
its operation and its justifi cation. Th e text refers to the algorithm not in a 
verbal manner, but by an interpretable spatial arrangement, the exploitation 
of a paradigm well known to the scribes, and the recourse to the reverse 
sequences in a systematic way. Tablet A therefore bears witness to the 
refl ection of the ancient Mesopotamian scribes on some of the fundamen-
tal principles of numeric calculation: the possibility of decomposing the 
regular numbers into two or more (through iteration) elementary regular 
factors, the freedom which the multiple valid decompositions off er to the 
calculator (given that the direct and reverse sequences show two diff erent 
strategies for the selection of factors), the stability of the multiplication for 
reciprocal (the reciprocal of a product is the product of reciprocals of the 
factors) and the involutive character of the determination of a reciprocal 
(given the fact that this operation is its own reverse operation).     

 Appendix  i   Tablet A (CBS 1215) 

 Sachs  1947 : 237; Robson  2000 : 23. Th e asterisks refer to the remark which 
follows the transcription. I have added the elements of the appearance to 
facilitate the reading: the  fi nal part  of the number which plays a role as 
a factor is set in bold; the fi nal result of the calculation is underlined; the 
format reproduces the layout of the tablet.  
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 Obverse 

  Column  i    1–8   Column  ii    9–13   Column  iii    13–16

2.5  12
25  2.24
28.48  1.15
36  1.40

2.5

4.10  6
25  2.24
14.24  2.30
36  1 .40

4.10

8.20  3
25  2.24
7.12  5
36  1.40

8.20

16.40  9
2.30  24
3.[36]  [1.40]
6   10

15sic.40

33.20  18
10  6
1.48  1.15
2.15  4
8sic  6.40

26.40
33.20

1.6.40  9
10  6
54  1.6.40

[2].13.20  18
[40]  1.30
[27]  2.13.20

4.26.40  9
40  1.30
13.30  2
27  2.13.20

4.26.40

8.53.20  18
2.40  22.30
6.45  1.20
9   6.40

8.53.20

17.46.40  9
2.40  22.30
3.22.30  2
6.45  1.20
9   6.40

8.53.20
17.46.40

36sic.2sic3.20 18
10.40  1.[30]
[16]  3.4[5]

5.37.30
[1.41.1]5  4
[6.45]  1.20
[9]  6.40

[8.53].20
[35.33].20

[1].11.6.[40] 9
10.40  1.[30]
16  3.4[5]

5.37.30
50.37.30  2
1.41.15  4
6.4[5]  1.20
9   6.40

[8.5]3.[20]
35.33.20
1.11.6.40

2.22.13.20 [18]
42.40  22.30
16  3.45

1.24.22.30
25.18.45* [16]

6.45  1.20
9   [6.40]

8.53.20
[2.2]2.13.[20]

4.44.26.40 [9]
42.40  2[2.30]
16  3.[45]

1.24.22.30
[12.3]9.22.30 [2]
[25.18].45* [16]
[6.45]  [1.20]
[9]  [6.40]

[8].53.20
[2.22.13. 20]
[4.44.26.40]

[9.28].53.[20] [18]
2.50.40  [1.30]
[4.16]  [3.45]
[16]  [3.45]

14.3.[45]
[2]1.5.3[7.30]

[6.19.4]1.15 [4]
[25.18.45]* [16]
[6.45]  [1.20]
[9]  [6.40]

[8.53.20]
2.[22.13.20]
9.[28.53.20]

18.57.[46.40] [9]
[2.50.40]  [1.30]
4.[16]  [3.45]
16  [3.45]

[14].3. [45]
[21.5.37.30]

[3.9.50.37.30] [2]
[6.19.41.15] [4]

(continued on the reverse)
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  Reverse  (on the reverse of the tablet, the columns run from right to left , as 
is customary) 

Column iii 21 Column ii 19–20 Column i 16–18

10.6.48.53.20 18
3.2.2.40  22.[30]
1.8.16  3.4[5]
4.16  3.[45]
16  3.[45]

1[4.3.4]5
52.44.[3.4]5
19.46.31.24.22.[30]

5.55.57.25.18.4[5] 16
1.34.55.18.45* 16
25.18.45*  [16]
6.45  [1.20]
9   [6.40]

8.53.20
2.22.13. 20
37.55.33.20
10.6.48.53.20

[2.31.42.13.20 18]
[45.30.40  1.30]
[1.8.16  3.45]
[4.16  3.45]
16  [3.45]

14.[3.45]
5[2.44.3.45]

1.18sic.6.[5.37.30]
23.43.49.[41.15] [4]
1.[3]4.55.18.45* [16]
[25].18.45* 1[6]
[6].45  1.[20]
[9]  6.40

8.53.20
2.22.13.20
37.55.3[3.20]
2.31.42.13.[20]

5.3.24.26.40 [9]
45.30.40  1.30
1.8.16  3.45
4.16  3.45
16  3.45

14.3.45
5[2.44].3.45
1.19.6.5.37.30

(continued)
[25.18.45* 16]
[6.45  1.20]
[9  6.40]

[8.53.20]
[2.22.13.20]
[9.28.53.20]
[18.57.46.40]

[37.55.33.20 18]
[11.22.40  22.30]
[4.16  3.45]
[16  3.45]

[14.3.45]
[5.16.24.22.30]

[1.34.55.18.45* 16]
[25.18.45* 16]
[6.45  1.20]
9   [6.40]

[8.53.20]
2.22.13.[20]
37.55.33.[20]

11.51.54.50.37.30 2
23.43.49.41.15 4
1.34.55.18.45* 16
25.18.45*  16
6.45  1.20
9   6.[40]

8.53.20
2.22.13. 20
37.55.33.20

2.31.42.13.20
5.3.24.26.40

1.15.51.6.40 9
11.22.40  22.30
4.16  3.45
16  [3.45]

14.[3.45]
5.16.[24.22.30]

47.27.[39.22.30 2]
[1.34.55.18.45* 16]
[25.18.45* 16]
[6.45  1.20]
[9  6.40]

8.[53.20]
2.2[2.13. 20]
37.55.[33.20]
1.15.51.[6.40]

Notes are on p. 420



420 Christine proust

    Notes to pp. 418–19
Section 4: Read 16.40 in place of 15.40.  
  Section 5: Read 9 in place of 8.  
  Section 11: Read 35.33.20 in place of 36.23.20.  
  Section 19: Read 19 in place of 18.  
  *  Section 13 to Section 21: Th e factor chosen is 3.45 (from the reciprocal 16). I could 
not set it in bold type because it does not obviously constitute the  fi nal part  of the 
number, as in the other cases. However, if 8 is decomposed into the sum 5+3, the 
factor 3.45 is scarcely hidden. (For more precise details, see the part of the article 
devoted to the analysis of the entirety of this text.)    

 Appendix  ii   Ni 10241 

 Old Babylonian school tablet from Nippur, conserved in Istanbul, copy 
Proust  2007 .

   Obverse  

 4.26.[40] 

 its reciprocal 13.30  

   Reverse   

  4.26.40     9  

  41  sic       1.30  

    13.30  
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   13     Reading proofs in Chinese commentaries:   
  algebraic proofs in an algorithmic context    

   Karine     Cheml a     

 Th e earliest Chinese text devoted to mathematics that has been handed 
down through the written tradition,  Th e Nine Chapters on Mathematical 
Procedures  ( Jiuzhang suanshu ), was probably compiled on the basis of older 
documents and completed in the form in which we have it today in the fi rst 
century  ce .  1    Until recently, there was no evidence indicating the nature of 
the documents that may have been used in composing  Th e Nine Chapters . 
However, in 1984, in a tomb that had been sealed  c . 186  bce  at Zhangjiashan 
(today in the Hubei Province), archaeologists found a text entitled the  Book 
of Mathematical Procedures  ( Suanshushu ) which may have been used for 
this purpose.  2    Like this book that was brought to light thanks to archaeo-
logical excavations but did not survive through written transmission,  Th e 
Nine Chapters  is mainly composed of particular problems and algorithms 
for solving them, without displaying any apparent interest in  establishing 

     1      In what follows, the title is abbreviated as  Th e Nine Chapters . Th e full title would be more 
accurately translated as ‘Mathematical procedures in nine chapters/patterns’. However, to 
avoid confusion with titles of other Chinese mathematical books, the English translation of 
which is quite close to that of  Th e Nine Chapters , I give a translation that does not diverge 
from the usual English title given to the book. In this volume, A. Volkov (see  Chapter 15 , 
 Appendix 2 ) chooses to translate the title as  Computational Procedures of Nine Categories . 
In the earliest document that was handed down and that outlines the history of  Th e Nine 
Chapters  as a book, i.e. the third-century commentator Liu Hui’s preface, the process 
of compilation is sketched and mentioned as having lasted more than a century. In the 
introduction to  Chapter 6  in CG2004, I gather the evidence on the basis of which I consider 
the book to have been completed in the fi rst century  ce . In this chapter, unless otherwise 
stated, I follow the critical edition of  Th e Nine Chapters  given in CG2004. Th e reader can fi nd 
in this book a complete French translation of the Classic and its traditional commentaries; see 
below. Other translations of the same texts have appeared in recent years: some into modern 
Chinese (Shen Kangshen  1997 ; Guo Shuchun  1998 ; Li Jimin  1998 ), one other into English 
(Shen, Crossley and Lun  1999 , based on Shen  1997 ). It is impossible, within the framework of 
this chapter, to comment on all the diff erences between the translation given here and these 
other translations. Th e interested reader can compare the various interpretations. 

     2      Th e fi rst critical edition of this text can be found in Peng Hao  2001 . Two translations into 
English have already appeared (Cullen  2004 ; Dauben  2008 ).  Th e Nine Chapters  and the  Book of 
Mathematical Procedures  have a number of similarities. For example, they deal with the same 
concept of fractions, conceived of as composed of a numerator and a denominator. Moreover, 
they contain similar algorithms to compute with fractions. In addition to testifying to the fact 
that these elements of mathematical knowledge existed in China before 186  bce , the  Book of 
Mathematical Procedures  provides additional information that will prove useful for us below. 
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the correctness of the algorithms provided.  3    However, soon aft er its com-
pletion, the book became a ‘Classic’ ( jing ) and retained this status in the 
subsequent centuries, which accounts for the specifi c fate it had not only in 
China, but also in Korea and Japan. On the one hand, as is clear from the 
references made to it, the book remained a key reference work for practi-
tioners of mathematics in China until at least the fourteenth century, and 
this fact most probably explains why it is the earliest extant text to have 
been handed down through the written tradition. On the other hand, com-
mentaries on it were regularly composed, two of which were perceived as 
so essential to the reading of the text that they were handed down with the 
Classic itself. In fact, no ancient edition of  Th e Nine Chapters  has survived 
that does not contain the commentary completed by Liu Hui in 263 and the 
explanations added to it by a group of scholars under the supervision of Li 
Chunfeng.  4    Th is detail of textual preservation indicates how closely linked 
to each other these texts became, to the extent that, at some point in history, 
they constituted, for Chinese readers, an integrated set of texts that were no 
longer dissociated. As a consequence, if we, as contemporary exegetes, are 
to understand how  Th e Nine Chapters  was approached in ancient China, 
it is important that we, like Chinese readers, read the text of the Classic in 
relation to that of its commentaries. 

 Th is relationship proves important in several respects. On the one hand, 
through the commentaries, one can establish that even though the prob-
lems contained in  Th e Nine Chapters  all appear to be particular statements, 
they were read by the earliest readers whom we can observe as general 
statements. Th e commentators exhibit the expectation that the algorithm 
linked to a problem should solve not simply this problem, but the category 
of problems for which the problem, taken as paradigm, stood.  5    On the other 
hand, the commentators make explicit some theoretical dimensions that 

     3      In Chemla  1991  and 1997/8, I have given several hints indicating that the situation is not 
so simple. However, since the focus of this chapter lies elsewhere, I shall not dwell on this 
question. Th e reason why this issue is crucial for us here will become clear in  Part  ii   of this 
chapter. Let us stress that the title of  Th e Nine Chapters  contains the character  shu  ‘procedure’ 
which introduces the statement of the algorithms contained in both books. 

     4      Below, for the sake of simplicity, we refer to this layer of the text by the expression of ‘Li 
Chunfeng’s commentary’. In fact, the situation is less simple than is presented here. Th ere are 
problems in distinguishing between the two layers of commentaries (I have summarized the 
state of our present knowledge on the topic in CG2004: 472–3). In the present chapter, I have 
attempted to deal with my topic in a way that is not jeopardized by this diffi  culty. 

     5      In fact, this presentation of  Th e Nine Chapters  is simplifi ed. An algorithm can be given aft er 
a set of problems. Moreover, there are cases when an algorithm is given outside the context 
of any problem, or constitutes an instantiation of such an algorithm. However, this does not 
invalidate the main thesis. 
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were driving the inquiry into mathematics in ancient China. For instance, 
they reveal that generality was a key theoretical value and that fi nding out 
the most general operations was an aim pursued by the practitioners of 
mathematics.  6    However, a crucially important fact for us lies elsewhere: 
aft er the description of virtually every algorithm presented in  Th e Nine 
Chapters , or between the sentences prescribing its successive operations, 
the commentators set out to prove its correctness. Th ese texts thus provide 
the earliest evidence available today regarding the practice of mathematical 
proof in ancient China, and this is the reason why, in this chapter, we shall 
concentrate on them. 

 In contrast to what can be found in ancient Greek geometrical sources, 
where statements are proved to be true, the Chinese commentators system-
atically strove to establish the correctness of algorithms.  7    It can hence be 
assumed that the commentaries bear witness to a practice of mathematical 
proof that, as a practice, developed independently from what early Greek 
sources demonstrate. However, we shall not dwell on this issue here. Instead, 
and as a prerequisite to tackling this question in the future, we shall aim at 
better understanding this practice of proof. Th ereby, we may hope to cast 
light more generally on some of the fundamental operations required when 
proving the correctness of algorithms – a section of the history of mathemat-
ical proof that, to my knowledge, has been so far almost entirely neglected. 

 Even though it constitutes an oversimplifi cation to be refi ned later, let 
us say, for the present, that an algorithm consists of a list of operations that 
can be applied to some data in order to yield a desired magnitude. In this 
context, proving that such an algorithm is correct involves establishing that 
the obtained result corresponds to the desired magnitude. It can be shown 
that, when fulfi lling this task, the commentators systematically made use of 
some key operations. Moreover, they employed specialized terms to refer 
to concepts related to these operations.  8    Th ese facts disclose that, far from 
being ad-hoc developments, these proofs complied with norms familiar to 
the actors, since they devised technical terms related to them. Th e way in 

     6      Chemla  2003  establishes these points. Below, we shall fi nd additional evidence supporting 
these theses. 

     7      It can be shown that this is how the commentators themselves conceive of the aim of their 
reasonings. See Chapter A in CG2004: 26–8. I do not come back to this point here. Note that 
the commentators leave some of the most basic algorithms without proof. Guo  1992 : 301–20 
stressed this fact, emphasizing that this feature meant that the commentators were shaping an 
architecture of algorithms, the proofs of which depended on algorithms proved previously. 
From another angle, one can argue that reduction to fundamental algorithms, and not to 
simple problems, is also a key point at stake in the proofs carried out by the commentators. 

     8      Chapter A of CG2004: 26–39 sketches these points. 
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which the refl ection  about  proof developed in ancient China still awaits 
further study. In this chapter, I shall focus on further highlighting and ana-
lysing two key operations that are fundamental constituents of the practice 
of proof documented by our commentators. Th e  fi rst part  presents in some 
detail an example illustrating the two features on which we shall concen-
trate: on the one hand, determining the ‘meaning’ of a computation or of a 
sub-procedure; on the other hand, carrying out what I called an ‘algebraic 
proof within an algorithmic context’ – what I mean by this expression 
will become clear with the example. In the case of the former feature, our 
analysis will provide an opportunity to examine the modalities according 
to which the ‘meaning’ of a sequence of computations can be determined. 
As for the latter feature, aft er having brought to light fundamental trans-
formations characteristic of this part of the proof, I shall present evidence 
in favour of the hypothesis that there existed an interest in ancient China 
regarding what could guarantee the validity of these transformations. In 
particular, in  Part  ii   of this chapter, I shall explain why the commentaries 
on the algorithms carrying out the arithmetical operations on fractions can 
be read as related to this concern. Th is explanation will lead us to examine 
the algorithms that  Th e Nine Chapters  contains for multiplying and divid-
ing fractions. Beyond the fact that the proof of their correctness further 
illustrates how the commentators proceeded in their proofs, we shall show 
why they can be considered as belonging to the set of fundamental ingredi-
ents grounding the ‘algebraic proof in an algorithmic context’. Bringing this 
point to light will require that we view algorithms from the two distinct per-
spectives by which they were worked out in ancient China. Not only should 
we read algorithms, as the commentators did, as pure sequences of opera-
tions yielding a magnitude, but we should also consider them as prescrip-
tions of computations, carried out on the surface, on which the calculations 
were executed, and yielding a value.  9    In conclusion, we shall be in a position 
to raise some questions on the nature and history of algebraic proof.  

 I     Two key operations for proving the correctness of algorithms  

 Th e serng and the fi rst key components of the proofs 

 Th e main example in the framework of which we shall follow the third- 
century commentator Liu Hui in his proof of the correctness of an 
 algorithm deals with the volume of the truncated pyramid with circular 

     9      On this opposition, see Chemla  2005 . 
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base (see  Figure 13.1  below).  10    Th e problem in which  Th e Nine Chapters  
introduces this topic reads as follows:  11    

 (5.11)  Suppose one has a truncated pyramid with circular base, the cir-
cumference of the lower circle of which is 3    zhang  ,  the circumference 
of the upper circle of which is 2    zhang  ,  and the height of which is 1  
  zhang   . One asks how much the volume is. Answer: 527    chi    7/9    chi  .   

 Note the numerical values attached to the particular solid considered: 
the circumference of the circle forming the base is 3  zhang . Th is detail will 
prove important below. Let us stress the fact that  Th e Nine Chapters  uses 
 throughout the ratio of 3 to 1 for that of the circumference of a circle to its 
diameter. Liu Hui opens his commentary by putting forward the  hypothesis 
that these were also the values used when the examined procedure was 
shaped. He states: ‘Th is procedure presupposes that the circumference is 3 
when the diameter is 1.’ 

 Elsewhere, the commentator designates such values as  lü s, thereby indi-
cating that they can be multiplied or divided by a same number without 
their relative meaning, which is to represent a relationship between the 
circumference and the diameter of the circle, being aff ected. We shall meet 
this concept again below. To go back to problem 5.11 in  Th e Nine Chapters , 

  10      I translate the Chinese term  yuanting  as ‘truncated pyramid with a circular base’ on the basis 
of an analysis of the structure of a system of terms designating solids in  Th e Nine Chapters . 
In the terminology of solids, three pairs of names work in a similar fashion: each of these 
pairs contains two terms formed by prefi xing either  fang  (square, rectangle) or  yuan  (circle) 
to the name of a given body. Th e designated solids correspond to each other, in that they 
belong to the same genus. Th ey diff er only in that they have, respectively, either square or 
circular sections. Th e relation between the terms in Chinese expressed a relation between 
the designated solids. I hence translated these pairs as such, reproducing, in English, the 
structure of the terminology of the Chinese. Th is leads to an interpretation of the second 
term as designating a general kind of solid, two species of which are considered: the one with 
square base and the one with circular base. Since  fangting  designates the ‘truncated pyramid 
with square base’,  yuanting  was translated as ‘truncated pyramid with circular base’. For more 
details, see Chapter D in CG2004: 103–4. On previous occasions (Chemla 1997/8; Chapter 
A in CG2004: 36–8), I have already discussed this passage of  Th e Nine Chapters  and the 
commentaries. Th e critical edition and the translation into French can be found in CG2004: 
424–7. I come back to it again in this chapter to cast light on the proof from a new angle. 
LD1987: 73, Li Jimin  1990 : 327–8 and Guo  1992 : 137–8 present an outline of Liu Hui’s proof. 

  11      A problem of  Th e Nine Chapters  is indexed by a pair of numbers: the fi rst number indicates 
the chapter in the Classic in which the problem is placed. Th e second number indicates its 
position in the sequence of problems of the chapter. We shall always translate the text of the 
Classic in upper-case letters, in contrast to the commentaries, which are translated in lower-
case ones. In addition to indicating clearly to which part of the text a given passage belongs, 
this convention imitates the way in which the diff erent types of text are presented in the 
earliest extant documents. 
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if such is the case, as a consequence, the diameter of the lower circle of the 
solid to be considered is consequently equal to its height. Th e truncated 
pyramid dealt with can thus be inscribed into a cube. 

 In the Classic, the outline of the problem is immediately followed by an 
algorithm allowing the reader to rely on the data provided to determine the 
desired volume. It reads as follows: 

  The circumferences of the upper and lower circles being multiplied by 
one another, then multiplied each by itself, one adds these (the results); 
one multiplies this by the height and divides by  36.   

 To expound the argument on proof that I have in view, I shall need to 
make use of a representation of the algorithm as list of operations. To this 
end, let us note, as on  Figure 13.1 ,  C   s  (resp.  C i  ) the circumference of the 
upper (resp. lower) circle and  h  the height of the solid. With these nota-
tions, the algorithm can be represented in a synoptic way, as follows: 

 Figure 13.1      Th e truncated pyramid with circular base.    

Cs

h

Ci

       Multiplications         Multiplication                   Division
     sum                               by  h                                    by 36
 C   i   >  C   i   C   s   +  C   i   2  +  C   s   2  > ( C   i   C   s   +  C   i   2  +  C   s   2 ) h  > ( C   i   C   s   +  C   i   2  +  C   s   2 ) h /36
 C   s    

In what follows, I shall regularly employ such representations for lists of 
operations.  

 Immediately aft er the statement of the algorithm as given by the Classic, 
in the  fi rst section  of his exegesis, the commentator sets out to establish its 
correctness within the framework of the hypothesis that  Th e Nine Chapters  
made use of a ratio between the circumference and the diameter of the 
circle equivalent to taking  π  = 3. His proof proceeds along three interwoven 
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lines of argumentation. Th e fi rst line consists of establishing an algorithm, 
for which Liu Hui proves that it yields the desired volume. Th e second line 
amounts to transforming this algorithm  as such  into the algorithm the 
correctness of which is to be proved. For this, Liu Hui applies valid trans-
formations to the algorithm taken as list of operations, thereby modifying 
it progressively into other lists of operations, without aff ecting its result. In 
the following, we shall make clear what such transformations can be. Th ird, 
in doing so, the commentator simultaneously accounts for the form of the 
algorithm as found in  Th e Nine Chapters , by making explicit the motiva-
tions he lends to its author for not stating the algorithm as he or she most 
probably fi rst obtained it, but instead changing it. 

 Th is whole process provides an analysis of the reasons underlying the 
algorithm. Th e analysis is not developed merely for its own sake. It also 
yields a basis on which the commentators devise new algorithms for 
determining the volume of the truncated pyramid with circular base. 
Accordingly, in a second shorter section of his exegesis, Liu Hui can make 
use of the values he employs for the relationship between the circumfer-
ence and the diameter of the circle (314 and 100) to off er new algorithms. 
Later on, Li Chunfeng will similarly rely on the values he selects for these 
 magnitudes to do the same. However, our analysis will concentrate on the 
 fi rst section  of Liu Hui’s commentary. 

 Interestingly enough, a reasoning that has exactly the same structure and 
the same wording is developed to account for the algorithm that  Th e Nine 
Chapters  gives for the volume of the cone, aft er problem 5.25. On the one 
hand, this similarity indicates that the text of the commentary analysed 
here is reliable. On the other hand, such a fact shows that the proofs of 
the correctness were established by the commentators in relation to other 
proofs and not developed independently. Other phenomena lead to the 
same conclusion.  12    Th is similarity relates to the fact that the proof had a 
certain kind of generality – an issue to which we shall come back later. Let 
us for now concentrate on how Liu Hui deals with the truncated pyramid 
with circular base. 

 Th e fi rst step in Liu Hui’s reasoning is to make use of an algorithm for 
which the correctness was established in the section placed immediately 
before this one. Provided aft er problem 5.10, this algorithm allows the com-
putation of the volume of the truncated pyramid with square base when 
one knows the sides of the upper square ( D s  ) and lower square ( D i  ) as well 
as the height  h  (see  Figure 13.2 ).  13     
  12      See Chemla  1991  and  1992 , for example. 
  13      Th e proof is analysed in Li Jimin  1990 : 304ff ., Chemla  1991  and Guo Shuchun  1992 : 132–5. 
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 Using the same notations for algorithms as above, it can be represented 
as follows:  

  14      Incidentally, this proposition is stated in the  Book of Mathematical Procedures  (slips 194–5, 
Peng Hao  2001 : 111). 

 Figure 13.2      Th e truncated pyramid with square base.    

Ds

Di

           Multiplications                                         Division
             sum                                                         by 3
      Multiplication by  h 
 D   i   > ( D   i   D   s   +  D   i   2  +  D   s   2 ) h  > ( D   i   D   s   +  D   i   2  +  D   s   2 ) h /3
 D   s    

 On this basis, Liu Hui states a fi rst algorithm (algorithm 1) which deter-
mines the volume of the truncated pyramid with square base circumscribed 
to the truncated pyramid with circular base which is considered. Quoting 
the algorithm of the Classic verbatim – a fact that I indicate by using quota-
tion marks in the translation – his commentary reads: 

 Th is procedure presupposes ( yi′ ) that the circumference is 3 when the diameter is 
1. One must hence divide by 3 the circumferences of the upper and lower circles 
to make the upper and lower diameters respectively. ‘Multiplying them by one 
another, then multiplying each of them by itself ’, adding, ‘multiplying this by the 
height and dividing by 3’ makes the volume of the truncated pyramid with square 
base.   

 Th e only transformation (transformation 1) needed to make use of the 
algorithm quoted in this new context is to prefi x its text with two div-
isions by 3. Th ese operations change the given circumferences into the 
corresponding diameters, the lengths of which are respectively equal to 
the lengths of the sides of the upper and lower circumscribed squares.  14    
Algorithm 1 can be represented as follows:  
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 To determine the ‘meaning’ of the result, that is, that one obtains the 
volume of the truncated pyramid with square base, Liu Hui has to rely on 
both the algorithm established earlier and values corresponding to a value 
of  π . Such an operation of ‘interpretation’ corresponds to a key concept 
used by the commentators in the course of proving the correctness of algo-
rithms: they refer to the ‘intention’ of an operation or a procedure, or its 
‘meaning’, by the specifi c term of  yi . In what follows, we shall pay particular 
attention to the ways in which such a ‘meaning’ is determined. 

 Th e fi rst step in Liu Hui’s proof of the correctness of the investigated 
algorithm belonged to what I have called above the ‘fi rst line of argumen-
tation’. Th e next step goes along both the second and the third lines. Th is 
step makes us encounter the aspect of proof that is the main focus in this 
chapter. I shall hence examine it in great detail. 

 Aft er having obtained the algorithm just examined, Liu Hui considers a 
case: 

 Suppose that, when one simplifi es the circumferences of the upper and lower circles 
by 3, none of the two is exhausted, . . .   

 Here, as is the rule elsewhere, the term ‘simplifying’ has to be interpreted 
as meaning ‘dividing’.  15    In all extant mathematical documents from ancient 
China, the result of a division is given in the form of an integer to which, if 
the dividend is not ‘exhausted’ by the operation, a fraction is appended. Th e 
numerator and denominator consist of the remainder of the dividend and 
the divisor, respectively, both possibly simplifi ed when this was possible. As 
a consequence, more generally, in these texts, fractions are always smaller 
than 1. 

 With respect to the algorithm he has just established, Liu Hui then consid-
ers the case in which, aft er dividing the circumferences by 3,  neither  of them 
yields an integer. In such cases, the next step of the algorithm would lead 
to multiplying quantities composed of an integer and a fraction with each 

  15      To obtain evidence supporting this claim, the reader is referred to the glossary of Chinese 
terms I composed (CG2004: 897–1035). Unless otherwise mentioned, all glosses of technical 
terms rely on the evidence published in this glossary. 

      Divisions by 3        Multiplications, sum,     Division by 3
                                     Multiplication by  h 

 C   i   >  D   i   =  C   i  /3 >   C C C C hi s i s

3 3 3 3
2 2+ +⎡

⎣⎢
⎤
⎦⎥

( ) ( ) .    >   C C C Ci s i s

3 3 3 3
2 2+ +⎡

⎣⎢
⎤
⎦⎥

( ) ( ) .h/3   

 C   s            D   s   =  C   s  /3  
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other. Th is operation implies inserting at this point the algorithm that  Th e 
Nine Chapters  gave for multiplying not only such quantities, but also any two 
quantities – integers, fractions, integers with fractions – the correctness of 
which has been established in the fi rst of  Th e Nine Chapters . Let us examine 
this algorithm in detail before considering the modalities of its insertion.   

 Th e general procedure for multiplying 

 Th is algorithm, like the others, has two faces. On the one hand, it is a list of 
operations, the text of which is recorded in  Th e Nine Chapters . On the other 
hand, the operations it prescribes were carried out on a surface on which 
quantities were represented with counting rods in ancient China.  16    For the 
sake of my argument, it will prove useful to have some knowledge about the 
way in which computations were physically handled on this surface. At fi rst 
sight, it may seem strange that such details are necessary, since we deal with 
proofs and not with actual computations. However, the relation between 
the two will become clearer below. 

 On the surface, the execution of division and multiplication started from 
the basis of a fi xed layout of their operands, which evolved throughout the 
fl ow of computations. At the beginning of a multiplication, the multiplicand 
was set in the lower row of the space in which the operation was executed, 
while the multiplier was placed in its upper row. At the end of the computa-
tion, the multiplier had disappeared, leaving the result in the middle row 
of the surface and the multiplicand in the lower row. In contrast, division 
started with the dividend placed in the middle row, in opposition to the 
divisor, put in the lower row. At the end of the computation, the quotient 
had been obtained in the upper row. Under the quotient, either the place 
of the dividend had been left  empty, which indicated that the result was an 
integer, or there was its remainder, in which case the result had to be read 
as integer (upper row) plus numerator (middle row) over denominator 
(lower row). Let us illustrate this description by what the computations for 
the algorithm yielding the volume of the circumscribed truncated pyramid 
must have looked like.  Figure 13.3  shows a sequence of three successive 
states of the surface for computing. We indicate a separation between the 
rows for the sake of clarity. In fact, we have no idea whether or not there were 
marks on this surface. In the fi rst state, on the left -hand side, the circumfer-

  16      Although they do refer to the fact that computations were carried out on such a surface, the 
earliest extant texts discussed in this chapter contain very little information regarding how 
these computations were handled. Th e argumentation supporting the way in which I suggest 
recovering them is provided in Chemla  1996 . 
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ences of the upper and lower bases were displayed, respectively in the upper 
and lower rows of the surface. Th e reason for this is that numbers derived 
from them would soon enter into a multiplication. Before that multiplica-
tion, the algorithm prescribes that both circumferences be divided by 3. 
Th ese divisions were to be set up and carried out in the upper and lower 
spaces, with the row in which the numbers had been placed becoming in 
turn a space in which a computation was executed according to the same 
rules of presentation. For instance, the upper row was split into three sub-
rows, with the dividend  C s   occupying the middle sub-row and the divisor 3 
the lower sub-row (second state of the surface in  Figure 13.3 ).  17    In the situa-
tions considered by Liu Hui, once the divisions were completed, none of the 
dividends in the upper and lower spaces would have vanished, the result of 
each division being of the form of an integer increased by a fraction (third 
state in  Figure 13.3 ). Th ese, then, are the quantities to be multiplied accord-
ing to the next step of the algorithm (‘Multiplying them by one another, 
then multiplying each of them by itself ’). Th is feature of hierarchical organi-
zation, according to which a space in which a number is placed can become 
a sub-space, in which an operation is performed according to the same rules 
at any level, is, in my view, one of the most important characteristics of this 
system of computation. Th is feature ensures that the successive computa-
tions required by an algorithm will be articulated with each other spatially, 
instead of being dissociated and carried out independently of each other.  

 Th e right-hand part of  Figure 13.3  shows the state of the surface for com-
puting, at the point where the algorithm requires inserting the algorithm 
for multiplying quantities that consist of an integer and a fraction. Let us 
  17      In LD1987: 16–18, the reader can fi nd descriptions of how the computations of a 

multiplication and a division were carried out on the surface for computing. 

 Figure 13.3      Th e layout of the algorithm up to the point of the multiplication of 
fractions.    

Cs Cs    Dividend
3      Divisor

as            integer
bs      numerator
3  denominator

Dividing by 3

Ci Ci    Dividend
3      Divisor

ai            integer
bi       numerator
3  denominator
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  18      Perhaps, the layout of the fi rst step should be restored in a diff erent way. Th e middle row of 
the upper and lower spaces could be divided into two sub-rows: one in which the result of the 
multiplication would be placed – that is, in the middle as usual – and a second one in which 
the numerator would remain. Th ereaft er, the two sub-rows would again fuse into a unique 
row, with the numerator joining the product. 

read what is called in  Th e Nine Chapters  the ‘ procedure for the field 
with the greatest generality’ , which fulfi ls this task. 

  Procedure: The denominators of the parts respectively multiply the 
integer corresponding to them; the numerators of the parts join these 
(the results); multiplying [the results] by each other makes the divi-
dend. The denominators of the parts being multiplied by each other 
make the divisor. One divides the dividend by the divisor .   

 If we represent the successive states of the surface for computing when 
this sequence of operations is used from left  to right, we obtain the result 
shown in  Figure 13.4 .  18     

 Th e same algorithm can be found in the  Book of Mathematical Procedures . 
Th e description here, while slightly more specifi c regarding the display of 
the arrays of numbers on the surface, can be interpreted along the same 
lines. Liu Hui’s commentary on the fi rst step of the procedure contains two 
elements that prove quite interesting for our purpose. 

 Th e fi rst element relates to the conception of the movements eff ected on 
the surface by the computations. Liu Hui off ers a slight rewriting of the way 
in which the fi rst step should be carried out: the products of the denomi-
nators by the corresponding integers are, in his words, ‘made to enter the 
(corresponding) numerators’. Th is does not change anything in the result-
ing confi guration (column 3). However, this fi rst sequence of operations 
prescribed by the ‘procedure for the fi eld with the greatest generality’ 

as  integer
bs  numerator
3 denominator

3as     bs
3

3as + bs
3 3

‘parts 
of the 

product’

(3as + bs).(3ai + bi) (3as + bs).(3ai + bi)
9

dividend
divisor

ai integer
bi numerator
3 denominator

3ai     bi
3

3ai + bi
3

3ai + bi
3

3ai + bi
3

 Figure 13.4      Th e execution of the multiplication of fractions on the surface 
for computing.    
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thereby appears as an operation of multiplication carried out on the three 
lines that are the array of numbers yielded by the previous division. Th e 
operation multiplies the content of the upper row by that of the lower row, 
progressively adding the results to the middle row, where, in the end, the 
fi nal result is to be read. Th is point is quite important. First, it reveals the 
continuity between an array of positions read as a quantity ( a  +  b /3) and 
the confi guration on which a computation is carried out on the surface. 
In the same vein, an array of two lines will regularly be considered as a 
quantity (a fraction) or as an operation (a division). We shall come back 
to this feature on several occasions below. Second, this point shows the 
material articulation between the operations of multiplication and  division 
on the surface for computing. Each of the operations can be applied to the 
confi guration at which the other operation ends. Th e management of 
positions on the surface hence appears to be highly sophisticated and 
carefully planned to allow forms of articulation between the diff erent 
computations. 

 It is from this point of view that we can best understand Li Chunfeng’s 
interpretation of the name of the operation carried out by the procedure: 
‘Field with the greatest generality’.  19    What explains such a name, in his 
view, is that, in contrast to previous algorithms, this procedure unifi es 
the three algorithms for multiplying either integers, or fractions, or even 
quantities composed of integers and fractions. If we interpret integers as 
being numbers of the type  a  + 0/ n  (for any number  n ), fractions as of the 
type 0 +  b/n , the ‘procedure for the fi eld with the greatest generality’ can be 
uniformly applied to multiply any type of numbers. Furthermore, the ‘pro-
cedure for multiplying fractions’ is embedded in it. Note that the procedure 
is quite complex in the case of multiplying integers. However, uniformity, 
as stressed by Li Chunfeng, seems to be preferred over  simplicity.  20    Th ese 
remarks will prove useful below. In case the procedure Liu Hui devised for 

  19      In fact, Li Chunfeng explains the name ‘the greatest generality’, which is actually the name 
given to the same operation in the  Book of Mathematical Procedures . It may well be the case 
that the original name of the procedure in  Th e Nine Chapters  was ‘the greatest generality’. We 
shall see that the generality of the procedure is precisely the key point Li Chunfeng stresses 
in his comment. Th e critical edition and the translation of this piece of commentary can be 
found in CG2004: 172–3. 

  20      It is from this angle that one may understand why the description of an algorithm given in the 
introduction of this chapter is oversimplifi ed. An algorithm may cover several types of cases 
and include branchings to deal with them. In relation to this, practitioners of mathematics in 
ancient China seem to have valued generality in algorithms, which led to writing algorithms 
of which the text may be less straightforward than our fi rst description at the beginning of this 
chapter. See Chemla  2003 . 
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the circumscribed truncated pyramid dealt only with integers or fractions, 
other procedures could be used to multiply. However, given the fact that 
there are cases in which ‘none of the circumferences is exhausted’ by the 
division by 3, the most general procedure must be used. 

 Th e second element important for us in Liu Hui’s commentary on the 
fi rst step of the ‘procedure for the fi eld with the greatest generality’ is the 
intention he reads in the fact that the operation be used. Multiplying an 
integer by the corresponding denominator, as he interprets, intends to 
‘make’ the integers ‘communicate’ ( tong ) with the numerators. In other 
words, the units of the integer  a  and those of the numerator (expressed by 
the denominator) are made equal, which allows adding up the transformed 
integer and the numerator. As is oft en the case, the reason brought to light 
for employing an operation is expressed in the form of an operation (‘make 
communicate’). Th e former operation can be prescribed by directly making 
use of the latter name, which thus refers to both the operation to be carried 
out and the intention motivating its use. Th e result, in our case 3 a  +  b , is 
designated as the ‘parts of the product’ ( jifen ). It is ‘parts’, here a number 
of ‘thirds’, in that it is composed of units, the size of which is defi ned by a 
denominator. In what follows, we shall meet with these terms again.  21    

 We are now in a position to go back to the list of operations established 
by Liu Hui for computing the volume of the truncated pyramid circum-
scribed to the one considered in problem 5.11.   

 Inserting an algorithm:     a key operation for proof 

 As Liu Hui envisaged, it is possible that none of the upper and lower 
 circumferences is ‘exhausted’ by the division by 3. Th us, in order to carry 
out the various multiplications required by algorithm 1, one needs to 
make use of the ‘procedure for the fi eld with the greatest generality’. Th e 
 insertion of this procedure in algorithm 1 (transformation 2) yields algo-
rithm 2, which,  qua  list of operations, can be represented by the following 
list of operations: 

  21      For the interpretation of the terms, see my glossary (CG2004). In fact,  jifen  ‘parts of the 
product’ refers to the numerator in our sense, when its value is greater than that of the 
denominator. One may view the numerator as a dividend, when looking at it from an 
operational point of view, and as ‘parts of the product’, when considering it as constituting 
a quantity. To be more precise, the commentator introduces the expression of ‘parts of the 
product’ ( jifen ) in relation to the operation of ‘making communicate’, when the latter is fi rst 
used in  Th e Nine Chapters , that is, when commenting on the procedure for dividing between 
quantities with fractions. We shall analyse this operation and the commentary on it below. 
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Th e way in which Liu Hui describes this process is highly interesting for our 
purpose. Here is how his text reads (my emphasis): 

 Suppose that, when one simplifi es the circumferences of the upper and lower circles 
by 3, none of the two is exhausted, then,  backtracking , one  makes them communi-
cate, as a consequence they are taken respectively as upper and lower diameters .   

 In terms of computation, the fi rst operation for multiplying quantities 
with fractions is prescribed by means of the operation expressing its inten-
tion – ‘make communicate’ – which yields, respectively, 3 a   i   +  b   i   and 3 a   s   +  b   s  . 
However,  in this context , Liu Hui states, this computation carries out a 
 backtracking . Th is term captures two nuances. First, it refers to the fact that 
one goes in a direction opposite to the one just followed. Second, it implies 
that one goes back to the starting point: 3 a   i   +  b   i   restores  C   i  , whereas 3 a   s   +  b   s   
restores  C   s  . Two facts allow this conclusion. On the one hand, ‘making 
communicate’ turns out to be the operation inverse to the division by 3, 
carried out just before – and we saw how that was displayed on the count-
ing surface. On the other hand, since the results of division are given in the 
form of an integer increased by a fraction, they are exact. Th is is a key fact 
for ensuring that the application of the multiplication opposite to a given 
division restores the original numbers – and even restores the original 
set-up of the division as column 3 in  Figure 13.4  shows.  22    We meet with 
the importance of this key fact here for the fi rst time. We shall stress its 
relevance for our topic on several occasions below. 

  22      Th e fact that the divisor is 3 is important to ensure that one goes back to the numbers one 
started with. If simplifi cation of the remaining fraction in the result could occur, the operation 
of ‘making communicate’ would not amount to applying the inverse operation. 

     Divisions by 3              Multiplying integers by             Multiplications, sums,
                                            corresponding denominator,
                                            incorporating the numerator

 C   i   >  D   i  =   
a
b

i

i
3

    [[[  >        3ai + bi    >         (3ai + bi )2   +

                                                                                                          (3ai + bi ) (3as + bs )   +

 C   s                          D   s  =   
a
b

s

s
3

    [[[                      3as + bs                            (3as + bs )2    

 Multiplying denominators, dividing by the result, 9,  ]]] , multiplying by  h , 
dividing by 3 
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 Why backtrack, one may ask, when discussing these two operations, 
if it leads us to start from where, in any case, our starting point already 
was? Liu Hui’s next sentence makes clear where the relevance for this 
‘detour’ lies. Indeed if the  value  obtained is the same, the sequence of two 
opposed operations provides it with a new  meaning  ( yi ):  C   i   and  C   s   no longer 
represent the circumferences, but as results of the operation of ‘making 
communicate’, they are now interpreted as representing the diameters, 
disregarding denominators, that is, with reference to other algorithms. Th is 
passage reveals the importance the commentator grants to interpreting the 
meaning of operations.   

 Cancelling opposed operations:     another key operation for proof 

 Let us now consider the consequences of these remarks for algorithm 
2 when considered as a list of operations. What was just analysed 
implies that the  fi rst section  of the list of operations can be transformed 
(transformation 3):  

  Division by 3        Make communicate        Multiplications, sums, etc.

 C   i   >  D   i   =   
a
b

i

i
3

  >       3ai + bi = Ci    –(…)  >

 C   s                                  D   s   =   
a
b

s

s
3

                                     3as + bs= Cs    

 is transformed into: 
  Multiplications, sums, etc.
 C   i    (…………) >
 C   s    

 Th e fi rst two operations cancel each other, since their sequence amounts 
to returning to the original values – and to the original set-up. Deleting both 
operations from the list of operations does not change the value yielded by 
algorithm 2, nor does this transformation change the meaning of the fi nal 
result. Th is is the fi rst transformation of a list of operations  qua  list that we 
encounter and it belongs to what I called the second line of argumenta-
tion. We shall meet with other transformations of this kind below. Th is 
particular transformation is valid for the reasons stressed above. Taken as a 
whole, algorithm 2, which computed the volume of the truncated pyramid 
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with square base circumscribed to one with a circular base in case quanti-
ties with fractions occurred, can hence be transformed into algorithm 2′, 
without altering the result:  

       Multiplications
     Sums
 C   i   >   C   i   2  +  C   i  · C   s   +  C   s   2 
 C   s  

Multiplying the denominators, dividing by the result 9, multiplying 
the result by  h , dividing by 3  

 Th e essential point now is that algorithm 2′ shares the same initial list of 
operations with the algorithm for the truncated pyramid with circular base 
as described in  Th e Nine Chapters . Th e reason why this fact is important is 
that the arguments outlined above allow the interpretation of the ‘meaning’, 
namely, the ‘intention’ ( yi ) of the fi rst part of the algorithm, the correctness 
of which is to be established. Liu Hui writes (my emphasis): 

 If one multiplies by one another the upper and lower diameters, then multiplies 
each by itself respectively, then adds these and multiplies by the height, this gives 
the  parts of the product  ( jifen )  of 3 truncated pyramids with square base .   

 Again, this statement is worth analysing in detail. Note, fi rst, that Liu 
Hui refers to  C i   and  C s   as ‘diameters’. Th is is the meaning of the initial values 
entered in the algorithm that was established by bringing to light the pair 
of deleted, opposed operations. Th ese values are diameters, with respect to 
the denominators. Such an analysis corresponds to the fact that the result 
of the  fi rst section  of the algorithm is interpreted as ‘parts of the product’ in 
reference to the ‘procedure for the fi eld with the greatest generality’. More 
generally, it is by reference to algorithm 2′, itself obtained from a combina-
tion of three algorithms, that the interpretation of the result of the  fi rst part  
of the algorithm is made explicit. Algorithm 2′ has been shown to yield the 
volume of the circumscribed truncated pyramid. To state the meaning of 
the result of its  fi rst part  as the ‘parts of the product ( jifen ) of 3 truncated 
pyramids with square base’, two of its fi nal computations had to be dropped 
(dividing the result by 9 and dividing by 3). Each computation relates to 
a diff erent algorithm among the algorithms that are combined, and the 
structure of the statement highlights the diff erent statuses of the factors 
which are left  out. Th e proof of the correctness of the algorithm for the 
truncated pyramid with square base had established that the  fi rst part  of its 
computations yielded the value of 3 pyramids. Th e proof of the  correctness 
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of the ‘procedure for the fi eld with the greatest generality’ shows that, before 
dividing by the product of the denominators, the resulting ‘dividend’ cor-
responds to the ‘parts of the product’.  23    Note, however, that the order of the 
division by the product of the denominators and the multiplication by the 
height was implicitly inverted so that the meaning of the result could be 
stated in this way. Th is transformation is valid. Its validity again rests on 
the fact that the results of divisions are exact. Here too, this transforma-
tion is one that may be applied to the list of operations as such in order to 
change it into another list. In other passages, Liu Hui brings to light and 
comments on this inversion, which he calls by the name of ‘ fan ’ (inversion). 
However, here the inversion is carried out tacitly. We shall come back to it 
later. In conclusion, we see the operations involved here in determining the 
‘meaning’ ( yi ) of the result of the  fi rst part  of the algorithm, the correctness 
of which is to be established. Th ey depend in an essential way on relying on 
the meaning of previously established algorithms. 

 Th e discussion above highlights an interesting fact. If we concentrate on 
the  fi rst section  of the algorithm determining the volume of the truncated 
pyramid with circular base, we can view it from two angles. When seeking 
to uncover its ‘meaning’, it is necessary to restore the opposed operations 
that cancel each other and consider algorithm 2. However, when using the 
section as a list of operations for computing, it is more rational to delete the 
unnecessary operations, as in algorithm 2′. Although both algorithms yield 
the same result, the algorithm for computing diff ers from the algorithm 
for shaping the meaning ( yi ) of the result. Th is is a crucial fact for proving 
the correctness of procedures. Sometimes, the two algorithms coincide, in 
which case the algorithm is transparent concerning the reasons for which it 
is correct. Th e main reason for which it may not be transparent is due pre-
cisely to the very transformations that are applied to the list of operations as 
such, and which interest us in relation to the second line of argumentation. 

 At this point of our argument, several remarks can be made on the way in 
which Liu Hui deals with the algorithms found in  Th e Nine Chapters . First, 

  23      Here, an element of argumentation can be retrospectively added to what was said earlier. 
Th e ‘procedure for the fi eld with the greatest generality’ is not referred to by the name of the 
operation in the commentary we are analysing. Th ree elements lead us, nevertheless, to the 
conclusion that such is the procedure that is inserted. First, the situation described is exactly 
the one for which the procedure was made: multiplying in general and multiplying integers 
increased by fractions in particular. Th is is clearly the case envisaged by Liu Hui. In addition, 
the list of operations to be followed corresponds exactly to that of the ‘procedure for the fi eld 
with the greatest generality’. However, other procedures could be used, as is demonstrated 
by the ‘procedure for more precise  lü ’ (CG2004: 194–7). Lastly, the terms  tong  ‘make 
communicate’ and  jifen  ‘parts of the product’ are specifi cally attached to the arithmetical 
procedures given in  Th e Nine Chapters  to deal with integers increased by fractions. 
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the commentator aims at accounting for the algorithm as described in the 
Classic – this is part of what we called the third line of argumentation and 
is interwoven with the fi rst two lines. For instance, in this case, he seems to 
be attempting to account for the reason why the algorithm does not begin 
with a division by 3, or, more directly, for why the algorithm is not transpar-
ent, in the sense just introduced.  24    Th is question will lead him to formulate 
motivations which explain the transformation of the algorithm he obtained 
into the algorithm actually provided by  Th e Nine Chapters , which yields the 
same result. 

 Second, the reason Liu Hui adduces for that is the possibility that the 
division by 3  may  introduce results with fractions. Here this detail reveals 
a key dimension in his expectations towards  Th e Nine Chapters . If we recall 
the data of problem 5.11, the circumference of the lower circle is 3  zhang . 
However, the case Liu Hui considers, to reconstitute the motivations of the 
author(s) of the procedure, is one in which ‘none’ of the two circumferences 
is ‘exhausted’ by the division by 3. Th is indicates that he believes the authors 
considered other cases than that of the problem in  Th e Nine Chapters  in 
order to shape the procedure. Hence the commentator does not imagine 
that the Classic provides algorithms for solving only the particular problem 
aft er which they are given. He expects the algorithm to have been generally 
established and consequently he accounts for the correctness of the general 
algorithm as well as its form.  25    To be more precise, Liu Hui seems to be 
considering that, in their shaping of the procedure, the author(s) of the pro-
cedure took into account all cases in which the data for the circumferences 
would be integers. His reasoning would otherwise have been formulated in 
a diff erent way. Such hints regarding the types of numbers that may consti-
tute data for a given algorithm would be extremely important to gather if 
we want to understand better what generality meant in ancient China and 
how the possibility of covering cases with diff erent types of numbers was 
handled. It would be all the more important in the context of the argument 
I want to make in this chapter, for establishing a link between the ‘algebraic 
proof in an algorithmic context’ and the refl ection about numbers. 

 Th ird, it appears that the commentator believes that, when possible, the 
author(s) of procedures avoided unnecessarily complex computations, in 
particular computations with fractions. He regularly repeats this hypothesis 

  25      Th is is also what is shown by other passages of his commentary; see Chemla  2003 . 

  24      On the basis of additional evidence, Chemla  1991  argues in favour of the hypothesis that Liu 
Hui seeks to read reasons accounting for its correctness in the statement of an algorithm. He 
succeeds in doing so for the algorithm which computes the volume of the truncated pyramid 
with square base. 
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about their motivations, when he accounts for why the order of a division 
and a multiplication was inverted with regard to the order given by the 
reasoning he off ered. Th e rewriting of lists of operations that the author(s) 
of procedures undertook may hence be motivated, in his view, by the 
actual handling of computations. Th is is how Liu Hui explains the form of 
the beginning of the procedure. As we shall discuss below, several specifi c 
features of the mathematics of ancient China can be correlated with this 
concern. In our case, the fact which the commentator brings to light in this 
respect is that the procedure off ered by  Th e Nine Chapters  has the property 
of working uniformly for all the data. As mentioned above, this property 
was stressed by Li Chunfeng as characterizing the ‘procedure for the fi eld 
with the greatest generality’. It would then be transferred to the algorithm 
for determining the volume of the examined truncated pyramid. Note that, 
in contrast to the former, for which uniformity was obtained at the expense 
of simplicity, in the latter case, no artifi cial step is necessary to guarantee 
a uniform treatment of all the possible data. It is to be noted, however, 
that uniformity is not a property shared by all the algorithms in  Th e Nine 
Chapters . Th e procedure given for dividing between quantities having frac-
tions, which will be discussed below, is a counterexample, in which the 
latter cases are reduced to the former ones. 

 Th ese remarks lead to an observation that is essential for the argument 
made in this chapter. If we observe the transformation between the  fi rst 
part  of algorithm 1 and that of algorithm 2′, what was carried out was an 
inversion in the order of divisions and multiplications. Th is transforma-
tion, accomplished in the algorithm as a list of operations, was actually 
carried out and accounted for through a procedure dealing with quanti-
ties with fractions. A link is thereby established between a transformation 
that operates on lists of operations as such and an algorithm for executing 
arithmetical operations on quantities with fractions. Th is link will be more 
generally the focus of  Part  ii   of this chapter. Furthermore, as has already 
been stressed, this decomposition of the transformation that leads from the 
 fi rst section  of algorithm 1 to that of algorithm 2′ highlighted the necessity 
of relying on the possibility of cancelling two opposed operations that were 
placed one aft er the other. Th is is how the transformation appears to be 
carried out in Liu Hui’s view. In  Part  ii  , we shall also come back to this point. 

 Without entering into all the details, let us give a sense of what the fl ow 
of computations on the surface for computing looks like for the algorithms 
considered. We can represent the main structure of the initial section of 
algorithm 1 – which amounts to that of algorithm 2 – as the following 
sequence of states ( Figure 13.5 ).  
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 Figure 13.5      Th e basic structure of algorithms 1 and 2, for the truncated pyramid 
with square base.    
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 Figure 13.6      Th e basic structure of algorithm 2′, which begins the computation of the 
volume sought for.    
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 Th e beginning of algorithm 2′ would instead yield  Figure 13.6 .    

 Postfi xing operations to an algorithm within the context of the proof 

 Let us now return to Liu Hui’s commentary on the algorithm determining 
the volume of the truncated pyramid with circular base and read its fol-
lowing section. Th e commentator’s interpretation of the result of the  fi rst 
section  of the algorithm as ‘parts of the product ( jifen ) of 3 truncated pyra-
mids with square base’ produces a foundation upon which his reasoning 
can be built. He writes (transformation 4): 

 Here, one must multiply the denominators, 3, by one another – hence one obtains 
9 – to make the divisor, and divide by this. If, in addition to this, one divides by 3, 
one obtains the volume of the truncated pyramid with square base.   
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 Th e fi rst division ends the ‘procedure for the fi eld with the greatest gen-
erality’. Th e reason underlying its correctness is not mentioned here. Th e 
second division ends the algorithm for computing the volume of the trun-
cated pyramid with square base. Mentioning the two divisions in succes-
sion allows making sense of the operations step by step, and hence, globally, 
of the result. Moreover, this will prove important for the following part of 
the reasoning.  26    

 As a consequence, by successive transformations of algorithm 1, the fol-
lowing algorithm (algorithm 3) is obtained for determining the volume of 
the truncated pyramid with square base circumscribed to the desired trun-
cated pyramid with circular base:  

 Th e appending of two operations to yield algorithm 3 belonged to the 
fi rst line of argumentation, as does the next transformation to be eff ected. 
Indeed, once he has obtained an algorithm for the truncated pyramid with 
square base, Liu Hui turns to considering how to derive the volume of the 
truncated pyramid with circular base on the basis of the volume of the cir-
cumscribed pyramid. It is by a fi ft h transformation of the obtained list of 
operations that he achieves this goal: operations are to be postfi xed to the 
former sequence to get an algorithm yielding the volume of the truncated 
pyramid with circular base inscribed in the obtained pyramid with square 
base. Liu Hui fi rst makes a geometrical statement (my emphasis): 

 To  look for  the volume of the truncated pyramid with circular base, when knowing 
the truncated pyramid with square base, is  also  like to look for the surface of the 
circle at the centre of the surface of the square.   

 Two words deserve some attention here, which is why I emphasized 
them. Th e fi rst one is ‘to look for’ ( qiu ). It regularly introduces the task that 

  26      Below, we shall meet with cases in which Liu Hui combines two divisions that follow each 
other. Th e fact that he does in some cases and does not in others relates clearly to the 
argument he is making. Th is feature highlights how carefully the relationship between shaping 
a procedure and arguing for the correctness of a procedure is handled. 

       Multiplications              Division                            Division
     Sum                                 by 9                                    by 3
     Multiplication by  h 

 C   i   > ( C   i   C   s   +  C   i   2  +  C   s   2 ) h  > ( C   i   C   s   +  C   i   2  +  C   s   2 ) h /9 >[( C   i   C   s   +  C   i   2  +  C   s   2 ) h /9]/3
 C   s    
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the outline of a problem asks to fulfi l. Th is detail indicates that, in ancient 
China, algorithms may have been conceived as composed by combining a 
sequence of algorithms which carry out a sequence of tasks, the comple-
tion of which was identifi ed as leading to the solution of a given kind of 
problem. Th is corresponds quite well to the kind of reasoning Liu Hui has 
been developing so far in the commentary we are reading. 

 Th e second word to be stressed is ‘also’. It refers to the fact that the same 
argument was given earlier in the commentary, aft er problem 5.9, when Liu 
Hui was deriving the algorithm for the volume of the cylinder from that of 
the volume of the parallelepiped. Th is ‘also’ thus indicates that the proofs 
are not carried out in isolation from each other, but rather in parallel with 
each other – a fact that we have already stressed above. 

 In fact, aft er problem 1.33, devoted to computing the area of a circle, Liu 
Hui had derived the values of 3 to 4 as corresponding  lü s for the area of the 
circle and that of the circumscribed square, respectively, from the values 
of 3 to 1 for expressing the relationship between the circumference of the 
circle and its diameter. In the commentary on problem 5.9, these values 
were declared to allow the transformation of the volume of a cylinder into 
that of the circumscribed parallelepiped. Th e same statement is made here, 
and the geometrical assertion is followed by its translation into algorithms 
(transformation 5): the same multiplication by 3 and division by 4 ensure 
the transformation from the truncated pyramid with square base into the 
truncated pyramid with circular base. As Liu Hui puts it: 

 Hence, if one multiplies by the  lü  of the circle, 3, and divides by the  lü  of the square, 
4, one obtains the volume of the truncated pyramid with circular base.   

 As a consequence, at this point of his commentary, Liu Hui has deter-
mined a correct algorithm yielding the volume of the desired truncated 
pyramid, which ends the fi rst line of argumentation. Algorithm 4 correctly 
yields the value of the desired magnitude.    

        Multiplications               Division      Division            Multiplication by 3 
      Sum                                    by 9              by 3
      Multiplication by  h 

 C   i   > ( C   i   C   s   +  C   i   2  +  C   s   2 ) h  > [( C   i   C   s   +  C   i   2  +  C   s   2 ) h /9]/3 > [[( C   i   C   s   +  C   i   2  +  C   s   2 ) h /9]/3].3
 C   s  

 Division by 4 
> [[[( C   i   C   s   +  C   i   2  +  C   s   2 ) h /9]/3].3]/4  
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 Transforming algorithms as lists of operations 

 Th e goal, from this point onwards, is the transformation of this algorithm 
4,  qua algorithm , into the one for which the correctness is to be  established, 
that is, the one provided by  Th e Nine Chapters  for the volume of the 
truncated pyramid with circular base. Liu Hui hence resumes reasoning 
along the second line of argumentation. Considering the list of operations 
obtained by the last transformation (5), he remarks: 

 But, earlier, in order to look for the volume of the truncated pyramid with square 
base, we had divided by 3. Now, in order to look for the volume of the truncated 
pyramid with circular base, one must also multiply by 3. Since the two  denomina-
tors  are equal, hence they  compensate  each other.   

 Before clarifying the italicized terms, let us observe the argument made 
here. Th e commentator clearly considers the operations that follow each 
other as a  list  and carries out a transformation of this list as such. Th e algo-
rithm yielding the circumscribed truncated pyramid with square base, he 
remarks, ended by a division by 3, whereas transformation 4 fi rst appended 
to it a multiplication by 3.  27    Liu Hui thus suggests deleting both from the list 
of operations, thereby carrying out transformation 6. It can be represented 
as follows ( Figure 13.7) :  

  27      Let us stress, in the previous quotation, the use of the same term when referring to the two 
algorithms: ‘to look for’ ( qiu ). Th is confi rms the part played by problems in decomposing the 
task to be fulfi lled into sub-tasks conceived of as problems. 

 Transformation 6 modifi es the list of operations without altering the 
meaning or the value of the result. We meet here with the same phenom-
enon as above. Bringing to light the opposed multiplication and division 
was crucial to interpreting the meaning ( yi ) of the result. However, when 
viewing the list of operations as a means for computing, the two operations 
appear unnecessary. Th is is how Liu Hui progressively accounts for the 
shape of the algorithm found in the Classic. 

 Figure 13.7      Algorithm 5: cancelling opposed multiplication and division.    

    Multiplications                  Division          Division          Multiplications by 3
    Sum                                       by 9                  by 3
    Multiplication by h
Ci > (Ci Cs + Ci

2 + Cs
2)h > [(Ci Cs + Ci

2 + Cs
2)h/9]/3 > [(Ci Cs + Ci

2 + Cs
2)h/9]/3.3

Cs
 Division by 4
 > [(Ci Cs + Ci

2 + Cs
2)h/9]/4
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 Although the transformation seems comparable to transformation 3 
discussed earlier, it is worth noticing that Liu Hui refers to the two in dif-
ferent terms. Earlier, the commentator spoke of ‘backtracking’ and in cor-
relation with this he stressed the fact that the values of the circumferences 
had been restored while their meaning had changed. In contrast to this, Liu 
Hui stresses here the fact that the two operations ‘compensate each other’ 
( xiang zhunzhe ). Th e emphasis is placed on the cancellation of their eff ects 
as operations. Th is gives a hint of the subtlety of the formulation of the 
reasoning. 

 Th e validity of this transformation is not to be taken for granted. It is 
again guaranteed by the fact that, in ancient China, the result of a division 
was given exactly, that is, as an integer increased by a fraction. We shall 
show below that the commentator links these two facts. 

 Th e quoted sentence makes use of another expression, which requires 
further analysis: the argument given for establishing the conclusion that 
the two operations ‘compensate each other’ is formulated in the form that 
‘the two  denominators  are equal’. Why is the word ‘denominator’ ( mu ) used 
here? Th ere appears no reason explaining in which sense the ‘3’ with which 
one multiplies can be considered as a ‘denominator’. Let us stress that, in the 
other passage in which the same reasoning is developed, aft er problem 5.25, 
the same term recurs, which indicates that this is not due to an error in the 
transmission of the text. Th ese occurrences seem to imply that this term  mu  
has another technical meaning that I was unable to elucidate. Th is is why, 
before it is found out, I translate the term in the usual way. However, con-
sequently, a very striking fact must be noted: in the commentaries, there is 
only one other occurrence of this term with exactly this same use, and this 
usage is found in the commentary establishing the correctness of the algo-
rithm for multiplying fractions.  28    Th is hint again links the line of argumen-
tation we are examining with the algorithms for carrying out arithmetical 
computations with fractions. Th e point is worth noting, in relation to the 
argument to be developed in  Part  ii   of this chapter. 

 Another detail casts some light on the way in which Liu Hui operates. If 
we observe the list of operations that Liu Hui is transforming, we can see 
that it fi rst enumerates a division by 9, where the ‘3’s’ involved stand for  π ; 
second, a division by 3 corresponding to the computation of the volume of 
the circumscribed pyramid; and, thirdly, a multiplication by 3, where the ‘3’ 
again stands for  π . One might have expected that the proof would cancel 
a multiplication and a division by 3 that would both be linked to  π .  29    Th e 

  28      See  mu  ‘denominator’ in my glossary, CG2004. 
  29      I am indebted to Anne Michel-Pajus for this remark. 
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expectation is all the more natural when we know that in a  second part  of 
his commentary, Liu Hui relies on his proof to yield a new algorithm that 
makes use of his own values for  π . However, such is not the case. Th e com-
mentator cancels operations that follow each other. Th is seems to indicate 
that he takes care not to modify arbitrarily the order in which the reasoning 
led to establishing the operations constituting an algorithm. Such a detail 
reinforces the hypothesis that he is working on lists of operations as such, 
being careful to make explicit the transformations applied to them and the 
motivations for using them.  30    Th ere is, however, another way of accounting 
for this detail, i.e. that Liu Hui thinks that he recovers the reasoning fol-
lowed by the author(s) of the Classic. 

 By transformation 6, a list of operations was remodelled into another list, 
equivalent in that it yielded the same result. Transformation 7 continues 
along the second line of argumentation, even though it consists of applying 
a diff erent operation to algorithm 5. Liu Hui goes on as follows: 

 We thus only multiply the  lü  of the square, 4, by the denominator 9, hence we obtain 
36, and we divide at a stroke.   

 Liu Hui designates the two factors by which one should still divide to end 
algorithm 5, i.e. 4 and 9, by the part they were shown to play in the reason-
ing ( lü  of the square, denominator). Instead of carrying out the divisions 
successively, transformation 7 suggests ‘dividing in combination’ ( lianchu ), 
which I translated as ‘dividing at a stroke’. Th is implies transforming the end 
of algorithm 5 into the multiplication of the two divisors by each other and 
dividing by the product. 

 With the expression of ‘dividing at a stroke’, we meet with a technical 
term that recurs regularly in the commentaries but is not to be found in  Th e 
Nine Chapters . We may account for this by noticing that it is a designation 
of the division typical of the mode of proving the correctness of algorithms 
on which the chapter concentrates. 

 Two successive divisions were accounted for, each being shown to be 
necessary for its own reasons. As above, Liu Hui had to dissociate them 
to bring to light the meaning of the result of the algorithm he shaped. 
However, viewing the list of operations as a means for computing leads 
to modifying the way of carrying them out, namely, by transforming the 
end of algorithm 5. Liu Hui thereby accounts for the form of the algorithm 
given by  Th e Nine Chapters , by highlighting that the two operations were 

  30      Th is conclusion should be nuanced by the remark made above concerning the change in the 
order of the multiplication by  h  and the division by 9. 
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grouped into a unique division. Th e technical term chosen for this division 
refers to the motivation of the eff ected transformation. As a consequence, 
algorithm 5  

  Ci, Cs >  (Ci Cs + Ci
2 + Cs

2)h > (Ci Cs + Ci
2 + Cs

2)h/9 > [(Ci Cs+ Ci
2 + Cs

2)h/9]/4    

 is transformed into the algorithm  

  Ci, Cs > (Ci Cs + Ci
2 + Cs

2)h > (Ci Cs + Ci
2 + Cs

2)h/36    

 which is equivalent to it and identical to the desired algorithm. Th is was 
what was to be obtained: the correctness of the procedure provided by  Th e 
Nine Chapters  is established. Th e way in which the proof was conducted 
highlights in the best way possible how the activities of shaping an algo-
rithm and proving the correctness are intertwined. 

 Such is the type of proof that I suggest designating as ‘algebraic proof in 
an algorithmic context’. It is characterized by the articulation of the three 
lines of argumentation I distinguished. However, clearly, the second line 
of argumentation is the one that is specifi c to it. Several points need to be 
made clear to explain the expression by which I suggest referring to this 
kind of proof. 

 First, to justify the fact that I speak here of an ‘algorithmic context’, it will 
be useful to compare what we analysed with a translation in modern terms. 
Th e reasoning we followed can be rewritten as the following sequence 
of steps:  
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 Th e fi rst line encapsulates the fi rst line of reasoning, which establishes 
an algorithm fulfi lling the task required by the terms of the problem. In 
the following lines, corresponding to the second line of argumentation, 
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equalities are reshaped, whereas, in the commentaries, what is rewritten are 
instead algorithms.  31    In correlation with this, in the latter case, intermedi-
ary sequences of operations are provided with an interpretation 

 Second, why do I speak of an ‘algebraic proof ’? I take it as a typical 
element of this kind of proof that it involves transforming lists of operations 
 as such  – the second line of argumentation – and that the validity of these 
transformations should be addressed. If we observe the transformations 
leading from one line to the next one in the modern version of the reason-
ing, sequences of operations are reshaped, with complete generality, and 
this leads to transforming a correct equality in a correct way into an equal-
ity that is equivalent and was desired. I claim that, although in a diff erent 
form, the same mathematical work is carried out on the basis of algorithms 
in the commentary we analysed. Th is is the element that I recognize to be 
present in the ancient Chinese text and for which I retain the expression 
under discussion. Th is interpretation implies a use of the term ‘algebraic’ in 
relation to operating on the operations themselves. 

 Let us, at this point, recapitulate the transformations that we identifi ed 
by means of our analysis and that were carried out on a list of operations. 
We had: 

•   i . Eliminating inverse operations that follow each other  

  31      In an algebraic proof of a more general type, transformations can be applied to both sides 
of the sign of equality in parallel, that is, to two lists of operations simultaneously. Th e 
formulas used recall those stated by Li Ye in his  Sea-Mirror of the Circle Measurements  
(1248), where formulas express the fact that diff erent operations on diff erent entities lead to 
the same result. 

  Division by 3         Make communicate          Multiplications, sums, etc.

 C   i   >  D   i   =  
a
b

i

i
3

   >            3ai + bi = Ci    (…………) >

 C   s                        D   s   =  
a
b

s

s
3

                                  3as + bs = Cs  

has been transformed into

   Multiplications, sums, etc.
 C   i    (…………) >
 C   s    
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•   ii . Inverting the order of divisions and multiplications  

 We saw that this very inversion had been carried out tacitly in the com-
mentary we examined but it is made explicit in other commentaries and 
referred to by the technical term  fan .  32    Moreover, I underlined the fact that 
the transformation between algorithm 1 and algorithm 2′ could be con-
ceived of as belonging to this type. 

 •  iii . Combining divisions  

 Now, several questions present themselves with respect to these trans-
formations, which appear to be the fundamental transformations needed 
to argue along the line of argumentation examined. First, how were they 
conceived of? Moreover, what guaranteed their validity? Furthermore, did 
the commentators consider this question and in which ways? Addressing 
these issues is essential to determine in which sense, in these commentaries, 
we may have an ‘algebraic proof in an algorithmic context’. As announced in 
the introduction, I shall argue that a link was established in ancient China 
between the validity of these fundamental transformations and the kind 
of numbers with which one operated. Moreover, in what follows, I intend 
to show that the commentaries on the algorithms provided by  Th e Nine 
Chapters  for carrying out arithmetical operations on numbers containing 
fractions can be interpreted as addressing the question of the validity of the 
fundamental transformations, in the ways in which these  transformations 

  32      See the commentaries on the ‘procedure of suppose’ (rule of three), at the beginning of 
 Chapter 2 ; the procedure for unequal sharing, at the beginning of  Chapter 3 ; the procedures 
following problems 5.21 and 5.22. 

            Dividing by 9                              Multiplying by  h 
 C   i  ,  C   s    (…) > ( C   i   C   s   +  C   i   2  +  C   s   2 )/9 > [( C   i   C   s   +   C   i   2  +  C   s   2 ) /9]· h 

 has been transformed into

        Multiplying by  h                             Dividing by 9
 C   i  ,  C   s    (…) > ( C   i   C   s   +  C   i   2  +  C   s   2 ) h  > ( C   i   C   s   +  C   i   2  +  C   s   2 ) h /9  

                         Dividing by 9                       Dividing by 4
( C   i   C   s   +  C   i   2  +  C   s   2 ) h  > ( C   i   C   s   +  C   i   2  +  C   s   2 ) h /9 > [( C   i   C   s   +  C   i   2  +  C   s   2 ) h /9]/4

 has been transformed into

                       Dividing by 36
( C   i   C   s   +  C   i   2  +  C   s   2 ) h  > ( C   i   C   s   +  C   i   2  +  C   s   2 ) h /36  



452 karine chemla

were conceived. Th ese suggestions seem to be natural on the basis of 
the previous discussion. Indeed, on several occasions, we observed the 
 connection between transformations applied to a list of operations and 
algorithms  carrying out arithmetical operations on quantities with fractions. 
We now need to focus on the latter procedures to analyse this connection 
 systematically.    

 II     Grounding the validity of the fundamental transformations 
of lists of operations 

 Th e fi rst hint that the commentators link the validity of the fundamental 
transformations to the kinds of numbers used in them is found when Liu 
Hui accounts for why, in his view,  Th e Nine Chapters  introduces quadratic 
irrationals. We shall hence follow him in his argumentation.  

 Eliminating inverse operations that follow each other 

 Aft er problem 4.16,  Th e Nine Chapters  describes a general and abstract 
‘procedure for extracting the square root’.  33    In a fi rst part of the procedure, 
an algorithm is provided for determining the root of an integer digit by 
digit. It is followed, in a  second part , by a procedure dealing with quantities 
containing fractions, which reduces the problem to the case dealt with in 
the  fi rst part . Th e commentary in which we are interested discusses a state-
ment that concludes the  fi rst part  of the procedure and asserts: 

  If, by extraction, the (number) is not exhausted, that means that one 
cannot extract the (its) root, hence, one must name it  (i.e., the number) 
 with ‘side’ .   

 Th ree historians, independent from each other, have established that, 
here,  Th e Nine Chapters  was addressing the case when the number  N , the 
root of which is sought, was not exhausted when one had reached the digit 
for the units in the square root. All concluded that  Th e Nine Chapters  was 
prescribing, for such cases, that the result be given as ‘side of  N ’, which is to 
be interpreted as meaning ‘square root of  N ’.  34    

  33      It relies on a numeration system that is place-valued and decimal. Th e introduction to 
 Chapter 4  in CG2004: 322–35 analyses its main features. Th e critical edition and the 
translation of the piece of commentary discussed can be found in CG2004: 364–6. 

  34      Volkov  1985 ; Li Jimin  1990 . As for me, references can be found in Chemla 1997/8 or CG2004. 
Note that the Classic states, without providing any argument in favour of this assertion, that in 
these cases the extraction cannot be carried out. 



 Reading proofs in Chinese commentaries 453

 Th e reason Liu Hui adduces for explaining why it was necessary to give 
the result in the form of quadratic irrationals, when necessary, is fundamen-
tal for our purpose. Th e commentator fi rst considers a way of providing the 
result as a quantity of the type integer increased by a fraction but discards it 
as impossible to use. Th is leads him to make explicit the constraints that, in 
his view, the result should satisfy. He writes (my emphasis): 

 Every time one extracts the root of a number-product  35    to make the side of a 
square,  the multiplication of this side by itself must in return (huan) restore (fu)  (this 
number-product).   

 Th is sentence is essential: the kind of result to be used is the one that 
guarantees a property for a sequence of opposed operations. A link is 
thereby established between the kinds of numbers to be used as results 
and the possibility of transforming a sequence of two opposed operations. 
More precisely, the result of the square root extraction must ensure that the 
sequence of two opposed operations annihilates their eff ects and restores 
the original data: their sequence can thereby be deleted. 

 Why is this important? To suggest answers to this question, one may 
observe how the results of actual extractions are given in the commentaries. 
It turns out that, when a commentator is seeking to establish a value, the 
results of square root extraction are given as approximations.  36    However, 
the fact that the operation inverse to a square root extraction  restores  ( fu ) 
the original number and the meaning of the magnitude to which the extrac-
tion was applied is used precisely in the context of an ‘algebraic proof in 
an algorithmic context’.  37    Th is confi rms the link we suggested between the 

  35      Th e type of number for which one can extract the square root is a number that, from a 
conceptual point of view, is a ‘product’. Th is corresponds to a specifi c concept in Chinese,  ji , 
which can designate a number-product, an area, or a volume. 

  36      Th is is the case when the commentator discusses new values for expressing the relationship 
between the circumference of the circle and its diameter. See the commentary aft er problem 
1.33, CG2004: 178–85. However, this statement must be nuanced. Th ere is a context in which 
Liu Hui uses quadratic irrationals as such in computations. Th is is in fact the passage that 
allows interpretation of the obscure sentence by which  Th e Nine Chapters  introduces quadratic 
irrationals. In it, the commentator seeks to assess with precision the ratio between the sphere 
and the circumscribed cube that Zhang Heng (78–142) derived from his approximation for  π , 
which states that the square on the circumference is to the square on the diameter as 10 is to 1. 
As I suggested, the use of the irrationals here is driven by the aim of highlighting that Zhang 
Heng’s algorithms were worse than that of  Th e Nine Chapters . In the end, Liu Hui introduces 
an approximation of a square root in the form of an integer to conclude the evaluation. See 
Chemla and Keller  2002 . 

  37      Th e text in question, that is, the commentary aft er problem 5.28, is discussed in Chemla 
1997/8. An outline is provided below, in note 39. 
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introduction of certain kinds of numbers and the line of proof that made 
use of transformations carried out on lists of operations. 

 In fact, the commentary further bears witness to the fact that the link is 
not merely established for such quantities. Once Liu Hui has introduced 
the constraint that the result of a square root extraction must satisfy for the 
cases in which the number  N  is not exhausted, he examines more closely 
two results for root extraction in the form of an integer increased by a frac-
tion – one by defect and one by excess. It is revealing that his analysis of the 
values concerns how they behave when one applies the inverse operation 
to them but this is not what is most important for us here. Th e statement 
by which he concludes his investigation is essential for the comparison it 
establishes. Liu Hui writes: 

  One cannot determine its value (i.e. the value of the root) . Th erefore, it is only when 
‘one names it (i.e. the number  N ) with “side” ’ that one does not make any mistake 
(or, that there is no error). Th is is  analogous to  the fact, when one divides 10 by 
3, to take its rest as being 1/3,  one is hence again able to restore (fu) its value . (My 
 emphasis)   

 Th e mention of this other ‘restoring’ in the context of the commentary 
on square root extraction reveals that for quantities of the type of an integer 
increased by a fraction, it was a property that was also deemed essential. 
Indeed, the comparison made here between square root extraction and 
division further confi rms the link I seek to document. In his commentary, 
Liu Hui manifests his understanding that, as kinds of numbers, quadratic 
irrationals and integers with fractions diff er.  38    However, he stresses here 
the analogy between them  precisely  from the point of view that introduc-
ing them as results in both cases allows two opposed operations applied in 
succession to cancel their eff ects. In  Part  i   of this chapter, we saw how this 
cancelling led to deleting such a sequence of operations from the algorithm 
that was being shaped. It is hence tempting to conclude that, as with quad-
ratic irrationals, Liu Hui linked the introduction of fractions to possibilities 
of transforming lists of operations as such. 

 Th is hypothesis is supported by the fact that the ‘restoring’ made possible 
by the introduction of fractions is also evoked and used within the context 
of ‘algebraic proofs’ of the type we study. Th is is easily established by notic-
ing that the concept of  fu  ‘restoring’ introduced here occurs only in such 
contexts. Th is fact confi rms, if it were necessary, the correlation between 
this property shared by various kinds of numbers and the conduct of such 

  38      See Chemla and Keller  2002 . 
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types of proof.  39    Th e introduction of such quantities is hence related to a 
specifi c perspective on lists of operations as such. 

 In conclusion, Liu Hui interprets the necessity of introducing frac-
tions and quadratic irrationals as deriving from the necessity of restoring 
the original value when applying the inverse operation to the result of an 
operation – this is the only motivation he brings forward. In other words, 
for the results of divisions or square root extractions – which are conceived 

  39      Compare the discussion of the commentary placed aft er problem 5.28, mentioned above. In it, 
the commentator successively applies the operation inverse to the last of the operations to the 
results of a sequence of algorithms. Th is operation, he states, restores the meaning and value 
of the last intermediary step. If we represent the sequence of operations as above, we have the 
following pattern of reasoning. Th e algorithm known to be correct is the following one:  

  C > C2 > C2h > V
                                             multiplying        multiplying          dividing by 12
                                                by itself               by h    

    Th e question is to determine the meaning of the following sequence of operations applied to  V :  

  V > > > ?
                                           multiplying         dividing               extracting the
                                               by 12                   by h                    square root     

    Th e meaning of the result of the fi rst two steps can be determined as follows:  

  C > C2 > C2h > V > C2h
                             multiplying        multiplying           dividing             multiplying
                                by itself               by h                        by 12                  by 12    

    then  

  C > C2 > C2h > C2

                                            multiplying        multiplying          dividing
                                               by itself               by h                       by h    

    Th is is correct, because multiplying by 12 restores that to which the division by 12 had been 
applied. Th ereaft er, dividing by  h  restores that to which multiplying by  h  had been applied. 
Now, because of the property of square root discussed, we have  

  C > C2 > C 
                                                            multiplying         extracting the
                                                               by itself               square root    

    and the meaning of the result of the following algorithm is established  

  V > > C2 > 12V
h

 = C

                   multiplying by 12      dividing by h                   extracting the square root    

    Th is is how the correctness of the inverse algorithm is established. In the case of problem 5.28, 
the inverse operations successively applied are a multiplication, a division and a squaring. 
At each step, the commentator stresses that ‘restoring’ was achieved. Note that the reasoning 
implicitly put into play to express the meaning of the fi rst part of algorithm 2′ as ‘the parts of 
the product of 3 truncated pyramids with square base’ in the passage discussed above can be 
seen as similar to the one just described. Th ese examples show the relationship of the property 
of numbers which permits restoration and the conduct of the second line of argumentation 
with the operation of establishing the meaning ( yi ) of the result of a list of operations. 
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as a kind of division – the fact that they are exact guarantees that inverse 
operations which follow each other can be deleted from an algorithm.  40    
Yielding exact results perhaps matters less to computations than to proofs: 
it grounds the validity of one of our three fundamental transformations. 
Such is the link that is established between the numbers with which one 
works and the transformations that can be applied to sequences of opera-
tions. Because the evidence relating to quadratic irrationals is far less abun-
dant than the evidence involving fractions, for the remaining part of my 
argumentation, I shall hence focus mainly on the latter. 

 So far, we can establish that the commentator Liu Hui ascribes the moti-
vation in question to  Th e Nine Chapters , thereby demonstrating that he 
himself makes the connection between the use of some quantities and the 
validity of a transformation. Can we follow Liu Hui and attribute the same 
idea to the author(s) of the Classic? Th e argumentation is delicate and dif-
fi cult to conclude with certainty. It is true that quantities such as fractions 
and quadratic irrationals date to the time when  Th e Nine Chapters  was com-
piled. In fact, only fractions occur in the  Book of Mathematical Procedures . 
As for using such quantities in relation to proofs, so far, our  terminus ante 
quem  is 263, when Liu Hui completed his commentary. Th e occurrences of 
the term ‘restoring’ or ‘returning to’ ( fu ) the original value provide interest-
ing clues. Th e concept is not to be found in  Th e Nine Chapters . However, 
it is attested to in the  Book of Mathematical Procedures , in contexts where 
similar concerns can be perceived. Interestingly enough, there,  fu  occurs 
 only  aft er the statement of an algorithm for carrying out division or root 
extraction. Aft er these algorithms, a procedure is then prescribed that 
aims at ‘returning to’ the original value. By contrast,  fu  never occurs in a 
procedure solving a problem. It is always appended to another algorithm 
and carries out the inverse operation. Th is is complementary to the idea 
one may derive from the commentaries on  Th e Nine Chapters  that there is a 
link between the way in which the results of division and root extraction are 
given and an interest in the possibility of restoring the original value.  41    Even 

  40      Note that, so far, the link has been established only for multiplications and divisions by 
integers. Th e more general case still awaits consideration. 

  41      See  fu  in my glossary (CG2004: 924–5). In the  Book of Mathematical Procedures , one 
occurrence of  fu  is to be found in the context of the operation of ‘detaching the length’, which 
asks to determine the length of a rectangle when its area and its width are given (slips 160–3, 
Peng Hao  2001 : 114). Th ere, the fi rst procedure deals with the case when both the area of 
the rectangular fi eld and its width are integers. Th e inverse procedure distinguishes the case 
when the result is an integer from the one in which it has a fraction. A second procedure 
considers the case when both data are pure fractions. Th e algorithm that returns to the 
original value is that of multiplying fractions. When the width consists of an integer increased 
by a set of fractions, the operation called ‘small width’ is carried out by a general procedure, 
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more interesting is that, although in the  Book of Mathematical Procedures  
the aim of restoring is achieved for division, the results of which are always 
exact, this requirement is not fulfi lled for root extraction. Th e procedure 
provided for the latter operation gives only approximate results. In other 
words, we reach an interesting conclusion: the concern for ‘restoring’, which 
is explicit for both division and root extraction in the  Book of Mathematical 
Procedures , that is, already as early as the second century  bce , apparently 
existed  before  the solution satisfying it did for root extraction. Th is seems 
to indicate that the need for ‘restoring’ motivated the introduction of a new 
algorithm for root extraction and the introduction of quantities that would 
ensure that the result be always exact, as we fi nd them in  Th e Nine Chapters , 
and not the converse. Th ese remarks thus lend support to Liu Hui’s thesis 
that, in  Th e Nine Chapters , the introduction of quadratic irrationals and 
fractions aimed at ensuring that opposed operations cancel each other. 

 We see how the evidence from the  Book of Mathematical Procedures  helps 
to avoid misinterpreting the fact that neither the concept of ‘returning to’ 
( fu ) the original value nor the related one of ‘backtracking’ ( huan ) occur 
in  Th e Nine Chapters . Th is absence cannot be explained by the fact that 
these concerns appear only at a later date. Nor, in fact, should the absence 
be explained by the hypothesis that  Th e Nine Chapters  was merely a set of 
recipes without any interest in accounting for the correctness of the algo-
rithms. I have already alluded to the fact that the commentator regularly 
manifests his expectation that the procedures given by  Th e Nine Chapters  
be transparent on the reasons underlying them.  42    In addition to this, with 
respect to the point under discussion, if the term  fu  ‘restoring’ does not 
occur in  Th e Nine Chapters , the Classic makes use of a technical expres-
sion that clearly belongs to a set of cognate terms and betrays the same 
concern:  baochu  ‘dividing in return’.  43    For a division to be prescribed in this 
way indicates the  reason  why it is carried out: the expression points out the 

again followed by an algorithm explicitly aiming at ‘returning to’ the original value. In this 
context, there are several occurrences of  fu  (slips 165–6, Peng Hao  2001 : 116). However, 
the text of the procedure for doing so appears to be corrupted. Th e last occurrence of  fu  is 
the most interesting for us. It is to be found in the  Book of Mathematical Procedures , aft er a 
procedure giving approximations for extracting square roots (slips 185–6, Peng Hao  2001 : 
124–5). Th e case considered in the paradigm to which the procedure is attached is that of 
an integer that is not a perfect square. Th e result is given as an approximation by an integer 
increased by a fraction. However, it is asked to return to the original value. Th e end of the slip 
reads: ‘one restores it like in the procedure for detaching the width’. In other words, not only 
is the concern of  fu  common to the two contexts of division and root extraction, but also the 
procedures for carrying it out. 

  42      See  notes 3  and  24 . 
  43      See, for instance, the second part of the algorithm for square root extraction. 
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fact that a value was used earlier in the fl ow of computations, that it was 
interpreted as having been expanded by an unnecessary factor, and that the 
‘division in return’ compensates for this by cancelling the factor. In dealing 
with the proof of the correctness, the commentary usually brings to light a 
pattern in the way in which the algorithm is accounted for, thereby echoing 
the formulation of the procedure in the Classic. Such divisions highlight an 
interesting point, suggesting a hypothesis to account for why  fu  does not 
occur in  Th e Nine Chapters . 

 So far, we have shown that Liu Hui establishes a link between the intro-
duction of kinds of numbers expressing the results of divisions and root 
extractions, on the one hand, and the fact that the sequence of a division 
and the multiplication inverse to it restored the original value, on the other 
hand. Th is link coordinated perfectly with situations we met in the example 
analysed in  Part  i   of this chapter, where this property was twice used to 
explain why pairs of operations were deleted from the fi nal algorithm. 
However, situations in which one ‘divides in return’ reveal other ways in 
which the annihilation of the eff ects of a pair of two opposed operations 
by each other can be put into play in an algorithm. In such cases, the two 
operations do not both disappear from the algorithm. Th is is precisely why, 
when prescribing one of them,  Th e Nine Chapters  can refer to the reason 
for using it. By contrast, since the operation of ‘restoring’ is disclosed when 
one accounts for an algorithm but not when one describes it, the fact may 
explain why the term  fu  does not occur in the Classic.   

 Establishing the validity of fundamental operations and the 
arithmetical operations on parts 

 In fact, one of the divisions examined in  Part  i   of the chapter is of the kind 
of a ‘division in return’. When, in algorithm 3, a division by 9 is prescribed, 
it echoes the fact that earlier in the computations, instead of multiplying 
diameters, the algorithm multiplied their triple.  44    Liu Hui does not use spe-
cifi c terminology that would indicate its nature as a ‘division in return’. Like 
 Th e Nine Chapters , he more generally indicates the point only occasionally. 
However, in this case, the division by 9 is part of the ‘procedure for the fi eld 

  44      Perhaps the distinction between the two types of situation is grasped by the distinction 
which Liu Hui introduces between ‘backtracking’ ( huan ) and ‘compensating each other’ 
( xiang zhunzhe ). If this is the case, a relation would be introduced between various types of 
cancellation of opposed multiplication and division. In any event, although the distinction 
is important, the fundamental reason underlying the fact that the eff ects of the operations 
eliminate each other is the same: it relies on the premiss that the exact results of division 
are given. 
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with the greatest generality’. And the nature of the division as being ‘in 
return’ is highlighted in the commentaries, precisely when they establish 
the correctness of this other algorithm. 

 Th is brings us back to the thesis that we aim at establishing here: that is, 
that the reasoning which accounts for the validity of the fundamental trans-
formations identifi ed in  Part  i   may have to be read from the commentaries 
on the procedures for carrying out arithmetical operations on numbers 
with fractions. We saw that the simple fact of introducing fractions was 
essential to accounting for the validity of the fi rst fundamental transforma-
tion. Computing with fractions proves essential for the validity of the other 
two transformations. 

 When introducing transformation  ii , I already stressed the link between 
transforming sequences of operations (in that case, inverting the order of 
division and multiplication) and describing algorithms for computing with 
quantities having fractions (inserting the ‘procedure for the fi eld with full 
generality’). In the remaining part of this chapter, I shall argue for my main 
thesis by showing that the validity of transformations  ii  and  iii  can be inter-
preted as being treated in the commentaries dealing with the correctness of 
algorithms given for multiplying and dividing between quantities having 
fractions, respectively. To do so, we shall discuss them in the order in which 
they are presented in  Th e Nine Chapters , since, interestingly enough, it 
appears to be also the relevant order of the underpinning reasons. We shall 
hence deal fi rst with division in relation to transformation  iii , and then turn 
to multiplication in relation to transformation  ii . Note that all the proce-
dures that allow the execution of arithmetical operations with fractions are 
systematically provided in  Chapter 1  of  Th e Nine Chapters . 

 One point will appear to be central in this discussion: the relationship 
between the pair numerator and denominator and the pair dividend and 
divisor.  45    Let us then examine further this relationship as a preliminary 
to the following subsections of this chapter. In  Part  i  , we recalled that, 
in ancient China, fractions, conceived of as a pair of a numerator and a 
denominator, were introduced as the result of division. As we showed in 
 Figure 13.3 , dividend and divisor were arranged in an orderly fashion on the 
surface for computing and, at the end of the division, what remained in the 
position of the dividend and the divisor were read, respectively, as numera-
tor and denominator. Th e continuity between the two pairs of objects 
is hence manifest from the point of view of the surface for computing. 
One can choose to read the two lower lines on the surface either as the 
  45      In his discussion on fractions, Li Jimin  1990 : 62–91 stresses this relationship and discusses the 

algorithms for dividing and multiplying that we analyse below. 
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dividend and divisor of a division to be carried out, or as the numerator 
and denominator of a completed division. Both interpretations will be 
used in the commentaries examined below. Th e fact that the operation of 
division and the expression of a fraction are set up in the same way evokes 
the identity of their representations in modern notations. However, two 
diff erences should be stressed. First, in ancient China, the fundamental 
concept of quantity was not that of a general fraction – a rational number, 
if you will – but that of an integer increased by a fraction smaller than 1, 
which is precisely the result of a division on the surface. Fractions were just 
a component of them. Second, in our case, we do not have, on the surface, 
notations for ‘objects’, but rather ‘operational notations’, i.e. notations on 
which operations are carried out. Th e continuity just emphasized derives 
from the fact that, following the fl ow of a division, we go from one to the 
other and back again. Indeed, the application of the inverse multiplication 
to the fi nal confi guration of a division restores the division one started with, 
exactly as it was originally set up (see  Figure 13.4 ). But, in the case of adding 
up fractions, the corresponding numerator and denominator are placed on 
the same line horizontally, in such a way that, in the end, the result of the 
addition is yielded in three lines consisting of an integer, a numerator and 
a denominator.  46    

 Seen from another angle, a numerator and a denominator compose a 
quantity and are essentially dependent on each other. In ancient China, 
they were both conceived of as constituted of the same ‘parts’  fen  of a unit, 
which could either be abstract or not.  47    Th e size of the part was determined 
by the denominator, which amounted to the number of parts into which 
the unit was cut. As for the numerator, it was understood as consisting of a 
multiplicity of such parts. In contrast to this, a dividend and a divisor are, to 
start with, separate entities, which happen to be brought into relation when 
they become functions in the same operation of division. Th is operation of 
bringing entities into relation with each other seems to have been deemed 
essential in ancient China, as we shall see below. As regards the entities con-
sidered, at that point, they become linked in a way that makes them share 
properties with the pair of a numerator and a denominator. Th is parallel is 
regularly stressed by the commentaries. 

 Th e fi rst example of this kind is found in the commentary glossing 
the name of the operation of ‘simplifying parts’ – the fi rst operation on 

  46      Compare Li Jimin  1982b : 204–5, especially; Chemla  1996 , where I reconstruct operational 
notations in a diff erent way. 

  47      When the fraction was appended to an integer, its numerator and denominator were made of 
parts of the smallest unit used in the expression of the integer. 
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 fractions discussed in  Th e Nine Chapters . Th ere, the commentary discusses 
the reasons why, once fractions are introduced, it is a valid operation to 
divide – or to multiply – both the numerator and the denominator by the 
same number to transform the expression of the fraction. Th is property 
is required in order for the ‘procedure for simplifying parts’ to be correct. 
Th e validity of the operation is approached from the perspective that the 
numerator and the denominator are constituted of parts of the same size. 
Multiplying them by the same number  n  is interpreted as a dissection of 
each part into  n  fi ner and equal parts – a process called ‘complexifi cation’, 
and the operation opposite to the ‘simplifi cation’ that the commentator 
introduces. Conversely, a simultaneous division of the numerator and the 
denominator by  n  leads to uniting the parts composing them,  n  at a time, 
and getting coarser parts. Th is does not change the quantity as such, but 
just its inner structuring and its expression. Th us the commentary can con-
clude: ‘Although, hence, their expressions diff er, when it comes to making 
a quantity, this amounts to the same.’  48    Note that, from the point of view of 
the operations involved, the reasoning establishes the validity of another 
mode of inserting a multiplication and a division opposed to each other in 
the course of an algorithm. 

 What is important is that, immediately aft erwards, this question of mul-
tiplying and dividing conjointly numerator and denominator is extended to 
the case of dividend and divisor. Th e commentator writes: ‘Dividend and 
divisor are deduced one from the other.’ Once the two entities are placed in 
relation to each other, as functions of a division, the same reasoning then 
applies. One can break up or assemble units in the same way. However, 
the diff erence between the case of the fraction and the general case is that 
dividend and divisor ‘oft en have (parts) that are of diff erent size’. Th e divi-
dend, for instance, may have an integer and a fraction. Its expression would 
then include at least two types of units. Both terms of the division may also 
have diff erent fractions. ‘Th is is why’, the commentator concludes, ‘those 
who make a procedure (a procedure generalizing simplifi cation?) fi rst deal 
with all the parts.’ Th is will require a technique, introduced immediately 
aft erwards, related to the adding up of fractions. On this basis, the question 
will be taken up again in the context of dividing between quantities having 
fractions, for which all the necessary ingredients will be available. Th ereby, 
the parallel between the pair of numerator and denominator and the pair of 
dividend and divisor will be completed. 

  48      To be precise, part of the above discussion is held in the commentary on the algorithm 
following the ‘procedure for simplifying parts’, i.e. the ‘procedure for gathering parts’, which 
allows adding up fractions. Compare, respectively, CG2004: 156–7, 158–61. 
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 We can now turn to examining in greater detail the relationship between 
proving the correctness of procedures dealing with fractions and establish-
ing the validity of transformations  ii  and  iii . To do so, we shall have to 
analyse new samples of proof contained in our Chinese sources. Th is will 
give us the opportunity to describe further the specifi cities of the practice 
of proof to which our documents bear witness.   

 Proving the correctness of the general algorithm for division 

 Let us examine the way in which, in his commentary, Liu Hui establishes 
that the ‘procedure for directly sharing’ is correct, before considering why 
this argument can be interpreted as related to the validity of transforma-
tion  iii .  49     Th e Nine Chapters  introduces the algorithm for dividing between 
quantities with fractions aft er the two following problems: 

 (1.17)  Suppose one has 7 persons sharing 8 units of cash and 1/3 of a unit 
of cash. One asks how much a person gets . 
  Answer: a person gets 1 unit of cash 4/21 of unit of cash . 
 (1.18)  Suppose again one has 3 persons and 1/3 of a person sharing 6 units 
of cash, 1/3 and 3/4 of a unit of cash. One asks how much a person gets . 
  Answer: a person gets 2 units of cash 1/8 of unit of cash .   

 In the fi rst problem, the quantity that is to become the dividend contains 
one fraction, whereas the second problem leads to both the dividend and 
the divisor having fractions. Th e fact that the dividend even contains two 
fractions is remarkable. Interestingly enough, such quantities, in which 
an integer is followed by a sequence of fractions, occur only in problems 
related to similar divisions.  50    We shall see that this is linked to the fact that 
Liu Hui uses the operations introduced in his commentary on the addition 
of fractions for his proof. 

 Th ese two problems are in fact the fi rst ones in  Chapter 1  for which the 
data are neither pure integers nor pure fractions. Moreover, they are the 
fi rst problems in which the fractions derive from sharing a unit that is not 
abstract. Furthermore, problem 1.18 mixes together fractions of diff erent 

  49      Th e critical edition and the translation of this piece of commentary can be found in CG2004: 
166–9. 

  50      In addition to the situation examined here, this also designates problems linked to the 
‘procedure for the small width’, which opens  Chapter 4 . Th e procedure provides another 
way of carrying out the division. For comparison, I refer the reader to the introduction to 
 Chapter 4  in CG2004. Th e interpretation of the ‘procedure for directly sharing’ requires an 
argumentation that I developed in Chemla  1992  (I do not repeat the bibliography given in this 
earlier publication). 
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kinds of units – cash and persons. In correlation with these changes, the 
algorithm described is of a type that breaks with previous procedures.  51    Let 
us translate how it reads before providing an interpretation: 

  Directly sharing . 
  Procedure: One takes the quantity of persons as divisor, the quantity 
of units of cash as dividend and one divides the dividend by the divisor. 
If there is one type of part, one    makes them communicate  . (here comes a 
commentary by Liu Hui that we shall analyse below)  If there are several types 
of parts, one    equalizes    them and hence    makes them communicate  . (second 
part of Liu Hui’s commentary)   

 Th e procedure hence presents itself as one that covers all possible 
(rational) cases for the data. Th e organization of the set of problems distin-
guishes between cases when the data are both integers (case 1), cases when 
they both contain only one type of denominator (case 2), and cases where 
there appear several distinct denominators (case 3; problem 1.18 illustrates 
which situations may occur in this case). 

 Th e fundamental case is case 1. It is solved by the fi rst operation pre-
scribed by the procedure: a simple division. 

 For problems falling in the category of case 2 (that of problem 1.17), the 
data can be of the type either ( a  +  b / c ) and  d , or ( a  +  b / c ) and ( d  +  e / c ). In 
the second case, the procedure suggests applying the operation of ‘making 
communicate’. Let us stress that the operation of ‘making communicate’ is 
used here for the fi rst time by  Th e Nine Chapters . In  Part  i   of this chapter, 
we encountered the operation in the context of Liu Hui’s commentary. 
Th ere, we saw that this operation was applied to quantities such as ( a  +  b / c ) 
and ensured that  a  and  b  shared the same units, thus transforming ( a  +  b / c ) 
into  ac  +  b . For the case considered here, it transforms the units of the two 
integers  a  and  d  accordingly, so that the number of units obtained ( ac  and 
 dc , respectively) share the same size as the corresponding numerators. Th e 
quantities ( a  +  b / c ) and either  d  or ( d  +  e / c ) are thereby transformed into 
 ac  +  b  and  cd  (or  cd  +  e ). Th e problem is thus reduced to the fi rst case, and 
the procedure is concluded by a division. In modern symbolism, the proce-
dure can be represented as follows:

    ( ) / ( ) /

( ) ( ( ) / ( )

a
b
c d ac b dc

a
b
c d

e
c ac b dc e/ )

    

  51      Th e previous procedures all prescribed operations involving numerators and denominators to 
yield the result. Clearly the description of the procedure to come is of a diff erent style. 
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 One should not forget, however, that the modern symbolism erases the 
fact that the two fractions are fractions of units that are of a diff erent nature. 

 Th e fi nal case (case 3) is, in turn, reduced to the previous one by the 
operation of ‘equalizing’,  tong’ .  52    Th is operation relates to the fractional 
parts of the quantities, making them share the same denominator (‘equal-
izing them’ in terms of parts). Th e resulting transformation for cases such 
as that of problem 1.18 can be represented as follows:

    ( + ) / ( + ) ( + ) / ( +a
b
c

d
e
f

g
h

a
bfh
cfh

d
ech + gfc

cfh
+ =     

 Once all fractions share the same denominator, we are brought back 
to case 2, and the problem is solved as above, by ‘making’ integers and 
fractions ‘communicate’. Such is the complete procedure, the correctness 
of which Liu Hui sets out to establish in his commentary. Note that the 
procedure for solving case 3 contains that for solving case 2 which, in turn, 
embeds that for solving the fundamental case. Liu Hui develops the proof 
with respect to the whole procedure, that is, the one solving case 3, address-
ing the operations in the order in which they are carried out in this case. 

 In the  fi rst section , Liu Hui thus addresses the operation that occurs last 
in the text, i.e. that of ‘equalizing’. 

 He does so by reference to the algorithm for adding up fractions, which 
he has discussed previously (aft er problem 1.9). Th e commentator quotes 
the fi rst steps of this other procedure for computing  bfh , ech, gfc , on the 
one hand, and  cfh   on the other hand, thereby providing a translation of 
‘equalizing’ into operational terms. It thus appears that, to divide in case 3, 
the operations to be applied fi rst are the same as those by which one starts 
adding up fractions. In parallel, Liu Hui recalls his interpretation of the 
‘meaning’ of these steps: he had shown that the latter computed a denomi-
nator equal for all fractions whereas the former homogenized the numera-
tors so that the value of the original fractions might be preserved. Liu Hui 
thereby refers the discussion for establishing the ‘meaning’ of the operation 
that  Th e Nine Chapters  calls here ‘equalizing’ to this other commentary 
of his, where he showed how the corresponding steps ensured that one 
‘makes’ parts corresponding to diff erent denominators ‘communicate’. Th e 
algorithms for adding up fractions, on the one hand, and dividing in case 3, 

  52      To make things simpler, I mark the transcription of the term in pinyin with an apostrophe, to 
distinguish it from the term that has the same pronunciation  tong  ‘make communicate’. For all 
these terms, I refer the reader to my glossary in CG2004. I argue there that the operation to 
which ‘equalizing’ corresponds diff ers slightly, whether one considers  Th e Nine Chapters  or its 
commentaries. 
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on the other hand, share a common sub-procedure and, in the context 
of division, which comes second in  Th e Nine Chapters , the commenta-
tor states the conclusions of his previous analysis without developing the 
reasoning again. 

 Th is stands in contrast to the luxury of details with which Liu Hui dis-
cusses the second operation to be considered within the context of division 
in the following sentences.  Th e Nine Chapters  prescribes this operation 
with the same term of ‘making them communicate’ as the one we discussed 
above. Th e term is encountered here for the fi rst time in the Classic proper. 
However, although the name is the same as the term already discussed, it 
corresponds here to the prescription of diff erent computations. Following 
Liu Hui in his analysis, we shall be able to make clear which prescription is 
meant and why the same term can refer to diff erent operations according 
to the context. 

 As above, Liu Hui translates what, in this context, ‘making them com-
municate’ amounts to in operational terms. He then brings to light the 
‘meaning’ of the operation in terms of parts. He writes: 

 With the help of the denominator  53    ‘making them communicate’ is multiplying by 
the denominator of the parts the integers (or: integral parts of the quantities) and 
incorporating these (the results) into the numerators. By multiplying, one disag-
gregates the integers, thus making the parts of the product ( jifen ). Th e parts of the 
product and the numerators hence communicate with each other, this is why one 
can make them join each other.   

 Liu Hui hence makes explicit what the operation of ‘making them com-
municate’ means for the quantities at hand. In terms of computations, 
( a  +  b / c ) and ( d  +  e / c ) are transformed into ( ac  +  b ) and ( dc  +  e ), respec-
tively. We recognize the result of the operation as indicated in  Part  i   of this 
chapter. However, in contrast to that previous occurrence, here the com-
mentator decomposes this transformation into elementary operations and 
interprets their eff ects in such a way that he brings to light why  Th e Nine 
Chapters  may refer to it as ‘make communicate’. 

 Th e fi rst operation consists of multiplying the integers  a  and  d  by  c , thereby 
transforming them into  ac  and  dc . Th ese quantities are what is fi rst desig-
nated here as ‘parts of the product’, or parts yielded by a  multiplication.  54    

  54      We have already discussed the expression  jifen  in  Part  i   of this chapter. In this new context, 
 jifen  could also be understood as ‘accumulated parts’, which would give  ji  an ordinary 
meaning. As we suggested above,  jifen  may be interpreted as referring to what, for us, would 
be a numerator, in a situation in which the numerator is larger than the denominator. In the 

  53      Note that, whether one is within the context of case 2 or aft er the equalization in case 3, only a 
single value remains for all denominators. 
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Whatever the literal interpretation of this expression may be, there is no 
doubt that the result is understood as being of the kind of ‘parts’, that is, as 
sharing the same identity as the numerator and the denominator – both of 
which are a collection of ‘parts’. Th is identifi cation derives from interpreting 
the ‘meaning’ of the multiplication, in terms of the situation in which it is 
applied, as a disaggregation. 

 As we alluded to above, Liu Hui had already discussed the link between 
multiplying and disaggregating parts in the context of the addition of frac-
tions. Th ere, aft er the numerator and denominator were both multiplied 
by the same number  n  – an operation he called a ‘complexifi cation’ – the 
fraction obtained was interpreted as composed of parts that were  n  times 
fi ner. Moreover, in this other context, diff erent ‘sets of parts’ ( a/b ,  c/d , . . .) 
were ‘complexifi ed’ jointly, that is, in correlation with each other, in such a 
way that their denominators became equal to ( bd  . . .) and the parts compos-
ing them were identical. Liu Hui interpreted this joint transformation as 
‘making the parts communicate’ and thereby allowing them to be added to 
each other. 

 Th e same link between multiplication and disaggregation recurs here, but 
in a slightly diff erent way. Th rough the multiplication, the units composing 
the integers are interpreted to be dissociated into parts of the same size as 
the fractional parts. Th is dissymmetric transformation of the integers alone 
ensures that the parts forming the two elements of a quantity of the type 
 a  +  b/c  are ‘made to communicate’ and can be added to each other. It will 
prove interesting to distinguish here two dimensions in the interpretation 
of the eff ect of the operation. On the one hand, with the disaggregation, Liu 
Hui brings to light a ‘material meaning’ of the multiplication. On the other 
hand, he recognizes in this transformation the operation of ‘making entities 
communicate’. In diff erent contexts, the way in which this formal result is 
achieved may diff er. However, from a formal point of view, the action is the 
same. Th is is what accounts for the fact that the same name can be used to 
refer to diff erent actual computations. 

 In fact, so far, the commentator has considered the operation of ‘making 
entities communicate’, prescribed by the Classic for case 2 of the divi-
sion, only from the point of view of each quantity of the type  a  +  b/c  taken 
separately. As above, each quantity is transformed by the operation into an 
integral number of parts. However, in case 2 of the ‘procedure for directly 

case under discussion, the numerator consists of an accumulation of layers of parts equal 
in number to the denominator, in contrast to the state in which, aft er the division is carried 
out, these layers are each transformed into a unit. Th e glossary in CG2004 discusses why the 
technical term  jifen  can refer, in some circumstances, to  ac  and, in others, to  ac  +  b . 
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sharing’, this transformation is carried out on the dividend and the divisor 
 jointly  and the denominators  c  will both be forgotten. Th e correctness of the 
procedure can only be established aft er this other aspect has been accounted 
for. In the  next section  of the commentary, Liu Hui turns to address the 
transformation. Again, it will be dealt with in terms of ‘making communi-
cate’ and this expression will take on new concrete meanings. Indeed, the 
argument will show why communication is established not only between 
components of the same quantity ( a  and  b/c ;  d  and  e/c ) but also between 
the dividend and the divisor, contained in the middle and lower parts of 
the surface for computing. Th is is how the procedure can be concluded by 
a division between integers. Th is remark suggests that, in so doing, Liu Hui 
is still deploying his interpretation of the meanings he reads in the term 
‘making communicate’, a phrase used here by  Th e Nine Chapters . 

 Th e correlative transformation of the dividend and the divisor recalls the 
commentary on the ‘procedure for simplifying parts’. We noted above that, 
in this commentary, Liu Hui had compared the two situations from the 
point of view that fi rst numerator and denominator, and then dividend and 
divisor could be transformed in relation to each other. Pointing out a con-
trast between the two pairs, the commentator had stressed that dividend 
and divisor could involve ‘parts’ of diff erent size. We highlighted the fact 
that, in the context of the addition of fractions, he showed how to transform 
distinct fractional parts into parts of the same size. However, one aspect of 
the diff erence between the two situations has not yet been discussed. We 
meet it here for the fi rst time, and it appears that it is precisely this diff er-
ence that Liu Hui addresses now. Following him, we can explain the diff er-
ence as follows. Th e simplifi cation or complexifi cation of a fraction implies 
considering the quantities expressed with respect to the same part jointly. 
However, the terms of a division can have parts that diff er not only in size, 
but also in nature. In our case, the dividend contains parts of cash while 
the divisor has parts of persons. It is interesting that, for the operations 
discussed previously (adding up, subtracting, comparing, computing the 
average), the data of the problems were all abstract and, in correlation with 
this, these operations can be applied only to terms that are homogeneous 
with each other in this respect – they only need to be homogenized with 
regard to their size. For division, in contrast, the terms can furthermore 
be of a diff erent nature.  55    Th is is what the problem shows and what is dealt 
with from a theoretical and, most importantly, general point of view now. 

  55      Li Chunfeng’s commentary on the name of the operation, ‘directly sharing’, may address 
this diff erence. We shall come back to it below. Note that the same remark holds true for 
‘multiplying parts’. 
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 Th e key point that Liu Hui stresses is that by the very fact that these 
quantities are taken as dividend and divisor, they are ‘put in relation’. By 
this act, a relationship is established between them, which has operational 
consequences. Here, the commentator fi rst introduces the concept of  lü  
which precisely characterizes the situation created: ‘Whenever quantities 
are given/put in relation with each other, one calls them  lü .’ 

 In the case we examine, dividend and divisor are ‘put’ in relation, as 
quantities of given, but distinct, units. It is the context of an operation that 
shapes this relationship. Th e values expressing the relation between the cir-
cumference and the diameter of a circle are also  lü s. However, by contrast 
to the former quantities, they are rather ‘given’ in relation with each other. 
In this case, it is a situation that brings them into relation. Liu Hui, meeting 
here with a phenomenon that, from a formal point of view, will turn out to 
be quite widespread, discusses it from a much more general angle, which 
will thus prove useful and relevant in several other sections of his com-
mentary. Th is is a recurring and important feature of the commentator’s 
proofs and one that makes them diffi  cult to interpret: he systematically 
brings to a given context a more general outlook from which to address 
the correctness of a given operation, and thereby introduces a concept and 
an argument that will be shown to recur in diff erent contexts.  56    In fact, the 
concept of  lü  had already been introduced by  Th e Nine Chapters  in relation 
to the prescription of the rule of three, at the beginning of  Chapter 2 . Th e 
commentary will regularly, and more generally, bring to light in all kinds 
of mathematical situations that quantities are  lü s and use this property for 
establishing the correctness of a procedure. 

 Once the concept is introduced, Liu Hui states the consequence for the 
entities that it qualifi es: ‘ Lü s, being by nature in relation to each other, 
communicate.’ We hence meet with a second occurrence of the term ‘com-
municate’ in the context of the commentary on the ‘procedure for directly 
sharing’, an occurrence which echoes the wording of the procedure itself. 
Th is time, it refers to the fact that the dividend and divisor are brought into 
communication, even though this operation is grasped from a more general 
point of view. 

  56      On this feature of proofs, see Chemla  1991 . Th e same phenomenon is shown to happen for 
the operations of ‘homogenizing’ and ‘equalizing’, which are introduced in the commentary on 
adding up fractions. We saw above another dimension of the relationship between the conduct 
of a proof and the search for generality when we stressed the parallel between the proofs of 
the correctness of the algorithms for the truncated pyramid with circular base and the cone, 
respectively. On the concept of  lü , see Li Jimin  1982a , Guo Shuchun  1984 , Li Jimin  1990 : 
136–61, Guo Shuchun  1992 : 142–99, and the entry in the glossary in CG2004. 
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 Th e consequences of such a state are made explicit in the commentary 
following problem 3.17, in which Liu Hui asserts: 

 Every time one obtains  lü s, that is that, since when one refi nes (the units in which 
they are expressed), one refi nes them all and, when one makes them coarser, one 
makes them all coarser, the two quantities are transformed in relation to each other 
(literally, interact with each other) and that is all.  57      

 Once the relationship is set, for instance, in our case, by the fact that ‘divi-
dend’ and ‘divisor’ are ‘put in relation to each other’ as quantities of given 
units, any modifi cation of the value of one that comes from a systematic 
dissection of its units – or a reunion of them – must be refl ected in a dis-
section – or reunion – for the units of the other for the relationship to be 
maintained.  58    Th is is where the property of numerator and denominator is 
seen in a more general perspective. Th is is also the point where a parallel 
is established between the commentary on the ‘procedure for simplifying 
parts’ and our context. Th e next sentence of Liu Hui’s commentary on the 
‘procedure for directly sharing’ states the same property with respect to  lü s: 
‘If there are parts, one can disaggregate; if parts are reiterated superposi-
tions, one simplifi es.’ 

 However, in contrast to the former statement, this quote makes precise 
in which circumstances one may fi nd it useful to ‘disaggregate’ the units of 
both terms, or ‘simplify’ them – that is, carry out a systematic  aggregation 
of their units. Th e disaggregation is to be used when the values put in 
 communication have ‘parts’, that is, contain fractions. Previously, being 
in communication allowed the integer and the fractions to enter together 
into the same operation of addition. Here, being in communication further 
implies that, when modifi ed, the values are transformed simultaneously. 
Th is latter property is used to transform the values of the  lü s into integers 

  57      See CG2004: 306–7, 797,  n. 73 . In that case, the commentary brings to light that, in order to 
account for the procedure, one must understand that the  lü s chosen to express the relationship 
between two diff erent kinds of silk are given in diff erent units of weight. By virtue of their 
quality of being  lü s, they nevertheless change in relation to each other. Note that there can 
be more than two quantities, the set of which constitutes  lü s. In Chemla  2006 , I discuss 
source material from the  Book of Mathematical Procedures  which documents the process 
of introduction of the concept of  lü , as encapsulating parallel sequences of computations 
carried out on quantities that occur within a dividend and a divisor. Th e way in which the 
transformations encapsulated are described echoes in many ways Liu Hui’s commentary here. 

  58      Since the  lü s express this relationship, the nature of the units of the quantities involved can 
be forgotten, even though this is by no means mandatory. Th is corresponds to what is found 
in the text, where in most cases, the values of  lü s are expressed by abstract numbers. In some 
sense, introducing the concept of  lü  is a way of addressing the possibility of carrying out an 
abstraction with respect to units. 
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in  correlation with each other. In the case of a division, by a simultaneous 
dissection of the units of the dividend and the divisor, one may get rid of the 
fractions. 

 Just as in the context of problem 3.17, Liu Hui approaches the correlative 
transformation of the values of  lü  with full generality, introducing the disag-
gregation of the basic units in parallel with the opposite operation, i.e. aggre-
gating units. Th e circumstances in which the latter operation can be used are 
referred to by the technical expression of ‘reiterated superpositions’, which 
had been introduced earlier, in the commentary on the simplifi cation of 
fractions. Th ere, it designated the possibility that the numerator and denom-
inator could be represented as rectangular arrangements of units – ‘parts’ in 
this case – having a side of the same length, equal to their greatest common 
divisor, or their ‘equal number’ in the terminology of ancient China.  59    As a 
consequence, dividing both by the ‘equal number’ amounted to expressing 
the fraction in terms of parts coarser than the original ones by a factor equal 
to that number. In the context of the general discussion about  lü s in the 
commentary on ‘directly sharing’, disaggregation has been introduced. Th e 
next sentence then refers to the units as ‘parts’, even though they may be of 
a diff erent nature, and states: ‘If parts are reiterated superpositions, one sim-
plifi es.’ Th e concept of ‘reiterated parts’ and the operation of simplifi cation 
that it helps justify are thus imported into a new and more general context. 

 Once the general considerations have been developed fully, the com-
mentary applies them to the case under discussion, namely, dividend and 
divisor. In a fi rst step, following on the last statement, Liu Hui introduces 
the new concept of ‘ lü s put in relation with each other’, precisely when he 
identifi es the fi rst instance for it: ‘Divisor and dividend, divided by the 
equal number (i.e. their greatest common divisor), are  lü s put in relation 
with each other.’ 

 In a second step, Liu Hui translates the properties of  lü s discussed above 
for the specifi c case examined in this context. Dividend and divisor having 
both parts, one disaggregates repeatedly their units in parallel, which 
amounts to multiplying. Th e commentator writes with full generality: 
‘Th erefore, if one disaggregates the parts, one necessarily makes the two 
denominators of the parts both multiply divisor and dividend.’ 

 Th e general prescription of disaggregating (formulated at the level 
of reasons) leads, within our specifi c context, to specifi c operations (at 
the level of computations), namely, two multiplications. Th inking of the 
process in terms of disaggregating and joining, the procedure amounts to  

  59      On these terms, see the glossary in CG2004. 
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  ( + ) / ( + ) = ( + ) / ( + ) = ( + ) / ( + )a b
c d e

f
ca b cd ec

f
fca fb fcd ec

 (fi rst multiplication) (second multiplication)    

 which is equivalent to the algorithm as provided in  Th e Nine Chapters :  

  ( + ) / ( + ) = ( + ) / ( + ) = ( + ) / (a
b
c

d
e

f
a

bf

cf
d

ec

fc
fca fb fccd ec+ )

 (equalizing) (multiplying by the two 
         denominators)    

 Th ese are the operations applied to the divisor and the dividend, and this 
is what is meant by the prescription of ‘making them communicate’, if we 
follow Liu Hui’s interpretation. Th e values of the dividend and the divisor 
are transformed correspondingly, and they both become integers, without 
their relationship being altered. Here the analysis of the operation of 
‘making communicate’ is completed, and the correctness of the procedure 
for ‘directly sharing’ is established.  60    

 From the previous discussion, three points are worth stressing. Th e fi rst 
two are important for a description of the practice of proof. 

 First, as we already emphasized, the proof is carried out in such a way 
as to approach the phenomena with the greatest generality possible. In our 
case, this leads to the introduction of some key abstract concepts such as  lü . 

 Second, through the analysis that is conducted during the proof, a sim-
plifi cation of the algorithm is hinted at, since it is shown that dividend and 
divisor can be simplifi ed before a division is to be carried out. Again this is 
a recurrent feature in the commentators’ proofs: they off er a basis on which 
to develop new algorithms. 

 Th ird, and more importantly for our purpose, the concept of  lü  that is 
introduced is intimately related to the theme of this chapter. Th is is the 
point where we go back to the main thesis for which we argue here.   

 Combining divisions that follow each other 

 In fact, identifying, in a given context, the property of entities to be  lü s with 
respect to each other is a way of establishing the validity of introducing into 
the fl ow of computations multiplications and divisions that compensate 

  60      In a last paragraph, the commentator describes another procedure that articulates the diff erent 
cases possible in a diff erent way; see Chemla  1992  for a discussion. 
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each other.  61    In the context of dividing between quantities with fractions, 
the last analysed sentence of Liu Hui’s commentary shows how the com-
mentator links the proposed transformation of units, the correctness of 
which was established, to the application to both the dividend and the 
divisor – both, in this case, themselves the results of a previous division – of 
the same sequence of multiplications. In other cases, the concept of  lü  is 
brought into play when accounting for an inversion in the order of a multi-
plication and a division is at stake.  62    

 Th is brings us back to the main question of this subsection: what is 
the relationship between this development of Liu Hui’s and the validity 
of our fundamental transformation  iii ? To bring the link to light, let us 
consider one of the cases to which the ‘procedure for directly sharing’ can 
be applied:  

  ( + ) / = ( + ) /a b
c d ac b dc     

 and let us look at this from the point of view of the surface for computing 
( Figure 13.8 ). Th e set-up of the dividend (column 1) shows in which ways 
it can be considered as the result of the division of  ac  +  b  by  c  (column 2). 
Th e algorithm thus amounts to dividing by  d  the result of a division by  c . 
On the one hand,  ac  +  b  is that to which one returns when ‘making com-
municate’ the integer  a  and the numerator  b  – this property is guaranteed, 
as Liu Hui stressed, by the fact that the results of division are given as 

  62      See, for instance, the second proof of correctness of the ‘procedure for multiplying parts’ or 
the proof of the correctness of the ‘rule of three’ in CG2004: 170–1, 224–5. 

  61      Above, the introduction of specifi c quantities such as fractions or quadratic irrationals 
was justifi ed by the necessity of having inverse operations cancel each other. Here, it is the 
introduction of a concept, that of  lü , that is to account for cancelling opposed multiplication 
and division. 

 Figure 13.8      Th e division between quantities with fractions on the surface for 
computing.    

a
b
c

Two readings:
Dividend/Division

of ac + b by c
ac + b Dividend

d Divisor cd Dividing by the 
product
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exact. On the other hand, as Liu Hui shows, the ‘procedure for directly 
sharing’ amounts precisely to multiplying  c  by  d  to divide  ac  +  b  by both of 
them at a stroke (column 3).  63     

 Such a reasoning would be only the observation of an equivalence, were 
it not indicated by precisely the name given to the operation of division 
between any two quantities in  Th e Nine Chapters , i.e.  jingfen . I suggest 
understanding that the original meaning of this name was ‘directly sharing’. 
Th ere are two pieces of evidence to support this interpretation. First, the 
procedure for carrying out the same division in the  Book of Mathematical 
Procedures  has the same name, except for the fact that the character  jing  
is written with a homophone that means ‘directly’.  64    Secondly, when the 
seventh-century commentator Li Chunfeng comments on the name of the 
procedure in  Th e Nine Chapters , his interpretation is in conformity with 
how the name is written in the  Book of Mathematical Procedures . Since this 
interpretation is quite important for our purpose, let us read it: 

  Directly sharing . Your servant, Chunfeng, and the others comment respectfully: 
As for ‘Directly sharing’, from ‘Gathering parts’ onwards,  65    (the procedures) all 
made the (quantity of) parts homogeneous with each other, but this one directly 
seeks the part of one person.  66    One shares that which is shared by the number of 
persons , this is why one says ‘Directly sharing’.   

 Th e most important statement for us here is the one I italicized: the 
operation is interpreted as dividing a quantity that is understood as itself 
being yielded by a ‘sharing’ or, in other terms, a division. Li Chunfeng thus 
also reads the operation as we suggest doing, that is, as dealing with the 
succession of two divisions. He thereby links, on the one hand, dealing with 
operations that follow each other, and, on the other hand, how arithmetical 
operations are carried out on quantities having fractions. In doing so, Li 
Chunfeng probably seeks to account not only for the name of the operation, 
but also for why the style of the algorithm breaks with the description of 
all the others before it. However, this interpretation fi ts with what the  Book 

  65      Th at is, all the procedures for adding up fractions, subtracting them, comparing them and 
determining their average. Th ese procedures are all interpreted by the commentators as 
making the number of parts, that is, the numerators, homogeneous to each other, before 
applying the operation in question. Compare CG2004: 166–7. 

  66      One may understand that the division is prescribed directly, without having made the 
fractions fi rst homogeneous in any respect. 

  63      It is interesting that the operation of ‘making communicate’ that  Th e Nine Chapters  prescribes 
is, for one part, the very operation that restores what can be interpreted as the original 
dividend. For another part, this reading provides an interpretation of ‘dividing at a stroke’ in 
terms of ‘making communicate’, which can be shown to be meaningful. 

  64      Compare slip 26, Peng Hao  2001 : 48. 
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of Mathematical Procedures  contains in relation to this operation, which 
provides a hint that this was how the situation was understood even before 
 Th e Nine Chapters  was compiled. It is important in this respect that one of 
the prerequisites for this interpretation – namely, that the multiplication 
inverse to a division restores the original number divided – appears to be 
a concern documented in the  Book of Mathematical Procedures , as shown 
above. Th is completes our argument in this case. 

 An additional remark should be made. So far, in our argument, we have 
only considered the validity of transformation  iii  with respect to integers. 
What about establishing its validity more generally? Two points should be 
added in this respect. 

 On the one hand, if we observe the contexts in which ‘dividing at a 
stroke’, or its synonym, ‘dividing together’ ( bingchu ), are used in the com-
mentaries, it turns out that the two divisions that are joined are usually both 
divisions by integers. 

 On the other hand, if this is the case, in some situations this relates to 
the fact that the property of entities to be  lü  was put into play.  67    Similarly, 
if the capacity of the quantities involved to be transformed into integers is 
employed, transformation  iii  is to be used in contexts in which they were 
already turned into integers. Th at such may have been the idea is plausible: 
more generally,  Th e Nine Chapters  exhibits a way of carrying out compu-
tations that grants a predominant part to integers, and the introduction 
of the concept of  lü  can be interpreted as one technique among several 
devised to fulfi l this aim. Several hints can be given in favour of these 
hypotheses. 

 First, the commentators regularly interpret the choice of describing a 
procedure in a given way in  Th e Nine Chapters  as derived from the motiva-
tion of the authors to avoid generating fractions in the midst of computa-
tions. Th is is how, for instance, Liu Hui accounts for why, in the rule of 
three, the multiplication is prescribed before the division, and not aft er.  68    
Th e commentators thus attribute to  Th e Nine Chapters  the intention of 
computing with integers wherever possible. 

 Second, the way in which division between quantities containing frac-
tions is dealt with in the general case amounts precisely to getting rid of 
fractions. Liu Hui reads this way of proceeding as made possible by the 
status of the dividend and divisor as  lü s. Th ird, in the procedure of  Th e 
Nine Chapters  in the context of which the concept of  lü  is introduced, that 

  67      See, for instance, how Liu Hui interprets the algorithm provided aft er problem 6.10 (CG2004: 
514–15). 

  68      Th e validity of this operation is discussed in the next subsection. 
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is, the rule of three, it guarantees precisely that the number by which one 
 multiplies and divides be an integer.  69    Th is leads to mixing together inte-
gers and  non-integers in the computations in a dissymmetric way that is 
quite  specifi c to the procedure for the rule of three described in  Th e Nine 
Chapters .  70    Th e predominant role given to integers can be read in the way 
in which algorithms are composed and in the specifi c concepts that are 
introduced in correlation with this. To establish whether this feature actu-
ally plays a part in the proofs of correctness, as we suggested above, we 
would have to observe how the concept of  lü  is actually put into play in 
the commentaries, an issue that we leave for another publication.  71    Let us 
turn instead to the relationship between transformation  ii  and multiplying 
between quantities containing fractions.   

 Inverting the order of a division and a multiplication that 
follow each other 

 We already hinted at the reasons for linking the ‘procedure for the fi eld with 
the greatest generality’ and transformation  ii . It is hence natural to seek, 
in the commentary of the former, a proof of the validity of the latter. As in 
the previous subsection, we shall fi rst examine how the correctness of the 
algorithm for multiplying quantities of the type  a  +  b/c  is established. While 
doing so, we shall naturally be led to connecting this proof to that of the 
validity of transformation  ii . 

 Let us recall the procedure given by  Th e Nine Chapters , which was 
already discussed in  Part  i   of the chapter: 

  Procedure: The denominators of the parts respectively multiply the 
integer corresponding to them; the numerators of the parts join these 
(the results); multiplying makes the dividend. The denominators of the 
parts being multiplied by each other make the divisor. One divides the 
dividend by the divisor .   

 Liu Hui establishes the correctness of the procedure in two steps, each of 
which relates to a step in the procedure. Th e commentary on the fi rst set of 
operations reads as follows: 

  70      Such is not the case for the rule of three given by the  Book of Mathematical Procedures . 
Discussing this diff erence exceeds the scope of this chapter and I shall deal with it elsewhere. 

  71      As already indicated above, the nature of the data to which the operations of the various 
algorithms are applied should also be systematically observed, if we were to be more precise 
regarding the extension of the algorithms for which correctness is established. 

  69      Incidentally, it also allows that these numbers be prime with respect to each other. 
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 If ‘the denominators of the parts respectively multiply the integer corresponding to 
them and the numerators of the parts join these (the results)’, one makes the  bu72

that are integral communicate and be incorporated in the numerator of the parts. In 
this way, denominators and numerators all (contribute to) make the dividends.   

 Above, we already alluded to the main elements of this commentary. Let 
us add only two remarks. First, we now see how the operation of ‘making 
communicate’ that is used in this proof is precisely one that was analysed 
in the commentary on ‘directly sharing’. Second, in the transformation of
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⎥⎥    into  ac  +  b , the latter is designated as ‘dividend’. Th is is one of the several

signs of the continuity, which we already stressed, between quantities of 
the type  a + b/c  and division, from both a conceptual and a notational point 
of view. Th is point will prove important below. As a commentary on the 
remaining part of the procedure, Liu Hui states: 

 Th is is like ‘multiplying parts’.   

 In other words, he asserts that the algorithm is, from this point onwards, 
analogous to the procedure for multiplying between ‘pure’ fractions, which, 
in  Th e Nine Chapters , is placed just before it. As was observed above, the 
commentator refers the interpretation of some steps of the procedure to his 
previous commentary.  73    Th ree points are worth noting. 

 First, in the same way as we showed previously how the procedure for 
the truncated pyramid with circular base embedded, among other algo-
rithms, the ‘procedure for the fi eld with the greatest generality’, the latter is 
now shown to embed another procedure. Th is embedding is, however, to 
be distinguished from the one which accounts for the name of the opera-
tion, discussed in  Part  i   of the chapter. Th e latter embedding related to the 
fact that the ‘procedure for the fi eld with the greatest generality’ unifi ed 
three procedures for multiplying diff erent types of numbers: it referred to 
the algorithm as a list of operations. Th e new embedding manifests itself 
in the proof: it brings to light that, among the three cases covered by the 
algorithm, one of them is, in terms of reasons, more fundamental in that 
the correctness of the general procedure relies on its correctness. Th ese two 
cases show that algorithms may be built by making use of other algorithms 

73      Th is conclusion is reinforced by the commentary placed aft er the procedure, which repeats 
one of the arguments given to account for the correctness of the algorithm for multiplying 
fractions. 

  72      Th e commentary refers to the data of the problems aft er which the procedure is given. Th ey 
are all lengths expressed with respect to the unit of measure  bu . 
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in various ways, and the proof of the correctness of the former may as well 
incorporate the proof for the latter according to diff erent modalities. 

 Second, interestingly enough, in their proofs, the commentaries  regularly 
refer to the proofs of algorithms placed just before in the Classic.  74    
Th is seems to possibly provide an interpretation of the reasons why the 
 algorithms are presented in this order in  Th e Nine Chapters .  

 Th ird, if we look at  Figure 13.9 , we see that the part of the algorithm that 
is applied to the elements placed on the surface for computations aft er the 
fi rst step, that is, when divisions are restored, can be considered similar 
to the algorithm applied to fractions: this is an essential prerequisite for 
the proof of this section of the algorithm to be referred to that of the ‘pro-
cedure for multiplying parts’. Th is yields yet another hint of the fact that 
practitioners of mathematics in ancient China saw continuity between the 
notation of quantities and the set-up of operations. Th e commentary on 
‘multiplying parts’, to which we shall now turn, starts by discussing pre-
cisely this point. 

 Th e algorithm referred to reads as follows: 

  Multiplying parts  
  Procedure: The denominators being multiplied by one another make the 
divisor; the numerators being multiplied by one another make the divi-
dend. One divides the dividend by the divisor .   

 Th e opening sentence of the commentary relates the pair of a numerator 
and a denominator to that of a dividend and a divisor. Liu Hui writes: 

  74      Th e second proof of the correctness of the ‘procedure for multiplying parts’ refers explicitly to 
‘directly sharing’. See CG2004: 170–1. We shall show below that the fi rst proof also needs to 
rely on ‘directly sharing’. 

 Figure 13.9      Th e multiplication between quantities with fractions on the surface for 
computing.    

a               integer
b         numerator
c  denominator

ca + b
c c

(ca + b).(c′a′ + b′) (ca + b). (c′a′ + b′)
cc′

Dividend
Divisor:

a′              integer
b′        numerator
c′ denominator

c′a′ + b′
c′

c′a′ + b′
c′

c′a′ + b′
c′

Th e order of the 
operations

was inverted
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 In each of the cases when a dividend does not fi ll up a divisor, they hence have the 
names of denominator and numerator.   

 In other words, one may choose to read an array of two lines on the 
surface for computing, as in  Figure 13.10 , in two ways.  

 On the one hand, the array is the layout of an operation of division, 
which we shall represent as  a  :  b . On the other hand, when  a  is smaller than 
 b , which is precisely the case ‘when a dividend does not fi ll up a divisor’, it 
can be read as the quantity resulting from carrying out the operation, that 
is, the fraction  a / b . 

 Th ese dual points of view allow Liu Hui to link the fraction and the 
numerator operationally. Placing himself at the most general level, as we 
have seen him oft en do in proofs, he writes: 

 If there are parts (i.e. fractions), and if, when expanding the corresponding divi-
dend by multiplication, then, correlatively, it (the dividend produced by the multi-
plication)  75    fi lls up the divisor, the (division) hence only yields an integer.   

 Th e application of this remark that appears relevant in the context in 
which it is formulated is that the sequence of a multiplication and a divi-
sion like ( b  ·  a ) :  b  yields  a . Seen from the other point of view, this remark 
leads to stating that the multiplication  b  ·  a / b  yields  a  as its result. Th e 
numerator can thereby be seen as a quantity that is  b  times larger than the 
fraction. 

 If, furthermore, one multiplies something by the numerator, the denominator must 
consequently divide (the product) in return (baochu). Dividing in return is ‘divid-
ing the dividend by the divisor’.   

 Th is is the point where Liu Hui introduces the operation of ‘dividing in 
return’, which we already mentioned above and which occurs only later in 
the text of  Th e Nine Chapters . In terms of operations, ‘dividing in return’ is 
a simple division. However, the expression by which it is prescribed indi-

 Figure 13.10      Th e layout of a division or a fraction on the surface for computing.    

a
b

  75      Th e name of ‘dividend’ designates what is in the position of the ‘dividend’ on the surface for 
computing, at the moment when it is used. Th is is the assignment of variables typical of the 
description of algorithms in  Th e Nine Chapters . 
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cates the reason why it must be used: earlier in the fl ow of computations, 
one multiplied by a magnitude which was  n  times larger than it ought to 
be – in most cases, by a numerator instead of the corresponding fraction – 
therefore a division by  n  is needed to cancel this unwarranted dilation.  76    In 
our case, Liu Hui’s statement is an answer to the question of determining 
the product of  a / b  by ‘something’ (let us call this ‘something’  X ) – one may 
note the generality of the question considered. Th e reasoning appears to be 
that, since  a·X  is equivalent to [( b  ·  a ) :  b ]· X  or  b · a / b · X , then  a / b . X  is hence 
equivalent to  a·X  :  b . If we pause a moment here, we can observe that what is 
dealt with is precisely our transformation  ii . A division followed by a multi-
plication, that is,  a / b · X , which Liu Hui emphasized as equivalent to ( a  :  b )·X, 
has been replaced by a multiplication followed by a division,  a·X  :  b . Th e 
way in which the commentator discusses the issue highlights the link he 
reads between multiplying fractions (multiplying the result  n / c  by  X ) and 
what we called transformation  ii  – transforming the sequence ( n  :  c )· X  into 
 nX  :  c .  77    In addition, the discussion has not yet specifi ed the quantity  X . Its 
result holds for any such quantity. Th is is yet another case where the proof 
does not limit itself to the context in which it is developed, but highlights 
the most general phenomenon possible. 

 In relation to the context in which Liu Hui develops this discussion, the 
next step turns to the consideration of a specifi c value for  X , that is, the 
numerator  c  of the fraction  c / d  to be multiplied by  a / b . He writes: ‘Now, “the 
numerators are multiplied by one another”, hence the denominators must 
each divide in return.’ 

  76      In all observed cases, the ‘division in return’ eliminates a factor that is an integer. Note that 
the beginning of Liu Hui’s commentary can be read as addressing the validity of such a 
division: dividing, by a factor, a quantity that resulted from a multiplication by this very factor 
eliminates from it this factor. 

  77      Th e commentary on the procedure solving problem 6.3 also stresses that the sequence 
of multiplying by  a  and dividing by  b  can be carried out as multiplying by  a/b , that is, 
multiplying by  a  and dividing in return by  b . Th e commentary on the procedure of ‘suppose’, 
at the beginning of  Chapter 2 , establishes the correctness of the algorithm carrying out the 
rule of three in two ways. On the one hand, aft er having shown that a sequence of a division 
and a multiplication yields the correct result, the commentator ‘inverts their order’ ( fan ) to 
obtain the algorithm as described in  Th e Nine Chapters . On the other hand, he transforms the 
 lü s expressing the relationship between the things to be changed one into the other, the former 
into 1 and the latter into a fraction, by which the reasoning shows one must multiply to carry 
out the task required. Th is, says Liu Hui, corresponds to ‘with the numerator, multiplying 
and with the denominator, dividing in return’. A link is thereby established between the 
operation of ‘inverting the order’  fan  of a division and a multiplication and that of multiplying 
by a fraction. Note how using the concept of  lü  and its operational properties is essential for 
bringing this link to light. Th e commentary on the procedure solving problem 6.10 puts into 
play all the elements examined so far. 
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 Th e problem in  Th e Nine Chapters  asks to compute the product of  a / b  
by  c / d . On the basis of the previous observation, this operation is shown to 
amount to  a · c / d :  b , which, in its turn and for the same reasons, amounts to 
 ac  :  d  :  b . Liu Hui can hence interpret the ‘meaning’ of the fi rst prescribed 
operation (computing  ac ) and can establish that it must be followed by two 
divisions for the desired result to be obtained. Th e commentator has thus 
produced an algorithm yielding the result required by the Classic. Th e last 
step needed to prove the correctness of the procedure given by  Th e Nine 
Chapters  is to transform the algorithm obtained ( a·c  :  d  :  b ) into the one for 
which the correctness is to be proved. Such a transformation comes under 
the rubric of the second line of argumentation in an ‘algebraic proof in an 
algorithmic context’, which we introduced in  Part  i   of the chapter. Liu Hui 
concludes his proof by transforming the former algorithm into the latter, as 
follows: ‘Consequently, one makes “the denominators multiply each other” 
and one divides at a stroke  ( by their product) ( lianchu ).’ 

 In other words, the commentator here applies transformation  iii , the 
validity of which was, as I argued above, dealt with in the commentary on 
‘directly sharing’.    

 Conclusions 

 Th e analysis developed in this chapter invites drawing conclusions on 
several levels. 

 First, the passages examined illustrate how the earliest known com-
mentators on  Th e Nine Chapters  fulfi lled the task of establishing the cor-
rectness of algorithms. As we suggested in the introduction, this branch 
of the history of mathematical proof has not yet been deeply explored. We 
see how the Chinese source material calls for its development. Two issues 
are at stake here. We need to understand the part played by proving the 
correctness of algorithms in the overall history of mathematical proof, and 
in particular in the history of algebraic proof. Moreover, on this basis, we 
must determine how we should locate Chinese sources in a world history 
of mathematical proof. 

 Whatever conclusion we may reach in this latter respect, it remains true 
that Liu Hui’s and Li Chunfeng’s commentaries provide source material for 
the analysis of the fundamental operations involved in proving the correct-
ness of an algorithm not only in ancient China but also in general. In our 
limited survey of proofs from the Chinese source material, several funda-
mental operations appeared. 
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 We saw how proofs relied on algorithms, which had already been estab-
lished as correct, and how proofs articulated these algorithms as a basis 
for establishing the correctness of other procedures. Most importantly, 
the algorithms, together with the situations in relation to which they were 
introduced, provided means for determining the ‘meaning’ of an operation 
or a sequence of operations. Th is appears to be a key act for proving the cor-
rectness of algorithms, and it is noteworthy that a term ( yi  ‘meaning’) seems 
to have been specialized to designate it in ancient China. 

 Furthermore, as was stressed above on several occasions, the evidence 
provided by the commentaries seems to manifest a link – perhaps specifi c 
to ancient China – between the way in which the proof of the correctness 
of algorithms was conducted and a systematic interest in the dimension of 
generality of the situations and concepts encountered.  78    Th e fact that proofs 
oft en relate to each other, as we emphasized several times, can be correlated 
to this specifi city. However, it will be only when historical studies of such 
proofs develop that we will be in a reasonable position to conclude whether 
this feature is characteristic of Chinese sources or intrinsic to proving the 
correctness of algorithms in general. 

 Finally, the second key operation in the activity of proving the correct-
ness of algorithms that is documented in ancient China, and on which we 
focused in this chapter, was what I called the ‘algebraic proof in an algorith-
mic context’. So far, I can locate it only in ancient Chinese source material, 
as far as ancient mathematical traditions are concerned. But again this 
conclusion may have to be revised in the future. Again, whatever the case 
may be, what can we learn from this occurrence regarding algebraic proof 
in general? 

 If we recapitulate our analysis in this respect, we have seen that several 
technical terms were introduced in relation to this dimension of proof:  fu  
‘restoring’,  huan  ‘backtracking’,  79     baochu  ‘dividing in return’,  80     fan  ‘inverting’, 

  78      I have dealt with this issue on several occasions, from Chemla  1991  onwards. However, given 
the complexity of this link, I cannot fully discuss it within the framework of this chapter. I plan 
to revisit the issue in another publication that would be entirely devoted to it. Note, however, 
that, here again, the commentators introduced a technical term in relation to this facet of the 
problem. In my glossary, I transcribed it as  yi’  ‘meaning, signifi cation’, to distinguish it from  yi , 
and the reader will fi nd in these two entries partial discussion of the problem.  Yi’  designates a 
‘meaning’ that captures the fundamental procedures that proofs disclose to be at stake within 
each algorithm dealt with. 

  79      A variant for this operation is  huan yuan  ‘return to the origin’. On all these terms, the reader is 
referred to my glossary in CG2004. 

  80      A variant for this concept is the pair of terms  ru  ‘enter’/ chu  ‘go out’. See the glossary in 
CG2004. 
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 lianchu  ‘dividing at a stroke’,  bingchu  ‘dividing together’.  81    Th ese terms refer 
to the three fundamental transformations (those we designated by  i ,  ii  and 
 iii ) involved in the ‘algebraic proof in an algorithmic context’ as carried 
out for establishing the correctness of the algorithms presented in  Th e Nine 
Chapters . In fact, the validity of these transformations rests on the fact that 
the results of divisions and extractions of square root are given as exact. We 
have seen that Liu Hui explicitly related the validity of the fi rst fundamental 
transformation to this fact. Before we go further in concluding about the 
two other transformations, let us introduce the general remark regarding 
algebraic proof to which this fact leads us. 

 Such a type of proof can be characterized by the fact that it carries out 
transformations on sequences of operations as such. What appears here is 
that the validity of such transformations rests on the structural properties 
of the set of quantities to which the variables and constants involved in the 
formulas transformed may refer. As soon as it is stated, the remark sounds 
obvious. My claim is that it can be documented that a fi rst version of this 
fact came to be understood in ancient China, in relation with the conduct of 
‘algebraic proof in an algorithmic context’. Th is claim, in turn, raises a his-
torical question regarding this range of issues on which I shall conclude the 
chapter: how was the relationship between the validity of algebraic proof 
and structural properties of the set of magnitudes on which it operated 
historically discussed? It is clear that inquiring into this question should 
elucidate a fundamental dimension of the history of algebraic proof. 

 Th e second level on which I would like to focus in concluding relates 
to my argument regarding the validity of transformations  ii  and  iii . In the 
chapter, I argued that there was an interest, in ancient China, in illuminat-
ing the grounds on which this validity rested. Moreover, I suggested that the 
question was dealt with in the commentaries on the algorithms for dividing 
and multiplying quantities of the type  a  +  b/c . It is to be noted that fractions 
conceived as a pair of a numerator and a denominator, as well as quanti-
ties  a  +  b/c , appeared in Asia, in the earliest known Chinese and Indian 
books. In China, the fi rst extant document attesting to the arithmetic with 
such numbers, that is, the  Book of Mathematical Procedures , also exhibits 
a concern for the problem of ‘restoring’ ( fu ) the original quantity that was 
divided, when applying the inverse operation. Th e main point, however, 
is that, to my knowledge, the pages that Chinese commentators devoted 
to establishing the correctness of algorithms carrying out arithmetical 

  81      Note that, although multiplications also happen to be joined – for instance, in the 
commentary following problem 6.10 – no specifi c term was coined for this transformation. 
Th is dissymmetry between multiplication and division is remarkable. 
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 operations with quantities containing fractions are unique to China, by 
contrast to other ancient traditions. If this were confi rmed, there would 
appear to be a correlation between the latter proofs, on the one hand, and 
the use of ‘algebraic proofs in an algorithmic context’, on the other hand. 

 In  Part  ii   of this chapter, however, my argument was based only on 
internal considerations. One of the most important facts that grounded the 
argument was the continuity of concepts and notations on the surface for 
computing, such as operations like division or multiplication on the one 
hand and quantities such as fractions or numbers of the type  a  +  b/c , on the 
other. Th e same confi guration of numbers on the surface for computing 
could be read as the set-up of a division, or the result of a division, that is, 
a fraction. Moreover, applying a multiplication by  c  to the confi guration in 
three lines representing  a  +  b/c  – hence read as the set-up of a multiplica-
tion – could restore the division that had yielded it. Th e key element for this 
continuity is that of a position on the surface in which one could place and 
operate on a component of a quantity or a function of an operation. Th e 
surface served as a medium articulating these mathematical objects. In this 
way, arithmetical operations on fractions were transformed into sequences 
of operations, and the algorithms carrying them out were established on 
the basis of interpretations and transformations of these sequences of 
 operations.  82    A link was thereby established between transforming lists of 
operations and operating on fractions. 

 I suggested reasons for considering that this was the way in which 
the commentators understood it. On the one hand, in the commentary 
 following problem 5.11, we saw how the inversion of the order of a division 
and a multiplication was carried out by making use of the ‘procedure of the 
fi eld with the greatest generality’. On the other hand, when Li Chunfeng 
interprets the name of the operation for dividing between quantities of 
the type  a  +  b/c , he refers to the division of a quantity itself yielded by a 
 division. 

 Th ere is, however, another angle from which to consider the relationship 
between the fundamental transformations  i ,  ii ,  iii  and the proofs of the cor-
rectness of algorithms for arithmetical operations on quantities of the type 
 a  +  b/c . Most of the technical terms listed above, by which the commenta-
tors refer to these transformations, are introduced precisely in relation to 
commentaries discussing the necessity of using quantities like fractions or 
quadratic irrationals ( fu ), on the one hand, and establishing the algorithms 

  82      One example for this is how, if there are parts in the dividend and the divisor, ‘directly sharing’ 
is explained to be equivalent to ‘multiplying’ both quantities by the two denominators. 
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operating on quantities such as  a  +  b/c  ( huan, baochu, lianchu ) on the other 
hand. In that way, these terms are introduced at the beginning of the book.  83    

 Th ese concluding remarks lead to a whole range of questions, which we 
shall formulate as a conclusion to the chapter. How was the correctness 
of algorithms for multiplying and dividing quantities with fractions 
approached elsewhere, and what connections did this concern have with 
the kind of ‘algebraic proof in an algorithmic context’ discussed here? Is 
there a historical relationship between the proofs we examined and the 
overall history of algebraic proofs? If there exists some relationship, did the 
proofs that were devised in ancient China actually play a historical part in 
this process? It is clear, I believe, that the history of mathematical proof still 
has many new territories to explore.     
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 14     Dispelling mathematical doubts:     assessing 
mathematical correctness of algorithms in 
Bhāskara’s commentary on the mathematical 
chapter of the  Āryabhat. īya     

   Agathe     Keller      

 Introduction 

 Contrary to the perception prevalent at the beginning of the twentieth 
century, a concern for the mathematical correctness of algorithms existed 
in the mathematical tradition in Sanskrit. Refl ections on the systematic 
 upapattis  of Kr. s. n. a’s ( fl  .  c . 1600–25) commentary on the  Bījagan. ita , the 
explorations of the Mādhava school (fourteenth–sixteenth century) or 
other traditions of mathematical validity have already been published.  1    
Still, the variations among this tradition of justifi cation and explanation 
need to be studied. 

 In the following sections, the  Āryabhat. īyabhās. ya  of Bhāskara (BAB) is 
analysed with regard to its reasoning and vocabulary. Th e  second chapter  
of  Āryabhat. īya  (Ab) – an astronomical  siddhānta  composed in verse at 
the end of the fi ft h century – treats mathematics ( gan. ita ). Respecting the 
requirements of the genre, these aphoristic  āryas  usually provide the gist 
of a procedure, such as an essential relationship or the main steps of an 
algorithm. Th e BAB is not only the earliest known commentary on this 
treatise but also the oldest known text of mathematics in Sanskrit prose 
that has been handed down to us. Th e BAB thus gives us a glimpse into the 
reasonings used in the scholarly mathematical tradition in Sanskrit at the 
beginning of the seventh century.  2    Very little is known about who prac-
tised scholarly mathematics in classical India, and why scholarly texts were 
elaborated. Th e BAB provides information on the intellectual context in 
which both the Ab and the BAB were composed. First, the commentator’s 
defence of Āryabhat. a’s treatise (and the commentator’s own interpretations 

    I would like to thank Karine Chemla and Micah Ross for their attentive and helpful 
scrutinizing of this article. 

     1      Ikeyama  2003 ; Jain  2001 ; Patte 2004; Srinivas  1990 . Some of Kr. s. n. a’s demonstrations are noted, 
among others, in the footnotes of C1817. 

     2      Keller  2006 : Introduction. 
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of the verses) will provide a backdrop for refl ections on the mathematical 
correctness of procedures. Next, the arguments behind the algorithms of 
mathematical justifi cation will be clarifi ed. Aft erwards, Bhāskara’s vocabu-
lary including explanations, proofs and verifi cations will be more precisely 
characterized.   

 1     Defending the treatise 

 Bhāskara’s commentary, a prolix prose text, gives us a glimpse into the 
intellectual world of scholarly astronomers and mathematicians. Th e com-
mentary records their intellectual debates. For the opening verse in which 
the author of the treatise mentions his name, Bhāskara’s commentary 
explains: 

 . . . as a heroic man on battlefi elds, whose arms have been copiously lacerated by 
the strength of vile swords, having entered publicly a battle with enemies, who 
proclaims the following, as he kills: ‘Th is Yajñadatta here ascended, a descendant of 
the Aditis, having undaunted courage in battle fi elds, now strikes. If someone has 
power, let him strike back!’ In the same way, this master also, who has reached the 
other side of the ocean of excessive knowledge about Mathematics, Time-reckoning 
and the Sphere, having entered an assembly of wise men, has declared: ‘Āryabhat. a 
tells three: Mathematics, Time-reckoning, the Sphere.’   3     

 Within this hostile atmosphere, Bhāskara’s commentary attempts to 
convince the reader of the coherence and validity of Āryabhat. a’s treatise. 
To this end, the commentary dispels ‘doubts’ ( sandeha ) that arise in the 
explanations of Āryabhat. a’s verses. Th us, the analysis provides refutations 
( parihāra ) to objections and establishes ( sādhya, siddha ) Bhāskara’s read-
ings of Āryabhat. a’s verse. Th is commentary presents mainly syntactical and 
grammatical discussions which debate the interpretation of a given word in 
the treatise. More oft en than not, the discussion of the meaning and use of 
a word defi nes and characterizes the mathematical objects in question. (Are 
squares all equal sided quadrilaterals? Do all triangles have equally halving 

     3           . . . yastejasvī purus. ah.  samares. u nikr. s.   t.āsitejovitānacchuritabāhuś śatrusaṅghātam prakāśam. 
praviśya praharan evam āha ‘ayam asāv udito ’ditikulaprasūtah.  samares. v anivāritavīryo 
yajñadattah.  praharati / yadi kasyacicchaktih.  pratipraharatvi’ti / evam asāo apy ācāryo   
 gan. itakālakriyāgolātiśayajñānodadhipārago vitsabhām avagāhya ‘āryabhat. as trīn. i gadati 
gan. itam.  kālakriyām.  golam’ iti uktavān / .   (Shukla  1976 : 5).   

    Unless otherwise specifi ed, the text follows the critical edition published in Shukla  1976 . 
I would like to thank T. Kusuba, T. Hayashi and M. Yano for the help they provided in 
translating this paragraph, during my stay in Kyoto in 1997. 
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heights? etc.)  4    Bhāskara’s commentary adopts technical words, and the spe-
cialized readings of the verses show that the Ab cannot be understood in a 
straightforward way. Th e verses need interpretation and the interpretation 
should be the correct one. 

 Th e search for the proper interpretation thus defi nes the commenta-
tor’s task. Th e importance of interpretation becomes especially clear when 
Bhāskara criticizes Prabhākara’s exegesis of the Ab.  5    For instance, in his 
comment on the rule for the computation of sines, Bhāskara explains 
that the expression  samavr. tta  refers to a circle, not a disk as Prabhakara 
understood it.  6    More crucially, through his understanding of the word  agra  
(remainder) as a synonym of  saṅkhyā  (number), Bhāskara provides a new 
interpretation of the rule given in BAB.2.32–33:  7    the verse giving the rule 
for a ‘pulverizer with remainder’ ( sāgrakut. t. akāra ) can now be read as giving 
a rule for the ‘pulverizer without remainder’ ( niragrakut. t. akāra ).  8    Th is pecu-
liar reading of the word  agra  is an extreme example of the technical and 
inventive devices commentators use for their interpretations. 

 Outside the syntactical discussion of a verse, Bhāskara sometimes 
considers the mathematical content of the procedure directly. Defending 
Āryabhat. a’s approximation of  π  against those of competing schools, he 
undertakes a refutation ( parihāra ) of the jaina value of  √—10    ( daśakaran. ī ), 
claiming that the value rests only on tradition and not on proof. 

 In this case also, it is just a tradition ( āgama ) and not a proof ( upapatti ) . . . But this 
also should be established ( sādhya ).  9      

 Th e above statement should not induce a romantic vision of an enlight-
ened Bhāskara using reason to overthrow prejudices transmitted through 
(religious) traditions. Although here he criticizes the reasoning which cites 
‘tradition’ to justify a rule, in other cases Bhāskara accepts this very argu-
ment as evidence of the correctness of a mathematical statement.  10    Th e 
question nonetheless is raised: Bhāskara argues that the procedures of the 
 Āryabhat. īya  are correct, but how does Bhāskara ‘establish’ a rule? Moreover, 
what does Bhāskara consider a ‘proof ’? Th e answer to these questions 

     4      Keller  2006 : Introduction. 
     5      Keller  2006 ; BAB.2.11; BAB.2.12. 
     6      Shukla  1976 : 77; Keller  2006 :  i : 57. 
     7      Shukla  1976 : 77; Keller  2006 : 132–3. 
     8      Both rules are mathematically equivalent but do not follow the same pattern. Furthermore, the 

second reading also involves omitting the last quarter of verse 33. See Keller  2006 :  ii , Appendix 
on BAB.2.32–3. 

     9         atrāpi kevala evāgamah.  naivopapatih.  / . . . cetad api sādyam eva .  (Shukla  1976 : 72).   
  10      Keller  2006 : Introduction. 
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 presents diffi  culties. Indeed, the rationale behind the fragmentary argu-
ments that BAB sets forth is at times hard to grasp. Th e aim of this chapter 
is to show that two specifi c commentarial techniques, the ‘reinterpretation’ 
of procedures and establishing an alternative independent procedure, were 
used to ground the Ab’s rules. To establish this point, a characterization of 
these commentarial techniques will be necessary. Th is characterization will 
be followed by a description of the diff erent ways Bhāskara explicitly tries 
to establish the mathematical validity of Ab’s rules.   

 2     ‘Reinterpretation’ of procedures 

 Bhāskara, in an attempt to elucidate Āryabhat. a’s rules, gives interpreta-
tions of Āryabhat. a’s verses. He thus makes clear what are the diff erent steps 
required to carry out a procedure, or the word used to defi ne a mathematical 
object. In certain cases, having put forth such an interpretation, Bhāskara 
reinvests his understanding of the rule with an additional meaning. Th is 
is what I call a ‘reinterpretation’. A ‘reinterpretation’ does not invalidate a 
previous interpretation. It is somehow like the poetic process of  śles.a  which 
reads several meanings in the same compound, creating thus a poetic aura. 
A ‘reinterpretation’ adds a layer of meaning, gives depth to the interpreta-
tion of a rule. A ‘reinterpretation’ provides a new mathematical context for 
the diff erent steps of a procedure which is not modifi ed. Another name for 
this commentarial technique could be ‘rereading’ a procedure. 

 Th e  next section  describes how an ‘explanation’, a ‘proof ’ or a ‘verifi ca-
tion’ consisted of providing either an alternative independent procedure 
or a ‘reinterpretation’ of a given procedure via the Rule of Th ree or the 
Pythagorean theorem. In both cases, these arguments would provide a 
mathematical justifi cation for what alone could appear as an arbitrary suc-
cession of operations. Before examining ‘reinterpretations’ of procedures 
in Bhāskara’s commentary, the expression of the Rule of Th ree and the 
Pythagorean Th eorem in BAB must be explained.  

 2.1     Rule of Th ree 

 Th e Rule of Th ree ( trairāśika   11   ) appears in verse Ab.2.26. 

 Now, when one has multiplied that fruit quantity of the Rule of Th ree 
  by the desire quantity| 

  11      For a general overview on the Rule of Th ree in India see Sarma  2002 . 
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 Th e quotient of that divided by the measure should be this fruit of desire||  12     

In other words, if  M  (the measure) produces a fruit  F M  , and  D  is a desire 
for which the fruit  F D   is sought, the verse may be expressed in modern 
algebraic notation as:  

  F
F D

MD
M=

×
 (1)    

 Obviously, this expression can also be understood as a statement that the 
ratios are equal:  

  F

D

F

M
D M=  (2)    

 Th e procedure given in the verse provides an order for the diff erent 
operations to be carried out. First, the desire is multiplied by the fruit. Next, 
the result is divided by the measure. Th is order of operations causes the 
procedure to appear as an arbitrary set of operations  .13    Bhāskara provides a 
standard expression to defi ne the kind of problem which the Rule of Th ree 
solves. When the commentator thinks that a situation involves propor-
tional quantities and thus the Rule of Th ree is (or can be) applied, he brings 
this fact to light by using a verbal formulation ( vāco yukti ) of the Rule of 
Th ree. Th is verbal formulation is a syntactically rigid question which reads 
as follows: 

 If the measure produces the fruit, then with the desire what is produced? Th e fruit 
of desire is produced.   

 Th is question, when it appears, shows that Bhāskara thinks that the Rule of 
Th ree can be applied. I believe that for Bhāskara the Rule of Th ree invokes 
proportionality.   

 2.2     Th e Pythagorean Th eorem 

 Bhāskara, like other medieval Sanskrit mathematicians, does not use the 
concept of angles. In his trigonometry, Bhāskara uses lengths of arcs. As 
for right-angled triangles, Bhāskara distinguishes them from ordinary 
triangles by giving to each side a specifi c name. Whereas scalene, isosceles 

  12         trairāśikaphalarāśim.  tam athecchārāśinā hatam.  kr. tvā| 
labdham.  pramān. abhajitam.  tasmād icchāphalam idam.  syāt||    (Shukla  1976 : 115–223).   

  13      If the division was made fi rst (resulting in the ‘fruit’ of one measure) and then the 
multiplication, the computation would have had a step-by-step meaning, but this is not the 
order adopted by Ab. 
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and equilateral triangles have sides ( aśra , for all sides), fl anks ( pārśva , a 
synonym) and sometimes earths ( bhū , for the base), right-angled triangles 
have a ‘base’ ( bhujā ), an ‘upright side’ ( kot. i ) and a ‘hypotenuse’ ( karn. a ), 
as shown in  Figure 14.1 . In the fi rst half of Ab.2.17, Bhāskara states the 
Pythagorean Th eorem: 

 Th at which precisely is the square of the base and the square of the upright side is 
the square of the hypotenuse.  14      

 Th erefore, in order to indicate that a situation involves a right-angled 
triangle, Bhāskara gives the names of the sides of a right-angled triangle 
to the segments concerned by his reasoning. Two examples of Bhāskara’s 
‘reinterpretation’ will demonstrate how he employed this theorem.    

 2.3     ‘Reinterpretation’ with gnomons 

 Th e section devoted to gnomons ( śaṅku ) contains two illuminating cases.  

 2.3.1     A gnomon and a source of light 

 Th e standard situation is as follows: a gnomon ( śaṅku , DE) casts a shadow 
(EC), produced by a source of light (A), as illustrated in  Figure 14.2 .  

 First, consider the procedure given in Ab.2.15: 

 Th e distance between the gnomon and the base, with <the height of> the gnomon 
for multiplier, divided by the diff erence of the <heights of the> gnomon and the 
base.| 

  14         yaś caiva bhujāvargah.  kot. īvargaś ca karn. avargah.  sah.     (Shukla  1976 : 96).   

 Figure 14.1      Names of the sides of a right-angled triangle.    

bhujā

karn· a
kot·i
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 Its computation should be known indeed as the shadow of the gnomon 〈measured〉 
from its foot.||  15      

 Th is procedure involves a multiplication and a division. In modern alge-
braic notation:  

  EC BE DE
AF

= ×     

 Th e procedure given in the verse appears to be an arbitrary set of opera-
tions. Bhāskara begins with a general gloss. Th en, as in all his verse com-
mentaries, Bhāskara’s commentary provides a list of solved examples. Th ese 
examples have a standard structure: fi rst comes a versifi ed problem, then a 
‘setting down’ ( nyāsah.  ) section, and fi nally a resolution ( karan. a ). 

 Th us, in his ‘reinterpretation’ of the above procedure aft er a solved 
example, Bhāskara writes: 

 Th is computation is the Rule of Th ree. How? If from the top of the base which is 
greater than the gnomon [AF], the size of the space between the gnomon and the 
base, which is a shadow, [FD = BE] is obtained, then, what is obtained with the 
gnomon [DE]? Th e shadow [EC] is obtained  .16      

  15         śaṅkugun. am.   śaṅkubhujāvivaram.   śaṅkubhujayor viśes. ahr. tam|  
  yal labdam.   sā chāyā jñeyā śaṅkoh.  svamūlād hi||    (Shukla  1976 : 90).   

 Figure 14.2      A schematized gnomon and light.    
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F
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D

  16          etatkarma trairāśikam/ katham ? saṅkuto ’dhikāyā uparibhujāyā yadi śaṅkubhujānt-
arālapramān.    am.   chāyā labhyate tadā śaṅkunā keti chāyā labhyate/  (Shukla  1976 : 92.)   
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 Th e standard formulation of the Rule of Th ree, applied to the 
similar triangles AFD and DEC, can be recognized here. Th e standard 
expression of the Rule of Th ree provides the proportional elements on 
which the computation is based. Here the rule indicates that the ratio of 
AF to FD is equal to the ratio of DE to EC. Th e ‘reinterpretation’ of the 
rule thus gives the arbitrary set of operations a mathematical signifi cance. 
Rather than just a list of operations, the rule in Ab.2.15 becomes a Rule of 
Th ree.   

 2.3.2     A gnomon in relation to the celestial sphere 

 In the previous commented verse (BAB.2.14), Bhāskara sets out two proce-
dures. Both rest on the proportionality of the right-angled triangle formed 
by the gnomon and its midday shadow with the right-angled triangle 
composed by the Rsine of the altitude and the zenithal distance. In the 
present example, one procedure uses only the Rule of Th ree, while the other 
uses the Rule of Th ree with the Pythagorean Th eorem. Both procedures 
compute the same results. 

 Consider  Figure 14.3 . Here, GO represents a gnomon and OC indicates 
its midday shadow. Th e circle of radius OSu (Su symbolizing the sun) rep-
resents the celestial meridian. Th e radius OSu is thus equal to the radius 
of the celestial sphere. S′u designates the projection of the sun onto the 
horizon. Th e segment SuS′u illustrates the Rsine of altitude. Bhāskara I 
notes that the triangle SuS′uO is similar to GOC. Th erefore the segment 
S′uO (that is, the Rsine of the zenithal distance) is proportional to the 
shadow of the gnomon at noon and the Rsine of the altitude is propor-
tional to the length of the gnomon. Th is proportionality is further illus-
trated in  Figure 14.4 .   

 In modern algebraic notation,  

  SuS u
GO

S uO
OC

SuO
GC

′
=

′
=     

 Th e mathematical key to this situation is the relationship between the 
celestial sphere and the plane occupied by the gnomon, which Bhāskara 
and Āryabhat. a call ‘one’s own circle’ ( svavr. tta ). Th is relationship is high-
lighted here by a set of puns. Th us, the gnomon and the Rsine of the alti-
tude have the same name ( śaṅku ), as do the shadow of the gnomon and 
the Rsine of zenith distance ( chāya ). GC is the ‘half-diameter of one’s own 
circle’. 
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 Bhāskara states this relationship by considering the Rule of Th ree:  17    

 In order to establish the Rule of Th ree – ‘If for the half-diameter of one’s own circle 
both the gnomon and the shadow 〈are obtained〉, then for the half-diameter of the 
〈celestial〉 sphere, what are the two 〈quantities obtained〉?’ In that way the Rsine of 
altitude and the Rsine of the zenith distance are obtained.   

 He also adds:  18    

 Precisely these two [i.e. the Rsine of the sun’s altitude and the Rsine of the sun’s 
zenith distance] on an equinoctial day are said to be the Rsine of colatitude 
( avalambaka ) and the Rsine of the latitude ( aks. ajyā ).   

 Indeed, as illustrated in  Figure 14.5 , on the equinoxes the sun is on the 
celestial equator. At noon, the sun occupies the intersection of the celestial 
equator and the celestial meridian. At that moment, the zenithal distance 
 z  equals the latitude of the gnomon ( φ ) and the altitude ( a ) becomes the 
co-latitude (90  − φ˚ ). Once again, the similarity of SuS ′ uO and OGC is 
underlined by a certain number of puns. Here, the Rsine of latitude (SuSu ′ ) 
is called ‘perpendicular’ ( avalambaka ).  

  18         tāv eva vis. uvati avalambakāks. ajye ity ucyete/  (Shukla  1976 : 89).   

  17          trairāśikaprasiddhyartham – yady asya svavr. ttavis. kambhārdhasya ete śan.    kuc chāye tadā gola-
vis. kambhārdhasya ke iti śan.    kuc chāye labhyete  (Shukla  1976 : 89).   

 Figure 14.3      Proportional astronomical triangles.    
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 Now, Bhāskara considers an example for an equinox in which OG = 13, 
OC = 5 and the radius of the celestial sphere (SuO) is the customary 1348. 
Bhāskara writes:  19    

 When computing the Rsine of latitude ( aks. ajyā ) the Rule of Th ree is set down: 
13, 5, 3438. What is obtained is the Rsine of latitude, 1322 . 20    Th at is the base 
( bhujā ) the half-diameter is the hypotenuse ( karn.    a) ; the root of the diff erence of 
the squares of the base and the hypotenuse is the Rsine of co-latitude ( avalam-
baka ), 3174.  21      

 In this case, Bhāskara uses the fact that the triangles are both right and 
similar. Bhāskara then uses this similarity to compute SuS ′ u. Bhāskara 

 Figure 14.4      Altitude and zenith.    
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  19         aks. ajyā “nayane trairāśikasthāpanā- 13/ 5/ 3438/ labdham aks. ajyā 1322/ es. ā bhujā, vyāsārdham. 
karn.    ah. , bhujākarn.    avargaviśes. amūlam avalambakah.      3174 . (Shukla  1976 : 90).   

  20      Th is is an approximate value. For more on this value, see Keller  2006 : BAB.2.14. 
  21      Th is value is also an approximation. 
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employs the Pythagorean Th eorem to compute OS ′ u. In order to identify 
the right-angled triangle, Bhāskara renames the Rsine of latitude ( aksajyā , 
SuS ′ u) as the base of a right-angled triangle ( bhujā ) and he identifi es the 
radius of the celestial sphere as the hypotenuse. Th us, the Rsine is identi-
fi ed with the upright side of a right-angled triangle. Th is identifi cation 
implicitly explains how the computation is carried out. However, Bhāskara 
immediately adds:  22    

 With the Rule of Th ree also 13, 12, 3438; what has been obtained is the Rsine of the 
colatitude, 3174.  23      

 In this way, Bhāskara again computes OS ′ u by using the similarity 
of OSuSu ′  and OGC. Bhāskara thus computes the same value twice, using 
two diff erent methods. Th e most likely explanation is that he verifi es 
the results obtained with one algorithm by using another independent 
process. 

 Figure 14.5      Latitude and co-latitude on an equinoctial day.    
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  22         trairāśikenāpi 13/ 12/ 3438/ labdham avalambakah.  3174/  (Shukla  1976 : 90).   
  23      Th is value is an approximation again. 
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 Th e mathematical key to both these computations is the prior relation-
ship between the gnomon and the celestial sphere. A syntactical connection 
establishes the relationship between these two spaces. Th e invocation of 
the Rule of Th ree begins with a standard question. Th e naming of two of 
its segments identifi es a right-angled triangle. Th is identifi cation not only 
indicates one of the mathematical properties underpinning the procedure 
but also maps the specifi c astronomical problem onto a more general and 
abstract mathematical situation. (Th at is, Rsines of altitudes and zenithal 
distances become the legs of a simple right-angled triangle.) Since this 
mathematical interpretation is linked to a set of operations (fi rst multipli-
cation and division, then squaring the lengths with subsequent additions 
or subtractions of the results), the unexplained steps of the procedure are 
given a mathematical grounding that may serve as a justifi cation of the 
algorithm itself. 

 Th is analysis thus brings to light two kinds of reasoning: the confi rma-
tion of a result by using two independent procedures and the mathematical 
grounding of a set of operations via their ‘reinterpretation’ according to the 
Rule of Th ree and/or the Pythagorean Th eorem. Th ese kinds of mathemati-
cal reasoning are also found in the parts of BAB which explicitly have a 
persuasive aim, attempting to convince the reader that the algorithms of 
the Ab are correct.     

 3     Explanations, verifi cations and proofs 

 Bhāskara uses specifi c names when referring to a number of arguments: 
‘explanations’, ‘proofs’ ( upapatti ) and ‘verifi cations’ ( pratyāyakaran. a ). Th ese 
arguments do not appear systematically in each verse commentary and – as 
will be seen below – are always fragmentary. Th e following description of 
explanations, proofs and verifi cations will attempt to highlight how they are 
structured and the diff erent interpretations they can be subject to.  

 3.1     Explanations 

 Bhāskara’s commentary on verse 8 of the mathematical chapter of the Ab 
presents an example of explanation. Verse 8 describes two computations 
concerning a trapezoid (see  Figure 14.6 ). Th e fi rst calculation evaluates 
the length of two segments ( svapātalekha , EF and FG) of the height of a 
trapezoid. In this case, the height is bisected at the point of intersection 
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for the diagonals. Th e procedure is made of a multiplication followed by a 
division:  24    

 Ab.2.8. Th e two sides, multiplied by the height 〈and〉 divided by their sum, are the 
‘two lines on their own fallings’.|  

 When the height is multiplied by half the sum of both widths, one will know the 
area.||    

 In other words, with the labels used in  Figure 14.6 , we have:  

  
EF AB EG

AB CD

FG CD EG
AB CD

=
+

=
+

×

×

;

.
    

 Likewise, the area  𝒜  is:  

  A = +EG (AB CD)
2

×     

 On the  fi rst part  of the verse, Bhāskara comments:  25    

 Th e size of the ‘lines on their own fallings’ should be explained ( pratipādayitavya ) with 
a computation of the Rule of Th ree on a fi gure drawn by 〈a person〉 properly instructed. 
Th en, by means of just the Rule of Th ree with both sides, a computation of 〈the lines 
whose top is〉 the intersection of the diagonals and a perpendicular 〈is performed〉.   

 Th is explanation consists of ‘reinterpreting’ the procedure – which is a 
multiplication followed by a division – according to the Rule of Th ree. Th e 

  24         āyāmagun. e pārśve tadyogahr. te svapātalekhe te|  
  vistarayogārdhagun. e jñeyam.   ks. etraphalam āyāme||    (Shukla  1976 : 63).   

 Figure 14.6      Inner segments and fi elds in a trapezoid.    
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  25         samyagādis. t.ena (rather than samyaganādis. t.ena of the printed edition) ālikhite ks. etre 
svapātalekhāpraman.    am.   trairāśikagan.    itena pratipādayitavyam/ tathā trairāśikenaivobhaya 
pārśve karn.    āvalambakasampātānayanam/    (Shukla  1976 : 63).   
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explanation contains two steps. Th e fi rst step considers the proportionality 
in a diagram, then ‘reinterprets’ the set of operations of the algorithm as the 
application of the Rule of Th ree. As previously, the seemingly arbitrary set 
of operations is endowed with a mathematical meaning. 

 Th e second computation in verse 8 determines the area of the trapezoid. 
As shown in  Figure 14.6 , the area of the trapezoid can be broken into the 
summation of the areas of several triangles. Alternately, the trapezoid can 
be decomposed into a rectangle and two triangles. 

 Although no fi gure is explicitly drawn, Bhāskara seems to have such a 
diagram in mind. Indeed, he seems to refer to such a drawing when he 
writes:  26    

 Here, with a previous rule [Ab.2.6.ab] the area of isosceles and uneven trilaterals 
should be shown/explained ( darśayitavya ). Or, with a rule which will be stated 
[Ab.2.9] the computation of the area of the inner rectangular fi eld 〈should be 
 performed〉;   

 Even though it has not survived, such a fi gure shows how areas can be 
added to give the area of the trapezoid. Th is time, a collection of already 
known procedures, those computing the area of triangles and rectangles, is 
mobilized. We do not know if they are used to ‘reinterpret’ the procedure or 
to establish an alternative independent procedure. Th e procedures of Ab.2.9 
will be analysed below. 

 Both of Bhāskara’s explanations in BAB.2.8 consist of: 

  (1)     an explanation of a diagram, and  
  (2)     either a ‘re-interpretation’ of the procedure or exposing an independent 

alternative procedure. Th is ‘re-interpretation’ either confi rms or veri-
fi es the reasoning by looking at a diagram.    

 Th ree words refer to an explanation:  vyākhyāna ,  pradarśan. a  and 
 pratipādita . Th e word  vyākhyāna  indicates that the commentary gives an 
explanation, but it is also used for an argument connected with a diagram:  27    

 Or else, all the procedures 〈used〉 in the production of chords are in the realm of 
a diagram, and a diagram is intelligible 〈only〉 with an explanation ( vyakhyāna ). 
Th erefore it has not  28    been put forth ( pratipādita ) 〈by Āryabhat. a in the  Āryabhat. īya〉 .   

  26         pūrvasūtren.    ātra dvisamavis. amatryaśraks. etraphalam.   darśayitavyam/ 
vaks. yamān.    asūtre-sn.    āntarāyatacaturaśraks. etraphalānayanam (. . .) vā/  (Shukla  1976 : 63).   

  27       athavā jyotpattau yatkaran. am.   tatsarvam.   chedyakavis. ayam.  , chedyakam.   ca vyākhyānagamyamiti 
[na] pratipāditam/  (Shukla  1976 : 78). 

  28       na  has been added by the editor, K. S. Shukla, and is not found in the manuscripts. Another 
possible interpretation of the sentence reads: ‘Th erefore it has been put forth’ 〈by Bhāskara in 
his commentary〉. 
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 Note that this passage emphasizes that explanations belong to the genre of 
commentary and, at least according to Bhāskara, should not be exposed in 
a treatise. 

 Th e word  pradarśan. a  is derived from the verbal root  dr. s .- , ‘to see’. It has 
a similar range of meaning as the English verb ‘to show’. It is oft en hard 
to distinguish if the word refers to the visual part of an explanation or to 
the entirety of the explanation. For instance, in BAB.2.11, Bhāskara uses a 
diagram and writes:  29    

 In the fi eld drawn in this way all is to be shown/explained ( pradarśayitavya ).   

 Finally, the word  pratipādita  is more technical and straightforward. It 
commonly appears in lists of solved examples found in most of the com-
mented verses in the mathematical part of BAB. 

 In the illustrations of explanations presented above, the commentator 
‘reinterprets’ geometrical procedures according to the Rule of Th ree or the 
Pythagorean Th eorem. Only geometrical procedures receive such argu-
ments. Each time, the commentary omits a diagram to which the text seem-
ingly refers. Among the geometrical processes, explanations are ‘seen’, as will 
be seen in the only example from the BAB in which the word ‘proof ’ occurs.   

 3.2     Th e only two occurrences of the word ‘proof ’ 

 Th e Sanskrit word  upapatti  refers directly to a logical argument. Th is word 
is used twice in Bhāskara’s commentary, as noted by Takao Hayashi.  30    Th e 
gender of this word is feminine and it is derived from the verbal root  upa-
PAD- , meaning ‘to reach’. Th us, an  upapatti  is literally ‘what is reached’ 
and has consequently been translated as ‘proof ’. In both instances, some 
ambiguity surrounds this word, and the meaning of the word is not certain. 

 One occurrence has been quoted above, wherein proofs ( upapatti ) are 
described as opposed to tradition. Th e other instance refers to the reason-
ing whereby the height of a regular tetrahedron is determined from its 
sides. In this case, Bhāskara understands Āryabhat. a’s rule in the second half 
of verse 6 of the mathematical chapter as the computation of the volume of 
a regular tetrahedron. Such a situation is described in  Figure 14.7 .  

 Given a regular tetrahedron ABCD, AH is the line through A perpen-
dicular to the plane defi ned by the triangle BDC. AH is called the ‘upward 
side’ ( ūrdhvabhujā ). AC is called  karn. a  (literally, ‘ear’) because it is the 

  29       evam ālikhite ks. etre sarvam.   pradarśayitavyam  (Shukla  1976 : 79). 
  30      H1995: 75–6. 



502 agathe keller

hypotenuse of AHC. Bhāskara explains how to compute the upright side by 
using the Pythagorean Th eorem and the Rule of Th ree. Th e determination 
of CH, from which the upright side AH may be computed, rests upon the 
proportional properties of similar triangles, illustrated in  Figure 14.8 . Th e 
triangles BB ′ C and B ′ CH are similar:  

  BB : CB = CB : CH.′ ′      

 From this relationship it is known that:  

  CH CB CB
BB

.
′

′
    

 Bhāskara expressed this relationship as the Rule of Th ree. Th e text does 
not give a precise argument, but it alludes to the properties as being clear 
from a diagram. It is in this context that the word  upapatti  appears:  31    

 Figure 14.7      An equilateral pyramid with a triangular base.    

B

H

A

C

D

  31       trairāśikopapattipradarśanārtham.     ks. etranyāsah.  – (Shukla  1976 : 59). 
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 In order to show the proof ( upapatti ) of 〈that〉 Rule of Th ree, a fi eld is set down.   

 Th e argument implied by this word depends on the diagram. As in the 
case of the explanations, the proof must have been presented orally. Th is 
situation diff ers from the acts of ‘reinterpretation’ seen above. In the present 
case, an argument is created, and there is no pre-existing algorithm to 
‘reinterpret’. However, the foundations of this new argument are set out in 
a diagram. Furthermore, the procedure used is the Rule of Th ree, as in the 
‘explanations’ seen above. Another type of argument concerns the correct-
ness of algorithms: verifi cation.   

 3.3     Verifi cation 

 Verifi cations are distinguished from explanations and proofs by their 
name,  pratyayakaran. a . Indeed,  pratyaya  has an etymological root in 
a verb meaning ‘to come back’, which has connotations of conviction. 
 Pratyayakaran. a  thus means ‘enabling to come back’ or ‘producing convic-
tion’. Historians of Indian mathematics usually understand this word as a 
type of verifi cation and translate it accordingly.  32    

 A verifi cation resembles an explanation in that a verifi cation ‘reinterprets’ 
a given procedure according to another rule and establishes a mathemati-
cal grounding. Th e arguments that the commentator labels ‘verifi cations’ 
sometimes present diffi  culties, and currently our understanding of them 
is not at all certain. Below are set out several hypotheses about how these 
verifi cations can be understood.  

 Figure 14.8      Th e proportional properties of similar triangles.    

B

D

H

CB′

C′

  32      H1995: 73–4. 
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 3.3.1     Verifi cation of an arithmetical computation 

 Bhāskara states a verifi cation by the Rule of Five for the rule given in 
Ab.2.25. Āryabhat. a states the rule in Ab.2.25 as follows:  33    

 Th e interest on the capital, together with the interest 〈on the interest〉, with the time 
and capital for multiplier, increased by the square of half the capital| 
 Th e square root of that, decreased by half the capital and divided by the time, is the 
interest on one’s own capital||   

 Th is passage can be formalized as follows. Let  m  ( mūla ) be capital; let 
 p  1  ( phala ) be the interest on  m  during a unit of time,  k  1  = 1 ( kāla ), usually 
a month. Let  p  2  be the interest on  p  1  at the same rate for a period of time 
 k  2 . If  p  1  +  p  2 ,  m , and  k  2  are known, the rule can be expressed in modern 
 mathematical notation as:  

  p
mk p p m m

k1

2 1 2

2

2

2 2=
+( ) + ( ) −

    .

 Th is rule is derived from a constant ratio:  

  m
p

p

p
k

1

1

2
2 .=     

 Th e Rule of Five, described in BAB.2.26–27.ab, rests on the same ratio 
as the rule given in Ab.2.25. In the former instance though,  k  1  may be a 
number other than 1:  

  m
p

k
p

p
k

1
1

1

2
2 .=     

 Th e Rule of Five indicates an expression equal in value to  p  2 :  

  p
p k

mk2
1
2

2

1

=     

 Th e Rule of Five may therefore be used in the opposite direction to fi nd a 
value for  p  1 . 

 In BAB.2.25 Bhāskara gives an example:  34    

  33         mūlaphalam.   saphalam.   kālamūlagun. am ardhamūlakr. tiyuktam|  
  tanmūlam.   mūlārdhonam.   kālahr. tam.   svamūlaphalam||  (Shukla  1976 : 114).   

  34         jānāmi śatasya phalam.  na ca kintu śatasya yatphalam.  saphalam | 
māsaiś     caturbhir  āptam.  s. ad.  vada vr. ddhim.  śatasya māsotthām|| (Shukla 1976: 114).    
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 1. I do not know the 〈monthly-〉 interest on a hundred. However, the 〈monthly-〉 
〈interest on a hundred increased by the interest〉| 
 Obtained in four months is six. State the interest of a hundred produced within a 
month||   

 Th is example states a case in which:  

  m = 100 
 k2 = 4 
 p1 + p2 = 6    

 By the procedure given in Ab.2.25, the value of  p  1  is 5. 
Bhāskara then adds:  35    

 Verifi cation ( pratyayakaran.    a ) with the Rule of Five: ‘If the monthly interest 
( vr. ddhi)   36    on a hundred is fi ve, then what is the interest of the interest [of value 
( dhana )-fi ve] on a hundred, in four months?’ 

Setting down: 
1

100
5

4
5
0

 Th e result is one. Th is increased by the  

 〈monthly〉 interest on the capital is six  rūpa s, 6.   

 Simply stated, the verifi cation consists of knowing  m ,  p  1  and  k  2 , fi nding 
 p  2  and confi rming that its value increased by  p  1  will give the same value for 
 p  1  +  p  2  as stated in the problem. 

 Th e Rule of Five, as seen above, returns the value of  p  2 . Th is procedure 
does not deliver the same result but gives a method of inverting the pro-
cedure to check independently that the result makes sense. In this case, an 
independent procedure is established. Th e use of the Rule of Five, which 
Bhāskara describes as a combination of two Rules of Th ree, also imbues the 
computation with a mathematical basis in proportionality.    

 3.3.2     Verifi cation of the area of plane fi gures 

 Bhāskara interprets the fi rst half of Ab.2.9 as a way to verify procedures for 
areas given by Āryabhat. a in the previous verses. 

  35        pratyayakaran. am pañcarāśikena-yadi śatasya māsikī vr. ddhin pañca tadā caturbhir māsaih.  

śatavr. ddheh.  [pañcadhanasya] kā vr. ddhih.  iti/ nyāsar  -  
1

100
5

4
5
0

 labdham.  1 / etatsahitā 
śatavr. ddhih.  s. ad.  rūpān. i 6/ (Shukla 1976: 114–15).       

  36      From now on, unless otherwise stated this is the word translated as ‘interest’. 
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 For all fi elds, when one has acquired the two sides, the area is their product |  37      

 Bhāskara endows the verse with the goal of ‘verifi cation’ – a goal nowhere 
explicitly appearing in the verse itself. Two steps can be distinguished in the 
verifi cations of this verse commentary, each corresponding to a diagram. 
Th e fi rst step constructs a diagram of the fi gure for which an area is veri-
fi ed. Th e length and width of a rectangle with the same area as the fi gure 
are identifi ed. Th is ‘length’ and ‘width’ are usually values from Āryabhat. a’s 
procedure for which verifi cation is sought. For instance, to verify the area 
of a triangle, the length of the corresponding rectangle is identifi ed as the 
height of the triangle, while the width of the rectangle is half the base of the 
triangle. Precisely, the area of a triangle is given elsewhere by Ab (in the fi rst 
half of verse 6) as the product of half the base by the height of a triangle. 
Th e second step of the argument presents a diagram of the rectangle and 
computes the multiplication. 

 How should this argument be understood? According to one means of 
understanding, this argument is a formal interpretation. Th e reasoning 
would consist of considering the rule one seeks to verify as the multiplica-
tion of two quantities. Each quantity is then interpreted geometrically as 
either the length or width of a rectangle with the same area as the initial 
fi gure. In this way, Bhāskara calculates the length and height of the rectan-
gle, as required by verse 9. 

 Another way of understanding the argument begins with the fact that 
the verifi cation for a given fi gure  produces  a rectangle of the same area as 
the given fi gure. Th e fact that all fi gures have a rectangle with the same 
area would then become an implicit assumption of Sanskrit plane geom-
etry. Takao Hayashi has interpreted this argument in such a manner.  38    Th e 
reasoning would produce a rectangle and verify that its area is equal to the 
area of the fi gure. 

 A third approach relies on the ‘setting down’ parts which contain dia-
grams. Such a verifi cation consists of  constructing  a rectangle with the same 
area from a given fi gure. For instance, in the second step of the verifi ca-
tion of the area of a triangle, Bhāskara specifi es that when the parts of the 
area of such a triangle are rearranged ( vyasta ), they produce the rectangle 
which is drawn. Th e construction of a rectangle from the original fi gure 
is not described in Bhāskara’s commentary. However, such constructions 
could have been known, as shown by the methods exposed in BAB.2.13. 
Furthermore, this process recalls the algorithms from the  śulbasūtras , the 

  37       sarves .ām .  ks .etrān. ām .  prasādhya pārśve phalam .  tadabhyāsah. |  (Shukla  1976 : 66). 
  38      H1995: 73. 
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earliest known texts of Sanskrit geometry. Th ese algorithms produce a con-
struction which, although not described in the text, corresponds with the 
discussion contained in the text. With just such a diagram, the argument in 
the text would arithmetically verify that the construction is correct. 

 Th ese three interpretations can be combined if a verifi cation is allowed to 
be simultaneously geometrical and arithmetical. Bhāskara relies on a geo-
metrical strategy to produce a rectangle with the appropriate area, showing 
that he knows how to construct the corresponding rectangle from the 
initial fi gure. Because the construction is obvious, it would not be detailed, 
and only the lengths of the rectangle would be given. From an arithmeti-
cal perspective, this ‘reinterpretation’ provides a new understanding of the 
rule given by Āryabhat. a. Th rough his arithmetical ‘verifi cation’, Bhāskara 
explains the geometrical verifi cation. Bhāskara explains the link between 
the sides of the initial fi gure and the lengths and widths of the rectangle 
with the same area as the initial fi gure. 

 Regardless of which interpretation is accepted, the verifi cation either 
‘reinterprets’ a fi rst algorithm (BAB.2.9) and produces a new understanding 
of the procedure, or it produces a new procedure that gives the same result 
(BAB.2.25). In either case, the so-called ‘verifi cation’ confi rms the numeri-
cal results and places the procedure in a secure mathematical context. Th us, 
aft er verifi cation, the calculations do not appear to be a set of arbitrary 
steps.    

 Conclusion 

 Th is survey of the BAB has brought to light two kinds of reasonings check-
ing the Ab rules and seeking to convince readers of their validity. One 
argument exhibits an independent alternative procedure. In one case the 
procedure exhibited arrives at the same result as the opposite direction 
 procedure. Th e second type of reasoning, which we have called ‘reinter-
pretation’, uses the Rule of Th ree and the Pythagorean Th eorem to provide 
a new outlook onto the arbitrary steps of the procedure. How should the 
Rule of Th ree and the so-called Pythagorean Th eorem be described in this 
context? Th ey are mathematical tools which enable astronomical situations 
or specifi c problems to be ‘reinterpreted’ as abstract and general cases, 
involving  right-angled triangles and proportionalities. Th e arbitrary steps 
of the procedure are thus given a mathematical explanation. 

 Nonetheless, the methods of reasoning are hard to understand and pin 
down. Th is diffi  culty may arise from their oral nature, of which Bhāskara’s 
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written text preserves only a portion. For instance, the function of diagrams 
in these reasonings still remains mysterious. Further detailed explorations 
of how Sanskrit texts explain, prove and verify mathematical algorithms will 
advance understanding about how the mathematical correctness of algo-
rithms was conceptualized by mathematicians in the Indian  subcontinent.                                              
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 15     Argumentation for state examinations:   
  demonstration in traditional Chinese 
and Vietnamese mathematics    

   Alexei      Volkov      

 Introduction 

 Recently a number of authors have argued, once again, that a historical 
study of mathematical texts conducted without taking into consideration 
the circumstances of their production and use could be fundamentally 
fl awed. For instance, E. Robson claimed that a large number of cunei-
form Babylonian mathematical tablets were produced in the process of 
mathematical instruction, either by students or instructors, and therefore 
their interpretation as ‘purely mathematical texts’ would be inadequate.  1    
Robson’s taking into consideration the educational function of the cunei-
form mathematical tablets provided additional arguments in support of a 
somewhat unorthodox interpretation of the mathematical tablet Plimpton 
322, hitherto believed to be one of the best-studied Babylonian mathemati-
cal texts (this interpretation was originally suggested by Bruins in 1940s 
and 1950s and reiterated by other authors in the early 1980s). 

 In conventional historiography of Chinese mathematics the mathemati-
cal treatises compiled prior to the end of the fi rst millennium  ce  were oft en 
tacitly assumed to be mathematical texts  per se  rather than mathematical 
textbooks; this assumption to a large extent shaped the approaches to their 
interpretation. Th e characteristic features of textbooks (i.e. texts composed 
as collections of problems oft en containing groups of generic problems and 
detailed descriptions of elementary arithmetical operations without expla-
nations or justifi cations of the provided algorithms) were not allotted much 
attention; instead, historians oft en focused on singular ‘mathematically sig-
nifi cant’ methods and results (such as the calculation of the value of  π  and 
the algorithm for solution of simultaneous linear equations, for instance) 
thus reinforcing the image of the received Chinese mathematical treatises 
as ‘research monographs’ rather than ‘textbooks’. 

 However, even in modern mathematics a research paper can be used 
as teaching material, and, conversely, a mathematical statement from a 

   1      Robson  2001 : 171. 509
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textbook can become the starting point of a professional mathematical 
inquiry. Similarly, it well may be possible that in a given mathematical tra-
dition there was no wall separating texts of the two types from each other, 
and a special investigation of the social circumstances of the use of given 
mathematical texts has to be provided each time in order to avoid histo-
riographic distortions. Unfortunately, even the most outstanding modern 
historians have oft en presented Chinese mathematical treatises as if they 
were research monographs; this approach to Chinese mathematical texts 
is found already in Mikami ( 1913 ) and certainly in Yushkevich ( 1955 ) and 
Needham ( 1959 ), not to mention their numerous Chinese counterparts. An 
attempt to classify the mathematical problems found in Chinese treatises 
was recently made by Martzloff ,  2    yet his classifi cation apparently refl ected 
the seeming heterogeneity of Chinese mathematical treatises as perceived 
by modern historians solely on the basis of the contents of individual 
problems rather than the way in which mathematical treatises containing 
them were actually read and used in traditional China. Presumably, there 
may have existed social settings in which one and the same problem was 
treated as belonging to diff erent categories. It can be demonstrated that the 
majority of the extant treatises of the late fi rst millennium  bce  to the fi rst 
millennium  ce  were used as mathematical textbooks in state educational 
institutions for several centuries,  3    unlike the mathematical treatises of 
the Song (960–1279), Yuan (1279–1368) and Ming (1368–1644) dynas-
ties of which the circumstances of use are oft en unknown. Unfortunately, 
all the attempts to off er a plausible reconstruction of the functioning of 
these texts in educational context have been thwarted by the lack of data 
concerning mathematics instruction in traditional China in the late fi rst to 
early second millennium  ce , and, in particular, by the lack of the original 
examination papers. To circumvent this diffi  culty, in what follows I will use 
   2      Martzloff   1997 : 54 suggests that the mathematical problems in Chinese treatises belonged 

to the four following categories: (1) ‘real problems’ (applicable in real-life situations); (2) 
‘pseudo-real problems’ (‘neither plausible nor directly usable’); (3) ‘recreational problems’; 
(4) ‘speculative or purely mathematical problems’. Only problems of category (2) thus may 
have been used in mathematical instruction, while problems of type (4) represented ‘pure 
mathematics’. Martzloff  himself ( 1997 : 58) played down the applicability of his classifi cation 
when stating that the problems of category (1) also belonged to category (4). 

   3      Th e circumstances of the use of the recently unearthed mathematical treatise  Suan shu 
shu  筭數書 (Writing on computations with counting rods) as well as the mathematical 
treatises and fragments found in Dunhuang caves remain unknown. Here and below I use 
the  pinyin  transliteration of the Chinese characters which nowadays has become a  de facto  
standard in continental European sinology. I use my own translations of the titles of Chinese 
mathematical treatises; for the reader who may be confused by these translations I provide 
a list of them in Appendix II together with the translations of the titles as found in Martzloff  
 1997 . 
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a ‘model examination paper’ found in a nineteenth-century Vietnamese 
 mathematical treatise that turned out to be instrumental in reconstructing 
the role played by the commentaries on mathematical texts in the context 
of institutionalised mathematical instruction in traditional China and 
Vietnam.   

 Mathematics education in traditional China 

 In Western historiography the part played by Chinese mathematics educa-
tion arguably remains underestimated, probably due to a particular stand 
adopted by the nineteenth-century European authors and perpetuated in 
the publications of infl uential historians of the twentieth century. A highly 
negative (as much as inaccurate) evaluation of mathematics education 
in traditional China was off ered by the French sinologist Édouard Biot 
(1803–50) who presented mathematics education in the Mathematical 
College ( Suan xue  筭學) as follows:  4    ‘. . . to call it a “mathematics school” 
would mean to praise too high the studies in this elementary [educational] 
institution’.  5    In this chapter I will not investigate reasons for this surpris-
ingly low evaluation of the mathematical education in China – to do so, one 
probably would need to study the history of the image of China in Europe, 
in particular in France, created by various individuals and institutions 
beginning with the Jesuits.  6    Certainly, at the time when Biot was writing his 
lines, not much was known about the history of Chinese mathematics; Biot 
himself never systematically worked on Chinese mathematics and had only 
a partial access to the original texts.  7    It is interesting to note that Biot (mis-
takenly) believed that the  Jiu zhang suan shu  九章筭術 (Computational 

   4      In this chapter I use both the characters  suan  筭 and  suan  算 even though in modern editions 
of historical materials the former is oft en changed to the latter, since their original meaning, as 
the dictionary  Shuo wen jie zi  說文解字 by Xu Shen 許慎 (55?–149?  ce  ) specifi es, was not the 
same: the character  suan  筭 meant the counting rods, and  suan  算, the operations performed 
with the instrument. In this chapter I use  suan  筭 if it occurred in a title of a book or in a name 
of an institution at least once in an edition of the quoted source. 

   5      ‘. . . le nom d’école des mathématiques donnerait une trop haute idée des études de cet 
établissement élémentaire. . .’ (Biot  1847 : 257,  n. 1 ). In this chapter the translations from 
French and Chinese are mine, unless stated otherwise. 

   6      Biot  1847 : v–ix. 
   7      Biot was familiar with three of the twelve books used for mathematics instruction in 

seventh-century China, namely, with the mathematical treatises  Qi gu suan jing  緝古筭經 
(Computational treatise on the continuation of [traditions of] ancient [mathematicians]) and 
 Sun zi suan jing  孫子筭經 (Computational treatise of Master Sun), as well as the astronomical 
treatise  Zhou bi suan jing  周髀筭經 (Computational treatise on the gnomon of Zhou 
[dynasty]). He was unable to identify correctly the titles of the other treatises (p. 261), and the 
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procedures of nine categories) compiled no later than the fi rst century  ce  
contained the Pascal triangle (referred to by Biot as ‘binomial expansions 
up to the sixth degree’,  8    which could hardly be seen as ‘elementary’, and 
yet argued for the inferiority of the Chinese mathematical treatises. Th e 
following phrase of Biot seemingly explains his reasons: ‘[Th e treatises] 
are collections of problems, the most part of them elementary, with the 
solutions given without demonstrations’.  9    Th e word ‘demonstrations’ might 
make one think that Biot meant a comparison with the European textbooks 
of his time written in ‘Euclidean’ style, as lists of theorems accompanied 
by proofs. Th is conjecture, however, lacks any supporting evidence; on 
the contrary, an anti-Euclidean trend was rather powerful among French 
educators at the moment when Biot was writing his lines, as the following 
quotation shows: 

 Whoever wishing from now on to put geometry within the reach of mind and to 
teach it in a rational way should, I think, present it as we just have seen it [above] 
and remove all that is no more than just a vague expression and pure hassle. Th is 
bothering equipment of defi nitions, principles, axioms, theorems, lemmas, scholia, 
corollaries, should be completely eliminated, as well as all other futile particularities 
[of the same kind], the only eff ect of which is that they put too heavy a burden on 
the [human] spirit and make it tired in its progress.  10      

 Moreover, a cursory analysis of the contemporaneous French arith-
metical textbooks suggests that by ‘demonstrations’ Biot most likely meant 
step-by-step explanations of numerical solutions found in a large number 
of French textbooks published by the mid nineteenth century, and not 

way he approached the documents transpires from his remark on the  Zhou bi suan jing : ‘Th e 
 Zhou bi , which has in China an immense reputation, presents several exact notions concerning 
the movement of the sun and the moon surrounded by strange absurdities’ 
(Le  Tcheou-pei , qui a une réputation immense en Chine, présente, au milieu d’étranges 
absurdités, quelques notions exactes sur les mouvements du soleil et de la lune) (p. 262). 
Moreover, Biot did not have access to the  Jiu zhang suan shu  九章筭術 (Computational 
procedures of nine categories), the cornerstone of the mathematical curriculum, and made his 
judgement solely on the basis of the  Suan fa tong zong  算法統宗 (Summarized fundamentals 
of computational methods, 1592) by Cheng Dawei 程大位 the contents of which he believed to 
be identical with that of the  Jiu zhang suan shu  (  ibid  .). 

   8      Biot  1847 : 262. 
   9      ‘[Les ouvrages] sont des collections de questions qui sont, pour la plupart, élémentaires, 

et dont la solution est donnée sans démonstration’ (Biot  1847 : 262). 
  10      ‘Quiconque voudra désormais mettre la géométrie à la portée des intelligences et l’enseigner 

d’une manière rationnelle, devra, je crois, la présenter telle que nous venons de la voir et en 
écarter tout ce qui n’est que vague expression et pure enfl ure. Cet attirail embarrassant de 
défi nitions, de principes, d’axiomes, de théorèmes, de lemmes, de scolies, de corollaires, doit 
être mis complètement de côté, ainsi que les autres distinctions futiles qui n’ont d’autre eff et que 
de surcharger l’esprit et de le fatiguer dans sa marche’ (Bailly  1857 : 11–12). 
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 deductions performed in an axiomatic system.  11    Th e statement of Biot as 
well as his reasons to claim the inferiority of Chinese textbooks certainly 
deserve a further investigation which, unfortunately, would lead us far 
beyond the scope of the present chapter. 

 A detailed description of mathematics instruction (once again, in the 
framework of a general outline of the state education in China of the Tang 
dynasty) was off ered almost a century later by Robert des Rotours (1891–
1980) who, unlike Biot, avoided any critical remarks concerning the con-
tents and the level of the mathematical instruction in China.  12    Th e critique 
of Chinese mathematics education was back in 1959 when Needham ener-
getically accused Ming Confucian scholarship of ‘confi n[ing] mathematics 
to the back rooms of provincial  yamens ’ and the ‘deadening infl uence’ of the 
examination system.  13    Yet his accusations missed the target, since the Song 
dynasty (960–1279) algebra he praised in the same paragraph had vanished 
some sixty years prior to the beginning of the Ming dynasty (1368–1644) 
and thus certainly well before the introduction of the examination system 
featuring the formalized way of writing examination papers known as 
‘eight-legged essays’ he referred to.  14    Chinese mathematics education was 
once again judged unsatisfactory by U. Libbrecht and J.-C. Martzloff .  15    In 
turn, M.-K. Siu and A. Volkov briefl y addressed the critique of the latter 
authors, yet a full analysis of the role of the state mathematics education 
in traditional China remains a challenging task.  16    In this chapter I will 
not discuss general issues such as whether the state examinations system 
impeded or boosted the development of mathematics in China,  17    but shall 
focus instead on the changes in the interpretation and understanding of 
mathematical treatises which might have happened as the result of their 
embedding into the curriculum of the state educational institutions in the 
seventh century  ce .   

  12      Des Rotours  1932 . 
  13      Needham  1959 : 153–4; esp. see fn.  f  on p. 153. 
  14      Lee  2000 : 143–4. 
  15      Libbrecht  1973 : 5; Martzloff   1997 : 79–82. 
  16      Siu and Volkov  1999 . 
  17      See, among others, interesting observations of Wong  2004  on the role of the ‘Confucian’ 

context in modern mathematics education. 

  11      See, for instance,     P.-N.   Collin   ,   Manuel d’arithmétique démontrée . . . ,  Paris ,  1828   (7th edn), 
which, as its very title suggests, was supposed to provide ‘demonstrations’. Th e format of this 
textbook is similar to that of a large number of contemporaneous French textbooks, such as 
the anonymous  Abrégé d’arithmétique, à l’usage des écoles chrétiennes  (Rouen, 1810),  Abrégé 
d’arithmétique à l’usage des écoles primaires  (Paris, 1850),  Abrégé d’arithmétique décimale. . .  
(Perpignan, 1855, actual printing 1856), among many others. 
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 Chinese mathematical instruction of the fi rst millennium  ce  

 It remains unclear when and where mathematical subjects were introduced 
into the curriculum of Chinese state educational institutions. Sun claims 
that the Mathematical College ( Suan xue  筭學) was established during 
the Northern Zhou dynasty (557–81) in the capital of this state, Chang’an 
(modern Xi’an);  18    the students of the College were called  suan fa sheng  筭
法生, literally, ‘students of computational methods’. Lee reports that he was 
unable to fi nd any evidence confi rming that the Mathematical College was 
indeed established under the Northern Wei dynasty (386–534), as Sun sug-
gested.  19    However, Lee agrees that the subject had been taught offi  cially in 
the North for a long time even before the Northern Wei, in particular by 
offi  cial historians, who excelled in calendar calculation. Th e system of state 
mathematics education established by the early seventh century in China 
united under the rule of the Sui (581–618) and Tang (618–907) dynasties 
comprised two elements: (1) the state mathematics examinations held on a 
regular basis, and (2) the Mathematical College operating under the control 
of the governmental agency called ‘Supervisorate of National Youth’ ( Guo zi 
jian  國子監);  20    the latter was metaphorically referred to by some modern 
authors as the ‘State University’. In Song dynasty China the Mathematical 
College returned under the authority of the Supervisorate of National Youth 
for a relatively short period of time, 1104–1131;  21    the College functioned 
before and aft er this period of time under the auspices of other governmen-
tal agencies.  22    Th is explains why ten out of twelve mathematical treatises 
used as textbooks during the Tang dynasty (618–907) were re-edited and 
reprinted with educational purposes in 1084 and 1200–1213. Mathematical 
courses also constituted a part of the curricula of the future astronomers and 
calendar experts instructed at the courts of the non-Chinese Jin dynasty 金 
(1115–1234), and, later, Yuan 元 (1271–1368).  23    

 Th ere exist several descriptions of the instruction in the Mathematical 
College ( Suan xue  筭學) during the Tang dynasty; the descriptions specify 
the number of students, a list of the textbooks, the periods of time allotted 
to the study of each book, as well as other details.  24    Th e textbooks and the 

  18      Sun  2000 : 138. 
  19      Lee  2000 : 515, n. 230. 
  20      Rendered ‘Directorate of Education’ by Hucker  1985 : 299 and ‘Directorate of National Youth’ 

by Lee  2000 . 
  21      Li  1977 : 271–9; Lee  2000 : 519–20. 
  22      Hucker  1985 : 461. 
  23      Lee  2000 : 520–3. 
  24      Th e descriptions are found in the  Tang liu dian  唐六典 (Th e six codes of the Tang [dynasty]), 

compiled in 738, see  TLD  21: 10b and in the  Xin Tang shu  新唐書 (Th e New History of the 
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duration of their study as specifi ed in the  Xin Tang shu  (Th e New History of 
the Tang [dynasty]) are listed in  Table 15.1 .  

 Th e order of the books in  Table 15.1  is that adopted in the  Xin Tang shu ; 
it remains unclear why the list begins with the treatises  Sun zi  and  Wu 
cao , certainly less important than the treatises under numbers 3, 7 and 9, 
as  suggested by an inspection of their extant versions listed in  Table 15.2  

 Table 15.1.     Th e mathematical curriculum of the Tang State University   

  Number     Title      Duration of study      Programme    a     

   1     Sun zi  孫子 (Master Sun)    One year for two 
treatises together  

  Regular  

   2     Wu cao  五曹 (Five departments)      Regular  
   3     Jiu zhang  九章 (Nine categories)    Th ree years for two 

treatises together  
  Regular  

   4     Hai dao  海島 (Sea island)      Regular  
   5     Zhang Qiujian  張丘建 ( [Master] 

Zhang Qiujian)  
  One year    Regular  

   6     Xiahou Yang  夏侯陽 ([Master] 
Xiahou Yang)  

  One year    Regular  

   7     Zhou bi  周髀 (Th e gnomon of 
the Zhou [dynasty])  

  One year for two 
treatises together  

  Regular  

   8     Wu jing suan  五經筭 
(Computations in the fi ve 
classical books)  

    Regular  

   9     Zhui shu  綴術 (Mending 
procedures) b       

  Four years    Advanced  

  10     Qi gu  緝古 (Continuation [of 
traditions] of ancient 
[mathematicians])  

  Th ree years    Advanced  

  11     Ji yi  記遺 (Records of [things] 
left  behind for posterity)  

  Not specifi ed    Supplementary  

  12     San deng shu  三等數 (Numbers 
of three ranks)  

  Not specifi ed    Supplementary  

Notes:
      a      Th e terms ‘regular’ and ‘advanced’ are not found in the original descriptions; they 

are added for the convenience of the reader. For the explanation of these terms, see 
below.  

    b     Th e meaning of the title remains unclear; see Yan  2000 : 125–32.    
 

Tang [dynasty]), compiled in 1060, see  XTS  44: 2a. Th e lists of the books and the duration of 
their study specifi ed in these two sources are identical. For a translation of the description 
found in the  Xin Tang shu , see des Rotours  1932 : 139–42, 154–5; see also Siu  1995 : 226; Siu and 
Volkov  1999 . 
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Continued

 Table 15.2.     Conventional identifi cation of the Tang dynasty textbooks 
with the extant mathematical treatises   

  Number  
   Treatises listed in 
the   Xin Tang shu   

   Identifi ed as the 
following extant 
treatises      Author   

   Date of 
compilation   

  1     Sun zi  孫子 
(Master Sun)  

   Sun zi suan jing  
孫子筭經 
(Computational 
treatise of 
Master Sun)  

  Unknown   a        C . 400 
 ce  (?)   b     

  2     Wu cao  五曹 
(Five departments)  

   Wu cao suan jing  
五曹筭經 
(Computational treatise 
of fi ve departments)  

  Unknown   c       Not earlier 
than 386 
 ce    d     

  3     Jiu zhang  九章 
(Nine categories)  

   Jiu zhang suan shu 
九章筭術

(Computational 
procedures of nine 
categories)  

  Unknown   e       Prior to the 
mid fi rst 
century  ce    f     

  4     Hai dao  海島 
(Sea island)  

   Hai dao suan jing  
海島筭經 
(Computational treatise 
[beginning with a 
problem] 
about a sea island)  

  Liu Hui 
( fl  . 263)  

   C . 263  ce   

  5     Zhang Qiujian  
張丘建 ([Master] 
Zhang Qiujian)  

   Zhang Qiujian 
suan jing  張丘建
筭經 (Computational 
treatise of Zhang 
Qiujian)  

  Zhang Qiujian 
張丘建  

  Mid fi ft h 
century  ce    g     

  6     Xiahou Yang  
夏侯陽 ([Master] 
Xiahou Yang)  

   Xiahou Yang suan 
jing  夏侯陽筭經 
(Computational 
treatise of Xiahou 
Yang)  

  Han Yan 
 韓延  

  763–79   h     

  7     Zhou bi  周髀 
(Th e gnomon 
of Zhou 
[dynasty])  

   Zhou bi suan jing  
周髀筭經 
(Computational treatise 
on the gnomon of Zhou 
[dynasty])  

  Unknown    Early fi rst 
century 
 ce  (?)   i     
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  Number  
   Treatises listed in 
the   Xin Tang shu   

   Identifi ed as the 
following extant 
treatises      Author   

   Date of 
compilation   

    8     Wu jing suan  
五經筭 
(Computations 
in the fi ve 
classical books)  

   Wu jing suan shu  
五經筭術 
(Computational 
procedures [found] 
in the fi ve classical 
books)  

  Zhen Luan 
( fl  .  c . 570  ce )  

   C . 570  ce   

    9     Zhui shu  綴術 
(Mending 
procedures)  

   Not extant     Zu Chongzhi 
祖沖之 
(429–500)   j     

  Second half 
of the fi ft h 
century  ce   

  10     Qi gu  緝古 
(Continuation 
[of the work] 
of ancient 
[authors])  

   Qi gu suan jing  
緝古筭經 
(Computational 
treatise on the 
continuation 
[traditions] of ancient 
[mathematicians])  

  Wang Xiaotong 
 王孝通 
( b . ?–  d . aft er 
626  ce )   k     

   C . 626  ce   

  11     Ji yi  記遺 
(Records of 
[things] left  
behind for 
posterity)  

   Shu shu ji yi  
數術記遺 
(Records of the 
procedures of 
numbering left  
behind for 
posterity)  

  Xu Yue 徐岳 
(b. before 
185 – d. aft er 
227)  

   C . 220  ce   

  12     San deng shu  
三等數 (Numbers 
of three ranks)  

   Not extant     Dong Quan
董泉  

  Prior to 570 
 ce   

Notes:
   a    A book entitled  Sun zi  孫子 by one Sun Chao 孫綽 of the Jin dynasty (265–420) is 

mentioned in the lists of proscribed books of the third through the tenth century, see 
An and Zhang  1992 : 51; it is not impossible that this was the mathematical treatise 
or its prototype and not the famous treatise  Sun zi bing fa  孫子兵法 on the art of 
war written in  c . fi ft h century  bce .  

   b    Qian Baocong suggested that the treatise was compiled in  c . 400  ce ; he also believed 
that the extant version was altered during the Sui (581–618) and Tang (618–907) 
dynasties, see  SJSSa : 275; Guo  2001 : 14.  

   c    In some sources the treatise credited to the authorship of Zhen Luan 甄鸞,  fl  .  c . 570, 
see  SJSSa : 409.  

   d    Th e date suggested by Qian Baocong; he also suggested that the extant version of 
the text may have been modifi ed in the seventh century  ce , see  SJSSa : 409, Guo 

Table 15.2 Continued
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below. Th e list could not be chronological either, given that according to 
the conventional chronology the  Zhou bi  certainly was considered to ante-
date the treatise  Hai dao  and yet was listed aft er it. Th e only suggestion that 
seems plausible is that the list followed the order in which the treatises were 
actually studied.  25       

 According to the  Tang liu dian  唐六典 (Six Codes of the Tang [Dynasty]) 
and to the  Jiu Tang shu  舊唐書 (Old History of the Tang [Dynasty]), the 
students of the College were subdivided into two groups each comprising 
fi ft een students. Th e fi rst group studied treatises [1–8], and the second 
one treatises [9–10].  26    In  Table 15.1  and below I refer to the textbooks of 
the groups [1–8] and [9–10] as constituting a ‘regular programme’ and 
an ‘advanced programme’, respectively, given that the extant version of 
the treatise [10] contains more diffi  cult mathematical methods than those 
found in [1–8] (in particular, solution of cubic equations), and that the 
now lost treatise [9] was, according to Li Chunfeng, a diffi  cult book (and, 

Notes: (continued)
  2001 : 18. Compare with the date ‘fi ft h century? Very approximately’ suggested by 

Martzloff   1997 : 124.  
   e    Liu Hui 劉徽 in his ‘Preface’ of 263  ce  suggested that the treatise was compiled on 

the basis of an ancient prototype by Zhang Cang 張蒼 (?–152  bce ) and Geng 
Shouchang 耿壽昌 ( fl  . fi rst century  bce ), see  SJSSb : 83; for a discussion, see CG2004: 
127. Th e opinion of Liu Hui is one of the numerous theories concerning the date of 
compilation of the treatise; for an overview, see Li  1982 . See also Cullen  1993a .  

   f    Compare with the date ‘200  bce –300  ce ’ suggested by Martzloff   1997 : 124.  
   g    Qian Baocong suggested that the treatise was completed between 466 and 485  ce  

( SJSSa : 325), while Feng Lisheng argued for the interval 431–50 (Guo  2001 : 16).  
   h    Guo  2001 : 25. Th e text of the original treatise written by Xiahou Yang 夏侯陽 most 

probably in the fi rst half of the fi ft h century  ce  was lost by the eleventh century and 
replaced by a compilation of Han Yan 韓延 written in 763–79; see  SJSSa : 551.  

   i    Th e dates suggested for this treatise vary considerably; I adopt here the viewpoint of 
Cullen  1993b  and  1996 , being well aware of other opinions concerning the date of 
compilation. Martzloff   1997 : 124 provides a hardly acceptable period of time: ‘100 
 bce  (?) – 600  ce ’.  

   j    Wang Xiaotong in his ‘Preface’ to the  Qi gu suan jing  緝古筭經 mentions Zu 
Gengzhi 祖暅之 ( b . before  c . 480 –  d . aft er 525) and not his father Zu Chongzhi as 
the author of the treatise ( SJSSb : 415).  

   k    Martzloff   1997 : 125 suggests for Wang’s lifetime the dates ‘ c . 650–750’ which are 
impossible given that his treatise was included in the collection of 656  ce .    

  25      An almost identical list can be found in the  Jiu Tang shu  (Old History of the Tang [dynasty]) 
( JTS  44: 17b), yet the order of the treatises in the ‘regular programme’ is diff erent:  Jiu zhang , 
 Hai dao ,  Sun zi ,  Wu cao ,  Zhang Qiujian ,  Xiahou Yang , and  Zhou bi . Th e  San deng shu  is 
mentioned as  San deng . 

  26       TLD  21: 10b,  JTS  44: 17b. Th e  Xin Tang shu  only mentions that the number of students 
amounts to thirty, see  XTS  44: 1b, des Rotours  1932 : 133. 
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as becomes clear from an inspection of the number of years allotted to the 
study of the treatises, the most diffi  cult book in either programme).  27    Th e 
study in each programme required seven years. Books [11–12] were studied 
simultaneously with the other treatises in both programmes; the time nec-
essary for their study was not specifi ed.  28    

 Th e conventional identifi cation of the twelve treatises constituting the 
curriculum is found in a number of modern works and is summarized in 
 Table 15.2 . 

 Th e conventional identifi cation of the Tang dynasty textbooks with the 
extant treatises contains a number of points that have never been suffi  ciently 
clarifi ed. For instance, there are three treatises listed in the bibliographical 
section of the dynastic history  Xin Tang shu  which, hypothetically, might be 
identifi ed as the textbook  Jiu zhang  listed in  Table 15.1  and mentioned in 
the chapter on state examination of the same history: they are the  Jiu zhang 
suan shu  compiled by Xu Yue, the  Jiu zhang suan jing  compiled by Zhen 
Luan ( XTS  59: 13a), and the  Jiu zhang suan shu  commented on ( zhu  注) by Li 
Chunfeng ( XTS  59: 13b), all three treatises in nine chapters ( juan  卷). If the 
latter treatise is assumed to be the textbook used for instruction, it remains 
unclear whether it was identical with the only extant Song dynasty edition 
of the treatise commented ( zhu  注) by Liu Hui and accompanied with the 
explanations of the commentaries ( zhu shi  注釋) by Li Chunfeng (see below). 
Th e  Zhang Qiujian  from the curriculum could be either the  Zhang Qiujian 
suan jing  張丘建筭經 in one  juan  commented on by Zhen Luan ( XTS  59: 
13a), or a three- juan  edition of the treatise commented on by Li Chunfeng 
( XTS  59: 13b); however, the earliest (and only extant) Song dynasty edition 
in three  juan  mentions Zhen Luan as the commentator while containing 
only commentaries signed by Li Chunfeng ( SJSSb : 343). As for the treatise 
listed in the curriculum as  Xiahou Yang , the  bibliographical chapter of the 
 Xin Tang shu  mentions two books the titles of which bear reference to this 
name: one is the  Xiahou Yang suan jing   commented on by Zhen Luan, and 

  27      Li Chunfeng wrote about Zu Chongzhi and his book as follows: ‘筭氏之最者也。所著之書
名為綴術。學官莫能究其深奧。是故廢而不理。 [He] was the best of mathematicians. Th e 
title of the book [he] compiled is  Mending procedures . No one of the faculty [lit. ‘functionaries’] 
of the [Mathematical?] College was able to comprehend thoroughly the profound [ideas it 
contained]. Th is is why [they] abandoned [the book] without [even trying] to understand [it].’ 
( SS  16: 4a). Martzloff ’s translation of the  last part  of this quotation reads ‘He [Zu Chongzhi 
– A.V.] was excluded (from the textbooks used for teaching) because none of the students of 
the Imperial College could understand him’ (Martzloff   1997 : 45,  n. 22 ), and it is somewhat 
misleading, since Li Chunfeng’s statement was clearly pointed against the personnel of the 
College (and not against its students), while the high esteem he expressed for the book of Zu 
Chongzhi was apparently related to his decision to introduce the  Zhui shu  into the curriculum 
as the cornerstone of the advanced programme. 

  28      Siu and Volkov  1999 . 
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the other is the  Xiahou Yang suan jing  authored by one Han Yan 韓延 whose 
lifetime has been a matter of controversy. Th e hypothesis advanced by Qian 
Baocong and adopted by other modern authors states that the received 
book is dated of the eighth century ( SJSSb : 25–7), yet the extant version 
contains three  juan  unlike the treatises listed in the  Xin Tang shu , both con-
taining only one  juan .   

 Th e examination procedure 

 Th ere were two kinds of examinations held in the Mathematical College: 
(1) the regular tests conducted every ten days, and (2) the examinations 
at the end of the year. Th e regular tests included three questions: two on 
memorization of a 2000-word excerpt and one on the ‘general meaning’ 
( da yi  大義) of the excerpt. Th e examination at the end of each year was 
held orally; students were asked ten questions on the ‘general meaning’. It 
seems that there was no graduation examination at the end of the entire 
course.  29    

 Th ose who successfully graduated from the College were allowed to take 
the examination for the doctoral degree  ming suan  明筭  30    together with 
some other categories of candidates.  31    Th e examination included two parts. 
Th e task for the  fi rst part  was to write an essay answering ten questions 
related to one of the two programmes, ‘regular’ or ‘advanced’. Th e  second 
part  of the examination in both cases consisted of a test on the memori-
zation of the treatises  San deng shu  and  Shu shu ji yi  held in the form of 
‘examination by quotation’ (literally, ‘strip reading’  tie du  帖讀 or ‘strip 
[reading] of classics’  tie jing  帖經).  32    Th e  Xin Tang shu  provides the follow-
ing description of the examination procedure of the fi rst part: 

 凡筭學。錄大義〈本〉〔十〕條為問荅。明數造術。詳明術理。然後為
通。試九章三條。海島、孫子、五曹、張丘建、夏侯陽、周髀、五經筭各

  29      See  XTS  44: 2a; for translation see des Rotours  1932 : 141–2, for a discussion of the procedure 
see Siu and Volkov  1999 . 

  30      Literally, ‘[He Who] Understood Computations’ (or ‘Learned in Mathematics’, as Lee  2000 : 
138 suggests); the ‘he’ in the translation is imposed by the historical setting in which only men 
were admissible to the state examinations. Th e appellation of the degree (and of the related 
examination) was thus similar to the other titles referring to the degrees and examinations on 
the Confucian classics ( ming jing  明經, lit. ‘[He Who] Understood the Classics’), law ( ming fa  
明法, lit. ‘[He Who] Understood the [Juridical] Norms’), calligraphy and writing ( ming zi  明
字, lit. ‘[He Who] Understood the [Chinese] Characters’); see des Rotours  1932 : 128. 

  31      See des Rotours  1932 : 128,  n. 1  for a detailed description of the candidates. 
  32      On the procedure of the ‘examination by quotation’ see des Rotours  1932 : 30–31, 141,  n. 2 ; Siu 

and Volkov  1999 : 91,  n. 41 ; see also Lee  2000 : 142. 
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一條。十通六。記遺、三等數。帖讀。十得九。為第。試綴術、緝古。錄

大義為問荅者。明數造術。詳明術理。無注者。合數造術。不失義理。然

後為通。綴術七條。緝古三條。十通六。記遺、三等數。帖讀。十得九。

為第。落經者雖通六。不第。   ( XTS  44: 1b–2a)   

 All [the candidates examined in] the Mathematical College  33    [have to] produce 
records  34    of ‘general meaning’ for ten  35    tasks [represented with] mathematical 
problems (lit. ‘problems and answers’).  36    [Th ey have to] elucidate the numerical 
values [of the problems], [and to] design [computational] procedures [that would 
solve them]. [Th ey] elucidate in detail the internal structure of the [computational] 
procedures [they designed].  37    [If they do] so, then they pass. [When they are] tested 

  33      Des Rotours  1932  : 154 suggests ‘For mathematical studies . . .’ (‘Pour l’étude des 
mathématiques . . .’); his suggestion shows that he may have been perplexed by the 
heterogeneous headings of the paragraphs describing the examinations: in some cases the 
beginning of the description mentions the degree, as in the case of the law examination for 
the degrees  jin shi  and  ming fa : 凡進士 . . . ‘All [the candidates for the degree]  jin shi . . .’; 凡
明法 . . . ‘All [the candidates for the degree]  ming fa  . . .’ ( XTS  44: 2b, ll. 11–12), while in the 
case of the examinations for the degrees  ming zi  明字 and  ming suan  明筭 the names of the 
corresponding schools,  shu xue  書學 and  suan xue  were mentioned instead ( XTS  44: 2b, ll. 
13–14). Th is specifi cation of the institution can mean that the candidates were examined in 
the respective college and/or the only candidates admitted to the examination were those who 
graduated from it. 

  35      Th is emendation of the original text containing the word  ben  本 (‘original’) is based on three 
premises. Firstly, the descriptions of the other examinations in the  Xin Tang shu  containing 
the clause ‘V大義X條’ with a verb V with the meaning ‘to examine’, ‘to ask’, etc., always have 
a numeral in the position of X, e.g., 問大義十條 (‘ask [to complete] ten tasks on general 
meaning’), the examination for the degree  ming jing  明經 ( XTS  44: 2b, ln.3); 問大義五十條 
(‘ask [to complete] 50 tasks on general meaning’), the examination on the degree  ming jing , 
option ‘Th ree [Great] commentaries’ 三傳科 ( XTS  44: 2b, lns. 5–6); 問大義百條 (‘ask [to 
complete] 100 tasks on general meaning’), the examination on the degree  ming jing , option 
‘[Dynastic] Histories’ 史科 ( XTS  44: 2b, l. 8); 通大義百條 (‘to pass [examination consisting 
of] 100 tasks on general meaning’), the examination on the  Rites of the Kai-Yuan era  開元
禮舉 ( XTS  44: 2b, l. 4), and 問大義一條 (‘ask [to complete] one task on general meaning’) 
in the description of the oral tests held every ten days in the Mathematical College ( XTS  
44: 2a, l. 5). Secondly, ten is indeed the number of the tasks the candidates were supposed 
to complete in this particular case. Th irdly, the word  ben  本 (as well as its modifi cation 夲) 
found in all the extant editions of the history is graphically relatively close to the word ‘ten’ 
十, and the alteration of the text may have happened in an early edition and reproduced in 
later editions. 

  34      Th e word used here,  lu  錄, does not appear in the description of other examinations; des 
Rotours  1932 : 154,  n. 3  writes ‘I am not certain of my translation, because I don’t understand 
well the meaning of the word  lu  錄’ (‘Je ne suis pas certain de ma traduction car je ne 
comprends pas bien le sens du mot  lu  錄.’). Indeed, the term  lu  looks somewhat inappropriate 
in the context of examination, since one of its principal meanings is ‘to copy, to record’. My 
interpretation of this term as ‘writing a protocol [of computations]’ is discussed below. 

  36      Th e interpretation of the term  wen da  問荅 as ‘[mathematical] problem’ was argued for in Siu 
and Volkov  1999 . 

  37      A slightly diff erent translation of the two central excerpts of this paragraph was off ered in Siu 
and Volkov  1999 : 92. See also des Rotours  1932 : 154–5. 
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with three tasks on the  Jiu zhang , and with one task on each [of the treatises]  Hai 
dao ,  Sun zi ,  Wu cao ,  Zhang Qiujian ,  Xiahou Yang ,  Zhou bi ,  Wu jing suan , [they] 
pass [if out of] ten [tasks they complete] six. [For the treatises]  Ji yi  and  San deng 
shu , [they do] ‘strip reading’, and for ten [excerpts they] succeed [if they complete] 
nine. [When they are] tested with the  Zhui shu  and  Qi gu , [they] produce records of 
‘general meaning’ taking mathematical problems [as the examination tasks], [they 
have to] elucidate the numerical values [of the problems], [and to] design [compu-
tational] procedures [that would solve them]. [Th ey] elucidate in detail the internal 
structure of the [computational] procedures [they designed]. As for those [trea-
tises/examination papers] without commentaries,  38    [the candidates have to] make 
the numerical data coherent, to design [computational] procedures and [should] 
not make mistakes in the meaning and in the structure [of the procedures]. [If they 
do] so, then they pass. For the  Zhui shu  [there are] seven tasks; for  Qi gu  [there are] 
three tasks. [Th ey] pass [if out of] ten [tasks they complete] six. [For the treatises] 
 Ji yi  and  San deng shu , [they do] ‘strip reading’, and for ten [excerpts they] succeed 
[if they complete] nine. [Under the conditions listed above] they pass the degree 
examination, [but if they drop] one treatise [of the two], even if [they] completed 
six [tasks out of ten], [they] will not obtain the degree.  39    

 Th is excerpt leaves several questions unanswered. In particular, it remains 
unclear whether the examination works of the candidates were written in 
the same format as tasks on other subjects,  40    or whether they had some 
specifi c format relevant to the mathematical contents of the treatises. In 
Siu and Volkov ( 1999 ) the authors suggested the following hypothesis: the 
candidates were given mathematical problems similar (but not identical) to 
those contained in the treatises of the chosen ‘programme’, that is, problems 
belonging to the categories for which the candidates knew the solutions yet 
with  modifi ed  numerical parameters. Th e change of parameters may have 
implied a modifi cation, sometimes considerable, of the known algorithms 

  38      Th e meaning of this phrase remains unclear; see a discussion of it in the concluding section of 
the present article. 

  39      Th e last remark apparently could refer to the case when the candidate failed all the tasks related 
to the  Qi gu  緝古. 

  40      A discussion of the expression ‘general meaning’ is necessary here. Th is term occurs only in 
the descriptions of the examinations on the degrees  ming jing  明經 (in the general description 
and in the description of two options; see above),  ming suan  明筭, examination on the  Rites of 
the Kai-Yuan era  開元禮舉, as well as the description of the instruction in the Mathematical 
College (see above). One can suggest that the term ‘questions on meaning’ refers to a kind of 
task focusing on the capacity of the examinee to provide a plausible interpretation of a given 
text or texts. Lee off ers two examples of questions and answers on ‘general meaning’,  da yi  
(interestingly, he renders this very term as ‘written elucidation’) in the context of examination 
on Confucian classics; he suggests that this kind of questions ‘tested mainly familiarity, that is, 
memory, of the classics’ (Lee  2000 : 142). 
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needed for the solution of the problems.  41    In other words, the candidates 
were asked to design algorithms that were not mere replicas of the algo-
rithms found in the textbooks (otherwise the examination would have been 
reduced to a simple test of the students’ memory) but their generic versions 
designed according to the modifi ed parameters. Th is hypothesis, however 
appealing it might have seemed, could not be provided by Siu and Volkov 
with any supporting evidence since the examination papers written by the 
candidates during the mathematics examinations of the Tang and the Song 
dynasties do not now exist. However, rather unexpectedly, a supporting 
piece of evidence was found in a Vietnamese mathematical treatise.   

 Mathematics examinations in traditional Vietnam:     
the case of a model examination paper 

 Th e available information concerning the traditional Vietnamese math-
ematics and the relevant references to the earlier works can be found else-
where;  42    it can be very briefl y summarized as follows. Th e number of extant 
mathematical treatises amounts to twenty-two; the earliest extant treatise is 
conventionally credited to an author of the fi ft eenth century while the other 
treatises were compiled in the eighteenth to early twentieth centuries. Th eir 
style and contents are very close to those of Chinese mathematical treatises 
compiled prior to the introduction of Western mathematics into China.  43    

 Th e Vietnamese system of state education and civil examinations similar 
to the Chinese one dates back to the eleventh century  ce , yet Chinese educa-
tion and examinations were present in Vietnam well before that time, since 
the country technically remained a province of China until the mid tenth 
century.  44    Th ere is no information about institutions specifi cally focused on 
mathematics education, yet historical records mention the examinations in 
‘counting/computations’ (Viet.  toán  算) that took place in 1077, 1179, 1261, 
1363, 1404, 1437, 1472, 1505, 1698, 1711, 1725, 1732, 1747, 1762, 1767, and 

  41      Th is statement was made in Siu and Volkov  1999  and amply illustrated in Siu  1999  and Siu 
 2004 : 174–7. 

  42      Volkov  2002 ;  2008 ;  2009 . 
  43      Th e reader can fi nd more details on the extant treatises in Volkov  2009 : 156–9; the 

descriptions in Volkov  2002  and Volkov  2008  do not take into account the most recent 
fi ndings. 

  44      Th e reader can fi nd descriptions of the traditional Vietnamese education in Richomme  1905 : 
9–28; Tran  1942 ; Vu  1959 : 28–57; Nguyen  1961 : 10–40; Woodside  1988 : 169–233. Th e short 
description of Ennis  1936 : 162–4 draws upon the early yet still useful works of Luro ( 1878 ) and 
Schreiner ( 1900 ). 
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1777.  45    Th e mentions are very short and do not provide any information 
concerning the contents and the procedure of the examinations. Since the 
state mathematics examinations were abolished in China by the end of the 
Song dynasty (960–1279), one can only guess what may have been the pro-
cedure and the contents of the Vietnamese state mathematics examinations 
and their relationship with the Chinese examinations of the Tang and Song 
dynasties. To my knowledge, no original Vietnamese mathematics exami-
nation papers have been found so far. Fortunately, there exists a ‘model’ 
mathematics examination paper published in 1820 by Phan Huy Khuông 
潘輝框, apparently in order to provide the students with an idea of the best 
way to answer an examination question. Phan placed the mock examina-
tion essay that occupied almost six pages in the last,  fourth chapter  of his 
treatise entitled  Chỉ minh lập thành toán pháp  指明立成筭法 (Guidance 
for understanding the  Ready-made Computational Methods ) ( CMLT  4: 
30a–32b). Th is text sheds light on the examination procedure in Vietnam; 
moreover, it indirectly corroborates the hypothesis concerning the Chinese 
examination procedure mentioned in the section above. 

 Th e original manuscript is preserved in the library of the Institute for 
Han-Nom Studies (Hanoi).  46    In my work I used a microfi lm copy of the 
manuscript preserved in the library of the Ecole française d’Extrême Orient 
(Paris). Th e catalogue Tran and Gros (1993) provides only very sparse 
information about the author and the contents of the book. Th e treatise 
opens with a picture of an abacus (p. 3a) which is an exact reproduction 
of the picture found in the Chinese mathematical treatise  Suan fa tong 
zong   算法統宗 (Summarized fundamentals of computational methods) 
by Cheng Dawei 程大位 compiled in 1592 ( SFTZ : 113). Th e picture is 
followed by a table of correspondences between powers of 10, monetary 
units, units of length, weight, and volume (p.  3b). Two following pages 
present thirty-two diagrams of various plane fi gures (referred to as ‘shapes 
of fi elds’, Chin.  tian shi  田勢) (pp. 4a–b) of which the areas are calculated in 
 Chapter 2  of the treatise. 

 Th e model examination essay consists of a solution of a mathematical 
problem written by an imaginary examinee; for the full translation of the 
examination paper see Appendix  i . Th e problem reads as follows: three 
categories of offi  cials, A, B and C, are to be remunerated with 1000  cân  
斤 of silver, yet out of this amount only the sum  S  = 5292  lượng  兩 was 
supposed to be distributed among the functionaries.  47    It is claimed in the 

  45      Volkov  2002 . 
  46      It is listed under number 433 in Tran and Gros 1993:  i  258. 
  47       Cân  斤and  lượng  兩, technically, are measures of weight (1  cân =  16  lượng ), but were also used 

as monetary units in China and Vietnam, being applied to silver. 
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problem that the fl at-rate distribution method cannot be used to distribute 
this amount, and the method of weighted distribution is proposed instead. 
Th e ratio of the amounts to be given to the functionaries of the three 
ranks is 7 : 5 : 2, and the numbers of functionaries of each rank are  N  A  = 8, 
 N  B  = 20 and  N  C  = 300, respectively. Th ere are two questions: (1) to fi nd the 
amount of silver to award each functionary of the categories A, B and C, 
and (2) to fi nd the total amount of money allotted to each group of the 
functionaries. 

 In modern terms, this is a problem on weighted distribution: one has to 
fi nd the values  x  1 ,  x  2 , . . .,  x   n   given that  x  1 + x  2 +. . .+ x   n   =  S  and  x  1 :  x  2 : . . . :  x   n   :: 
 k  1 :  k  2 : . . . :  k   n   for given weighting coeffi  cients  k  1 ,  k  2 , . . .,   k   n  . Problems of this 
type as well as the standard procedure for their solution equivalent to the 
formula 
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are found in a number of Chinese and Vietnamese mathematical treatises 
beginning with the Chinese mathematical treatises  Suan shu shu  筭數書 
(Writing on computations with counting rods)  48    and  Jiu zhang suan shu .  49    
However, the problem found in the Vietnamese treatise contains a par-
ticularity: it is known that there are three diff erent ranks of functionaries, 
and for all functionaries of the same rank the weighting coeffi  cients are the 
same; in our notation,  k  1 =  k  2  = . . . =  k  8  =  k  A  = 7,  k  9 =  k  10  = . . . =  k  28  =  k  B  = 5, 
 k  29 =  k  30  = . . . =  k  328  =  k  C  = 2, and one is asked to fi nd the values  x  A ,  x  B ,  x  C  
( x  A  =  x  1  = . . . =  x  8  ,  x  B  =  x  9  = . . . =  x  28 , and  x  C  =  x  29  = . . . =  x  328 ) such that  x  A  : 
 x  B  :  x  C  ::  k  A  :  k  B  :  k  C , and  N  A · x  A  +  N  B · x  B  +  N  C · x  C  =  S . Th e examinee is also asked 
to fi nd the total amount of money allotted to each group of functionaries, 
that is, to calculate the values  X  A =  x  1  + . . . +  x  8 ,  X  B  =  x  9  + . . . +  x  28  and  X  C  =  x  29  
+ . . . +  x  328 .   

 In this chapter I use the term ‘aggregated weighted distribution’ to 
identify the category of problems on weighted distribution in which the 
‘sharers’ can be subdivided into groups A, B, C,. . . containing  N  A ,  N  B ,  N  C ,. . 
. sharers, respectively, such that in each group the weighting coeffi  cients are 
the same and equal to  k  A ,  k  B ,  k  C ,. . . . Any problem on aggregated weighted 
distribution apparently can be solved with the classical algorithm cited 
above, yet in several sources a modifi ed version of the method was used: the 

  48      Th e earliest extant Chinese mathematical treatise  Suan shu shu  was completed no later than the 
early second century  bce ; for English translations, see Cullen  2004  and Dauben  2008 . 

  49      Cullen  2004 : 43–51, 54–6; Dauben  2008 : 114–21, 126–7; CG2004: 282–99. 
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 addition of the weighting coeffi  cients is done in two steps: fi rst, the weight-
ing  coeffi  cients are multiplied by the numbers of ‘sharers’ in the respective 
groups, second, the results of the multiplications are summed up:  K  =  N  A · 
 k  A  +  N  B · k  B  +  N  C · k  C  + . . . . 

 Th e earliest problem on aggregated distribution in China is also found in 
the  Jiu zhang suan shu  (problem 7 of  chapter 3 ):  50    there are two groups con-
taining three and two persons, respectively,  k  1 =  k  2  =  k  3  = 3,  k  4 =  k  5  = 2, S = 5 
( SJSSb : 112). However, the solution off ered in the Chinese treatise does not 
treat specifi cally this particularity of the condition; the procedure simply 
suggests to set the weighting coeffi  cients as 3, 3, 3, 2, 2 and to proceed 
according to the ‘classical’ method. Chronologically, the earliest extant 
Chinese treatise featuring the multiplication of the numbers of sharers in 
each category by the respective weights  N  A · k  A ,  N  B · k  B ,  N  C · k  C  is the  Sun zi 
suan jing ; problem 24 of the  second chapter  ( juan ) of the treatise belongs 
to this type and contains a detailed description of the computational proce-
dure ( SJSSb : 274). Problems of this type are also found in the  Zhang Qiujian 
suan jing  (problem 17 of  chapter 1  and problem 13 of  chapter 2 ,  SJSSb : 
303–4, 315–16),  Suan xue qi meng  筭學啟蒙 (Introduction to the learning 
of computations,  1299 ) by Zhu Shijie 朱世傑 (dates unknown) (problem 
50 of  chapter 2 ,  SXQM : 1161),  Jiu zhang suan fa bi lei da quan  九章算法
比類大全 (Great compendium of the computational methods of nine cat-
egories [and their] generics, 1450) by Wu Jing 吳敬 (dates unknown)  51    and 
 Suan fa tong zong  算法統宗 (Summarized fundamentals of computational 
methods, 1592) by Cheng Dawei 程大位 (1533–1606) (Problems 8, 15 and 
31 of  chapter 5 ,  SFTZ : 377, 383, 294, respectively).  52    

 Th e problems on weighted distribution can be found in a number of 
Vietnamese mathematical treatises. Th e most interesting case is the sys-
tematic introduction of the method found in the  Ý Trai toán pháp nhất đắc 
lục  意齋算法一得錄 (A Record of What Ý Trai Got Right in Computational 
Methods, preface 1829) compiled by Nguyễn Hữu Th ận 阮有慎.  53    As for 
the treatise under investigation  Chỉ minh lập thành toán pháp ,  chapter 4  
contains thirty-eight problems of which twelve are devoted to weighted 

  50      Th e  Suan shu shu  does not contain problems on aggregated sharing: in all six problems related 
to the weighted distribution (problems 11–16, 21 in Cullen  2004 ) the weights of the sharers are 
all diff erent. 

  51      Problems 5, 33, 36 and 44 of  chapter 3  ( DQ  3: 3a, 14b, 17b, 21b) belong to the category of 
‘aggregated weighted distribution’, but only problem 5 (analogous to problem 7 of the  Jiu zhang 
suan shu ) is solved with the ‘classical’ algorithm used in the  Jiu zhang suan shu . 

  52      To numerate the problems, I count the problems  per se  as well as generalized rules given 
without numerical data. 

  53      Volkov forthcoming. 
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distribution (Problems 5–7, 10–11, 14–19, 38).  54    Among them, only two 
problems deal with the ‘aggregated sharers’, namely, problem 6 and problem 
38 (which is the problem solved in the ‘model examination paper’). 
Problem 6 represents a case of a ‘mixed’ weighted distribution combining 
‘solitary’ and ‘aggregated’ sharers. In this problem one deals with the funds 
raised by a temple.  55    Th e setting is as follows ( CMLT  4: 6a–7b): 

 Th e total amount of 240  cân  斤 of gold was collected; 3 parts of the total 
amount were obtained from selling incense, 6 parts from a ‘senior donator’, 
24 ordinary male donators contributed 4 parts each and 5 ordinary female 
donators contributed 3 parts each. In modern notation one has to fi nd the 
values  x  1 ,  x  2 , . . .,  x   n  ,  n  = 31, given that  x  1 + x  2 + . . . + x   n   =  S  and  x  1  :  x  2  : . . . :  x   n   
::  k  1 :  k  2 : . . . :  k   n   for the given weighting coeffi  cients  k  1  = 3,  k  2  = 6,  k   i   = 4 for  i  = 
3, . . ., 26 and  k   j   = 3 for  j  = 27, . . ., 31. Th e procedure provided in the treatise 
can be written in modern terms as follows: 

  – one has to calculate the sum of the coeffi  cients  k  1 +  k  2  = 9;  
  – fi nd the value  k  3 + k  4 +. . .+ k  26  as 24· k  3  = 96;  
  – fi nd the value  k  27 + k  28 +. . .+ k  31  as 5· k  27  = 15;  
–   fi nd the sum  K  =  k  1 + k  2 +. . .+ k   n   = ( k  1 +  k  2 )+( k  3 + k  4 +. . .+ x  26 )

+( k  27 + k  28 + . . . + x  31 ) = 9+96+15 = 120;  
  – use the obtained total value  K  to divide the total amount of money 

and to obtain the ‘constant norm’ 常法  S / K ;  
  – now one obtains the amounts of money  x   i   corresponding to the 

weights k  i  : the money for incense  x  1  =  k  1 ·( S / K ), the money of the 
senior donator  x  2  =  k  2  · ( S / K ), the money of each ordinary male 
donator  x   i   =  k   i   · ( S / K ),  i  = 3, . . ., 26, and the money of each ordinary 
female donator  x   i   =  k   i   · ( S / K ),  i  = 27, . . ., 31;  

  – to obtain the money donated by each group, the reader is given the 
cases of the incense and the senior donator as examples: here the 
obtained value  S / K  is to be used again, and one is told to multiply 
this value by the ‘parts’ corresponding to the group. In the case of 
the incense and the senior donator it will correspond to  x  1  =  k  1  · 
( S / K ) and  x  2  =  k  2  · ( S / K ), respectively. Th e reader then is told that the 

  54      It still remains unclear how many problems there were in the original version. In the microfi lm 
of the manuscript preserved in the Ecole française d’Extrême Orient (Paris) the text of problem 
14 beginning on page 16a is incomplete. Moreover, Problem 17 (p. 18a) on ‘8:2 distribution’ is 
misplaced in the section on ‘6:4 distribution’. Th ese two details suggest that at least one page of 
the original treatise was not copied by the copyist and other pages may have been copied in a 
wrong order. 

  55      Th e wording of the problem makes it unclear whether the money is supposed to be  obtained , 
or  given  by, the temple; I provided my translation in assuming that historically Vietnamese 
temples usually obtained rather than distributed money. 
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remaining operations would be similar. Instead of computing the 
impact of the ordinary male and female donators as  N  M · x  M  and  N  F · x  F , 
where  N  M  = 24,  x  M  =  x  3 ,  N  F  = 5,  x  F  =  x  27 , the reader is told to compute 
these values as (24· k  3 ) · ( S / K ) and (5· k  27 ) · ( S / K ), respectively. It 
appears plausible to suggest that the author of the Vietnamese 
treatise at this point reinterpreted the data, and considered each 
entire  group  of male and female donators as ‘collective donators’ of 
the donated money, possessing  K  M  =  N  M  ·  k  3  and  K  F  =  N  F  ·  k  27  ‘shares’;  

  – the problem is concluded with a check-up of the obtained answer; 
one has to check whether the sum of the amounts obtained from 
each source is equal to the total amount of the raised money. It is not 
verifi ed whether the portions of money coming from the four sources 
indeed constitute the given ratio.    

 Now we can return to the model examination paper. Th e solution of the 
imaginary examinee contains six parts: (1) a formal introduction (p. 30b, ll. 
8–11); (2) an explanation why only a part of the awarded silver was actually 
given to the functionaries (p. 31a, lls. 1–6); (3) an explanation of the fact 
that the fl at-rate distribution could not work (p. 31a, l. 6 – p. 31b, l. 4); (4) 
a rewording and a solution of the weighted distribution problem (p. 31b, l. 
4 – p. 32b, l. 5); (5) a verifi cation of the answer (p. 32b, lls. 5–7); (6) a formal 
ending of the examination paper (p. 32b, lls. 7–9). 

 Th e reader will notice that the examination paper contains more than a 
solution of just one problem. Th e imaginary examinee is supposed to check 
the proposed data, fi nd an explanation for the seeming discrepancy found 
in the condition (it is stated that 1000  cân  = 16000  lượng  is to be given to 
the functionaries, yet the amount of money distributed among them was 
only 5292  lượng ), and solve two problems, one on fl at-rate and the other on 
weighted distribution. 

 Th e suggested solution of the weighted distribution problem runs as 
follows: in order to fi nd  x  A ,  x  B  and  x  C , at the fi rst step the sum  K  =  k  1 +  k  2  +
. . .+  k  328  is calculated; to do so, the imaginary examinee calculates  N  A · k  A  = 56, 
 N  B · k  B  = 100,  N  C · k  C  = 600 and adds them up to obtain  K  = 756. Th e term 
used to refer to these products is rather particular: while talking about the 
weights  k  A ,  k  B  , k  C  the examinee uses the word ‘shares/parts’ (Chinese  fen  
分), but when passing to the ‘aggregated shares/parts’  N  A · k  A ,  N  B · k  B ,  N  C · k  C  
he employs a combination of two characters 分率 (Chinese  fenlü ) ‘parts–
coeffi  cients’ or ‘multiples of shares/parts’; I shall return to this term later. 
At the second step, the total amount of money,  S  = 5292  lượng , is divided 
by  K  yielding 7  lượng,  called the ‘constant norm’ 常法, as in problem 6. Th e 
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amounts of money  x  A ,  x  B  and  x  C  to be obtained by each functionary of the 
group A, B, C are calculated as the ‘constant norm’  multiplied by  k  A ,  k  B ,  k  C , 
respectively.  56    

 In the  second part  of the solution the imaginary examinee looks for  X  A , 
 X  B  and  X  C  which obviously could be found as  N  A · x  A ,  N  B · x  B ,  N  C · x  C  once  x  A , 
 x  B  and  x  C  have been calculated. However, the suggested solution is diff er-
ent: for example, for group A, the author suggests the calculation of ( N  A · k  A )· 
( S / K ) instead of calculating  N  A ·[( S · k  A )/ K ]; for groups B and C similar 
operations are performed. Once again, it can be understood as if the author 
considered each entire  group  A, B and C as one ‘collective recipient’ of the 
awarded money, possessing  K  A  =  N  A · k  A ,  K  B  =  N  B · k  B  and  K  C  =  N  C · k  C  ‘shares’, 
respectively, while the sum of the ‘shares’  K  A  +  K  A  +  K  C  remained equal to  K .   

 Examinations and commentaries 

 Th e solution of the model problem provided in the treatise was based on 
the algorithm for the ‘aggregated sharers’ found in a number of Chinese 
and Vietnamese mathematical treatises, yet it would be reasonable to 
suggest that the imaginary examinee was supposed to design his solution 
on the basis of the information found in the same treatise. Indeed, the 
treatise provides two sources of such information: (1) a general descrip-
tion of the algorithm of weighted distribution ( CMLT  4: 4b–5a), and (2) 
the aforementioned problem 6 of  chapter 4  on distribution of donations. 
A cursory inspection of these two sources suggests that the solution in the 
model paper was designed by analogy with the solution of problem 6; in 
particular, the term ‘parts–multiples’ 分率 (or ‘multiples of parts’) found in 
the solution of the model problem does appear in the solution of problem 6 
but not in the algorithm introduced on p. 5a. It is especially interesting that 
in this case the Vietnamese author used the term  lü  率, since the concept 
of  lü  was one of the key elements in the conceptual system presented in 
Liu Hui’s commentary on the  Jiu zhang suan shu . In modern notation, a 
number A is a  lü  率 (a ‘proportional’, or ‘multiple’) of another number, A′, 
if one can establish a proportion in which both numbers occupy the same 
positions in the ratios involved: A : B : . . . :: A′ : B′ : . . . .  57    However, the term 

  56      In Volkov  2008  I suggested a mathematically correct yet ‘modernizing’ reconstruction of the 
 fi rst part  of the Vietnamese procedure. 

  57      For a detailed discussion of the term, see CG2004: 135–6, 956–9. Martzloff   1997 : 196–7 
employs the term ‘model’ (i.e. one number can be used as a ‘model’, a representative, of another 
number). 
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‘parts– multiples’ (or ‘multiples of parts’?)  fenlü  分率 introduced by the 
Vietnamese author appears to be unparalleled in the Chinese mathematical 
texts of the fi rst millennium  ce . 

 Th e solution of the imaginary examinee was supposed to be designed as a 
modifi cation of the solution of a problem from the treatise he, presumably, 
was supposed to be familiar with. In other words, the examination paper 
was based on a problem already solved and discussed earlier, but with a 
modifi ed structure (three groups of functionaries instead of the combina-
tion of two individual and two collective donators) and altered numerical 
data. Th e entire format of the examination paper was larger than just one 
problem: it was rather that of a ‘research project’ in which a given situation 
was approached with two mathematical ‘models’, one of fl at-rate distribu-
tion (rejected as neither fi tting into the numerical data nor correspond-
ing to the hierarchical structure of the group of functionaries) and one of 
weighted distribution. 

 Th e mathematical contents of the particular problem solved in the 
Vietnamese model examination paper are not as important for the present 
discussion as the very format of the essay suggested by the author of the 
treatise who apparently was well acquainted with the actual examination 
procedure. Most importantly for the present discussion, the Vietnamese 
model examination paper fi ts, to a large extent, into the format described in 
the Tang dynasty Chinese source mentioned above, namely: (1) the core of 
the examination task consists of a mathematical problem; (2) the examinee 
‘elucidates’ the ‘numerical values’ provided in the given problem (that is, 
checks the consistency of the given numerical data), and (3) he ‘designs 
a computational procedure’ of which (4) the ‘structure/rationale’ he dis-
cusses in detail, that is, he provides a detailed solution in which every step 
is commented upon. Th e imaginary Vietnamese examinee styles his text as 
if he operates with a counting instrument to obtain his result while writing 
down the results of the operations he is performing. It would be reasonable 
to assume that the Chinese candidates of the Tang dynasty also employed 
their counting rods during the examination to solve the problems given 
to them. If this assumption is correct, their solutions must have contained 
the protocols of performed computations that would have looked rather 
similar to that found in the Vietnamese model examination paper. Th is 
observation makes it tempting to interpret the term  lu  錄 (‘records, pro-
tocols’) employed in the description of the mathematics examinations in 
the  Xin Tang shu  quoted above as referring to this particular feature of the 
mathematics examination papers.   
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 Back to China 

 When constructing his solution, the imaginary Vietnamese examinee pro-
duced a text the structure of which to a large extent resembles the solution 
already provided in the treatise, namely, in problem 6 of the same chapter. 
One can conjecture that the Chinese examinees of the Tang dynasty were 
also supposed to base their solutions on those provided in the respective 
mathematical textbooks. Here we come to the focal point of the present 
chapter, namely, the role the commentaries found in Chinese mathematical 
treatises played in mathematical instruction and examinations.  Table 15.3  
provides the names of the commentators of the extant ten mathematical 
treatises used in the Mathematical College of the Tang dynasty.  

  Table 15.3  shows that the treatises used for instruction all incorporated 
commentaries, unlike the extant treatises listed under numbers 1 and 2. 
Th e history of transmission of the treatises is so obscure that even if the 
names of the commentators in the extant treatises coincide with those 
mentioned in the bibliographies listed in  Table 15.3 , it remains unknown 
whether the extant commentaries are indeed identical with those used in 
the Mathematical College of the Tang dynasty. An inspection of the extant 
commentaries listed in  Table 15.3  shows that they diff er considerably as far 
as their style and contents are considered. Th e commentaries are mainly 
focused on the computational procedures designed for solution of the 
problems, yet the formats adopted by their authors were not the same. 

 Liu Hui’s commentary on the  Jiu zhang suan shu  contains parts written 
in diff erent styles: the commentator interpreted the operations with frac-
tions exemplifi ed in the treatise using especially coined mathematical 
terms; used diagrams of plane fi gures and descriptions of (probably imagi-
nary) three-dimensional models for solution of geometrical and algebraic 
problems; provided detailed computations in case of the calculation of the 
value of  π  close in style to Liu Xiaosun’s  cao  or left  only obscure indications 
which, however, may have been referring to some specifi c mathematical 
contents.  58    Th e commentaries of another enigmatic fi gure, Zhao Shuang 
趙爽 or Zhao Junqing 趙君卿 (conventionally these two names are 
believed to be the aliases of the commentator Zhao Ying mentioned in 

  58      For the original text, translation and discussion see CG2004, as well as the works of other 
authors quoted by Chemla and Guo; on the geometrical diagrams see Volkov  2007 . Th is 
variety of styles can make one ponder over the authenticity of the received commentary 
conventionally credited to the authorship of the person known as Liu Hui whose biographical 
data remain unknown, yet the latter problem, certainly important, is not pertinent in the 
context of the present inquiry. 
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 Table 15.3.     Th e extant Tang dynasty mathematical textbooks and their 
commentators   a      

  Number  

   Th e extant treatises 
used in the 
Mathematical College   

   Commentators as 
specifi ed in offi  cial 
histories   

   Commentator(s) of 
the extant treatises   

  1     Sun zi suan jing  
孫子筭經 
(Computational treatise 
of Master Sun)  

  Zhen Luan ( Jiu Tang 
shu );   b    Li Chunfeng 
( Xin Tang shu ); Li 
Chunfeng ( Song shi )  

  None.  

  2     Wu cao suan jing  
五曹筭經 
(Computational treatise 
of fi ve departments)  

  Li Chunfeng  et al . 
( Song shi )  

  None  

  3     Jiu zhang suan shu  
(Computational 
procedures of nine 
categories)  

  Li Chunfeng ( Xin 
Tang shu ); Liu Hui; 
Li Chunfeng et al. 
( Song shi )   c     

  Liu Hui; Li Chunfeng 
 et al .  

  4     Hai dao suan jing  
海島筭經 
(Computational 
treatise [beginning 
with a problem] 
about a sea island)  

  Li Chunfeng ( Xin 
Tang shu )  

  Li Chunfeng  et al .  

  5     Zhang Qiujian suan jing  
張丘建筭經 
(Computational treatise 
of Zhang Qiujian)  

  Zhen Luan; Li 
Chunfeng ( Xin Tang 
shu )  

  Liu Xiaosun 劉孝孫; Li 
Chunfeng et al.   d     

  6     Xiahou Yang suan jing  
夏侯陽筭經 
(Computational 
treatise of Xiahou Yang)  

  Zhen Luan ( Jiu Tang 
shu  and  Xin Tang shu )  

  Th e author (Han Yan 
韓延, Tang dynasty)  

  7     Zhou bi suan jing  
周髀筭經 
(Computational 
treatise on the gnomon 
of Zhou [dynasty])  

  Zhao Ying 趙嬰;   e    
Zhen Luan ( Jiu Tang 
shu );   f    Zhao Ying; 
Zhen Luan; Li 
Chunfeng ( Xin Tang 
shu )   g     

  Zhao Junqing 趙君卿; 
Zhen Luan; Li Chunfeng 
 et al .  

  8     Wu jing suan shu  
五經筭術 
(Computational 
procedures [found] 
in the fi ve classical 
books)  

  Li Chunfeng ( Xin 
Tang shu ); Li Chunfeng 
( Song shi )   h     

  Li Chunfeng  et al .  

Continued
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 bibliographical chapters of dynastic histories, as  Table 15.3  shows), whose 
lifetime presumably was not too distant from that of Liu Hui, off er a slightly 
narrower range of styles. Th e best-known contribution of Zhao is his jus-
tifi cation of a series of quadratic identities with the help of geometrical 
diagrams, to a certain extent similar to those used by Liu Hui in his com-
mentaries on the  ninth chapter  of the  Jiu zhang suan shu .  59    

 Th e actual intentions that Liu Hui and Zhao Shuang had when writing 
their commentaries on the  Jiu zhang suan shu  and  Zhou bi suan jing , respec-
tively, do not seem related to any kind of educational activity. However, 

  59      Gillon  1977 ; Cullen  1996 : 206–17; CG2004: 695–701. 

  Number  

   Th e extant treatises 
used in the 
Mathematical College   

   Commentators as 
specifi ed in offi  cial 
histories   

   Commentator(s) of 
the extant treatises   

  9     Qi gu suan jing  
緝古筭經 
(Computational 
treatise on the 
continuation of 
[traditions] of ancient 
[mathematicians])  

  Li Chunfeng (?) 
( Jiu Tang shu );   i    Li 
Chunfeng ( Xin Tang 
shu )  

  Th e author (Wang 
Xiaotong 王孝通)  

  10     Shu shu ji yi  數術記遺 
(Records of the 
procedures of 
numbering left  behind 
for posterity)  

  Zhen Luan ( Jiu Tang 
shu  and  Xin Tang shu )  

  Zhen Luan  

    a     Li  1977 : 269–271 quotes these and other sources mentioning the names of 
commentators.  

    b     Zhen Luan is mentioned as the commentator and the author ( JTS  47: 6b).  
    c     Th e title is mentioned as  Jiu zhang suan jing  ( SS  207: 3b).  
    d     Liu Xiaosun of the Sui dynasty (581–618) authored the ‘computations’,  cao  草.  
    e     Conventionally identifi ed as Zhao Junqing 趙君卿 also known as Zhao Shuang 趙
爽, the author of the commentary found in the extant edition of the treatise.  

    f     Th e  Jiu Tang shu  mentions three diff erent editions of the treatise, two commented 
upon by Zhao Ying and Zhen Luan, and one  compiled  by Li Chunfeng ( JTS  47: 5b).  

    g     Th e  Xin Tang shu  mentions four diff erent editions commented upon by the three 
commentators separately (Li Chunfeng is credited with the authorship of two 
commentaries) ( XTS  59: 12b, 13b).  

    h     In the  Song shi  the treatise is mentioned as authored by Wang Xiaotong ( SS  207: 3a).  
    i     In the  Jiu Tang shu  both Wang Xiaotong and Li Chunfeng are mentioned as the 

authors ( JTS  47: 6b); probably, the text of the history is corrupted and Li Chunfeng 
was originally mentioned as a commentator.    

Table 15.3 Continued
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their commentaries on the oldest and presumably highly respected texts in 
the collection of the textbooks were edited in the seventh century  ce  to be 
used for instruction. Th e commentaries arguably compiled by Li Chunfeng 
and his team for educational purposes thus may have corresponded most 
closely to the style of work with ancient texts practised by the instructors of 
the Mathematical College.  60    Yet the commentary on the  Hai dao suan jing  
by Li Chunfeng  et al . did not discuss the rationale of the methods; instead, 
the commentators explained the terms occurring in the conditions of the 
problems and reproduced the procedures provided by Liu Hui with plugged 
numerical parameters. Th at is, for Li Chunfeng the relevant interpretation of 
a procedure consisted of a correct identifi cation of the parameters involved 
and the operations with them. Th e parts of Li Chunfeng’s commentary 
devoted to calculations look similar to the ‘computations’ ( cao  草) added by 
Liu Xiaosun to the  Zhang Qiujian suan jing , and both texts resemble closely 
the computations in the Vietnamese model examination paper. 

 Th ese observations suggest the following conjecture. Even though the 
format of the Tang dynasty examination papers remains unknown, the 
format adopted by the author of the model examination work in the 
Vietnamese treatise fi ts surprisingly well into the short description of the 
Tang dynasty mathematics examinations quoted above. Th e imaginary 
Vietnamese examinee used as his model the solution of a generic problem 
found elsewhere in the same treatise and, in particular, provided detailed 
calculations close enough to those found in the model problem. Now, what 
kind of explanations of the ‘meaning’ of the given problems were the actual 
Chinese examinees of the Tang dynasty expected to provide? It is perhaps 
not too daring to conjecture that their writings were supposed to resemble 
those provided by the commentators of the treatises used as textbooks. In 
other words, it appears plausible to suggest that the commentaries of Liu 
Hui, Zhao Shuang, Li Chunfeng and others found in the treatises used for 
instruction in the Mathematical College were used as  the  models for the 
examination papers; not only did they provide the students with methods 
used to investigate the validity of the computational procedures presented 
in the treatises, but they also established the particular format to be imi-
tated by the candidates when writing their examination essays. 

 Th e phrase  wu zhu zhe  無注者 found in the description of the math-
ematics examinations in the ‘advanced programme’ and rendered above 

  60      It appears quite probable that the commentarial activity of Zhen Luan who produced a set 
of commented mathematical treatises in the second half of the sixth century  ce  was directly 
related to a system of state mathematics education established, as some authors have suggested, 
at the Court of the Northern Zhou dynasty (see above). 
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as ‘As for those [texts/papers] without commentaries’ can be understood 
in at least three diff erent ways: (1) it refers to a commentary expected to 
be written by the examinee in his examination paper but omitted for some 
reason; (2) it refers to a commentary missing in one of the two treatises of 
the ‘advanced programme’ which constituted the topic of the examination, 
and (3) the word ‘commentary’  zhu  had here the technical meaning ‘to 
preappoint a candidate to a position’.  61    Th e third option hardly seems to 
be relevant in this particular context. Siu and Volkov ( 1999 ) have argued 
for the fi rst option mainly on the basis of the inspection of the only extant 
treatise of the ‘advanced programme’, the  Qi gu suan jing  緝古筭經 by 
Wang Xiaotong in which almost all the problems are provided with com-
mentaries. However, a large part of the original treatise is lost: according to 
the bibliographical sections of the  Jiu Tang shu  and  Xin Tang shu , the book 
originally contained four  juan  ( JTS  47: 6b;  XTS  59: 14a) while the  Song 
shi  mentions only one  juan  (SS 207: 1a). Th e extant version contains only 
twenty problems; the texts of problems 17–20 and of the respective com-
mentaries are partly lost ( SJSSb : 434–5). It is therefore impossible to know 
whether every single problem of the Tang dynasty version of the treatise 
was commented upon by Li Chunfeng, or whether a certain number of 
the problems were left  without commentaries.  62    Moreover, nothing can 
be known about Li Chunfeng’s commentaries on the second book of the 
‘advanced programme’, the  Zhui shu  by Zu Chongzhi, since the book had 
already been lost by the time of the Song dynasty; it is equally possible 
that only some problems contained commentaries. If this was the case, 
the phrase  wu zhu zhe , ‘as for those without commentaries’, may have 
referred to paradigmatic problems from the treatises used as textbooks in 
the ‘advanced programme’ which did not contain commentaries on certain 
problems. Th is option leads to the following hypothesis: in the ‘advanced 
programme’ examination tasks were compiled on the basis of problems 
from the  Qi gu suan jing  and  Zhui shu ; if the original problem contained 
a commentary, the examination criteria were the same as in the ‘regular 
programme’ examination: the examinee had to ‘elucidate numbers’ and to 
‘elucidate in detail the internal structure of the [computational] procedure’, 
that is, to compile a text similar to the original commentary. If the problem 
taken as the model for the examination task did not contain a commen-
tary, the candidate was not asked to provide ‘elucidations’ but to ‘make the 
numerical data coherent’, and ‘not to make mistakes in the meaning and 

  61      Des Rotours 1934: 43, 49, 217, 244, 266, 268; Hucker  1985 : 182, nos. 1407–8. 
  62      Th e interested reader will fi nd the annotated translation by Berezkina  1975  highly useful. 
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in the structure’ of the procedure. Each of the terms employed here most 
probably had a precise technical meaning diffi  cult or even impossible to 
restore, yet one can safely conjecture that in the latter case the examinee 
was supposed to provide a sequence of correct operations leading to the 
solution without their detailed justifi cation. 

 If the phrase about the ‘lack of the commentaries’ referred to the compi-
lations of the examinees, one can suggest that they were supposed to write 
their explanations in the format similar to that of the offi  cially established 
commentaries and, most probably, used these commentaries as the best 
available models. If the second interpretation of the phrase is correct, the 
description of the examination procedure suggests an even larger role of 
the commentaries found in the treatises used for instruction. Whichever 
interpretation of the phrase ‘as for those without commentaries’ is adopted, 
the role of the commentaries is apparent: they were not only providing 
explanations or justifi cations of the algorithms found in the treatises, but 
also became  the  models for the examination papers.   

 Conclusions 

 Until recently the historians of Chinese mathematics tacitly assumed that the 
commentaries on mathematical texts, especially those authored by Liu Hui 
and Zhao Shuang, were ‘purely mathematical works’ written by professional 
mathematicians for unidentifi ed target groups, presumably small commu-
nities of experts and disciples. Th is assumption is most probably correct; 
my hypothesis is that the embedding of Liu Hui’s and Zhao Shuang’s com-
mentaries into the context of state education radically changed the way in 
which they were interpreted and used. Aft er having been edited by the team 
of Li Chunfeng, the commentaries on the treatises constituting the curricu-
lum set the guidelines for the instructors and students of the Mathematical 
College. More specifi cally, in order to demonstrate their correct under-
standing of an algorithm found in a mathematical treatise, the students and 
examinees had to perform the operations the algorithm prescribed with the 
correctly inserted numerical values. Th is reconstruction is corroborated by 
at least three documents: (1) the commentaries of Li Chunfeng’s team on 
the  Hai dao suan jing  written in the seventh century  ce  with the purpose 
of being used as didactical material in the Mathematical College and 
conspicuously featuring computations performed according to the algo-
rithms devised by Liu Hui; (2) the aforementioned description of Tang 
examinations, and (3) the Vietnamese model examination paper. Th e 
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commentaries of Li Chunfeng on the  Hai dao suan jing  may have naturally 
become paradigmatic texts imitated by the authors of examination essays 
devoted to this particular text, and one can conjecture that the commentar-
ies of Liu Hui and Zhao Shuang, containing justifi cations of the algorithms, 
in turn also may have been employed by the students and examinees as 
models in their oral presentations and written examinations. Th e commen-
taries thus provided the standards of persuasiveness and consistency and 
shaped the style and structure of the mathematical discourse in the branch 
of the traditional Chinese mathematics perpetuated within the network of 
offi  cial educational institutions of the fi rst millennium  ce .     
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 Appendix  i   

 Th e  fi rst part  of the Appendix contains the original text of the ‘model 
examination paper’ from the  Chỉ minh lập thành toán pháp  指明立成筭法 
(Guidance for understanding of  the Ready-Made Computational Methods) 
 by Phan Huy Khuông’s 潘輝框 ( CMLT  4: 30a–32b). When reproducing 
the text, I preserved the original layout, that is, one line of the original 
corresponds to one line of the transcription below. Th e original text does 
not contain punctuation, and I introduce my own. Th e emendations of the 
text are indicated with the brackets 〈〉 and 〔〕: ‘〈A〉〔B〕’ means that the 
sequence of characters A is suggested to be replaced by the sequence B 
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(either A or B can be an empty sequence, that is, 〈A〉 alone means that the 
sequence A is to be suppressed and 〔B〕stands for the sequence B which 
is to be added). Th e  second part  of the Appendix contains its English trans-
lation with the references to the page and line numbers of the original. 

 /p. 30a/ 
 倣撰筭題試文格式  63    
 問。今有奉頒金銀。共一千斤。其這金銀本官奉頒 
 〈仍〉〔乃〕量照銀數五千二百九十二兩。惠許本營屬三 
 百二十八人。將為平均與人數。頗餘四分八釐。 
 第高下平等理有未孚。是平分之法不可均用。已 
 顯。茲欲用這銀均依本屬有差衰。另為三等。甲等 
 /p. 30b/ 
 八人。每人受七分。乙等二十人。每人〔受〕五分。丙等三 
 百人。每人受二分。則諸人受分與各該若干。試諸 
 筭士者。學習精通稱鈞辨別宜悉排陳以觀素蘊。 
 答曰。 
 甲等每人獲銀四十九兩。該三百九十二兩。 
 乙等每人獲銀三十五兩。該七百兩。 
 丙等每人獲銀十四兩。該四千二百兩。 
 對。愚謂筭法中來因除不越衰分。上有多少。有差。 
 此執事筭〈河〉〔問〕而愚所以復之也。茲見題中所〈河〉〔問〕 
 惟照奉銀惠及本屬。略說平分而主用差分 
 之法。諒知筭法無窮之妙用矣。愚請筭而排陳之。 
 /p. 31a/ 
 於惟奉頒本官金銀一千斤。〈仍〉〔乃〕以斤法十六通 
 之。總得一萬六千兩。且恩霑於上必惠乎下。此金 
 銀也。本官念其利。不可獨肯以私藏。爰就中奉 
 頒金銀數所奉領者內取一萬○七百○八兩 
 之貯存銀數。五千二百九十二兩。量照這銀惠許 
 本屬三百二十八人。則這銀與本營而同其惠者。 
 若用平分之法。上置人數。下置這銀。以法商除歸。 
 立成每人受銀十六兩一錢三四釐。然這銀不 
 盡。頗餘四分八釐。誠可用通分納子之法。第人品 
 /p. 31b/ 
 有高下而分之。平為一等。此事不稱情其理。有所 
 未孚。是則平分之法不可均用。故不必排列。信如 
 題問。盖已顯然矣。且以人有優劣不齊分之多少 

  63      Th is is the title of the section separated from the main body of the text with an indent. 
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 有敘。是優者當受其多。劣者當受其少。分之而有 
 差等。理固如是。〈仍〉〔乃〕茲款用這銀五千二百九十二 
 兩均依本屬三百二十八人有差分而人數另為 
 三等。甲等八人。每人受七分。乙等二十人。每人受 
 五分。丙等三百人。每人受二分。此是問差分之法。 
 其法當用。先置甲等八人。以七分因之。得積五十 
 /p. 32a/ 
 六分率。再置乙等二十人。以五分因之。得積一百 
 分率。又置丙等三百人。以二分因之。得積六百分 
  率。〈仍〉〔乃〕以三等分率〈付〉〔副〕併為一。共得七百五
十六分 
 率。為法。方置這銀五千二百九十二兩。為寔。〈仍〉〔乃〕以 
 法歸除立之。得每一分率七兩。 為常法。以因與 
 各等分率。却先將甲等每七分因之。成甲等每人 
 獲銀四十九兩。再次將乙等每五分亦因之。成乙 
 等每人獲銀三十五兩。又將丙等每二分又因之。 
 成丙等每人獲銀十四兩。〈比〉〔此〕各等每人受分銀已 
 /p. 32b/ 
 畢。至如各該〔數〕則以各差等分積。亦將乘與常法。即 
 知該數。〈仍〉〔乃〕以甲等積五十六分率乘之。成甲該銀 
 三百九十二兩。再以乙等積一百分率乘之。成乙 
 該銀七百兩。又以丙等積六百分率乘之。成丙該 
 銀四千二百兩。是各等該銀已成之矣。至若還原。 
 共併甲、乙、丙三等該銀數者。合而為一。成原銀五 
 千二百九十二兩。愚也鈍其為學。粗知法式之排 
 陳。拙於所行。未識多少之辨別。茲因問及淺略答 
 之。是否如何願執事擇而采之。幸甚。   

 Translation 

 /p. 30a/ 

  [1]     Imitation of a composition of a mathematical problem [written accord-
ing to] the format of an examination paper.  

  [2]     Question: [Let us suppose that] now there is money to award [func-
tionaries], the total amount is 1000  cân  (斤). As for this amount of 
money, the award assigned to a given [group of] functionaries  

  [3]     had the value of 5292  lượng  (兩). Th e award was promised to 328 
people affi  liated with the given establishment.  
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  [4]     [If one] intends to distribute equally according to the number of the 
people, [then] [it will be] uneven and there will be a remainder of 4 
 phan  8  li .  

  [5]     [If for those] ranging from the high to the low [positions] the pattern 
of ‘equal rank [distribution]’ (平分) [is applied], [then] there is [some-
thing] incorrect. So, the method of ‘fl at-rate distribution’ cannot be 
universally applied, [it is] already  

  [6]     clear. Now, [one] wishes to use this money to be applied equally [within 
one rank] according to unequal ranks of the aforementioned corpus [of 
functionaries] in separating them into three ranks [as follows]. Rank A:    

 /p. 30b/ 

     [1]     8 persons, each person obtains 7 parts; rank B: 20 persons, each 
person obtains 5 parts; rank C, 300  

     [2]     persons, each person obtains 2 parts. [If we proceed in this way], 
then what will be the [amounts of money corresponding to] the parts 
obtained by all the people and the due amount [of money] for each [of 
the three groups of functionaries]? [We] examine all  

     [3]     the experts in computations [who] ‘study and exercise’,  64    [those who] 
penetrate into the subtleness of weights and measures, [who can] dis-
tinguish and diff erentiate, analyse adequately, [those who know how 
to] arrange and dispose [the counting rods], in order to inspect the 
simple as well as the profound [matters].  65     

     [4]     Answer:  66     
     [5]     each person of rank A obtains 49  lượng  of silver; the due amount is 

392  lượng ;  
     [6]     each person of rank B obtains 35  lượng  of silver; the due amount is 700 

 lượng ;  
     [7]     each person of rank C obtains 14  lượng  of silver; the due amount is 

4200  lượng .  
     [8]     Response [of the examinee]: [I,] so-and-so,  67    say: [this] computational 

method involves [the operations of] multiplication and division and 
does not go beyond the [method of] ‘distribution according to grades’ 

  64      A quotation from the  fi rst chapter  of the Confucian classic  Lun yu  論語 ( Th e Analects ). 
  65      Probably, this paragraph is a formal ending appended to every problem proposed to candidates 

at the examination. 
  66      Th e answer is written in smaller characters; it is possible that the answer was supposed to be 

written by the examinee in the blank space left  aft er the word ‘answer’. 
  67      A self-depreciatory 愚 (Chinese reading  yu ) indicates the position in which the actual name is 

to be inserted. 
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(衰分).  68    Firstly,  69    there is an amount [to be distributed]; [secondly],  70    
there are grades.  

     [9]     Here is the computational problem [proposed] by those in charge,  71    
and [what is below is] how I answered it. Now it is clear that what is 
asked in the problem  

  [10]     is solely concerned with the awarded money kindly dispatched to 
the given groups [of functionaries]. [One] briefl y discussed the ‘fl at-
rate distribution’, [and aft er that] used the ‘distribution according to 
grades’ as the principal  

  [11]     method. I know that [this] computational method has unlimited 
miraculous applications! I, so-and-so, ask for counting rods  72    to 
‘arrange and dispose’ them.  73       

 /p. 31a/ 

  [1]     As for the very [phrase] ‘[Let us suppose that] now there is money to 
award [functionaries], the total is 1000  cân  斤 [of silver]’, [I] make it 
[= this amount] uniform [with other units] using [the factor] 16, 
[which is] the ‘norm’ of  cân .  74     

  [2]     Th e total amount [thus] obtained is 16000  lượng . ‘[If] benevolence is 
manifested by the superiors, [then] necessarily the subjects are kindly 
awarded.’  75    As far as this money  

  [3]     is concerned, the said functionaries cared about their benefi t and could 
not themselves accept to keep [the money] privately. Th erefore  

  [4]     what the granting authorities kept out of the amount of awarded money 
was a deposited amount of 10708  lượng .  76     

  68      Th is is the term for weighted distribution found in  chapter 3  of the  Jiu zhang suan shu ; see 
 SJSSb : 109ff . 

  69      Or: ‘in the upper [position]’. 
  70      Or: ‘in the lower [position]’. 
  71      Here the term 執事 may be a formal title of an offi  cial; see Hucker  1985 : 162. 
  72      It is worth noting that counting rods and not the abacus are mentioned here. According to the 

report of Giovanni Filippo de Marini (1608–82), counting rods were still in use in Vietnam 
as late as the mid seventeenth century; see Volkov  2009 : 160–4. However, one cannot rule out 
the possibility that the term  toán  筭 may have been used here as a metaphorical reference to a 
counting instrument in general. 

  73      Probably, a quotation from the ending of the problem ‘. . . [those who] arrange and dispose [the 
counting rods], in order to inspect . . .’ 

  74      Th at is, 1  cân  斤 = 16  lượng  兩, therefore to convert an amount of money from  cân  to  lượng  one 
has to multiply it by 16. 

  75      Th is phrase does not have any particular mathematical meaning and appears to be a quotation 
from a text that I have been unable to identify. 

  76      Th at is, the authorities retained some amount of money for the good of the functionaries. 
Th is is but a tentative rendering of a rather obscure paragraph explaining why not the entire 
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  [5]     As for the [remaining] 5292  lượng , [one] measures this amount of 
money for the awarded  

  [6]     aforesaid corpus of 328 functionaries. Th en [if] this money is given to 
this establishment [= functionaries] and [they are] awarded in the same 
way,  

  [7]     [it is as] if [one] uses the method of ‘fl at-rate distribution’. [One] sets 
above  77    the number of the persons, [one] sets below  78    this [amount of] 
money.  79    Using the divisor [one] divides [the amount of money] by the 
‘evaluation division’ and by ‘returning [division]’;  80     

  [8]     [one] immediately establishes that every person obtains 16  lượng  1  tien  
3  phan  4  li .  81    Th us this money [could] not  

  [9]     be entirely [paid and] there would be a remainder of 4  phan  8  li .  82    To get 
the actual [value], one can use the methods of reduction of fractions to 
common denominator and of injection [of integer parts of mixed frac-
tions] into numerators.  83    [If] these men’s categories    

 /p. 31b/ 

  [1]     are classifi ed as high and low, being at the same level [only within] one 
rank, [then] this action is not to be called ‘analysing [correctly] the 
inner structure [of it]’  84    and there is [something]  

  [2]     unreliable. [If] this is so, then the ‘method of fl at-rate distribution’ 

amount of 16000  lượng  was distributed among the functionaries and why the 10708  lượng  
should have been deducted from the original amount of 1000  cân . 

  78      Or: ‘secondly’. 
  79      If the counting instrument supposed to be used is the counting rods, then the positions of the 

operands (divisor in the upper position and the dividend in the lower position) diff ers from 
the classical Chinese disposition of the operands represented with the counting rods (divisor 
below and the dividend above) described in the  Sun zi suan jing  (see  SJSSb : 262). Th e standard 
methods of division performed with the abacus I am aware of all assume that the dividend is 
to be set in the left  (= upper) part of the abacus, and the divisor in its right part. I am thankful 
to K. Chemla who drew my attention to this particularity of the Vietnamese method (private 
communication, 2008). 

  80      For a very short discussion of the methods of division  shang chu  商除 and  gui  歸 (in Mandarin 
transcription of the characters) mentioned here see LD1987: 181–3. 

  77      Or: ‘fi rstly’. 

  81      Indeed, 5292 ÷ 328 = 16.134(14634). 
  82      Th at is, 5292 − 328·16.134 = 5292 − 5291.952 = 0.048. 
  83      Th is phrase can be understood as saying that one can obtain an exact value if a common 

fraction is used instead of decimal one. 
  84      Th is rather rough translation of the expression 情其理 ( qing qi li  in Mandarin transcription) 

would require a long discussion of the term  qing  情 which cannot be off ered here; the 
interested reader is referred to CG2004: 970 for an interpretation of the term as employed by 
Liu Hui. 
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cannot be applied to all [the functionaries]. Th is is why [one] does not 
need to ‘dispose and arrange’ [the counting rods in order to solve the 
problem in this way] and [can]  

  [3]     trust [what was stated] in the problem [viz., that the fl at-rate distribu-
tion method cannot be used]. It is already clear that this is so! Also, 
ranging the people according to their unequal capacities, [one has to 
give them] larger or smaller  

  [4]     awards. So, those who are superior will obtain more, those who are 
inferior will obtain less. One distributes it [according to]  

  [5]     unequal ranks. Th e [distribution] pattern certainly [should be] like 
this. Th erefore [one will] use this amount of 5292  

  [6]      lượng  to distribute this [money] among the aforementioned corpus of 
328 persons [while applying] the ‘weighted distribution’ [method] and 
having the number of the people subdivided into  

  [7]     three ranks. Rank A: 8 persons, each person obtains 7 parts. Rank B: 20 
persons, each person obtains  

  [8]     5 parts. Rank C: 300 persons, each person obtains 2 parts. Th is is the 
method of ‘weighted distribution’ for [this] problem.  

  [9]     Th is method should be applied [as follows]: fi rst of all, [I]  85    set [on the 
counting device] 8 persons of rank A, multiply them by 7 parts, obtain 
the product, 56    

 /p. 32a/ 

  [1]     parts–multiples.  86    Again [I] set 20 persons of rank B, multiply them by 
fi ve parts, obtain the product, 100  

  [2]     parts–multiples. Also [I] set 300 persons of rank C, multiply them by 
two parts, obtain the product, 600 parts–multiples.  

  [3]     Th en in an auxiliary [position of the counting instrument I] add the 
three [amounts] of parts–multiples, and obtain in total 756 parts– 
multiples.  

  [4]     [I] take it as the ‘norm’ [= divisor]. And at this moment [I] set 5292 
 lượng  of this money to be the dividend. Th en  

  [5]     [I] divide [this dividend] by the norm, set it [= the result, on the count-
ing instrument], and [thus] obtain [that] one part–multiple equals 
seven  lượng . [I] keep it [on the counting instrument] as the ‘constant 
norm’ and multiply by it  

  85      I translate this part of the examination paper in fi rst person, since its imaginary author is 
assumed to perform operations with a counting device (hence ‘set’) and to comment on them. 

  86      On the term ‘part–multiple’ (Chinese  fenlü  分率) see the discussion above, pp. 529–30. 
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  [6]     the parts-multiples of each rank. Th at is, fi rst of all, I shall take the 
seven parts of each [functionary] of rank A, multiply it [by seven 
 lượng ], and establish that each man of rank A  

  [7]     obtains 49  lượng  of silver. Th en again, [I] take fi ve parts of each [func-
tionary] of rank B, also multiply it [by seven  lượng ], establish that each 
person of rank B  

  [8]     obtains 35  lượng  of silver. Again, [I] take two parts of each [function-
ary] of rank C, also multiply it [by seven  lượng ],  

  [9]     establish that each person of rank C obtains 14  lượng  of silver. Here [the 
computation] of the [amount of] silver allotted to each person of each 
rank is already    

 /p. 32b/ 

  [1]     completed. As for the due [amount of money] for each [rank], [I take] 
the aggregated parts of each rank, and [I] shall similarly multiply [it] by 
the ‘constant norm’, and thus  

  [2]     will know the due amounts. Th at is, [I] multiply the aggregated 56 
parts–multiples for the rank A [by the ‘constant norm’] and establish 
the [amount of] silver due to [all the functionaries of] the rank A,  

  [3]     392  lượng . Again, [I] multiply the aggregated 100 parts–multiples for 
the rank B [by the ‘constant norm’] and establish the [amount of] silver 
due to [all the functionaries of] the rank B,  

  [4]     700  lượng . Also, [I] multiply the aggregated 600 parts–multiples for the 
rank C [by the ‘constant norm’] and establish the [amount of] silver due 
to [all the functionaries of]  

  [5]     the rank C, 4200  lượng . Th e silver due to each rank is thereby already 
established! As for the ‘return to the origin’,  87     

  [6]     [I] add together the amounts of silver due to the three ranks A, B and 
C, uniting them together, and establish the original [amount of] silver,  

  [7]     5292  lượng . [I,] so-and-so, am not clever as far as the ‘learning’ [is con-
cerned]; [I only] roughly know the ‘arrangement and disposition’ [of the 
counting rods] for the [computational] methods and schemes (式);  88     

  [8]     [I] am bad at what [I] do, and still do not know how to ‘distinguish and 
diff erentiate’  89    between ‘excessive and insuffi  cient’. Now, in answering 
the question [I] came up with a shallow and approximate answer  

  87      Th at is, the check-up conducted in order to verify whether the answer obtained corresponds to 
the conditions of the problem. 

  88      Th e imaginary examinee apparently makes an allusion to the  fi nal part  of the problem 
mentioning ‘. . . [those who] arrange and dispose [the counting rods] . . .’ 

  89      Once again, this is a quote from the  fi nal part  of the problem ‘. . . [those who] . . . distinguish 
and diff erentiate’. 
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  [9]     to it. Was it correct or wrong? Hope that those in charge will make [a 
right] decision. With best regards.  90         

 Appendix  ii  

 Th is Appendix contains a list of the titles of Chinese mathematical trea-
tises mentioned in the paper in Chinese characters,  pinyin  transliteration, 
Wade-Giles transliteration used in Anglo-Saxon countries and in Taiwan, 
my translation of the title, and the translation adopted in Martzloff   1997 .  91    
Th e treatises are listed alphabetically according to the  pinyin  transliteration 
of their titles.                                                                                                     

  90      A formal ending. 
  91      Martzloff   1997 : 17, 20, 56, 124–5, 129. 
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 16     A formal system of the  Gougu  method:     a study 
on Li Rui’s  Detailed Outline of Mathematical 
Procedures for the Right-Angled Triangle     

   Tian     Miao     

 In contrast to the deductive structure developed in Euclid’s  Elements , which 
is always taken as the model for ancient Greek mathematical reasoning, the 
structure of most ancient Chinese mathematical books could be described 
as that of a collection of problems and procedures. Moreover, these pro-
cedures were mostly described within the context of numerical problems. 
As historians have argued, in some ancient Chinese mathematical texts 
there are proofs establishing the correctness of the algorithms included. 
However, these proofs were mostly written by subsequent mathematicians, 
and were contained in commentaries attached to related procedures.  1   
Th erefore, as these proofs were specifi cally brought to bear on procedures 
that were taken from texts that already existed, they could seldom form 
a system by themselves, and hence the reasoning model in them looks 
fl exible. Th is raises two related questions: when did Chinese mathemati-
cians think of developing a formal system of mathematics in their books? 
Moreover, could the mathematical results developed in ancient China be 
presented systematically and formally? 

 In this chapter, I shall rely on a Chinese mathematical book, the 
 Gougu Suanshu Xicao  (hereaft er abbreviated as  GGSX, Detailed Outline of 
Mathematical Procedures for the Right-Angled Triangle , 1806), to investigate 
these questions. Furthermore, I hope that the discussion will shed some 
light upon questions such as why and in which context a formal system of 
mathematics emerged in China.  

   1      Th e best-known examples of proofs in ancient Chinese mathematical texts are those Liu Hui 
provided in his commentary to  Jiuzhang suanshu . For greater detail, see Guo Shuchun  1987 ; 
Chemla  1992 ; CG2004: 3–70; Wu Wenjun  1978 . 552
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 1.      Detailed Outline of Mathematical Procedures for the 
Right-Angled Triangle :     a formal system for the 
‘Procedure of the right-angled triangle ( Gougu )’  

 Th e table of contents of  Detailed Outline of Mathematical 
Procedures for the Right-Angled Triangle (GGSX)  

 In the mathematics developed in ancient China, the study of the numerical 
relations between the sides of a right-angled triangle (the ‘ gougu ’ shape) 
and the side or diameter of its inscribed and circumscribed square or circle 
formed a self-contained system, which was entitled the  ‘gougu  Procedure’ 
(句股術,  Gougu shu ). In contrast to the mathematics developed in Europe, 
in which the sides of a right-angled triangle were generally named as sides 
around the right angle and hypotenuse, in ancient China, the two sides of 
the right angle had diff erent names, the longer one being named  gu , and the 
shorter one  gou  ( Figure 16.1 ).  2    

 Th e  GGSX  was completed in 1806 by the Chinese mathematician Li Rui 
(1769–1817).  3   Th e whole book was devoted to methods for solving a right-
angled triangle when two of the following thirteen items attached to it are 
known:  4   

  Th e  gou , the shortest one of the two sides around the right angle 
 Th e  gu , the longest one of the two sides around the right angle 
 Th e hypotenuse 
 Th e sum of  gou  and  gu  
 Th e diff erence between  gou  and  gu  
 Th e sum of  gou  and the hypotenuse 

     2      In his commentary on  Th e Nine Chapters of Mathematical Procedures , Liu Hui gave the 
following defi nition: ‘Th e shorter side is named  gou , (and) the longer side is named  gu ’ (Liu 
Hui, Commentary, in  Jiuzhang suanshu ,  chapter 9 , 1a). When diff erent names are used, it is 
easy to describe the calculation between them and to name the quantities they yield. In what 
follows, we will come back to these quantities. During the sixteenth and seventeenth centuries, 
some Chinese mathematicians named  gu  the vertical side of the right-angled triangle, and  gou  
the horizontal side (see Gu Yingxiang,  Discussion on Gougu , in Gu Yingxiang, 2a). In GGSX, 
the author Li Rui named the sides in the ancient way, which he described in his text. 

     3      Liu Dun  1993 . 
     4      In Yang Hui’s  Xiangjie Jiuzhang Suanfa  ( A Detailed Explanation of   Th e Nine Chapters of 

Mathematical Procedures, completed in 1261), there is a table containing all of these thirteen 
items. Guo Shuchun  1988  argues that the main part of this book was written by Jia Xian, and 
that Yang Hui only provided commentaries on it. If this is so, these thirteen terms were already 
sorted out in the eleventh century. Note that the names of the last four terms included in 
 Yang Hui Suanfa  ( Mathematical Methods by Yang Hui ) are not the same as those Li Rui uses 
in his book. For example, Yang Hui (45a) expressed the sum of  gou  and the sum of  gu  and 
hypotenuse as ‘sum of hypotenuse and the sum (of  gou  and  gu )’. 
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 Th e diff erence between  gou  and the hypotenuse 
 Th e sum of  gu  and the hypotenuse 
 Th e diff erence between  gu  and the hypotenuse. 
 Th e sum of  gou  and the sum (of  gu  and the hypotenuse) 
 Th e sum of  gou  and the diff erence (between the hypotenuse and  gu ) 
 Th e diff erence between  gou  and the sum (of  gu  and the hypotenuse) 
 Th e diff erence between  gou  and the diff erence (between the hypotenuse 

and  gu ).  5      

 If we denote  gou ,  gu  and the hypotenuse by  a ,  b  and  c  respectively, Table 16.1 
below contains the following items:  

 Li Rui’s text is composed of two parts – the table of contents and the main 
text. Both are presented in the form of a formal system. First, let us have a 
look at the table of contents. 

 Th e table of contents of the  GGSX  is a list of seventy-eight problems. We 
know from a basic theorem in combinatorics that if we choose two items 
out of thirteen, we can have seventy-eight combinations. Th erefore, the 
table of contents of the  GGSX  in fact includes all the problems that can be 
raised in relation to the topic of the book. Th is means that Li Rui’s solu-
tions to the whole set of problems concerning the right-angled triangle 
are included in the book. In the table of contents, the problems are laid 
out according to two diff erent models. We shall come back to them below. 

 Figure 16.1      Th e  gougu  shape (right-angled triangle).    

gou

gu

     5      One may think that there could be other terms, such as the sum of hypotenuse and the 
diff erence between  gou  and  gu . Th at could be denoted as hypotenuse + (  gu  –  gou ). However, it 
is equal to (hypotenuse +  gu )− gou . In fact, this table includes the three sides of a right-angled 
triangle and the positive diff erences and sums that can be derived from them. 
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Here is a translation of the fi rst part of the table of contents,  6   in which  gou  is 
rendered as  a ,  gu  as  b  and the hypotenuse as  c . I designate the diff erence in 
layout by two marks that I place at the beginning of each item. 

•    a ,  b  (being given), fi nd  c   
•    a ,  c  (being given), fi nd  b   
•    b , c (being given), fi nd  a   
 ә    a, a  +  b  (being given), subtract  a  from the sum, the remainder is  b , enter 
into this problem by the procedure of  a  and  b   

 ә    a ,  b − a  (being given), add  a  to the diff erence, the sum is  b , enter into this 
by the procedure of  a  and  b   

 ә    a, a + c  (being given), subtract  a  from the sum, the remainder is  c , enter 
into this by the procedure of  a  and  c   

 ә    a, c − a  (being given), add  a  to the diff erence, enter into this by the pro-
cedure of  a  and  c   

•    a ,  b + c  (being given), fi nd  b  and  c   
•    a ,  c − b  (being given), fi nd  b  and  c   
 ә    b ,  a + b  (being     given), subtract the diff erence from  b , the remainder is  a , 
enter into this by the procedure of  a  and  b   

•    b, a + c  (being given), fi nd  a  and  c   
•    b ,  c − a  (being given), fi nd  a  and  c   
•    b ,  c  +  b  (being given), subtract  b  from the sum, the remainder is  c , enter 

into this by the procedure of  b  and  c   

 Table 16.1     Th e thirteen items of the ‘ Gougu  Procedure’   

   a (gou)   
   b (gu)   
   c (xian)   
   b  +  a (gougu he )  
   b  −  a (gougu jiao)   
   c  +  a (gouxian he)   
   c  −  a (gouxian jiao)   
   b  +  c (guxian he)   
   c  –  b (guxian jiao)   
   a  +  b  +  c (gouhe he)   
   b  +  c  –  a (gouhe jiao)   
   a  +  c  –  b (goujiao he)   
   a  –  c  +  b (goujiao jiao)   

     6      For the complete table of contents, see  Appendix 1 . In the original text, there is no mark at the 
beginning of each problem in the table of contents. In order to clarify the structure of the table 
and the book, I attach a mark, a circle or a square, to each problem (see below, p. 570). 
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 ә    b ,  c − b  (being given), add  b  to the diff erence, the sum is  c , enter into this 
by the procedure of  b  and  c   

 ә    c ,  a + b  (being given), fi nd  a  and  b   
•    c ,  b − a  (being given), fi nd  a  and  b   
 ә    c ,  a + c  (being given), subtract  c  from the sum, the remainder is  a , enter 
into this by the method of  a  and  c   

 ә    c ,  c − a  (being given), subtract the diff erence from  c , the remainder is  a , 
enter into this by the procedure of  a  and  c .  

 ә    c ,  b + c  (being given), subtract  c  from the sum, the remainder is  b , enter 
into this by the procedure of  b  and  c . 

•  . . . 
•   a + b, (b + c)−a  (being given), fi nd  a ,  b , and  c  (two problems). 
•  . . . 
•   b – a, a – (c – b)  (being given), fi nd  a ,  b , and  c  (four problems). 
•   a + c , (b + c)- a  (being given), fi nd  a ,  b , and  c  (two problems). 
•  . . . 
•   a + c, a – (c – b)  (being given), fi nd  a ,  b , and  c  (two problems). 
•  . . . 
•   c – a, a +  (c – b)  (being given), fi nd  a ,  b , and  c  (four problems). 
•  . . .  7      

 Th e table of contents maintains this formal order. For every problem in 
it, two items are given. Th e fi rst item is chosen following the order of 
 Table 16.1 , while the second item is the one coming aft er the fi rst item given 
in  Table 16.1  and is also chosen according to the order of  Table 16.1 . For 
example, in the fi rst forty-two problems, the following pairs of items are 
given: 

  a ,  b ;  a ,  c ;  a ,  b  +  a ;  a ,  b  −  a ;  a ,  c  +  a ;  a ,  c  −  a ;  a ,  b  +  c ;  a ,  c  −  b ;  a ,  a  +  b  +  c ;  a ,  b  +  c  −  a ;  a , 
 a + c − b ;  a ,  a - c + b ; 
  b ,  c ;  b, b + a ;  b, b − a ;  b, c + a ;  b, c  −  a ;  b, b  +  c ;  b ,  c  −  b ;  b ,  a  +  b  +  c ;  b, b  +  c  −  a ;  b, a  +  c  −  b ; 
 b, a − c + b ; 
  c ,  b  +  a ;  c, b  −  a ;  c, c  +  a ;  c, c − a ;  c, b  +  c; c, c − b ;  c, a  +  b  +  c ;  c, b  +  c − a ;  c, a + c − b ;  c, 
a  −  c  +  b;  
  b  +  a ,  b  −  a ;  b  +  a, c  +  a ;  b  +  a, c  −  a ;  b  +  a, b  +  c ;  b  +  a, c − b ;  b  +  a, a  +  b  +  c ;  b  +  a, 
b  +  c  −  a ;  b  +  a, a  +  c  −  b ;  b + a, a  −  c  +  b;    
 . . . 

 Th rough this arrangement, the author of the  GGSX , Li Rui, gave every 
problem in the book a defi nite position in the table of contents and if we 

     7      Li Rui  1806 , Table of contents (Mu, ), 1a–6b. 
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want, we can fi gure out the position of a problem by the items given in the 
problem.  8   

 From the above discussion, we see that the list in the table of contents 
displays a formal system. Let us analyse the structure of the outlines of 
problems included in the table of contents. I have translated the beginning 
of the list of problems into English, and I attached a symbol to each problem 
at the beginning of the translation of its outline. 

 Th e layout of all the problems marked with a black circle is generally 
the same. All contain two sentences. Th e fi rst sentence is composed of the 
names of two items, without any conjunction between them. Th e second 
begins with a verb,  qiu  ( , ‘fi nd’), and ends with the names of the sides of a 
right-angled triangle which are sought for in that particular problem. 

 Th e problems marked with a square are composed of three parts. Th e 
fi rst sentence also consists of the names of two items, without any con-
junction. Th e second part contains one or two procedures. Th rough the 
procedure, the items given in the fi rst sentence are transformed into items 
mentioned in a previous problem. Th e third sentence is a statement, which 
begins with  yi  ( , ‘according to, relying on’). A procedure named by the 
two items that are the result of the transformation in the second sentence 
is then mentioned, and the sentence ends with  ruzhi  ( , ‘enter into it’).  9   

 Consequently, it is clear that both the order in which the list of problems 
is given in the table of contents and the way in which the outlines of the 
procedures are given are all arranged in a systematic way. However, this is 

     8      Th rough this arrangement, Li Rui also ensured that he would not leave any problem out. 
Another Chinese mathematician, Wang Lai, one of Li Rui’s friends, gave the general solution 
to the problem of computing the number of combinations of  n  things taken two or more at a 
time. See Wang Lai ( 1799 ?). Wang Lai does not provide the exact date of the completion of this 
book; however, he mentions that he attained the results contained in it in 1799. For details of 
the compilation of Wang Lai’s book, see Li Zhaohua  1993 . 

     9      Th e whole item means that one solves the problem according to the procedure of the problem 
in which the resultant items are given. Only the problems marked with a black circle are 
contained in the main text of the book, the ones marked with a square appearing only in the 
table of contents. In fact, through the sentences just described, these problems are transformed 
into one of the other problems. Th ese sentences not only give the way of transforming one 
problem into another, but also give the reasons why this problem could be solved by the 
procedure mentioned in the third sentence. For example, the fourth problem reads ‘ a ,  a + b  
(being given), subtract  a  from the sum, the remainder is  b , enter into this by the procedure of 
 a ,  b .’ Th e fi rst sentence makes precise the data given in the problem, and the last one indicates 
that the procedure for the fi rst problem solves this new problem, while the middle one yields 
the reason for this, that is, ( b  +  a  ) −  a  =  a . In other words,  a  is given, and it is shown how  b  can 
be found. Th e problem can hence be solved with the procedure of the problem, the data of 
which are  a  and  b . In this way, even though only the problems marked with black circles are 
solved in the main part of the book, the book indicates how to solve the entire set of 
seventy-eight problems. We will come back to this point later. 
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not the only argument on which we rely to reach the conclusion that the 
 GGSX  has a formal structure. An examination of the main text of the  GGSX  
also proves revealing and is particularly signifi cant for our  argument.   

 Th e main text of the  GGSX  

 Th e main text contains the twenty-fi ve category  i  items (those marked with 
black circles above and in the complete list of problems in the  GGSX  as 
given in the Appendix below). All the seventy-eight problems in the  GGSX  
are solved in terms of these twenty-fi ve problems.  10   Now, let us analyse how 
Li Rui presents and solves these problems in the  GGSX . Th e translation of 
the fourth problem in the  GGSX  is given here as an example, and reads as 
follows. 

 Suppose  gou  is (equal to) 12, (and) the sum of  gu  and the hypotenuse is (equal 
to)  72. One asks how much  gu  and the hypotenuse are. 
 Answer:  gu , 35; the hypotenuse, 37. 
 Procedure: subtract the two squares one from the other, halve the remainder and 
take it as the dividend, take the sum of  gu  and hypotenuse as the divisor, divide the 
dividend by the divisor, (one) gets the  gu ; subtract the  gu  from the sum, the remain-
der is the hypotenuse.

 Outline: set up  gu  as the celestial unknown; multiplying it by itself, one gets 
0
0
1

,  11   

which makes the square of  gu . Further, one places (on the computing surface)  gou , 
12; multiplying it by itself, one gets 144, which makes the square of  gou . 

  10      See  n. 10 . In fact, the main text of  GGSX  contains thirty-three problems. For some problems, 
a note is attached to the outline, which says ‘two problems’ or ‘four problems’ (see the  table of 
contents ). Th is is not simply because Li Rui wants to give more examples to special problems. 
He has better reasons for this. Th e fi rst kind of problem that is represented by two examples 
is the one for which ‘ a+b  and  (b+c)−a  (being given), [it is asked to] fi nd  a ,  b , and  c .’ For this 
problem Li Rui gives two examples. One relates to the condition  (b+c)−a > a+b , whereas 
the other illustrates the condition  (b+c)–a < a+b . For these two examples, even though the 
procedure used is the same, in relation to the diff erence in the conditions, Li Rui has to 
provide two cases. He gives two diff erent demonstrations and constructs diff erent diagrams for 
each of them. In the thirteenth century, Li Ye had already encountered this kind of diffi  culty. 
Li Rui edited Li Ye’s  Ceyuan Haijing  in 1797, so it is likely that he may have been infl uenced by 
his research on Li Ye. In one problem, Li Rui provided two diff erent groups of answers for a 
second-degree equation. Th is is due to his study on the theory of equations. For Li Rui’s study 
on equations, see Liu Dun 1989. 

  11      In ancient China, the degree of the unknown was indicated by the position of its coeffi  cient. 
In the  GGSX , the degree of an unknown attached to a given coeffi  cient increases from top 
to bottom. Th is polynomial is equivalent to 0 + 0 x  + 1 x  2 . For an explanation of the  tianyuan  
method, see LD1987. 
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Adding the two squares yields 
144

0
1

, which makes the square of the hypotenuse.

(Put it aside on the left .) Further, one places the sum of  gu  and the hypotenuse, 72; 

subtracting from this the celestial unknown, the  gu , one gets 72
1−

, which makes the 

hypotenuse. Multiplying it by itself, one gets 
5184

144−
1

, which makes a quantity equal

to (the number put aside on the left ). Eliminating with the  left  (number), one gets 
5040

144−
; halving both of them, one gets 2520

72−
, the upper one is the dividend, the

lower one is the divisor, (dividing), one gets 35, hence the  gu . Subtracting the  gu  
from the sum of  gu  and the hypotenuse, 72, there remains 37, hence the hypot-
enuse. Th is conforms to what was asked (see  Figure 16.2 ).

   Explanation: in the square of the sum, there is one piece of the square of  gu , one 
piece of the square of hypotenuse, and twice the product of  gu  and the hypotenuse. 
[Subtracting the square of  gou  from within it, the remainder is twice the square of 
 gu , subtracting the square of  gou  from the square of the hypotenuse, the remainder 
is the square of  gu ]  12   and twice the product of  gu  and hypotenuse. Halving them 
makes the square of  gu  and the product of  gu  and hypotenuse. Join the two areas 
together, hence this is the multiplication by one another of  gu  and the sum of  gu  and 
hypotenuse, so, dividing it by the sum, one gets the  gu .  13     

 Except for the fi rst three problems, the layout of every problem is exactly 
the same as in the above example. In other words, the text for each problem 
is composed of the same components: a numerical problem, an answer 
to the problem, a general procedure without specifi c numbers, an outline 
that sets out the computations using the  tianyuan  algebraic method, and 
an explanation, which may be regarded as a general and rigorous proof 
with a diagram.  14   Furthermore, the order of the diff erent parts remains the 
same throughout the whole book.  15   Consequently, not only do most of the 

  12      In the original text, characters contained in square brackets were printed in smaller size than 
the main text. Th is arrangement indicates that Li Rui did not think that this part belonged 
to the main text. In fact, this part provides the reasoning of the previous statement. Li Rui 
generally provides reasons for his argument and statements in this way throughout the whole 
work. 

  13      Li Rui  1806 : 8b–9a. 
  14      Th e explanation does not discuss the meaning of the problem or the procedure, but it 

highlights the reasons why the procedure given is correct. Th is is why it can essentially be 
considered as a proof of the procedure following the problem. 

  15      In the fi rst problem, Li Rui tries to reconstruct the demonstration of the ‘Pythagoras 
theorem’ (which in present-day Chinese is called the ‘ Gougu  theorem’, whereas in the past 
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problems in the  GGSX  have the same layout in general, but also the parts of 
every problem are similarly arranged in a formal way. 

 Concerning the fi ve parts of each problem in the main text of  GGSX , 
there is not much that can be said about the fi rst three. Th e structure of 
the presentation of each problem and its solution remains the same for 
the whole book. Th e only changes concern the numerical values in the 
problem and the answers as well as the concrete procedures. We shall focus 
our analysis on the last two parts of the presentation of each problem: the 
outline and the explanation. 

 Let us begin our analysis of the structure of these parts of the problems in 
the  GGSX  with an inspection of the outline of the calculations. For each of 
the thirty-three problems contained in the book, Li Rui gives an outline of 
the calculations. And except for the fi rst three problems, they all bring into 
play the  tianyuan  method.  16   Th e fi rst step is to set up the celestial unknown. 
In addition, Li Rui follows a strict rule in choosing the unknown. Th e rule 

  16       Tianyuan  algebra is a method for solving problems. It makes use of polynomials with one 
indeterminate, expressed according to a place-value system, in order to fi nd out an algebraic 
equation that solves the problem. Th e equation was also written down according to a place-

 Figure 16.2      Li Rui’s diagram for his explanation for the fourth problem in  Detailed 
Outline of Mathematical Procedures for the Right-Angled Triangle .    
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it was called ‘ Gougu  procedure’), as given by Liu Hui around the year 263. Strictly speaking, 
the demonstration is not a rigorous one, and it is unknown whether it refl ects Liu Hui’s 
original proof or not. For Li Rui’s demonstration of the Pythagorean theorem, see Tian Miao, 
forthcoming. For Liu Hui and his proof of the Pythagoras theorem, see Wu Wenjun  1978 ; Guo 
Shuchun  1992 ; Chemla  1992 ; CG2004. 
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is: if  a ,  gou , is not known in the problem, he sets  a  as the unknown. If  a  is 
known, and  b  is not known, he sets  b  as the unknown.  17   

 Th e second step of the outline consists of establishing the  tianyuan  equa-
tion. To analyse this step, we shall give two examples to show the formal 
way in which Li Rui does this. Problem 9 reads as follows: 

 Suppose there is the  gou  (which is equal to) 33, the diff erence between the hypot-
enuse and  gu  (which is equal to) 11. Ask for the same items as the previous problem 
( gu  and hypotenuse). 

 Outline: set up  gu  as the celestial unknown, multiplying it by itself, [one]  gets 
0
0
1

,

which makes the square of  gu . Further, one places  gou  33; multiplying it by itself,
one gets 1088, which makes the square of  gou . Adding the two squares 

together yields 
1088

0
1

, which is the square of the hypotenuse. (Put it aside on the

left .) Further, one places the diff erence between the hypotenuse and  gu , 11, adding 

it to the celestial unknown,  gu , one gets 11
1

, multiplying it by itself, one gets 
121
22

1
,

which makes a quantity equal to (the number put aside on the left ). Eliminating

with the left  (number), one gets 
−868

22
, halving both the upper and the lower, one gets

−484
11

, the upper one is the dividend, the lower one is the divisor, (dividing), one

gets 44, which is the  gu .  18      

 All the thirty problems follow the same pattern. First, Li Rui tries to fi nd 
the expression of  gou  and  gu  on the basis of the items that are known. He 
then multiplies each by itself respectively, adds the squares to each other, 
and puts the result on the left . In a second part, he looks for an expression 

value notation. Th e expression of polynomials and equations makes use of the representation 
of numbers with counting rods in a place-value number system. Moreover, the notation uses 
the  tianyuan , which is supposed to be the unknown and which is represented by a position. 
Th is method fl ourished in thirteenth- to fourteenth-century China. However, it seems that 
Chinese scholars and mathematicians could no longer understand this algebraic method by the 
sixteenth century. In the eighteenth century, Chinese mathematicians rediscovered this ancient 
method, and Li Rui, author of  GGSX , made the most outstanding contribution to restoring 
it. For  tianyuan  algebra, see Qian Baocong  1982 . On the revival of the  tianyuan  method in 
eighteenth-century China, see Tian Miao  1999 . 

  17      Only in the third problem, in which  a  and  b  are known, is  c  chosen as unknown. Th is problem 
is solved by a direct application of the Pythagorean theorem, and thus the  tianyuan  method is 
not used. 

  18      Li Rui  1806 : 9b. 
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for the hypotenuse, and squares it. Finally, by eliminating the square of the 
hypotenuse and the expression put on the left  side, he gets the equation. 
Th e second example (problem 58) shows that Li Rui deliberately followed 
the same pattern in the whole book. 

 Suppose there is the sum of  gou  and the hypotenuse (equal to) 676, the diff erence 
between the sum (of  gu  and the hypotenuse) and  gou  is 560. One asks how much 
the same items as in the previous problem ( gou ,  gu  and the hypotenuse) are. 

 Draft : set up  gou  as the celestial unknown, multiplying it by itself, one gets  
0
0
1

, which

makes the square of  gou . Further one places the sum of the hypotenuse and  gou ,

676, and subtracting  gou  from it, one gets the following: 676
1−

, which is the

hypotenuse. Further, one places the diff erence between the sum and  gou , 560;

adding the celestial unknown  gou  to it, one gets the following formula, 
560

1
676

, which

makes the sum of  gu  and the hypotenuse. Subtracting the hypotenuse, −1 from it,

one gets −116
2

, which makes  gu ; multiplying it by itself, one gets the following

formula, 
13456

464
4

− , which is the square of   gu . Adding the two squares together, one

gets the following formula: 
13456

464
5

− , which makes the square of the hypotenuse. (Put it

on the left .) Further, multiplying the 
676

1−  hypotenuse, −1, by itself, one gets 
456976

1352
1

− ,

which makes a quantity equal to (the number put aside on the left ). Eliminating the

left  (number), one gets 
−443520

888
4

; dividing all the numbers from top to bottom by 4,

one gets 
110880

222
1

. Solve the equation of the second degree.  

 One gets 240, which is the  gou . Get the  gu  and hypotenuse according to procedure. 
Th is answers the problem.  19     

 In modern algebra, the above outline could be reformulated into the 
 following procedure: 

 Take  a , the  gou , as  x , 
 then,  a 2   =  x 2   
 as  c  +  a  = 676 

  19      Li Rui  1806 : 28b–29a. 
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 so  c  =  c  +  a  –  a  = 676 −  x  
 as  c  +  b  –  a  = 560 
 so,  c  +  b  = 560 +  x  
 and,  b  =  c  +  b  –  c  = 560 +  x  – (676 –  x ) = – 116 + 2  x  
 then,  b  2  = 13456 – x  + 4 x  2  
 and,  c  2  =  a  2  +  b  2  = 13456 – 464 x  + 5 x  2  
 while,  c  = 676 –  x  
 so,  c  2  = 456976 – 1352 x  +  x  2  
 thus, 13456 – 464 x  + 5 x  2  = 456976 – 1352 x  +  x  2  
 so, – 443520 + 888 x  2  = 0 
  x  = 240.   

 In this problem, relying on the items given in the outline, Li Rui fi rst fi nds 
the hypotenuse. However, he does not multiply the hypotenuse by itself, 
to put the result on the left  side. Instead, he seeks to fi nd the  gu , and, only 
then, he adds the square of  gou  and  gu  and puts the result to the left . It is 
only in the second step that he computes the square of the hypotenuse and 
eliminates the result with the number placed on the left  side. It is clear that 
the fi nal equation could not be aff ected by which number was fi rst put on 
the left  side, and there are reasons to believe that Liu Rui certainly under-
stood this point. Only one reason can account for why Li Rui insisted on 
determining the  gu  fi rst, namely, that he wanted to follow the same format 
in presenting each of the outlines. 

 From the evidence analysed above, we can conclude that throughout the 
whole book Li Rui follows a formal pattern for the outline of calculation. 

 Let us now consider how Li Rui presents his explanations in his book. 
What kinds of rules does Li Rui follow to formulate his proofs? 

 Th e eighth problem of the book reads: 

 Suppose the hypotenuse is (equal to) 75, and the sum of  gou  and  gu  (equal to) 93. 
One asks how much the  gou  and  gu  are.   

 Th e procedure given is as follows: 

 Subtract the two squares one from the other, halve the remainder and take it as the 
negative constant. Take the sum (of  gou  and  gu ) as the positive coeffi  cient of the 
fi rst degree of the unknown, and the negative one as the coeffi  cient of the highest 
degree of the unknown. Extracting the second degree equation, one gets the  gou . 
Subtracting  gou  from the sum, the remainder is  gu .  20     

  20      Li Rui  1806 : 11b. 
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 Th is procedure may be represented in modern algebraic terms by the 
following equation:  
  x2 + (a + b)x − [(a + b)2 − c2]/2 = 0    
 whose solution is  x  =  a . 

 Li Rui’s explanation may be translated as follows: 

 Explanation: in the square of the sum, there are four pieces of the product of  gou  
( a ) and  gu  (b), one piece of the square of the diff erence between  gou  and  gu . In 
the square of the hypotenuse, there are twice the product of  gou  and  gu , and one 
piece of the square of the diff erence (between  gou  and  gu ). Subtracting one from 
the other, the remainder is twice the product of  gou  and  gu . Halving it, one gets one 
piece of the product, which is also the product of  gou  and the sum of  gou  and  gu  
minus the square of  gou . Th erefore, take the sum as the negative coeffi  cient of the 
fi rst degree of the unknown.  21     

 Now, let us inquire into the process of explanation (see  Figure 16.3 ). In the 
fi rst step, Li Rui decomposes the two ‘squares’ mentioned at the  beginning of 

  21      Li Rui  1806 : 12a. 

 Figure 16.3      Li Rui’s diagram for his explanation for the eighth problem in  Detailed 
Outline of Mathematical Procedures for the Right-Angled Triangle .    
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the procedure and gets the geometrical expression of the diff erence between 
them, then he transforms half of the diff erence between the two squares, 
which is the negative constant term of the equation described in the pro-
cedure, into an expression involving the unknown,  gou , and  gu . Th en, he 
further changes the product of  gou  and  gu  into an expression depending on 
the unknown,  gou , and the given item,  gou + gu . Th is yields the same expres-
sion as the equation of the procedure. Th erefore, the explanation corre-
sponds exactly to the procedure. With the diagram, the explanation is in fact 
a geometrical proof to account for the correctness of the general procedure.  

 Except for the fi rst three, all the proofs in the book are obtained by 
exactly the same process. Th erefore, we may conclude that the proofs are 
also produced in a uniformly formal way. 

 To recapitulate, in the whole work Li Rui follows a formal way for 
the outline of the calculation, through which a  tianyuan  algebraic equa-
tion – the procedure – is found, as well as for his proofs. With this formal 
structure of the book, he produces a formal system for the  gougu  procedure 
strictly based on traditional methods developed in ancient China. From 
this, we see that the ancient Chinese methods could be used to present 
mathematical knowledge in the shape of a formal system.    

 2.     Li Rui’s intention in developing a formal system of the 
 Gougu  methods 

 From the above discussion, we see that the  GGSX  is shaped as a formal 
and complete system for solving right-angled triangles ( gougu  shape in 
Chinese). In this section of the chapter, I will tackle two problems. First, 
did Li Rui deliberately plan his  GGSX  as a formal work? If the answer is yes, 
we shall then seek to understand why he was interested in creating such 
a formal system of  gougu  procedures, and what he wanted to show to his 
readers through such a system. 

 First, we must establish that Li Rui consciously developed his system. Let 
us start by summing up the characteristics of the formal expression of the 
system in the  GGSX . 

  (1)     Th e organization of the table of contents of the  GGSX  follows a consist-
ent pattern.  

  (2)     Th e layout of the problems in the main text follows a consistent pattern 
too.  

  (3)      Tianyuan  algebra is used for all the outlines of calculation in the text 
except the fi rst three.  
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  (4)     Li Rui follows a formal and systematic way of choosing the unknown, 
and seeking the equation in the outline.  

  (5)     Th e proofs are derived from the corresponding procedure strictly using 
the same process and methods.    

 Now, let us see whether it was necessary for Li Rui to follow all the steps 
listed above. 

 It is clear that there should be no need for the layout of the table of 
contents and all problems in the main text to follow a consistent pattern. 
Moreover, most ancient Chinese mathematical books do not share this 
feature. We may thus safely assume that if Li Rui took the trouble to design 
his book in this formal way, he did so intentionally. 

 Let us now come to the third and fourth features. In ancient China, the 
study of  gougu  procedures has a history that precedes the invention of  tian-
yuan  algebra. In the  Nine Chapters of Mathematical Procedures , an entire 
chapter is devoted to  gougu  problems, for the solution of which procedures 
are given.  22   And we have evidence showing that up to the third century, 
Liu Hui and Zhao Shuang gave proofs to some formulas.  23   Although their 
diagrams are lost, other books survive that include proofs of some of the 
formulas, and Li Rui was familiar with most of them.  24   Th erefore, he could 
easily have studied these results and proofs. In fact, in some cases, the 
proofs could have been more easily and clearly presented without using 
the  tianyuan  methods. Th erefore, it was not necessary for Li Rui to use 
 tianyuan  algebra for all the problems and proofs in which he used it. 

 So, it is not far-fetched to conclude that Li Rui chose to use  tianyuan  
algebra deliberately. Furthermore, there was no need for him to follow 
exactly the same order to obtain his equations. As we have already showed 
above, it was not necessary to obtain systematically fi rst the  gou  and  gu , 
and only then the  xian  or hypotenuse. Nor was it necessary to systemati-
cally look for the equation on the basis of the Pythagorean theorem, as Li 
Rui did. A number of formulas existed in ancient Chinese mathematical 
books, such as  Th e Nine Chapters , Yang Hui’s  Xiangjie jiuzhang suanfa  and 
Li Ye’s  Ceyuan haijing . Xu Guangqi and Mei Wending also provide several 

  22      According to Guo Shuchun, the main part of the  Nine Chapters of Mathematical Procedures , 
including the ‘ Gougu ’ chapter, was already formed before the fi rst century  bce . See Guo 
Shuchun  1992 . On the ‘ Gougu  procedure’ in the  Nine Chapters , see Guo Shuchun  1992 : 83. 

  23      On Liu Hui’s proof of  Gougu  procedures, see CG2004: 704–7. 
  24      In 1797, the year he compiled the  Chouren zhuan , a collection of biographies of 

mathematicians and astronomers, Li Rui made a serious study of all the mathematical texts 
that existed in his time, including Yang Hui’s  Xiangjie Jiuzhang Suanfa , Xu Guangqi’s  Gougu yi  
and Mei Wending’s  Gougu juyu . On Xu Guangqi’s  Gougu yi  and Mei Wending’s  Gougu juyu , 
see Tian Miao, forthcoming. 
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formulas in their books. Li Rui studied all of these books before he com-
piled the  GGSX . Had he wanted to do so, he could have used these formulas 
to fi nd his equations more easily. Clearly, he insisted on following a uniform 
pattern throughout his book. 

 Th e same remark applies to the proofs. It was also not necessary to follow 
exactly the same approach throughout. But again, clearly Li Rui obstinately 
chooses to stick to a rule he has set for himself. 

 From the above analysis, one can reasonably conclude that Li Rui delib-
erately shaped a formal system of  gougu  problems in his book. 

 Th is conclusion leads us to our last problem: what did he intend to show 
his readers in forming such a system? Li Rui’s preface to the  GGSX  gives us 
some hints. He writes: 

 [As for] the Dao of mathematics, the important thing is that one must thoroughly 
understand the great principles (Yi 義). [If one] seeks [methods] by minor parts, 
even if his [method] is in accordance (with the problem) in number, it can not be 
looked upon as a method. In the year of Bingyin, Xu Yunan (Naifan) and Wan 
Xiaolian (Qiyun) studied with me, [the knowledge they learned] also came down 
to  gougu  mathematics. In the free time between our discussions, [I] compiled this 
book and showed it to them. In order to (let them) know that even if procedures 
are produced according to [specifi c] problems, they still have a consistent [reason 
behind] them.  25     

 Th is passage from the preface shows clearly that Li Rui did not aim at 
achieving new discoveries when he composed the  GGSX . His aim was to 
show that there was a consistent reason or theory in mathematics. His 
essential motivation for writing the book was without doubt didactic.  26   

 However, there may have been another reason why Li Rui wrote such a 
book. Possibly he hoped to show that the mathematical results developed 
in  ancient China had consistent reasons and had their own system. His 
intention in doing so might have been to reject the opinion that Chinese 
mathematical books only provided procedures for concrete problems. 
I do not have hard evidence to support my argument, but considering the 
context within which the  GGSX  was compiled sheds some light on Li Rui’s 
intention and provides additional support to my argument. 

 In 1607, the fi rst Chinese translation of Euclid’s  Elements  (the fi rst six 
books) was published under the title  Jihe yuanben .  27   Th e two translators, 
Matteo Ricci and Xu Guangqi, claimed that giving reasons for  mathematical 

  25      Li Rui  1806 : preface. 
  26      See Liu Dun  1993 . 
  27      On the transmission of the  Elements  in China, see Engelfriet  1998 , Engelfriet 1993. 
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methods and leaving the reader with no doubt about mathematical knowl-
edge were the essence of Western mathematics. Two years aft er the publi-
cation of the  Jihe yuanben , in 1609, Xu Guangqi composed  Gougu yi  ( Th e 
Principle of Gougu ).  28   To interpret the word  yi , we have to briefl y mention 
what Xu Guangqi said in the preface of another book,  Celiang fayi  (1607). 
Peter Engelfriet off ers the following analysis: 

 He [Xu Guangqi] makes a distinction that proves very important in his conception 
of Western mathematics: a distinction between methods and  yi . Th e word  yi  can 
take on a wide range of meanings, but it is obvious that in this context it must refer 
to the proofs and explanations given in Western mathematics. For Xu Guangqi 
states explicitly that only aft er the  Jihe yuanben  had been translated was it possible 
to transmit the  yi  of the methods. Moreover, the Western methods of surveying are 
not essentially diff erent from the methods transmitted in the  Zhoubi suanjing  and 
the  Jiuzhang suanshu . What makes Western mathematics more valuable is that it 
supplies explanations which show why the methods are correct.  29     

 In his  Gougu yi , Xu Guangqi sums up the main topics Chinese mathema-
ticians addressed with respect to  gougu  problems. He stresses that these 
problems could only be solved on the basis of the Pythagorean theorem,  30   
to be found as Proposition 47 of Book  i  in the  Elements . He argues: 

 In the old  Nine Chapters , there are also [methods] of fi nding the  gou  and  gu  from 
each other, [fi nding] the inscribed square and circle, and [fi nding] the sums and the 
diff erences from each other.  31   But it is only capable of stating the methods, and it is 
not capable of discussing its principles ( yi ). Th e methods established [in it] are in 
disorder and shallow, and do not bear reading.  32     

 What is signifi cant for us here is that both Xu Guangqi and Li Rui use 
the word  yi . While Xu argues that  Th e Nine Chapters  did not talk about 

  28      See Engelfriet  1998 : 297–8. 
  29      Engelfriet  1998 : 297. Engelfriet discusses the meaning of  yi  and the origin of this term in Xu 

Guangqi ’s book in more detail in Engelfriet  1993 . 
  30      Th e example Xu Guangqi quotes earlier in his text is from the  Zhoubi suanjing  (Th e 

 Mathematical Canon of the Zhoubi , dating from the beginning of the fi rst century  bce ). Th is 
text contains a general statement of the Pythagorean theorem, including a paragraph which 
could be regarded as a general proof of it (see Ch’en Liang-ts’so  1982 , Li Jimin  1993 ). In the 
third century, Zhao Shuang and Liu Hui present clearer proofs in their commentaries to the 
 Zhoubi Suanjing  and  Th e Nine Chapters , respectively. See Qian Baocong  1982 ; Guo Shuchun 
 1985 ; CG2004: 704–45. 

  31       Th e Nine Chapters of Mathematical Procedures  (dated from the fi rst century  bce  to the fi rst 
century  ce ). Th is is one of the most important mathematical classics of ancient China. Th e 
ninth chapter of this book is devoted to  gougu  methods. See Guo Shuchun  1985 . 

  32      Xu Guangqi, preface. 
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 yi , Li Rui argues that one has to understand the  yi .  33   However, although 
Xu believed that traditional mathematical learning could not provide 
any ‘principle’ for the  gougu  procedure, Li Rui developed a formal system 
based on traditional methods and mathematical terms.  34   It therefore seems 
reasonable to assume that one of the reasons why Li Rui wrote the  GGSX  
was that he wanted to demonstrate that the traditional methods could be 
developed into systems and, in doing so, one could also form a system of 
consistent reasoning.  35   

 Let me sum up briefl y my conclusions. In 1806, the Chinese mathema-
tician Li Rui shaped a formal system based on the  gougu  procedure. In 
his work, in seeking procedures and the proof of their correctness, Li Rui 
strictly follows traditional methods and terms. Th is provides evidence for 
whether there could have been a formal system in mathematical research in 
ancient China. Further analysis shows that Li Rui deliberately constructed 
such a formal system. Even if he may have had only a didactical aim in 
mind, it appears that the context of tension between Western mathematical 
methods and Chinese traditional methods may well lie at the bottom of Li 
Rui’s motivation for compiling the  GGSX .     
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 Appendix 

Th e content of the  Detailed Outline of Mathematical Procedures for the 
Right-Angled Triangle   

  Problem  a      Given    Find    Other  

  •1     a ,  b      c     
  •2     a ,  c      b     
  •3     b ,  c      a     
  �4     a ,  b  +  a      b ,  c     Problem 1   b     
  �5     a ,  b  −  a      b ,  c     Problem 1  
  �6     a ,  c  +  a      b ,  c     Problem 2  
  �7     a ,  c  −  a      b ,  c     Problem 2  
  •8     a ,  c  +  b      b ,  c     
  •9     a ,  c  −  b      b ,  c     
  �10     b ,  b  +  a      a ,  c     Problem 1  
  �11     b ,  b  −  a      a ,  c     Problem 1  
  •12     b ,  c  +  a      a ,  c     
  •13     b ,  c  −  a      a ,  c     
  �14     b ,  c  +  b      a ,  c     Problem 3  
  �15     b ,  c  −  b      a ,  c     Problem 3  
  •16     c ,  a  +  b      a ,  b     
  •17     c ,  b  −  a      a ,  b     
  �18     c ,  c  +  a      a ,  b     Problem 2  
  �19     c ,  c  −  a      a ,  b     Problem 2  
  �20     c ,  b  +  c      a ,  b     Problem 3  
  �21     c ,  c  −  b      a ,  b     Problem 3  
  �22     a  +  b ,  b  −  a      a ,  b ,  c     Problem 1  
  •23     a  +  b ,  a  +  c      a ,  b  ,  c     
  •24     a  +  b ,  c  −  a      a ,  b ,  c     
  �25     a  +  b ,  c  +  b      a ,  b ,  c     Problem 24  
  �26     a  +  b ,  c  −  b      a ,  b ,  c     Problem 23  
  •27     b  −  a ,  a  +  c      a ,  b ,  c     
  •28     b  −  a ,  c  −  a      a ,  b ,  c     
  �29     b  −  a ,  b  +  c      a ,  b ,  c     Problem 27  
  �30     b  −  a ,  c  −  b      a ,  b ,  c     Problem 28  
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  Problem  a      Given    Find    Other  

  �31     a  +  c ,  c  −  a      a ,  b ,  c     Problem 2  
  •32     a  +  c ,  c  +  b      a ,  b ,  c     Problem 27  
  �33     a  +  c ,  c  −  b      a ,  b ,  c     Problem 23  
  �34     c  −  a ,  b  +  c      a ,  b ,  c     Problem 24  
  •35     c  −  a ,  c  −  b      a ,  b ,  c     Problem 28  
  �36     c  +  b ,  c  –  b      a ,  b ,  c     Problem 3  
  �37     a ,  a  +  b  +  c      b ,  c     Problem 8  
  �38     a ,  c  +  b  −  a      b ,  c     Problem 8  
  �39     a ,  a  +  c  −  b      b ,  c     Problem 9  
  �40     a ,  a  −  c  +  b      b ,  c     Problem 9  
  �41     b ,  a  +  b  +  c      a ,  c     Problem 12  
  �42     b ,  c  +  b  −  a      a ,  c     Problem 13  
  �43     b ,  a  +  c  −  b      a ,  c     Problem 12  
  �44     b ,  a  −  c  +  b      a ,  c     Problem 13  
  �45     c ,  a  +  b  +  c      a ,  b     Problem 16  
  �46     c ,  b  +  c  −  a      a ,  b     Problem 17  
  �47     c ,  a  +  c  −  b      a ,  b     Problem 17  
  �48     c ,  a  −  c  +  b      a ,  b     Problem 16  
  �49     a  +  b ,  a  +  b  +  c      a ,  b ,  c     Problem 16  
  •50a     a  +  b ,  c  +  b  –  a      a ,  b ,  c      a  +  b  >  c  +  b  –  a   
  •50b     a  +  b ,  c  +  b  −  a      a ,  b ,  c      a  +  b  <  c  +  b  –  a   
  •51     a  +  b ,  a  +  c  −  b      a ,  b ,  c     
  �52     a  +  b ,  a  −  c  +  b      a ,  b ,  c     Problem 16  
  •53     b  –  a ,  a  +  b  +  c      a ,  b ,  c     
  54�     b  −  a ,  b  +  c  −  a      a ,  b ,  c     Problem 17  
  55�     b  −  a ,  a  +  c  −  b      a ,  b ,  c     Problem 17  
  •56a     b  −  a ,  a  −  c  +  b      a ,  b ,  c      b  −  a  >  a  −  c  +  b ; 

( b  −  a ) − ( a  −  c  +  b ) >  a  –  c  +  b   
  •56b     b  −  a ,  a  −  c  +  b      a ,  b ,  c      b  −  a  >  a  −  c  +  b ; 

( b  −  a ) − ( a  −  c  +  b ) <  a  −  c  +  b   
  •56c     b  −  a ,  a  −  c  +  b      a ,  b ,  c      b  −  a  <  a  −  c  +  b ; 

( a  –  c  +  b ) − ( b  −  a ) >  b  −  a   
  •56d     b  −  a ,  a  −  c  +  b      a ,  b ,  c      b  −  a  <  a  −  c  + b; ( a  −  c  +  b ) − ( b  −  a )<  b  −  a   
  �57     a  +  c ,  a  +  b  +  c      a ,  b ,  c     Problem 12  
  •58a     a  +  c ,  b  +  c  −  a      a ,  b ,  c      a  +  c  >  b  +  c  −  a   
  •58b     a  +  c  b  +  c  −  a      a ,  b ,  c      a  +  c  <  b  +  c  −  a   
  �59     a  +  c ,  a  +  c  −  b      a ,  b ,  c     Problem 12  
  •60a     a  +  c ,  a  −  c  +  b      a ,  b ,  c     
  •60b     a  +  c ,  a  −  c  +  b      a ,  b ,  c     In this Problem, two answers are 

given. Th is means there are two 
diff erent right-angled triangles with 
the same data  a  +  c  and  a − c  +  b   

Appendix Continued
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  Problem  a      Given    Find    Other  

  •61     c − a ,  a + b + c      a ,  b ,  c     
  �62     c − a ,  c + b − a      a ,  b ,  c     Problem 13  
  •63a     c  −  a ,  a  +  c  −  b      a ,  b ,  c      c  −  a  >  a  +  c  −  b , 

( c  −  a ) − ( a  +  c  −  b )>  a  +  c  −  b   
  •63b     c  −  a ,  a  +  c  −  b      a ,  b ,  c      c  −  a  >  a  +  c  −  b , 

( c  −  a ) − ( a  +  c  −  b ) <  a  +  c  −  b   
  •63c     c  −  a ,  a  +  c  −  b      a ,  b ,  c      c  −  a  <  a  +  c  −  b , ( a  +  c  −  b ) − ( c  −  a ) >  c  −  a   
  •63d     c  −  a ,  a  +  c  −  b      a ,  b ,  c      c  −  a  <  a  +  c  −  b , ( a  +  c  −  b ) − ( c  −  a ) <  c  −  a   
  �64     c  −  a ,  a  −  c  +  b      a ,  b ,  c     Problem 13  
  �65     c  +  b ,  a  +  b  +  c      a ,  b ,  c     Problem 8  
  �66     c  +  b ,  b  +  c  −  a      a ,  b ,  c     Problem 8  
  •67     c  +  b ,  a  +  c  −  b      a ,  b ,  c     
  •68     c  +  b ,  a  −  c  +  b      a ,  b ,  c     
  •69     c  −  b ,  a  +  b  +  c      a ,  b ,  c     
  •70     c  −  b ,  b  +  c  −  a      a ,  b ,  c     
  �71     c v−  b ,  a  +  c  −  b      a ,  b ,  c     Problem 9  
  �72     c  −  b ,  a  −  c  +  b      a ,  b ,  c     Problem 9  
  �73     a  +  b  +  c ,  b  +  c  −  a      a ,  b ,  c     Problem 8  
  �74     a  +  b  +  c ,  a  +  c  −  b      a ,  b ,  c     Problem 12  
  �75     a  +  b  +  c ,  a  −  c  +  b      a ,  b ,  c     Problem 16  
  �76     b  +  c  −  a ,  a  +  c  −  b      a ,  b ,  c     Problem 17  
  �77     b  +  c  −  a ,  a  −  c  +  b      a ,  b ,  c     Problem 13  
  �78     a  +  c  −  b ,  a  −  c  +  b      a ,  b ,  c     Problem 9  

  Notes:
   a    Th e sign ‘•’ indicates problems that were also discussed by Xu Guangqi in the 

 Meaning of Gougu .  
   b    Th is means ‘Solve this problem using the method of problem 1’. Similarly hereaft er.    
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  multiples of shares/parts,    see   fenlü   
  multiplication,    426–84, 491, 493, 499, 506, 

526, 540  
  execution of,    432–5, 443, 460   
  of fractions (procedure for multiplying 

fractions 乘分術),    426, 427, 467, 472, 
475–80      

  of integers plus fractions (procedure for 
the fi eld with the greatest generality 
大廣田),    433–6, 439–40, 442–4, 459, 
475–6, 483   

  with sexagesimal place value notation,   
 388–91, 394–7, 400, 402–4, 415–17       

 see also  tables   
  Murdoch, J.,    83, 86, 89, 120, 134   
  Muroi, K.,    411   
  Murr, S.,    258   
  music theory,    297, 302     

  Nâsir ad-Dîn at-Tûsî,    78, 89, 105, 109–10, 117, 
118   

  nation,    284  
  ‘non-geometrical nation’,    282   
  ‘oriental nations’,    5, 274    

  Nayrīzī (al-) (also an-Nayrîsî),    138–9        
  commentaries on the  Elements,     76, 85, 87, 

113, 117, 130, 131, 132, 133, 138–9                
  Needham, J.,    57, 67, 510, 513   
  neopythagoreanism,    362   
  Neo-Sumerian,    390   
  Nesselmann, G. H.,    278, 323–4, 327–8, 330, 336   
  Netz, R.,    24–6, 30, 35–9, 46, 64, 135, 140, 145, 

148, 158, 163–205, 306–7, 329, 341, 351   
  Neugebauer, O.,    37, 71, 136, 139, 345, 363, 

369–70, 376, 386, 389, 392, 410, 412   
   New History of the Tang [dynasty]  ( Th e ),    see   Xin 

Tang shu   
  Nguyễn Danh Sành,    523   
  Nguyễn Hữu Th ận 阮有慎,    526   
  Nicomachus of Gerasa,    33–4, 311–18      
   Nine categories ,    see   Jiu zhang   
   Nine Chapters (Th e ) ,  abbreviation of  Nine 

Chapters on Mathematical Procedures 
(Th e ),    see   Jiu zhang suan shu   

   Nine Chapters on Mathematical Procedures 
(Th e ) ,  abbreviated as  Th e Nine Chapters ,    
see   Jiu zhang suan shu   

  Nippur,    384, 387, 389, 390, 399, 403, 406–9, 
411, 420, 421, 422   

  Noack, B.,    156   

  Noel, W.,    148   
  ‘non-Western’,    10, 20, 50  

  astronomy,    228   
  mathematics,    229    

  norm,    see   fa   
  norm of concreteness,    379   
  Northern Zhou dynasty 北周,    514, 534   
  numbers,    9, 10, 33–9, 44–7, 60, 268, 263, 283, 

311–26, 441, 452–5, 460, 489, 504  
  abstract,    389, 402, 460, 462, 467, 469   
  actual fi rst number,    311–12      
  and algebraic proof,    50, 59, 423–86      
  as confi guration,    33   
  as multiplicities of units,    33, 311–12    
   classifi cation of,    317   
  defi nition of polygonal,    33–5, 313–16      
  fractions,    50, 423, 426, 431–8, 441, 447, 

454–7, 459–80, 482–4            
  geometric or confi gurational representation 

of,    34, 313–16, 470   
  Greek way of writing,    37, 311–12      
  integers plus fractions,    431–8, 440, 447, 

453–7, 460–77      
  integers,    35, 50, 431–8, 441, 452–3, 456–7, 

460, 463–77      
  irrational,    283  

  quadratic irrationals,    50, 452–7, 472, 483–5                
  natural representation of,    311–12      
  negative,    244, 283, 388, 563   
  polygonal,    33–5, 62, 311–26      
  positive,    244, 283, 388, 563   
  potential fi rst number,    312   
  rational,    283   
  regular,    44–5, 390–1, 394–5, 397, 400, 402–3, 

413, 416–17      
  representation of,    9, 34, 37   
  results of divisions,    50, 431–3, 437, 440–1, 

447, 453–60, 472, 478–80, 482–3            
  results of root extraction,    50, 452–8, 482   
  sequence of,    33, 34, 312–19      
  table of,    34, 317  
   yielded by procedure of generation,    33    
  see also  fractions,   sexagesimal place value 

notation 
   Numbers of three ranks ,    see   San deng shu   
  numerator  zi  子,    423, 431–4, 436, 459–61, 

464–71, 475–80      
  numerical methods,    44, 290   
  Nuñez, P.,    380, 383     

  objects 
  composite  versus  incomposite,    211–12, 

214–15, 218   
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objects (cont.)
  material  versus  immaterial,    207, 212, 219, 225   
  mathematical,    207–8, 212–14, 218–19, 

221–2, 225   
  ontological status of,    208, 212, 219, 221, 

225–6                
  Oelsner, J.,    390   
  Old Babylonian  

  ‘algebra’,    see  algebra  
  mathematical terminology,    364–7, 374, 377   
  mathematical texts,    40, 364, 367, 371, 374, 

377, 379, 509   
  period,    364, 384, 387–9, 399, 410    

   Old History of the Tang [dynasty] ,    see   Jiu Tang 
shu   

  operations,    38, 40–6, 48–50, 58, 59, 61, 62, 460, 
490–1, 494, 498, 500  

  arithmetical,    509;     see also  fractions,    
 procedure  

  on statements of equality,    38, 49, 449–50      
  symbols to carry out operations in the 

 Arithmetics ,    37, 38    
  optics,    298, 304   
   Optics ,    see  Euclid Ptolemy  
  oral teaching in Old Babylonian mathematics,   

 370, 376   
  oral versus written,    16, 19, 53, 503, 507–8            
  order (change of) in Euclid’s  Elements ,    23, 90, 

92, 93, 99, 105–7, 114–15, 125, 127, 129   
  Oriental,    7, 9, 286, 288, 291  

  ‘Oriental nations’,    5, 274   
  ‘Oriental science’,    5, 7, 275, 291    

  Orientalism,    228, 230, 256–7, 258, 259, 278, 
279, 288, 291   

  Orientals,    9, 282, 290  
  computational and algebraical operations,   

 282   
  ‘imaginative Orientals’,    274     

  Otte, M.,    351   
  outline,    552–3, 558, 560–3            
  Ouyang Xiu 歐陽脩,    548   
  overspecifi cation,    see  diagram  
  overvaluation of some features attached to 

proof,    4  
  incontrovertibility of its conclusion,    4, 14, 18   
  rigour of its conduct,    4, 15    

  
  Palimpsest,    see  Archimedes  
   Pañcasiddhānta,  262–5,    273   
  pandit,    264, 270, 272   
  Pān. ini,    281   
  Paninian grammar,    51, 281   
  Panza, M.,    351   

  Pappus of Alexandria,    76, 85–6, 111, 113, 131, 
171, 298–9, 301, 331  

   Collection ,    139  
  comments on Euclid’s  Optics  35,    150    

   Commentary to Ptolemy’s Almagest ,    139    
  papyri,    71, 73–4, 340, 344–5            
  paradigm,    31, 32, 38, 41–2, 58, 63, 424, 457, 484   
  Parry, M.,    190   
  parts,    see   fen, fractions   
  parts of the product  jifen  積分,    434, 436, 

439–40, 443, 455, 465   
  parts-coeffi  cients,    see   fenlü   
  parts-multiples,    see   fenlü   
  Pascal, B.,    18, 65  

  Pascal triangle,    512    
  Pasquali, G.,    70, 134   
  Patte, F.,    12, 56, 67   
  Peacock, G.,    11   
  Peng Hao 彭浩,    423, 430, 456–7, 473, 485   
  Pereyra,    206, 223–4            
  perspective,    see  linear perspective  
  persuasion,    302,306   
  Peyrard, F.,    5, 66, 80–1, 82, 130   
   phan  分 (Vietnamese, Chinese:  fen , measure of 

weight),    538, 540, 542   
  Phan Huy Khuông 潘輝框,    524, 537   
   Phenomena ,    see  Euclid  
  Philolaus,    295, 298   
  philology,    74–7, 261–6, 278  

  format,    72, 84, 164, 191–5, 203, 345, 347, 353, 
359, 405–7, 530, 534, 536, 539   

  practice of excision,    176–85        
  Philoponus, J.,    27, 207–22      
  philosophy,    3–4, 10, 13, 15, 294–5, 303–4, 

306–7        
  history of,    15   
  Indian,    280–1        
  see also  history of the philosophy of science   

  physics,    295–6, 298, 300   
  Piccolomini, A.,    206, 223, 225   
  Pingree, D.,    262, 273   
  Plato,    8, 15, 66, 179, 294, 297–300, 302–4, 306   
  Playfair, J.,    231–4, 238–9, 242–3, 247, 249, 258, 

276–7, 279, 280, 293   
  Plimpton    322 (cuneiform tablet), 509   
  Plooij, E. B.,    87, 132, 134   
  Plutarch,    298–9            
  Pococke, E.,    288   
  Poincaré, H.,    15, 168–9, 175   
  politics  

  of knowledge,    4, 10, 67, 228, 258   
  of the historiography of mathematical proof,   

 5, 10, 59    
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   Polygonal numbers  ( On ) ,  33–4,    311–26    
  Bachet’s  editio princeps  of the Greek text, 

325   
   Polygons  (On),    313–16      
  polynomial algebra,    57–8      
  Poncelet, J. V.,    5, 15   
  porism,    23, 91, 92, 93, 103–4, 105, 115–16, 124, 

126, 128   
   porismata ,    284   
  Poselger, F. T.,    323   
  positions,    435, 459, 478, 483  

  array of,    434–5, 478    
  positivism,    292   
   Posterior Analytics ,    206, 207, 208, 209–10, 211, 

215, 216, 217, 223, 325   
  postulates,    26, 301, 305  

  of parallels,    288    
  practical orientation,    6, 8  

  practical as opposed to speculative 
orientation,    5   

  ‘practical orientation’ of the mathematics of 
the Arabs,    5   

  ‘practical orientation’of the mathematics in 
the  Sulbasutras ,    8, 12, 260, 266, 268, 
270, 272    

  practices of computation,    40, 45;     see also  tool 
for calculation  

  practices of proof,    1, 2, 4, 11–12, 15, 17, 21–3, 
28–30, 31–2, 35, 38, 41, 47–51, 54–9, 
61–3, 425, 426, 448–9, 462, 471, 483  

  history of,    19, 23, 30, 38, 43, 53, 60, 480–4            
  shaping of,    15, 18, 20, 32, 35, 38, 59, 62–3        

   pratyayakaran.a,  498,    503, 505   
  predication,    210, 212, 222  

  essential,    208, 209–12, 218    
  prediction,    16, 300   
  principle ( arkhê ),    112, 312   
  principle 義,    567–9            
   Principle of Gougu ,    see   Gougu yi   
   Prior Analytics ,    377, 383   
  problem (mathematical),    17, 31, 35–44, 47–8, 

55–9, 65, 260, 295, 300, 387, 413, 427–9, 
449, 452, 462–4, 467, 480, 491, 493, 498, 
505, 507, 509–10, 512, 516, 522–32, 
534–5, 539–41, 543–4, 546, 570–2        

  as general statements,    38, 57, 424, 441   
  as paradigms,    31, 63, 522, 529, 534   
  category of problems,    38, 424, 463, 510, 525   
   da  答 ‘answer’,    55, 520–1            
  Diophantus’ problems relating to integers,   

 35–8      
  explanation  pratipadita  (Sanskrit) of an 

algorithm by means of problems,    53   

  introduced by the term ‘to look for’ ( qiu  求),   
 444–6            

  parallel between geometrical fi gures and 
problems,    41–2, 44, 48   

  particular problems,    41, 58, 423, 424, 441   
  problems with which the understanding of 

the eff ect of operations can be grasped,   
 41–2, 44, 48–9, 481   

  use of problems in proofs,    41–2, 44, 48–9, 53, 
63, 65, 425, 445–6, 462–4            

   wen  問   ‘problem’ (Chinese),    55, 520–1, 538, 
541    

  problem-solving,    35–5, 57, 285   
  procedure,    263, 269, 271–2, 313, 487, 489–90, 

492–4, 498–501, 503, 505, 507  
  arithmetical,    33, 313, 507   
  fundamental,    52, 61, 425, 451, 476, 480–1                 
see also  algorithm   

  Proclus of Lycia,    27, 76, 121, 131, 206, 207, 208, 
219–22, 224, 298, 304–6, 362   

  professionalization of science,    4–5, 11   
  programme for a history of mathematical 

proof,    18–19, 59–64      
  programme of study in Mathematical College,   

 519, 522  
  advanced,    518–20, 534–5            
  regular,    518, 520, 535    

  Prony, G.,    382   
  proof,    89–94, 99, 260, 263, 269–71, 265, 312, 

317–25, 444–9, 498–507, 512, 559–60, 
563, 565–9        

  activity of proving as tied to other dimensions 
of mathematical activity,    16, 19, 43, 51, 
53, 55, 60   

  actors’ perception of proof,    4, 263, 270, 
498–507      

  alternative proof,    89–90, 107–10, 112, 114   
  analogical proof,    91–2, 120   
  double proofs,    23, 83, 89–90, 93, 99, 107–10, 

114, 124, 126, 129   
  elementary techniques of proof,    30, 33, 44, 

59–60, 62   
  functions ascribed to proof in mathematical 

work,    15–19, 41, 263, 270   
  general proofs,    see  generality  
  goals of proof,    13, 14–15, 18–19, 28–35, 38, 

41, 51–2, 58, 61–2      
  key operations in proof,    425–52, 480–1            
  pattern of argument,    2, 25–6, 30, 35   
  potential proof,    91–2, 120   
  proof and algorithm,    39–51, 423–84      
  proof as bringing clarity,    17, 18, 61   
  proof as bringing reliability,    17   
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proof (cont.)
  proof as establishing mathematical attributes 

that belong to their subjects essentially,   
 27   

  proof as providing corrections,    17   
  proof as providing feedback,    17   
  proof as support of a vision for the structure 

of a mathematical object,    17, 33–4      
  proof as yielding clues to new and unexpected 

phenomena,    17, 31, 52   
  proof as yielding ideas,    17   
  proof as yielding mathematical concepts,    17, 

31, 52   
  proof as yielding new insights,    17   
  proof as yielding techniques,    17, 30–2, 38, 

41, 52, 61   
  proof as yielding understanding,    see 

 epistemological values attached to 
proof  

  proof as yielding unexpected new data,    17   
  proof by example,    316–18      
  proof by mathematical induction,    320–5            
  proof for statements related to numbers and 

computations,    9   
  proof in the wording,    40, 48, 468;     see also 

 transparency  
  proof of the correctness of algorithms,    9–10, 

18, 31, 38, 39–51, 53, 55, 57, 59–60, 
423–84, 498–507      

  proofs as a source of knowledge,    17, 52, 429, 
448, 471   

  proofs as opposed to arguments,    15, 16, 28, 
29   

  proofs as opposed to insights,    16   
  proofs highlight relationships between 

algorithms,    52   
  relations between proofs,    23, 445   
  rewriting a proof for already well-established 

statements,    17   
  rigorous proof with diorismos,    289   
  role of proof in the process of shaping 

‘European civilization’ as superior to 
the others,    2–3, 4–5, 10   

  substitution of proof,    23, 90, 99, 107–10, 111, 
125, 127, 129   

  technical terms for proof,    41, 42, 48, 52, 55, 
425, 431, 448–9, 451, 456–8, 464–8, 
473, 481–3, 498   

  there is more to proof than mere deduction,   
 52   

  tool-box,    30,   
  uses of proof,    2, 4    
see also  meaning  upapatti    

  proportional,    see   lü   
  proposition,    3, 5, 8, 23, 26, 31, 274, 314–19    

  arithmetical and general propositions,    33–4      
  purely arithmetical propositions,    34, 319    

  Protagoras,    297   
  protocol of computations,    see   lu   
  Proust, C.,    20, 44–7, 50, 389–90, 402, 405, 420   
  Ptolemy,    300, 306  

   Almagest ,    140   
   Geography ,    149   
   Optics ,    139    

  Pyenson, L.,    292   
  pyramid, 

  circumscribed to a truncated pyramid,    430, 
432, 436, 438–9, 444, 447   

  ‘truncated pyramid with square or 
rectangular base’  fangting  方亭,    427, 
429–32, 436, 438–9, 441, 443–6, 455   

  ‘truncated pyramid with a circular base’ 
 yuanting  圓亭,    426–52, 468, 476    

see also  volume (cone)   
  Pythagoras,    295  

  ‘procedure of the right-angled triangle 
( gougushu  勾股術)’,    56   

  Pythagorean theorem,    3, 8, 58, 252, 490–2, 
494, 497–8, 501–2, 507    

  Pythagoreans,    311     

   Qi gu  緝古,    515, 517, 522;     see also   Qi gu suan 
jing   

   Qi gu suan jing  緝古筭經,    511, 517–18, 533, 
535, 546   

  Qian Baocong 錢寶琮,    517–18, 520, 561, 568   
  Qin Jiushao (also  Ch’in Chiu-shao ), 秦九韶,   

 549   
   qing  情,    538, 542   
  quadratures,    295–7, 304   
  quadrilateral,    277   
   Quaestio de certitudine mathematicarum ,    206, 

223   
  quantity,    431–7, 442, 453–7, 459–79, 482–4        

  as confi guration of numbers,    432, 435, 460, 
472, 477–8, 483    

  Quinn, F.,    15–17, 64, 66   
  quotation,    75, 76, 77, 85, 163, 179, 184, 366, 

367, 430, 520   
  Qusta Ibn Lūqā,    361     

  race 
  ‘race apt to numerical computations’,    284   
  Indo-Aryan races,    292   
  Semitic races,    292    

  Rackham, H.,    362   
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  Raeder, J.,    161   
  Ragep, J.,    292, 293   
  Raina, D.,    6–8, 9, 12, 228, 230, 238, 245, 247, 

258   
  Raj, K.,    237, 258   
  Rashed, R.,    43, 67, 87, 132, 330   
  Rav, Y.,    15, 17, 67   
  re-interpretation,    500   
  recension,    89, 109–10, 120  

  al-Maghribî (Muhyî al-Dîn al-Maghribî) 
recension,    120   

  the so-called Pseudo-Tûsî recension,    89, 106, 
109–10, 117, 120, 288    

  reciprocals,    44–7;     see also  algorithm  
   Records of [things] left  behind for posterity ,    see   Ji 

yi;     see also   Shu shu ji yi   
   Records of the procedures of numbering left  

behind for posterity ,    see   Shu shu ji yi   
   Record of What Ý Trai [=Nguyễn Hữu Th ận] 

Got Right in Computational Methods 
(A) ,    see   Ý Trai toán pháp nhất đắc lục   

  redrawing,    see  diagram  
  regular number,    see  number  
  Renaissance,    27, 291   
  Renan, E.,    292   
  restoring  fu  復,    437, 447, 453–8, 460, 473–4, 

481–3            
  results,    5, 28, 40–3, 44–7, 50, 59, 427, 429, 431, 

432–40, 444, 446, 448, 455, 460, 465–6, 
479  

  emphasis on,    277    
  reverse algorithm,    384, 397, 404, 415   
  revival of past practices of proof,    56  

  in China,    56–9        
  rewriting of lists of operations,    44, 49, 52, 

438–52;     see also  transformations  
  Reynolds, L. G.,    70, 71, 72, 134   
  Rhind Papyrus,    285, 289   
  Ricci, M.,    2–3, 56, 67, 567   
  Richomme, M.,    523   
  right-angled triangle,    8, 56–8, 265, 268, 270, 

491–2, 494, 497–8, 507   
  rigour,    4, 6, 12, 14, 15, 290  

  as a burden, verging on rigidity,    7   
  lack of,    6, 7, 290   
  of the Greek geometry,    12, 14, 277    

   Rites of the Kai-Yuan era ,    see   Kai-Yuan li   
  Robert of Chester,    86, 117, 127, 130   
  Robson, E.,    384–6, 389, 396, 404–5, 410–11, 

417, 509   
  Rocher, R.,    237, 258   
  romanticism,    280, 291   
  Rome, A.,    139, 162   

  Rommevaux, S.,    78, 81, 84, 89, 118, 119, 120, 
134   

  Ross, W. D.,    325   
  Rota, G.-C.,    17, 67   
  Rotours, R. des,    513, 515, 518, 520–1, 535   
  Rsine,    494–8            
  rule,    5, 6–7, 46, 265, 267–8, 270–1, 274, 278, 

280, 281, 283, 285, 286, 288, 489–90, 
498–9, 501, 503–7        

  as opposed to proof,    5, 9   
  general,    402–3            
  rule of fi ve,    504–5            
  rule of three,    490–1, 493–8, 500–3, 505, 508  

  in Chinese, ‘procedure of suppose’ ( jinyou 
shu  今有術),    451, 468, 472, 474–5, 479    

  trigonometrical,    233    
  Russell, B.,    225   
  Rutten, M.,    370–1                    

  Sabra, A. I.,    120, 132, 134   
  Sachs, A. J.,    45, 384–6, 388, 391–3, 399, 404–5, 

410, 416–17      
  Said, E. W.,    228, 258   
  Saito, K.,    23–5, 30–2, 52, 67, 138, 141–2, 144, 

146, 148, 150, 152–5, 158   
   San deng  三等,    518;     see also   San deng shu   
   San deng shu  三等數,    515, 517–18, 520–2, 546   
  Sanskrit,    6, 7, 51, 56, 260–1, 264–5, 269, 272, 

487, 491, 501, 506–8        
  texts,    6–8, 24, 42, 51–2, 63, 260–1, 264–5, 269, 

272, 487, 507–8                
  Sarma, S. R.,    490, 508   
  Sato, T.,    198   
  schemes,    see   shi   
  scholium,    86, 95, 97–8, 103   
  Schreiner, A.,    523   
  Schulz, O.,    323   
  Schuster, J. A.,    4, 8, 67   
  science,    10, 11, 13, 265–7, 269, 508  

  free inquiry versus lack of science,    8   
  idea of the unity of science,    11   
  sciences of India,    228, 265, 508   
  value of science in the eyes of the public,   

 2–4, 11   
  publications devoted to the ‘scientifi c 

method’,    11   
  values attached to science,    8, 265–6                

  scientifi c management,    381;     see also  taylorism  
  scientifi c writing,    274  

  obstacle to logical proofs,    281   
  obstacle to the formulation of theorems,    281    

  Scriba, C.J.,    5, 65, 279, 293   
  scribal practice,    327, 329, 331, 333, 339–40      
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  scribal school,    384, 386–7, 390, 405;     see also 
 Babylonian mathematics  

  scroll,    71–2, 84   
   Sea island ,    see   Hai dao   
   Sea mirror of the circle measurements ,    see 

  Ceyuan haijing   
  Sédillot, J.-J.,    274   
  Sédillot, L.-A.,    274   
  self-evidence,    305, 378, 380   
  separation of ‘Western’ from ‘non-Western’ 

science,    10, 53, 56, 59, 291   
  sequence, 

  direct sequence and reverse sequence,   
 398–403, 405, 406, 409–10, 412, 415, 417   

  sequence of operations or calculations,   
 397–8, 404    

see also  algorithm,     geometric progression   
  Sesiano, J.,    347, 350   
  sexagesimal place value notation,    384, 388–9            
   shang chu  商除 ‘evaluation division’,    538, 542;     

see also  division  
  shapes of fi elds,    see   tian shi   
  shaping of a scientifi c community,    4–5, 11   
  shares,    see   fen   
  Shen Kangshen 沈康身,    423, 485, 486   
   shi  實 ‘dividend’,    431–4, 459–62, 467–72, 478    
   shi  式 ‘schemes’,    539, 544   
   Shu shu ji yi  數術記遺,    517, 520, 533, 546   
   Shu xue  書學 ‘College of calligraphy’,    521   
  Shukla, K. S.,    487–508      
   Shuo wen jie zi  說文解字 (dictionary),    511   
  Sidoli, N.,    23–5, 139, 150, 158   
  silk,    469   
  simplicity,    435, 442   
  Simplicius,    76, 85, 121, 131, 134, 296   
  simplifi cation,    431  

  of an algorithm,    471   
  of fractions (‘procedure for simplifying parts’ 

 yuefen shu  約分術),    431, 437, 460–1, 
467, 469–70        

  sinology,    275   
  Siu Man-Keung 蕭文強,    513, 515, 519–23, 535   
   Six Codes of the Tang [Dynasty]  (Th e),    see   Tang 

liu dian   
  Smith, Adam,    382   
  Smith, A. M.,    304   
  social context for proof,    18–19, 43, 53, 60–1    

  development and promotion of one tradition 
as opposed to another,    60   
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