
Win32 API

#winapi

Table of Contents

About 1

Chapter 1: Getting started with Win32 API 2

Remarks 2

Versions 2

Examples 2

Hello World 2

Chapter 2: Ansi- and Wide-character functions 5

Examples 5

Introduction 5

Chapter 3: Dealing with windows 7

Examples 7

Creating a window 7

What is a handle? 10

Constants 10

Windows Types 10

Chapter 4: Error reporting and handling 12

Remarks 12

Examples 12

Introduction 12

Error reported by return value only 12

Error reported with additional information on failure 12

Notes on calling GetLastError() in other programming languages 13

.net languages (C#, VB, etc.) 13

Go 13

Error reported with additional information on failure and success 14

Error reported as HRESULT value 14

Converting an error code into a message string 15

Chapter 5: File Management 17

Examples 17

Create a file and write to it 17

API Reference: 17

Chapter 6: Process and Thread Management 18

Examples 18

Create a process and check its exit code 18

Create a new thread 18

Chapter 7: Utilizing MSDN Documentation 20

Introduction 20

Remarks 20

Examples 20

Types of Documentation Available 20

Finding Documentation for a Feature 20

Using Function Documentation 21

Overview 21

Syntax 21

Parameters 21

Return Value 21

Remarks 21

Examples 21

Requirements 21

Chapter 8: Window messages 23

Syntax 23

Examples 23

WM_CREATE 23

WM_DESTROY 23

WM_CLOSE 24

WM_SIZE 24

WM_COMMAND 25

Chapter 9: Windows Services 27

Examples 27

Check if a service is installed 27

API Reference: 28

Chapter 10: Windows Subclassing 29

Introduction 29

Syntax 29

Parameters 29

Remarks 29

Examples 30

Subclassing windows button control within C++ class 30

Handling common controls notification messages within C++ class 31

Credits 33

About

You can share this PDF with anyone you feel could benefit from it, downloaded the latest version
from: win32-api

It is an unofficial and free Win32 API ebook created for educational purposes. All the content is
extracted from Stack Overflow Documentation, which is written by many hardworking individuals at
Stack Overflow. It is neither affiliated with Stack Overflow nor official Win32 API.

The content is released under Creative Commons BY-SA, and the list of contributors to each
chapter are provided in the credits section at the end of this book. Images may be copyright of
their respective owners unless otherwise specified. All trademarks and registered trademarks are
the property of their respective company owners.

Use the content presented in this book at your own risk; it is not guaranteed to be correct nor
accurate, please send your feedback and corrections to info@zzzprojects.com

https://riptutorial.com/ 1

http://riptutorial.com/ebook/win32-api
https://archive.org/details/documentation-dump.7z
mailto:info@zzzprojects.com

Chapter 1: Getting started with Win32 API

Remarks

WinAPI (also known as Win32; officially called the Microsoft Windows API) is an application
programming interface written in C by Microsoft to allow access to Windows features. The main
components of the WinAPI are:

WinBase: The kernel functions, CreateFile, CreateProcess, etc•
WinUser: The GUI functions, CreateWindow, RegisterClass, etc•
WinGDI: The graphics functions, Ellipse, SelectObject, etc•
Common controls: Standard controls, list views, sliders, etc•

See Also:

Windows API index on MSDN.•

Versions

Versions of the API are tied to the operating system version. MSDN documentation specifies the
minimum supported operating system for each function in the API.

Examples

Hello World

Microsoft Windows applications are usually written as either a console application or a windowed
application (there are other types such as services and plug-ins). The difference for the
programmer is the difference in the interface for the main entry point for the application source
provided by the programmer.

When a C or C++ application starts, the executable entry point used by the executable loader is
the Runtime that is provided by the compiler. The executable loader reads in the executable,
performs any fixup to the image needed, and then invokes the executable entry point which for a C
or C++ program is the Runtime provided by the compiler.

The executable entry point invoked by the loader is not the main entry point provided by the
application programmer but is instead the Runtime provided by the compiler and the linker which
creates the executable. The Runtime sets up the environment for the application and then calls the
main entry point provided by the programmer.

A Windows console application may have several slightly different interfaces for the main entry
point provided by the programmer. The difference between these is whether the main entry point
is the traditional int main (int argc, char *argv[]) or if it is the Windows specific version of int
_tmain(int argc, _TCHAR* argv[]) which provides for wide characters in the application parameters.

https://riptutorial.com/ 2

https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516.aspx
https://en.wikipedia.org/wiki/Loader_(computing)
https://en.wikipedia.org/wiki/Linker_(computing)

If you generate a Windows Win32 console application project using Visual Studio, the source
generated will be the Windows specific version.

A Windows window (GUI) application has a different interface for the main entry point provided by
the programmer. This main entry point provided by the programmer has a more complex interface
because the Runtime sets up a GUI environment and provides additional information along with
the application parameters.

This example explains the Windows window (GUI) main entry point interface. To explore this
topics you should have:

an IDE with compiler (preferably Visual Studio)•
C knowledge•

Create an empty Win32 windows (GUI, not console) project using the IDE. The project settings
must be set for a window application (not a console application) in order for the linker to link with
the correct Runtime. Create a main.c file adding it to the project and then type the following code:

#include <windows.h>

int APIENTRY WinMain(HINSTANCE hInst, HINSTANCE hInstPrev, PSTR cmdline, int cmdshow)
{
 return MessageBox(NULL, "hello, world", "caption", 0);
}

This is our Win32 "Hello, world" program. The first step is to include the windows header files. The
main header for all of Windows is windows.h, but there are others.

The WinMain is different from a standard int main() used with a console application. There are
more parameters used in the interface and more importantly the main entry point for a window
application uses a calling convention different from standard C/C++.

The qualifier APIENTRY indicates the calling convention, which is the order in which arguments are
pushed on the stack†. By default, the calling convention is the standard C convention indicated by
__cdecl. However Microsoft uses a different type of calling convention, the PASCAL convention,
for the Windows API functions which is indicated by the __stdcall qualifier. APIENTRY is a defined
name for __stdcall in one of the header files included by windows.h (see also What is __stdcall?).

The next arguments to WinMain are as follows:

hInst: The instance handle•
hInstPrev: The previous instance handle. No longer used.•
cmdline: Command line arguments (see Pass WinMain (or wWinMain) arguments to normal
main)

•

cmdshow: indicates if a window should be displayed.•

We don't use any of these arguments yet.

Inside of WinMain(), is a call to MessageBox(), which displays a simple dialog with a message, a
message box. The first argument is the handle to the owner window. Since we don't have our own

https://riptutorial.com/ 3

http://stackoverflow.com/questions/297654/what-is-stdcall
http://stackoverflow.com/questions/27363851/pass-winmain-or-wwinmain-arguments-to-normal-main
http://stackoverflow.com/questions/27363851/pass-winmain-or-wwinmain-arguments-to-normal-main

window yet, pass NULL. The second argument is the body text. The third argument is the caption,
and the fourth argument contains the flags. When 0 is passed, a default message box is shown.
The diagram below dissects the message box dialog.

Good links:

Tutorial at winprog.org•
MessageBox function documentation at MSDN•

†On 32 bit systems only. Other architectures have different calling conventions.

Read Getting started with Win32 API online: https://riptutorial.com/winapi/topic/1149/getting-
started-with-win32-api

https://riptutorial.com/ 4

http://i.stack.imgur.com/U0n67.png
http://winprog.org/tutorial/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645505.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645505.aspx
https://riptutorial.com/winapi/topic/1149/getting-started-with-win32-api
https://riptutorial.com/winapi/topic/1149/getting-started-with-win32-api

Chapter 2: Ansi- and Wide-character
functions

Examples

Introduction

The Windows API documentation for functions taking one or more string as argument will usually
look like this:

BOOL WINAPI CopyFile(
 In LPCTSTR lpExistingFileName,
 In LPCTSTR lpNewFileName,
 In BOOL bFailIfExists
);

The datatype for the two string parameters is made of several parts:

LP = Long pointer•
C = const•
T = TCHAR•
STR = string•

Now what does TCHAR mean? This depends on platform chosen for the compilation of program.

CopyFile itself is just a macro, defined something like this:

#ifdef UNICODE
#define CopyFile CopyFileW
#else
#define CopyFile CopyFileA
#endif

So there are actually two CopyFile functions and depending on compiler flags, the CopyFile macro
will resolve to one or the other.

There core token, TCHAR is defined as:

#ifdef _UNICODE
typedef wchar_t TCHAR;
#else
typedef char TCHAR;
#endif

So again, depending on the compile flags, TCHAR is a "narrow" or a "wide" (2 bytes) character.

So when UNICODE is defined, CopyFile is defined to be CopyFileW, which will use 2-byte character
arrays as their parameter, which are expected to be UTF-16 encoded.

https://riptutorial.com/ 5

If UNICODE isn't defined, CopyFile is defined to be CopyFileA which uses single-byte character
arrays which are expected to be encoded in the default ANSI encoding of the current user.

There are two similar macros: UNICODE makes the Windows APIs expect wide strings and _UNICODE
(with a leading underscore) which enables similar features in the C runtime library.

These defines allow us to write code that compiles in both ANSI and in Unicode-mode.

It is important to know that the ANSI encoding may be a single-byte encoding (i.e. latin-1) a multi-
byte encoding (i.e. shift jis), although utf-8 is, unfortunately, not well supported.

This means that neither the ANSI, nor the Wide-character variant of these functions can be
assumed to work with fixed width encodings.

Read Ansi- and Wide-character functions online: https://riptutorial.com/winapi/topic/2450/ansi--
and-wide-character-functions

https://riptutorial.com/ 6

https://riptutorial.com/winapi/topic/2450/ansi--and-wide-character-functions
https://riptutorial.com/winapi/topic/2450/ansi--and-wide-character-functions

Chapter 3: Dealing with windows

Examples

Creating a window

#define UNICODE
#define _UNICODE
#include <windows.h>
#include <tchar.h>
const TCHAR CLSNAME[] = TEXT("helloworldWClass");
LRESULT CALLBACK winproc(HWND hwnd, UINT wm, WPARAM wp, LPARAM lp);

int WINAPI WinMain(HINSTANCE hInst, HINSTANCE hPrevInst, PTSTR cmdline,
 int cmdshow)
{
 WNDCLASSEX wc = { };
 MSG msg;
 HWND hwnd;

 wc.cbSize = sizeof (wc);
 wc.style = 0;
 wc.lpfnWndProc = winproc;
 wc.cbClsExtra = 0;
 wc.cbWndExtra = 0;
 wc.hInstance = hInst;
 wc.hIcon = LoadIcon (NULL, IDI_APPLICATION);
 wc.hCursor = LoadCursor (NULL, IDC_ARROW);
 wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
 wc.lpszMenuName = NULL;
 wc.lpszClassName = CLSNAME;
 wc.hIconSm = LoadIcon (NULL, IDI_APPLICATION);

 if (!RegisterClassEx(&wc)) {
 MessageBox(NULL, TEXT("Could not register window class"),
 NULL, MB_ICONERROR);
 return 0;
 }

 hwnd = CreateWindowEx(WS_EX_LEFT,
 CLSNAME,
 NULL,
 WS_OVERLAPPEDWINDOW,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 CW_USEDEFAULT,
 NULL,
 NULL,
 hInst,
 NULL);
 if (!hwnd) {
 MessageBox(NULL, TEXT("Could not create window"), NULL, MB_ICONERROR);
 return 0;
 }

 ShowWindow(hwnd, cmdshow);

https://riptutorial.com/ 7

 UpdateWindow(hwnd);
 while (GetMessage(&msg, NULL, 0, 0)) {
 TranslateMessage(&msg);
 DispatchMessage(&msg);
 }
 return msg.wParam;
}
LRESULT CALLBACK winproc(HWND hwnd, UINT wm, WPARAM wp, LPARAM lp)
{
 return DefWindowProc(hwnd, wm, wp, lp);
}

The first thing one sees are the two macro definitions, UNICODE and _UNICODE. These macros cause
our program to understand wide character strings (wchar_t[n]), not plain narrow strings(char[n]).
As a result, all string literals must be wrapped in a TEXT(macro. The generic character type for
Win32 strings is TCHAR, whose definition depends on whether or not UNICODE is defined. A new
header is included: <tchar.h> contains the declaration of TCHAR.

A window consists of what is known as a window class. This describes information about a
window that is to be shared between instances of it, like the icon, the cursor, and others. A window
class is identified by a window class name, which is given in the CLSNAME global variable in this
example. The first act of WinMain is to fill in the window class structure, WNDCLASSEX wc. The
members are:

cbSize: The size, in bytes, of the structure•
style: The window class styles. This is 0 for now.•
lpfnWndProc: This is one of the more important fields. It stores the address of the window
procedure. The window procedure is a function that handles events for all windows that are
instances of this window class.

•

cbClsExtra: The number of extra bytes to allocate for the window class. For most situations,
this member is 0.

•

cbWndExtra: The number of extra bytes to allocate for each individual window. Do not
confuse this with cbClsExtra, which is common to all instances. This is often 0.

•

hInstance: The instance handle. Just assign the hInst argument in WinMain to this field.•
hIcon: The icon handle for the window class. LoadIcon(NULL, IDI_APPLICATION) loads the
default application icon.

•

hCursor: The cursor handle for the window class. LoadCursor(NULL, IDC_ARROW) loads the
default cursor.

•

hbrBackground: A handle to the background brush. GetStockObject (WHITE_BRUSH) gives a
handle to a white brush. The return value must be cast because GetStockObject returns a
generic object.

•

lpszMenuName: The resource name of the menu bar to use. If no menu bar is needed, this
field can be NULL.

•

lpszClassName: The class name that identifies this window class structure. In this example,
the CLSNAME global variable stores the window class name.

•

hIconSm: A handle to the small class icon.•

After this structure is initialized, the RegisterClassEx function is called. This causes the window
class to be registered with Windows, making it known to the application. It returns 0 on failure.

https://riptutorial.com/ 8

Now that the window class has been registered, we can display the window using CreateWindowEx.
The arguments are:

stylesex: The extended window styles. The default value is WS_EX_LEFT.•
clsname: The class name•
cap: The window title, or caption. In this case, it is the caption that is displayed in a window's
title bar.

•

styles: The window styles. If you want to create a top-level (parent) window like this one, the
flag to pass in is WS_OVERLAPPEDWINDOW.

•

x: The x-coordinate of the upper-left corner of the window.•
y: The y-coordinate of the upper-left corner of the window•
cx: The width of the window•
cy: The height of the window•
hwndParent: The handle to the parent window. Since this window is in itself a parent
window, this argument is NULL.

•

hMenuOrID: If the window being created is a parent window, then this argument is a handle
to the window menu. Do not confuse this with the class menu, which is
WNDCLASSEX::lpszClassName. The class menu is common to all instances of windows with the
same class name. This argument, however, is specific for just this instance. If the window
being created is a child window, then this is the ID of the child window. In this case, we are
creating a parent window with no menu, so NULL is passed.

•

hInst: The handle to the instance of the application.•
etc: The extra information that is passed to the window's window procedure. If no extra
information is to be transmitted, pass NULL.

•

If x or y or cx or cy is CW_USEDEFAULT, then that argument's value will be determined by Windows.
That is what is done in this example.

CreateWindowEx returns the handle to the newly created window. If window creation failed, it
returned NULL.

We then show the window by calling ShowWindow. The first argument for this function is the handle
to the window. The second argument is the show style, which indicates how the window is to be
displayed. Most applications just pass the cmdshow argument passed in WinMain. After the window is
shown, it must be updated by a call to UpdateWindow. It causes an update message to be sent to the
window. We will learn what this means in another tutorial.

Now comes the heart of the application: The message pump. It pumps messages sent to this
application by the operating system, and dispatches the messages to the window procedure. The
GetMessage call returns non-zero until the application receieves a messages that causes it to quit, in
which case it returns 0. The only argument that concerns us is the pointer to an MSG structure that
will be filled in with information about the message. The other arguments are all 0.

Inside the message loop, TranslateMessage translates virtual-key messages into character
messages. The meaning of this, again, is unimportant to us. It takes a pointer to an MSG structure.
The call directly following it, DispatchMessage, dispatches the message pointed to by its argument to
the window's window procedure. The last thing WinMain must do is return a status code. The wParam
member of the MSG structure contains this return value, so it is returned.

https://riptutorial.com/ 9

But that's just for the WinMain function. The other function is winproc, the window procedure. It will
handle messages for the window that are sent to it by Windows. The signature for winproc is:

hwnd: A handle to the window whose messages are being processed.•
wm: The window message identifier•
wp: One of the message information arguments. This depends on the wm argument•
lp: One of the message information arguments. This depends on the wm argument. This
argument is usually used to transmit pointers or handles

•

In this simple program, we do not handle any messages ourselves. But that doesn't mean
Windows doesn't either. This is why one must call DefWindowProc, which contains default window
handling code. This function must be called at the end of every window procedure.

What is a handle?

A handle is a data type that represents a unique object. They are pointers, but to secret data
structures maintained by the operating system. The details of these structures need not concern
us. All a user needs to do is simply create/retreive a handle using an API call, and pass it around
to other API calls taking that type of handle. The only type of handle we used was the HWND
returned by CreateWindowEx.

Constants

In this example, we encounter a handful of constants, which are in all-caps and begin with a 2 or 3
letter prefix. (The Windows types are also in all-caps)

IDI_APPLICATION: The resource name containing the default application icon. This is used
with either LoadIcon or LoadImage (LoadIcon in this example).

•

IDC_ARROW: The resource name countaining the default application cursor. This is used
with either LoadIcon or LoadImage (LoadIcon in this example).

•

WHITE_BRUSH: The name of a stock object. This stock object is the white brush.•
MB_ICONERROR: A flag used with MessageBox to display an error icon.•
WS_EX_LEFT: The default extended window style. This causes the window to have left-
aligned properties.

•

WS_OVERLAPPEDWINDOW: A window style indicating that the window should be a parent
window with a title bar, size box, and others elements typical of top-level windows.

•

CW_USEDEFAULT: Used with CreateWindowEx's x, y, cx, or cy arguments. Causes Windows
to choose a valid value for the argument for which CW_USEDEFAULT was passed.

•

Windows Types

When programming for Windows, you will have to get used to the Win32 types, which are aliases
for builtin types. These types are in all caps. The alias types used in this program are:

TCHAR: The generic character type. If UNICODE is defined, this is a wchar_t. Otheriwse, it is a
char.

•

UINT: An unsigned integer. Used to represent the message identifier in window procedures, •

https://riptutorial.com/ 10

and other purposes.
WPARAM: In Win16, this was a WORD argument (hence the W prefix). With the introduction
of Win32, however, this is now a UINT_PTR. This illustrates the point of these Windows
aliases; they are there to protect programs from change.

•

LPARAM: This is a LONG argument (LONG_PTR in Win64).•
PTSTR: The P means pointer. The T means generic character, and the STR means string.
Thus, this is a pointer to a TCHAR string. Other string types include:

LPTSTR: Same as PTSTR○

LPCTSTR: Means const TCHAR *○

PCTSTR: Same as LPCTSTR○

LPWSTR: Wide string (wchar_t *)○

LPCWSTR: Means const wchar_t *○

PWSTR: Same as LPWSTR○

and much more As you can see, the Win32 types can be a hassle to understand,
especially with so many synonymous types, which is an artifact of Win16.

○

•

LRESULT: This type is used to represent the return value of window procedures. It is usually
a LONG (hence the L).

•

Read Dealing with windows online: https://riptutorial.com/winapi/topic/2782/dealing-with-windows

https://riptutorial.com/ 11

https://riptutorial.com/winapi/topic/2782/dealing-with-windows

Chapter 4: Error reporting and handling

Remarks

Each thread will have its own last error code. The Windows API will set the last error code on the
calling thread.

You should always call the GetLastError function immediately after checking a Windows API
function's return value.

The majority of Windows API functions set the last error code when they fail. Some will also set
the last error code when they succeed. There are a number of functions that do not set the last
error code. Always refer to the Windows API function's documentation.

It is unsafe to use FORMAT_MESSAGE_FROM_SYSTEM without FORMAT_MESSAGE_IGNORE_INSERTS when using
the FormatMessage function to get a description of an error code.

Examples

Introduction

The Windows API is provided by means of a C-callable interface. Success or failure of an API call
is reported strictly through return values. Exceptions aren't part of the documented contract
(although some API implementations can raise SEH exceptions, e.g. when passing a read-only
lpCommandLine argument to CreateProcess).

Error reporting roughly falls into one of four categories:

Return value only•
Return value with additional information on failure•
Return value with additional information on failure and success•
HRESULT return value•

The documentation for each API call explicitly calls out, how errors are reported. Always consult
the documentation.

Error reported by return value only

Some API calls return a single failure/success flag, without any additional information (e.g.
GetObject):

if (GetObjectW(obj, 0, NULL) == 0) {
 // Failure: no additional information available.
}

Error reported with additional information on failure

https://riptutorial.com/ 12

https://msdn.microsoft.com/en-us/library/windows/desktop/ms680657.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425.aspx
http://www.riptutorial.com/winapi/example/8520/error-reported-by-return-value-only
http://www.riptutorial.com/winapi/example/8521/error-reported-with-additional-information-on-failure
http://www.riptutorial.com/winapi/example/8522/error-reported-with-additional-information-on-failure-and-success
http://www.riptutorial.com/winapi/example/8523/error-reported-as-hresult-value
http://www.riptutorial.com/winapi/example/8523/error-reported-as-hresult-value
https://msdn.microsoft.com/en-us/library/dd144904.aspx

In addition to a failure/success return value, some API calls also set the last error on failure (e.g.
CreateWindow). The documentation usually contains the following standard wording for this case:

If the function succeeds, the return value is <API-specific success value>.
If the function fails, the return value is <API-specific error value>. To get extended error
information, call GetLastError.

if (CreateWindowW(...) == NULL) {
 // Failure: get additional information.
 DWORD dwError = GetLastError();
} else {
 // Success: must not call GetLastError.
}

It is vital that you call GetLastError() IMMEDIATELY. The last error code can be overwritten by
any other function, so if there's an extra function call between the function that failed and the call
to GetLastError(), the return from GetLastError() will no longer be reliable. Take extra caution when
dealing with C++ constructors.

Once you get an error code, you will need to interpret it. You can get a comprehensive list of error
codes on MSDN, at the System Error Codes (Windows) page. Alternatively, you can look in your
system header files; the file with all the error code constants is winerror.h. (If you have Microsoft's
official SDK for Windows 8 or newer, this is in the shared subfolder of the include folder.)

Notes on calling GetLastError() in other programming languages

.net languages (C#, VB, etc.)

With .net, you should not P/Invoke to GetLastError() directly. This is because the .net runtime will
make other Windows API calls on the same thread behind your back. For instance, the garbage
collector might call VirtualFree() if it finds enough memory that it is no longer using, and this can
happen between your intended function call and your call to GetLastError().

Instead, .net provides the Marshal.GetLastWin32Error() function, which will retrieve the last error
from the last P/Invoke call that you yourself made. Use this instead of calling GetLastError()
directly.

(.net does not seem to stop you from importing GetLastError() anyway; I'm not sure why.)

Go

The various facilities provided by Go for calling DLL functions (which reside in both package
syscall and package golang.org/x/sys/windows) return three values: r1, r2, and err. r2 is never
used; you can use the blank identifier there. r1 is the function's return value. err is the result of
calling GetLastError() but converted into a type that implements error, so you can pass it up to
calling functions to handle.

Because Go does not know when to call GetLastError() and when not to, it will always return a

https://riptutorial.com/ 13

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632679.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms679360.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms681381(v=vs.85).aspx

non-nil error. Therefore, the typical Go error-handling idiom

r1, _, err := syscall.Syscall12(CreateWindowW.Addr(), ...)
if err != nil {
 // handle err
}
// use r1

will not work. Instead, you must check r1, exactly as you would in C, and only use err if that
indicates the function returned an error:

r1, _, err := syscall.Syscall12(CreateWindowW.Addr(), ...)
if r1 == 0 {
 // handle err
}
// use r1

Error reported with additional information on failure and success

Some API calls can succeed or fail in more than one way. The APIs commonly return additional
information for both successful invocations as well as errors (e.g. CreateMutex).

if (CreateMutexW(NULL, TRUE, L"Global\\MyNamedMutex") == NULL) {
 // Failure: get additional information.
 DWORD dwError = GetLastError();
} else {
 // Success: Determine which mutex was returned.
 if (GetLastError() == ERROR_ALREADY_EXISTS) {
 // Existing mutex object returned.
 } else {
 // Newly created mutex object returned.
 }
}

Error reported as HRESULT value

HRESULTs are numeric 32-bit values, where bits or bit ranges encode well-defined information.
The MSB is a failure/success flag, with the remaining bits storing additional information. Failure or
success can be determined using the FAILED or SUCCEEDED macros. HRESULTs are commonly
used with COM, but appear in non-COM implementations as well (e.g. StringCchPrintf).

const size_t cchBuf = 5;
wchar_t buffer[cchBuf] = { 0 };
HRESULT hr = StringCchPrintfW(buffer, cchBuf, L"%s", L"Hello, world!");
if (FAILED(hr)) {
 // Failure: Determine specific reason.
 switch (hr) {
 case STRSAFE_E_INSUFFICIENT_BUFFER:
 // Buffer too small; increase buffer and retry.
 ...
 case STRSAFE_E_INVALID_PARAMETER:
 // Invalid parameter; implement custom error handling (e.g. logging).
 ...

https://riptutorial.com/ 14

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682411.aspx
https://msdn.microsoft.com/en-us/library/cc231198.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms693474.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms687197.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms647541.aspx

 default:
 // Some other error code; implement custom error handling (e.g. logging).
 ...
 }
}

Converting an error code into a message string

GetLastError returns a numerical error code. To obtain a descriptive error message (e.g., to display
to a user), you can call FormatMessage:

// This functions fills a caller-defined character buffer (pBuffer)
// of max length (cchBufferLength) with the human-readable error message
// for a Win32 error code (dwErrorCode).
//
// Returns TRUE if successful, or FALSE otherwise.
// If successful, pBuffer is guaranteed to be NUL-terminated.
// On failure, the contents of pBuffer are undefined.
BOOL GetErrorMessage(DWORD dwErrorCode, LPTSTR pBuffer, DWORD cchBufferLength)
{
 if (cchBufferLength == 0)
 {
 return FALSE;
 }

 DWORD cchMsg = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS,
 NULL, /* (not used with FORMAT_MESSAGE_FROM_SYSTEM) */
 dwErrorCode,
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
 pBuffer,
 cchBufferLength,
 NULL);
 return (cchMsg > 0);
}

In C++, you can simplify the interface considerably by using the std::string class:

#include <Windows.h>
#include <exception>
#include <stdexcept>
#include <memory>
#include <string>
typedef std::basic_string<TCHAR> String;

String GetErrorMessage(DWORD dwErrorCode)
{
 LPTSTR psz = NULL;
 const DWORD cchMsg = FormatMessage(FORMAT_MESSAGE_FROM_SYSTEM
 | FORMAT_MESSAGE_IGNORE_INSERTS
 | FORMAT_MESSAGE_ALLOCATE_BUFFER,
 NULL, // (not used with FORMAT_MESSAGE_FROM_SYSTEM)
 dwErrorCode,
 MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
 reinterpret_cast<LPTSTR>(&psz),
 0,

https://riptutorial.com/ 15

http://www.riptutorial.com/winapi/example/8521/error-reported-with-additional-information-on-failure

 NULL);
 if (cchMsg > 0)
 {
 // Assign buffer to smart pointer with custom deleter so that memory gets released
 // in case String's c'tor throws an exception.
 auto deleter = [](void* p) { ::HeapFree(::GetProcessHeap(), 0, p); };
 std::unique_ptr<TCHAR, decltype(deleter)> ptrBuffer(psz, deleter);
 return String(ptrBuffer.get(), cchMsg);
 }
 else
 {
 throw std::runtime_error("Failed to retrieve error message string.");
 }
}

NOTE: These functions also work for HRESULT values. Just change the first parameter from DWORD
dwErrorCode to HRESULT hResult. The rest of the code can remain unchanged.

Read Error reporting and handling online: https://riptutorial.com/winapi/topic/2573/error-reporting-
and-handling

https://riptutorial.com/ 16

http://www.riptutorial.com/winapi/example/8523/error-reported-as-hresult-value
http://www.riptutorial.com/winapi/example/8523/error-reported-as-hresult-value
https://riptutorial.com/winapi/topic/2573/error-reporting-and-handling
https://riptutorial.com/winapi/topic/2573/error-reporting-and-handling

Chapter 5: File Management

Examples

Create a file and write to it

This example creates a new file named "NewFile.txt", then writes "Hello World!" to its body. If the
file already exists, CreateFile will fail and no data will be written. See the dwCreationDisposition
parameter in the CreateFile documentation if you don't want the function to fail if the file already
exists.

#include <Windows.h>
#include <string>

int main()
{
 // Open a handle to the file
 HANDLE hFile = CreateFile(
 L"C:\\NewFile.txt", // Filename
 GENERIC_WRITE, // Desired access
 FILE_SHARE_READ, // Share mode
 NULL, // Security attributes
 CREATE_NEW, // Creates a new file, only if it doesn't already exist
 FILE_ATTRIBUTE_NORMAL, // Flags and attributes
 NULL); // Template file handle

 if (hFile == INVALID_HANDLE_VALUE)
 {
 // Failed to open/create file
 return 2;
 }

 // Write data to the file
 std::string strText = "Hello World!"; // For C use LPSTR (char*) or LPWSTR (wchar_t*)
 DWORD bytesWritten;
 WriteFile(
 hFile, // Handle to the file
 strText.c_str(), // Buffer to write
 strText.size(), // Buffer size
 &bytesWritten, // Bytes written
 nullptr); // Overlapped

 // Close the handle once we don't need it.
 CloseHandle(hFile);
}

API Reference:

MSDN CreateFile•
MSDN WriteFile•

Read File Management online: https://riptutorial.com/winapi/topic/1765/file-management

https://riptutorial.com/ 17

https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa363858.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365747.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa365747.aspx
https://riptutorial.com/winapi/topic/1765/file-management

Chapter 6: Process and Thread Management

Examples

Create a process and check its exit code

This example starts Notepad, waits for it to be closed, then gets its exit code.

#include <Windows.h>

int main()
{
 STARTUPINFOW si = { 0 };
 si.cb = sizeof(si);
 PROCESS_INFORMATION pi = { 0 };

 // Create the child process
 BOOL success = CreateProcessW(
 L"C:\\Windows\\system32\\notepad.exe", // Path to executable
 NULL, // Command line arguments
 NULL, // Process attributes
 NULL, // Thread attributes
 FALSE, // Inherit handles
 0, // Creation flags
 NULL, // Environment
 NULL, // Working directory
 &si, // Startup info
 &pi); // Process information

 if (success)
 {
 // Wait for the process to exit
 WaitForSingleObject(pi.hProcess, INFINITE);

 // Process has exited - check its exit code
 DWORD exitCode;
 GetExitCodeProcess(pi.hProcess, &exitCode);

 // At this point exitCode is set to the process' exit code

 // Handles must be closed when they are no longer needed
 CloseHandle(pi.hThread);
 CloseHandle(pi.hProcess);
 }
}

References (MSDN):

CreateProcess•
WaitForSingleObject•
GetExitCodeProcess•
CloseHandle•

Create a new thread

https://riptutorial.com/ 18

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms683189.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724211.aspx

#include <Windows.h>

DWORD WINAPI DoStuff(LPVOID lpParameter)
{
 // The new thread will start here
 return 0;
}

int main()
{
 // Create a new thread which will start at the DoStuff function
 HANDLE hThread = CreateThread(
 NULL, // Thread attributes
 0, // Stack size (0 = use default)
 DoStuff, // Thread start address
 NULL, // Parameter to pass to the thread
 0, // Creation flags
 NULL); // Thread id
 if (hThread == NULL)
 {
 // Thread creation failed.
 // More details can be retrieved by calling GetLastError()
 return 1;
 }

 // Wait for thread to finish execution
 WaitForSingleObject(hThread, INFINITE);

 // Thread handle must be closed when no longer needed
 CloseHandle(hThread);

 return 0;
}

Note that the CRT also provides the _beginthread and _beginthreadex APIs for creating threads,
which are not shown in this example. The following link discusses the differences between these
APIs and the CreateThread API.

References (MSDN):

CreateThread•

WaitForSingleObject•

CloseHandle•

_beginthread, _beginthreadex•

Read Process and Thread Management online: https://riptutorial.com/winapi/topic/1756/process-
and-thread-management

https://riptutorial.com/ 19

https://msdn.microsoft.com/en-us/library/kdzttdcb.aspx
https://msdn.microsoft.com/en-us/library/kdzttdcb.aspx
https://msdn.microsoft.com/en-us/library/kdzttdcb.aspx
http://stackoverflow.com/q/331536/389966
http://stackoverflow.com/q/331536/389966
http://stackoverflow.com/q/331536/389966
http://stackoverflow.com/q/331536/389966
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682453(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms687032.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms724211.aspx
https://msdn.microsoft.com/en-us/library/kdzttdcb.aspx
https://msdn.microsoft.com/en-us/library/kdzttdcb.aspx
https://msdn.microsoft.com/en-us/library/kdzttdcb.aspx
https://riptutorial.com/winapi/topic/1756/process-and-thread-management
https://riptutorial.com/winapi/topic/1756/process-and-thread-management

Chapter 7: Utilizing MSDN Documentation

Introduction

The Windows API is vast, and contains a lot of features. The size of the API is such that no one
can know all of it. While there are many resources like StackOverflow, there is no substitute for the
official documentation.

Remarks

Examples of Documentation:

Topic Overview: Desktop Window Manager Performance Considerations and Best
Practices

•

Samples: Customize an Iconic Thumbnail and a Live Preview Bitmap•
Functions: DwmSetIconicThumbnail function•

Examples

Types of Documentation Available

The MSDN library contains several different types of documentation which can be used for
implementing features.

Topic Overviews These are broad overviews of topics intended to provide a general
understanding of an API. These overviews also often outline best practices, and
implementation strategies.

•

Samples Demonstrate the use of particular APIs. These are generally highly simplified, don't
necessarily do error checking, and typically don't use frameworks like MFC or ATL. They
provide a starting point for using features.

•

Reference Details all of the elements of each API. This includes constants/enumerations,
interfaces, functions and classes.

•

Note: Many Microsoft employees also maintain blogs, like Raymond Chen's The Old New Thing
that can supplement the documentation, but these blogs are not a substitute for the
documentation.

Finding Documentation for a Feature

Finding documentation for a feature is often as simple as a search using a good search engine. If
that fails, or if unsure about specific terms, the Windows API Index can help locate specific
features. Documentation for methods, interfaces, enumerations and constants can usually be
found by searching for the name using a search engine. Additionally, the Windows Dev Center can
provide a valuable starting point.

https://riptutorial.com/ 20

https://msdn.microsoft.com/en-us/library/windows/desktop/aa969536.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa969536.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ff819048.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dd389411.aspx
https://blogs.msdn.microsoft.com/oldnewthing/
https://msdn.microsoft.com/en-us/library/windows/desktop/ff818516.aspx
https://developer.microsoft.com/en-us/windows

Using Function Documentation

The documentation for a function is broken down into several sections:

Overview

Describes what the function is used for. This section will also show information about whether the
function is depreciated, or may be unavailable in future versions.

Syntax

Shows the declaration of the function from the appropriate source header. It is a quick reference to
the function's signature.

Parameters

Explains each of the parameters, whether the parameter is input or output, and other important
considerations.

Return Value

This section explains the result of the function call, including how to detect errors, and what
additional information is available. (For example, this section will state explicitly if GetLastError will
provide additional error handling information.)

Remarks

Covers any additional information required to use the function, such as, information about
supporting functions, obtaining appropriate handles, and disposal of resources.

Examples

If this section is available, it has an example of the appropriate use of the function to use as a
starting point for implementation.

Requirements

Gives important information about prerequisites for calling the function. This information includes:

https://riptutorial.com/ 21

Minimum Supported Client/Server First version of the operating system (supported by
Microsoft) to provide the function.
(Note that this field is notoriously misleading. Often, functions are supported in an earlier version of the
operating system, but this field only shows the earliest version that is currently supported by Microsoft. For
example, the CreateWindow function has been supported since Windows 1.0, but the documentation only
shows that it has been supported since Windows 2000. The online version of the MSDN documentation does
not indicate that any function was supported in a version of Windows prior to 2000, even though many were.
For legacy development, you will need to consult an older version of the SDK documentation, such as might
have been shipped on an MSDN CD-ROM. Or, just look in the header files.)

•

Header The SDK header to #include that contains the function declaration. If the function
isn't available in a header, this will show information about the procedure to call the function
(usually calling GetProcAddress to do run-time dynamic linking).

•

Library The library file to pass to the linker to resolve the exported functions.•
DLL The file (as shipped with the operating system) that contains the exported function.•
End of Client/Server Support The last version of Windows to officially support the API.•
Unicode and ANSI names For string functions that have both Unicode and ANSI variants,
this lists the actual exported names for the two functions. This is usually just the function
name with a W or A suffix (respectively).

•

Read Utilizing MSDN Documentation online: https://riptutorial.com/winapi/topic/8999/utilizing-
msdn-documentation

https://riptutorial.com/ 22

https://riptutorial.com/winapi/topic/8999/utilizing-msdn-documentation
https://riptutorial.com/winapi/topic/8999/utilizing-msdn-documentation

Chapter 8: Window messages

Syntax

#include <windows.h>•
BOOL WINAPI DestroyWindow(HWND hwnd);•
VOID WINAPI PostQuitMessage(int exitcode);•
BOOL WINAPI MoveWindow(HWND hwnd, int x, int y, int cx, int cy, BOOL bRepaint);•

Examples

WM_CREATE

A WM_CREATE message is sent to your window procedure during the window's CreateWindowEx
call. The lp argument contains a pointer to a CREATESTRUCT which contains the arguments passed to
CreateWindowEx. If an application returns 0 from WM_CREATE, the window is created. If an
application returns -1, creation is canceled.

LRESULT CALLBACK winproc(HWND hwnd, UINT wm, WPARAM wp, LPARAM lp)
{
 switch (wm) {
 case WM_CREATE:
 CREATESTRUCT *cs = (CREATESTRUCT *) lp;
 if (MessageBox(hwnd,
 "Do you want to continue creating the window?", "", MB_YESNO)
 == IDYES) {
 /* create window controls */
 return 0;
 }
 /* cancel creation */
 return -1;
 }
 return DefWindowProc(hwnd, wm, wp, lp);
}

WM_DESTROY

This message is sent to your window procedure when a window is being destroyed. It is sent after
the window is removed from the screen. Most applications free any resources, like memory or
handles, obtained in WM_CREATE. If you handle this message, return 0.

LRESULT CALLBACK winproc(HWND hwnd, UINT wm, WPARAM wp, LPARAM lp)
{
 static char *text;
 switch (wm) {
 case WM_CREATE:
 text = malloc(256);
 /* use the allocated memory */
 return 0;
 case WM_CLOSE:

https://riptutorial.com/ 23

 switch (MessageBox(hwnd, "Save changes?", "", MB_YESNOCANCEL)) {
 case IDYES:
 savedoc();
 /* fall through */
 case IDNO:
 DestroyWindow(hwnd);
 break;
 }
 return 0;
 case WM_DESTROY:
 /* free the memory */
 free(text);
 PostQuitMessage(0);
 return 0;
 }
 return DefWindowProc(hwnd, wm, wp, lp);
}

WM_CLOSE

Sent when an application's close button is clicked. Do not confuse this with WM_DESTROY which is
sent when a window will be destroyed. The main difference lies in the fact that closing may be
canceled in WM_CLOSE (think of Microsoft Word asking to save your changes), versus that
destroying is when the window has already been closed (think of Microsoft Word freeing memory).

LRESULT CALLBACK winproc(HWND hwnd, UINT wm, WPARAM wp, LPARAM lp)
{
 static char *text;
 switch (wm) {
 case WM_CREATE:
 text = malloc(256);
 /* use the allocated memory */
 return 0;
 case WM_CLOSE:
 switch (MessageBox(hwnd, "Save changes?", "", MB_YESNOCANCEL)) {
 case IDYES:
 savedoc();
 /* fall through */
 case IDNO:
 DestroyWindow(hwnd);
 break;
 }
 return 0;
 case WM_DESTROY:
 /* free the memory */
 free(text);
 PostQuitMessage(0);
 return 0;
 }
 return DefWindowProc(hwnd, wm, wp, lp);
}

WM_SIZE

This message is sent to the window's window procedure after it's size has changed. The most
common reason for handling this message is to adjust the position of any child windows. For

https://riptutorial.com/ 24

example, in Notepad, when the window is resized the child window (edit control) is also resized.
Return 0 if you handle this message.

Argument Value

wp One of the window sizing constants.

lp
LOWORD(lp) is the new width of the client area
HIWORD(lp) is the new height of the client area.

LRESULT CALLBACK winproc(HWND hwnd, UINT wm, WPARAM wp, LPARAM lp)
{
 switch (wm) {
 case WM_SIZE:
 /* hwndEdit is the handle of the edit control window */
 MoveWindow(hwndEdit, 0, 0, LOWORD(lp), HIWORD(lp), TRUE);
 return 0;
 }
 return DefWindowProc(hwnd, wm, wp, lp);
}

WM_COMMAND

Sent to a window procedure when:

the user selects an item from a menu•
a control sends a notification to its parent window•
an accelerator keystroke is translated•

Message Source HIWORD(wp) LOWORD(wp) lp

Menu 0 Menu ID (IDM_*) 0

Accelerator 1 Accel ID (IDM_*) 0

Control notification code Control id HWND of control window

For example, in Notepad, when a user clicks "File->Open" a dialog box is displayed to allow the
user to open a file. Menu items are processed in the window procedure's WM_CREATE message
like this:

LRESULT CALLBACK winproc(HWND hwnd, UINT wm, WPARAM wp, LPARAM lp)
{
 switch (wm) {
 case WM_COMMAND:
 switch (LOWORD(wp) {
 case ID_FILE_OPEN:
 /* show file open dialog */
 break;
 case ID_FILE_NEW:
 /* create new instance */

https://riptutorial.com/ 25

https://msdn.microsoft.com/en-us/library/windows/desktop/ms632646(v=vs.85).aspx

 break;
 }
 return 0;
 }
 return DefWindowProc(hwnd, wm, wp, lp);
}

Read Window messages online: https://riptutorial.com/winapi/topic/2449/window-messages

https://riptutorial.com/ 26

https://riptutorial.com/winapi/topic/2449/window-messages

Chapter 9: Windows Services

Examples

Check if a service is installed

This example show how you can check if a service already exists (i.e., is installed on the machine)
or not. This code requires only the lowest privileges necessary, so each process can perform the
check, no matter what level of security it is running at.

#define UNICODE
#define _UNICODE
#include <Windows.h>
#include <string>
#include <iostream>

enum Result
{
 unknown,
 serviceManager_AccessDenied,
 serviceManager_DatabaseDoesNotExist,
 service_AccessDenied,
 service_InvalidServiceManagerHandle,
 service_InvalidServiceName,
 service_DoesNotExist,
 service_Exist
};

Result ServiceExists(const std::wstring &serviceName)
{
 Result r = unknown;

 // Get a handle to the SCM database
 SC_HANDLE manager = OpenSCManager(NULL, SERVICES_ACTIVE_DATABASE, GENERIC_READ);

 if (manager == NULL)
 {
 DWORD lastError = GetLastError();

 // At this point, we can return directly because no handles need to be closed.
 if (lastError == ERROR_ACCESS_DENIED)
 return serviceManager_AccessDenied;
 else if (lastError == ERROR_DATABASE_DOES_NOT_EXIST)
 return serviceManager_DatabaseDoesNotExist;
 else
 return unknown;
 }

 SC_HANDLE service = OpenService(manager, serviceName.c_str(), GENERIC_READ);

 if (service == NULL)
 {
 DWORD error = GetLastError();

 if (error == ERROR_ACCESS_DENIED)
 r = service_AccessDenied;

https://riptutorial.com/ 27

 else if (error == ERROR_INVALID_HANDLE)
 r = service_InvalidServiceManagerHandle;
 else if (error == ERROR_INVALID_NAME)
 r = service_InvalidServiceName;
 else if (error == ERROR_SERVICE_DOES_NOT_EXIST)
 r = service_DoesNotExist;
 else
 r = unknown;
 }
 else
 r = service_Exist;

 if (service != NULL)
 CloseServiceHandle(service);

 if (manager != NULL)
 CloseServiceHandle(manager);

 return r;
}

int main()
{
 std::wstring serviceName = L"MSSQL$SQLEXPRESS"; // name of the service to check
 Result result = ServiceExists(serviceName);
 if (result == service_Exist)
 std::wcout << L"The service '" << serviceName << "' exists." << std::endl;
 else if (result == service_DoesNotExist)
 std::wcout << L"The service '" << serviceName << "' does not exist." << std::endl;
 else
 std::wcout << L"An error has occurred, and it could not be determined whether the
service '" << serviceName << "' exists or not." << std::endl;
}

API Reference:

MSDN OpenSCManager•
MSDN OpenService•
MSDN CloseServiceHandle•

Read Windows Services online: https://riptutorial.com/winapi/topic/2256/windows-services

https://riptutorial.com/ 28

https://msdn.microsoft.com/de-de/library/windows/desktop/ms684323.aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/ms684330.aspx
https://msdn.microsoft.com/de-de/library/windows/desktop/ms682028.aspx
https://riptutorial.com/winapi/topic/2256/windows-services

Chapter 10: Windows Subclassing

Introduction

Window subclassing is a way to hook up into standard window procedure and to modify or extend
its default behavior. An application subclasses a window by replacing the the window's original
window procedure with a new window procedure. This new window procedure receives any
messages sent or posted to the window.

Syntax

BOOL SetWindowSubclass(HWND hWnd, SUBCLASSPROC SubclassProc, UINT_PTR
SubclassId, DWORD_PTR RefData);

•

BOOL RemoveWindowSubclass(HWND hWnd, SUBCLASSPROC SubclassProc,
UINT_PTR SubclassId);

•

BOOL GetWindowSubclass(HWND hWnd, SUBCLASSPROC SubclassProc, UINT_PTR
SubclassId, DORD_PTR* RefData);

•

LRESULT DefSubclassProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM
lParam);

•

Parameters

Parameter Detail

hWnd The handle of the window to subclass.

SubclassProc The subclass callback procedure.

SubclassId
User specified ID to identify the subclass, together with the subclass
procedure uniquely identifies a subclass. It can simply be an arbitrary
consecutive number.

RefData
User specified data. The meaning is determined by the application. It is
passed to the subclass callback in unmodified way. It could be an object
pointer to a class instance for example.

Remarks

MSDN Documentation

About Windows Procedures•
Subclassing Controls•

https://riptutorial.com/ 29

https://www.google.com/search?q=+Window+Procedure+Overviews+site:msdn.microsoft.com&btnI
https://www.google.com/search?q=+Subclassing+Controls+site:msdn.microsoft.com&btnI

Examples

Subclassing windows button control within C++ class

This example shows how to manipulate button ideal size by specifying a fixed size.

class ButtonSubclass {
public:

 ButtonSubclass(HWND hWndButton) {
 SetWindowSubclass(hWndButton, MyButtonSubclassProc, 1, (DWORD_PTR) this);
 }
 ~ButtonSuclass() {
 RemoveWindowSubclass(hWndButton, MyButtonSubclassProc, 1, (DWORD_PTR) this);
 }

protected:

 static LRESULT CALLBACK MyButtonSubclassProc(
 HWND hWnd, UINT Msg, WPARAM w, LPARAM l, DWORD_PTR RefData) {

 ButtonSubclass* o = reinterpret_cast<ButtonSubclass*>(RefData);

 if (Msg == BCM_GETIDEALSIZE) {
 reinterpret_cast<SIZE*>(lParam)->cx = 100;
 reinterpret_cast<SIZE*>(lParam)->cy = 100;
 return TRUE;
 }
 return DefSubclassProc(hWnd, Msg, w, l);
 }
}

Installing and removing subclass procedure

The following methods installs or removes the subclass callback. The combination of SubclassId
and SubclassProc uniquely identifies a subclass. There is no reference counting, calling
SetWindowSubclass multiple times with different RefData only updates that value but will not causes
the subclass callback to be called multiple times.

BOOL SetWindowSubclass(HWND hWnd, SUBCLASSPROC SubclassProc, UINT_PTR SubclassId, DWORD_PTR
RefData);
BOOL RemoveWindowSubclass(HWND hWnd, SUBCLASSPROC SubclassProc, UINT_PTR SubclassId);

To retrieve the reference data that was passed in the last SetWindowSubclasscall, one can use the
GetWindowSubclass method.

BOOL GetWindowSubclass(HWND hWnd, SUBCLASSPROC SubclassProc, UINT_PTR SubclassId, DORD_PTR*
RefData);

Parameter Detail

hWnd The handle of the window to subclass.

https://riptutorial.com/ 30

Parameter Detail

SubclassProc The subclass callback procedure.

SubclassId
User specified ID to identify the subclass, together with the subclass
procedure uniquely identifies a subclass. It can simply be an arbitrary
consecutive number.

RefData
User specified data. The meaning is determined by the application. It is
passed to the subclass callback in unmodified way. It could be an object
pointer to a class instance for example.

The subclass callback is responsible to call the next handler in window's subclass chain.
DefSubclassProc calls the next handler in window's subclass chain. The last handler calls the
original window procedure. It should be called in any subclassing callback procedure unless the
message is completely handled by the application.

LRESULT DefSubclassProc(HWND hWnd, UINT Msg, WPARAM wParam, LPARAM lParam);

Parameter Detail

hWnd Window handle where the message originates from

Msg Window message

wParam WPARAM argument, this value depends on specific window message

lParam LPARAM argument, this value depends on specific window message

SUBCLASSPROC

It is similar to WINDOWPROC callback but contains an additional argument RefData.

typedef LRESULT (CALLBACK *SUBCLASSPROC)(
 HWND hWnd,
 UINT Msg,
 WPARAM wParam,
 LPARAM lParam,
 UINT_PTR SubclassId,
 DWORD_PTR RefData
);

Handling common controls notification messages within C++ class

class MyToolbarControl {
public:
 MyToolbarControl(HWND hWndToolbar, HWND hWndNotifyParent = nullptr) : _Handle(hWndToolbar)
{
 if (hWndNotifyParent == nullptr) {
 hWndNotifyParent = GetAncestor(hWndToolbar, GA_ROOTOWNER);

https://riptutorial.com/ 31

 }
 SetWindowSubclass(
 hWndNotifyParent , SubclassWindowProc, reinterpret_cast<UINT_PTR>(this),
reinterpret_cast<DWORD_PTR>(this)
);
 }
 ~MyToolbarControl() {
 RemoveWindowSubclass(
 hWndNotifyParent , SubclassWindowProc, reinterpret_cast<UINT_PTR>(this),
reinterpret_cast<DWORD_PTR>(this)
);
 }

protected:
 HWND _Handle;

 static LRESULT CALLBACK SubclassWindowProc(
 HWND hWnd, UINT Msg, WPARAM w, LPARAM l, UINT_PTR SubclassId, DWORD_PTR RefData) {
 MyToolbarControl * w = reinterpret_cast<MyToolbarControl *>(RefData);
 if (Msg == WM_NOTIFY) {
 NMHDR* h = reinterpret_cast<NMHDR*>(l);
 if (h->hwndFrom == w->_Handle) {
 // Handle notification message here...
 }
 }
 return DefSubclassProc(hWnd, Msg, w, l);
 }
};

Read Windows Subclassing online: https://riptutorial.com/winapi/topic/9399/windows-subclassing

https://riptutorial.com/ 32

https://riptutorial.com/winapi/topic/9399/windows-subclassing

Credits

S.
No

Chapters Contributors

1
Getting started with
Win32 API

Community, IInspectable, Richard Chambers, stackptr, Stuart,
theB

2
Ansi- and Wide-
character functions

Adrian McCarthy, Ajay, IInspectable, Tannin

3
Dealing with
windows

stackptr

4
Error reporting and
handling

Ajay, andlabs, camelCase, Cody Gray, IInspectable, stackptr

5 File Management Adi Lester, Ajay, theB

6
Process and Thread
Management

Adi Lester, Ajay, IInspectable, theB

7
Utilizing MSDN
Documentation

Cody Gray, theB

8 Window messages stackptr

9 Windows Services Cody Gray, Mr. Gray

10
Windows
Subclassing

bkausbk

https://riptutorial.com/ 33

https://riptutorial.com/contributor/-1/community
https://riptutorial.com/contributor/1889329/iinspectable
https://riptutorial.com/contributor/1466970/richard-chambers
https://riptutorial.com/contributor/2469027/stackptr
https://riptutorial.com/contributor/2655905/stuart
https://riptutorial.com/contributor/5240004/theb
https://riptutorial.com/contributor/1386054/adrian-mccarthy
https://riptutorial.com/contributor/264325/ajay
https://riptutorial.com/contributor/1889329/iinspectable
https://riptutorial.com/contributor/1918759/tannin
https://riptutorial.com/contributor/2469027/stackptr
https://riptutorial.com/contributor/264325/ajay
https://riptutorial.com/contributor/3408572/andlabs
https://riptutorial.com/contributor/3387453/camelcase
https://riptutorial.com/contributor/366904/cody-gray
https://riptutorial.com/contributor/1889329/iinspectable
https://riptutorial.com/contributor/2469027/stackptr
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/264325/ajay
https://riptutorial.com/contributor/5240004/theb
https://riptutorial.com/contributor/389966/adi-lester
https://riptutorial.com/contributor/264325/ajay
https://riptutorial.com/contributor/1889329/iinspectable
https://riptutorial.com/contributor/5240004/theb
https://riptutorial.com/contributor/366904/cody-gray
https://riptutorial.com/contributor/5240004/theb
https://riptutorial.com/contributor/2469027/stackptr
https://riptutorial.com/contributor/366904/cody-gray
https://riptutorial.com/contributor/6624218/mr--gray
https://riptutorial.com/contributor/575491/bkausbk

	About
	Chapter 1: Getting started with Win32 API
	Remarks
	Versions
	Examples
	Hello World

	Chapter 2: Ansi- and Wide-character functions
	Examples
	Introduction

	Chapter 3: Dealing with windows
	Examples
	Creating a window
	What is a handle?
	Constants
	Windows Types

	Chapter 4: Error reporting and handling
	Remarks
	Examples
	Introduction
	Error reported by return value only
	Error reported with additional information on failure

	Notes on calling GetLastError() in other programming languages
	.net languages (C#, VB, etc.)
	Go
	Error reported with additional information on failure and success
	Error reported as HRESULT value
	Converting an error code into a message string

	Chapter 5: File Management
	Examples
	Create a file and write to it

	API Reference:

	Chapter 6: Process and Thread Management
	Examples
	Create a process and check its exit code
	Create a new thread

	Chapter 7: Utilizing MSDN Documentation
	Introduction
	Remarks
	Examples
	Types of Documentation Available
	Finding Documentation for a Feature
	Using Function Documentation

	Overview
	Syntax
	Parameters
	Return Value
	Remarks
	Examples
	Requirements
	Chapter 8: Window messages
	Syntax
	Examples
	WM_CREATE
	WM_DESTROY
	WM_CLOSE
	WM_SIZE
	WM_COMMAND

	Chapter 9: Windows Services
	Examples
	Check if a service is installed

	API Reference:

	Chapter 10: Windows Subclassing
	Introduction
	Syntax
	Parameters
	Remarks
	Examples
	Subclassing windows button control within C++ class
	Handling common controls notification messages within C++ class

	Credits

